Sample records for key global change

  1. Water - The key to global change. [of weather and climate

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald A.

    1988-01-01

    The role of water in processes of global change is discussed. The importance of water in global warming, the loss of biological diversity, the activity of the El Nino southern oscillation, and the melting of polar ice are examined. Plans for a mission to measure tropical rainfall using a two frequency radar, a visible/IR radiometer and a passive microwave radiometer are noted. The way in which global change is affected by changes in patterns of available water is considered.

  2. Perspectives on global change theory

    USDA-ARS?s Scientific Manuscript database

    Global changes in ecological drivers, such as CO2 concentrations, climate, and nitrogen deposition, are increasingly recognized as key to understanding contemporary ecosystem dynamics, but a coherent theory of global change has not yet been developed. We outline the characteristics of a theory of gl...

  3. Heat, Human Performance, and Occupational Health: A Key Issue for the Assessment of Global Climate Change Impacts.

    PubMed

    Kjellstrom, Tord; Briggs, David; Freyberg, Chris; Lemke, Bruno; Otto, Matthias; Hyatt, Olivia

    2016-01-01

    Ambient heat exposure is a well-known health hazard, which reduces human performance and work capacity at heat levels already common in tropical and subtropical areas. Various health problems have been reported. Increasing heat exposure during the hottest seasons of each year is a key feature of global climate change. Heat exhaustion and reduced human performance are often overlooked in climate change health impact analysis. Later this century, many among the four billion people who live in hot areas worldwide will experience significantly reduced work capacity owing to climate change. In some areas, 30-40% of annual daylight hours will become too hot for work to be carried out. The social and economic impacts will be considerable, with global gross domestic product (GDP) losses greater than 20% by 2100. The analysis to date is piecemeal. More analysis of climate change-related occupational health impact assessments is greatly needed.

  4. Perspectives on global change theory

    USDA-ARS?s Scientific Manuscript database

    Human-caused global changes in ecological drivers, such as carbon dioxide concentrations, climate, and nitrogen deposition, as well as direct human impacts (land use change, species movements and extinctions, etc.) are increasingly recognized as key to understanding contemporary ecosystem dynamics, ...

  5. Challenges of Global Change for Lakes

    NASA Astrophysics Data System (ADS)

    Seekell, D.

    2016-12-01

    Lakes comprise a tiny fraction of Earth's surface, but contribute significantly to human life and wellbeing. Many lakes are disappearing due to climate change and water diversions, and there are widespread disruptions to ecosystem processes due to human influences. For example, pollution by nutrients and toxic chemicals causes toxicity to humans, livestock, fish, and wildlife. Lake desiccation reduces economic opportunity and food security, displacing entire communities. Understanding these changes at the global scale, and their implications for human societies, are a key challenges for aquatic scientists. In this talk, I will use results from my research to highlight some of the key uncertainties related to global change and lakes, as well as recent developments by aquatic scientists aimed at predicting, mitigating, and coping with these changes.

  6. Linking global-change induced shifts in soil nitrogen cycling with the abundance of key microorganisms

    NASA Astrophysics Data System (ADS)

    Carey, C.; Eviner, V.; Beman, M.; Hart, S. C.

    2013-12-01

    Since western colonization, the ecology of California has seen marked transformations. In particular, invasion of terrestrial ecosystems by exotic plants has altered plant community composition, disturbances, soil hydrologic regimes, and nutrient cycling. In addition, as a result of fertilization and combustion of fossil fuels, California experiences some of the highest nitrogen (N) deposition rates in the country. Land use has also changed with the introduction of domestic livestock grazing about 250 years ago. Currently, approximately 32% of land in California experiences grazing pressure. These ecological changes likely affect the ecosystems of California simultaneously. However, with multifactor global change experiments in their infancy, little is known about potential interactive effects on ecosystem structure and function. Our study measured the response of soil N dynamics to a unique combination of treatments: invasion by exotic plants (Aegilops triuncialis and Taeniatherum caput-medusae), elevated N additions, and simulated cattle grazing (aboveground vegetation removal). In addition, we quantified the abundance of key functional genes involved in nitrification (amoA) and denitrification (nirS/nirK) in order to gain a mechanistic insight into changes in ecosystem functioning. We found that, while responses of soil N pools and processes to global change factors tend to be dominated by main effects, interactions among factors can substantially alter the overall response of the ecosystem. For instance, N additions increased potential nitrification and pools of total inorganic N (TIN; NH4+ and NO3-); when N additions and grazing were combined, however, nitrification potentials and TIN decreased to those of ambient N (control) levels. Additionally, neither N additions nor simulated grazing independently affected soil microbial biomass of invaded plots; yet, when combined, the microbial biomass increased significantly. Our results help to provide a better

  7. Solar influences on global change

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Monitoring of the Sun and the Earth has yielded new knowledge essential to this debate. There is now no doubt that the total radiative energy from the Sun that heats the Earth's surface changes over decadal time scales as a consequence of solar activity. Observations indicate as well that changes in ultraviolet radiation and energetic particles from the Sun, also connected with the solar activity, modulate the layer of ozone that protects the biosphere from the solar ultraviolet radiation. This report reassesses solar influences on global change in the light of this new knowledge of solar and atmospheric variability. Moreover, the report considers climate change to be encompassed within the broader concept of global change; thus the biosphere is recognized to be part of a larger, coupled Earth system. Implementing a program to continuously monitor solar irradiance over the next several decades will provide the opportunity to estimate solar influences on global change, assuming continued maintenance of observations of climate and other potential forcing mechanisms. In the lower atmosphere, an increase in solar radiation is expected to cause global warming. In the stratosphere, however, the two effects produce temperature changes of opposite sign. A monitoring program that would augment long term observations of tropospheric parameters with similar observations of stratospheric parameters could separate these diverse climate perturbations and perhaps isolate a greenhouse footprint of climate change. Monitoring global change in the troposphere is a key element of all facets of the United States Global Change Research Program (USGCRP), not just of the study of solar influences on global change. The need for monitoring the stratosphere is also important for global change research in its own right because of the stratospheric ozone layer.

  8. Microenvironmental change as a mechanism to study global change.

    NASA Astrophysics Data System (ADS)

    Lortie, C. J.

    2016-12-01

    Global change is a set of significant processes that influence all aspects of ecosystem functioning and often-natural services within Santa Barbara County. The sensitivity of coastal and urban systems is certainly very high. However, profound changes are also predicted for arid and semi-arid systems globally, and California is no exception. These dryland systems are less buffered by oceanic processes and typically express high inter-annual variation in precipitation and temperatures in addition to perturbations associated with long-term droughts. However, climate estimates and downscaled values can present challenges in providing evidence at the scale relevant to individual species or individuals, and the importance of biotic interactions must be coupled to these estimates in space and time. Coupled indicators of key micro-environmental measures to both positive and negative interactions between foundation species and other organisms provide a metric of buffering capacity and resilience to global change at fine spatial scales. Consequently, the primary objective of this research project is to provide both the a well-articulated, ecologically relevant micro-environmental big data measure of global change within Santa Barbara County and a coupled estimate of concurrent changes in interactions in key species within the region. Shrubs directly and indirectly buffered local changes in the microenvironment thereby functioning as refuges for other species within arid and semi-arid regions subject to dramatic global change drivers. The following major patterns were identified: (i) shrub micro-environments reduce the level of stress and amplitude of variation associated with temperature and moisture, (ii) many plant and animal species including threatened lizards are relatively more common with shrubs within the region, and (iii) the variation in the interaction patterns between species relates to the extent of amelioration provided by shrub-biodiversity complexes within

  9. Climate change and the global malaria recession.

    PubMed

    Gething, Peter W; Smith, David L; Patil, Anand P; Tatem, Andrew J; Snow, Robert W; Hay, Simon I

    2010-05-20

    The current and potential future impact of climate change on malaria is of major public health interest. The proposed effects of rising global temperatures on the future spread and intensification of the disease, and on existing malaria morbidity and mortality rates, substantively influence global health policy. The contemporary spatial limits of Plasmodium falciparum malaria and its endemicity within this range, when compared with comparable historical maps, offer unique insights into the changing global epidemiology of malaria over the last century. It has long been known that the range of malaria has contracted through a century of economic development and disease control. Here, for the first time, we quantify this contraction and the global decreases in malaria endemicity since approximately 1900. We compare the magnitude of these changes to the size of effects on malaria endemicity proposed under future climate scenarios and associated with widely used public health interventions. Our findings have two key and often ignored implications with respect to climate change and malaria. First, widespread claims that rising mean temperatures have already led to increases in worldwide malaria morbidity and mortality are largely at odds with observed decreasing global trends in both its endemicity and geographic extent. Second, the proposed future effects of rising temperatures on endemicity are at least one order of magnitude smaller than changes observed since about 1900 and up to two orders of magnitude smaller than those that can be achieved by the effective scale-up of key control measures. Predictions of an intensification of malaria in a warmer world, based on extrapolated empirical relationships or biological mechanisms, must be set against a context of a century of warming that has seen marked global declines in the disease and a substantial weakening of the global correlation between malaria endemicity and climate.

  10. Paleobotany and Global Change: Important Lessons for Species to Biomes from Vegetation Responses to Past Global Change.

    PubMed

    McElwain, Jennifer C

    2018-04-29

    Human carbon use during the next century will lead to atmospheric carbon dioxide concentrations (pCO 2 ) that have been unprecedented for the past 50-100+ million years according to fossil plant-based CO 2 estimates. The paleobotanical record of plants offers key insights into vegetation responses to past global change, including suitable analogs for Earth's climatic future. Past global warming events have resulted in transient poleward migration at rates that are equivalent to the lowest climate velocities required for current taxa to keep pace with climate change. Paleobiome reconstructions suggest that the current tundra biome is the biome most threatened by global warming. The common occurrence of paleoforests at high polar latitudes when pCO 2 was above 500 ppm suggests that the advance of woody shrub and tree taxa into tundra environments may be inevitable. Fossil pollen studies demonstrate the resilience of wet tropical forests to global change up to 700 ppm CO 2 , contrary to modeled predictions of the future. The paleobotanical record also demonstrates a high capacity for functional trait evolution as an additional strategy to migration and maintenance of a species' climate envelope in response to global change.

  11. Global Change Education Resource Guide.

    ERIC Educational Resources Information Center

    Mortensen, Lynn L., Ed.

    This guide is intended as an aid to educators who conduct programs and activities on climate and global change issues for a variety of audiences. The selected set of currently available materials are appropriate for both formal and informal programs in environmental education and can help frame and clarify some of the key issues associated with…

  12. Psychological research and global climate change

    NASA Astrophysics Data System (ADS)

    Clayton, Susan; Devine-Wright, Patrick; Stern, Paul C.; Whitmarsh, Lorraine; Carrico, Amanda; Steg, Linda; Swim, Janet; Bonnes, Mirilia

    2015-07-01

    Human behaviour is integral not only to causing global climate change but also to responding and adapting to it. Here, we argue that psychological research should inform efforts to address climate change, to avoid misunderstandings about human behaviour and motivations that can lead to ineffective or misguided policies. We review three key research areas: describing human perceptions of climate change; understanding and changing individual and household behaviour that drives climate change; and examining the human impacts of climate change and adaptation responses. Although much has been learned in these areas, we suggest important directions for further research.

  13. DEVELOPING TOOLS FOR EVALUATION OF INTERACTIONS BETWEEN GLOBAL CHANGE STRESSORS AND ECOSYSTEM FUNCTIONING

    EPA Science Inventory

    Case studies in key selected coral reefs and watersheds will be completed to provide scientific data, concepts and models that describe the responses of the functioning of these ecosystems to global change stressors. The studies will focus on relating global changes to local and...

  14. Regional to global changes in drought and implications for future changes under global warming

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Wood, E. F.; Kam, J.

    2012-12-01

    Drought can have large impacts on multiple sectors, including agriculture, water resources, ecosystems, transport, industry and tourism. In extreme cases, regional drought can lead to food insecurity and famine, and in intensive agricultural regions, extend to global economic impacts in a connected world. Recent droughts globally have been severe and costly but whether they are becoming more frequent and severe, and the attribution of this, is a key question. Observational evidence at large scales, such as satellite remote sensing are often subject to short-term records and inhomogeneities, and ground based data are sparse in many regions. Reliance on model output is also subject to error and simplifications in the model physics that can, for example, amplify the impact of global warming on drought. This presentation will show the observational and model evidence for changes in drought, with a focus on the interplay between precipitation and atmospheric evaporative demand and its impact on the terrestrial water cycle and drought. We discuss the fidelity of climate models to reproduce our best estimates of drought variability and its drivers historically, and the implications of this on uncertainties in future projections of drought from CMIP5 models, and how this has changed since CMIP3.

  15. USGS global change science strategy: A framework for understanding and responding to climate and land-use change

    USGS Publications Warehouse

    Burkett, Virginia R.; Taylor, Ione L.; Belnap, Jayne; Cronin, Thomas M.; Dettinger, Michael D.; Frazier, Eldrich L.; Haines, John W.; Kirtland, David A.; Loveland, Thomas R.; Milly, Paul C.D.; O'Malley, Robin; Thompson, Robert S.

    2011-01-01

    This U.S. Geological Survey (USGS) Global Change Science Strategy expands on the Climate Variability and Change science component of the USGS 2007 Science Strategy, “Facing Tomorrow’s Challenges: USGS Science in the Coming Decade” (U.S. Geological Survey, 2007). Here we embrace the broad definition of global change provided in the U.S. Global Change Research Act of 1990 (Public Law 101–606,104 Stat. 3096–3104)—“Changes in the global environment (including alterations in climate, land productivity, oceans or other water resources, atmospheric chemistry, and ecological systems) that may alter the capacity of the Earth to sustain life”—with a focus on climate and land-use change.There are three major characteristics of this science strategy. First, it addresses the science required to broadly inform global change policy, while emphasizing the needs of natural-resource managers and reflecting the role of the USGS as the science provider for the Department of the Interior and other resource-management agencies. Second, the strategy identifies core competencies, noting 10 critical capabilities and strengths the USGS uses to overcome key problem areas. We highlight those areas in which the USGS is a science leader, recognizing the strong partnerships and effective collaboration that are essential to address complex global environmental challenges. Third, it uses a query-based approach listing key research questions that need to be addressed to create an agenda for hypothesis-driven global change science organized under six strategic goals. Overall, the strategy starts from where we are, provides a vision for where we want to go, and then describes high-priority strategic actions, including outcomes, products, and partnerships that can get us there. Global change science is a well-defined research field with strong linkages to the ecosystems, water, energy and minerals, natural hazards, and environmental health components of the USGS Science Strategy

  16. Provenance Representation in the Global Change Information System (GCIS)

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2012-01-01

    Global climate change is a topic that has become very controversial despite strong support within the scientific community. It is common for agencies releasing information about climate change to be served with Freedom of Information Act (FOIA) requests for everything that led to that conclusion. Capturing and presenting the provenance, linking to the research papers, data sets, models, analyses, observation instruments and satellites, etc. supporting key findings has the potential to mitigate skepticism in this domain. The U.S. Global Change Research Program (USGCRP) is now coordinating the production of a National Climate Assessment (NCA) that presents our best understanding of global change. We are now developing a Global Change Information System (GCIS) that will present the content of that report and its provenance, including the scientific support for the findings of the assessment. We are using an approach that will present this information both through a human accessible web site as well as a machine readable interface for automated mining of the provenance graph. We plan to use the developing W3C PROV Data Model and Ontology for this system.

  17. Approaches to a global quantum key distribution network

    NASA Astrophysics Data System (ADS)

    Islam, Tanvirul; Bedington, Robert; Ling, Alexander

    2017-10-01

    Progress in realising quantum computers threatens to weaken existing public key encryption infrastructure. A global quantum key distribution (QKD) network can play a role in computational attack-resistant encryption. Such a network could use a constellation of high altitude platforms such as airships and satellites as trusted nodes to facilitate QKD between any two points on the globe on demand. This requires both space-to-ground and inter-platform links. However, the prohibitive cost of traditional satellite based development limits the experimental work demonstrating relevant technologies. To accelerate progress towards a global network, we use an emerging class of shoe-box sized spacecraft known as CubeSats. We have designed a polarization entangled photon pair source that can operate on board CubeSats. The robustness and miniature form factor of our entanglement source makes it especially suitable for performing pathfinder missions that studies QKD between two high altitude platforms. The technological outcomes of such mission would be the essential building blocks for a global QKD network.

  18. Aspen Global Change Institute: 25 Years of Interdisciplinary Global Change Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meehl, Gerald A.; Moss, Richard

    Global environmental changes such as climate change result from the interaction of human and natural systems. Research to understand these changes and options for addressing them requires the physical, environmental, and social sciences, as well as engineering and other applied fields. In this essay, we describe how the Aspen Global Change Institute (AGCI) has provided leadership in global change science over the past 25 years—in particular how it has contributed to the integration of the natural and social sciences needed to research the drivers of change, Earth system response, natural and human system impacts, and options for risk management. Wemore » illustrate the ways the history of AGCI has been intertwined with the evolution of global change science as it has become an increasingly interdisciplinary endeavor.« less

  19. Is This Global Warming? Communicating the Intangibles of Climate Change

    NASA Astrophysics Data System (ADS)

    Warner, L.; Henson, R.

    2004-05-01

    Unlike weather, which is immediate, tangible, and relevant on a daily basis, climate change is long-term, slow to evolve, and often difficult to relate to the public's daily concerns. By explaining global-change research to wide and diverse audiences through a variety of vehicles, including publications, exhibits, Web sites, and television B-roll, UCAR has gained experience and perspective on the challenges involved. This talk will explore some of the lessons learned and some of the key difficulties that face global-change communicators, including: --The lack of definitive findings on regional effects of global change -- The long time frame in which global change plays out, versus the short attention span of media, the public, and policy makers --The use of weather events as news pegs (they pique interest, but they may not be good exemplars of global change and are difficult to relate directly to changes in greenhouse-gas emissions) --The perils of the traditional journalistic technique of point-counterpoint in discussing climate change --The presence of strong personal/political convictions among various interest groups and how these affect the message(s) conveyed

  20. GLOBEC: Global Ocean Ecosystems Dynamics: A component of the US Global Change Research Program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    GLOBEC (GLOBal ocean ECosystems dynamics) is a research initiative proposed by the oceanographic and fisheries communities to address the question of how changes in global environment are expected to affect the abundance and production of animals in the sea. The approach to this problem is to develop a fundamental understanding of the mechanisms that determine both the abundance of key marine animal populations and their variances in space and time. The assumption is that the physical environment is a major contributor to patterns of abundance and production of marine animals, in large part because the planktonic life stages typical of most marine animals are intrinsically at the mercy of the fluid motions of the medium in which they live. Consequently, the authors reason that a logical approach to predicting the potential impact of a globally changing environment is to understand how the physical environment, both directly and indirectly, contributes to animal abundance and its variability in marine ecosystems. The plans for this coordinated study of of the potential impact of global change on ocean ecosystems dynamics are discussed.

  1. Plant health and global change--some implications for landscape management.

    PubMed

    Pautasso, Marco; Dehnen-Schmutz, Katharina; Holdenrieder, Ottmar; Pietravalle, Stéphane; Salama, Nabeil; Jeger, Mike J; Lange, Eckart; Hehl-Lange, Sigrid

    2010-11-01

    Global change (climate change together with other worldwide anthropogenic processes such as increasing trade, air pollution and urbanization) will affect plant health at the genetic, individual, population and landscape level. Direct effects include ecosystem stress due to natural resources shortage or imbalance. Indirect effects include (i) an increased frequency of natural detrimental phenomena, (ii) an increased pressure due to already present pests and diseases, (iii) the introduction of new invasive species either as a result of an improved suitability of the climatic conditions or as a result of increased trade, and (iv) the human response to global change. In this review, we provide an overview of recent studies on terrestrial plant health in the presence of global change factors. We summarize the links between climate change and some key issues in plant health, including tree mortality, changes in wildfire regimes, biological invasions and the role of genetic diversity for ecosystem resilience. Prediction and management of global change effects are complicated by interactions between globalization, climate and invasive plants and/or pathogens. We summarize practical guidelines for landscape management and draw general conclusions from an expanding body of literature. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.

  2. NASA Scientific Forum on Climate Variability and Global Change: UNISPACE 3

    NASA Technical Reports Server (NTRS)

    Schiffer, Robert A.; Unninayar, Sushel

    1999-01-01

    The Forum on Climate Variability and Global Change is intended to provide a glimpse into some of the advances made in our understanding of key scientific and environmental issues resulting primarily from improved observations and modeling on a global basis. This publication contains the papers presented at the forum.

  3. Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change.

    PubMed

    Lindo, Zoë; Nilsson, Marie-Charlotte; Gundale, Michael J

    2013-07-01

    Ecosystems in the far north, including arctic and boreal biomes, are a globally significant pool of carbon (C). Global change is proposed to influence both C uptake and release in these ecosystems, thereby potentially affecting whether they act as C sources or sinks. Bryophytes (i.e., mosses) serve a variety of key functions in these systems, including their association with nitrogen (N2 )-fixing cyanobacteria, as thermal insulators of the soil, and producers of recalcitrant litter, which have implications for both net primary productivity (NPP) and heterotrophic respiration. While ground-cover bryophytes typically make up a small proportion of the total biomass in northern systems, their combined physical structure and N2 -fixing capabilities facilitate a disproportionally large impact on key processes that control ecosystem C and N cycles. As such, the response of bryophyte-cyanobacteria associations to global change may influence whether and how ecosystem C balances are influenced by global change. Here, we review what is known about their occurrence and N2 -fixing activity, and how bryophyte systems will respond to several key global change factors. We explore the implications these responses may have in determining how global change influences C balances in high northern latitudes. © 2013 Blackwell Publishing Ltd.

  4. Effects of global change on hydro-geomorphological hazards in Mediterranean rivers

    NASA Astrophysics Data System (ADS)

    Andres Lopez-Tarazon, Jose

    2015-04-01

    Mediterranean river basins are characterized by high (often extreme) temporal variability in precipitation, and hence discharge. Mediterranean countries are considered sensitive to so-called global change, considered as the combination of climate and land use changes. All panels on climate evolution predict future scenarios of increasing frequency and magnitude of floods and extended droughts in the Mediterranean region; both floods and droughts are likely to lead to huge geomorphic adjustments of river channels so, major metamorphosis of fluvial systems is expected as a result of global change. Water resources in the Mediterranean region is subjected to rising pressures, becoming a key issue for all governments (i.e. clear imbalance between the available water resources and the increasing water demand related to increasing human population). Such pressures are likely to give rise to major ecological and economic changes and challenges that governments need to address as a matter of priority. Changes in river flow regimes associated with global change are therefore ushering in a new era, where there is a critical need to evaluate hydro-geomorphological hazard from headwaters to lowland areas (flooding can be not just a problem related to being under the water). A key question is how our understanding of these hazards associated with global change can be improved; improvement has to come from integrated research which includes all physical conditions that influence the conveyance of water and sediments, and the river's capacity (i.e. amount of sediment) and competence (i.e. channel deformation) that, in turn, will influence physical conditions of a given point in the river network. This is the framework of the present work; it is directed to develop an integrated approach which both improves our understanding of how rivers are likely to evolve as a result of global change, and addresses the associated hazards of fluvial environmental change.

  5. U.S. Global Change Research Program National Climate Assessment Global Change Information System

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2012-01-01

    The program: a) Coordinates Federal research to better understand and prepare the nation for global change. b) Priori4zes and supports cutting edge scientific work in global change. c) Assesses the state of scientific knowledge and the Nation s readiness to respond to global change. d) Communicates research findings to inform, educate, and engage the global community.

  6. USGS global change research

    USGS Publications Warehouse

    ,

    1995-01-01

    The Earth's global environment--its interrelated climate, land, oceans, fresh water, atmospheric and ecological systems-has changed continually throughout Earth history. Human activities are having ever-increasing effects on these systems. Sustaining our environment as population and demands for resources increase requires a sound understanding of the causes and cycles of natural change and the effects of human activities on the Earth's environmental systems. The U.S. Global Change Research Program was authorized by Congress in 1989 to provide the scientific understanding necessary to develop national and international policies concerning global environmental issues, particularly global climate change. The program addresses questions such as: what factors determine global climate; have humans already begun to change the global climate; will the climate of the future be very different; what will be the effects of climate change; and how much confidence do we have in our predictions? Through understanding, we can improve our capability to predict change, reduce the adverse effects of human activities, and plan strategies for adapting to natural and human-induced environmental change.

  7. Global Change and Human Consumption of Freshwater Driven by Flow Regulation and Irrigation

    NASA Astrophysics Data System (ADS)

    Jaramillo, F.; Destouni, G.

    2015-12-01

    Recent studies show major uncertainties about the magnitude and key drivers of global freshwater change, historically and projected for the future. The tackling of these uncertainties should be a societal priority to understand: 1) the role of human change drivers for freshwater availability changes, 2) the global water footprint of humanity and 3) the relation of human freshwater consumption to a proposed planetary boundary. This study analyses worldwide hydroclimatic changes, as observed during 1900-2009 in 99 large hydrological basins across all continents. We test whether global freshwater change may be driven by major developments of flow regulation and irrigation (FRI) occurring over this period. Independent categorization of the variability of FRI-impact strength among the studied basins is used to identify statistical basin differences in occurrence and strength of characteristic hydroclimatic signals of FRI. Our results show dominant signals of increasing relative evapotranspiration in basins affected by flow regulation and/or irrigation, in conjunction with decreasing relative intra-annual variability of runoff in basins affected by flow regulation. The FRI-related increase in relative evapotranspiration implies an increase of 4,688 km3/yr in global annual average water flow from land to the atmosphere. This observation-based estimate extends considerably the upper quantification limits of both FRI-driven and total global human consumption of freshwater, as well as the global water footprint of humanity. Our worldwide analysis shows clear FRI-related change signals emerging directly from observations, in spite of large change variability among basins and many other coexisting change drivers in both the atmosphere and the landscape. These results highlight the importance of considering local water use as a key change driver in Earth system studies and modelling, of relevance for global change and human consumption of freshwater.

  8. GLOBAL CHANGE MULTI-YEAR PLAN

    EPA Science Inventory

    The Global Change Research Act of 1990 establishes the U.S. Global Change Research Program to coordinate a comprehensive research program on global change. This is an inter-Agency effort, with EPA bearing responsibility to assess the consequences of global change on human health,...

  9. Global change in forests: responses of species, communities, and biomes

    Treesearch

    Andrew J. Hansen; Ronald P. Neilson; Virginia H. Dale; Curtis H. Flather; Louis R. Iverson; David J. Currie; Sarah Shafer; Rosamonde Cook; Partick J. Bartlein

    2001-01-01

    This article serves as a primer on forest biodiversity as a key component of global change. We first synthesize current knowledge of interactions among climate, land use, and biodiversity. We then summarize the results of new analyses on the potential effects of human-induced climate change on forest biodiversity. Our models project how possible future climates may...

  10. Holocene key coral species in the Northwest Pacific: indicators of reef formation and reef ecosystem responses to global climate change and anthropogenic stresses in the near future

    NASA Astrophysics Data System (ADS)

    Hongo, Chuki

    2012-03-01

    The geological record of key coral species that contribute to reef formation and maintenance of reef ecosystems is important for understanding the ecosystem response to global-scale climate change and anthropogenic stresses in the near future. Future responses can be predicted from accumulated data on Holocene reef species identified in drillcore and from data on raised reef terraces. The present study analyzes a dataset based on 27 drillcores, raised reef terraces, and 134 radiocarbon and U-Th ages from reefs of the Northwest Pacific, with the aim of examining the role of key coral species in reef growth and maintenance for reef ecosystem during Holocene sea-level change. The results indicate a latitudinal change in key coral species: arborescent Acropora (Acropora intermedia and Acropora muricata) was the dominant reef builder at reef crests in the tropics, whereas Porites (Porites australiensis, Porites lutea, and Porites lobata) was the dominant contributor to reef growth in the subtropics between 10,000 and 7000 cal. years BP (when the rate of sea-level rise was 10 m/ka). Acropora digitifera, Acropora hyacinthus, Acropora robusta/A. abrotanoides, Isopora palifera, Favia stelligera, and Goniastrea retiformis from the corymbose and tabular Acropora facies were the main key coral species at reef crests between 7000 and 5000 cal. years BP (when the rate of sea-level rise was 5 m/ka) and during the following period of stable sea-level. Massive Porites (P. australiensis, P. lutea, and P. lobata) contributed to reef growth in shallow lagoons during the period of stable sea level. Key coral species from the corymbose and tabular Acropora facies have the potential to build reefs and maintain ecosystems in the near future under a global sea-level rise of 2-6 m/ka, as do key coral species from the arborescent Acropora facies and massive Porites facies, which show vigorous growth and are tolerant to relatively deep-water, low-energy environments. However, these species

  11. Argumentation as a Strategy for Increasing Preservice Teachers' Understanding of Climate Change, a Key Global Socioscientific Issue

    ERIC Educational Resources Information Center

    Lambert, Julie L.; Bleicher, Robert E.

    2017-01-01

    Findings of this study suggest that scientific argumentation can play an effective role in addressing complex socioscientific issues (i.e. global climate change). This research examined changes in preservice teachers' knowledge and perceptions about climate change in an innovative undergraduate-level elementary science methods course. The…

  12. Population Growth. Understanding Global Change: Earth Science and Human Impacts. Global Change Instruction Program.

    ERIC Educational Resources Information Center

    Jacobsen, Judith E.

    The Global Change Instruction Program was designed by college professors to fill a need for interdisciplinary materials on the emerging science of global change. This instructional module concentrates on interactions between population growth and human activities that produce global change. The materials are designed for undergraduate students…

  13. Global Change

    USGS Publications Warehouse

    ,

    1993-01-01

    Global change is a relatively new area of scientific study using research from many disciplines to determine how Earth systems change, and to assess the influence of human activity on these changes. This teaching packet consists of a poster and three activity sheets. In teaching these activities four themes are important: time, change, cycles, and Earth as home.

  14. Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate

    PubMed Central

    Su, Hui; Jiang, Jonathan H.; Neelin, J. David; Shen, T. Janice; Zhai, Chengxing; Yue, Qing; Wang, Zhien; Huang, Lei; Choi, Yong-Sang; Stephens, Graeme L.; Yung, Yuk L.

    2017-01-01

    The change of global-mean precipitation under global warming and interannual variability is predominantly controlled by the change of atmospheric longwave radiative cooling. Here we show that tightening of the ascending branch of the Hadley Circulation coupled with a decrease in tropical high cloud fraction is key in modulating precipitation response to surface warming. The magnitude of high cloud shrinkage is a primary contributor to the intermodel spread in the changes of tropical-mean outgoing longwave radiation (OLR) and global-mean precipitation per unit surface warming (dP/dTs) for both interannual variability and global warming. Compared to observations, most Coupled Model Inter-comparison Project Phase 5 models underestimate the rates of interannual tropical-mean dOLR/dTs and global-mean dP/dTs, consistent with the muted tropical high cloud shrinkage. We find that the five models that agree with the observation-based interannual dP/dTs all predict dP/dTs under global warming higher than the ensemble mean dP/dTs from the ∼20 models analysed in this study. PMID:28589940

  15. Key global environmental impacts of genetically modified (GM) crop use 1996–2012

    PubMed Central

    Barfoot, Peter; Brookes, Graham

    2014-01-01

    Against the background of increasing awareness and appreciation of issues such as global warming and the impact of mankind’s activities such as agriculture on the global environment, this paper updates previous assessments of some key environmental impacts that crop biotechnology has had on global agriculture. It focuses on the environmental impacts associated with changes in pesticide use and greenhouse gas emissions arising from the use of GM crops. The adoption of the technology has reduced pesticide spraying by 503 million kg (-8.8%) and, as a result, decreased the environmental impact associated with herbicide and insecticide use on these crops (as measured by the indicator the Environmental Impact Quotient [EIQ]) by 18.7%. The technology has also facilitated a significant reduction in the release of greenhouse gas emissions from this cropping area, which, in 2012, was equivalent to removing 11.88 million cars from the roads. PMID:24637726

  16. Tropical Pacific variability as a key pacemaker of the global warming staircase

    NASA Astrophysics Data System (ADS)

    Kosaka, Y.; Xie, S. P.

    2016-12-01

    Global-mean surface temperature (GMST) has increased since the 19th century with notable interdecadal accelerations and slowdowns, forming the global-warming "staircase". The last step of this staircase is the surface warming slowdown since the late 1990s, for which the transition of the Interdecadal Pacific Oscillation (IPO) from a positive to negative state has been suggested as the leading mechanism. To examine the role of IPO in the entire warming staircase, a long pacemaker experiment is performed with a coupled climate model where tropical Pacific sea surface temperatures are forced to follow the observed evolution since the late 19th century. The pacemaker experiment successfully reproduces the staircase-like global warming remarkably well since 1900. Without the tropical Pacific effect, the same model produces a continual warming from the 1900s to the 1960 followed by rapid warming. The successful reproduction identifies the tropical Pacific decadal variability as a key pacemaker of the GMST staircase. We further propose a method to remove internal variability from observed GMST changes for real-time monitoring of anthropogenic warming.

  17. GLOBAL CHANGE RESEARCH NEWS #8: OUR CHANGING PLANET: THE FY2000 U.S. GLOBAL CHANGE RESEARCH PROGRAM

    EPA Science Inventory

    This edition of Global Change Research News focuses on the publication of the new OurChanging Planet: The FY2000 U.S. Global Change Research Program. This annual report to the Congress was prepared under the auspices ofthe President's National Science and Technology Council. It...

  18. Nonlinear, interacting responses to climate limit grassland production under global change.

    PubMed

    Zhu, Kai; Chiariello, Nona R; Tobeck, Todd; Fukami, Tadashi; Field, Christopher B

    2016-09-20

    Global changes in climate, atmospheric composition, and pollutants are altering ecosystems and the goods and services they provide. Among approaches for predicting ecosystem responses, long-term observations and manipulative experiments can be powerful approaches for resolving single-factor and interactive effects of global changes on key metrics such as net primary production (NPP). Here we combine both approaches, developing multidimensional response surfaces for NPP based on the longest-running, best-replicated, most-multifactor global-change experiment at the ecosystem scale-a 17-y study of California grassland exposed to full-factorial warming, added precipitation, elevated CO2, and nitrogen deposition. Single-factor and interactive effects were not time-dependent, enabling us to analyze each year as a separate realization of the experiment and extract NPP as a continuous function of global-change factors. We found a ridge-shaped response surface in which NPP is humped (unimodal) in response to temperature and precipitation when CO2 and nitrogen are ambient, with peak NPP rising under elevated CO2 or nitrogen but also shifting to lower temperatures. Our results suggest that future climate change will push this ecosystem away from conditions that maximize NPP, but with large year-to-year variability.

  19. Persistent Identification of Agents and Objects of Global Change

    NASA Astrophysics Data System (ADS)

    Tilmes, C.; Fox, P. A.; Waple, A.; Zednik, S.

    2012-12-01

    "Global Change" includes climate change, ecological change, land-use changes and host of other interacting complex systems including societal and institutional implications. This vast body of information includes scientific research, data, measurements, models, analyses, assessments, etc. It is produced by a collection of multi-disciplinary researchers and organizations from around the world and demand for this information is increasing from a multitude of different audiences and stakeholders. The identification and organization of the agents and objects of global change information and their inter-relationships and contributions to the whole story of change is critical for conveying the state of knowledge, its complexity as well as syntheses and key messages to researchers, decision makers, and the public. The U.S. Global Change Research Program (http://globalchange.gov) coordinates and integrates federal research on changes in the global environment and their implications for society. The USGCRP is developing a Global Change Information System (GCIS) that will organize and present our best understanding of global change, and all the contributing information that leads to that understanding, including the provenance needed to trust and use that information. The first implementation will provide provenance for the National Climate Assessment (NCA). (http://assessment.globalchange.gov) The NCA must integrate, evaluate, and interpret the findings of the USGCRP; analyze the effects of global change on the natural environment, agriculture, energy production and use, land and water resources, transportation, human health and welfare, human social systems, and biological diversity; and analyze current trends in global change, both human-induced and natural, and projects major trends for the subsequent 25 to 100 years. It also assesses information at the regional scale across the Nation. A synthesis report is required not less frequently than every four years and the next

  20. Measuring social inclusion--a key outcome in global mental health.

    PubMed

    Baumgartner, Joy Noel; Burns, Jonathan K

    2014-04-01

    Social inclusion is increasingly recognized as a key outcome for evaluating global mental health programmes and interventions. Whereas social inclusion as an outcome is not a new concept in the field of mental health, its measurement has been hampered by varying definitions, concepts and instruments. To move the field forward, this paper reviews the currently available instruments which measure social inclusion and are reported in the literature, realizing that no single measure will be appropriate for all studies or contexts. A systematic literature search of English language peer-reviewed articles published through February 2013 was undertaken to identify scales specifically developed to measure social inclusion or social/community integration among populations with mental disorders. Five instruments were identified through the search criteria. The scales are discussed in terms of their theoretical underpinnings, domains and/or key items and their potential for use in global settings. Whereas numerous reviewed abstracts discussed mental health and social inclusion or social integration, very few were concerned with direct measurement of the construct. All identified scales were developed in high-income countries with limited attention paid to how the scale could be adapted for cross-cultural use. Social inclusion is increasingly highlighted as a key outcome for global mental health policies and programmes, yet its measurement is underdeveloped. There is need for a global cross-cultural measure that has been developed and tested in diverse settings. However, until that need is met, some of the scales presented here may be amenable to adaptation.

  1. Climate Change, Globalization and Geopolitics in the New Maritime Arctic

    NASA Astrophysics Data System (ADS)

    Brigham, L. W.

    2011-12-01

    Early in the 21st century a confluence of climate change, globalization and geopolitics is shaping the future of the maritime Arctic. This nexus is also fostering greater linkage of the Arctic to the rest of the planet. Arctic sea ice is undergoing a historic transformation of thinning, extent reduction in all seasons, and reduction in the area of multiyear ice in the central Arctic Ocean. Global Climate Model simulations of Arctic sea ice indicate multiyear ice could disappear by 2030 for a short period of time each summer. These physical changes invite greater marine access, longer seasons of navigation, and potential, summer trans-Arctic voyages. As a result, enhanced marine safety, environmental protection, and maritime security measures are under development. Coupled with climate change as a key driver of regional change is the current and future integration of the Arctic's natural wealth with global markets (oil, gas and hard minerals). Abundant freshwater in the Arctic could also be a future commodity of value. Recent events such as drilling for hydrocarbons off Greenland's west coast and the summer marine transport of natural resources from the Russian Arctic to China across the top of Eurasia are indicators of greater global economic ties to the Arctic. Plausible Arctic futures indicate continued integration with global issues and increased complexity of a range of regional economic, security and environmental challenges.

  2. Space Observations for Global Change

    NASA Technical Reports Server (NTRS)

    Rasool, S. I.

    1991-01-01

    There is now compelling evidence that man's activities are changing both the composition of the atmospheric and the global landscape quite drastically. The consequences of these changes on the global climate of the 21st century is currently a hotly debated subject. Global models of a coupled Earth-ocean-atmosphere system are still very primitive and progress in this area appears largely data limited, specially over the global biosphere. A concerted effort on monitoring biospheric functions on scales from pixels to global and days to decades needs to be coordinated on an international scale in order to address the questions related to global change. An international program of space observations and ground research was described.

  3. Now what do people know about global climate change? Survey studies of educated laypeople.

    PubMed

    Reynolds, Travis William; Bostrom, Ann; Read, Daniel; Morgan, M Granger

    2010-10-01

    In 1992, a mental-models-based survey in Pittsburgh, Pennsylvania, revealed that educated laypeople often conflated global climate change and stratospheric ozone depletion, and appeared relatively unaware of the role of anthropogenic carbon dioxide emissions in global warming. This study compares those survey results with 2009 data from a sample of similarly well-educated laypeople responding to the same survey instrument. Not surprisingly, following a decade of explosive attention to climate change in politics and in the mainstream media, survey respondents in 2009 showed higher awareness and comprehension of some climate change causes. Most notably, unlike those in 1992, 2009 respondents rarely mentioned ozone depletion as a cause of global warming. They were also far more likely to correctly volunteer energy use as a major cause of climate change; many in 2009 also cited natural processes and historical climatic cycles as key causes. When asked how to address the problem of climate change, while respondents in 1992 were unable to differentiate between general "good environmental practices" and actions specific to addressing climate change, respondents in 2009 have begun to appreciate the differences. Despite this, many individuals in 2009 still had incorrect beliefs about climate change, and still did not appear to fully appreciate key facts such as that global warming is primarily due to increased concentrations of carbon dioxide in the atmosphere, and the single most important source of this carbon dioxide is the combustion of fossil fuels. © 2010 Society for Risk Analysis.

  4. GloboLakes: A global observatory of lake responses to environmental change.

    NASA Astrophysics Data System (ADS)

    Groom, Steve; Tyler, Andrew; Hunter, Peter; Spyrakos, Evangelos; Martinez-Vicente, Victor; Merchant, Chris; Cutler, Mark; Rowan, John; Dawson, Terry; Maberly, Stephen; Cavalho, Laurence; Elliot, Alex; Thackery, Stephen; Miller, Claire; Scott, Marian

    2014-05-01

    The world's freshwater ecosystems are vital components of the global biosphere, yet are vulnerable to climate and other human-induced change. There is increasing recognition that lakes play an important role in global biogeochemical cycling and provide key ecosystem services. However, our understanding of how lakes respond to environmental change at a global scale, and how this impacts on their status and function, is hampered by limited information on their chemical, physical and ecological condition. There are estimated to be over 300 million lakes globally, of which over 17,000 are greater than 10 km2 in surface area. These numbers have limited the systematic study of lake ecosystems. GloboLakes is a five-year UK research programme investigating the state of lakes and their response to climatic and other environmental drivers of change. It will establish a satellite-based observatory with archive and near-real time data processing to produce a time series of observed biogeochemical parameters and lake temperature for over 1000 lakes globally. This will be supported by linked ancillary data on climate and catchment land-use. The ability to monitor a large number of lakes consistently at high frequency and globally will facilitate a paradigm shift in our understanding of how lakes respond to environmental change at different spatial and temporal scales. A key requirement is to validate satellite retrieval algorithms and test the time-series of resulting lake properties such as chlorophyll-a by comparison with in situ data. To support the former extensive bio-optical and constituent data were taken in year 1 of the project in a number of UK lakes with a variety of trophic states. Furthermore, for wider validation activities GloboLakes has established the LIMNADES initiative to create a centralised database of ground bio-optical measurements of worldwide lakes through voluntary cooperation across the international scientific community. This presentation will

  5. Modulators of mercury risk to wildlife and humans in the context of rapid global change

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Silbergeld, Ellen K.; Basu, Niladri; Bustamante, Paco; Diaz-Barriga, Fernando; Hopkins, William A.; Kidd, Karen A.; Nyland, Jennifer F.

    2018-01-01

    Environmental mercury (Hg) contamination is an urgent global health threat. The complexity of Hg in the environment can hinder accurate determination of ecological and human health risks, particularly within the context of the rapid global changes that are altering many ecological processes, socioeconomic patterns, and other factors like infectious disease incidence, which can affect Hg exposures and health outcomes. However, the success of global Hg-reduction efforts depends on accurate assessments of their effectiveness in reducing health risks. In this paper, we examine the role that key extrinsic and intrinsic drivers play on several aspects of Hg risk to humans and organisms in the environment. We do so within three key domains of ecological and human health risk. First, we examine how extrinsic global change drivers influence pathways of Hg bioaccumulation and biomagnification through food webs. Next, we describe how extrinsic socioeconomic drivers at a global scale, and intrinsic individual-level drivers, influence human Hg exposure. Finally, we address how the adverse health effects of Hg in humans and wildlife are modulated by a range of extrinsic and intrinsic drivers within the context of rapid global change. Incorporating components of these three domains into research and monitoring will facilitate a more holistic understanding of how ecological and societal drivers interact to influence Hg health risks.

  6. Pathways of Understanding: the Interactions of Humanity and Global Environmental Change

    NASA Technical Reports Server (NTRS)

    Jacobson, Harold K.; Katzenberger, John; Lousma, Jack; Mooney, Harold A.; Moss, Richard H.; Kuhn, William; Luterbacher, Urs; Wiegandt, Ellen

    1992-01-01

    How humans, interacting within social systems, affect and are affected by global change is explored. Recognizing the impact human activities have on the environment and responding to the need to document the interactions among human activities, the Consortium for International Earth Science Information Network (CIESIN) commissioned a group of 12 scientists to develop a framework illustrating the key human systems that contribute to global change. This framework, called the Social Process Diagram, will help natural and social scientists, educators, resource managers and policy makers envision and analyze how human systems interact among themselves and with the natural system. The Social Process Diagram consists of the following blocks that constitute the Diagram's structural framework: (1) fund of knowledge and experience; (2) preferences and expectations; (3) factors of production and technology; (4) population and social structure; (5) economic systems; (6) political systems and institutions; and (7) global scale environmental processes. To demonstrate potential ways the Diagram can be used, this document includes 3 hypothetical scenarios of global change issues: global warming and sea level rise; the environmental impact of human population migration; and energy and the environment. These scenarios demonstrate the Diagram's usefulness for visualizing specific processes that might be studied to evaluate a particular global change issues. The scenario also shows that interesting and unanticipated questions may emerge as links are explored between categories on the Diagram.

  7. Global patterns of kelp forest change over the past half-century.

    PubMed

    Krumhansl, Kira A; Okamoto, Daniel K; Rassweiler, Andrew; Novak, Mark; Bolton, John J; Cavanaugh, Kyle C; Connell, Sean D; Johnson, Craig R; Konar, Brenda; Ling, Scott D; Micheli, Fiorenza; Norderhaug, Kjell M; Pérez-Matus, Alejandro; Sousa-Pinto, Isabel; Reed, Daniel C; Salomon, Anne K; Shears, Nick T; Wernberg, Thomas; Anderson, Robert J; Barrett, Nevell S; Buschmann, Alejandro H; Carr, Mark H; Caselle, Jennifer E; Derrien-Courtel, Sandrine; Edgar, Graham J; Edwards, Matt; Estes, James A; Goodwin, Claire; Kenner, Michael C; Kushner, David J; Moy, Frithjof E; Nunn, Julia; Steneck, Robert S; Vásquez, Julio; Watson, Jane; Witman, Jon D; Byrnes, Jarrett E K

    2016-11-29

    Kelp forests (Order Laminariales) form key biogenic habitats in coastal regions of temperate and Arctic seas worldwide, providing ecosystem services valued in the range of billions of dollars annually. Although local evidence suggests that kelp forests are increasingly threatened by a variety of stressors, no comprehensive global analysis of change in kelp abundances currently exists. Here, we build and analyze a global database of kelp time series spanning the past half-century to assess regional and global trends in kelp abundances. We detected a high degree of geographic variation in trends, with regional variability in the direction and magnitude of change far exceeding a small global average decline (instantaneous rate of change = -0.018 y -1 ). Our analysis identified declines in 38% of ecoregions for which there are data (-0.015 to -0.18 y -1 ), increases in 27% of ecoregions (0.015 to 0.11 y -1 ), and no detectable change in 35% of ecoregions. These spatially variable trajectories reflected regional differences in the drivers of change, uncertainty in some regions owing to poor spatial and temporal data coverage, and the dynamic nature of kelp populations. We conclude that although global drivers could be affecting kelp forests at multiple scales, local stressors and regional variation in the effects of these drivers dominate kelp dynamics, in contrast to many other marine and terrestrial foundation species.

  8. Global patterns of kelp forest change over the past half-century

    PubMed Central

    Krumhansl, Kira A.; Okamoto, Daniel K.; Rassweiler, Andrew; Novak, Mark; Bolton, John J.; Cavanaugh, Kyle C.; Connell, Sean D.; Johnson, Craig R.; Konar, Brenda; Ling, Scott D.; Micheli, Fiorenza; Norderhaug, Kjell M.; Pérez-Matus, Alejandro; Sousa-Pinto, Isabel; Reed, Daniel C.; Salomon, Anne K.; Shears, Nick T.; Wernberg, Thomas; Anderson, Robert J.; Barrett, Nevell S.; Buschmann, Alejandro H.; Carr, Mark H.; Caselle, Jennifer E.; Derrien-Courtel, Sandrine; Edgar, Graham J.; Edwards, Matt; Estes, James A.; Goodwin, Claire; Kenner, Michael C.; Kushner, David J.; Nunn, Julia; Steneck, Robert S.; Vásquez, Julio; Watson, Jane; Witman, Jon D.

    2016-01-01

    Kelp forests (Order Laminariales) form key biogenic habitats in coastal regions of temperate and Arctic seas worldwide, providing ecosystem services valued in the range of billions of dollars annually. Although local evidence suggests that kelp forests are increasingly threatened by a variety of stressors, no comprehensive global analysis of change in kelp abundances currently exists. Here, we build and analyze a global database of kelp time series spanning the past half-century to assess regional and global trends in kelp abundances. We detected a high degree of geographic variation in trends, with regional variability in the direction and magnitude of change far exceeding a small global average decline (instantaneous rate of change = −0.018 y−1). Our analysis identified declines in 38% of ecoregions for which there are data (−0.015 to −0.18 y−1), increases in 27% of ecoregions (0.015 to 0.11 y−1), and no detectable change in 35% of ecoregions. These spatially variable trajectories reflected regional differences in the drivers of change, uncertainty in some regions owing to poor spatial and temporal data coverage, and the dynamic nature of kelp populations. We conclude that although global drivers could be affecting kelp forests at multiple scales, local stressors and regional variation in the effects of these drivers dominate kelp dynamics, in contrast to many other marine and terrestrial foundation species. PMID:27849580

  9. Clouds and Climate Change. Understanding Global Change: Earth Science and Human Impacts. Global Change Instruction Program.

    ERIC Educational Resources Information Center

    Shaw, Glenn E.

    The Global Change Instruction Program was designed by college professors to fill a need for interdisciplinary materials on the emerging science of global change. This instructional module introduces the basic features and classifications of clouds and cloud cover, and explains how clouds form, what they are made of, what roles they play in…

  10. Technology and Global Change

    NASA Astrophysics Data System (ADS)

    Grübler, Arnulf

    2003-10-01

    Technology and Global Change describes how technology has shaped society and the environment over the last 200 years. Technology has led us from the farm to the factory to the internet, and its impacts are now global. Technology has eliminated many problems, but has added many others (ranging from urban smog to the ozone hole to global warming). This book is the first to give a comprehensive description of the causes and impacts of technological change and how they relate to global environmental change. Written for specialists and nonspecialists alike, it will be useful for researchers and professors, as a textbook for graduate students, for people engaged in long-term policy planning in industry (strategic planning departments) and government (R & D and technology ministries, environment ministries), for environmental activists (NGOs), and for the wider public interested in history, technology, or environmental issues.

  11. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    NASA Astrophysics Data System (ADS)

    Visintainer, Tammie; Linn, Marcia

    2015-04-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in the Web-based Inquiry Science Environment (WISE), engages sixth-grade students in conducting virtual investigations using NetLogo models to foster an understanding of core mechanisms including the greenhouse effect. Students then test how the greenhouse effect is enhanced by everyday energy use. This study draws on three data sources: (1) pre- and post-unit interviews, (2) analysis of embedded assessments following virtual investigations, and (3) contrasting cases of two students (normative vs. non-normative understanding of the greenhouse effect). Results show the value of using virtual investigations for teaching the mechanisms associated with global climate change. Interviews document that students hold a wide range of ideas about the mechanisms driving global climate change. Investigations with models help students use evidence-based reasoning to distinguish their ideas. Results show that understanding the greenhouse effect offers a foundation for building connections between everyday energy use and increases in global temperature. An impediment to establishing coherent understanding was the persistence of an alternative conception about ozone as an explanation for climate change. These findings illustrate the need for regular revision of curriculum based on classroom trials. We discuss key design features of models and instructional revisions that can transform the teaching and learning of global climate change.

  12. The relevance of phylogeny to studies of global change.

    PubMed

    Edwards, Erika J; Still, Christopher J; Donoghue, Michael J

    2007-05-01

    Phylogenetic thinking has infiltrated many areas of biological research, but has had little impact on studies of global ecology or climate change. Here, we illustrate how phylogenetic information can be relevant to understanding vegetation-atmosphere dynamics at ecosystem or global scales by re-analyzing a data set of carbonic anhydrase (CA) activity in leaves that was used to estimate terrestrial gross primary productivity. The original calculations relied on what appeared to be low CA activity exclusively in C4 grasses, but our analyses indicate that such activity might instead characterize the PACCAD grass lineage, which includes many widespread C3 species. We outline how phylogenetics can guide better taxon sampling of key physiological traits, and discuss how the emerging field of phyloinformatics presents a promising new framework for scaling from organism physiology to global processes.

  13. It is getting hotter in here: determining and projecting the impacts of global environmental change on drylands

    PubMed Central

    Maestre, Fernando T.; Salguero-Gómez, Roberto; Quero, José L.

    2012-01-01

    Drylands occupy large portions of the Earth, and are a key terrestrial biome from the socio-ecological point of view. In spite of their extent and importance, the impacts of global environmental change on them remain poorly understood. In this introduction, we review some of the main expected impacts of global change in drylands, quantify research efforts on the topic, and highlight how the articles included in this theme issue contribute to fill current gaps in our knowledge. Our literature analyses identify key under-studied areas that need more research (e.g. countries such as Mauritania, Mali, Burkina Faso, Chad and Somalia, and deserts such as the Thar, Kavir and Taklamakan), and indicate that most global change research carried out to date in drylands has been done on a unidisciplinary basis. The contributions included here use a wide array of organisms (from micro-organisms to humans), spatial scales (from local to global) and topics (from plant demography to poverty alleviation) to examine key issues to the socio-ecological impacts of global change in drylands. These papers highlight the complexities and difficulties associated with the prediction of such impacts. They also identify the increased use of long-term experiments and multidisciplinary approaches as priority areas for future dryland research. Major advances in our ability to predict and understand global change impacts on drylands can be achieved by explicitly considering how the responses of individuals, populations and communities will in turn affect ecosystem services. Future research should explore linkages between these responses and their effects on water and climate, as well as the provisioning of services for human development and well-being. PMID:23045705

  14. It is getting hotter in here: determining and projecting the impacts of global environmental change on drylands.

    PubMed

    Maestre, Fernando T; Salguero-Gómez, Roberto; Quero, José L

    2012-11-19

    Drylands occupy large portions of the Earth, and are a key terrestrial biome from the socio-ecological point of view. In spite of their extent and importance, the impacts of global environmental change on them remain poorly understood. In this introduction, we review some of the main expected impacts of global change in drylands, quantify research efforts on the topic, and highlight how the articles included in this theme issue contribute to fill current gaps in our knowledge. Our literature analyses identify key under-studied areas that need more research (e.g. countries such as Mauritania, Mali, Burkina Faso, Chad and Somalia, and deserts such as the Thar, Kavir and Taklamakan), and indicate that most global change research carried out to date in drylands has been done on a unidisciplinary basis. The contributions included here use a wide array of organisms (from micro-organisms to humans), spatial scales (from local to global) and topics (from plant demography to poverty alleviation) to examine key issues to the socio-ecological impacts of global change in drylands. These papers highlight the complexities and difficulties associated with the prediction of such impacts. They also identify the increased use of long-term experiments and multidisciplinary approaches as priority areas for future dryland research. Major advances in our ability to predict and understand global change impacts on drylands can be achieved by explicitly considering how the responses of individuals, populations and communities will in turn affect ecosystem services. Future research should explore linkages between these responses and their effects on water and climate, as well as the provisioning of services for human development and well-being.

  15. Space-based observatories providing key data for climate change applications

    NASA Astrophysics Data System (ADS)

    Lecomte, J.; Juillet, J. J.

    2016-12-01

    The Sentinel-1 & 3 mission are part of the Copernicus program, previously known as GMES (Global Monitoring for Environment and Security), whose overall objective is to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and quality data, information, services and knowledge. This European Earth Observation program is led by the European Commission and the space infrastructure is developed under the European Space Agency leadership. Many services will be developed through the Copernicus program among different thematic areas. The climate change is one of this thematic area and the Sentinel-1 & 3 satellites will provide key space-based observations in this area. The Sentinel-1 mission is based on a constellation of 2 identical satellites each one embarking C-SAR Instrument and provides capability for continuous radar mapping of the Earth with enhanced revisit frequency, coverage, timeliness and reliability for operational services and applications requiring long time series. In particular, Sentinel 1 provides all-weather, day-and-night estimates of soil moisture, wind speed and direction, sea ice, continental ice sheets and glaciers. The Sentinel-3 mission will mainly be devoted to the provision of Ocean observation data in routine, long term (20 years of operations) and continuous fashion with a consistent quality and a very high level of availability. Among these data, very accurate surface temperatures and topography measurements will be provided and will constitute key indicators, once ingested in climate change models, for identifying climate drivers and expected climate impacts. The paper will briefly recall the satellite architectures, their main characteristics and performance. The inflight performance and key features of their images or data of the 3 satellites namely Sentinel 1A, 1B and 3A will be reviewed to demonstrate the quality and high scientific potential of the data as well as their

  16. Why the Indian subcontinent holds the key to global tiger recovery.

    PubMed

    Mondol, Samrat; Karanth, K Ullas; Ramakrishnan, Uma

    2009-08-01

    With only approximately 3,000 wild individuals surviving restricted to just 7% of their historical range, tigers are now a globally threatened species. Therefore, conservation efforts must prioritize regions that harbor more tigers, as well try to capture most of the remaining genetic variation and habitat diversity. Only such prioritization based on demographic, genetic, and ecological considerations can ensure species recovery and retention of evolutionary flexibility in the face of ongoing global changes. Although scientific understanding of ecological and demographic aspects of extant wild tiger populations has improved recently, little is known about their genetic composition and variability. We sampled 73 individual tigers from 28 reserves spread across a diversity of habitats in the Indian subcontinent to obtain 1,263 bp of mitochondrial DNA and 10 microsatellite loci. Our analyses reveals that Indian tigers retain more than half of the extant genetic diversity in the species. Coalescent simulations attribute this high genetic diversity to a historically large population size of about 58,200 tigers for peninsular India south of the Gangetic plains. Furthermore, our analyses indicate a precipitous, possibly human-induced population crash approximately 200 years ago in India, which is in concordance with historical records. Our results suggest that only 1.7% (with an upper limit of 13% and a lower limit of 0.2%) of tiger numbers in historical times remain now. In the global conservation context our results suggest that, based on genetic, demographic, and ecological considerations, the Indian subcontinent holds the key to global survival and recovery of wild tigers.

  17. GLOBAL CHANGE RESEARCH NEWS #37: PUBLICATION OF "OUR CHANGING PLANET: THE FY 2002 U.S. GLOBAL CHANGE RESEARCH PROGRAM"

    EPA Science Inventory

    The EPA Global Change Research Program is pleased to inform you of the publication of the new Our Changing Planet: The FY 2002 U.S. Global Change Research Program. This annual report to the Congress was prepared under the auspices of the Committee on Environment and Natural Reso...

  18. Forward Looking: Structural Change and Institutions in Highestincome Countries and Globally

    ERIC Educational Resources Information Center

    Ahamer, Gilbert; Mayer, Johannes

    2013-01-01

    Purpose: Structural economic shifts are a key sign of development in all stages globally; and these shifts may also result in the changing roles of institutions. The purpose of this paper is to quantitatively analyse trends that may be used for so-called forward looking and makes use of them to recommend strategies for reorganising institutions.…

  19. The northern global change research program

    Treesearch

    Richard A. Birdsey; John L. Hom; Marla Emery

    1996-01-01

    The Forest Service goal for global change research is to establish a sound scientific basis for making regional, national, and international resource management and policy decisions in the context of global change issues. The objectives of the Northern Global Change Program (NGCP) are to understand: (1) what processes in forest ecosystems are sensitive to physical and...

  20. Global farm animal production and global warming: impacting and mitigating climate change.

    PubMed

    Koneswaran, Gowri; Nierenberg, Danielle

    2008-05-01

    The farm animal sector is the single largest anthropogenic user of land, contributing to many environmental problems, including global warming and climate change. The aim of this study was to synthesize and expand upon existing data on the contribution of farm animal production to climate change. We analyzed the scientific literature on farm animal production and documented greenhouse gas (GHG) emissions, as well as various mitigation strategies. An analysis of meat, egg, and milk production encompasses not only the direct rearing and slaughtering of animals, but also grain and fertilizer production for animal feed, waste storage and disposal, water use, and energy expenditures on farms and in transporting feed and finished animal products, among other key impacts of the production process as a whole. Immediate and far-reaching changes in current animal agriculture practices and consumption patterns are both critical and timely if GHGs from the farm animal sector are to be mitigated.

  1. Climate change 101 : understanding and responding to global climate change

    DOT National Transportation Integrated Search

    2009-01-01

    To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...

  2. Adaptable Information Models in the Global Change Information System

    NASA Astrophysics Data System (ADS)

    Duggan, B.; Buddenberg, A.; Aulenbach, S.; Wolfe, R.; Goldstein, J.

    2014-12-01

    The US Global Change Research Program has sponsored the creation of the Global Change Information System () to provide a web based source of accessible, usable, and timely information about climate and global change for use by scientists, decision makers, and the public. The GCIS played multiple roles during the assembly and release of the Third National Climate Assessment. It provided human and programmable interfaces, relational and semantic representations of information, and discrete identifiers for various types of resources, which could then be manipulated by a distributed team with a wide range of specialties. The GCIS also served as a scalable backend for the web based version of the report. In this talk, we discuss the infrastructure decisions made during the design and deployment of the GCIS, as well as ongoing work to adapt to new types of information. Both a constrained relational database and an open ended triple store are used to ensure data integrity while maintaining fluidity. Using natural primary keys allows identifiers to propagate through both models. Changing identifiers are accomodated through fine grained auditing and explicit mappings to external lexicons. A practical RESTful API is used whose endpoints are also URIs in an ontology. Both the relational schema and the ontology are maleable, and stability is ensured through test driven development and continuous integration testing using modern open source techniques. Content is also validated through continuous testing techniques. A high degres of scalability is achieved through caching.

  3. Asia's changing role in global climate change.

    PubMed

    Siddiqi, Toufiq A

    2008-10-01

    Asia's role in global climate change has evolved significantly from the time when the Kyoto Protocol was being negotiated. Emissions of carbon dioxide, the principal greenhouse gas, from energy use in Asian countries now exceed those from the European Union or North America. Three of the top five emitters-China, India, and Japan, are Asian countries. Any meaningful global effort to address global climate change requires the active cooperation of these and other large Asian countries, if it is to succeed. Issues of equity between countries, within countries, and between generations, need to be tackled. Some quantitative current and historic data to illustrate the difficulties involved are provided, and one approach to making progress is suggested.

  4. Rivers and Floodplains as Key Components of Global Terrestrial Water Storage Variability

    NASA Astrophysics Data System (ADS)

    Getirana, Augusto; Kumar, Sujay; Girotto, Manuela; Rodell, Matthew

    2017-10-01

    This study quantifies the contribution of rivers and floodplains to terrestrial water storage (TWS) variability. We use state-of-the-art models to simulate land surface processes and river dynamics and to separate TWS into its main components. Based on a proposed impact index, we show that surface water storage (SWS) contributes 8% of TWS variability globally, but that contribution differs widely among climate zones. Changes in SWS are a principal component of TWS variability in the tropics, where major rivers flow over arid regions and at high latitudes. SWS accounts for 22-27% of TWS variability in both the Amazon and Nile Basins. Changes in SWS are negligible in the Western U.S., Northern Africa, Middle East, and central Asia. Based on comparisons with Gravity Recovery and Climate Experiment-based TWS, we conclude that accounting for SWS improves simulated TWS in most of South America, Africa, and Southern Asia, confirming that SWS is a key component of TWS variability.

  5. Possible implications of global climate change on global lightning distributions and frequencies

    NASA Technical Reports Server (NTRS)

    Price, Colin; Rind, David

    1994-01-01

    The Goddard Institute for Space Studies (GISS) general circulation model (GCM) is used to study the possible implications of past and future climate change on global lightning frequencies. Two climate change experiments were conducted: one for a 2 x CO2 climate (representing a 4.2 degs C global warming) and one for a 2% decrease in the solar constant (representing a 5.9 degs C global cooling). The results suggest at 30% increase in global lightning activity for the warmer climate and a 24% decrease in global lightning activity for the colder climate. This implies an approximate 5-6% change in global lightning frequencies for every 1 degs C global warming/cooling. Both intracloud and cloud-to-ground frequencies are modeled, with cloud-to-ground lightning frequencies showing larger sensitivity to climate change than intracloud frequencies. The magnitude of the modeled lightning changes depends on season, location, and even time of day.

  6. Global trade and health: key linkages and future challenges.

    PubMed Central

    Bettcher, D. W.; Yach, D.; Guindon, G. E.

    2000-01-01

    Globalization of trade, marketing and investment has important implications for public health, both negative and positive. This article considers the implications of the single package of World Trade Organization (WTO) agreements for public health research and policy, focusing on three themes: commodities, intellectual property rights, and health services. The main aims of the analysis are as follows: to identify how trade issues are associated with the transnationalization of health risks and possible benefits; to identify key areas of research; and to suggest policy-relevant advice and interventions on trade and health issues. The next wave of international trade law will need to take more account of global public health issues. However, to become more engaged in global trade debates, the public health community must gain an understanding of the health effects of global trade agreements. It must also ensure that its own facts are correct, so that public health is not blindly used for political ends, such as justifying unwarranted economic protectionism. "Healthy trade" policies, based on firm empirical evidence and designed to improve health status, are an important step towards reaching a more sustainable form of trade liberalization. PMID:10885181

  7. International conference on the role of the polar regions in global change: Proceedings. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weller, G.; Wilson, C.L.; Severin, B.A.B.

    1991-12-01

    The International Conference on the Role of the Polar Regions in Global Change took place on the campus of the University of Alaska Fairbanks on June 11--15, 1990. The goal of the conference was to define and summarize the state of knowledge on the role of the polar regions in global change, and to identify gaps in knowledge. To this purpose experts in a wide variety of relevant disciplines were invited to present papers and hold panel discussions. While there are numerous conferences on global change, this conference dealt specifically with the polar regions which occupy key positions in themore » global system. These two volumes of conference proceedings include papers on (1) detection and monitoring of change; (2) climate variability and climate forcing; (3) ocean, sea ice, and atmosphere interactions and processes; and (4) effects on biota and biological feedbacks; (5) ice sheet, glacier and permafrost responses and feedbacks, (6) paleoenvironmental studies; and, (7) aerosol and trace gases.« less

  8. Fungal symbionts alter plant responses to global change.

    PubMed

    Kivlin, Stephanie N; Emery, Sarah M; Rudgers, Jennifer A

    2013-07-01

    While direct plant responses to global change have been well characterized, indirect plant responses to global change, via altered species interactions, have received less attention. Here, we examined how plants associated with four classes of fungal symbionts (class I leaf endophytes [EF], arbuscular mycorrhizal fungi [AMF], ectomycorrhizal fungi [ECM], and dark septate endophytes [DSE]) responded to four global change factors (enriched CO2, drought, N deposition, and warming). We performed a meta-analysis of 434 studies spanning 174 publications to search for generalizable trends in responses of plant-fungal symbioses to future environments. Specifically, we addressed the following questions: (1) Can fungal symbionts ameliorate responses of plants to global change? (2) Do fungal symbiont groups differ in the degree to which they modify plant response to global change? (3) Do particular global change factors affect plant-fungal symbioses more than others? In all global change scenarios, except elevated CO2, fungal symbionts significantly altered plant responses to global change. In most cases, fungal symbionts increased plant biomass in response to global change. However, increased N deposition reduced the benefits of symbiosis. Of the global change factors we considered, drought and N deposition resulted in the strongest fungal mediation of plant responses. Our analysis highlighted gaps in current knowledge for responses of particular fungal groups and revealed the importance of considering not only the nonadditive effects of multiple global change factors, but also the interactive effects of multiple fungal symbioses. Our results show that considering plant-fungal symbioses is critical to predicting ecosystem response to global change.

  9. The tropical Pacific as a key pacemaker of the variable rates of global warming

    NASA Astrophysics Data System (ADS)

    Kosaka, Yu; Xie, Shang-Ping

    2016-09-01

    Global mean surface temperature change over the past 120 years resembles a rising staircase: the overall warming trend was interrupted by the mid-twentieth-century big hiatus and the warming slowdown since about 1998. The Interdecadal Pacific Oscillation has been implicated in modulations of global mean surface temperatures, but which part of the mode drives the variability in warming rates is unclear. Here we present a successful simulation of the global warming staircase since 1900 with a global ocean-atmosphere coupled model where tropical Pacific sea surface temperatures are forced to follow the observed evolution. Without prescribed tropical Pacific variability, the same model, on average, produces a continual warming trend that accelerates after the 1960s. We identify four events where the tropical Pacific decadal cooling markedly slowed down the warming trend. Matching the observed spatial and seasonal fingerprints we identify the tropical Pacific as a key pacemaker of the warming staircase, with radiative forcing driving the overall warming trend. Specifically, tropical Pacific variability amplifies the first warming epoch of the 1910s-1940s and determines the timing when the big hiatus starts and ends. Our method of removing internal variability from the observed record can be used for real-time monitoring of anthropogenic warming.

  10. Quantitative Metrics for Provenance in the Global Change Information System

    NASA Astrophysics Data System (ADS)

    Sherman, R. A.; Tipton, K.; Elamparuthy, A.

    2017-12-01

    The Global Change Information System (GCIS) is an open-source web-based resource to provide traceable provenance for government climate information, particularly the National Climate Assessment and other climate science reports from the U.S. Global Change Research Program. Since 2014, GCIS has been adding and updating information and linking records to make the system as complete as possible for the key reports. Our total count of records has grown to well over 20,000, but until recently there hasn't been an easy way to measure how well all those records were serving the mission of providing provenance. The GCIS team has recently established quantitative measures of whether each record has sufficient metadata and linkages to be useful for users of our featured climate reports. We will describe our metrics and show how they can be used to guide future development of GCIS and aid users of government climate data.

  11. Global temperature change

    PubMed Central

    Hansen, James; Sato, Makiko; Ruedy, Reto; Lo, Ken; Lea, David W.; Medina-Elizade, Martin

    2006-01-01

    Global surface temperature has increased ≈0.2°C per decade in the past 30 years, similar to the warming rate predicted in the 1980s in initial global climate model simulations with transient greenhouse gas changes. Warming is larger in the Western Equatorial Pacific than in the Eastern Equatorial Pacific over the past century, and we suggest that the increased West–East temperature gradient may have increased the likelihood of strong El Niños, such as those of 1983 and 1998. Comparison of measured sea surface temperatures in the Western Pacific with paleoclimate data suggests that this critical ocean region, and probably the planet as a whole, is approximately as warm now as at the Holocene maximum and within ≈1°C of the maximum temperature of the past million years. We conclude that global warming of more than ≈1°C, relative to 2000, will constitute “dangerous” climate change as judged from likely effects on sea level and extermination of species. PMID:17001018

  12. Determining the effect of key climate drivers on global hydropower production

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Ng, J. Y.; Lee, D.; Block, P. J.

    2017-12-01

    Accounting for about 17% of total global electrical power production, hydropower is arguably the world's main renewable energy source and a key asset to meet Paris climate agreements. A key component of hydropower production is water availability, which depends on both precipitation and multiple drivers of climate variability acting at different spatial and temporal scales. To understand how these drivers impact global hydropower production, we study the relation between four patterns of ocean-atmosphere climate variability (i.e., El Niño Southern Oscillation, Pacific Decadal Oscillation, North Atlantic Oscillation, and Atlantic Multidecadal Oscillation) and monthly time series of electrical power production for over 1,500 hydropower reservoirs—obtained via simulation with a high-fidelity dam model forced with 20th century climate conditions. Notably significant relationships between electrical power productions and climate variability are found in many climate sensitive regions globally, including North and South America, East Asia, West Africa, and Europe. Coupled interactions from multiple, simultaneous climate drivers are also evaluated. Finally, we highlight the importance of using these climate drivers as an additional source of information within reservoir operating rules where the skillful predictability of inflow exists.

  13. Review of Global Change Research Program plan

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-01-01

    The draft 10-year strategic plan for the U.S. Global Change Research Program (USGCRP), which proposes broadening the scope of the program from climate change only to climate change and climaterelated global changes, “is an important step in the right direction,” according to a 5 January review of the plan by a committee of the U.S. National Research Council (NRC) of the National Academies. However, the committee also said that the program's legislative mandate is even broader in allowing USGCRP to address many aspects of global change including climate change, the global hydrological cycle, and widespread land use changes. “The Program's legislative mandate is to address all of global change, whether or not related to climate. The Committee concurs that this broader scope is appropriate, but realizes that such an expansion may be constrained by budget realities and by the practical challenge of maintaining clear boundaries for an expanded program,” the report states. “We encourage sustained efforts to expand the Program over time, along with efforts to better define and prioritize what specific topics are included within the bounds of global change research.”

  14. WATERSHED BOUNDARY CONDITIONS FOR GLOBAL CHANGE IMPACT ANALYSIS

    EPA Science Inventory

    The US Global Change Research Program (USGCRP) studies (among other issues) the impact of global change on water quality. This field study evaluates the impact of global changes (land-use change and climate change) on source water quality. Changes in source water quality change...

  15. Our Changing Planet: The FY 1993 US Global Change Research Program. A report by the Committee on Earth and Environmental Sciences, a supplement to the US President's fiscal year 1993 budget

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The U.S. Global Change Reasearch Program (USGCRP) was established as a Presidential initiative in the FY-1990 Budget to help develop sound national and international policies related to global environmental issues, particularly global climate change. The USGCRP is implemented through a priority-driven scientific research agenda that is designed to be integrated, comprehensive, and multidisciplinary. It is designed explicitly to address scientific uncertainties in such areas as climate change, ozone depletion, changes in terrestrial and marine productivity, global water and energy cycles, sea level changes, the impact of global changes on human health and activities, and the impact of anthropogenic activities on the Earth system. The USGCRP addresses three parallel but interconnected streams of activity: documenting global change (observations); enhancing understanding of key processes (process research); and predicting global and regional environmental change (integrated modeling and prediction).

  16. Calculations of key magnetospheric parameters using the isotropic and anisotropic SPSU global MHD code

    NASA Astrophysics Data System (ADS)

    Samsonov, Andrey; Gordeev, Evgeny; Sergeev, Victor

    2017-04-01

    As it was recently suggested (e.g., Gordeev et al., 2015), the global magnetospheric configuration can be characterized by a set of key parameters, such as the magnetopause distance at the subsolar point and on the terminator plane, the magnetic field in the magnetotail lobe and the plasma sheet thermal pressure, the cross polar cap electric potential drop and the total field-aligned current. For given solar wind conditions, the values of these parameters can be obtained from both empirical models and global MHD simulations. We validate the recently developed global MHD code SPSU-16 using the key magnetospheric parameters mentioned above. The code SPSU-16 can calculate both the isotropic and anisotropic MHD equations. In the anisotropic version, we use the modified double-adiabatic equations in which the T⊥/T∥ (the ratio of perpendicular to parallel thermal pressures) has been bounded from above by the mirror and ion-cyclotron thresholds and from below by the firehose threshold. The results of validation for the SPSU-16 code well agree with the previously published results of other global codes. Some key parameters coincide in the isotropic and anisotropic MHD simulations, but some are different.

  17. Integrated regional changes in arctic climate feedbacks: Implications for the global climate system

    USGS Publications Warehouse

    McGuire, A.D.; Chapin, F. S.; Walsh, J.E.; Wirth, C.; ,

    2006-01-01

    The Arctic is a key part of the global climate system because the net positive energy input to the tropics must ultimately be resolved through substantial energy losses in high-latitude regions. The Arctic influences the global climate system through both positive and negative feedbacks that involve physical, ecological, and human systems of the Arctic. The balance of evidence suggests that positive feedbacks to global warming will likely dominate in the Arctic during the next 50 to 100 years. However, the negative feedbacks associated with changing the freshwater balance of the Arctic Ocean might abruptly launch the planet into another glacial period on longer timescales. In light of uncertainties and the vulnerabilities of the climate system to responses in the Arctic, it is important that we improve our understanding of how integrated regional changes in the Arctic will likely influence the evolution of the global climate system. Copyright ?? 2006 by Annual Reviews. All rights reserved.

  18. INTRODUCTION: Anticipated changes in the global atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Allan, Richard P.; Liepert, Beate G.

    2010-06-01

    The atmospheric branch of the water cycle, although containing just a tiny fraction of the Earth's total water reserves, presents a crucial interface between the physical climate (such as large-scale rainfall patterns) and the ecosystems upon which human societies ultimately depend. Because of the central importance of water in the Earth system, the question of how the water cycle is changing, and how it may alter in future as a result of anthropogenic changes, present one of the greatest challenges of this century. The recent Intergovernmental Panel on Climate Change report on Climate Change and Water (Bates et al 2008) highlighted the increasingly strong evidence of change in the global water cycle and associated environmental consequences. It is of critical importance to climate prediction and adaptation strategies that key processes in the atmospheric water cycle are precisely understood and determined, from evaporation at the surface of the ocean, transport by the atmosphere, condensation as cloud and eventual precipitation, and run-off through rivers following interaction with the land surface, sub-surface, ice, snow and vegetation. The purpose of this special focus issue of Environmental Research Letters on anticipated changes in the global atmospheric water cycle is to consolidate the recent substantial advances in understanding past, present and future changes in the global water cycle through evidence built upon theoretical understanding, backed up by observations and borne out by climate model simulations. Thermodynamic rises in water vapour provide a central constraint, as discussed in a guest editorial by Bengtsson (2010). Theoretical implications of the Clausius-Clapeyron equation are presented by O'Gorman and Muller (2010) and with reference to a simple model (Sherwood 2010) while observed humidity changes confirm these anticipated responses at the land and ocean surface (Willett et al 2008). Rises in low-level moisture are thought to fuel an

  19. Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change.

    PubMed

    McCoy, Sophie J; Kamenos, Nicholas A

    2015-02-01

    Coralline algae are globally distributed benthic primary producers that secrete calcium carbonate skeletons. In the context of ocean acidification, they have received much recent attention due to the potential vulnerability of their high-Mg calcite skeletons and their many important ecological roles. Herein, we summarize what is known about coralline algal ecology and physiology, providing context to understand their responses to global climate change. We review the impacts of these changes, including ocean acidification, rising temperatures, and pollution, on coralline algal growth and calcification. We also assess the ongoing use of coralline algae as marine climate proxies via calibration of skeletal morphology and geochemistry to environmental conditions. Finally, we indicate critical gaps in our understanding of coralline algal calcification and physiology and highlight key areas for future research. These include analytical areas that recently have become more accessible, such as resolving phylogenetic relationships at all taxonomic ranks, elucidating the genes regulating algal photosynthesis and calcification, and calibrating skeletal geochemical metrics, as well as research directions that are broadly applicable to global change ecology, such as the importance of community-scale and long-term experiments in stress response. © 2015 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological Society of America.

  20. 34 CFR 75.517 - Changes in key staff members.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Changes in key staff members. 75.517 Section 75.517... by a Grantee? Project Staff § 75.517 Changes in key staff members. A grantee shall comply with 34 CFR 74.25(c)(2) concerning replacement or lesser involvement of any key project staff, whether or not the...

  1. 34 CFR 75.517 - Changes in key staff members.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 1 2014-07-01 2014-07-01 false Changes in key staff members. 75.517 Section 75.517... by a Grantee? Project Staff § 75.517 Changes in key staff members. A grantee shall comply with 34 CFR 74.25(c)(2) concerning replacement or lesser involvement of any key project staff, whether or not the...

  2. 34 CFR 75.517 - Changes in key staff members.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 1 2013-07-01 2013-07-01 false Changes in key staff members. 75.517 Section 75.517... by a Grantee? Project Staff § 75.517 Changes in key staff members. A grantee shall comply with 34 CFR 74.25(c)(2) concerning replacement or lesser involvement of any key project staff, whether or not the...

  3. 34 CFR 75.517 - Changes in key staff members.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false Changes in key staff members. 75.517 Section 75.517... by a Grantee? Project Staff § 75.517 Changes in key staff members. A grantee shall comply with 34 CFR 74.25(c)(2) concerning replacement or lesser involvement of any key project staff, whether or not the...

  4. 34 CFR 75.517 - Changes in key staff members.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 1 2012-07-01 2012-07-01 false Changes in key staff members. 75.517 Section 75.517... by a Grantee? Project Staff § 75.517 Changes in key staff members. A grantee shall comply with 34 CFR 74.25(c)(2) concerning replacement or lesser involvement of any key project staff, whether or not the...

  5. Resource subsidies between stream and terrestrial ecosystems under global change

    USGS Publications Warehouse

    Larsen, Stefano; Muehlbauer, Jeffrey D.; Marti Roca, Maria Eugenia

    2016-01-01

    Streams and adjacent terrestrial ecosystems are characterized by permeable boundaries that are crossed by resource subsidies. Although the importance of these subsidies for riverine ecosystems is increasingly recognized, little is known about how they may be influenced by global environmental change. Drawing from available evidence, in this review we propose a conceptual framework to evaluate the effects of global change on the quality and spatiotemporal dynamics of stream–terrestrial subsidies. We illustrate how changes to hydrological and temperature regimes, atmospheric CO2 concentration, land use and the distribution of nonindigenous species can influence subsidy fluxes by affecting the biology and ecology of donor and recipient systems and the physical characteristics of stream–riparian boundaries. Climate-driven changes in the physiology and phenology of organisms with complex life cycles will influence their development time, body size and emergence patterns, with consequences for adjacent terrestrial consumers. Also, novel species interactions can modify subsidy dynamics via complex bottom-up and top-down effects. Given the seasonality and pulsed nature of subsidies, alterations of the temporal and spatial synchrony of resource availability to consumers across ecosystems are likely to result in ecological mismatches that can scale up from individual responses, to communities, to ecosystems. Similarly, altered hydrology, temperature, CO2 concentration and land use will modify the recruitment and quality of riparian vegetation, the timing of leaf abscission and the establishment of invasive riparian species. Along with morphological changes to stream–terrestrial boundaries, these will alter the use and fluxes of allochthonous subsidies associated with stream ecosystems. Future research should aim to understand how subsidy dynamics will be affected by key drivers of global change, including agricultural intensification, increasing water use and biotic

  6. Resource subsidies between stream and terrestrial ecosystems under global change.

    PubMed

    Larsen, Stefano; Muehlbauer, Jeffrey D; Marti, Eugenia

    2016-07-01

    Streams and adjacent terrestrial ecosystems are characterized by permeable boundaries that are crossed by resource subsidies. Although the importance of these subsidies for riverine ecosystems is increasingly recognized, little is known about how they may be influenced by global environmental change. Drawing from available evidence, in this review we propose a conceptual framework to evaluate the effects of global change on the quality and spatiotemporal dynamics of stream-terrestrial subsidies. We illustrate how changes to hydrological and temperature regimes, atmospheric CO2 concentration, land use and the distribution of nonindigenous species can influence subsidy fluxes by affecting the biology and ecology of donor and recipient systems and the physical characteristics of stream-riparian boundaries. Climate-driven changes in the physiology and phenology of organisms with complex life cycles will influence their development time, body size and emergence patterns, with consequences for adjacent terrestrial consumers. Also, novel species interactions can modify subsidy dynamics via complex bottom-up and top-down effects. Given the seasonality and pulsed nature of subsidies, alterations of the temporal and spatial synchrony of resource availability to consumers across ecosystems are likely to result in ecological mismatches that can scale up from individual responses, to communities, to ecosystems. Similarly, altered hydrology, temperature, CO2 concentration and land use will modify the recruitment and quality of riparian vegetation, the timing of leaf abscission and the establishment of invasive riparian species. Along with morphological changes to stream-terrestrial boundaries, these will alter the use and fluxes of allochthonous subsidies associated with stream ecosystems. Future research should aim to understand how subsidy dynamics will be affected by key drivers of global change, including agricultural intensification, increasing water use and biotic

  7. A synthesis of convergent reflections, tensions and silences in linking gender and global environmental change research.

    PubMed

    Iniesta-Arandia, Irene; Ravera, Federica; Buechler, Stephanie; Díaz-Reviriego, Isabel; Fernández-Giménez, María E; Reed, Maureen G; Thompson-Hall, Mary; Wilmer, Hailey; Aregu, Lemlem; Cohen, Philippa; Djoudi, Houria; Lawless, Sarah; Martín-López, Berta; Smucker, Thomas; Villamor, Grace B; Wangui, Elizabeth Edna

    2016-12-01

    This synthesis article joins the authors of the special issue "Gender perspectives in resilience, vulnerability and adaptation to global environmental change" in a common reflective dialogue about the main contributions of their papers. In sum, here we reflect on links between gender and feminist approaches to research in adaptation and resilience in global environmental change (GEC). The main theoretical contributions of this special issue are threefold: emphasizing the relevance of power relations in feminist political ecology, bringing the livelihood and intersectionality approaches into GEC, and linking resilience theories and critical feminist research. Empirical insights on key debates in GEC studies are also highlighted from the nine cases analysed, from Europe, the Americas, Asia, Africa and the Pacific. Further, the special issue also contributes to broaden the gender approach in adaptation to GEC by incorporating research sites in the Global North alongside sites from the Global South. This paper examines and compares the main approaches adopted (e.g. qualitative or mixed methods) and the methodological challenges that derive from intersectional perspectives. Finally, key messages for policy agendas and further research are drawn from the common reflection.

  8. The belowground frontier is key to understanding terrestrial ecosystem responses to global change

    NASA Astrophysics Data System (ADS)

    Mackay, D. S.; Grossiord, C.; Johnson, D. M.; McDowell, N. G.; Savoy, P.; Sperry, J.

    2017-12-01

    Terrestrial ecosystems adapt and acclimate to global change in part because plasticity of traits helps define how individuals respond to thresholds. A threshold could be a tipping point where a small change in a forcing brings about a big change in system response, or a critical transition that shifts the system into an alternative stable or steady state. For instance, a dimorphic root system offers an individual plant the ability to use shallow water during wet periods and deeper water during dry periods. During drought this system imparts on the ecosystem a stable state as opposed to shifting to an alternative state of fewer surviving woody species. We tested this systems view within TREES, a biophysical model that integrates abiotic and biotic drivers of ecosystem response by coupling whole-plant (rhizosphere to leaf) hydraulics to carbon allocation, root-rhizosphere expansion/contraction and rhizosphere-root centric microbe-plant nitrogen dynamics. We simulated ecosystem responses to (1) seasonal drought in a blue oak woodland, (2) an unusually protracted drought in a mixed species woodland, and (3) an experimentally imposed drought with and without warming in a juniper-pinon woodland. For the blue oak, access to deep groundwater was critical for the timing of drought deciduousness. For the mixed species woodland, deeper roots reduced the risk of mortality via rhizosphere hydraulic failure. Drought induced relatively greater water uptake from bedrock water sources in both juniper and pinon, while heat promoted greater bedrock water uptake by juniper. Higher temperature forced the microbial N and plant NSC cycles to new steady states that were unfavorable for allocation of carbon to canopy and fine roots, and higher respiration costs in roots resulted in a decline in root-to-leaf area and consequent greater loss of hydraulic conductance. The results justify a deeper understanding of the belowground frontier that bridges hydrology, plant hydraulics, and

  9. People, pollution and pathogens - Global change impacts in mountain freshwater ecosystems.

    PubMed

    Schmeller, Dirk S; Loyau, Adeline; Bao, Kunshan; Brack, Werner; Chatzinotas, Antonis; De Vleeschouwer, Francois; Friesen, Jan; Gandois, Laure; Hansson, Sophia V; Haver, Marilen; Le Roux, Gaël; Shen, Ji; Teisserenc, Roman; Vredenburg, Vance T

    2018-05-01

    Mountain catchments provide for the livelihood of more than half of humankind, and have become a key destination for tourist and recreation activities globally. Mountain ecosystems are generally considered to be less complex and less species diverse due to the harsh environmental conditions. As such, they are also more sensitive to the various impacts of the Anthropocene. For this reason, mountain regions may serve as sentinels of change and provide ideal ecosystems for studying climate and global change impacts on biodiversity. We here review different facets of anthropogenic impacts on mountain freshwater ecosystems. We put particular focus on micropollutants and their distribution and redistribution due to hydrological extremes, their direct influence on water quality and their indirect influence on ecosystem health via changes of freshwater species and their interactions. We show that those changes may drive pathogen establishment in new environments with harmful consequences for freshwater species, but also for the human population. Based on the reviewed literature, we recommend reconstructing the recent past of anthropogenic impact through sediment analyses, to focus efforts on small, but highly productive waterbodies, and to collect data on the occurrence and variability of microorganisms, biofilms, plankton species and key species, such as amphibians due to their bioindicator value for ecosystem health and water quality. The newly gained knowledge can then be used to develop a comprehensive framework of indicators to robustly inform policy and decision making on current and future risks for ecosystem health and human well-being. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Global change and terrestrial plant community dynamics

    DOE PAGES

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; ...

    2016-02-29

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this article, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on amore » literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Lastly, monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.« less

  11. Global change and terrestrial plant community dynamics

    PubMed Central

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; Regan, Helen M.

    2016-01-01

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change. PMID:26929338

  12. Bibliography of global change, 1992

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 585 reports, articles, and other documents introduced in the NASA Scientific and Technical Information Database in 1992. The areas covered include global change, decision making, earth observation (from space), forecasting, global warming, policies, and trends.

  13. National Security and Global Climate Change

    DTIC Science & Technology

    2008-01-01

    The uncertainty, confusion, and speculation about the causes, effects, and implications of global climate change (GCC) often paralyze serious...against scientific indications of global climate change , but to consider how it would pose challenges to national security, explore options for facing...generals and admirals, released a report concluding that projected climate change poses a serious threat to America’s national security. This article

  14. Future battlegrounds for conservation under global change

    PubMed Central

    Lee, Tien Ming; Jetz, Walter

    2008-01-01

    Global biodiversity is under significant threat from the combined effects of human-induced climate and land-use change. Covering 12% of the Earth's terrestrial surface, protected areas are crucial for conserving biodiversity and supporting ecological processes beneficial to human well-being, but their selection and design are usually uninformed about future global change. Here, we quantify the exposure of the global reserve network to projected climate and land-use change according to the Millennium Ecosystem Assessment and set these threats in relation to the conservation value and capacity of biogeographic and geopolitical regions. We find that geographical patterns of past human impact on the land cover only poorly predict those of forecasted change, thus revealing the inadequacy of existing global conservation prioritization templates. Projected conservation risk, measured as regional levels of land-cover change in relation to area protected, is the greatest at high latitudes (due to climate change) and tropics/subtropics (due to land-use change). Only some high-latitude nations prone to high conservation risk are also of high conservation value, but their high relative wealth may facilitate additional conservation efforts. In contrast, most low-latitude nations tend to be of high conservation value, but they often have limited capacity for conservation which may exacerbate the global biodiversity extinction crisis. While our approach will clearly benefit from improved land-cover projections and a thorough understanding of how species range will shift under climate change, our results provide a first global quantitative demonstration of the urgent need to consider future environmental change in reserve-based conservation planning. They further highlight the pressing need for new reserves in target regions and support a much extended ‘north–south’ transfer of conservation resources that maximizes biodiversity conservation while mitigating global climate

  15. Key enablers to facilitate healthy behavior change: workshop summary.

    PubMed

    Teyhen, Deydre S; Aldag, Matt; Centola, Damon; Edinborough, Elton; Ghannadian, Jason D; Haught, Andrea; Jackson, Theresa; Kinn, Julie; Kunkler, Kevin J; Levine, Betty; Martindale, Valerie E; Neal, David; Snyder, Leslie B; Styn, Mindi A; Thorndike, Frances; Trabosh, Valerie; Parramore, David J

    2014-05-01

    The increases in preventable chronic diseases and the rising costs of health care are unsustainable. The US Army Surgeon General's vision to transition from a health care system to a system of health requires the identification of key health enablers to facilitate the adoption of healthy behaviors. In support of this vision, the US Army Telemedicine and Advanced Technology Research Center hosted a workshop in April 2013 titled "Incentives to Create and Sustain Change for Health." Members of government and academia participated to identify key health enablers that could ultimately be leveraged by technology. The key health enablers discussed included (1) public health messaging, (2) changing health habits and the environmental influence on health, (3) goal setting and tracking, (4) the role of incentives in behavior-change intervention, and (5) the role of peer and social networks on change. This report summarizes leading evidence and the group consensus on evidence-based practices with respect to the key enablers in creating healthy behavior change.

  16. Exploring Land Use and Land Cover Change and Feedbacks in the Global Change Assessment Model

    NASA Astrophysics Data System (ADS)

    Chen, M.; Vernon, C. R.; Huang, M.; Calvin, K. V.; Le Page, Y.; Kraucunas, I.

    2017-12-01

    Land Use and Land Cover Change (LULCC) is a major driver of global and regional environmental change. Projections of land use change are thus an essential component in Integrated Assessment Models (IAMs) to study feedbacks between transformation of energy systems and land productivity under the context of climate change. However, the spatial scale of IAMs, e.g., the Global Change Assessment Model (GCAM), is typically larger than the scale of terrestrial processes in the human-Earth system, LULCC downscaling therefore becomes a critical linkage among these multi-scale and multi-sector processes. Parametric uncertainties in LULCC downscaling algorithms, however, have been under explored, especially in the context of how such uncertainties could propagate to affect energy systems in a changing climate. In this study, we use a LULCC downscaling model, Demeter, to downscale GCAM-based future land use scenarios into fine spatial scales, and explore the sensitivity of downscaled land allocations to key parameters. Land productivity estimates (e.g., biomass production and crop yield) based on the downscaled LULCC scenarios are then fed to GCAM to evaluate how energy systems might change due to altered water and carbon cycle dynamics and their interactions with the human system, , which would in turn affect future land use projections. We demonstrate that uncertainties in LULCC downscaling can result in significant differences in simulated scenarios, indicating the importance of quantifying parametric uncertainties in LULCC downscaling models for integrated assessment studies.

  17. Comparing impacts of climate change and mitigation on global agriculture by 2050

    NASA Astrophysics Data System (ADS)

    van Meijl, Hans; Havlik, Petr; Lotze-Campen, Hermann; Stehfest, Elke; Witzke, Peter; Pérez Domínguez, Ignacio; Bodirsky, Benjamin Leon; van Dijk, Michiel; Doelman, Jonathan; Fellmann, Thomas; Humpenöder, Florian; Koopman, Jason F. L.; Müller, Christoph; Popp, Alexander; Tabeau, Andrzej; Valin, Hugo; van Zeist, Willem-Jan

    2018-06-01

    Systematic model inter-comparison helps to narrow discrepancies in the analysis of the future impact of climate change on agricultural production. This paper presents a set of alternative scenarios by five global climate and agro-economic models. Covering integrated assessment (IMAGE), partial equilibrium (CAPRI, GLOBIOM, MAgPIE) and computable general equilibrium (MAGNET) models ensures a good coverage of biophysical and economic agricultural features. These models are harmonized with respect to basic model drivers, to assess the range of potential impacts of climate change on the agricultural sector by 2050. Moreover, they quantify the economic consequences of stringent global emission mitigation efforts, such as non-CO2 emission taxes and land-based mitigation options, to stabilize global warming at 2 °C by the end of the century under different Shared Socioeconomic Pathways. A key contribution of the paper is a vis-à-vis comparison of climate change impacts relative to the impact of mitigation measures. In addition, our scenario design allows assessing the impact of the residual climate change on the mitigation challenge. From a global perspective, the impact of climate change on agricultural production by mid-century is negative but small. A larger negative effect on agricultural production, most pronounced for ruminant meat production, is observed when emission mitigation measures compliant with a 2 °C target are put in place. Our results indicate that a mitigation strategy that embeds residual climate change effects (RCP2.6) has a negative impact on global agricultural production relative to a no-mitigation strategy with stronger climate impacts (RCP6.0). However, this is partially due to the limited impact of the climate change scenarios by 2050. The magnitude of price changes is different amongst models due to methodological differences. Further research to achieve a better harmonization is needed, especially regarding endogenous food and feed

  18. GLOBAL CHANGE RESEARCH NEWS #18: SYMPOSIUM SESSION ON "GLOBAL ATMOSPHERIC CHANGE"

    EPA Science Inventory

    A session on "Understanding and Managing Effects of Global Atmospheric Change" will be held at the Fifth Symposium of the U.S. EPA National Health and Environmental Effects Research Laboratory. The Symposium topic is "Indicators in Health and Ecological Risk Assessment." The s...

  19. Solar variability: Implications for global change

    NASA Technical Reports Server (NTRS)

    Lean, Judith; Rind, David

    1994-01-01

    Solar variability is examined in search of implications for global change. The topics covered include the following: solar variation modification of global surface temperature; the significance of solar variability with respect to future climate change; and methods of reducing the uncertainty of the potential amplitude of solar variability on longer time scales.

  20. Mercury from wildfires: Global emission inventories and sensitivity to 2000-2050 global change

    NASA Astrophysics Data System (ADS)

    Kumar, Aditya; Wu, Shiliang; Huang, Yaoxian; Liao, Hong; Kaplan, Jed O.

    2018-01-01

    We estimate the global Hg wildfire emissions for the 2000s and the potential impacts from the 2000-2050 changes in climate, land use and land cover and Hg anthropogenic emissions by combining statistical analysis with global data on vegetation type and coverage as well as fire activities. Global Hg wildfire emissions are estimated to be 612 Mg year-1. Africa is the dominant source region (43.8% of global emissions), followed by Eurasia (31%) and South America (16.6%). We find significant perturbations to wildfire emissions of Hg in the context of global change, driven by the projected changes in climate, land use and land cover and Hg anthropogenic emissions. 2000-2050 climate change could increase Hg emissions by 14% globally and regionally by 18% for South America, 14% for Africa and 13% for Eurasia. Projected changes in land use by 2050 could decrease the global Hg emissions from wildfires by 13% mainly driven by a decline in African emissions due to significant agricultural land expansion. Future land cover changes could lead to significant increases in Hg emissions over some regions (+32% North America, +14% Africa, +13% Eurasia). Potential enrichment of terrestrial ecosystems in 2050 in response to changes in Hg anthropogenic emissions could increase Hg wildfire emissions globally (+28%) and regionally (+19% North America, +20% South America, +24% Africa, +41% Eurasia). Our results indicate that the future evolution of climate, land use and land cover and Hg anthropogenic emissions are all important factors affecting Hg wildfire emissions in the coming decades.

  1. Federal global change data plan reviewed

    NASA Astrophysics Data System (ADS)

    Simarski, Lynn Teo

    1992-02-01

    Scientists and data managers are grappling with an unprecedented challenge: how to handle the explosion of data being produced by global change research. The federal government is developing a plan to manage data among the various federal agencies that participate in the U.S. Global Change Research Program. From January 22 to 24, some 80 scientists, data managers, and officials from federal agencies, universities, laboratories, and other institutions met in Washington, D.C. to critique the draft plan. New observational tools are expected to increase the flow of global change data to ever more massive proportions, while all the data now available is not catalogued properly. Even now, if a researcher does manage to find appropriate data, it may not be documented sufficiently to use. “These practical difficulties are especially acute for global change researchers, who need to search for data and information very broadly across scientific disciplines and sometimes decades after the data were archived,” explains the draft plan by the Committee on Earth and Environmental Sciences of the Office of Science and Technology Policy.

  2. Antarctica and global change research

    NASA Astrophysics Data System (ADS)

    Weller, Gunter; Lange, Manfred

    1992-03-01

    The Antarctic, including the continent and Southern Ocean with the subantarctic islands, is a critical area in the global change studies under the International Geosphere-Biosphere Program (IGBP) and the World Climate Research Program (WCRP). Major scientific problems include the impacts of climate warming, the ozone hole, and sea level changes. Large-scale interactions between the atmosphere, ice, ocean, and biota in the Antarctic affect the entire global system through feedbacks, biogeochemical cycles, deep-ocean circulation, atmospheric transport of heat, moisture, and pollutants, and changes in ice mass balances. Antarctica is also a rich repository of paleoenvironmental information in its ice sheet and its ocean and land sediments.

  3. Surface water change as a significant contributor to global evapotranspiration change

    NASA Astrophysics Data System (ADS)

    Zhan, S.; Song, C.

    2017-12-01

    Water comprises a critical component of global/regional hydrological and biogeochemical cycles and is essential to all organisms including humans. In the past several decades, climate change has intensified the hydrological cycle, with significant implications for ecosystem services and feedback to regional and global climate. Evapotranspiration (ET) as a linking mechanism between land surface and atmosphere is central to the water cycle and an excellent indicator of the intensity of water cycle. Knowledge of the temporal changes of ET is crucial for accurately estimating global or regional water budgets and better understanding climate and hydrological interactions. While studies have examined changes in global ET, they were conducted using a constant land and surface water (SW) area. However, as many studies have found that global SW is very dynamic and their surface areas have generally been increasing since the 1980s. The conversion from land to water and vice versa significantly changes the local ET since water bodies evaporate at a rate that can be much higher than that of the land. Here, we quantify the global changes in ET caused by such land-water conversion using remotely-sensed SW area and various ET and potential ET products. New SW and lost SW between circa-1985 and circa-2015 were derived from remote sensing and were used to modify the local ET estimates. We found an increase in ET in all continents as consistent with the net increase in SW area. The increasing SW area lead to a global increase in ET by 30.38 ± 5.28 km3/yr. This is a significant contribution when compared to the 92.95 km3/yr/yr increase in ET between 1982-1997 and 103.43 km3/yr/yr decrease between 1998-2008 by Jung et al., (2010) assuming a constant SW. The results enhance our understanding of the water fluxes between the land and atmosphere and supplement land water budget estimates. We conclude that changes in SW lead to a significant change in global ET that cannot be neglected in

  4. Earth science information: Planning for the integration and use of global change information

    NASA Technical Reports Server (NTRS)

    Lousma, Jack R.

    1992-01-01

    The Consortium for International Earth Science Information Network (CIESIN) was founded in 1989 as a non-profit corporation dedicated to facilitating access to, use and understanding of global change information worldwide. The Consortium was created to cooperate and coordinate with organizations and researchers throughout the global change community to further access the most advanced technology, the latest scientific research, and the best information available for critical environmental decision making. CIESIN study efforts are guided by Congressional mandates to 'convene key present and potential users to assess the need for investment in integration of earth science information,' to 'outline the desirable pattern of interaction with the scientific and policy community,' and to 'develop recommendations and draft plans to achieve the appropriate level of effort in the use of earth science data for research and public policy purposes.' In addition, CIESIN is tasked by NASA to develop a data center that would extend the benefits of Earth Observing System (EOS) to the users of global change information related to human dimensions issues. For FY 1991, CIESIN focused on two main objectives. The first addressed the identification of information needs of global change research and non-research user groups worldwide. The second focused on an evaluation of the most efficient mechanisms for making this information available in usable forms.

  5. Stormy Weather: 101 Solutions to Global Climate Change.

    ERIC Educational Resources Information Center

    Dauncey, Guy

    This document presents 101 solutions to global climate change. These solutions are actions that are well suited to every level of society. This book creates awareness about global climate change. The history of Earth and the greenhouse effect are discussed, and explanations and solutions to global climate change are provided including traveling…

  6. Designer policy for carbon and biodiversity co-benefits under global change

    NASA Astrophysics Data System (ADS)

    Bryan, Brett A.; Runting, Rebecca K.; Capon, Tim; Perring, Michael P.; Cunningham, Shaun C.; Kragt, Marit E.; Nolan, Martin; Law, Elizabeth A.; Renwick, Anna R.; Eber, Sue; Christian, Rochelle; Wilson, Kerrie A.

    2016-03-01

    Carbon payments can help mitigate both climate change and biodiversity decline through the reforestation of agricultural land. However, to achieve biodiversity co-benefits, carbon payments often require support from other policy mechanisms such as regulation, targeting, and complementary incentives. We evaluated 14 policy mechanisms for supplying carbon and biodiversity co-benefits through reforestation of carbon plantings (CP) and environmental plantings (EP) in Australia’s 85.3 Mha agricultural land under global change. The reference policy--uniform payments (bidders are paid the same price) with land-use competition (both CP and EP eligible for payments), targeting carbon--achieved significant carbon sequestration but negligible biodiversity co-benefits. Land-use regulation (only EP eligible) and two additional incentives complementing the reference policy (biodiversity premium, carbon levy) increased biodiversity co-benefits, but mostly inefficiently. Discriminatory payments (bidders are paid their bid price) with land-use competition were efficient, and with multifunctional targeting of both carbon and biodiversity co-benefits increased the biodiversity co-benefits almost 100-fold. Our findings were robust to uncertainty in global outlook, and to key agricultural productivity and land-use adoption assumptions. The results suggest clear policy directions, but careful mechanism design will be key to realising these efficiencies in practice. Choices remain for society about the amount of carbon and biodiversity co-benefits desired, and the price it is prepared to pay for them.

  7. Global change in wilderness areas: disentangling natural and anthropogenic changes

    Treesearch

    Lisa J. Graumlich

    2000-01-01

    Human impacts on the Earth’s ecosystems are globally pervasive. Wilderness areas, although largely protected from direct human impact at local scales, nevertheless are subject to global changes in atmospheric composition, climate and biodiversity. Research in wilderness areas plays a critical role in disentangling natural and anthropogenic changes in ecosystems by...

  8. GeoChange Global Change Data

    USGS Publications Warehouse

    ,

    1997-01-01

    GeoChange is an online data system providing access to research results and data generated by the U.S. Geological Survey's Global Change Research Program. Researchers in this program study climate history and the causes of climatic variations, as well as providing baseline data sets on contemporary atmospheric chemistry, high-resolution meteorology, and dust deposition. Research results are packaged as data sets, groups of digital files containing scientific observations, documentation, and interpretation. The data sets are arranged in a consistent manner using standard file formats so that users of a variety of computer systems can access and use them.

  9. Global Change adaptation in water resources management: the Water Change project.

    PubMed

    Pouget, Laurent; Escaler, Isabel; Guiu, Roger; Mc Ennis, Suzy; Versini, Pierre-Antoine

    2012-12-01

    In recent years, water resources management has been facing new challenges due to increasing changes and their associated uncertainties, such as changes in climate, water demand or land use, which can be grouped under the term Global Change. The Water Change project (LIFE+ funding) developed a methodology and a tool to assess the Global Change impacts on water resources, thus helping river basin agencies and water companies in their long term planning and in the definition of adaptation measures. The main result of the project was the creation of a step by step methodology to assess Global Change impacts and define strategies of adaptation. This methodology was tested in the Llobregat river basin (Spain) with the objective of being applicable to any water system. It includes several steps such as setting-up the problem with a DPSIR framework, developing Global Change scenarios, running river basin models and performing a cost-benefit analysis to define optimal strategies of adaptation. This methodology was supported by the creation of a flexible modelling system, which can link a wide range of models, such as hydrological, water quality, and water management models. The tool allows users to integrate their own models to the system, which can then exchange information among them automatically. This enables to simulate the interactions among multiple components of the water cycle, and run quickly a large number of Global Change scenarios. The outcomes of this project make possible to define and test different sets of adaptation measures for the basin that can be further evaluated through cost-benefit analysis. The integration of the results contributes to an efficient decision-making on how to adapt to Global Change impacts. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Changes in Arctic and Antarctic Sea Ice as a Microcosm of Global Climate Change

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2014-01-01

    Polar sea ice is a key element of the climate system and has now been monitored through satellite observations for over three and a half decades. The satellite observations reveal considerable information about polar ice and its changes since the late 1970s, including a prominent downward trend in Arctic sea ice coverage and a much lesser upward trend in Antarctic sea ice coverage, illustrative of the important fact that climate change entails spatial contrasts. The decreasing ice coverage in the Arctic corresponds well with contemporaneous Arctic warming and exhibits particularly large decreases in the summers of 2007 and 2012, influenced by both preconditioning and atmospheric conditions. The increasing ice coverage in the Antarctic is not as readily explained, but spatial differences in the Antarctic trends suggest a possible connection with atmospheric circulation changes that have perhaps been influenced by the Antarctic ozone hole. The changes in the polar ice covers and the issues surrounding those changes have many commonalities with broader climate changes and their surrounding issues, allowing the sea ice changes to be viewed in some important ways as a microcosm of global climate change.

  11. Regional scaling of annual mean precipitation and water availability with global temperature change

    NASA Astrophysics Data System (ADS)

    Greve, Peter; Gudmundsson, Lukas; Seneviratne, Sonia I.

    2018-03-01

    Changes in regional water availability belong to the most crucial potential impacts of anthropogenic climate change, but are highly uncertain. It is thus of key importance for stakeholders to assess the possible implications of different global temperature thresholds on these quantities. Using a subset of climate model simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), we derive here the sensitivity of regional changes in precipitation and in precipitation minus evapotranspiration to global temperature changes. The simulations span the full range of available emission scenarios, and the sensitivities are derived using a modified pattern scaling approach. The applied approach assumes linear relationships on global temperature changes while thoroughly addressing associated uncertainties via resampling methods. This allows us to assess the full distribution of the simulations in a probabilistic sense. Northern high-latitude regions display robust responses towards wetting, while subtropical regions display a tendency towards drying but with a large range of responses. Even though both internal variability and the scenario choice play an important role in the overall spread of the simulations, the uncertainty stemming from the climate model choice usually accounts for about half of the total uncertainty in most regions. We additionally assess the implications of limiting global mean temperature warming to values below (i) 2 K or (ii) 1.5 K (as stated within the 2015 Paris Agreement). We show that opting for the 1.5 K target might just slightly influence the mean response, but could substantially reduce the risk of experiencing extreme changes in regional water availability.

  12. Space sensors for global change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canavan, G.H.

    1994-02-15

    Satellite measurements should contribute to a fuller understanding of the physical processes behind the radiation budget, exchange processes, and global change. Climate engineering requires global observation for early indications of predicted effects, which puts a premium on affordable, distributed constellations of satellites with effective, affordable sensors. Defense has a requirement for continuous global surveillance for warning of aggression, which could evolve from advanced sensors and satellites in development. Many climate engineering needs match those of defense technologies.

  13. Agricultural Water Use under Global Change

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Ringler, C.; Rosegrant, M. W.

    2008-12-01

    Irrigation is by far the single largest user of water in the world and is projected to remain so in the foreseeable future. Globally, irrigated agricultural land comprises less than twenty percent of total cropland but produces about forty percent of the world's food. Increasing world population will require more food and this will lead to more irrigation in many areas. As demands increase and water becomes an increasingly scarce resource, agriculture's competition for water with other economic sectors will be intensified. This water picture is expected to become even more complex as climate change will impose substantial impacts on water availability and demand, in particular for agriculture. To better understand future water demand and supply under global change, including changes in demographic, economic and technological dimensions, the water simulation module of IMPACT, a global water and food projection model developed at the International Food Policy Research Institute, is used to analyze future water demand and supply in agricultural and several non-agricultural sectors using downscaled GCM scenarios, based on water availability simulation done with a recently developed semi-distributed global hydrological model. Risk analysis is conducted to identify countries and regions where future water supply reliability for irrigation is low, and food security may be threatened in the presence of climate change. Gridded shadow values of irrigation water are derived for global cropland based on an optimization framework, and they are used to illustrate potential irrigation development by incorporating gridded water availability and existing global map of irrigation areas.

  14. Global Change Network: Combine Nutrient Network and Drought Net in China

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Wang, C.; Zhu, J.; Xu, X.; Yang, H.; Wei, C.; Cong, N.; Wu, H.; Li, H.; Tian, D.; An, H.; Yu, G.

    2017-12-01

    Globally, all ecosystems will be impacted to some extent by changes in climate means and more frequent and severe periods of climatic extremes. Although there have been numerous studies examining the effects of changes in climatic means on ecological processes and ecosystems, research on climate extremes is far less common and is only now emerging as a distinct research field in ecology. Furthermore, although we have learned much in the past 20 years about how individual ecosystems are likely to respond to climate change, extending this knowledge to regional and continental scales has been a far greater challenge because of the inconsistent design of experiments and ecological complexity. In order to better forecast how entire regions will respond to eutrophication and extreme drought, two key network has been set up, i.e. Nutrient Network, Drought Net. However, there were few sites in China in the network studies, where locates Eurasian Steppe (the biggest grassland in the world) and Tibetan Plateau grassland (the world's highest and largest plateau grassland). To fill the great gap, we have set up ten sites in China (including 5 sites in Eurasia Steppe and 5 site in Tibetan Plateau), combing Nutrient Network and Drought Net treatments and also increased precipitation, called Global Change Network. There are 16 treatments with 6 repeats, and thus 96 plots in the global change network. The nutrient addition treatments are the same with Nutrient Network, i.e. 10 treatments. Precipitation change treatments include an extreme drought (the same with Drought Net) and a water addition (the amount is the same with drought treatment) treatment. The interactive treatments were only conducted in control N and NPK.

  15. Global change data sets: Excerpts from the Master Directory, version 2.0

    NASA Technical Reports Server (NTRS)

    Beier, Joy

    1992-01-01

    The recent awakening to the reality of human-induced changes to the environment has resulted in an organized effort to promote global change research. The goal of this research as outlined by NASA's Earth System Science Committee (Earth System Science: A closer View, 1988) is to understand the entire Earth system on a global scale by describing how its component parts and their interactions have evolved, how they function, and how they may be expected to evolve on all timescales. The practical result is the capacity to predict that evolution over the next decade to century. Key variables important for the study of global change include external forcing factors (solar radiance, UV flux), radiatively and chemically important trace species (CO2, CH4, N2O, etc.), atmospheric response variables (temperature, pressure, winds), landsurface properties (river run-off, snow cover, albedo, soil moisture, vegetation cover), and oceanic variables (sea surface temperature, sea ice extent, sea level ocean wind stress, currents, chlorophyll, biogeochemical fluxes). The purpose of this document is to identify existing data sets available (both remotely sensed and in situ data) covering some of these variables. This is not intended to be a complete list of global change data, but merely a highlight of what is available. The information was extracted from the Master Directory (MD), an on-line scientific data information service which may be used by any researcher. This report contains the coverage dates for the data sets, sources (satellites, instruments) of the data and where they are archived.

  16. Global and Mediterranean climate change: a short summary.

    PubMed

    Ciardini, Virginia; Contessa, Gian Marco; Falsaperla, Rosaria; Gómez-Amo, José Luis; Meloni, Daniela; Monteleone, Francesco; Pace, Giandomenico; Piacentino, Salvatore; Sferlazzo, Damiano; di Sarra, Alcide

    2016-01-01

    Observed changes at the global scale. An increase of the annual mean global temperature and changes of other climate parameters have been observed in the last century. The global temperature and the atmospheric concentration of greenhouse gases are changing at a very fast pace compared to those found in palaeoclimate records. Changes in the Mediterranean. Variations of some climate change indicators can be much larger at the local than at the global scale, and the Mediterranean has been indicated among the regions most sensitive to climate change, also due to the increasing anthropogenic pressure. Model projections for the Mediterranean foresee further warming, droughts, and long-lasting modifications. Regional climate changes impact health and ecosystems, creating new risks, determined not only by weather events, but also by changing exposures and vulnerabilities. These issues, and in particular those regarding occupational safety, have not been sufficiently addressed to date.

  17. Antarctic Pliocene Biotic and Environmental Change in a Global Context Changes

    NASA Astrophysics Data System (ADS)

    Quilty, P. G.; Whitehead, J.

    2005-12-01

    The Pliocene was globally an interval of dramatic climate change and often compared with the environment evolving through human-induced global change. Antarctic history needs to be integrated into global patterns. The Prydz Bay-Prince Charles Mountains region of East Antarctica is a major source of data on Late Paleozoic-Recent changes in Antarctic biota and environment. This paper reviews what is known of 13 marine transgressions in the Late Neogene of the region and attempts to compare the Antarctic pattern with global patterns, such as those identified through global sequence stratigraphic analysis. Although temporal resolution in Antarctic sections is not always as good as for sections elsewhere, enough data exist to indicate that many events can be construed as part of global changes. It is expected that further correlation will be effected. During much of the Pliocene, there was less continental ice, reduced sea-ice cover, probably higher sea-level, penetration of marine conditions deep into the hinterland, and independent evidence to indicate that this was due to warmth. The Antarctic Polar Frontal Zone probably was much farther south than currently. There have been major changes in the marine fauna, and distribution of surviving species since the mid-Pliocene. Antarctic fish faunas underwent major changes during this interval with evolution of a major new Subfamily and diversification in at least two subfamilies. No palynological evidence of terrestrial vegetation has been recovered from the Prydz Bay - Prince Charles Mountain region. Analysis of origin and extinction data for two global planktonic foraminiferal biostratigraphic zonations shows that the interval Late Miocene-Pliocene was an interval of enhanced extinction and evolution, consistent with an interval of more rapid and high amplitude fluctuating environments.

  18. Global Change and Our Common Future: Papers from a Forum. Papers from the Committee on Global Change, National Research Council, 1989.

    ERIC Educational Resources Information Center

    DeFries, Ruth S., Ed.; Malone, Thomas F., Ed.

    This volume of papers includes 21 of the 38 presentations given at the Forum on Global Change and Our Common Future. The objectives of the forum were threefold: (1) to present to the public a balanced and authoritative view of the wide range of global change issues, including the science of the earth system, the impacts of global change on…

  19. Global climate change and international security.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karas, Thomas H.

    2003-11-01

    This report originates in a workshop held at Sandia National Laboratories, bringing together a variety of external experts with Sandia personnel to discuss 'The Implications of Global Climate Change for International Security.' Whatever the future of the current global warming trend, paleoclimatic history shows that climate change happens, sometimes abruptly. These changes can severely impact human water supplies, agriculture, migration patterns, infrastructure, financial flows, disease prevalence, and economic activity. Those impacts, in turn, can lead to national or international security problems stemming from aggravation of internal conflicts, increased poverty and inequality, exacerbation of existing international conflicts, diversion of national andmore » international resources from international security programs (military or non-military), contribution to global economic decline or collapse, or international realignments based on climate change mitigation policies. After reviewing these potential problems, the report concludes with a brief listing of some research, technology, and policy measures that might mitigate them.« less

  20. Cosmopolitan Species As Models for Ecophysiological Responses to Global Change: The Common Reed Phragmites australis.

    PubMed

    Eller, Franziska; Skálová, Hana; Caplan, Joshua S; Bhattarai, Ganesh P; Burger, Melissa K; Cronin, James T; Guo, Wen-Yong; Guo, Xiao; Hazelton, Eric L G; Kettenring, Karin M; Lambertini, Carla; McCormick, Melissa K; Meyerson, Laura A; Mozdzer, Thomas J; Pyšek, Petr; Sorrell, Brian K; Whigham, Dennis F; Brix, Hans

    2017-01-01

    Phragmites australis is a cosmopolitan grass and often the dominant species in the ecosystems it inhabits. Due to high intraspecific diversity and phenotypic plasticity, P. australis has an extensive ecological amplitude and a great capacity to acclimate to adverse environmental conditions; it can therefore offer valuable insights into plant responses to global change. Here we review the ecology and ecophysiology of prominent P. australis lineages and their responses to multiple forms of global change. Key findings of our review are that: (1) P. australis lineages are well-adapted to regions of their phylogeographic origin and therefore respond differently to changes in climatic conditions such as temperature or atmospheric CO 2 ; (2) each lineage consists of populations that may occur in geographically different habitats and contain multiple genotypes; (3) the phenotypic plasticity of functional and fitness-related traits of a genotype determine the responses to global change factors; (4) genotypes with high plasticity to environmental drivers may acclimate or even vastly expand their ranges, genotypes of medium plasticity must acclimate or experience range-shifts, and those with low plasticity may face local extinction; (5) responses to ancillary types of global change, like shifting levels of soil salinity, flooding, and drought, are not consistent within lineages and depend on adaptation of individual genotypes. These patterns suggest that the diverse lineages of P. australis will undergo intense selective pressure in the face of global change such that the distributions and interactions of co-occurring lineages, as well as those of genotypes within-lineages, are very likely to be altered. We propose that the strong latitudinal clines within and between P. australis lineages can be a useful tool for predicting plant responses to climate change in general and present a conceptual framework for using P. australis lineages to predict plant responses to global

  1. Global Change. Teaching Activities on Global Change for Grades 4-6.

    ERIC Educational Resources Information Center

    Geological Survey (Dept. of Interior), Reston, VA.

    This packet contains a series of teaching guides on global change. The series includes lessons on dendrochronology; land, air, and water; and island living. Included is information such as : laws of straws; where land, air, and water meet; and Earth as home. Each section provides an introductory description of the activity, the purpose of the…

  2. Global sustainability and key needs in future automotive design.

    PubMed

    McAuley, John W

    2003-12-01

    The number of light vehicle registrations is forecast to increase worldwide by a factor of 3-5 over the next 50 years. This will dramatically increase environmental impacts worldwide of automobiles and light trucks. If light vehicles are to be environmentally sustainable globally, the automotive industry must implement fundamental changes in future automotive design. Important factors in assessing automobile design needs include fuel economy and reduced emissions. Many design parameters can impact vehicle air emissions and energy consumption including alternative fuel or engine technologies, rolling resistance, aerodynamics, drive train design, friction, and vehicle weight. Of these, vehicle weight is key and will translate into reduced energy demand across all energy distribution elements. A new class of vehicles is needed that combines ultra-light design with a likely hybrid or fuel cell engine technology. This could increase efficiency by a factor of 3-5 and reduce air emissions as well. Advanced lightweight materials, such as plastics or composites, will need to overtake the present metal-based infrastructure. Incorporating design features to facilitate end-of-life recycling and recovery is also important. The trend will be towards fewer materials and parts in vehicle design, combined with ease of disassembly. Mono-material construction can create vehicle design with improved recyclability as well as reduced numbers of parts and weight.

  3. Projected change in global fisheries revenues under climate change

    PubMed Central

    Lam, Vicky W. Y.; Cheung, William W. L.; Reygondeau, Gabriel; Sumaila, U. Rashid

    2016-01-01

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries’ vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries. PMID:27600330

  4. Linear Response Path Following: A Molecular Dynamics Method To Simulate Global Conformational Changes of Protein upon Ligand Binding.

    PubMed

    Tamura, Koichi; Hayashi, Shigehiko

    2015-07-14

    Molecular functions of proteins are often fulfilled by global conformational changes that couple with local events such as the binding of ligand molecules. High molecular complexity of proteins has, however, been an obstacle to obtain an atomistic view of the global conformational transitions, imposing a limitation on the mechanistic understanding of the functional processes. In this study, we developed a new method of molecular dynamics (MD) simulation called the linear response path following (LRPF) to simulate a protein's global conformational changes upon ligand binding. The method introduces a biasing force based on a linear response theory, which determines a local reaction coordinate in the configuration space that represents linear coupling between local events of ligand binding and global conformational changes and thus provides one with fully atomistic models undergoing large conformational changes without knowledge of a target structure. The overall transition process involving nonlinear conformational changes is simulated through iterative cycles consisting of a biased MD simulation with an updated linear response force and a following unbiased MD simulation for relaxation. We applied the method to the simulation of global conformational changes of the yeast calmodulin N-terminal domain and successfully searched out the end conformation. The atomistically detailed trajectories revealed a sequence of molecular events that properly lead to the global conformational changes and identified key steps of local-global coupling that induce the conformational transitions. The LRPF method provides one with a powerful means to model conformational changes of proteins such as motors and transporters where local-global coupling plays a pivotal role in their functional processes.

  5. Development of Global Change Research in Developing Countries

    NASA Astrophysics Data System (ADS)

    Sierra, Carlos A.; Yepes, Adriana P.

    2010-10-01

    Ecosystems and Global Change in the Context of the Neotropics; Medellín, Colombia, 19-20 May 2010; Research in most areas of global environmental change is overwhelmingly produced outside developing countries, which are usually consumers rather than producers of the knowledge associated with their natural resources. While there have been important recent advances in understanding the causes of global-¬scale changes and their consequences to the functioning of tropical ecosystems, there is still an important gap in the understanding of these changes at regional and national levels (where important political decisions are usually made). A symposium was held with the aim of surveying the current state of research activities in a small, developing country such as Colombia. It was jointly organized by the Research Center on Ecosystems and Global Change, Carbono and Bosques; the National University of Colombia at Medellín and the Colombian Ministry of the Environment, Housing, and Regional Development. This 2-¬day symposium gathered Colombian and international scientists involved in different areas of global environmental change, tropical ecosystems, and human societies.

  6. Global Climate Change:A Monumental Mitigation Challenge

    EPA Science Inventory

    A holistic view of long-term sustainability cannot ignore humanity’s ever-growing demands on fossil fuels, water, and other finite geological resources. Figure 1 (Princiotta et. al., 2014) illustrates the key factors that are responsible for potentially unsustainable global impac...

  7. Decadal Changes in Global Ocean Chlorophyll

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Conkright, Margarita E.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    The global ocean chlorophyll archive produced by the Coastal Zone Color Scanner (CZCS) was revised using compatible algorithms with the Sea-viewing Wide Field-of-view Sensor (SeaWIFS), and both were blended with in situ data. This methodology permitted a quantitative comparison of decadal changes in global ocean chlorophyll from the CZCS (1979-1986) and SeaWiFS (Sep. 1997-Dec. 2000) records. Global seasonal means of ocean chlorophyll decreased over the two observational segments, by 8% in winter to 16% in autumn. Chlorophyll in the high latitudes was responsible for most of the decadal change. Conversely, chlorophyll concentrations in the low latitudes increased. The differences and similarities of the two data records provide evidence of how the Earth's climate may be changing and how ocean biota respond. Furthermore, the results have implications for the ocean carbon cycle.

  8. Global Climate Change Pilot Course Project

    NASA Astrophysics Data System (ADS)

    Schuenemann, K. C.; Wagner, R.

    2011-12-01

    In fall 2011 a pilot course on "Global Climate Change" is being offered, which has been proposed to educate urban, diverse, undergraduate students about climate change at the introductory level. The course has been approved to fulfill two general college requirements, a natural sciences requirement that focuses on the scientific method, as well as a global diversity requirement. This course presents the science behind global climate change from an Earth systems and atmospheric science perspective. These concepts then provide the basis to explore the effect of global warming on regions throughout the world. Climate change has been taught as a sub-topic in other courses in the past solely using scientific concepts, with little success in altering the climate change misconceptions of the students. This pilot course will see if new, innovative projects described below can make more of an impact on the students' views of climate change. Results of the successes or failures of these projects will be reported, as well as results of a pre- and post-course questionnaire on climate change given to students taking the course. Students in the class will pair off and choose a global region or country that they will research, write papers on, and then represent in four class discussions spaced throughout the semester. The first report will include details on the current climate of their region and how the climate shapes that region's society and culture. The second report will discuss how that region is contributing to climate change and/or sequestering greenhouse gases. Thirdly, students will discuss observed and predicted changes in that region's climate and what impact it has had, and could have, on their society. Lastly, students will report on what role their region has played in mitigating climate change, any policies their region may have implemented, and how their region can or cannot adapt to future climate changes. They will also try to get a feel for the region

  9. Modeling the biophysical impacts of global change in mountain biosphere reserves

    USGS Publications Warehouse

    Bugmann, H.K.M.; Bjornsen, F. Ewert; Haeberli, W.; Guisan, Antoine; Fagre, Daniel B.; Kaab, A.

    2007-01-01

    Mountains and mountain societies provide a wide range of goods and services to humanity, but they are particularly sensitive to the effects of global environmental change. Thus, the definition of appropriate management regimes that maintain the multiple functions of mountain regions in a time of greatly changing climatic, economic, and societal drivers constitutes a significant challenge. Management decisions must be based on a sound understanding of the future dynamics of these systems. The present article reviews the elements required for an integrated effort to project the impacts of global change on mountain regions, and recommends tools that can be used at 3 scientific levels (essential, improved, and optimum). The proposed strategy is evaluated with respect to UNESCO's network of Mountain Biosphere Reserves (MBRs), with the intention of implementing it in other mountain regions as well. First, methods for generating scenarios of key drivers of global change are reviewed, including land use/land cover and climate change. This is followed by a brief review of the models available for projecting the impacts of these scenarios on (1) cryospheric systems, (2) ecosystem structure and diversity, and (3) ecosystem functions such as carbon and water relations. Finally, the cross-cutting role of remote sensing techniques is evaluated with respect to both monitoring and modeling efforts. We conclude that a broad range of techniques is available for both scenario generation and impact assessments, many of which can be implemented without much capacity building across many or even most MBRs. However, to foster implementation of the proposed strategy, further efforts are required to establish partnerships between scientists and resource managers in mountain areas.

  10. White House Conference on Global Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    President Clinton has directed the White House office on Environmental Policy to coordinate an interagency process to develop a plan to fulfill the commitment he made in his Earth Day address on April 21, 1993. This plan will become the cornerstone of the Climate Change Plan that will be completed shortly after the Rio Accord enters into force. The Office on Environmental Policy established the Interagency Climate Change Mitigation Group to draw on the expertise of federal agencies including the National Economic Council; the Council of Economic Advisors; the Office of Science and Technology Policy; the Office of Management andmore » Budget; the National Security Council; the Domestic Policy Council; the Environmental Protection Agency; and the Departments of Energy, Transportation, Agriculture, Interior, Treasury, Commerce, and State. Working groups have been established to examine six key policy areas: energy demand, energy supply, joint implementation, methane and other gases, sinks, and transportation. The purpose of the White House Conference on Global Climate Change was to ``tap the real-world experiences`` of diverse participants and seek ideas and information for meeting the President`s goals. During the opening session, senior administration officials defined the challenge ahead and encouraged open and frank conversation about the best possible ways to meet it.« less

  11. Global Change Assessment Model (GCAM)

    EPA Science Inventory

    The Global Change Assessment Model (GCAM) is an integrated assessment model that links the world's energy, agriculture and land use systems with a climate model. The model is designed to assess various climate change policies and technology strategies for the globe over long tim...

  12. Satellite Contributions to Global Change Studies

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2009-01-01

    By providing a global view with a level playing field (no region missed because of unfavorable surface conditions or political boundaries), satellites have made major contributions to improved monitoring and understanding of our constantly changing planet. The global view has allowed surprising realizations like the relative sparsity of lightning strikes over oceans and the large-scale undulations on the massive Antarctic ice sheet. It has allowed the tracking of all sorts of phenomena, including aerosols, both natural and anthropogenic, as they move with the atmospheric circulation and impact weather and human health. But probably nothing that the global view allows is more important in the long term than its provision. of unbiased data sets to address the issue of global change, considered by many to be among the most important issues facing humankind today. With satellites we can monitor atmospheric temperatures at all latitudes and longitudes, and obtain a global average that lessens the likelihood of becoming endlessly mired in the confusions brought about by the certainty of regional differences. With satellites we can monitor greenhouse gases such as CO2 not just above individual research stations but around the globe. With satellites we can monitor the polar sea ice covers, as we have done since the late 1970s, determining and quantifying the significant reduction in Arctic sea ice and the slight growth in Antarctic sea ice over that period, With satellites we can map the full extent and changes in the Antarctic stratospheric ozone depletions that were first identified from using a single ground station; and through satellite data we have witnessed from afar land surface changes brought about by humans both intentionally, as with wide-scale deforestation, and unintentionally, as with the decay of the Aral Sea. The satellite data are far from sufficient for all that we need in order to understand the global system and forecast its changes, as we also need

  13. Development and Implementation of Collaborative e-Infrastructures and Data Management for Global Change Research

    NASA Astrophysics Data System (ADS)

    Allison, M. Lee; Davis, Rowena

    2016-04-01

    An e-infrastructure that supports data-intensive, multidisciplinary research is needed to accelerate the pace of science to address 21st century global change challenges. Data discovery, access, sharing and interoperability collectively form core elements of an emerging shared vision of e-infrastructure for scientific discovery. The pace and breadth of change in information management across the data lifecycle means that no one country or institution can unilaterally provide the leadership and resources required to use data and information effectively, or needed to support a coordinated, global e-infrastructure. An 18-month long process involving ~120 experts in domain, computer, and social sciences from more than a dozen countries resulted in a formal set of recommendations that were adopted in fall, 2015 by the Belmont Forum collaboration of national science funding agencies and international bodies on what they are best suited to implement for development of an e-infrastructure in support of global change research, including: • adoption of data principles that promote a global, interoperable e-infrastructure, that can be enforced • establishment of information and data officers for coordination of global data management and e-infrastructure efforts • promotion of effective data planning and stewardship • determination of international and community best practices for adoption • development of a cross-disciplinary training curriculum on data management and curation The implementation plan is being executed under four internationally-coordinated Action Themes towards a globally organized, internationally relevant e-infrastructure and data management capability drawn from existing components, protocols, and standards. The Belmont Forum anticipates opportunities to fund additional projects to fill key gaps and to integrate best practices into an e-infrastructure to support their programs but that can also be scaled up and deployed more widely. Background

  14. A review of and perspectives on global change modeling for Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Monier, Erwan; Kicklighter, David W.; Sokolov, Andrei P.; Zhuang, Qianlai; Sokolik, Irina N.; Lawford, Richard; Kappas, Martin; Paltsev, Sergey V.; Groisman, Pavel Ya

    2017-08-01

    Northern Eurasia is made up of a complex and diverse set of physical, ecological, climatic and human systems, which provide important ecosystem services including the storage of substantial stocks of carbon in its terrestrial ecosystems. At the same time, the region has experienced dramatic climate change, natural disturbances and changes in land management practices over the past century. For these reasons, Northern Eurasia is both a critical region to understand and a complex system with substantial challenges for the modeling community. This review is designed to highlight the state of past and ongoing efforts of the research community to understand and model these environmental, socioeconomic, and climatic changes. We further aim to provide perspectives on the future direction of global change modeling to improve our understanding of the role of Northern Eurasia in the coupled human-Earth system. Modeling efforts have shown that environmental and socioeconomic changes in Northern Eurasia can have major impacts on biodiversity, ecosystems services, environmental sustainability, and the carbon cycle of the region, and beyond. These impacts have the potential to feedback onto and alter the global Earth system. We find that past and ongoing studies have largely focused on specific components of Earth system dynamics and have not systematically examined their feedbacks to the global Earth system and to society. We identify the crucial role of Earth system models in advancing our understanding of feedbacks within the region and with the global system. We further argue for the need for integrated assessment models (IAMs), a suite of models that couple human activity models to Earth system models, which are key to address many emerging issues that require a representation of the coupled human-Earth system.

  15. Enhancing the Global Carbon Sink: A Key Mitigation Strategy

    NASA Astrophysics Data System (ADS)

    Torn, M. S.

    2016-12-01

    Earth's terrestrial ecosystems absorb about one-third of all anthropogenic CO2 emissions from the atmosphere each year, greatly reducing the climate forcing those emissions would otherwise cause. This puts the size of the terrestrial carbon sink on par with the most aggressive climate mitigation measures proposed. Moreover, the land sink has been keeping pace with rising emissions and has roughly doubled over the past 40 years. But there is a fundamental lack of understanding of why the sink has been increasing and what its future trajectory could be. In developing climate mitigation strategies, governments have a very limited scientific basis for projecting the contributions of their domestic sinks, and yet at least 117 of the 160 COP21 signatories stated they will use the land sink in their Nationally Defined Contribution (NDC). Given its potentially critical role in reducing net emissions and the importance of UNFCCC land sinks in future mitigation scenarios, a first-principles understanding of the dynamics of the land sink is needed. For expansion of the sink, new approaches and ecologically-sound technologies are needed. Carefully conceived terrestrial carbon sequestration could have multiple environmental benefits, but a massive expansion of land carbon sinks using conventional approaches could place excessive demands on the world's land, water, and fertilizer nutrients. Meanwhile, rapid climatic change threatens to undermine or reverse the sink in many ecosystems. We need approaches to protect the large sinks that are currently assumed useful for climate mitigation. Thus we highlight the need for a new research agenda aimed at predicting, protecting, and enhancing the global carbon sink. Key aspects of this agenda include building a predictive capability founded on observations, theory and models, and developing ecological approaches and technologies that are sustainable and scalable, and potentially provide co-benefits such as healthier soils, more

  16. Global Climate Change and Children's Health.

    PubMed

    2015-11-01

    Rising global temperatures are causing major physical, chemical, and ecological changes in the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as "climate change," are the result of contemporary human activity. Climate change poses threats to human health, safety, and security, and children are uniquely vulnerable to these threats. The effects of climate change on child health include: physical and psychological sequelae of weather disasters; increased heat stress; decreased air quality; altered disease patterns of some climate-sensitive infections; and food, water, and nutrient insecurity in vulnerable regions. The social foundations of children's mental and physical health are threatened by the specter of far-reaching effects of unchecked climate change, including community and global instability, mass migrations, and increased conflict. Given this knowledge, failure to take prompt, substantive action would be an act of injustice to all children. A paradigm shift in production and consumption of energy is both a necessity and an opportunity for major innovation, job creation, and significant, immediate associated health benefits. Pediatricians have a uniquely valuable role to play in the societal response to this global challenge. Copyright © 2015 by the American Academy of Pediatrics.

  17. Improved data for integrated modeling of global environmental change

    NASA Astrophysics Data System (ADS)

    Lotze-Campen, Hermann

    2011-12-01

    The assessment of global environmental changes, their impact on human societies, and possible management options requires large-scale, integrated modeling efforts. These models have to link biophysical with socio-economic processes, and they have to take spatial heterogeneity of environmental conditions into account. Land use change and freshwater use are two key research areas where spatial aggregation and the use of regional average numbers may lead to biased results. Useful insights can only be obtained if processes like economic globalization can be consistently linked to local environmental conditions and resource constraints (Lambin and Meyfroidt 2011). Spatially explicit modeling of environmental changes at the global scale has a long tradition in the natural sciences (Woodward et al 1995, Alcamo et al 1996, Leemans et al 1996). Socio-economic models with comparable spatial detail, e.g. on grid-based land use change, are much less common (Heistermann et al 2006), but are increasingly being developed (Popp et al 2011, Schneider et al 2011). Spatially explicit models require spatially explicit input data, which often constrains their development and application at the global scale. The amount and quality of available data on environmental conditions is growing fast—primarily due to improved earth observation methods. Moreover, systematic efforts for collecting and linking these data across sectors are on the way (www.earthobservations.org). This has, among others, also helped to provide consistent databases on different land cover and land use types (Erb et al 2007). However, spatially explicit data on specific anthropogenic driving forces of global environmental change are still scarce—also because these cannot be collected with satellites or other devices. The basic data on socio-economic driving forces, i.e. population density and wealth (measured as gross domestic product per capita), have been prepared for spatially explicit analyses (CIESIN, IFPRI

  18. Botanic gardens science for conservation and global change.

    PubMed

    Donaldson, John S

    2009-11-01

    The contributions of botanic gardens to conservation biology and global-change research need to be understood within the context of the traditional strengths of such gardens in herbarium collections, living collections and interactions with the public. Here, I propose that research in conservation planning, modelling species responses to climate change, conservation of threatened species and experimental tests of global change build on the core strengths of botanic gardens. However, there are limits to what can be achieved through traditional gardens-based programs, and some botanic gardens have adapted their research to include studies of threatening processes and to monitor and verify global-change impacts. There is an opportunity for botanic gardens to use their living collections more effectively in global-change research and for them to have a role in linking biodiversity conservation with benefits derived from ecosystem services.

  19. Useful global-change scenarios: current issues and challenges

    NASA Astrophysics Data System (ADS)

    Parson, E. A.

    2008-10-01

    Scenarios are increasingly used to inform global-change debates, but their connection to decisions has been weak and indirect. This reflects the greater number and variety of potential users and scenario needs, relative to other decision domains where scenario use is more established. Global-change scenario needs include common elements, e.g., model-generated projections of emissions and climate change, needed by many users but in different ways and with different assumptions. For these common elements, the limited ability to engage diverse global-change users in scenario development requires extreme transparency in communicating underlying reasoning and assumptions, including probability judgments. Other scenario needs are specific to users, requiring a decentralized network of scenario and assessment organizations to disseminate and interpret common elements and add elements requiring local context or expertise. Such an approach will make global-change scenarios more useful for decisions, but not less controversial. Despite predictable attacks, scenario-based reasoning is necessary for responsible global-change decisions because decision-relevant uncertainties cannot be specified scientifically. The purpose of scenarios is not to avoid speculation, but to make the required speculation more disciplined, more anchored in relevant scientific knowledge when available, and more transparent.

  20. Spatial modeling of agricultural land use change at global scale

    NASA Astrophysics Data System (ADS)

    Meiyappan, P.; Dalton, M.; O'Neill, B. C.; Jain, A. K.

    2014-11-01

    Long-term modeling of agricultural land use is central in global scale assessments of climate change, food security, biodiversity, and climate adaptation and mitigation policies. We present a global-scale dynamic land use allocation model and show that it can reproduce the broad spatial features of the past 100 years of evolution of cropland and pastureland patterns. The modeling approach integrates economic theory, observed land use history, and data on both socioeconomic and biophysical determinants of land use change, and estimates relationships using long-term historical data, thereby making it suitable for long-term projections. The underlying economic motivation is maximization of expected profits by hypothesized landowners within each grid cell. The model predicts fractional land use for cropland and pastureland within each grid cell based on socioeconomic and biophysical driving factors that change with time. The model explicitly incorporates the following key features: (1) land use competition, (2) spatial heterogeneity in the nature of driving factors across geographic regions, (3) spatial heterogeneity in the relative importance of driving factors and previous land use patterns in determining land use allocation, and (4) spatial and temporal autocorrelation in land use patterns. We show that land use allocation approaches based solely on previous land use history (but disregarding the impact of driving factors), or those accounting for both land use history and driving factors by mechanistically fitting models for the spatial processes of land use change do not reproduce well long-term historical land use patterns. With an example application to the terrestrial carbon cycle, we show that such inaccuracies in land use allocation can translate into significant implications for global environmental assessments. The modeling approach and its evaluation provide an example that can be useful to the land use, Integrated Assessment, and the Earth system modeling

  1. Global climate change and infectious diseases.

    PubMed Central

    Shope, R

    1991-01-01

    The effects of global climate change on infectious diseases are hypothetical until more is known about the degree of change in temperature and humidity that will occur. Diseases most likely to increase in their distribution and severity have three-factor (agent, vector, and human being) and four-factor (plus vertebrate reservoir host) ecology. Aedes aegypti and Aedes albopictus mosquitoes may move northward and have more rapid metamorphosis with global warming. These mosquitoes transmit dengue virus, and Aedes aegypti transmits yellow fever virus. The faster metamorphosis and a shorter extrinsic incubation of dengue and yellow fever viruses could lead to epidemics in North America. Vibrio cholerae is harbored persistently in the estuaries of the U.S. Gulf Coast. Over the past 200 years, cholera has become pandemic seven times with spread from Asia to Europe, Africa, and North America. Global warming may lead to changes in water ecology that could enhance similar spread of cholera in North America. Some other infectious diseases such as LaCrosse encephalitis and Lyme disease are caused by agents closely dependent on the integrity of their environment. These diseases may become less prominent with global warming because of anticipated modification of their habitats. Ecological studies will help us to understand more fully the possible consequences of global warming. New and more effective methods for control of vectors will be needed. PMID:1820262

  2. Engineering paradigms and anthropogenic global change

    NASA Astrophysics Data System (ADS)

    Bohle, Martin

    2016-04-01

    This essay discusses 'paradigms' as means to conceive anthropogenic global change. Humankind alters earth-systems because of the number of people, the patterns of consumption of resources, and the alterations of environments. This process of anthropogenic global change is a composite consisting of societal (in the 'noosphere') and natural (in the 'bio-geosphere') features. Engineering intercedes these features; e.g. observing stratospheric ozone depletion has led to understanding it as a collateral artefact of a particular set of engineering choices. Beyond any specific use-case, engineering works have a common function; e.g. civil-engineering intersects economic activity and geosphere. People conceive their actions in the noosphere including giving purpose to their engineering. The 'noosphere' is the ensemble of social, cultural or political concepts ('shared subjective mental insights') of people. Among people's concepts are the paradigms how to shape environments, production systems and consumption patterns given their societal preferences. In that context, engineering is a means to implement a given development path. Four paradigms currently are distinguishable how to make anthropogenic global change happening. Among the 'engineering paradigms' for anthropogenic global change, 'adaptation' is a paradigm for a business-as-usual scenario and steady development paths of societies. Applying this paradigm implies to forecast the change to come, to appropriately design engineering works, and to maintain as far as possible the current production and consumption patterns. An alternative would be to adjust incrementally development paths of societies, namely to 'dovetail' anthropogenic and natural fluxes of matter and energy. To apply that paradigm research has to identify 'natural boundaries', how to modify production and consumption patterns, and how to tackle process in the noosphere to render alterations of common development paths acceptable. A further alternative

  3. Global environmental change research: empowering developing countries.

    PubMed

    Nobre, Carlos A; Lahsen, Myanna; Ometto, Jean P H B

    2008-09-01

    This paper discusses ways to reconcile the United Nations Millennium Development Goals with environmental sustainability at the national and international levels. The authors argue that development and better use of sustainability relevant knowledge is key, and that this requires capacity building globally, and especially in the less developed regions of the world. Also essential is stronger integration of high-quality knowledge creation and technology--and policy--development, including, importantly, the creation of centers of excellence in developing regions which effectively use and produce applications-directed high quality research and bring it to bear on decision making and practices related to environmental change and sustainable management of natural resources. The authors argue that Southern centers of excellence are a necessary first step for bottom-up societal transformation towards sustainability, and that such centers must help design innovative ways to assess and place value on ecosystem services.

  4. Global Change in the Great Lakes: Scenarios.

    ERIC Educational Resources Information Center

    Garrison, Barbara K., Ed.; Rosser, Arrye R., Ed.

    The Ohio Sea Grant Education Program has produced this series of publications designed to help people understand how global change may affect the Great Lakes region. The possible implications of global change for this region of the world are explained in the hope that policymakers and individuals will be more inclined to make responsible decisions…

  5. Changes in butterfly abundance in response to global warming and reforestation.

    PubMed

    Kwon, Tae-Sung; Kim, Sung-Soo; Chun, Jung Hwa; Byun, Bong-Kyu; Lim, Jong-Hwan; Shin, Joon Hwan

    2010-04-01

    In the Republic of Korea, most denuded forest lands have been restored since the 1960s. In addition, the annual mean temperature in the Republic of Korea has increased approximately 1.0 degrees C during the last century, which is higher than the global mean increase of 0.74 degrees C. Such rapid environmental changes may have resulted in changes in the local butterfly fauna. For example, the number of butterflies inhabiting forests may have increased because of reforestation, whereas the number of butterflies inhabiting grasslands may have declined. Furthermore, the number of northern butterflies may have declined, whereas the number of southern butterflies may have increased in response to global warming. Therefore, we compared current data (2002 approximately 2007) regarding the abundance of butterfly species at two sites in the central portion of the Korean Peninsula to data from the late 1950s and early 1970s for the same sites. Changes in the abundance rank of each species between the two periods were evaluated to determine whether any patterns corresponded to the predicted temporal changes. The predicted changes in butterfly abundance were confirmed in this study. In addition, the results showed a different response to habitat change between northern and southern species. In northern butterfly species, butterflies inhabiting forests increased, whereas those inhabiting grasslands declined. However, the opposite was true when southern butterfly species were evaluated. Changes in the abundance indicate that habitat change may be one of the key factors related to the survival of populations that remain around the southern boundary of butterfly species.

  6. Chemical ecology of animal and human pathogen vectors in a changing global climate.

    PubMed

    Pickett, John A; Birkett, Michael A; Dewhirst, Sarah Y; Logan, James G; Omolo, Maurice O; Torto, Baldwyn; Pelletier, Julien; Syed, Zainulabeuddin; Leal, Walter S

    2010-01-01

    Infectious diseases affecting livestock and human health that involve vector-borne pathogens are a global problem, unrestricted by borders or boundaries, which may be exacerbated by changing global climate. Thus, the availability of effective tools for control of pathogen vectors is of the utmost importance. The aim of this article is to review, selectively, current knowledge of the chemical ecology of pathogen vectors that affect livestock and human health in the developed and developing world, based on key note lectures presented in a symposium on "The Chemical Ecology of Disease Vectors" at the 25th Annual ISCE meeting in Neuchatel, Switzerland. The focus is on the deployment of semiochemicals for monitoring and control strategies, and discusses briefly future directions that such research should proceed along, bearing in mind the environmental challenges associated with climate change that we will face during the 21st century.

  7. Why do the biotechnology and the climate change debates hardly mix? Evidence from a global stakeholder survey.

    PubMed

    Aerni, Philipp

    2013-05-25

    Despite its potential to address climate change problems, the role of biotechnology is hardly ever touched upon in the global sustainability debate. We wanted to know why. For that purpose, we conducted a global online stakeholder survey on biotechnology and climate change. The relevant stakeholders and their representatives were selected by means of key informants that were familiar with either of the two debates. A self-assessment showed that a majority of respondents felt more familiar with the climate change than the biotechnology debate. Even though the survey results reveal that most respondents consider the potential of modern biotechnology to address climate change to be substantial, the policy network analysis revealed that one stakeholder who is not just considered to be relevant in both debates but also crucial in the formation of global public opinion, strongly rejects the view that biotechnology is a climate-friendly and therefore clean technology. This influential opposition seems to ensure that the biotechnology and the climate change debates do not mix. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Open access: changing global science publishing.

    PubMed

    Gasparyan, Armen Yuri; Ayvazyan, Lilit; Kitas, George D

    2013-08-01

    The article reflects on open access as a strategy of changing the quality of science communication globally. Successful examples of open-access journals are presented to highlight implications of archiving in open digital repositories for the quality and citability of research output. Advantages and downsides of gold, green, and hybrid models of open access operating in diverse scientific environments are described. It is assumed that open access is a global trend which influences the workflow in scholarly journals, changing their quality, credibility, and indexability.

  9. Human-experienced temperature changes exceed global average climate changes for all income groups

    NASA Astrophysics Data System (ADS)

    Hsiang, S. M.; Parshall, L.

    2009-12-01

    Global climate change alters local climates everywhere. Many climate change impacts, such as those affecting health, agriculture and labor productivity, depend on these local climatic changes, not global mean change. Traditional, spatially averaged climate change estimates are strongly influenced by the response of icecaps and oceans, providing limited information on human-experienced climatic changes. If used improperly by decision-makers, these estimates distort estimated costs of climate change. We overlay the IPCC’s 20 GCM simulations on the global population distribution to estimate local climatic changes experienced by the world population in the 21st century. The A1B scenario leads to a well-known rise in global average surface temperature of +2.0°C between the periods 2011-2030 and 2080-2099. Projected on the global population distribution in 2000, the median human will experience an annual average rise of +2.3°C (4.1°F) and the average human will experience a rise of +2.4°C (4.3°F). Less than 1% of the population will experience changes smaller than +1.0°C (1.8°F), while 25% and 10% of the population will experience changes greater than +2.9°C (5.2°F) and +3.5°C (6.2°F) respectively. 67% of the world population experiences temperature changes greater than the area-weighted average change of +2.0°C (3.6°F). Using two approaches to characterize the spatial distribution of income, we show that the wealthiest, middle and poorest thirds of the global population experience similar changes, with no group dominating the global average. Calculations for precipitation indicate that there is little change in average precipitation, but redistributions of precipitation occur in all income groups. These results suggest that economists and policy-makers using spatially averaged estimates of climate change to approximate local changes will systematically and significantly underestimate the impacts of climate change on the 21st century population. Top: The

  10. Global climate change and infectious diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shope, R.

    1991-12-01

    The effects of global climate change on infectious diseases are hypothetical until more is known about the degree of change in temperature and humidity that will occur. Diseases most likely to increase in their distribution and severity have three-factor (agent, vector, and human being) and four-factor (plus vertebrate reservoir host) ecology. Aedes aegypti and Aedes albopictus mosquitoes may move northward and have more rapid metamorphosis with global warming. These mosquitoes transmit dengue virus, and Aedes aegypti transmits yellow fever virus. The faster metamorphosis and a shorter extrinsic incubation of dengue and yellow fever viruses could lead to epidemics in Northmore » America. Vibrio cholera is harbored persistently in the estuaries of the U.S. Gulf Coast. Over the past 200 years, cholera has become pandemic seven times with spread from Asia to Europe, Africa, and North America. Global warming may lead to changes in water ecology that could enhance similar spread of cholera in North America. Some other infectious diseases such as LaCrosse encephalitis and Lyme disease are caused by agents closely dependent on the integrity of their environment. These diseases may become less prominent with global warming because of anticipated modification of their habitats. Ecological studies will help as to understand more fully the possible consequences of global warming. New and more effective methods for control of vectors will be needed. 12 refs., 1 tab.« less

  11. Gender perspectives in resilience, vulnerability and adaptation to global environmental change.

    PubMed

    Ravera, Federica; Iniesta-Arandia, Irene; Martín-López, Berta; Pascual, Unai; Bose, Purabi

    2016-12-01

    The main goal of this special issue is to offer a room for interdisciplinary and engaged research in global environmental change (GEC), where gender plays a key role in building resilience and adaptation pathways. In this editorial paper, we explain the background setting, key questions and core approaches of gender and feminist research in vulnerability, resilience and adaptation to GEC. Highlighting the interlinkages between gender and GEC, we introduce the main contributions of the collection of 11 papers in this special issue. Nine empirical papers from around the globe allow to understand how gendered diversity in knowledge, institutions and everyday practices matters in producing barriers and options for achieving resilience and adaptive capacity in societies. Additionally, two papers contribute to the theoretical debate through a systematic review and an insight on the relevance of intersectional framings within GEC research and development programming.

  12. Teaching about Global Climate Change

    ERIC Educational Resources Information Center

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  13. Global climate change impacts on forests and markets

    Treesearch

    Xiaohui Tian; Brent Sohngen; John B Kim; Sara Ohrel; Jefferson Cole

    2016-01-01

    This paper develops an economic analysis of climate change impacts in the global forest sector. It illustrates how potential future climate change impacts can be integrated into a dynamic forestry economics model using data from a global dynamic vegetation model, theMC2model. The results suggest that climate change will cause forest outputs (such as timber) to increase...

  14. Multimillennium changes in dissolved oxygen under global warming: results from an AOGCM and offline ocean biogeochemical model

    NASA Astrophysics Data System (ADS)

    Yamamoto, A.; Abe-Ouchi, A.; Shigemitsu, M.; Oka, A.; Takahashi, K.; Ohgaito, R.; Yamanaka, Y.

    2016-12-01

    Long-term oceanic oxygen change due to global warming is still unclear; most future projections (such as CMIP5) are only performed until 2100. Indeed, few previous studies using conceptual models project oxygen change in the next thousands of years, showing persistent global oxygen reduction by about 30% in the next 2000 years, even after atmospheric carbon dioxide stops rising. Yet, these models cannot sufficiently represent the ocean circulation change: the key driver of oxygen change. Moreover, considering serious effect oxygen reduction has on marine life and biogeochemical cycling, long-term oxygen change should be projected for higher validity. Therefore, we used a coupled atmosphere-ocean general circulation model (AOGCM) and an offline ocean biogeochemical model, investigating realistic long-term changes in oceanic oxygen concentration and ocean circulation. We integrated these models for 2000 years under atmospheric CO2 doubling and quadrupling. After global oxygen reduction in the first 500 years, oxygen concentration in deep ocean globally recovers and overshoots, despite surface oxygen decrease and weaker Atlantic Meridional Overturning Circulation. Deep ocean convection in the Weddell Sea recovers and overshoots, after initial cessation. Thus, enhanced deep convection and associated Antarctic Bottom Water supply oxygen-rich surface waters to deep ocean, resulting global deep ocean oxygenation. We conclude that the change in ocean circulation in the Southern Ocean potentially drives millennial-scale oxygenation in the deep ocean; contrary to past reported long-term oxygen reduction and general expectation. In presentation, we will discuss the mechanism of response of deep ocean convection in the Weddell Sea and show the volume changes of hypoxic waters.

  15. Global change and wilderness science

    Treesearch

    Peter M. Vitousek; John D. Aber; Christine L. Goodale; Gregory H. Aplet

    2000-01-01

    The breadth and scope of human-caused environmental change is well-established; the distribution and abundance of species, the vegetation cover of the land, and the chemistry of the atmosphere have been altered substantially and globally. How can science in wilderness areas contribute to the analysis of human-caused change? We use nitrate losses from forests to...

  16. Drivers and Dynamics of Global Environmental Change in Southern Africa

    NASA Astrophysics Data System (ADS)

    Jewitt, Graham; Munishi, Subira; Kunz, Richard; Viola, Paula

    2010-05-01

    Africa's potential to provide food, fuel, fibre and fodder for future global food and energy security has made it a target for a myriad investors from developed and developing countries alike. In many places, land grants and purchases have led to the establishment of huge monoculture production areas for food, fuel, fibre (maize, sugar cane, jatropha, plantation forestry etc) often preceded by deforestation and large scale utilisation and modification of available water resources. This coupled with the likelihood of rapid urbanisation in Africa over the next forty years and associated impacts linked to the high concentrations of inhabitants utilising and ultimately degrading available natural resources (e.g. wood for charcoal; water quality) have made Africa's ecosystems and people amongst the most vulnerable to global environmental change. Key questions that arise are how available scientific knowledge can best be utilized to reduce this vulnerability, where key gaps in knowledge in understanding the inter-linkages between societal needs and Food- Fibre-Energy-Water supply exist and how to best address the necessary complexity of considering these at different spatial and temporal scales. Drawing on the Ecosystem Goods and Services approach, we present key messages from ongoing research activities in South Africa, Swaziland, Mozambique and Tanzania and report on progress in applying management tools and systems to support decision making in these areas where development needs are critical. We also highlight lessons drawn from situations where unintended consequences have resulted from well meaning or politically expedient initiatives linked to large donor or foreign investment schemes, such as "outgrower" programmes, and where major environmental damage and ultimately the permanent loss of productivity of some landscapes has occurred.

  17. Using a Global Climate Model in an On-line Climate Change Course

    NASA Astrophysics Data System (ADS)

    Randle, D. E.; Chandler, M. A.; Sohl, L. E.

    2012-12-01

    Seminars on Science: Climate Change is an on-line, graduate-level teacher professional development course offered by the American Museum of Natural History. It is an intensive 6-week course covering a broad range of global climate topics, from the fundamentals of the climate system, to the causes of climate change, the role of paleoclimate investigations, and a discussion of potential consequences and risks. The instructional method blends essays, videos, textbooks, and linked websites, with required participation in electronic discussion forums that are moderated by an experienced educator and a course scientist. Most weeks include additional assignments. Three of these assignments employ computer models, including two weeks spent working with a full-fledged 3D global climate model (GCM). The global climate modeling environment is supplied through a partnership with Columbia University's Educational Global Climate Modeling Project (EdGCM). The objective is to have participants gain hands-on experience with one of the most important, yet misunderstood, aspects of climate change research. Participants in the course are supplied with a USB drive that includes installers for the software and sample data. The EdGCM software includes a version of NASA's global climate model fitted with a graphical user interface and pre-loaded with several climate change simulations. Step-by-step assignments and video tutorials help walk people through these challenging exercises and the course incorporates a special assignment discussion forum to help with technical problems and questions about the NASA GCM. There are several takeaways from our first year and a half of offering this course, which has become one of the most popular out of the twelve courses offered by the Museum. Participants report a high level of satisfaction in using EdGCM. Some report frustration at the initial steps, but overwhelmingly claim that the assignments are worth the effort. Many of the difficulties that

  18. Development of a Unique Web2.0 Interface for Global Collaboration in Land Cover Change Research

    NASA Astrophysics Data System (ADS)

    Dunham, M.; Boriah, S.; Mithal, V.; Garg, A.; Steinbach, M.; Kumar, V.; Potter, C. S.; Klooster, S.; Castilla-Rubio, J.

    2010-12-01

    The ability to detect changes in forest cover is of critical importance for both economic and scientific reasons, e.g. using forests for economic carbon sink management and studying natural and anthropogenic impacts on ecosystems. The contribution of greenhouse gases from deforestation is one of the most uncertain elements of the global carbon cycle. In fact, changes in forests account for as much as 20% of the greenhouse gas emissions in the atmosphere, an amount second only to fossil fuel emissions. Thus, a key ingredient for effective forest management, whether for carbon trading or other purposes, is quantifiable knowledge about changes in forest cover. Rich amounts of data from remotely-sensed images are now becoming available for detecting changes in forests or more generally, land cover. However, in spite of the importance of this problem and the considerable advances made over the last few years in high-resolution satellite data acquisition, data mining, and online mapping tools and services, end users still lack practical tools to help them manage and transform this data into actionable knowledge of changes in forest ecosystems that can be used for decision making and policy planning purposes. We have developed innovations in a number of technical areas with the goal of providing actionable knowledge to end users: (i) identification of changes in global forest cover, (ii) characterization of those changes, (iii) discovery of relationships between the number, magnitude, and type of these changes with natural and anthropogenic variables, and (iv) a web-based platform that supports interactive visualization of disturbances and relationships. The focus of this abstract is on the interactive web-based platform. This key component of the project is a graphical user interface built on the Flash framework. The viewer is a groundbreaking, multi-purpose application used for everything from algorithm refinement and data analysis for the team to a demonstration

  19. Global warming triggers the loss of a key Arctic refugium

    PubMed Central

    Rühland, K. M.; Paterson, A. M.; Keller, W.; Michelutti, N.; Smol, J. P.

    2013-01-01

    We document the rapid transformation of one of the Earth's last remaining Arctic refugia, a change that is being driven by global warming. In stark contrast to the amplified warming observed throughout much of the Arctic, the Hudson Bay Lowlands (HBL) of subarctic Canada has maintained cool temperatures, largely due to the counteracting effects of persistent sea ice. However, since the mid-1990s, climate of the HBL has passed a tipping point, the pace and magnitude of which is exceptional even by Arctic standards, exceeding the range of regional long-term variability. Using high-resolution, palaeolimnological records of algal remains in dated lake sediment cores, we report that, within this short period of intense warming, striking biological changes have occurred in the region's freshwater ecosystems. The delayed and intense warming in this remote region provides a natural observatory for testing ecosystem resilience under a rapidly changing climate, in the absence of direct anthropogenic influences. The environmental repercussions of this climate change are of global significance, influencing the huge store of carbon in the region's extensive peatlands, the world's southern-most polar bear population that depends upon Hudson Bay sea ice and permafrost for survival, and native communities who rely on this landscape for sustenance. PMID:24107529

  20. Global warming triggers the loss of a key Arctic refugium.

    PubMed

    Rühland, K M; Paterson, A M; Keller, W; Michelutti, N; Smol, J P

    2013-12-07

    We document the rapid transformation of one of the Earth's last remaining Arctic refugia, a change that is being driven by global warming. In stark contrast to the amplified warming observed throughout much of the Arctic, the Hudson Bay Lowlands (HBL) of subarctic Canada has maintained cool temperatures, largely due to the counteracting effects of persistent sea ice. However, since the mid-1990s, climate of the HBL has passed a tipping point, the pace and magnitude of which is exceptional even by Arctic standards, exceeding the range of regional long-term variability. Using high-resolution, palaeolimnological records of algal remains in dated lake sediment cores, we report that, within this short period of intense warming, striking biological changes have occurred in the region's freshwater ecosystems. The delayed and intense warming in this remote region provides a natural observatory for testing ecosystem resilience under a rapidly changing climate, in the absence of direct anthropogenic influences. The environmental repercussions of this climate change are of global significance, influencing the huge store of carbon in the region's extensive peatlands, the world's southern-most polar bear population that depends upon Hudson Bay sea ice and permafrost for survival, and native communities who rely on this landscape for sustenance.

  1. Global change modeling for Northern Eurasia: a review and strategies to move forward

    NASA Astrophysics Data System (ADS)

    Monier, E.; Kicklighter, D. W.; Sokolov, A. P.; Zhuang, Q.; Sokolik, I. N.; Lawford, R. G.; Kappas, M.; Paltsev, S.; Groisman, P. Y.

    2017-12-01

    Northern Eurasia is made up of a complex and diverse set of physical, ecological, climatic and human systems, which provide important ecosystem services including the storage of substantial stocks of carbon in its terrestrial ecosystems. At the same time, the region has experienced dramatic climate change, natural disturbances and changes in land management practices over the past century. For these reasons, Northern Eurasia is both a critical region to understand and a complex system with substantial challenges for the modeling community. This review is designed to highlight the state of past and ongoing efforts of the research community to understand and model these environmental, socioeconomic, and climatic changes. We further aim to provide perspectives on the future direction of global change modeling to improve our understanding of the role of Northern Eurasia in the coupled human-Earth system. Modeling efforts have shown that environmental and socioeconomic changes in Northern Eurasia can have major impacts on biodiversity, ecosystems services, environmental sustainability, and the carbon cycle of the region, and beyond. These impacts have the potential to feedback onto and alter the global Earth system. We find that past and ongoing studies have largely focused on specific components of Earth system dynamics and have not systematically examined their feedbacks to the global Earth system and to society. We identify the crucial role of Earth system models in advancing our understanding of feedbacks within the region and with the global system. We further argue for the need for integrated assessment models (IAMs), a suite of models that couple human activity models to Earth system models, which are key to address many emerging issues that require a representation of the coupled human-Earth system.

  2. A global assessment of market accessibility and market influence for global environmental change studies

    NASA Astrophysics Data System (ADS)

    Verburg, Peter H.; Ellis, Erle C.; Letourneau, Aurelien

    2011-07-01

    Markets influence the global patterns of urbanization, deforestation, agriculture and other land use systems. Yet market influence is rarely incorporated into spatially explicit global studies of environmental change, largely because consistent global data are lacking below the national level. Here we present the first high spatial resolution gridded data depicting market influence globally. The data jointly represent variations in both market strength and accessibility based on three market influence indices derived from an index of accessibility to market locations and national level gross domestic product (purchasing power parity). These indices show strong correspondence with human population density while also revealing several distinct and useful relationships with other global environmental patterns. As market influence grows, the need for high resolution global data on market influence and its dynamics will become increasingly important to understanding and forecasting global environmental change.

  3. Future global mortality from changes in air pollution attributable to climate change

    DOE PAGES

    Silva, Raquel A.; West, J. Jason; Lamarque, Jean-François; ...

    2017-07-31

    Ground-level ozone and fine particulate matter (PM2.5) are associated with premature human mortality(1-4); their future concentrations depend on changes in emissions, which dominate the near-term(5), and on climate change(6,7). Previous global studies of the air-quality-related health effects of future climate change(8,9) used single atmospheric models. But, in related studies, mortality results differ among models(10-12). Here we use an ensemble of global chemistry-climate models(13) to show that premature mortality from changes in air pollution attributable to climate change, under the high greenhouse gas scenario RCP8.5 (ref. 14), is probably positive. We estimate 3,340 (-30,300 to 47,100) ozone-related deaths in 2030, relativemore » to 2000 climate, and 43,600 (-195,000 to 237,000) in 2100 (14% of the increase in global ozone-related mortality). For PM2.5, we estimate 55,600 (-34,300 to 164,000) deaths in 2030 and 215,000 (-76,100 to 595,000) in 2100 (countering by 16% the global decrease in PM2.5-related mortality). Premature mortality attributable to climate change is estimated to be positive in all regions except Africa, and is greatest in India and East Asia. Finally, most individual models yield increased mortality from climate change, but some yield decreases, suggesting caution in interpreting results from a single model. Climate change mitigation is likely to reduce air-pollution-related mortality.« less

  4. Future Global Mortality from Changes in Air Pollution Attributable to Climate Change

    NASA Technical Reports Server (NTRS)

    Silva, Raquel A.; West, J. Jason; Lamarque, Jean-Francois; Shindell, Drew T.; Collins, William J.; Faluvegi, Greg; Folberth, Gerd A.; Horowitz, Larry W.; Nagashima, Tatsuya; Naik, Vaishali; hide

    2017-01-01

    Ground-level ozone and fine particulate matter (PM (sub 2.5)) are associated with premature human mortality; their future concentrations depend on changes in emissions, which dominate the near-term, and on climate change. Previous global studies of the air-quality-related health effects of future climate change used single atmospheric models. However, in related studies, mortality results differ among models. Here we use an ensemble of global chemistry-climate models to show that premature mortality from changes in air pollution attributable to climate change, under the high greenhouse gas scenario RCP (Representative Concentration Pathway) 8.5, is probably positive. We estimate 3,340 (30,300 to 47,100) ozone-related deaths in 2030, relative to 2000 climate, and 43,600 (195,000 to 237,000) in 2100 (14 percent of the increase in global ozone-related mortality). For PM (sub 2.5), we estimate 55,600 (34,300 to 164,000) deaths in 2030 and 215,000 (76,100 to 595,000) in 2100 (countering by 16 percent the global decrease in PM (sub 2.5)-related mortality). Premature mortality attributable to climate change is estimated to be positive in all regions except Africa, and is greatest in India and East Asia. Most individual models yield increased mortality from climate change, but some yield decreases, suggesting caution in interpreting results from a single model. Climate change mitigation is likely to reduce air-pollution-related mortality.

  5. Future global mortality from changes in air pollution attributable to climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Raquel A.; West, J. Jason; Lamarque, Jean-François

    Ground-level ozone and fine particulate matter (PM2.5) are associated with premature human mortality(1-4); their future concentrations depend on changes in emissions, which dominate the near-term(5), and on climate change(6,7). Previous global studies of the air-quality-related health effects of future climate change(8,9) used single atmospheric models. But, in related studies, mortality results differ among models(10-12). Here we use an ensemble of global chemistry-climate models(13) to show that premature mortality from changes in air pollution attributable to climate change, under the high greenhouse gas scenario RCP8.5 (ref. 14), is probably positive. We estimate 3,340 (-30,300 to 47,100) ozone-related deaths in 2030, relativemore » to 2000 climate, and 43,600 (-195,000 to 237,000) in 2100 (14% of the increase in global ozone-related mortality). For PM2.5, we estimate 55,600 (-34,300 to 164,000) deaths in 2030 and 215,000 (-76,100 to 595,000) in 2100 (countering by 16% the global decrease in PM2.5-related mortality). Premature mortality attributable to climate change is estimated to be positive in all regions except Africa, and is greatest in India and East Asia. Finally, most individual models yield increased mortality from climate change, but some yield decreases, suggesting caution in interpreting results from a single model. Climate change mitigation is likely to reduce air-pollution-related mortality.« less

  6. U.S. Global Change Research Program

    MedlinePlus

    ... Announcing... Read more The Deepening Story of How Climate Change Threatens Human Health Read more Celebrating the 25th Anniversary of the U.S. Global Change Research... Read more Nomination Period Open for ... more Connecting America’s Communities with Actionable Climate ...

  7. Ozone, Climate, and Global Atmospheric Change

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1992-01-01

    The delicate balance of the gases that make up our atmosphere allows life to exist on Earth. Ozone depletion and global warming are related to changes in the concentrations of these gases. To solve global atmospheric problems, we need to understand the composition and chemistry of the Earth's atmosphere and the impact of human activities on them.

  8. Global change technology architecture trade study

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard (Editor); Hypes, Warren D. (Editor); Wright, Robert L. (Editor)

    1991-01-01

    Described here is an architecture trade study conducted by the Langley Research Center to develop a representative mix of advanced space science instrumentation, spacecraft, and mission orbits to assist in the technology selection processes. The analyses concentrated on the highest priority classes of global change measurements which are the global climate changes. Issues addressed in the tradeoffs includes assessments of the economics of scale of large platforms with multiple instruments relative to smaller spacecraft; the influences of current and possible future launch vehicles on payload sizes, and on-orbit assembly decisions; and the respective roles of low-Earth versus geostationary Earth orbiting systems.

  9. Global conservation outcomes depend on marine protected areas with five key features.

    PubMed

    Edgar, Graham J; Stuart-Smith, Rick D; Willis, Trevor J; Kininmonth, Stuart; Baker, Susan C; Banks, Stuart; Barrett, Neville S; Becerro, Mikel A; Bernard, Anthony T F; Berkhout, Just; Buxton, Colin D; Campbell, Stuart J; Cooper, Antonia T; Davey, Marlene; Edgar, Sophie C; Försterra, Günter; Galván, David E; Irigoyen, Alejo J; Kushner, David J; Moura, Rodrigo; Parnell, P Ed; Shears, Nick T; Soler, German; Strain, Elisabeth M A; Thomson, Russell J

    2014-02-13

    In line with global targets agreed under the Convention on Biological Diversity, the number of marine protected areas (MPAs) is increasing rapidly, yet socio-economic benefits generated by MPAs remain difficult to predict and under debate. MPAs often fail to reach their full potential as a consequence of factors such as illegal harvesting, regulations that legally allow detrimental harvesting, or emigration of animals outside boundaries because of continuous habitat or inadequate size of reserve. Here we show that the conservation benefits of 87 MPAs investigated worldwide increase exponentially with the accumulation of five key features: no take, well enforced, old (>10 years), large (>100 km(2)), and isolated by deep water or sand. Using effective MPAs with four or five key features as an unfished standard, comparisons of underwater survey data from effective MPAs with predictions based on survey data from fished coasts indicate that total fish biomass has declined about two-thirds from historical baselines as a result of fishing. Effective MPAs also had twice as many large (>250 mm total length) fish species per transect, five times more large fish biomass, and fourteen times more shark biomass than fished areas. Most (59%) of the MPAs studied had only one or two key features and were not ecologically distinguishable from fished sites. Our results show that global conservation targets based on area alone will not optimize protection of marine biodiversity. More emphasis is needed on better MPA design, durable management and compliance to ensure that MPAs achieve their desired conservation value.

  10. Global conservation outcomes depend on marine protected areas with five key features

    NASA Astrophysics Data System (ADS)

    Edgar, Graham J.; Stuart-Smith, Rick D.; Willis, Trevor J.; Kininmonth, Stuart; Baker, Susan C.; Banks, Stuart; Barrett, Neville S.; Becerro, Mikel A.; Bernard, Anthony T. F.; Berkhout, Just; Buxton, Colin D.; Campbell, Stuart J.; Cooper, Antonia T.; Davey, Marlene; Edgar, Sophie C.; Försterra, Günter; Galván, David E.; Irigoyen, Alejo J.; Kushner, David J.; Moura, Rodrigo; Parnell, P. Ed; Shears, Nick T.; Soler, German; Strain, Elisabeth M. A.; Thomson, Russell J.

    2014-02-01

    In line with global targets agreed under the Convention on Biological Diversity, the number of marine protected areas (MPAs) is increasing rapidly, yet socio-economic benefits generated by MPAs remain difficult to predict and under debate. MPAs often fail to reach their full potential as a consequence of factors such as illegal harvesting, regulations that legally allow detrimental harvesting, or emigration of animals outside boundaries because of continuous habitat or inadequate size of reserve. Here we show that the conservation benefits of 87 MPAs investigated worldwide increase exponentially with the accumulation of five key features: no take, well enforced, old (>10 years), large (>100km2), and isolated by deep water or sand. Using effective MPAs with four or five key features as an unfished standard, comparisons of underwater survey data from effective MPAs with predictions based on survey data from fished coasts indicate that total fish biomass has declined about two-thirds from historical baselines as a result of fishing. Effective MPAs also had twice as many large (>250mm total length) fish species per transect, five times more large fish biomass, and fourteen times more shark biomass than fished areas. Most (59%) of the MPAs studied had only one or two key features and were not ecologically distinguishable from fished sites. Our results show that global conservation targets based on area alone will not optimize protection of marine biodiversity. More emphasis is needed on better MPA design, durable management and compliance to ensure that MPAs achieve their desired conservation value.

  11. Canadian SAR remote sensing for the Terrestrial Wetland Global Change Research Network (TWGCRN)

    USGS Publications Warehouse

    Kaya, Shannon; Brisco, Brian; Cull, Andrew; Gallant, Alisa L.; Sadinski, Walter J.; Thompson, Dean

    2010-01-01

    The Canada Centre for Remote Sensing (CCRS) has more than 30 years of experience investigating the use of SAR remote sensing for many applications related to terrestrial water resources. Recently, CCRS scientists began contributing to the Terrestrial Wetland Global Change Research Network (TWGCRN), a bi-national research network dedicated to assessing impacts of global change on interconnected wetland-upland landscapes across a vital portion of North America. CCRS scientists are applying SAR remote sensing to characterize wetland components of these landscapes in three ways. First, they are using a comprehensive set of RADARSAT-2 SAR data collected during April to September 2009 to extract multi-temporal surface water information for key TWGCRN study landscapes in North America. Second, they are analyzing polarimetric RADARSAT-2 data to determine areas where double-bounce represents the primary scattering mechanism and is indicative of flooded vegetation in these landscapes. Third, they are testing advanced interferometric SAR techniques to estimate water levels with RADARSAT-2 Fine Quad polarimetric image pairs. The combined information from these three SAR analysis activities will provide TWGCRN scientists with an integrated view and monitoring capability for these dynamic wetland-upland landscapes. These data are being used in conjunction with other remote sensing and field data to study interactions between landscape and animal (birds and amphibians) responses to climate/global change.

  12. Understanding Global Change: Tools for exploring Earth processes and biotic change through time

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; White, L. D.; Berbeco, M.

    2014-12-01

    Teaching global change is one of the great pedagogical challenges of our day because real understanding entails integrating a variety of concepts from different scientific subject areas, including chemistry, physics, and biology, with a variety of causes and impacts in the past, present, and future. With the adoption of the Next Generation Science Standards, which emphasize climate change and other human impacts on natural systems, there has never been a better time to provide instructional support to educators on these topics. In response to this clear need, the University of California Museum of Paleontology, in collaboration with the National Center for Science Education, developed a new web resource for teachers and students titled "Understanding Global Change" (UGC) that introduces the drivers and impacts of global change. This website clarifies the connections among deep time, modern Earth system processes, and anthropogenic influences, and provides K-16 instructors with a wide range of easy-to-use tools, strategies, and lesson plans for communicating these important concepts regarding global change and the basic Earth systems processes. In summer 2014, the UGC website was field-tested during a workshop with 25 K-12 teachers and science educators. Feedback from participants helped the UGC team develop and identify pedagogically sound lesson plans and instructional tools on global change. These resources are accessible through UGC's searchable database, are aligned with NGSS and Common Core, and are categorized by grade level, subject, and level of inquiry-based instruction (confirmation, structured, guided, open). Providing a range of content and tools at levels appropriate for teachers is essential because our initial needs assessment found that educators often feel that they lack the content knowledge and expertise to address complex, but relevant global change issues, such as ocean acidification and deforestation. Ongoing needs assessments and surveys of

  13. Large space-based systems for dealing with global environment change

    NASA Technical Reports Server (NTRS)

    Jenkins, Lyle M.

    1992-01-01

    Increased concern over the effects of global climate change and depletion of the ozone layer has resulted in support for the Global Change Research Program and the Mission to Planet Earth. Research to understand Earth system processes is critical, but it falls short of providing ways of mitigating the effects of change. Geoengineering options and alternatives to interactively manage change need to be developed. Space-based concepts for dealing with changes to the environment should be considered in addition to Earth-based actions. 'Mission for Planet Earth' describes those space-based geoengineering solutions that may combine with an international global change program to stabilize the Global environment. Large space systems that may be needed for this response challenge guidance and control engineering and technology. Definition, analysis, demonstration, and preparation of geoengineering technology will provide a basis for policy response if global change consequences are severe.

  14. Northward shift of the agricultural climate zone under 21st-century global climate change.

    PubMed

    King, Myron; Altdorff, Daniel; Li, Pengfei; Galagedara, Lakshman; Holden, Joseph; Unc, Adrian

    2018-05-21

    As agricultural regions are threatened by climate change, warming of high latitude regions and increasing food demands may lead to northward expansion of global agriculture. While socio-economic demands and edaphic conditions may govern the expansion, climate is a key limiting factor. Extant literature on future crop projections considers established agricultural regions and is mainly temperature based. We employed growing degree days (GDD), as the physiological link between temperature and crop growth, to assess the global northward shift of agricultural climate zones under 21 st -century climate change. Using ClimGen scenarios for seven global climate models (GCMs), based on greenhouse gas (GHG) emissions and transient GHGs, we delineated the future extent of GDD areas, feasible for small cereals, and assessed the projected changes in rainfall and potential evapotranspiration. By 2099, roughly 76% (55% to 89%) of the boreal region might reach crop feasible GDD conditions, compared to the current 32%. The leading edge of the feasible GDD will shift northwards up to 1200 km by 2099 while the altitudinal shift remains marginal. However, most of the newly gained areas are associated with highly seasonal and monthly variations in climatic water balances, a critical component of any future land-use and management decisions.

  15. Effects of three global change drivers on terrestrial C:N:P stoichiometry: a global synthesis.

    PubMed

    Yue, Kai; Fornara, Dario A; Yang, Wanqin; Peng, Yan; Li, Zhijie; Wu, Fuzhong; Peng, Changhui

    2017-06-01

    Over the last few decades, there has been an increasing number of controlled-manipulative experiments to investigate how plants and soils might respond to global change. These experiments typically examined the effects of each of three global change drivers [i.e., nitrogen (N) deposition, warming, and elevated CO 2 ] on primary productivity and on the biogeochemistry of carbon (C), N, and phosphorus (P) across different terrestrial ecosystems. Here, we capitalize on this large amount of information by performing a comprehensive meta-analysis (>2000 case studies worldwide) to address how C:N:P stoichiometry of plants, soils, and soil microbial biomass might respond to individual vs. combined effects of the three global change drivers. Our results show that (i) individual effects of N addition and elevated CO 2 on C:N:P stoichiometry are stronger than warming, (ii) combined effects of pairs of global change drivers (e.g., N addition + elevated CO 2 , warming + elevated CO 2 ) on C:N:P stoichiometry were generally weaker than the individual effects of each of these drivers, (iii) additive interactions (i.e., when combined effects are equal to or not significantly different from the sum of individual effects) were more common than synergistic or antagonistic interactions, (iv) C:N:P stoichiometry of soil and soil microbial biomass shows high homeostasis under global change manipulations, and (v) C:N:P responses to global change are strongly affected by ecosystem type, local climate, and experimental conditions. Our study is one of the first to compare individual vs. combined effects of the three global change drivers on terrestrial C:N:P ratios using a large set of data. To further improve our understanding of how ecosystems might respond to future global change, long-term ecosystem-scale studies testing multifactor effects on plants and soils are urgently required across different world regions. © 2017 John Wiley & Sons Ltd.

  16. Global, long-term Earth Science Data Records of forest cover, change, and fragmentation from Landsat: the Global Forest Cover Change Project

    NASA Astrophysics Data System (ADS)

    Sexton, J.; Huang, C.; Channan, S.; Feng, M.; Song, X.; Kim, D.; Song, D.; Vermote, E.; Masek, J.; Townshend, J. R.

    2013-12-01

    Monitoring, analysis, and management of forests require measurements of forest cover that are both spatio-temporally consistent and resolved globally at sub-hectare resolution. The Global Forest Cover Change project, a cooperation between the University of Maryland Global Land Cover Facility and NASA Goddard Space Flight Center, is providing the first long-term, sub-hectare, globally consistent data records of forest cover, change, and fragmentation in circa-1975, -1990, -2000, and -2005 epochs. These data are derived from the Global Land Survey collection of Landsat images in the respective epochs, atmospherically corrected to surface reflectance in 1990, 2000, and 2005 using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) implementation of the 6S radiative transfer algorithm, with ancillary information from MODIS Land products, ASTER Global Digital Elevation Model (GDEM), and climatological data layers. Forest cover and change were estimated by a novel continuous-field approach, which produced for the 2000 and 2005 epochs the world's first global, 30-m resolution database of tree cover. Surface reflectance estimates were validated against coincident MODIS measurements, the results of which have been corroborated by subsequent, independent validations against measurements from AERONET sites. Uncertainties in tree- and forest-cover values were estimated in each pixel as a compounding of within-sample uncertainty and accuracy relative to a sample of independent measurements from small-footprint lidar. Accuracy of forest cover and change estimates was further validated relative to expert-interpreted high-resolution imagery, from which unbiased estimates of forest cover and change have been produced at national and eco-regional scales. These first-of-kind Earth Science Data Records--surface reflectance in 1990, 2000, and 2005 and forest cover, change, and fragmentation in and between 1975, 1990, 2000, and 2005--are hosted at native, Landsat

  17. Global Responses to Potential Climate Change: A Simulation.

    ERIC Educational Resources Information Center

    Williams, Mary Louise; Mowry, George

    This interdisciplinary five-day unit provides students with an understanding of the issues in the debate on global climate change. Introductory lessons enhance understanding of the "greenhouse gases" and their sources with possible global effects of climate change. Students then roleplay negotiators from 10 nations in a simulation of the…

  18. GLOBAL CHANGE RESEARCH NEWS #10: MULTIAGENCY, MULTINATIONAL GLOBAL CHANGE RESEARCH EFFORT IN THE UPPER SAN PEDRO BASIN

    EPA Science Inventory

    This edition reports on a multiagency, multinational global-change research effort that seeks to evaluate the consequences of natural and human-induced changes in semi-arid environments. The Semi-Arid Land-Surface-Atmosphere Program ("SALSA") is focused on the environmentally sen...

  19. Interpreting change from patient reported outcome (PRO) endpoints: patient global ratings of concept versus patient global ratings of change, a case study among osteoporosis patients.

    PubMed

    Nixon, Annabel; Doll, Helen; Kerr, Cicely; Burge, Russel; Naegeli, April N

    2016-02-19

    Regulatory guidance recommends anchor-based methods for interpretation of treatment effects measured by PRO endpoints. Methodological pros and cons of patient global ratings of change vs. patient global ratings of concept have been discussed but empirical evidence in support of either approach is lacking. This study evaluated the performance of patient global ratings of change and patient global ratings of concept for interpreting patient stability and patient improvement. Patient global ratings of change and patient global ratings of concept were included in a psychometric validation study of an osteoporosis-targeted PRO instrument (the OPAQ-PF) to assess its ability to detect change and to derive responder definitions. 144 female osteoporosis patients with (n = 37) or without (n = 107) a recent (within 6 weeks) fragility fracture completed the OPAQ-PF and global items at baseline, 2 weeks (no recent fracture), and 12 weeks (recent fracture) post-baseline. Results differed between the two methods. Recent fracture patients reported more improvement while patients without recent fracture reported more stability on ratings of change than ratings of concept. However, correlations with OPAQ-PF score change were stronger for ratings of concept than ratings of change (both groups). Effect sizes for OPAQ-PF score change increased consistently with level of change in ratings of concept but inconsistently with ratings of change, with the mean AUC for prediction of a one-point change being 0.72 vs. 0.56. This study provides initial empirical support for methodological and regulatory recommendations to use patient global ratings of concept rather than ratings of change when interpreting change captured by PRO instruments in studies evaluating treatment effects. These findings warrant being confirmed in a purpose-designed larger scale analysis.

  20. Climate change and health: global to local influences on disease risk.

    PubMed

    Patz, J A; Olson, S H

    2006-01-01

    The World Health Organization has concluded that the climatic changes that have occurred since the mid 1970s could already be causing annually over 150,000 deaths and five million disability-adjusted life-years (DALY), mainly in developing countries. The less developed countries are, ironically, those least responsible for causing global warming. Many health outcomes and diseases are sensitive to climate, including: heat-related mortality or morbidity; air pollution-related illnesses; infectious diseases, particularly those transmitted, indirectly, via water or by insect or rodent vectors; and refugee health issues linked to forced population migration. Yet, changing landscapes can significantly affect local weather more acutely than long-term climate change. Land-cover change can influence micro-climatic conditions, including temperature, evapo-transpiration and surface run-off, that are key determinants in the emergence of many infectious diseases. To improve risk assessment and risk management of these synergistic processes (climate and land-use change), more collaborative efforts in research, training and policy-decision support, across the fields of health, environment, sociology and economics, are required.

  1. Global Education and Local School Change.

    ERIC Educational Resources Information Center

    Otero, George

    1983-01-01

    Change strategies that focus on improving local schools' abilities to manage change are described, and examples of how the strategies can be applied to help the schools prepare students for life in a global society are furnished. Specific strategies are based on the work of Las Palomas de Taos, an agency promoting change in the Southwest. (PP)

  2. Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping

    PubMed Central

    Zhao, Mengxin; Xue, Kai; Wang, Feng; Liu, Shanshan; Bai, Shijie; Sun, Bo; Zhou, Jizhong; Yang, Yunfeng

    2014-01-01

    Despite microbes' key roles in driving biogeochemical cycles, the mechanism of microbe-mediated feedbacks to global changes remains elusive. Recently, soil transplant has been successfully established as a proxy to simulate climate changes, as the current trend of global warming coherently causes range shifts toward higher latitudes. Four years after southward soil transplant over large transects in China, we found that microbial functional diversity was increased, in addition to concurrent changes in microbial biomass, soil nutrient content and functional processes involved in the nitrogen cycle. However, soil transplant effects could be overridden by maize cropping, which was attributed to a negative interaction. Strikingly, abundances of nitrogen and carbon cycle genes were increased by these field experiments simulating global change, coinciding with higher soil nitrification potential and carbon dioxide (CO2) efflux. Further investigation revealed strong correlations between carbon cycle genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycle genes and nitrification. These findings suggest that changes of soil carbon and nitrogen cycles by soil transplant and cropping were predictable by measuring microbial functional potentials, contributing to a better mechanistic understanding of these soil functional processes and suggesting a potential to incorporate microbial communities in greenhouse gas emission modeling. PMID:24694714

  3. Comparison and Evaluation of Global Scale Studies of Vulnerability and Risks to Climate Change

    NASA Astrophysics Data System (ADS)

    Muccione, Veruska; Allen, Simon K.; Huggel, Christian; Birkmann, Joern

    2015-04-01

    Understanding the present and future distribution of different climate change impacts and vulnerability to climate change is a central subject in the context of climate justice and international climate policy. Commonly, it is claimed that poor countries that contributed little to anthropogenic climate change are those most affected and most vulnerable to climate change. Such statements are backed by a number of global-scale vulnerability studies, which identified poor countries as most vulnerable. However, some studies have challenged this view, likewise highlighting the high vulnerability of richer countries. Overall, no consensus has been reached so far about which concept of vulnerability should be applied and what type of indicators should be considered. Furthermore, there is little agreement which specific countries are most vulnerable. This is a major concern in view of the need to inform international climate policy, all the more if such assessments should contribute to allocate climate adaptation funds as was invoked at some instances. We argue that next to the analysis of who is most vulnerable, it is also important to better understand and compare different vulnerability profiles assessed in present global studies. We perform a systematic literature review of global vulnerability assessments with the scope to highlight vulnerability distribution patterns. We then compare these distributions with global risk distributions in line with revised and adopted concepts by most recent IPCC reports. It emerges that improved differentiation of key drivers of risk and the understanding of different vulnerability profiles are important contributions, which can inform future adaptation policies at the regional and national level. This can change the perspective on, and basis for distributional issues in view of climate burden share, and therefore can have implications for UNFCCC financing instruments (e.g. Green Climate Fund). However, in order to better compare

  4. GLOBAL CHANGE RESEARCH NEWS #24: PUBLICATION OF FY2001 EDITION OF "OUR CHANGING PLANET"

    EPA Science Inventory

    The EPA Global Change Research Program is pleased to inform you of the publication of the new Our Changing Planet: The FY2001 U.S. Global Change Research Program. This annual report to the Congress was prepared under the auspices of the President's National Science and Technolog...

  5. Global Climate Change. Selected Annotated Bibliography. Second Edition.

    ERIC Educational Resources Information Center

    Jones, Douglas E.

    This annotated bibliography on global climate change contains 27 articles designed to expand the breadth and depth of information presented in the Global Change Information Packet. Most articles were chosen from journals likely to be available in most medium-sized public or college libraries. The articles cover a variety of topics related to…

  6. Balancing Change and Tradition in Global Education Reform

    ERIC Educational Resources Information Center

    Rotberg, Iris C., Ed.

    2004-01-01

    In Balancing Change and Tradition in Global Education Reform, Rotberg brings together examples of current education reforms in sixteen countries, written by "insiders". This book goes beyond myths and stereotypes and describes the difficult trade-offs countries make as they attempt to implement reforms in the context of societal and global change.…

  7. WaterWorld, a spatial hydrological model applied at scales from local to global: key challenges to local application

    NASA Astrophysics Data System (ADS)

    Burke, Sophia; Mulligan, Mark

    2017-04-01

    WaterWorld is a widely used spatial hydrological policy support system. The last user census indicates regular use by 1029 institutions across 141 countries. A key feature of WaterWorld since 2001 is that it comes pre-loaded with all of the required data for simulation anywhere in the world at a 1km or 1 ha resolution. This means that it can be easily used, without specialist technical ability, to examine baseline hydrology and the impacts of scenarios for change or management interventions to support policy formulation, hence its labelling as a policy support system. WaterWorld is parameterised by an extensive global gridded database of more than 600 variables, developed from many sources, since 1998, the so-called simTerra database. All of these data are available globally at 1km resolution and some variables (terrain, land cover, urban areas, water bodies) are available globally at 1ha resolution. If users have access to better data than is pre-loaded, they can upload their own data. WaterWorld is generally applied at the national or basin scale at 1km resolution, or locally (for areas of <10,000km2) at 1ha resolution, though continental (1km resolution) and global (10km resolution) applications are possible so it is a model with local to global applications. WaterWorld requires some 140 maps to run including monthly climate data, land cover and use, terrain, population, water bodies and more. Whilst publically-available terrain and land cover data are now well developed for local scale application, climate and land use data remain a challenge, with most global products being available at 1km or 10km resolution or worse, which is rather coarse for local application. As part of the EartH2Observe project we have used WFDEI (WATCH Forcing Data methodology applied to ERA-Interim data) at 1km resolution to provide an alternative input to WaterWorld's preloaded climate data. Here we examine the impacts of that on key hydrological outputs: water balance, water quality

  8. Science priorities for the human dimensions of global change

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The topics covered include the following: defining research needs; understanding land use change; improving policy analysis -- research on the decision-making process; designing policy instruments and institutions to address energy-related environmental problems; assessing impacts, vulnerability, and adaptation to global changes; and understanding population dynamics and global change.

  9. Impacts of climate change on the global forest sector

    USGS Publications Warehouse

    Perez-Garcia, J.; Joyce, L.A.; McGuire, A.D.; Xiao, X.

    2002-01-01

    The path and magnitude of future anthropogenic emissions of carbon dioxide will likely influence changes in climate that may impact the global forest sector. These responses in the global forest sector may have implications for international efforts to stabilize the atmospheric concentration of carbon dioxide. This study takes a step toward including the role of global forest sector in integrated assessments of the global carbon cycle by linking global models of climate dynamics, ecosystem processes and forest economics to assess the potential responses of the global forest sector to different levels of greenhouse gas emissions. We utilize three climate scenarios and two economic scenarios to represent a range of greenhouse gas emissions and economic behavior. At the end of the analysis period (2040), the potential responses in regional forest growing stock simulated by the global ecosystem model range from decreases and increases for the low emissions climate scenario to increases in all regions for the high emissions climate scenario. The changes in vegetation are used to adjust timber supply in the softwood and hardwood sectors of the economic model. In general, the global changes in welfare are positive, but small across all scenarios. At the regional level, the changes in welfare can be large and either negative or positive. Markets and trade in forest products play important roles in whether a region realizes any gains associated with climate change. In general, regions with the lowest wood fiber production cost are able to expand harvests. Trade in forest products leads to lower prices elsewhere. The low-cost regions expand market shares and force higher-cost regions to decrease their harvests. Trade produces different economic gains and losses across the globe even though, globally, economic welfare increases. The results of this study indicate that assumptions within alternative climate scenarios and about trade in forest products are important factors

  10. Global trade, public health, and health services: stakeholders' constructions of the key issues.

    PubMed

    Waitzkin, Howard; Jasso-Aguilar, Rebeca; Landwehr, Angela; Mountain, Carolyn

    2005-09-01

    Focusing mainly on the United States and Latin America, we aimed to identify the constructions of social reality held by the major stakeholders participating in policy debates about global trade, public health, and health services. In a multi-method, qualitative design, we used three sources of data: research and archival literature, 1980-2004; interviews with key informants who represented major organizations participating in these debates, 2002-2004; and organizational reports, 1980-2004. We targeted several types of organizations: government agencies, international financial institutions (IFIs) and trade organizations, international health organizations, multinational corporations, and advocacy groups. Many governments in Latin America define health as a right and health services as a public good. Thus, the government bears responsibility for that right. In contrast, the US government's philosophy of free trade and promoting a market economy assumes that by expanding the private sector, improved economic conditions will improve overall health with a minimum government provision of health care. US government agencies also view promotion of global health as a means to serve US interests. IFIs have emphasized reforms that include reduction and privatization of public sector services. International health organizations have tended to adopt the policy perspectives of IFIs and trade organizations. Advocacy groups have emphasized the deleterious effects of international trade agreements on public health and health services. Organizational stakeholders hold widely divergent constructions of reality regarding trade, public health, and health services. Social constructions concerning trade and health reflect broad ideologies concerning the impacts of market processes. Such constructions manifest features of "creed," regarding the role of the market in advancing human purposes and meeting human needs. Differences in constructions of trade and health constrain policies to

  11. Biomass burning a driver for global change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, J.S.; Cofer, W.R. III; Cahoon, D.R. Jr.

    1995-03-01

    Recent research has identified another biospheric process that has instantaneous and longer term effects on the production of atmospheric gases: biomass burning. Biomass burning includes the burning of the world`s vegetation-forests, savannas. and agricultural lands, to clear the land and change its use. Only in the past decade have researchers realized the important contributions of biomass burning to the global budgets of many radiatively and chemically active gases - carbon dioxide, methane, nitric oxide, tropospheric ozone, methyl chloride - and elemental carbon particulates. International field experiments and satellite data are yielding a clearer understanding of this important global source ofmore » atmospheric gases and particulates. It is seen that in addition to being a significant instantaneous global source of atmospheric gases and particulates, burning enhances the biogenic emissions of nitric oxide and nitrous oxide from the world`s soils. Biomass burning affects the reflectivity and emissivity of the Earth`s surface as well as the hydrological cycle by changing rates of land evaporation and water runoff. For these reasons, it appears that biomass burning is a significant driver of global change. 20 refs., 4 figs., 2 tabs.« less

  12. Global meaning in people with stroke: Content and changes

    PubMed Central

    Littooij, Elsbeth; Dekker, Joost; Vloothuis, Judith; Leget, Carlo JW; Widdershoven, Guy AM

    2016-01-01

    After a traumatic event like a stroke, people need to find meaning and control again. This study enhances knowledge on one of the driving principles behind meaning-making processes: global meaning. Global meaning refers to individuals’ general orienting systems, comprising fundamental beliefs and life goals. Little is known about global meaning in people with stroke and whether global meaning changes after stroke. In this qualitative study, five aspects of global meaning were found: core values, relationships, worldview, identity and inner posture. Continuity in all aspects was reported, but worldview, identity and inner posture were also subjected to change. PMID:28815054

  13. Global meaning in people with stroke: Content and changes.

    PubMed

    Littooij, Elsbeth; Dekker, Joost; Vloothuis, Judith; Leget, Carlo Jw; Widdershoven, Guy Am

    2016-07-01

    After a traumatic event like a stroke, people need to find meaning and control again. This study enhances knowledge on one of the driving principles behind meaning-making processes: global meaning. Global meaning refers to individuals' general orienting systems, comprising fundamental beliefs and life goals. Little is known about global meaning in people with stroke and whether global meaning changes after stroke. In this qualitative study, five aspects of global meaning were found: core values, relationships, worldview, identity and inner posture. Continuity in all aspects was reported, but worldview, identity and inner posture were also subjected to change.

  14. Global climate change and vector-borne diseases

    USGS Publications Warehouse

    Ginsberg, H.S.

    2002-01-01

    Global warming will have different effects on different diseases because of the complex and idiosynchratic interactions between vectors, hosts, and pathogens that influence transmission dynamics of each pathogen. Human activities, including urbanization, rapid global travel, and vector management, have profound effects on disease transmission that can operate on more rapid time scales than does global climate change. The general concern about global warming encouraging the spread of tropical diseases is legitimate, but the effects vary among diseases, and the ecological implications are difficult to predict.

  15. Mission to Planet Earth: A program to understand global environmental change

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A description of Mission to Planet Earth, a program to understand global environmental change, is presented. Topics discussed include: changes in the environment; global warming; ozone depletion; deforestation; and NASA's role in global change research.

  16. Adaptation, extinction and global change

    PubMed Central

    Bell, Graham; Collins, Sinéad

    2008-01-01

    We discuss three interlinked issues: the natural pace of environmental change and adaptation, the likelihood that a population will adapt to a potentially lethal change, and adaptation to elevated CO2, the prime mover of global change. Environmental variability is governed by power laws showing that ln difference in conditions increases with ln elapsed time at a rate of 0.3–0.4. This leads to strong but fluctuating selection in many natural populations. The effect of repeated adverse change on mean fitness depends on its frequency rather than its severity. If the depression of mean fitness leads to population decline, however, severe stress may cause extinction. Evolutionary rescue from extinction requires abundant genetic variation or a high mutation supply rate, and thus a large population size. Although natural populations can sustain quite intense selection, they often fail to adapt to anthropogenic stresses such as pollution and acidification and instead become extinct. Experimental selection lines of algae show no specific adaptation to elevated CO2, but instead lose their carbon-concentrating mechanism through mutational degradation. This is likely to reduce the effectiveness of the oceanic carbon pump. Elevated CO2 is also likely to lead to changes in phytoplankton community composition, although it is not yet clear what these will be. We emphasize the importance of experimental evolution in understanding and predicting the biological response to global change. This will be one of the main tasks of evolutionary biologists in the coming decade. PMID:25567487

  17. Designing a global assessment of climate change on inland fishes and fisheries: knowns and needs

    USGS Publications Warehouse

    Paukert, Craig P.; Lynch, Abigail J.; Beard, T. Douglas; Chen, Yushun; Cooke, Steven J.; Cooperman, Michael S.; Cowx, Ian G.; Infante, Dana M.; Ibengwe, Lilian; Myers, Bonnie; Nguyen, Phu Hoa; Winfield, Ian J.

    2017-01-01

    To date, there are few comprehensive assessments of how climate change affects inland finfish, fisheries, and aquaculture at a global scale, but one is necessary to identify research needs and commonalities across regions and to help guide decision making and funding priorities. Broadly, the consequences of climate change on inland fishes will impact global food security, the livelihoods of people who depend on inland capture and recreational fisheries. However, understanding how climate change will affect inland fishes and fisheries has lagged behind marine assessments. Building from a North American inland fisheries assessment, we convened an expert panel from seven countries to provide a first-step to a framework for determining how to approach an assessment of how climate change may affect inland fishes, capture fisheries, and aquaculture globally. Starting with the small group helped frame the key questions (e.g., who is the audience? What is the best approach and spatial scale?). Data gaps identified by the group include: the tolerances of inland fisheries to changes in temperature, stream flows, salinity, and other environmental factors linked to climate change, and the adaptive capacity of fishes and fisheries to adjust to these changes. These questions are difficult to address, but long-term and large-scale datasets are becoming more readily available as a means to test hypotheses related to climate change. We hope this perspective will help researchers and decision makers identify research priorities and provide a framework to help sustain inland fish populations and fisheries for the diversity of users around the globe.

  18. Inadvertent Weather Modification in Urban Areas: Lessons for Global Climate Change.

    NASA Astrophysics Data System (ADS)

    Changnon, Stanley A.

    1992-05-01

    Large metropolitan areas in North America, home to 65% of the nation's population, have created major changes in their climates over the past 150 years. The rate and amount of the urban climate change approximate those being predicted globally using climate models. Knowledge of urban weather and climate modification holds lessons for the global climate change issue. First, adjustments to urban climate changes can provide guidance for adjusting to global change. A second lesson relates to the difficulty but underscores the necessity of providing scientifically credible proof of change within the noise of natural climatic variability. The evolution of understanding about how urban conditions influence weather reveals several unexpected outcomes, particularly relating to precipitation changes. These suggest that similar future surprises can be expected in a changed global climate, a third lesson. In-depth studies of how urban climate changes affected the hydrologic cycle, the regional economy, and human activities were difficult because of data problems, lack of impact methodology, and necessity for multi disciplinary investigations. Similar impact studies for global climate change will require diverse scientific talents and funding commitments adequate to measure the complexity of impacts and human adjustments. Understanding the processes whereby urban areas and other human activities have altered the atmosphere and changed clouds and precipitation regionally appears highly relevant to the global climate-change issue. Scientific and governmental policy development needs to recognize an old axiom that became evident in the studies of inadvertent urban and regional climate change and their behavioral implications: Think globally but act locally. Global climate change is an international issue, and the atmosphere must be treated globally. But the impacts and the will to act and adjust will occur regionally.

  19. Changing Conceptions of Globalization: Changing Conceptions of Education.

    ERIC Educational Resources Information Center

    Fitzsimons, Patrick

    2000-01-01

    Examines changing conceptions of globalization in education, highlighting new electronic information technologies that, rather than promoting homogeneity, are producing a stimulus for a politics of difference. Cyborgs and cyberspace are emerging as discourses of disunity and difference. The essay recommends a form of critical localism to challenge…

  20. Impact of Geological Changes on Regional and Global Economies

    NASA Astrophysics Data System (ADS)

    Tatiana, Skufina; Peter, Skuf'in; Vera, Samarina; Taisiya, Shatalova; Baranov, Sergey

    2017-04-01

    Periods of geological changes such as super continent cycle (300-500 million years), Wilson's cycles (300-900 million years), magmatic-tectonic cycle (150-200 million years), and cycles with smaller periods (22, 100, 1000 years) lead to a basic contradiction preventing forming methodology of the study of impact of geological changes on the global and regional economies. The reason of this contradiction is the differences of theoretical and methodological aspects of the Earth science and economics such as different time scales and accuracy of geological changes. At the present the geological models cannot provide accurate estimation of time and place where geological changes (strong earthquakes, volcanos) are expected. Places of feature (not next) catastrophic events are the only thing we have known. Thus, it is impossible to use the periodicity to estimate both geological changes and their consequences. Taking into accounts these factors we suggested a collection of concepts for estimating impact of possible geological changes on regional and global economies. We illustrated our approach by example of estimating impact of Tohoku earthquake and tsunami of March 2011 on regional and global economies. Based on this example we concluded that globalization processes increase an impact of geological changes on regional and global levels. The research is supported by Russian Foundation for Basic Research (Projects No. 16-06-00056, 16-32-00019, 16-05-00263A).

  1. Dryland photoautotrophic soil surface communities endangered by global change

    USGS Publications Warehouse

    Rodriguez-Caballero, Emilio; Belnap, Jayne; Büdel, Burkhard; Crutzen, Paul J.; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina

    2018-01-01

    Photoautotrophic surface communities forming biological soil crusts (biocrusts) are crucial for soil stability as well as water, nutrient and trace gas cycling at regional and global scales. Quantitative information on their global coverage and the environmental factors driving their distribution patterns, however, are not readily available. We use observations and environmental modelling to estimate the global distribution of biocrusts and their response to global change using future projected scenarios. We find that biocrusts currently covering approximately 12% of Earth’s terrestrial surface will decrease by about 25–40% within 65 years due to anthropogenically caused climate change and land-use intensification, responding far more drastically than vascular plants. Our results illustrate that current biocrust occurrence is mainly driven by a combination of precipitation, temperature and land management, and future changes are expected to be affected by land-use and climate change in similar proportion. The predicted loss of biocrusts may substantially reduce the microbial contribution to nitrogen cycling and enhance the emissions of soil dust, which affects the functioning of ecosystems as well as human health and should be considered in the modelling, mitigation and management of global change.

  2. Dryland photoautotrophic soil surface communities endangered by global change

    NASA Astrophysics Data System (ADS)

    Rodriguez-Caballero, Emilio; Belnap, Jayne; Büdel, Burkhard; Crutzen, Paul J.; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina

    2018-03-01

    Photoautotrophic surface communities forming biological soil crusts (biocrusts) are crucial for soil stability as well as water, nutrient and trace gas cycling at regional and global scales. Quantitative information on their global coverage and the environmental factors driving their distribution patterns, however, are not readily available. We use observations and environmental modelling to estimate the global distribution of biocrusts and their response to global change using future projected scenarios. We find that biocrusts currently covering approximately 12% of Earth's terrestrial surface will decrease by about 25-40% within 65 years due to anthropogenically caused climate change and land-use intensification, responding far more drastically than vascular plants. Our results illustrate that current biocrust occurrence is mainly driven by a combination of precipitation, temperature and land management, and future changes are expected to be affected by land-use and climate change in similar proportion. The predicted loss of biocrusts may substantially reduce the microbial contribution to nitrogen cycling and enhance the emissions of soil dust, which affects the functioning of ecosystems as well as human health and should be considered in the modelling, mitigation and management of global change.

  3. Exploring Global Change In Place-Based Case Studies

    NASA Astrophysics Data System (ADS)

    Moosavi, S. C.

    2011-12-01

    The complexity of global climate change makes the subject challenging for the average student, particularly given the nuanced feedbacks and exceptions to the general "warming" or "drying" trend that may be experienced at the local and regional level at which most people experience geologic processes. Geoscience educators can reduce these barriers and draw in student learners by adopting a place-based approach to teaching and researching geologic principles that relate to global change. Assisting students in recognizing and understanding the geologic environment in which they live and study has the side benefit of making the potential effect of climate change tangible. This presentation will review several approaches for using place-based case studies to explore global climate change issues in large lecture, small seminar, field research and service learning environments. The special place project used in large introductory physical geology courses requires each student to select a place familiar and unique to them for an in depth study of the common course content as the semester progresses. Students are specifically tasked with identifying how their site came to be, the geologic processes that act upon it today, how the site may have been different during the last glacial advance and how global climate change (specifically warming of 3OC over 50 years) might impact the site. The concept that change has occurred at the student's site in the past, even far from glacial environments, opens students to the scale of potential anthropogenic climate change. A freshman seminar Global Warming & Climate Change - Service in Preparation for Climate Change: The Second Battle of New Orleans focused on the environmental threats to New Orleans and southeastern Louisiana resulting from regional land use decisions in the centuries before Hurricane Katrina, and the threat that global change relating to sea level rise, acceleration of the hydrologic cycle and intensification of

  4. Global analysis of plasticity in turgor loss point, a key drought tolerance trait.

    PubMed

    Bartlett, Megan K; Zhang, Ya; Kreidler, Nissa; Sun, Shanwen; Ardy, Rico; Cao, Kunfang; Sack, Lawren

    2014-12-01

    Many species face increasing drought under climate change. Plasticity has been predicted to strongly influence species' drought responses, but broad patterns in plasticity have not been examined for key drought tolerance traits, including turgor loss or 'wilting' point (πtlp ). As soil dries, plants shift πtlp by accumulating solutes (i.e. 'osmotic adjustment'). We conducted the first global analysis of plasticity in Δπtlp and related traits for 283 wild and crop species in ecosystems worldwide. Δπtlp was widely prevalent but moderate (-0.44 MPa), accounting for 16% of post-drought πtlp. Thus, pre-drought πtlp was a considerably stronger predictor of post-drought πtlp across species of wild plants. For cultivars of certain crops Δπtlp accounted for major differences in post-drought πtlp. Climate was correlated with pre- and post-drought πtlp, but not Δπtlp. Thus, despite the wide prevalence of plasticity, πtlp measured in one season can reliably characterise most species' constitutive drought tolerances and distributions relative to water supply. © 2014 John Wiley & Sons Ltd/CNRS.

  5. COMMUNICATING GLOBAL CLIMATE CHANGE: INVESTIGATING MESSAGE STRATEGIES FOR COMMUNICATING THE IMPACT OF GLOBAL CLIMATE CHANGE.

    EPA Science Inventory

    The research program is designed to generate findings that provide specific guidance to science communicators and government officials on how to best communicate knowledge about global climate change and other environmental issues to diverse lay audiences. Beyond providing gui...

  6. Resilience of Key Biological Parameters of the Senegalese Flat Sardinella to Overfishing and Climate Change.

    PubMed

    Ba, Kamarel; Thiaw, Modou; Lazar, Najih; Sarr, Alassane; Brochier, Timothée; Ndiaye, Ismaïla; Faye, Alioune; Sadio, Oumar; Panfili, Jacques; Thiaw, Omar Thiom; Brehmer, Patrice

    2016-01-01

    The stock of the Senegalese flat sardinella, Sardinella maderensis, is highly exploited in Senegal, West Africa. Its growth and reproduction parameters are key biological indicators for improving fisheries management. This study reviewed these parameters using landing data from small-scale fisheries in Senegal and literature information dated back more than 25 years. Age was estimated using length-frequency data to calculate growth parameters and assess the growth performance index. With global climate change there has been an increase in the average sea surface temperature along the Senegalese coast but the length-weight parameters, sex ratio, size at first sexual maturity, period of reproduction and condition factor of S. maderensis have not changed significantly. The above parameters of S. maderensis have hardly changed, despite high exploitation and fluctuations in environmental conditions that affect the early development phases of small pelagic fish in West Africa. This lack of plasticity of the species regarding of the biological parameters studied should be considered when planning relevant fishery management plans.

  7. State Roles in the Global Climate Change Issue.

    NASA Astrophysics Data System (ADS)

    Changnon, Stanley A.

    1995-02-01

    Events in 1988 helped focus the attention of several states on the global climate change issue. Consequently, the National Governors' Association conducted an assessment in 1989 and recommended various actions. By 1994, 22 states have enacted laws or regulations and/or established research programs addressing climate change. Most of these "no regrets" actions are set up to conserve energy or improve energy efficiency and also to reduce greenhouse gas emissions. Illinois has adopted an even broader program by 1) establishing a Global Climate Change Office to foster research and provide information and 2) forming a task force to address a wide array of issues including state input to federal policies such as the Clinton administration's 1993 Climate Change Action Plan and to the research dimensions of the U.S. Global Climate Change Research Program. The Illinois program calls for increased attention to studies of regional impacts, including integrated assessments, and to research addressing means to adapt to future climate change. These various state efforts to date help show the direction of policy development and should be useful to those grappling with these issues.

  8. Governing for a Healthy Population: Towards an Understanding of How Decision-Making Will Determine Our Global Health in a Changing Climate

    PubMed Central

    Bowen, Kathryn J.; Friel, Sharon; Ebi, Kristie; Butler, Colin D.; Miller, Fiona; McMichael, Anthony J.

    2011-01-01

    Enhancing the adaptive capacity of individuals, communities, institutions and nations is pivotal to protecting and improving human health and well-being in the face of systemic social inequity plus dangerous climate change. However, research on the determinants of adaptive capacity in relation to health, particularly concerning the role of governance, is in its infancy. This paper highlights the intersections between global health, climate change and governance. It presents an overview of these key concerns, their relation to each other, and the potential that a greater understanding of governance may present opportunities to strengthen policy and action responses to the health effects of climate change. Important parallels between addressing health inequities and sustainable development practices in the face of global environmental change are also highlighted. We propose that governance can be investigated through two key lenses within the earth system governance theoretical framework; agency and architecture. These two governance concepts can be evaluated using methods of social network research and policy analysis using case studies and is the subject of further research. PMID:22470278

  9. Aspen Global Change Institute Summer Science Sessions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katzenberger, John; Kaye, Jack A

    2006-10-01

    The Aspen Global Change Institute (AGCI) successfully organized and convened six interdisciplinary meetings over the course of award NNG04GA21G. The topics of the meetings were consistent with a range of issues, goals and objectives as described within the NASA Earth Science Enterprise Strategic Plan and more broadly by the US Global Change Research Program/Our Changing Planet, the more recent Climate Change Program Strategic Plan and the NSF Pathways report. The meetings were chaired by two or more leaders from within the disciplinary focus of each session. 222 scholars for a total of 1097 participants-days were convened under the auspices ofmore » this award. The overall goal of each AGCI session is to further the understanding of Earth system science and global environmental change through interdisciplinary dialog. The format and structure of the meetings allows for presentation by each participant, in-depth discussion by the whole group, and smaller working group and synthesis activities. The size of the group is important in terms of the group dynamics and interaction, and the ability for each participant's work to be adequately presented and discussed within the duration of the meeting, while still allowing time for synthesis« less

  10. Global variation in thermal tolerances and vulnerability of endotherms to climate change

    PubMed Central

    Khaliq, Imran; Hof, Christian; Prinzinger, Roland; Böhning-Gaese, Katrin; Pfenninger, Markus

    2014-01-01

    The relationships among species' physiological capacities and the geographical variation of ambient climate are of key importance to understanding the distribution of life on the Earth. Furthermore, predictions of how species will respond to climate change will profit from the explicit consideration of their physiological tolerances. The climatic variability hypothesis, which predicts that climatic tolerances are broader in more variable climates, provides an analytical framework for studying these relationships between physiology and biogeography. However, direct empirical support for the hypothesis is mostly lacking for endotherms, and few studies have tried to integrate physiological data into assessments of species' climatic vulnerability at the global scale. Here, we test the climatic variability hypothesis for endotherms, with a comprehensive dataset on thermal tolerances derived from physiological experiments, and use these data to assess the vulnerability of species to projected climate change. We find the expected relationship between thermal tolerance and ambient climatic variability in birds, but not in mammals—a contrast possibly resulting from different adaptation strategies to ambient climate via behaviour, morphology or physiology. We show that currently most of the species are experiencing ambient temperatures well within their tolerance limits and that in the future many species may be able to tolerate projected temperature increases across significant proportions of their distributions. However, our findings also underline the high vulnerability of tropical regions to changes in temperature and other threats of anthropogenic global changes. Our study demonstrates that a better understanding of the interplay among species' physiology and the geography of climate change will advance assessments of species' vulnerability to climate change. PMID:25009066

  11. IAI Global Change Agenda and Support of Higher Education in the Andean Amazon Countries.

    NASA Astrophysics Data System (ADS)

    Galarraga, R.; McClain, M.; Fierro, V.

    2007-05-01

    The Andean Amazon River Analysis and Management project, an IAI Collaborative Research Network operating during 1999-2004, examined the impacts of climate and land-use changes on the hydrobiogeochemistry of rivers draining the Amazon Andes of Ecuador, Peru, Colombia and Bolivia. The project also provided a means to strengthen scientific collaboration among these Andean countries and the USA. Research in these countries was carried out under the guidance of investigators with backgrounds in the relevant environmental fields, but the bulk of the research activities were carried out by undergraduate and graduate students who studied within these countries and overseas. Twenty graduate students and 15 undergraduates completed studies within the project, in topics related to monitoring hydrometeorological variables both in time and space. Student research and capacity building were focused in areas central to global environmental change, including modeling of precipitation and precipitation-runoff processes, basin-scale water quality characterization and biogeochemical cycling, and socioeconomic controls on the use and management of riverine resources. The analysis of human dimension aspects of climate change research was also featured, especially those aspects that linked the consequences of water quality degradation on human health. Most of undergraduate and graduate students that collaborated in the AARAM project have joined national environmental institutions and some have continued for higher scientific degrees in fields closely related to the IAI scientific agenda. Through this IAI initiative, the number of trained global change scientists in the Andean countries has grown and there is enhanced awareness of key global change science issues among the scientific community.

  12. Interfacing remote sensing and geographic information systems for global environmental change research

    NASA Technical Reports Server (NTRS)

    Lee, Jae K.; Randolph, J. C.; Lulla, Kamlesh P.; Helfert, Michael R.

    1993-01-01

    Because changes in the Earth's environment have become major global issues, continuous, longterm scientific information is required to assess global problems such as deforestation, desertification, greenhouse effects and climate variations. Global change studies require understanding of interactions of complex processes regulating the Earth system. Space-based Earth observation is an essential element in global change research for documenting changes in Earth environment. It provides synoptic data for conceptual predictive modeling of future environmental change. This paper provides a brief overview of remote sensing technology from the perspective of global change research.

  13. Linking the Mediterranean regional and the global climate change

    NASA Astrophysics Data System (ADS)

    Lionello, Piero; Scarascia, Luca

    2017-04-01

    This contribution analyzes 22 CMIP5 global climate projections to show how is the regional climate change in the Mediterranean related to the global climate change. The aim is to use these recent results to revisit evidences suggesting that the Mediterranean region is a climate change hot spot. Results show that future increase of temperature in the Mediterranean region has a strong seasonal connotation, with summer warming at a pace 40% larger than the global mean. This future trend is consistent with the global reduction of the meridional temperature gradient that is produced by climate change. However spatial distribution of changes shows a strong a sub-regional modulation depending of the land-sea contrast, the role of soil moisture feedback and changes of large scale atmospheric circulation leading to increased subsidence conditions. Projections show that precipitation decrease will affect most of the region, but with a strong difference between southern and northern areas, where CMIP5 projections suggest a 7% and 3% decrease of annual precipitation for each degree of global warming, respectively. For both Mediterranean temperature and precipitation, the dependence is substantially linear in the range up to 40C of global warming. Interannual variability and intermodel differences are a substantial source of uncertainty for precipitation (while there is a robust consensus for temperature changes). Therefore, future precipitation changes are still a controversial issue, in terms of intensity and precise location of the transition belt that separates the decrease of precipitation over the MR from areas in central and northern Europe, where precipitation is expected to increase. On this respect, though the overall drying trend appears consolidated in the scientific literature, its precise evaluation remains to some extent controversial.

  14. Decadal Changes in Global Ocean Annual Primary Production

    NASA Technical Reports Server (NTRS)

    Gregg, Watson; Conkright, Margarita E.; Behrenfeld, Michael J.; Ginoux, Paul; Casey, Nancy W.; Koblinsky, Chester J. (Technical Monitor)

    2002-01-01

    The Sea-viewing Wide Field-of-View Sensor (SeaWiFS) has produced the first multi-year time series of global ocean chlorophyll observations since the demise of the Coastal Zone Color Scanner (CZCS) in 1986. Global observations from 1997-present from SeaWiFS combined with observations from 1979-1986 from the CZCS should in principle provide an opportunity to observe decadal changes in global ocean annual primary production, since chlorophyll is the primary driver for estimates of primary production. However, incompatibilities between algorithms have so far precluded quantitative analysis. We have developed and applied compatible processing methods for the CZCS, using modern advances in atmospheric correction and consistent bio-optical algorithms to advance the CZCS archive to comparable quality with SeaWiFS. We applied blending methodologies, where in situ data observations are incorporated into the CZCS and SeaWiFS data records, to provide improvement of the residuals. These re-analyzed, blended data records provide maximum compatibility and permit, for the first time, a quantitative analysis of the changes in global ocean primary production in the early-to-mid 1980's and the present, using synoptic satellite observations. An intercomparison of the global and regional primary production from these blended satellite observations is important to understand global climate change and the effects on ocean biota. Photosynthesis by chlorophyll-containing phytoplankton is responsible for biotic uptake of carbon in the oceans and potentially ultimately from the atmosphere. Global ocean annual primary decreased from the CZCS record to SeaWiFS, by nearly 6% from the early 1980s to the present. Annual primary production in the high latitudes was responsible for most of the decadal change. Conversely, primary production in the low latitudes generally increased, with the exception of the tropical Pacific. The differences and similarities of the two data records provide evidence

  15. Global Change and Human Vulnerability to Vector-Borne Diseases

    PubMed Central

    Sutherst, Robert W.

    2004-01-01

    Global change includes climate change and climate variability, land use, water storage and irrigation, human population growth and urbanization, trade and travel, and chemical pollution. Impacts on vector-borne diseases, including malaria, dengue fever, infections by other arboviruses, schistosomiasis, trypanosomiasis, onchocerciasis, and leishmaniasis are reviewed. While climate change is global in nature and poses unknown future risks to humans and natural ecosystems, other local changes are occurring more rapidly on a global scale and are having significant effects on vector-borne diseases. History is invaluable as a pointer to future risks, but direct extrapolation is no longer possible because the climate is changing. Researchers are therefore embracing computer simulation models and global change scenarios to explore the risks. Credible ranking of the extent to which different vector-borne diseases will be affected awaits a rigorous analysis. Adaptation to the changes is threatened by the ongoing loss of drugs and pesticides due to the selection of resistant strains of pathogens and vectors. The vulnerability of communities to the changes in impacts depends on their adaptive capacity, which requires both appropriate technology and responsive public health systems. The availability of resources in turn depends on social stability, economic wealth, and priority allocation of resources to public health. PMID:14726459

  16. Exploring Local Approaches to Communicating Global Climate Change Information

    NASA Astrophysics Data System (ADS)

    Stevermer, A. J.

    2002-12-01

    Expected future climate changes are often presented as a global problem, requiring a global solution. Although this statement is accurate, communicating climate change science and prospective solutions must begin at local levels, each with its own subset of complexities to be addressed. Scientific evaluation of local changes can be complicated by large variability occurring over small spatial scales; this variability hinders efforts both to analyze past local changes and to project future ones. The situation is further encumbered by challenges associated with scientific literacy in the U.S., as well as by pressing economic difficulties. For people facing real-life financial and other uncertainties, a projected ``1.4 to 5.8 degrees Celsius'' rise in global temperature is likely to remain only an abstract concept. Despite this lack of concreteness, recent surveys have found that most U.S. residents believe current global warming science, and an even greater number view the prospect of increased warming as at least a ``somewhat serious'' problem. People will often be able to speak of long-term climate changes in their area, whether observed changes in the amount of snow cover in winter, or in the duration of extreme heat periods in summer. This work will explore the benefits and difficulties of communicating climate change from a local, rather than global, perspective, and seek out possible strategies for making less abstract, more concrete, and most importantly, more understandable information available to the public.

  17. Global meaning in people with spinal cord injury: Content and changes

    PubMed Central

    Littooij, Elsbeth; Widdershoven, Guy A.M.; Stolwijk-Swüste, Janneke M.; Doodeman, Suzan; Leget, Carlo J.W.; Dekker, Joost

    2016-01-01

    Background After spinal cord injury (SCI), people are confronted with abrupt discontinuity in almost all areas of life, leading to questions on how to live a meaningful life again. Global meaning refers to basic ideas and goals that guide people in giving meaning to their lives, in specific situations. Little is known about global meaning relating to SCI and whether global meaning changes after SCI. Purpose The purpose of this study was twofold: (i) to explore the content of global meaning of people with SCI, and (ii) to explore whether or not global meaning changes after SCI. Methods In-depth semi-structured interviews were conducted with 16 people with SCI. Interviews were analyzed according to the method of grounded theory. Results (i) Five aspects of global meaning were found: core values, relationships, worldview, identity and inner posture. (ii) Overall, little change in the content of global meaning was found after SCI; specific aspects of global meaning were foregrounded after SCI. Conclusion Five aspects of global meaning were found in people with SCI. Global meaning seems hardly subject to change. PMID:25615571

  18. Global land-use change hidden behind nickel consumption.

    PubMed

    Nakajima, Kenichi; Nansai, Keisuke; Matsubae, Kazuyo; Tomita, Makoto; Takayanagi, Wataru; Nagasaka, Tetsuya

    2017-05-15

    Economic growth is associated with a rapid rise in the use of natural resources within the economy, and has potential environmental impacts at local and/or global scales. In today's globalized economy, each country has indirect flows supporting its economic activities, and natural resource consumption through supply chains influences environmental impacts far removed from the place of consumption. One way to control environmental impacts associated with consumption of natural resources is to identify the consumption of natural resources and the associated environmental impacts through the global supply chain. In this study, we used a global link input-output model (GLIO, a hybrid multiregional input-output model) to detect the linkages between national nickel consumption and mining-associated global land-use changes. We focused on nickel, whose global demand has risen rapidly in recent years, as a case study. The estimated area of land-use change around the world caused by nickel mining in 2005 was 1.9km 2 , and that induced by Japanese final demand for nickel was 0.38km 2 . Our modeling also revealed that the areas of greatest land-use change associated with nickel mining were concentrated in only a few countries and regions far removed from the place of consumption. For example, 57.7% of the world's land-use changes caused by nickel mining were concentrated in five countries in 2005: Australia, 13.7%; Russia, 12.9%; Indonesia, 12.5%; New Caledonia, 10.4%; and Colombia, 8.2%. The mining-associated land-use change induced by Japanese final demand accounted for 19.5% of the total area affected by land-use change caused by nickel mining. The top three countries accounted for 70.6% (Indonesia: 47.0%, New Caledonia: 16.0%, and Australia: 7.7%), and the top five accounted for 82.4% (the Philippines: 7.5%, and Canada: 4.3%, in addition to the top three countries and regions). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Operationalizing resilience for adaptive coral reef management under global environmental change.

    PubMed

    Anthony, Kenneth R N; Marshall, Paul A; Abdulla, Ameer; Beeden, Roger; Bergh, Chris; Black, Ryan; Eakin, C Mark; Game, Edward T; Gooch, Margaret; Graham, Nicholas A J; Green, Alison; Heron, Scott F; van Hooidonk, Ruben; Knowland, Cheryl; Mangubhai, Sangeeta; Marshall, Nadine; Maynard, Jeffrey A; McGinnity, Peter; McLeod, Elizabeth; Mumby, Peter J; Nyström, Magnus; Obura, David; Oliver, Jamie; Possingham, Hugh P; Pressey, Robert L; Rowlands, Gwilym P; Tamelander, Jerker; Wachenfeld, David; Wear, Stephanie

    2015-01-01

    Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio-economic settings, we present an Adaptive Resilience-Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press-type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse-type (acute) stressors (e.g. storms, bleaching events, crown-of-thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo-Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on-the-ground solutions are likely to focus increasingly on

  20. Operationalizing resilience for adaptive coral reef management under global environmental change

    PubMed Central

    Anthony, Kenneth RN; Marshall, Paul A; Abdulla, Ameer; Beeden, Roger; Bergh, Chris; Black, Ryan; Eakin, C Mark; Game, Edward T; Gooch, Margaret; Graham, Nicholas AJ; Green, Alison; Heron, Scott F; van Hooidonk, Ruben; Knowland, Cheryl; Mangubhai, Sangeeta; Marshall, Nadine; Maynard, Jeffrey A; McGinnity, Peter; McLeod, Elizabeth; Mumby, Peter J; Nyström, Magnus; Obura, David; Oliver, Jamie; Possingham, Hugh P; Pressey, Robert L; Rowlands, Gwilym P; Tamelander, Jerker; Wachenfeld, David; Wear, Stephanie

    2015-01-01

    Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio-economic settings, we present an Adaptive Resilience-Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press-type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse-type (acute) stressors (e.g. storms, bleaching events, crown-of-thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo-Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on-the-ground solutions are likely to focus increasingly on

  1. Providing Global Change Information for Decision-Making: Capturing and Presenting Provenance

    NASA Technical Reports Server (NTRS)

    Ma, Xiaogang; Fox, Peter; Tilmes, Curt; Jacobs, Katherine; Waple, Anne

    2014-01-01

    Global change information demands access to data sources and well-documented provenance to provide evidence needed to build confidence in scientific conclusions and, in specific applications, to ensure the information's suitability for use in decision-making. A new generation of Web technology, the Semantic Web, provides tools for that purpose. The topic of global change covers changes in the global environment (including alterations in climate, land productivity, oceans or other water resources, atmospheric composition and or chemistry, and ecological systems) that may alter the capacity of the Earth to sustain life and support human systems. Data and findings associated with global change research are of great public, government, and academic concern and are used in policy and decision-making, which makes the provenance of global change information especially important. In addition, since different types of decisions benefit from different types of information, understanding how to capture and present the provenance of global change information is becoming more of an imperative in adaptive planning.

  2. Coupled Global-Regional Climate Model Simulations of Future Changes in Hydrology over Central America

    NASA Astrophysics Data System (ADS)

    Oglesby, R. J.; Erickson, D. J.; Hernandez, J. L.; Irwin, D.

    2005-12-01

    Central America covers a relatively small area, but is topographically very complex, has long coast-lines, large inland bodies of water, and very diverse land cover which is both natural and human-induced. As a result, Central America is plagued by hydrologic extremes, especially major flooding and drought events, in a region where many people still barely manage to eke out a living through subsistence. Therefore, considerable concern exists about whether these extreme events will change, either in magnitude or in number, as climate changes in the future. To address this concern, we have used global climate model simulations of future climate change to drive a regional climate model centered on Central America. We use the IPCC `business as usual' scenario 21st century run made with the NCAR CCSM3 global model to drive the regional model MM5 at 12 km resolution. We chose the `business as usual' scenario to focus on the largest possible changes that are likely to occur. Because we are most interested in near-term changes, our simulations are for the years 2010, 2015, and 2025. A long `present-day run (for 2005) allows us to distinguish between climate variability and any signal due to climate change. Furthermore, a multi-year run with MM5 forced by NCEP reanalyses allows an assessment of how well the coupled global-regional model performs over Central America. Our analyses suggest that the coupled model does a credible job simulating the current climate and hydrologic regime, though lack of sufficient observations strongly complicates this comparison. The suite of model runs for the future years is currently nearing completion, and key results will be presented at the meeting.

  3. Antarctica and Global Environmental Change - Lessons from the Past Inform Climate Change Policy Today

    NASA Astrophysics Data System (ADS)

    Dunbar, R. B.; Scientific Team Of Odp Drilling Leg 318; Andrill Science Team

    2011-12-01

    Antarctic's continental ice, sea ice, and the broader Southern Ocean form a coupled and complex climate system that interacts in important yet poorly understood ways with the low and mid-latitudes. Because of its unusual sovereignty status and the fact that there is no indigenous human population, information about climate change in Antarctica penetrates the policy world less readily than findings from other regions. Yet, Antarctica's potential to impact climate change globally is disproportionately large. Vulnerable portions of the ice sheet may contribute up to 3 to 5 meters of sea level rise in the coming centuries, including significant amounts within the next 50 years. Loss of sea ice and other changes in the Southern Ocean may reduce oceanic uptake of excess atmospheric carbon dioxide, exacerbating global warming worldwide. Antarctica's impact on the Southern Hemisphere wind field is now well-established, contributing to ongoing decadal-scale perturbations in continental precipitation as well as major reorganizations of Southern Ocean food chains. Recent scientific drilling programs in the Ross Sea and off Wilkes Land, Antarctica, provide valuable insights into past climatic and biogeochemical change in Antarctica, insights of great relevance to international and national climate change policy. In this paper, we discuss polar amplification, sea level variability coupled to Antarctic ice volume, and response timescales as seen through the lens of past climate change. One key result emerging from multiple drilling programs is recognition of unanticipated dynamism in the Antarctic ice sheet during portions of the Pliocene (at a time with pCO2 levels equivalent to those anticipated late this century) as well as during "super-interglacials" of the Pleistocene. Evidence for substantially warmer ocean temperatures and reduced sea ice cover at these times suggests that polar amplification of natural climate variability, even under scenarios of relative small amounts

  4. A global conservation system for climate-change adaptation.

    PubMed

    Hannah, Lee

    2010-02-01

    Climate change has created the need for a new strategic framework for conservation. This framework needs to include new protected areas that account for species range shifts and management that addresses large-scale change across international borders. Actions within the framework must be effective in international waters and across political frontiers and have the ability to accommodate large income and ability-to-pay discrepancies between countries. A global protected-area system responds to these needs. A fully implemented global system of protected areas will help in the transition to a new conservation paradigm robust to climate change and will ensure the integrity of the climate services provided by carbon sequestration from the world's natural habitats. The internationally coordinated response to climate change afforded by such a system could have significant cost savings relative to a system of climate adaptation that unfolds solely at a country level. Implementation of a global system is needed very soon because the effects of climate change on species and ecosystems are already well underway.

  5. Tropical forests and global change: filling knowledge gaps.

    PubMed

    Zuidema, Pieter A; Baker, Patrick J; Groenendijk, Peter; Schippers, Peter; van der Sleen, Peter; Vlam, Mart; Sterck, Frank

    2013-08-01

    Tropical forests will experience major changes in environmental conditions this century. Understanding their responses to such changes is crucial to predicting global carbon cycling. Important knowledge gaps exist: the causes of recent changes in tropical forest dynamics remain unclear and the responses of entire tropical trees to environmental changes are poorly understood. In this Opinion article, we argue that filling these knowledge gaps requires a new research strategy, one that focuses on trees instead of leaves or communities, on long-term instead of short-term changes, and on understanding mechanisms instead of documenting changes. We propose the use of tree-ring analyses, stable-isotope analyses, manipulative field experiments, and well-validated simulation models to improve predictions of forest responses to global change. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Global climate change: the quantifiable sustainability challenge.

    PubMed

    Princiotta, Frank T; Loughlin, Daniel H

    2014-09-01

    Population growth and the pressures spawned by increasing demands for energy and resource-intensive goods, foods, and services are driving unsustainable growth in greenhouse gas (GHG) emissions. Recent GHG emission trends are consistent with worst-case scenarios of the previous decade. Dramatic and near-term emission reductions likely will be needed to ameliorate the potential deleterious impacts of climate change. To achieve such reductions, fundamental changes are required in the way that energy is generated and used. New technologies must be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear and transportation technologies are particularly important; however, global research and development efforts related to these technologies currently appear to fall short relative to needs. Even with a proactive and international mitigation effort, humanity will need to adapt to climate change, but the adaptation needs and damages will be far greater if mitigation activities are not pursued in earnest. In this review, research is highlighted that indicates increasing global and regional temperatures and ties climate changes to increasing GHG emissions. GHG mitigation targets necessary for limiting future global temperature increases are discussed, including how factors such as population growth and the growing energy intensity of the developing world will make these reduction targets more challenging. Potential technological pathways for meeting emission reduction targets are examined, barriers are discussed, and global and US. modeling results are presented that suggest that the necessary pathways will require radically transformed electric and mobile sectors. While geoengineering options have been proposed to allow more time for serious emission reductions, these measures are at the conceptual stage with many unanswered cost, environmental, and political issues. Implications: This paper lays out the case that mitigating the

  7. Designing ecological climate change impact assessments to reflect key climatic drivers

    USGS Publications Warehouse

    Sofaer, Helen R.; Barsugli, Joseph J.; Jarnevich, Catherine S.; Abatzoglou, John T.; Talbert, Marian; Miller, Brian W.; Morisette, Jeffrey T.

    2017-01-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive – such as means or extremes – can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the ‘model space’ approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling.

  8. Designing ecological climate change impact assessments to reflect key climatic drivers.

    PubMed

    Sofaer, Helen R; Barsugli, Joseph J; Jarnevich, Catherine S; Abatzoglou, John T; Talbert, Marian K; Miller, Brian W; Morisette, Jeffrey T

    2017-07-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling. © 2017 John Wiley & Sons Ltd.

  9. Global Climate Change Interaction Web.

    ERIC Educational Resources Information Center

    Fortner, Rosanne W.

    1998-01-01

    Students investigate the effects of global climate change on life in the Great Lakes region in this activity. Teams working together construct as many links as possible for such factors as rainfall, lake water, evaporation, skiing, zebra mussels, wetlands, shipping, walleye, toxic chemicals, coastal homes, and population. (PVD)

  10. Ways to Include Global Climate Change in Courses for Prospective Teachers

    ERIC Educational Resources Information Center

    van Zee, Emily; Grobart, Emma; Roberts-Harris, Deborah

    2016-01-01

    What responsibility do science teacher educators have for engaging students in learning about global climate change in courses? How can the topic of global climate change be added to an already packed course curriculum? The authors have begun assembling instructional resources and learning ways others have incorporated global climate change in…

  11. Examining the last few decades of global hydroclimate for evidence of anthropogenic change amidst natural variability

    NASA Astrophysics Data System (ADS)

    Seager, R.; Naik, N.; Ting, M.; Kushnir, Y.; Kelley, C. P.

    2011-12-01

    Climate models robustly predict that the deep tropics and mid-latitude-to-subpolar regions will moisten, and the subtropical dry zones both dry and expand, as a consequence of global warming driven by rising greenhouse gases. The models also predict that this transition to a more extreme climatological mean global hydroclimate should already be underway. Given the importance of these predictions it is an imperative that the climate science community assess whether there is evidence within the observational record that they are correct. This task is made difficult by the tremendous natural variability of the hydrological cycle on seasonal to multidecadal timescales. Here we will use instrumental observations, reanalyses, sea surface temperature forced atmosphere models and coupled model simulations, and a variety of methodologies, to attempt to separate global radiatively-forced hydroclimate change from ongoing natural variability. The results will be applied to explain trends and recent events in key regions such as Mexico, the United States and the Mediterranean. It is concluded that the signal of anthropogenic change is small compared to the amplitude of natural variability but that it is a discernible contributor. Globally the evidence reveals that radiatively-forced hydroclimate change is occurring with an amplitude and spatial pattern largely consistent with the predictions by IPCC AR4 models of hydroclimate change to date. However it will also be shown that the radiatively-forced component does not in and of itself provide a useful prediction of near term hydroclimate change because for many regions the amplitude of natural decadal variability is as large or larger. Useful predictions need to account for how natural variability may evolve as well as forced change.

  12. The global land rush and climate change

    NASA Astrophysics Data System (ADS)

    Davis, Kyle Frankel; Rulli, Maria Cristina; D'Odorico, Paolo

    2015-08-01

    Climate change poses a serious global challenge in the face of rapidly increasing human demand for energy and food. A recent phenomenon in which climate change may play an important role is the acquisition of large tracts of land in the developing world by governments and corporations. In the target countries, where land is relatively inexpensive, the potential to increase crop yields is generally high and property rights are often poorly defined. By acquiring land, investors can realize large profits and countries can substantially alter the land and water resources under their control, thereby changing their outlook for meeting future demand. While the drivers, actors, and impacts involved with land deals have received substantial attention in the literature, we propose that climate change plays an important yet underappreciated role, both through its direct effects on agricultural production and through its influence on mitigative or adaptive policy decisions. Drawing from various literature sources as well as a new global database on reported land deals, we trace the evolution of the global land rush and highlight prominent examples in which the role of climate change is evident. We find that climate change—both historical and anticipated—interacts substantially with drivers of land acquisitions, having important implications for the resilience of communities in targeted areas. As a result of this synthesis, we ultimately contend that considerations of climate change should be integrated into future policy decisions relating to the large-scale land acquisitions.

  13. Global Surface Temperature Change and Uncertainties Since 1861

    NASA Technical Reports Server (NTRS)

    Shen, Samuel S. P.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The objective of this talk is to analyze the warming trend and its uncertainties of the global and hemi-spheric surface temperatures. By the method of statistical optimal averaging scheme, the land surface air temperature and sea surface temperature observational data are used to compute the spatial average annual mean surface air temperature. The optimal averaging method is derived from the minimization of the mean square error between the true and estimated averages and uses the empirical orthogonal functions. The method can accurately estimate the errors of the spatial average due to observational gaps and random measurement errors. In addition, quantified are three independent uncertainty factors: urbanization, change of the in situ observational practices and sea surface temperature data corrections. Based on these uncertainties, the best linear fit to annual global surface temperature gives an increase of 0.61 +/- 0.16 C between 1861 and 2000. This lecture will also touch the topics on the impact of global change on nature and environment. as well as the latest assessment methods for the attributions of global change.

  14. Designing Global Climate Change

    NASA Astrophysics Data System (ADS)

    Griffith, P. C.; ORyan, C.

    2012-12-01

    In a time when sensationalism rules the online world, it is best to keep things short. The people of the online world are not passing back and forth lengthy articles, but rather brief glimpses of complex information. This is the target audience we attempt to educate. Our challenge is then to attack not only ignorance, but also apathy toward global climate change, while conforming to popular modes of learning. When communicating our scientific material, it was difficult to determine what level of information was appropriate for our audience, especially with complex subject matter. Our unconventional approach for communicating the carbon crisis as it applies to global climate change caters to these 'recreational learners'. Using story-telling devices acquired from Carolyne's biomedical art background coupled with Peter's extensive knowledge of carbon cycle and ecosystems science, we developed a dynamic series of illustrations that capture the attention of a callous audience. Adapting complex carbon cycle and climate science into comic-book-style animations creates a channel between artist, scientist, and the general public. Brief scenes of information accompanied by text provide a perfect platform for visual learners, as well as fresh portrayals of stale material for the jaded. In this way art transcends the barriers of the cerebral and the abstract, paving the road to understanding.;

  15. The evolution of global disaster risk assessments: from hazard to global change

    NASA Astrophysics Data System (ADS)

    Peduzzi, Pascal

    2013-04-01

    The perception of disaster risk as a dynamic process interlinked with global change is a fairly recent concept. It gradually emerged as an evolution from new scientific theories, currents of thinking and lessons learned from large disasters since the 1970s. The interest was further heighten, in the mid-1980s, by the Chernobyl nuclear accident and the discovery of the ozone layer hole, both bringing awareness that dangerous hazards can generate global impacts. The creation of the UN International Decade for Natural Disaster Reduction (IDNDR) and the publication of the first IPCC report in 1990 reinforced the interest for global risk assessment. First global risk models including hazard, exposure and vulnerability components were available since mid-2000s. Since then increased computation power and more refined datasets resolution, led to more numerous and sophisticated global risk models. This article presents a recent history of global disaster risk models, the current status of researches for the Global Assessment Report on Disaster Risk Reduction (GAR 2013) and future challenges and limitations for the development of next generation global disaster risk models.

  16. Global Climate Change and the Mitigation Challenge

    EPA Science Inventory

    Book edited by Frank Princiotta titled Global Climate Change--The Technology Challenge Transparent modeling tools and the most recent literature are used, to quantify the challenge posed by climate change and potential technological remedies. The chapter examines forces driving ...

  17. The changing global context of public health.

    PubMed

    McMichael, A J; Beaglehole, R

    2000-08-05

    Future health prospects depend increasingly on globalisation processes and on the impact of global environmental change. Economic globalisation--entailng deregulated trade and investment--is a mixed blessing for health. Economic growth and the dissemination of technologies have widely enhanced life expectancy. However, aspects of globalisation are jeopardising health by eroding social and environmental conditions, exacerbating the rich-poor gap, and disseminating consumerism. Global environmental changes reflect the growth of populations and the intensity of economic activity. These changes include altered composition of the atmosphere, land degradation, depletion of terrestrial aquifers and ocean fisheries, and loss of biodiversity. This weakening of life-supporting systems poses health risks. Contemporary public health must therefore encompass the interrelated tasks of reducing social and health inequalities and achieving health-sustaining environments.

  18. Forest Service Global Change Research Strategy, 2009-2019 Implementation Plan

    Treesearch

    Allen Solomon; Richard A. Birdsey; Linda A. Joyce

    2010-01-01

    In keeping with the research goals of the U.S. Global Change Research Program, the climate change strategy of the U.S. Department of Agriculture (USDA), and the climate change framework of the Forest Service, this Forest Service Global Change Research Strategy, 2009-2019 Implementation Plan (hereafter called the Research Plan), was written by Forest Service Research...

  19. Tree cover in Central Africa: determinants and sensitivity under contrasted scenarios of global change

    PubMed Central

    Aleman, Julie C.; Blarquez, Olivier; Gourlet-Fleury, Sylvie; Bremond, Laurent; Favier, Charly

    2017-01-01

    Tree cover is a key variable for ecosystem functioning, and is widely used to study tropical ecosystems. But its determinants and their relative importance are still a matter of debate, especially because most regional and global analyses have not considered the influence of agricultural practices. More information is urgently needed regarding how human practices influence vegetation structure. Here we focused in Central Africa, a region still subjected to traditional agricultural practices with a clear vegetation gradient. Using remote sensing data and global databases, we calibrated a Random Forest model to correlatively link tree cover with climatic, edaphic, fire and agricultural practices data. We showed that annual rainfall and accumulated water deficit were the main drivers of the distribution of tree cover and vegetation classes (defined by the modes of tree cover density), but agricultural practices, especially pastoralism, were also important in determining tree cover. We simulated future tree cover with our model using different scenarios of climate and land-use (agriculture and population) changes. Our simulations suggest that tree cover may respond differently regarding the type of scenarios, but land-use change was an important driver of vegetation change even able to counterbalance the effect of climate change in Central Africa. PMID:28134259

  20. Tree cover in Central Africa: determinants and sensitivity under contrasted scenarios of global change.

    PubMed

    Aleman, Julie C; Blarquez, Olivier; Gourlet-Fleury, Sylvie; Bremond, Laurent; Favier, Charly

    2017-01-30

    Tree cover is a key variable for ecosystem functioning, and is widely used to study tropical ecosystems. But its determinants and their relative importance are still a matter of debate, especially because most regional and global analyses have not considered the influence of agricultural practices. More information is urgently needed regarding how human practices influence vegetation structure. Here we focused in Central Africa, a region still subjected to traditional agricultural practices with a clear vegetation gradient. Using remote sensing data and global databases, we calibrated a Random Forest model to correlatively link tree cover with climatic, edaphic, fire and agricultural practices data. We showed that annual rainfall and accumulated water deficit were the main drivers of the distribution of tree cover and vegetation classes (defined by the modes of tree cover density), but agricultural practices, especially pastoralism, were also important in determining tree cover. We simulated future tree cover with our model using different scenarios of climate and land-use (agriculture and population) changes. Our simulations suggest that tree cover may respond differently regarding the type of scenarios, but land-use change was an important driver of vegetation change even able to counterbalance the effect of climate change in Central Africa.

  1. Tree cover in Central Africa: determinants and sensitivity under contrasted scenarios of global change

    NASA Astrophysics Data System (ADS)

    Aleman, Julie C.; Blarquez, Olivier; Gourlet-Fleury, Sylvie; Bremond, Laurent; Favier, Charly

    2017-01-01

    Tree cover is a key variable for ecosystem functioning, and is widely used to study tropical ecosystems. But its determinants and their relative importance are still a matter of debate, especially because most regional and global analyses have not considered the influence of agricultural practices. More information is urgently needed regarding how human practices influence vegetation structure. Here we focused in Central Africa, a region still subjected to traditional agricultural practices with a clear vegetation gradient. Using remote sensing data and global databases, we calibrated a Random Forest model to correlatively link tree cover with climatic, edaphic, fire and agricultural practices data. We showed that annual rainfall and accumulated water deficit were the main drivers of the distribution of tree cover and vegetation classes (defined by the modes of tree cover density), but agricultural practices, especially pastoralism, were also important in determining tree cover. We simulated future tree cover with our model using different scenarios of climate and land-use (agriculture and population) changes. Our simulations suggest that tree cover may respond differently regarding the type of scenarios, but land-use change was an important driver of vegetation change even able to counterbalance the effect of climate change in Central Africa.

  2. Challenges in Global Land Use/Land Cover Change Modeling

    NASA Astrophysics Data System (ADS)

    Clarke, K. C.

    2011-12-01

    For the purposes of projecting and anticipating human-induced land use change at the global scale, much work remains in the systematic mapping and modeling of world-wide land uses and their related dynamics. In particular, research has focused on tropical deforestation, loss of prime agricultural land, loss of wild land and open space, and the spread of urbanization. Fifteen years of experience in modeling land use and land cover change at the regional and city level with the cellular automata model SLEUTH, including cross city and regional comparisons, has led to an ability to comment on the challenges and constraints that apply to global level land use change modeling. Some issues are common to other modeling domains, such as scaling, earth geometry, and model coupling. Others relate to geographical scaling of human activity, while some are issues of data fusion and international interoperability. Grid computing now offers the prospect of global land use change simulation. This presentation summarizes what barriers face global scale land use modeling, but also highlights the benefits of such modeling activity on global change research. An approach to converting land use maps and forecasts into environmental impact measurements is proposed. Using such an approach means that multitemporal mapping, often using remotely sensed sources, and forecasting can also yield results showing the overall and disaggregated status of the environment.

  3. Analyses of Student Learning in Global Change

    NASA Astrophysics Data System (ADS)

    Takle, E. S.; Moser, H.; Sorensen, E. K.

    2004-12-01

    The Global Change course at Iowa State University is a senior undergraduate and graduate level course that has been delivered over the internet with online dialog and learning activities since 1995. Students may enroll in the course as a distance education course, but in doing so they engage in dialog with students in the conventional on-campus face-to-face course. Online delivery and student participation offer opportunities for promoting use of critical thinking skills and collaborative learning not available in face-to-face environments. Students are required to research, post, and defend with authoritative information their positions on a variety of global change issues and specifically identify how they have demonstrated use of critical thinking skills in their online postings. Threaded dialog is used for structuring interactions toward promoting collaborative learning. We analyze collaborative learning by use of a rubric based on the theory of language games. By random selection of 1,350 online dialog comments posted over the last 10 years we evaluated student response to requirements for demonstrating critical thinking skills and collaboration in learning. We found that, by itself, the requirement of demonstrating critical thinking skills in online dialog was insufficient in promoting collaborative learned as measured by the standards of language game theory. But we also found that if an online comment clearly defines a situation and makes a clear expectation of a response, the likelihood is high that a game will be created. And if a game is established, there is a high probability that it will be closed, thereby giving evidence that collaborative learning had occurred. We conclude that a key component in collaborative online learning lies in establishing a lead-off comment that provides sufficient background information to clearly define an engaging situation. It also must include a clear expectation that a response is expected that will provide dialog

  4. Biocrusts in the context of global change

    USGS Publications Warehouse

    Reed, Sasha C.; Maestre, Fernando T.; Ochoa-Hueso, Raul; Kuske, Cheryl; Darrouzet-Nardi, Anthony N.; Darby, Brian; Sinsabaugh, Bob; Oliver, Mel; Sancho, Leo; Belnap, Jayne

    2016-01-01

    A wide range of studies show global environmental change will profoundly affect the structure, function, and dynamics of terrestrial ecosystems. The research synthesized here underscores that biocrust communities are also likely to respond significantly to global change drivers, with a large potential for modification to their abundance, composition, and function. We examine how elevated atmospheric CO2 concentrations, climate change (increased temperature and altered precipitation), and nitrogen deposition affect biocrusts and the ecosystems they inhabit. We integrate experimental and observational data, as well as physiological, community ecology, and biogeochemical perspectives. Taken together, these data highlight the potential for biocrust organisms to respond dramatically to environmental change and show how changes to biocrust community composition translate into effects on ecosystem function (e.g., carbon and nutrient cycling, soil stability, energy balance). Due to the importance of biocrusts in regulating dryland ecosystem processes and the potential for large modifications to biocrust communities, an improved understanding and predictive capacity regarding biocrust responses to environmental change are of scientific and societal relevance.

  5. Relationship of Global Precipitation Measurement (GPM) Mission to Global Change Research

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David OC. (Technical Monitor)

    2002-01-01

    In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). This new mission is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC). Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various research areas in the course of the mission formulation phase that are of interest to the global change scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning: (1) the rate of global water cycling through the atmosphere and surface and the relationship of precipitation variability to the sustained rate of the water cycle; (2) the relationship between climate change and cloud macrophysical- microphysical processes; and (3) the general improvement in measuring precipitation at the fundamental microphysical level that will take place during the GPM era and an explanation of how these improvements are expected to come about.

  6. Global change impacts on mangrove ecosystems

    USGS Publications Warehouse

    McKee, Karen L.

    2004-01-01

    Mangroves are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal forests are important coastal ecosystems that are valued for a variety of ecological and societal goods and services. Major local threats to mangrove ecosystems worldwide include clearcutting and trimming of forests for urban, agricultural, or industrial expansion; hydrological alterations; toxic chemical spills; and eutrophication. In many countries with mangroves, much of the human population resides in the coastal zone, and their activities often negatively impact the integrity of mangrove forests. In addition, eutrophication, which is the process whereby nutrients build up to higher than normal levels in a natural system, is possibly one of the most serious threats to mangroves and associated ecosystems such as coral reefs. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand global impacts on these significant ecosystems.Changes in climate and other factors may also affect mangroves, but in complex ways. Global warming may promote expansion of mangrove forests to higher latitudes and accelerate sea-level rise through melting of polar ice or steric expansion of oceans. Changes in sea level would alter flooding patterns and the structure and areal extent of mangroves. Climate change may also alter rainfall patterns, which would in turn change local salinity regimes and competitive interactions of mangroves with other wetland species. Increases in frequency or intensity of tropical storms and hurricanes in combination with sea-level rise may alter erosion and sedimentation rates in mangrove forests. Another global change factor that may directly affect mangrove growth is increased atmospheric carbon dioxide (CO2), caused by burning of fossil fuels and other factors. Elevated CO2 concentration may increase mangrove growth by stimulating photosynthesis or improving water use

  7. Ecological risk assessment in the context of global climate change.

    PubMed

    Landis, Wayne G; Durda, Judi L; Brooks, Marjorie L; Chapman, Peter M; Menzie, Charles A; Stahl, Ralph G; Stauber, Jennifer L

    2013-01-01

    Changes to sources, stressors, habitats, and geographic ranges; toxicological effects; end points; and uncertainty estimation require significant changes in the implementation of ecological risk assessment (ERA). Because of the lack of analog systems and circumstances in historically studied sites, there is a likelihood of type III error. As a first step, the authors propose a decision key to aid managers and risk assessors in determining when and to what extent climate change should be incorporated. Next, when global climate change is an important factor, the authors recommend seven critical changes to ERA. First, develop conceptual cause-effect diagrams that consider relevant management decisions as well as appropriate spatial and temporal scales to include both direct and indirect effects of climate change and the stressor of management interest. Second, develop assessment end points that are expressed as ecosystem services. Third, evaluate multiple stressors and nonlinear responses-include the chemicals and the stressors related to climate change. Fourth, estimate how climate change will affect or modify management options as the impacts become manifest. Fifth, consider the direction and rate of change relative to management objectives, recognizing that both positive and negative outcomes can occur. Sixth, determine the major drivers of uncertainty, estimating and bounding stochastic uncertainty spatially, temporally, and progressively. Seventh, plan for adaptive management to account for changing environmental conditions and consequent changes to ecosystem services. Good communication is essential for making risk-related information understandable and useful for managers and stakeholders to implement a successful risk-assessment and decision-making process. Copyright © 2012 SETAC.

  8. Global Climate Change: Threat Multiplier for AFRICOM?

    DTIC Science & Technology

    2007-11-06

    climate change , stability for Africa hinges upon mitigating the effects of global climate change to prevent future conflicts such as Darfur, and the...instability that fosters terrorism. The National Security Act of 2010 will formally address climate change and the planning requirement for the threat...of Responsibility (AOR). He will need to integrate multinational and multiagency cooperation to address climate change forecasts. The author

  9. Linked Open Data in the Global Change Information System (GCIS)

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt A.

    2012-01-01

    The U.S. Global Change Research Program (http://globalchange.gov) coordinates and integrates federal research on changes in the global environment and their implications for society. The USGCRP is developing a Global Change Information System (GCIS) that will centralize access to data and information related to global change across the U.S. federal government. The first implementation will focus on the 2013 National Climate Assessment (NCA) . (http://assessment.globalchange.gov) The NCA integrates, evaluates, and interprets the findings of the USGCRP; analyzes the effects of global change on the natural environment, agriculture, energy production and use, land and water resources, transportation, human health and welfare, human social systems, and biological diversity; and analyzes current trends in global change, both human-induced and natural, and projects major trends for the subsequent 25 to 100 years. The NCA has received over 500 distinct technical inputs to the process, many of which are reports distilling and synthesizing even more information, coming from thousands of individuals around the federal, state and local governments, academic institutions and non-governmental organizations. The GCIS will present a web-based version of the NCA including annotations linking the findings and content of the NCA with the scientific research, datasets, models, observations, etc. that led to its conclusions. It will use semantic tagging and a linked data approach, assigning globally unique, persistent, resolvable identifiers to all of the related entities and capturing and presenting the relationships between them, both internally and referencing out to other linked data sources and back to agency data centers. The developing W3C PROV Data Model and ontology will be used to capture the provenance trail and present it in both human readable web pages and machine readable formats such as RDF and SPARQL. This will improve visibility into the assessment process, increase

  10. Delivering Global Environmental Change Science Through Documentary Film

    NASA Astrophysics Data System (ADS)

    Dodgson, K.; Byrne, J. M.; Graham, J. R.

    2010-12-01

    Communicating authentic science to society presents a significant challenge to researchers. This challenge stems from unfortunate misrepresentation and misunderstanding in the mainstream media, particularly in relation to science on global environmental change. This has resulted in a lower level of confidence and interest amongst audiences in regards to global environmental change and anthropogenic climate change discussions. This project describes a new form of documentary film that aspires to break this trend and increase audiences’ interest, reinvigorating discussion about global environmental change. The documentary film adopts a form that marries traditional scientific presentation with the high entertainment value of narrative storytelling. This format maintains the authenticity of the scientific message and ensures audience engagement throughout the entire presentation due to the fact that a sense of equality and intimacy between the audience and the scientists is achieved. The film features interviews with scientists studying global environmental change and opens with a comparison of authentic scientific information and the mainstream media’s presentation, and subsequent public opinion. This enables an analysis of the growing disconnect between society and the scientific community. Topics investigated include: Arctic ice melt, coastal zone hypoxia, tropical cyclones and acidification. Upon completion of the film, public and private screenings with predetermined audience demographics will be conducted using a short, standardized survey to gain feedback regarding the audience’s overall review of the presentation. In addition to the poster, this presentation features an extended trailer for the documentary film.

  11. Enhancing Participation in the U.S. Global Change Research Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington, Warren; Lee, Kai; Arent, Doug

    2016-02-29

    The US Global Change Research Program (USGCRP) is a collection of 13 Federal entities charged by law to assist the United States and the world to understand, assess, predict, and respond to human-induced and natural processes of global change. As the understanding of global change has evolved over the past decades and as demand for scientific information on global change has increased, the USGCRP has increasingly focused on research that can inform decisions to cope with current climate variability and change, to reduce the magnitude of future changes, and to prepare for changes projected over coming decades. Overall, the currentmore » breadth and depth of research in these agencies is insufficient to meet the country's needs, particularly to support decision makers. This report provides a rationale for evaluating current program membership and capabilities and identifying potential new agencies and departments in the hopes that these changes will enable the program to more effectively inform the public and prepare for the future. It also offers actionable recommendations for adjustments to the methods and procedures that will allow the program to better meet its stated goals.« less

  12. A first look at global flash drought: long term change and short term predictability

    NASA Astrophysics Data System (ADS)

    Yuan, Xing; Wang, Linying; Ji, Peng

    2017-04-01

    "Flash drought" became popular after the unexpected 2012 central USA drought, mainly due to its rapid development, low predictability and devastating impacts on water resources and crop yields. A pilot study by Mo and Lettenmaier (2015) found that flash drought, based on a definition of concurrent heat extreme, soil moisture deficit and evapotranspiration (ET) enhancement at pentad scale, were in decline over USA during recent 100 years. Meanwhile, a recent work indicated that the occurrence of flash drought in China was doubled during the past 30 years, where a severe flash drought in the summer of 2013 ravaged 13 provinces in southern China. As global warming increases the frequency of heat waves and accelerates the hydrological cycle, the flash drought is expected to increase in general, but its trend might also be affected by interannual to decadal climate oscillations. To consolidate the hotspots of flash drought and the effects of climate change on flash drought, a global inventory is being conducted by using multi-source observations (in-situ, satellite and reanalysis), CMIP5 historical simulations and future projections under different forcing scenarios, as well as global land surface hydrological modeling for key variables including surface air temperature, soil moisture and ET. In particular, a global picture of the flash drought distribution, the contribution of naturalized and anthropogenic forcings to global flash drought change, and the risk of global flash drought in the future, will be presented. Besides investigating the long-term change of flash drought, providing reliable early warning is also essential to developing adaptation strategies. While regional drought early warning systems have been emerging in recent decade, forecasting of flash drought is still at an exploratory stage due to limited understanding of flash drought predictability. Here, a set of sub-seasonal to seasonal (S2S) hindcast datasets are being used to assess the short term

  13. The Psychological Impacts of Global Climate Change

    ERIC Educational Resources Information Center

    Doherty, Thomas J.; Clayton, Susan

    2011-01-01

    An appreciation of the psychological impacts of global climate change entails recognizing the complexity and multiple meanings associated with climate change; situating impacts within other social, technological, and ecological transitions; and recognizing mediators and moderators of impacts. This article describes three classes of psychological…

  14. Wintertime urban heat island modified by global climate change over Japan

    NASA Astrophysics Data System (ADS)

    Hara, M.

    2015-12-01

    Urban thermal environment change, especially, surface air temperature (SAT) rise in metropolitan areas, is one of the major recent issues in urban areas. The urban thermal environmental change affects not only human health such as heat stroke, but also increasing infectious disease due to spreading out virus vectors habitat and increase of industry and house energy consumption. The SAT rise is mostly caused by global climate change and urban heat island (hereafter UHI) by urbanization. The population in Tokyo metropolitan area is over 30 millions and the Tokyo metropolitan area is one of the biggest megacities in the world. The temperature rise due to urbanization seems comparable to the global climate change in the major megacities. It is important to project how the urbanization and the global climate change affect to the future change of urban thermal environment to plan the adaptation and mitigation policy. To predict future SAT change in urban scale, we should estimate future UHI modified by the global climate change. This study investigates change in UHI intensity (UHII) of major metropolitan areas in Japan by effects of the global climate change. We performed a series of climate simulations. Present climate simulations with and without urban process are conducted for ten seasons using a high-resolution numerical climate model, the Weather Research and Forecasting (WRF) model. Future climate projections with and without urban process are also conducted. The future projections are performed using the pseudo global warming method, assuming 2050s' initial and boundary conditions estimated by a GCM under the RCP scenario. Simulation results indicated that UHII would be enhanced more than 30% in Tokyo during the night due to the global climate change. The enhancement of urban heat island is mostly caused by change of lower atmospheric stability.

  15. Developing and applying uncertain global climate change projections for regional water management planning

    NASA Astrophysics Data System (ADS)

    Groves, David G.; Yates, David; Tebaldi, Claudia

    2008-12-01

    Climate change may impact water resources management conditions in difficult-to-predict ways. A key challenge for water managers is how to incorporate highly uncertain information about potential climate change from global models into local- and regional-scale water management models and tools to support local planning. This paper presents a new method for developing large ensembles of local daily weather that reflect a wide range of plausible future climate change scenarios while preserving many statistical properties of local historical weather patterns. This method is demonstrated by evaluating the possible impact of climate change on the Inland Empire Utilities Agency service area in southern California. The analysis shows that climate change could impact the region, increasing outdoor water demand by up to 10% by 2040, decreasing local water supply by up to 40% by 2040, and decreasing sustainable groundwater yields by up to 15% by 2040. The range of plausible climate projections suggests the need for the region to augment its long-range water management plans to reduce its vulnerability to climate change.

  16. Global mean sea level - Indicator of climate change

    NASA Technical Reports Server (NTRS)

    Robock, A.; Hansen, J.; Gornitz, V.; Lebedeff, S.; Moore, E.; Etkins, R.; Epstein, E.

    1983-01-01

    A critical discussion is presented on the use by Etkins and Epstein (1982) of combined surface air temperature and sea level time series to draw conclusions concerning the discharge of the polar ice sheets. It is objected by Robock that they used Northern Hemisphere land surface air temperature records which are unrepresentative of global sea surface temperature, and he suggests that externally imposed volcanic dust and CO2 forcings can adequately account for observed temperature changes over the last century, with global sea level changing in passive response to sea change as a result of thermal expansion. Hansen et al. adduce evidence for global cooling due to ice discharge that has not exceeded a few hundredths of a degree centigrade in the last century, precluding any importance of this phenomenon in the interpretation of global mean temperature trends for this period. Etkins and Epstein reply that since their 1982 report additional evidence has emerged for the hypothesis that the polar ice caps are diminishing. It is reasserted that each of the indices discussed, including global mean sea surface temperature and sea level, polar ice sheet mass balance, water mass characteristics, and the spin rate and axis of rotation displacement of the earth, are physically linked and can be systematically monitored, as is currently being planned under the auspices of the National Climate Program.

  17. Introduced species: A significant component of human-caused global change

    USGS Publications Warehouse

    Vitousek, Peter M.; D'Antonio, Carla M.; Loope, Lloyd L.; Rejmanek, Marcel; Westbrooks, Randy G.

    1997-01-01

    Biological invasions are a widespread and significant component of human-caused global environmental change. The extent of invasions of oceanic islands, and their consequences for native biological diversity, have long been recognized. However, invasions of continental regions also are substantial. For example, more than 2,000 species of alien plants are established in the continental United States. These invasions represent a human-caused breakdown of the regional distinctiveness of Earth's flora and fauna—a substantial global change in and of itself. Moreover, there are well- documented examples of invading species that degrade human health and wealth, alter the structure and functioning of otherwise undisturbed ecosystems, and/or threaten native biological diversity. Invasions also interact synergistically with other components of global change. notably land use change. People and institutions working to understand, prevent, and control invasions are carrying out some of the most important—and potentially most effective—work on global environmental change.

  18. The Sensitivity of Regional Precipitation to Global Temperature Change and Forcings

    NASA Astrophysics Data System (ADS)

    Tebaldi, C.; O'Neill, B. C.; Lamarque, J. F.

    2016-12-01

    Global policies are most commonly formulated in terms of climate targets, like the much talked about 1.5° and 2°C warming thresholds identified as critical by the recent Paris agreements. But what does a target defined in terms of a globally averaged quantity mean in terms of expected regional changes? And, in particular, what should we expect in terms of significant changes in precipitation over specific regional domains for these and other incrementally different global goals? In this talk I will summarize the result of an analysis that aimed at characterizing the sensitivity of regional temperatures and precipitation amounts to changes in global average temperature. The analysis uses results from a multi-model ensemble (CMIP5), which allows us to address structural uncertainty in future projections, a type of uncertainty particularly relevant when considering precipitation changes. I will show what type of changes in global temperature and forcing levels bring about significant and pervasive changes in regional precipitation, contrasting its sensitivity to that of regional temperature changes. Because of the large internal variability of regional precipitation, I will show that significant changes in average regional precipitation can be detected only for fairly large separations (on the order of 2.5° or 3°C) in global average temperature levels, differently from the much higher sensitivity shown by regional temperatures.

  19. Global change and mercury

    USGS Publications Warehouse

    Krabbenhoft, David P.; Sunderland, Elsie M.

    2013-01-01

    More than 140 nations recently agreed to a legally binding treaty on reductions in human uses and releases of mercury that will be signed in October of this year. This follows the 2011 rule in the United States that for the first time regulates mercury emissions from electricity-generating utilities. Several decades of scientific research preceded these important regulations. However, the impacts of global change on environmental mercury concentrations and human exposures remain a major uncertainty affecting the potential effectiveness of regulatory activities.

  20. Relationship of Global Precipitation Measurement (GPM) Mission to Global Change Research

    NASA Astrophysics Data System (ADS)

    Smith, Eric A.

    start by the National Aeronautics and Space Administration (NASA). This new mission is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC). climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally- sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. NASA, then focuses on scientific progress that is being made in various research areas in the course of the mission formulation phase that are of interest to the global change scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning: (1) the rate of global water cycling through the atmosphere and surface and the relationship of precipitation variability to the sustained rate of the water cycle; (2) the relationship between climate change and cloud macrophysical- microphysical processes; and (3) the general improvement in measuring precipitation at the fundamental microphysical level that will take place during the GPM era and an explanation of how these improvements are expected to come about.

  1. From climate to global change: Following the footprint of Prof. Duzheng YE's research

    NASA Astrophysics Data System (ADS)

    Fu, Congbin

    2017-10-01

    To commemorate 100 years since the birth of Professor Duzheng YE, this paper reviews the contribution of Ye and his research team to the development from climate to global change science in the past 30 or so years, including: (1) the role of climate change in global change; (2) the critical time scales and predictability of global change; (3) the sensitive regions of global change—transitional zones of climate and ecosystems; and (4) orderly human activities and adaptation to global change, with a focus on the development of a proactive strategy for adaptation to such change.

  2. Global climate change impacts in the United States

    DOT National Transportation Integrated Search

    2009-06-01

    This report summarizes the science of climate change and the impacts of climate change on the United States, now and in the future. It is largely based on results of the U.S. Global Change Research Program (USGCRP), a and integrates those results wit...

  3. Agriculture and Climate Change in Global Scenarios: Why Don't the Models Agree

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Gerald; van der Mensbrugghe, Dominique; Ahammad, Helal

    Agriculture is unique among economic sectors in the nature of impacts from climate change. The production activity that transforms inputs into agricultural outputs makes direct use of weather inputs. Previous studies of the impacts of climate change on agriculture have reported substantial differences in outcomes of key variables such as prices, production, and trade. These divergent outcomes arise from differences in model inputs and model specification. The goal of this paper is to review climate change results and underlying determinants from a model comparison exercise with 10 of the leading global economic models that include significant representation of agriculture. Bymore » providing common productivity drivers that include climate change effects, differences in model outcomes are reduced. All models show higher prices in 2050 because of negative productivity shocks from climate change. The magnitude of the price increases, and the adaptation responses, differ significantly across the various models. Substantial differences exist in the structural parameters affecting demand, area, and yield, and should be a topic for future research.« less

  4. Understanding Global Change: Frameworks and Models for Teaching Systems Thinking

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; Mitchell, K.; Zoehfeld, K.; Oshry, A.; Menicucci, A. J.; White, L. D.; Marshall, C. R.

    2017-12-01

    The scientific and education communities must impart to teachers, students, and the public an understanding of how the various factors that drive climate and global change operate, and why the rates and magnitudes of these changes related to human perturbation of Earth system processes today are cause for deep concern. Even though effective educational modules explaining components of the Earth and climate system exist, interdisciplinary learning tools are necessary to conceptually link the causes and consequences of global changes. To address this issue, the Understanding Global Change Project at the University of California Museum of Paleontology (UCMP) at UC Berkeley developed an interdisciplinary framework that organizes global change topics into three categories: (1) causes of climate change, both human and non-human (e.g., burning of fossil fuels, deforestation, Earth's tilt and orbit), (2) Earth system processes that shape the way the Earth works (e.g., Earth's energy budget, water cycle), and (3) the measurable changes in the Earth system (e.g., temperature, precipitation, ocean acidification). To facilitate student learning about the Earth as a dynamic, interacting system, a website will provide visualizations of Earth system models and written descriptions of how each framework topic is conceptually linked to other components of the framework. These visualizations and textual summarizations of relationships and feedbacks in the Earth system are a unique and crucial contribution to science communication and education, informed by a team of interdisciplinary scientists and educators. The system models are also mechanisms by which scientists can communicate how their own work informs our understanding of the Earth system. Educators can provide context and relevancy for authentic datasets and concurrently can assess student understanding of the interconnectedness of global change phenomena. The UGC resources will be available through a web-based platform and

  5. GLOBAL CHANGE RESEARCH NEWS #2: MID-ATLANTIC REGIONAL ASSESSMENT (MARA)

    EPA Science Inventory

    As part of this National Assessment effort mandated by the Global Change Research Act of 1990, EPA's Global Change Research Program is sponsoring the Mid-Atlantic Regional Assessment (MARA). With EPA sponsorship, a multi-disciplinary team of faculty members is leading the first a...

  6. Global change and the evolution of phenotypic plasticity in plants.

    PubMed

    Matesanz, Silvia; Gianoli, Ernesto; Valladares, Fernando

    2010-09-01

    Global change drivers create new environmental scenarios and selective pressures, affecting plant species in various interacting ways. Plants respond with changes in phenology, physiology, and reproduction, with consequences for biotic interactions and community composition. We review information on phenotypic plasticity, a primary means by which plants cope with global change scenarios, recommending promising approaches for investigating the evolution of plasticity and describing constraints to its evolution. We discuss the important but largely ignored role of phenotypic plasticity in range shifts and review the extensive literature on invasive species as models of evolutionary change in novel environments. Plasticity can play a role both in the short-term response of plant populations to global change as well as in their long-term fate through the maintenance of genetic variation. In new environmental conditions, plasticity of certain functional traits may be beneficial (i.e., the plastic response is accompanied by a fitness advantage) and thus selected for. Plasticity can also be relevant in the establishment and persistence of plants in novel environments that are crucial for populations at the colonizing edge in range shifts induced by climate change. Experimental studies show taxonomically widespread plastic responses to global change drivers in many functional traits, though there is a lack of empirical support for many theoretical models on the evolution of phenotypic plasticity. Future studies should assess the adaptive value and evolutionary potential of plasticity under complex, realistic global change scenarios. Promising tools include resurrection protocols and artificial selection experiments. © 2010 New York Academy of Sciences.

  7. Climate Change and Expected Impacts on the Global Water Cycle

    NASA Technical Reports Server (NTRS)

    Rind, David; Hansen, James E. (Technical Monitor)

    2002-01-01

    How the elements of the global hydrologic cycle may respond to climate change is reviewed, first from a discussion of the physical sensitivity of these elements to changes in temperature, and then from a comparison of observations of hydrologic changes over the past 100 million years. Observations of current changes in the hydrologic cycle are then compared with projected future changes given the prospect of global warming. It is shown that some of the projections come close to matching the estimated hydrologic changes that occurred long ago when the earth was very warm.

  8. ECOLOGICAL RISK ASSESSMENT IN THE CONTEXT OF GLOBAL CLIMATE CHANGE

    PubMed Central

    Landis, Wayne G; Durda, Judi L; Brooks, Marjorie L; Chapman, Peter M; Menzie, Charles A; Stahl, Ralph G; Stauber, Jennifer L

    2013-01-01

    Changes to sources, stressors, habitats, and geographic ranges; toxicological effects; end points; and uncertainty estimation require significant changes in the implementation of ecological risk assessment (ERA). Because of the lack of analog systems and circumstances in historically studied sites, there is a likelihood of type III error. As a first step, the authors propose a decision key to aid managers and risk assessors in determining when and to what extent climate change should be incorporated. Next, when global climate change is an important factor, the authors recommend seven critical changes to ERA. First, develop conceptual cause–effect diagrams that consider relevant management decisions as well as appropriate spatial and temporal scales to include both direct and indirect effects of climate change and the stressor of management interest. Second, develop assessment end points that are expressed as ecosystem services. Third, evaluate multiple stressors and nonlinear responses—include the chemicals and the stressors related to climate change. Fourth, estimate how climate change will affect or modify management options as the impacts become manifest. Fifth, consider the direction and rate of change relative to management objectives, recognizing that both positive and negative outcomes can occur. Sixth, determine the major drivers of uncertainty, estimating and bounding stochastic uncertainty spatially, temporally, and progressively. Seventh, plan for adaptive management to account for changing environmental conditions and consequent changes to ecosystem services. Good communication is essential for making risk-related information understandable and useful for managers and stakeholders to implement a successful risk-assessment and decision-making process. Environ. Toxicol. Chem. 2013;32:79–92. © 2012 SETAC PMID:23161373

  9. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    ERIC Educational Resources Information Center

    Visintainer, Tammie; Linn, Marcia

    2015-01-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in…

  10. Land Cover Applications, Landscape Dynamics, and Global Change

    USGS Publications Warehouse

    Tieszen, Larry L.

    2007-01-01

    The Land Cover Applications, Landscape Dynamics, and Global Change project at U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) seeks to integrate remote sensing and simulation models to better understand and seek solutions to national and global issues. Modeling processes related to population impacts, natural resource management, climate change, invasive species, land use changes, energy development, and climate mitigation all pose significant scientific opportunities. The project activities use remotely sensed data to support spatial monitoring, provide sensitivity analyses across landscapes and large regions, and make the data and results available on the Internet with data access and distribution, decision support systems, and on-line modeling. Applications support sustainable natural resource use, carbon cycle science, biodiversity conservation, climate change mitigation, and robust simulation modeling approaches that evaluate ecosystem and landscape dynamics.

  11. A DBMS architecture for global change research

    NASA Astrophysics Data System (ADS)

    Hachem, Nabil I.; Gennert, Michael A.; Ward, Matthew O.

    1993-08-01

    The goal of this research is the design and development of an integrated system for the management of very large scientific databases, cartographic/geographic information processing, and exploratory scientific data analysis for global change research. The system will represent both spatial and temporal knowledge about natural and man-made entities on the eath's surface, following an object-oriented paradigm. A user will be able to derive, modify, and apply, procedures to perform operations on the data, including comparison, derivation, prediction, validation, and visualization. This work represents an effort to extend the database technology with an intrinsic class of operators, which is extensible and responds to the growing needs of scientific research. Of significance is the integration of many diverse forms of data into the database, including cartography, geography, hydrography, hypsography, images, and urban planning data. Equally important is the maintenance of metadata, that is, data about the data, such as coordinate transformation parameters, map scales, and audit trails of previous processing operations. This project will impact the fields of geographical information systems and global change research as well as the database community. It will provide an integrated database management testbed for scientific research, and a testbed for the development of analysis tools to understand and predict global change.

  12. Understanding global climate change scenarios through bioclimate stratification

    NASA Astrophysics Data System (ADS)

    Soteriades, A. D.; Murray-Rust, D.; Trabucco, A.; Metzger, M. J.

    2017-08-01

    Despite progress in impact modelling, communicating and understanding the implications of climatic change projections is challenging due to inherent complexity and a cascade of uncertainty. In this letter, we present an alternative representation of global climate change projections based on shifts in 125 multivariate strata characterized by relatively homogeneous climate. These strata form climate analogues that help in the interpretation of climate change impacts. A Random Forests classifier was calculated and applied to 63 Coupled Model Intercomparison Project Phase 5 climate scenarios at 5 arcmin resolution. Results demonstrate how shifting bioclimate strata can summarize future environmental changes and form a middle ground, conveniently integrating current knowledge of climate change impact with the interpretation advantages of categorical data but with a level of detail that resembles a continuous surface at global and regional scales. Both the agreement in major change and differences between climate change projections are visually combined, facilitating the interpretation of complex uncertainty. By making the data and the classifier available we provide a climate service that helps facilitate communication and provide new insight into the consequences of climate change.

  13. Data and information system requirements for Global Change Research

    NASA Technical Reports Server (NTRS)

    Skole, David L.; Chomentowski, Walter H.; Ding, Binbin; Moore, Berrien, III

    1992-01-01

    Efforts to develop local information systems for supporting interdisciplinary Global Change Research are described. A prototype system, the Interdisciplinary Science Data and Information System (IDS-DIS), designed to interface the larger archives centers of EOS-DIS is presented. Particular attention is given to a data query information management system (IMS), which has been used to tabulate information of Landsat data worldwide. The use of these data in a modeling analysis of deforestation and carbon dioxide emissions is demonstrated. The development of distributed local information systems is considered to be complementary to the development of central data archives. Global Change Research under the EOS program is likely to result in proliferation of data centers. It is concluded that a distributed system is a feasible and natural way to manage data and information for global change research.

  14. Changes in yields and their variability at different levels of global warming

    NASA Astrophysics Data System (ADS)

    Childers, Katelin

    2015-04-01

    An assessment of climate change impacts at different levels of global warming is crucial to inform the political discussion about mitigation targets as well as for the inclusion of climate change impacts in Integrated Assessment Models (IAMs) that generally only provide global mean temperature change as an indicator of climate change. While there is a well-established framework for the scalability of regional temperature and precipitation changes with global mean temperature change we provide an assessment of the extent to which impacts such as crop yield changes can also be described in terms of global mean temperature changes without accounting for the specific underlying emissions scenario. Based on multi-crop-model simulations of the four major cereal crops (maize, rice, soy, and wheat) on a 0.5 x 0.5 degree global grid generated within ISI-MIP, we show the average spatial patterns of projected crop yield changes at one half degree warming steps. We find that emissions scenario dependence is a minor component of the overall variance of projected yield changes at different levels of global warming. Furthermore, scenario dependence can be reduced by accounting for the direct effects of CO2 fertilization in each global climate model (GCM)/impact model combination through an inclusion of the global atmospheric CO2 concentration as a second predictor. The choice of GCM output used to force the crop model simulations accounts for a slightly larger portion of the total yield variance, but the greatest contributor to variance in both global and regional crop yields and at all levels of warming, is the inter-crop-model spread. The unique multi impact model ensemble available with ISI-MIP data also indicates that the overall variability of crop yields is projected to increase in conjunction with increasing global mean temperature. This result is consistent throughout the ensemble of impact models and across many world regions. Such a hike in yield volatility could have

  15. A possible explanation for the divergent projection of ENSO amplitude change under global warming

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Li, Tim; Yu, Yongqiang; Behera, Swadhin K.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) is the greatest climate variability on interannual time scale, yet what controls ENSO amplitude changes under global warming (GW) is uncertain. Here we show that the fundamental factor that controls the divergent projections of ENSO amplitude change within 20 coupled general circulation models that participated in the Coupled Model Intercomparison Project phase-5 is the change of climatologic mean Pacific subtropical cell (STC), whose strength determines the meridional structure of ENSO perturbations and thus the anomalous thermocline response to the wind forcing. The change of the thermocline response is a key factor regulating the strength of Bjerknes thermocline and zonal advective feedbacks, which ultimately lead to the divergent changes in ENSO amplitude. Furthermore, by forcing an ocean general circulation mode with the change of zonal mean zonal wind stress estimated by a simple theoretical model, a weakening of the STC in future is obtained. Such a change implies that ENSO variability might strengthen under GW, which could have a profound socio-economic consequence.

  16. Global change: Geographical approaches (A Review)*

    PubMed Central

    Kotlyakov, V. M.; Mather, J. R.; Sdasyuk, G. V.; White, G. F.

    1988-01-01

    The International Geosphere Biosphere Program sponsored by the International Council of Scientific Unions is directing attention to geophysical and biological change as influenced by human modifications in global energy and mass exchanges. Geographers in the Soviet Union and the United States have joined in critical appraisal of their experience in studying environmental change. This initial report is on some promising approaches, such as the reconstruction of earlier landscape processes, modeling of the dynamics of present-day landscapes, analysis of causes and consequences of anthropogenic changes in specified regions, appraisal of social response to change, and enhanced geographic information systems supported by detailed site studies. PMID:16593971

  17. Changes of cloudiness over tropical land during the past few decades and its link to global climate change

    NASA Astrophysics Data System (ADS)

    Arias, P.; Fu, R.; Li, W.

    2007-12-01

    Tropical forests play a key role in determining the global carbon-climate feedback in the 21st century. Changes in rainforest growth and mortality rates, especially in the deep and least perturbed forest areas, have been consistently observed across global tropics in recent years. Understanding the underlying causes of these changes, especially their links to the global climate change, is especially important in determining the future of the tropical rainforests in the 21st century. Previous studies have mostly focus on the potential influences from elevated atmospheric CO2 and increasing surface temperature. Because the rainforests in wet tropical region is often light limited, we explore whether cloudiness have changed, if so, whether it is consistent with that expected from changes in forest growth rate. We will report our observational analysis examining the trends in annual average shortwave (SW) downwelling radiation, total cloud cover, and cumulus cover over the tropical land regions and to link them with trends in convective available potencial energy (CAPE). ISCCP data and radiosonde records available from the Department of Atmospheric Sciences of the University of Wyoming (http://www.weather.uwyo.edu/upperair/sounding.html) are used to study the trends. The period for the trend analysis is 1984-2004 for the ISCCP data and 1980-2006 for the radiosondes. The results for the Amazon rainforest region suggest a decreasing trend in total cloud and convective cloud covers, which results in an increase in downwelling SW radiation at the surface. These changes of total and convective clouds are consistent with a trend of decreasing CAPE and an elevated Level of Free Convection (LFC) height, as obtained from the radiosondes. All the above mentioned trends are statistically significant based on the Mann-Kendall test with 95% of confidence. These results consistently suggest the downward surface solar radiation has been increasing since 1984, result from a decrease

  18. Global Change Research Related to the Earth's Energy and Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Institute for Global Change Research and Education (IGCRE) is a joint initiative of the Universities Space Research Association (USRA) and the University of Alabama in Huntsville (UAH) for coordinating and facilitating research and education relevant to global environmental change. Created in 1992 with primary support from the National Aeronautics and Space Administration (NASA), IGCRE fosters participation by university, private sector and government scientists who seek to develop long-term collaborative research in global change science, focusing on the role of water and energy in the Earth's atmosphere and physical climate system. IGCRE is also chartered to address educational needs of Earth system and global change science, including the preparation of future scientists and training of primary and secondary education teachers.

  19. Seagrass meadows in a globally changing environment.

    PubMed

    Unsworth, Richard K F; van Keulen, Mike; Coles, Rob G

    2014-06-30

    Seagrass meadows are valuable ecosystem service providers that are now being lost globally at an unprecedented rate, with water quality and other localised stressors putting their future viability in doubt. It is therefore critical that we learn more about the interactions between seagrass meadows and future environmental change in the anthropocene. This needs to be with particular reference to the consequences of poor water quality on ecosystem resilience and the effects of change on trophic interactions within the food web. Understanding and predicting the response of seagrass meadows to future environmental change requires an understanding of the natural long-term drivers of change and how these are currently influenced by anthropogenic stress. Conservation management of coastal and marine ecosystems now and in the future requires increased knowledge of how seagrass meadows respond to environmental change, and how they can be managed to be resilient to these changes. Finding solutions to such issues also requires recognising people as part of the social-ecological system. This special issue aims to further enhance this knowledge by bringing together global expertise across this field. The special issues considers issues such as ecosystem service delivery of seagrass meadows, the drivers of long-term seagrass change and the socio-economic consequences of environmental change to seagrass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Global Environmental Change: Modifying Human Contributions Through Education

    NASA Astrophysics Data System (ADS)

    Carter, Lynne M.

    1998-12-01

    The 1995 Intergovernmental Panel on Climate Change (IPCC, 1996) Science report concludes that evidence now available "points toward a discernible human influence on global climate" (p. 439). Reductions in emissions will require changes in human behavior. This study assessed whether gains in global environmental change knowledge would lead to changes in human behaviors that could be deemed environmentally responsible. The study assessed the impact on participant behavior of a two-and-one-half day National Informal Educators Workshop and Videoconference held November 14-16, 1994. The workshops were located in seven down-link sites around the continental U.S. and Hawaii. The program utilized a variety of pedagogical techniques during five hours of satellite programming with national expertise on global change topics (natural variability, greenhouse effect, ozone depletion, ecosystem response, and population and resource distribution) and applications of that information with local experts in regional workshops. Participants implemented many personal and professional behavior changes after participation in this program. Six behavior change scales were created from assessment of survey responses (four coefficient alphas were above .7, one was .68, and one was .58). Personal behavior changes grouped into three categories: Use of Fewer Resources (acts of everyday life generally under volitional control), Purchasing Choices/Options (less frequent acts, not under total volitional control, with significant environmental effect over the lifetime of the decision, e.g., an automobile) and Increased Awareness and Discussion (indicating changes in "habits of mind"). The professional behavior changes also grouped into three categories: Curriculum Development (developing/revising curricula including new knowledge); Networking (with colleagues from the program); and Office Procedures (reflecting environmentally responsible behavior). The statistically significant behavior changes

  1. Climate change impacts on global rainfed agricultural land availability

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cai, X.

    2010-12-01

    Global rainfed agricultural land availability can be subject to significant changes in both magnitude and spatial distribution due to climate change. We assess the possible changes using current and projected climate data from thirteen general circulation models (GCMs) under two emission scenarios, A1B & B1, together with global databases on land, including soil properties and slope. Two ensemble methods with the set of GCMs, Simple Average Method (SAM) and Root Mean Square Error Ensemble Method (RMSEMM), are employed to abate uncertainty involved in global GCM projections for assembling regional climate. Fuzzy logic, which handles land classification in an approximate yet efficient way, is adopted to estimate the land suitability through empirically determined membership functions and fuzzy rules chosen through a learning process based on remote sensed crop land products. Land suitability under five scenarios, which include the present-climate baseline scenario and four projected scenarios, A1B-SAM, A1B-RMSEMM, B1-SAM, and B1-RMSEMM, are assessed for both global and seven important agricultural regions in the world, Africa, China, India, Europe (excluding Russia), Russia, South America, and U.S. It is found that countries at the high latitudes of north hemisphere are more likely to benefit from climate change with respect to agricultural land availability; while countries at mid- and low latitudes may suffer different levels of loss of potential arable land. Expansions of the gross potential arable land are likely to occur in regions at the north high latitudes, including Russia, North China and U.S., while land shrinking can be expected in South America, Africa, India and Europe. Although the greatest potential for agricultural expansion lies in Africa and South America, with current cultivated land accounting for 20% and 13% respectively of the net potential arable land, negative effects from climate change may decline the potential. In summary, climate change

  2. Global change and terrestrial hydrology - A review

    NASA Technical Reports Server (NTRS)

    Dickinson, Robert E.

    1991-01-01

    This paper reviews the role of terrestrial hydrology in determining the coupling between the surface and atmosphere. Present experience with interactive numerical simulation is discussed and approaches to the inclusion of land hydrology in global climate models ae considered. At present, a wide range of answers as to expected changes in surface hydrology is given by nominally similar models. Studies of the effects of tropical deforestation and global warming illustrate this point.

  3. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests

    USGS Publications Warehouse

    Allen, Craig D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, Michel; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.(T.); Gonzalez, P.; Fensham, R.; Zhang, Z.; Castro, J.; Demidova, N.; Lim, J.-H.; Allard, G.; Running, S.W.; Semerci, A.; Cobb, N.

    2010-01-01

    Greenhouse gas emissions have significantly altered global climate, and will continue to do so in the future. Increases in the frequency, duration, and/or severity of drought and heat stress associated with climate change could fundamentally alter the composition, structure, and biogeography of forests in many regions. Of particular concern are potential increases in tree mortality associated with climate-induced physiological stress and interactions with other climate-mediated processes such as insect outbreaks and wildfire. Despite this risk, existing projections of tree mortality are based on models that lack functionally realistic mortality mechanisms, and there has been no attempt to track observations of climate-driven tree mortality globally. Here we present the first global assessment of recent tree mortality attributed to drought and heat stress. Although episodic mortality occurs in the absence of climate change, studies compiled here suggest that at least some of the world's forested ecosystems already may be responding to climate change and raise concern that forests may become increasingly vulnerable to higher background tree mortality rates and die-off in response to future warming and drought, even in environments that are not normally considered water-limited. This further suggests risks to ecosystem services, including the loss of sequestered forest carbon and associated atmospheric feedbacks. Our review also identifies key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system. Overall, our review reveals the potential for amplified tree mortality due to drought and heat in forests worldwide.

  4. The southern global change program

    Treesearch

    Southeastern Forest Experiment Station

    1992-01-01

    For mote than a decade, scientists around the world have expressed concern over observed changes in the Earth's environment that suggest fum global environmental problems. They have documented increased levels of air pollutants such as ozone nd acid I as well as in- in carbon dioxide and other greenhouse gases. Scientists also have noted a 0.5°F to l.0°F rise...

  5. Chemistry of the atmosphere: Its impact on global change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birks, J.W.; Calvert, J.G.; Sievers, R.E.

    1993-12-31

    This book is a summary of the plenary lectures of the CHEMRAWN VII Conference held in Baltimore, Maryland, 2-7 December 1991. The book draws together some interesting perspectives relating to global change from the atmospheric chemistry community from more of a chemist`s point of view than a meteorologist`s. In fact, Chemical Research Applied to World Needs (CHEMRAWN) illustrates how the international atmospheric chemistry community (the meeting was cosponsored by the International Union of Pure and Applied Chemistry and the American Chemical Society) has traditionally put forth a considerable effort to understand the global environmental impact of dumping chemicals into themore » atmosphere. The primary benefit of this book is the concise summary of the research issues confronting the atmospheric science community regarding global change. Being a summary of plenary lectures, the technical depth of the papers is not great. Therefore the book offers a good presentation of material to the nonspecialist who seeks to understand the issues around which the global change research community has focused.« less

  6. SeaRISE: A Multidisciplinary Research Initiative to Predict Rapid Changes in Global Sea Level Caused by Collapse of Marine Ice Sheets

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A. (Editor)

    1990-01-01

    The results of a workshop held to discuss the role of the polar ice sheets in global climate change are reported. The participants agreed that the most important aspect of the ice sheets' involvement in climate change is the potential of marine ice sheets to cause a rapid change in global sea level. To address this concern, a research initiative is called for that considers the full complexity of the coupled atmosphere-ocean-cryosphere-lithosphere system. This initiative, called SeaRISE (Sea-level Response to Ice Sheet Evolution) has the goal of predicting the contribution of marine ice sheets to rapid changes in global sea level in the next decade to few centuries. To attain this goal, a coordinated program of multidisciplinary investigations must be launched with the linked objectives of understanding the current state, internal dynamics, interactions, and history of this environmental system. The key questions needed to satisfy these objectives are presented and discussed along with a plan of action to make the SeaRISE project a reality.

  7. Global climate change and US agriculture

    NASA Technical Reports Server (NTRS)

    Adams, Richard M.; Rosenzweig, Cynthia; Peart, Robert M.; Ritchie, Joe T.; Mccarl, Bruce A.

    1990-01-01

    Agricultural productivity is expected to be sensitive to global climate change. Models from atmospheric science, plant science, and agricultural economics are linked to explore this sensitivity. Although the results depend on the severity of climate change and the compensating effects of carbon dioxide on crop yields, the simulation suggests that irrigated acreage will expand and regional patterns of U.S. agriculture will shift. The impact of the U.S. economy strongly depends on which climate model is used.

  8. Changing recruitment capacity in global fish stocks.

    PubMed

    Britten, Gregory L; Dowd, Michael; Worm, Boris

    2016-01-05

    Marine fish and invertebrates are shifting their regional and global distributions in response to climate change, but it is unclear whether their productivity is being affected as well. Here we tested for time-varying trends in biological productivity parameters across 262 fish stocks of 127 species in 39 large marine ecosystems and high-seas areas (hereafter LMEs). This global meta-analysis revealed widespread changes in the relationship between spawning stock size and the production of juvenile offspring (recruitment), suggesting fundamental biological change in fish stock productivity at early life stages. Across regions, we estimate that average recruitment capacity has declined at a rate approximately equal to 3% of the historical maximum per decade. However, we observed large variability among stocks and regions; for example, highly negative trends in the North Atlantic contrast with more neutral patterns in the North Pacific. The extent of biological change in each LME was significantly related to observed changes in phytoplankton chlorophyll concentration and the intensity of historical overfishing in that ecosystem. We conclude that both environmental changes and chronic overfishing have already affected the productive capacity of many stocks at the recruitment stage of the life cycle. These results provide a baseline for ecosystem-based fisheries management and may help adjust expectations for future food production from the oceans.

  9. Processionary Moths and Associated Urtication Risk: Global Change-Driven Effects.

    PubMed

    Battisti, Andrea; Larsson, Stig; Roques, Alain

    2017-01-31

    Processionary moths carry urticating setae, which cause health problems in humans and other warm-blooded animals. The pine processionary moth Thaumetopoea pityocampa has responded to global change (climate warming and increased global trade) by extending its distribution range. The subfamily Thaumetopoeinae consists of approximately 100 species. An important question is whether other processionary moth species will similarly respond to these specific dimensions of global change and thus introduce health hazards into new areas. We describe, for the first time, how setae are distributed on different life stages (adult, larva) of major groups within the subfamily. Using the available data, we conclude that there is little evidence that processionary moths as a group will behave like T. pityocampa and expand their distributional range. The health problems caused by setae strongly relate to population density, which may, or may not, be connected to global change.

  10. Malaria and global change: Insights, uncertainties and possible surprises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, P.H.; Steel, A.

    Malaria may change with global change. Indeed, global change may affect malaria risk and malaria epidemiology. Malaria risk may change in response to a greenhouse warming; malaria epidemiology, in response to the social, economic, and political developments which a greenhouse warming may trigger. To date, malaria receptivity and epidemiology futures have been explored within the context of equilibrium studies. Equilibrium studies of climate change postulate an equilibrium present climate (the starting point) and a doubled-carbon dioxide climate (the end point), simulate conditions in both instances, and compare the two. What happens while climate changes, i.e., between the starting point andmore » the end point, is ignored. The present paper focuses on malaria receptivity and addresses what equilibrium studies miss, namely transient malaria dynamics.« less

  11. Rethinking health systems strengthening: key systems thinking tools and strategies for transformational change

    PubMed Central

    Swanson, R Chad; Cattaneo, Adriano; Bradley, Elizabeth; Chunharas, Somsak; Atun, Rifat; Abbas, Kaja M; Katsaliaki, Korina; Mustafee, Navonil; Mason Meier, Benjamin; Best, Allan

    2012-01-01

    While reaching consensus on future plans to address current global health challenges is far from easy, there is broad agreement that reductionist approaches that suggest a limited set of targeted interventions to improve health around the world are inadequate. We argue that a comprehensive systems perspective should guide health practice, education, research and policy. We propose key ‘systems thinking’ tools and strategies that have the potential for transformational change in health systems. Three overarching themes span these tools and strategies: collaboration across disciplines, sectors and organizations; ongoing, iterative learning; and transformational leadership. The proposed tools and strategies in this paper can be applied, in varying degrees, to every organization within health systems, from families and communities to national ministries of health. While our categorization is necessarily incomplete, this initial effort will provide a valuable contribution to the health systems strengthening debate, as the need for a more systemic, rigorous perspective in health has never been greater. PMID:23014154

  12. Rethinking health systems strengthening: key systems thinking tools and strategies for transformational change.

    PubMed

    Swanson, R Chad; Cattaneo, Adriano; Bradley, Elizabeth; Chunharas, Somsak; Atun, Rifat; Abbas, Kaja M; Katsaliaki, Korina; Mustafee, Navonil; Mason Meier, Benjamin; Best, Allan

    2012-10-01

    While reaching consensus on future plans to address current global health challenges is far from easy, there is broad agreement that reductionist approaches that suggest a limited set of targeted interventions to improve health around the world are inadequate. We argue that a comprehensive systems perspective should guide health practice, education, research and policy. We propose key 'systems thinking' tools and strategies that have the potential for transformational change in health systems. Three overarching themes span these tools and strategies: collaboration across disciplines, sectors and organizations; ongoing, iterative learning; and transformational leadership. The proposed tools and strategies in this paper can be applied, in varying degrees, to every organization within health systems, from families and communities to national ministries of health. While our categorization is necessarily incomplete, this initial effort will provide a valuable contribution to the health systems strengthening debate, as the need for a more systemic, rigorous perspective in health has never been greater.

  13. Globalization and the Changing Epidemiology of Hepatitis A Virus.

    PubMed

    Jacobsen, Kathryn H

    2018-03-02

    Increased economic interdependence, social integration, and other aspects of globalization are contributing to significant changes in hepatitis A epidemiology. Globally, the incidence of hepatitis A virus (HAV) infection is decreasing, the age at midpoint of population immunity (AMPI) is increasing, and the proportion of symptomatic cases is increasing as the average age at infection increases. In low-income countries, HAV remains endemic but improved water and sanitation systems are reducing transmission rates among young children. In high-income countries, most adults remain susceptible to HAV and foodborne outbreaks are becoming more frequent. Middle-income countries have diverse epidemiological profiles, and they play important roles in the global spread of HAV through international trade and travel. Future changes in the epidemiology of hepatitis A will be heavily influenced by globalization processes. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  14. Surfing Global Change: Negotiating Sustainable Solutions

    ERIC Educational Resources Information Center

    Ahamer, Gilbert

    2006-01-01

    SURFING GLOBAL CHANGE (SGC) serves as a procedural shell for attaining sustainable solutions for any interdisciplinary issue and is intended for use in advanced university courses. The participants' activities evolve through five levels from individual argumentation to molding one's own views for the "common good." The paradigm of…

  15. The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change.

    PubMed

    David, Jean-François; Handa, Ira Tanya

    2010-11-01

    Millipedes (Diplopoda) and woodlice (Crustacea, Isopoda), with a total of about 15000 described species worldwide, contribute substantially to invertebrate biodiversity. These saprophagous macroarthropods, which are key regulators of plant litter decomposition, play an important role in the functioning of terrestrial ecosystems in tropical and temperate areas. Herein we review current knowledge on the effects of climate, food quality and land cover on millipede and woodlouse species to explore their potential responses to global change. Essentially similar trends are observed in the two taxa. Experiments have shown that climate warming could result in higher rates of population growth and have positive effects on the abundance of some temperate species. This is consistent with signs of northward expansion in Europe, although the mechanisms of dispersal remain unclear. The generality of this finding is evaluated in relation to the life histories and geographical distributions of species. At low latitudes, interactions with more severe droughts are likely and could affect community composition. Elevated atmospheric CO₂ levels and changes in plant community composition are expected to alter leaf litter quality, a major determinant of macroarthropod fertility via the link with female adult body size. Although food quality changes have been shown to influence population growth rates significantly, it is proposed that the effects of warming will be probably more important during the coming decades. Land cover changes, mainly due to deforestation in the tropics and land abandonment in Europe, are critical to habitat specialists and could override any other effect of global change. Habitat destruction by man may be the main threat to macroarthropod species, many of which are narrow endemics. At the landscape scale, habitat heterogeneity could be a good option for conservation, even at the cost of some fragmentation. Two principal areas are identified which require

  16. Climatic change controls productivity variation in global grasslands

    PubMed Central

    Gao, Qingzhu; Zhu, Wenquan; Schwartz, Mark W.; Ganjurjav, Hasbagan; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Williamson, Matthew A.; Li, Yue

    2016-01-01

    Detection and identification of the impacts of climate change on ecosystems have been core issues in climate change research in recent years. In this study, we compared average annual values of the normalized difference vegetation index (NDVI) with theoretical net primary productivity (NPP) values based on temperature and precipitation to determine the effect of historic climate change on global grassland productivity from 1982 to 2011. Comparison of trends in actual productivity (NDVI) with climate-induced potential productivity showed that the trends in average productivity in nearly 40% of global grassland areas have been significantly affected by climate change. The contribution of climate change to variability in grassland productivity was 15.2–71.2% during 1982–2011. Climate change contributed significantly to long-term trends in grassland productivity mainly in North America, central Eurasia, central Africa, and Oceania; these regions will be more sensitive to future climate change impacts. The impacts of climate change on variability in grassland productivity were greater in the Western Hemisphere than the Eastern Hemisphere. Confirmation of the observed trends requires long-term controlled experiments and multi-model ensembles to reduce uncertainties and explain mechanisms. PMID:27243565

  17. Global Change: A View from Space

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2003-01-01

    In this talk, I will discuss the fundamental science and society problems associated with global change, with an emphasis on the view from space. I will provide an overview of the vision and activities of the World Climate Research Program in the next two decades. Then I will show regional climate changes and environmental problems in the East Asian region, such as biomass burning, urban pollutions, yellow sand, and their possible interaction with the Asian monsoon, particularly over Southern China.

  18. Global-change vulnerability of a key plant resource, the African palms.

    PubMed

    Blach-Overgaard, Anne; Balslev, Henrik; Dransfield, John; Normand, Signe; Svenning, Jens-Christian

    2015-07-27

    Palms are keystone species in tropical ecosystems and provide essential ecosystem services to rural people worldwide. However, many palm species are threatened by habitat loss and over-exploitation. Furthermore, palms are sensitive to climate and thus vulnerable to future climate changes. Here, we provide a first quantitative assessment of the future risks to the African palm flora, finding that African palm species on average may experience a decline in climatic suitability in >70% of their current ranges by 2080. This suitability loss may, however, be almost halved if migration to nearby climatically suitable sites succeeds. Worryingly, 42% of the areas with 80-100% of species losing climate suitability are also characterized by high human population density (HPD). By 2080, >90% of all African palm species' ranges will likely occur at HPDs leading to increased risks of habitat loss and overexploitation. Additionally, up to 87% of all species are predicted to lose climatic suitability within current protected areas (PAs) by 2080. In summary, a major plant component of tropical ecosystems and provider of ecosystem services to rural populations will face strongly increased pressures from climate change and human populations in the near future.

  19. The potential of land management to decrease global warming from climate change

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Hausfather, Z.; Jones, A. D.; Silver, W. L.

    2016-12-01

    Recent evidence suggests that negative emissions (i.e. sequestration) is critical to slow climate change (IPCC, 2013; Gasser et al, 2015). Agricultural (crop and grazing) lands have the potential to act as a significant carbon sink. These ecosystems cover a significant proportion of the global land surface, and are largely degraded with regard to soil carbon due to previous management practices (Bai et al, 2008). However, few studies have examined the required scale of land management interventions that would be required to make a significant contribution to a portfolio of efforts aimed at limiting anthropogenic influences on global mean temperature. To address this, we modelled the quantitative effect of a range of soil carbon sequestration rates on global temperature to 2100. Results showed that by assuming a baseline emissions scenario outlined in RCP 2.6, the sequestration of an additional 0.7 Pg C per year through improved agricultural land management practices would produce a reduction of 0.1 degrees C from predicted global temperatures by the year 2100. We also compiled previous estimates of global carbon sequestration potential of agricultural soils to compare with our theoretical prediction to determine whether carbon sequestration through existing land management practices has potential to significantly reduce global temperatures. Assuming long-term soil carbon uptake, the combined potential of agricultural land management-based mitigation approaches exceeded 0.25 degrees C warming reduction by the year 2100. However, results were highly sensitive to potential carbon saturation, defined as the maximum threshold for carbon storage in soil. Our results suggest that current land management technologies and available land area exist and could make a measureable impact on warming reduction. Results also highlighted potential carbon saturation as a key gap in knowledge.

  20. Global Change and the Function and Distribution of Wetlands

    USGS Publications Warehouse

    Middleton, Beth A.

    2012-01-01

    The Global Change Ecology and Wetlands book series will highlight the latest research from the world leaders in the field of climate change in wetlands. Global Change and the Function and Distribution of Wetlands highlights information of importance to wetland ecologists.  The chapters include syntheses of international studies on the effects of drought on function and regeneration in wetlands, sea level rise and the distribution of mangrove swamps, former distributions of swamp species and future lessons from paleoecology, and shifts in atmospheric emissions across geographical regions in wetlands.  Overall, the book will contribute to a better understanding of the potential effects of climate change on world wetland distribution and function.

  1. A Recommended Set of Key Arctic Indicators

    NASA Astrophysics Data System (ADS)

    Stanitski, D.; Druckenmiller, M.; Fetterer, F. M.; Gerst, M.; Intrieri, J. M.; Kenney, M. A.; Meier, W.; Overland, J. E.; Stroeve, J.; Trainor, S.

    2017-12-01

    The Arctic is an interconnected and environmentally sensitive system of ice, ocean, land, atmosphere, ecosystems, and people. From local to pan-Arctic scales, the area has already undergone major changes in physical and societal systems and will continue at a pace that is greater than twice the global average. Key Arctic indicators can quantify these changes. Indicators serve as the bridge between complex information and policy makers, stakeholders, and the general public, revealing trends and information people need to make important socioeconomic decisions. This presentation evaluates and compiles more than 70 physical, biological, societal and economic indicators into an approachable summary that defines the changing Arctic. We divided indicators into "existing," "in development," "possible," and "aspirational". In preparing a paper on Arctic Indicators for a special issue of the journal Climatic Change, our group established a set of selection criteria to identify indicators to specifically guide decision-makers in their responses to climate change. A goal of the analysis is to select a manageable composite list of recommended indicators based on sustained, reliable data sources with known user communities. The selected list is also based on the development of a conceptual model that identifies components and processes critical to our understanding of the Arctic region. This list of key indicators is designed to inform the plans and priorities of multiple groups such as the U.S. Global Change Research Program (USGCRP), Interagency Arctic Research Policy Committee (IARPC), and the Arctic Council.

  2. Global warming /climate change: Involving students using local example.

    NASA Astrophysics Data System (ADS)

    Isiorho, S. A.

    2016-12-01

    The current political climate has made it apparent that the general public does not believe in global warming. Also, there appears to be some confusion between global warming and climate change; global warming is one aspect of climate change. Most scientists believe there is climate change and global warming, although, there is still doubt among students on global warming. Some upper level undergraduate students are required to conduct water level/temperature measurements as part of their course grade. In addition to students having their individual projects, the various classes also utilize a well field within a wetland on campus to conduct group projects. Twelve wells in the well field on campus are used regularly by students to measure the depth of groundwater, the temperature of the waters and other basic water chemistry parameters like pH, conductivity and total dissolved solid (TDS) as part of the class group project. The data collected by each class is added to data from previous classes. Students work together as a group to interpret the data. More than 100 students have participated in this venture for more than 10 years of the four upper level courses: hydrogeology, environmental and urban geology, environmental conservation and wetlands. The temperature trend shows the seasonal variation as one would expect, but it also shows an upward trend (warming). These data demonstrate a change in climate and warming. Thus, the students participated in data collection, learn to write report and present their result to their peers in the classrooms.

  3. A global synthesis of animal phenological responses to climate change

    NASA Astrophysics Data System (ADS)

    Cohen, Jeremy M.; Lajeunesse, Marc J.; Rohr, Jason R.

    2018-03-01

    Shifts in phenology are already resulting in disruptions to the timing of migration and breeding, and asynchronies between interacting species1-5. Recent syntheses have concluded that trophic level1, latitude6 and how phenological responses are measured7 are key to determining the strength of phenological responses to climate change. However, researchers still lack a comprehensive framework that can predict responses to climate change globally and across diverse taxa. Here, we synthesize hundreds of published time series of animal phenology from across the planet to show that temperature primarily drives phenological responses at mid-latitudes, with precipitation becoming important at lower latitudes, probably reflecting factors that drive seasonality in each region. Phylogeny and body size are associated with the strength of phenological shifts, suggesting emerging asynchronies between interacting species that differ in body size, such as hosts and parasites and predators and prey. Finally, although there are many compelling biological explanations for spring phenological delays, some examples of delays are associated with short annual records that are prone to sampling error. Our findings arm biologists with predictions concerning which climatic variables and organismal traits drive phenological shifts.

  4. Earth's changing global atmospheric energy cycle in response to climate change

    PubMed Central

    Pan, Yefeng; Li, Liming; Jiang, Xun; Li, Gan; Zhang, Wentao; Wang, Xinyue; Ingersoll, Andrew P.

    2017-01-01

    The Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change. The total mechanical energy of the global atmosphere basically remains constant with time, but the global-average eddy energies show significant positive trends. The spatial investigations suggest that these positive trends are concentrated in the Southern Hemisphere. Significant positive trends are also found in the conversion, generation and dissipation rates of energies. The positive trends in the dissipation rates of kinetic energies suggest that the efficiency of the global atmosphere as a heat engine increased during the modern satellite era. PMID:28117324

  5. Towards monitoring land-cover and land-use changes at a global scale: the global land survey 2005

    USGS Publications Warehouse

    Gutman, G.; Byrnes, Raymond A.; Masek, J.; Covington, S.; Justice, C.; Franks, S.; Headley, Rachel

    2008-01-01

    Land cover is a critical component of the Earth system, infl uencing land-atmosphere interactions, greenhouse gas fl uxes, ecosystem health, and availability of food, fi ber, and energy for human populations. The recent Integrated Global Observations of Land (IGOL) report calls for the generation of maps documenting global land cover at resolutions between 10m and 30m at least every fi ve years (Townshend et al., in press). Moreover, despite 35 years of Landsat observations, there has not been a unifi ed global analysis of land-cover trends nor has there been a global assessment of land-cover change at Landsat-like resolution. Since the 1990s, the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) have supported development of data sets based on global Landsat observations (Tucker et al., 2004). These land survey data sets, usually referred to as GeoCover ™, provide global, orthorectifi ed, typically cloud-free Landsat imagery centered on the years 1975, 1990, and 2000, with a preference for leaf-on conditions. Collectively, these data sets provided a consistent set of observations to assess land-cover changes at a decadal scale. These data are freely available via the Internet from the USGS Center for Earth Resources Observation and Science (EROS) (see http://earthexplorer.usgs.gov or http://glovis.usgs.gov). This has resulted in unprecedented downloads of data, which are widely used in scientifi c studies of land-cover change (e.g., Boone et al., 2007; Harris et al., 2005; Hilbert, 2006; Huang et al. 2007; Jantz et al., 2005, Kim et al., 2007; Leimgruber, 2005; Masek et al., 2006). NASA and USGS are continuing to support land-cover change research through the development of GLS2005 - an additional global Landsat assessment circa 20051 . Going beyond the earlier initiatives, this data set will establish a baseline for monitoring changes on a 5-year interval and will pave the way toward continuous global land

  6. Global Climate Change and NEPA: The Difficulty with Cumulative Impacts Analysis

    DTIC Science & Technology

    2008-05-18

    This paper will provide a survey of the current requirements under the law for addressing global climate change in NEPA documents, along with various...methodologies for quantifying the potential global climate change impacts of federal actions subject to NEPA.

  7. Global Terrestrial Patterns of Precipitation Change under a Warming Climate

    NASA Astrophysics Data System (ADS)

    Guo, R.

    2017-12-01

    Terrestrial global warming has occurred over the last century, especially since the 1950s. This study analyzes changes in global terrestrial precipitation patterns in period of 1950-2010 in an attempt to identify the influence of climate change on precipitation. The results indicate that there is no significant change globally or across latitude bands; nevertheless significant regional differences in precipitation changes are identified. The lack of a change in precipitation levels, or precipitation balance, at both the global and latitudinal band scales is a result of offsetting by opposing precipitation changes at the regional scales. Clear opposing precipitation change patterns appeared in the Northern Hemisphere mid-latitude band (NHM). Significant increases in precipitation were distributed throughout the western extent of NHM, including the North America, Europe and west of Central Asia, while decreases were observed over the eastern extent, namely, East Asia. A dynamical adjustment methodology was applied to precipitation data, which could identify the roles of atmospheric circulation (dynamic) and the residual (thermodynamic) forcing played in generating the opposing regional precipitation changes in the NHM. Distinct different changes of dynamic and thermodynamic precipitation were found in different regions. Increased precipitation in North America and southern Europe were caused by thermodynamic precipitation, while the dynamic precipitation presented decreased trend due to the positive sea level pressure trend. However, in northern Europe and west of Central Asia, dynamic and thermodynamic precipitation both contributed to the increased precipitation, but thermodynamic precipitation had larger amplitude. In East Asia, the decreased precipitation was a result of simultaneous decrease in dynamic and thermodynamic precipitation.

  8. Increasing Diversity in Global Climate Change Research for Undergraduates

    NASA Astrophysics Data System (ADS)

    Johnson, L. P.; Marchese, P.; Carlson, B. E.; Howard, A. M.; Peteet, D. M.; Rosenzweig, C.; Druyan, L. M.; Fulakeza, M.; Gaffin, S.; Austin, S. A.; Cheung, T. D.; Damas, M. C.; Boxe, C.; Prince, T.; Ng, C.; Frost, J.

    2014-12-01

    Global Climate Change and the ability to predict the effects of forcings and feedback mechanisms on global and local climate are critical to the survival of the inhabitants of planet Earth. It is therefore important to motivate students to continue their studies towards advanced degrees and pursue careers related to climate change. This is best accomplished by involving undergraduates in global climate change research. This Research Experience for Undergraduates (REU) initiative is based at the City University of New York (CUNY) and the Goddard Institute for Space Studies (GISS), and is supported by NASA and NSF. Mentors for the primarily summer research experiences include CUNY faculty and GISS scientists. Research topics include the Wetland Carbon Project, The Cooling Power Of Urban Vegetation, Internal Ocean Mixing, El Niño Southern Oscillation, Pollution Transport and Tropospheric Ozone. Students are recruited from CUNY colleges and other colleges and universities. The program maintains an emphasis on under-represented minorities and females. Approximately sixty percent of the undergraduate students are under-represented minorities and forty percent are female. The project is supported by NSF award AGS-1359293 REU Site: CUNY/GISS Center for Global Climate Research.

  9. Phylogenetic responses of forest trees to global change.

    PubMed

    Senior, John K; Schweitzer, Jennifer A; O'Reilly-Wapstra, Julianne; Chapman, Samantha K; Steane, Dorothy; Langley, Adam; Bailey, Joseph K

    2013-01-01

    In a rapidly changing biosphere, approaches to understanding the ecology and evolution of forest species will be critical to predict and mitigate the effects of anthropogenic global change on forest ecosystems. Utilizing 26 forest species in a factorial experiment with two levels each of atmospheric CO2 and soil nitrogen, we examined the hypothesis that phylogeny would influence plant performance in response to elevated CO2 and nitrogen fertilization. We found highly idiosyncratic responses at the species level. However, significant, among-genetic lineage responses were present across a molecularly determined phylogeny, indicating that past evolutionary history may have an important role in the response of whole genetic lineages to future global change. These data imply that some genetic lineages will perform well and that others will not, depending upon the environmental context.

  10. Changing recruitment capacity in global fish stocks

    PubMed Central

    Britten, Gregory L.; Dowd, Michael; Worm, Boris

    2016-01-01

    Marine fish and invertebrates are shifting their regional and global distributions in response to climate change, but it is unclear whether their productivity is being affected as well. Here we tested for time-varying trends in biological productivity parameters across 262 fish stocks of 127 species in 39 large marine ecosystems and high-seas areas (hereafter LMEs). This global meta-analysis revealed widespread changes in the relationship between spawning stock size and the production of juvenile offspring (recruitment), suggesting fundamental biological change in fish stock productivity at early life stages. Across regions, we estimate that average recruitment capacity has declined at a rate approximately equal to 3% of the historical maximum per decade. However, we observed large variability among stocks and regions; for example, highly negative trends in the North Atlantic contrast with more neutral patterns in the North Pacific. The extent of biological change in each LME was significantly related to observed changes in phytoplankton chlorophyll concentration and the intensity of historical overfishing in that ecosystem. We conclude that both environmental changes and chronic overfishing have already affected the productive capacity of many stocks at the recruitment stage of the life cycle. These results provide a baseline for ecosystem-based fisheries management and may help adjust expectations for future food production from the oceans. PMID:26668368

  11. Spatial Modeling of Agricultural Land-Use Change at Global Scale

    NASA Astrophysics Data System (ADS)

    Meiyappan, Prasanth; Dalton, Michael; O'Neill, Brian C.; Jain, Atul K.

    2013-12-01

    Land use is both a source and consequence of climate change. Long-term modeling of land use is central in global scale assessments using Integrated Assessment Models (IAMs) to explore policy alternatives; especially because adaptation and mitigation of climate change requires long-term commitment. We present a land-use change modeling framework that can reproduce the past 100 years of evolution of global cropland and pastureland patterns to a reasonable accuracy. The novelty of our approach underlies in integrating knowledge from both the observed behavior and economic rationale behind land-use decisions, thereby making up for the intrinsic deficits in both the disciplines. The underlying economic rationale is profit maximization of individual landowners that implicitly reflects local-level decisions-making process at a larger scale. Observed behavior based on examining the relationships between contemporary land-use patterns and its socioeconomic and biophysical drivers, enters as an explicit factor into the economic framework. The land-use allocation is modified by autonomous developments and competition between land-use types. The framework accounts for spatial heterogeneity in the nature of driving factors across geographic regions. The model is currently configured to downscale continental-scale aggregate land-use information to region specific changes in land-use patterns (0.5-deg spatial resolution). The temporal resolution is one year. The historical validation experiment is facilitated by synthesizing gridded maps of a wide range of potential biophysical and socioeconomic driving factors for the 20th century. To our knowledge, this is the first retrospective analysis that has been successful in reproducing the historical experience at a global scale. We apply the method to gain useful insights on two questions: (1) what are the dominant socioeconomic and biophysical driving factors of contemporary cropland and pastureland patterns, across geographic

  12. Study on Global GIS architecture and its key technologies

    NASA Astrophysics Data System (ADS)

    Cheng, Chengqi; Guan, Li; Lv, Xuefeng

    2009-09-01

    Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.

  13. Study on Global GIS architecture and its key technologies

    NASA Astrophysics Data System (ADS)

    Cheng, Chengqi; Guan, Li; Lv, Xuefeng

    2010-11-01

    Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.

  14. Global change in the trophic functioning of marine food webs.

    PubMed

    Maureaud, Aurore; Gascuel, Didier; Colléter, Mathieu; Palomares, Maria L D; Du Pontavice, Hubert; Pauly, Daniel; Cheung, William W L

    2017-01-01

    The development of fisheries in the oceans, and other human drivers such as climate warming, have led to changes in species abundance, assemblages, trophic interactions, and ultimately in the functioning of marine food webs. Here, using a trophodynamic approach and global databases of catches and life history traits of marine species, we tested the hypothesis that anthropogenic ecological impacts may have led to changes in the global parameters defining the transfers of biomass within the food web. First, we developed two indicators to assess such changes: the Time Cumulated Indicator (TCI) measuring the residence time of biomass within the food web, and the Efficiency Cumulated Indicator (ECI) quantifying the fraction of secondary production reaching the top of the trophic chain. Then, we assessed, at the large marine ecosystem scale, the worldwide change of these two indicators over the 1950-2010 time-periods. Global trends were identified and cluster analyses were used to characterize the variability of trends between ecosystems. Results showed that the most common pattern over the study period is a global decrease in TCI, while the ECI indicator tends to increase. Thus, changes in species assemblages would induce faster and apparently more efficient biomass transfers in marine food webs. Results also suggested that the main driver of change over that period had been the large increase in fishing pressure. The largest changes occurred in ecosystems where 'fishing down the marine food web' are most intensive.

  15. Global change in the trophic functioning of marine food webs

    PubMed Central

    Gascuel, Didier; Colléter, Mathieu; Palomares, Maria L. D.; Du Pontavice, Hubert; Pauly, Daniel; Cheung, William W. L.

    2017-01-01

    The development of fisheries in the oceans, and other human drivers such as climate warming, have led to changes in species abundance, assemblages, trophic interactions, and ultimately in the functioning of marine food webs. Here, using a trophodynamic approach and global databases of catches and life history traits of marine species, we tested the hypothesis that anthropogenic ecological impacts may have led to changes in the global parameters defining the transfers of biomass within the food web. First, we developed two indicators to assess such changes: the Time Cumulated Indicator (TCI) measuring the residence time of biomass within the food web, and the Efficiency Cumulated Indicator (ECI) quantifying the fraction of secondary production reaching the top of the trophic chain. Then, we assessed, at the large marine ecosystem scale, the worldwide change of these two indicators over the 1950–2010 time-periods. Global trends were identified and cluster analyses were used to characterize the variability of trends between ecosystems. Results showed that the most common pattern over the study period is a global decrease in TCI, while the ECI indicator tends to increase. Thus, changes in species assemblages would induce faster and apparently more efficient biomass transfers in marine food webs. Results also suggested that the main driver of change over that period had been the large increase in fishing pressure. The largest changes occurred in ecosystems where ‘fishing down the marine food web’ are most intensive. PMID:28800358

  16. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    NASA Astrophysics Data System (ADS)

    Bennett, Katrina E.; Urrego Blanco, Jorge R.; Jonko, Alexandra; Bohn, Theodore J.; Atchley, Adam L.; Urban, Nathan M.; Middleton, Richard S.

    2018-01-01

    The Colorado River Basin is a fundamentally important river for society, ecology, and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent, and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model. We combine global sensitivity analysis with a space-filling Latin Hypercube Sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach. We find that snow-dominated regions are much more sensitive to uncertainties in VIC parameters. Although baseflow and runoff changes respond to parameters used in previous sensitivity studies, we discover new key parameter sensitivities. For instance, changes in runoff and evapotranspiration are sensitive to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI) in the VIC model. It is critical for improved modeling to narrow uncertainty in these parameters through improved observations and field studies. This is important because LAI and albedo are anticipated to change under future climate and narrowing uncertainty is paramount to advance our application of models such as VIC for water resource management.

  17. Changes in Land Cover and Terrestrial Biogeochemistry in the US: Key Findings from the Climate Science Special Report (CSSR)

    NASA Astrophysics Data System (ADS)

    Hibbard, K. A.; Hoffman, F. M.; Huntzinger, D. N.; West, T. O.

    2017-12-01

    The continual increase in annual average temperatures (1.0°C for the period 1901-2016 for the contiguous US), growing number of high temperature records, increasing intensity and frequency of heavy precipitation events in most parts of the US, and rising global mean sea level are among the key findings from the forthcoming Climate Science Special Report (CSSR) produced by the US Global Change Research Program (USGCRP). A chapter new to the climate science assessments directly addresses the feedbacks between climate change, land use and land cover change, and the carbon cycle. While the terrestrial biosphere is presently a net carbon sink, which has steadily increased since 1980, the future sign and magnitude of biosphere uptake cannot be determined because of uncertainties in the future trajectory of land cover and land use. Citing recent research, the chapter highlights that the combined effects of land use and land cover changes due to human activities account for 40% ± 16% of the human-caused global radiative forcing from 1850 to present. Moverover, plant community structure has already been altered by climate change and changes in the frequency and intensity of extreme events. Changes in temperature also have direct effects on the land surface as well as feedbacks to the atmosphere. For example, the number of consecutive frost-free days and the length of the growing season have increased across all regions in the contiguous US; however, overall plant productivity has been limited by biotic factors and seasonal limitations in water and nutrient availability. Within cities, the urban heat island (UHI) effect results in daytime temperatures 0.5°C-4.0°C higher and nighttime temperatures 1.0°C-2.5°C higher in urban areas than surrounding rural areas. We discuss terrestrial and biogeochemical forcings and feedbacks that can serve as critical evaluation and paramaterization datasets for Earth system modeling approaches with implications for management of

  18. Agile Data Management with the Global Change Information System

    NASA Astrophysics Data System (ADS)

    Duggan, B.; Aulenbach, S.; Tilmes, C.; Goldstein, J.

    2013-12-01

    We describe experiences applying agile software development techniques to the realm of data management during the development of the Global Change Information System (GCIS), a web service and API for authoritative global change information under development by the US Global Change Research Program. Some of the challenges during system design and implementation have been : (1) balancing the need for a rigorous mechanism for ensuring information quality with the realities of large data sets whose contents are often in flux, (2) utilizing existing data to inform decisions about the scope and nature of new data, and (3) continuously incorporating new knowledge and concepts into a relational data model. The workflow for managing the content of the system has much in common with the development of the system itself. We examine various aspects of agile software development and discuss whether or how we have been able to use them for data curation as well as software development.

  19. Climate change. A global threat to cardiopulmonary health.

    PubMed

    Rice, Mary B; Thurston, George D; Balmes, John R; Pinkerton, Kent E

    2014-03-01

    Recent changes in the global climate system have resulted in excess mortality and morbidity, particularly among susceptible individuals with preexisting cardiopulmonary disease. These weather patterns are projected to continue and intensify as a result of rising CO2 levels, according to the most recent projections by climate scientists. In this Pulmonary Perspective, motivated by the American Thoracic Society Committees on Environmental Health Policy and International Health, we review the global human health consequences of projected changes in climate for which there is a high level of confidence and scientific evidence of health effects, with a focus on cardiopulmonary health. We discuss how many of the climate-related health effects will disproportionally affect people from economically disadvantaged parts of the world, who contribute relatively little to CO2 emissions. Last, we discuss the financial implications of climate change solutions from a public health perspective and argue for a harmonized approach to clean air and climate change policies.

  20. Global climate change: Social and economic research issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, M.; Snow, J.; Jacobson, H.

    This workshop was designed to bring together a group of scholars, primarily from the social sciences, to explore research that might help in dealing with global climate change. To illustrate the state of present understanding, it seemed useful to focus this workshop on three broad questions that are involved in coping with climate change. These are: (1) How can the anticipated economic costs and benefits of climate change be identified; (2) How can the impacts of climate change be adjusted to or avoided; (3) What previously studied models are available for institutional management of the global environment? The resulting discussionsmore » may (1) identify worthwhile avenues for further social science research, (2) help develop feedback for natural scientists about research information from this domain needed by social scientists, and (3) provide policymakers with the sort of relevant research information from the social science community that is currently available. Individual papers are processed separately for the database.« less

  1. Globalization and Higher Education Organizational Change: A Framework for Analysis

    ERIC Educational Resources Information Center

    Vaira, Massimiliano

    2004-01-01

    The aim of this article is to outline a theoretical framework to address Higher Education organizational change in a globalized and globalizing age. The paper will start with a brief description of trends characterizing the global landscape and their relationships with Higher Education policies and institutions. Although these trends are well…

  2. The politics of agenda setting at the global level: key informant interviews regarding the International Labour Organization Decent Work Agenda.

    PubMed

    Di Ruggiero, Erica; Cohen, Joanna E; Cole, Donald C

    2014-07-01

    Global labour markets continue to undergo significant transformations resulting from socio-political instability combined with rises in structural inequality, employment insecurity, and poor working conditions. Confronted by these challenges, global institutions are providing policy guidance to protect and promote the health and well-being of workers. This article provides an account of how the International Labour Organization's Decent Work Agenda contributes to the work policy agendas of the World Health Organization and the World Bank. This qualitative study involved semi-structured interviews with representatives from three global institutions--the International Labour Organization (ILO), the World Health Organization and the World Bank. Of the 25 key informants invited to participate, 16 took part in the study. Analysis for key themes was followed by interpretation using selected agenda setting theories. Interviews indicated that through the Decent Work Agenda, the International Labour Organization is shaping the global policy narrative about work among UN agencies, and that the pursuit of decent work and the Agenda were perceived as important goals with the potential to promote just policies. The Agenda was closely linked to the World Health Organization's conception of health as a human right. However, decent work was consistently identified by World Bank informants as ILO terminology in contrast to terms such as job creation and job access. The limited evidence base and its conceptual nature were offered as partial explanations for why the Agenda has yet to fully influence other global institutions. Catalytic events such as the economic crisis were identified as creating the enabling conditions to influence global work policy agendas. Our evidence aids our understanding of how an issue like decent work enters and stays on the policy agendas of global institutions, using the Decent Work Agenda as an illustrative example. Catalytic events and policy

  3. The politics of agenda setting at the global level: key informant interviews regarding the International Labour Organization Decent Work Agenda

    PubMed Central

    2014-01-01

    Background Global labour markets continue to undergo significant transformations resulting from socio-political instability combined with rises in structural inequality, employment insecurity, and poor working conditions. Confronted by these challenges, global institutions are providing policy guidance to protect and promote the health and well-being of workers. This article provides an account of how the International Labour Organization’s Decent Work Agenda contributes to the work policy agendas of the World Health Organization and the World Bank. Methods This qualitative study involved semi-structured interviews with representatives from three global institutions – the International Labour Organization (ILO), the World Health Organization and the World Bank. Of the 25 key informants invited to participate, 16 took part in the study. Analysis for key themes was followed by interpretation using selected agenda setting theories. Results Interviews indicated that through the Decent Work Agenda, the International Labour Organization is shaping the global policy narrative about work among UN agencies, and that the pursuit of decent work and the Agenda were perceived as important goals with the potential to promote just policies. The Agenda was closely linked to the World Health Organization’s conception of health as a human right. However, decent work was consistently identified by World Bank informants as ILO terminology in contrast to terms such as job creation and job access. The limited evidence base and its conceptual nature were offered as partial explanations for why the Agenda has yet to fully influence other global institutions. Catalytic events such as the economic crisis were identified as creating the enabling conditions to influence global work policy agendas. Conclusions Our evidence aids our understanding of how an issue like decent work enters and stays on the policy agendas of global institutions, using the Decent Work Agenda as an illustrative

  4. Global Change and Forestry: Socioeconomic Studies from the 1994 SOFEW Meeting

    Treesearch

    Joseph E. de Steiguer; [Technical Editor

    1995-01-01

    The five papers in this book were originally presented at the 1994 Southern Forest Economic Workers meeting. They discuss the socioeconomic aspect of global climate change on forests. The research represented by the studies will assist decision makers in the formulation of policies concerening global climate change.

  5. Global change and marine communities: alien species and climate change.

    PubMed

    Occhipinti-Ambrogi, Anna

    2007-01-01

    Anthropogenic influences on the biosphere since the advent of the industrial age are increasingly causing global changes. Climatic change and the rising concentration of greenhouse gases in the atmosphere are ranking high in scientific and public agendas, and other components of global change are also frequently addressed, among which are the introductions of non indigenous species (NIS) in biogeographic regions well separated from the donor region, often followed by spectacular invasions. In the marine environment, both climatic change and spread of alien species have been studied extensively; this review is aimed at examining the main responses of ecosystems to climatic change, taking into account the increasing importance of biological invasions. Some general principles on NIS introductions in the marine environment are recalled, such as the importance of propagule pressure and of development stages during the time course of an invasion. Climatic change is known to affect many ecological properties; it interacts also with NIS in many possible ways. Direct (proximate) effects on individuals and populations of altered physical-chemical conditions are distinguished from indirect effects on emergent properties (species distribution, diversity, and production). Climatically driven changes may affect both local dispersal mechanisms, due to the alteration of current patterns, and competitive interactions between NIS and native species, due to the onset of new thermal optima and/or different carbonate chemistry. As well as latitudinal range expansions of species correlated with changing temperature conditions, and effects on species richness and the correlated extinction of native species, some invasions may provoke multiple effects which involve overall ecosystem functioning (material flow between trophic groups, primary production, relative extent of organic material decomposition, extent of benthic-pelagic coupling). Some examples are given, including a special

  6. Community disassembly under global change: evidence in favor of the stress dominance hypothesis.

    PubMed

    Kuczynski, Lucie; Grenouillet, Gaël

    2018-05-22

    Ecological theory suggests that communities are not random combinations of species but rather the results of community assembly processes filtering and sorting species that are able to coexist together. To date, such processes (i.e. assembly rules) have been inferred from observed spatial patterns of biodiversity combined with null model approaches, but relatively few attempts have been made to assess how these processes may be changing through time. Specifically in the context of the on-going biodiversity crisis and global change, understanding how processes shaping communities may be changing and identifying the potential drivers underlying these changes become increasingly critical. Here, we used time series of 460 French freshwater fish communities and assessed both functional and phylogenetic diversity patterns to determine the relative importance of two key assembly rules (i.e. habitat filtering and limiting similarity) in shaping these communities over the last two decades. We aimed to (i) describe the temporal changes in both functional and phylogenetic diversity patterns, (ii) determine to what extent temporal changes in processes inferred through the use of standardized diversity indices were congruent, and (iii) test the relationships between the dynamics of assembly rules and both climatic and biotic drivers. Our results revealed that habitat filtering, though already largely predominant over limiting similarity, became more widespread over time. We also highlighted that phylogenetic and trait-based approaches offered complementary information about temporal changes in assembly rules. Finally, we found that increased environmental harshness over the study period (especially higher seasonality of temperature) led to an increase in habitat filtering and that biological invasions increased functional redundancy within communities. Overall, these findings underlie the need to develop temporal perspectives in community assembly studies, as understanding on

  7. Key Trends in Institutional Changes Under Sustainable Development

    NASA Astrophysics Data System (ADS)

    Karpova, Olga; Pevneva, Inna; Dymova, Irina; Kostina, Tatiana; Li, Sergey

    2017-11-01

    The article is devoted to the consideration of the essential problems of accounting institution formation under the sustainable development of the country and the region. The research is based on the key research the field of the intuition economics and considers the trends of institutional changes including incremental, evolutionary and revolutionary. Approaches to the analysis of institutions are presented as well. The first approach states that economic efficiency is guaranteed by newly emerging institutions. The second approach involves certain internal and external incentives for changing institutions. Whereas the third approach insists on considering institutional changes to be the relation of individual economic entities to institutional innovations in terms of the net benefit from their implementation. The conclusion draws the leading role of the state in the process of the emergence and further development of newly created institutions focusing on the fact that not every change leads to greater efficiency. Thus it is crucial to consider the previous background of institutions development at implementing changes in accounting and control.

  8. Overview of global climate change and carbon sequestration

    Treesearch

    Kurt Johnsen

    2004-01-01

    The potential influence of global climate change on southern forests is uncertain. Outputs of climate change models differ considerably in their projections for precipitation and other variables that affect forests. Forest responses, particularly effects on competition among species, are difficult to assess. Even the responses of relatively simple ecosystems, such as...

  9. Organizing for Global Environmental Change Policy: How Difficult Can it Be?

    NASA Astrophysics Data System (ADS)

    Fontaine, K. S.

    2013-12-01

    Environmental change does not respect geopolitical boundaries, and so new groups continue to spring up to try to assist with the policy aspects of addressing impacts region-wide. One of the newest organizations on the environmental change policy scene is the Group on Earth Observations (GEO). GEO is an intergovernmental organization that does not use a treaty or other legal framework to perform its duties. Moreover, all of the members of GEO volunteer to do help the organization achieve its goals, and some go even further and donate funds. How do they make the most of the volunteers? How do the volunteers even decide to join GEO, and why? Has GEO been effective? How does a volunteer intergovernmental body organize itself? In what key ways does GEO achieve what other organizations cannot? Are there lessons here for addressing global environmental change at other levels? There are lessons to be learned regarding how the GEO structures itself to be most effective when handling the challenges of making Earth observations available for societal benefit. This paper discusses the results of research conducted to learn more about this unique animal in the policy zoo, and will provide answers to these and other questions gleaned from the case study on GEO.

  10. Pilot Institute on Global Change on Trace Gases and the Biosphere, 1988

    NASA Technical Reports Server (NTRS)

    Eddy, J. A.; Moore, B.

    1998-01-01

    Table of Contents: Summary; Background; General Framework for a Series of Institutes on Global Change; The 1988 Pilot Institute on Global Changes: Trace Gases and the Biosphere; Budget; List of Acronyms; and Attachments.

  11. Hands-on Materials for Teaching about Global Climate Change through Graph Interpretation

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Hallagan, Jean E.; Shaffer, Barbara

    2008-01-01

    Teachers need to address global climate change with students in their classrooms as evidence for consequences from these environmental changes mounts. One way to approach global climate change is through examination of authentic data. Mathematics and science may be integrated by interpreting graphs from the professional literature. This study…

  12. Global Climate Change and Children's Health.

    PubMed

    Ahdoot, Samantha; Pacheco, Susan E

    2015-11-01

    Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health. Copyright © 2015 by the American Academy of Pediatrics.

  13. Significance of aerosol radiative effect in energy balance control on global precipitation change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Kentaroh; Stephens, Graeme L.; Golaz, Jean-Christophe

    Historical changes of global precipitation in the 20th century simulated by a climate model are investigated. The results simulated with alternate configurations of cloud microphysics are analyzed in the context of energy balance controls on global precipitation, where the latent heat changes associated with the precipitation change is nearly balanced with changes to atmospheric radiative cooling. The atmospheric radiative cooling is dominated by its clear-sky component, which is found to correlate with changes to both column water vapor and aerosol optical depth (AOD). The water vapor-dependent component of the clear-sky radiative cooling is then found to scale with global temperaturemore » change through the Clausius–Clapeyron relationship. This component results in a tendency of global precipitation increase with increasing temperature at a rate of approximately 2%K -1. Another component of the clear-sky radiative cooling, which is well correlated with changes to AOD, is also found to vary in magnitude among different scenarios with alternate configurations of cloud microphysics that controls the precipitation efficiency, a major factor influencing the aerosol scavenging process that can lead to different aerosol loadings. These results propose how different characteristics of cloud microphysics can cause different aerosol loadings that in turn perturb global energy balance to significantly change global precipitation. This implies a possible coupling of aerosol–cloud interaction with aerosol–radiation interaction in the context of global energy balance.« less

  14. Significance of aerosol radiative effect in energy balance control on global precipitation change

    DOE PAGES

    Suzuki, Kentaroh; Stephens, Graeme L.; Golaz, Jean-Christophe

    2017-10-17

    Historical changes of global precipitation in the 20th century simulated by a climate model are investigated. The results simulated with alternate configurations of cloud microphysics are analyzed in the context of energy balance controls on global precipitation, where the latent heat changes associated with the precipitation change is nearly balanced with changes to atmospheric radiative cooling. The atmospheric radiative cooling is dominated by its clear-sky component, which is found to correlate with changes to both column water vapor and aerosol optical depth (AOD). The water vapor-dependent component of the clear-sky radiative cooling is then found to scale with global temperaturemore » change through the Clausius–Clapeyron relationship. This component results in a tendency of global precipitation increase with increasing temperature at a rate of approximately 2%K -1. Another component of the clear-sky radiative cooling, which is well correlated with changes to AOD, is also found to vary in magnitude among different scenarios with alternate configurations of cloud microphysics that controls the precipitation efficiency, a major factor influencing the aerosol scavenging process that can lead to different aerosol loadings. These results propose how different characteristics of cloud microphysics can cause different aerosol loadings that in turn perturb global energy balance to significantly change global precipitation. This implies a possible coupling of aerosol–cloud interaction with aerosol–radiation interaction in the context of global energy balance.« less

  15. Indirect Effects of Global Change: From Physiological and Behavioral Mechanisms to Ecological Consequences.

    PubMed

    Gunderson, Alex R; Tsukimura, Brian; Stillman, Jonathon H

    2017-07-01

    A major focus of current ecological research is to understand how global change makes species vulnerable to extirpation. To date, mechanistic ecophysiological analyses of global change vulnerability have focused primarily on the direct effects of changing abiotic conditions on whole-organism physiological traits, such as metabolic rate, locomotor performance, cardiac function, and critical thermal limits. However, species do not live in isolation within their physical environments, and direct effects of climate change are likely to be compounded by indirect effects that result from altered interactions with other species, such as competitors and predators. The Society for Integrative and Comparative Biology 2017 Symposium "Indirect Effects of Global Change: From Physiological and Behavioral Mechanisms to Ecological Consequences" was designed to synthesize multiple approaches to investigating the indirect effects of global change by bringing together researchers that study the indirect effects of global change from multiple perspectives across habitat, type of anthropogenic change, and level of biological organization. Our goal in bringing together researchers from different backgrounds was to foster cross-disciplinary insights into the mechanistic bases and higher-order ecological consequences of indirect effects of global change, and to promote collaboration among fields. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  16. Global climate change--The technology challenge: China

    EPA Science Inventory

    Population growth and developmental pressures, spawned by an increasing demand for resource intensive goods, foods and services, are altering the planet in ways that threaten the long-term well-being of humans and other species. Global climate change and its associated impacts is...

  17. Global fish production and climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brander, K.M.

    2007-12-11

    Current global fisheries production of {approx}160 million tons is rising as a result of increases in aquaculture production. A number of climate-related threats to both capture fisheries and aquaculture are identified, but there is low confidence in predictions of future fisheries production because of uncertainty over future global aquatic net primary production and the transfer of this production through the food chain to human consumption. Recent changes in the distribution and productivity of a number of fish species can be ascribed with high confidence to regional climate variability, such as the El Nino-Southern Oscillation. Future production may increase in somemore » high-latitude regions because of warming and decreased ice cover, but the dynamics in low-latitude regions are giverned by different processes, and production may decline as a result of reduced vertical mixing of the water column and, hence, reduced recycling of nutrients. There are strong interactions between the effects of fishing and the effects of climate because fishing reduces the age, size, and geographic diversity of populations and the biodiversity of marine ecosystems, making both more sensitive to additional stresses such as climate change. Inland fisheries are additionally threatened by changes in precipiation and water management. The frequency and intensity of extreme climate events is likely to have a major impact on future fisheries production in both inland and marine systems. Reducing fishing mortality in the majority of fisheries, which are currently fully exploited or overexploited, is the pricipal feasible means of reducing the impacts of climate change.« less

  18. 75 FR 17453 - International Product Change-Global Reseller Expedited Package Contracts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... POSTAL SERVICE International Product Change--Global Reseller Expedited Package Contracts AGENCY... Postal Regulatory Commission to add Global Reseller Expedited Package Contracts to the Competitive... Service to add Global Reseller Expedited Package Contracts to the Competitive Products List, and Notice of...

  19. Global change pressures on soils from land use and management.

    PubMed

    Smith, Pete; House, Joanna I; Bustamante, Mercedes; Sobocká, Jaroslava; Harper, Richard; Pan, Genxing; West, Paul C; Clark, Joanna M; Adhya, Tapan; Rumpel, Cornelia; Paustian, Keith; Kuikman, Peter; Cotrufo, M Francesca; Elliott, Jane A; McDowell, Richard; Griffiths, Robert I; Asakawa, Susumu; Bondeau, Alberte; Jain, Atul K; Meersmans, Jeroen; Pugh, Thomas A M

    2016-03-01

    Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land-use change, land management and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges and highlight actions and policies to minimize adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development. © 2015 John Wiley & Sons Ltd.

  20. Global water resources affected by human interventions and climate change.

    PubMed

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D; Wada, Yoshihide; Wisser, Dominik

    2014-03-04

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.

  1. Global water resources affected by human interventions and climate change

    PubMed Central

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D.; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. PMID:24344275

  2. Effects of Global Change on U.S. Urban Areas: Vulnerabilities, Impacts, and Adaptation

    NASA Astrophysics Data System (ADS)

    Quattrochi, D. A.; Wilbanks, T. J.; Kirshen, P. H.; Romero-Lankao, P.; Rosenzweig, C. E.; Ruth, M.; Solecki, W.; Tarr, J. A.

    2007-05-01

    Human settlements, both large and small, are where the vast majority of people on the Earth live. Expansion of cities both in population and areal extent, is a relentless process that will accelerate in the 21st century. As a consequence of urban growth both in the United States and around the globe, it is important to develop an understanding of how urbanization will affect the local and regional environment. Of equal importance, however, is the assessment of how cities will be impacted by the looming prospects of global climate change and climate variability. The potential impacts of climate change and variability has recently been enunciated by the IPCC's "Climate Change 2007" report. Moreover, the U.S. Climate Change Science Program (CCSP) is preparing a series of "Synthesis and Assessment Products" (SAP) reports to support informed discussion and decision making regarding climate change and variability by policy makers, resource managers, stakeholders, the media, and the general public. We are working on a chapter of SAP 4.6 ("Analysis of the Effects of Global Chance on Human Health and Welfare and Human Systems") wherein we wish to describe the effects of global climate change on human settlements. This paper will present the thoughts and ideas that are being formulated for our SAP report that relate to what vulnerabilities and impacts will occur, what adaptation responses may take place, and what possible effects on settlement patterns and characteristics will potentially arise, on human settlements in the U.S. as a result of climate change and climate variability. We wish to present these ideas and concepts as a "work in progress" that are subject to several rounds of review, and we invite comments from listeners at this session on the rationale and veracity of our thoughts. Additionally, we wish to explore how technology such as remote sensing data coupled with modeling, can be employed as synthesis tools for deriving insight across a spectrum of impacts

  3. Vulnerability of the global terrestrial ecosystems to climate change.

    PubMed

    Li, Delong; Wu, Shuyao; Liu, Laibao; Zhang, Yatong; Li, Shuangcheng

    2018-05-27

    Climate change has far-reaching impacts on ecosystems. Recent attempts to quantify such impacts focus on measuring exposure to climate change but largely ignore ecosystem resistance and resilience, which may also affect the vulnerability outcomes. In this study, the relative vulnerability of global terrestrial ecosystems to short-term climate variability was assessed by simultaneously integrating exposure, sensitivity, and resilience at a high spatial resolution (0.05°). The results show that vulnerable areas are currently distributed primarily in plains. Responses to climate change vary among ecosystems and deserts and xeric shrublands are the most vulnerable biomes. Global vulnerability patterns are determined largely by exposure, while ecosystem sensitivity and resilience may exacerbate or alleviate external climate pressures at local scales; there is a highly significant negative correlation between exposure and sensitivity. Globally, 61.31% of the terrestrial vegetated area is capable of mitigating climate change impacts and those areas are concentrated in polar regions, boreal forests, tropical rainforests, and intact forests. Under current sensitivity and resilience conditions, vulnerable areas are projected to develop in high Northern Hemisphere latitudes in the future. The results suggest that integrating all three aspects of vulnerability (exposure, sensitivity, and resilience) may offer more comprehensive and spatially explicit adaptation strategies to reduce the impacts of climate change on terrestrial ecosystems. © 2018 John Wiley & Sons Ltd.

  4. Hormonally mediated maternal effects, individual strategy and global change

    PubMed Central

    Meylan, Sandrine; Miles, Donald B.; Clobert, Jean

    2012-01-01

    A challenge to ecologists and evolutionary biologists is predicting organismal responses to the anticipated changes to global ecosystems through climate change. Most evidence suggests that short-term global change may involve increasing occurrences of extreme events, therefore the immediate response of individuals will be determined by physiological capacities and life-history adaptations to cope with extreme environmental conditions. Here, we consider the role of hormones and maternal effects in determining the persistence of species in altered environments. Hormones, specifically steroids, are critical for patterning the behaviour and morphology of parents and their offspring. Hence, steroids have a pervasive influence on multiple aspects of the offspring phenotype over its lifespan. Stress hormones, e.g. glucocorticoids, modulate and perturb phenotypes both early in development and later into adulthood. Females exposed to abiotic stressors during reproduction may alter the phenotypes by manipulation of hormones to the embryos. Thus, hormone-mediated maternal effects, which generate phenotypic plasticity, may be one avenue for coping with global change. Variation in exposure to hormones during development influences both the propensity to disperse, which alters metapopulation dynamics, and population dynamics, by affecting either recruitment to the population or subsequent life-history characteristics of the offspring. We suggest that hormones may be an informative index to the potential for populations to adapt to changing environments. PMID:22566673

  5. Global Governance for Health: how to motivate political change?

    PubMed

    McNeill, D; Ottersen, O P

    2015-07-01

    In this article, we address a central theme that was discussed at the Durham Health Summit: how can politics be brought back into global health governance and figure much more prominently in discussions around policy? We begin by briefly summarizing the report of the Lancet - University of Oslo Commission on Global Governance for Health: 'The Political Origins of Health Inequity' Ottersen et al. In order to provide compelling evidence of the central argument, the Commission selected seven case studies relating to, inter alia, economic and fiscal policy, food security, and foreign trade and investment agreements. Based on an analysis of these studies, the report concludes that the problems identified are often due to political choices: an unwillingness to change the global system of governance. This raises the question: what is the most effective way that a report of this kind can be used to motivate policy-makers, and the public at large, to demand change? What kind of moral or rational argument is most likely to lead to action? In this paper we assess the merits of various alternative perspectives: health as an investment; health as a global public good; health and human security; health and human development; health as a human right; health and global justice. We conclude that what is required in order to motivate change is a more explicitly political and moral perspective - favouring the later rather than the earlier alternatives just listed. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  6. Global surface temperature change analysis based on MODIS data in recent twelve years

    NASA Astrophysics Data System (ADS)

    Mao, K. B.; Ma, Y.; Tan, X. L.; Shen, X. Y.; Liu, G.; Li, Z. L.; Chen, J. M.; Xia, L.

    2017-01-01

    Global surface temperature change is one of the most important aspects in global climate change research. In this study, in order to overcome shortcomings of traditional observation methods in meteorology, a new method is proposed to calculate global mean surface temperature based on remote sensing data. We found that (1) the global mean surface temperature was close to 14.35 °C from 2001 to 2012, and the warmest and coldest surface temperatures of the global in the recent twelve years occurred in 2005 and 2008, respectively; (2) the warmest and coldest surface temperatures on the global land surface occurred in 2005 and 2001, respectively, and on the global ocean surface in 2010 and 2008, respectively; and (3) in recent twelve years, although most regions (especially the Southern Hemisphere) are warming, global warming is yet controversial because it is cooling in the central and eastern regions of Pacific Ocean, northern regions of the Atlantic Ocean, northern regions of China, Mongolia, southern regions of Russia, western regions of Canada and America, the eastern and northern regions of Australia, and the southern tip of Africa. The analysis of daily and seasonal temperature change indicates that the temperature change is mainly caused by the variation of orbit of celestial body. A big data model based on orbit position and gravitational-magmatic change of celestial body with the solar or the galactic system should be built and taken into account for climate and ecosystems change at a large spatial-temporal scale.

  7. Data principles for the U.S. Global Change Research Program

    NASA Technical Reports Server (NTRS)

    Ludwig, George H.; Shaffer, Lisa R.

    1991-01-01

    The U.S. Interagency Working Group on Data Management for Global Change has developed a set of data management and access principles. The overall purpose of these statements of principle is to stimulate responsible stewardship for data and related information and to facilitate full and open access to them. These statements have been accepted by the U.S. Agencies responsible for the Global Change Research Program. The statements of principle are presented and discussed.

  8. Global climate change: A strategic issue facing Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Womeldorff, P.J.

    1995-12-31

    This paper discusses global climate change, summarizes activities related to climate change, and identifies possible outcomes of the current debate on the subject. Aspects of climate change related to economic issues are very briefly summarized; it is suggested that the end result will be a change in lifestyle in developed countries. International activities, with an emphasis on the Framework Convention on Climate Change, and U.S. activities are outlined. It is recommended that the minimum action required is to work to understand the issue and prepare for possible action.

  9. Our Globally Changing Climate. Chapter 1

    NASA Technical Reports Server (NTRS)

    Wuebbles, D. J.; Easterling, D. R.; Hayhoe, K.; Knutson, T.; Kopp, R. E.; Kossin, J. P.; Kunkel, K. E.; LeGrande, A. N.; Mears, C.; Sweet, W. V.; hide

    2017-01-01

    Since the Third U.S. National Climate Assessment (NCA3) was published in May 2014, new observations along multiple lines of evidence have strengthened the conclusion that Earth's climate is changing at a pace and in a pattern not explainable by natural influences. While this report focuses especially on observed and projected future changes for the United States, it is important to understand those changes in the global context (this chapter). The world has warmed over the last 150 years, especially over the last six decades, and that warming has triggered many other changes to Earth's climate. Evidence for a changing climate abounds, from the top of the atmosphere to the depths of the oceans. Thousands of studies conducted by tens of thousands of scientists around the world have documented changes in surface, atmospheric, and oceanic temperatures; melting glaciers; disappearing snow cover; shrinking sea ice; rising sea level; and an increase in atmospheric water vapor. Rainfall patterns and storms are changing, and the occurrence of droughts is shifting.

  10. Re-Examining the Relationship between Tillage Regime and Global Climate Change

    ERIC Educational Resources Information Center

    Hammons, Sarah K.

    2009-01-01

    It is known that anthropogenic greenhouse gas emissions are a major contributor to global climate change and that reducing our emissions will stem its acceleration (Baker et al., 2007). Aside from emission reductions, another method for stemming global climate change is to reduce the levels of greenhouse gases already in the atmosphere by storing…

  11. The interplay between knowledge, perceived efficacy, and concern about global warming and climate change: a one-year longitudinal study.

    PubMed

    Milfont, Taciano L

    2012-06-01

    If the long-term goal of limiting warming to less than 2°C is to be achieved, rapid and sustained reductions of greenhouse gas emissions are required. These reductions will demand political leadership and widespread public support for action on global warming and climate change. Public knowledge, level of concern, and perceived personal efficacy, in positively affecting these issues are key variables in understanding public support for mitigation action. Previous research has documented some contradictory associations between knowledge, personal efficacy, and concern about global warming and climate change, but these cross-sectional findings limit inferences about temporal stability and direction of influence. This study examines the relationships between these three variables over a one-year period and three waves with national data from New Zealand. Results showed a positive association between the variables, and the pattern of findings was stable and consistent across the three data points. More importantly, results indicate that concern mediates the influence of knowledge on personal efficacy. Knowing more about global warming and climate change increases overall concern about the risks of these issues, and this increased concern leads to greater perceived efficacy and responsibility to help solving them. Implications for risk communication are discussed. © 2012 Society for Risk Analysis.

  12. High-resolution global maps of 21st-century forest cover change

    USGS Publications Warehouse

    Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, Thomas R.; Kommareddy, A.; Egorov, Alexey; Chini, L.; Justice, C.O.; Townshend, J.R.G.

    2013-01-01

    Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil’s well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change.

  13. High-resolution global maps of 21st-century forest cover change.

    PubMed

    Hansen, M C; Potapov, P V; Moore, R; Hancher, M; Turubanova, S A; Tyukavina, A; Thau, D; Stehman, S V; Goetz, S J; Loveland, T R; Kommareddy, A; Egorov, A; Chini, L; Justice, C O; Townshend, J R G

    2013-11-15

    Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil's well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change.

  14. Population aging, macroeconomic changes, and global diabetes prevalence, 1990-2008.

    PubMed

    Sudharsanan, Nikkil; Ali, Mohammed K; Mehta, Neil K; Narayan, K M Venkat

    2015-01-01

    Diabetes is an important contributor to global morbidity and mortality. The contributions of population aging and macroeconomic changes to the growth in diabetes prevalence over the past 20 years are unclear. We used cross-sectional data on age- and sex-specific counts of people with diabetes by country, national population estimates, and country-specific macroeconomic variables for the years 1990, 2000, and 2008. Decomposition analysis was performed to quantify the contribution of population aging to the change in global diabetes prevalence between 1990 and 2008. Next, age-standardization was used to estimate the contribution of age composition to differences in diabetes prevalence between high-income (HIC) and low-to-middle-income countries (LMICs). Finally, we used non-parametric correlation and multivariate first-difference regression estimates to examine the relationship between macroeconomic changes and the change in diabetes prevalence between 1990 and 2008. Globally, diabetes prevalence grew by two percentage points between 1990 (7.4 %) and 2008 (9.4 %). Population aging was responsible for 19 % of the growth, with 81 % attributable to increases in the age-specific prevalences. In both LMICs and HICs, about half the growth in age-specific prevalences was from increasing levels of diabetes between ages 45-65 (51 % in HICs and 46 % in LMICs). After age-standardization, the difference in the prevalence of diabetes between LMICs and HICs was larger (1.9 % point difference in 1990; 1.5 % point difference in 2008). We found no evidence that macroeconomic changes were associated with the growth in diabetes prevalence. Population aging explains a minority of the recent growth in global diabetes prevalence. The increase in global diabetes between 1990 and 2008 was primarily due to an increase in the prevalence of diabetes at ages 45-65. We do not find evidence that basic indicators of economic growth, development, globalization, or urbanization were related

  15. Global patterns in endemism explained by past climatic change.

    PubMed

    Jansson, Roland

    2003-03-22

    I propose that global patterns in numbers of range-restricted endemic species are caused by variation in the amplitude of climatic change occurring on time-scales of 10-100 thousand years (Milankovitch oscillations). The smaller the climatic shifts, the more probable it is that palaeoendemics survive and that diverging gene pools persist without going extinct or merging, favouring the evolution of neoendemics. Using the change in mean annual temperature since the last glacial maximum, estimated from global circulation models, I show that the higher the temperature change in an area, the fewer endemic species of mammals, birds, reptiles, amphibians and vascular plants it harbours. This relationship was robust to variation in area (for areas greater than 10(4) km2), latitudinal position, extent of former glaciation and whether or not areas are oceanic islands. Past climatic change was a better predictor of endemism than annual temperature range in all phylads except amphibians, suggesting that Rapoport's rule (i.e. species range sizes increase with latitude) is best explained by the increase in the amplitude of climatic oscillations towards the poles. Globally, endemic-rich areas are predicted to warm less in response to greenhouse-gas emissions, but the predicted warming would cause many habitats to disappear regionally, leading to species extinctions.

  16. Climate-soil Interactions: Global Change, Local Properties, and Ecological Sites

    USDA-ARS?s Scientific Manuscript database

    Global climate change is predicted to alter historic patterns of precipitation and temperature in rangelands globally. Vegetation community response to altered weather patterns will be mediated at the site level by local-scale properties that govern ecological potential, including geology, topograph...

  17. GLOBAL CHANGE EFFECTS ON CORAL REEF CONDITION

    EPA Science Inventory

    Fisher, W., W. Davis, J. Campbell, L. Courtney, P. Harris, B. Hemmer, M. Parsons, B. Quarles and D. Santavy. In press. Global Change Effects on Coral Reef Condition (Abstract). To be presented at the EPA Science Forum: Healthy Communities and Ecosystems, 1-3 June 2004, Washington...

  18. International Peer Collaboration to Learn about Global Climate Changes

    ERIC Educational Resources Information Center

    Korsager, Majken; Slotta, James D.

    2015-01-01

    Climate change is not local; it is global. This means that many environmental issues related to climate change are not geographically limited and hence concern humans in more than one location. There is a growing body of research indicating that today's increased climate change is caused by human activities and our modern lifestyle. Consequently,…

  19. Climate change hotspots in the CMIP5 global climate model ensemble.

    PubMed

    Diffenbaugh, Noah S; Giorgi, Filippo

    2012-01-10

    We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots throughout the 21 st century of the RCP8.5 and RCP4.5 forcing pathways. In addition, areas of southern Africa, the Mediterranean, the Arctic, and Central America/western North America also emerge as prominent regional climate change hotspots in response to intermediate and high levels of forcing. Comparisons of different periods of the two forcing pathways suggest that the pattern of aggregate change is fairly robust to the level of global warming below approximately 2°C of global warming (relative to the late-20 th -century baseline), but not at the higher levels of global warming that occur in the late-21 st -century period of the RCP8.5 pathway, with areas of southern Africa, the Mediterranean, and the Arctic exhibiting particular intensification of relative aggregate climate change in response to high levels of forcing. Although specific impacts will clearly be shaped by the interaction of climate change with human and biological vulnerabilities, our identification of climate change hotspots can help to inform mitigation and adaptation decisions by quantifying the rate, magnitude and causes of the aggregate climate response in different parts of the world.

  20. Global Warming: Discussion for EOS Science Writers Workshop

    NASA Technical Reports Server (NTRS)

    Hansen, James E

    1999-01-01

    The existence of global warming this century is no longer an issue of scientific debate. But there are many important questions about the nature and causes of long-term climate change, th roles of nature and human-made climate forcings and unforced (chaotic) climate variability, the practical impacts of climate change, and what, if anything, should be done to reduce global warming, Global warming is not a uniform increase of temperature, but rather involves at complex geographically varying climate change. Understanding of global warming will require improved observations of climate change itself and the forcing factors that can lead to climate change. The NASA Terra mission and other NASA Earth Science missions will provide key measurement of climate change and climate forcings. The strategy to develop an understanding of the causes and predictability of long-term climate change must be based on combination of observations with models and analysis. The upcoming NASA missions will make important contributions to the required observations.

  1. Untangling Consequential Futures: Discovering Self-Consistent Regional and Global Multi-Sector Change Scenarios

    NASA Astrophysics Data System (ADS)

    Lamontagne, J. R.; Reed, P. M.

    2017-12-01

    Impacts and adaptations to global change largely occur at regional scales, yet they are shaped globally through the interdependent evolution of the climate, energy, agriculture, and industrial systems. It is important for regional actors to account for the impacts of global changes on their systems in a globally consistent but regionally relevant way. This can be challenging because emerging global reference scenarios may not reflect regional challenges. Likewise, regionally specific scenarios may miss important global feedbacks. In this work, we contribute a scenario discovery framework to identify regionally-specific decision relevant scenarios from an ensemble of scenarios of global change. To this end, we generated a large ensemble of time evolving regional, multi-sector global change scenarios by a full factorial sampling of the underlying assumptions in the emerging shared socio-economic pathways (SSPs), using the Global Change Assessment Model (GCAM). Statistical and visual analytics were then used to discover which SSP assumptions are particularly consequential for various regions, considering a broad range of time-evolving metrics that encompass multiple spatial scales and sectors. In an illustrative examples, we identify the most important global change narratives to inform water resource scenarios for several geographic regions using the proposed scenario discovery framework. Our results highlight the importance of demographic and agricultural evolution compared to technical improvements in the energy sector. We show that narrowly sampling a few canonical reference scenarios provides a very narrow view of the consequence space, increasing the risk of tacitly ignoring major impacts. Even optimistic scenarios contain unintended, disproportionate regional impacts and intergenerational transfers of consequence. Formulating consequential scenarios of deeply and broadly uncertain futures requires a better exploration of which quantitative measures of

  2. Global atmospheric changes.

    PubMed

    Piver, W T

    1991-12-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the processes that are responsible for the greenhouse effect, air pollution, acid deposition, and increased exposure to UV radiation.

  3. Global Terrestrial Water Storage Changes and Connections to ENSO Events

    NASA Astrophysics Data System (ADS)

    Ni, Shengnan; Chen, Jianli; Wilson, Clark R.; Li, Jin; Hu, Xiaogong; Fu, Rong

    2018-01-01

    Improved data quality of extended record of the Gravity Recovery and Climate Experiment (GRACE) satellite gravity solutions enables better understanding of terrestrial water storage (TWS) variations. Connections of TWS and climate change are critical to investigate regional and global water cycles. In this study, we provide a comprehensive analysis of global connections between interannual TWS changes and El Niño Southern Oscillation (ENSO) events, using multiple sources of data, including GRACE measurements, land surface model (LSM) predictions and precipitation observations. We use cross-correlation and coherence spectrum analysis to examine global connections between interannual TWS changes and the Niño 3.4 index, and select four river basins (Amazon, Orinoco, Colorado, and Lena) for more detailed analysis. The results indicate that interannual TWS changes are strongly correlated with ENSO over much of the globe, with maximum cross-correlation coefficients up to 0.70, well above the 95% significance level ( 0.29) derived by the Monte Carlo experiments. The strongest correlations are found in tropical and subtropical regions, especially in the Amazon, Orinoco, and La Plata basins. While both GRACE and LSM TWS estimates show reasonably good correlations with ENSO and generally consistent spatial correlation patterns, notably higher correlations are found between GRACE TWS and ENSO. The existence of significant correlations in middle-high latitudes shows the large-scale impact of ENSO on the global water cycle.

  4. What have we learned from global change manipulative experiments in China? A meta-analysis

    PubMed Central

    Fu, Zheng; Niu, Shuli; Dukes, Jeffrey S.

    2015-01-01

    Although China has the largest population in the world, a faster rate of warming than the global average, and an active global change research program, results from many of the global change experiments in Chinese terrestrial ecosystems have not been included in global syntheses. Here, we specifically analyze the observed responses of carbon (C) and nitrogen (N) cycling in global change manipulative experiments in China, and compare these responses to those from other regions of the world. Most global change factors, vegetation types, and treatment methods that have been studied or used elsewhere in the world have also been studied and applied in China. The responses of terrestrial ecosystem C and N cycles to N addition and climate warming in China are similar in both direction and intensity to those reported in global syntheses. In Chinese ecosystems as elsewhere, N addition significantly increased aboveground (AGB) and belowground biomass (BGB), litter mass, dissolved organic C, net ecosystem productivity (NEP), and gross ecosystem productivity (GEP). Warming stimulated AGB, BGB and the root-shoot ratio. Increasing precipitation accelerated GEP, NEP, microbial respiration, soil respiration, and ecosystem respiration. Our findings complement and support previous global syntheses and provide insight into regional responses to global change. PMID:26205333

  5. Climate change impacts on soil carbon storage in global croplands: 1901-2010

    NASA Astrophysics Data System (ADS)

    Ren, W.; Tian, H.

    2015-12-01

    New global data finds 12% of earth's surface in cropland at present. Croplands will take on the responsibility to support approximate 60% increase in food production by 2050 as FAO estimates. In addition to nutrient supply to plants, cropland soils also play a major source and sink of greenhouse gases regulating global climate system. It is a big challenge to understand how soils function under global changes, but it is also a great opportunity for agricultural sector to manage soils to assure sustainability of agroecosystems and mitigate climate change. Previous studies have attempted to investigate the impacts of different land uses and climates on cropland soil carbon storage. However, large uncertainty still exists in magnitude and spatiotemporal patterns of global cropland soil organic carbon, due to the lack of reliable environmental databases and relatively poorly understanding of multiple controlling factors involved climate change and land use etc. Here, we use a process-based agroecosystem model (DLEM-Ag) in combination with diverse data sources to quantify magnitude and tempo-spatial patterns of soil carbon storage in global croplands during 1901-2010. We also analyze the relative contributions of major environmental variables (climate change, land use and management etc.). Our results indicate that intensive land use management may hidden the vulnerability of cropland soils to climate change in some regions, which may greatly weaken soil carbon sequestration under future climate change.

  6. Phosphorus acquisition and utilisation in crop legumes under global change.

    PubMed

    Pang, Jiayin; Ryan, Megan H; Lambers, Hans; Siddique, Kadambot Hm

    2018-05-28

    Improving phosphorus (P)-use efficiency in legumes is a worldwide challenge in the face of an increasing world population, dwindling global rock phosphate reserves, the relatively high P demand of legumes and global change. This review focuses on P acquisition of crop legumes in response to climate change. We advocate further studies on: firstly, the response of carboxylate exudation, mycorrhizas and root morphology to climate change and their role in P acquisition as dependent on edaphic factors; secondly, developing intercropping systems with a combination of a legume and another crop species to enhance P acquisition; and thirdly, the impact of the interactions of the major climate change factors on P acquisition in the field. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Threshold responses to interacting global changes in a California grassland ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Christopher; Mooney, Harold; Vitousek, Peter

    2015-02-02

    Building on the history and infrastructure of the Jasper Ridge Global Change Experiment, we conducted experiments to explore the potential for single and combined global changes to stimulate fundamental type changes in ecosystems that start the experiment as California annual grassland. Using a carefully orchestrated set of seedling introductions, followed by careful study and later removal, the grassland was poised to enable two major kinds of transitions that occur in real life and that have major implications for ecosystem structure, function, and services. These are transitions from grassland to shrubland/forest and grassland to thistle patch. The experiment took place inmore » the context of 4 global change factors – warming, elevated CO 2, N deposition, and increased precipitation – in a full-factorial array, present as all possible 1, 2, 3, and 4-factor combinations, with each combination replicated 8 times.« less

  8. Future generations, environmental ethics, and global environmental change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonn, B.E.

    1994-12-31

    The elements of a methodology to be employed by the global community to investigate the consequences of global environmental change upon future generations and global ecosystems are outlined in this paper. The methodology is comprised of two major components: A possible future worlds model; and a formal, citizen-oriented process to judge whether the possible future worlds potentially inheritable by future generations meet obligational standards. A broad array of descriptors of future worlds can be encompassed within this framework, including survival of ecosystems and other species and satisfaction of human concerns. The methodology expresses fundamental psychological motivations and human myths journey,more » renewal, mother earth, and being-in-nature-and incorporates several viewpoints on obligations to future generations-maintaining options, fairness, humility, and the cause of humanity. The methodology overcomes several severe drawbacks of the economic-based methods most commonly used for global environmental policy analysis.« less

  9. Coastline degradation as an indicator of global change

    USGS Publications Warehouse

    Nicholls, Robert J.; Woodroffe, Colin D.; Burkett, Virginia; Letcher, Trevor M.

    2009-01-01

    Finding a climate change signal on coasts is more problematic than often assumed. Coasts undergo natural dynamics at many scales, with erosion and recovery in response to climate variability such as El Niño, or extreme events such as storms and infrequent tsunamis. Additionally, humans have had enormous impacts on most coasts, overshadowing most changes that one can presently attribute directly to climate change. Each area of coast is experiencing its own pattern of relative sea-level change and climate change, making discrimination of the component of degradation that results from climate change problems. The best examples of a climate influence are related to temperature rise at low and high latitudes, as seen by the impacts on coral reefs and polar coasts, respectively. Observations through the twentieth century demonstrate the importance of understanding the impacts of sea-level rise and climate change in the context of multiple drivers of change; this will remain a challenge under a more rapidly changing climate. Nevertheless, there are emerging signs that climate change provides a global threat—sea ice is retreating, permafrost in coastal areas is widely melting. Reefs are bleaching more often, and the sea is rising—amplifying widespread trends of subsidence and threatening low-lying areas. To enhance the sustainability of coastal systems, management strategies will also need to address this challenge, focusing on the drivers that are dominant at each section of coast. Global warming through the twentieth century has caused a series of changes with important implications for coastal areas. These include rising temperatures, rising sea level, increasing CO2 concentrations with an associated reduction in seawater pH, and more intense precipitation on average.

  10. Global Change Encyclopedia - A project for the international space year

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Simard, R.; Manore, M.; Baker, R.; Clark, D.; Kineman, J.; Allen, J.; Ruzek, M.

    1991-01-01

    'Global Change Encyclopedia' is a project for the International Space Year in 1992. The project will produce a comprehensive set of satellite and other global data with relevance to studies of global change and of the earth as a system. These data will be packaged on CD-ROMs, accompanied by appropriate software for access, display and manipulation. On behalf of the Canadian Space Agency, the project is being carried out by the Canada Centre for Remote Sensing, with the U.S. National Oceanic and Atmospheric Administration and the U.S. National Aeronautics and Space Administration as major contributors. This paper highlights the background leading to the project, the concept and principal characteristics of the Encyclopedia itself, and the current status and plans.

  11. Global warming enhances sulphide stress in a key seagrass species (NW Mediterranean).

    PubMed

    García, Rosa; Holmer, Marianne; Duarte, Carlos M; Marbà, Núria

    2013-12-01

    The build-up of sulphide concentrations in sediments, resulting from high inputs of organic matter and the mineralization through sulphate reduction, can be lethal to the benthos. Sulphate reduction is temperature dependent, thus global warming may contribute to even higher sulphide concentrations and benthos mortality. The seagrass Posidonia oceanica is very sensitive to sulphide stress. Hence, if concentrations build up with global warming, this key Mediterranean species could be seriously endangered. An 8-year monitoring of daily seawater temperature, the sulphur isotopic signatures of water (δ(34)S(water)), sediment (δ(34)SCRS ) and P. oceanica leaf tissue (δ(34)S(leaves)), along with total sulphur in leaves (TS(leaves)) and annual net population growth along the coast of the Balearic archipelago (Western Mediterranean) allowed us to determine if warming triggers P. oceanica sulphide stress and constrains seagrass survival. From the isotopic S signatures, we estimated sulphide intrusion into the leaves (F(sulphide)) and sulphur incorporation into the leaves from sedimentary sulphides (SS(leaves)). We observed lower δ(34)S(leaves), higher F(sulphide) and SS(leaves) coinciding with a 6-year period when two heat waves were recorded. Warming triggered sulphide stress as evidenced by the negative temperature dependence of δ(34)S(leaves) and the positive one of F(sulphide), TS(leaves) and SS(leaves). Lower P. oceanica net population growth rates were directly related to higher contents of TS(leaves). At equivalent annual maximum sea surface water temperature (SST(max)), deep meadows were less affected by sulphide intrusion than shallow ones. Thus, water depth acts as a protecting mechanism against sulphide intrusion. However, water depth would be insufficient to buffer seagrass sulphide stress triggered by Mediterranean seawater summer temperatures projected for the end of the 21st century even under scenarios of moderate greenhouse gas emissions, A1B

  12. Teachers' Professional Development: What Are the Key Change Factors for Mathematics Teachers?

    ERIC Educational Resources Information Center

    Pehkonen, Erkki; Torner, Gunter

    1999-01-01

    Surveyed and interviewed 13 experienced German middle school mathematics teachers to examine key factors causing discontinuity in their professional development. Results included 49 statements about change that fell into four categories. Researchers extracted three change factors not reported in earlier literature: experiences and observations…

  13. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson-Teixeira, Kristina J.; Davies, Stuart J.; Bennett, Amy C.

    2014-09-25

    Global change is impacting forests worldwide, threatening biodiversity and ecosystem services, including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamic research sites useful for characterizing forest responses to global change. The broad suite of measurements made at the CTFS-ForestGEO sites make it possible to investigate the complex ways in which global change is impacting forest dynamics. ongoing research across the network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forestmore » diversity and dynamics in a era of global change« less

  14. Middle School Students' Conceptual Change in Global Climate Change: Using Argumentation to Foster Knowledge Construction

    ERIC Educational Resources Information Center

    Golden, Barry W.

    2011-01-01

    This research examined middle school student conceptions about global climate change (GCC) and the change these conceptions undergo during an argument driven instructional unit. The theoretical framework invoked for this study is the "framework theory" of conceptual change (Vosniadou, 2007a). This theory posits that students do not…

  15. Providing Context for Complexity: Using Infographics and Conceptual Models to Teach Global Change Processes

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; White, L. D.

    2015-12-01

    Understanding modern and historical global changes requires interdisciplinary knowledge of the physical and life sciences. The Understanding Global Change website from the UC Museum of Paleontology will use a focal infographic that unifies diverse content often taught in separate K-12 science units. This visualization tool provides scientists with a structure for presenting research within the broad context of global change, and supports educators with a framework for teaching and assessing student understanding of complex global change processes. This new approach to teaching the science of global change is currently being piloted and refined based on feedback from educators and scientists in anticipation of a 2016 website launch. Global change concepts are categorized within the infographic as causes of global change (e.g., burning of fossil fuels, volcanism), ongoing Earth system processes (e.g., ocean circulation, the greenhouse effect), and the changes scientists measure in Earth's physical and biological systems (e.g., temperature, extinctions/radiations). The infographic will appear on all website content pages and provides a template for the creation of flowcharts, which are conceptual models that allow teachers and students to visualize the interdependencies and feedbacks among processes in the atmosphere, hydrosphere, biosphere, and geosphere. The development of this resource is timely given that the newly adopted Next Generation Science Standards emphasize cross-cutting concepts, including model building, and Earth system science. Flowchart activities will be available on the website to scaffold inquiry-based lessons, determine student preconceptions, and assess student content knowledge. The infographic has already served as a learning and evaluation tool during professional development workshops at UC Berkeley, Stanford University, and the Smithsonian National Museum of Natural History. At these workshops, scientists and educators used the infographic

  16. Global warming: China’s contribution to climate change

    NASA Astrophysics Data System (ADS)

    Spracklen, Dominick V.

    2016-03-01

    Carbon dioxide emissions from fossil-fuel use in China have grown dramatically in the past few decades, yet it emerges that the country's relative contribution to global climate change has remained surprisingly constant. See Letter p.357

  17. A Look at Global Climate Change Through Papal Encyclicals

    NASA Astrophysics Data System (ADS)

    Gutry-Korycka, Małgorzata

    2017-12-01

    The aim of this article is a comprehensive review of Papal Encyclicals in the context of global environmental and climatic change, against the backdrop of the activity of multinational institutions. The Encyclicals look to the future in teaching the faithful, in a manner which indicates that they are part of a goal-oriented policy, both in terms of scientific research, and concrete economic, social, and geopolitical activity. Attention has also been paid to the relationship between the activity of humankind, and global environmental change, particularly of the biotic and climatic variety. If this aggressive anthropogenic activity cannot be deemed responsible for initiating global warming, it may certainly be seen to have "encouraged" it. The impulses behind sustainable development, as well as the instruments of its implementation, and the inspiration behind the idea, have also been discussed. The achievement of this goal, necessitating the balancing of anthropological aspirations and the long-term security of the environment are also referenced in the Encyclicals.

  18. Ecosystem oceanography for global change in fisheries.

    PubMed

    Cury, Philippe Maurice; Shin, Yunne-Jai; Planque, Benjamin; Durant, Joël Marcel; Fromentin, Jean-Marc; Kramer-Schadt, Stephanie; Stenseth, Nils Christian; Travers, Morgane; Grimm, Volker

    2008-06-01

    Overexploitation and climate change are increasingly causing unanticipated changes in marine ecosystems, such as higher variability in fish recruitment and shifts in species dominance. An ecosystem-based approach to fisheries attempts to address these effects by integrating populations, food webs and fish habitats at different scales. Ecosystem models represent indispensable tools to achieve this objective. However, a balanced research strategy is needed to avoid overly complex models. Ecosystem oceanography represents such a balanced strategy that relates ecosystem components and their interactions to climate change and exploitation. It aims at developing realistic and robust models at different levels of organisation and addressing specific questions in a global change context while systematically exploring the ever-increasing amount of biological and environmental data.

  19. Climate Change of 4°C GlobalWarming above Pre-industrial Levels

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxin; Jiang, Dabang; Lang, Xianmei

    2018-07-01

    Using a set of numerical experiments from 39 CMIP5 climate models, we project the emergence time for 4°C global warming with respect to pre-industrial levels and associated climate changes under the RCP8.5 greenhouse gas concentration scenario. Results show that, according to the 39 models, the median year in which 4°C global warming will occur is 2084. Based on the median results of models that project a 4°C global warming by 2100, land areas will generally exhibit stronger warming than the oceans annually and seasonally, and the strongest enhancement occurs in the Arctic, with the exception of the summer season. Change signals for temperature go outside its natural internal variabilities globally, and the signal-tonoise ratio averages 9.6 for the annual mean and ranges from 6.3 to 7.2 for the seasonal mean over the globe, with the greatest values appearing at low latitudes because of low noise. Decreased precipitation generally occurs in the subtropics, whilst increased precipitation mainly appears at high latitudes. The precipitation changes in most of the high latitudes are greater than the background variability, and the global mean signal-to-noise ratio is 0.5 and ranges from 0.2 to 0.4 for the annual and seasonal means, respectively. Attention should be paid to limiting global warming to 1.5°C, in which case temperature and precipitation will experience a far more moderate change than the natural internal variability. Large inter-model disagreement appears at high latitudes for temperature changes and at mid and low latitudes for precipitation changes. Overall, the intermodel consistency is better for temperature than for precipitation.

  20. Understanding the Changes in Global Crop Yields Through Changes in Climate and Technology

    NASA Astrophysics Data System (ADS)

    Najafi, Ehsan; Devineni, Naresh; Khanbilvardi, Reza M.; Kogan, Felix

    2018-03-01

    During the last few decades, the global agricultural production has risen and technology enhancement is still contributing to yield growth. However, population growth, water crisis, deforestation, and climate change threaten the global food security. An understanding of the variables that caused past changes in crop yields can help improve future crop prediction models. In this article, we present a comprehensive global analysis of the changes in the crop yields and how they relate to different large-scale and regional climate variables, climate change variables and technology in a unified framework. A new multilevel model for yield prediction at the country level is developed and demonstrated. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling to automatically group and reduce estimation uncertainties. El Niño-southern oscillation (ENSO), Palmer drought severity index (PDSI), geopotential height anomalies (GPH), historical carbon dioxide (CO2) concentration and country-based time series of GDP per capita as an approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2013. Results indicate that these variables can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications. While some countries were not generally affected by climatic factors, PDSI and GPH acted both positively and negatively in different regions for crop yields in many countries.

  1. Extending key sharing: how to generate a key tightly coupled to a network security policy

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Matheos

    2006-04-01

    Current state of the art security policy technologies, besides the small scale limitation and largely manual nature of accompanied management methods, are lacking a) in real-timeliness of policy implementation and b) vulnerabilities and inflexibility stemming from the centralized policy decision making; even if, for example, a policy description or access control database is distributed, the actual decision is often a centralized action and forms a system single point of failure. In this paper we are presenting a new fundamental concept that allows implement a security policy by a systematic and efficient key distribution procedure. Specifically, we extend the polynomial Shamir key splitting. According to this, a global key is split into n parts, any k of which can re-construct the original key. In this paper we present a method that instead of having "any k parts" be able to re-construct the original key, the latter can only be reconstructed if keys are combined as any access control policy describes. This leads into an easily deployable key generation procedure that results a single key per entity that "knows" its role in the specific access control policy from which it was derived. The system is considered efficient as it may be used to avoid expensive PKI operations or pairwise key distributions as well as provides superior security due to its distributed nature, the fact that the key is tightly coupled to the policy, and that policy change may be implemented easier and faster.

  2. Changing Schools in an Era of Globalization. Routledge Research in Education

    ERIC Educational Resources Information Center

    Lee, John Chi-Kin; Caldwell, Brian J.

    2011-01-01

    Much has been written about globalization and the challenge of preparing young people for the new world of work and life in times of complexity and continuous change. However, few works have examined how globalization has and will continue to shape education in the East. This volume discusses education within the context of globalization and…

  3. IPCC Climate Change 2013: Mitigation of Climate Change - Key Findings and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Sokona, Youba

    2014-05-01

    The Working Group III contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Mitigation of Climate Change, examines the results of scientific research about mitigation, with special attention on how knowledge has evolved since the Fourth Assessment Report published in 2007. Throughout, the focus is on the implications of its findings for policy, without being prescriptive about the particular policies that governments and other important participants in the policy process should adopt. The report begins with a framing of important concepts and methods that help to contextualize the findings presented throughout the assessment. The valuation of risks and uncertainties, ethical concepts and the context of sustainable development and equity are among the guiding principles for the assessment of mitigation strategies. The report highlights past trends in stocks and flows of greenhouse gases and the factors that drive emissions at global, regional, and sectoral scales including economic growth, technology or population changes. It provides analyses of the technological, economic and institutional requirements of long-term mitigation scenarios and details on mitigation measures and policies that are applied in different economic sectors and human settlements. It then discusses interactions of mitigation policies and different policy instrument types at national, regional and global governance levels and between economic sectors, The Working Group III report comprises 16 chapters and in assembling this assessment authors were guided by the principles of the IPCC mandate: to be explicit about mitigation options, to be explicit about their costs and about their risks and opportunities vis-à-vis other development priorities, and to be explicit about the underlying criteria, concepts, and methods for evaluating alternative policies.

  4. The impacts of climate change on global irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cai, X.

    2011-12-01

    Climate change tends to affect the irrigation water requirement of current irrigated agricultural land, and also changes the water availability for current rain-fed land by the end of this century. We use the most up-to-date climatic and crop datasets (e.g., global irrigated/rain-fed crop areas and grid level crop growing calendar (Portmann, Siebert and Döll, 2010, Global Biogeochemical Cycles 24)) to evaluate the requirements of currently irrigated land and the water deficit for rain-fed land for all major crops under current and projected climate. Six general circulation models (GCMs) under two emission scenarios, A1B & B1, are assembled using two methods, the Simple Average Method (SAM) and Root Mean Square Error Ensemble Method (RMSEMM), to deal with the GCM regional variability. It is found that the global irrigation requirement and the water deficit are both going to increase significantly under all scenarios, particularly under the A1B emission scenario. For example, the projected irrigation requirement is expected to increase by about 2500 million m3 for wheat, 3200 million m3 for maize and another 3300 million m3 for rice. At the same time, the water deficit for current rain-fed cropland will be widened by around 3000, 4000, 2100 million m3 for wheat, maize and rice respectively. Regional analysis is conducted for Africa, China, Europe, India, South America and the United States. It is found that the U.S. may expect the greatest rise in irrigation requirements for wheat and maize, while the South America may suffer the greatest increase for rice. In addition, Africa and the U.S. may face a larger water deficit for both wheat and maize on rain-fed land, and South America just for rice. In summary, climate change is likely to bring severe challenges for irrigation systems and make global water shortage even worse by the end of this century. These pressures will call for extensive adaptation measures. The change in crop water requirements and availability

  5. A global perspective on Glacial- to Interglacial variability change

    NASA Astrophysics Data System (ADS)

    Rehfeld, Kira; Münch, Thomas; Ho, Sze Ling; Laepple, Thomas

    2017-04-01

    Changes in climate variability are more important for society than changes in the mean state alone. While we will be facing a large-scale shift of the mean climate in the future, its implications for climate variability are not well constrained. Here we quantify changes in temperature variability as climate shifted from the Last Glacial cold to the Holocene warm period. Greenland ice core oxygen isotope records provide evidence of this climatic shift, and are used as reference datasets in many palaeoclimate studies worldwide. A striking feature in these records is pronounced millennial variability in the Glacial, and a distinct reduction in variance in the Holocene. We present quantitative estimates of the change in variability on 500- to 1500-year timescales based on a global compilation of high-resolution proxy records for temperature which span both the Glacial and the Holocene. The estimates are derived based on power spectral analysis, and corrected using estimates of the proxy signal-to-noise ratios. We show that, on a global scale, variability at the Glacial maximum is five times higher than during the Holocene, with a possible range of 3-10 times. The spatial pattern of the variability change is latitude-dependent. While the tropics show no changes in variability, mid-latitude changes are higher. A slight overall reduction in variability in the centennial to millennial range is found in Antarctica. The variability decrease in the Greenland ice core oxygen isotope records is larger than in any other proxy dataset. These results therefore contradict the view of a globally quiescent Holocene following the instable Glacial, and imply that, in terms of centennial to millennial temperature variability, the two states may be more similar than previously thought.

  6. NASA NDATC Global Climate Change Education Initiative

    NASA Astrophysics Data System (ADS)

    Bennett, B.; Wood, E.; Meyer, D.; Maynard, N.; Pandya, R. E.

    2009-12-01

    This project aligns with NASA’s Strategic Goal 3A - “Study Earth from space to advance scientific understanding and meet societal needs and focuses on funding from the GCCE Funding Category 2: Strengthen the Teaching and Learning About Global Climate Change Within Formal Education Systems. According to the Intergovernmental Panel on Climate Change Report (2007) those communities with the least amount of resources will be most vulnerable, and least likely to adapt to the impacts brought on by a changing climate. Further, the level of vulnerability of these communities is directly correlated with their ability to implement short, medium and long range mitigation measures. The North Dakota Association of Tribal Colleges (NDATC) has established a climate change education initiative among its six member Tribal Colleges and Universities (TCUs). The goal of this project is to enhance the TCUs capacity to educate their constituents on the science of climate change and mitigation strategies specifically as they apply to Indian Country. NDATC is comprised of six American Indian tribally chartered colleges (TCUs) which include: Cankdeska Cikana Community College, serving the Spirit Lake Dakota Nation; Fort Berthold Community College, serving the Mandan, Hidatsa, and Arikara Nation; Sitting Bull College, serving the Hunkpapa Lakota and Dakota Nation; Turtle Mountain Community College, serving the Turtle Mountain Band of Chippewa; Sisseton Wahpeton College serving the Sisseton and Wahpeton Dakota Nation, and United Tribes Technical College, serving over 70 Tribal groups from across the United States. The purpose of this project is to (1) increase awareness of climate change and its potential impacts in Indian Country through education for students, faculty and presidents of the TCUs as well as Tribal leadership; (2) increase the capacity of TCUs to respond to this global threat on behalf of tribal people; (3) develop climate change mitigation strategies relevant to Indian

  7. Empowering people to change occupational behaviours to address critical global issues.

    PubMed

    Ikiugu, Moses N; Westerfield, Madeline A; Lien, Jamie M; Theisen, Emily R; Cerny, Shana L; Nissen, Ranelle M

    2015-06-01

    The greatest threat to human well-being in this century is climate change and related global issues. We examined the effectiveness of the Modified Instrumentalism in Occupational Therapy model as a framework for facilitating occupational behaviour change to address climate change and related issues. Eleven individuals participated in this mixed-methods single-subject-design study. Data were gathered using the Modified Assessment and Intervention Instrument for Instrumentalism in Occupational Therapy and Daily Occupational Inventories. Quantitative data were analyzed using two- and three-standard deviation band methods. Qualitative data were analyzed using heuristic phenomenological procedures. Occupational performance changed for five participants. Participants' feelings shifted from frustration and helplessness to empowerment and a desire for action. They felt empowered to find occupation-based solutions to the global issues. Occupation-based interventions that increase personal awareness of the connection between occupational performance and global issues could empower people to be agents for action to ameliorate the issues.

  8. Modeling global change impacts on Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Kicklighter, D. W.; Monier, E.; Sokolov, A. P.; Zhuang, Q.; Melillo, J. M.; Reilly, J. M.

    2016-12-01

    Northern Eurasia is a major player in the global carbon budget and includes roughly 70% of the Earth's boreal forest and more than two-thirds of the Earth's permafrost. The region has experienced dramatic climate change (increase in temperature, growing season length, floods and droughts), natural disturbances (wildfires and insect outbreaks), and land-use change (timber harvest, urbanization, expansion and abandonment of agricultural lands) over the past century. These large environmental and socioeconomic impacts have major implications for the carbon cycle in the region. Northern Eurasia is made up of a diverse set of ecosystems that range from deserts to forests, with significant areas of croplands, pastures, and urban areas. As such, it represents a complex system with substantial challenges for the modeling community. We provide an overview of past, ongoing and possible future efforts of the integrated modeling of global change for Northern Eurasia. First, we review the variety of existing modeling approaches to investigate specific components of Earth system dynamics in the region. While there are a limited number of studies that try to integrate various aspects of the Earth system through scale, teleconnections or processes, there are few systematic analyses of the various feedbacks among components within the Earth system. As a result, there is a lack of knowledge of the relative importance of such feedbacks, and it is unclear how relevant current studies, which do not account for these feedbacks, may be for policymaking. Next, we review the role of Earth system models, and their advantages/limitations compared to detailed single component models. We further introduce human activity models (e.g., global trade, economic models, demographic models), and the need for Integrated Assessment Models (IAMs), a suite of models that couple human activity models to Earth System Models. Finally, we examine emerging issues that require a representation of the coupled

  9. Global change information support - A north/south coalition

    NASA Technical Reports Server (NTRS)

    Blados, Walter R.; Cotter, Gladys A.

    1993-01-01

    On a daily basis we become more aware that our planet, earth, exists in a delicate balance; we, its inhabitants, must be informed caretakers. Global change communities have emerged around the globe to address this multidisciplinary subject. Information systems that integrate text, bibliographic, numeric and visual data are needed to support these global change communities. No one information center can hope to collect all the relevant data. Rather, we must form a coalition, North and South, to collect and provide access to disparate, multidisciplinary sources of information, and to develop standardized tools for documenting and manipulating this data and information. International resources need to be mobilized in a coordinated manner to move us towards this goal. This paper looks at emerging information technologies that can be utilized to build such a system, and outlines some cooperative North/South strategies.

  10. Global change information support: A north-south coalition

    NASA Technical Reports Server (NTRS)

    Blados, Walter R.; Cotter, Gladys A.

    1993-01-01

    On a daily basis we become more aware that our planet, earth, exists in a delicate balance; we, its inhabitants, must be informed caretakers. Global change communities have emerged around the globe to address this multidisciplinary subject. Information systems that integrate text, bibliographic, numeric and visual data are needed to support these global change communities. No one information center can hope to collect all the relevant data. Rather, we must form a coalition, North and South, to collect and provide access to disparate, multidisciplinary sources of information, and to develop standardized tools for documenting and manipulating this data and information. International resources need to be mobilized in a coordinated manner to move us towards this goal. This paper looks at emerging information technologies that can be utilized to build such a system, and outlines some cooperative North/South strategies.

  11. USGCRP assessments: Meeting the challenges of climate and global change

    NASA Astrophysics Data System (ADS)

    Dickinson, T.; Kuperberg, J. M.

    2016-12-01

    The United States Global Change Research Program (USGCRP) is a confederation of the research arms of 13 Federal departments and agencies. Its mission is to build a knowledge base that informs human responses to climate and global change through coordinated and integrated Federal programs of research, education, communication, and decision support. USGCRP has supported several initiatives to promote better understanding of climate change impacts on health, support responses, and build on the progress of the 2014 National Climate Assessment. Most recently, USGCRP released a new report, "The Impacts of Climate Change on Human Health: A Scientific Assessment". This presentation will provide an overview of USGCRP, highlight the importance of assessments, and introduce ways in which assessment findings and underlying data can be translated into critical tools to build resilience.

  12. Key technologies for manufacturing and processing sheet materials: A global perspective

    NASA Astrophysics Data System (ADS)

    Demeri, Mahmoud Y.

    2001-02-01

    Modern industrial technologies continue to seek new materials and processes to produce products that meet design and functional requirements. Sheet materials made from ferrous and non-ferrous metals, laminates, composites, and reinforced plastics constitute a large percentage of today’s products, components, and systems. Major manufacturers of sheet products include automotive, aerospace, appliance, and food-packaging industries. The Second Global Symposium on Innovations in Materials Processing & Manufacturing: Sheet Materials is organized to provide a forum for presenting advances in sheet processing and manufacturing by worldwide researchers and engineers from industrial, research, and academic centers. The symposium, sponsored by the TMS Materials Processing & Manufacturing Division (MPMD), was planned for the 2001 TMS Annual Meeting, New Orleans, Louisiana, February 11 15, 2001. This article is a review of key papers submitted for publication in the concurrent volume. The selected papers present significant developments in the rapidly expanding areas of advanced sheet materials, innovative forming methods, industrial applications, primary and secondary processing, composite processing, and numerical modeling of manufacturing processes.

  13. The effects of global change upon United States air quality

    NASA Astrophysics Data System (ADS)

    Gonzalez-Abraham, R.; Chung, S. H.; Avise, J.; Lamb, B.; Salathé, E. P., Jr.; Nolte, C. G.; Loughlin, D.; Guenther, A.; Wiedinmyer, C.; Duhl, T.; Zhang, Y.; Streets, D. G.

    2015-11-01

    To understand more fully the effects of global changes on ambient concentrations of ozone and particulate matter with aerodynamic diameter smaller than 2.5 μm (PM2.5) in the United States (US), we conducted a comprehensive modeling effort to evaluate explicitly the effects of changes in climate, biogenic emissions, land use and global/regional anthropogenic emissions on ozone and PM2.5 concentrations and composition. Results from the ECHAM5 global climate model driven with the A1B emission scenario from the Intergovernmental Panel on Climate Change (IPCC) were downscaled using the Weather Research and Forecasting (WRF) model to provide regional meteorological fields. We developed air quality simulations using the Community Multiscale Air Quality Model (CMAQ) chemical transport model for two nested domains with 220 and 36 km horizontal grid cell resolution for a semi-hemispheric domain and a continental United States (US) domain, respectively. The semi-hemispheric domain was used to evaluate the impact of projected global emissions changes on US air quality. WRF meteorological fields were used to calculate current (2000s) and future (2050s) biogenic emissions using the Model of Emissions of Gases and Aerosols from Nature (MEGAN). For the semi-hemispheric domain CMAQ simulations, present-day global emissions inventories were used and projected to the 2050s based on the IPCC A1B scenario. Regional anthropogenic emissions were obtained from the US Environmental Protection Agency National Emission Inventory 2002 (EPA NEI2002) and projected to the future using the MARKet ALlocation (MARKAL) energy system model assuming a business as usual scenario that extends current decade emission regulations through 2050. Our results suggest that daily maximum 8 h average ozone (DM8O) concentrations will increase in a range between 2 to 12 parts per billion (ppb) across most of the continental US. The highest increase occurs in the South, Central and Midwest regions of the US due to

  14. Information data systems for a global change technology initiative architecture trade study

    NASA Technical Reports Server (NTRS)

    Murray, Nicholas D.

    1991-01-01

    The Global Change Technology Initiative (GCTI) was established to develop technology which will enable use of satellite systems of Earth observations on a global scale, enable use of the observations to predictively model Earth's changes, and provide scientists, government, business, and industry with quick access to the resulting information. At LaRC, a GCTI Architecture Trade Study was undertaken to develop and evaluate the architectural implications to meet the requirements of the global change studies and the eventual implementation of a global change system. The output of the trade study are recommended technologies for the GCTI. That portion of the study concerned with the information data system is documented. The information data system for an earth global change modeling system can be very extensive and beyond affordability in terms of today's costs. Therefore, an incremental approach to gaining a system is most likely. An options approach to levels of capability versus needed technologies was developed. The primary drivers of the requirements for the information data system evaluation were the needed science products, the science measurements, the spacecraft orbits, the instruments configurations, and the spacecraft configurations and their attendant architectures. The science products requirements were not studied here; however, some consideration of the product needs were included in the evaluation results. The information data system technology items were identified from the viewpoint of the desirable overall information system characteristics.

  15. Ecosystem-based coastal defence in the face of global change.

    PubMed

    Temmerman, Stijn; Meire, Patrick; Bouma, Tjeerd J; Herman, Peter M J; Ysebaert, Tom; De Vriend, Huib J

    2013-12-05

    The risk of flood disasters is increasing for many coastal societies owing to global and regional changes in climate conditions, sea-level rise, land subsidence and sediment supply. At the same time, in many locations, conventional coastal engineering solutions such as sea walls are increasingly challenged by these changes and their maintenance may become unsustainable. We argue that flood protection by ecosystem creation and restoration can provide a more sustainable, cost-effective and ecologically sound alternative to conventional coastal engineering and that, in suitable locations, it should be implemented globally and on a large scale.

  16. Global change and biodiversity loss: Some impediments to response

    NASA Technical Reports Server (NTRS)

    Borza, Karen; Jamieson, Dale

    1991-01-01

    Discussed here are the effects of anthropogenic global climate change on biodiversity. The focus is on human responses to the problem. Greenhouse warming-induced climate change may shift agricultural growing belts, reduce forests of the Northern Hemisphere and drive many species to extinction, among other effects. If these changes occur together with the mass extinctions already occurring, we may suffer a profound loss of biological diversity.

  17. The Sea Level Fingerprints of Global Change

    NASA Astrophysics Data System (ADS)

    Mitrovica, J. X.; Hay, C.; Kopp, R. E., III; Morrow, E.

    2014-12-01

    It may be difficult to persuade those living in northern Europe that the sea level changes that their coastal communities face depends less on the total melting of polar ice sheets and glaciers than on the individual contributions to this total. In particular, melting of a specific ice sheet or mountain glacier drives deformational, gravitational and rotational perturbations to the Earth system that are manifest in a unique geometry, or fingerprint, of global sea level change. For example, melting from the Greenland Ice Sheet equivalent to 1 mm/yr of global mean sea level (GMSL) rise will lead to sea level rise of ~0 mm/yr in Dublin, ~0.2 mm/yr in Amsterdam, ~0.4 mm/yr in Boston and ~1.2 mm/yr in Cape Town. In contrast, if the same volume of ice melted from the West Antarctic Ice Sheet, all of the above sites would experience a sea level rise in the range 1.1-1.2 mm/yr. These fingerprints of modern ice melting, together with ocean thermal expansion and dynamic effects, and the ongoing signal from glacial isostatic adjustment in response to the last ice age, combine to produce a sea level field with significant geographic variability. In this talk I will highlight an analysis of global tide gauge records that takes full advantage of this variability to estimate both GMSL and the sources of meltwater over the last century, and to project GMSL to the end of the current century.

  18. Genuine worker participation-an indispensable key to effective global OHS.

    PubMed

    Brown, Garrett

    2009-01-01

    Working conditions, including workplace safety, in global supply chains of products sold by transnational corporations have only marginally improved over the last 15 years despite the development of hundreds of corporate "codes of conduct," code monitoring systems, and an elaborate new "corporate social responsibility" industry. The two underlying reasons for the lack of significant change are: 1) a schizophrenic business model which fatally undermines "socially responsible" sourcing programs with unyielding dictates for the lowest possible production costs; and 2) the lack of any meaningful participation by shop-floor workers in plant safety programs. Only when trained, empowered, and active workers are an integral part of workplace safety programs will conditions improve over the long term.

  19. Integrating global socio-economic influences into a regional land use change model for China

    NASA Astrophysics Data System (ADS)

    Xu, Xia; Gao, Qiong; Peng, Changhui; Cui, Xuefeng; Liu, Yinghui; Jiang, Li

    2014-03-01

    With rapid economic development and urbanization, land use in China has experienced huge changes in recent years; and this will probably continue in the future. Land use problems in China are urgent and need further study. Rapid land-use change and economic development make China an ideal region for integrated land use change studies, particularly the examination of multiple factors and global-regional interactions in the context of global economic integration. This paper presents an integrated modeling approach to examine the impact of global socio-economic processes on land use changes at a regional scale. We develop an integrated model system by coupling a simple global socio-economic model (GLOBFOOD) and regional spatial allocation model (CLUE). The model system is illustrated with an application to land use in China. For a given climate change, population growth, and various socio-economic situations, a global socio-economic model simulates the impact of global market and economy on land use, and quantifies changes of different land use types. The land use spatial distribution model decides the type of land use most appropriate in each spatial grid by employing a weighted suitability index, derived from expert knowledge about the ecosystem state and site conditions. A series of model simulations will be conducted and analyzed to demonstrate the ability of the integrated model to link global socioeconomic factors with regional land use changes in China. The results allow an exploration of the future dynamics of land use and landscapes in China.

  20. "Global warming, continental drying? Interpreting projected aridity changes over land under climate change"

    NASA Astrophysics Data System (ADS)

    Berg, Alexis

    2017-04-01

    In recent years, a number of studies have suggested that, as climate warms, the land surface will globally become more arid. Such results usually rely on drought or aridity diagnostics, such as the Palmer Drought Severity Index or the Aridity Index (ratio of precipitation over potential evapotranspiration, PET), applied to climate model projections of surface climate. From a global perspective, the projected widespread drying of the land surface is generally interpreted as the result of the dominant, ubiquitous warming-induced PET increase, which overwhelms the slight overall precipitation increase projected over land. However, several lines of evidence, based on (paleo)observations and climate model projections, raise questions regarding this interpretation of terrestrial climate change. In this talk, I will review elements of the literature supporting these different perspectives, and will present recent results based on CMIP5 climate model projections regarding changes in aridity over land that shed some light on this discussion. Central to the interpretation of projected land aridity changes is the understanding of projected PET trends over land and their link with changes in other variables of the terrestrial water cycle (ET, soil moisture) and surface climate in the context of the coupled land-atmosphere system.

  1. Plant ecophysiology and forest response to global change.

    PubMed

    Buchmann, N

    2002-11-01

    There are many ways of studying forest responses to global change. Most current national and international programs focus on net gas exchange of the terrestrial biosphere and are typically interdisciplinary, multi-scale projects. Key objectives of these programs are surprisingly similar to those of classical plant ecophysiology studies, i.e., to explore functional relationships of plant or plant community responses to environmental change. Thus, common research questions that link plant ecophysiology to ecosystem functioning can be identified for both research communities, promising complementarity and synergism for joint research projects. Although some well-established ecophysiological relationships, such as light responses or stomatal limitations of photosynthetic gas exchange, are currently employed in many ecosystem-scale net flux studies for gap-filling or modeling, only 14% (n = 27) of all eddy covariance flux studies in forests (n = 196; published between 1992 and April 2002) include plant ecophysiological measurements (n = 24) or biomass and growth estimates (n = 8). Generally, emphasis is on CO2 exchange measurements at various scales (foliage, shoots, branches; n = 14) and water relations measurements (n = 11). These measurements do not fully support the typical parameterization of stand and regional models, which often need information on canopy architecture and nitrogen nutrition. By means of a complementary research approach, valuable information can be acquired that is unobtainable by means of a single approach. This additional information is important for the identification of underlying biotic and environmental drivers, for the regulation of net ecosystem fluxes and their partitioning, and the independent validation of measured net ecosystem fluxes. Thus, combining micrometeorology and ecophysiology at flux sites is strongly recommended for ecosystem functioning studies.

  2. Global changes alter soil fungal communities and alter rates of organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Moore, J.; Frey, S. D.

    2016-12-01

    Global changes - such as warming, more frequent and severe droughts, increasing atmospheric CO2, and increasing nitrogen (N) deposition rates - are altering ecosystem processes. The balance between soil carbon (C) accumulation and decomposition is determined in large part by the activity and biomass of detrital organisms, namely soil fungi, and yet their sensitivity to global changes remains unresolved. We present results from a meta-analysis of 200+ studies spanning manipulative and observational field experiments to quantify fungal responses to global change and expected consequences for ecosystem C dynamics. Warming altered the functional soil microbial community by reducing the ratio of fungi to bacteria (f:b) total fungal biomass. Additionally, warming reduced lignolytic enzyme activity generally by one-third. Simulated N deposition affected f:b differently than warming, but the effect on fungal biomass and activity was similar. The effect of N-enrichment on f:b was contingent upon ecosystem type; f:b increased in alpine meadows and heathlands but decreased in temperate forests following N-enrichment. Across ecosystems, fungal biomass marginally declined by 8% in N-enriched soils. In general, N-enrichment reduced fungal lignolytic enzyme activity, which could explain why soil C accumulates in some ecosystems following warming and N-enrichment. Several global change experiments have reported the surprising result that soil C builds up following increases in temperature and N deposition rates. While site-specific studies have examined the role of soil fungi in ecosystem responses to global change, we present the first meta-analysis documenting general patterns of global change impacts on soil fungal communities, biomass, and activity. In sum, we provide evidence that soil microbial community shifts and activity plays a large part in ecosystem responses to global changes, and have the potential to alter the magnitude of the C-climate feedback.

  3. Potential impact of global climate change on benthic deep-sea microbes.

    PubMed

    Danovaro, Roberto; Corinaldesi, Cinzia; Dell'Anno, Antonio; Rastelli, Eugenio

    2017-12-15

    Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Global Changes of the Water Cycle Intensity

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Walker, Gregory K.

    2003-01-01

    In this study, we evaluate numerical simulations of the twentieth century climate, focusing on the changes in the intensity of the global water cycle. A new diagnostic of atmospheric water vapor cycling rate is developed and employed, that relies on constituent tracers predicted at the model time step. This diagnostic is compared to a simplified traditional calculation of cycling rate, based on monthly averages of precipitation and total water content. The mean sensitivity of both diagnostics to variations in climate forcing is comparable. However, the new diagnostic produces systematically larger values and more variability than the traditional average approach. Climate simulations were performed using SSTs of the early (1902-1921) and late (1979- 1998) twentieth century along with the appropriate C02 forcing. In general, the increase of global precipitation with the increases in SST that occurred between the early and late twentieth century is small. However, an increase of atmospheric temperature leads to a systematic increase in total precipitable water. As a result, the residence time of water in the atmosphere increased, indicating a reduction of the global cycling rate. This result was explored further using a number of 50-year climate simulations from different models forced with observed SST. The anomalies and trends in the cycling rate and hydrologic variables of different GCMs are remarkably similar. The global annual anomalies of precipitation show a significant upward trend related to the upward trend of surface temperature, during the latter half of the twentieth century. While this implies an increase in the hydrologic cycle intensity, a concomitant increase of total precipitable water again leads to a decrease in the calculated global cycling rate. An analysis of the land/sea differences shows that the simulated precipitation over land has a decreasing trend while the oceanic precipitation has an upward trend consistent with previous studies and the

  5. Global Change Data Center: Mission, Organization, Major Activities, and 2003 Highlights

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Rapid, efficient access to Earth sciences data from satellites and ground validation stations is fundamental to the nation's efforts to understand the effects of global environmental changes and their implications for public policy. It becomes a bigger challenge in the future when data volumes increase from current levels to terabytes per day. Demands on data storage, data access, network throughput, processing power, and database and information management are increased by orders of magnitude, while budgets remain constant and even shrink.The Global Change Data Center's (GCDC) mission is to develop and operate data systems, generate science products, and provide archival and distribution services for Earth science data in support of the U.S. Global Change Program and NASA's Earth Sciences Enterprise. The ultimate product of the GCDC activities is access to data to support research, education, and public policy.

  6. Earth science information: Planning for the integration and use of global change information

    NASA Technical Reports Server (NTRS)

    Lousma, Jack R.

    1992-01-01

    Activities and accomplishments of the first six months of the Consortium for International Earth Science Information Network (CIESIN's) 1992 technical program have focused on four main missions: (1) the development and implementation of plans for initiation of the Socioeconomic Data and Applications Center (SEDAC) as part of the EOSDIS Program; (2) the pursuit and development of a broad-based global change information cooperative by providing systems analysis and integration between natural science and social science data bases held by numerous federal agencies and other sources; (3) the fostering of scientific research into the human dimensions of global change and providing integration between natural science and social science data and information; and (4) the serving of CIESIN as a gateway for global change data and information distribution through development of the Global Change Research Information Office and other comprehensive knowledge sharing systems.

  7. Effects of Global Change on U.S. Urban Areas: Vulnerabilities, Impacts, and Adaptation

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Wilbanks, Thomas J.; Kirshen, Paul; Romero-Lnkao, Patricia; Rosenzweig, Cynthia; Ruth, Matthias; Solecki, William; Tarr, Joel

    2007-01-01

    Human settlements, both large and small, are where the vast majority of people on the Earth live. Expansion of cities both in population and areal extent, is a relentless process that will accelerate in the 21st century. As a consequence of urban growth both in the United States and around the globe, it is important to develop an understanding of how urbanization will affect the local and regional environment. Of equal importance, however, is the assessment of how cities will be impacted by the looming prospects of global climate change and climate variability. The potential impacts of climate change and variability has recently been annunciated by the IPCC's "Climate Change 2007" report. Moreover, the U.S. Climate Change Science Program (CCSP) is preparing a series of "Synthesis and Assessment Products" (SAPs) reports to support informed discussion and decision making regarding climate change and variability by policy matters, resource managers, stakeholders, the media, and the general public. We are authors on a SAP describing the effects of global climate change on human settlements. This paper will present the elements of our SAP report that relate to what vulnerabilities and impacts will occur, what adaptation responses may take place, and what possible effects on settlement patterns and characteristics will potentially arise, on human settlements in the U.S. as a result of climate change and climate variability. We will also present some recommendations about what should be done to further research on how climate change and variability will impact human settlements in the U.S., as well as how to engage government officials, policy and decision makers, and the general public in understanding the implications of climate change and variability on the local and regional levels. Additionally, we wish to explore how technology such as remote sensing data coupled with modeling, can be employed as synthesis tools for deriving insight across a spectrum of impacts (e

  8. Topographic data requirements for EOS global change research

    USGS Publications Warehouse

    Gesch, Dean B.

    1994-01-01

    This document is a result of Earth Observing System Data and Information System (EOSDIS) Version 0 activities of the Land Processes Distributed Active Archive Center at the U.S. Geological Survey's EROS Data Center. A relatively small part of the Version 0 funding provided by NASA is used to address topographic data issues related to EOS. These issues include identifying and improving access to existing sources of topographic data, data generation, facilitating the use of topographic data in global change research by demonstrating derivative products, and inventorying the specific topographic data requirements of EOS investigators. There is a clear need for global topographic data in EOSDIS. Only 10 percent of the global land surface is covered by high-resolution data that are available to the global change science community. Alternative sources for new data exist or have been proposed; however, none of them alone can fulfill the data requirements by the launch of the first EOS platform in 4 years. There is no operational provider of all the source data that are required. Even if appropriate global source data existed, a concerted production effort would be necessary to ensure the existence of the requisite topographic data before EOS launch. Additionally, no funding from NASA or any other agency has been appropriated for a new mapping mission or for other means of data acquisition. This effort to document requirements is an initial step toward understanding the severity of the data shortage. It is well beyond the scope of Version 0 funding and capabilities to provide the required data in the proper timeframe. The shortage of data and the lack of a plan for providing the necessary topographic data through EOSDIS in time for launch are issues that must be addressed by the EOS program.

  9. Engaging Undergraduates in Methods of Communicating Global Climate Change

    NASA Astrophysics Data System (ADS)

    Hall, C.; Colgan, M. W.; Humphreys, R. R.

    2010-12-01

    Global Climate Change has become a politically contentious issue in large part because of the failure of scientists to effectively communicate this complex subject to the general public. In a Global Change class, offered within a science department and therefore focused primarily on the underlying science, we have incorporated a citizen science module into the course to raise awareness among future scientists to the importance of communicating information to a broad and diverse audience. The citizen science component of this course focuses on how the predicted climate changes will alter the ecologic and economic landscape of the southeastern region. Helping potential scientists to learn to effectively communicate with the general public is particularly poignant for this predominate southern student body. A Pew Research Center for the People and the Press study found that less than 50% of Southerners surveyed felt that global warming is a very serious problem and over 30% of Southerners did not believe that there was any credible evidence that the Earth is warming. This interdisciplinary and topical nature of the course attracts student from a variety of disciplines, which provides the class with a cross section of students not typically found in most geology classes. This mixture provides a diversity of skills and interest that leads to success of the Citizen Science component. This learning approach was adapted from an education module developed through the Earth System Science Education Alliance and a newly developed component to that program on citizen science. Student teams developed several citizen science-related public service announcements concerning projected global change effects on Charleston and the South Carolina area. The scenario concerned the development of an information campaign for the City of Charleston, culminating with the student presentations on their findings to City officials. Through this real-life process, the students developed new

  10. A history of the science and politics of climate change: the role of the Intergovernmental Panel on Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolin, B.

    2007-11-15

    In response to growing concern about human-induced global climate change, the UN Intergovernmental Panel on Climate Change (IPCC) was formed in 1988. Written by its first Chairman, this book is a unique overview of the history of the IPCC. It describes and evaluates the intricate interplay between key factors in the science and politics of climate change, the strategy that has been followed, and the regretfully slow pace in getting to grips with the uncertainties that have prevented earlier action being taken. The book also highlights the emerging conflict between establishing a sustainable global energy system and preventing a seriousmore » change in global climate. Contents are: Part I. The Early History of the Climate Change Issue: 1. Nineteenth century discoveries; 2. The natural carbon cycle and life on earth; 3. Global research initiatives in meteorology and climatology; 4. Early international assessments of climate change; Part II. The Climate Change Issue Becomes One of Global Concern: 5. Setting the stage; 6. The scientific basis for a climate convention; 7. Serving the Intergovernmental Negotiating Committee; 8. The Second IPP Assessment Report; 9. In the aftermath of the IPCC Second Assessment; 10. The Kyoto Protocol is agreed and a third assessment begun; 11. A decade of hesitance and slow progress; Part III. A Turning Point in Addressing Climate Change?: 12. Key scientific finding of prime political relevance; 13. Climate change and the future global energy supply system; Concluding remarks. 9 figs.« less

  11. Diarrhoeal diseases and the global health agenda: measuring and changing priority.

    PubMed

    Bump, Jesse B; Reich, Michael R; Johnson, Anne M

    2013-12-01

    We investigate priority setting and the global health agenda by analysing the control of diarrhoeal diseases (CDD). CDD was one of the 'twin engines' of the 1980s' child survival movement, but now has a low priority on the global health agenda, even though diarrhoeal diseases still claim around 1.5 million children annually. In this article, we develop a framework and four indicators of priority to measure CDD's overall prominence on the global health agenda over the last three decades: trends in treatment coverage, changes in perceived priority, changes in financial support and institutional involvement and bibliographic trends. We find that CDD's priority is now one-sixth to one-third of its level in 1985. We then use political analysis to suggest strategies for reframing CDD as an issue and promoting its priority on the global health agenda.

  12. Global Governance, Educational Change

    ERIC Educational Resources Information Center

    Mundy, Karen

    2007-01-01

    In the last half decade, a rising literature has focused on the idea that processes of economic, political and social globalization require analysis in terms of governance at the global level. It is argued in this article that emerging forms of global governance have produced significant challenges to conventional conceptions of international…

  13. 78 FR 33452 - International Product Change-Global Reseller Expedited Package Contracts 2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... POSTAL SERVICE International Product Change--Global Reseller Expedited Package Contracts 2 AGENCY... request with the Postal Regulatory Commission to add Global Reseller Expedited Package Contracts 2 to the... Regulatory Commission, a request to add Global Reseller Expedited Package Contracts 2 (GREP Contracts 2) to...

  14. Global climate change and children's health: threats and strategies for prevention.

    PubMed

    Sheffield, Perry E; Landrigan, Philip J

    2011-03-01

    Global climate change will have multiple effects on human health. Vulnerable populations-children, the elderly, and the poor-will be disproportionately affected. We reviewed projected impacts of climate change on children's health, the pathways involved in these effects, and prevention strategies. We assessed primary studies, review articles, and organizational reports. Climate change is increasing the global burden of disease and in the year 2000 was responsible for > 150,000 deaths worldwide. Of this disease burden, 88% fell upon children. Documented health effects include changing ranges of vector-borne diseases such as malaria and dengue; increased diarrheal and respiratory disease; increased morbidity and mortality from extreme weather; changed exposures to toxic chemicals; worsened poverty; food and physical insecurity; and threats to human habitation. Heat-related health effects for which research is emerging include diminished school performance, increased rates of pregnancy complications, and renal effects. Stark variation in these outcomes is evident by geographic region and socioeconomic status, and these impacts will exacerbate health disparities. Prevention strategies to reduce health impacts of climate change include reduction of greenhouse gas emissions and adaptation through multiple public health interventions. Further quantification of the effects of climate change on children's health is needed globally and also at regional and local levels through enhanced monitoring of children's environmental health and by tracking selected indicators. Climate change preparedness strategies need to be incorporated into public health programs.

  15. Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change

    NASA Astrophysics Data System (ADS)

    He, F.; Vavrus, S. J.; Kutzbach, J. E.; Ruddiman, W. F.; Kaplan, J. O.; Krumhardt, K. M.

    2015-12-01

    Surface albedo changes from anthropogenic land cover change (ALCC) represent the second-largest negative radiative forcing behind aerosol during the industrial era. Using a new reconstruction of ALCC during the Holocene era by Kaplan et al. [2011], we quantify the local and global temperature response induced by Holocene ALCC in the Community Climate System Model, version 4 (CCSM4). With 1-degree resolution of the CCSM4 slab-ocean model,we find that Holocene ALCC cause a global cooling of 0.17 °C due to the biogeophysical effects of land-atmosphere exchange of momentum, moisture, radiative and heat fluxes. On the global scale, the biogeochemical effects of Holocene ALCC from carbon emissions dominate the biogeophysical effects by causing 0.9 °C global warming. The net effects of Holocene ALCC amount to a global warming of 0.73 °C during the pre-industrial era, which is comparable to the ~0.8 °C warming during industrial times. On local to regional scales, such as parts of Europe, North America and Asia, the biogeophysical effects of Holocene ALCC are significant and comparable to the biogeochemical effect. The lack of ocean dynamics in the 1° CCSM4 slab-ocean simulations could underestimate the climate sensitivity because of the lack of feedbacks from ocean heat transport [Kutzbach et al., 2013; Manabe and Bryan, 1985]. In 1° CCSM4 fully coupled simulations, the climate sensitivity is ~65% larger than the 1° CCSM4 slab-ocean simulations during the Holocene (5.3 °C versus 3.2 °C) [Kutzbach et al., 2013]. With this greater climate sensitivity, the biogeochemical effects of Holocene ALCC could have caused a global warming of ~1.5 °C, and the net biogeophysical and biogeochemical effects of Holocene ALCC could cause a global warming of 1.2 °C during the preindustrial era in our simulations, which is 50% higher than the global warming of ~0.8 °C during industrial times.

  16. EFFECTS OF GLOBAL CHANGE ON CORAL REEF ECOSYSTEMS

    EPA Science Inventory

    Corals and coral reefs of the Caribbean and through the world are deteriorating at an accelerated rate. Several stressors are believed to contrbute to this decline, including global changes in atmospheric gases and land use patterns. In particular, warmer water temperatures and...

  17. IMPACTS OF GLOBAL CLIMATE CHANGE ADAPTION ON SUSTAINABILITY

    EPA Science Inventory

    This presentation presents the potential impacts that global climate change may have on the quality and quantity of water available to drinking water and wastewater treatment systems and the adaptations these systems might have to employ in order to remain in regulatory complianc...

  18. European network infrastructures of observatories for terrestrial Global Change research

    NASA Astrophysics Data System (ADS)

    Vereecken, H.; Bogena, H.; Lehning, M.

    2009-04-01

    The earth's climate is significantly changing (e.g. IPCC, 2007) and thus directly affecting the terrestrial systems. The number and intensity hydrological extremes, such as floods and droughts, are continually increasing, resulting in major economical and social impacts. Furthermore, the land cover in Europe has been modified fundamentally by conversions for agriculture, forest and for other purposes such as industrialisation and urbanisation. Additionally, water resources are more than ever used for human development, especially as a key resource for agricultural and industrial activities. As a special case, the mountains of the world are of significant importance in terms of water resources supply, biodiversity, economy, agriculture, traffic and recreation but particularly vulnerable to environmental change. The Alps are unique because of the pronounced small scale variability they contain, the high population density they support and their central position in Europe. The Alps build a single coherent physical and natural environment, artificially cut by national borders. The scientific community and governmental bodies have responded to these environmental changes by performing dedicated experiments and by establishing environmental research networks to monitor, analyse and predict the impact of Global Change on different terrestrial systems of the Earths' environment. Several European network infrastructures for terrestrial Global Change research are presently immerging or upgrading, such as ICOS, ANAEE, LifeWatch or LTER-Europe. However, the strongest existing networks are still operating on a regional or national level and the historical growth of such networks resulted in a very heterogeneous landscape of observation networks. We propose therefore the establishment of two complementary networks: The NetwOrk of Hydrological observAtories, NOHA. NOHA aims to promote the sustainable management of water resources in Europe, to support the prediction of

  19. A contemporary decennial global Landsat sample of changing agricultural field sizes

    NASA Astrophysics Data System (ADS)

    White, Emma; Roy, David

    2014-05-01

    Agriculture has caused significant human induced Land Cover Land Use (LCLU) change, with dramatic cropland expansion in the last century and significant increases in productivity over the past few decades. Satellite data have been used for agricultural applications including cropland distribution mapping, crop condition monitoring, crop production assessment and yield prediction. Satellite based agricultural applications are less reliable when the sensor spatial resolution is small relative to the field size. However, to date, studies of agricultural field size distributions and their change have been limited, even though this information is needed to inform the design of agricultural satellite monitoring systems. Moreover, the size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLU change. In many parts of the world field sizes may have increased. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, and impacts on the diffusion of herbicides, pesticides, disease pathogens, and pests. The Landsat series of satellites provide the longest record of global land observations, with 30m observations available since 1982. Landsat data are used to examine contemporary field size changes in a period (1980 to 2010) when significant global agricultural changes have occurred. A multi-scale sampling approach is used to locate global hotspots of field size change by examination of a recent global agricultural yield map and literature review. Nine hotspots are selected where significant field size change is apparent and where change has been driven by technological advancements (Argentina and U.S.), abrupt societal changes (Albania and Zimbabwe), government land use and agricultural policy changes (China, Malaysia, Brazil), and/or constrained by

  20. Key ecological responses to nitrogen are altered by climate change

    USGS Publications Warehouse

    Greaver, T.L.; Clark, C.M.; Compton, J.E.; Vallano, D.; Talhelm, A. F.; Weaver, C.P.; Band, L.E.; Baron, Jill S.; Davidson, E.A.; Tague, C.L.; Felker-Quinn, E.; Lynch, J.A.; Herrick, J.D.; Liu, L.; Goodale, C.L.; Novak, K. J.; Haeuber, R. A.

    2016-01-01

    Climate change and anthropogenic nitrogen deposition are both important ecological threats. Evaluating their cumulative effects provides a more holistic view of ecosystem vulnerability to human activities, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our knowledge of the cumulative effects of these stressors is growing, but we lack an integrated understanding. In this Review, we describe how climate change alters key processes in terrestrial and freshwater ecosystems related to nitrogen cycling and availability, and the response of ecosystems to nitrogen addition in terms of carbon cycling, acidification and biodiversity.

  1. Key ecological responses to nitrogen are altered by climate change

    NASA Astrophysics Data System (ADS)

    Greaver, T. L.; Clark, C. M.; Compton, J. E.; Vallano, D.; Talhelm, A. F.; Weaver, C. P.; Band, L. E.; Baron, J. S.; Davidson, E. A.; Tague, C. L.; Felker-Quinn, E.; Lynch, J. A.; Herrick, J. D.; Liu, L.; Goodale, C. L.; Novak, K. J.; Haeuber, R. A.

    2016-09-01

    Climate change and anthropogenic nitrogen deposition are both important ecological threats. Evaluating their cumulative effects provides a more holistic view of ecosystem vulnerability to human activities, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our knowledge of the cumulative effects of these stressors is growing, but we lack an integrated understanding. In this Review, we describe how climate change alters key processes in terrestrial and freshwater ecosystems related to nitrogen cycling and availability, and the response of ecosystems to nitrogen addition in terms of carbon cycling, acidification and biodiversity.

  2. Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change

    NASA Astrophysics Data System (ADS)

    Metcalfe, D. B.; Fisher, R. A.; Wardle, D. A.

    2011-03-01

    Understanding the impacts of plant community characteristics on soil carbon dioxide efflux (R) is a key prerequisite for accurate prediction of the future carbon balance of terrestrial ecosystems under climate change. In this review, we synthesize relevant information from a wide spectrum of sources to evaluate the current state of knowledge about plant community effects on R, examine how this information is incorporated into global climate models, and highlight priorities for future research. Plant species consistently exhibit cohesive suites of traits, linked to contrasting life history strategies, which exert a variety of impacts on R. As such, we propose that plant community shifts towards dominance by fast growing plants with nutrient rich litter could provide a major, though often neglected, positive feedback to climate change. Within vegetation types, belowground carbon flux will mainly be controlled by photosynthesis, while amongst vegetation types this flux will be more dependent upon the specific characteristics of the plant life form. We also make the case that community composition, rather than diversity, is usually the dominant control on ecosystem processes in natural systems. Individual species impacts on R may be largest where the species accounts for most of the biomass in the ecosystem, has very distinct traits to the rest of the community, or modulates the occurrence of major natural disturbances. We show that climate-vegetation models incorporate a number of pathways whereby plants can affect R, but that simplifications regarding allocation schemes and drivers of litter decomposition may limit model accuracy. This situation could, however, be relatively easily improved with targeted experimental and field studies. Finally, we identify key gaps in knowledge and recommend them as priorities for future work. These include the patterns of photosynthate partitioning amongst belowground components, ecosystem level effects of individual plant traits

  3. The deep-sea under global change.

    PubMed

    Danovaro, Roberto; Corinaldesi, Cinzia; Dell'Anno, Antonio; Snelgrove, Paul V R

    2017-06-05

    The deep ocean encompasses 95% of the oceans' volume and is the largest and least explored biome of Earth's Biosphere. New life forms are continuously being discovered. The physiological mechanisms allowing organisms to adapt to extreme conditions of the deep ocean (high pressures, from very low to very high temperatures, food shortage, lack of solar light) are still largely unknown. Some deep-sea species have very long life-spans, whereas others can tolerate toxic compounds at high concentrations; these characteristics offer an opportunity to explore the specialized biochemical and physiological mechanisms associated with these responses. Widespread symbiotic relationships play fundamental roles in driving host functions, nutrition, health, and evolution. Deep-sea organisms communicate and interact through sound emissions, chemical signals and bioluminescence. Several giants of the oceans hunt exclusively at depth, and new studies reveal a tight connection between processes in the shallow water and some deep-sea species. Limited biological knowledge of the deep-sea limits our capacity to predict future response of deep-sea organisms subject to increasing human pressure and changing global environmental conditions. Molecular tools, sensor-tagged animals, in situ and laboratory experiments, and new technologies can enable unprecedented advancement of deep-sea biology, and facilitate the sustainable management of deep ocean use under global change. Copyright © 2017. Published by Elsevier Ltd.

  4. Assessing Elementary Science Methods Students' Understanding about Global Climate Change

    ERIC Educational Resources Information Center

    Lambert, Julie L.; Lindgren, Joan; Bleicher, Robert

    2012-01-01

    Global climate change, referred to as climate change in this paper, has become an important planetary issue, and given that K-12 students have numerous alternative conceptions or lack of prior knowledge, it is critical that teachers have an understanding of the fundamental science underlying climate change. Teachers need to understand the natural…

  5. Changes in aridity in response to the global warming hiatus

    NASA Astrophysics Data System (ADS)

    Guan, Xiaodan; Huang, Jianping; Guo, Ruixia

    2017-02-01

    The global warming slowdown or warming hiatus, began around the year 2000 and has persisted for nearly 15 years. Most studies have focused on the interpretation of the hiatus in temperature. In this study, changes in a global aridity index (AI) were analyzed by using a newly developed dynamical adjustment method that can successfully identify and separate dynamically induced and radiatively forced aridity changes in the raw data. The AI and Palmer Drought Severity Index produced a wetting zone over the mid-to-high latitudes of the Northern Hemisphere in recent decades. The dynamical adjustment analysis suggested that this wetting zone occurred in response to the global warming hiatus. The dynamically induced AI (DAI) played a major role in the AI changes during the hiatus period, and its relationships with the North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO) also indicated that different phases of the NAO, PDO, and AMO contributed to different performances of the DAI over the Northern Hemisphere. Although the aridity wetting over the mid-to-high latitudes may relieve long-term drying in certain regions, the hiatus is temporary, and so is the relief. Accelerated global warming will return when the NAO, PDO, and AMO revert to their opposite phases in the future, and the wetting zone is likely to disappear.

  6. Changes in crop yields and their variability at different levels of global warming

    NASA Astrophysics Data System (ADS)

    Ostberg, Sebastian; Schewe, Jacob; Childers, Katelin; Frieler, Katja

    2018-05-01

    An assessment of climate change impacts at different levels of global warming is crucial to inform the policy discussion about mitigation targets, as well as for the economic evaluation of climate change impacts. Integrated assessment models often use global mean temperature change (ΔGMT) as a sole measure of climate change and, therefore, need to describe impacts as a function of ΔGMT. There is already a well-established framework for the scalability of regional temperature and precipitation changes with ΔGMT. It is less clear to what extent more complex biological or physiological impacts such as crop yield changes can also be described in terms of ΔGMT, even though such impacts may often be more directly relevant for human livelihoods than changes in the physical climate. Here we show that crop yield projections can indeed be described in terms of ΔGMT to a large extent, allowing for a fast estimation of crop yield changes for emissions scenarios not originally covered by climate and crop model projections. We use an ensemble of global gridded crop model simulations for the four major staple crops to show that the scenario dependence is a minor component of the overall variance of projected yield changes at different levels of ΔGMT. In contrast, the variance is dominated by the spread across crop models. Varying CO2 concentrations are shown to explain only a minor component of crop yield variability at different levels of global warming. In addition, we find that the variability in crop yields is expected to increase with increasing warming in many world regions. We provide, for each crop model, geographical patterns of mean yield changes that allow for a simplified description of yield changes under arbitrary pathways of global mean temperature and CO2 changes, without the need for additional climate and crop model simulations.

  7. Understanding changes in the UK's CO2 emissions: a global perspective.

    PubMed

    Baiocchi, Giovanni; Minx, Jan C

    2010-02-15

    The UK appears to be a leading country in curbing greenhouse gas (GHG) emissions. Unlike many other developed countries, it has already met its Kyoto obligations and defined ambitious, legally binding targets for the future. Recently this achievement has been called into question as it ignores rapidly changing patterns of production and international trade. We use structural decomposition analysis (SDA) to investigate the drivers behind annual changes in CO(2) emission from consumption in the UK between 1992 and 2004. In contrast with previous SDA-based studies, we apply the decomposition to a global, multiregional input-output model (MRIO), which accounts for UK imports from all regions and uses region-specific production structures and CO(2) intensities. We find that improvements from "domestic" changes in efficiency and production structure led to a 148 Mt reduction in CO(2) emissions, which only partially offsets emission increases of 217 Mt from changes in the global supply chain and from growing consumer demand. Recent emission reductions achieved in the UK are not merely a reflection of a greening of the domestic supply chain, but also of a change in the international division of labor in the global production of goods and services.

  8. Global climate changes, natural disasters, and travel health risks.

    PubMed

    Diaz, James H

    2006-01-01

    Whether the result of cyclical atmospheric changes, anthropogenic activities, or combinations of both, authorities now agree that the earth is warming from a variety of climatic effects, including the cascading effects of greenhouse gas emissions to support human activities. To date, most reports of the public health outcomes of global warming have been anecdotal and retrospective in design and have focused on heat stroke deaths following heat waves, drowning deaths in floods and tsunamis, and mosquito-borne infectious disease outbreaks following tropical storms and cyclones. Accurate predictions of the true public health outcomes of global climate change are confounded by several effect modifiers including human acclimatization and adaptation, the contributions of natural climatic changes, and many conflicting atmospheric models of climate change. Nevertheless, temporal relationships between environmental factors and human health outcomes have been identified and may be used as criteria to judge the causality of associations between the human health outcomes of climate changes and climate-driven natural disasters. Travel medicine physicians are obligated to educate their patients about the known public health outcomes of climate changes, about the disease and injury risk factors their patients may face from climate-spawned natural disasters, and about the best preventive measures to reduce infectious diseases and injuries following natural disasters throughout the world.

  9. Potential impact of global climate change on malaria risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martens, W.J.M.; Rotmans, J.; Niessen, L.W.

    The biological activity and geographic distribution of the malarial parasite and its vector are sensitive to climatic influences, especially temperature and precipitation. We have incorporated General Circulation Model-based scenarios of anthropogenic global climate change in an integrated linked-system model for predicting changes in malaria epidemic potential in the next century. The concept of the disability-adjusted life years is included to arrive at a single measure of the effect of anthropogenic climate change on the health impact of malaria. Assessment of the potential impact of global climate change on the incidence of malaria suggests a widespread increase of risk due tomore » expansion of the areas suitable for malaria transmission. This predicted increase is most pronounced at the borders of endemic malaria areas and at higher altitudes within malarial areas. The incidence of infection is sensitive to climate changes in areas of Southeast Asia, South America, and parts of Africa where the disease is less endemic; in these regions the numbers of years of healthy life lost may increase significantly. However, the simulated changes in malaria risk must be interpreted on the basis of local environmental conditions, the effects of socioeconomic developments, and malaria control programs or capabilities. 33 refs., 5 figs., 1 tab.« less

  10. The role of fish in a globally changing food system

    USGS Publications Warehouse

    Lynch, Abigail J.; MacMillan, J. Randy

    2017-01-01

    Though humans have been fishing for food since they first created tools to hunt, modern food systems are predominately terrestrial focused and fish are frequently overlooked. Yet, within the global food system, fish play an important role in meeting current and future food needs. Capture fisheries are the last large-scale “wild” food, and aquaculture is the fastest growing food production sector in the world. Currently, capture fisheries and aquaculture provide 4.3 billion people with at least 15% of their animal protein. In addition to providing protein and calories, fish are important sources of critical vitamins and vital nutrients that are difficult to acquire through other food sources. As the climate changes, human populations will continue to grow, cultural tastes will evolve, and fish populations will respond. Sustainable fisheries and aquaculture are poised to fill demand for food not met by terrestrial food systems. Climate change and other global changes will increase, decrease, or modify many wild fish populations and aquaculture systems. Understanding the knowledge gaps around these implications for global change on fish production is critical. Applied research and adaptive management techniques can assist with the necessary evolution of sustainable food systems to include a stronger emphasis on fish and other aquatic organisms.

  11. Examining Long-Term Global Climate Change on the Web.

    ERIC Educational Resources Information Center

    Huntoon, Jacqueline E.; Ridky, Robert K.

    2002-01-01

    Describes a web-based, inquiry-oriented activity that enables students to examine long-term global climate change. Supports instruction in other topics such as population growth. (Contains 34 references.) (DDR)

  12. AIR QUALITY AND GLOBAL CLIMATE CHANGE (PHASE 1)

    EPA Science Inventory

    Predicted changes in the global climate over the coming decades could alter weather patterns and, thus, impact land use, source emissions, and tropospheric air quality. The United States has a series of standards for criteria air pollutants and other air pollutants in place to s...

  13. Optimal function explains forest responses to global change

    Treesearch

    Roderick Dewar; Oskar Franklin; Annikki Makela; Ross E. McMurtrie; Harry T. Valentine

    2009-01-01

    Plant responses to global changes in carbon dioxide (CO2), nitrogen, and water availability are critical to future atmospheric CO2 concentrations, hydrology, and hence climate. Our understanding of those responses is incomplete, however. Multiple-resource manipulation experiments and empirical observations have revealed a...

  14. ENSO Diversity Changes Due To Global Warming In CESM-LE

    NASA Astrophysics Data System (ADS)

    Carreric, A.; Dewitte, B.; Guemas, V.

    2017-12-01

    The El Niño Southern Oscillation (ENSO) is predicted to be modified due to global warming based on the CMIP3 and CMIP5 data bases. In particular the frequency of occurrence of extreme Eastern Pacific El Niño events is to double in the future in response to the increase in green-house gazes. Such forecast relies however on state-of-the-art models that still present mean state biases and do not simulate realistically key features of El Niño events such as its diversity which is related to the existence of at least two types of El Niño events, the Eastern Pacific (EP) El Nino and the Central Pacific (CP) El Niño events. Here we take advantage of the Community Earth System Model (CESM) Large Ensemble (LE) that provides 35 realizations of the climate of the 1920-2100 period with a combination of both natural and anthropogenic climate forcing factors, to explore on the one hand methods to detect changes in ENSO statistics and on the other hand to investigate changes in thermodynamical processes associated to the increase oceanic stratification owed to global warming. The CESM simulates realistically many aspects of the ENSO diversity, in particular the non-linear evolution of the phase space of the first two EOF modes of Sea Surface Temperature (SST) anomalies in the tropical Pacific. Based on indices accounting for the two ENSO regimes used in the literature, we show that, although there is no statistically significant (i.e. confidence level > 95%) changes in the occurrence of El Niño types from the present to the future climate, the estimate of the changes is sensitive to the definition of ENSO indices that is used. CESM simulates in particular an increase occurrence of extreme El Niño events that can vary by 28% from one method to the other. It is shown that the seasonal evolution of EP El Niño events is modified from the present to the future climate, with in particular a larger occurrence of events taking place in Austral summer in the warmer climate

  15. Global climate change and terrestrial net primary production

    NASA Technical Reports Server (NTRS)

    Melillo, Jerry M.; Mcguire, A. D.; Kicklighter, David W.; Moore, Berrien, III; Vorosmarty, Charles J.; Schloss, Annette L.

    1993-01-01

    A process-based model was used to estimate global patterns of net primary production and soil nitrogen cycling for contemporary climate conditions and current atmospheric CO2 concentration. Over half of the global annual net primary production was estimated to occur in the tropics, with most of the production attributable to tropical evergreen forest. The effects of CO2 doubling and associated climate changes were also explored. The responses in tropical and dry temperate ecosystems were dominated by CO2, but those in northern and moist temperate ecosystems reflected the effects of temperature on nitrogen availability.

  16. Global climate change attitudes and perceptions among south American zoo visitors.

    PubMed

    Luebke, Jerry F; Clayton, Susan; Kelly, Lisa-Anne DeGregoria; Grajal, Alejandro

    2015-01-01

    There is a substantial gap between the scientific evidence for anthropogenic climate change and the human response to this evidence. Perceptions of and responses to climate change can differ among regions of the world, as well as within countries. Therefore, information about the public's attitudes and perceptions related to climate change is essential to the development of relevant educational resources. In the present study, zoo visitors in four South American countries responded to a questionnaire regarding their attitudes and perceptions toward global climate change. Results indicated that most respondents are already highly concerned about global climate change and are interested in greater engagement in pro-environmental behaviors. Visitors also perceive various obstacles to engagement in climate change mitigation behaviors. We discuss the results of our study in terms of addressing visitors' climate change attitudes and perceptions within the social and emotional context of zoo settings. © 2015 Wiley Periodicals, Inc.

  17. PERSPECTIVE: Climate change, biofuels, and global food security

    NASA Astrophysics Data System (ADS)

    Cassman, Kenneth G.

    2007-03-01

    There is a new urgency to improve the accuracy of predicting climate change impact on crop yields because the balance between food supply and demand is shifting abruptly from surplus to deficit. This reversal is being driven by a rapid rise in petroleum prices and, in response, a massive global expansion of biofuel production from maize, oilseed, and sugar crops. Soon the price of these commodities will be determined by their value as feedstock for biofuel rather than their importance as human food or livestock feed [1]. The expectation that petroleum prices will remain high and supportive government policies in several major crop producing countries are providing strong momentum for continued expansion of biofuel production capacity and the associated pressures on global food supply. Farmers in countries that account for a majority of the world's biofuel crop production will enjoy the promise of markedly higher commodity prices and incomesNote1. In contrast, urban and rural poor in food-importing countries will pay much higher prices for basic food staples and there will be less grain available for humanitarian aid. For example, the developing countries of Africa import about 10 MMt of maize each year; another 3 5 MMt of cereal grains are provided as humanitarian aid (figure 1). In a world where more than 800 million are already undernourished and the demand for crop commodities may soon exceed supply, alleviating hunger will no longer be solely a matter of poverty alleviation and more equitable food distribution, which has been the situation for the past thirty years. Instead, food security will also depend on accelerating the rate of gain in crop yields and food production capacity at both local and global scales. Maize imports and cereal donations as humanitarian aid to the developing countries of Africa Figure 1. Maize imports (yellow bar) and cereal donations as humanitarian aid to the developing countries of Africa, 2001 2003. MMT = million metric tons. Data

  18. Learning To Manage Change: Developing Regional Communities for a Local-Global Millennium.

    ERIC Educational Resources Information Center

    Falk, Ian, Ed.

    This book illustrates the benefits of integrating different approaches to community and regional development for rural Australia. The key theme is community capacity building through lifelong learning, seen as integration of formal, nonformal, and informal education and training at all levels. Other foci include the local-global context, issues…

  19. Toward an understanding of global change: Initial priorities for US contributions to the International Geosphere-Biosphere Program

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A limited number of high-priority research initiatives are recommended for early implementation as part of the U.S. contribution to the preparatory phase of the International Geosphere-Biosphere Program. The recommendations are based on the committee's analysis of the most critical gaps in the scientific knowledge needed to understand the changes that are occurring in the earth system not being addressed by existing programs. The report articulates a number of important key issues and interactions that characterize global change in the geosphere-biosphere system on time scales of decades to centuries; identifies the knowledge that is the most urgently needed to improve understanding of those issues and interactions; and formulates initial priorities for initial U.S. contributions to the IGBP, recognizing the contributions of other ongoing and proposed programs.

  20. Australian Medical Students' Association Global Health Essay Competition - Global climate change, geo-engineering and human health.

    PubMed

    Boyages, Costa S

    2013-10-07

    Rio+20's proposed Sustainable Development Goals have the potential to redefine the course of international action on climate change. They recognise that environmental health is inextricably linked with human health, and that environmental sustainability is of paramount importance in safeguarding global health. Competition entrants were asked to discuss ways of making global health a central component of international sustainable development initiatives and environmental policy, using one or two concrete examples

  1. Changes in regional heatwave characteristics as a function of increasing global temperature.

    PubMed

    Perkins-Kirkpatrick, S E; Gibson, P B

    2017-09-25

    The Paris Agreement calls for global warming to be limited to 1.5-2 °C. For the first time, this study investigates how different regional heatwave characteristics (intensity, frequency and duration) are projected to change relative to increasing global warming thresholds. Increases in heatwave days between 4-34 extra days per season are projected per °C of global warming. Some tropical regions could experience up to 120 extra heatwave days/season if 5 °C is reached. Increases in heatwave intensity are generally 0.5-1.5 °C above a given global warming threshold, however are higher over the Mediterranean and Central Asian regions. Between warming thresholds of 1.5 °C and 2.5 °C, the return intervals of intense heatwaves reduce by 2-3 fold. Heatwave duration is projected to increase by 2-10 days/°C, with larger changes over lower latitudes. Analysis of two climate model ensembles indicate that variation in the rate of heatwave changes is dependent on physical differences between different climate models, however internal climate variability bears considerable influence on the expected range of regional heatwave changes per warming threshold. The results of this study reiterate the potential for disastrous consequences associated with regional heatwaves if global mean warming is not limited to 2 degrees.

  2. Climate change impacts on global food security.

    PubMed

    Wheeler, Tim; von Braun, Joachim

    2013-08-02

    Climate change could potentially interrupt progress toward a world without hunger. A robust and coherent global pattern is discernible of the impacts of climate change on crop productivity that could have consequences for food availability. The stability of whole food systems may be at risk under climate change because of short-term variability in supply. However, the potential impact is less clear at regional scales, but it is likely that climate variability and change will exacerbate food insecurity in areas currently vulnerable to hunger and undernutrition. Likewise, it can be anticipated that food access and utilization will be affected indirectly via collateral effects on household and individual incomes, and food utilization could be impaired by loss of access to drinking water and damage to health. The evidence supports the need for considerable investment in adaptation and mitigation actions toward a "climate-smart food system" that is more resilient to climate change influences on food security.

  3. A global change data base using Thematic Mapper data - Earth Monitoring Educational System (EMES)

    NASA Technical Reports Server (NTRS)

    D'Antoni, Hector L.; Peterson, David L.

    1992-01-01

    Some of the main directions in creating an education program in earth system science aimed at combining top science and technology with high academic performance are presented. The creation of an Earth Monitoring Educational System (EMES) integrated with the research interests of the NASA Ames Research Center and one or more universities is proposed. Based on the integration of a global network of cooperators to build a global data base for assessments of global change, EMES would promote degrees at all levels in global ecology at associated universities and colleges, and extracurricular courses for multilevel audiences. EMES objectives are to: train specialists; establish a tradition of solving regional problems concerning global change in a systemic manner, using remote sensing technology as the monitoring tool; and transfer knowledge on global change to the national and world communities. South America is proposed as the pilot continent for the project.

  4. Global Potential for Hydro-generated Electricity and Climate Change Impact

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Hejazi, M. I.; Leon, C.; Calvin, K. V.; Thomson, A. M.; Li, H. Y.

    2014-12-01

    Hydropower is a dominant renewable energy source at the global level, accounting for more than 15% of the world's total power supply. It is also very vulnerable to climate change. Improved understanding of climate change impact on hydropower can help develop adaptation measures to increase the resilience of energy system. In this study, we developed a comprehensive estimate of global hydropower potential using runoff and stream flow data derived from a global hydrologic model with a river routing sub-model, along with turbine technology performance, cost assumptions, and environmental consideration (Figure 1). We find that hydropower has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by regions. Resources in a number of countries exceed by multiple folds the total current demand for electricity, e.g., Russia and Indonesia. A sensitivity analysis indicates that hydropower potential can be highly sensitive to a number of parameters including designed flow for capacity, cost and financing, turbine efficiency, and stream flow. The climate change impact on hydropower potential was evaluated by using runoff outputs from 4 climate models (HadCM3, PCM, CGCM2, and CSIRO2). It was found that the climate change on hydropower shows large variation not only by regions, but also climate models, and this demonstrates the importance of incorporating climate change into infrastructure-planning at the regional level though the existing uncertainties.

  5. Six Key Factors for Changing Preservice Teachers' Attitudes/Beliefs about Diversity

    ERIC Educational Resources Information Center

    Garmon, M. Arthur

    2005-01-01

    In this article the author postulates there are six key factors associated with changing preservice teachers' attitudes toward and beliefs about diversity-their dispositions, which include openness, self-awarenesss/self-reflectiveness, and commitment to social justice; and their experiences, which include intercultural, educational, and support…

  6. Quantum cryptography to satellites for global secure key distribution

    NASA Astrophysics Data System (ADS)

    Rarity, John G.; Gorman, Philip M.; Knight, Paul; Wallace, Kotska; Tapster, Paul R.

    2017-11-01

    We have designed and built a free space secure key exchange system using weak laser pulses with polarisation modulation by acousto-optic switching. We have used this system to exchange keys over a 1.2km ground range with absolute security. Building from this initial result we analyse the feasibility of exchanging keys to a low earth orbit satellite.

  7. Defining Health Diplomacy: Changing Demands in the Era of Globalization

    PubMed Central

    Katz, Rebecca; Kornblet, Sarah; Arnold, Grace; Lief, Eric; Fischer, Julie E

    2011-01-01

    Context: Accelerated globalization has produced obvious changes in diplomatic purposes and practices. Health issues have become increasingly preeminent in the evolving global diplomacy agenda. More leaders in academia and policy are thinking about how to structure and utilize diplomacy in pursuit of global health goals. Methods: In this article, we describe the context, practice, and components of global health diplomacy, as applied operationally. We examine the foundations of various approaches to global health diplomacy, along with their implications for the policies shaping the international public health and foreign policy environments. Based on these observations, we propose a taxonomy for the subdiscipline. Findings: Expanding demands on global health diplomacy require a delicate combination of technical expertise, legal knowledge, and diplomatic skills that have not been systematically cultivated among either foreign service or global health professionals. Nonetheless, high expectations that global health initiatives will achieve development and diplomatic goals beyond the immediate technical objectives may be thwarted by this gap. Conclusions: The deepening links between health and foreign policy require both the diplomatic and global health communities to reexamine the skills, comprehension, and resources necessary to achieve their mutual objectives. PMID:21933277

  8. Trends in global wildfire potential in a changing climate

    Treesearch

    Y. Liu; J.A. Stanturf; S.L. Goodrick

    2009-01-01

    The trend in global wildfire potential under the climate change due to the greenhouse effect is investigated. Fire potential is measured by the Keetch-Byram Drought Index (KBDI), which is calculated using the observed maximum temperature and precipitation and projected changes at the end of this century (2070–2100) by general circulation models (GCMs) for present and...

  9. Globalization and social determinants of health: The role of the global marketplace (part 2 of 3)

    PubMed Central

    Labonté, Ronald; Schrecker, Ted

    2007-01-01

    Globalization is a key context for the study of social determinants of health (SDH): broadly stated, SDH are the conditions in which people live and work, and that affect their opportunities to lead healthy lives. In the first article in this three part series, we described the origins of the series in work conducted for the Globalization Knowledge Network of the World Health Organization's Commission on Social Determinants of Health and in the Commission's specific concern with health equity. We identified and defended a definition of globalization that gives primacy to the drivers and effects of transnational economic integration, and addressed a number of important conceptual and methodological issues in studying globalization's effects on SDH and their distribution, emphasizing the need for transdisciplinary approaches that reflect the complexity of the topic. In this second article, we identify and describe several, often interacting clusters of pathways leading from globalization to changes in SDH that are relevant to health equity. These involve: trade liberalization; the global reorganization of production and labour markets; debt crises and economic restructuring; financial liberalization; urban settings; influences that operate by way of the physical environment; and health systems changed by the global marketplace. PMID:17578569

  10. Globalization and social determinants of health: The role of the global marketplace (part 2 of 3).

    PubMed

    Labonté, Ronald; Schrecker, Ted

    2007-06-19

    Globalization is a key context for the study of social determinants of health (SDH): broadly stated, SDH are the conditions in which people live and work, and that affect their opportunities to lead healthy lives. In the first article in this three part series, we described the origins of the series in work conducted for the Globalization Knowledge Network of the World Health Organization's Commission on Social Determinants of Health and in the Commission's specific concern with health equity. We identified and defended a definition of globalization that gives primacy to the drivers and effects of transnational economic integration, and addressed a number of important conceptual and methodological issues in studying globalization's effects on SDH and their distribution, emphasizing the need for transdisciplinary approaches that reflect the complexity of the topic. In this second article, we identify and describe several, often interacting clusters of pathways leading from globalization to changes in SDH that are relevant to health equity. These involve: trade liberalization; the global reorganization of production and labour markets; debt crises and economic restructuring; financial liberalization; urban settings; influences that operate by way of the physical environment; and health systems changed by the global marketplace.

  11. Plasmodium evasion of mosquito immunity and global malaria transmission: The lock-and-key theory.

    PubMed

    Molina-Cruz, Alvaro; Canepa, Gaspar E; Kamath, Nitin; Pavlovic, Noelle V; Mu, Jianbing; Ramphul, Urvashi N; Ramirez, Jose Luis; Barillas-Mury, Carolina

    2015-12-08

    Plasmodium falciparum malaria originated in Africa and became global as humans migrated to other continents. During this journey, parasites encountered new mosquito species, some of them evolutionarily distant from African vectors. We have previously shown that the Pfs47 protein allows the parasite to evade the mosquito immune system of Anopheles gambiae mosquitoes. Here, we investigated the role of Pfs47-mediated immune evasion in the adaptation of P. falciparum to evolutionarily distant mosquito species. We found that P. falciparum isolates from Africa, Asia, or the Americas have low compatibility to malaria vectors from a different continent, an effect that is mediated by the mosquito immune system. We identified 42 different haplotypes of Pfs47 that have a strong geographic population structure and much lower haplotype diversity outside Africa. Replacement of the Pfs47 haplotypes in a P. falciparum isolate is sufficient to make it compatible to a different mosquito species. Those parasites that express a Pfs47 haplotype compatible with a given vector evade antiplasmodial immunity and survive. We propose that Pfs47-mediated immune evasion has been critical for the globalization of P. falciparum malaria as parasites adapted to new vector species. Our findings predict that this ongoing selective force by the mosquito immune system could influence the dispersal of Plasmodium genetic traits and point to Pfs47 as a potential target to block malaria transmission. A new model, the "lock-and-key theory" of P. falciparum globalization, is proposed, and its implications are discussed.

  12. Effects of Global Change on U.S. Urban Areas: Vulnerabilities, Impacts, and Adaptation

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Wilbanks, Thomas J.; Kirshen, Paul; Romero-Lankao, Patricia; Rosenzweig, Cynthia; Ruth, Mattias; Solecki, William; Tarr, Joel

    2008-01-01

    This slide presentation reviews some of the effects that global change has on urban areas in the United States and how the growth of urban areas will affect the environment. It presents the elements of our Synthesis and Assessment Report (SAP) report that relate to what vulnerabilities and impacts will occur, what adaptation responses may take place, and what possible effects on settlement patterns and characteristics will potentially arise, on human settlements in the U.S. as a result of climate change and climate variability. We will also present some recommendations about what should be done to further research on how climate change and variability will impact human settlements in the U.S., as well as how to engage government officials, policy and decision makers, and the general public in understanding the implications of climate change and variability on the local and regional levels. Additionally, we wish to explore how technology such as remote sensing data coupled with modeling, can be employed as synthesis tools for deriving insight across a spectrum of impacts (e.g. public health, urban planning for mitigation strategies) on how cities can cope and adapt to climate change and variability. This latter point parallels the concepts and ideas presented in the U.S. National Academy of Sciences, Decadal Survey report on "Earth Science Applications from Space: National Imperatives for the Next Decade and Beyond" wherein the analysis of the impacts of climate change and variability, human health, and land use change are listed as key areas for development of future Earth observing remote sensing systems.

  13. Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the twenty-first century

    NASA Astrophysics Data System (ADS)

    Groisman, Pavel; Shugart, Herman; Kicklighter, David; Henebry, Geoffrey; Tchebakova, Nadezhda; Maksyutov, Shamil; Monier, Erwan; Gutman, Garik; Gulev, Sergey; Qi, Jiaguo; Prishchepov, Alexander; Kukavskaya, Elena; Porfiriev, Boris; Shiklomanov, Alexander; Loboda, Tatiana; Shiklomanov, Nikolay; Nghiem, Son; Bergen, Kathleen; Albrechtová, Jana; Chen, Jiquan; Shahgedanova, Maria; Shvidenko, Anatoly; Speranskaya, Nina; Soja, Amber; de Beurs, Kirsten; Bulygina, Olga; McCarty, Jessica; Zhuang, Qianlai; Zolina, Olga

    2017-12-01

    During the past several decades, the Earth system has changed significantly, especially across Northern Eurasia. Changes in the socio-economic conditions of the larger countries in the region have also resulted in a variety of regional environmental changes that can have global consequences. The Northern Eurasia Future Initiative (NEFI) has been designed as an essential continuation of the Northern Eurasia Earth Science Partnership Initiative (NEESPI), which was launched in 2004. NEESPI sought to elucidate all aspects of ongoing environmental change, to inform societies and, thus, to better prepare societies for future developments. A key principle of NEFI is that these developments must now be secured through science-based strategies co-designed with regional decision-makers to lead their societies to prosperity in the face of environmental and institutional challenges. NEESPI scientific research, data, and models have created a solid knowledge base to support the NEFI program. This paper presents the NEFI research vision consensus based on that knowledge. It provides the reader with samples of recent accomplishments in regional studies and formulates new NEFI science questions. To address these questions, nine research foci are identified and their selections are briefly justified. These foci include warming of the Arctic; changing frequency, pattern, and intensity of extreme and inclement environmental conditions; retreat of the cryosphere; changes in terrestrial water cycles; changes in the biosphere; pressures on land use; changes in infrastructure; societal actions in response to environmental change; and quantification of Northern Eurasia's role in the global Earth system. Powerful feedbacks between the Earth and human systems in Northern Eurasia (e.g., mega-fires, droughts, depletion of the cryosphere essential for water supply, retreat of sea ice) result from past and current human activities (e.g., large-scale water withdrawals, land use, and governance

  14. Impact of climate change on global malaria distribution.

    PubMed

    Caminade, Cyril; Kovats, Sari; Rocklov, Joacim; Tompkins, Adrian M; Morse, Andrew P; Colón-González, Felipe J; Stenlund, Hans; Martens, Pim; Lloyd, Simon J

    2014-03-04

    Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution.

  15. Impact of climate change on global malaria distribution

    PubMed Central

    Caminade, Cyril; Kovats, Sari; Rocklov, Joacim; Tompkins, Adrian M.; Morse, Andrew P.; Colón-González, Felipe J.; Stenlund, Hans; Martens, Pim; Lloyd, Simon J.

    2014-01-01

    Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution. PMID:24596427

  16. Large-river delta-front estuaries as natural “recorders” of global environmental change

    PubMed Central

    Bianchi, Thomas S.; Allison, Mead A.

    2009-01-01

    Large-river delta-front estuaries (LDE) are important interfaces between continents and the oceans for material fluxes that have a global impact on marine biogeochemistry. In this article, we propose that more emphasis should be placed on LDE in future global climate change research. We will use some of the most anthropogenically altered LDE systems in the world, the Mississippi/Atchafalaya River and the Chinese rivers that enter the Yellow Sea (e.g., Huanghe and Changjiang) as case-studies, to posit that these systems are both “drivers” and “recorders” of natural and anthropogenic environmental change. Specifically, the processes in the LDE can influence (“drive”) the flux of particulate and dissolved materials from the continents to the global ocean that can have profound impact on issues such as coastal eutrophication and the development of hypoxic zones. LDE also record in their rapidly accumulating subaerial and subaqueous deltaic sediment deposits environmental changes such as continental-scale trends in climate and land-use in watersheds, frequency and magnitude of cyclonic storms, and sea-level change. The processes that control the transport and transformation of carbon in the active LDE and in the deltaic sediment deposit are also essential to our understanding of carbon sequestration and exchange with the world ocean—an important objective in global change research. U.S. efforts in global change science including the vital role of deltaic systems are emphasized in the North American Carbon Plan (www.carboncyclescience.gov). PMID:19435849

  17. The changing model of big pharma: impact of key trends.

    PubMed

    Gautam, Ajay; Pan, Xiaogang

    2016-03-01

    Recent years have seen exciting breakthroughs in biomedical sciences that are producing truly novel therapeutics for unmet patient needs. However, the pharmaceutical industry is also facing significant barriers in the form of pricing and reimbursement, continued patent expirations and challenging market dynamics. In this article, we have analyzed data from the 1995-2015 period, on key aspects such as revenue distribution, research units, portfolio mix and emerging markets to identify four key trends that help to understand the change in strategic focus, realignment of R&D footprint, the shift from primary care toward specialty drugs and biologics and the growth of emerging markets as major revenue drivers for big pharma. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. The Effects of Global Change upon United States Air Quality

    EPA Science Inventory

    To understand more fully the effects of global changes on ambient concentrations of ozone and particulate matter with aerodynamic diameter smaller than 2.5 μm (PM2.5) in the US, we conducted a comprehensive modeling effort to evaluate explicitly the effects of change...

  19. Interdisciplinary knowledge exchange across scales in a globally changing marine environment.

    PubMed

    McDonald, Karlie S; Hobday, Alistair J; Fulton, Elizabeth A; Thompson, Peter A

    2018-07-01

    The effects of anthropogenic global environmental change on biotic and abiotic processes have been reported in aquatic systems across the world. Complex synergies between concurrent environmental stressors and the resilience of the system to regime shifts, which vary in space and time, determine the capacity for marine systems to maintain structure and function with global environmental change. Consequently, an interdisciplinary approach that facilitates the development of new methods for the exchange of knowledge between scientists across multiple scales is required to effectively understand, quantify and predict climate impacts on marine ecosystem services. We use a literature review to assess the limitations and assumptions of current pathways to exchange interdisciplinary knowledge and the transferability of research findings across spatial and temporal scales and levels of biological organization to advance scientific understanding of global environmental change in marine systems. We found that species-specific regional scale climate change research is most commonly published, and "supporting" is the ecosystem service most commonly referred to in publications. In addition, our paper outlines a trajectory for the future development of integrated climate change science for sustaining marine ecosystem services such as investment in interdisciplinary education and connectivity between disciplines. © 2018 John Wiley & Sons Ltd.

  20. Land cover change or land-use intensification: simulating land system change with a global-scale land change model.

    PubMed

    van Asselen, Sanneke; Verburg, Peter H

    2013-12-01

    Land-use change is both a cause and consequence of many biophysical and socioeconomic changes. The CLUMondo model provides an innovative approach for global land-use change modeling to support integrated assessments. Demands for goods and services are, in the model, supplied by a variety of land systems that are characterized by their land cover mosaic, the agricultural management intensity, and livestock. Land system changes are simulated by the model, driven by regional demand for goods and influenced by local factors that either constrain or promote land system conversion. A characteristic of the new model is the endogenous simulation of intensification of agricultural management versus expansion of arable land, and urban versus rural settlements expansion based on land availability in the neighborhood of the location. Model results for the OECD Environmental Outlook scenario show that allocation of increased agricultural production by either management intensification or area expansion varies both among and within world regions, providing useful insight into the land sparing versus land sharing debate. The land system approach allows the inclusion of different types of demand for goods and services from the land system as a driving factor of land system change. Simulation results are compared to observed changes over the 1970-2000 period and projections of other global and regional land change models. © 2013 John Wiley & Sons Ltd.

  1. Global Climate Change Adaptation Priorities for Biodiversity and Food Security

    PubMed Central

    Hannah, Lee; Ikegami, Makihiko; Hole, David G.; Seo, Changwan; Butchart, Stuart H. M.; Peterson, A. Townsend; Roehrdanz, Patrick R.

    2013-01-01

    International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services. PMID:23991125

  2. Global climate change adaptation priorities for biodiversity and food security.

    PubMed

    Hannah, Lee; Ikegami, Makihiko; Hole, David G; Seo, Changwan; Butchart, Stuart H M; Peterson, A Townsend; Roehrdanz, Patrick R

    2013-01-01

    International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services.

  3. Global climate change research at the U.S. Environmental Protection Agency

    EPA Science Inventory

    The science surrounding global climate change is complex and has been interpreted in many ways. The concept of the Greenhouse Effect—viewed as the cause of global climate change—is quite simple, but the Earth’s response is not. After more than two decades of intensive research, s...

  4. Global Gathering Addresses PV Role in Energy Prosperity and Climate Change

    Science.gov Websites

    Mitigation | News | NREL Global Gathering Addresses PV Role in Energy Prosperity and Climate Change Mitigation News Release: Global Gathering Addresses PV Role in Energy Prosperity and Climate Laboratory (NREL), along with their counterparts from solar energy research institutes in Germany and Japan

  5. Late Miocene Pacific plate kinematic change explained with coupled global models of mantle and lithosphere dynamics

    NASA Astrophysics Data System (ADS)

    Stotz, I. L.; Iaffaldano, G.; Davies, D. R.

    2017-07-01

    The timing and magnitude of a Pacific plate motion change within the past 10 Ma remains enigmatic, due to the noise associated with finite-rotation data. Nonetheless, it has been hypothesized that this change was driven by the arrival of the Ontong Java Plateau (OJP) at the Melanesian arc and the consequent subduction polarity reversal. The uncertainties associated with the timing of this event, however, make it difficult to quantitatively demonstrate a dynamical association. Here, we first reconstruct the Pacific plate's absolute motion since the mid-Miocene (15 Ma), at high-temporal resolution, building on previous efforts to mitigate the impact of finite-rotation data noise. We find that the largest change in Pacific plate-motion direction occurred between 10 and 5 Ma, with the plate rotating clockwise. We subsequently develop and use coupled global numerical models of the mantle/lithosphere system to test hypotheses on the dynamics driving this change. These indicate that the arrival of the OJP at the Melanesian arc, between 10 and 5 Ma, followed by a subduction polarity reversal that marked the initiation of subduction of the Australian plate underneath the Pacific realm, were the key drivers of this kinematic change.

  6. Identifying sensitive ranges in global warming precipitation change dependence on convective parameters

    DOE PAGES

    Bernstein, Diana N.; Neelin, J. David

    2016-04-28

    A branch-run perturbed-physics ensemble in the Community Earth System Model estimates impacts of parameters in the deep convection scheme on current hydroclimate and on end-of-century precipitation change projections under global warming. Regional precipitation change patterns prove highly sensitive to these parameters, especially in the tropics with local changes exceeding 3mm/d, comparable to the magnitude of the predicted change and to differences in global warming predictions among the Coupled Model Intercomparison Project phase 5 models. This sensitivity is distributed nonlinearly across the feasible parameter range, notably in the low-entrainment range of the parameter for turbulent entrainment in the deep convection scheme.more » This suggests that a useful target for parameter sensitivity studies is to identify such disproportionately sensitive dangerous ranges. Here, the low-entrainment range is used to illustrate the reduction in global warming regional precipitation sensitivity that could occur if this dangerous range can be excluded based on evidence from current climate.« less

  7. Identifying sensitive ranges in global warming precipitation change dependence on convective parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Diana N.; Neelin, J. David

    A branch-run perturbed-physics ensemble in the Community Earth System Model estimates impacts of parameters in the deep convection scheme on current hydroclimate and on end-of-century precipitation change projections under global warming. Regional precipitation change patterns prove highly sensitive to these parameters, especially in the tropics with local changes exceeding 3mm/d, comparable to the magnitude of the predicted change and to differences in global warming predictions among the Coupled Model Intercomparison Project phase 5 models. This sensitivity is distributed nonlinearly across the feasible parameter range, notably in the low-entrainment range of the parameter for turbulent entrainment in the deep convection scheme.more » This suggests that a useful target for parameter sensitivity studies is to identify such disproportionately sensitive dangerous ranges. Here, the low-entrainment range is used to illustrate the reduction in global warming regional precipitation sensitivity that could occur if this dangerous range can be excluded based on evidence from current climate.« less

  8. Global and Regional Temperature-change Potentials for Near-term Climate Forcers

    NASA Technical Reports Server (NTRS)

    Collins, W.J.; Fry, M.M.; Yu, H.; Fuglestvedt, J. S.; Shindell, D. T.; West, J. J.

    2013-01-01

    We examine the climate effects of the emissions of near-term climate forcers (NTCFs) from 4 continental regions (East Asia, Europe, North America and South Asia) using results from the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model simulations. We address 3 aerosol species (sulphate, particulate organic matter and black carbon) and 4 ozone precursors (methane, reactive nitrogen oxides (NOx), volatile organic compounds and carbon monoxide). We calculate the global climate metrics: global warming potentials (GWPs) and global temperature change potentials (GTPs). For the aerosols these metrics are simply time-dependent scalings of the equilibrium radiative forcings. The GTPs decrease more rapidly with time than the GWPs. The aerosol forcings and hence climate metrics have only a modest dependence on emission region. The metrics for ozone precursors include the effects on the methane lifetime. The impacts via methane are particularly important for the 20 yr GTPs. Emissions of NOx and VOCs from South Asia have GWPs and GTPs of higher magnitude than from the other Northern Hemisphere regions. The analysis is further extended by examining the temperature-change impacts in 4 latitude bands, and calculating absolute regional temperature-change potentials (ARTPs). The latitudinal pattern of the temperature response does not directly follow the pattern of the diagnosed radiative forcing. We find that temperatures in the Arctic latitudes appear to be particularly sensitive to BC emissions from South Asia. The northern mid-latitude temperature response to northern mid-latitude emissions is approximately twice as large as the global average response for aerosol emission, and about 20-30% larger than the global average for methane, VOC and CO emissions.

  9. The Global Citizen as an Agent of Change: Ideals of the Global Citizen in the Narratives of Polish NGO Employees

    ERIC Educational Resources Information Center

    Kuleta-Hulboj, Magdalena

    2016-01-01

    One of the main goals of global education is to develop students as global citizens working for social change, equality and justice. However, the notion of the global citizen remains a subject of debate because of its various theoretical and ideological underpinnings, as well as diverse meanings associated with it. Non-critical ways of…

  10. The Effect of Land Use (Deforestation) on Global Changing and its consequences in Turkey

    NASA Astrophysics Data System (ADS)

    Onursal Denli, G.; Denli, H. H.

    2015-12-01

    Land use has generally been considered as a local environmental issue, but it is becoming a force of global importance. Global changes to forests, farmlands, waterways, and air are being driven by the need to provide food, water and shelter to more than six billion people. Global croplands, pastures, plantations and urban areas have expanded in recent decades, accompanied by large increases in energy, water and fertilizer consumption, along with considerable losses of biodiversity. Especially the forests influence climate through physical, chemical and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. Such changes in land use have enabled humans to appropriate an increasing share of the planet's resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality. Global Warming and Climate Change are the two main fundamental problems facing Turkey as well as the World. The expedition and size of this change is becoming noticeably conspicuous now. According to the International Union for Conservation of Nature (IUCN), the global temperature has been increased of about 0.74 degree Celsius since the Industrial Revolution. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change. The general scientific opinions on the climate change states that in the past 50 years, global warming has effected the human life resulting with very obvious influences. High rates of deforestation within a country are most commonly linked to population growth and poverty. In Turkey, the forests are destroyed for various reasons resulting to a change in the climate. This study examines the causes of

  11. Regional-Scale Forcing and Feedbacks from Alternative Scenarios of Global-Scale Land Use Change

    NASA Astrophysics Data System (ADS)

    Jones, A. D.; Chini, L. P.; Collins, W.; Janetos, A. C.; Mao, J.; Shi, X.; Thomson, A. M.; Torn, M. S.

    2011-12-01

    Future patterns of land use change depend critically on the degree to which terrestrial carbon management strategies, such as biological carbon sequestration and biofuels, are utilized in order to mitigate global climate change. Furthermore, land use change associated with terrestrial carbon management induces biogeophysical changes to surface energy budgets that perturb climate at regional and possibly global scales, activating different feedback processes depending on the nature and location of the land use change. As a first step in a broader effort to create an integrated earth system model, we examine two scenarios of future anthropogenic activity generated by the Global Change Assessment Model (GCAM) within the full-coupled Community Earth System Model (CESM). Each scenario stabilizes radiative forcing from greenhouse gases and aerosols at 4.5 W/m^2. In the first, stabilization is achieved through a universal carbon tax that values terrestrial carbon equally with fossil carbon, leading to modest afforestation globally and low biofuel utilization. In the second scenario, stabilization is achieved with a tax on fossil fuel and industrial carbon alone. In this case, biofuel utilization increases dramatically and crop area expands to claim approximately 50% of forest cover globally. By design, these scenarios exhibit identical climate forcing from atmospheric constituents. Thus, differences among them can be attributed to the biogeophysical effects of land use change. In addition, we utilize offline radiative transfer and offline land model simulations to identify forcing and feedback mechanisms operating in different regions. We find that boreal deforestation has a strong climatic signature due to significant albedo change coupled with a regional-scale water vapor feedback. Tropical deforestation, on the other hand, has more subtle effects on climate. Globally, the two scenarios yield warming trends over the 21st century that differ by 0.5 degrees Celsius. This

  12. Global situational awareness and early warning of high-consequence climate change.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, George A.; Carr, Martin J.; Boslough, Mark Bruce Elrick

    2009-08-01

    Global monitoring systems that have high spatial and temporal resolution, with long observational baselines, are needed to provide situational awareness of the Earth's climate system. Continuous monitoring is required for early warning of high-consequence climate change and to help anticipate and minimize the threat. Global climate has changed abruptly in the past and will almost certainly do so again, even in the absence of anthropogenic interference. It is possible that the Earth's climate could change dramatically and suddenly within a few years. An unexpected loss of climate stability would be equivalent to the failure of an engineered system on amore » grand scale, and would affect billions of people by causing agricultural, economic, and environmental collapses that would cascade throughout the world. The probability of such an abrupt change happening in the near future may be small, but it is nonzero. Because the consequences would be catastrophic, we argue that the problem should be treated with science-informed engineering conservatism, which focuses on various ways a system can fail and emphasizes inspection and early detection. Such an approach will require high-fidelity continuous global monitoring, informed by scientific modeling.« less

  13. Selecting global climate models for regional climate change studies

    PubMed Central

    Pierce, David W.; Barnett, Tim P.; Santer, Benjamin D.; Gleckler, Peter J.

    2009-01-01

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simulated regional climate. Accordingly, 42 performance metrics based on seasonal temperature and precipitation, the El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation are constructed and applied to 21 global models. However, no strong relationship is found between the score of the models on the metrics and results of the D&A analysis. Instead, the importance of having ensembles of runs with enough realizations to reduce the effects of natural internal climate variability is emphasized. Also, the superiority of the multimodel ensemble average (MM) to any 1 individual model, already found in global studies examining the mean climate, is true in this regional study that includes measures of variability as well. Evidence is shown that this superiority is largely caused by the cancellation of offsetting errors in the individual global models. Results with both the MM and models picked randomly confirm the original D&A results of anthropogenically forced JFM temperature changes in the western U.S. Future projections of temperature do not depend on model performance until the 2080s, after which the better performing models show warmer temperatures. PMID:19439652

  14. A new perspective on global mean sea level (GMSL) acceleration

    NASA Astrophysics Data System (ADS)

    Watson, Phil J.

    2016-06-01

    The vast body of contemporary climate change science is largely underpinned by the premise of a measured acceleration from anthropogenic forcings evident in key climate change proxies -- greenhouse gas emissions, temperature, and mean sea level. By virtue, over recent years, the issue of whether or not there is a measurable acceleration in global mean sea level has resulted in fierce, widespread professional, social, and political debate. Attempts to measure acceleration in global mean sea level (GMSL) have often used comparatively crude analysis techniques providing little temporal instruction on these key questions. This work proposes improved techniques to measure real-time velocity and acceleration based on five GMSL reconstructions spanning the time frame from 1807 to 2014 with substantially improved temporal resolution. While this analysis highlights key differences between the respective reconstructions, there is now more robust, convincing evidence of recent acceleration in the trend of GMSL.

  15. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes

    NASA Astrophysics Data System (ADS)

    Yuan, Z. Y.; Chen, Han Y. H.

    2015-05-01

    Living organisms maintain a balance of chemical elements for optimal growth and reproduction, which plays an important role in global biogeochemical cycles. Human domination of Earth's ecosystems has led to drastic global changes, but it is unclear how these affect the stoichiometric coupling of nutrients in terrestrial plants, the most important food source on Earth. Here we use meta-analyses of 1,418 published studies to show that the ratio of terrestrial plant nitrogen (N) to phosphorus (P) decreases with elevated concentrations of CO2, increasing rainfall, and P fertilization, but increases with warming, drought, and N fertilization. Our analyses also reveal that multiple global change treatments generally result in overall additive effects of single-factor treatments and that the responses of plant nutrients and their stoichiometry are similar in direction, but often greater in controlled than in natural environments. Our results suggest a decoupling of the P biogeochemical cycle from N in terrestrial plants under global changes, which in turn may diminish the provision of ecosystem services.

  16. Understanding Global Change (UGC) as a Unifying Conceptual Framework for Teaching Ecology: Using UGC in a High School Biology Program to Integrate Earth Science and Biology, and to Demonstrate the Value of Modeling Global Systems in Promoting Conceptual Learning

    NASA Astrophysics Data System (ADS)

    Levine, J.; Bean, J. R.

    2017-12-01

    Global change science is ideal for NGSS-informed teaching, but presents a serious challenge to K-12 educators because it is complex and interdisciplinary- combining earth science, biology, chemistry, and physics. Global systems are themselves complex. Adding anthropogenic influences on those systems creates a formidable list of topics - greenhouse effect, climate change, nitrogen enrichment, introduced species, land-use change among them - which are often presented as a disconnected "laundry list" of "facts." This complexity, combined with public and mass-media scientific illiteracy, leaves global change science vulnerable to misrepresentation and politicization, creating additional challenges to teachers in public schools. Ample stand-alone, one-off, online resources, many of them excellent, are (to date) underutilized by teachers in the high school science course taken by most students: biology. The Understanding Global Change project (UGC) from the UC Berkeley Museum of Paleontology has created a conceptual framework that organizes, connects, and explains global systems, human and non-human drivers of change in those systems, and measurable changes in those systems. This organization and framework employ core ideas, crosscutting concepts, structure/function relationships, and system models in a unique format that facilitates authentic understanding, rather than memorization. This system serves as an organizing framework for the entire ecology unit of a forthcoming mainstream high school biology program. The UGC system model is introduced up front with its core informational graphic. The model is elaborated, step by step, by adding concepts and processes as they are introduced and explained in each chapter. The informational graphic is thus used in several ways: to organize material as it is presented, to summarize topics in each chapter and put them in perspective, and for review and critical thinking exercises that supplement the usual end-of-chapter lists of

  17. Global warming and extinctions of endemic species from biodiversity hotspots.

    Treesearch

    Jay R. Malcolm; Canran Liu; Ronald P. Neilson; Lara Hansen; Lee Hannah

    2006-01-01

    Global warming is a key threat to biodiversity, but few researchers have assessed the magnitude of this threat at the global scale. We used major vegetation types (biomes) as proxies for natural habitats and, based on projected future biome distributions under doubled-C02 climates, calculated changes in habitat areas and associated extinctions of...

  18. Changing roles of academic societies due to globalization.

    PubMed

    Ehara, Shigeru; Aoki, Shigeki; Honda, Hiroshi

    2016-10-01

    Because of the globalization of environment around the academic society, the expected roles have changed significantly. In this short communication, we present the current situation in our international activities of the Japan Radiological Society, particularly in the academic activities and clinical practice. Establishing and reinforcing international network is one process of their promotion.

  19. Do invasive alien plants benefit more from global environmental change than native plants?

    PubMed

    Liu, Yanjie; Oduor, Ayub M O; Zhang, Zhen; Manea, Anthony; Tooth, Ifeanna M; Leishman, Michelle R; Xu, Xingliang; van Kleunen, Mark

    2017-08-01

    Invasive alien plant species threaten native biodiversity, disrupt ecosystem functions and can cause large economic damage. Plant invasions have been predicted to further increase under ongoing global environmental change. Numerous case studies have compared the performance of invasive and native plant species in response to global environmental change components (i.e. changes in mean levels of precipitation, temperature, atmospheric CO 2 concentration or nitrogen deposition). Individually, these studies usually involve low numbers of species and therefore the results cannot be generalized. Therefore, we performed a phylogenetically controlled meta-analysis to assess whether there is a general pattern of differences in invasive and native plant performance under each component of global environmental change. We compiled a database of studies that reported performance measures for 74 invasive alien plant species and 117 native plant species in response to one of the above-mentioned global environmental change components. We found that elevated temperature and CO 2 enrichment increased the performance of invasive alien plants more strongly than was the case for native plants. Invasive alien plants tended to also have a slightly stronger positive response to increased N deposition and increased precipitation than native plants, but these differences were not significant (N deposition: P = 0.051; increased precipitation: P = 0.679). Invasive alien plants tended to have a slightly stronger negative response to decreased precipitation than native plants, although this difference was also not significant (P = 0.060). So while drought could potentially reduce plant invasion, increases in the four other components of global environmental change considered, particularly global warming and atmospheric CO 2 enrichment, may further increase the spread of invasive plants in the future. © 2017 John Wiley & Sons Ltd.

  20. Deforestation: Can We Balance Resource Conservation with Economic Growth? Global Environmental Change Series.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This book is the second installment in the Global Environmental Change Series that links the ecology and biology of global environmental changes with insights and information from other disciplines. This series teaches students how to gather a wide range of information from pertinent areas of study and encourages them to develop their own opinions…

  1. (Un)certainty in climate change impacts on global energy consumption

    NASA Astrophysics Data System (ADS)

    van Ruijven, B. J.; De Cian, E.; Sue Wing, I.

    2017-12-01

    Climate change is expected to have an influence on the energy sector, especially on energy demand. For many locations, this change in energy demand is a balance between increase of demand for space cooling and a decrease of space heating demand. We perform a large-scale uncertainty analysis to characterize climate change risk on energy consumption as driven by climate and socioeconomic uncertainty. We combine a dynamic econometric model1 with multiple realizations of temperature projections from all 21 CMIP5 models (from the NASA Earth Exchange Global Daily Downscaled Projections2) under moderate (RCP4.5) and vigorous (RCP8.5) warming. Global spatial population projections for five SSPs are combined with GDP projections to construct scenarios for future energy demand driven by socioeconomic change. Between the climate models, we find a median global increase in climate-related energy demand of around 24% by 2050 under RCP8.5 with an interquartile range of 18-38%. Most climate models agree on increases in energy demand of more than 25% or 50% in tropical regions, the Southern USA and Southern China (see Figure). With respect to socioeconomic scenarios, we find wide variations between the SSPs for the number of people in low-income countries who are exposed to increases in energy demand. Figure attached: Number of models that agree on total climate-related energy consumption to increase or decrease by more than 0, 10, 25 or 50% by 2050 under RCP8.5 and SSP5 as result of the CMIP5 ensemble of temperature projections. References1. De Cian, E. & Sue Wing, I. Global Energy Demand in a Warming Climate. (FEEM, 2016). 2. Thrasher, B., Maurer, E. P., McKellar, C. & Duffy, P. B. Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol Earth Syst Sci 16, 3309-3314 (2012).

  2. Alexander Polonsky Global warming hiatus, ocean variability and regional climate change

    NASA Astrophysics Data System (ADS)

    Polonsky, A.

    2016-02-01

    This presentation generalizes the results concerning ocean variability, large-scale interdecadal ocean-atmosphere interaction in the Atlantic and Pacific Oceans and their impact on global and regional climate change carried out by the author and his colleagues for about 20 years. It is demonstrated once more that Atlantic Multidecadal Oscillation (AMO, which was early referred by the author as "interdecadal mode of North Atlantic Oscillation") is the crucial natural interdecadal climatic signal for the Atlantic-European and Mediterranean regions. It is characterized by amplitude which is the same order as human-induced centennial climate change and exceeds trend-like anthropogenic change at the decadal scale. Fast increasing of the global and Northern Hemisphere air temperature in the last 30 yrs of XX century (especially pronounced in the North Atlantic region and surrounded areas) is due to coincidence of human-induced positive trend and transition from the negative to the positive phase of AMO. AMO accounts for about 50% (60%) of the global (Northern Hemisphere) temperature trend in that period. Recent global warming hiatus is mostly the result of switch off the AMO phase. Typical AMO temporal scale is dictated by meridional overturning variability in the Atlantic Ocean and associated magnitude of meridional heat transport. Pacific Decadal Oscillation (PDO) is the other natural interdecadal signal which significantly impacts the global and regional climate variability. The rate of the ocean warming for different periods assessed separately for the upper mixed layer and deeper layers using data of oceanic re-analysis since 1959 confirms the principal role of the natural interdecadal oceanic modes (AMO and PDO) in observing climate change. At the same time a lack of deep-ocean long-term observing system restricts the accuracy of assessment of the heat redistribution in the World Ocean. I thanks to Pavel Sukhonos for help in the presentation preparing.

  3. Global change effects on plant-insect interactions: The role of phytochemistry

    Treesearch

    Mary A. Jamieson; Laura A. Burkle; Jessamyn S. Manson; Justin B. Runyon; Amy M. Trowbridge; Joseph Zientek

    2017-01-01

    Natural and managed ecosystems are undergoing rapid environmental change due to a growing human population and associated increases in industrial and agricultural activity. Global environmental change directly and indirectly impacts insect herbivores and pollinators. In this review, we highlight recent research examining how environmental change factors affect plant...

  4. Climate Cases: Learning about Student Conceptualizations of Global Climate Change

    ERIC Educational Resources Information Center

    Tierney, Benjamin P.

    2013-01-01

    The complex topic of global climate change continues to be a challenging yet important topic among science educators and researchers. This mixed methods study adds to the growing research by investigating student conceptions of climate change from a system theory perspective (Von Bertalanffy, 1968) by asking the question, "How do differences…

  5. Multicultural Education: The Key to Global Unity.

    ERIC Educational Resources Information Center

    Singleton, Dorothy Lee

    This paper describes multiculturalism courses in teacher education at Bethany College (California) and at the University of Southern Mississippi and argues that an increasingly global society creates the need for unity that can be achieved through multicultural education, which if effectively designed and implemented enlightens individuals to the…

  6. Environmental Progression: The Psychological Justification for Reframing Climate Change and Global Warming

    NASA Astrophysics Data System (ADS)

    Veldey, S. H.

    2016-12-01

    On-going research in climate science communication through environmental media has uncovered critical barriers to reducing denial and increasing agency in addressing the threat of climate change. Similar to framing of our changing environment as "global warming", the term "climate change" also fails to properly frame the most critical challenge our species has faced. In a set of preliminary studies, significant changes in climate crisis denial, both positive and negative, have resulted from different media messaging. Continuation of this research utilizes social judgement theory (SJT) to classify a broader spectrum of effective avenues for environmental communication. The specificity of the terms global warming and climate change limit inclusion of issues critical to understanding their impacts. Now that the masses know what climate change is, it's time to teach them what it means.

  7. Assessing historical rate changes in global tsunami occurrence

    USGS Publications Warehouse

    Geist, E.L.; Parsons, T.

    2011-01-01

    The global catalogue of tsunami events is examined to determine if transient variations in tsunami rates are consistent with a Poisson process commonly assumed for tsunami hazard assessments. The primary data analyzed are tsunamis with maximum sizes >1m. The record of these tsunamis appears to be complete since approximately 1890. A secondary data set of tsunamis >0.1m is also analyzed that appears to be complete since approximately 1960. Various kernel density estimates used to determine the rate distribution with time indicate a prominent rate change in global tsunamis during the mid-1990s. Less prominent rate changes occur in the early- and mid-20th century. To determine whether these rate fluctuations are anomalous, the distribution of annual event numbers for the tsunami catalogue is compared to Poisson and negative binomial distributions, the latter of which includes the effects of temporal clustering. Compared to a Poisson distribution, the negative binomial distribution model provides a consistent fit to tsunami event numbers for the >1m data set, but the Poisson null hypothesis cannot be falsified for the shorter duration >0.1m data set. Temporal clustering of tsunami sources is also indicated by the distribution of interevent times for both data sets. Tsunami event clusters consist only of two to four events, in contrast to protracted sequences of earthquakes that make up foreshock-main shock-aftershock sequences. From past studies of seismicity, it is likely that there is a physical triggering mechanism responsible for events within the tsunami source 'mini-clusters'. In conclusion, prominent transient rate increases in the occurrence of global tsunamis appear to be caused by temporal grouping of geographically distinct mini-clusters, in addition to the random preferential location of global M >7 earthquakes along offshore fault zones.

  8. The AgMIP Coordinated Global and Regional Assessments (CGRA) of Climate Change Impacts on Agriculture and Food Security

    NASA Technical Reports Server (NTRS)

    Ruane, Alex; Rosenzweig, Cynthia; Elliott, Joshua; Antle, John

    2015-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to construct a protocol-based framework enabling regional assessments (led by regional experts and modelers) that can provide consistent inputs to global economic and integrated assessment models. These global models can then relay important global-level information that drive regional decision-making and outcomes throughout an interconnected agricultural system. AgMIPs community of nearly 800 climate, crop, livestock, economics, and IT experts has improved the state-of-the-art through model intercomparisons, validation exercises, regional integrated assessments, and the launch of AgMIP programs on all six arable continents. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) of climate change impacts on agriculture and food security to link global and regional crop and economic models using a protocol-based framework. The CGRA protocols are being developed to utilize historical observations, climate projections, and RCPsSSPs from CMIP5 (and potentially CMIP6), and will examine stakeholder-driven agricultural development and adaptation scenarios to provide cutting-edge assessments of climate changes impact on agriculture and food security. These protocols will build on the foundation of established protocols from AgMIPs 30+ activities, and will emphasize the use of multiple models, scenarios, and scales to enable an accurate assessment of related uncertainties. The CGRA is also designed to provide the outputs necessary to feed into integrated assessment models (IAMs), nutrition and food security assessments, nitrogen and carbon cycle models, and additional impact-sector assessments (e.g., water resources, land-use, biomes, urban areas). This presentation will describe the current status of CGRA planning and initial prototype experiments to demonstrate key aspects of the protocols before wider implementation ahead of the IPCC Sixth Assessment

  9. The AgMIP Coordinated Global and Regional Assessments (CGRA) of Climate Change Impacts on Agriculture and Food Security

    NASA Astrophysics Data System (ADS)

    Ruane, A. C.; Rosenzweig, C.; Antle, J. M.; Elliott, J. W.

    2015-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to construct a protocol-based framework enabling regional assessments (led by regional experts and modelers) that can provide consistent inputs to global economic and integrated assessment models. These global models can then relay important global-level information that drive regional decision-making and outcomes throughout an interconnected agricultural system. AgMIP's community of nearly 800 climate, crop, livestock, economics, and IT experts has improved the state-of-the-art through model intercomparisons, validation exercises, regional integrated assessments, and the launch of AgMIP programs on all six arable continents. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) of climate change impacts on agriculture and food security to link global and regional crop and economic models using a protocol-based framework. The CGRA protocols are being developed to utilize historical observations, climate projections, and RCPs/SSPs from CMIP5 (and potentially CMIP6), and will examine stakeholder-driven agricultural development and adaptation scenarios to provide cutting-edge assessments of climate change's impact on agriculture and food security. These protocols will build on the foundation of established protocols from AgMIP's 30+ activities, and will emphasize the use of multiple models, scenarios, and scales to enable an accurate assessment of related uncertainties. The CGRA is also designed to provide the outputs necessary to feed into integrated assessment models (IAMs), nutrition and food security assessments, nitrogen and carbon cycle models, and additional impact-sector assessments (e.g., water resources, land-use, biomes, urban areas). This presentation will describe the current status of CGRA planning and initial prototype experiments to demonstrate key aspects of the protocols before wider implementation ahead of the IPCC Sixth Assessment

  10. The impact of Global Warming on global crop yields due to changes in pest pressure

    NASA Astrophysics Data System (ADS)

    Battisti, D. S.; Tewksbury, J. J.; Deutsch, C. A.

    2011-12-01

    A billion people currently lack reliable access to sufficient food and almost half of the calories feeding these people come from just three crops: rice, maize, wheat. Insect pests are among the largest factors affecting the yield of these three crops, but models assessing the effects of global warming on crops rarely consider changes in insect pest pressure on crop yields. We use well-established relationships between temperature and insect physiology to project climate-driven changes in pest pressure, defined as integrated population metabolism, for the three major crops. By the middle of this century, under most scenarios, insect pest pressure is projected to increase by more than 50% in temperate areas, while increases in tropical regions will be more modest. Yield relationships indicate that the largest increases in insect pest pressure are likely to occur in areas where yield is greatest, suggesting increased strain on global food markets.

  11. Do Increasingly Globalized Land Systems Promote or Undermine Sustainability?

    NASA Astrophysics Data System (ADS)

    Munroe, D. K.

    2015-12-01

    Scholars are now studying land systems in a global context using such concepts as "telecoupling." Research to date has recognized that local land systems may be undermined by globalization, and local people displaced. The land change community emphasizes the ways in which local people make decisions about natural resources given the opportunities and constraints that globalization presents. This talk will present a summary of current land systems science research in agribusiness, global trade and financial institutions, highlighting key ways in which sustainability measures can capture the effects of these actors and activities.

  12. Workshop on Strategies for Calibration and Validation of Global Change Measurements

    NASA Technical Reports Server (NTRS)

    Guenther, Bruce; Butler, James; Ardanuy, Philip

    1997-01-01

    The Committee on Environment and Natural Resources (CENR) Task Force on Observations and Data Management hosted a Global Change Calibration/Validation Workshop on May 10-12, 1995, in Arlington, Virginia. This Workshop was convened by Robert Schiffer of NASA Headquarters in Washington, D.C., for the CENR Secretariat with a view toward assessing and documenting lessons learned in the calibration and validation of large-scale, long-term data sets in land, ocean, and atmospheric research programs. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) hosted the meeting on behalf of the Committee on Earth Observation Satellites (CEOS)/Working Group on Calibration/walidation, the Global Change Observing System (GCOS), and the U. S. CENR. A meeting of experts from the international scientific community was brought together to develop recommendations for calibration and validation of global change data sets taken from instrument series and across generations of instruments and technologies. Forty-nine scientists from nine countries participated. The U. S., Canada, United Kingdom, France, Germany, Japan, Switzerland, Russia, and Kenya were represented.

  13. A review of Thailand`s strategies for global climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boonchalermkit, S.

    Thailand is greatly concerned about global climate change, which is caused primarily by the burning of fossil fuels, deforestation and the release of chlorofluorocarbons. The country itself is not currently a major contributor to global climate change. However, as Thailand`s economy expands and its burning of fossil fuels increases, the country`s contribution to global climate change could increase. Thailand`s use of primary energy supplies grew at an average rate of 13.4 percent per year in the period 1985 to 1990. The rapid, sustained growth was due to the overall pace of growth in the economy and the expansion of industrial,more » construction, and transportation activities. The primary energy demand was approximately 31,600 kilotons of oil equivalent (KTOE) in 1990. The transportation sector accounted for the largest proportion of energy demand at 30 percent. Within the next 15 years, the power sector is expected to overtake the transportation sector as the largest consumer of energy. Petroleum is currently the predominant source of energy in Thailand, accounting for 56 percent of the primary energy demand. Thailand recognizes that it has an important part to play in finding solutions to minimizing emissions of greenhouse gases and identifying viable response strategies. Thus, in this paper the authors will present several policy strategies relevant to climate change in Thailand and discuss how they have been implemented and enforced. Policies concerning forestry, energy, and environment are reviewed in detail in this paper.« less

  14. Climate change adaptation: where does global health fit in the agenda?

    PubMed

    Bowen, Kathryn J; Friel, Sharon

    2012-05-27

    Human-induced climate change will affect the lives of most populations in the next decade and beyond. It will have greatest, and generally earliest, impact on the poorest and most disadvantaged populations on the planet. Changes in climatic conditions and increases in weather variability affect human wellbeing, safety, health and survival in many ways. Some impacts are direct-acting and immediate, such as impaired food yields and storm surges. Other health effects are less immediate and typically occur via more complex causal pathways that involve a range of underlying social conditions and sectors such as water and sanitation, agriculture and urban planning. Climate change adaptation is receiving much attention given the inevitability of climate change and its effects, particularly in developing contexts, where the effects of climate change will be experienced most strongly and the response mechanisms are weakest. Financial support towards adaptation activities from various actors including the World Bank, the European Union and the United Nations is increasing substantially. With this new global impetus and funding for adaptation action come challenges such as the importance of developing adaptation activities on a sound understanding of baseline community needs and vulnerabilities, and how these may alter with changes in climate. The global health community is paying heed to the strengthening focus on adaptation, albeit in a slow and unstructured manner. The aim of this paper is to provide an overview of adaptation and its relevance to global health, and highlight the opportunities to improve health and reduce health inequities via the new and additional funding that is available for climate change adaptation activities.

  15. Global climate change and children's health.

    PubMed

    Shea, Katherine M

    2007-11-01

    There is broad scientific consensus that Earth's climate is warming rapidly and at an accelerating rate. Human activities, primarily the burning of fossil fuels, are very likely (>90% probability) to be the main cause of this warming. Climate-sensitive changes in ecosystems are already being observed, and fundamental, potentially irreversible, ecological changes may occur in the coming decades. Conservative environmental estimates of the impact of climate changes that are already in process indicate that they will result in numerous health effects to children. The nature and extent of these changes will be greatly affected by actions taken or not taken now at the global level. Physicians have written on the projected effects of climate change on public health, but little has been written specifically on anticipated effects of climate change on children's health. Children represent a particularly vulnerable group that is likely to suffer disproportionately from both direct and indirect adverse health effects of climate change. Pediatric health care professionals should understand these threats, anticipate their effects on children's health, and participate as children's advocates for strong mitigation and adaptation strategies now. Any solutions that address climate change must be developed within the context of overall sustainability (the use of resources by the current generation to meet current needs while ensuring that future generations will be able to meet their needs). Pediatric health care professionals can be leaders in a move away from a traditional focus on disease prevention to a broad, integrated focus on sustainability as synonymous with health. This policy statement is supported by a technical report that examines in some depth the nature of the problem of climate change, likely effects on children's health as a result of climate change, and the critical importance of responding promptly and aggressively to reduce activities that are contributing to

  16. Defense and avoidance of ozone under global change

    Treesearch

    Michael Tausz; Nancy E. Grulke; Gerhard Wieser

    2007-01-01

    The level II approach of the critical loads concept adopted by the UNECE aims at a flux based evaluation and takes into account environmental factors governing stomatal conductance. These factors will probably be affected by global change. The flux concept predicts that a decrease in stomatal conductance would protect trees from air pollution effects by decreasing...

  17. Global change effects on humid tropical forests: Evidence for biogeochemical and biodiversity shifts at an ecosystem scale

    NASA Astrophysics Data System (ADS)

    Cusack, Daniela F.; Karpman, Jason; Ashdown, Daniel; Cao, Qian; Ciochina, Mark; Halterman, Sarah; Lydon, Scott; Neupane, Avishesh

    2016-09-01

    Government and international agencies have highlighted the need to focus global change research efforts on tropical ecosystems. However, no recent comprehensive review exists synthesizing humid tropical forest responses across global change factors, including warming, decreased precipitation, carbon dioxide fertilization, nitrogen deposition, and land use/land cover changes. This paper assesses research across spatial and temporal scales for the tropics, including modeling, field, and controlled laboratory studies. The review aims to (1) provide a broad understanding of how a suite of global change factors are altering humid tropical forest ecosystem properties and biogeochemical processes; (2) assess spatial variability in responses to global change factors among humid tropical regions; (3) synthesize results from across humid tropical regions to identify emergent trends in ecosystem responses; (4) identify research and management priorities for the humid tropics in the context of global change. Ecosystem responses covered here include plant growth, carbon storage, nutrient cycling, biodiversity, and disturbance regime shifts. The review demonstrates overall negative effects of global change on all ecosystem properties, with the greatest uncertainty and variability in nutrient cycling responses. Generally, all global change factors reviewed, except for carbon dioxide fertilization, demonstrate great potential to trigger positive feedbacks to global warming via greenhouse gas emissions and biogeophysical changes that cause regional warming. This assessment demonstrates that effects of decreased rainfall and deforestation on tropical forests are relatively well understood, whereas the potential effects of warming, carbon dioxide fertilization, nitrogen deposition, and plant species invasions require more cross-site, mechanistic research to predict tropical forest responses at regional and global scales.

  18. Global reductions in seafloor biomass in response to climate change.

    PubMed

    Jones, Daniel O B; Yool, Andrew; Wei, Chih-Lin; Henson, Stephanie A; Ruhl, Henry A; Watson, Reg A; Gehlen, Marion

    2014-06-01

    Seafloor organisms are vital for healthy marine ecosystems, contributing to elemental cycling, benthic remineralization, and ultimately sequestration of carbon. Deep-sea life is primarily reliant on the export flux of particulate organic carbon from the surface ocean for food, but most ocean biogeochemistry models predict global decreases in export flux resulting from 21st century anthropogenically induced warming. Here we show that decadal-to-century scale changes in carbon export associated with climate change lead to an estimated 5.2% decrease in future (2091-2100) global open ocean benthic biomass under RCP8.5 (reduction of 5.2 Mt C) compared with contemporary conditions (2006-2015). Our projections use multi-model mean export flux estimates from eight fully coupled earth system models, which contributed to the Coupled Model Intercomparison Project Phase 5, that have been forced by high and low representative concentration pathways (RCP8.5 and 4.5, respectively). These export flux estimates are used in conjunction with published empirical relationships to predict changes in benthic biomass. The polar oceans and some upwelling areas may experience increases in benthic biomass, but most other regions show decreases, with up to 38% reductions in parts of the northeast Atlantic. Our analysis projects a future ocean with smaller sized infaunal benthos, potentially reducing energy transfer rates though benthic multicellular food webs. More than 80% of potential deep-water biodiversity hotspots known around the world, including canyons, seamounts, and cold-water coral reefs, are projected to experience negative changes in biomass. These major reductions in biomass may lead to widespread change in benthic ecosystems and the functions and services they provide. © 2013 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  19. Global forest sector modeling: application to some impacts of climate change

    Treesearch

    Joseph Buongiorno

    2016-01-01

    This paper explored the potential long-term effects of a warming climate on the global wood sector, based on Way and Oren's synthesis (Tree Physiology 30,669-688) indicating positive responses of tree growth to higher temperature in boreal and temperative climates, and negative responses in the topics. Changes in forest productivity were introduced in the Global...

  20. Potential effects on health of global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, A.; Parry, M.

    1993-12-01

    Prediction of the impacts of global climate change on health is complicated by a number of factors. These include: the difficulty in predicting regional changes in climate, the capacity for adaptation to climate change, the interactions between the effects of global climate change and a number of other key determinants of health, including population growth and poverty, and the availability of adequate preventive and curative facilities for diseases that may be effected by climate change. Nevertheless, it is of importance to consider the potential health impacts of global climate change for a number of reasons. It is also important tomore » monitor diseases which could be effected by climate change in order to detect changes in incidence as early as possible and study possible interactions with other factors. It seems likely that the possible impacts on health of climate change will be a major determinant of the degree to which policies aimed at reducing global warming are followed, as perceptions of the effect of climate change to human health and well-being are particularly likely to influence public opinion. The potential health impacts of climate change can be divided into direct (primary) and indirect (secondary and tertiary) effects. Primary effects are those related to the effect of temperature on human well-being and disease. Secondary effects include the impacts on health of changes in food production, availability of water and of sea level rise. A tertiary level of impacts can also be hypothesized.« less