Sample records for key growth parameters

  1. Parameters of Technological Growth

    ERIC Educational Resources Information Center

    Starr, Chauncey; Rudman, Richard

    1973-01-01

    Examines the factors involved in technological growth and identifies the key parameters as societal resources and societal expectations. Concludes that quality of life can only be maintained by reducing population growth, since this parameter is the product of material levels, overcrowding, food, and pollution. (JR)

  2. Resilience of Key Biological Parameters of the Senegalese Flat Sardinella to Overfishing and Climate Change.

    PubMed

    Ba, Kamarel; Thiaw, Modou; Lazar, Najih; Sarr, Alassane; Brochier, Timothée; Ndiaye, Ismaïla; Faye, Alioune; Sadio, Oumar; Panfili, Jacques; Thiaw, Omar Thiom; Brehmer, Patrice

    2016-01-01

    The stock of the Senegalese flat sardinella, Sardinella maderensis, is highly exploited in Senegal, West Africa. Its growth and reproduction parameters are key biological indicators for improving fisheries management. This study reviewed these parameters using landing data from small-scale fisheries in Senegal and literature information dated back more than 25 years. Age was estimated using length-frequency data to calculate growth parameters and assess the growth performance index. With global climate change there has been an increase in the average sea surface temperature along the Senegalese coast but the length-weight parameters, sex ratio, size at first sexual maturity, period of reproduction and condition factor of S. maderensis have not changed significantly. The above parameters of S. maderensis have hardly changed, despite high exploitation and fluctuations in environmental conditions that affect the early development phases of small pelagic fish in West Africa. This lack of plasticity of the species regarding of the biological parameters studied should be considered when planning relevant fishery management plans.

  3. Automated inference procedure for the determination of cell growth parameters

    NASA Astrophysics Data System (ADS)

    Harris, Edouard A.; Koh, Eun Jee; Moffat, Jason; McMillen, David R.

    2016-01-01

    The growth rate and carrying capacity of a cell population are key to the characterization of the population's viability and to the quantification of its responses to perturbations such as drug treatments. Accurate estimation of these parameters necessitates careful analysis. Here, we present a rigorous mathematical approach for the robust analysis of cell count data, in which all the experimental stages of the cell counting process are investigated in detail with the machinery of Bayesian probability theory. We advance a flexible theoretical framework that permits accurate estimates of the growth parameters of cell populations and of the logical correlations between them. Moreover, our approach naturally produces an objective metric of avoidable experimental error, which may be tracked over time in a laboratory to detect instrumentation failures or lapses in protocol. We apply our method to the analysis of cell count data in the context of a logistic growth model by means of a user-friendly computer program that automates this analysis, and present some samples of its output. Finally, we note that a traditional least squares fit can provide misleading estimates of parameter values, because it ignores available information with regard to the way in which the data have actually been collected.

  4. Age and growth parameters of shark-like batoids.

    PubMed

    White, J; Simpfendorfer, C A; Tobin, A J; Heupel, M R

    2014-05-01

    Estimates of life-history parameters were made for shark-like batoids of conservation concern Rhynchobatus spp. (Rhynchobatus australiae, Rhynchobatus laevis and Rhynchobatus palpebratus) and Glaucostegus typus using vertebral ageing. The sigmoid growth functions, Gompertz and logistic, best described the growth of Rhynchobatus spp. and G. typus, providing the best statistical fit and most biologically appropriate parameters. The two-parameter logistic was the preferred model for Rhynchobatus spp. with growth parameter estimates (both sexes combined) L(∞) = 2045 mm stretch total length, LST and k = 0·41 year⁻¹. The same model was also preferred for G. typus with growth parameter estimates (both sexes combined) L∞  = 2770 mm LST and k = 0·30 year⁻¹. Annual growth-band deposition could not be excluded in Rhynchobatus spp. using mark-recaptured individuals. Although morphologically similar G. typus and Rhynchobatus spp. have differing life histories, with G. typus longer lived, slower growing and attaining a larger maximum size. © 2014 The Fisheries Society of the British Isles.

  5. INDIVIDUALIZED FETAL GROWTH ASSESSMENT: CRITICAL EVALUATION OF KEY CONCEPTS IN THE SPECIFICATION OF THIRD TRIMESTER GROWTH TRAJECTORIES

    PubMed Central

    Deter, Russell L.; Lee, Wesley; Yeo, Lami; Romero, Roberto

    2012-01-01

    Objectives To characterize 2nd and 3rd trimester fetal growth using Individualized Growth Assessment in a large cohort of fetuses with normal growth outcomes. Methods A prospective longitudinal study of 119 pregnancies was carried out from 18 weeks, MA, to delivery. Measurements of eleven fetal growth parameters were obtained from 3D scans at 3–4 week intervals. Regression analyses were used to determine Start Points [SP] and Rossavik model [P = c (t) k + st] coefficients c, k and s for each parameter in each fetus. Second trimester growth model specification functions were re-established. These functions were used to generate individual growth models and determine predicted s and s-residual [s = pred s + s-resid] values. Actual measurements were compared to predicted growth trajectories obtained from the growth models and Percent Deviations [% Dev = {{actual − predicted}/predicted} × 100] calculated. Age-specific reference standards for this statistic were defined using 2-level statistical modeling for the nine directly measured parameters and estimated weight. Results Rossavik models fit the data for all parameters very well [R2: 99%], with SP’s and k values similar to those found in a much smaller cohort. The c values were strongly related to the 2nd trimester slope [R2: 97%] as was predicted s to estimated c [R2: 95%]. The latter was negative for skeletal parameters and positive for soft tissue parameters. The s-residuals were unrelated to estimated c’s [R2: 0%], and had mean values of zero. Rossavik models predicted 3rd trimester growth with systematic errors close to 0% and random errors [95% range] of 5.7 – 10.9% and 20.0 – 24.3% for one and three dimensional parameters, respectively. Moderate changes in age-specific variability were seen in the 3rd trimester.. Conclusions IGA procedures for evaluating 2nd and 3rd trimester growth are now established based on a large cohort [4–6 fold larger than those used previously], thus permitting more

  6. Parameter Estimation with Almost No Public Communication for Continuous-Variable Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Lupo, Cosmo; Ottaviani, Carlo; Papanastasiou, Panagiotis; Pirandola, Stefano

    2018-06-01

    One crucial step in any quantum key distribution (QKD) scheme is parameter estimation. In a typical QKD protocol the users have to sacrifice part of their raw data to estimate the parameters of the communication channel as, for example, the error rate. This introduces a trade-off between the secret key rate and the accuracy of parameter estimation in the finite-size regime. Here we show that continuous-variable QKD is not subject to this constraint as the whole raw keys can be used for both parameter estimation and secret key generation, without compromising the security. First, we show that this property holds for measurement-device-independent (MDI) protocols, as a consequence of the fact that in a MDI protocol the correlations between Alice and Bob are postselected by the measurement performed by an untrusted relay. This result is then extended beyond the MDI framework by exploiting the fact that MDI protocols can simulate device-dependent one-way QKD with arbitrarily high precision.

  7. Growth parameter dependent structural and optical properties of ZnO nanostructures on Si substrate by a two-zone thermal CVD.

    PubMed

    Lee, Hee Kwan; Yu, Jae Su

    2012-04-01

    We investigated the effect of growth parameters on the structural and optical properties of the ZnO nanostructures (NSs) grown on Au-coated Si substrate by a two-zone thermal chemical vapor deposition. The morphologies of ZnO NSs were controlled by various growth parameters, such as growth temperature, O2 flow rate, and working pressure, for different thicknesses of Au layer. The nanorod-like ZnO NSs were formed at 915 degrees C and the growth of two-dimensional structures, i.e., nanosheets, was enhanced with the increase of growth temperature up to 965 degrees C. It was found that the low working pressure contributed to improvement in vertical alignment and uniformity of ZnO NSs. The Zn/O atomic % ratio, which plays a key role in the growth mechanism of ZnO NSs, was changed by the growth parameters. The Zn/O atomic % ratio was increased with increasing the growth temperature, while it was decreased with increasing the working pressure. Under proper O2 flow rate, the ZnO nanorods with good crystallinity were fabricated with a Zn/O atomic % ratio of -0.9. For various growth parameters, the photoluminescence emission was slightly shifted with the ultraviolet emission related to the near band edge transition.

  8. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2016-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  9. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this presentation is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  10. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  11. Key parameters controlling the performance of catalytic motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esplandiu, Maria J.; Afshar Farniya, Ali; Reguera, David, E-mail: dreguera@ub.edu

    2016-03-28

    The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential andmore » the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.« less

  12. Key parameters controlling the performance of catalytic motors.

    PubMed

    Esplandiu, Maria J; Afshar Farniya, Ali; Reguera, David

    2016-03-28

    The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential and the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.

  13. Determining the Kinetic Parameters Characteristic of Microalgal Growth.

    ERIC Educational Resources Information Center

    Martinez Sancho, Maria Eugenie; And Others

    1991-01-01

    An activity in which students obtain a growth curve for algae, identify the exponential and linear growth phases, and calculate the parameters which characterize both phases is described. The procedure, a list of required materials, experimental conditions, analytical technique, and a discussion of the interpretations of individual results are…

  14. Growth reference for Saudi preschool children: LMS parameters and percentiles.

    PubMed

    Shaik, Shaffi Ahamed; El Mouzan, Mohammad Issa; AlSalloum, Abdullah Abdulmohsin; AlHerbish, Abdullah Sulaiman

    2016-01-01

    Previous growth charts for Saudi children have not included detailed tables and parameters needed for research and incorporation in electronic records. The objective of this report is to publish the L, M, and S parameters and percentiles as well as the corresponding growth charts for Saudi preschool children. Community-based survey and measurement of growth parameters in a sample selected by a multistage probability procedure. A stratified listing of the Saudi population. Raw data from the previous nationally-representative sample were reanalyzed using the Lambda-Mu-Sigma (LMS) methodology to calculate the L, M, and S parameters of percentiles (from 3rd to 97th) for weight, length/height, head circumference, and body mass index-for-age, and weight for-length/height for boys and girls from birth to 60 months. Length or height and weight of Saudi preschool children. There were 15601 Saudi children younger than 60 months of age, 7896 (50.6 %) were boys. The LMS parameters for weight for age from birth to 60 months (5 years) are reported for the 3rd, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 97th percentiles as well as the corresponding graphs. Similarly, the LMS parameters for length/height-for-age, head circumference-for-age, weight-for-length/height and body mass index-for-age (BMi) are shown with the corresponding graphs for boys and girls. Using the data in this report, clinicians and researchers can assess the growth of Saudi preschool children. The report does not reflect interregional variations in growth.

  15. Effect of Growth Parameters on SnO2 Nanowires Growth by Electron Beam Evaporation Method

    NASA Astrophysics Data System (ADS)

    Rakesh Kumar, R.; Manjula, Y.; Narasimha Rao, K.

    2018-02-01

    Tin oxide (SnO2) nanowires were synthesized via catalyst assisted VLS growth mechanism by the electron beam evaporation method at a growth temperature of 450 °C. The effects of growth parameters such as evaporation rate of Tin, catalyst film thickness, and different types of substrates on the growth of SnO2 nanowires were studied. Nanowires (NWs) growth was completely seized at higher tin evaporation rates due to the inability of the catalyst particle to initiate the NWs growth. Nanowires diameters were able to tune with catalyst film thickness. Nanowires growth was completely absent at higher catalyst film thickness due to agglomeration of the catalyst film. Optimum growth parameters for SnO2 NWs were presented. Nanocomposites such as Zinc oxide - SnO2, Graphene oxide sheets- SnO2 and Graphene nanosheets-SnO2 were able to synthesize at a lower substrate temperature of 450 °C. These nanocompsoites will be useful in enhancing the capacity of Li-ion batteries, the gas sensing response and also useful in increasing the photo catalytic activity.

  16. Key Statistics from the National Survey of Family Growth: Vasectomy

    MedlinePlus

    ... Birth Data NCHS Key Statistics from the National Survey of Family Growth - V Listing Recommend on Facebook ... What's this? Submit Button Related Sites NCHS Listservs Surveys and Data Collection Systems Vital Statistics: Birth Data ...

  17. Diagnosing ΛHDE model with statefinder hierarchy and fractional growth parameter

    NASA Astrophysics Data System (ADS)

    Zhou, LanJun; Wang, Shuang

    2016-07-01

    Recently, a new dark energy model called ΛHDE was proposed. In this model, dark energy consists of two parts: cosmological constant Λ and holographic dark energy (HDE). Two key parameters of this model are the fractional density of cosmological constant ΩΛ0, and the dimensionless HDE parameter c. Since these two parameters determine the dynamical properties of DE and the destiny of universe, it is important to study the impacts of different values of ΩΛ0 and c on the ΛHDE model. In this paper, we apply various DE diagnostic tools to diagnose ΛHDE models with different values of ΩΛ0 and c; these tools include statefinder hierarchy {S 3 (1) , S 4 (1) }, fractional growth parameter ɛ, and composite null diagnostic (CND), which is a combination of {S 3 (1) , S 4 (1) } and ɛ. We find that: (1) adopting different values of ΩΛ0 only has quantitative impacts on the evolution of the ΛHDE model, while adopting different c has qualitative impacts; (2) compared with S 3 (1) , S 4 (1) can give larger differences among the cosmic evolutions of the ΛHDE model associated with different ΩΛ0 or different c; (3) compared with the case of using a single diagnostic, adopting a CND pair has much stronger ability to diagnose the ΛHDE model.

  18. Dietary sodium propionate affects mucosal immune parameters, growth and appetite related genes expression: Insights from zebrafish model.

    PubMed

    Hoseinifar, Seyed Hossein; Safari, Roghieh; Dadar, Maryam

    2017-03-01

    Propionate is a short-chain fatty acid (SCFA) that improves physiological and pathophysiological properties. However, there is limited information available about the effects of SCFAs on mucosal immune parameters as well as growth and appetite related genes expression. The aim of the present study was to evaluate the effect of sodium propionate (SP) intake on the mucosal immune parameters, growth and appetite related genes expression using zebrafish (Danio rerio) as model organism. Zebrafish fed control or diet supplemented with different levels (0.5, 1 and 2%) of SP for 8weeks. At the end of feeding trial, the expression of the key genes related to growth and appetite (GH, IGF1, MYSTN and Ghrl) was evaluated. Also, mucosal immune parameters (Total Ig, lysozyme and protease activity) were studied in skin mucus of zebrafish. The results showed that dietary administration of SP significantly (P<0.05) up-regulated the expression of GH, IGF1 and down-regulated MYSTN gene. Also, feeding zebrafish with SP supplemented diet significantly increased appetite related gene expression (P<0.05) with a more pronounced effect in higher inclusion levels. Compared with control group, the expression of appetite related gene (Ghrl) was remarkably (P<0.05) higher in SP fed zebrafish. Also, elevated mucosal immune parameters was observed in zebrafish fed SP supplemented diet. The present results revealed beneficial effects of dietary SP on mucosal immune response and growth and appetite related genes expression. These results also highlighted the potential use of SP as additive in human diets. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Calculations of key magnetospheric parameters using the isotropic and anisotropic SPSU global MHD code

    NASA Astrophysics Data System (ADS)

    Samsonov, Andrey; Gordeev, Evgeny; Sergeev, Victor

    2017-04-01

    As it was recently suggested (e.g., Gordeev et al., 2015), the global magnetospheric configuration can be characterized by a set of key parameters, such as the magnetopause distance at the subsolar point and on the terminator plane, the magnetic field in the magnetotail lobe and the plasma sheet thermal pressure, the cross polar cap electric potential drop and the total field-aligned current. For given solar wind conditions, the values of these parameters can be obtained from both empirical models and global MHD simulations. We validate the recently developed global MHD code SPSU-16 using the key magnetospheric parameters mentioned above. The code SPSU-16 can calculate both the isotropic and anisotropic MHD equations. In the anisotropic version, we use the modified double-adiabatic equations in which the T⊥/T∥ (the ratio of perpendicular to parallel thermal pressures) has been bounded from above by the mirror and ion-cyclotron thresholds and from below by the firehose threshold. The results of validation for the SPSU-16 code well agree with the previously published results of other global codes. Some key parameters coincide in the isotropic and anisotropic MHD simulations, but some are different.

  20. Partially Turboelectric Aircraft Drive Key Performance Parameters

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Duffy, Kirsten P.; Brown, Gerald V.

    2017-01-01

    The purpose of this paper is to propose electric drive specific power, electric drive efficiency, and electrical propulsion fraction as the key performance parameters for a partially turboelectric aircraft power system and to investigate their impact on the overall aircraft performance. Breguet range equations for a base conventional turbofan aircraft and a partially turboelectric aircraft are found. The benefits and costs that may result from the partially turboelectric system are enumerated. A break even analysis is conducted to find the minimum allowable electric drive specific power and efficiency, for a given electrical propulsion fraction, that can preserve the range, fuel weight, operating empty weight, and payload weight of the conventional aircraft. Current and future power system performance is compared to the required performance to determine the potential benefit.

  1. Parameter Estimates in Differential Equation Models for Population Growth

    ERIC Educational Resources Information Center

    Winkel, Brian J.

    2011-01-01

    We estimate the parameters present in several differential equation models of population growth, specifically logistic growth models and two-species competition models. We discuss student-evolved strategies and offer "Mathematica" code for a gradient search approach. We use historical (1930s) data from microbial studies of the Russian biologist,…

  2. Channel-parameter estimation for satellite-to-submarine continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Xie, Cailang; Huang, Peng; Li, Jiawei; Zhang, Ling; Huang, Duan; Zeng, Guihua

    2018-05-01

    This paper deals with a channel-parameter estimation for continuous-variable quantum key distribution (CV-QKD) over a satellite-to-submarine link. In particular, we focus on the channel transmittances and the excess noise which are affected by atmospheric turbulence, surface roughness, zenith angle of the satellite, wind speed, submarine depth, etc. The estimation method is based on proposed algorithms and is applied to low-Earth orbits using the Monte Carlo approach. For light at 550 nm with a repetition frequency of 1 MHz, the effects of the estimated parameters on the performance of the CV-QKD system are assessed by a simulation by comparing the secret key bit rate in the daytime and at night. Our results show the feasibility of satellite-to-submarine CV-QKD, providing an unconditionally secure approach to achieve global networks for underwater communications.

  3. Key parameters design of an aerial target detection system on a space-based platform

    NASA Astrophysics Data System (ADS)

    Zhu, Hanlu; Li, Yejin; Hu, Tingliang; Rao, Peng

    2018-02-01

    To ensure flight safety of an aerial aircraft and avoid recurrence of aircraft collisions, a method of multi-information fusion is proposed to design the key parameter to realize aircraft target detection on a space-based platform. The key parameters of a detection wave band and spatial resolution using the target-background absolute contrast, target-background relative contrast, and signal-to-clutter ratio were determined. This study also presented the signal-to-interference ratio for analyzing system performance. Key parameters are obtained through the simulation of a specific aircraft. And the simulation results show that the boundary ground sampling distance is 30 and 35 m in the mid- wavelength infrared (MWIR) and long-wavelength infrared (LWIR) bands for most aircraft detection, and the most reasonable detection wavebands is 3.4 to 4.2 μm and 4.35 to 4.5 μm in the MWIR bands, and 9.2 to 9.8 μm in the LWIR bands. We also found that the direction of detection has a great impact on the detection efficiency, especially in MWIR bands.

  4. Key Gaps for Enabling Plant Growth in Future Missions

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Motil, Brian; Barta, Dan; Fritsche, Ralph; Massa, Gioia; Quincy, Charlie; Romeyn, Matthew; Wheeler, Ray; Hanford, Anthony

    2017-01-01

    Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space Administration (NASA). It also begins to identify solutions to the simpler questions identified by the group based on work initiated in 2017. Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space

  5. Comparing basal area growth models, consistency of parameters, and accuracy of prediction

    Treesearch

    J.J. Colbert; Michael Schuckers; Desta Fekedulegn

    2002-01-01

    We fit alternative sigmoid growth models to sample tree basal area historical data derived from increment cores and disks taken at breast height. We examine and compare the estimated parameters for these models across a range of sample sites. Models are rated on consistency of parameters and on their ability to fit growth data from four sites that are located across a...

  6. Association of growth and nutritional parameters with pulmonary function in cystic fibrosis: a literature review.

    PubMed

    Mauch, Renan Marrichi; Kmit, Arthur Henrique Pezzo; Marson, Fernando Augusto de Lima; Levy, Carlos Emilio; Barros-Filho, Antonio de Azevedo; Ribeiro, José Dirceu

    2016-12-01

    To review the literature addressing the relationship of growth and nutritional parameters with pulmonary function in pediatric patients with cystic fibrosis. A collection of articles published in the last 15 years in English, Portuguese and Spanish was made by research in electronic databases - PubMed, Cochrane, Medline, Lilacs and Scielo - using the keywords cystic fibrosis, growth, nutrition, pulmonary function in varied combinations. Articles that addressed the long term association of growth and nutritional parameters, with an emphasis on growth, with pulmonary disease in cystic fibrosis, were included, and we excluded those that addressing only the relationship between nutritional parameters and cystic fibrosis and those in which the aim was to describe the disease. Seven studies were included, with a total of 12,455 patients. Six studies reported relationship between growth parameters and lung function, including one study addressing the association of growth parameters, solely, with lung function, and all the seven studies reported relationship between nutritional parameters and lung function. The review suggests that the severity of the lung disease, determined by spirometry, is associated with body growth and nutritional status in cystic fibrosis. Thus, the intervention in these parameters can lead to the better prognosis and life expectancy for cystic fibrosis patients. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  7. Estimation and Simulation of Slow Crack Growth Parameters from Constant Stress Rate Data

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Weaver, Aaron S.

    2003-01-01

    Closed form, approximate functions for estimating the variances and degrees-of-freedom associated with the slow crack growth parameters n, D, B, and A(sup *) as measured using constant stress rate ('dynamic fatigue') testing were derived by using propagation of errors. Estimates made with the resulting functions and slow crack growth data for a sapphire window were compared to the results of Monte Carlo simulations. The functions for estimation of the variances of the parameters were derived both with and without logarithmic transformation of the initial slow crack growth equations. The transformation was performed to make the functions both more linear and more normal. Comparison of the Monte Carlo results and the closed form expressions derived with propagation of errors indicated that linearization is not required for good estimates of the variances of parameters n and D by the propagation of errors method. However, good estimates variances of the parameters B and A(sup *) could only be made when the starting slow crack growth equation was transformed and the coefficients of variation of the input parameters were not too large. This was partially a result of the skewered distributions of B and A(sup *). Parametric variation of the input parameters was used to determine an acceptable range for using closed form approximate equations derived from propagation of errors.

  8. Metalorganic Vapor-Phase Epitaxy Growth Parameters for Two-Dimensional MoS2

    NASA Astrophysics Data System (ADS)

    Marx, M.; Grundmann, A.; Lin, Y.-R.; Andrzejewski, D.; Kümmell, T.; Bacher, G.; Heuken, M.; Kalisch, H.; Vescan, A.

    2018-02-01

    The influence of the main growth parameters on the growth mechanism and film formation processes during metalorganic vapor-phase epitaxy (MOVPE) of two-dimensional MoS2 on sapphire (0001) have been investigated. Deposition was performed using molybdenum hexacarbonyl and di- tert-butyl sulfide as metalorganic precursors in a horizontal hot-wall MOVPE reactor from AIXTRON. The structural properties of the MoS2 films were analyzed by atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. It was found that a substrate prebake step prior to growth reduced the nucleation density of the polycrystalline film. Simultaneously, the size of the MoS2 domains increased and the formation of parasitic carbonaceous film was suppressed. Additionally, the influence of growth parameters such as reactor pressure and surface temperature is discussed. An upper limit for these parameters was found, beyond which strong parasitic deposition or incorporation of carbon into MoS2 took place. This carbon contamination became significant at reactor pressure above 100 hPa and temperature above 900°C.

  9. Response of key soil parameters during compost-assisted phytostabilization in extremely acidic tailings: effect of plant species.

    PubMed

    Solís-Dominguez, Fernando A; White, Scott A; Hutter, Travis Borrillo; Amistadi, Mary Kay; Root, Robert A; Chorover, Jon; Maier, Raina M

    2012-01-17

    Phytostabilization of mine tailings acts to mitigate both eolian dispersion and water erosion events which can disseminate barren tailings over large distances. This technology uses plants to establish a vegetative cover to permanently immobilize contaminants in the rooting zone, often requiring addition of an amendment to assist plant growth. Here we report the results of a greenhouse study that evaluated the ability of six native plant species to grow in extremely acidic (pH ∼ 2.5) metalliferous (As, Pb, Zn: 2000-3000 mg kg(-1)) mine tailings from Iron King Mine Humboldt Smelter Superfund site when amended with a range of compost concentrations. Results revealed that three of the six plant species tested (buffalo grass, mesquite, and catclaw acacia) are good candidates for phytostabilization at an optimum level of 15% compost (w/w) amendment showing good growth and minimal shoot accumulation of metal(loid)s. A fourth candidate, quailbush, also met all criteria except for exceeding the domestic animal toxicity limit for shoot accumulation of zinc. A key finding of this study was that the plant species that grew most successfully on these tailings significantly influenced key tailings parameters; direct correlations between plant biomass and both increased tailings pH and neutrophilic heterotrophic bacterial counts were observed. We also observed decreased iron oxidizer counts and decreased bioavailability of metal(loid)s mainly as a result of compost amendment. Taken together, these results suggest that the phytostabilization process reduced tailings toxicity as well as the potential for metal(loid) mobilization. This study provides practical information on plant and tailings characteristics that is critically needed for successful implementation of assisted phytostabilization on acidic, metalliferous mine tailings sites.

  10. Response of Key Soil Parameters During Compost-Assisted Phytostabilization in Extremely Acidic Tailings: Effect of Plant Species

    PubMed Central

    Solís-Dominguez, Fernando A.; White, Scott A.; Hutter, Travis Borrillo; Amistadi, Mary Kay; Root, Robert A.; Chorover, Jon; Maier, Raina M.

    2012-01-01

    Phytostabilization of mine tailings acts to mitigate both eolian dispersion and water erosion events which can disseminate barren tailings over large distances. This technology uses plants to establish a vegetative cover to permanently immobilize contaminants in the rooting zone, often requiring addition of an amendment to assist plant growth. Here we report the results of a greenhouse study that evaluated the ability of six native plant species to grow in extremely acidic (pH ~ 2.5) metalliferous (As, Pb, Zn: 2000–3000 mg kg−1) mine tailings from Iron King Mine Humboldt Smelter Superfund site when amended with a range of compost concentrations. Results revealed that three of the six plant species tested (buffalo grass, mesquite, and catclaw acacia) are good candidates for phytostabilization at an optimum level of 15% compost (w/w) amendment showing good growth and minimal shoot accumulation of metal(loid)s. A fourth candidate, quailbush, also met all criteria except for exceeding the domestic animal toxicity limit for shoot accumulation of zinc. A key finding of this study was that the plant species that grew most successfully on these tailings significantly influenced key tailings parameters; direct correlations between plant biomass and both increased tailings pH and neutrophilic heterotrophic bacterial counts were observed. We also observed decreased iron oxidizer counts and decreased bioavailability of metal(loid)s mainly as a result of compost amendment. Taken together, these results suggest that the phytostabilization process reduced tailings toxicity as well as the potential for metal(loid) mobilization. This study provides practical information on plant and tailings characteristics that is critically needed for successful implementation of assisted phytostabilization on acidic, metalliferous mine tailings sites. PMID:22191663

  11. Effects of reaction-kinetic parameters on modeling reaction pathways in GaN MOVPE growth

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Zuo, Ran; Zhang, Guoyi

    2017-11-01

    In the modeling of the reaction-transport process in GaN MOVPE growth, the selections of kinetic parameters (activation energy Ea and pre-exponential factor A) for gas reactions are quite uncertain, which cause uncertainties in both gas reaction path and growth rate. In this study, numerical modeling of the reaction-transport process for GaN MOVPE growth in a vertical rotating disk reactor is conducted with varying kinetic parameters for main reaction paths. By comparisons of the molar concentrations of major Ga-containing species and the growth rates, the effects of kinetic parameters on gas reaction paths are determined. The results show that, depending on the values of the kinetic parameters, the gas reaction path may be dominated either by adduct/amide formation path, or by TMG pyrolysis path, or by both. Although the reaction path varies with different kinetic parameters, the predicted growth rates change only slightly because the total transport rate of Ga-containing species to the substrate changes slightly with reaction paths. This explains why previous authors using different chemical models predicted growth rates close to the experiment values. By varying the pre-exponential factor for the amide trimerization, it is found that the more trimers are formed, the lower the growth rates are than the experimental value, which indicates that trimers are poor growth precursors, because of thermal diffusion effect caused by high temperature gradient. The effective order for the contribution of major species to growth rate is found as: pyrolysis species > amides > trimers. The study also shows that radical reactions have little effect on gas reaction path because of the generation and depletion of H radicals in the chain reactions when NH2 is considered as the end species.

  12. Impact of dissolved oxygen concentration on some key parameters and production of rhG-CSF in batch fermentation.

    PubMed

    Krishna Rao, Dasari V; Ramu, Chatadi T; Rao, Joginapally V; Narasu, Mangamoori L; Bhujanga Rao, Adibhatla Kali S

    2008-09-01

    The impact of different levels of agitation speed, carbondioxide and dissolved oxygen concentration on the key parameters and production of rhG-CSF in Escherichia coli BL21(DE3)PLysS were studied. Lower carbondioxide concentrations as well as higher agitation speeds and dissolved oxygen concentrations led to reduction in the acetate concentrations, and enhanced the cell growth, but inhibited plasmid stability and rhG-CSF expression. Similarly, higher carbondioxide concentrations and lower agitation speeds as well as dissolved oxygen concentrations led to enhanced acetate concentrations, but inhibited the cell growth and protein expression. To address the bottlenecks, a two-stage agitation control strategy (strategy-1) and two-stage dissolved oxygen control strategy (strategy-2) were employed to establish the physiological and metabolic conditions, so as to improve the expression of rhG-CSF. By adopting strategy-1 the yields were improved 1.4-fold over constant speed of 550 rpm, 1.1-fold over constant dissolved oxygen of 45%, respectively. Similarly, using strategy-2 the yields were improved 1.6-fold over constant speed of 550 rpm, 1.3-fold over constant dissolved oxygen of 45%, respectively.

  13. Prediction of Geomagnetic Activity and Key Parameters in High-Latitude Ionosphere-Basic Elements

    NASA Technical Reports Server (NTRS)

    Lyatsky, W.; Khazanov, G. V.

    2007-01-01

    Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere is an important task of the Space Weather program. Prediction reliability is dependent on the prediction method and elements included in the prediction scheme. Two main elements are a suitable geomagnetic activity index and coupling function -- the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity. The appropriate choice of these two elements is imperative for any reliable prediction model. The purpose of this work was to elaborate on these two elements -- the appropriate geomagnetic activity index and the coupling function -- and investigate the opportunity to improve the reliability of the prediction of geomagnetic activity and other events in the Earth's magnetosphere. The new polar magnetic index of geomagnetic activity and the new version of the coupling function lead to a significant increase in the reliability of predicting the geomagnetic activity and some key parameters, such as cross-polar cap voltage and total Joule heating in high-latitude ionosphere, which play a very important role in the development of geomagnetic and other activity in the Earth s magnetosphere, and are widely used as key input parameters in modeling magnetospheric, ionospheric, and thermospheric processes.

  14. Estimation of Staphylococcus aureus growth parameters from turbidity data: characterization of strain variation and comparison of methods.

    PubMed

    Lindqvist, R

    2006-07-01

    Turbidity methods offer possibilities for generating data required for addressing microorganism variability in risk modeling given that the results of these methods correspond to those of viable count methods. The objectives of this study were to identify the best approach for determining growth parameters based on turbidity data and use of a Bioscreen instrument and to characterize variability in growth parameters of 34 Staphylococcus aureus strains of different biotypes isolated from broiler carcasses. Growth parameters were estimated by fitting primary growth models to turbidity growth curves or to detection times of serially diluted cultures either directly or by using an analysis of variance (ANOVA) approach. The maximum specific growth rates in chicken broth at 17 degrees C estimated by time to detection methods were in good agreement with viable count estimates, whereas growth models (exponential and Richards) underestimated growth rates. Time to detection methods were selected for strain characterization. The variation of growth parameters among strains was best described by either the logistic or lognormal distribution, but definitive conclusions require a larger data set. The distribution of the physiological state parameter ranged from 0.01 to 0.92 and was not significantly different from a normal distribution. Strain variability was important, and the coefficient of variation of growth parameters was up to six times larger among strains than within strains. It is suggested to apply a time to detection (ANOVA) approach using turbidity measurements for convenient and accurate estimation of growth parameters. The results emphasize the need to consider implications of strain variability for predictive modeling and risk assessment.

  15. Class Enumeration and Parameter Recovery of Growth Mixture Modeling and Second-Order Growth Mixture Modeling in the Presence of Measurement Noninvariance between Latent Classes

    PubMed Central

    Kim, Eun Sook; Wang, Yan

    2017-01-01

    Population heterogeneity in growth trajectories can be detected with growth mixture modeling (GMM). It is common that researchers compute composite scores of repeated measures and use them as multiple indicators of growth factors (baseline performance and growth) assuming measurement invariance between latent classes. Considering that the assumption of measurement invariance does not always hold, we investigate the impact of measurement noninvariance on class enumeration and parameter recovery in GMM through a Monte Carlo simulation study (Study 1). In Study 2, we examine the class enumeration and parameter recovery of the second-order growth mixture modeling (SOGMM) that incorporates measurement models at the first order level. Thus, SOGMM estimates growth trajectory parameters with reliable sources of variance, that is, common factor variance of repeated measures and allows heterogeneity in measurement parameters between latent classes. The class enumeration rates are examined with information criteria such as AIC, BIC, sample-size adjusted BIC, and hierarchical BIC under various simulation conditions. The results of Study 1 showed that the parameter estimates of baseline performance and growth factor means were biased to the degree of measurement noninvariance even when the correct number of latent classes was extracted. In Study 2, the class enumeration accuracy of SOGMM depended on information criteria, class separation, and sample size. The estimates of baseline performance and growth factor mean differences between classes were generally unbiased but the size of measurement noninvariance was underestimated. Overall, SOGMM is advantageous in that it yields unbiased estimates of growth trajectory parameters and more accurate class enumeration compared to GMM by incorporating measurement models. PMID:28928691

  16. Measuring Two Key Parameters of H3 Color Centers in Diamond

    NASA Technical Reports Server (NTRS)

    Roberts, W. Thomas

    2005-01-01

    A method of measuring two key parameters of H3 color centers in diamond has been created as part of a continuing effort to develop tunable, continuous-wave, visible lasers that would utilize diamond as the lasing medium. (An H3 color center in a diamond crystal lattice comprises two nitrogen atoms substituted for two carbon atoms bonded to a third carbon atom. H3 color centers can be induced artificially; they also occur naturally. If present in sufficient density, they impart a yellow hue.) The method may also be applicable to the corresponding parameters of other candidate lasing media. One of the parameters is the number density of color centers, which is needed for designing an efficient laser. The other parameter is an optical-absorption cross section, which, as explained below, is needed for determining the number density. The present method represents an improvement over prior methods in which optical-absorption measurements have been used to determine absorption cross sections or number densities. Heretofore, in order to determine a number density from such measurements, it has been necessary to know the applicable absorption cross section; alternatively, to determine the absorption cross section from such measurements, it has been necessary to know the number density. If, as in this case, both the number density and the absorption cross section are initially unknown, then it is impossible to determine either parameter in the absence of additional information.

  17. The logic of comparative life history studies for estimating key parameters, with a focus on natural mortality rate

    USGS Publications Warehouse

    Hoenig, John M; Then, Amy Y.-H.; Babcock, Elizabeth A.; Hall, Norman G.; Hewitt, David A.; Hesp, Sybrand A.

    2016-01-01

    There are a number of key parameters in population dynamics that are difficult to estimate, such as natural mortality rate, intrinsic rate of population growth, and stock-recruitment relationships. Often, these parameters of a stock are, or can be, estimated indirectly on the basis of comparative life history studies. That is, the relationship between a difficult to estimate parameter and life history correlates is examined over a wide variety of species in order to develop predictive equations. The form of these equations may be derived from life history theory or simply be suggested by exploratory data analysis. Similarly, population characteristics such as potential yield can be estimated by making use of a relationship between the population parameter and bio-chemico–physical characteristics of the ecosystem. Surprisingly, little work has been done to evaluate how well these indirect estimators work and, in fact, there is little guidance on how to conduct comparative life history studies and how to evaluate them. We consider five issues arising in such studies: (i) the parameters of interest may be ill-defined idealizations of the real world, (ii) true values of the parameters are not known for any species, (iii) selecting data based on the quality of the estimates can introduce a host of problems, (iv) the estimates that are available for comparison constitute a non-random sample of species from an ill-defined population of species of interest, and (v) the hierarchical nature of the data (e.g. stocks within species within genera within families, etc., with multiple observations at each level) warrants consideration. We discuss how these issues can be handled and how they shape the kinds of questions that can be asked of a database of life history studies.

  18. The Research and Implementation of Vehicle Bluetooth Hands-free Devices Key Parameters Downloading Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-bo; Wang, Zhi-xue; Li, Jian-xin; Ma, Jian-hui; Li, Yang; Li, Yan-qiang

    In order to facilitate Bluetooth function realization and information can be effectively tracked in the process of production, the vehicle Bluetooth hands-free devices need to download such key parameters as Bluetooth address, CVC license and base plate numbers, etc. Therefore, it is the aim to search simple and effective methods to download parameters for each vehicle Bluetooth hands-free device, and to control and record the use of parameters. In this paper, by means of Bluetooth Serial Peripheral Interface programmer device, the parallel port is switched to SPI. The first step is to download parameters is simulating SPI with the parallel port. To perform SPI function, operating the parallel port in accordance with the SPI timing. The next step is to achieve SPI data transceiver functions according to the programming parameters of options. Utilizing the new method, downloading parameters is fast and accurate. It fully meets vehicle Bluetooth hands-free devices production requirements. In the production line, it has played a large role.

  19. A simplified method for determining reactive rate parameters for reaction ignition and growth in explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, P.J.

    1996-07-01

    A simplified method for determining the reactive rate parameters for the ignition and growth model is presented. This simplified ignition and growth (SIG) method consists of only two adjustable parameters, the ignition (I) and growth (G) rate constants. The parameters are determined by iterating these variables in DYNA2D hydrocode simulations of the failure diameter and the gap test sensitivity until the experimental values are reproduced. Examples of four widely different explosives were evaluated using the SIG model. The observed embedded gauge stress-time profiles for these explosives are compared to those calculated by the SIG equation and the results are described.

  20. Effect of the Key Mixture Parameters on Shrinkage of Reactive Powder Concrete

    PubMed Central

    Zubair, Ahmed

    2014-01-01

    Reactive powder concrete (RPC) mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC were prepared according to 33 factorial experiment design. The specimens belonging to all 27 mixtures were monitored for shrinkage at different ages over a total period of 90 days. The test results were plotted to observe the variation of shrinkage with time and to see the effects of the key mixture factors. The experimental data pertaining to 90-day shrinkage were used to conduct analysis of variance to identify significance of each factor and to obtain an empirical equation correlating the shrinkage of RPC with the three key mixture factors. The rate of development of shrinkage at early ages was higher. The water to binder ratio was found to be the most prominent factor followed by cement content with the least effect of silica fume content. PMID:25050395

  1. Effect of the key mixture parameters on shrinkage of reactive powder concrete.

    PubMed

    Ahmad, Shamsad; Zubair, Ahmed; Maslehuddin, Mohammed

    2014-01-01

    Reactive powder concrete (RPC) mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC were prepared according to 3(3) factorial experiment design. The specimens belonging to all 27 mixtures were monitored for shrinkage at different ages over a total period of 90 days. The test results were plotted to observe the variation of shrinkage with time and to see the effects of the key mixture factors. The experimental data pertaining to 90-day shrinkage were used to conduct analysis of variance to identify significance of each factor and to obtain an empirical equation correlating the shrinkage of RPC with the three key mixture factors. The rate of development of shrinkage at early ages was higher. The water to binder ratio was found to be the most prominent factor followed by cement content with the least effect of silica fume content.

  2. Sequential weighted Wiener estimation for extraction of key tissue parameters in color imaging: a phantom study

    NASA Astrophysics Data System (ADS)

    Chen, Shuo; Lin, Xiaoqian; Zhu, Caigang; Liu, Quan

    2014-12-01

    Key tissue parameters, e.g., total hemoglobin concentration and tissue oxygenation, are important biomarkers in clinical diagnosis for various diseases. Although point measurement techniques based on diffuse reflectance spectroscopy can accurately recover these tissue parameters, they are not suitable for the examination of a large tissue region due to slow data acquisition. The previous imaging studies have shown that hemoglobin concentration and oxygenation can be estimated from color measurements with the assumption of known scattering properties, which is impractical in clinical applications. To overcome this limitation and speed-up image processing, we propose a method of sequential weighted Wiener estimation (WE) to quickly extract key tissue parameters, including total hemoglobin concentration (CtHb), hemoglobin oxygenation (StO2), scatterer density (α), and scattering power (β), from wide-band color measurements. This method takes advantage of the fact that each parameter is sensitive to the color measurements in a different way and attempts to maximize the contribution of those color measurements likely to generate correct results in WE. The method was evaluated on skin phantoms with varying CtHb, StO2, and scattering properties. The results demonstrate excellent agreement between the estimated tissue parameters and the corresponding reference values. Compared with traditional WE, the sequential weighted WE shows significant improvement in the estimation accuracy. This method could be used to monitor tissue parameters in an imaging setup in real time.

  3. Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables

    DTIC Science & Technology

    2013-06-01

    1 18th ICCRTS Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables...AND SUBTITLE Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables 5a. CONTRACT...command in crisis management. C2 Agility Model Agility can be conceptualized at a number of different levels; for instance at the team

  4. Fibroblast growth factors: key players in regeneration and tissue repair.

    PubMed

    Maddaluno, Luigi; Urwyler, Corinne; Werner, Sabine

    2017-11-15

    Tissue injury initiates a complex repair process, which in some organisms can lead to the complete regeneration of a tissue. In mammals, however, the repair of most organs is imperfect and results in scar formation. Both regeneration and repair are orchestrated by a highly coordinated interplay of different growth factors and cytokines. Among the key players are the fibroblast growth factors (FGFs), which control the migration, proliferation, differentiation and survival of different cell types. In addition, FGFs influence the expression of other factors involved in the regenerative response. Here, we summarize current knowledge on the roles of endogenous FGFs in regeneration and repair in different organisms and in different tissues and organs. Gaining a better understanding of these FGF activities is important for appropriate modulation of FGF signaling after injury to prevent impaired healing and to promote organ regeneration in humans. © 2017. Published by The Company of Biologists Ltd.

  5. Triplet ultrasound growth parameters.

    PubMed

    Vora, Neeta L; Ruthazer, Robin; House, Michael; Chelmow, David

    2006-03-01

    To create ultrasound growth curves for normal growth of fetal triplets using statistical methodology that properly accounts for similarities of growth of fetuses within a mother as well as repeated measurements over time for each fetus. In this longitudinal study, all triplet pregnancies managed at a single tertiary center from 1992-2004 were reviewed. Fetuses with major anomalies, prior selective reduction, or fetal demise were excluded. Data from early and late gestation in which there were fewer than 30 fetal measurements available for analysis were excluded. We used multilevel models to account for variation in growth within a single fetus over time, variations in growth between multiple fetuses within a single mother, and variations in fetal growth between mothers. Medians (50th), 10th, and 90th percentiles were estimated by the creation of multiple quadratic growth models from bootstrap samples adapting a previously published method to compute prediction intervals. Estimated fetal weight was derived from Hadlock's formula. One hundred fifty triplet pregnancies were identified. Twenty-seven pregnancies were excluded for the following reasons: missing records (23), fetal demise (3), and fetal anomaly (1). The study group consisted of 123 pregnancies. The gestational age range was restricted to 14-34 weeks. Figures and tables were developed showing medians, 10th and 90th percentiles for estimated fetal weight, femur length, biparietal diameter, abdominal circumference, and head circumference. Growth curves for triplet pregnancies were derived. These may be useful for identification of abnormal growth in triplet fetuses. III.

  6. Determination of key parameters of vector multifractal vector fields

    NASA Astrophysics Data System (ADS)

    Schertzer, D. J. M.; Tchiguirinskaia, I.

    2017-12-01

    For too long time, multifractal analyses and simulations have been restricted to scalar-valued fields (Schertzer and Tchiguirinskaia, 2017a,b). For instance, the wind velocity multifractality has been mostly analysed in terms of scalar structure functions and with the scalar energy flux. This restriction has had the unfortunate consequences that multifractals were applicable to their full extent in geophysics, whereas it has inspired them. Indeed a key question in geophysics is the complexity of the interactions between various fields or they components. Nevertheless, sophisticated methods have been developed to determine the key parameters of scalar valued fields. In this communication, we first present the vector extensions of the universal multifractal analysis techniques to multifractals whose generator belong to a Levy-Clifford algebra (Schertzer and Tchiguirinskaia, 2015). We point out further extensions noting the increased complexity. For instance, the (scalar) index of multifractality becomes a matrice. Schertzer, D. and Tchiguirinskaia, I. (2015) `Multifractal vector fields and stochastic Clifford algebra', Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(12), p. 123127. doi: 10.1063/1.4937364. Schertzer, D. and Tchiguirinskaia, I. (2017) `An Introduction to Multifractals and Scale Symmetry Groups', in Ghanbarian, B. and Hunt, A. (eds) Fractals: Concepts and Applications in Geosciences. CRC Press, p. (in press). Schertzer, D. and Tchiguirinskaia, I. (2017b) `Pandora Box of Multifractals: Barely Open ?', in Tsonis, A. A. (ed.) 30 Years of Nonlinear Dynamics in Geophysics. Berlin: Springer, p. (in press).

  7. Parameter optimization in biased decoy-state quantum key distribution with both source errors and statistical fluctuations

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Rong; Li, Jian; Zhang, Chun-Mei; Wang, Qin

    2017-10-01

    The decoy-state method has been widely used in commercial quantum key distribution (QKD) systems. In view of the practical decoy-state QKD with both source errors and statistical fluctuations, we propose a universal model of full parameter optimization in biased decoy-state QKD with phase-randomized sources. Besides, we adopt this model to carry out simulations of two widely used sources: weak coherent source (WCS) and heralded single-photon source (HSPS). Results show that full parameter optimization can significantly improve not only the secure transmission distance but also the final key generation rate. And when taking source errors and statistical fluctuations into account, the performance of decoy-state QKD using HSPS suffered less than that of decoy-state QKD using WCS.

  8. A descriptive study on selected growth parameters and growth hormone receptor gene in healthy young adults from the American Midwest.

    PubMed

    Hartin, Samantha N; Hossain, Waheeda A; Manzardo, Ann M; Brown, Shaquanna; Fite, Paula J; Bortolato, Marco; Butler, Merlin G

    2018-02-12

    The first study of growth hormone receptor (GHR) genotypes in healthy young adults in the United States attending a Midwestern university and impact on selected growth parameters. To describe the frequency of GHR genotypes in a sample of healthy young adults from the United States attending a university in the Midwest and analyze the relationship between GHR genotypes and selected growth parameters. Saliva was collected from 459 healthy young adults (237 females, 222 males; age range = 18-25 y) and DNA isolated for genotyping of GHR alleles (fl/fl, fl/d3, or d3/d3). Selected growth parameters were collected and GHR genotype data examined for previously reported associations (e.g., height, weight or bone mass density) or novel findings (e.g., % body water and index finger length). We found 219 participants (48%) homozygous for fl/fl, 203 (44%), heterozygous fl/d3 and 37 (8%) homozygous d3/d3. The distribution of GHR genotypes in our participants was consistent with previous reports of non-US populations. Several anthropometric measures differed by sex. The distribution of GHR genotypes did not significantly differ by sex, weight, or other anthropometric measures. However, the fl/d3 genotype was more common among African-Americans. Our study of growth and anthropometric parameters in relationship to GHR genotypes found no association with height, weight, right index finger length, BMI, bone mass density, % body fat or % body water in healthy young adults. We did identify sex differences with increased body fat, decreased bone density, body water and index finger length in females. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton, Dwight A.; Poore, III, Willis P.

    2015-01-01

    The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Markmore » I plant for those instrumentation systems considered most important for accident management purposes.« less

  10. Crop Damage by Primates: Quantifying the Key Parameters of Crop-Raiding Events

    PubMed Central

    Wallace, Graham E.; Hill, Catherine M.

    2012-01-01

    Human-wildlife conflict often arises from crop-raiding, and insights regarding which aspects of raiding events determine crop loss are essential when developing and evaluating deterrents. However, because accounts of crop-raiding behaviour are frequently indirect, these parameters are rarely quantified or explicitly linked to crop damage. Using systematic observations of the behaviour of non-human primates on farms in western Uganda, this research identifies number of individuals raiding and duration of raid as the primary parameters determining crop loss. Secondary factors include distance travelled onto farm, age composition of the raiding group, and whether raids are in series. Regression models accounted for greater proportions of variation in crop loss when increasingly crop and species specific. Parameter values varied across primate species, probably reflecting differences in raiding tactics or perceptions of risk, and thereby providing indices of how comfortable primates are on-farm. Median raiding-group sizes were markedly smaller than the typical sizes of social groups. The research suggests that key parameters of raiding events can be used to measure the behavioural impacts of deterrents to raiding. Furthermore, farmers will benefit most from methods that discourage raiding by multiple individuals, reduce the size of raiding groups, or decrease the amount of time primates are on-farm. This study demonstrates the importance of directly relating crop loss to the parameters of raiding events, using systematic observations of the behaviour of multiple primate species. PMID:23056378

  11. Variations in leaf growth parameters within the tree structure of adult Coffea arabica in relation to seasonal growth, water availability and air carbon dioxide concentration.

    PubMed

    Rakocevic, Miroslava; Matsunaga, Fabio Takeshi

    2018-04-05

    Dynamics in branch and leaf growth parameters, such as the phyllochron, duration of leaf expansion, leaf life span and bud mortality, determine tree architecture and canopy foliage distribution. We aimed to estimate leaf growth parameters in adult Arabica coffee plants based on leaf supporter axis order and position along the vertical profile, considering their modifications related to seasonal growth, air [CO2] and water availability. Growth and mortality of leaves and terminal buds of adult Arabica coffee trees were followed in two independent field experiments in two sub-tropical climate regions of Brazil, Londrina-PR (Cfa) and Jaguariúna-SP (Cwa). In the Cwa climate, coffee trees were grown under a FACE (free air CO2 enrichment) facility, where half of those had been irrigated. Plants were observed at a 15-30 d frequency for 1 year. Leaf growth parameters were estimated on five axes orders and expressed as functions of accumulated thermal time (°Cd per leaf). The phyllochron and duration of leaf expansion increased with axis order, from the seond to the fourth. The phyllochron and life span during the reduced vegetative seasonal growth were greater than during active growth. It took more thermal time for leaves from the first- to fourth-order axes to expand their blades under irrigation compared with rainfed conditions. The compensation effects of high [CO2] for low water availability were observed on leaf retention on the second and third axes orders, and duration of leaf expansion on the first- and fourth-order axes. The second-degree polynomials modelled leaf growth parameter distribution in the vertical tree profile, and linear regressions modelled the proportion of terminal bud mortality. Leaf growth parameters in coffee plants were determined by axis order. The duration of leaf expansion contributed to phyllochron determination. Leaf growth parameters varied according the position of the axis supporter along the vertical profile, suggesting an effect of

  12. Plant characteristics and growth parameters of vegetable pigeon pea cultivars

    USDA-ARS?s Scientific Manuscript database

    Pigeon pea is an important crop in dry land and semi-arid regions and is a supplementary source of dietary protein for the resource-constrained farmers. The aim of this research was to evaluate growth parameters of twelve vegetable pigeon pea genotypes at two locations in Eastern Kenya. The number o...

  13. Periods of Child Growth up to age 8 Years in Ethiopia, India, Peru and Vietnam: Key Distal Household and Community Factors

    PubMed Central

    Schott, Whitney B.; Crookston, Benjamin T.; Lundeen, Elizabeth A.; Stein, Aryeh D.; Behrman, Jere R.

    2013-01-01

    Recent research has demonstrated some growth recovery among children stunted in infancy. Less is known about key age ranges for such growth recovery, and what factors are correlates with this growth. This study characterized child growth up to age 1 year, and from ages 1 to 5 and 5 to 8 years controlling for initial height-for-age z-score (HAZ), and identified key distal household and community factors associated with these growth measures using longitudinal data on 7,266 children in the Young Lives (YL) study in Ethiopia, India, Peru and Vietnam. HAZ at about age 1 year and age in months predicted much of the variation in HAZ at age 5 years, but 40 to 71% was not predicted. Similarly, HAZ at age 5 years and age in months did not predict 26 to 47% of variation in HAZ at 8 years. Multiple regression analysis suggests that parental schooling, consumption, and mothers’ height are key correlates of HAZ at about age 1 and also are associated with unpredicted change in HAZ from ages 1 to 5 and 5 to 8 years, given initial HAZ. These results underline the importance of a child’s starting point in infancy in determining his or her growth, point to key distal household and community factors that may determine early growth in early life and subsequent growth recovery and growth failure, and indicate that these factors vary some by country, urban/rural designation, and child sex. PMID:23769211

  14. Periods of child growth up to age 8 years in Ethiopia, India, Peru and Vietnam: key distal household and community factors.

    PubMed

    Schott, Whitney B; Crookston, Benjamin T; Lundeen, Elizabeth A; Stein, Aryeh D; Behrman, Jere R

    2013-11-01

    Recent research has demonstrated some growth recovery among children stunted in infancy. Less is known about key age ranges for such growth recovery, and what factors are correlates with this growth. This study characterized child growth up to age 1 year, and from ages 1 to 5 and 5 to 8 years controlling for initial height-for-age z-score (HAZ), and identified key distal household and community factors associated with these growth measures using longitudinal data on 7266 children in the Young Lives (YL) study in Ethiopia, India, Peru and Vietnam. HAZ at about age 1 year and age in months predicted much of the variation in HAZ at age 5 years, but 40-71% was not predicted. Similarly, HAZ at age 5 years and age in months did not predict 26-47% of variation in HAZ at 8 years. Multiple regression analysis suggests that parental schooling, consumption, and mothers' height are key correlates of HAZ at about age 1 and also are associated with unpredicted change in HAZ from ages 1 to 5 and 5 to 8 years, given initial HAZ. These results underline the importance of a child's starting point in infancy in determining his or her growth, point to key distal household and community factors that may determine early growth in early life and subsequent growth recovery and growth failure, and indicate that these factors vary some by country, urban/rural designation, and child sex. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. A Bayesian Framework for Coupled Estimation of Key Unknown Parameters of Land Water and Energy Balance Equations

    NASA Astrophysics Data System (ADS)

    Farhadi, L.; Abdolghafoorian, A.

    2015-12-01

    The land surface is a key component of climate system. It controls the partitioning of available energy at the surface between sensible and latent heat, and partitioning of available water between evaporation and runoff. Water and energy cycle are intrinsically coupled through evaporation, which represents a heat exchange as latent heat flux. Accurate estimation of fluxes of heat and moisture are of significant importance in many fields such as hydrology, climatology and meteorology. In this study we develop and apply a Bayesian framework for estimating the key unknown parameters of terrestrial water and energy balance equations (i.e. moisture and heat diffusion) and their uncertainty in land surface models. These equations are coupled through flux of evaporation. The estimation system is based on the adjoint method for solving a least-squares optimization problem. The cost function consists of aggregated errors on state (i.e. moisture and temperature) with respect to observation and parameters estimation with respect to prior values over the entire assimilation period. This cost function is minimized with respect to parameters to identify models of sensible heat, latent heat/evaporation and drainage and runoff. Inverse of Hessian of the cost function is an approximation of the posterior uncertainty of parameter estimates. Uncertainty of estimated fluxes is estimated by propagating the uncertainty for linear and nonlinear function of key parameters through the method of First Order Second Moment (FOSM). Uncertainty analysis is used in this method to guide the formulation of a well-posed estimation problem. Accuracy of the method is assessed at point scale using surface energy and water fluxes generated by the Simultaneous Heat and Water (SHAW) model at the selected AmeriFlux stations. This method can be applied to diverse climates and land surface conditions with different spatial scales, using remotely sensed measurements of surface moisture and temperature states

  16. A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates.

    PubMed

    Johnson, Ian; Wang, Sebo Michelle; Silken, Christine; Liu, Huinan

    2016-05-01

    Nanocomposite coatings offer multiple functions simultaneously to improve the interfacial properties of magnesium (Mg) alloys for skeletal implant applications, e.g., controlling the degradation rate of Mg substrates, improving bone cell functions, and providing drug delivery capability. However, the effective service time of nanocomposite coatings may be limited due to their early delamination from the Mg-based substrates. Therefore, the objective of this study was to address the delamination issue of nanocomposite coatings, improve the coating properties for reducing the degradation of Mg-based substrates, and thus improve their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The surface conditions of the substrates, polymer component type of the nanocomposite coatings, and post-deposition processing are the key parameters that contribute to the efficacy of the nanocomposite coatings in regulating substrate degradation and bone cell responses. Specifically, the effects of metallic surface versus alkaline heat-treated hydroxide surface of the substrates on coating quality were investigated. For the nanocomposite coatings, nanophase hydroxyapatite (nHA) was dispersed in three types of biodegradable polymers, i.e., poly(lactic-co-glycolic acid) (PLGA), poly(l-lactic acid) (PLLA), or poly(caprolactone) (PCL) to determine which polymer component could provide integrated properties for slowest Mg degradation. The nanocomposite coatings with or without post-deposition processing, i.e., melting, annealing, were compared to determine which processing route improved the properties of the nanocomposite coatings most significantly. The results showed that optimizing the coating processes addressed the delamination issue. The melted then annealed nHA/PCL coating on the metallic Mg substrates showed the slowest degradation and the best coating adhesion, among all the combinations of conditions studied; and, it improved the adhesion density of BMSCs

  17. Key Gaps for Enabling Plant Growth in Future Missions

    NASA Technical Reports Server (NTRS)

    Anderson, Molly S.; Barta, Daniel; Douglas, Grace; Fritsche, Ralph; Massa, Gioia; Wheeler, Ray; Quincy, Charles; Romeyn, Matthew; Motil, Brian; Hanford, Anthony

    2017-01-01

    Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented both in media and in serious concept studies. The complexity of controlled environment agriculture and of plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. The criticality of the research, and the ideal solution, will vary depending on the mission and type of system implementation being considered.

  18. Parameter Stability of the Functional–Structural Plant Model GREENLAB as Affected by Variation within Populations, among Seasons and among Growth Stages

    PubMed Central

    Ma, Yuntao; Li, Baoguo; Zhan, Zhigang; Guo, Yan; Luquet, Delphine; de Reffye, Philippe; Dingkuhn, Michael

    2007-01-01

    Background and Aims It is increasingly accepted that crop models, if they are to simulate genotype-specific behaviour accurately, should simulate the morphogenetic process generating plant architecture. A functional–structural plant model, GREENLAB, was previously presented and validated for maize. The model is based on a recursive mathematical process, with parameters whose values cannot be measured directly and need to be optimized statistically. This study aims at evaluating the stability of GREENLAB parameters in response to three types of phenotype variability: (1) among individuals from a common population; (2) among populations subjected to different environments (seasons); and (3) among different development stages of the same plants. Methods Five field experiments were conducted in the course of 4 years on irrigated fields near Beijing, China. Detailed observations were conducted throughout the seasons on the dimensions and fresh biomass of all above-ground plant organs for each metamer. Growth stage-specific target files were assembled from the data for GREENLAB parameter optimization. Optimization was conducted for specific developmental stages or the entire growth cycle, for individual plants (replicates), and for different seasons. Parameter stability was evaluated by comparing their CV with that of phenotype observation for the different sources of variability. A reduced data set was developed for easier model parameterization using one season, and validated for the four other seasons. Key Results and Conclusions The analysis of parameter stability among plants sharing the same environment and among populations grown in different environments indicated that the model explains some of the inter-seasonal variability of phenotype (parameters varied less than the phenotype itself), but not inter-plant variability (parameter and phenotype variability were similar). Parameter variability among developmental stages was small, indicating that parameter

  19. Policies for managing urban growth and landscape change: a key to conservation in the 21st century

    Treesearch

    David N., tech. ed. Bengston

    2005-01-01

    Protecting natural areas in the face of urbanization is one of the most important challenges for conservation in the 21st century. The papers in this collection examine key issues related to growth management and selected approaches to managing urban growth and minimizing its social and environmental costs. They were presented at the 2004 annual meeting of the Society...

  20. Key Performance Parameter Driven Technology Goals for Electric Machines and Power Systems

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl; Jansen, Ralph; Brown, Gerald; Duffy, Kirsten; Trudell, Jeffrey

    2015-01-01

    Transitioning aviation to low carbon propulsion is one of the crucial strategic research thrust and is a driver in the search for alternative propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The feasibility of scaling up various electric drive system technologies to meet the requirements of a large commercial transport is discussed in terms of key parameters. Functional requirements are identified that impact the power system design. A breakeven analysis is presented to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  1. Turbulence study in the vicinity of piano key weir: relevance, instrumentation, parameters and methods

    NASA Astrophysics Data System (ADS)

    Tiwari, Harinarayan; Sharma, Nayan

    2017-05-01

    This research paper focuses on the need of turbulence, instruments reliable to capture turbulence, different turbulence parameters and some advance methodology which can decompose various turbulence structures at different levels near hydraulic structures. Small-scale turbulence research has valid prospects in open channel flow. The relevance of the study is amplified as we introduce any hydraulic structure in the channel which disturbs the natural flow and creates discontinuity. To recover this discontinuity, the piano key weir (PKW) might be used with sloped keys. Constraints of empirical results in the vicinity of PKW necessitate extensive laboratory experiments with fair and reliable instrumentation techniques. Acoustic Doppler velocimeter was established to be best suited within range of some limitations using principal component analysis. Wavelet analysis is proposed to decompose the underlying turbulence structure in a better way.

  2. Multi-Trait GWAS and New Candidate Genes Annotation for Growth Curve Parameters in Brahman Cattle

    PubMed Central

    Crispim, Aline Camporez; Kelly, Matthew John; Guimarães, Simone Eliza Facioni; e Silva, Fabyano Fonseca; Fortes, Marina Rufino Salinas; Wenceslau, Raphael Rocha; Moore, Stephen

    2015-01-01

    Understanding the genetic architecture of beef cattle growth cannot be limited simply to the genome-wide association study (GWAS) for body weight at any specific ages, but should be extended to a more general purpose by considering the whole growth trajectory over time using a growth curve approach. For such an approach, the parameters that are used to describe growth curves were treated as phenotypes under a GWAS model. Data from 1,255 Brahman cattle that were weighed at birth, 6, 12, 15, 18, and 24 months of age were analyzed. Parameter estimates, such as mature weight (A) and maturity rate (K) from nonlinear models are utilized as substitutes for the original body weights for the GWAS analysis. We chose the best nonlinear model to describe the weight-age data, and the estimated parameters were used as phenotypes in a multi-trait GWAS. Our aims were to identify and characterize associated SNP markers to indicate SNP-derived candidate genes and annotate their function as related to growth processes in beef cattle. The Brody model presented the best goodness of fit, and the heritability values for the parameter estimates for mature weight (A) and maturity rate (K) were 0.23 and 0.32, respectively, proving that these traits can be a feasible alternative when the objective is to change the shape of growth curves within genetic improvement programs. The genetic correlation between A and K was -0.84, indicating that animals with lower mature body weights reached that weight at younger ages. One hundred and sixty seven (167) and two hundred and sixty two (262) significant SNPs were associated with A and K, respectively. The annotated genes closest to the most significant SNPs for A had direct biological functions related to muscle development (RAB28), myogenic induction (BTG1), fetal growth (IL2), and body weights (APEX2); K genes were functionally associated with body weight, body height, average daily gain (TMEM18), and skeletal muscle development (SMN1). Candidate

  3. Multi-Trait GWAS and New Candidate Genes Annotation for Growth Curve Parameters in Brahman Cattle.

    PubMed

    Crispim, Aline Camporez; Kelly, Matthew John; Guimarães, Simone Eliza Facioni; Fonseca e Silva, Fabyano; Fortes, Marina Rufino Salinas; Wenceslau, Raphael Rocha; Moore, Stephen

    2015-01-01

    Understanding the genetic architecture of beef cattle growth cannot be limited simply to the genome-wide association study (GWAS) for body weight at any specific ages, but should be extended to a more general purpose by considering the whole growth trajectory over time using a growth curve approach. For such an approach, the parameters that are used to describe growth curves were treated as phenotypes under a GWAS model. Data from 1,255 Brahman cattle that were weighed at birth, 6, 12, 15, 18, and 24 months of age were analyzed. Parameter estimates, such as mature weight (A) and maturity rate (K) from nonlinear models are utilized as substitutes for the original body weights for the GWAS analysis. We chose the best nonlinear model to describe the weight-age data, and the estimated parameters were used as phenotypes in a multi-trait GWAS. Our aims were to identify and characterize associated SNP markers to indicate SNP-derived candidate genes and annotate their function as related to growth processes in beef cattle. The Brody model presented the best goodness of fit, and the heritability values for the parameter estimates for mature weight (A) and maturity rate (K) were 0.23 and 0.32, respectively, proving that these traits can be a feasible alternative when the objective is to change the shape of growth curves within genetic improvement programs. The genetic correlation between A and K was -0.84, indicating that animals with lower mature body weights reached that weight at younger ages. One hundred and sixty seven (167) and two hundred and sixty two (262) significant SNPs were associated with A and K, respectively. The annotated genes closest to the most significant SNPs for A had direct biological functions related to muscle development (RAB28), myogenic induction (BTG1), fetal growth (IL2), and body weights (APEX2); K genes were functionally associated with body weight, body height, average daily gain (TMEM18), and skeletal muscle development (SMN1). Candidate

  4. Dynamic identification of growth and survival kinetic parameters of microorganisms in foods

    USDA-ARS?s Scientific Manuscript database

    Inverse analysis is a mathematical method used in predictive microbiology to determine the kinetic parameters of microbial growth and survival in foods. The traditional approach in inverse analysis relies on isothermal experiments that are time-consuming and labor-intensive, and errors are accumula...

  5. Theoretical analysis of the correlation observed in fatigue crack growth rate parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chay, S.C.; Liaw, P.K.

    Fatigue crack growth rates have been found to follow the Paris-Erdogan rule, da/dN = C{sub o}({Delta}K){sup n}, for many steels, aluminum, nickel and copper alloys. The fatigue crack growth rate behavior in the Paris regime, thus, can be characterized by the parameters C{sub o} and n, which have been obtained for various materials. When n vs the logarithm of C{sub o} were plotted for various experimental results, a very definite linear relationship has been observed by many investigators, and questions have been raised as to the nature of this correlation. This paper presents a theoretical analysis that explains precisely whymore » such a linear correlation should exist between the two parameters, how strong the relationship should be, and how it can be predicted by analysis. This analysis proves that the source of such a correlation is of mathematical nature rather than physical.« less

  6. A key factor to the spin parameter of uniformly rotating compact stars: crust structure

    NASA Astrophysics Data System (ADS)

    Qi, Bin; Zhang, Nai-Bo; Sun, Bao-Yuan; Wang, Shou-Yu; Gao, Jian-Hua

    2016-04-01

    We study the dimensionless spin parameter j ≡ cJ/(GM2) of different kinds of uniformly rotating compact stars, including traditional neutron stars, hyperonic neutron stars and hybrid stars, based on relativistic mean field theory and the MIT bag model. It is found that jmax ˜ 0.7, which had been suggested in traditional neutron stars, is sustained for hyperonic neutron stars and hybrid stars with M > 0.5 M⊙. Not the interior but rather the crust structure of the stars is a key factor to determine jmax for three kinds of selected compact stars. Furthermore, a universal formula j = 0.63(f/fK) - 0.42(f/fK)2 + 0.48(f/fK)3 is suggested to determine the spin parameter at any rotational frequency f smaller than the Keplerian frequency fK.

  7. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1979-01-01

    The optimization of space processing of GaAs is described. The detailed compositional, structural, and electronic characterization of GaAs on a macro- and microscale and the relationships between growth parameters and the properties of GaAs are among the factors discussed. The key parameters limiting device performance are assessed.

  8. Dark energy and key physical parameters of clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Chernin, A. D.

    2012-04-01

    We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.

  9. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0139

    NASA Technical Reports Server (NTRS)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    1999-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  10. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0192

    NASA Technical Reports Server (NTRS)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  11. Influences of growth parameters on the reaction pathway during GaN synthesis

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi; Liu, Zhongyi; Fang, Haisheng

    2018-01-01

    Gallium nitride (GaN) film growth is a complicated physical and chemical process including fluid flow, heat transfer, species transport and chemical reaction. Study of the reaction mechanism, i.e., the reaction pathway, is important for optimizing the growth process in the actual manufacture. In the paper, the growth pathway of GaN in a closed-coupled showerhead metal-organic chemical vapor deposition (CCS-MOCVD) reactor is investigated in detail using computational fluid dynamics (CFD). Influences of the process parameters, such as the chamber pressure, the inlet temperature, the susceptor temperature and the pre-exponential factor, on the reaction pathway are examined. The results show that increases of the chamber pressure or the inlet temperature, as well as reductions of the susceptor temperature or the pre-exponential factor lead to the adduct route dominating the growth. The deposition rate contributed by the decomposition route, however, can be enhanced dramatically by increasing the inlet temperature, the susceptor temperature and the pre-exponential factor.

  12. Integral parameters for characterizing water, energy, and aeration properties of soilless plant growth media

    NASA Astrophysics Data System (ADS)

    Chamindu Deepagoda, T. K. K.; Chen Lopez, Jose Choc; Møldrup, Per; de Jonge, Lis Wollesen; Tuller, Markus

    2013-10-01

    Over the last decade there has been a significant shift in global agricultural practice. Because the rapid increase of human population poses unprecedented challenges to production of an adequate and economically feasible food supply for undernourished populations, soilless greenhouse production systems are regaining increased worldwide attention. The optimal control of water availability and aeration is an essential prerequisite to successfully operate plant growth systems with soilless substrates such as aggregated foamed glass, perlite, rockwool, coconut coir, or mixtures thereof. While there are considerable empirical and theoretical efforts devoted to characterize water retention and aeration substrate properties, a holistic, physically-based approach considering water retention and aeration concurrently is lacking. In this study, the previously developed concept of integral water storage and energy was expanded to dual-porosity substrates and an analog integral oxygen diffusivity parameter was introduced to simultaneously characterize aeration properties of four common soilless greenhouse growth media. Integral parameters were derived for greenhouse crops in general, as well as for tomatoes. The integral approach provided important insights for irrigation management and for potential optimization of substrate properties. Furthermore, an observed relationship between the integral parameters for water availability and oxygen diffusivity can be potentially applied for the design of advanced irrigation and management strategies to ensure stress-free growth conditions, while conserving water resources.

  13. Dependence of N-polar GaN rod morphology on growth parameters during selective area growth by MOVPE

    NASA Astrophysics Data System (ADS)

    Li, Shunfeng; Wang, Xue; Mohajerani, Matin Sadat; Fündling, Sönke; Erenburg, Milena; Wei, Jiandong; Wehmann, Hergo-Heinrich; Waag, Andreas; Mandl, Martin; Bergbauer, Werner; Strassburg, Martin

    2013-02-01

    Selective area growth of GaN rods by metalorganic vapor phase epitaxy has attracted great interest due to its novel applications in optoelectronic and photonics. In this work, we will present the dependence of GaN rod morphology on various growth parameters i.e. growth temperature, H2/N2 carrier gas concentration, V/III ratio, total carrier gas flow and reactor pressure. It is found that higher growth temperature helps to increase the aspect ratio of the rods, but reduces the height homogeneity. Furthermore, H2/N2 carrier gas concentration is found to be a critical factor to obtain vertical rod growth. Pure nitrogen carrier gas leads to irregular growth of GaN structure, while an increase of hydrogen carrier gas results in vertical GaN rod growth. Higher hydrogen carrier gas concentration also reduces the diameter and enhances the aspect of the GaN rods. Besides, increase of V/III ratio causes reduction of the aspect ratio of N-polar GaN rods, which could be explained by the relatively lower growth rate on (000-1) N-polar top surface when supplying more ammonia. In addition, an increase of the total carrier gas flow leads to a decrease in the diameter and the average volume of GaN rods. These phenomena are tentatively explained by the change of partial pressure of the source materials and boundary layer thickness in the reactor. Finally, it is shown that the average volume of the N-polar GaN rods keeps a similar value for a reactor pressure PR of 66 and 125 mbar, while an incomplete filling of the pattern opening is observed with PR of 250 mbar. Room temperature photoluminescence spectrum of the rods is also briefly discussed.

  14. Early Predictors of Growth in Diversity of Key Consonants Used in Communication in Initially Preverbal Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Woynaroski, Tiffany; Watson, Linda; Gardner, Elizabeth; Newsom, Cassandra R.; Keceli-Kaysili, Bahar; Yoder, Paul J.

    2016-01-01

    Diversity of key consonants used in communication (DKCC) is a value-added predictor of expressive language growth in initially preverbal children with autism spectrum disorder (ASD). Studying the predictors of DKCC growth in young children with ASD might inform treatment of this under-studied aspect of prelinguistic development. Eighty-seven…

  15. The development and validation of different decision-making tools to predict urine culture growth out of urine flow cytometry parameter.

    PubMed

    Müller, Martin; Seidenberg, Ruth; Schuh, Sabine K; Exadaktylos, Aristomenis K; Schechter, Clyde B; Leichtle, Alexander B; Hautz, Wolf E

    2018-01-01

    Patients presenting with suspected urinary tract infection are common in every day emergency practice. Urine flow cytometry has replaced microscopic urine evaluation in many emergency departments, but interpretation of the results remains challenging. The aim of this study was to develop and validate tools that predict urine culture growth out of urine flow cytometry parameter. This retrospective study included all adult patients that presented in a large emergency department between January and July 2017 with a suspected urinary tract infection and had a urine flow cytometry as well as a urine culture obtained. The objective was to identify urine flow cytometry parameters that reliably predict urine culture growth and mixed flora growth. The data set was split into a training (70%) and a validation set (30%) and different decision-making approaches were developed and validated. Relevant urine culture growth (respectively mixed flora growth) was found in 40.2% (7.2% respectively) of the 613 patients included. The number of leukocytes and bacteria in flow cytometry were highly associated with urine culture growth, but mixed flora growth could not be sufficiently predicted from the urine flow cytometry parameters. A decision tree, predictive value figures, a nomogram, and a cut-off table to predict urine culture growth from bacteria and leukocyte count were developed, validated and compared. Urine flow cytometry parameters are insufficient to predict mixed flora growth. However, the prediction of urine culture growth based on bacteria and leukocyte count is highly accurate and the developed tools should be used as part of the decision-making process of ordering a urine culture or starting an antibiotic therapy if a urogenital infection is suspected.

  16. The development and validation of different decision-making tools to predict urine culture growth out of urine flow cytometry parameter

    PubMed Central

    Seidenberg, Ruth; Schuh, Sabine K.; Exadaktylos, Aristomenis K.; Schechter, Clyde B.; Leichtle, Alexander B.; Hautz, Wolf E.

    2018-01-01

    Objective Patients presenting with suspected urinary tract infection are common in every day emergency practice. Urine flow cytometry has replaced microscopic urine evaluation in many emergency departments, but interpretation of the results remains challenging. The aim of this study was to develop and validate tools that predict urine culture growth out of urine flow cytometry parameter. Methods This retrospective study included all adult patients that presented in a large emergency department between January and July 2017 with a suspected urinary tract infection and had a urine flow cytometry as well as a urine culture obtained. The objective was to identify urine flow cytometry parameters that reliably predict urine culture growth and mixed flora growth. The data set was split into a training (70%) and a validation set (30%) and different decision-making approaches were developed and validated. Results Relevant urine culture growth (respectively mixed flora growth) was found in 40.2% (7.2% respectively) of the 613 patients included. The number of leukocytes and bacteria in flow cytometry were highly associated with urine culture growth, but mixed flora growth could not be sufficiently predicted from the urine flow cytometry parameters. A decision tree, predictive value figures, a nomogram, and a cut-off table to predict urine culture growth from bacteria and leukocyte count were developed, validated and compared. Conclusions Urine flow cytometry parameters are insufficient to predict mixed flora growth. However, the prediction of urine culture growth based on bacteria and leukocyte count is highly accurate and the developed tools should be used as part of the decision-making process of ordering a urine culture or starting an antibiotic therapy if a urogenital infection is suspected. PMID:29474463

  17. Dependence of electron beam instability growth rates on the beam-plasma system parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strangeway, R.J.

    1982-02-01

    Electron beam instabilites are studied by using a simple model for an electron beam streaming through a cold plasma, the beam being of finite width perpendicular to the ambient magnetic field. Through considerations of finite geometry and the coldness of the beam and background plasma, an instability similar to the two stream instability is assumed to be the means for wave growth in the system. Having found the maximum growth rate for one set of beam-plasma system parameters, this maximum growth rate is traced as these parameters are varied. The parameters that describe the system are the beam velocity (v/submore » b/), electron gyrofrequency to ambient electron plasma frequency ratio (..cap omega../sub e//..omega../sub p/e), the beam to background number density ratio (n/sub b//n/sub a/), and the beam width (a). When ..cap omega../sub e//..omega../sub p/e>1, a mode with ..cap omega../sub e/<..omega..<..omega../sub u/hr is found to be unstable, where ..cap omega.. is the wave frequency and ..omega../sub u/hr is the upper hybrid resonance frequency. For low values of n/sub b//n/sub a/ and ..cap omega../sub e/<..omega../sub p/e, this mode is still present with ..omega../sub p/e<..omega..<..omega../sub u/hr. If the beam density is large, n/sub b//n/sub a/approx. =1, the instability occures for frequencies just above the electron gyrofrequency. This mode may well be that observed in laboratory plasma before the system undergoes the beam-plasma discharge. There is another instability present, which occurs for ..omega..approx. =..omega../sub p/e. The growth rates for this mode, which are generally larger than those found for the ..omega..approx. =..omega..uhr mode, are only weakly dependent on ..cap omega../sub d//..omega../sub p/e. That this mode is not always observed in the laboratory implies that some factors not considered in the present theory suppress this mode, specifically, finite beam length.« less

  18. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0185

    NASA Technical Reports Server (NTRS)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2000-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  19. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0161

    NASA Technical Reports Server (NTRS)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2000-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  20. Optimal experimental design for improving the estimation of growth parameters of Lactobacillus viridescens from data under non-isothermal conditions.

    PubMed

    Longhi, Daniel Angelo; Martins, Wiaslan Figueiredo; da Silva, Nathália Buss; Carciofi, Bruno Augusto Mattar; de Aragão, Gláucia Maria Falcão; Laurindo, João Borges

    2017-01-02

    In predictive microbiology, the model parameters have been estimated using the sequential two-step modeling (TSM) approach, in which primary models are fitted to the microbial growth data, and then secondary models are fitted to the primary model parameters to represent their dependence with the environmental variables (e.g., temperature). The Optimal Experimental Design (OED) approach allows reducing the experimental workload and costs, and the improvement of model identifiability because primary and secondary models are fitted simultaneously from non-isothermal data. Lactobacillus viridescens was selected to this study because it is a lactic acid bacterium of great interest to meat products preservation. The objectives of this study were to estimate the growth parameters of L. viridescens in culture medium from TSM and OED approaches and to evaluate both the number of experimental data and the time needed in each approach and the confidence intervals of the model parameters. Experimental data for estimating the model parameters with TSM approach were obtained at six temperatures (total experimental time of 3540h and 196 experimental data of microbial growth). Data for OED approach were obtained from four optimal non-isothermal profiles (total experimental time of 588h and 60 experimental data of microbial growth), two profiles with increasing temperatures (IT) and two with decreasing temperatures (DT). The Baranyi and Roberts primary model and the square root secondary model were used to describe the microbial growth, in which the parameters b and T min (±95% confidence interval) were estimated from the experimental data. The parameters obtained from TSM approach were b=0.0290 (±0.0020) [1/(h 0.5 °C)] and T min =-1.33 (±1.26) [°C], with R 2 =0.986 and RMSE=0.581, and the parameters obtained with the OED approach were b=0.0316 (±0.0013) [1/(h 0.5 °C)] and T min =-0.24 (±0.55) [°C], with R 2 =0.990 and RMSE=0.436. The parameters obtained from OED approach

  1. Biofloc improves water, effluent quality and growth parameters of Penaeus vannamei in an intensive culture system.

    PubMed

    Santhana Kumar, V; Pandey, P K; Anand, Theivasigamani; Bhuvaneswari, G Rathi; Dhinakaran, A; Kumar, Saurav

    2018-06-01

    Biofloc technology was evaluated with a view to analyse utilization of nitrogenous waste from the effluent and to improve water quality and growth parameters of Penaeus vannamei in intensive culture system. The experiment was carried out in two different treatment outdoor earthen ponds of 0.12 ha, one supplemented with carbon source (molasses, wheat and sugar) for biofloc formation and other was feed based control pond with a stocking density of 60 animals m -2 in duplicate for 120 days. Water, sediment and P. vannamei were sampled at regular intervals from the both set of ponds for evaluating physico-chemical parameters, nitrogen content and growth parameters, respectively. A significant reduction in the concentration of total ammonia nitrogen (TAN) and nitrite (NO 2 -N) were found in the biofloc pond than that of control pond. A significant low level of nitrogen was recorded in the effluents of biofloc pond in comparison to the control. In biofloc system, a significantly elevated heterotrophic bacterial count along with reduction in total Vibrio count was noticed. A significant improvement in the feed conversion efficiency (FCR) and growth parameters of P. vannamei was noticed in the biofloc pond. Growth of P. vannamei in the biofloc pond showed positive allometric pattern with an increased survival. The microbial biomass grown in biofloc consumes toxic inorganic nitrogen and converts it into useful protein, making it available for the cultured shrimp. This improved FCR and reduced the discharge of nitrogenous waste into adjacent environment, making intensive shrimp farming an eco-friendly enterprise. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Influence of various growth parameters on fungal growth and volatile metabolite production by indoor molds.

    PubMed

    Polizzi, Viviana; Adams, An; De Saeger, Sarah; Van Peteghem, Carlos; Moretti, Antonio; De Kimpe, Norbert

    2012-01-01

    A Penicillium polonicum, an Aspergillus ustus and a Periconia britannica strain were isolated from water-damaged environments and the production of microbial volatile organic compounds (MVOCs) was investigated by means of headspace solid-phase microextraction followed by GC-MS analysis. The most important MVOCs produced were 2-methylisoborneol, geosmin and daucane-type sesquiterpenes for P. polonicum, 1-octen-3-ol, 3-octanone, germacrene D, δ-cadinene and other sesquiterpenes for A. ustus and the volatile mycotoxin precursor aristolochene together with valencene, α-selinene and β-selinene for P. britannica. Different growth conditions (substrate, temperature, relative humidity) were selected, resembling indoor parameters, to investigate their influence on fungal metabolism in relation with the sick building syndrome and the results were compared with two other fungal strains previously analyzed under the same conditions. In general, the range of MVOCs and the emitted quantities were larger on malt extract agar than on wallpaper and plasterboard, but, overall, the main MVOC profile was conserved also on the two building materials tested. The influence of temperature and relative humidity on growth and metabolism is different for different fungal species, and two main patterns of behavior could be distinguished. Results show that, even at suboptimal conditions for growth, production of fungal volatiles can be significant. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean

    NASA Astrophysics Data System (ADS)

    Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.

    2011-12-01

    Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling

  4. Using a laboratory-based growth model to estimate mass- and temperature-dependent growth parameters across populations of juvenile Chinook Salmon

    USGS Publications Warehouse

    Perry, Russell W.; Plumb, John M.; Huntington, Charles

    2015-01-01

    To estimate the parameters that govern mass- and temperature-dependent growth, we conducted a meta-analysis of existing growth data from juvenile Chinook Salmon Oncorhynchus tshawytscha that were fed an ad libitum ration of a pelleted diet. Although the growth of juvenile Chinook Salmon has been well studied, research has focused on a single population, a narrow range of fish sizes, or a narrow range of temperatures. Therefore, we incorporated the Ratkowsky model for temperature-dependent growth into an allometric growth model; this model was then fitted to growth data from 11 data sources representing nine populations of juvenile Chinook Salmon. The model fit the growth data well, explaining 98% of the variation in final mass. The estimated allometric mass exponent (b) was 0.338 (SE = 0.025), similar to estimates reported for other salmonids. This estimate of b will be particularly useful for estimating mass-standardized growth rates of juvenile Chinook Salmon. In addition, the lower thermal limit, optimal temperature, and upper thermal limit for growth were estimated to be 1.8°C (SE = 0.63°C), 19.0°C (SE = 0.27°C), and 24.9°C (SE = 0.02°C), respectively. By taking a meta-analytical approach, we were able to provide a growth model that is applicable across populations of juvenile Chinook Salmon receiving an ad libitum ration of a pelleted diet.

  5. Estimating parameters for tree basal area growth with a system of equations and seemingly unrelated regressions

    Treesearch

    Charles E. Rose; Thomas B. Lynch

    2001-01-01

    A method was developed for estimating parameters in an individual tree basal area growth model using a system of equations based on dbh rank classes. The estimation method developed is a compromise between an individual tree and a stand level basal area growth model that accounts for the correlation between trees within a plot by using seemingly unrelated regression (...

  6. Lattice parameter evolution in Pt nanoparticles during photo-thermally induced sintering and grain growth

    DOE PAGES

    Kelly, B.G.; Loether, A.; DiChiara, A. D.; ...

    2017-04-20

    An in-situ optical pump/x-ray probe technique has been used to study the size dependent lattice parameter of Pt nanoparticles subjected to picosecond duration optical laser pulses. The as-prepared Pt nanoparticles exhibited a contracted lattice parameter consistent with the response of an isolated elastic sphere to a compressive surface stress. During photo-thermally induced sintering and grain growth, however, the Pt lattice parameter did not evolve with the inverse particle size dependence predicted by simple surface stress models. Lastly, the observed behavior could be attributed to the combined effects of a compressive surface/interface stress and a tensile stress arising from intergranular material.

  7. Lattice parameter evolution in Pt nanoparticles during photo-thermally induced sintering and grain growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, B.G.; Loether, A.; DiChiara, A. D.

    An in-situ optical pump/x-ray probe technique has been used to study the size dependent lattice parameter of Pt nanoparticles subjected to picosecond duration optical laser pulses. The as-prepared Pt nanoparticles exhibited a contracted lattice parameter consistent with the response of an isolated elastic sphere to a compressive surface stress. During photo-thermally induced sintering and grain growth, however, the Pt lattice parameter did not evolve with the inverse particle size dependence predicted by simple surface stress models. Lastly, the observed behavior could be attributed to the combined effects of a compressive surface/interface stress and a tensile stress arising from intergranular material.

  8. Investigating the Martian Ionospheric Conductivity Using MAVEN Key Parameter Data

    NASA Astrophysics Data System (ADS)

    Aleryani, O.; Raftery, C. L.; Fillingim, M. O.; Fogle, A. L.; Dunn, P.; McFadden, J. P.; Connerney, J. E. P.; Mahaffy, P. R.; Ergun, R. E.; Andersson, L.

    2015-12-01

    Since the Viking orbiters and landers in 1976, the Martian atmospheric composition has scarcely been investigated. New data from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, launched in 2013, allows for a thorough study of the electrically conductive nature of the Martian ionosphere. Determinations of the electrical conductivity will be made using in-situ atmospheric and ionospheric measurements, rather than scientific models for the first time. The objective of this project is to calculate the conductivity of the Martian atmosphere, whenever possible, throughout the trajectory of the MAVEN spacecraft. MAVEN instrumentation used includes the Neutral Gas and Ion Mass Spectrometer (NGIMS) for neutral species density, the Suprathermal and Thermal Ion Compositions (STATIC) for ion composition, temperature and density, the Magnetometer (MAG) for the magnetic field strength and the Langmuir Probe and Waves (LPW) for electron temperature and density. MAVEN key parameter data are used for these calculations. We compare our results with previous, model-based estimates of the conductivity. These results will allow us to quantify the flow of atmospheric electric currents which can be analyzed further for a deeper understanding of the Martian ionospheric electrodynamics, bringing us closer to understanding the mystery of the loss of the Martian atmosphere.

  9. Order parameter re-mapping algorithm for 3D phase field model of grain growth using FEM

    DOE PAGES

    Permann, Cody J.; Tonks, Michael R.; Fromm, Bradley; ...

    2016-01-14

    Phase field modeling (PFM) is a well-known technique for simulating microstructural evolution. To model grain growth using PFM, typically each grain is assigned a unique non-conserved order parameter and each order parameter field is evolved in time. Traditional approaches using a one-to-one mapping of grains to order parameters present a challenge when modeling large numbers of grains due to the computational expense of using many order parameters. This problem is exacerbated when using an implicit finite element method (FEM), as the global matrix size is proportional to the number of order parameters. While previous work has developed methods to reducemore » the number of required variables and thus computational complexity and run time, none of the existing approaches can be applied for an implicit FEM implementation of PFM. Here, we present a modular, dynamic, scalable reassignment algorithm suitable for use in such a system. Polycrystal modeling with grain growth and stress require careful tracking of each grain’s position and orientation which is lost when using a reduced order parameter set. In conclusion, the method presented in this paper maintains a unique ID for each grain even after reassignment, to allow the PFM to be tightly coupled to calculations of the stress throughout the polycrystal. Implementation details and comparative results of our approach are presented.« less

  10. Assessing the impact of radiative parameter uncertainty on plant growth simulation

    NASA Astrophysics Data System (ADS)

    Viskari, T.; Serbin, S.; Dietze, M.; Shiklomanov, A. N.

    2015-12-01

    Current Earth system models do not adequately project either the magnitude or the sign of carbon fluxes and storage associated with the terrestrial carbon cycle resulting in significant uncertainties in their potential feedbacks on the future climate system. A primary reason for the current uncertainty in these models is the lack of observational constraints of key biomes at relevant spatial and temporal scales. There is an increasingly large and highly resolved amount of remotely sensed observations that can provide the critical model inputs. However, effectively incorporating these data requires the use of radiative transfer models and their associated assumptions. How these parameter assumptions and uncertainties affect model projections for, e.g., leaf physiology, soil temperature or growth has not been examined in depth. In this presentation we discuss the use of high spectral resolution observations at the near surface to landscape scales to inform ecosystem process modeling efforts, particularly the uncertainties related to properties describing the radiation regime within vegetation canopies and the impact on C cycle projections. We illustrate that leaf and wood radiative properties and their associated uncertainties have an important impact on projected forest carbon uptake and storage. We further show the need for a strong data constraint on these properties and discuss sources of this remotely sensed information and methods for data assimilation into models. We present our approach as an efficient means for understanding and correcting implicit assumptions and model structural deficiencies in radiation transfer in vegetation canopies. Ultimately, a better understanding of the radiation balance of ecosystems will improve regional and global scale C and energy balance projections.

  11. Integrating machine learning to achieve an automatic parameter prediction for practical continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Liu, Weiqi; Huang, Peng; Peng, Jinye; Fan, Jianping; Zeng, Guihua

    2018-02-01

    For supporting practical quantum key distribution (QKD), it is critical to stabilize the physical parameters of signals, e.g., the intensity, phase, and polarization of the laser signals, so that such QKD systems can achieve better performance and practical security. In this paper, an approach is developed by integrating a support vector regression (SVR) model to optimize the performance and practical security of the QKD system. First, a SVR model is learned to precisely predict the time-along evolutions of the physical parameters of signals. Second, such predicted time-along evolutions are employed as feedback to control the QKD system for achieving the optimal performance and practical security. Finally, our proposed approach is exemplified by using the intensity evolution of laser light and a local oscillator pulse in the Gaussian modulated coherent state QKD system. Our experimental results have demonstrated three significant benefits of our SVR-based approach: (1) it can allow the QKD system to achieve optimal performance and practical security, (2) it does not require any additional resources and any real-time monitoring module to support automatic prediction of the time-along evolutions of the physical parameters of signals, and (3) it is applicable to any measurable physical parameter of signals in the practical QKD system.

  12. Dependence of growth of the phases of multiphase binary systems on the diffusion parameters

    NASA Astrophysics Data System (ADS)

    Molokhina, L. A.; Rogalin, V. E.; Filin, S. A.; Kaplunov, I. A.

    2017-12-01

    A mathematical model of the diffusion interaction of a binary system with several phases on the equilibrium phase diagram is presented. The theoretical and calculated dependences of the layer thickness of each phase in the multiphase diffusion zone on the isothermal annealing time and the ratio of the diffusion parameters in the neighboring phases with an unlimited supply of both components were constructed. The phase formation and growth in the diffusion zone during "reactive" diffusion corresponds to the equilibrium state diagram for two components, and the order of their appearance in the diffusion zone depends only on the ratio of the diffusion parameters in the phases themselves and on the duration of the incubation periods. The dependence of phase appearance on the incubation periods, annealing time, and difference in the movement rates of the components across the interface boundaries was obtained. An example of the application of the model for processing the experimental data on phase growth in a two-component three-phase system was given.

  13. Population Growth Parameters of Tuta absoluta (Lepidoptera: Gelechiidae) on Tomato Plant Using Organic Substrate and Biofertilizers

    PubMed Central

    Razmjou, J.; Naseri, B.; Hassanpour, M.

    2017-01-01

    The tomato leafminer, Tuta absoluta (Meyrick) is a devastating pest associated with tomato. In this study, effects of tomato plants treated with vermicompost (20, 40, and 60%), humic fertilizer (2, 4 and 6 g/kg soil) and plant growth promoting rhizobacteria (Pseudomonas fluorescens and Bacillus subtilis) were investigated on the life table parameters of T. absoluta in a growth chamber at 25 ± 2 °C, 65 ± 5% RH, and 16:8 (L:D) h. Significant differences were found for the total developmental time, fecundity, and oviposition period of T. absoluta on the treatments tested. The net reproductive rate (R0), intrinsic rate of natural increase (rm), finite rate of increase (λ), mean generation time (T), and doubling time (DT) of T. absoluta were significantly different among treatments tested. We found that in all vermicompost, humic fertilizer and plant growth promoting rhizobacteria treatments, values of R0, rm, and λ were lower than control treatment. However, the lowest values of these parameters were obtained on 2 g/kg humic fertilizer and 40% vermicompost. Furthermore, T. absoluta had longest T and DT values on 2 g/kg humic fertilizer treatment. Data obtained showed that the addition of 2 g/kg humic fertilizer and 40% vermicompost to the growing soil reduced T. absoluta populations in tomato cultures. In addition, these levels of fertilizers improved growth parameters of tomato seedlings (plant height, wet weight, and dry weight) compared with other treatments. These results could be useful in improving the sustainable management of the moth. PMID:28355477

  14. A no-key-exchange secure image sharing scheme based on Shamir's three-pass cryptography protocol and the multiple-parameter fractional Fourier transform.

    PubMed

    Lang, Jun

    2012-01-30

    In this paper, we propose a novel secure image sharing scheme based on Shamir's three-pass protocol and the multiple-parameter fractional Fourier transform (MPFRFT), which can safely exchange information with no advance distribution of either secret keys or public keys between users. The image is encrypted directly by the MPFRFT spectrum without the use of phase keys, and information can be shared by transmitting the encrypted image (or message) three times between users. Numerical simulation results are given to verify the performance of the proposed algorithm.

  15. Enhanced vegetation growth peak and its key mechanisms

    NASA Astrophysics Data System (ADS)

    Huang, K.; Xia, J.; Wang, Y.; Ahlström, A.; Schwalm, C.; Huntzinger, D. N.; Chen, J.; Cook, R. B.; Fang, Y.; Fisher, J. B.; Jacobson, A. R.; Michalak, A.; Schaefer, K. M.; Wei, Y.; Yan, L.; Luo, Y.

    2017-12-01

    It remains unclear that whether and how the vegetation growth peak has been shifted globally during the past three decades. Here we used two global datasets of gross primary productivity (GPP) and a satellite-derived Normalized Difference Vegetation Index (NDVI) to characterize recent changes in seasonal peak vegetation growth. The attribution of changes in peak growth to their driving factors was examined with several datasets. We demonstrated that the growth peak of global vegetation has been linearly increasing during the past three decades. About 65% of this trend is evenly explained by the expanding croplands (21%), rising atmospheric [CO2] (22%), and intensifying nitrogen deposition (22%). The contribution of expanding croplands to the peak growth trend was substantiated by measurements from eddy-flux towers, sun-induced chlorophyll fluorescence and a global database of plant traits, all of which demonstrated that croplands have a higher photosynthetic capacity than other vegetation types. The contribution of rising atmospheric [CO2] and nitrogen deposition are consistent with the positive response of leaf growth to elevated [CO2] (25%) and nitrogen addition (8%) from 346 manipulated experiments. The positive effect of rising atmospheric [CO2] was also well captured by 15 terrestrial biosphere models. However, most models underestimated the contributions of land-cover change and nitrogen deposition, but overestimated the positive effect of climate change.

  16. Structural properties of templated Ge quantum dot arrays: impact of growth and pre-pattern parameters

    NASA Astrophysics Data System (ADS)

    Tempeler, J.; Danylyuk, S.; Brose, S.; Loosen, P.; Juschkin, L.

    2018-07-01

    In this study we analyze the impact of process and growth parameters on the structural properties of germanium (Ge) quantum dot (QD) arrays. The arrays were deposited by molecular-beam epitaxy on pre-patterned silicon (Si) substrates. Periodic arrays of pits with diameters between 120 and 20 nm and pitches ranging from 200 nm down to 40 nm were etched into the substrate prior to growth. The structural perfection of the two-dimensional QD arrays was evaluated based on SEM images. The impact of two processing steps on the directed self-assembly of Ge QD arrays is investigated. First, a thin Si buffer layer grown on a pre-patterned substrate reshapes the pre-pattern pits and determines the nucleation and initial shape of the QDs. Subsequently, the deposition parameters of the Ge define the overall shape and uniformity of the QDs. In particular, the growth temperature and the deposition rate are relevant and need to be optimized according to the design of the pre-pattern. Applying this knowledge, we are able to fabricate regular arrays of pyramid shaped QDs with dot densities up to 7.2 × 1010 cm‑2.

  17. Structural properties of templated Ge quantum dot arrays: impact of growth and pre-pattern parameters.

    PubMed

    Tempeler, J; Danylyuk, S; Brose, S; Loosen, P; Juschkin, L

    2018-07-06

    In this study we analyze the impact of process and growth parameters on the structural properties of germanium (Ge) quantum dot (QD) arrays. The arrays were deposited by molecular-beam epitaxy on pre-patterned silicon (Si) substrates. Periodic arrays of pits with diameters between 120 and 20 nm and pitches ranging from 200 nm down to 40 nm were etched into the substrate prior to growth. The structural perfection of the two-dimensional QD arrays was evaluated based on SEM images. The impact of two processing steps on the directed self-assembly of Ge QD arrays is investigated. First, a thin Si buffer layer grown on a pre-patterned substrate reshapes the pre-pattern pits and determines the nucleation and initial shape of the QDs. Subsequently, the deposition parameters of the Ge define the overall shape and uniformity of the QDs. In particular, the growth temperature and the deposition rate are relevant and need to be optimized according to the design of the pre-pattern. Applying this knowledge, we are able to fabricate regular arrays of pyramid shaped QDs with dot densities up to 7.2 × 10 10 cm -2 .

  18. Growth parameters of rainbow trout at differenct life stages reared on either a fish meal or plant protein based diet.

    USDA-ARS?s Scientific Manuscript database

    Analysis of growth parameters have been researched in a number of aquaculture species with rainbow trout having received a significant amount of attention. Typically most growth studies have evaluated changes in plasma hormone levels or expression in growth genes in fish at a certain life stage. It ...

  19. Exploring natural variation of photosynthetic, primary metabolism and growth parameters in a large panel of Capsicum chinense accessions.

    PubMed

    Rosado-Souza, Laise; Scossa, Federico; Chaves, Izabel S; Kleessen, Sabrina; Salvador, Luiz F D; Milagre, Jocimar C; Finger, Fernando; Bhering, Leonardo L; Sulpice, Ronan; Araújo, Wagner L; Nikoloski, Zoran; Fernie, Alisdair R; Nunes-Nesi, Adriano

    2015-09-01

    Collectively, the results presented improve upon the utility of an important genetic resource and attest to a complex genetic basis for differences in both leaf metabolism and fruit morphology between natural populations. Diversity of accessions within the same species provides an alternative method to identify physiological and metabolic traits that have large effects on growth regulation, biomass and fruit production. Here, we investigated physiological and metabolic traits as well as parameters related to plant growth and fruit production of 49 phenotypically diverse pepper accessions of Capsicum chinense grown ex situ under controlled conditions. Although single-trait analysis identified up to seven distinct groups of accessions, working with the whole data set by multivariate analyses allowed the separation of the 49 accessions in three clusters. Using all 23 measured parameters and data from the geographic origin for these accessions, positive correlations between the combined phenotypes and geographic origin were observed, supporting a robust pattern of isolation-by-distance. In addition, we found that fruit set was positively correlated with photosynthesis-related parameters, which, however, do not explain alone the differences in accession susceptibility to fruit abortion. Our results demonstrated that, although the accessions belong to the same species, they exhibit considerable natural intraspecific variation with respect to physiological and metabolic parameters, presenting diverse adaptation mechanisms and being a highly interesting source of information for plant breeders. This study also represents the first study combining photosynthetic, primary metabolism and growth parameters for Capsicum to date.

  20. Sex-specific impact of prenatal stress on growth and reproductive parameters of guinea pigs.

    PubMed

    Schöpper, Hanna; Klaus, Teresa; Palme, Rupert; Ruf, Thomas; Huber, Susanne

    2012-12-01

    Body condition and reproductive maturation are parameters of reproductive success that are influenced by sexual hormones rising in the circulation during the time of puberty. Various endocrine systems can be programmed by conditions experienced during early life. Stress for instance is supposed to be capable of influencing fetal development, leading to adjustments of offspring's later physiology. We examined whether prenatal stress (induced by exposure to strobe light) during early- to mid-gestation was capable of affecting later reproductive parameters in guinea pigs (Cavia aperea f. porcellus). Therefore, we measured the levels of testosterone and progesterone from the age of day 12-124 in prenatally stressed (PS, n = 20) and unaffected control animals (n = 24). Furthermore, we determined the timing of puberty and growth. Body weight development revealed significantly faster growth in PS females compared to control animals. The onset of first estrus was slightly earlier in PS females, however not significantly so. Cycle lengths and levels of progesterone differed between groups over the course of time with higher progesterone levels and more constant cycles among PS females compared to control females who displayed marked differences between first and subsequent cycles. Levels of testosterone did not differ between groups. We conclude that prenatal stress accelerates growth and maturity in females, but not in males.

  1. Population Growth Parameters of Tuta absoluta (Lepidoptera: Gelechiidae) on Tomato Plant Using Organic Substrate and Biofertilizers.

    PubMed

    Mohamadi, P; Razmjou, J; Naseri, B; Hassanpour, M

    2017-01-01

    The tomato leafminer, Tuta absoluta (Meyrick) is a devastating pest associated with tomato. In this study, effects of tomato plants treated with vermicompost (20, 40, and 60%), humic fertilizer (2, 4 and 6 g/kg soil) and plant growth promoting rhizobacteria (Pseudomonas fluorescens and Bacillus subtilis) were investigated on the life table parameters of T. absoluta in a growth chamber at 25 ± 2 °C, 65 ± 5% RH, and 16:8 (L:D) h. Significant differences were found for the total developmental time, fecundity, and oviposition period of T. absoluta on the treatments tested. The net reproductive rate (R0), intrinsic rate of natural increase (rm), finite rate of increase (λ), mean generation time (T), and doubling time (DT) of T. absoluta were significantly different among treatments tested. We found that in all vermicompost, humic fertilizer and plant growth promoting rhizobacteria treatments, values of R0, rm, and λ were lower than control treatment. However, the lowest values of these parameters were obtained on 2 g/kg humic fertilizer and 40% vermicompost. Furthermore, T. absoluta had longest T and DT values on 2 g/kg humic fertilizer treatment. Data obtained showed that the addition of 2 g/kg humic fertilizer and 40% vermicompost to the growing soil reduced T. absoluta populations in tomato cultures. In addition, these levels of fertilizers improved growth parameters of tomato seedlings (plant height, wet weight, and dry weight) compared with other treatments. These results could be useful in improving the sustainable management of the moth. © The Author 2017. Published by Oxford University Press on behalf of the Entomological Society of America.

  2. Effect of varying two key parameters in simulating evacuation for a dormitory in China

    NASA Astrophysics Data System (ADS)

    Lei, Wenjun; Li, Angui; Gao, Ran

    2013-01-01

    Student dormitories are both living and resting areas for students in their spare time. There are many small rooms in the dormitories. And the students are distributed densely in the dormitories. High occupant density is the main characteristic of student dormitories. Once there is an accident, such as fire or earthquake, the losses will be cruel. Computer evacuation models developed overseas are commonly applied in working out safety management schemes. The average minimum widths of corridor and exit are the two key parameters affecting the evacuation for the dormitory. The effect of varying these two parameters will be studied in this paper by taking a dormitory in our university as an example. Evacuation performance is predicted with the software FDS + Evac. The default values in the software are used and adjusted through a field survey. The effect of varying either of the two parameters is discussed. It is found that the simulated results agree well with the experimental results. From our study it seems that the evacuation time is not in proportion to the evacuation distance. And we also named a phenomenon of “the closer is not the faster”. For the building researched in this article, a corridor width of 3 m is the most appropriate. And the suitable exit width of the dormitory for evacuation is about 2.5 to 3 m. The number of people has great influence on the walking speed of people. The purpose of this study is to optimize the building, and to make the building in favor of personnel evacuation. Then the damage could be minimized.

  3. 3-D simulations of M9 earthquakes on the Cascadia Megathrust: Key parameters and uncertainty

    USGS Publications Warehouse

    Wirth, Erin; Frankel, Arthur; Vidale, John; Marafi, Nasser A.; Stephenson, William J.

    2017-01-01

    Geologic and historical records indicate that the Cascadia subduction zone is capable of generating large, megathrust earthquakes up to magnitude 9. The last great Cascadia earthquake occurred in 1700, and thus there is no direct measure on the intensity of ground shaking or specific rupture parameters from seismic recordings. We use 3-D numerical simulations to generate broadband (0-10 Hz) synthetic seismograms for 50 M9 rupture scenarios on the Cascadia megathrust. Slip consists of multiple high-stress drop subevents (~M8) with short rise times on the deeper portion of the fault, superimposed on a background slip distribution with longer rise times. We find a >4x variation in the intensity of ground shaking depending upon several key parameters, including the down-dip limit of rupture, the slip distribution and location of strong-motion-generating subevents, and the hypocenter location. We find that extending the down-dip limit of rupture to the top of the non-volcanic tremor zone results in a ~2-3x increase in peak ground acceleration for the inland city of Seattle, Washington, compared to a completely offshore rupture. However, our simulations show that allowing the rupture to extend to the up-dip limit of tremor (i.e., the deepest rupture extent in the National Seismic Hazard Maps), even when tapering the slip to zero at the down-dip edge, results in multiple areas of coseismic coastal uplift. This is inconsistent with coastal geologic evidence (e.g., buried soils, submerged forests), which suggests predominantly coastal subsidence for the 1700 earthquake and previous events. Defining the down-dip limit of rupture as the 1 cm/yr locking contour (i.e., mostly offshore) results in primarily coseismic subsidence at coastal sites. We also find that the presence of deep subevents can produce along-strike variations in subsidence and ground shaking along the coast. Our results demonstrate the wide range of possible ground motions from an M9 megathrust earthquake in

  4. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense.

    PubMed

    Fibach-Paldi, Sharon; Burdman, Saul; Okon, Yaacov

    2012-01-01

    Azospirillum brasilense is a plant growth promoting rhizobacterium (PGPR) that is being increasingly used in agriculture in a commercial scale. Recent research has elucidated key properties of A. brasilense that contribute to its ability to adapt to the rhizosphere habitat and to promote plant growth. They include synthesis of the auxin indole-3-acetic acid, nitric oxide, carotenoids, and a range of cell surface components as well as the ability to undergo phenotypic variation. Storage and utilization of polybetahydroxyalkanoate polymers are important for the shelf life of the bacteria in production of inoculants, products containing bacterial cells in a suitable carrier for agricultural use. Azospirillum brasilense is able to fix nitrogen, but despite some controversy, as judging from most systems evaluated so far, contribution of fixed nitrogen by this bacterium does not seem to play a major role in plant growth promotion. In this review, we focus on recent advances in the understanding of physiological properties of A. brasilense that are important for rhizosphere performance and successful interactions with plant roots. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. At-line monitoring of key parameters of nisin fermentation by near infrared spectroscopy, chemometric modeling and model improvement.

    PubMed

    Guo, Wei-Liang; Du, Yi-Ping; Zhou, Yong-Can; Yang, Shuang; Lu, Jia-Hui; Zhao, Hong-Yu; Wang, Yao; Teng, Li-Rong

    2012-03-01

    An analytical procedure has been developed for at-line (fast off-line) monitoring of 4 key parameters including nisin titer (NT), the concentration of reducing sugars, cell concentration and pH during a nisin fermentation process. This procedure is based on near infrared (NIR) spectroscopy and Partial Least Squares (PLS). Samples without any preprocessing were collected at intervals of 1 h during fifteen batch of fermentations. These fermentation processes were implemented in 3 different 5 l fermentors at various conditions. NIR spectra of the samples were collected in 10 min. And then, PLS was used for modeling the relationship between NIR spectra and the key parameters which were determined by reference methods. Monte Carlo Partial Least Squares (MCPLS) was applied to identify the outliers and select the most efficacious methods for preprocessing spectra, wavelengths and the suitable number of latent variables (n (LV)). Then, the optimum models for determining NT, concentration of reducing sugars, cell concentration and pH were established. The correlation coefficients of calibration set (R (c)) were 0.8255, 0.9000, 0.9883 and 0.9581, respectively. These results demonstrated that this method can be successfully applied to at-line monitor of NT, concentration of reducing sugars, cell concentration and pH during nisin fermentation processes.

  6. Exponential energy growth due to slow parameter oscillations in quantum mechanical systems.

    PubMed

    Turaev, Dmitry

    2016-05-01

    It is shown that a periodic emergence and destruction of an additional quantum number leads to an exponential growth of energy of a quantum mechanical system subjected to a slow periodic variation of parameters. The main example is given by systems (e.g., quantum billiards and quantum graphs) with periodically divided configuration space. In special cases, the process can also lead to a long period of cooling that precedes the acceleration, and to the desertion of the states with a particular value of the quantum number.

  7. Method for extracting relevant electrical parameters from graphene field-effect transistors using a physical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boscá, A., E-mail: alberto.bosca@upm.es; Dpto. de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Madrid 28040; Pedrós, J.

    2015-01-28

    Due to its intrinsic high mobility, graphene has proved to be a suitable material for high-speed electronics, where graphene field-effect transistor (GFET) has shown excellent properties. In this work, we present a method for extracting relevant electrical parameters from GFET devices using a simple electrical characterization and a model fitting. With experimental data from the device output characteristics, the method allows to calculate parameters such as the mobility, the contact resistance, and the fixed charge. Differentiated electron and hole mobilities and direct connection with intrinsic material properties are some of the key aspects of this method. Moreover, the method outputmore » values can be correlated with several issues during key fabrication steps such as the graphene growth and transfer, the lithographic steps, or the metalization processes, providing a flexible tool for quality control in GFET fabrication, as well as a valuable feedback for improving the material-growth process.« less

  8. The Geology of the Florida Keys.

    ERIC Educational Resources Information Center

    Shinn, Eugene A.

    1988-01-01

    Describes some of the ancient geologic history of the Florida Keys from Key Largo to Key West including the effects of glaciers, sea level rise, reef distribution, spurs and grooves, backstepping and ecological zonation, growth rates and erosion. Predicts future changes in this area. (CW)

  9. Estimation of key parameters in adaptive neuron model according to firing patterns based on improved particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Yuan, Chunhua; Wang, Jiang; Yi, Guosheng

    2017-03-01

    Estimation of ion channel parameters is crucial to spike initiation of neurons. The biophysical neuron models have numerous ion channel parameters, but only a few of them play key roles in the firing patterns of the models. So we choose three parameters featuring the adaptation in the Ermentrout neuron model to be estimated. However, the traditional particle swarm optimization (PSO) algorithm is still easy to fall into local optimum and has the premature convergence phenomenon in the study of some problems. In this paper, we propose an improved method that uses a concave function and dynamic logistic chaotic mapping mixed to adjust the inertia weights of the fitness value, effectively improve the global convergence ability of the algorithm. The perfect predicting firing trajectories of the rebuilt model using the estimated parameters prove that only estimating a few important ion channel parameters can establish the model well and the proposed algorithm is effective. Estimations using two classic PSO algorithms are also compared to the improved PSO to verify that the algorithm proposed in this paper can avoid local optimum and quickly converge to the optimal value. The results provide important theoretical foundations for building biologically realistic neuron models.

  10. Key Parameters Evaluation for Hip Prosthesis with Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Guo, Hongqiang; Li, Dichen; Lian, Qin; Li, Xiang; Jin, Zhongmin

    2007-09-01

    Stem length and cross section are two key parameters that influence the stability and longevity of metallic hip prosthesis in the total hip arthroplasty (THA). In order to assess their influence to the stress and fatigue behavior of hip prosthesis, a series model of hip prosthesis with round-shaped or drum-shaped cross section, and with different stem lengths were created. These models were analyzed under both static and dynamic loading conditions with finite element analysis, and dynamic loading represents normal walking was used in the dynamic analysis. The stress on the metallic stem, cement, and adjacent bone were got, micromotion on the cement-metal interface were got too. Safety factors for fatigue life of the hip prothesis were calculated based on data obtained from dynamic analysis. Static analysis shows that drum-shaped cross section can decrease the displacement of the stem, that stress on drum-shaped stem focus on the corner of the femoral neck and the distal part of hip prosthesis, whereas the stress on the round-shaped stem distributes evenly over most part of the stem, and maximum stress on stem prosthesis fluctuates with stem length bottoming out at stem length range from 80 mm to 110 mm, that drum-shaped stems with drum height 8 mm generate more stress at the distal part of stem than drum-shaped stems with drum height 10 mm and round stems do. Dynamic and fatigue analysis shows that drum-shaped stem with drum height 10 mm and stem length 90 mm has the greatest safety factor therefore long fatigue life.

  11. Sewage in ground water in the Florida Keys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinn, E.A.

    1995-12-31

    More than 24,000 septic tanks, 5,000 cesspools, and greater than 600 shallow disposal wells introduce sewage effluents into porous and permeable limestone underlying the Florida Keys. To porous and permeable limestone underlying the Florida Keys. To assess the fate of sewage nutrients, 21 2- to 20-m-deep wells were core drilled and completed as water-monitoring wells. The wells were sampled quarterly and analyzed for 17 parameters. including nutrients and bacteria. Nutrients (mainly NH4, - which is 30 to 40 times higher than in surface sea water) were detected in ground water beneath the Keys and offshore coral reefs. Highest levels weremore » beneath reefs 5 to 8 km offshore. Ground waters were generally hypersaline and fecal bacteria (fecal coliform and streptococci) were detected in ground water beneath living coral reefs. Higher sea level on the Florida Bay side of the Keys is proposed as the mechanism for forcing ground water toward offshore coral reefs. Tidal pumping, which is more pronounced near the Keys, causes leakage of ground water where the sediment is thin. Areas lacking sediment cover consist of bare limestone bedrock or permeable coral reefs. These are the areas where coral diseases and algal growth have increased in recent years. Pollutants entering the ground water beneath the Florida Keys are likely to be transported seaward beneath impermeable Holocene sediments and may be upwelling through coral reefs and other hardbottom communities.« less

  12. Changes in growth, photosynthetic activities, biochemical parameters and amino acid profile of Thompson Seedless grapes (Vitis vinifera L.).

    PubMed

    Somkuwar, R G; Bahetwar, Anita; Khan, I; Satisha, J; Ramteke, S D; Itroutwar, Prerna; Bhongale, Aarti; Oulkar, Dashrath

    2014-11-01

    The study on photosynthetic activity and biochemical parameters in Thompson Seedless grapes grafted on Dog Ridge rootstock and its impact on growth, yield and amino acid profile at various stages of berry development was conducted during the year 2012-2013. Leaf and berry samples from ten year old vines of Thompson Seedless were collected at different growth and berry developmental stages. The analysis showed difference in photosynthetic activity, biochemical parameters and amino acid status with the changes in berry development stage. Higher photosynthetic rate of 17.39 umol cm(-2) s(-1) was recorded during 3-4mm berry size and the lowest (10.08 umol cm(-2) s(-1)) was recorded during the veraison stage. The photosynthetic activity showed gradual decrease with the onset of harvest while the different biochemical parameters showed increase and decrease from one stage to another in both berry and leaves. Changes in photosynthetic activity and biochemical parameters thereby affected the growth, yield and amino acid content of the berry. Positive correlation of leaf area and photosynthetic rate was recorded during the period of study. Reducing sugar (352.25 mg g(-1)) and total carbohydrate (132.52 mg g(-1)) was more in berries as compared to leaf. Amino acid profile showed variations in different stages of berry development. Marked variations in photosynthetic as well as biochemical and amino acid content at various berry development stages was recorded and thereby its cumulative effect on the development of fruit quality.

  13. Simulation of Nanowires on Metal Vicinal Surfaces: Effect of Growth Parameters and Energetic Barriers

    NASA Astrophysics Data System (ADS)

    Hamouda, Ajmi B. H.; Blel, Sonia; Einstein, T. L.

    2012-02-01

    Growing one-dimensional metal structures is an important task in the investigation of the electronic and magnetic properties of new devices. We used kinetic Monte-Carlo (kMC) method to simulate the formation of nanowires of several metallic and non-metallic adatoms on Cu and Pt vicinal surfaces. We found that mono-atomic chains form on step-edges due to energetic barriers (the so-called Ehrlich-shwoebel and exchange barriers) on step-edge. Creation of perfect wires is found to depend on growth parameters and binding energies. We measure the filling ratio of nanowires for different chemical species in a wide range of temperature and flux. Perfect wires were obtained at lower deposition rate for all tested adatoms, however we notice different temperature ranges. Our results were compared with experimental ones [Gambardella et al., Surf. Sci.449, 93-103 (2000), PRB 61, 2254-2262, (2000)]. We review the role of impurities in nanostructuring of surfaces [Hamouda et al., Phys. Rev. B 83, 035423, (2011)] and discuss the effect of their energetic barriers on the obtained quality of nanowires. Our work provides experimentalists with optimum growth parameters for the creation of a uniform distribution of wires on surfaces.

  14. Biomedical progress rates as new parameters for models of economic growth in developed countries.

    PubMed

    Zhavoronkov, Alex; Litovchenko, Maria

    2013-11-08

    While the doubling of life expectancy in developed countries during the 20th century can be attributed mostly to decreases in child mortality, the trillions of dollars spent on biomedical research by governments, foundations and corporations over the past sixty years are also yielding longevity dividends in both working and retired population. Biomedical progress will likely increase the healthy productive lifespan and the number of years of government support in the old age. In this paper we introduce several new parameters that can be applied to established models of economic growth: the biomedical progress rate, the rate of clinical adoption and the rate of change in retirement age. The biomedical progress rate is comprised of the rejuvenation rate (extending the productive lifespan) and the non-rejuvenating rate (extending the lifespan beyond the age at which the net contribution to the economy becomes negative). While staying within the neoclassical economics framework and extending the overlapping generations (OLG) growth model and assumptions from the life cycle theory of saving behavior, we provide an example of the relations between these new parameters in the context of demographics, labor, households and the firm.

  15. Biomedical Progress Rates as New Parameters for Models of Economic Growth in Developed Countries

    PubMed Central

    Zhavoronkov, Alex; Litovchenko, Maria

    2013-01-01

    While the doubling of life expectancy in developed countries during the 20th century can be attributed mostly to decreases in child mortality, the trillions of dollars spent on biomedical research by governments, foundations and corporations over the past sixty years are also yielding longevity dividends in both working and retired population. Biomedical progress will likely increase the healthy productive lifespan and the number of years of government support in the old age. In this paper we introduce several new parameters that can be applied to established models of economic growth: the biomedical progress rate, the rate of clinical adoption and the rate of change in retirement age. The biomedical progress rate is comprised of the rejuvenation rate (extending the productive lifespan) and the non-rejuvenating rate (extending the lifespan beyond the age at which the net contribution to the economy becomes negative). While staying within the neoclassical economics framework and extending the overlapping generations (OLG) growth model and assumptions from the life cycle theory of saving behavior, we provide an example of the relations between these new parameters in the context of demographics, labor, households and the firm. PMID:24217179

  16. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics

    PubMed Central

    Prescott, Aaron M.; McCollough, Forest W.; Eldreth, Bryan L.; Binder, Brad M.; Abel, Steven M.

    2016-01-01

    Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene

  17. Key parameters and practices controlling pesticide degradation efficiency of biobed substrates.

    PubMed

    Karanasios, Evangelos; Karpouzas, Dimitrios G; Tsiropoulos, Nikolaos G

    2012-01-01

    We studied the contribution of each of the components of a compost-based biomixture (BX), commonly used in Europe, on pesticide degradation. The impact of other key parameters including pesticide dose, temperature and repeated applications on the degradation of eight pesticides, applied as a mixture, in a BX and a peat-based biomixture (OBX) was compared and contrasted to their degradation in soil. Incubation studies showed that straw was essential in maintaining a high pesticide degradation capacity of the biomixture, whereas compost, when mixed with soil, retarded pesticide degradation. The highest rates of degradation were shown in the biomixture composed of soil/compost/straw suggesting that all three components are essential for maximum biobed performance. Increasing doses prolonged the persistence of most pesticides with biomixtures showing a higher tolerance to high pesticide dose levels compared to soil. Increasing the incubation temperature from 15 °C to 25 °C resulted in lower t(1/2) values, with biomixtures performing better than soil at the lower temperature. Repeated applications led to a decrease in the degradation rates of most pesticides in all the substrates, with the exception of iprodione and metalaxyl. Overall, our results stress the ability of biomixtures to perform better than soil under unfavorable conditions and extreme pesticide dose levels. Copyright © Taylor & Francis Group, LLC

  18. Assessing the performance of community-available global MHD models using key system parameters and empirical relationships

    NASA Astrophysics Data System (ADS)

    Gordeev, E.; Sergeev, V.; Honkonen, I.; Kuznetsova, M.; Rastätter, L.; Palmroth, M.; Janhunen, P.; Tóth, G.; Lyon, J.; Wiltberger, M.

    2015-12-01

    Global magnetohydrodynamic (MHD) modeling is a powerful tool in space weather research and predictions. There are several advanced and still developing global MHD (GMHD) models that are publicly available via Community Coordinated Modeling Center's (CCMC) Run on Request system, which allows the users to simulate the magnetospheric response to different solar wind conditions including extraordinary events, like geomagnetic storms. Systematic validation of GMHD models against observations still continues to be a challenge, as well as comparative benchmarking of different models against each other. In this paper we describe and test a new approach in which (i) a set of critical large-scale system parameters is explored/tested, which are produced by (ii) specially designed set of computer runs to simulate realistic statistical distributions of critical solar wind parameters and are compared to (iii) observation-based empirical relationships for these parameters. Being tested in approximately similar conditions (similar inputs, comparable grid resolution, etc.), the four models publicly available at the CCMC predict rather well the absolute values and variations of those key parameters (magnetospheric size, magnetic field, and pressure) which are directly related to the large-scale magnetospheric equilibrium in the outer magnetosphere, for which the MHD is supposed to be a valid approach. At the same time, the models have systematic differences in other parameters, being especially different in predicting the global convection rate, total field-aligned current, and magnetic flux loading into the magnetotail after the north-south interplanetary magnetic field turning. According to validation results, none of the models emerges as an absolute leader. The new approach suggested for the evaluation of the models performance against reality may be used by model users while planning their investigations, as well as by model developers and those interesting to quantitatively

  19. An efficient framework for optimization and parameter sensitivity analysis in arterial growth and remodeling computations

    PubMed Central

    Sankaran, Sethuraman; Humphrey, Jay D.; Marsden, Alison L.

    2013-01-01

    Computational models for vascular growth and remodeling (G&R) are used to predict the long-term response of vessels to changes in pressure, flow, and other mechanical loading conditions. Accurate predictions of these responses are essential for understanding numerous disease processes. Such models require reliable inputs of numerous parameters, including material properties and growth rates, which are often experimentally derived, and inherently uncertain. While earlier methods have used a brute force approach, systematic uncertainty quantification in G&R models promises to provide much better information. In this work, we introduce an efficient framework for uncertainty quantification and optimal parameter selection, and illustrate it via several examples. First, an adaptive sparse grid stochastic collocation scheme is implemented in an established G&R solver to quantify parameter sensitivities, and near-linear scaling with the number of parameters is demonstrated. This non-intrusive and parallelizable algorithm is compared with standard sampling algorithms such as Monte-Carlo. Second, we determine optimal arterial wall material properties by applying robust optimization. We couple the G&R simulator with an adaptive sparse grid collocation approach and a derivative-free optimization algorithm. We show that an artery can achieve optimal homeostatic conditions over a range of alterations in pressure and flow; robustness of the solution is enforced by including uncertainty in loading conditions in the objective function. We then show that homeostatic intramural and wall shear stress is maintained for a wide range of material properties, though the time it takes to achieve this state varies. We also show that the intramural stress is robust and lies within 5% of its mean value for realistic variability of the material parameters. We observe that prestretch of elastin and collagen are most critical to maintaining homeostasis, while values of the material properties are

  20. Numerical Parameter Optimization of the Ignition and Growth Model for HMX Based Plastic Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Gambino, James; Tarver, Craig; Springer, H. Keo; White, Bradley; Fried, Laurence

    2017-06-01

    We present a novel method for optimizing parameters of the Ignition and Growth reactive flow (I&G) model for high explosives. The I&G model can yield accurate predictions of experimental observations. However, calibrating the model is a time-consuming task especially with multiple experiments. In this study, we couple the differential evolution global optimization algorithm to simulations of shock initiation experiments in the multi-physics code ALE3D. We develop parameter sets for HMX based explosives LX-07 and LX-10. The optimization finds the I&G model parameters that globally minimize the difference between calculated and experimental shock time of arrival at embedded pressure gauges. This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344. LLNS, LLC LLNL-ABS- 724898.

  1. The Power of Key: Celebrating 20 Years of Innovation at the Key Learning Community

    ERIC Educational Resources Information Center

    Kunkel, Christine

    2007-01-01

    The Key Learning Community in Indianapolis was the first school in the world to base its approach on the theory of multiple intelligences. Ms. Kunkel, Key's principal, reflects on the school's continuing growth and success--even in the face of pressures to standardize--and shares the history of its founding. (Contains 5 endnotes.)

  2. Clonal growth and plant species abundance

    PubMed Central

    Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka

    2014-01-01

    Background and Aims Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf–height–seed) traits and by actual performance in the botanical garden. Methods Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area – height – seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. Key Results After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Conclusions Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially

  3. A Patchy Growth via Successive and Simultaneous Cambia: Key to Success of the Most Widespread Mangrove Species Avicennia marina?

    PubMed Central

    Schmitz, Nele; Robert, Elisabeth M. R.; Verheyden, Anouk; Kairo, James Gitundu; Beeckman, Hans; Koedam, Nico

    2008-01-01

    Background and Aims Secondary growth via successive cambia has been intriguing researchers for decades. Insight into the mechanism of growth layer formation is, however, limited to the cellular level. The present study aims to clarify secondary growth via successive cambia in the mangrove species Avicennia marina on a macroscopic level, addressing the formation of the growth layer network as a whole. In addition, previously suggested effects of salinity on growth layer formation were reconsidered. Methods A 1-year cambial marking experiment was performed on 80 trees from eight sites in two mangrove forests in Kenya. Environmental (soil water salinity and nutrients, soil texture, inundation frequency) and tree characteristics (diameter, height, leaf area index) were recorded for each site. Both groups of variables were analysed in relation to annual number of growth layers, annual radial increment and average growth layer width of stem discs. Key Results Between trees of the same site, the number of growth layers formed during the 1-year study period varied from only part of a growth layer up to four growth layers, and was highly correlated to the corresponding radial increment (0–5 mm year–1), even along the different sides of asymmetric stem discs. The radial increment was unrelated to salinity, but the growth layer width decreased with increasing salinity and decreasing tree height. Conclusions A patchy growth mechanism was proposed, with an optimal growth at distinct moments in time at different positions around the stem circumference. This strategy creates the opportunity to form several growth layers simultaneously, as observed in 14 % of the studied trees, which may optimize tree growth under favourable conditions. Strong evidence was provided for a mainly endogenous trigger controlling cambium differentiation, with an additional influence of current environmental conditions in a trade-off between hydraulic efficiency and mechanical stability. PMID

  4. Key management of the double random-phase-encoding method using public-key encryption

    NASA Astrophysics Data System (ADS)

    Saini, Nirmala; Sinha, Aloka

    2010-03-01

    Public-key encryption has been used to encode the key of the encryption process. In the proposed technique, an input image has been encrypted by using the double random-phase-encoding method using extended fractional Fourier transform. The key of the encryption process have been encoded by using the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. The encoded key has then been transmitted to the receiver side along with the encrypted image. In the decryption process, first the encoded key has been decrypted using the secret key and then the encrypted image has been decrypted by using the retrieved key parameters. The proposed technique has advantage over double random-phase-encoding method because the problem associated with the transmission of the key has been eliminated by using public-key encryption. Computer simulation has been carried out to validate the proposed technique.

  5. Is it growing exponentially fast? -- Impact of assuming exponential growth for characterizing and forecasting epidemics with initial near-exponential growth dynamics.

    PubMed

    Chowell, Gerardo; Viboud, Cécile

    2016-10-01

    The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing models that capture the baseline transmission characteristics in order to generate reliable epidemic forecasts. Improved models for epidemic forecasting could be achieved by identifying signature features of epidemic growth, which could inform the design of models of disease spread and reveal important characteristics of the transmission process. In particular, it is often taken for granted that the early growth phase of different growth processes in nature follow early exponential growth dynamics. In the context of infectious disease spread, this assumption is often convenient to describe a transmission process with mass action kinetics using differential equations and generate analytic expressions and estimates of the reproduction number. In this article, we carry out a simulation study to illustrate the impact of incorrectly assuming an exponential-growth model to characterize the early phase (e.g., 3-5 disease generation intervals) of an infectious disease outbreak that follows near-exponential growth dynamics. Specifically, we assess the impact on: 1) goodness of fit, 2) bias on the growth parameter, and 3) the impact on short-term epidemic forecasts. Designing transmission models and statistical approaches that more flexibly capture the profile of epidemic growth could lead to enhanced model fit, improved estimates of key transmission parameters, and more realistic epidemic forecasts.

  6. Ocular growth in the fetus. 1. Comparative study of axial length and biometric parameters in the fetus.

    PubMed

    Denis, D; Righini, M; Scheiner, C; Volot, F; Boubli, L; Dezard, X; Vola, J; Saracco, J B

    1993-01-01

    The knowledge of ocular growth during fetal life, when compared with other fetal biometric parameters, could not only provide a better definition of malformation syndromes but could also give a better understanding of certain pathological processes in premature babies and in newborns. As the literature concerning prenatal ocular dimensions contains few data, the aim of this study was to measure the axial length of the globe (AL) in fetuses and compare this measurement with their gestational age, weight, height, head circumference (HC) and thoracic circumference (TC) in order to compile a reference table. In the present study, 76 globes from 38 fetuses (18-41 weeks gestational age) from the Department of Pathology (Timone University Hospital, Marseille) were examined. Ultrasonography A and B were used to measure the AL, and a pathological examination determined fetal weight, HC, TC and height. We were interested to find out which of the parameters studied would give the best correlation with ocular growth. Statistical analysis showed that HC remained the most discriminant factor and correlated best with ocular growth. We thus obtained an equation for ocular size according to HC that could serve as a basis for detecting pre- or postnatal ocular defects.

  7. Economics of Future Growth in Photovoltaics Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basore, Paul A.; Chung, Donald; Buonassisi, Tonio

    2015-06-14

    The past decade's record of growth in the photovoltaics manufacturing industry indicates that global investment in manufacturing capacity for photovoltaic modules tends to increase in proportion to the size of the industry. The slope of this proportionality determines how fast the industry will grow in the future. Two key parameters determine this slope. One is the annual global investment in manufacturing capacity normalized to the manufacturing capacity for the previous year (capacity-normalized capital investment rate, CapIR, units $/W). The other is how much capital investment is required for each watt of annual manufacturing capacity, normalized to the service life ofmore » the assets (capacity-normalized capital demand rate, CapDR, units $/W). If these two parameters remain unchanged from the values they have held for the past few years, global manufacturing capacity will peak in the next few years and then decline. However, it only takes a small improvement in CapIR to ensure future growth in photovoltaics. Any accompanying improvement in CapDR will accelerate that growth.« less

  8. Evaluation and interpretation of Thematic Mapper ratios in equations for estimating corn growth parameters

    NASA Technical Reports Server (NTRS)

    Dardner, B. R.; Blad, B. L.; Thompson, D. R.; Henderson, K. E.

    1985-01-01

    Reflectance and agronomic Thematic Mapper (TM) data were analyzed to determine possible data transformations for evaluating several plant parameters of corn. Three transformation forms were used: the ratio of two TM bands, logarithms of two-band ratios, and normalized differences of two bands. Normalized differences and logarithms of two-band ratios responsed similarly in the equations for estimating the plant growth parameters evaluated in this study. Two-term equations were required to obtain the maximum predictability of percent ground cover, canopy moisture content, and total wet phytomass. Standard error of estimate values were 15-26 percent lower for two-term estimates of these parameters than for one-term estimates. The terms log(TM4/TM2) and (TM4/TM5) produced the maximum predictability for leaf area and dry green leaf weight, respectively. The middle infrared bands TM5 and TM7 are essential for maximizing predictability for all measured plant parameters except leaf area index. The estimating models were evaluated over bare soil to discriminate between equations which are statistically similar. Qualitative interpretations of the resulting prediction equations are consistent with general agronomic and remote sensing theory.

  9. The relationship between Fibroblast Growth Factor-21 and characteristic parameters related to energy balance in dairy cows.

    PubMed

    Xu, Chuang; Xu, Qiushi; Chen, Yuanyuan; Yang, Wei; Xia, Cheng; Yu, Hongjiang; Zhu, Kuilin; Shen, Taiyu; Zhang, Ziyang

    2015-10-24

    Negative energy balance (NEB) is a common pathological foundation of ketosis and fatty liver. Liver and fat tissue are the major organs of lipid metabolism and take part in modulating lipid oxidative capacity and energy demands, which is also a key metabolic pathway that regulates NEB develop during perinatal period. Fibroblast growth factor-21 (FGF-21) is a recently discovered protein hormone that plays an important and specific regulating role in adipose lipid metabolism and liver gluconeogenesis for human and mouse. Our aim is to investigate the variation and relationship between serum FGF-21 concentration and characteristic parameters related to negative energy balance in different energy metabolism state. In this research, five non-pregnant, non-lactating Holstein-Friesian dairy cows were randomly allocated into two groups. The interventions were a controlled-energy diet (30% of maintenance energy requirements) and a moderate-energy diet (120% of predicted energy requirements) that lasted for the duration of the experiment. We measured biochemical parameters, serum FGF-21, leptin and insulin levels by commercial ELISA kits. The results showed that serum FGF-21 levels were significantly higher in both groups treated with a controlled-energy diet, while FGF-21 levels in both groups treated with moderate-energy diet were low. FGF-21 levels exhibited a significant positive correlation with serum leptin levels, while an inverse relationship was found between FGF-21 and blood glucose and β-hydroxybutyrate acid (BHBA) levels. An increase in FGF-21 levels after a controlled-energy diet treatment may contribute to a positive metabolic effect which could result in a new theoretical and practical basis for the preventive strategy of dairy cows with NEB.

  10. Processing of dry-cured ham in a reduced-oxygen atmosphere: effects on physicochemical and microbiological parameters and mite growth.

    PubMed

    Sánchez-Molinero, F; García-Regueiro, J A; Arnau, J

    2010-03-01

    The effects of a reduced-oxygen atmosphere (ROA) ([O(2)]<4.5%) during part or the whole of dry-cured ham processing on microbiological and physico-chemical parameters and mite growth were investigated in two independent experiments. In Experiment 1, six hams were processed in ROA and six in air for 275 days; in Experiment 2, where lower RH was used, six hams were processed in ROA for 289 days, six for 214 days in air+75 days in ROA, and six in air for 289 days. Microbiological analyses during the process and physicochemical analyses in final products were carried out. The use of ROA during the whole process increased the L* colour parameter in the subcutaneous fat and proteolysis index and decreased b* in the external part of the subcutaneous fat and cholesterol oxide concentration. The use of ROA combined with low RH retarded microbial growth and prevented mite growth. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Process parameter dependent growth phenomena of naproxen nanosuspension manufactured by wet media milling.

    PubMed

    Bitterlich, A; Laabs, C; Krautstrunk, I; Dengler, M; Juhnke, M; Grandeury, A; Bunjes, H; Kwade, A

    2015-05-01

    The production of nanosuspensions has proved to be an effective method for overcoming bioavailability challenges of poorly water soluble drugs. Wet milling in stirred media mills and planetary ball mills has become an established top-down-method for producing such drug nanosuspensions. The quality of the resulting nanosuspension is determined by the stability against agglomeration on the one hand, and the process parameters of the mill on the other hand. In order to understand the occurring dependencies, a detailed screening study, not only on adequate stabilizers, but also on their optimum concentration was carried out for the active pharmaceutical ingredient (API) naproxen in a planetary ball mill. The type and concentration of the stabilizer had a pronounced influence on the minimum particle size obtained. With the best formulation the influence of the relevant process parameters on product quality was investigated to determine the grinding limit of naproxen. Besides the well known phenomenon of particle agglomeration, actual naproxen crystal growth and morphology alterations occurred during the process which has not been observed before. It was shown that, by adjusting the process parameters, those effects could be reduced or eliminated. Thus, besides real grinding and agglomeration a process parameter dependent ripening of the naproxen particles was identified to be a concurrent effect during the naproxen fine grinding process. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Ultrasonographic measurement of fetal growth parameters over three successive pregnancies in a captive Malayan tapir (Tapirus indicus).

    PubMed

    Hoyer, M J; van Engeldorp Gastelaars, H M D

    2014-01-01

    This study was conducted to establish representative curves that allow evaluation of fetal growth and estimation of gestational age from measurement of fetal structures by ultrasound in Malayan tapirs (Tapirus indicus). Three pregnancies (i.e. 3 fetuses) were examined in one female Malayan tapir. Transabdominal ultrasonographic examination was performed without anesthesia from 79 ± 8 days to 281 ± 48 days (mean ± S.D.) post mating. To assess fetal growth attempts were made to measure biparietal diameter (BPD), head length (HL), thorax diameter A (TDA), thorax height A (THA), thorax diameter B (TDB), thorax height B (THB), abdomen diameter (AD), abdomen height (AH), humerus length (HUL) and Crown rump length (CRL). The value of each parameter as an estimator of gestational age was assessed by ease of observation and the length of time the parameter was measurable throughout gestation. The most precise predictors for gestational age in this study were BPD and CRL (weeks 10-20 of gestation), as well as AD and AH (weeks 14-43 of gestation). The parameters TDB, THB and HUL (weeks 15-41 of gestation) gave almost as good predictions. Fetal viability was assessed by identifying a fetal heartbeat and movement. All pregnancies resulted in normal deliveries and healthy offspring. The ultrasound examination was well tolerated by the female. The gestation lengths (399 ± 3 days) were within reported ranges. The serial transabdominal ultrasound, without the need for anesthesia, was an effective method to evaluate fetal growth, development and well being in a Malayan tapir. © 2014 Wiley Periodicals, Inc.

  13. Parameter Estimations of Dynamic Energy Budget (DEB) Model over the Life History of a Key Antarctic Species: The Antarctic Sea Star Odontaster validus Koehler, 1906.

    PubMed

    Agüera, Antonio; Collard, Marie; Jossart, Quentin; Moreau, Camille; Danis, Bruno

    2015-01-01

    Marine organisms in Antarctica are adapted to an extreme ecosystem including extremely stable temperatures and strong seasonality due to changes in day length. It is now largely accepted that Southern Ocean organisms are particularly vulnerable to global warming with some regions already being challenged by a rapid increase of temperature. Climate change affects both the physical and biotic components of marine ecosystems and will have an impact on the distribution and population dynamics of Antarctic marine organisms. To predict and assess the effect of climate change on marine ecosystems a more comprehensive knowledge of the life history and physiology of key species is urgently needed. In this study we estimate the Dynamic Energy Budget (DEB) model parameters for key benthic Antarctic species the sea star Odontaster validus using available information from literature and experiments. The DEB theory is unique in capturing the metabolic processes of an organism through its entire life cycle as a function of temperature and food availability. The DEB model allows for the inclusion of the different life history stages, and thus, becomes a tool that can be used to model lifetime feeding, growth, reproduction, and their responses to changes in biotic and abiotic conditions. The DEB model presented here includes the estimation of reproduction handling rules for the development of simultaneous oocyte cohorts within the gonad. Additionally it links the DEB model reserves to the pyloric caeca an organ whose function has long been ascribed to energy storage. Model parameters described a slowed down metabolism of long living animals that mature slowly. O. validus has a large reserve that-matching low maintenance costs- allow withstanding long periods of starvation. Gonad development is continuous and individual cohorts developed within the gonads grow in biomass following a power function of the age of the cohort. The DEB model developed here for O. validus allowed us to

  14. Key parameters of the sediment surface morphodynamics in an estuary - An assessment of model solutions

    NASA Astrophysics Data System (ADS)

    Sampath, D. M. R.; Boski, T.

    2018-05-01

    Large-scale geomorphological evolution of an estuarine system was simulated by means of a hybrid estuarine sedimentation model (HESM) applied to the Guadiana Estuary, in Southwest Iberia. The model simulates the decadal-scale morphodynamics of the system under environmental forcing, using a set of analytical solutions to simplified equations of tidal wave propagation in shallow waters, constrained by empirical knowledge of estuarine sedimentary dynamics and topography. The key controlling parameters of the model are bed friction (f), current velocity power of the erosion rate function (N), and sea-level rise rate. An assessment of sensitivity of the simulated sediment surface elevation (SSE) change to these controlling parameters was performed. The model predicted the spatial differentiation of accretion and erosion, the latter especially marked in the mudflats within mean sea level and low tide level and accretion was mainly in a subtidal channel. The average SSE change mutually depended on both the friction coefficient and power of the current velocity. Analysis of the average annual SSE change suggests that the state of intertidal and subtidal compartments of the estuarine system vary differently according to the dominant processes (erosion and accretion). As the Guadiana estuarine system shows dominant erosional behaviour in the context of sea-level rise and sediment supply reduction after the closure of the Alqueva Dam, the most plausible sets of parameter values for the Guadiana Estuary are N = 1.8 and f = 0.8f0, or N = 2 and f = f0, where f0 is the empirically estimated value. For these sets of parameter values, the relative errors in SSE change did not exceed ±20% in 73% of simulation cells in the studied area. Such a limit of accuracy can be acceptable for an idealized modelling of coastal evolution in response to uncertain sea-level rise scenarios in the context of reduced sediment supply due to flow regulation. Therefore, the idealized but cost

  15. Estimation of Key Parameters of the Coupled Energy and Water Model by Assimilating Land Surface Data

    NASA Astrophysics Data System (ADS)

    Abdolghafoorian, A.; Farhadi, L.

    2017-12-01

    Accurate estimation of land surface heat and moisture fluxes, as well as root zone soil moisture, is crucial in various hydrological, meteorological, and agricultural applications. Field measurements of these fluxes are costly and cannot be readily scaled to large areas relevant to weather and climate studies. Therefore, there is a need for techniques to make quantitative estimates of heat and moisture fluxes using land surface state observations that are widely available from remote sensing across a range of scale. In this work, we applies the variational data assimilation approach to estimate land surface fluxes and soil moisture profile from the implicit information contained Land Surface Temperature (LST) and Soil Moisture (SM) (hereafter the VDA model). The VDA model is focused on the estimation of three key parameters: 1- neutral bulk heat transfer coefficient (CHN), 2- evaporative fraction from soil and canopy (EF), and 3- saturated hydraulic conductivity (Ksat). CHN and EF regulate the partitioning of available energy between sensible and latent heat fluxes. Ksat is one of the main parameters used in determining infiltration, runoff, groundwater recharge, and in simulating hydrological processes. In this study, a system of coupled parsimonious energy and water model will constrain the estimation of three unknown parameters in the VDA model. The profile of SM (LST) at multiple depths is estimated using moisture diffusion (heat diffusion) equation. In this study, the uncertainties of retrieved unknown parameters and fluxes are estimated from the inverse of Hesian matrix of cost function which is computed using the Lagrangian methodology. Analysis of uncertainty provides valuable information about the accuracy of estimated parameters and their correlation and guide the formulation of a well-posed estimation problem. The results of proposed algorithm are validated with a series of experiments using a synthetic data set generated by the simultaneous heat and

  16. Unbounded and revocable hierarchical identity-based encryption with adaptive security, decryption key exposure resistant, and short public parameters

    PubMed Central

    Wang, Baosheng; Tao, Jing

    2018-01-01

    Revocation functionality and hierarchy key delegation are two necessary and crucial requirements to identity-based cryptosystems. Revocable hierarchical identity-based encryption (RHIBE) has attracted a lot of attention in recent years, many RHIBE schemes have been proposed but shown to be either insecure or bounded where they have to fix the maximum hierarchical depth of RHIBE at setup. In this paper, we propose a new unbounded RHIBE scheme with decryption key exposure resilience and with short public system parameters, and prove our RHIBE scheme to be adaptively secure. Our system model is scalable inherently to accommodate more levels of user adaptively with no adding workload or restarting the system. By carefully designing the hybrid games, we overcome the subtle obstacle in applying the dual system encryption methodology for the unbounded and revocable HIBE. To the best of our knowledge, this is the first construction of adaptively secure unbounded RHIBE scheme. PMID:29649326

  17. Influence of ultraviolet-C radiation on some growth parameters of mycorrhizal wheat plants.

    PubMed

    Rahmatzadeh, Samaneh; Khara, Jalil

    2007-12-01

    UV-C radiation (220-280 nm) is known to causing damage in some physiological growth parameters such as chlorophyll, carotenoid, protein and sugar contents. In this study, effect of some species of vesicular arbuscular mycorrhizal fungi on tolerance of UV-C radiation in wheat plants was studied. Wheat (Triticum aestivum L. cv. Azar2) plants colonized by three species of mycorrhizae namely Glomus etunicatum, Glomus intraradices and Glomus veruciforme were used in this study. They have been exposed to UV-C (254 nm) light for 7 h (28 days, 15 min each day). We measured total proteins, sugars, chlorophyll a and b and carotenoids. Our study showed that UV-C radiation decreases chlorophylls, carotenoids and sugars contents. But this effect on total proteins content has not been significant. However, mycorrhizal fungi could increase all of these factors in comparison to non-mycorrhizal samples. Therefore, these fungi species can increase above growth factors of wheat plants, apparently.

  18. Model-independent cosmological constraints from growth and expansion

    NASA Astrophysics Data System (ADS)

    L'Huillier, Benjamin; Shafieloo, Arman; Kim, Hyungjin

    2018-05-01

    Reconstructing the expansion history of the Universe from Type Ia supernovae data, we fit the growth rate measurements and put model-independent constraints on some key cosmological parameters, namely, Ωm, γ, and σ8. The constraints are consistent with those from the concordance model within the framework of general relativity, but the current quality of the data is not sufficient to rule out modified gravity models. Adding the condition that dark energy density should be positive at all redshifts, independently of its equation of state, further constrains the parameters and interestingly supports the concordance model.

  19. Development of an Agent-Based Model (ABM) to Simulate the Immune System and Integration of a Regression Method to Estimate the Key ABM Parameters by Fitting the Experimental Data

    PubMed Central

    Tong, Xuming; Chen, Jinghang; Miao, Hongyu; Li, Tingting; Zhang, Le

    2015-01-01

    Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the complicated immune system in detail. To overcome these problems, we developed an integrated ABM regression model (IABMR). It can combine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune system with various phenotypes and types of cells as well as using the input and output of ABM to build up the Loess regression for key parameter estimation. Next, we employed the greedy algorithm to estimate the key parameters of the ABM with respect to the same experimental data set and used ABM to describe a 3D immune system similar to previous studies that employed the DE model. These results indicate that IABMR not only has the potential to simulate the immune system at various scales, phenotypes and cell types, but can also accurately infer the key parameters like DE model. Therefore, this study innovatively developed a complex system development mechanism that could simulate the complicated immune system in detail like ABM and validate the reliability and efficiency of model like DE by fitting the experimental data. PMID:26535589

  20. Finite-key analysis for measurement-device-independent quantum key distribution.

    PubMed

    Curty, Marcos; Xu, Feihu; Cui, Wei; Lim, Charles Ci Wen; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2014-04-29

    Quantum key distribution promises unconditionally secure communications. However, as practical devices tend to deviate from their specifications, the security of some practical systems is no longer valid. In particular, an adversary can exploit imperfect detectors to learn a large part of the secret key, even though the security proof claims otherwise. Recently, a practical approach--measurement-device-independent quantum key distribution--has been proposed to solve this problem. However, so far its security has only been fully proven under the assumption that the legitimate users of the system have unlimited resources. Here we fill this gap and provide a rigorous security proof against general attacks in the finite-key regime. This is obtained by applying large deviation theory, specifically the Chernoff bound, to perform parameter estimation. For the first time we demonstrate the feasibility of long-distance implementations of measurement-device-independent quantum key distribution within a reasonable time frame of signal transmission.

  1. Investigation of growth dynamics of carbon nanotubes

    PubMed Central

    2017-01-01

    The synthesis of single-walled carbon nanotubes (SWCNTs) with defined properties is required for both fundamental investigations and practical applications. The revealing and thorough understanding of the growth mechanism of SWCNTs is the key to the synthesis of nanotubes with required properties. This paper reviews the current status of the research on the investigation of growth dynamics of carbon nanotubes. The review starts with the consideration of the peculiarities of the growth mechanism of carbon nanotubes. The physical and chemical states of the catalyst during the nanotube growth are discussed. The chirality selective growth of nanotubes is described. The main part of the review is dedicated to the analysis and systematization of the reported results on the investigation of growth dynamics of nanotubes. The studies on the revealing of the dependence of the growth rate of nanotubes on the synthesis parameters are reviewed. The correlation between the lifetime of catalyst and growth rate of nanotubes is discussed. The reports on the calculation of the activation energy of the nanotube growth are summarized. Finally, the growth properties of inner tubes inside SWCNTs are considered. PMID:28503394

  2. Key Physiological Parameters Dictate Triggering of Activity-Dependent Bulk Endocytosis in Hippocampal Synapses

    PubMed Central

    Wenzel, Eva M.; Morton, Andrew; Ebert, Katrin; Welzel, Oliver; Kornhuber, Johannes; Cousin, Michael A.; Groemer, Teja W.

    2012-01-01

    To maintain neurotransmission in central neurons, several mechanisms are employed to retrieve synaptically exocytosed membrane. The two major modes of synaptic vesicle (SV) retrieval are clathrin-mediated endocytosis and activity-dependent bulk endocytosis (ADBE). ADBE is the dominant SV retrieval mode during intense stimulation, however the precise physiological conditions that trigger this mode are not resolved. To determine these parameters we manipulated rat hippocampal neurons using a wide spectrum of stimuli by varying both the pattern and duration of stimulation. Using live-cell fluorescence imaging and electron microscopy approaches, we established that stimulation frequency, rather than the stimulation load, was critical in the triggering of ADBE. Thus two hundred action potentials, when delivered at high frequency, were sufficient to induce near maximal bulk formation. Furthermore we observed a strong correlation between SV pool size and ability to perform ADBE. We also identified that inhibitory nerve terminals were more likely to utilize ADBE and had a larger SV recycling pool. Thus ADBE in hippocampal synaptic terminals is tightly coupled to stimulation frequency and is more likely to occur in terminals with large SV pools. These results implicate ADBE as a key modulator of both hippocampal neurotransmission and plasticity. PMID:22675521

  3. [Study on the relationship between iodine status and growth in infants at the key period of brain development].

    PubMed

    Wang, Yan-ling; Ge, Peng-fei; Ma, Qi-yi; Cao, Yong-qin; Li, Hong-bo; Zheng, Jing; Shi, Wen-quan; Sun, Wei

    2012-02-01

    To investigate the relationship between iodine nutrition and growth/development in infants at the key period of brain development. All women from pregnancy to the end of lactation and the weaning infants within 3 years in the Linxia Hui Autonomous Prefecture (Linxia Prefecture) were added iodized oil in 2006 - 2010. In 2006, 2010 one town was randomly selected from each of the five directions (east, south, west, north, central) of each county in Linxia Prefecture. One village was chosen from every town and 20 infants, 20 pregnant women and 20 lactating women were randomly selected in each town. Urinary iodine (UI) of the infants, pregnant and lactating women were determined. DQ value, height and weight of part of infants were measured. According to the above sampling plan, UI of pregnant women, lactating women and infants had been monitored every year after intervention. 0-3 infants were choosing to be control before intervention. UI of 1056 and 2989 0-3 infants were investigated before and after the iodine oil intervention. After the 'iodine oil' intervention, the median UI of infants increased from 107.3 µg/L to 139.6 - 190.7 µg/L, the percentage of UI level that lower than 50 µg/L, decreased from 23.9% to 6.7% - 12.9%. DQ value increased from 92.8 to 104.3, the percentage of normal height and above increased from 65.0% to 82.1% and the percentage of the normal weight and above, increased from 59.3% to 81.4%. The outcomes of DQ value, height and weight showed statistically significant differences, compared to the pre-intervention outcomes (P < 0.05). The median UI of pregnant and lactating women increased from 89.3 µg/L to 118.2 - 187.8 µg/L and from 84.9 µg/L to 135.2 - 187.5 µg/L respectively. Infant's growth and development were retarded when iodine deficiency existed at the key period of brain development. Intake of oral iodine oil at key period of brain development could provide adequate nutrition thus improve growth and development on infants.

  4. Growth parameters influencing uptake of chlordecone by Miscanthus species.

    PubMed

    Liber, Yohan; Létondor, Clarisse; Pascal-Lorber, Sophie; Laurent, François

    2018-05-15

    Because of its high persistence in soils, t 1/2 =30years, chlordecone (CLD) was classified as a persistent organic pollutant (POP) by the Stockholm Convention in 2009.The distribution of CLD over time has been heterogeneous, ranging from banana plantations to watersheds, and contaminating all environmental compartments. The aims of this study were to (i) evaluate the potential of Miscanthus species to extract chlordecone from contaminated soils, (ii) identify the growth parameters that influence the transfer of CLD from the soil to aboveground plant parts. CLD uptake was investigated in two species of Miscanthus, C4 plants adapted to tropical climates. M. sinensis and M.×giganteus were transplanted in a soil spiked with [ 14 C]CLD at environmental concentrations (1mgkg -1 ) under controlled conditions. Root-shoot transfer of CLD was compared in the two species after two growing periods (2 then 6months) after transplantation. CLD was found in all plant organs, roots, rhizomes, stems, leaves, and even flower spikes. The highest concentration of CLD was in the roots, 5398±1636 (M.×giganteus) and 14842±3210ngg -1 DW (M. sinensis), whereas the concentration in shoots was lower, 152±28 (M.×giganteus) and 266±70ngg -1 DW (M. sinensis) in soil contaminated at 1mgkg -1 . CLD translocation led to an acropetal gradient from the bottom to the top of the plants. CLD concentrations were also monitored over two complete growing periods (10months) in M. sinensis grown in 8.05mgkg -1 CLD contaminated soils. Concentrations decreased in M. sinensis shoots after the second growth period due to the increase in organic matters in the vicinity of the roots. Results showed that, owing to their respective biomass production, the two species were equally efficient at phytoextraction of CLD. Copyright © 2017. Published by Elsevier B.V.

  5. The serum concentrations of perfluoroalkyl compounds were inversely associated with growth parameters in 2-year old children.

    PubMed

    Lee, Young Ah; Kim, Jin Hee; Jung, Hae Woon; Lim, Youn-Hee; Bae, Sanghyuk; Kho, Younglim; Hong, Yun-Chul; Shin, Choong Ho; Yang, Sei Won

    2018-07-01

    The relationship between the serum concentrations of perfluoroalkyl compounds (PFCs) and growth parameters was investigated in 2-year-old Korean children. The study included 361 children aged 2years (192 boys and 169 girls; 22-27months), born at term appropriate-for-gestational-age, who visited between 2012 and 2013. Growth parameters of height and weight, and serum samples were collected from 2-year-old children. Four PFCs (perfluorohexane sulfonic acid [PFHxS], perfluorooctane sulfonic acid [PFOS], perfluorooctanoic acid [PFOA], and perfluorononanoic acid [PFNA]), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), and perfluoroheptanoic acid (PFHpA) were detected in >99, 93.4, 89.8, and 74.2% of the serum samples, respectively. The duration of breastfeeding was positively associated with the serum concentrations of ln-transformed PFHxS, PFOS, PFHpA, PFOA, PFNA, PFDA, and PFUnDA (all P<0.001). Height at 2years of age was inversely related to PFHxS, PFOS, PFOA, PFNA, and PFDA concentrations (adjusted β per ln unit [95% confidence interval, CI]: -0.84 [-1.26, -0.42], -0.77 [-1.27, -0.15], -0.91 [-1.36, -0.47], -0.48 [-1.40, -0.51], and -0.44 [-0.77, -0.10] cm, respectively), after adjusting for age, sex, and midparental height. Weight at 2years of age was inversely associated with PFNA (adjusted β per ln unit [95% CI]: -0.32 [-0.48, -0.15] kg), after adjusting for age, sex, and parental BMI. In conclusion, the serum concentrations of PFCs were inversely associated with growth parameters in 2-year-old children. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Paths to future growth in photovoltaics manufacturing

    DOE PAGES

    Basore, Paul A.

    2016-03-01

    The past decade has seen rapid growth in the photovoltaics industry, followed in the past few years by a period of much slower growth. A simple model that is consistent with this historical record can be used to predict the future evolution of the industry. Two key parameters are identified that determine the outcome. One is the annual global investment in manufacturing capacity normalized to the manufacturing capacity for the previous year (capacity-normalized capital investment rate, CapIR, units dollar/W). The other is how much capital investment is required for each watt of annual manufacturing capacity, normalized to the service lifemore » of the assets (capacity-normalized capital demand rate, CapDR, units dollar/W). If these two parameters remain unchanged from the values they have held for the past few years, global manufacturing capacity will peak in the next few years and then decline. However, it only takes a modest improvement in CapIR to ensure future growth in photovoltaics. Here, several approaches are presented that can enable the required improvement in CapIR. If, in addition, there is an accompanying improvement in CapDR, the rate of growth can be substantially accelerated.« less

  7. [Effect of early nutrition on growth parameters and psychomotor development of children of very low birth weight].

    PubMed

    Kocourková, I; Sobotková, D; Pilarová, M; Dittrichová, J; Vondrácek, J; Stranák, Z

    2004-12-01

    The aim of the study was to evaluate influence of early nutrition on growth parameters and psychomotor development of children with very low birth weight (VLBW). A prospective clinical study. Institute for Care of Mother and Child, Prague. Thirty nine children of birth weight 1,000-1,499 were followed up to one year of their corrected age in a prospective study. The group was divided in two groups according to type of nutrition: 17 children (group A) were fed with milk of own mother - "preterm milk", 22 children (group B) were orally fed with mature milk from the Bank of mother milk - "term milk", which was fortified with BMF preparation (Nutricia, Netherlands). Both groups were comparable in basic anthropometric parameters (weight, lenght, circumference of head and thotax) and in psychosocial characteristics of their mothers. Growths parameters were monitored in weekly intervals for approximatelly eight weeks. In the period between 11th and 15th month of corrected age, the children were evaluated by a clinical psychologist on a blind basis in mental a motor development by using Bayley Scales of Infant Development (BSID-II). Statistical analysis was performed by chi-square test and t-test. No statistically significant differences between the two groups in evaluating the growth parameters were observed. The psychological examination demonstrated statistically significant differences in the motor development. The psychomotor developmental index (PVI) proved to be 84.4 +/- 14.6 in the group A and 94.3 +/- 12.5 in the group B (t-test = 2.28, p<0.05). There was not any statistically significent difference in metal development between the two groups. The mean mentel developmental index (MVI) was 98.2 +/- 10.2 in the A group and 101.0 +/- 13.3 in the group B. Result of the study indicate favorable effect of fortification of breast milk in VLBW newborns, especially in view of the observed favorable influence of fortfication on motor development of the children.

  8. Effects of different rearing systems on growth performance, carcass traits, meat quality and serum biochemical parameters of Chaohu ducks.

    PubMed

    Zhang, Cheng; Ah Kan Razafindrabe, Richard-Hermann; Chen, Kaikai; Zhao, Xiaohui; Yang, Lei; Wang, Li; Chen, Xingyong; Jin, Sihua; Geng, Zhaoyu

    2018-04-01

    This study was conducted using a total of 360 22-day-old Chaohu ducks to evaluate the effect of rearing system on growth performance, carcass traits, meat quality and serum parameters of male and female Chaohu ducks. The birds were divided and raised in separate pens according to sex and rearing system, with three replicate pens of 30 male or 30 female ducks per pen for each rearing system. The rearing systems consisted of a floor rearing system (FRS) and a net rearing system (NRS). Results showed that ducks raised in NRS had better growth performance, whereas, ducks raised in FRS exhibited better carcass traits and meat color, and lower intramuscular fat. For the serum parameters, NRS significantly decreased high-density lipoprotein cholesterol content, and enhanced total protein and triacylglycerol contents. Male ducks had lower abdominal fat percentage, and higher growth performance and shear force, but there were no other significant differences between sexes. No rearing system × sex interaction was observed in the present study, revealing that rearing system had the same effect on both sexes. In conclusion, NRS was beneficial to the growth performance of Chaohu ducks, whereas this system had some negative effects on carcass traits, meat quality and serum profiles. © 2018 Japanese Society of Animal Science.

  9. GROWTH AND INEQUALITY: MODEL EVALUATION BASED ON AN ESTIMATION-CALIBRATION STRATEGY

    PubMed Central

    Jeong, Hyeok; Townsend, Robert

    2010-01-01

    This paper evaluates two well-known models of growth with inequality that have explicit micro underpinnings related to household choice. With incomplete markets or transactions costs, wealth can constrain investment in business and the choice of occupation and also constrain the timing of entry into the formal financial sector. Using the Thai Socio-Economic Survey (SES), we estimate the distribution of wealth and the key parameters that best fit cross-sectional data on household choices and wealth. We then simulate the model economies for two decades at the estimated initial wealth distribution and analyze whether the model economies at those micro-fit parameter estimates can explain the observed macro and sectoral aspects of income growth and inequality change. Both models capture important features of Thai reality. Anomalies and comparisons across the two distinct models yield specific suggestions for improved research on the micro foundations of growth and inequality. PMID:20448833

  10. Genetic parameters for growth performance, fillet traits, and fat percentage of male Nile tilapia (Oreochromis niloticus).

    PubMed

    Garcia, André Luiz Seccatto; de Oliveira, Carlos Antonio Lopes; Karim, Hanner Mahmud; Sary, César; Todesco, Humberto; Ribeiro, Ricardo Pereira

    2017-11-01

    Improvement of fillet traits and flesh quality attributes are of great interest in farmed tilapia and other aquaculture species. The main objective of this study was to estimate genetic parameters for fillet traits (fillet weight and fillet yield) and the fat content of fillets from 1136 males combined with 2585 data records on growth traits (body weight at 290 days, weight at slaughter, and daily weight gain) of 1485 males and 1100 females from a third generation of the Aquaamerica tilapia strain. Different models were tested for each trait, and the best models were used to estimate genetic parameters for the fat content, fillet, and growth traits. Genetic and phenotypic correlations were estimated using two-trait animal models. The heritability estimates were moderate for the fat content of fillets and fillet yield (0.2-0.32) and slightly higher for body weight at slaughter (0.41). The genetic correlation between fillet yield and fat was significant (0.6), but the genetic correlations were not significant between body weight and fillet yield, body weight and fat content, daily weight gain and fillet yield, and daily weight gain and fat content (- 0.032, - 0.1, - 0.09, and - 0.4, respectively). Based on the genetic correlation estimates, it is unlikely that changes in fillet yield and fat content will occur when using growth performance as a selection criterion, but indirect changes may be expected in fat content if selecting for higher fillet yield.

  11. On the Nonequilibrium Interface Kinetics of Rapid Coupled Eutectic Growth

    NASA Astrophysics Data System (ADS)

    Dong, H.; Chen, Y. Z.; Shan, G. B.; Zhang, Z. R.; Liu, F.

    2017-08-01

    Nonequilibrium interface kinetics (NEIK) is expected to play an important role in coupled growth of eutectic alloys, when solidification velocity is high and intermetallic compound or topologically complex phases form in the crystallized product. In order to quantitatively evaluate the effect of NEIK on the rapid coupled eutectic growth, in this work, two nonequilibrium interface kinetic effects, i.e., atom attachment and solute trapping at the solid-liquid interface, were incorporated into the analyses of the coupled eutectic growth under the rapid solidification condition. First, a coupled growth model incorporating the preceding two nonequilibrium kinetic effects was derived. On this basis, an expression of kinetic undercooling (Δ T k), which is used to characterize the NEIK, was defined. The calculations based on the as-derived couple growth model show good agreement with the reported experimental results achieved in rapidly solidified eutectic Al-Sm alloys consisting of a solid solution phase ( α-Al) and an intermetallic compound phase (Al11Sm3). In terms of the definition of Δ T k defined in this work, the role of NEIK in the coupled growth of the Al-Sm eutectic system was analyzed. The results show that with increasing the coupled growth velocity, Δ T k increases continuously, and its ratio to the total undercooling reaches 0.32 at the maximum growth velocity for coupled eutectic growth. Parametric analyses on two key alloy parameters that influence Δ T k, i.e., interface kinetic parameter ( μ i ) and solute distribution coefficient ( k e ), indicate that both μ i and k e influence the NEIK significantly and the decrease of either these two parameters enhances the NEIK effect.

  12. Key variables influencing patterns of lava dome growth and collapse

    NASA Astrophysics Data System (ADS)

    Husain, T.; Elsworth, D.; Voight, B.; Mattioli, G. S.; Jansma, P. E.

    2013-12-01

    Lava domes are conical structures that grow by the infusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Dome growth can be characterized by repeated cycles of growth punctuated by collapse, as the structure becomes oversized for its composite strength. Within these cycles, deformation ranges from slow long term deformation to sudden deep-seated collapses. Collapses may range from small raveling failures to voluminous and fast-moving pyroclastic flows with rapid and long-downslope-reach from the edifice. Infusion rate and magma rheology together with crystallization temperature and volatile content govern the spatial distribution of strength in the structure. Solidification, driven by degassing-induced crystallization of magma leads to the formation of a continuously evolving frictional talus as a hard outer shell. This shell encapsulates the cohesion-dominated soft ductile core. Here we explore the mechanics of lava dome growth and failure using a two-dimensional particle-dynamics model. This meshless model follows the natural evolution of a brittle carapace formed by loss of volatiles and rheological stiffening and avoids difficulties of hour-glassing and mesh-entangelment typical in meshed models. We test the fidelity of the model against existing experimental and observational models of lava dome growth. The particle-dynamics model follows the natural development of dome growth and collapse which is infeasible using simple analytical models. The model provides insight into the triggers that lead to the transition in collapse mechasnism from shallow flank collapse to deep seated sector collapse. Increase in material stiffness due to decrease in infusion rate results in the transition of growth pattern from endogenous to exogenous. The material stiffness and strength are strongly controlled by the magma infusion rate. Increase in infusion rate decreases the time available for degassing induced crystallization leading to a

  13. Age and growth of the sword razor clam Ensis arcuatus in the Ría de Pontevedra (NW Spain): Influence of environmental parameters

    NASA Astrophysics Data System (ADS)

    Hernández-Otero, A.; Gaspar, M. B.; Macho, G.; Vázquez, E.

    2014-01-01

    The sword razor clam Ensis arcuatus is the most important commercial species of razor clam in Spain, and its fishery in the Ría de Pontevedra (Galicia, NW Spain) is the most productive. Despite the economic importance of this species, information on its biology is scarce. This study reports shell morphometric relationships, age, and growth rates of E. arcuatus in three fishing beds in the Ría de Pontevedra (Brensa, Bueu and Ons, located in respectively the inner, middle and outer zones of the ria), providing the first estimates of growth parameters for the species in the Iberian Peninsula. Growth was estimated by examination of surface growth rings and internal shell microgrowth patterns (acetate peel technique) that proved to be the most suitable method for growth estimate. Growth of E. arcuatus was slower in Bueu (L∞ = 140.4, k = 0.40) followed by Brensa (L∞ = 151.91, k = 0.40) and Ons (L∞ = 172.7, k = 0.33), and the clams reached commercial size in 1.7, 2.3 and 2.8 years in Ons, Brensa and Bueu, respectively. The differences in growth between sites in relation to environmental parameters are evaluated and the implications for the razor clam fishery are discussed.

  14. Finite-key analysis for quantum key distribution with weak coherent pulses based on Bernoulli sampling

    NASA Astrophysics Data System (ADS)

    Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato

    2017-07-01

    An essential step in quantum key distribution is the estimation of parameters related to the leaked amount of information, which is usually done by sampling of the communication data. When the data size is finite, the final key rate depends on how the estimation process handles statistical fluctuations. Many of the present security analyses are based on the method with simple random sampling, where hypergeometric distribution or its known bounds are used for the estimation. Here we propose a concise method based on Bernoulli sampling, which is related to binomial distribution. Our method is suitable for the Bennett-Brassard 1984 (BB84) protocol with weak coherent pulses [C. H. Bennett and G. Brassard, Proceedings of the IEEE Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), Vol. 175], reducing the number of estimated parameters to achieve a higher key generation rate compared to the method with simple random sampling. We also apply the method to prove the security of the differential-quadrature-phase-shift (DQPS) protocol in the finite-key regime. The result indicates that the advantage of the DQPS protocol over the phase-encoding BB84 protocol in terms of the key rate, which was previously confirmed in the asymptotic regime, persists in the finite-key regime.

  15. Synthesis of Patterned Vertically Aligned Carbon Nanotubes by PECVD Using Different Growth Techniques: A Review.

    PubMed

    Gangele, Aparna; Sharma, Chandra Shekhar; Pandey, Ashok Kumar

    2017-04-01

    Immense development has been taken place not only to increase the bulk production, repeatability and yield of carbon nanotubes (CNTs) in last 25 years but preference is also given to acknowledge the basic concepts of nucleation and growth methods. Vertically aligned carbon nanotubes (VAC-NTs) are forest of CNTs accommodated perpendicular on a substrate. Their exceptional chemical and physical properties along with sequential arrangement and dense structure make them suitable in various fields. The effect of different type of selected substrate, carbon precursor, catalyst and their physical and chemical status, reaction conditions and many other key parameters have been thoroughly studied and analysed. The aim of this paper is to specify the trend and summarize the effect of key parameters instead of only presenting all the experiments reported till date. The identified trends will be compared with the recent observations on the growth of different types of patterned VACNTs. In this review article, we have presented a comprehensive analysis of different techniques to precisely determine the role of different parameters responsible for the growth of patterned vertical aligned carbon nanotubes. We have covered various techniques proposed in the span of more than two decades to fabricate the different structures and configurations of carbon nanotubes on different types of substrates. Apart from a detailed discussion of each technique along with their specific process and implementation, we have also provided a critical analysis of the associated constraints, benefits and shortcomings. To sum it all for easy reference for researchers, we have tabulated all the techniques based on certain main key factors. This review article comprises of an exhaustive discussion and a handy reference for researchers who are new in the field of synthesis of CNTs or who wants to get abreast with the techniques of determining the growth of VACNTs arrays.

  16. Effects of stocking density on growth performance, feather growth, intestinal development, and serum parameters of geese.

    PubMed

    Yin, L Y; Wang, Z Y; Yang, H M; Xu, L; Zhang, J; Xing, H

    2017-09-01

    This experiment was conducted to evaluate the effects of stocking density on the growth performance, feather growth, intestinal development, and serum parameters of geese. In total, 336 healthy, 28-day-old, male Yangzhou goslings were randomly allotted to 30 plastic wire-floor pens according to 5 stocking densities (2, 3, 4, 5 and 6 birds/m2). The results showed that with the stocking density increased from 2 birds/m2 to 6 birds/m2, the body weights of geese at 42 d (P < 0.001) and 70 d (P < 0.001) were reduced by 10.53% and 10.43% respectively, the primary feather lengths of geese at 42 d (P < 0.001) and 70 d (P = 0.021) were reduced by 20.38% and 6.62% respectively, whereas the feed/gain ratios for 28- to 42-d period and 28- to 70-d period increased from 2.50 to 2.90 (P = 0.001), and 3.80 to 4.24 (P < 0.001), respectively. The relative weights of the jejunum, ileum, and small intestine and the lengths of the jejunum, ileum, and small intestine were all adversely affected (P < 0.05) when stocking density was increased to 6 birds/m2. Serum concentrations of alkaline phosphatase (P = 0.013) and triiodothyronine (P < 0.001) decreased as the stocking density increased. The serum thyroxine concentration of geese from the 6 birds/m2 group was lower than that of geese from the other groups (P < 0.05). The reduction in thyroid hormone concentrations was similar to what was observed in growth rate. All the results suggested that high stocking density will adversely influence thyroid function and the developments of the body weight, body size, feathers, and small intestine. Under our experimental conditions, we recommend that the stocking density of geese should be kept to 5 or fewer birds/m2 to avoid the negative effects of high stocking density on geese. © 2017 Poultry Science Association Inc.

  17. [Effect of recombinant human growth hormone therapy on metabolic parameters in patients with craniopharyngioma].

    PubMed

    Mao, J F; Wang, X; Xiong, S Y; Zheng, J J; Yu, B Q; Nie, M; Wu, X Y; Qi, S T

    2017-11-14

    Objective: To investigate the effects of recombinant human growth hormone (rhGH) on metabolic parameters in patients with craniopharyngioma surgeries. Methods: Totallys 30 patients with craniopharyngioma were included in this retrospective study. They were divided into growth hormone (GH) group and control group according to whether they received rhGH therapy or not. The following parameters, including body mass index (BMI), weight, waist circumstance, transaminase, fasting blood glucose, lipid profile and high-sensitivity C-reactive protein (hsCRP) were compared after rhGH therapy for 4-6 months. Results: In GH group, patients were 18-46 (30.0±8.8) years old. The duration after craniopharyngioma surgery was (12.9±5.4) years. Before rhGH therapy, they had got sufficient thyroid and glucocorticoid hormone replacement. After rhGH therapy, the body weight decreased from (92.3±20.1) to (87.6 ±14.6) kg ( P =0.190), with a reduction of BMI from (30.1±5.9) to (28.2±3.7) kg/m(2) ( P =0.120). The waist circumference decreased from (104.4±9.4) cm to (98.8±10.6) cm ( P =0.002). Alanine aminotransferase (ALT) decreased from (52±34) to (28±19) U/L ( P =0.029), with a reduction of aspartate transaminase (AST) from (46±21) to (33±18) U/L ( P =0.035) and γ-glutamyl transpeptadase (GGT) from (59±42) to (29±15) U/L ( P =0.02). hsCRP decreased from (5.3±4.9) to (2.3±2.8) mg/L ( P =0.006) and triglyceride (TG) decreased from (1.8±0.7) to (1.5±0.6) mmol/L ( P =0.028). Fasting blood glucose, low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) and free fat acid (FFA) were not significantly changed(all P >0.05). In the control group, the above mentioned parameters did not changed significantly during 4-6 months of observational period(all P >0.05). Conclusion: rhGH therapy improves metabolic parameters in patients after craniopharyngioma surgery by decreasing body weight, waist circumstance and fat deposit in liver, as well as

  18. Improved key-rate bounds for practical decoy-state quantum-key-distribution systems

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Zhao, Qi; Razavi, Mohsen; Ma, Xiongfeng

    2017-01-01

    The decoy-state scheme is the most widely implemented quantum-key-distribution protocol in practice. In order to account for the finite-size key effects on the achievable secret key generation rate, a rigorous statistical fluctuation analysis is required. Originally, a heuristic Gaussian-approximation technique was used for this purpose, which, despite its analytical convenience, was not sufficiently rigorous. The fluctuation analysis has recently been made rigorous by using the Chernoff bound. There is a considerable gap, however, between the key-rate bounds obtained from these techniques and that obtained from the Gaussian assumption. Here we develop a tighter bound for the decoy-state method, which yields a smaller failure probability. This improvement results in a higher key rate and increases the maximum distance over which secure key exchange is possible. By optimizing the system parameters, our simulation results show that our method almost closes the gap between the two previously proposed techniques and achieves a performance similar to that of conventional Gaussian approximations.

  19. Correlation between the physical parameters of the i-nc-Si absorber layer grown by 27.12 MHz plasma with the nc-Si solar cell parameters

    NASA Astrophysics Data System (ADS)

    Das, Debajyoti; Mondal, Praloy

    2017-09-01

    Growth of highly conducting nanocrystalline silicon (nc-Si) thin films of optimum crystalline volume fraction, involving dominant <220> crystallographic preferred orientation with simultaneous low fraction of microstructures at a low substrate temperature and high growth rate, is a challenging task for its promising utilization in nc-Si solar cells. Utilizing enhanced electron density and superior ion flux densities of the high frequency (∼27.12 MHz) SiH4 plasma, improved nc-Si films have been produced by simple optimization of H2-dilution, controlling the ion damage and enhancing supply of atomic-hydrogen onto the growing surface. Single junction nc-Si p-i-n solar cells have been prepared with i-nc-Si absorber layer and optimized. The physical parameters of the absorber layer have been systematically correlated to variations of the solar cell parameters. The preferred <220> alignment of crystallites, its contribution to the low recombination losses for conduction of charge carriers along the vertical direction, its spectroscopic correlation with the dominant growth of ultra-nanocrystalline silicon (unc-Si) component and corresponding longer wavelength absorption, especially in the neighborhood of i/n-interface region recognize scientific and technological key issues that pave the ground for imminent advancement of multi-junction silicon solar cells.

  20. Simulation of dendritic growth reveals necessary and sufficient parameters to describe the shapes of dendritic trees

    NASA Astrophysics Data System (ADS)

    Trottier, Olivier; Ganguly, Sujoy; Bowne-Anderson, Hugo; Liang, Xin; Howard, Jonathon

    For the last 120 years, the development of neuronal shapes has been of great interest to the scientific community. Over the last 30 years, significant work has been done on the molecular processes responsible for dendritic development. In our ongoing research, we use the class IV sensory neurons of the Drosophila melanogaster larva as a model system to understand the growth of dendritic arbors. Our main goal is to elucidate the mechanisms that the neuron uses to determine the shape of its dendritic tree. We have observed the development of the class IV neuron's dendritic tree in the larval stage and have concluded that morphogenesis is defined by 3 distinct processes: 1) branch growth, 2) branching and 3) branch retraction. As the first step towards understanding dendritic growth, we have implemented these three processes in a computational model. Our simulations are able to reproduce the branch length distribution, number of branches and fractal dimension of the class IV neurons for a small range of parameters.

  1. Disease resistance and health parameters of growth-hormone transgenic and wild-type coho salmon, Oncorhynchus kisutch.

    PubMed

    Kim, Jin-Hyoung; Balfry, Shannon; Devlin, Robert H

    2013-06-01

    To extend previous findings regarding fish health and disease susceptibility of growth-enhanced fish, hematological and immunological parameters have been compared between growth hormone (GH) transgenic and wild-type non-transgenic coho salmon (Oncorhynchus kisutch). Compared to non-transgenic coho salmon, transgenic fish had significantly higher hematocrit (Hct), hemoglobin (Hb), mean cellular hemoglobin (MCH), mean cellular volume (MCV), and erythrocyte numbers, and lower white cell numbers. In addition, resistance to the bacterial pathogen Aeromonas salmonicida (causal agent of furunculosis) has been assessed between the strains. Higher susceptibility of transgenic fish to this disease challenge was observed in two separate year classes of fish. The present findings provide fundamental knowledge of the disease resistance on GH enhanced transgenic coho salmon, which is of importance for assessing the fitness of transgenic strains for environmental risk assessments, and for improving our understanding effects of growth modification on basic immune functions. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. Progress in Application of Generalized Wigner Distribution to Growth and Other Problems

    NASA Astrophysics Data System (ADS)

    Einstein, T. L.; Morales-Cifuentes, Josue; Pimpinelli, Alberto; Gonzalez, Diego Luis

    We recap the use of the (single-parameter) Generalized Wigner Distribution (GWD) to analyze capture-zone distributions associated with submonolayer epitaxial growth. We discuss recent applications to physical systems, as well as key simulations. We pay particular attention to how this method compares with other methods to assess the critical nucleus size characterizing growth. The following talk discusses a particular case when special insight is needed to reconcile the various methods. We discuss improvements that can be achieved by going to a 2-parameter fragmentation approach. At a much larger scale we have applied this approach to various distributions in socio-political phenomena (areas of secondary administrative units [e.g., counties] and distributions of subway stations). Work at UMD supported by NSF CHE 13-05892.

  3. The dependence of the growth rate and meat content of young boars on semen parameters and conception rate.

    PubMed

    Knecht, D; Jankowska-Mąkosa, A; Duziński, K

    2017-05-01

    Boars have a decisive impact on the progress in pig production, however, there is no recent information about the optimal growth parameters during the rearing period for modern breed later used in artificial insemination (AI) stations. Therefore, the objective of the research was to conduct semen parameter and conception rate analyses on the basis of growth rate and meat content assessments made during the rearing of AI boars of different genotypes. The study was carried out between 2010 and 2014 and included 184 boars in five breed combinations: 46 Polish Large White, 50 Polish Landrace, 27 Pietrain, 36 Duroc×Pietrain and 25 Hampshire×Pietrain. Boars were qualified by daily gains and meat content assessment (between 170 and 210 days of life). A total number of 38 272 ejaculates were examined (semen volume (ml), spermatozoa concentration (×106 ml-1), total number of spermatozoa (×109) and number of insemination doses from one ejaculate (n)). The fertility was determined by the conception rate (%). Semen volume, spermatozoa concentration and conception rate (P<0.01), followed by the total number of spermatozoa and insemination doses (P<0.05) were characterized by the highest variability in relation to breed of boars. The effect of daily gains was reported for spermatozoa concentration, number of insemination doses, conception rate (all P<0.01) and total number of spermatozoa (P<0.05). The peak of growth for spermatozoa concentration, total number of spermatozoa, insemination doses and conception rate was achieved for 800 to 850 g gains. Meat content affected semen volume, number of insemination doses and conception rate (P<0.05). Rearing boars while maintaining daily gains at the 800 to 850 g level and 62.5% to 65% meat content helps AI stations to increase the efficiency and economic profitability, and the number of insemination doses to increase by up to 300 doses/boar within a year. The analyses of growth parameters may help increase the efficiency and

  4. Key Parameters for the Use of AbobotulinumtoxinA in Aesthetics: Onset and Duration

    PubMed Central

    Ablon, Glynis; Pickett, Andy

    2017-01-01

    Abstract Time to onset of response and duration of response are key measures of botulinum toxin efficacy that have a considerable influence on patient satisfaction with aesthetic treatment. However, there is no overall accepted definition of efficacy for aesthetic uses of botulinumtoxinA (BoNT-A). Mechanical methods of assessment do not lend themselves to clinical practice and clinicians rely instead on assessment scales such as the Frontalis Activity Measurement Standard, Frontalis Rating Scale, Wrinkle Severity Scale, and Subject Global Assessment Scale, but not all of these have been fully validated. Onset of activity is typically seen within 5 days of injection, but has also been recorded within 12 hours with abobotulinumtoxinA. Duration of effect is more variable, and is influenced by parameters such as muscle mass (including the effects of age and sex) and type of product used. Even when larger muscles are treated with higher doses of BoNT-A, the duration of effect is still shorter than that for smaller muscles. Muscle injection technique, including dilution of the toxin, the volume of solution injected, and the positioning of the injections, can also have an important influence on onset and duration of activity. Comparison of the efficacy of different forms of BoNT-A must be made with the full understanding that the dosing units are not equivalent. Range of equivalence studies for abobotulinumtoxinA (Azzalure; Ipsen Limited, Slough UK/Galderma, Lausanne CH/Dysport, Ipsen Biopharm Limited, Wrexham UK/Galderma LP, Fort Worth, TX) and onabotulinumtoxinA (Botox; Allergan, Parsippany, NJ) have been conducted, and results indicate that the number of units of abobotulinumtoxinA needs to be approximately twice as high as that of onabotulinumtoxinA to achieve the same effect. An appreciation of the potential influence of all of the parameters that influence onset and duration of activity of BoNT-A, along with a thorough understanding of the anatomy of the face and

  5. Tracing a key player in the regulation of plant architecture: the columnar growth habit of apple trees (Malus × domestica).

    PubMed

    Petersen, Romina; Krost, Clemens

    2013-07-01

    Plant architecture is regulated by a complex interplay of some key players (often transcription factors), phytohormones and other signaling molecules such as microRNAs. The columnar growth habit of apple trees is a unique form of plant architecture characterized by thick and upright stems showing a compaction of internodes and carrying short fruit spurs instead of lateral branches. The molecular basis for columnar growth is a single dominant allele of the gene Columnar, whose identity, function and gene product are unknown. As a result of marker analyses, this gene has recently been fine-mapped to chromosome 10 at 18.51-19.09 Mb [according to the annotation of the apple genome by Velasco (2010)], a region containing a cluster of quantitative trait loci associated with plant architecture, but no homologs to the well-known key regulators of plant architecture. Columnar apple trees have a higher auxin/cytokinin ratio and lower levels of gibberellins and abscisic acid than normal apple trees. Transcriptome analyses corroborate these results and additionally show differences in cell membrane and cell wall function. It can be expected that within the next year or two, an integration of these different research methodologies will reveal the identity of the Columnar gene. Besides enabling breeders to efficiently create new apple (and maybe related pear, peach, cherry, etc.) cultivars which combine desirable characteristics of commercial cultivars with the advantageous columnar growth habit using gene technology, this will also provide new insights into an elevated level of plant growth regulation.

  6. Interactive effects of dietary leucine and isoleucine on growth, blood parameters, and amino acid profile of Japanese flounder Paralichthys olivaceus.

    PubMed

    Wang, Liping; Han, Yuzhe; Jiang, Zhiqiang; Sun, Menglei; Si, Bin; Chen, Fei; Bao, Ning

    2017-10-01

    A 60-day feeding trial was conducted to assess the interactions of dietary leucine (Leu) and isoleucine (Ile) on Japanese flounder. Fish of 2.69 ± 0.04 g were fed experimental diets containing two levels of Leu (2.58 and 5.08% of diet) combined with three levels of Ile (1.44, 2.21, and 4.44% of diet), respectively. After the feeding trial, growth, proximate composition, muscle total amino acid profile, blood parameters, mucus lysozyme activity, and stress tolerance to freshwater were measured. Statistically significant (P < 0.05) interactive effects of Leu and Ile were found on growth parameters (final body weight, body weight gain, and special growth rate) of Japanese flounder. Antagonism was discovered in high dietary Leu groups, while stimulatory effects were obtained for increased dietary Ile in low Leu groups. Interactive effects of these two branched-chain amino acids were also found on hepatosomatic index of test fish. In addition, crude lipid content of fish whole body was significantly altered by various diets, with antagonism observed in low dietary Leu groups. Interactive effects also existed in muscle amino acid profiles for low fish meal diets, but no interactive impacts were observed on blood parameters. Furthermore, lysozyme activities and freshwater stress were significantly affected by different diets. And antagonism was found on lysozyme activities in low Leu groups. Moreover, high Leu and high Ile levels of diet significantly altered freshwater stress tolerance of Japanese flounder. These findings suggested that dietary Leu and Ile can effect interactively, and fish fed with diets containing 2.58% Leu with 4.44% Ile and 5.08% Leu with 1.44% Ile showed better growth performance.

  7. High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bai, ZengLiang; Wang, XuYang; Yang, ShenShen; Li, YongMin

    2016-01-01

    Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and qua-si-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.

  8. Growth assessment in diagnosis of Fetal Growth Restriction. Review.

    PubMed

    Albu, A R; Horhoianu, I A; Dumitrascu, M C; Horhoianu, V

    2014-06-15

    The assessment of fetal growth represents a fundamental step towards the identification of the true growth restricted fetus that is associated to important perinatal morbidity and mortality. The possible ways of detecting abnormal fetal growth are taken into consideration in this review and their strong and weak points are discussed. An important debate still remains about how to discriminate between the physiologically small fetus that does not require special surveillance and the truly growth restricted fetus who is predisposed to perinatal complications, even if its parameters are above the cut-off limits established. In this article, we present the clinical tools of fetal growth assessment: Symphyseal-Fundal Height (SFH) measurement, the fetal ultrasound parameters widely taken into consideration when discussing fetal growth: Abdominal Circumference (AC) and Estimated Fetal Weight (EFW); several types of growth charts and their characteristics: populational growth charts, standard growth charts, individualized growth charts, customized growth charts and growth trajectories.

  9. Lead-acid batteries in micro-hybrid applications. Part I. Selected key parameters

    NASA Astrophysics Data System (ADS)

    Schaeck, S.; Stoermer, A. O.; Kaiser, F.; Koehler, L.; Albers, J.; Kabza, H.

    Micro-hybrid electric vehicles were launched by BMW in March 2007. These are equipped with brake energy regeneration (BER) and the automatic start and stop function (ASSF) of the internal combustion engine. These functions are based on common 14 V series components and lead-acid (LA) batteries. The novelty is given by the intelligent onboard energy management, which upgrades the conventional electric system to the micro-hybrid power system (MHPS). In part I of this publication the key factors for the operation of LA batteries in the MHPS are discussed. Especially for BER one is high dynamic charge acceptance (DCA) for effective boost charging. Vehicle rest time is identified as a particular negative parameter for DCA. It can be refreshed by regular fully charging at elevated charge voltage. Thus, the batteries have to be outstandingly robust against overcharge and water loss. This can be accomplished for valve-regulated lead-acid (VRLA) batteries at least if they are mounted in the trunk. ASSF goes along with frequent high-rate loads for warm cranking. The internal resistance determines the drop of the power net voltage during cranking and is preferably low for reasons of power net stability even after years of operation. Investigations have to be done with aged 90 Ah VRLA-absorbent glass mat (AGM) batteries. Battery operation at partial state-of-charge gives a higher risk of deep discharging (overdischarging). Subsequent re-charging then is likely to lead to the formation of micro-short circuits in the absorbent glass mat separator.

  10. Probability of growth of small damage sites on the exit surface of fused silica optics.

    PubMed

    Negres, Raluca A; Abdulla, Ghaleb M; Cross, David A; Liao, Zhi M; Carr, Christopher W

    2012-06-04

    Growth of laser damage on fused silica optical components depends on several key parameters including laser fluence, wavelength, pulse duration, and site size. Here we investigate the growth behavior of small damage sites on the exit surface of SiO₂ optics under exposure to tightly controlled laser pulses. Results demonstrate that the onset of damage growth is not governed by a threshold, but is probabilistic in nature and depends both on the current size of a damage site and the laser fluence to which it is exposed. We also develop models for use in growth prediction. In addition, we show that laser exposure history also influences the behavior of individual sites.

  11. Simulation-based Extraction of Key Material Parameters from Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Alsafi, Huseen; Peninngton, Gray

    Models for the atomic force microscopy (AFM) tip and sample interaction contain numerous material parameters that are often poorly known. This is especially true when dealing with novel material systems or when imaging samples that are exposed to complicated interactions with the local environment. In this work we use Monte Carlo methods to extract sample material parameters from the experimental AFM analysis of a test sample. The parameterized theoretical model that we use is based on the Virtual Environment for Dynamic AFM (VEDA) [1]. The extracted material parameters are then compared with the accepted values for our test sample. Using this procedure, we suggest a method that can be used to successfully determine unknown material properties in novel and complicated material systems. We acknowledge Fisher Endowment Grant support from the Jess and Mildred Fisher College of Science and Mathematics,Towson University.

  12. Yeast culture dietary supplementation modulates gut microbiota, growth and biochemical parameters of grass carp.

    PubMed

    Liu, Han; Li, Juntao; Guo, Xianwu; Liang, Yunxiang; Wang, Weimin

    2018-05-01

    Gut microbiota contributes positively to the physiology of their host. Some feed additives have been suggested to improve livestock health and stimulate growth performance by modulating gut bacteria species. Here, we fed grass carp with 0 (control), 8% (Treat1), 10% (Treat2), 12% (Treat3) and 16% (Treat4) of yeast culture (YC) for 10 weeks. The gut microbiota was analysed by 16S rRNA gene V3-4 region via an Illumina MiSeq platform. PCoA test showed that gut bacterial communities in the control and Treat3 formed distinctly separate clusters. Although all the groups shared a large size of OTUs as a core microbiota community, a strong distinction existed at genus level. Treat3 contained the highest proportion of the beneficial bacteria and obviously enhanced the capacity of amino acid, lipid metabolism and digestive system. In addition, Treat3 significantly improved the fish growth and increased the liver and serum T-SOD activities while dramatically decreased the liver GPT and GOT. Collectively, these findings demonstrate the beneficial effects of YC feeding on gut microbiota, growth and biochemical parameters and Treat3 might be the optimal supplementation amount for grass carp, which opens up the possibility that a new feed additive can be developed for healthy aquaculture. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. Improved luminescence properties of MoS2 monolayers grown via MOCVD: role of pre-treatment and growth parameters

    NASA Astrophysics Data System (ADS)

    Andrzejewski, D.; Marx, M.; Grundmann, A.; Pfingsten, O.; Kalisch, H.; Vescan, A.; Heuken, M.; Kümmell, T.; Bacher, G.

    2018-07-01

    Fabrication of transition metal dichalcogenides (TMDCs) via metalorganic chemical vapor deposition (MOCVD) represents one of the most attractive routes to large-scale 2D material layers. Although good homogeneity and electrical conductance have been reported recently, the relation between growth parameters and photoluminescence (PL) intensity—one of the most important parameters for optoelectronic applications—has not yet been discussed for MOCVD TMDCs. In this work, MoS2 is grown via MOCVD on sapphire (0001) substrates using molybdenum hexacarbonyl (Mo(CO)6, MCO) and di-tert-butyl sulphide as precursor materials. A prebake step under H2 atmosphere combined with a reduced MCO precursor flow increases the crystal grain size by one order of magnitude and strongly enhances PL intensity with a clear correlation to the grain size. A decrease of the linewidth of both Raman resonances and PL spectra down to full width at half maxima of 3.2 cm‑1 for the E 2g Raman mode and 60 meV for the overall PL spectrum indicate a reduced defect density at optimized growth conditions.

  14. Confirming the key role of Ar+ ion bombardment in the growth feature of nanostructured carbon materials by PECVD

    NASA Astrophysics Data System (ADS)

    Liu, Yulin; Lin, Jinghuang; Jia, Henan; Chen, Shulin; Qi, Junlei; Qu, Chaoqun; Cao, Jian; Feng, Jicai; Fei, Weidong

    2017-11-01

    In order to confirm the key role of Ar+ ion bombardment in the growth feature of nanostructured carbon materials (NCMs), here we report a novel strategy to create different Ar+ ion states in situ in plasma enhanced chemical vapor deposition (PECVD) by separating catalyst film from the substrate. Different bombardment environments on either side of the catalyst film were created simultaneously to achieve multi-layered structural NCMs. Results showed that Ar+ ion bombardment is crucial and complex for the growth of NCMs. Firstly, Ar+ ion bombardment has both positive and negative effects on carbon nanotubes (CNTs). On one hand, Ar+ ions can break up the graphic structure of CNTs and suppress thin CNT nucleation and growth. On the other hand, Ar+ ion bombardment can remove redundant carbon layers on the surface of large catalyst particles which is essential for thick CNTs. As a result, the diameter of the CNTs depends on the Ar+ ion state. As for vertically oriented few-layer graphene (VFG), Ar+ ions are essential and can even convert the CNTs into VFG. Therefore, by combining with the catalyst separation method, specific or multi-layered structural NCMs can be obtained by PECVD only by changing the intensity of Ar+ ion bombardment, and these special NCMs are promising in many fields.

  15. Confirming the key role of Ar+ ion bombardment in the growth feature of nanostructured carbon materials by PECVD.

    PubMed

    Liu, Yulin; Lin, Jinghuang; Jia, Henan; Chen, Shulin; Qi, Junlei; Qu, Chaoqun; Cao, Jian; Feng, Jicai; Fei, Weidong

    2017-11-24

    In order to confirm the key role of Ar + ion bombardment in the growth feature of nanostructured carbon materials (NCMs), here we report a novel strategy to create different Ar + ion states in situ in plasma enhanced chemical vapor deposition (PECVD) by separating catalyst film from the substrate. Different bombardment environments on either side of the catalyst film were created simultaneously to achieve multi-layered structural NCMs. Results showed that Ar + ion bombardment is crucial and complex for the growth of NCMs. Firstly, Ar + ion bombardment has both positive and negative effects on carbon nanotubes (CNTs). On one hand, Ar + ions can break up the graphic structure of CNTs and suppress thin CNT nucleation and growth. On the other hand, Ar + ion bombardment can remove redundant carbon layers on the surface of large catalyst particles which is essential for thick CNTs. As a result, the diameter of the CNTs depends on the Ar + ion state. As for vertically oriented few-layer graphene (VFG), Ar + ions are essential and can even convert the CNTs into VFG. Therefore, by combining with the catalyst separation method, specific or multi-layered structural NCMs can be obtained by PECVD only by changing the intensity of Ar + ion bombardment, and these special NCMs are promising in many fields.

  16. A Key Marine Diazotroph in a Changing Ocean: The Interacting Effects of Temperature, CO2 and Light on the Growth of Trichodesmium erythraeum IMS101

    PubMed Central

    Lawson, Tracy; Geider, Richard J.

    2017-01-01

    Trichodesmium is a globally important marine diazotroph that accounts for approximately 60 − 80% of marine biological N2 fixation and as such plays a key role in marine N and C cycles. We undertook a comprehensive assessment of how the growth rate of Trichodesmium erythraeum IMS101 was directly affected by the combined interactions of temperature, pCO2 and light intensity. Our key findings were: low pCO2 affected the lower temperature tolerance limit (Tmin) but had no effect on the optimum temperature (Topt) at which growth was maximal or the maximum temperature tolerance limit (Tmax); low pCO2 had a greater effect on the thermal niche width than low-light; the effect of pCO2 on growth rate was more pronounced at suboptimal temperatures than at supraoptimal temperatures; temperature and light had a stronger effect on the photosynthetic efficiency (Fv/Fm) than did CO2; and at Topt, the maximum growth rate increased with increasing CO2, but the initial slope of the growth-irradiance curve was not affected by CO2. In the context of environmental change, our results suggest that the (i) nutrient replete growth rate of Trichodesmium IMS101 would have been severely limited by low pCO2 at the last glacial maximum (LGM), (ii) future increases in pCO2 will increase growth rates in areas where temperature ranges between Tmin to Topt, but will have negligible effect at temperatures between Topt and Tmax, (iii) areal increase of warm surface waters (> 18°C) has allowed the geographic range to increase significantly from the LGM to present and that the range will continue to expand to higher latitudes with continued warming, but (iv) continued global warming may exclude Trichodesmium spp. from some tropical regions by 2100 where temperature exceeds Topt. PMID:28081236

  17. A Key Marine Diazotroph in a Changing Ocean: The Interacting Effects of Temperature, CO2 and Light on the Growth of Trichodesmium erythraeum IMS101.

    PubMed

    Boatman, Tobias G; Lawson, Tracy; Geider, Richard J

    2017-01-01

    Trichodesmium is a globally important marine diazotroph that accounts for approximately 60 - 80% of marine biological N2 fixation and as such plays a key role in marine N and C cycles. We undertook a comprehensive assessment of how the growth rate of Trichodesmium erythraeum IMS101 was directly affected by the combined interactions of temperature, pCO2 and light intensity. Our key findings were: low pCO2 affected the lower temperature tolerance limit (Tmin) but had no effect on the optimum temperature (Topt) at which growth was maximal or the maximum temperature tolerance limit (Tmax); low pCO2 had a greater effect on the thermal niche width than low-light; the effect of pCO2 on growth rate was more pronounced at suboptimal temperatures than at supraoptimal temperatures; temperature and light had a stronger effect on the photosynthetic efficiency (Fv/Fm) than did CO2; and at Topt, the maximum growth rate increased with increasing CO2, but the initial slope of the growth-irradiance curve was not affected by CO2. In the context of environmental change, our results suggest that the (i) nutrient replete growth rate of Trichodesmium IMS101 would have been severely limited by low pCO2 at the last glacial maximum (LGM), (ii) future increases in pCO2 will increase growth rates in areas where temperature ranges between Tmin to Topt, but will have negligible effect at temperatures between Topt and Tmax, (iii) areal increase of warm surface waters (> 18°C) has allowed the geographic range to increase significantly from the LGM to present and that the range will continue to expand to higher latitudes with continued warming, but (iv) continued global warming may exclude Trichodesmium spp. from some tropical regions by 2100 where temperature exceeds Topt.

  18. [Effects of perchlorate on growth and chlorophyll fluorescence parameters of Alternanthera philoxeroides].

    PubMed

    Xie, Yin-feng; Cai, Xian-lei; Liu, Wei-long; Deng, Wei

    2009-08-15

    Perchlorate is a new emerging persistent pollutant, while no studies about its effects on plants have been reported both home and abroad. In order to explore the effects of perchlorate on growth and physiology of aquatic plant, Alternanthera philoxeroides were treated by 1/20 Hoagland nutrient solution with different concentrations (0, 1, 5, 20, 100, 500 mg/L) of ClO4- under the controlled conditions. The results showed as follow. (1) Under perchlorate treatment, relative growth yield,dry weight of root,shoot and leaves were inhibited at different degrees, in which root biomass under different treatments showed significant difference to the control. After treatment for 40 d, relative growth yield of different treatments at concentration from 1 mg/L to 500 mg/L were about 61.6%, 60.8%, 53.1%, 20.4% and 3.3% separately of the control. And the order of variation coefficients of biomass in different organ were as follows: leaf > root biomass > stem; the relationship of biomass allocation in different organs of Alternanthera philoxeroides under perchlorate treatment changed, and the proportion of stem biomass increased,while leaf decreased, in which 100 and 500 mg/L ClO4- treatment showed significant difference to the control. (2) Under perchlorate treatment, young leaves of Alternanthera philoxeroides presented injury symptoms (such as parietal roiling reversely, leaf edge getting black and withered etc), and the damaged degree of Alternanthera philoxeroides increased with the increase of treatment concentration and time. (3) Under perchlorate treatment, the relative chlorophyll content (SPAD value), primary maximal PSII efficiency(Fv/Fm), efficiency of excitation capture by open PSII centre (F'v,/F'm), actual photochemical efficiency of PSII (phi(PS II)), electron transport rate (ETR), maximal electron transport rate(ETR ,) and other indexes were inhibited at different degrees. SPAD and chlorophyll fluorescence parameters (phi(PS II)) etc. could be used as sensitive

  19. One parameter family of master equations for logistic growth and BCM theory

    NASA Astrophysics Data System (ADS)

    De Oliveira, L. R.; Castellani, C.; Turchetti, G.

    2015-02-01

    We propose a one parameter family of master equations, for the evolution of a population, having the logistic equation as mean field limit. The parameter α determines the relative weight of linear versus nonlinear terms in the population number n ⩽ N entering the loss term. By varying α from 0 to 1 the equilibrium distribution changes from maximum growth to almost extinction. The former is a Gaussian centered at n = N, the latter is a power law peaked at n = 1. A bimodal distribution is observed in the transition region. When N grows and tends to ∞, keeping the value of α fixed, the distribution tends to a Gaussian centered at n = N whose limit is a delta function corresponding to the stable equilibrium of the mean field equation. The choice of the master equation in this family depends on the equilibrium distribution for finite values of N. The presence of an absorbing state for n = 0 does not change this picture since the extinction mean time grows exponentially fast with N. As a consequence for α close to zero extinction is not observed, whereas when α approaches 1 the relaxation to a power law is observed before extinction occurs. We extend this approach to a well known model of synaptic plasticity, the so called BCM theory in the case of a single neuron with one or two synapses.

  20. Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks.

    PubMed

    Furrer, F; Franz, T; Berta, M; Leverrier, A; Scholz, V B; Tomamichel, M; Werner, R F

    2012-09-07

    We provide a security analysis for continuous variable quantum key distribution protocols based on the transmission of two-mode squeezed vacuum states measured via homodyne detection. We employ a version of the entropic uncertainty relation for smooth entropies to give a lower bound on the number of secret bits which can be extracted from a finite number of runs of the protocol. This bound is valid under general coherent attacks, and gives rise to keys which are composably secure. For comparison, we also give a lower bound valid under the assumption of collective attacks. For both scenarios, we find positive key rates using experimental parameters reachable today.

  1. Crystal Growth Simulations To Establish Physically Relevant Kinetic Parameters from the Empirical Kolmogorov-Johnson-Mehl-Avrami Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dill, Eric D.; Folmer, Jacob C.W.; Martin, James D.

    A series of simulations was performed to enable interpretation of the material and physical significance of the parameters defined in the Kolmogorov, Johnson and Mehl, and Avrami (KJMA) rate expression commonly used to describe phase boundary controlled reactions of condensed matter. The parameters k, n, and t 0 are shown to be highly correlated, which if unaccounted for seriously challenge mechanistic interpretation. It is demonstrated that rate measurements exhibit an intrinsic uncertainty without precise knowledge of the location and orientation of nucleation with respect to the free volume into which it grows. More significantly, it is demonstrated that the KJMAmore » rate constant k is highly dependent on sample size. However, under the simulated conditions of slow nucleation relative to crystal growth, sample volume and sample anisotropy correction affords a means to eliminate the experimental condition dependence of the KJMA rate constant, k, producing the material-specific parameter, the velocity of the phase boundary, v pb.« less

  2. Nanoparticles for Radiation Therapy Enhancement: the Key Parameters

    PubMed Central

    Retif, Paul; Pinel, Sophie; Toussaint, Magali; Frochot, Céline; Chouikrat, Rima; Bastogne, Thierry; Barberi-Heyob, Muriel

    2015-01-01

    This review focuses on the radiosensitization strategies that use high-Z nanoparticles. It does not establish an exhaustive list of the works in this field but rather propose constructive criticisms pointing out critical factors that could improve the nano-radiation therapy. Whereas most reviews show the chemists and/or biologists points of view, the present analysis is also seen through the prism of the medical physicist. In particular, we described and evaluated the influence of X-rays energy spectra using a numerical analysis. We observed a lack of standardization in preclinical studies that could partially explain the low number of translation to clinical applications for this innovative therapeutic strategy. Pointing out the critical parameters of high-Z nanoparticles radiosensitization, this review is expected to contribute to a larger preclinical and clinical development. PMID:26155318

  3. Nanoparticles for Radiation Therapy Enhancement: the Key Parameters.

    PubMed

    Retif, Paul; Pinel, Sophie; Toussaint, Magali; Frochot, Céline; Chouikrat, Rima; Bastogne, Thierry; Barberi-Heyob, Muriel

    2015-01-01

    This review focuses on the radiosensitization strategies that use high-Z nanoparticles. It does not establish an exhaustive list of the works in this field but rather propose constructive criticisms pointing out critical factors that could improve the nano-radiation therapy. Whereas most reviews show the chemists and/or biologists points of view, the present analysis is also seen through the prism of the medical physicist. In particular, we described and evaluated the influence of X-rays energy spectra using a numerical analysis. We observed a lack of standardization in preclinical studies that could partially explain the low number of translation to clinical applications for this innovative therapeutic strategy. Pointing out the critical parameters of high-Z nanoparticles radiosensitization, this review is expected to contribute to a larger preclinical and clinical development.

  4. Nickel accumulation and its effect on growth, physiological and biochemical parameters in millets and oats.

    PubMed

    Gupta, Vibha; Jatav, Pradeep Kumar; Verma, Raini; Kothari, Shanker Lal; Kachhwaha, Sumita

    2017-10-01

    With the boom in industrialization, there is an increase in the level of heavy metals in the soil which drastically affect the growth and development of plants. Nickel is an essential micronutrient for plant growth and development, but elevated level of Ni causes stunted growth, chlorosis, nutrient imbalance, and alterations in the defense mechanism of plants in terms of accumulation of osmolytes or change in enzyme activities like guiacol peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD). Ni-induced toxic response was studied in seedlings of finger millet, pearl millet, and oats in terms of seedling growth, lipid peroxidation, total chlorophyll, proline content, and enzymatic activities. On the basis of germination and growth parameters of the seedling, finger millet was found to be the most tolerant. Nickel accumulation was markedly lower in the shoots as compared to the roots, which was the highest in finger millet and the lowest in shoots of oats. Plants treated with a high concentration of Ni showed significant reduction in chlorophyll and increase in proline content. Considerable difference in level of malondialdehyde (MDA) content and activity of antioxidative enzymes indicates generation of redox imbalance in plants due to Ni-induced stress. Elevated activities of POD and SOD were observed with high concentrations of Ni while CAT activity was found to be reduced. It was observed that finger millet has higher capability to maintain homeostasis by keeping the balance between accumulation and ROS scavenging system than pearl millet and oats. The data provide insight into the physiological and biochemical changes in plants adapted to survive in Ni-rich environment. This study will help in selecting the more suitable crop species to be grown on Ni-rich soils.

  5. Differential effects of insulin-like growth factor I and growth hormone on developmental stages of rat growth plate chondrocytes in vivo.

    PubMed Central

    Hunziker, E B; Wagner, J; Zapf, J

    1994-01-01

    Skeletal growth depends upon enchondral ossification in growth plate cartilage, within which chondrocytes undergo well defined stages of maturation. We infused IGF-I or growth hormone (GH), two key regulators of skeletal growth, into hypophysectomized rats and compared their effects on growth plate chondrocyte differentiation using qualitative and quantitative autoradiography, stereology, and incident light fluorescence microscopy. Stem cell cycle time was shortened from 50 to 15 and 8 d after treatment with IGF-I and GH, respectively. Proliferating cell cycle time decreased from 11 to 4.5 and 3 d, and duration of the hypertrophic phase decreased from 6 to 4 and 2.8 d. Average matrix volume per cell at each differentiation stage was similar for normal, hormone-treated, and untreated hypophysectomized groups. Mean cell volume and cell height were significantly reduced by hypophysectomy at the proliferative and hypertrophic stages, but were restored to physiological values by IGF-I and GH. In contrast, cell productivity, i.e., increases in cell volume, height, and matrix production per unit of time, did not reach normal values with either IGF-I or GH, and this parameter was inversely proportional to cell cycle time or phase duration. IGF-I and GH are thus capable of stimulating growth plate chondrocytes at all stages of differentiation, albeit to variable degrees with respect to individual cell activities. Although it is generally accepted that GH acts at both the stem and proliferating phases of chondrocyte differentiation, our data represent the first evidence in vivo that IGF-I is also capable of stimulating stem cells. Images PMID:8132746

  6. Towards Improving our Understanding on the Retrievals of Key Parameters Characterising Land Surface Interactions from Space: Introduction & First Results from the PREMIER-EO Project

    NASA Astrophysics Data System (ADS)

    Ireland, Gareth; North, Matthew R.; Petropoulos, George P.; Srivastava, Prashant K.; Hodges, Crona

    2015-04-01

    Acquiring accurate information on the spatio-temporal variability of soil moisture content (SM) and evapotranspiration (ET) is of key importance to extend our understanding of the Earth system's physical processes, and is also required in a wide range of multi-disciplinary research studies and applications. The utility and applicability of Earth Observation (EO) technology provides an economically feasible solution to derive continuous spatio-temporal estimates of key parameters characterising land surface interactions, including ET as well as SM. Such information is of key value to practitioners, decision makers and scientists alike. The PREMIER-EO project recently funded by High Performance Computing Wales (HPCW) is a research initiative directed towards the development of a better understanding of EO technology's present ability to derive operational estimations of surface fluxes and SM. Moreover, the project aims at addressing knowledge gaps related to the operational estimation of such parameters, and thus contribute towards current ongoing global efforts towards enhancing the accuracy of those products. In this presentation we introduce the PREMIER-EO project, providing a detailed overview of the research aims and objectives for the 1 year duration of the project's implementation. Subsequently, we make available the initial results of the work carried out herein, in particular, related to an all-inclusive and robust evaluation of the accuracy of existing operational products of ET and SM from different ecosystems globally. The research outcomes of this project, once completed, will provide an important contribution towards addressing the knowledge gaps related to the operational estimation of ET and SM. This project results will also support efforts ongoing globally towards the operational development of related products using technologically advanced EO instruments which were launched recently or planned be launched in the next 1-2 years. Key Words: PREMIER

  7. Imprinted gene expression in fetal growth and development.

    PubMed

    Lambertini, L; Marsit, C J; Sharma, P; Maccani, M; Ma, Y; Hu, J; Chen, J

    2012-06-01

    Experimental studies showed that genomic imprinting is fundamental in fetoplacental development by timely regulating the expression of the imprinted genes to overlook a set of events determining placenta implantation, growth and embryogenesis. We examined the expression profile of 22 imprinted genes which have been linked to pregnancy abnormalities that may ultimately influence childhood development. The study was conducted in a subset of 106 placenta samples, overrepresented with small and large for gestational age cases, from the Rhode Island Child Health Study. We investigated associations between imprinted gene expression and three fetal development parameters: newborn head circumference, birth weight, and size for gestational age. Results from our investigation show that the maternally imprinted/paternally expressed gene ZNF331 inversely associates with each parameter to drive smaller fetal size, while paternally imprinted/maternally expressed gene SLC22A18 directly associates with the newborn head circumference promoting growth. Multidimensional Scaling analysis revealed two clusters within the 22 imprinted genes which are independently associated with fetoplacental development. Our data suggest that cluster 1 genes work by assuring cell growth and tissue development, while cluster 2 genes act by coordinating these processes. Results from this epidemiologic study offer solid support for the key role of imprinting in fetoplacental development. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Evapotranspiration and favorable growing degree-days are key to tree height growth and ecosystem functioning: Meta-analyses of Pacific Northwest historical data.

    PubMed

    Liu, Yang; El-Kassaby, Yousry A

    2018-05-29

    While temperature and precipitation comprise important ecological filtering for native ranges of forest trees and are predisposing factors underlying forest ecosystem dynamics, the extent and severity of drought raises reasonable concerns for carbon storage and species diversity. Based on historical data from common garden experiments across the Pacific Northwest region, we developed non-linear niche models for height-growth trajectories of conifer trees at the sapling stage using annual or seasonal climatic variables. The correlations between virtual tree height for each locality and ecosystem functions were respectively assessed. Best-fitted models were composed of two distinct components: evapotranspiration and the degree-days disparity for temperature regimes between 5 °C and 18 °C (effective temperature sum and growth temperature, respectively). Tree height prediction for adaptive generalists (e.g., Pinus monticola, Thuja plicata) had smaller residuals than for specialists (e.g., Pinus contorta, Pseudotsuga menziesii), albeit a potential confounding factor - tree age. Discernably, there were linearly positive patterns between tree height growth and ecosystem functions (productivity, biomass and species diversity). Additionally, there was a minor effect of tree diversity on height growth in coniferous forests. This study uncovers the implication of key ecological filtering and increases our integrated understanding of how environmental cues affect tree stand growth, species dominance and ecosystem functions.

  9. Fine-tuning key parameters of an integrated reactor system for the simultaneous removal of COD, sulfate and ammonium and elemental sulfur reclamation.

    PubMed

    Yuan, Ye; Chen, Chuan; Liang, Bin; Huang, Cong; Zhao, Youkang; Xu, Xijun; Tan, Wenbo; Zhou, Xu; Gao, Shuang; Sun, Dezhi; Lee, Duujong; Zhou, Jizhong; Wang, Aijie

    2014-03-30

    In this paper, we proposed an integrated reactor system for simultaneous removal of COD, sulfate and ammonium (integrated C-S-N removal system) and investigated the key parameters of the system for a high level of elemental sulfur (S(0)) production. The system consisted of 4 main units: sulfate reduction and organic carbon removal (SR-CR), autotrophic and heterotrophic denitrifying sulfide removal (A&H-DSR), sulfur reclamation (SR), and aerated filter for aerobic nitrification (AN). In the system, the effects of key operational parameters on production of elemental sulfur were investigated, including hydraulic retention time (HRT) of each unit, sulfide/nitrate (S(2-)-S/NO3(-)-N) ratios, reflux ratios between the A&H-DSR and AN units, and loading rates of chemical oxygen demand (COD), sulfate and ammonium. Physico-chemical characteristics of biosulfur were studied for acquiring efficient S(0) recovery. The experiments successfully explored the optimum parameters for each unit and demonstrated 98% COD, 98% sulfate and 78% nitrogen removal efficiency. The optimum HRTs for SR-CR, A&H-DSR and AN were 12h, 3h and 3h, respectively. The reflux ratio of 3 could provide adequate S(2-)-S/NO3(-)-N ratio (approximately 1:1) to the A&H-DSR unit for obtaining maximum sulfur production. In this system, the maximum production of S(0) reached 90%, but only 60% S(0) was reclaimed from effluent. The S(0) that adhered to the outer layer of granules was deposited in the bottom of the A&H-DSR unit. Finally, the microbial community structure of the corresponding unit at different operational stage were analyzed by 16S rRNA gene based high throughput Illumina MiSeq sequencing and the potential function of dominant species were discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Economics of Future Growth in Photovoltaics Manufacturing; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basore, Paul; Chung, Donald; Buonassisi, Tonio

    2015-06-14

    The past decade’s record of growth in the photovoltaic manufacturing industry indicates that global investment in manufacturing capacity for photovoltaic modules tends to increase in proportion to the size of the industry. The slope of this proportionality determines how fast the industry will grow in the future. Two key parameters determine this slope. One is the annual global investment in manufacturing capacity normalized to the manufacturing capacity for the previous year (capacity-normalized capital investment rate, CapIR, units $/W). The other is how much capital investment is required for each watt of annual manufacturing capacity, normalized to the service life ofmore » the assets (capacity-normalized capital demand rate, CapDR, units $/W). If these two parameters remain unchanged from the values they have held for the past few years, global manufacturing capacity will peak in the next few years and then decline. However, it only takes a small improvement in CapIR to ensure future growth in photovoltaics. Any accompanying improvement in CapDR will accelerate that growth.« less

  11. Key handling in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Li, Y.; Newe, T.

    2007-07-01

    With the rapid growth of Wireless Sensor Networks (WSNs), many advanced application areas have received significant attention. However, security will be an important factor for their full adoption. Wireless sensor nodes pose unique challenges and as such traditional security protocols, used in traditional networks cannot be applied directly. Some new protocols have been published recently with the goal of providing both privacy of data and authentication of sensor nodes for WSNs. Such protocols can employ private-key and/or public key cryptographic algorithms. Public key algorithms hold the promise of simplifying the network infrastructure required to provide security services such as: privacy, authentication and non-repudiation, while symmetric algorithms require less processing power on the lower power wireless node. In this paper a selection of key establishment/agreement protocols are reviewed and they are broadly divided into two categories: group key agreement protocols and pair-wise key establishment protocols. A summary of the capabilities and security related services provided by each protocol is provided.

  12. Hair growth-promotion effects of different alternating current parameter settings are mediated by the activation of Wnt/β-catenin and MAPK pathway.

    PubMed

    Sohn, Ki Min; Jeong, Kwan Ho; Kim, Jung Eun; Park, Young Min; Kang, Hoon

    2015-12-01

    Electrical stimulation is being used in variable skin therapeutic conditions. There have been clinical studies demonstrating the positive effect of electrical stimuli on hair regrowth. However, the underlying exact mechanism and optimal parameter settings are not clarified yet. To investigate the effects of different parameter settings of electrical stimuli on hair growth by examining changes in human dermal papilla cells (hDPCs) in vitro and by observing molecular changes in animal tissue. In vitro, cultured hDPCs were electrically stimulated with different parameter settings at alternating current (AC). Cell proliferation was measured by MTT assay. The Ki67 expression was measured by immunofluorescence. Hair growth-related gene expressions were measured by RT-PCR. In animal model, different parameter settings of AC were applied to the shaved dorsal skin of rabbit for 8 weeks. Expression of hair-related genes in the skin of rabbit was examined by RT-PCR. At low voltage power (3.5 V) and low frequency (1 or 2 MHz) with AC, in vitro proliferation of hDPCs was successfully induced. A significant increase in Wnt/β-catenin, Ki67, p-ERK and p-AKT expressions was observed under the aforementioned settings. In animal model, hair regrowth was observed in the entire stimulated areas under individual conditions. Expression of hair-related genes in the skin significantly increased on the 6th week of treatment. There are optimal conditions for electrical stimulated hair growth, and they might be different in the cells, animals and human tissues. Electrical stimuli induce mechanisms such as the activation of Wnt/β-catenin and MAPK pathway in hair follicles. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Personal Growth During Internship: A Qualitative Analysis of Interns' Responses to Key Questions

    PubMed Central

    Levine, Rachel B; Haidet, Paul; Kern, David E; Beasley, Brent W; Bensinger, Lisa; Brady, Donald W; Gress, Todd; Hughes, Jennifer; Marwaha, Ajay; Nelson, Jennifer; Wright, Scott M

    2006-01-01

    BACKGROUND During clinical training, house officers frequently encounter intense experiences that may affect their personal growth. The purpose of this study was to explore processes related to personal growth during internship. DESIGN Prospective qualitative study conducted over the course of internship. PARTICIPANTS Thirty-two postgraduate year (PGY)-1 residents from 9 U.S. internal medicine training programs. APPROACH Every 8 weeks, interns responded by e-mail to an open-ended question related to personal growth. Content analysis methods were used to analyze the interns' writings to identify triggers, facilitators, and barriers related to personal growth. RESULTS Triggers for personal growth included caring for critically ill or dying patients, receiving feedback, witnessing unprofessional behavior, experiencing personal problems, and dealing with the increased responsibility of internship. Facilitators of personal growth included supportive relationships, reflection, and commitment to core values. Fatigue, lack of personal time, and overwhelming work were barriers to personal growth. The balance between facilitators and barriers may dictate the extent to which personal growth occurs. CONCLUSIONS Efforts to support personal growth during residency training include fostering supportive relationships, encouraging reflection, and recognizing interns' core values especially in association with powerful triggers. PMID:16808737

  14. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved.

    PubMed

    Brassard, Patrick; Godbout, Stéphane; Raghavan, Vijaya

    2016-10-01

    Biochar, a solid porous material obtained from the carbonization of biomass under low or no oxygen conditions, has been proposed as a climate change mitigation tool because it is expected to sequester carbon (C) for centuries and to reduce greenhouse gas (GHG) emissions from soils. This review aimed to identify key biochar properties and production parameters that have an effect on these specific applications of the biochar. Moreover, mechanisms involved in interactions between biochar and soils were highlighted. Following a compilation and comparison of the characteristics of 76 biochars from 40 research studies, biochars with a lower N content, and consequently a higher C/N ratio (>30), were found to be more suitable for mitigation of N2O emissions from soils. Moreover, biochars produced at a higher pyrolysis temperature, and with O/C ratio <0.2, H/Corg ratio <0.4 and volatile matter below 80% may have high C sequestration potential. Based on these observations, biochar production and application to the field can be used as a tool to mitigate climate change. However, it is important to determine the pyrolysis conditions and feedstock needed to produce a biochar with the desired properties for a specific application. More research studies are needed to identify the exact mechanisms involved following biochar amendment to soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Growth assessment in diagnosis of Fetal Growth Restriction. Review

    PubMed Central

    Albu, AR; Horhoianu, IA; Dumitrascu, MC; Horhoianu, V

    2014-01-01

    Abstract The assessment of fetal growth represents a fundamental step towards the identification of the true growth restricted fetus that is associated to important perinatal morbidity and mortality. The possible ways of detecting abnormal fetal growth are taken into consideration in this review and their strong and weak points are discussed. An important debate still remains about how to discriminate between the physiologically small fetus that does not require special surveillance and the truly growth restricted fetus who is predisposed to perinatal complications, even if its parameters are above the cut-off limits established. In this article, we present the clinical tools of fetal growth assessment: Symphyseal-Fundal Height (SFH) measurement, the fetal ultrasound parameters widely taken into consideration when discussing fetal growth: Abdominal Circumference (AC) and Estimated Fetal Weight (EFW); several types of growth charts and their characteristics: populational growth charts, standard growth charts, individualized growth charts, customized growth charts and growth trajectories. Abbreviations: FGR = Fetal growth restriction; IUGR = Intrauterine Growth Restriction; SGA = small for gestational age fetus; EFW = estimated fetal weight; AC = abdominal circumference; SD = Standard Deviation; SFH = Symphyseal-fundal height; US = ultrasound; 2D = bidimensional; 3D = tridimensional; RCOG = Royal College of Obstetricians and Gynecologists; FL = femur length; BPD = biparietal diameter; BW = birth weight; IGA = Individualized Growth Assessment; PIH = Pregnancy Induced hypertension; PE = Preeclampsia; NICU = Neonatal Intensive Care Unit. PMID:25408718

  16. Optimization of a growth process for as-grown 2D materials-based devices

    NASA Astrophysics Data System (ADS)

    Lindquist, Miles; Khadka, Sudiksha; Aleithan, Shrouq; Blumer, Ari; Wickramasinghe, Thushan; Thorat, Ruhi; Kordesch, Martin; Stinaff, Eric

    We will present the effects of varying key parameters of a deterministic growth method for producing self-contacted 2D transition metal dichalcogenides. Chemical vapor deposition is used to grow a film of 2D material nucleated around and seeded from metallic features prepared by photolithography and sputtering on a Si/SiO2 substrate prior to growth. We will focus on a particular method of growing variable MoS2 based device structures. The goal of this work is to arrive at robust platform for growing a variety of device structures by systematically altering parameters such as the amount of reactants used, the heat of the substrate and oxide powder, and the flow rate of argon gas used. These results will help advance a comprehensive process for the scalable production of as-grown, complex, 2D materials-based device architectures.

  17. Regularized quantile regression for SNP marker estimation of pig growth curves.

    PubMed

    Barroso, L M A; Nascimento, M; Nascimento, A C C; Silva, F F; Serão, N V L; Cruz, C D; Resende, M D V; Silva, F L; Azevedo, C F; Lopes, P S; Guimarães, S E F

    2017-01-01

    Genomic growth curves are generally defined only in terms of population mean; an alternative approach that has not yet been exploited in genomic analyses of growth curves is the Quantile Regression (QR). This methodology allows for the estimation of marker effects at different levels of the variable of interest. We aimed to propose and evaluate a regularized quantile regression for SNP marker effect estimation of pig growth curves, as well as to identify the chromosome regions of the most relevant markers and to estimate the genetic individual weight trajectory over time (genomic growth curve) under different quantiles (levels). The regularized quantile regression (RQR) enabled the discovery, at different levels of interest (quantiles), of the most relevant markers allowing for the identification of QTL regions. We found the same relevant markers simultaneously affecting different growth curve parameters (mature weight and maturity rate): two (ALGA0096701 and ALGA0029483) for RQR(0.2), one (ALGA0096701) for RQR(0.5), and one (ALGA0003761) for RQR(0.8). Three average genomic growth curves were obtained and the behavior was explained by the curve in quantile 0.2, which differed from the others. RQR allowed for the construction of genomic growth curves, which is the key to identifying and selecting the most desirable animals for breeding purposes. Furthermore, the proposed model enabled us to find, at different levels of interest (quantiles), the most relevant markers for each trait (growth curve parameter estimates) and their respective chromosomal positions (identification of new QTL regions for growth curves in pigs). These markers can be exploited under the context of marker assisted selection while aiming to change the shape of pig growth curves.

  18. The Role of Oxygen in Avascular Tumor Growth

    PubMed Central

    Grimes, David Robert; Kannan, Pavitra; McIntyre, Alan; Kavanagh, Anthony; Siddiky, Abul; Wigfield, Simon; Harris, Adrian; Partridge, Mike

    2016-01-01

    The oxygen status of a tumor has significant clinical implications for treatment prognosis, with well-oxygenated subvolumes responding markedly better to radiotherapy than poorly supplied regions. Oxygen is essential for tumor growth, yet estimation of local oxygen distribution can be difficult to ascertain in situ, due to chaotic patterns of vasculature. It is possible to avoid this confounding influence by using avascular tumor models, such as tumor spheroids, a much better approximation of realistic tumor dynamics than monolayers, where oxygen supply can be described by diffusion alone. Similar to in situ tumours, spheroids exhibit an approximately sigmoidal growth curve, often approximated and fitted by logistic and Gompertzian sigmoid functions. These describe the basic rate of growth well, but do not offer an explicitly mechanistic explanation. This work examines the oxygen dynamics of spheroids and demonstrates that this growth can be derived mechanistically with cellular doubling time and oxygen consumption rate (OCR) being key parameters. The model is fitted to growth curves for a range of cell lines and derived values of OCR are validated using clinical measurement. Finally, we illustrate how changes in OCR due to gemcitabine treatment can be directly inferred using this model. PMID:27088720

  19. Automated secured cost effective key refreshing technique to enhance WiMAX privacy key management

    NASA Astrophysics Data System (ADS)

    Sridevi, B.; Sivaranjani, S.; Rajaram, S.

    2013-01-01

    In all walks of life the way of communication is transformed by the rapid growth of wireless communication and its pervasive use. A wireless network which is fixed and richer in bandwidth is specified as IEEE 802.16, promoted and launched by an industrial forum is termed as Worldwide Interoperability for Microwave Access (WiMAX). This technology enables seamless delivery of wireless broadband service for fixed and/or mobile users. The obscurity is the long delay which occurs during the handoff management in every network. Mobile WiMAX employs an authenticated key management protocol as a part of handoff management in which the Base Station (BS) controls the distribution of keying material to the Mobile Station (MS). The protocol employed is Privacy Key Management Version 2- Extensible Authentication Protocol (PKMV2-EAP) which is responsible for the normal and periodical authorization of MSs, reauthorization as well as key refreshing. Authorization key (AK) and Traffic Encryption key (TEK) plays a vital role in key exchange. When the lifetime of key expires, MS has to request for a new key to BS which in turn leads to repetition of authorization, authentication as well as key exchange. To avoid service interruption during reauthorization , two active keys are transmitted at the same time by BS to MS. The consequences of existing work are hefty amount of bandwidth utilization, time consumption and large storage. It is also endured by Man in the Middle attack and Impersonation due to lack of security in key exchange. This paper designs an automatic mutual refreshing of keys to minimize bandwidth utilization, key storage and time consumption by proposing Previous key and Iteration based Key Refreshing Function (PKIBKRF). By integrating PKIBKRF in key generation, the simulation results indicate that 21.8% of the bandwidth and storage of keys are reduced and PKMV2 mutual authentication time is reduced by 66.67%. The proposed work is simulated with Qualnet model and

  20. Rice actin-binding protein RMD is a key link in the auxin-actin regulatory loop that controls cell growth.

    PubMed

    Li, Gang; Liang, Wanqi; Zhang, Xiaoqing; Ren, Haiyun; Hu, Jianping; Bennett, Malcolm J; Zhang, Dabing

    2014-07-15

    The plant hormone auxin plays a central role in plant growth and development. Auxin transport and signaling depend on actin organization. Despite its functional importance, the mechanistic link between actin filaments (F-actin) and auxin intracellular signaling remains unclear. Here, we report that the actin-organizing protein Rice Morphology Determinant (RMD), a type II formin from rice (Oryza sativa), provides a key link. Mutants lacking RMD display abnormal cell growth and altered configuration of F-actin array direction. The rmd mutants also exhibit an inhibition of auxin-mediated cell elongation, decreased polar auxin transport, altered auxin distribution gradients in root tips, and suppression of plasma membrane localization of auxin transporters O. sativa PIN-FORMED 1b (OsPIN1b) and OsPIN2 in root cells. We demonstrate that RMD is required for endocytosis, exocytosis, and auxin-mediated OsPIN2 recycling to the plasma membrane. Moreover, RMD expression is directly regulated by heterodimerized O. sativa auxin response factor 23 (OsARF23) and OsARF24, providing evidence that auxin modulates the orientation of F-actin arrays through RMD. In support of this regulatory loop, osarf23 and lines with reduced expression of both OsARF23 and OsARF24 display reduced RMD expression, disrupted F-actin organization and cell growth, less sensitivity to auxin response, and altered auxin distribution and OsPIN localization. Our findings establish RMD as a crucial component of the auxin-actin self-organizing regulatory loop from the nucleus to cytoplasm that controls rice cell growth and morphogenesis.

  1. Combinatorial influence of environmental parameters on transcription factor activity.

    PubMed

    Knijnenburg, T A; Wessels, L F A; Reinders, M J T

    2008-07-01

    Cells receive a wide variety of environmental signals, which are often processed combinatorially to generate specific genetic responses. Changes in transcript levels, as observed across different environmental conditions, can, to a large extent, be attributed to changes in the activity of transcription factors (TFs). However, in unraveling these transcription regulation networks, the actual environmental signals are often not incorporated into the model, simply because they have not been measured. The unquantified heterogeneity of the environmental parameters across microarray experiments frustrates regulatory network inference. We propose an inference algorithm that models the influence of environmental parameters on gene expression. The approach is based on a yeast microarray compendium of chemostat steady-state experiments. Chemostat cultivation enables the accurate control and measurement of many of the key cultivation parameters, such as nutrient concentrations, growth rate and temperature. The observed transcript levels are explained by inferring the activity of TFs in response to combinations of cultivation parameters. The interplay between activated enhancers and repressors that bind a gene promoter determine the possible up- or downregulation of the gene. The model is translated into a linear integer optimization problem. The resulting regulatory network identifies the combinatorial effects of environmental parameters on TF activity and gene expression. The Matlab code is available from the authors upon request. Supplementary data are available at Bioinformatics online.

  2. CT and MR Imaging Diagnosis and Staging of Hepatocellular Carcinoma: Part I. Development, Growth, and Spread: Key Pathologic and Imaging Aspects

    PubMed Central

    Choi, Jin-Young; Lee, Jeong-Min

    2014-01-01

    Computed tomography (CT) and magnetic resonance (MR) imaging play critical roles in the diagnosis and staging of hepatocellular carcinoma (HCC). The first article of this two-part review discusses key concepts of HCC development, growth, and spread, emphasizing those features with imaging correlates and hence most relevant to radiologists; state-of-the-art CT and MR imaging technique with extracellular and hepatobiliary contrast agents; and the imaging appearance of precursor nodules that eventually may transform into overt HCC. © RSNA, 2014 PMID:25153274

  3. Unravelling the Gordian knot! Key processes impacting overwintering larval survival and growth: A North Sea herring case study

    NASA Astrophysics Data System (ADS)

    Hufnagl, Marc; Peck, Myron A.; Nash, Richard D. M.; Dickey-Collas, Mark

    2015-11-01

    Unraveling the key processes affecting marine fish recruitment will ultimately require a combination of field, laboratory and modelling studies. We combined analyzes of long-term (30-year) field data on larval fish abundance, distribution and length, and biophysical model simulations of different levels of complexity to identify processes impacting the survival and growth of autumn- and winter-spawned Atlantic herring (Clupea harengus) larvae. Field survey data revealed interannual changes in intensity of utilization of the five major spawning grounds (Orkney/Shetland, Buchan, Banks north, Banks south, and Downs) as well as spatio-temporal variability in the length and abundance of overwintered larvae. The mean length of larvae captured in post-winter surveys was negatively correlated to the proportion of larvae from the southern-most (Downs) winter-spawning component. Furthermore, the mean length of larvae originating from all spawning components has decreased since 1990 suggesting ecosystem-wide changes impacting larval growth potential, most likely due to changes in prey fields. A simple biophysical model assuming temperature-dependent growth and constant mortality underestimated larval growth rates suggesting that larval mortality rates steeply declined with increasing size and/or age during winter as no match with field data could be obtained. In contrast better agreement was found between observed and modelled post-winter abundance for larvae originating from four spawning components when a more complex, physiological-based foraging and growth model was employed using a suite of potential prey field and size-based mortality scenarios. Nonetheless, agreement between field and model-derived estimates was poor for larvae originating from the winter-spawned Downs component. In North Sea herring, the dominant processes impacting larval growth and survival appear to have shifted in time and space highlighting how environmental forcing, ecosystem state and other

  4. Performance of device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Cao, Zhu; Zhao, Qi; Ma, Xiongfeng

    2016-07-01

    Quantum key distribution provides information-theoretically-secure communication. In practice, device imperfections may jeopardise the system security. Device-independent quantum key distribution solves this problem by providing secure keys even when the quantum devices are untrusted and uncharacterized. Following a recent security proof of the device-independent quantum key distribution, we improve the key rate by tightening the parameter choice in the security proof. In practice where the system is lossy, we further improve the key rate by taking into account the loss position information. From our numerical simulation, our method can outperform existing results. Meanwhile, we outline clear experimental requirements for implementing device-independent quantum key distribution. The maximal tolerable error rate is 1.6%, the minimal required transmittance is 97.3%, and the minimal required visibility is 96.8 % .

  5. Prediction of Geomagnetic Activity and Key Parameters in High-latitude Ionosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Lyatsky, Wladislaw; Tan, Arjun; Ridley, Aaron

    2007-01-01

    Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere are important tasks of US Space Weather Program. Prediction reliability is dependent on the prediction method, and elements included in the prediction scheme. Two of the main elements of such prediction scheme are: an appropriate geomagnetic activity index, and an appropriate coupling function (the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity). We have developed a new index of geomagnetic activity, the Polar Magnetic (PM) index and an improved version of solar wind coupling function. PM index is similar to the existing polar cap PC index but it shows much better correlation with upstream solar wind/IMF data and other events in the magnetosphere and ionosphere. We investigate the correlation of PM index with upstream solar wind/IMF data for 10 years (1995-2004) that include both low and high solar activity. We also have introduced a new prediction function for the predicting of cross-polar-cap voltage and Joule heating based on using both PM index and upstream solar wind/IMF data. As we show such prediction function significantly increase the reliability of prediction of these important parameters. The correlation coefficients between the actual and predicted values of these parameters are approx. 0.9 and higher.

  6. Fracture toughness and crack growth of Zerodur

    NASA Technical Reports Server (NTRS)

    Viens, Michael J.

    1990-01-01

    The fracture toughness and crack growth parameters of Zerodur, a low expansion glass ceramic material, were determined. The fracture toughness was determined using indentation techniques and was found to be 0.9 MPa x m(sup 1/2). The crack growth parameters were determined using indented biaxial specimens subjected to static and dynamic loading in an aqueous environment. The crack growth parameters n and 1n(B) were found to be 30.7 and -6.837, respectively. The crack growth parameters were also determined using indented biaxial specimens subjected to dynamic loading in an ambient 50 percent relative humidity environment. The crack growth parameters n and 1n(B) at 50 percent relative humidity were found to be 59.3 and -17.51, respectively.

  7. Conditions for Optimal Growth of Black Hole Seeds

    NASA Astrophysics Data System (ADS)

    Pacucci, Fabio; Natarajan, Priyamvada; Volonteri, Marta; Cappelluti, Nico; Urry, C. Megan

    2017-12-01

    Supermassive black holes weighing up to ˜109 M ⊙ are in place by z ˜ 7, when the age of the universe is ≲1 Gyr. This implies a time crunch for their growth, since such high masses cannot be easily reached in standard accretion scenarios. Here, we explore the physical conditions that would lead to optimal growth wherein stable super-Eddington accretion would be permitted. Our analysis suggests that the preponderance of optimal conditions depends on two key parameters: the black hole mass and the host galaxy central gas density. In the high-efficiency region of this parameter space, a continuous stream of gas can accrete onto the black hole from large to small spatial scales, assuming a global isothermal profile for the host galaxy. Using analytical initial mass functions for black hole seeds, we find an enhanced probability of high-efficiency growth for seeds with initial masses ≳104 M ⊙. Our picture suggests that a large population of high-z lower-mass black holes that formed in the low-efficiency region, with low duty cycles and accretion rates, might remain undetectable as quasars, since we predict their bolometric luminosities to be ≲1041 erg s-1. The presence of these sources might be revealed only via gravitational wave detections of their mergers.

  8. Effect of gamma radiation on the growth, survival, hematology and histological parameters of rainbow trout (Oncorhynchus mykiss) larvae.

    PubMed

    Oujifard, Amin; Amiri, Roghayeh; Shahhosseini, Gholamreza; Davoodi, Reza; Moghaddam, Jamshid Amiri

    2015-08-01

    Effects of low (1, 2.5 and 5Gy) and high doses (10, 20 and 40Gy) of gamma radiation were examined on the growth, survival, blood parameters and morphological changes of the intestines of rainbow trout (Oncorhynchus mykiss) larvae (103±20mg) after 12 weeks of exposure. Negative effects of gamma radiation on growth and survival were observed as radiation level and time increased. Changes were well documented at 10 and 20Gy. All the fish were dead at the dose of 40Gy. In all the treatments, levels of red blood cells (RBC), hematocrit (HCT) and hemoglobin (HB) were significantly (P<0.05) declined as the irradiation levels increased, whereas the amount of mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) did not change. No significant differences (P>0.05) were found in the levels of white blood cells (WBC), lymphocytes and monocytes. Destruction of the intestinal epithelium cells was indicated as the irradiation levels increased to 1Gy and above. The highest levels of growth, survival, specific growth rate (SGR), condition factor (CF) and protein efficiency rate (PER) were obtained in the control treatment. The results showed that gamma rays can be a potential means for damaging rainbow trout cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hainey, Mel F.; Redwing, Joan M.

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis onmore » methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.« less

  10. Microplate-based method for high-throughput screening of microalgae growth potential.

    PubMed

    Van Wagenen, Jon; Holdt, Susan Løvstad; De Francisci, Davide; Valverde-Pérez, Borja; Plósz, Benedek Gy; Angelidaki, Irini

    2014-10-01

    Microalgae cultivation conditions in microplates will differ from large-scale photobioreactors in crucial parameters such as light profile, mixing and gas transfer. Hence volumetric productivity (P(v)) measurements made in microplates cannot be directly scaled up. Here we demonstrate that it is possible to use microplates to measure characteristic exponential growth rates and determine the specific growth rate light intensity dependency (μ-I curve), which is useful as the key input for several models that predict P(v). Nannochloropsis salina and Chlorella sorokiniana specific growth rates were measured by repeated batch culture in microplates supplied with continuous light at different intensities. Exponential growth unlimited by gas transfer or self-shading was observable for a period of several days using fluorescence, which is an order of magnitude more sensitive than optical density. The microplate datasets were comparable to similar datasets obtained in photobioreactors and were used an input for the Huesemann model to accurately predict P(v). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Growth condition dependence of unintentional oxygen incorporation in epitaxial GaN

    PubMed Central

    Schubert, Felix; Wirth, Steffen; Zimmermann, Friederike; Heitmann, Johannes; Mikolajick, Thomas; Schmult, Stefan

    2016-01-01

    Abstract Growth conditions have a tremendous impact on the unintentional background impurity concentration in gallium nitride (GaN) synthesized by molecular beam epitaxy and its resulting chemical and physical properties. In particular for oxygen identified as the dominant background impurity we demonstrate that under optimized growth stoichiometry the growth temperature is the key parameter to control its incorporation and that an increase by 55 °C leads to an oxygen reduction by one order of magnitude. Quantitatively this reduction and the resulting optical and electrical properties are analyzed by secondary ion mass spectroscopy, photoluminescence, capacitance versus voltage measurements, low temperature magneto-transport and parasitic current paths in lateral transistor test structures based on two-dimensional electron gases. At a growth temperature of 665 °C the residual charge carrier concentration is decreased to below 1015 cm−3, resulting in insulating behavior and thus making the material suitable for beyond state-of-the-art device applications. PMID:27877874

  12. Growth parameters of Penicillium expansum calculated from mixed inocula as an alternative to account for intraspecies variability.

    PubMed

    Garcia, Daiana; Ramos, Antonio J; Sanchis, Vicente; Marín, Sonia

    2014-09-01

    The aim of this work was to compare the radial growth rate (μ) and the lag time (λ) for growth of 25 isolates of Penicillium expansum at 1 and 20 ºC with those of the mixed inoculum of the 25 isolates. Moreover, the evolution of probability of growth through time was also compared for the single strains and mixed inoculum. Working with a mixed inoculum would require less work, time and consumables than if a range of single strains has to be used in order to represent a given species. Suitable predictive models developed for a given species should represent as much as possible the behavior of all strains belonging to this species. The results suggested, on one hand, that the predictions based on growth parameters calculated on the basis of mixed inocula may not accurately predict the behavior of all possible strains but may represent a percentage of them, and the median/mean values of μ and λ obtained by the 25 strains may be substituted by the value obtained with the mixed inoculum. Moreover, the predictions may be biased, in particular, the predictions of λ which may be underestimated (fail-safe). Moreover, the prediction of time for a given probability of growth through a mixed inoculum may not be accurate for all single inocula, but it may represent 92% and 60% of them at 20 and 1 ºC, respectively, and also their overall mean and median values. In conclusion, mixed inoculum could be a good alternative to estimate the mean or median values of high number of isolates, but not to account for those strains with marginal behavior. In particular, estimation of radial growth rate, and time for 0.10 and 0.50 probability of growth using a cocktail inoculum accounted for the estimates of most single isolates tested. For the particular case of probability models, this is an interesting result as for practical applications in the food industry the estimation of t10 or lower probability may be required. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Relationship between the growth of the ring current and the interplanetary quantity. [solar wind energy-magnetospheric coupling parameter correlation with substorm AE index

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1979-01-01

    Akasofu (1979) has reported that the interplanetary parameter epsilon correlates reasonably well with the magnetospheric substorm index AE; in the first approximation, epsilon represents the solar wind coupled to the magnetosphere. The correlation between the interplanetary parameter, the auroral electrojet index and the ring current index is examined for three magnetic storms. It is shown that when the interplanetary parameter exceeds the amount that can be dissipated by the ionosphere in terms of the Joule heat production, the excess energy is absorbed by the ring current belt, producing an abnormal growth of the ring current index.

  14. Effect of growth parameters on the optical properties of ZnO nanostructures grown by simple solution methods

    NASA Astrophysics Data System (ADS)

    Kothari, Anjana

    2017-05-01

    ZnO, a wide band gap semiconductor is of significant interest for a range of practical applications. One of the highly attractive features of ZnO is to grow variety of nanostructures by using low-cost techniques. In this paper, we report deposition of ZnO nanostructure rod-arrays (NRA) via low-temperature, solution-based deposition techniques such as chemical bath deposition (CBD) and microwave-assisted chemical bath deposition (MACBD). A detailed study of film deposition parameters such as variation in concentration of precursors and deposition temperature has been carried out. Compositional and structural study of the films has been done by X-ray Diffractometer to know the phase and purity of the final product. Morphological study of these structures has been carried out by Scanning Electron Microscopy. Optical study such as transmittance and diffuse reflectance of the films has been carried out as a function of growth parameters.

  15. Monitoring Doppler patterns and clinical parameters may predict feeding tolerance in intrauterine growth-restricted infants.

    PubMed

    Bozzetti, Valentina; Paterlini, Giuseppe; Gazzolo, Diego; Van Bel, Frank; Visser, Gerard H A; Roncaglia, Nadia; Tagliabue, Paolo E

    2013-11-01

    To detect predictors of feeding tolerance in intrauterine growth restriction (IUGR) infants with or without brain-sparing effect (BS). We conducted a case-control study in 70 IUGR infants (35 IUGR with BS, matched for gestational age with 35 IUGR infants with no BS). BS was classified as pulsatility index (PI) ratio [umbilical artery (UAPI) to middle cerebral artery (MCAPI) (U/C ratio)] > 1. Clinical parameters of feeding tolerance - days to achieve full enteral feeding (FEF) - were compared between the IUGR with BS and IUGR without BS infants. Age at the start of minimal enteral feeding (MEF) was analysed. Achievement of FEF was significantly shorter in IUGR infants without BS than in IUGR with BS. IUGR with BS started MEF later than IUGR without BS infants. Significant correlation of MEF and FEF with UA PI, U/C ratio and CRIB score was found. Multiple linear regression analysis showed significant correlations with CRIB score and caffeine administration (MEF only), and sepsis (FEF only) and U/C ratio (for both). Impaired gut function can be early detected by monitoring Doppler patterns and clinical parameters. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  16. Device-independent secret-key-rate analysis for quantum repeaters

    NASA Astrophysics Data System (ADS)

    Holz, Timo; Kampermann, Hermann; Bruß, Dagmar

    2018-01-01

    The device-independent approach to quantum key distribution (QKD) aims to establish a secret key between two or more parties with untrusted devices, potentially under full control of a quantum adversary. The performance of a QKD protocol can be quantified by the secret key rate, which can be lower bounded via the violation of an appropriate Bell inequality in a setup with untrusted devices. We study secret key rates in the device-independent scenario for different quantum repeater setups and compare them to their device-dependent analogon. The quantum repeater setups under consideration are the original protocol by Briegel et al. [Phys. Rev. Lett. 81, 5932 (1998), 10.1103/PhysRevLett.81.5932] and the hybrid quantum repeater protocol by van Loock et al. [Phys. Rev. Lett. 96, 240501 (2006), 10.1103/PhysRevLett.96.240501]. For a given repeater scheme and a given QKD protocol, the secret key rate depends on a variety of parameters, such as the gate quality or the detector efficiency. We systematically analyze the impact of these parameters and suggest optimized strategies.

  17. An investigation of the key parameters for predicting PV soiling losses

    DOE PAGES

    Micheli, Leonardo; Muller, Matthew

    2017-01-25

    One hundred and two environmental and meteorological parameters have been investigated and compared with the performance of 20 soiling stations installed in the USA, in order to determine their ability to predict the soiling losses occurring on PV systems. The results of this investigation showed that the annual average of the daily mean particulate matter values recorded by monitoring stations deployed near the PV systems are the best soiling predictors, with coefficients of determination ( R 2) as high as 0.82. The precipitation pattern was also found to be relevant: among the different meteorological parameters, the average length of drymore » periods had the best correlation with the soiling ratio. Lastly, a preliminary investigation of two-variable regressions was attempted and resulted in an adjusted R 2 of 0.90 when a combination of PM 2.5 and a binary classification for the average length of the dry period was introduced.« less

  18. Combinatorial influence of environmental parameters on transcription factor activity

    PubMed Central

    Knijnenburg, T.A.; Wessels, L.F.A.; Reinders, M.J.T.

    2008-01-01

    Motivation: Cells receive a wide variety of environmental signals, which are often processed combinatorially to generate specific genetic responses. Changes in transcript levels, as observed across different environmental conditions, can, to a large extent, be attributed to changes in the activity of transcription factors (TFs). However, in unraveling these transcription regulation networks, the actual environmental signals are often not incorporated into the model, simply because they have not been measured. The unquantified heterogeneity of the environmental parameters across microarray experiments frustrates regulatory network inference. Results: We propose an inference algorithm that models the influence of environmental parameters on gene expression. The approach is based on a yeast microarray compendium of chemostat steady-state experiments. Chemostat cultivation enables the accurate control and measurement of many of the key cultivation parameters, such as nutrient concentrations, growth rate and temperature. The observed transcript levels are explained by inferring the activity of TFs in response to combinations of cultivation parameters. The interplay between activated enhancers and repressors that bind a gene promoter determine the possible up- or downregulation of the gene. The model is translated into a linear integer optimization problem. The resulting regulatory network identifies the combinatorial effects of environmental parameters on TF activity and gene expression. Availability: The Matlab code is available from the authors upon request. Contact: t.a.knijnenburg@tudelft.nl Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18586711

  19. Onset of white striping and progression into wooden breast as defined by myopathic changes underlying Pectoralis major growth. Estimation of growth parameters as predictors for stage of myopathy progression.

    PubMed

    Griffin, Jacqueline Reedy; Moraes, Luis; Wick, Macdonald; Lilburn, Michael Snell

    2018-02-01

    The broiler industry has incurred significant economic losses due to two muscle myopathies, white striping (WS) and wooden breast (WB), affecting the Pectoralis major (P. major) of commercial broilers. The present study documented macroscopic changes occurring with age/growth in the P. major and P. minor muscles of commercial broilers from day 2 through day 46 (n = 27/day). Distinct myopathic aberrations observed in both breast muscles corresponded to the onset of WB. These distinct morphological changes were used as determinants in developing a ranking system, defining the ontogeny of WB as the following four stages: (1) WS, (2) petechial epimysium haemorrhages, (3) intramuscular haemorrhages and (4) ischaemia. A cumulative logit proportional odds model was used to relate the rank probabilities with the following growth parameters: body weight, P. major and P. minor weight/yield/length/width/depth. The best-fit model included P. major length/width/depth, P. minor width, P. major and P. minor yield as predictors for rank. Increasing P. major depth, P. minor width and P. major yield increased the odds of falling into higher ranks (more severe myopathy). Conversely, increasing P. major length, P. major width and P. minor yield increased the odds of falling into smaller ranks (less severe myopathy). This study describes the macroscopic changes associated with WB ontogeny in the development of a ranking system and the contribution of growth parameters in the determination of rank (WB severity). Results suggest that physical measurements inherent to selection for high-yielding broiler genotypes are contributing to the occurrence and severity of WS and WB.

  20. Improvement of Parameter Estimations in Tumor Growth Inhibition Models on Xenografted Animals: Handling Sacrifice Censoring and Error Caused by Experimental Measurement on Larger Tumor Sizes.

    PubMed

    Pierrillas, Philippe B; Tod, Michel; Amiel, Magali; Chenel, Marylore; Henin, Emilie

    2016-09-01

    The purpose of this study was to explore the impact of censoring due to animal sacrifice on parameter estimates and tumor volume calculated from two diameters in larger tumors during tumor growth experiments in preclinical studies. The type of measurement error that can be expected was also investigated. Different scenarios were challenged using the stochastic simulation and estimation process. One thousand datasets were simulated under the design of a typical tumor growth study in xenografted mice, and then, eight approaches were used for parameter estimation with the simulated datasets. The distribution of estimates and simulation-based diagnostics were computed for comparison. The different approaches were robust regarding the choice of residual error and gave equivalent results. However, by not considering missing data induced by sacrificing the animal, parameter estimates were biased and led to false inferences in terms of compound potency; the threshold concentration for tumor eradication when ignoring censoring was 581 ng.ml(-1), but the true value was 240 ng.ml(-1).

  1. The dependence of the wavelength on MBE growth parameters of GaAs quantum dot in AlGaAs NWs on Si (111) substrate

    NASA Astrophysics Data System (ADS)

    Reznik, R. R.; Shtrom, I. V.; Samsonenko, Yu B.; Khrebtov, A. I.; Soshnikov, I. P.; Cirlin, G. E.

    2017-11-01

    The data on the growth peculiarities and physical properties of GaAs insertions embedded in AlGaAs nanowires grown on Si (111) substrates by Au-assisted molecular beam epitaxy are presented. It is shown that by varying of the growth parameters it is possible to form structures like quantum dots emitting in a wide wavelengths range for both active and barrier parts. The technology proposed opens new possibilities for the integration of direct-band AIIIBV materials on silicon platform.

  2. Measurement of Key Pool BOiling Parameters in nanofluids for Nuclerar Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, In C; Buongiorno, Jdacopo; Hu, Lin-wen

    Nanofluids, colloidal dispersions of nanoparticles in a base fluid such as water, can afford very significant Critical Heat Flux (CHF) enhancement. Such engineered fluids potentially could be employed in reactors as advanced coolants in safety systems with significant safety and economic advantages. However, a satisfactory explanation of the CHF enhancement mechanism in nanofluids is lacking. To close this gap, we have identified the important boiling parameters to be measured. These are the properties (e.g., density, viscosity, thermal conductivity, specific heat, vaporization enthalpy, surface tension), hydrodynamic parameters (i.e., bubble size, bubble velocity, departure frequency, hot/dry spot dynamics) and surface conditions (i.e.,more » contact angle, nucleation site density). We have also deployed a pool boiling facility in which many such parameters can be measured. The facility is equipped with a thin indium-tin-oxide heater deposited over a sapphire substrate. An infra-red high-speed camera and an optical probe are used to measure the temperature distribution on the heater and the hydrodynamics above the heater, respectively. The first data generated with this facility already provide some clue on the CHF enhancement mechanism in nanofluids. Specifically, the progression to burnout in a pure fluid (ethanol in this case) is characterized by a smoothly-shaped and steadily-expanding hot spot. By contrast, in the ethanol-based nanofluid the hot spot pulsates and the progression to burnout lasts longer, although the nanofluid CHF is higher than the pure fluid CHF. The presence of a nanoparticle deposition layer on the heater surface seems to enhance wettability and aid hot spot dissipation, thus delaying burnout.« less

  3. Concept design theory and model for multi-use space facilities: Analysis of key system design parameters through variance of mission requirements

    NASA Astrophysics Data System (ADS)

    Reynerson, Charles Martin

    This research has been performed to create concept design and economic feasibility data for space business parks. A space business park is a commercially run multi-use space station facility designed for use by a wide variety of customers. Both space hardware and crew are considered as revenue producing payloads. Examples of commercial markets may include biological and materials research, processing, and production, space tourism habitats, and satellite maintenance and resupply depots. This research develops a design methodology and an analytical tool to create feasible preliminary design information for space business parks. The design tool is validated against a number of real facility designs. Appropriate model variables are adjusted to ensure that statistical approximations are valid for subsequent analyses. The tool is used to analyze the effect of various payload requirements on the size, weight and power of the facility. The approach for the analytical tool was to input potential payloads as simple requirements, such as volume, weight, power, crew size, and endurance. In creating the theory, basic principles are used and combined with parametric estimation of data when necessary. Key system parameters are identified for overall system design. Typical ranges for these key parameters are identified based on real human spaceflight systems. To connect the economics to design, a life-cycle cost model is created based upon facility mass. This rough cost model estimates potential return on investments, initial investment requirements and number of years to return on the initial investment. Example cases are analyzed for both performance and cost driven requirements for space hotels, microgravity processing facilities, and multi-use facilities. In combining both engineering and economic models, a design-to-cost methodology is created for more accurately estimating the commercial viability for multiple space business park markets.

  4. Modelling the Effect of Fruit Growth on Surface Conductance to Water Vapour Diffusion

    PubMed Central

    GIBERT, CAROLINE; LESCOURRET, FRANÇOISE; GÉNARD, MICHEL; VERCAMBRE, GILLES; PÉREZ PASTOR, ALEJANDRO

    2005-01-01

    • Background and Aims A model of fruit surface conductance to water vapour diffusion driven by fruit growth is proposed. It computes the total fruit conductance by integrating each of its components: stomata, cuticle and cracks. • Methods The stomatal conductance is computed from the stomatal density per fruit and the specific stomatal conductance. The cuticular component is equal to the proportion of cuticle per fruit multiplied by its specific conductance. Cracks are assumed to be generated when pulp expansion rate exceeds cuticle expansion rate. A constant percentage of cracks is assumed to heal each day. The proportion of cracks to total fruit surface area multiplied by the specific crack conductance accounts for the crack component. The model was applied to peach fruit (Prunus persica) and its parameters were estimated from field experiments with various crop load and irrigation regimes. • Key Results The predictions were in good agreement with the experimental measurements and for the different conditions (irrigation and crop load). Total fruit surface conductance decreased during early growth as stomatal density, and hence the contribution of the stomatal conductance, decreased from 80 to 20 % with fruit expansion. Cracks were generated for fruits exhibiting high growth rates during late growth and the crack component could account for up to 60 % of the total conductance during the rapid fruit growth. The cuticular contribution was slightly variable (around 20 %). Sensitivity analysis revealed that simulated conductance was highly affected by stomatal parameters during the early period of growth and by both crack and stomatal parameters during the late period. Large fruit growth rate leads to earlier and greater increase of conductance due to higher crack occurrence. Conversely, low fruit growth rate accounts for a delayed and lower increase of conductance. • Conclusions By predicting crack occurrence during fruit growth, this model could be helpful

  5. Insulin- like Growth Factor-Binding Protein Action in Bone Tissue: A Key Role for Pregnancy- Associated Plasma Protein-A.

    PubMed

    Beattie, James; Al-Khafaji, Hasanain; Noer, Pernille R; Alkharobi, Hanaa Esa; Alhodhodi, Aishah; Meade, Josephine; El-Gendy, Reem; Oxvig, Claus

    2018-01-01

    The insulin-like growth factor (IGF) axis is required for the differentiation, development, and maintenance of bone tissue. Accordingly, dysregulation of this axis is associated with various skeletal pathologies including growth abnormalities and compromised bone structure. It is becoming increasingly apparent that the action of the IGF axis must be viewed holistically taking into account not just the actions of the growth factors and receptors, but also the influence of soluble high affinity IGF binding proteins (IGFBPs).There is a recognition that IGFBPs exert IGF-dependent and IGF-independent effects in bone and other tissues and that an understanding of the mechanisms of action of IGFBPs and their regulation in the pericellular environment impact critically on tissue physiology. In this respect, a group of IGFBP proteinases (which may be considered as ancillary members of the IGF axis) play a crucial role in regulating IGFBP function. In this model, cleavage of IGFBPs by specific proteinases into fragments with lower affinity for growth factor(s) regulates the partition of IGFs between IGFBPs and cell surface IGF receptors. In this review, we examine the importance of IGFBP function in bone tissue with special emphasis on the role of pregnancy associated plasma protein-A (PAPP-A). We examine the function of PAPP-A primarily as an IGFBP-4 proteinase and present evidence that PAPP-A induced cleavage of IGFBP-4 is potentially a key regulatory step in bone metabolism. We also highlight some recent findings with regard to IGFBP-2 and IGFBP-5 (also PAPP-A substrates) function in bone tissue and briefly discuss the actions of the other three IGFBPs (-1, -3, and -6) in this tissue. Although our main focus will be in bone we will allude to IGFBP activity in other cells and tissues where appropriate.

  6. Effect of genetic selection on growth parameters and tonic immobility in Leghorn pullets.

    PubMed

    Anderson, K E; Jones, D R

    2012-03-01

    Four genetic stocks of Leghorn pullets were used to evaluate the effects of genetic selection on growth and fearfulness behavior. Three of the stocks were the Ottawa randombred control stocks from 1950 (CS5), 1959 (CS7), and 1972 (CS10). The fourth stock was a 1993 commercial laying stock (CCS) whose ancestors were involved in the formation of the randombred control stocks. Pullets were reared in a brood and grow poultry house with flat deck cages. Each stock was comprised of 840 birds with 21 replicates per strain. Body weight and feed consumption were monitored biweekly. At 16 wk of age, a 20-hen sample from each strain was analyzed for BW, body composition, and tonic immobility. There were significant (P < 0.05) differences among the stocks for BW of 1,403; 1,333; 1,332; and 1,428 g for the CS5, CS7, CS10, and CCS stocks, respectively. Furthermore, significant differences occurred with regard to feed consumption, livability, and frame size. There were no differences among the stocks in tonic immobility. Measurement of circulating corticosterone levels were shown to be significantly (P < 0.05) higher in the CCS stock (7.64 ng/mL) than for both the CS5 (4.50 ng/mL) and CS7 (4.61 ng/mL) stocks, whereas the CS10 stock was intermediate with 6.45 ng/mL. Genetic selection has affected growth parameters, although there appears to be no change in fearfulness behavior but an increase in corticosterone levels in stocks from later years.

  7. The impact of long-term growth hormone treatment on metabolic parameters in Japanese patients with short stature born small for gestational age.

    PubMed

    Kappelgaard, Anne-Marie; Kiyomi, Fumiaki; Horikawa, Reiko; Yokoya, Susumu; Tanaka, Toshiaki

    2014-01-01

    An examination of the effects of up to 260 weeks of growth hormone (GH) therapy on metabolic parameters in Japanese children born small for gestational age (SGA). Data were analysed from a 156-week extension of a 104-week multicentre, randomised, double-blind, parallel-group trial. Sixty-five children born SGA (age 3-<8 years) received 33 μg/kg/day (n = 31, 64.5% male) or 67 μg/kg/day (n = 34, 58.8% male) GH for 260 weeks. Changes in metabolic parameters - glucose, insulin, total cholesterol, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol - were recorded. Alterations in weight, body mass index standard deviation score (BMI SDS) and vital signs were also evaluated. Over 260 weeks of GH treatment, a positive correlation between Δheight SDS and Δinsulin-like growth factor-I SDS was observed. Insulin and glucose levels were generally unaffected. Favourable changes in lipid profiles were recorded, which were maintained for the study duration. No adverse alterations in weight, BMI SDS or vital signs were noted. Long-term, continuous GH treatment in children born SGA appears to be efficacious, associated with potential benefits for several metabolic parameters and associated with no long-term safety concerns.

  8. Discrete Event Simulation Modeling and Analysis of Key Leader Engagements

    DTIC Science & Technology

    2012-06-01

    to offer. GreenPlayer agents require four parameters, pC, pKLK, pTK, and pRK , which give probabilities for being corrupt, having key leader...HandleMessageRequest component. The same parameter constraints apply to these four parameters. The parameter pRK is the same parameter from the CreatePlayers component...whether the local Green player has resource critical knowledge by using the parameter pRK . It schedules an EndResourceKnowledgeRequest event, passing

  9. Continuous Variable Quantum Key Distribution Using Polarized Coherent States

    NASA Astrophysics Data System (ADS)

    Vidiella-Barranco, A.; Borelli, L. F. M.

    We discuss a continuous variables method of quantum key distribution employing strongly polarized coherent states of light. The key encoding is performed using the variables known as Stokes parameters, rather than the field quadratures. Their quantum counterpart, the Stokes operators Ŝi (i=1,2,3), constitute a set of non-commuting operators, being the precision of simultaneous measurements of a pair of them limited by an uncertainty-like relation. Alice transmits a conveniently modulated two-mode coherent state, and Bob randomly measures one of the Stokes parameters of the incoming beam. After performing reconciliation and privacy amplification procedures, it is possible to distill a secret common key. We also consider a non-ideal situation, in which coherent states with thermal noise, instead of pure coherent states, are used for encoding.

  10. Rare behavior of growth processes via umbrella sampling of trajectories

    NASA Astrophysics Data System (ADS)

    Klymko, Katherine; Geissler, Phillip L.; Garrahan, Juan P.; Whitelam, Stephen

    2018-03-01

    We compute probability distributions of trajectory observables for reversible and irreversible growth processes. These results reveal a correspondence between reversible and irreversible processes, at particular points in parameter space, in terms of their typical and atypical trajectories. Thus key features of growth processes can be insensitive to the precise form of the rate constants used to generate them, recalling the insensitivity to microscopic details of certain equilibrium behavior. We obtained these results using a sampling method, inspired by the "s -ensemble" large-deviation formalism, that amounts to umbrella sampling in trajectory space. The method is a simple variant of existing approaches, and applies to ensembles of trajectories controlled by the total number of events. It can be used to determine large-deviation rate functions for trajectory observables in or out of equilibrium.

  11. Selecting and optimizing eco-physiological parameters of Biome-BGC to reproduce observed woody and leaf biomass growth of Eucommia ulmoides plantation in China using Dakota optimizer

    NASA Astrophysics Data System (ADS)

    Miyauchi, T.; Machimura, T.

    2013-12-01

    In the simulation using an ecosystem process model, the adjustment of parameters is indispensable for improving the accuracy of prediction. This procedure, however, requires much time and effort for approaching the simulation results to the measurements on models consisting of various ecosystem processes. In this study, we tried to apply a general purpose optimization tool in the parameter optimization of an ecosystem model, and examined its validity by comparing the simulated and measured biomass growth of a woody plantation. A biometric survey of tree biomass growth was performed in 2009 in an 11-year old Eucommia ulmoides plantation in Henan Province, China. Climate of the site was dry temperate. Leaf, above- and below-ground woody biomass were measured from three cut trees and converted into carbon mass per area by measured carbon contents and stem density. Yearly woody biomass growth of the plantation was calculated according to allometric relationships determined by tree ring analysis of seven cut trees. We used Biome-BGC (Thornton, 2002) to reproduce biomass growth of the plantation. Air temperature and humidity from 1981 to 2010 was used as input climate condition. The plant functional type was deciduous broadleaf, and non-optimizing parameters were left default. 11-year long normal simulations were performed following a spin-up run. In order to select optimizing parameters, we analyzed the sensitivity of leaf, above- and below-ground woody biomass to eco-physiological parameters. Following the selection, optimization of parameters was performed by using the Dakota optimizer. Dakota is an optimizer developed by Sandia National Laboratories for providing a systematic and rapid means to obtain optimal designs using simulation based models. As the object function, we calculated the sum of relative errors between simulated and measured leaf, above- and below-ground woody carbon at each of eleven years. In an alternative run, errors at the last year (at the

  12. Individual tree basal-area growth parameter estimates for four models

    Treesearch

    J.J. Colbert; Michael Schuckers; Desta Fekedulegn; James Rentch; Mairtin MacSiurtain; Kurt Gottschalk

    2004-01-01

    Four sigmoid growth models are fit to basal-area data derived from increment cores and disks taken at breast height from oak trees. Models are rated on their ability to fit growth data from five datasets that are obtained from 10 locations along a longitudinal gradient across the states of Delaware, Pennsylvania, West Virginia, and Ohio in the USA. We examine and...

  13. Oxygen and carbon isotopic growth record in a reef coral from the florida keys and a deep-sea coral from blake plateau

    USGS Publications Warehouse

    Emiliani, C.; Harold, Hudson J.; Shinn, E.A.; George, R.Y.

    1978-01-01

    Carbon and oxygen isotope analysis through a 30-year (1944 to 1974) growth of Montastrea annularis from Hen and Chickens Reef (Florida Keys) shows a strong yearly variation in the abundances of both carbon-13 and oxygen-18 and a broad inverse relationship between the two isotopes. Normal annual dense bands are formed during the summer and are characterized by heavy carbon and light oxygen. "Stress bands" are formed during particularly severe winters and are characterized by heavy carbon and heavy oxygen. The isotopic effect of Zooxanthellae metabolism dominates the temperature effect on the oxygen-18/oxygen-16 ratio. The isotopic results on the deep-sea solitary coral Bathypsammia tintinnabulum, where Zooxanthellae are nonexistent, indicates that the abundance of the heavy isotopes carbon-13 and oxygen-18 is inversely related to the growth rate, with both carbon and oxygen approaching equilibrium values with increasing skeletal age.

  14. Influence of four nematodes on root and shoot growth parameters in grape.

    PubMed

    Anwar, S A; Van Gundy, S D

    1989-04-01

    Two grape cultivars, susceptible French Colombard and tolerant Rubired, and four nematodes, Meloidogyne incognita, Pratylenchus vulnus, Tylenchulus semipenetrans, and Xiphinema index, were used to quantify the equilibrium between root (R) and shoot (S) growth. Root and shoot growth of French Colombard was retarded by M. incognita, P. vulnus, and X. index but not by T. semipenetrans. Although the root growth of Rubired was limited by all the nematodes, the shoot growth was limited only by X. index. The R:S ratios of Rubired were higher than those of French Colombard. The reduced R:S ratios of Rubired were primarily an expression of reduction in root systems without an equal reduction in shoot growth, whereas in French Colombard the reduced R:S ratios were due to a reduction in both shoot growth and root growth and to a greater reduction in root growth than shoot growth. All nematodes reproduced equally well on both cultivars. Both foliage and root growth of French Colombard were significantly reduced by M. incognita and P. vulnus. Nematodes reduced the shoot length by reducing the internode length. Accumulative R:S ratios in inoculated plants were significantly smaller than those in controls in all nematode treatments but not at individual harvest dates. Bud break was delayed by X. index and was initiated earlier by P. vulnus and M. incognita. All buds in nematode treatments were less vigorous than in controls.

  15. 3-D Simulation of Earthquakes on the Cascadia Megathrust: Key Parameters and Constraints from Offshore Structure and Seismicity

    NASA Astrophysics Data System (ADS)

    Wirth, E. A.; Frankel, A. D.; Vidale, J. E.; Stone, I.; Nasser, M.; Stephenson, W. J.

    2017-12-01

    The Cascadia subduction zone has a long history of M8 to M9 earthquakes, inferred from coastal subsidence, tsunami records, and submarine landslides. These megathrust earthquakes occur mostly offshore, and an improved characterization of the megathrust is critical for accurate seismic hazard assessment in the Pacific Northwest. We run numerical simulations of 50 magnitude 9 earthquake rupture scenarios on the Cascadia megathrust, using a 3-D velocity model based on geologic constraints and regional seismicity, as well as active and passive source seismic studies. We identify key parameters that control the intensity of ground shaking and resulting seismic hazard. Variations in the down-dip limit of rupture (e.g., extending rupture to the top of the non-volcanic tremor zone, compared to a completely offshore rupture) result in a 2-3x difference in peak ground acceleration (PGA) for the inland city of Seattle, Washington. Comparisons of our simulations to paleoseismic data suggest that rupture extending to the 1 cm/yr locking contour (i.e., mostly offshore) provides the best fit to estimates of coastal subsidence during previous Cascadia earthquakes, but further constraints on the down-dip limit from microseismicity, offshore geodetics, and paleoseismic evidence are needed. Similarly, our simulations demonstrate that coastal communities experience a four-fold increase in PGA depending upon their proximity to strong-motion-generating areas (i.e., high strength asperities) on the deeper portions of the megathrust. An improved understanding of the structure and rheology of the plate interface and accretionary wedge, and better detection of offshore seismicity, may allow us to forecast locations of these asperities during a future Cascadia earthquake. In addition to these parameters, the seismic velocity and attenuation structure offshore also strongly affects the resulting ground shaking. This work outlines the range of plausible ground motions from an M9 Cascadia

  16. Simultaneous versus sequential optimal experiment design for the identification of multi-parameter microbial growth kinetics as a function of temperature.

    PubMed

    Van Derlinden, E; Bernaerts, K; Van Impe, J F

    2010-05-21

    Optimal experiment design for parameter estimation (OED/PE) has become a popular tool for efficient and accurate estimation of kinetic model parameters. When the kinetic model under study encloses multiple parameters, different optimization strategies can be constructed. The most straightforward approach is to estimate all parameters simultaneously from one optimal experiment (single OED/PE strategy). However, due to the complexity of the optimization problem or the stringent limitations on the system's dynamics, the experimental information can be limited and parameter estimation convergence problems can arise. As an alternative, we propose to reduce the optimization problem to a series of two-parameter estimation problems, i.e., an optimal experiment is designed for a combination of two parameters while presuming the other parameters known. Two different approaches can be followed: (i) all two-parameter optimal experiments are designed based on identical initial parameter estimates and parameters are estimated simultaneously from all resulting experimental data (global OED/PE strategy), and (ii) optimal experiments are calculated and implemented sequentially whereby the parameter values are updated intermediately (sequential OED/PE strategy). This work exploits OED/PE for the identification of the Cardinal Temperature Model with Inflection (CTMI) (Rosso et al., 1993). This kinetic model describes the effect of temperature on the microbial growth rate and encloses four parameters. The three OED/PE strategies are considered and the impact of the OED/PE design strategy on the accuracy of the CTMI parameter estimation is evaluated. Based on a simulation study, it is observed that the parameter values derived from the sequential approach deviate more from the true parameters than the single and global strategy estimates. The single and global OED/PE strategies are further compared based on experimental data obtained from design implementation in a bioreactor

  17. Assessment of key transport parameters in a karst system under different dynamic conditions based on tracer experiments: the Jeita karst system, Lebanon

    NASA Astrophysics Data System (ADS)

    Doummar, Joanna; Margane, Armin; Geyer, Tobias; Sauter, Martin

    2018-03-01

    Artificial tracer experiments were conducted in the mature karst system of Jeita (Lebanon) under various flow conditions using surface and subsurface tracer injection points, to determine the variation of transport parameters (attenuation of peak concentration, velocity, transit times, dispersivity, and proportion of immobile and mobile regions) along fast and slow flow pathways. Tracer breakthrough curves (TBCs) observed at the karst spring were interpreted using a two-region nonequilibrium approach (2RNEM) to account for the skewness in the TBCs' long tailings. The conduit test results revealed a discharge threshold in the system dynamics, beyond which the transport parameters vary significantly. The polynomial relationship between transport velocity and discharge can be related to the variation of the conduit's cross-sectional area. Longitudinal dispersivity in the conduit system is not a constant value (α = 7-10 m) and decreases linearly with increasing flow rate because of dilution effects. Additionally, the proportion of immobile regions (arising from conduit irregularities) increases with decreasing water level in the conduit system. From tracer tests with injection at the surface, longitudinal dispersivity values are found to be large (8-27 m). The tailing observed in some TBCs is generated in the unsaturated zone before the tracer actually arrives at the major subsurface conduit draining the system. This work allows the estimation and prediction of the key transport parameters in karst aquifers. It shows that these parameters vary with time and flow dynamics, and they reflect the geometry of the flow pathway and the origin of infiltrating (potentially contaminated) recharge.

  18. [Parameters modification and evaluation of two evapotranspiration models based on Penman-Monteith model for summer maize].

    PubMed

    Wang, Juan; Wang, Jian Lin; Liu, Jia Bin; Jiang, Wen; Zhao, Chang Xing

    2017-06-18

    The dynamic variations of evapotranspiration (ET) and weather data during summer maize growing season in 2013-2015 were monitored with eddy covariance system, and the applicability of two operational models (FAO-PM model and KP-PM model) based on the Penman-Monteith model were analyzed. Firstly, the key parameters in the two models were calibrated with the measured data in 2013 and 2014; secondly, the daily ET in 2015 calculated by the FAO-PM model and KP-PM model was compared to the observed ET, respectively. Finally, the coefficients in the KP-PM model were further revised with the coefficients calculated according to the different growth stages, and the performance of the revised KP-PM model was also evaluated. These statistical parameters indicated that the calculated daily ET for 2015 by the FAO-PM model was closer to the observed ET than that by the KP-PM model. The daily ET calculated from the revised KP-PM model for daily ET was more accurate than that from the FAO-PM model. It was also found that the key parameters in the two models were correlated with weather conditions, so the calibration was necessary before using the models to predict the ET. The above results could provide some guidelines on predicting ET with the two models.

  19. Modelling the effect of heterogeneity of shedding on the within herd Coxiella burnetii spread and identification of key parameters by sensitivity analysis.

    PubMed

    Courcoul, Aurélie; Monod, Hervé; Nielen, Mirjam; Klinkenberg, Don; Hogerwerf, Lenny; Beaudeau, François; Vergu, Elisabeta

    2011-09-07

    Coxiella burnetii is the bacterium responsible for Q fever, a worldwide zoonosis. Ruminants, especially cattle, are recognized as the most important source of human infections. Although a great heterogeneity between shedder cows has been described, no previous studies have determined which features such as shedding route and duration or the quantity of bacteria shed have the strongest impact on the environmental contamination and thus on the zoonotic risk. Our objective was to identify key parameters whose variation highly influences C. burnetii spread within a dairy cattle herd, especially those related to the heterogeneity of shedding. To compare the impact of epidemiological parameters on different dynamical aspects of C. burnetii infection, we performed a sensitivity analysis on an original stochastic model describing the bacterium spread and representing the individual variability of the shedding duration, routes and intensity as well as herd demography. This sensitivity analysis consisted of a principal component analysis followed by an ANOVA. Our findings show that the most influential parameters are the probability distribution governing the levels of shedding, especially in vaginal mucus and faeces, the characteristics of the bacterium in the environment (i.e. its survival and the fraction of bacteria shed reaching the environment), and some physiological parameters related to the intermittency of shedding (transition probability from a non-shedding infected state to a shedding state) or to the transition from one type of shedder to another one (transition probability from a seronegative shedding state to a seropositive shedding state). Our study is crucial for the understanding of the dynamics of C. burnetii infection and optimization of control measures. Indeed, as control measures should impact the parameters influencing the bacterium spread most, our model can now be used to assess the effectiveness of different control strategies of Q fever within

  20. Growth of a Species, an Association, a Science: 80 Years of Growth and Development Research

    PubMed Central

    Sherwood, Richard J.; Duren, Dana L.

    2014-01-01

    Physical anthropological research was codified in the United States with the creation of the American Association of Physical Anthropology (AAPA) in 1929. That same year, a study began in yellow springs, Ohio, with a goal of identifying “what makes people different.” The approach used to answer that question was to study the growth and development of Homo sapiens. The resulting study, the Fels Longitudinal Study, is currently the longest continuous study of human growth and development in the world. Although the AAPA and the Fels Longitudinal Study have existed as separate entities for more than 80 years now, it is not surprising, given the relationship between anatomical and developmental research, there has been considerable overlap between the two. As the field of physical anthropology has blossomed to include subdisciplines such as forensics, genetics, primatology, as well as sophisticated statistical methodologies, the importance of growth and development research has escalated. Although current Fels Longitudinal Study research is largely directed at biomedical questions, virtually all findings are relevant to physical anthropology, providing insights into basic biological processes and life history parameters. Some key milestones from the early years of the AAPA and the Fels Longitudinal Study are highlighted here that address growth and development research in physical anthropology. These are still held as fundamental concepts that underscore the importance of this line of inquiry, not only across the subdisciplines of physical anthropology, but also among anthropological, biological, and biomedical inquiries. PMID:23283658

  1. Growth of a species, an association, a science: 80 years of growth and development research.

    PubMed

    Sherwood, Richard J; Duren, Dana L

    2013-01-01

    Physical anthropological research was codified in the United States with the creation of the American Association of Physical Anthropology (AAPA) in 1929. That same year, a study began in yellow springs, Ohio, with a goal of identifying "what makes people different." The approach used to answer that question was to study the growth and development of Homo sapiens. The resulting study, the Fels Longitudinal Study, is currently the longest continuous study of human growth and development in the world. Although the AAPA and the Fels Longitudinal Study have existed as separate entities for more than 80 years now, it is not surprising, given the relationship between anatomical and developmental research, there has been considerable overlap between the two. As the field of physical anthropology has blossomed to include subdisciplines such as forensics, genetics, primatology, as well as sophisticated statistical methodologies, the importance of growth and development research has escalated. Although current Fels Longitudinal Study research is largely directed at biomedical questions, virtually all findings are relevant to physical anthropology, providing insights into basic biological processes and life history parameters. Some key milestones from the early years of the AAPA and the Fels Longitudinal Study are highlighted here that address growth and development research in physical anthropology. These are still held as fundamental concepts that underscore the importance of this line of inquiry, not only across the subdisciplines of physical anthropology, but also among anthropological, biological, and biomedical inquiries. Copyright © 2012 Wiley Periodicals, Inc.

  2. Numerical approach for unstructured quantum key distribution

    PubMed Central

    Coles, Patrick J.; Metodiev, Eric M.; Lütkenhaus, Norbert

    2016-01-01

    Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study ‘unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown. PMID:27198739

  3. Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solid-state dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yi-Mu, E-mail: ymlee@nuu.edu.t; Yang, Hsi-Wen

    2011-03-15

    High-transparency and high quality ZnO nanorod arrays were grown on the ITO substrates by a two-step chemical bath deposition (CBD) method. The effects of processing parameters including reaction temperature (25-95 {sup o}C) and solution concentration (0.01-0.1 M) on the crystal growth, alignment, optical and electrical properties were systematically investigated. It has been found that these process parameters are critical for the growth, orientation and aspect ratio of the nanorod arrays, showing different structural and optical properties. Experimental results reveal that the hexagonal ZnO nanorod arrays prepared under reaction temperature of 95 {sup o}C and solution concentration of 0.03 M possessmore » highest aspect ratio of {approx}21, and show the well-aligned orientation and optimum optical properties. Moreover the ZnO nanorod arrays based heterojunction electrodes and the solid-state dye-sensitized solar cells (SS-DSSCs) were fabricated with an improved optoelectrical performance. -- Graphical abstract: The ZnO nanorod arrays demonstrate well-alignment, high aspect ratio (L/D{approx}21) and excellent optical transmittance by low-temperature chemical bath deposition (CBD). Display Omitted Research highlights: > Investigate the processing parameters of CBD on the growth of ZnO nanorod arrays. > Optimization of CBD process parameters: 0.03 M solution concentration and reaction temperature of 95 {sup o}C. > The prepared ZnO samples possess well-alignment and high aspect ratio (L/D{approx}21). > An n-ZnO/p-NiO heterojunction: great rectifying behavior and low leakage current. > SS-DSSC has J{sub SC} of 0.31 mA/cm{sup 2} and V{sub OC} of 590 mV, and an improved {eta} of 0.059%.« less

  4. Solar oxidation and removal of arsenic--Key parameters for continuous flow applications.

    PubMed

    Gill, L W; O'Farrell, C

    2015-12-01

    Solar oxidation to remove arsenic from water has previously been investigated as a batch process. This research has investigated the kinetic parameters for the design of a continuous flow solar reactor to remove arsenic from contaminated groundwater supplies. Continuous flow recirculated batch experiments were carried out under artificial UV light to investigate the effect of different parameters on arsenic removal efficiency. Inlet water arsenic concentrations of up to 1000 μg/L were reduced to below 10 μg/L requiring 12 mg/L iron after receiving 12 kJUV/L radiation. Citrate however was somewhat surprisingly found to promote a detrimental effect on the removal process in the continuous flow reactor studies which is contrary to results found in batch scale tests. The impact of other typical water groundwater quality parameters (phosphate and silica) on the process due to their competition with arsenic for photooxidation products revealed a much higher sensitivity to phosphate ions compared to silicate. Other results showed no benefit from the addition of TiO2 photocatalyst but enhanced arsenic removal at higher temperatures up to 40 °C. Overall, these results have indicated the kinetic envelope from which a continuous flow SORAS single pass system could be more confidently designed for a full-scale community groundwater application at a village level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Influence of key processing parameters and seeding density effects of microencapsulated chondrocytes fabricated using electrohydrodynamic spraying.

    PubMed

    Gansau, Jennifer; Kelly, Lara; Buckley, Conor

    2018-06-11

    Cell delivery and leakage during injection remains a challenge for cell-based intervertebral disc regeneration strategies. Cellular microencapsulation may offer a promising approach to overcome these limitations by providing a protective niche during intradiscal injection. Electrohydrodynamic spraying (EHDS) is a versatile one-step approach for microencapsulation of cells using a high voltage electric field. The primary objective of this work was to characterise key processing parameters such as applied voltage (0, 5, 10 or 15kV), emitter needle gauge (21, 26 or 30G), alginate concentration (1, 2 or 3%) and flow rate (50, 100, 250 or 500 µl/min) to regulate the morphology of alginate microcapsules and subsequent cell viability when altering these parameters. The effect of initial cell seeding density (5, 10 and 20x10<sup>6</sup> cells/ml) on subsequent matrix accumulation of microencapsulated articular chondrocytes was also evaluated. Results showed that increasing alginate concentration and thus viscosity increased overall microcapsule size but also affected the geometry towards ellipsoidal-shaped gels. Altering the electric field strength and needle diameter regulated microcapsule size towards a smaller diameter with increasing voltage and smaller needle diameter. Needle size did not appear to affect cell viability when operating with lower alginate concentrations (1% and 2%), although higher concentrations (3%) and thus higher viscosity hydrogels resulted in diminished viability with decreasing needle diameter. Increasing cell density resulted in decreased cell viability and a concomitant decrease in DNA content, perhaps due to competing nutrient demands as a result of more closely packed cells. However, higher cell densities resulted in increased levels of extracellular matrix accumulated. Overall, this work highlights the potential of EHDS as a controllable and versatile approach to fabricate microcapsules for injectable delivery which can be

  6. Influence of extremely low frequency electromagnetic fields on growth performance, innate immune response, biochemical parameters and disease resistance in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Nofouzi, Katayoon; Sheikhzadeh, Najmeh; Mohamad-Zadeh Jassur, Davood; Ashrafi-Helan, Javad

    2015-06-01

    The effects of extremely low frequency electromagnetic fields on rainbow trout growth performance, innate immunity and biochemical parameters were studied. Rainbow trout (17-18 g) were exposed to electromagnetic fields (15 Hz) at 0.01, 0.1, 0.5, 5 and 50 µT, for 1 h daily over period of 60 days. Growth performance of fish improved in different treatment groups, especially at 0.1, 0.5, 5 and 50 µT. Immunological parameters, specifically hemagglutinating titer, total antiprotease and α1-antiprotease levels in treatment groups, were also enhanced. Total protein and globulin contents in the serum of fish exposed to 0.1, 0.5, 5 and 50 µT were significantly higher than those in the control group. No significant differences were found in serum enzyme activities, namely aspartate aminotransferase and alanine aminotransferase of fish in all treatment groups. Conversely, alkaline phosphatase level decreased in fish exposed to 0.01 and 50 µT electromagnetic fields. Meanwhile, electromagnetic induction at 0.1, 0.5, 5 and 50 µT enhanced fish protection against Yersinia ruckeri. These results indicated that these specific electromagnetic fields had possible effects on growth performance, nonspecific immunity and disease resistance of rainbow trout.

  7. L-glutamine is a key parameter in the immunosuppression phenomenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammami, Ines; Chen, Jingkui; Bronte, Vincenzo

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer The absence of L-Gln inhibited iNOS activity, but not ARG1 one. Black-Right-Pointing-Pointer MSC-1 cells were able to inhibit Jurkat cell growth, but not their viability. Black-Right-Pointing-Pointer Absence of L-Gln down-regulated central carbon metabolism and L-Arg recycling. Black-Right-Pointing-Pointer Absence of L-Gln deteriorated cell bioenergetic status. Black-Right-Pointing-Pointer L-Gln is crucial for iNOS-mediated immunosuppression activity. -- Abstract: Suppression of tumour-specific T-cell functions by myeloid-derived suppressor cells (MDSCs) is a dominant mechanism of tumour escape. MDSCs express two enzymes, i.e. inducible nitric oxide synthase (iNOS) and arginase (ARG1), which metabolize the semi-essential amino acid L-arginine (L-Arg) whose bioavailability is crucial for T-cellmore » proliferation and functions. Recently, we showed that glutaminolysis supports MDSC maturation process by ensuring the supply of intermediates and energy. In this work, we used an immortalized cell line derived from mouse MDSCs (MSC-1 cell line) to further investigate the role of L-glutamine (L-Gln) in the maintenance of MDSC immunosuppressive activity. Culturing MSC-1 cells in L-Gln-limited medium inhibited iNOS activity, while ARG1 was not affected. MSC-1 cells inhibited Jukat cell growth without any noticeable effect on their viability. The characterization of MSC-1 cell metabolic profile revealed that L-Gln is an important precursor of lactate production via the NADP{sup +}-dependent malic enzyme, which co-produces NADPH. Moreover, the TCA cycle activity was down-regulated in the absence of L-Gln and the cell bioenergetic status was deteriorated accordingly. This strongly suggests that iNOS activity, but not that of ARG1, is related to an enhanced central carbon metabolism and a high bioenergetic status. Taken altogether, our results suggest that the control of glutaminolysis fluxes may represent a valuable target for

  8. A Model-Based Investigation of Charge-Generation According to the Relative Diffusional Growth Rate Theory

    NASA Astrophysics Data System (ADS)

    Glassmeier, F.; Arnold, L.; Lohmann, U.; Dietlicher, R.; Paukert, M.

    2016-12-01

    Our current understanding of charge generation in thunderclouds is based on collisional charge transfer between graupel and ice crystals in the presence of liquid water droplets as dominant mechanism. The physical process of charge transfer and the sign of net charge generated on graupel and ice crystals under different cloud conditions is not yet understood. The Relative-Diffusional-Growth-Rate (RDGR) theory (Baker et al. 1987) suggests that the particle with the faster diffusional radius growth is charged positively. In this contribution, we use simulations of idealized thunderclouds with two-moment warm and cold cloud microphysics to generate realistic combinations of RDGR-parameters. We find that these realistic parameter combinations result in a relationship between sign of charge, cloud temperature and effective water content that deviates from previous theoretical and laboratory studies. This deviation indicates that the RDGR theory is sensitive to correlations between parameters that occur in clouds but are not captured in studies that vary temperature and water content while keeping other parameters at fixed values. In addition, our results suggest that diffusional growth from the riming-related local water vapor field, a key component of the RDGR theory, is negligible for realistic parameter combinations. Nevertheless, we confirm that the RDGR theory results in positive or negative charging of particles under different cloud conditions. Under specific conditions, charge generation via the RDGR theory alone might thus be sufficient to explain tripolar charge structures in thunderclouds. In general, however, additional charge generation mechanisms and adaptations to the RDGR theory that consider riming other than via local vapor deposition seem necessary.

  9. Evaluation of experimental parameters for growth of homogeneous solid solutions

    NASA Astrophysics Data System (ADS)

    Scheel, Hans J.; Swendsen, Robert H.

    2001-12-01

    In this paper, we discuss the experimental conditions required to grow large two-component crystals from homogeneous solid solutions. Building on the work of Burton, Prim, and Slichter and that of Van Erk, we are able to establish that the concentration fluctuations for diffusion-limited growth are rather insensitive to hydrodynamic fluctuations. This enables a crystal grower to take advantage of forced convection to optimize growth rates without aggravating the striation problem.

  10. Modelling the growth of plants with a uniform growth logistics.

    PubMed

    Kilian, H G; Bartkowiak, D; Kazda, M; Kaufmann, D

    2014-05-21

    The increment model has previously been used to describe the growth of plants in general. Here, we examine how the same logistics enables the development of different superstructures. Data from the literature are analyzed with the increment model. Increments are growth-invariant molecular clusters, treated as heuristic particles. This approach formulates the law of mass action for multi-component systems, describing the general properties of superstructures which are optimized via relaxation processes. The daily growth patterns of hypocotyls can be reproduced implying predetermined growth invariant model parameters. In various species, the coordinated formation and death of fine roots are modeled successfully. Their biphasic annual growth follows distinct morphological programs but both use the same logistics. In tropical forests, distributions of the diameter in breast height of trees of different species adhere to the same pattern. Beyond structural fluctuations, competition and cooperation within and between the species may drive optimization. All superstructures of plants examined so far could be reproduced with our approach. With genetically encoded growth-invariant model parameters (interaction with the environment included) perfect morphological development runs embedded in the uniform logistics of the increment model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Urban thermal environment and its biophysical parameters derived from satellite remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Tautan, Marina N.; Baschir, Laurentiu V.

    2013-10-01

    In frame of global warming, the field of urbanization and urban thermal environment are important issues among scientists all over the world. This paper investigated the influences of urbanization on urban thermal environment as well as the relationships of thermal characteristics to other biophysical variables in Bucharest metropolitan area of Romania based on satellite remote sensing imagery Landsat TM/ETM+, time series MODIS Terra/Aqua data and IKONOS acquired during 1990 - 2012 period. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also retrieved from thermal infrared band of Landsat TM/ETM+, from MODIS Terra/Aqua datasets. Based on these parameters, the urban growth, urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters have been analyzed. Results indicated that the metropolitan area ratio of impervious surface in Bucharest increased significantly during two decades investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.

  12. Exact analytic solutions for a global equation of plant cell growth.

    PubMed

    Pietruszka, Mariusz

    2010-05-21

    A generalization of the Lockhart equation for plant cell expansion in isotropic case is presented. The goal is to account for the temporal variation in the wall mechanical properties--in this case by making the wall extensibility a time dependent parameter. We introduce a time-differential equation describing the plant growth process with some key biophysical aspects considered. The aim of this work was to improve prior modeling efforts by taking into account the dynamic character of the plant cell wall with characteristics reminiscent of damped (aperiodic) motion. The equations selected to encapsulate the time evolution of the wall extensibility offer a new insight into the control of cell wall expansion. We find that the solutions to the time dependent second order differential equation reproduce much of the known experimental data for long- and short-time scales. Additionally, in order to support the biomechanical approach, a new growth equation based on the action of expansin proteins is proposed. Remarkably, both methods independently converge to the same kind, sigmoid-shaped, growth description functional V(t) proportional, exp(-exp(-t)), properly describing the volumetric growth and, consequently, growth rate as its time derivative. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Application of lab derived kinetic biodegradation parameters at the field scale

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Barker, J. F.; Butler, B. J.; Frind, E. O.

    2003-04-01

    Estimating the intrinsic remediation potential of an aquifer typically requires the accurate assessment of the biodegradation kinetics, the level of available electron acceptors and the flow field. Zero- and first-order degradation rates derived at the laboratory scale generally overpredict the rate of biodegradation when applied to the field scale, because limited electron acceptor availability and microbial growth are typically not considered. On the other hand, field estimated zero- and first-order rates are often not suitable to forecast plume development because they may be an oversimplification of the processes at the field scale and ignore several key processes, phenomena and characteristics of the aquifer. This study uses the numerical model BIO3D to link the laboratory and field scale by applying laboratory derived Monod kinetic degradation parameters to simulate a dissolved gasoline field experiment at Canadian Forces Base (CFB) Borden. All additional input parameters were derived from laboratory and field measurements or taken from the literature. The simulated results match the experimental results reasonably well without having to calibrate the model. An extensive sensitivity analysis was performed to estimate the influence of the most uncertain input parameters and to define the key controlling factors at the field scale. It is shown that the most uncertain input parameters have only a minor influence on the simulation results. Furthermore it is shown that the flow field, the amount of electron acceptor (oxygen) available and the Monod kinetic parameters have a significant influence on the simulated results. Under the field conditions modelled and the assumptions made for the simulations, it can be concluded that laboratory derived Monod kinetic parameters can adequately describe field scale degradation processes, if all controlling factors are incorporated in the field scale modelling that are not necessarily observed at the lab scale. In this way

  14. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces.

    PubMed

    Aili, Abulimiti; Li, Hongxia; Alhosani, Mohamed H; Zhang, TieJun

    2016-08-24

    Superhydrophobic nanostructured surfaces have demonstrated outstanding capability in energy and water applications by promoting dropwise condensation, where fast droplet growth and efficient condensate removal are two key parameters. However, these parameters remain contradictory. Although efficient droplet removal is easily obtained through coalescence jumping on uniform superhydrophobic surfaces, simultaneously achieving fast droplet growth is still challenging. Also, on such surfaces droplets can grow to larger sizes without restriction if there is no coalescence. In this work, we show that superhydrophobic nanostructured microporous surfaces can manipulate the droplet growth and jumping. Microporous surface morphology effectively enhances the growth of droplets in pores owing to large solid-liquid contact area. At low supersaturations, the upward growth rate (1-1.5 μm/s) of these droplets in pores is observed to be around 15-25 times that of the droplets outside the pores. Meanwhile, their top curvature radius increases relatively slowly (∼0.25 μm/s) due to pore confinement, which results in a highly stretched droplet surface. We also observed forced jumping of stretched droplets in pores either through coalescence with spherical droplets outside pores or through self-pulling without coalescence. Both experimental observation and theoretical modeling reveal that excess surface free energy stored in the stretched droplet surface and micropore confinement are responsible for this pore-scale-forced jumping. These findings reveal the insightful physics of stretched droplet dynamics and offer guidelines for the design and fabrication of novel super-repellent surfaces with microporous morphology.

  15. No effect of moderate or high concentrate allowance on growth parameters in weanling Warmblood foals fed late-cut haylage as forage.

    PubMed

    Mack, J K; Remler, H P; Senckenberg, E; Kienzle, E

    2014-10-01

    Two groups of Warmblood foals from the Bavarian federal stud participated in the study beginning from the age of approximately 6 months. The foals were offered a late 1st cut of haylage, oats and foal starter feed. For 2 months after weaning, group 'R' (15 foals) received an amount of oats to provide a total digestible energy supply meeting the recommendations of the German Society of Nutrition Physiology (GfE), whereas the other group 'A' (16 foals) was offered a higher amount of oats (surplus of approximately 1.3 kg/animal/day). Concentrates were fed individually twice daily; total daily haylage intake of all foals together was recorded. In both groups, individual concentrate intake, body weight (BW), body condition score (BCS) and several growth parameters were documented. Both groups showed an absolutely parallel development of the measured growth parameters and of BW and BCS. BW and BCS increased above the recommendations of GfE and Hois. The amount of concentrates offered was not ingested completely in both groups. The average metabolisable energy (ME) intake from concentrates amounted to 30.3 and 32.1 MJ ME/animal/day (group 'R') and 38.7 and 38.2 MJ ME/animal/day (group 'A') for the 7th and 8th month respectively. The mean haylage intake of all foals together equalled 26.2 MJ ME/animal/day. The parallel development of all documented growth parameters in both groups leads to the assumption that higher concentrate intake must have caused lower intake of haylage and vice versa, thus resulting in an overall comparable energy intake for each foal, independently of energy source. The calculated average daily energy intake for all foals together amounted to 60.5 and 61.4 MJ ME/animal for the 7th and 8th month. The mean crude protein intake in both groups together amounted to 640 and 647 g/animal/day for the 7th and 8th month. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  16. Selection, calibration, and validation of models of tumor growth.

    PubMed

    Lima, E A B F; Oden, J T; Hormuth, D A; Yankeelov, T E; Almeida, R C

    2016-11-01

    This paper presents general approaches for addressing some of the most important issues in predictive computational oncology concerned with developing classes of predictive models of tumor growth. First, the process of developing mathematical models of vascular tumors evolving in the complex, heterogeneous, macroenvironment of living tissue; second, the selection of the most plausible models among these classes, given relevant observational data; third, the statistical calibration and validation of models in these classes, and finally, the prediction of key Quantities of Interest (QOIs) relevant to patient survival and the effect of various therapies. The most challenging aspects of this endeavor is that all of these issues often involve confounding uncertainties: in observational data, in model parameters, in model selection, and in the features targeted in the prediction. Our approach can be referred to as "model agnostic" in that no single model is advocated; rather, a general approach that explores powerful mixture-theory representations of tissue behavior while accounting for a range of relevant biological factors is presented, which leads to many potentially predictive models. Then representative classes are identified which provide a starting point for the implementation of OPAL, the Occam Plausibility Algorithm (OPAL) which enables the modeler to select the most plausible models (for given data) and to determine if the model is a valid tool for predicting tumor growth and morphology ( in vivo ). All of these approaches account for uncertainties in the model, the observational data, the model parameters, and the target QOI. We demonstrate these processes by comparing a list of models for tumor growth, including reaction-diffusion models, phase-fields models, and models with and without mechanical deformation effects, for glioma growth measured in murine experiments. Examples are provided that exhibit quite acceptable predictions of tumor growth in laboratory

  17. Modeling Exponential Population Growth

    ERIC Educational Resources Information Center

    McCormick, Bonnie

    2009-01-01

    The concept of population growth patterns is a key component of understanding evolution by natural selection and population dynamics in ecosystems. The National Science Education Standards (NSES) include standards related to population growth in sections on biological evolution, interdependence of organisms, and science in personal and social…

  18. Endocrine Parameters and Phenotypes of the Growth Hormone Receptor Gene Disrupted (GHR−/−) Mouse

    PubMed Central

    List, Edward O.; Sackmann-Sala, Lucila; Berryman, Darlene E.; Funk, Kevin; Kelder, Bruce; Gosney, Elahu S.; Okada, Shigeru; Ding, Juan; Cruz-Topete, Diana

    2011-01-01

    Disruption of the GH receptor (GHR) gene eliminates GH-induced intracellular signaling and, thus, its biological actions. Therefore, the GHR gene disrupted mouse (GHR−/−) has been and is a valuable tool for helping to define various parameters of GH physiology. Since its creation in 1995, this mouse strain has been used by our laboratory and others for numerous studies ranging from growth to aging. Some of the most notable discoveries are their extreme insulin sensitivity in the presence of obesity. Also, the animals have an extended lifespan, which has generated a large number of investigations into the roles of GH and IGF-I in the aging process. This review summarizes the many results derived from the GHR−/− mice. We have attempted to present the findings in the context of current knowledge regarding GH action and, where applicable, to discuss how these mice compare to GH insensitivity syndrome in humans. PMID:21123740

  19. Simultaneous inhibition of key growth pathways in melanoma cells and tumor regression by a designed bidentate constrained helical peptide.

    PubMed

    Dhar, Amlanjyoti; Mallick, Shampa; Ghosh, Piya; Maiti, Atanu; Ahmed, Israr; Bhattacharya, Seemana; Mandal, Tapashi; Manna, Asit; Roy, Koushik; Singh, Sandeep; Nayak, Dipak Kumar; Wilder, Paul T; Markowitz, Joseph; Weber, David; Ghosh, Mrinal K; Chattopadhyay, Samit; Guha, Rajdeep; Konar, Aditya; Bandyopadhyay, Santu; Roy, Siddhartha

    2014-07-01

    Protein-protein interactions are part of a large number of signaling networks and potential targets for drug development. However, discovering molecules that can specifically inhibit such interactions is a major challenge. S100B, a calcium-regulated protein, plays a crucial role in the proliferation of melanoma cells through protein-protein interactions. In this article, we report the design and development of a bidentate conformationally constrained peptide against dimeric S100B based on a natural tight-binding peptide, TRTK-12. The helical conformation of the peptide was constrained by the substitution of α-amino isobutyric acid--an amino acid having high helical propensity--in positions which do not interact with S100B. A branched bidentate version of the peptide was bound to S100B tightly with a dissociation constant of 8 nM. When conjugated to a cell-penetrating peptide, it caused growth inhibition and rapid apoptosis in melanoma cells. The molecule exerts antiproliferative action through simultaneous inhibition of key growth pathways, including reactivation of wild-type p53 and inhibition of Akt and STAT3 phosphorylation. The apoptosis induced by the bidentate constrained helix is caused by direct migration of p53 to mitochondria. At moderate intravenous dose, the peptide completely inhibits melanoma growth in a mouse model without any significant observable toxicity. The specificity was shown by lack of ability of a double mutant peptide to cause tumor regression at the same dose level. The methodology described here for direct protein-protein interaction inhibition may be effective for rapid development of inhibitors against relatively weak protein-protein interactions for de novo drug development. © 2014 Wiley Periodicals, Inc.

  20. Multiscale digital Arabidopsis predicts individual organ and whole-organism growth.

    PubMed

    Chew, Yin Hoon; Wenden, Bénédicte; Flis, Anna; Mengin, Virginie; Taylor, Jasper; Davey, Christopher L; Tindal, Christopher; Thomas, Howard; Ougham, Helen J; de Reffye, Philippe; Stitt, Mark; Williams, Mathew; Muetzelfeldt, Robert; Halliday, Karen J; Millar, Andrew J

    2014-09-30

    Understanding how dynamic molecular networks affect whole-organism physiology, analogous to mapping genotype to phenotype, remains a key challenge in biology. Quantitative models that represent processes at multiple scales and link understanding from several research domains can help to tackle this problem. Such integrated models are more common in crop science and ecophysiology than in the research communities that elucidate molecular networks. Several laboratories have modeled particular aspects of growth in Arabidopsis thaliana, but it was unclear whether these existing models could productively be combined. We test this approach by constructing a multiscale model of Arabidopsis rosette growth. Four existing models were integrated with minimal parameter modification (leaf water content and one flowering parameter used measured data). The resulting framework model links genetic regulation and biochemical dynamics to events at the organ and whole-plant levels, helping to understand the combined effects of endogenous and environmental regulators on Arabidopsis growth. The framework model was validated and tested with metabolic, physiological, and biomass data from two laboratories, for five photoperiods, three accessions, and a transgenic line, highlighting the plasticity of plant growth strategies. The model was extended to include stochastic development. Model simulations gave insight into the developmental control of leaf production and provided a quantitative explanation for the pleiotropic developmental phenotype caused by overexpression of miR156, which was an open question. Modular, multiscale models, assembling knowledge from systems biology to ecophysiology, will help to understand and to engineer plant behavior from the genome to the field.

  1. [Key physical parameters of hawthorn leaf granules by stepwise regression analysis method].

    PubMed

    Jiang, Qie-Ying; Zeng, Rong-Gui; Li, Zhe; Luo, Juan; Zhao, Guo-Wei; Lv, Dan; Liao, Zheng-Gen

    2017-05-01

    The purpose of this study was to investigate the effect of key physical properties of hawthorn leaf granule on its dissolution behavior. Hawthorn leaves extract was utilized as a model drug. The extract was mixed with microcrystalline cellulose or starch with the same ratio by using different methods. Appropriate amount of lubricant and disintegrating agent was added into part of the mixed powder, and then the granules were prepared by using extrusion granulation and high shear granulation. The granules dissolution behavior was evaluated by using equilibrium dissolution quantity and dissolution rate constant of the hypericin as the indicators. Then the effect of physical properties on dissolution behavior was analyzed through the stepwise regression analysis method. The equilibrium dissolution quantity of hypericin and adsorption heat constant in hawthorn leaves were positively correlated with the monolayer adsorption capacity and negatively correlated with the moisture absorption rate constant. The dissolution rate constants were decreased with the increase of Hausner rate, monolayer adsorption capacity and adsorption heat constant, and were increased with the increase of Carr index and specific surface area. Adsorption heat constant, monolayer adsorption capacity, moisture absorption rate constant, Carr index and specific surface area were the key physical properties of hawthorn leaf granule to affect its dissolution behavior. Copyright© by the Chinese Pharmaceutical Association.

  2. Mapping the transition from catalyst-pool to bamboo-like growth-mechanism in vertically-aligned free-standing films of carbon nanotubes filled with Fe3C: The key role of water

    NASA Astrophysics Data System (ADS)

    Boi, Filippo S.; Wang, Shanling; He, Yi

    2016-08-01

    The control of carbon nanotube growth has challenged researchers for more than a decade due to the complex parameters-control necessary in the commonly used CVD approaches. Here we show that a direct transition from the catalyst-pool growth mechanism characterized by graphene-caps in the direction of growth to a bamboo-shaped mechanism characterized by the repetition of periodic elongated graphitic compartments is present when controlled quantities of water are added to ferrocene/dichlorobenzene. Our results suggest that water-addition allows enhancing the level of stress accumulated under the graphitic nanotubes-cap.

  3. Growth kinetic and fuel quality parameters as selective criterion for screening biodiesel producing cyanobacterial strains.

    PubMed

    Gayathri, Manickam; Shunmugam, Sumathy; Mugasundari, Arumugam Vanmathi; Rahman, Pattanathu K S M; Muralitharan, Gangatharan

    2018-01-01

    The efficiency of cyanobacterial strains as biodiesel feedstock varies with the dwelling habitat. Fourteen indigenous heterocystous cyanobacterial strains from rice field ecosystem were screened based on growth kinetic and fuel parameters. The highest biomass productivity was obtained in Nostoc punctiforme MBDU 621 (19.22mg/L/day) followed by Calothrix sp. MBDU 701 (13.43mg/L/day). While lipid productivity and lipid content was highest in Nostoc spongiaeforme MBDU 704 (4.45mg/L/day and 22.5%dwt) followed by Calothrix sp. MBDU 701 (1.54mg/L/day and 10.75%dwt). Among the tested strains, Nostoc spongiaeforme MBDU 704 and Nostoc punctiforme MBDU 621 were selected as promising strains for good quality biodiesel production by Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Parenting Styles: A Key Factor to Self Determination and Personal Growth of Adults

    ERIC Educational Resources Information Center

    Aslam, Manika Arbab; Sultan, Sarwat

    2014-01-01

    The study was conducted to explore the impact of parenting styles of adolescents on their self-determination and personal growth. The data was collected from 300 adults evenly divided by gender, aged 23-38 years. To measure the parenting styles, level of self-determination and personal growth, the Caregivers Practices Report, Self Determination…

  5. Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions.

    PubMed

    Grover, Minakshi; Madhubala, R; Ali, Sk Z; Yadav, S K; Venkateswarlu, B

    2014-09-01

    Microorganisms isolated from stressed ecosystem may prove as ideal candidates for development of bio-inoculants for stressed agricultural production systems. In the present study, moisture stress tolerant rhizobacteria were isolated from the rhizosphere of sorghum, pigeonpea, and cowpea grown under semiarid conditions in India. Four isolates KB122, KB129, KB133, and KB142 from sorghum rhizosphere exhibited plant growth promoting traits and tolerance to salinity, high temperature, and moisture stress. These isolates were identified as Bacillus spp. by 16S rDNA sequence analysis. The strains were evaluated for growth promotion of sorghum seedlings under two different moisture stress conditions (set-I, continuous 50% soil water holding capacity (WHC) throughout the experiment and set-II, 75% soil WHC for 27 days followed by no irrigation for 5 days) under greenhouse conditions. Plate count and scanning electron microscope studies indicated successful root surface colonization by inoculated bacteria. Plants inoculated with Bacillus spp. strains showed better growth in terms of shoot length and root biomass with dark greenish leaves due to high chlorophyll content while un-inoculated plants showed rolling of the leaves, stunted appearance, and wilting under both stress conditions. Inoculation also improved leaf relative water content and soil moisture content. However, variation in proline and sugar content in the different treatments under two stress conditions indicated differential effect of microbial treatments on plant physiological parameters under stress conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Growth of III-V films by control of MBE growth front stoichiometry

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J. (Inventor); Liu, John K. (Inventor); Hancock, Bruce R. (Inventor)

    1992-01-01

    For the growth of strain-layer materials and high quality single and multiple quantum wells, the instantaneous control of growth front stoichiometry is critical. The process of the invention adjusts the offset or phase of molecular beam epitaxy (MBE) control shutters to program the instantaneous arrival or flux rate of In and As4 reactants to grow InAs. The interrupted growth of first In, then As4, is also a key feature.

  7. Automated Method for Estimating Nutation Time Constant Model Parameters for Spacecraft Spinning on Axis

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Calculating an accurate nutation time constant (NTC), or nutation rate of growth, for a spinning upper stage is important for ensuring mission success. Spacecraft nutation, or wobble, is caused by energy dissipation anywhere in the system. Propellant slosh in the spacecraft fuel tanks is the primary source for this dissipation and, if it is in a state of resonance, the NTC can become short enough to violate mission constraints. The Spinning Slosh Test Rig (SSTR) is a forced-motion spin table where fluid dynamic effects in full-scale fuel tanks can be tested in order to obtain key parameters used to calculate the NTC. We accomplish this by independently varying nutation frequency versus the spin rate and measuring force and torque responses on the tank. This method was used to predict parameters for the Genesis, Contour, and Stereo missions, whose tanks were mounted outboard from the spin axis. These parameters are incorporated into a mathematical model that uses mechanical analogs, such as pendulums and rotors, to simulate the force and torque resonances associated with fluid slosh.

  8. The Effects of Agave fourcroydes Powder as a Dietary Supplement on Growth Performance, Gut Morphology, Concentration of IgG, and Hematology Parameters in Broiler Rabbits

    PubMed Central

    Iser, Maidelys; Martínez, Yordan; Jiang, Hongmei; Valdivié Navarro, Manuel; Wu, Xiaosong; Al-Dhabi, Naif Abdullah; Rosales, Manuel; Duraipandiyan, Veeramuthu

    2016-01-01

    This study was conducted to determine the effects of Agave fourcroydes powder as a dietary supplement on the growth performance, gut morphology, serum concentration of IgG, and the hematology parameters of broiler rabbits. A total of 32 rabbits [New Zealand × Californian] were weaned at 35 days. They were randomly selected for two dietary treatments (eight repetitions per treatment), which consisted of a basal diet and a basal diet supplemented with 1.5% dried-stem powder of A. fourcroydes. On day 60 from the initiation of treatment, gut histomorphology (duodenum and cecum), serum concentration of IgG, and hematology parameters were all measured. The results showed that A. fourcroydes powder supplementation improved (P < 0.05) the ADFI, ADG, and final BW. Correspondingly, this treatment increased (P < 0.05) the muscle and mucosa thickness and height and width of villi. However, duodenum crypts depth was lower (P < 0.05) when rabbits were fed with this natural product, compared with the basal diet treatment. Results also indicated that the A. fourcroydes powder increased (P < 0.05) the serum concentration of IgG but did not change the hematology parameters. This data indicates that A. fourcroydes powder, as a supplement, had beneficial effects on increasing the growth performance and serum concentration of IgG, as well as improving the gut morphology without affecting the hematology parameters in broiler rabbits. PMID:27777945

  9. Polycystic ovarian disease: endocrinological parameters with specific reference to growth hormone and somatomedin-C.

    PubMed

    Urdl, W

    1988-01-01

    Thirty-three women (22-38 years old) with polycystic ovarian disease (PCOD) were included in this study. The criteria for diagnosis were: an LH/FSH ratio greater than 2.0; polycystic ovaries, diagnosed by means of palpation and ultrasound; androgenism and menstrual cycle abnormalities. Using endocrine parameters, we attempted to define distinct forms of PCOD. The patients were placed in three groups according to serum levels of testosterone (T) and 17 alpha-hydroxyprogesterone (17 alpha OHP) and the estrone/androstendione (E1/delta 4A) ratio. Patients in group I (n = 18) had an elevated T level (greater than 1.0 ng/ml) and a 17 alpha OHP level under 4.0 ng/ml. This type of POCD was called the "androgen" type. Patients in group II (n = 7) had normal T- and 17 alpha OHP levels under 4.0 ng/ml and an elevated (E1/delta 4A) ratio. This type of PCOD was called the "estrogen" type. Group III (n = 8) comprised patients with 17 alpha OHP levels over 4.0 ng/ml. This type of PCOD was called the "adrenocortical" type. In two patients of this group, a modified ACTH test revealed late-onset congenital hyperplasia. The endocrine parameters of the patients with PCOD were compared with those of 17 adult without signs of PCOD. Statistical evaluation was done by variance analysis. Women with acromegaly often show signs of androgenism as well as menstrual cycle abnormalities. This may indicate an association between the growth factors human growth hormone (HGH) and somatomedin-C (Sm-C) and the biosynthese and metabolism of steroid hormone. Recent experiments have demonstrated such associations. Our study showed an association between the HGH and Sm-C levels and abnormal steroid hormone concentrations in women with androgen type PCOD (group I). These patients had a significantly decreased HGH level, a significantly decreased HGH/Sm-C ratio, and an increased average Sm-C level. These data suggest that elevated Sm-C levels can, by a negative-feedback mechanism, inhibit pituitary HGH

  10. Effect of Simultaneous Inoculation with Yeast and Bacteria on Fermentation Kinetics and Key Wine Parameters of Cool-Climate Chardonnay

    PubMed Central

    Jussier, Delphine; Dubé Morneau, Amélie; Mira de Orduña, Ramón

    2006-01-01

    Inoculating grape musts with wine yeast and lactic acid bacteria (LAB) concurrently in order to induce simultaneous alcoholic fermentation (AF) and malolactic fermentation (MLF) can be an efficient alternative to overcome potential inhibition of LAB in wines because of high ethanol concentrations and reduced nutrient content. In this study, the simultaneous inoculation of yeast and LAB into must was compared with a traditional vinification protocol, where MLF was induced after completion of AF. For this, two suitable commercial yeast-bacterium combinations were tested in cool-climate Chardonnay must. The time courses of glucose and fructose, acetaldehyde, several organic acids, and nitrogenous compounds were measured along with the final values of other key wine parameters. Sensory evaluation was done after 12 months of storage. The current study could not confirm a negative impact of simultaneous AF/MLF on fermentation success and kinetics or on final wine parameters. While acetic acid concentrations were slightly increased in wines after simultaneous AF/MLF, the differences were of neither practical nor legal significance. No statistically significant differences were found with regard to the final values of pH or total acidity and the concentrations of ethanol, acetaldehyde, glycerol, citric and lactic acids, and the nitrogen compounds arginine, ammonia, urea, citrulline, and ornithine. Sensory evaluation by a semiexpert panel confirmed the similarity of the wines. However, simultaneous inoculation led to considerable reductions in overall fermentation durations. Furthermore, differences of physiological and microbiological relevance were found. Specifically, we report the vinification of “super-dry” wines devoid of glucose and fructose after simultaneous inoculation of yeast and bacteria. PMID:16391046

  11. Diversity in human hair growth, diameter, colour and shape. An in vivo study on young adults from 24 different ethnic groups observed in the five continents.

    PubMed

    Loussouarn, Geneviève; Lozano, Isabelle; Panhard, Ségolène; Collaudin, Catherine; El Rawadi, Charles; Genain, Gilles

    2016-04-01

    Based on previous findings, from a worldwide study, classified the shapes of human hair into 8 major types, from straight to highly curly. This clearly extended the usual classification of hair into African, Asian or Caucasian types. However, determinations of hair growth parameters and hair density were excluded from such studies. To measure and compare the hair growth profiles of young adults without alopecia living in the five continents. 2249 young adults (18-35 years, females and males) without alopecia, originating from 24 various human ethnic groups were included in the study. Total hair density, telogen percentage and growth rate on three different scalp areas were measured, using non-invasive validated techniques. Natural hair colour level, curliness and hair diameter were additionally recorded, when practically possible. Diversity in hair growth parameters among the entire cohort was a key finding, with differences linked to scalp area, gender and geographic origin. Statistical approaches depicted African hair as having lower density and a slower growth rate. Asian hair showed a thicker diameter, with faster growth. Caucasian hair showed a high total hair density. On the one hand, this inter-continental study of hair growth parameters provides initial valuable base-line data on hair in young adults without alopecia, and on the other hand, further extends our knowledge of this unique human appendage, with some mosaic features, observed worldwide.

  12. Effect of growth parameters on crystallinity and properties of ZnO films grown by plasma assisted MOCVD

    NASA Astrophysics Data System (ADS)

    Losurdo, M.; Giangregorio, M. M.; Sacchetti, A.; Capezzuto, P.; Bruno, G.; Malandrino, G.; Fragalà, I. L.

    2007-07-01

    Thin films of ZnO have been grown by plasma assisted metal-organic chemical vapour deposition (PA-MOCVD) using a 13.56 MHz O 2 plasma and the Zn(TTA)•tmed (HTTA=2-thenoyltrifluoroacetone, TMED=N,N,N',N'-tetramethylethylendiamine) precursor. The effects of growth parameters such as the plasma activation, the substrate, the surface temperature, and the ratio of fluxes of precursors on the structure, morphology, and optical and electrical properties of ZnO thin films have been studied. Under a very low plasma power of 20 W, c-axis oriented hexagonal ZnO thin films are grown on hexagonal sapphire (0001), cubic Si(001) and amorphous quartz substrates. The substrate temperature mainly controls grain size.

  13. The Future of Government Funding for Persons with Disabilities: Some Key Factors.

    ERIC Educational Resources Information Center

    Ross, E. Clarke

    1980-01-01

    The paper identifies and discusses key factors associated with government funding for disabled individuals. An introductory section traces the growth of public expenditures in recent years. Five key factors affecting government funding are examined (sample subtopics in parentheses): state government tax and spending limits (Proposition 13 and the…

  14. Extended vapor-liquid-solid growth of silicon carbide nanowires.

    PubMed

    Rajesh, John Anthuvan; Pandurangan, Arumugam

    2014-04-01

    We developed an alloy catalytic method to explain extended vapor-liquid-solid (VLS) growth of silicon carbide nanowires (SiC NWs) by a simple thermal evaporation of silicon and activated carbon mixture using lanthanum nickel (LaNi5) alloy as catalyst in a chemical vapor deposition process. The LaNi5 alloy binary phase diagram and the phase relationships in the La-Ni-Si ternary system were play a key role to determine the growth parameters in this VLS mechanism. Different reaction temperatures (1300, 1350 and 1400 degrees C) were applied to prove the established growth process by experimentally. Scanning electron microscopy and transmission electron microscopy studies show that the crystalline quality of the SiC NWs increases with the temperature at which they have been synthesized. La-Ni alloyed catalyst particles observed on the top of the SiC NWs confirms that the growth process follows this extended VLS mechanism. The X-ray diffraction and confocal Raman spectroscopy analyses demonstrate that the crystalline structure of the SiC NWs was zinc blende 3C-SiC. Optical property of the SiC NWs was investigated by photoluminescence technique at room temperature. Such a new alloy catalytic method may be extended to synthesis other one-dimensional nanostructures.

  15. Seedling Growth Strategies in Bauhinia Species: Comparing Lianas and Trees

    PubMed Central

    Cai, Zhi-Quan; Poorter, Lourens; Cao, Kun-Fang; Bongers, Frans

    2007-01-01

    Background and Aims Lianas are expected to differ from trees in their growth strategies. As a result these two groups of woody species will have different spatial distributions: lianas are more common in high light environments. This study determines the differences in growth patterns, biomass allocation and leaf traits in five closely related liana and tree species of the genus Bauhinia. Methods Seedlings of two light-demanding lianas (Bauhinia tenuiflora and B. claviflora), one shade-tolerant liana (B. aurea), and two light-demanding trees (B. purpurea and B. monandra) were grown in a shadehouse at 25 % of full sunlight. A range of physiological, morphological and biomass parameters at the leaf and whole plant level were compared among these five species. Key Results The two light-demanding liana species had higher relative growth rate (RGR), allocated more biomass to leaf production [higher leaf mass fraction (LMF) and higher leaf area ratio (LAR)] and stem mass fraction (SMF), and less biomass to the roots [root mass fraction (RMF)] than the two tree species. The shade-tolerant liana had the lowest RGR of all five species, and had a higher RMF, lower SMF and similar LMF than the two light-demanding liana species. The two light-demanding lianas had lower photosynthetic rates per unit area (Aarea) and similar photosynthetic rates per unit mass (Amass) than the trees. Across species, RGR was positively related to SLA, but not to LAR and Aarea. Conclusions It is concluded that the faster growth of light-demanding lianas compared with light-demanding trees is based on morphological parameters (SLA, LMF and LAR), and cannot be attributed to higher photosynthetic rates at the leaf level. The shade-tolerant liana exhibited a slow-growth strategy, compared with the light-demanding species. PMID:17720978

  16. Effects of oxygenated or hydrogenated water on growth performance, blood parameters, and antioxidant enzyme activity of broiler chickens.

    PubMed

    Shin, D; Cho, E S R; Bang, H-T; Shim, K S

    2016-11-01

    This study was conducted to investigate the effects of providing oxygenated and hydrogenated water on the growth performance, blood biochemical parameters, and immunoglobulin concentrations and antioxidant enzyme activity of broiler chickens. In our investigation, 144 Ross × Ross broiler chicks were randomly allotted to three different treatment groups with four replicates (treatment × replicate × bird = 3 × 4 × 12). All chicks were given one of the following types of water for five weeks: tap water (CON), hydrogenated water (HNW), and oxygenated water (ONW). ONW supplementation increased the final body weight and weight gain and also improved both feed intake and feed conversion of broiler chickens as compared to those of CON broiler chickens (P < 0.05). The abdominal fat and its ratio to the final body weight showed that fat accumulation in the broiler chicken abdomen was reduced when broiler chickens drank only ONW for five weeks (P < 0.05). ONW supplementation improved blood parameters, including triacylglyceride, total cholesterol, and low-density lipoprotein-cholesterol. Additionally, in accordance with a globulin increase in broiler chickens, both IgG and IgM generation were significantly enhanced when ONW was supplied to broiler chickens (P < 0.05) but only a numerical advance was observed in the HNW group (P > 0.05). Both oxygenated and hydrogenated water supplementation significantly improved the antioxidant effects (P < 0.05), and it seems that superoxide dismutase refinement was completed due to oxygen and/or hydrogen enhancement of drinking water. These results indicate that oxygen enhancement of drinking water may be recommended to improve growth performance by increasing immunoglobulins mainly IgG and IgM. © Crown copyright 2016.

  17. Estimation of Slow Crack Growth Parameters for Constant Stress-Rate Test Data of Advanced Ceramics and Glass by the Individual Data and Arithmetic Mean Methods

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.; Holland, Frederic A.

    1997-01-01

    The two estimation methods, individual data and arithmetic mean methods, were used to determine the slow crack growth (SCG) parameters (n and D) of advanced ceramics and glass from a large number of room- and elevated-temperature constant stress-rate ('dynamic fatigue') test data. For ceramic materials with Weibull modulus greater than 10, the difference in the SCG parameters between the two estimation methods was negligible; whereas, for glass specimens exhibiting Weibull modulus of about 3, the difference was amplified, resulting in a maximum difference of 16 and 13 %, respectively, in n and D. Of the two SCG parameters, the parameter n was more sensitive to the estimation method than the other. The coefficient of variation in n was found to be somewhat greater in the individual data method than in the arithmetic mean method.

  18. Influences of thermal environment on fish growth.

    PubMed

    Boltaña, Sebastián; Sanhueza, Nataly; Aguilar, Andrea; Gallardo-Escarate, Cristian; Arriagada, Gabriel; Valdes, Juan Antonio; Soto, Doris; Quiñones, Renato A

    2017-09-01

    Thermoregulation in ectothermic animals is influenced by the ability to effectively respond to thermal variations. While it is known that ectotherms are affected by thermal changes, it remains unknown whether physiological and/or metabolic traits are impacted by modifications to the thermal environment. Our research provides key evidence that fish ectotherms are highly influenced by thermal variability during development, which leads to important modifications at several metabolic levels (e.g., growth trajectories, microstructural alterations, muscle injuries, and molecular mechanisms). In Atlantic salmon ( Salmo salar ), a wide thermal range (Δ T 6.4°C) during development (posthatch larvae to juveniles) was associated with increases in key thermal performance measures for survival and growth trajectory. Other metabolic traits were also significantly influenced, such as size, muscle cellularity, and molecular growth regulators possibly affected by adaptive processes. In contrast, a restricted thermal range (Δ T 1.4°C) was detrimental to growth, survival, and cellular microstructure as muscle growth could not keep pace with increased metabolic demands. These findings provide a possible basic explanation for the effects of thermal environment during growth. In conclusion, our results highlight the key role of thermal range amplitude on survival and on interactions with major metabolism-regulating processes that have positive adaptive effects for organisms.

  19. Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells

    NASA Astrophysics Data System (ADS)

    Spyridopoulou, K.; Makridis, A.; Maniotis, N.; Karypidou, N.; Myrovali, E.; Samaras, T.; Angelakeris, M.; Chlichlia, K.; Kalogirou, O.

    2018-04-01

    Recent investigations have attempted to understand and exploit the impact of magnetic field-actuated internalized magnetic nanoparticles (MNPs) on the proliferation rate of cancer cells. Due to the complexity of the parameters governing magnetic field-exposure though, individual studies to date have raised contradictory results. In our approach we performed a comparative analysis of key parameters related to the cell exposure of cancer cells to magnetic field-actuated MNPs, and to the magnetic field, in order to better understand the factors affecting cellular responses to magnetic field-stimulated MNPs. We used magnetite MNPs with a hydrodynamic diameter of 100 nm and studied the proliferation rate of MNPs-treated versus untreated HT29 human colon cancer cells, exposed to either static or alternating low frequency magnetic fields with varying intensity (40-200 mT), frequency (0-8 Hz) and field gradient. All three parameters, field intensity, frequency, and field gradient affected the growth rate of cells, with or without internalized MNPs, as compared to control MNPs-untreated and magnetic field-untreated cells. We observed that the growth inhibitory effects induced by static and rotating magnetic fields were enhanced by pre-treating the cells with MNPs, while the growth promoting effects observed in alternating field-treated cells were weakened by MNPs. Compared to static, rotating magnetic fields of the same intensity induced a similar extend of cell growth inhibition, while alternating fields of varying intensity (70 or 100 mT) and frequency (0, 4 or 8 Hz) induced cell proliferation in a frequency-dependent manner. These results, highlighting the diverse effects of mode, intensity, and frequency of the magnetic field on cell growth, indicate that consistent and reproducible results can be achieved by controlling the complexity of the exposure of biological samples to MNPs and external magnetic fields, through monitoring crucial experimental parameters. We

  20. Effects of long-term experimental diabetes on adrenal gland growth and phosphoribosyl pyrophosphate formation in growth hormone-deficient dwarf rats.

    PubMed

    Kunjara, Sirilaksana; Greenbaum, A Leslie; McLean, Patricia; Grønbaek, Henning; Flyvbjerg, Allan

    2012-06-01

    The availability of growth hormone (GH)-deficient dwarf rats with otherwise normal pituitary function provides a powerful tool to examine the relative role of hyperglycaemia and the reordering of hormonal factors in the hypertrophy-hyperfunction of the adrenal gland that is seen in experimental diabetes. Here, we examine the effects of long-term (6 months) experimental diabetes on the growth of the adrenal glands; their content of phosphoribosyl pyrophosphate (PRPP); and the activity of the PRPP synthetase, G6P dehydrogenase and 6PG dehydrogenase enzymes in GH-deficient dwarf rats compared to heterozygous controls. These parameters were selected in view of the known role of PRPP in both de novo and salvage pathways of purine and pyrimidine synthesis and in the formation of NAD, and in view of the role of the oxidative enzymes of the pentose phosphate pathway in both R5P formation and the generation of the NADPH that is required in reductive synthetic reactions. This study shows that GH deficiency prevents the increase in adrenal gland weight, PRPP synthetase, PRPP content and G6P dehydrogenase and 6PG dehydrogenase. This contrasts sharply with the heterozygous group that showed the expected increase in these parameters. The blood glucose levels of the groups of long-term diabetic rats, both GH-deficient and heterozygous, remained at an elevated level throughout the experiment. These results are fully in accord with earlier evidence from studies with somatostatin analogues which showed that the GH-insulin-like growth factor I (IGF-I)-axis plays a key role in the adrenal diabetic hypertrophy-hyperfunction syndrome. © 2012 The Authors. International Journal of Experimental Pathology © 2012 International Journal of Experimental Pathology.

  1. Retrieval of wheat growth parameters with radar vegetation indices

    USDA-ARS?s Scientific Manuscript database

    The Radar Vegetation Index (RVI) has a low sensitivity to changes in environmental conditions and has the potential as a tool to monitor the vegetation growth. In this study, we expand on previous research by investigating the radar response over a wheat canopy. RVI was computed using observations m...

  2. Cosmological constraints from a joint analysis of cosmic growth and expansion

    NASA Astrophysics Data System (ADS)

    Moresco, M.; Marulli, F.

    2017-10-01

    Combining measurements on the expansion history of the Universe and on the growth rate of cosmic structures is key to discriminate between alternative cosmological frameworks and to test gravity. Recently, Linder proposed a new diagram to investigate the joint evolutionary track of these two quantities. In this letter, we collect the most recent cosmic growth and expansion rate data sets to provide the state-of-the-art observational constraints on this diagram. By performing a joint statistical analysis of both probes, we test the standard Λcold dark matter model, confirming a mild tension between cosmic microwave background predictions from Planck mission and cosmic growth measurements at low redshift (z < 2). Then we test alternative models allowing the variation of one single cosmological parameter at a time. In particular, we find a larger growth index than the one predicted by general relativity γ =0.65^{+0.05}_{-0.04}. However, also a standard model with total neutrino mass of 0.26 ± 0.10 eV provides a similarly accurate description of the current data. By simulating an additional data set consistent with next-generation dark-energy mission forecasts, we show that growth rate constraints at z > 1 will be crucial to discriminate between alternative models.

  3. Automatic Non-Destructive Growth Measurement of Leafy Vegetables Based on Kinect

    PubMed Central

    Hu, Yang; Wang, Le; Xiang, Lirong; Wu, Qian; Jiang, Huanyu

    2018-01-01

    Non-destructive plant growth measurement is essential for plant growth and health research. As a 3D sensor, Kinect v2 has huge potentials in agriculture applications, benefited from its low price and strong robustness. The paper proposes a Kinect-based automatic system for non-destructive growth measurement of leafy vegetables. The system used a turntable to acquire multi-view point clouds of the measured plant. Then a series of suitable algorithms were applied to obtain a fine 3D reconstruction for the plant, while measuring the key growth parameters including relative/absolute height, total/projected leaf area and volume. In experiment, 63 pots of lettuce in different growth stages were measured. The result shows that the Kinect-measured height and projected area have fine linear relationship with reference measurements. While the measured total area and volume both follow power law distributions with reference data. All these data have shown good fitting goodness (R2 = 0.9457–0.9914). In the study of biomass correlations, the Kinect-measured volume was found to have a good power law relationship (R2 = 0.9281) with fresh weight. In addition, the system practicality was validated by performance and robustness analysis. PMID:29518958

  4. Bridgman-type apparatus for the study of growth-property relationships - Arsenic vapor pressure-GaAs property relationship

    NASA Technical Reports Server (NTRS)

    Parsey, J. M.; Nanishi, Y.; Lagowski, J.; Gatos, H. C.

    1982-01-01

    A precision Bridgman-type apparatus is described which was designed and constructed for the investigation of relationships between crystal growth parameters and the properties of GaAs crystals. Several key features of the system are highlighted, such as the use of a heat pipe for precise arsenic vapor pressure control and seeding without the presence of a viewing window. Pertinent growth parameters, such as arsenic source temperature, thermal gradients in the growing crystal and in the melt, and the macroscopic growth velocity can be independently controlled. During operation, thermal stability better than + or - 0.02 C is realized; thermal gradients can be varied up to 30 C/cm in the crystal region, and up to 20 C/cm in the melt region; the macroscopic growth velocity can be varied from 50 microns/hr to 6.0 cm/hr. It was found that the density of dislocations depends critically on As partial pressure; and essentially dislocation-free, undoped, crystals were grown under As pressure precisely controlled by an As source maintained at 617 C. The free carrier concentration varied with As pressure variations. This variation in free carrier concentration was found to be associated with variations in the compensation ratio rather than with standard segregation phenomena.

  5. Anomaly Monitoring Method for Key Components of Satellite

    PubMed Central

    Fan, Linjun; Xiao, Weidong; Tang, Jun

    2014-01-01

    This paper presented a fault diagnosis method for key components of satellite, called Anomaly Monitoring Method (AMM), which is made up of state estimation based on Multivariate State Estimation Techniques (MSET) and anomaly detection based on Sequential Probability Ratio Test (SPRT). On the basis of analysis failure of lithium-ion batteries (LIBs), we divided the failure of LIBs into internal failure, external failure, and thermal runaway and selected electrolyte resistance (R e) and the charge transfer resistance (R ct) as the key parameters of state estimation. Then, through the actual in-orbit telemetry data of the key parameters of LIBs, we obtained the actual residual value (R X) and healthy residual value (R L) of LIBs based on the state estimation of MSET, and then, through the residual values (R X and R L) of LIBs, we detected the anomaly states based on the anomaly detection of SPRT. Lastly, we conducted an example of AMM for LIBs, and, according to the results of AMM, we validated the feasibility and effectiveness of AMM by comparing it with the results of threshold detective method (TDM). PMID:24587703

  6. [Effects of drought stress and subsequent rewatering on major physiological parameters of spring maize during the key growth periods].

    PubMed

    Cai, Fu; Mi, Na; Ji, Rui Peng; Zhao, Xian Li; Shi, Kui Qiao; Yang, Yang; Zhang, Hui; Zhang, Yu Shu

    2017-11-01

    For deeply understanding water consumption characteristics and disaster-causing mechanism of spring maize under drought stress, continuous no-water complementing for 40 days and subsequent rewatering treatments were conducted in jointing (T 1 ) and tasseling (T 2 ) stages of spring maize 'Danyu 39'. In the meantime, leaf and root water potential, main variables associated with photosynthesis including net photosynthetic rate (P n ), transpiration rate (T r ), stomatal conduc-tance (g s ), intercellular CO 2 concentration(C i ) and stem flow rate (SF) were dynamically observed and the characteristics of their responses to drought and subsequent rehydration were investigated. The results indicated that leaf and root water potential, both presenting logarithm relationships with soil water content, decreased due to suffering from drought stress in different growth stages and the response of the former lagged behind that of the latter. At the same time, the response of leaf (root) water potential to drought stress in tasseling stage was earlier (later) than in jointing stage. For the response of rewatering, leaf water potential for the treatment T 1 (T 2 ) was (not) able to recover to a certain extent, and could not reach the normal condition, while water potential of root was more responsive and closer to the normal level than that of leaf for the treatment T 1 . Furthermore, P n and T r responded more quickly to the treatment T 2 than to the treatment T 1 . For subsequent rewatering after the treatment T 1 (T 2 ), both P n and T r restored rapidly (slowly) with the former exceeding (returning) and the later being (not) able to reach normal level. Meanwhile, the response of T r was faster than that of P n to the treatment T 1 and they responded simultaneously to the treatment T 2 . The response of g s agreed with P n to drought stress. Change trend of C i for the treatment T 1 (T 2 ) was consistent (opposite) with that of P n . In addition, SFs for various drought

  7. Evaluation of biochemical markers combined with uterine artery Doppler parameters in fetuses with growth restriction: a case-control study.

    PubMed

    Zamarian, Ana Cristina Perez; Araujo Júnior, Edward; Daher, Sílvia; Rolo, Liliam Cristine; Moron, Antonio Fernandes; Nardozza, Luciano Marcondes Machado

    2016-10-01

    Assessing the biochemical markers levels and the uterine artery Doppler (UtA) parameters in fetuses with growth restriction (FGR). Prospective case-control study included 66 patients with diagnosis of FGR and 64 healthy pregnancies at 24-41 weeks of gestation. For both groups, maternal circulating concentrations of biochemical factors of soluble fms-like tyrosine kinase-1 (sFlt-1), soluble endoglin(sEng), adiponectin, A disintegrin and metalloproteinases (ADAM-12), pregnancy-associated plasma protein-A (PAPP-A), angiopoietin-2 (ANGI-2), vascular endothelial growth factor (VEGF) and transforming growth factor-β (TGF-β) were assayed by ELISA and UtA by Doppler were performed. ANOVA, Mann-Whitney tests and Pearson correlation coefficient were applied to compare the biochemical factors, UtA Doppler and EFW Z-score between the groups. Concentrations of sFlt-1, sEng, PAPP-A were significantly higher in FGR than controls (p < 0.0001, p = 0.02 and p = 0.03, respectively), but concentration of ANGI-2 (p < 0.0001) was significantly lower in FGR than controls and ADAM-12 levels had a tendency to be lower in the FGR, though not statistically significant (p = 0.059). Increased sEng concentrations were correlated with abnormal UtA Doppler in FGR. Fetal growth restriction fetuses showed increased serum levels of sFlt-1, sEng and PAPP-A with levels of ANGI-2 decreased and a positive association between elevated concentrations of sEng and changing impedance of UtA Doppler were observed.

  8. Particle growth kinetics over the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Pinterich, T.; Andreae, M. O.; Artaxo, P.; Kuang, C.; Longo, K.; Machado, L.; Manzi, A. O.; Martin, S. T.; Mei, F.; Pöhlker, C.; Pöhlker, M. L.; Poeschl, U.; Shilling, J. E.; Shiraiwa, M.; Tomlinson, J. M.; Zaveri, R. A.; Wang, J.

    2016-12-01

    Aerosol particles larger than 100 nm play a key role in global climate by acting as cloud condensation nuclei (CCN). Most of these particles, originated from new particle formation or directly emitted into the atmospheric, are initially too small to serve as CCN. These small particles grow to CCN size mainly through condensation of secondary species. In one extreme, the growth is dictated by kinetic condensation of very low-volatility compounds, favoring the growth of the smallest particles; in the other extreme, the process is driven by Raoult's law-based equilibrium partitioning of semi-volatile organic compound, favoring the growth of larger particles. These two mechanisms can lead to very different production rates of CCN. The growth of particles depends on a number of parameters, including the volatility of condensing species, particle phase, and diffusivity inside the particles, and this process is not well understood in part due to lack of ambient data. Here we examine atmospheric particle growth using high-resolution size distributions measured onboard the DOE G-1 aircraft during GoAmazon campaign, which took place from January 2014 to December 2015 near Manaus, Brazil, a city surrounded by natural forest for over 1000 km in every direction. City plumes are clearly identified by the strong enhancement of nucleation and Aitken mode particle concentrations over the clean background. As the plume traveled downwind, particle growth was observed, and is attributed to condensation of secondary species and coagulation (Fig.1). Observed aerosol growth is modeled using MOSAIC (Model for Simulating Aerosol Interactions and Chemistry), which dynamically partitions multiple compounds to all particle size bins by taking into account compound volatility, gas-phase diffusion, interfacial mass accommodation, particle-phase diffusion, and particle-phase reaction. The results from both wet and dry seasons will be discussed.

  9. Reserve Growth of Alberta Oil Pools

    USGS Publications Warehouse

    Verma, Mahendra K.; Cook, Troy

    2008-01-01

    This Open-File Report is based on a presentation delivered at the Fourth U.S. Geological Survey Workshop on Reserve Growth on March 10-11, 2008. It summarizes the results of a study of reserve growth of oil pools in Alberta Province, Canada. The study is part of a larger effort involving similar studies of fields in other important petroleum provinces around the world, with the overall objective of gaining a better understanding of reserve growth in fields with different geologic/reservoir parameters and different operating environments. The goals of the study were to: 1. Evaluate historical oil reserve data and assess reserve growth. 2. Develop reserve growth models/functions to help forecast hydrocarbon volumes. 3. Study reserve growth sensitivity to various parameters ? for example, pool size, porosity, oil gravity, and lithology. 4. Compare reserve growth in oil pools/fields of Alberta provinces with those from other large petroleum provinces.

  10. Population Growth Parameters of Rose Aphid, Macrosiphum rosae (Hemiptera: Aphididae) on Different Rose Cultivars.

    PubMed

    Golizadeh, A; Jafari-Behi, V; Razmjou, J; Naseri, B; Hassanpour, M

    2017-02-01

    The rose aphid, Macrosiphum rosae (L.), is one of the most important pests on rose plants (Rosa spp.) with a worldwide distribution. As resistance indices, the development, survivorship, and reproduction of this aphid were evaluated on 10 rose cultivars, including Bella Vita, Cool Water, Dolce Vita, Maroussia, Orange Juice, Pinkpromise, Roulette, Tea, Valentine, and Persian Yellow in laboratory at 25 ± 1°C, 65 ± 5% relative humidity, and photoperiod of 16:8 (L/D) h. Rose aphid successfully survived on all 10 rose cultivars, although mortality rate was higher on Tea and Bella Vita. The number of offspring per female differed significantly among the tested rose cultivars, and ranged from 9.2 on Tea to 38.7 nymphs on Orange Juice. Population growth parameters were significantly affected by rose cultivars. The longest mean generation time (T) was observed on Bella Vita (14.8 days) and Tea (14.7 days) and the shortest on Orange Juice (10.0 days). The net reproductive rate (R 0 ) ranged from 6.9 on Tea to 33.2 nymphs on Orange Juice cultivar. Correspondingly, the highest value of intrinsic rate of increase (r m ) was observed on Orange Juice (0.348 day -1 ) and lower values on Tea (0.131 day -1 ) followed by Bella Vita (0.154 day -1 ). Cluster analysis of all the measured parameters of rose aphid on different rose cultivars revealed that Tea and Bella Vita were relatively resistant to M. rosae. These findings could be useful in developing an integrated pest management (IPM) program for this aphid in urbanized areas and commercial rose potting.

  11. On System Engineering a Barter-Based Re-allocation of Space System Key Development Resources

    NASA Astrophysics Data System (ADS)

    Kosmann, William J.

    NASA has had a decades-long problem with cost growth during the development of space science missions. Numerous agency-sponsored studies have produced average mission level development cost growths ranging from 23 to 77%. A new study of 26 historical NASA science instrument set developments using expert judgment to re-allocate key development resources has an average cost growth of 73.77%. Twice in history, during the Cassini and EOS-Terra science instrument developments, a barter-based mechanism has been used to re-allocate key development resources. The mean instrument set development cost growth was -1.55%. Performing a bivariate inference on the means of these two distributions, there is statistical evidence to support the claim that using a barter-based mechanism to re-allocate key instrument development resources will result in a lower expected cost growth than using the expert judgment approach. Agent-based discrete event simulation is the natural way to model a trade environment. A NetLogo agent-based barter-based simulation of science instrument development was created. The agent-based model was validated against the Cassini historical example, as the starting and ending instrument development conditions are available. The resulting validated agent-based barter-based science instrument resource re-allocation simulation was used to perform 300 instrument development simulations, using barter to re-allocate development resources. The mean cost growth was -3.365%. A bivariate inference on the means was performed to determine that additional significant statistical evidence exists to support a claim that using barter-based resource re-allocation will result in lower expected cost growth, with respect to the historical expert judgment approach. Barter-based key development resource re-allocation should work on science spacecraft development as well as it has worked on science instrument development. A new study of 28 historical NASA science spacecraft

  12. Novel secret key generation techniques using memristor devices

    NASA Astrophysics Data System (ADS)

    Abunahla, Heba; Shehada, Dina; Yeun, Chan Yeob; Mohammad, Baker; Jaoude, Maguy Abi

    2016-02-01

    This paper proposes novel secret key generation techniques using memristor devices. The approach depends on using the initial profile of a memristor as a master key. In addition, session keys are generated using the master key and other specified parameters. In contrast to existing memristor-based security approaches, the proposed development is cost effective and power efficient since the operation can be achieved with a single device rather than a crossbar structure. An algorithm is suggested and demonstrated using physics based Matlab model. It is shown that the generated keys can have dynamic size which provides perfect security. Moreover, the proposed encryption and decryption technique using the memristor based generated keys outperforms Triple Data Encryption Standard (3DES) and Advanced Encryption Standard (AES) in terms of processing time. This paper is enriched by providing characterization results of a fabricated microscale Al/TiO2/Al memristor prototype in order to prove the concept of the proposed approach and study the impacts of process variations. The work proposed in this paper is a milestone towards System On Chip (SOC) memristor based security.

  13. Ignition and Growth Modeling of Shock Initiation of Different Particle Size Formulations of PBXC03 Explosive

    NASA Astrophysics Data System (ADS)

    Hussain, Tariq; Liu, Yan; Huang, Fenglei; Duan, Zhuoping

    2016-01-01

    The change in shock sensitivity of explosives having various explosive grain sizes is discussed. Along with other parameters, explosive grain size is one of the key parameters controlling the macroscopic behavior of shocked pressed explosives. Ignition and growth reactive flow modeling is performed for the shock initiation experiments carried out by using the in situ manganin piezoresistive pressure gauge technique to investigate the influences of the octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) particle size on the shock initiation and the subsequent detonation growth process for the three explosive formulations of pressed PBXC03 (87% HMX, 7% 1,3,5-trichloro-2,4,6-trinitrobenzene (TATB), 6% Viton by weight). All of the formulation studied had the same density but different explosive grain sizes. A set of ignition and growth parameters was obtained for all three formulations. Only the coefficient G1 of the first growth term in the reaction rate equation was varied with the grain size; all other parameters were kept the same for all formulations. It was found that G1 decreases almost linearly with HMX particle size for PBXC03. However, the equation of state (EOS) for solid explosive had to be adjusted to fit the experimental data. Both experimental and numerical simulation results show that the shock sensitivity of PBXC03 decreases with increasing HMX particle size for the sustained pressure pulses (around 4 GPa) as obtained in the experiment. This result is in accordance with the results reported elsewhere in literature. For future work, a better approach may be to find standard solid Grüneisen EOS and product Jones-Wilkins-Lee (JWL) EOS for each formulation for the best fit to the experimental data.

  14. Randomised control trial showed that delayed cord clamping and milking resulted in no significant differences in iron stores and physical growth parameters at one year of age.

    PubMed

    Agarwal, Shivam; Jaiswal, Vijay; Singh, Dharamveer; Jaiswal, Prateek; Garg, Amit; Upadhyay, Amit

    2016-11-01

    Placental redistribution has been shown to improve haematological outcomes in the immediate neonatal period and early infancy. This study compared the effects of delayed cord clamping (DCC) and umbilical cord milking (UCM) on haematological and growth parameters at 12 months of age. This was a follow-up study of a randomised control trial, conducted in a tertiary care paediatric centre from August 2013 to August 2014. We studied 200 apparently healthy Indian infants randomised at birth to receive DCC for 60-90 seconds or UCM. The outcome measures were iron status and physical growth parameters at 12 months. Of the 200 babies, 161 completed the follow-up and baseline characteristics were comparable in both groups. The mean haemoglobin in the DCC group (102.2 (17.2) g/L and serum ferritin 16.44 (2.77) μg/L) showed no significant differences to the UCM group (98.6 (17.1) g/L and 18.2 (2.8) μg/L) at one year. In addition, there were no significant differences in weight, height and mid-upper arm circumference in the two groups. Term-born Indian infants who had DCC at 60-90 seconds or UCM showed no significant differences in ferritin and haemoglobin levels and growth parameters at 12 months of age. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  15. Evaluation of trade influence on economic growth rate by computational intelligence approach

    NASA Astrophysics Data System (ADS)

    Sokolov-Mladenović, Svetlana; Milovančević, Milos; Mladenović, Igor

    2017-01-01

    In this study was analyzed the influence of trade parameters on the economic growth forecasting accuracy. Computational intelligence method was used for the analyzing since the method can handle highly nonlinear data. It is known that the economic growth could be modeled based on the different trade parameters. In this study five input parameters were considered. These input parameters were: trade in services, exports of goods and services, imports of goods and services, trade and merchandise trade. All these parameters were calculated as added percentages in gross domestic product (GDP). The main goal was to select which parameters are the most impactful on the economic growth percentage. GDP was used as economic growth indicator. Results show that the imports of goods and services has the highest influence on the economic growth forecasting accuracy.

  16. Comprehensive computational model for combining fluid hydrodynamics, light transport and biomass growth in a Taylor vortex algal photobioreactor: Lagrangian approach.

    PubMed

    Gao, Xi; Kong, Bo; Vigil, R Dennis

    2017-01-01

    A comprehensive quantitative model incorporating the effects of fluid flow patterns, light distribution, and algal growth kinetics on biomass growth rate is developed in order to predict the performance of a Taylor vortex algal photobioreactor for culturing Chlorella vulgaris. A commonly used Lagrangian strategy for coupling the various factors influencing algal growth was employed whereby results from computational fluid dynamics and radiation transport simulations were used to compute numerous microorganism light exposure histories, and this information in turn was used to estimate the global biomass specific growth rate. The simulations provide good quantitative agreement with experimental data and correctly predict the trend in reactor performance as a key reactor operating parameter is varied (inner cylinder rotation speed). However, biomass growth curves are consistently over-predicted and potential causes for these over-predictions and drawbacks of the Lagrangian approach are addressed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Parameter screening: the use of a dummy parameter to identify non-influential parameters in a global sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Khorashadi Zadeh, Farkhondeh; Nossent, Jiri; van Griensven, Ann; Bauwens, Willy

    2017-04-01

    ' method. A formal statistical test validates these parameter screening results. Based on the dummy parameter screening, 11 model parameters are identified as influential. Therefore, it can be denoted that the "dummy parameter approach" can facilitate the parameter screening process and provide guidance for GSA users to define a screening-threshold, with only limited additional resources. Key words: Parameter screening, Global sensitivity analysis, Dummy parameter, Variance-based method, Moment-independent method

  18. Effect of β-hydroxy-β-methylbutyrate calcium on growth, blood parameters, and carcass qualities of broiler chickens.

    PubMed

    Qiao, X; Zhang, H J; Wu, S G; Yue, H Y; Zuo, J J; Feng, D Y; Qi, G H

    2013-03-01

    Beta-hydroxy-β-methylbutyrate (HMB), the metabolite of leucine, plays an important role in muscle protein metabolism. To investigate the effect of dietary HMB calcium (HMB-Ca) on growth performance, breast muscle development, and serum parameters in broiler chickens, a total of two hundred seventy 1-d-old Arbor Acres male broiler chicks were randomly allotted into 3 dietary treatments supplemented with 0, 0.05%, or 0.1% HMB-Ca during the starter (1 to 21 d) and grower (22 to 42 d) period. The results showed that broilers fed 0.1% HMB-Ca diet had higher ADG during the starter or the whole period, and gain 148 g more BW than the chicks fed the control diet at 42 d of age (P < 0.05). At 21 d of age, birds receiving 0.1% HMB-Ca had more breast muscle yield, less abdominal fat than the control, and more dressing percentage than birds fed the control or 0.05% HMB-Ca diet (P < 0.05). At 42 d of age, 0.1% HMB-Ca increased breast muscle yield than the control and decreased abdominal fat compared with the control or 0.05% HMB-Ca group (P < 0.05). In comparison with the control, feeding 0.1% HMB-Ca increased the triiodothyronine, thyroxine, triiodothyronine/thyroxine ratio and decreased the serum uric acid level at d 21 (P < 0.05). At 42 d of age, serum thyroxine level was elevated in the 0.05% HMB-Ca treatment, and the uric acid concentration was significantly decreased by the 0.1% HMB-Ca-supplemented diet (P < 0.05). Dietary HMB-Ca did not affect the growth hormone or insulin content. This study suggested that dietary supplementation of HMB-Ca improved growth performance, stimulated the breast muscle development, and decreased the abdominal fat deposition in broiler chickens, and the favorable effects were more pronounced in the starter phase. The growth promotion effect of HMB-Ca may be partly related to the increased serum thyroid hormones in broiler chickens.

  19. Detecting Appropriate Trajectories of Growth in Latent Growth Models: The Performance of Information-Based Criteria

    ERIC Educational Resources Information Center

    Whittaker, Tiffany A.; Khojasteh, Jam

    2017-01-01

    Latent growth modeling (LGM) is a popular and flexible technique that may be used when data are collected across several different measurement occasions. Modeling the appropriate growth trajectory has important implications with respect to the accurate interpretation of parameter estimates of interest in a latent growth model that may impact…

  20. Middle Term Achievements of Project 5322: Retrieval Of Key Eco-Hydrological Parameters From Remote Sensing In The Watershed Allied Telemetry Experimental Research (Water)

    NASA Astrophysics Data System (ADS)

    Li, Xin; Menenti, Massimo

    2010-10-01

    The general objective of project 5322 in the Dragon 2 programme is to quantitatively retrieve some key eco- hydrological parameters by using remote sensed data, especially from ESA, Chinese, and the Third Party Mission (TPM). To achieve this goal, a comprehensive observation experiment, Watershed Allied Telemetry Experimental Research (WATER) was carried out. WARER is a simultaneously airborne, satellite-borne, and ground-based remote sensing experiment took place in the Heihe River Basin, a typical inland river basin in the northwest of China. This paper introduces the background and implementation of WATER. Data have been obtained so far are described in details. After a period of data analysis for two years, numerous results have also been achieved. This paper presents some early results of WATER as well.

  1. Key Factors in Development of Man-Made and Natural Ecosystems

    NASA Astrophysics Data System (ADS)

    Pechurkin, N. S.

    1999-01-01

    Key factors of ecosystem functioning are of the same nature for artificial and natural types. An hierarchical approach gives the opportunity for estimation of the quantitative behavior of both individual links and the system as a whole. At the organismic level we can use interactions of studied macroorganisms (man, animal, higher plant) with selected microorganisms as key indicating factors of the organisms immune status. The most informative factor for the population/community level is an age structure of populations and relationships of domination/elimination. The integrated key factors of the ecosystems level are productivity and rates of cycling of the limiting substances. The key factors approach is of great value for growth regulations and monitoring the state of any ecosystem, including the life support system (LSS)-type.

  2. Mapping of Biophysical Parameters of Rice Agriculture System from Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Moharana, Shreedevi; Duta, Subashisa

    2017-04-01

    Chlorophyll, nitrogen and leaf water content are the most essential parameters for paddy crop growth. Ground hyperspectral observations were collected at canopy level during critical growth period of rice by using hand held Spectroradiometer. Chemical analysis was carried out to quantify the total chlorophyll, nitrogen and leaf water content. By exploiting the in-situ hyperspectral measurements, regression models were established between each of the crop growth parameters and the spectral indices specifically designed for chlorophyll, nitrogen and water stress. Narrow band vegetation index models were developed for mapping these parameters from Hyperion imagery in an agriculture system. It was inferred that the modified simple ratio (SR) and leaf nitrogen concentration (LNC) predictive index models, which followed a linear and nonlinear relationship respectively, produced satisfactory results in predicting rice nitrogen content from hyperspectral imagery. The presently developed model was compared with other models proposed by researchers. It was ascertained that, nitrogen content varied widely from 1-4 percentage and only 2-3 percentage for paddy crop using present modified index models and well-known predicted Tian et al. (2011) model respectively. The modified present LNC index model performed better than the established Tian et al. (2011) model as far as the estimated nitrogen content from Hyperion imagery was concerned. Moreover, within the observed chlorophyll range attained from the rice genotypes cultivated in the studied rice agriculture system, the index models (LNC, OASVI, Gitelson, mSR and MTCI) accomplished satisfactory results in the spatial distribution of rice chlorophyll content from Hyperion imagery. Spatial distribution of total chlorophyll content widely varied from 1.77-5.81 mg/g (LNC), 3.0-13 mg/g (OASVI) and 2.90-5.40 mg/g (MTCI). Following the similar guideline, it was found that normalized difference water index (NDWI) and normalized

  3. Genetic parameters for different growth scales in GIFT strain of Nile tilapia (Oreochromis niloticus).

    PubMed

    He, J; Gao, H; Xu, P; Yang, R

    2015-12-01

    Body weight, length, width and depth at two growth stages were observed for a total of 5015 individuals of GIFT strain, along with a pedigree including 5588 individuals from 104 sires and 162 dams was collected. Multivariate animal models and a random regression model were used to genetically analyse absolute and relative growth scales of these growth traits. In absolute growth scale, the observed growth traits had moderate heritabilities ranging from 0.321 to 0.576, while pairwise ratios between body length, width and depth were lowly inherited and maximum heritability was only 0.146 for length/depth. All genetic correlations were above 0.5 between pairwise growth traits and genetic correlation between length/width and length/depth varied between both growth stages. Based on those estimates, selection index of multiple traits of interest can be formulated in future breeding program to improve genetically body weight and morphology of the GIFT strain. In relative growth scale, heritabilities in relative growths of body length, width and depth to body weight were 0.257, 0.412 and 0.066, respectively, while genetic correlations among these allometry scalings were above 0.8. Genetic analysis for joint allometries of body weight to body length, width and depth will contribute to genetically regulate the growth rate between body shape and body weight. © 2015 Blackwell Verlag GmbH.

  4. MarketBusting: strategies for exceptional business growth.

    PubMed

    McGrath, Rita Gunther; MacMillan, Ian C

    2005-03-01

    If company leaders were granted a single wish, it would surely be for a reliable way to create new growth businesses. Business practitioners'overwhelming interest in this subject prompted the authors to conduct a three-year study of organizational growth--specifically, to find out which growth strategies were most successful. They discovered, somewhat to their surprise, that even companies in mature industries found rich new sources of growth when they reconfigured their unit of business (what they bill customers for) or their key metrics (how they measure success). In this article, the authors outline these and other moves companies can make to redefine their profit drivers and realize low-risk growth. They offer plenty of real-world examples. For instance: CHANGING YOUR UNIT OF BUSINESS: Once a conventional printing house, Madden Communications not only prints promotional materials for customers but also manages the distribution and installation of those materials on-site. Its revenues grew from dollars 1o million in 1990 to dollars 133 million in 2004, in an industry that many had come to regard as hopelessly mature. IMPROVING YOUR KEY METRICS-PARTICULARLY PRODUCTIVITY: Lamons Gasket, with dollars 80 million in revenues, built a Web site that radically improved its customers' ability to find, order, and pay for goods. The firm's market share rose along with its customer retention rate. The authors also suggest ways to identify your unit of business and associated key metrics and recognize the obstacles to changing them; review the key customer segments you serve; assess the need for new capabilities and the potential for internal resistance to change; and communicate to internal and external constituencies the changes you wish to make in your unit of business or key metrics.

  5. Influence of growth hormone therapy on selected dental and skeletal system parameters.

    PubMed

    Partyka, Małgorzata; Chałas, Renata; Dunin-Wilczyńska, Izabella; Drohomyretska, Myroslava; Klatka, Maria

    2018-03-14

    Growth hormone deficiency (GHD) is one of the main indications for growth hormone therapy. One characteristic of this disease is bone age delay in relation to the chronological age. Pituitary dysfunction negatively affects the growth and development of the jaws and teeth of the child. The secretion of endocrine glands regulates growth, development, and gender differentiation. It also controls the growth of bones and teeth, regulates metabolism of calcium and phosphate, proteins, lipids and carbohydrates. The primary role in the endocrine system is played by the pituitary gland which is responsible for the production of somatotropin [1]. Dysfunction of the pituitary gland has a negative effect on the growth and development of long bones in the body, and may have an adverse effect on the development of maxilla, mandible and dentition of a child. There is some information in the literature that dental age is delayed in short stature children; the replacement of deciduous teeth by permanent teeth is also delayed, and newly erupted permanent teeth often require orthodontic treatment. Applying hormonal therapy positively affects the process of replacement of dentition [2, 3, 4, 5, 6]. The aim of the study was to assess bone and dental age, as well as analyze the state of dentition in children diagnosed with GH deficiency treated with growth hormone, depending on the duration of treatment. The study material consisted of 110 children (27 males, 83 females), hospitalized for somatotropin hypopituitarism in the Department of Paediatric Endocrinology and Diabetology at the Medical University of Lublin, Poland. The mean birth age was 13 years (156 months) with a standard deviation of 2 years and 6 months (30 months). 47 children (43%) started treatment with the growth hormone (group starting treatment) and 63 children (57%) whose treatment was started 2-3 years previously (group in the course of treatment). The control group consisted of 41 generally healthy children (15males

  6. Feathering instability of spiral arms. II. Parameter study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Wing-Kit, E-mail: wklee@asiaa.sinica.edu.tw; Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 115, Taiwan

    2014-09-10

    We report the results of a parameter study of the feathering stability in the galactic spiral arms. A two-dimensional, razor-thin magnetized self-gravitating gas disk with an imposed two-armed stellar spiral structure is considered. Using the formulation developed previously by Lee and Shu, a linear stability analysis of the spiral shock is performed in a localized Cartesian geometry. Results of the parameter study of the base state with a spiral shock are also presented. The single-mode feathering instability that leads to growing perturbations may explain the feathering phenomenon found in nearby spiral galaxies. The self-gravity of the gas, characterized by itsmore » average surface density, is an important parameter that (1) shifts the spiral shock farther downstream and (2) increases the growth rate and decreases the characteristic spacing of the feathering structure due to the instability. On the other hand, while the magnetic field suppresses the velocity fluctuation associated with the feathers, it does not strongly affect their growth rate. Using a set of typical parameters of the grand-design spiral galaxy M51 at 2 kpc from the center, the spacing of the feathers with the maximum growth rate is found to be 530 pc, which agrees with the previous observational studies.« less

  7. Process parameter-growth environment-film property relationships for reactive sputter deposited metal (V, Nb, Zr, Y, Au) oxide, nitride, and oxynitride films. Final report, 1 January 1989-30 June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aita, C.R.

    1993-09-30

    The research developed process parameter-growth environment-film property relations (phase maps) for model sputter-deposited transition metal oxides, nitrides, and oxynitrides grown by reactive sputter deposition at low temperature. Optical emission spectrometry was used for plasma diagnostics. The results summarized here include the role of sputtered metal-oxygen molecular flux in oxide film growth; structural differences in highest valence oxides including conditions for amorphous growth; and using fundamental optical absorption edge features to probe short range structural disorder. Eight appendices containing sixteen journal articles are included.

  8. Optimal Resting-Growth Strategies of Microbial Populations in Fluctuating Environments

    PubMed Central

    Geisel, Nico; Vilar, Jose M. G.; Rubi, J. Miguel

    2011-01-01

    Bacteria spend most of their lifetime in non-growing states which allow them to survive extended periods of stress and starvation. When environments improve, they must quickly resume growth to maximize their share of limited nutrients. Cells with higher stress resistance often survive longer stress durations at the cost of needing more time to resume growth, a strong disadvantage in competitive environments. Here we analyze the basis of optimal strategies that microorganisms can use to cope with this tradeoff. We explicitly show that the prototypical inverse relation between stress resistance and growth rate can explain much of the different types of behavior observed in stressed microbial populations. Using analytical mathematical methods, we determine the environmental parameters that decide whether cells should remain vegetative upon stress exposure, downregulate their metabolism to an intermediate optimum level, or become dormant. We find that cell-cell variability, or intercellular noise, is consistently beneficial in the presence of extreme environmental fluctuations, and that it provides an efficient population-level mechanism for adaption in a deteriorating environment. Our results reveal key novel aspects of responsive phenotype switching and its role as an adaptive strategy in changing environments. PMID:21525975

  9. Clinical and laboratory parameters predicting a requirement for the reevaluation of growth hormone status during growth hormone treatment: Retesting early in the course of GH treatment.

    PubMed

    Vuralli, Dogus; Gonc, E Nazli; Ozon, Z Alev; Alikasifoglu, Ayfer; Kandemir, Nurgun

    2017-06-01

    We aimed to define the predictive criteria, in the form of specific clinical, hormonal and radiological parameters, for children with growth hormone deficiency (GHD) who may benefit from the reevaluation of GH status early in the course of growth hormone (GH) treatment. Two hundred sixty-five children with growth hormone deficiency were retested by GH stimulation at the end of the first year of GH treatment. The initial clinical and laboratory characteristics of those with a normal (GH≥10ng/ml) response and those with a subnormal (GH<10ng/ml) response were compared to predict a normal GH status during reassessment. Sixty-nine patients (40.6%) out of the 170 patients with isolated growth hormone deficiency (IGHD) had a peak GH of ≥10ng/ml during the retest. None of the patients with multiple pituitary hormone deficiency (MPHD) had a peak GH of ≥10ng/ml. Puberty and sex steroid priming in peripubertal cases increased the probability of a normal GH response. Only one patient with IGHD who had an ectopic posterior pituitary without stalk interruption on MRI analysis showed a normal GH response during the retest. Patients with a peak GH between 5 and 10ng/ml, an age at diagnosis of ≥9years or a height gain below 0.61 SDS during the first year of treatment had an increased probability of having a normal GH response at the retest. Early reassessment of GH status during GH treatment is unnecessary in patients who have MPHD with at least 3 hormone deficiencies. Retesting at the end of the first year of therapy is recommended for patients with IGHD who have a height gain of <0.61 SDS in the first year of treatment, especially those with a normal or 'hypoplastic' pituitary on imaging. Priming can increase the likelihood of a normal response in patients in the pubertal age group who do not show overt signs of pubertal development. Copyright © 2017. Published by Elsevier Ltd.

  10. Expert System Control of Plant Growth in an Enclosed Space

    NASA Technical Reports Server (NTRS)

    May, George; Lanoue, Mark; Bathel, Matthew; Ryan, Robert E.

    2008-01-01

    The Expert System is an enclosed, controlled environment for growing plants, which incorporates a computerized, knowledge-based software program that is designed to capture the knowledge, experience, and problem-solving skills of one or more human experts in a particular discipline. The Expert System is trained to analyze crop/plant status, to monitor the condition of the plants and the environment, and to adjust operational parameters to optimize the plant-growth process. This system is intended to provide a way to remotely control plant growth with little or no human intervention. More specifically, the term control implies an autonomous method for detecting plant states such as health (biomass) or stress and then for recommending and implementing cultivation and/or remediation to optimize plant growth and to minimize consumption of energy and nutrients. Because of difficulties associated with delivering energy and nutrients remotely, a key feature of this Expert System is its ability to minimize this effort and to achieve optimum growth while taking into account the diverse range of environmental considerations that exist in an enclosed environment. The plant-growth environment for the Expert System could be made from a variety of structures, including a greenhouse, an underground cavern, or another enclosed chamber. Imaging equipment positioned within or around the chamber provides spatially distributed crop/plant-growth information. Sensors mounted in the chamber provide data and information pertaining to environmental conditions that could affect plant development. Lamps in the growth environment structure supply illumination, and other additional equipment in the chamber supplies essential nutrients and chemicals.

  11. Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires.

    PubMed

    Ozdemir, Baris; Kulakci, Mustafa; Turan, Rasit; Unalan, Husnu Emrah

    2011-04-15

    Vertically aligned silicon nanowire (Si NW) arrays have been fabricated over large areas using an electroless etching (EE) method, which involves etching of silicon wafers in a silver nitrate and hydrofluoric acid based solution. A detailed parametric study determining the relationship between nanowire morphology and time, temperature, solution concentration and starting wafer characteristics (doping type, resistivity, crystallographic orientation) is presented. The as-fabricated Si NW arrays were analyzed by field emission scanning electron microscope (FE-SEM) and a linear dependency of nanowire length to both temperature and time was obtained and the change in the growth rate of Si NWs at increased etching durations was shown. Furthermore, the effects of EE parameters on the optical reflectivity of the Si NWs were investigated in this study. Reflectivity measurements show that the 42.8% reflectivity of the starting silicon wafer drops to 1.3%, recorded for 10 µm long Si NW arrays. The remarkable decrease in optical reflectivity indicates that Si NWs have a great potential to be utilized in radial or coaxial p-n heterojunction solar cells that could provide orthogonal photon absorption and enhanced carrier collection.

  12. Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Ozdemir, Baris; Kulakci, Mustafa; Turan, Rasit; Emrah Unalan, Husnu

    2011-04-01

    Vertically aligned silicon nanowire (Si NW) arrays have been fabricated over large areas using an electroless etching (EE) method, which involves etching of silicon wafers in a silver nitrate and hydrofluoric acid based solution. A detailed parametric study determining the relationship between nanowire morphology and time, temperature, solution concentration and starting wafer characteristics (doping type, resistivity, crystallographic orientation) is presented. The as-fabricated Si NW arrays were analyzed by field emission scanning electron microscope (FE-SEM) and a linear dependency of nanowire length to both temperature and time was obtained and the change in the growth rate of Si NWs at increased etching durations was shown. Furthermore, the effects of EE parameters on the optical reflectivity of the Si NWs were investigated in this study. Reflectivity measurements show that the 42.8% reflectivity of the starting silicon wafer drops to 1.3%, recorded for 10 µm long Si NW arrays. The remarkable decrease in optical reflectivity indicates that Si NWs have a great potential to be utilized in radial or coaxial p-n heterojunction solar cells that could provide orthogonal photon absorption and enhanced carrier collection.

  13. Planned Missing Designs to Optimize the Efficiency of Latent Growth Parameter Estimates

    ERIC Educational Resources Information Center

    Rhemtulla, Mijke; Jia, Fan; Wu, Wei; Little, Todd D.

    2014-01-01

    We examine the performance of planned missing (PM) designs for correlated latent growth curve models. Using simulated data from a model where latent growth curves are fitted to two constructs over five time points, we apply three kinds of planned missingness. The first is item-level planned missingness using a three-form design at each wave such…

  14. Individual tree-diameter growth model for the Northeastern United States

    Treesearch

    Richard M. Teck; Donald E. Hilt

    1991-01-01

    Describes a distance-independent individual-tree diameter growth model for the Northeastern United States. Diameter growth is predicted in two steps using a two parameter, sigmoidal growth function modified by a one parameter exponential decay function with species-specific coefficients. Coefficients are presented for 28 species groups. The model accounts for...

  15. Restrain of bone growth by estrogen-mimetic peptide-1 (EMP-1): a micro-computed tomographic study.

    PubMed

    Kasher, Roni; Bajayo, Alon; Gabet, Yankel; Nevo, Nava; Fridkin, Mati; Katchalski-Katzir, Ephraim; Kohen, Fortune; Bab, Itai

    2009-06-01

    Estrogen has a key role in the regulation of skeletal growth and maintenance of bone mass. Recently, we developed peptides having estrogen-like activity as potential estrogen-based new drugs. The aim of the present study was to evaluate the influence of long-term administration of the most efficacious of these peptides, the hexapeptide EMP-1 (VSWFFE), on bone mass and development. EMP-1 was injected daily to ovariectomized (OVX) and intact young, sexually mature female mice for 10 weeks. Whole femora, including the cartilaginous growth plates were analyzed by micro-computed tomography (microCT). We found that peptide EMP-1 restrains bone growth in OVX mice: it inhibited dramatically bone longitudinal growth (40%), and decreased femoral diaphyseal diameter. Peptide EMP-1 had no effect on bone growth in normal mice, and did not influence the OVX-induced bone loss. We then developed a new microCT methodology to evaluate uncalcified and calcified growth plate parameters. In the OVX mice, peptide EMP-1 reduced volume and thickness of the uncalcified growth plate, a possible cause for the inhibition of bone longitudinal growth. Peptide EMP-1 may be used as a lead compound for the development of drugs to treat acromegalic patients.

  16. [Effects of different water potentials on leaf gas exchange and chlorophyll fluorescence parameters of cucumber during post-flowering growth stage].

    PubMed

    Lin, Lu; Tang, Yun; Zhang, Ji-tao; Yan, Wan-li; Xiao, Jian-hong; Ding, Chao; Dong, Chuan; Ji, Zeng-shun

    2015-07-01

    Impacts of different substrate water potentials (SWP) on leaf gas exchange and chlorophyll fluorescence parameters of greenhouse cucumber during its post-flowering growth stage were analyzed in this study. The results demonstrated that -10 and -30 kPa were the critical values for initiating stomatal and non-stomatal limitation of drought stress, respectively. During the stage of no drought stress (-10 kPa < SWP ≤ 0 kPa), gas exchange parameters and chlorophyll fluorescence parameters were not different significantly among treatments. During the stage of stomatal limitation of drought stress (-30 kPaparameters changed faster than chlorophyll fluorescence parameters and differed significantly among treatments. During the stage of non-stomatal limitation of drought stress (-45 kPa≤SWP ≤ -30 kPa), with the decrease of SWP, light saturation point (LSP), Rd, CE, Vcmax, VTPU, LS, WUEi, ΦpPSII, Fv/Fm and qp decreased, while CCP, Ci and qN increased. In this stage, chlorophyll fluorescence parameters changed faster than gas exchange parameters and differed significantly among treatments. In production of greenhouse cucumber, -10 and -5 kPa should be the lower and upper limit value of irrigation, respectively. The stomatal

  17. Post-processing procedure for industrial quantum key distribution systems

    NASA Astrophysics Data System (ADS)

    Kiktenko, Evgeny; Trushechkin, Anton; Kurochkin, Yury; Fedorov, Aleksey

    2016-08-01

    We present algorithmic solutions aimed on post-processing procedure for industrial quantum key distribution systems with hardware sifting. The main steps of the procedure are error correction, parameter estimation, and privacy amplification. Authentication of classical public communication channel is also considered.

  18. Solutions for a local equation of anisotropic plant cell growth: an analytical study of expansin activity

    PubMed Central

    Pietruszka, Mariusz

    2011-01-01

    This paper presents a generalization of the Lockhart equation for plant cell/organ expansion in the anisotropic case. The intent is to take into account the temporal and spatial variation in the cell wall mechanical properties by considering the wall ‘extensibility’ (Φ), a time- and space-dependent parameter. A dynamic linear differential equation of a second-order tensor is introduced by describing the anisotropic growth process with some key biochemical aspects included. The distortion and expansion of plant cell walls initiated by expansins, a class of proteins known to enhance cell wall ‘extensibility’, is also described. In this approach, expansin proteins are treated as active agents participating in isotropic/anisotropic growth. Two-parameter models and an equation for describing α- and β-expansin proteins are proposed by delineating the extension of isolated wall samples, allowing turgor-driven polymer creep, where expansins weaken the non-covalent binding between wall polysaccharides. We observe that the calculated halftime (t1/2 = εΦ0 log 2) of stress relaxation due to expansin action can be described in mechanical terms. PMID:21227964

  19. Model-Assisted Estimation of the Genetic Variability in Physiological Parameters Related to Tomato Fruit Growth under Contrasted Water Conditions

    PubMed Central

    Constantinescu, Dario; Memmah, Mohamed-Mahmoud; Vercambre, Gilles; Génard, Michel; Baldazzi, Valentina; Causse, Mathilde; Albert, Elise; Brunel, Béatrice; Valsesia, Pierre; Bertin, Nadia

    2016-01-01

    Drought stress is a major abiotic stress threatening plant and crop productivity. In case of fleshy fruits, understanding mechanisms governing water and carbon accumulations and identifying genes, QTLs and phenotypes, that will enable trade-offs between fruit growth and quality under Water Deficit (WD) condition is a crucial challenge for breeders and growers. In the present work, 117 recombinant inbred lines of a population of Solanum lycopersicum were phenotyped under control and WD conditions. Plant water status, fruit growth and composition were measured and data were used to calibrate a process-based model describing water and carbon fluxes in a growing fruit as a function of plant and environment. Eight genotype-dependent model parameters were estimated using a multiobjective evolutionary algorithm in order to minimize the prediction errors of fruit dry and fresh mass throughout fruit development. WD increased the fruit dry matter content (up to 85%) and decreased its fresh weight (up to 60%), big fruit size genotypes being the most sensitive. The mean normalized root mean squared errors of the predictions ranged between 16–18% in the population. Variability in model genotypic parameters allowed us to explore diverse genetic strategies in response to WD. An interesting group of genotypes could be discriminated in which (i) the low loss of fresh mass under WD was associated with high active uptake of sugars and low value of the maximum cell wall extensibility, and (ii) the high dry matter content in control treatment (C) was associated with a slow decrease of mass flow. Using 501 SNP markers genotyped across the genome, a QTL analysis of model parameters allowed to detect three main QTLs related to xylem and phloem conductivities, on chromosomes 2, 4, and 8. The model was then applied to design ideotypes with high dry matter content in C condition and low fresh mass loss in WD condition. The ideotypes outperformed the RILs especially for large and medium

  20. Effects of dietary inclusion of Moringa oleifera leaves on growth and some systemic and mucosal immune parameters of seabream.

    PubMed

    Mansour, Abdallah Tageldein; Miao, Liang; Espinosa, Cristóbal; García-Beltrán, José María; Ceballos Francisco, Diana C; Esteban, M Ángeles

    2018-08-01

    The effect of the dietary incorporation of drumstick, Moringa oleifera, leaf meal (MOL; 0, 5, 10 and 15%) on the growth, feed utilization, some skin mucus and systemic immune parameters and intestinal immune-related gene expression in gilthead seabream (Sparus aurata) specimens. The experiment lasted 4 weeks. The results revealed that MOL can be incorporated in S. aurata diet up to 10% with no significant negative effect on growth and feed utilization. However, there was a significant decrease with MOL at a level of 15% after 2 weeks of feeding. The systemic immune status of fish fed with the different levels of MOL showed an improvement in head kidney leucocyte phagocytosis, respiratory burst and peroxidase activities. Also, serum humoral components, including protease, ACH 50 and lysozyme activities and IgM level, increased with MOL inclusion especially at the 5% level. MOL at 5% improved skin-mucosal immunity such as protease, antiprotease, peroxidase and lysozyme activities. Moreover, the feeding of MOL revealed an upregulation of the intestinal mucosal immunity genes (lyso and c3), tight junction proteins (occludin and zo-1) and anti-inflammatory cytokines (tgf-β) with a downregulation of pro-inflammatory cytokine (tnf-α). Therefore, it is recommended to incorporate MOL in S. aurata diets at a level of 5% for the best immune status or 10% for the high growth performance and acceptable immune surveillance. Graphical abstract ᅟ.

  1. A new look at the decomposition of agricultural productivity growth incorporating weather effects.

    PubMed

    Njuki, Eric; Bravo-Ureta, Boris E; O'Donnell, Christopher J

    2018-01-01

    Random fluctuations in temperature and precipitation have substantial impacts on agricultural output. However, the contribution of these changing configurations in weather to total factor productivity (TFP) growth has not been addressed explicitly in econometric analyses. Thus, the key objective of this study is to quantify and to investigate the role of changing weather patterns in explaining yearly fluctuations in TFP. For this purpose, we define TFP to be a measure of total output divided by a measure of total input. We estimate a stochastic production frontier model using U.S. state-level agricultural data incorporating growing season temperature and precipitation, and intra-annual standard deviations of temperature and precipitation for the period 1960-2004. We use the estimated parameters of the model to compute a TFP index that has good axiomatic properties. We then decompose TFP growth in each state into weather effects, technological progress, technical efficiency, and scale-mix efficiency changes. This approach improves our understanding of the role of different components of TFP in agricultural productivity growth. We find that annual TFP growth averaged 1.56% between 1960 and 2004. Moreover, we observe substantial heterogeneity in weather effects across states and over time.

  2. A new look at the decomposition of agricultural productivity growth incorporating weather effects

    PubMed Central

    Bravo-Ureta, Boris E.; O’Donnell, Christopher J.

    2018-01-01

    Random fluctuations in temperature and precipitation have substantial impacts on agricultural output. However, the contribution of these changing configurations in weather to total factor productivity (TFP) growth has not been addressed explicitly in econometric analyses. Thus, the key objective of this study is to quantify and to investigate the role of changing weather patterns in explaining yearly fluctuations in TFP. For this purpose, we define TFP to be a measure of total output divided by a measure of total input. We estimate a stochastic production frontier model using U.S. state-level agricultural data incorporating growing season temperature and precipitation, and intra-annual standard deviations of temperature and precipitation for the period 1960–2004. We use the estimated parameters of the model to compute a TFP index that has good axiomatic properties. We then decompose TFP growth in each state into weather effects, technological progress, technical efficiency, and scale-mix efficiency changes. This approach improves our understanding of the role of different components of TFP in agricultural productivity growth. We find that annual TFP growth averaged 1.56% between 1960 and 2004. Moreover, we observe substantial heterogeneity in weather effects across states and over time. PMID:29466461

  3. Analysing growth and development of plants jointly using developmental growth stages

    PubMed Central

    Dambreville, Anaëlle; Lauri, Pierre-Éric; Normand, Frédéric; Guédon, Yann

    2015-01-01

    Background and Aims Plant growth, the increase of organ dimensions over time, and development, the change in plant structure, are often studied as two separate processes. However, there is structural and functional evidence that these two processes are strongly related. The aim of this study was to investigate the co-ordination between growth and development using mango trees, which have well-defined developmental stages. Methods Developmental stages, determined in an expert way, and organ sizes, determined from objective measurements, were collected during the vegetative growth and flowering phases of two cultivars of mango, Mangifera indica. For a given cultivar and growth unit type (either vegetative or flowering), a multistage model based on absolute growth rate sequences deduced from the measurements was first built, and then growth stages deduced from the model were compared with developmental stages. Key Results Strong matches were obtained between growth stages and developmental stages, leading to a consistent definition of integrative developmental growth stages. The growth stages highlighted growth asynchronisms between two topologically connected organs, namely the vegetative axis and its leaves. Conclusions Integrative developmental growth stages emphasize that developmental stages are closely related to organ growth rates. The results are discussed in terms of the possible physiological processes underlying these stages, including plant hydraulics, biomechanics and carbohydrate partitioning. PMID:25452250

  4. The growth hormone–insulin-like growth factor-I axis in the diagnosis and treatment of growth disorders

    PubMed Central

    Blum, Werner F; Alherbish, Abdullah; Alsagheir, Afaf; El Awwa, Ahmed; Kaplan, Walid; Koledova, Ekaterina; Savage, Martin O

    2018-01-01

    The growth hormone (GH)–insulin-like growth factor (IGF)-I axis is a key endocrine mechanism regulating linear growth in children. While paediatricians have a good knowledge of GH secretion and assessment, understanding and use of measurements of the components of the IGF system are less current in clinical practice. The physiological function of this axis is to increase the anabolic cellular processes of protein synthesis and mitosis, and reduction of apoptosis, with each being regulated in the appropriate target tissue. Measurement of serum IGF-I and IGF-binding protein (IGFBP)-3 concentrations can complement assessment of GH status in the investigation of short stature and contribute to prediction of growth response during GH therapy. IGF-I monitoring during GH therapy also informs the clinician about adherence and provides a safety reference to avoid over-dosing during long-term management. PMID:29724795

  5. The growth hormone-insulin-like growth factor-I axis in the diagnosis and treatment of growth disorders.

    PubMed

    Blum, Werner; Alherbish, Abdullah; Alsagheir, Afaf; El Awwa, Ahmed; Kaplan, Walid; Koledova, Ekaterina; Savage, Martin O

    2018-05-03

    The growth hormone (GH)-insulin-like growth factor (IGF)-I axis is a key endocrine mechanism regulating linear growth in children. While paediatricians have a good knowledge of GH secretion and assessment, understanding and use of measurements of the components of the IGF system are less current in clinical practice. The physiological function of this axis is to increase the anabolic cellular processes of protein synthesis and mitosis, and reduction of apoptosis, with each being regulated in the appropriate target tissue. Measurement of serum IGF-I and IGFBP-3 concentrations can complement assessment of GH status in the investigation of short stature and contribute to prediction of growth response during GH therapy. IGF-I monitoring during GH therapy also informs the clinician about adherence and provides a safety reference to avoid over-dosing during long-term management.

  6. Dynamic Scaling and Island Growth Kinetics in Pulsed Laser Deposition of SrTiO 3

    DOE PAGES

    Eres, Gyula; Tischler, J. Z.; Rouleau, C. M.; ...

    2016-11-11

    We use real-time diffuse surface x-ray diffraction to probe the evolution of island size distributions and its effects on surface smoothing in pulsed laser deposition (PLD) of SrTiO 3. In this study, we show that the island size evolution obeys dynamic scaling and two distinct regimes of island growth kinetics. Our data show that PLD film growth can persist without roughening despite thermally driven Ostwald ripening, the main mechanism for surface smoothing, being shut down. The absence of roughening is concomitant with decreasing island density, contradicting the prevailing view that increasing island density is the key to surface smoothing inmore » PLD. We also report a previously unobserved crossover from diffusion-limited to attachment-limited island growth that reveals the influence of nonequilibrium atomic level surface transport processes on the growth modes in PLD. We show by direct measurements that attachment-limited island growth is the dominant process in PLD that creates step flowlike behavior or quasistep flow as PLD “self-organizes” local step flow on a length scale consistent with the substrate temperature and PLD parameters.« less

  7. Dynamic Scaling and Island Growth Kinetics in Pulsed Laser Deposition of SrTiO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eres, Gyula; Tischler, J. Z.; Rouleau, C. M.

    We use real-time diffuse surface x-ray diffraction to probe the evolution of island size distributions and its effects on surface smoothing in pulsed laser deposition (PLD) of SrTiO 3. In this study, we show that the island size evolution obeys dynamic scaling and two distinct regimes of island growth kinetics. Our data show that PLD film growth can persist without roughening despite thermally driven Ostwald ripening, the main mechanism for surface smoothing, being shut down. The absence of roughening is concomitant with decreasing island density, contradicting the prevailing view that increasing island density is the key to surface smoothing inmore » PLD. We also report a previously unobserved crossover from diffusion-limited to attachment-limited island growth that reveals the influence of nonequilibrium atomic level surface transport processes on the growth modes in PLD. We show by direct measurements that attachment-limited island growth is the dominant process in PLD that creates step flowlike behavior or quasistep flow as PLD “self-organizes” local step flow on a length scale consistent with the substrate temperature and PLD parameters.« less

  8. Cryptographic robustness of practical quantum cryptography: BB84 key distribution protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N.

    2008-07-15

    In real fiber-optic quantum cryptography systems, the avalanche photodiodes are not perfect, the source of quantum states is not a single-photon one, and the communication channel is lossy. For these reasons, key distribution is impossible under certain conditions for the system parameters. A simple analysis is performed to find relations between the parameters of real cryptography systems and the length of the quantum channel that guarantee secure quantum key distribution when the eavesdropper's capabilities are limited only by fundamental laws of quantum mechanics while the devices employed by the legitimate users are based on current technologies. Critical values are determinedmore » for the rate of secure real-time key generation that can be reached under the current technology level. Calculations show that the upper bound on channel length can be as high as 300 km for imperfect photodetectors (avalanche photodiodes) with present-day quantum efficiency ({eta} {approx} 20%) and dark count probability (p{sub dark} {approx} 10{sup -7})« less

  9. Cryptographic robustness of practical quantum cryptography: BB84 key distribution protocol

    NASA Astrophysics Data System (ADS)

    Molotkov, S. N.

    2008-07-01

    In real fiber-optic quantum cryptography systems, the avalanche photodiodes are not perfect, the source of quantum states is not a single-photon one, and the communication channel is lossy. For these reasons, key distribution is impossible under certain conditions for the system parameters. A simple analysis is performed to find relations between the parameters of real cryptography systems and the length of the quantum channel that guarantee secure quantum key distribution when the eavesdropper’s capabilities are limited only by fundamental laws of quantum mechanics while the devices employed by the legitimate users are based on current technologies. Critical values are determined for the rate of secure real-time key generation that can be reached under the current technology level. Calculations show that the upper bound on channel length can be as high as 300 km for imperfect photodetectors (avalanche photodiodes) with present-day quantum efficiency (η ≈ 20%) and dark count probability ( p dark ˜ 10-7).

  10. Bayesian analyses of genetic parameters for growth traits in Nellore cattle raised on pasture.

    PubMed

    Lopes, F B; Ferreira, J L; Lobo, R B; Rosa, G J M

    2017-07-06

    This study was carried out to investigate (co)variance components and genetic parameters for growth traits in beef cattle using a multi-trait model by Bayesian methods. Genetic and residual (co)variances and parameters were estimated for weights at standard ages of 120 (W120), 210 (W210), 365 (W365), and 450 days (W450), and for pre- and post-weaning daily weight gain (preWWG and postWWG) in Nellore cattle. Data were collected over 16 years (1993-2009), and all animals were raised on pasture in eight farms in the North of Brazil that participate in the National Association of Breeders and Researchers. Analyses were run by the Bayesian approach using Gibbs sampler. Additive direct heritabilities for W120, W210, W365, and W450 and for preWWG and postWWG were 0.28 ± 0.013, 0.32 ± 0.002, 0.31 ± 0.002, 0.50 ± 0.026, 0.61 ± 0.047, and 0.79 ± 0.055, respectively. The estimates of maternal heritability were 0.32 ± 0.012, 0.29 ± 0.004, 0.30 ± 0.005, 0.25 ± 0.015, 0.23 ± 0.017, and 0.22 ± 0.016, respectively, for W120, W210, W365, and W450 and for preWWG and postWWG. The estimates of genetic direct additive correlation among all traits were positive and ranged from 0.25 ± 0.03 (preWWG and postWWG) to 0.99 ± 0.00 (W210 and preWWG). The moderate to high estimates of heritability and genetic correlation for weights and daily weight gains at different ages is suggestive of genetic improvement in these traits by selection at an appropriate age. Maternal genetic effects seemed to be significant across the traits. When the focus is on direct and maternal effects, W210 seems to be a good criterium for the selection of Nellore cattle considering the importance of this breed as a major breed of beef cattle not only in Northern Brazil but all regions covered by tropical pastures. As in this study the genetic correlations among all traits were high, the selection based on weaning weight might be a good choice because at this age there are two important effects (maternal

  11. RSA-Based Password-Authenticated Key Exchange, Revisited

    NASA Astrophysics Data System (ADS)

    Shin, Seonghan; Kobara, Kazukuni; Imai, Hideki

    The RSA-based Password-Authenticated Key Exchange (PAKE) protocols have been proposed to realize both mutual authentication and generation of secure session keys where a client is sharing his/her password only with a server and the latter should generate its RSA public/private key pair (e, n), (d, n) every time due to the lack of PKI (Public-Key Infrastructures). One of the ways to avoid a special kind of off-line (so called e-residue) attacks in the RSA-based PAKE protocols is to deploy a challenge/response method by which a client verifies the relative primality of e and φ(n) interactively with a server. However, this kind of RSA-based PAKE protocols did not give any proof of the underlying challenge/response method and therefore could not specify the exact complexity of their protocols since there exists another security parameter, needed in the challenge/response method. In this paper, we first present an RSA-based PAKE (RSA-PAKE) protocol that can deploy two different challenge/response methods (denoted by Challenge/Response Method1 and Challenge/Response Method2). The main contributions of this work include: (1) Based on the number theory, we prove that the Challenge/Response Method1 and the Challenge/Response Method2 are secure against e-residue attacks for any odd prime e (2) With the security parameter for the on-line attacks, we show that the RSA-PAKE protocol is provably secure in the random oracle model where all of the off-line attacks are not more efficient than on-line dictionary attacks; and (3) By considering the Hamming weight of e and its complexity in the. RSA-PAKE protocol, we search for primes to be recommended for a practical use. We also compare the RSA-PAKE protocol with the previous ones mainly in terms of computation and communication complexities.

  12. Test Method Variability in Slow Crack Growth Properties of Sealing Glasses

    NASA Technical Reports Server (NTRS)

    Salem, J. A.; Tandon, R.

    2010-01-01

    The crack growth properties of several sealing glasses were measured by using constant stress rate testing in 2 and 95 percent RH (relative humidity). Crack growth parameters measured in high humidity are systematically smaller (n and B) than those measured in low humidity, and crack velocities for dry environments are 100x lower than for wet environments. The crack velocity is very sensitive to small changes in RH at low RH. Biaxial and uniaxial stress states produced similar parameters. Confidence intervals on crack growth parameters that were estimated from propagation of errors solutions were comparable to those from Monte Carlo simulation. Use of scratch-like and indentation flaws produced similar crack growth parameters when residual stresses were considered.

  13. Quantum key distribution with an entangled light emitting diode

    NASA Astrophysics Data System (ADS)

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2015-12-01

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

  14. Present and future free-space quantum key distribution

    NASA Astrophysics Data System (ADS)

    Nordholt, Jane E.; Hughes, Richard J.; Morgan, George L.; Peterson, C. Glen; Wipf, Christopher C.

    2002-04-01

    Free-space quantum key distribution (QKD), more popularly know as quantum cryptography, uses single-photon free-space optical communications to distribute the secret keys required for secure communications. At Los Alamos National Laboratory we have demonstrated a fully automated system that is capable of operations at any time of day over a horizontal range of several kilometers. This has proven the technology is capable of operation from a spacecraft to the ground, opening up the possibility of QKD between any group of users anywhere on Earth. This system, the prototyping of a new system for use on a spacecraft, and the techniques required for world-wide quantum key distribution will be described. The operational parameters and performance of a system designed to operate between low earth orbit (LEO) and the ground will also be discussed.

  15. CORRELATION OF COLIFORM GROWTH RESPONSE WITH OTHER WATER QUALITY PARAMETERS

    EPA Science Inventory

    A variety of water types collected from different geographical areas at different stages of water treatment were anlayzed for their ability to support the growth of coliform bacteria. Based on this coliform bioassay, the nutrient status of the water did not correlate with any of...

  16. Determination of the key parameters affecting historic communications satellite trends

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1984-01-01

    Data representing 13 series of commercial communications satellites procured between 1968 and 1982 were analyzed to determine the factors that have contributed to the general reduction over time of the per circuit cost of communications satellites. The model by which the data were analyzed was derived from a general telecommunications application and modified to be more directly applicable for communications satellites. In this model satellite mass, bandwidth-years, and technological change were the variable parameters. A linear, least squares, multiple regression routine was used to obtain the measure of significance of the model. Correlation was measured by coefficient of determination (R super 2) and t-statistic. The results showed that no correlation could be established with satellite mass. Bandwidth-year however, did show a significant correlation. Technological change in the bandwidth-year case was a significant factor in the model. This analysis and the conclusions derived are based on mature technologies, i.e., satellite designs that are evolutions of earlier designs rather than the first of a new generation. The findings, therefore, are appropriate to future satellites only if they are a continuation of design evolution.

  17. Body growth and reproduction of individuals of the sciaenid fish Stellifer rastrifer in a shallow tropical bight: A cautionary tale for assumptions regarding population parameters

    NASA Astrophysics Data System (ADS)

    Pombo, Maíra; Denadai, Márcia Regina; Turra, Alexander

    2013-05-01

    Knowledge of population parameters and the ability to predict their responses to environmental changes are useful tools to aid in the appropriate management and conservation of natural resources. Samples of the sciaenid fish Stellifer rastrifer were taken from August 2003 through October 2004 in shallow areas of Caraguatatuba Bight, southeastern Brazil. The results showed a consistent presence of length-frequency classes throughout the year and low values of the gonadosomatic index of this species, indicating that the area is not used for spawning or residence of adults, but rather shelters individuals in late stages of development. The results may serve as a caveat for assessments of transitional areas such as the present one, the nursery function of which is neglected compared to estuaries and mangroves. The danger of mismanaging these areas by not considering their peculiarities is emphasized by using these data as a study case for the development of some broadly used population-parameter analyses. The individuals' body growth parameters from the von Bertalanffy model were estimated based on the most common approaches, and the best values obtained from traditional quantification methods of selection were very prone to bias. The low gonadosomatic index (GSI) estimated during the period was an important factor in stimulating us to select more reliable parameters of body growth (L∞ = 20.9, K = 0.37 and Z = 2.81), which were estimated based on assuming the existence of spatial segregation by size. The data obtained suggest that the estimated mortality rate included a high rate of migration of older individuals to deeper areas, where we assume that they completed their development.

  18. Effects of dietary onion (Allium cepa) powder on growth, innate immune response and hemato-biochemical parameters of beluga (Huso huso Linnaeus, 1754) juvenile.

    PubMed

    Akrami, Raza; Gharaei, Ahmad; Mansour, Majid Razeghi; Galeshi, Ali

    2015-08-01

    The present study was aimed at determining the effects of dietary onion powder on growth, innate immune response and hemato-biochemical parameters of beluga juvenile (Huso huso). Basal diets containing onion powder 0 (control), 0.5 and 1% of feed were fed to beluga juvenile. At the end of the experiment, the highest weight gain (WG%) and specific growth rate (SGR) was observed in group fed with 1% onion (P < 0.05). There were no significant difference (P > 0.05) about feed conversion ratio (FCR) in treatment groups that fed diets containing various levels of onion powder. After 8 weeks, serum lysozyme activity, superoxide dismutase activity (SOD), respiratory burst activity and serum total immunoglobulin (Ig) showed a significant increase in treatment group with 1% onion powder compared to other groups (P < 0.05). The group fed 1% onion showed a significantly increases in the number of erythrocytes (RBC), leucocyte (WBC), haematocrit (Hct) levels compared to the control group (P < 0.05). Haemoglobin, monocyte, lymphocyte and neutrophil had no significant change (P > 0.05) in treatment groups and control. The analysis of AST and LDH levels showed a significant decrease in 1% onion compared to the control and 0.5% onion diet (P < 0.05), while ALT and ALP levels were not influenced (P > 0.05). The blood glucose, total protein, triglyceride, cholesterol, albumin and globulin levels were lower in treated groups compared with the control (P < 0.05). The results of this study demonstrated that dietary onion powder could be an improvement in growth, hematological parameters and immune function of beluga juvenile. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Han's model parameters for microalgae grown under intermittent illumination: Determined using particle swarm optimization.

    PubMed

    Pozzobon, Victor; Perre, Patrick

    2018-01-21

    This work provides a model and the associated set of parameters allowing for microalgae population growth computation under intermittent lightning. Han's model is coupled with a simple microalgae growth model to yield a relationship between illumination and population growth. The model parameters were obtained by fitting a dataset available in literature using Particle Swarm Optimization method. In their work, authors grew microalgae in excess of nutrients under flashing conditions. Light/dark cycles used for these experimentations are quite close to those found in photobioreactor, i.e. ranging from several seconds to one minute. In this work, in addition to producing the set of parameters, Particle Swarm Optimization robustness was assessed. To do so, two different swarm initialization techniques were used, i.e. uniform and random distribution throughout the search-space. Both yielded the same results. In addition, swarm distribution analysis reveals that the swarm converges to a unique minimum. Thus, the produced set of parameters can be trustfully used to link light intensity to population growth rate. Furthermore, the set is capable to describe photodamages effects on population growth. Hence, accounting for light overexposure effect on algal growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Insulin Sensitivity as a Key Mediator of Growth Hormone Actions on Longevity

    PubMed Central

    Panici, Jacob A.; Bonkowski, Michael S.; Hughes, Larry F.; Bartke, Andrzej

    2009-01-01

    Reduced insulin sensitivity and glucose intolerance have been long suspected of having important involvement in aging. Here we report that in studies of calorie restriction (CR) effects in mutant (Prop1df and growth hormone receptor knockout [GHRKO]) and normal mice, insulin sensitivity was strongly associated with longevity. Of particular interest was enhancement of the already increased insulin sensitivity in CR df/df mice in which longevity was also further extended and the lack of changes in insulin sensitivity in calorically restricted GHRKO mice in which there was no further increase in average life span. We suggest that enhanced insulin sensitivity, in conjunction with reduced insulin levels, may represent an important (although almost certainly not exclusive) mechanism of increased longevity in hypopituitary, growth hormone (GH)-resistant, and calorie-restricted animals. We also report that the effects of GH treatment on insulin sensitivity may be limited to the period of GH administration. PMID:19304940

  1. Growth of Coccolithophores Controlled by Internal Nutrient Stores in Light- and Nutrient-Limited Batch Reactors: Relevance for the BIOSOPE Deep Ecological Niche of Coccolithophores.

    NASA Astrophysics Data System (ADS)

    Laura, P.; Probert, I.; Langer, G.; Aloisi, G.

    2016-02-01

    Coccolithophores are unicellular, calcifying marine algae that play a fundamental role in the oceanic carbon cycle. Recent research has focused on investigating the effect of ocean acidification on cellular calcification. However, the success of this important phytoplankton group in the future ocean will depend on how cellular growth reacts to changes in a combination of environmental variables. We carried out batch culture experiments in conditions of light- and nutrient- (nitrate and phosphate) limitation that reproduce the in situ conditions of a deep ecological niche of coccolithophores in the South Pacific Gyre (BIOSOPE cruise, 2004). We modelled nutrient acquisition and cellular growth in our batch experiments using a Droop internal-stores model. We show that nutrient acquisition and growth are decoupled in coccolithophores; this ability may be key in making life possible in oligotrophic conditions such as the deep BIOSOPE biological niche. Combining the results of our culture experiments with those of Langer et al. (2013), we used the model to obtain estimates of fundamental physiological parameters such as the Monod constant for nutrient uptake, the maximum growth rate and the minimum cellular nutrient quota. These parameters are characteristic of different phytoplankton groups and are needed to simulate phytoplankton growth in biogeochemical models. Our results suggest that growth of coccolithophores in the BIOSOPE deep ecological niche is light-limited rather than nutrient-limited. Our work also shows that simple batch experiments and straightforward numerical modelling are capable of providing estimates of physiological parameters usually obtained in more costly and complicated chemostat experiments.

  2. Key parameters for behaviour related to source separation of household organic waste: A case study in Hanoi, Vietnam.

    PubMed

    Kawai, Kosuke; Huong, Luong Thi Mai

    2017-03-01

    Proper management of food waste, a major component of municipal solid waste (MSW), is needed, especially in developing Asian countries where most MSW is disposed of in landfill sites without any pretreatment. Source separation can contribute to solving problems derived from the disposal of food waste. An organic waste source separation and collection programme has been operated in model areas in Hanoi, Vietnam, since 2007. This study proposed three key parameters (participation rate, proper separation rate and proper discharge rate) for behaviour related to source separation of household organic waste, and monitored the progress of the programme based on the physical composition of household waste sampled from 558 households in model programme areas of Hanoi. The results showed that 13.8% of 558 households separated organic waste, and 33.0% discharged mixed (unseparated) waste improperly. About 41.5% (by weight) of the waste collected as organic waste was contaminated by inorganic waste, and one-third of the waste disposed of as organic waste by separators was inorganic waste. We proposed six hypothetical future household behaviour scenarios to help local officials identify a final or midterm goal for the programme. We also suggested that the city government take further actions to increase the number of people participating in separating organic waste, improve the accuracy of separation and prevent non-separators from discharging mixed waste improperly.

  3. Chairside CAD/CAM materials. Part 3: Cyclic fatigue parameters and lifetime predictions.

    PubMed

    Wendler, Michael; Belli, Renan; Valladares, Diana; Petschelt, Anselm; Lohbauer, Ulrich

    2018-06-01

    Chemical and mechanical degradation play a key role on the lifetime of dental restorative materials. Therefore, prediction of their long-term performance in the oral environment should base on fatigue, rather than inert strength data, as commonly observed in the dental material's field. The objective of the present study was to provide mechanistic fatigue parameters of current dental CAD/CAM materials under cyclic biaxial flexure and assess their suitability in predicting clinical fracture behaviors. Eight CAD/CAM materials, including polycrystalline zirconia (IPS e.max ZirCAD), reinforced glasses (Vitablocs Mark II, IPS Empress CAD), glass-ceramics (IPS e.max CAD, Suprinity PC, Celtra Duo), as well as hybrid materials (Enamic, Lava Ultimate) were evaluated. Rectangular plates (12×12×1.2mm 3 ) with highly polished surfaces were prepared and tested in biaxial cyclic fatigue in water until fracture using the Ball-on-Three-Balls (B3B) test. Cyclic fatigue parameters n and A* were obtained from the lifetime data for each material and further used to build SPT diagrams. The latter were used to compare in-vitro with in-vivo fracture distributions for IPS e.max CAD and IPS Empress CAD. Susceptibility to subcritical crack growth under cyclic loading was observed for all materials, being more severe (n≤20) in lithium-based glass-ceramics and Vitablocs Mark II. Strength degradations of 40% up to 60% were predicted after only 1 year of service. Threshold stress intensity factors (K th ) representing the onset of subcritical crack growth (SCG), were estimated to lie in the range of 0.37-0.44 of K Ic for the lithium-based glass-ceramics and Vitablocs Mark II and between 0.51-0.59 of K Ic for the other materials. Failure distributions associated with mechanistic estimations of strength degradation in-vitro showed to be useful in interpreting failure behavior in-vivo. The parameter K th stood out as a better predictor of clinical performance in detriment to the SCG n

  4. Humic Fertilizer and Vermicompost Applied to the Soil Can Positively Affect Population Growth Parameters of Trichogramma brassicae (Hymenoptera: Trichogrammatidae) on Eggs of Tuta absoluta (Lepidoptera: Gelechiidae).

    PubMed

    Mohamadi, P; Razmjou, J; Naseri, B; Hassanpour, M

    2017-12-01

    The tomato leaf miner, Tuta absoluta (Meyrick), is a devastating pest of tomato worldwide. One of the control measures of T. absoluta is the use of biological control agents, such as Trichogramma wasps. Interactions between natural enemies and insect pests may be affected by application of fertilizers, because changes in plant quality through the fertilizer application may therefore affect herbivore characteristics and suitability of them to parasitism. Laboratory tests were carried out to evaluate the life table parameters of Trichogramma brassicae Bezdenko on T. absoluta eggs reared on tomato plants treated either with vermicompost (40%), humic fertilizer (2 g/kg soil), or control (suitable mixture of field soil and sand). Population growth parameters of T. brassicae were affected by fertilizer treatments. Significant differences were found for immature life period and total fecundity of T. brassicae on the treatments. Differences of intrinsic rate of natural increase (r m ), finite rate of increase (λ), net reproductive rate (R 0 ), mean generation time (T), and doubling time (DT) of T. brassicae among treatments were also significant. The lowest values of r m , λ, and R 0 were recorded for T. brassicae developed on T. absoluta eggs on control treatment, whereas the highest values of these parameters were observed on 2 g/kg humic fertilizer. Furthermore, T. brassicae had the shortest T and DT values on 2 g/kg humic fertilizer and 40% vermicompost treatments. Our results showed that application of humic fertilizer and vermicompost could positively affect population growth parameters of T. brassicae on eggs of T. absoluta fed on tomato plants.

  5. Phenomenology of stochastic exponential growth

    NASA Astrophysics Data System (ADS)

    Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya

    2017-06-01

    Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.

  6. Novel image encryption algorithm based on multiple-parameter discrete fractional random transform

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Dong, Taiji; Wu, Jianhua

    2010-08-01

    A new method of digital image encryption is presented by utilizing a new multiple-parameter discrete fractional random transform. Image encryption and decryption are performed based on the index additivity and multiple parameters of the multiple-parameter fractional random transform. The plaintext and ciphertext are respectively in the spatial domain and in the fractional domain determined by the encryption keys. The proposed algorithm can resist statistic analyses effectively. The computer simulation results show that the proposed encryption algorithm is sensitive to the multiple keys, and that it has considerable robustness, noise immunity and security.

  7. Variation in antioxidant enzyme activities, growth and some physiological parameters of bitter melon (Momordica charantia) under salinity and chromium stress.

    PubMed

    Bahrami, Mahsa; Heidari, Mostafa; Ghorbani, Hadi

    2016-07-01

    In general, salinity and heavy metals interfere with several physiological processes and reduce plant growth. In order to evaluate of three levels of salinity (0, 4 and 8 ds m(-1)) and three concentration of chromium (0, 10 and 20 mg kg(-1) soil) in bitter melon (Momordica charantia), a plot experiment was conducted in greenhouse at university of Shahrood, Iran. The results revealed that chromium treatment had no significant affect on fresh and dry weight, but salinity caused reduction of fresh and dry weight in growth parameter. Salinity and chromium enhanced antioxidant enzymes activities like catalase (CAT), guaiacol peroxidase (GPX) and sodium content in leaves. However salinity and chromium treatments had no effect on potassium, phosphorus in leaves, soluble carbohydrate concentration in leaves and root, but decreased the carotenoid content in leaves. On increasing salinity from control to 8 ds m(-1) chlorophyll a, b and anthocyanin content decreased by 41.6%, 61.1% and 26.5% respectively but chromium treatments had no significant effect on these photosynthetic pigments.

  8. Plant growth modeling at the JSC variable pressure growth chamber - An application of experimental design

    NASA Technical Reports Server (NTRS)

    Miller, Adam M.; Edeen, Marybeth; Sirko, Robert J.

    1992-01-01

    This paper describes the approach and results of an effort to characterize plant growth under various environmental conditions at the Johnson Space Center variable pressure growth chamber. Using a field of applied mathematics and statistics known as design of experiments (DOE), we developed a test plan for varying environmental parameters during a lettuce growth experiment. The test plan was developed using a Box-Behnken approach to DOE. As a result of the experimental runs, we have developed empirical models of both the transpiration process and carbon dioxide assimilation for Waldman's Green lettuce over specified ranges of environmental parameters including carbon dioxide concentration, light intensity, dew-point temperature, and air velocity. This model also predicts transpiration and carbon dioxide assimilation for different ages of the plant canopy.

  9. Prediction model of austenite growth and the role of MnS inclusions in non-quenched and tempered steel

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Wu, Meng; Sun, He; Wang, Zhilin; Zhao, Zhigang; Liu, Yazheng

    2018-01-01

    The austenite growth behavior of non-quenched and tempered steels (casted by continuous casting and molding casting processes) was studied. The austenite grain size of steel B casted by continuous casting process is smaller than that of steel A casted by molding casting process at the same heating parameters. The abnormal austenite growth temperature of the steels A and B are 950 °C and 1000 °C, respectively. Based on the results, the models for the austenite grain growth below and above the abnormal austenite growth temperature of the investigated steels were established. The dispersedly distributed fine particles MnS in steel B is the key factor refining the austenite grain by pinning the migration of austenite grain boundary. The elongated inclusions MnS are ineffective in preventing the austenite grain growth at high heating temperature. For the non-quenched and tempered steel, the continuous casting process should be adopted and the inclusion MnS should be elliptical, smaller in size and distributed uniformly in order to refine the final microstructure and also improve the mechanical properties.

  10. Advanced protein crystal growth programmatic sensitivity study

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The purpose of this study is to define the costs of various APCG (Advanced Protein Crystal Growth) program options and to determine the parameters which, if changed, impact the costs and goals of the programs and to what extent. This was accomplished by developing and evaluating several alternate programmatic scenarios for the microgravity Advanced Protein Crystal Growth program transitioning from the present shuttle activity to the man tended Space Station to the permanently manned Space Station. These scenarios include selected variations in such sensitivity parameters as development and operational costs, schedules, technology issues, and crystal growth methods. This final report provides information that will aid in planning the Advanced Protein Crystal Growth Program.

  11. Obstructive sleep apnea syndrome and growth failure.

    PubMed

    Esteller, E; Villatoro, J C; Agüero, A; Lopez, R; Matiñó, E; Argemi, J; Girabent-Farrés, M

    2018-05-01

    Obstructive sleep apnea syndrome is a common problem among children and is recognized as a cause of significant medical morbidity. Since the 1980s, it has been suggested that obstructive sleep apnea syndrome is a risk factor for growth failure in children. In many cases, it has been shown that growth failure is reversible once the obstructive sleep apnea syndrome is resolved. The objectives of this study were to analyze and compare growth failure prevalence in a Mediterranean population of children with obstructive sleep apnea syndrome and healthy children matched in age and sex, and to assess the effectiveness of tonsillectomy and adenoidectomy in resolving growth retardation. We compared 172 children with obstructive sleep apnea syndrome (apnea-hypopnea index ≥ 3) who had undergone tonsillectomy and adenoidectomy with 172 healthy controls in terms of key anthropometric parameters. Most of the criteria used for growth failure were higher to a statistically significant degree in the study group vs the control group: height-for-age ≤ 3rd percentile (7.56% vs 2.91%; p = 0.044), weight-for-age ≤ 5th percentile (9.30% vs 2.33%; p = 0.005), weight-for-age ≤ 3rd percentile (8.14% vs 2.33%; p = 0.013) and height and/or weight for-age ≤ 5th percentile (13.95% vs 5.81%; p = 0.009). The height-for-age ≤ 5th percentile was almost at the limit of statistical significance (8.72% for the study group vs 4.65% for the control group; p = 0.097). At one-year post-surgery follow-up, 10 of 15 children with height-for-age ≤ 5th percentile had achieved catch-up growth (66.6%), and 14 of 24 children with height- and/or weight-for-age ≤ 5th percentile had normalized growth (58.33%). For children with failure to thrive or who have growth failure, physicians should consider the possibility of obstructive sleep apnea. A significant number of children with obstructive sleep apnea concurrent with growth failure could benefit from

  12. Optical components damage parameters database system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Jin, Yuquan; Xie, Dongmei; Tang, Dingyong

    2012-10-01

    Optical component is the key to large-scale laser device developed by one of its load capacity is directly related to the device output capacity indicators, load capacity depends on many factors. Through the optical components will damage parameters database load capacity factors of various digital, information technology, for the load capacity of optical components to provide a scientific basis for data support; use of business processes and model-driven approach, the establishment of component damage parameter information model and database systems, system application results that meet the injury test optical components business processes and data management requirements of damage parameters, component parameters of flexible, configurable system is simple, easy to use, improve the efficiency of the optical component damage test.

  13. Practical quantum key distribution protocol without monitoring signal disturbance.

    PubMed

    Sasaki, Toshihiko; Yamamoto, Yoshihisa; Koashi, Masato

    2014-05-22

    Quantum cryptography exploits the fundamental laws of quantum mechanics to provide a secure way to exchange private information. Such an exchange requires a common random bit sequence, called a key, to be shared secretly between the sender and the receiver. The basic idea behind quantum key distribution (QKD) has widely been understood as the property that any attempt to distinguish encoded quantum states causes a disturbance in the signal. As a result, implementation of a QKD protocol involves an estimation of the experimental parameters influenced by the eavesdropper's intervention, which is achieved by randomly sampling the signal. If the estimation of many parameters with high precision is required, the portion of the signal that is sacrificed increases, thus decreasing the efficiency of the protocol. Here we propose a QKD protocol based on an entirely different principle. The sender encodes a bit sequence onto non-orthogonal quantum states and the receiver randomly dictates how a single bit should be calculated from the sequence. The eavesdropper, who is unable to learn the whole of the sequence, cannot guess the bit value correctly. An achievable rate of secure key distribution is calculated by considering complementary choices between quantum measurements of two conjugate observables. We found that a practical implementation using a laser pulse train achieves a key rate comparable to a decoy-state QKD protocol, an often-used technique for lasers. It also has a better tolerance of bit errors and of finite-sized-key effects. We anticipate that this finding will give new insight into how the probabilistic nature of quantum mechanics can be related to secure communication, and will facilitate the simple and efficient use of conventional lasers for QKD.

  14. Moisture parameters and fungal communities associated with gypsum drywall in buildings.

    PubMed

    Dedesko, Sandra; Siegel, Jeffrey A

    2015-12-08

    Uncontrolled excess moisture in buildings is a common problem that can lead to changes in fungal communities. In buildings, moisture parameters can be classified by location and include assessments of moisture in the air, at a surface, or within a material. These parameters are not equivalent in dynamic indoor environments, which makes moisture-induced fungal growth in buildings a complex occurrence. In order to determine the circumstances that lead to such growth, it is essential to have a thorough understanding of in situ moisture measurement, the influence of building factors on moisture parameters, and the levels of these moisture parameters that lead to indoor fungal growth. Currently, there are disagreements in the literature on this topic. A literature review was conducted specifically on moisture-induced fungal growth on gypsum drywall. This review revealed that there is no consistent measurement approach used to characterize moisture in laboratory and field studies, with relative humidity measurements being most common. Additionally, many studies identify a critical moisture value, below which fungal growth will not occur. The values defined by relative humidity encompassed the largest range, while those defined by moisture content exhibited the highest variation. Critical values defined by equilibrium relative humidity were most consistent, and this is likely due to equilibrium relative humidity being the most relevant moisture parameter to microbial growth, since it is a reasonable measure of moisture available at surfaces, where fungi often proliferate. Several sources concur that surface moisture, particularly liquid water, is the prominent factor influencing microbial changes and that moisture in the air and within a material are of lesser importance. However, even if surface moisture is assessed, a single critical moisture level to prevent fungal growth cannot be defined, due to a number of factors, including variations in fungal genera and

  15. Evaluating predictive models for solar energy growth in the US states and identifying the key drivers

    NASA Astrophysics Data System (ADS)

    Chakraborty, Joheen; Banerji, Sugata

    2018-03-01

    Driven by a desire to control climate change and reduce the dependence on fossil fuels, governments around the world are increasing the adoption of renewable energy sources. However, among the US states, we observe a wide disparity in renewable penetration. In this study, we have identified and cleaned over a dozen datasets representing solar energy penetration in each US state, and the potentially relevant socioeconomic and other factors that may be driving the growth in solar. We have applied a number of predictive modeling approaches - including machine learning and regression - on these datasets over a 17-year period and evaluated the relative performance of the models. Our goals were: (1) identify the most important factors that are driving the growth in solar, (2) choose the most effective predictive modeling technique for solar growth, and (3) develop a model for predicting next year’s solar growth using this year’s data. We obtained very promising results with random forests (about 90% efficacy) and varying degrees of success with support vector machines and regression techniques (linear, polynomial, ridge). We also identified states with solar growth slower than expected and representing a potential for stronger growth in future.

  16. Effects of dietary peppermint (Mentha piperita) on growth performance, chemical body composition and hematological and immune parameters of fry Caspian white fish (Rutilus frisii kutum).

    PubMed

    Adel, Milad; Abedian Amiri, Armin; Zorriehzahra, Jalil; Nematolahi, Amin; Esteban, Maria Ángeles

    2015-08-01

    Peppermint (Mentha piperita L.) is a very popular herb. While numerous effects have been described in mammals, its effects on fish have received so far limited attention. The effects of dietary administration of peppermint on fry Caspian white fish (Rutilus frisii kutum) were studied. Fish were divided into 4 groups before being fed diets supplemented with 0% (control), 1%, 2% and 3% of peppermint extracts for 8 weeks. Dose-dependent increases of growth parameters (WG and SGR), mucus skin (protein concentration, alkaline phosphatase and antimicrobial activity) and seric (lysozyme and IgM) and blood leucocyte respiratory burst activities and different hematological parameters (number of red and white cells, seric hemoglobin and hematocrit content) were recorded in fry fish fed supplemented diets. However, the dietary peppermint supplements have different effects on the number of blood leucocytes depending on the leucocyte cell type. While no significant differences were observed in the number of blood monocytes and eosinophils, the number of neutrophils and lymphocytes was increased and decreased, respectively, on fish fed peppermint enriched diets, respect to the values found in control fish. Present results corroborate that dietary administration of peppermint promotes growth performance and increases the main hematological and immune humoral (both mucosal and systemic) parameters of fry Caspian white fish. This study may provide new applications of peppermint and, at the same time, promote rational development and utilization of peppermint resources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The Aesthetic Dilemma: Wallace Stevens'"The Idea of Order at Key West"

    ERIC Educational Resources Information Center

    Graham, John

    1974-01-01

    Analyzes the growth, development, and change that occurred in Wallace Stevens' poetry, basing the argument on poems selected from different periods with special emphasis on "The Idea of Order at Key West." (RB)

  18. Effect of summer daylight exposure and genetic background on growth in growth hormone-deficient children.

    PubMed

    De Leonibus, C; Chatelain, P; Knight, C; Clayton, P; Stevens, A

    2016-11-01

    The response to growth hormone in humans is dependent on phenotypic, genetic and environmental factors. The present study in children with growth hormone deficiency (GHD) collected worldwide characterised gene-environment interactions on growth response to recombinant human growth hormone (r-hGH). Growth responses in children are linked to latitude, and we found that a correlate of latitude, summer daylight exposure (SDE), was a key environmental factor related to growth response to r-hGH. In turn growth response was determined by an interaction between both SDE and genes known to affect growth response to r-hGH. In addition, analysis of associated networks of gene expression implicated a role for circadian clock pathways and specifically the developmental transcription factor NANOG. This work provides the first observation of gene-environment interactions in children treated with r-hGH.

  19. Effect of summer daylight exposure and genetic background on growth in growth hormone-deficient children

    PubMed Central

    De Leonibus, C; Chatelain, P; Knight, C; Clayton, P; Stevens, A

    2016-01-01

    The response to growth hormone in humans is dependent on phenotypic, genetic and environmental factors. The present study in children with growth hormone deficiency (GHD) collected worldwide characterised gene–environment interactions on growth response to recombinant human growth hormone (r-hGH). Growth responses in children are linked to latitude, and we found that a correlate of latitude, summer daylight exposure (SDE), was a key environmental factor related to growth response to r-hGH. In turn growth response was determined by an interaction between both SDE and genes known to affect growth response to r-hGH. In addition, analysis of associated networks of gene expression implicated a role for circadian clock pathways and specifically the developmental transcription factor NANOG. This work provides the first observation of gene–environment interactions in children treated with r-hGH. PMID:26503811

  20. Key parameters governing the densification of cubic-Li7La3Zr2O12 Li+ conductors

    NASA Astrophysics Data System (ADS)

    Yi, Eongyu; Wang, Weimin; Kieffer, John; Laine, Richard M.

    2017-06-01

    Cubic-Li7La3Zr2O12 (LLZO) is regarded as one of the most promising solid electrolytes for the construction of inherently safe, next generation all-solid-state Li batteries. Unfortunately, sintering these materials to full density with controlled grain sizes, mechanical and electrochemical properties relies on energy and equipment intensive processes. In this work, we elucidate key parameters dictating LLZO densification by tracing the compositional and structural changes during processing calcined and ball-milled Al3+ doped LLZO powders. We find that the powders undergo ion (Li+/H+) exchange during room temperature processing, such that on heating, the protonated LLZO lattice collapses and crystallizes to its constituent oxides, leading to reaction driven densification at < 1000 °C, prior to sintering of LLZO grains at higher temperatures. It is shown that small particle sizes and protonation cannot be decoupled, and actually aid densification. We conclude that using fully decomposed nanoparticle mixtures, as obtained by liquid-feed flame spray pyrolysis, provides an ideal approach to use high surface and reaction energy to drive densification, resulting in pressureless sintering of Ga3+ doped LLZO thin films (25 μm) at 1130 °C/0.3 h to ideal microstructures (95 ± 1% density, 1.2 ± 0.2 μm average grain size) normally accessible only by pressure-assisted sintering. Such films offer both high ionic conductivity (1.3 ± 0.1 mS cm-1) and record low ionic area specific resistance (2 Ω cm2).

  1. The effects of dietary kefir and low molecular weight sodium alginate on serum immune parameters, resistance against Streptococcus agalactiae and growth performance in Nile tilapia (Oreochromis niloticus).

    PubMed

    Van Doan, Hien; Hoseinifar, Seyed Hossein; Tapingkae, Wanaporn; Khamtavee, Pimporn

    2017-03-01

    The present study evaluates the effects of dietary kefir and low molecular weight sodium alginate (LWMSA) (singular or combined) on non-specific immune response, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Fish with average weight of 18.60 ± 0.04 g were supplied and randomly stocked in sixteen glass tanks (150 L) at density of 20 fish per tank. Fish were fed experimental diets as follows: 0 g kg -1 LMWSA (Control, Diet 1), 10 g kg -1 LMWSA (Diet 2), 40 g kg -1 kefir (Diet 3), and 10 g kg -1 LMWSA + 40 g kg -1 kefir (Diet 4) for 50 days. At the end of the feeding trial, serum lysozyme (SL), phagocytosis (PI), respiratory burst (RB), and alternative complement (ACH50) activities as well as growth performance were measured. Singular and combined administration of kefir and low molecular weight sodium alginate (LMWSA) significantly increased serum SL, PI, RB, and ACH50 activities compared control group (P < 0.05); the highest innate immune responses were observed in fish fed combinational diet (kefir + LMWSA) (P < 0.05). The results of experimental challenge revealed significantly higher resistance against Streptococcus agalactiae in fish fed supplemented diets and the highest post challenge survival rate was observed in synbiotic diet (P < 0.05). Similar results obtained in case of growth parameters. Feeding on supplemented diet significantly improved SGR and FCR and the highest growth parameters was observed in fish fed synbiotic diet (P < 0.05). These finding revealed that combined administration of dietary kefir and LMWSA can be considered for improving immune response, disease resistance and growth performance of Nile tilapia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Key principles to improve programmes and interventions in complementary feeding.

    PubMed

    Lutter, Chessa K; Iannotti, Lora; Creed-Kanashiro, Hilary; Guyon, Agnes; Daelmans, Bernadette; Robert, Rebecca; Haider, Rukhsana

    2013-09-01

    Although there are some examples of successful complementary feeding programmes to promote healthy growth and prevent stunting at the community level, to date there are few, if any, examples of successful programmes at scale. A lack of systematic process and impact evaluations on pilot projects to generate lessons learned has precluded scaling up of effective programmes. Programmes to effect positive change in nutrition rarely follow systematic planning, implementation, and evaluation (PIE) processes to enhance effectiveness over the long term. As a result a set of programme-oriented key principles to promote healthy growth remains elusive. The purpose of this paper is to fill this gap by proposing a set of principles to improve programmes and interventions to promote healthy growth and development. Identifying such principles for programme success has three requirements: rethinking traditional paradigms used to promote improved infant and young child feeding; ensuring better linkages to delivery platforms; and, improving programming. Following the PIE model for programmes and learning from experiences from four relatively large-scale programmes described in this paper, 10 key principles are identified in the areas of programme planning, programme implementation, programme evaluation, and dissemination, replication, and scaling up. Nonetheless, numerous operational research questions remain, some of which are highlighted in this paper. © 2013 John Wiley & Sons Ltd.

  3. Convergence in parameters and predictions using computational experimental design.

    PubMed

    Hagen, David R; White, Jacob K; Tidor, Bruce

    2013-08-06

    Typically, biological models fitted to experimental data suffer from significant parameter uncertainty, which can lead to inaccurate or uncertain predictions. One school of thought holds that accurate estimation of the true parameters of a biological system is inherently problematic. Recent work, however, suggests that optimal experimental design techniques can select sets of experiments whose members probe complementary aspects of a biochemical network that together can account for its full behaviour. Here, we implemented an experimental design approach for selecting sets of experiments that constrain parameter uncertainty. We demonstrated with a model of the epidermal growth factor-nerve growth factor pathway that, after synthetically performing a handful of optimal experiments, the uncertainty in all 48 parameters converged below 10 per cent. Furthermore, the fitted parameters converged to their true values with a small error consistent with the residual uncertainty. When untested experimental conditions were simulated with the fitted models, the predicted species concentrations converged to their true values with errors that were consistent with the residual uncertainty. This paper suggests that accurate parameter estimation is achievable with complementary experiments specifically designed for the task, and that the resulting parametrized models are capable of accurate predictions.

  4. Environment and Colonisation Sequence Are Key Parameters Driving Cooperation and Competition between Pseudomonas aeruginosa Cystic Fibrosis Strains and Oral Commensal Streptococci

    PubMed Central

    Whiley, Robert A.; Fleming, Emily V.; Makhija, Ridhima; Waite, Richard D.

    2015-01-01

    Cystic fibrosis (CF) patient airways harbour diverse microbial consortia that, in addition to the recognized principal pathogen Pseudomonas aeruginosa, include other bacteria commonly regarded as commensals. The latter include the oral (viridans) streptococci, which recent evidence indicates play an active role during infection of this environmentally diverse niche. As the interactions between inhabitants of the CF airway can potentially alter disease progression, it is important to identify key cooperators/competitors and environmental influences if therapeutic intervention is to be improved and pulmonary decline arrested. Importantly, we recently showed that virulence of the P. aeruginosa Liverpool Epidemic Strain (LES) could be potentiated by the Anginosus-group of streptococci (AGS). In the present study we explored the relationships between other viridans streptococci (Streptococcus oralis, Streptococcus mitis, Streptococcus gordonii and Streptococcus sanguinis) and the LES and observed that co-culture outcome was dependent upon inoculation sequence and environment. All four streptococcal species were shown to potentiate LES virulence factor production in co-culture biofilms. However, in the case of S. oralis interactions were environmentally determined; in air cooperation within a high cell density co-culture biofilm occurred together with stimulation of LES virulence factor production, while in an atmosphere containing added CO2 this species became a competitor antagonising LES growth through hydrogen peroxide (H2O2) production, significantly altering biofilm population dynamics and appearance. Streptococcus mitis, S. gordonii and S. sanguinis were also capable of H2O2 mediated inhibition of P. aeruginosa growth, but this was only visible when inoculated as a primary coloniser prior to introduction of the LES. Therefore, these observations, which are made in conditions relevant to the biology of CF disease pathogenesis, show that the pathogenic and

  5. Identifying Key Stakeholders in Blended Tertiary Environments: Experts' Perspectives

    ERIC Educational Resources Information Center

    Tuapawa, Kimberley

    2017-01-01

    Although key stakeholders in blended tertiary environments (BTEs) fulfil an extraordinary role in higher education, significant gaps in knowledge about their identities may be impeding the provision of stakeholder support, limiting their ability to promote effective learning and teaching. As online growth intensifies, it is critical that tertiary…

  6. Dietary Aloe vera supplementation on growth performance, some haemato-biochemical parameters and disease resistance against Streptococcus iniae in tilapia (GIFT).

    PubMed

    Gabriel, Ndakalimwe Naftal; Qiang, Jun; He, Jie; Ma, Xin Yu; Kpundeh, Mathew D; Xu, Pao

    2015-06-01

    This study investigated effects of dietary Aloe vera on growth performance, some haemato-biochemical parameters and disease resistance against Streptococcus iniae in tilapia (GIFT). Five groups were designed including a basal diet (control) and 100% A. vera powder incorporated in fish feed at 0.5% 1%, 2%, and 4%/kg feed, which were administered for 8 weeks. Fish fed 0.5%, 1%, and 2% A. vera supplemented diet significantly improved (p < 0.05) weight gain, absolute growth rate and specific growth rate. Feed intake significantly increased in fish fed with A. vera diet at 1% and 2%/kg feed. Feed efficiency ratio, feed conversion ratio, and hepatosomatic index were significantly enhanced in 4% A. vera supplemented fish over unsupplemented ones (p < 0.05). Several haemato-biochemical indices were examined before and after fish were challenged with S. iniae pathogen containing 7.7 × 10(6) CFU cells mL(-1). A. vera supplemented fish showed a significant increase (p < 0.05) in red blood cells, hematocrits (Hb), hemoglobin (Hb), white blood cells (WBC), neutrophils, monocytes, eosinophils, serum total protein, glucose and cortisol after challenge when compared to unsupplemented ones. Meanwhile, 4% A. vera supplemented fish showed a decrease (p < 0.05) in RBC, Hb, Ht, WBC, and mean corpuscular hemoglobin (MCH) after challenge compared to unsupplemented ones and other supplemented ones. In addition, lower mean corpuscular volume values (MCV) (p < 0.05) were observed in fish fed with A. vera diet at 2% and 4% A. vera/kg feed than those fed unsupplemented diet. Unchallenged fish fed 0.5%, 1%, and 2% A. vera showed significantly higher values (p < 0.05) of mean corpuscular hemoglobin concentration (MCHC) than those fed unsupplemented diet and 4% A. vera supplemented diet. There was a significant increase (p < 0.05) in the neutrophil to lymphocyte ratio (N/L) within experimental groups after challenge; N/L ratio in A. vera unsupplemented fish and those supplemented with A. vera

  7. Quantum key distribution with an entangled light emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurementsmore » also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.« less

  8. Regulation of dendrite growth and maintenance by exocytosis

    PubMed Central

    Peng, Yun; Lee, Jiae; Rowland, Kimberly; Wen, Yuhui; Hua, Hope; Carlson, Nicole; Lavania, Shweta; Parrish, Jay Z.; Kim, Michael D.

    2015-01-01

    ABSTRACT Dendrites lengthen by several orders of magnitude during neuronal development, but how membrane is allocated in dendrites to facilitate this growth remains unclear. Here, we report that Ras opposite (Rop), the Drosophila ortholog of the key exocytosis regulator Munc18-1 (also known as STXBP1), is an essential factor mediating dendrite growth. Neurons with depleted Rop function exhibit reduced terminal dendrite outgrowth followed by primary dendrite degeneration, suggestive of differential requirements for exocytosis in the growth and maintenance of different dendritic compartments. Rop promotes dendrite growth together with the exocyst, an octameric protein complex involved in tethering vesicles to the plasma membrane, with Rop–exocyst complexes and exocytosis predominating in primary dendrites over terminal dendrites. By contrast, membrane-associated proteins readily diffuse from primary dendrites into terminals, but not in the reverse direction, suggesting that diffusion, rather than targeted exocytosis, supplies membranous material for terminal dendritic growth, revealing key differences in the distribution of materials to these expanding dendritic compartments. PMID:26483382

  9. Biodegradation modelling of a dissolved gasoline plume applying independent laboratory and field parameters

    NASA Astrophysics Data System (ADS)

    Schirmer, Mario; Molson, John W.; Frind, Emil O.; Barker, James F.

    2000-12-01

    Biodegradation of organic contaminants in groundwater is a microscale process which is often observed on scales of 100s of metres or larger. Unfortunately, there are no known equivalent parameters for characterizing the biodegradation process at the macroscale as there are, for example, in the case of hydrodynamic dispersion. Zero- and first-order degradation rates estimated at the laboratory scale by model fitting generally overpredict the rate of biodegradation when applied to the field scale because limited electron acceptor availability and microbial growth are not considered. On the other hand, field-estimated zero- and first-order rates are often not suitable for predicting plume development because they may oversimplify or neglect several key field scale processes, phenomena and characteristics. This study uses the numerical model BIO3D to link the laboratory and field scales by applying laboratory-derived Monod kinetic degradation parameters to simulate a dissolved gasoline field experiment at the Canadian Forces Base (CFB) Borden. All input parameters were derived from independent laboratory and field measurements or taken from the literature a priori to the simulations. The simulated results match the experimental results reasonably well without model calibration. A sensitivity analysis on the most uncertain input parameters showed only a minor influence on the simulation results. Furthermore, it is shown that the flow field, the amount of electron acceptor (oxygen) available, and the Monod kinetic parameters have a significant influence on the simulated results. It is concluded that laboratory-derived Monod kinetic parameters can adequately describe field scale degradation, provided all controlling factors are incorporated in the field scale model. These factors include advective-dispersive transport of multiple contaminants and electron acceptors and large-scale spatial heterogeneities.

  10. Supplementation with a mixture of complex lipids derived from milk to growing rats results in improvements in parameters related to growth and cognition.

    PubMed

    Vickers, Mark H; Guan, Jian; Gustavsson, Malin; Krägeloh, Christian U; Breier, Bernhard H; Davison, Michael; Fong, Bertram; Norris, Carmen; McJarrow, Paul; Hodgkinson, Steve C

    2009-06-01

    Alterations in nutritional factors during early development can exert long-term effects on growth, neural function, and associated behaviors. The lipid component of milk provides a critical nutritional source for generating both energy and essential nutrients for the growth of the newborn. The present study, therefore, investigated the hypothesis that nutritional supplementation with a complex milk lipid (CML) preparation, derived from the milk fat globule membrane rich in phospholipids and gangliosides from young rats, has beneficial effects on learning behavior and postnatal growth and development. Male Wistar rat offspring from normal pregnancies were treated from neonatal day 10 until postnatal day 80 with either vehicle or CML at a dose of 0.2% (low) and 1.0% (high) based on total food intake (n = 16 per group). Neonatal dosing was via daily oral gavage, while postweaning dosing was via gel supplementation to a standard chow diet. Animals underwent behavioral tasks related to spatial memory, learning, and cognitive function. Complex milk lipid supplementation significantly increased linear growth rate (P < .05), and the improved growth trajectory was not related to changes in body composition as quantified by dual-energy x-ray absorptiometry scanning or altered plasma lipid profiles. Moreover, this effect was not dose dependent and not attributable to the contribution to total energy intake of the CML composition. Supplementation of the CML to growing rats resulted in statistically significant improvements in parameters related to novelty recognition (P < .02) and spatial memory (P < .05) using standard behavioral techniques, but operant testing showed no significant differences between treatment groups. Supplementation with a CML containing gangliosides had positive growth and learning behavioral effects in young normal growing rats.

  11. Determination of kinetic parameters of 1,3-propanediol fermentation by Clostridium diolis using statistically optimized medium.

    PubMed

    Kaur, Guneet; Srivastava, Ashok K; Chand, Subhash

    2012-09-01

    1,3-propanediol (1,3-PD) is a chemical compound of immense importance primarily used as a raw material for fiber and textile industry. It can be produced by the fermentation of glycerol available abundantly as a by-product from the biodiesel plant. The present study was aimed at determination of key kinetic parameters of 1,3-PD fermentation by Clostridium diolis. Initial experiments on microbial growth inhibition were followed by optimization of nutrient medium recipe by statistical means. Batch kinetic data from studies in bioreactor using optimum concentration of variables obtained from statistical medium design was used for estimation of kinetic parameters of 1,3-PD production. Direct use of raw glycerol from biodiesel plant without any pre-treatment for 1,3-PD production using this strain investigated for the first time in this work gave results comparable to commercial glycerol. The parameter values obtained in this study would be used to develop a mathematical model for 1,3-PD to be used as a guide for designing various reactor operating strategies for further improving 1,3-PD production. An outline of protocol for model development has been discussed in the present work.

  12. Study of the Influence of Key Process Parameters on Furfural Production.

    PubMed

    Fele Žilnik, Ljudmila; Grilc, Viktor; Mirt, Ivan; Cerovečki, Željko

    2016-01-01

    The present work reports the influence of key process variables on the furfural formation from leached chestnut-wood chips in a pressurized reactor. Effect of temperature, pressure, type and concentration of the catalyst solution, the steam flow rate or stripping module, the moisture content of the wood particles and geometric characteristics such as size and type of the reactor, particle size and bed height were considered systematically. One stage process was only taken into consideration. Lab-scale and pilot-scale studies were performed. The results of the non-catalysed laboratory experiments were compared with an actual non-catalysed (auto-catalysed) industrial process and with experiments on the pilot scale, the latter with 28% higher furfural yield compared to the others. Application of sulphuric acid as catalyst, in an amount of 0.03-0.05 g (H2SO4 100%)/g d.m. (dry material), enables a higher production of furfural at lower temperature and pressure of steam in a shorter reaction time. Pilot scale catalysed experiments have revealed very good performance for furfural formation under less severe operating conditions, with a maximum furfural yield as much as 88% of the theoretical value.

  13. Life table parameters of three Mirid Bug (Adelphocoris) species (Hemiptera: Miridae) under contrasted relative humidity regimes.

    PubMed

    Pan, Hongsheng; Liu, Bing; Lu, Yanhui; Desneux, Nicolas

    2014-01-01

    The genus Adelphocoris (Hemiptera: Miridae) is a group of important insect pests of Bt cotton in China. The three dominant species are A. lineolatus, A. suturalis, and A. fasciaticollis, and these species have different population dynamics. The causal factors for the differences in population dynamics have not been determined; one hypothesis is that humidity may be important for the growth of Adelphocoris populations. In the laboratory, the demographic parameters of the three Adelphocoris species were compared when the mirid bugs were subjected to various levels of relative humidity (40, 50, 60, 70 and 80% RH). Middle to high levels of RH (60, 70 and 80%) were associated with higher egg and nymph survival rates and increased adult longevity and female fecundity. Lower humidity levels (40 and 50% RH) had negative effects on the survival of nymphs, adult longevity and fecundity. The intrinsic rate of increase (rm), the net reproductive rate (R0) and the finite rate of increase (λ) for each Adelphocoris species increased with increasing RH. Significant positive relationships were found between RH and the life table parameters, rm, R0 and λ for the three Adelphocoris species. These results will help to better understand the phenology of the three Adelphocoris species, and the information can be used in population growth models to optimize pest forecasting and management strategies for these key pests.

  14. Life Table Parameters of Three Mirid Bug (Adelphocoris) Species (Hemiptera: Miridae) under Contrasted Relative Humidity Regimes

    PubMed Central

    Pan, Hongsheng; Liu, Bing; Lu, Yanhui; Desneux, Nicolas

    2014-01-01

    The genus Adelphocoris (Hemiptera: Miridae) is a group of important insect pests of Bt cotton in China. The three dominant species are A. lineolatus, A. suturalis, and A. fasciaticollis, and these species have different population dynamics. The causal factors for the differences in population dynamics have not been determined; one hypothesis is that humidity may be important for the growth of Adelphocoris populations. In the laboratory, the demographic parameters of the three Adelphocoris species were compared when the mirid bugs were subjected to various levels of relative humidity (40, 50, 60, 70 and 80% RH). Middle to high levels of RH (60, 70 and 80%) were associated with higher egg and nymph survival rates and increased adult longevity and female fecundity. Lower humidity levels (40 and 50% RH) had negative effects on the survival of nymphs, adult longevity and fecundity. The intrinsic rate of increase (rm), the net reproductive rate (R0) and the finite rate of increase (λ) for each Adelphocoris species increased with increasing RH. Significant positive relationships were found between RH and the life table parameters, rm, R0 and λ for the three Adelphocoris species. These results will help to better understand the phenology of the three Adelphocoris species, and the information can be used in population growth models to optimize pest forecasting and management strategies for these key pests. PMID:25541705

  15. A new path in defining light parameters for hair growth: Discovery and modulation of photoreceptors in human hair follicle.

    PubMed

    Buscone, Serena; Mardaryev, Andrei N; Raafs, Bianca; Bikker, Jan W; Sticht, Carsten; Gretz, Norbert; Farjo, Nilofer; Uzunbajakava, Natallia E; Botchkareva, Natalia V

    2017-09-01

    Though devices for hair growth based on low levels of light have shown encouraging results, further improvements of their efficacy is impeded by a lack of knowledge on the exact molecular targets that mediate physiological response in skin and hair follicle. The aim of this study was to investigate the expression of selected light-sensitive receptors in the human hair follicle and to study the impact of UV-free blue light on hair growth ex vivo. The expression of Opsin receptors in human skin and hair follicles has been characterized using RT-qPCR and immunofluorescence approaches. The functional significance of Opsin 3 was assessed by silencing its expression in the hair follicle cells followed by a transcriptomic profiling. Proprietary LED-based devices emitting two discrete visible wavelengths were used to access the effects of selected optical parameters on hair growth ex vivo and outer root sheath cells in vitro. The expression of OPN2 (Rhodopsin) and OPN3 (Panopsin, Encephalopsin) was detected in the distinct compartments of skin and anagen hair follicle. Treatment with 3.2 J/cm 2 of blue light with 453 nm central wavelength significantly prolonged anagen phase in hair follicles ex vivo that was correlated with sustained proliferation in the light-treated samples. In contrast, hair follicle treatment with 3.2 J/cm 2 of 689 nm light (red light) did not significantly affect hair growth ex vivo. Silencing of OPN3 in the hair follicle outer root sheath cells resulted in the altered expression of genes involved in the control of proliferation and apoptosis, and abrogated stimulatory effects of blue light (3.2 J/cm 2 ; 453 nm) on proliferation in the outer root sheath cells. We provide the first evidence that (i) OPN2 and OPN3 are expressed in human hair follicle, and (ii) A 453 nm blue light at low radiant exposure exerts a positive effect on hair growth ex vivo, potentially via interaction with OPN3. Lasers Surg. Med. 49:705-718, 2017. © 2017 Wiley

  16. Corruption and economic growth with non constant labor force growth

    NASA Astrophysics Data System (ADS)

    Brianzoni, Serena; Campisi, Giovanni; Russo, Alberto

    2018-05-01

    Based on Brianzoni et al. [1] in the present work we propose an economic model regarding the relationship between corruption in public procurement and economic growth. We extend the benchmark model by introducing endogenous labor force growth, described by the logistic equation. The results of previous studies, as Del Monte and Papagni [2] and Mauro [3], show that countries are stuck in one of the two equilibria (high corruption and low economic growth or low corruption and high economic growth). Brianzoni et al. [1] prove the existence of a further steady state characterized by intermediate levels of capital per capita and corruption. Our aim is to investigate the effects of the endogenous growth around such equilibrium. Moreover, due to the high number of parameters of the model, specific attention is given to the numerical simulations which highlight new policy measures that can be adopted by the government to fight corruption.

  17. The Thermal Conductivity of Earth's Core: A Key Geophysical Parameter's Constraints and Uncertainties

    NASA Astrophysics Data System (ADS)

    Williams, Q.

    2018-05-01

    The thermal conductivity of iron alloys at high pressures and temperatures is a critical parameter in governing ( a) the present-day heat flow out of Earth's core, ( b) the inferred age of Earth's inner core, and ( c) the thermal evolution of Earth's core and lowermost mantle. It is, however, one of the least well-constrained important geophysical parameters, with current estimates for end-member iron under core-mantle boundary conditions varying by about a factor of 6. Here, the current state of calculations, measurements, and inferences that constrain thermal conductivity at core conditions are reviewed. The applicability of the Wiedemann-Franz law, commonly used to convert electrical resistivity data to thermal conductivity data, is probed: Here, whether the constant of proportionality, the Lorenz number, is constant at extreme conditions is of vital importance. Electron-electron inelastic scattering and increases in Fermi-liquid-like behavior may cause uncertainties in thermal conductivities derived from both first-principles-associated calculations and electrical conductivity measurements. Additional uncertainties include the role of alloying constituents and local magnetic moments of iron in modulating the thermal conductivity. Thus, uncertainties in thermal conductivity remain pervasive, and hence a broad range of core heat flows and inner core ages appear to remain plausible.

  18. Effect of process parameters and crystal orientation on 3D anisotropic stress during CZ and FZ growth of silicon

    NASA Astrophysics Data System (ADS)

    Drikis, Ivars; Plate, Matiss; Sennikovs, Juris; Virbulis, Janis

    2017-09-01

    Simulations of 3D anisotropic stress are carried out in <100> and <111> oriented Si crystals grown by FZ and CZ processes for different diameters, growth rates and process stages. Temperature dependent elastic constants and thermal expansion coefficients are used in the FE simulations. The von Mises stress at the triple point line is 5-11% higher in <111> crystals compared to <100> crystals. The process parameters have a larger effect on the von Mises stress than the crystal orientation. Generally, the <111> crystal has a higher azimuthal variation of stress along the triple point line ( 8%) than the <100> crystal ( 2%). The presence of a crystal ridge increases the stress beside the ridge and decreases it on the ridge compared with the round crystal.

  19. Ecological characteristics of old-growth Douglas-fir forests.

    Treesearch

    Jerry F. Franklin; Kermit Jr. Cromack; William Denison; Arthur McKee; Chris Maser; James Sedell; Fred Swanson; Glen Juday

    1981-01-01

    Old-growth coniferous forests differ significantly from young-growth forests in species composition, function (rate and paths of energy flow and nutrient and water cycling), and structure. Most differences can be related to four key structural components of old growth: large live trees, large snags, large logs on land, and large logs in streams. Foresters wishing to...

  20. Comparison of growth curve parameters of organs and body components in meat- (Coturnix coturnix coturnix) and laying-type (Coturnix coturnix japonica) quail show interactions between gender and genotype.

    PubMed

    Grieser, D O; Marcato, S M; Furlan, A C; Zancanela, V; Ton, A P S; Batista, E; Perine, T P; Pozza, P C; Sakomura, N K

    2015-01-01

    1. The objective of this study was to estimate growth parameters of carcass components (wing, thighs and drumsticks, back and breast) and organs (heart, liver, gizzard and gut) in males and females of one meat-type quail strain (Coturnix coturnix coturnix) and two laying strains (Coturnix coturnix japonica) designated either yellow or red. 2. A total of 1350 quail from 1 to 42 d old were distributed in a completely randomised design, with 5 replicates of each strain. The carcass component weights and body organs were analysed weekly and evaluated using the Gompertz function; growth rates were evaluated through derivative equations. 3. The meat-type strain presented the highest growth rates in carcass components and organs. Across strains, females showed the highest weight of internal organs at maturity compared to males. 4. Females had greater growth potential in breast, wings and back than males for both yellow and red laying quail.

  1. Effect of Microstructure on Time Dependent Fatigue Crack Growth Behavior In a P/M Turbine Disk Alloy

    NASA Technical Reports Server (NTRS)

    Telesman, Ignacy J.; Gabb, T. P.; Bonacuse, P.; Gayda, J.

    2008-01-01

    A study was conducted to determine the processes which govern hold time crack growth behavior in the LSHR disk P/M superalloy. Nineteen different heat treatments of this alloy were evaluated by systematically controlling the cooling rate from the supersolvus solutioning step and applying various single and double step aging treatments. The resulting hold time crack growth rates varied by more than two orders of magnitude. It was shown that the associated stress relaxation behavior for these heat treatments was closely correlated with the crack growth behavior. As stress relaxation increased, the hold time crack growth resistance was also increased. The size of the tertiary gamma' in the general microstructure was found to be the key microstructural variable controlling both the hold time crack growth behavior and stress relaxation. No relationship between the presence of grain boundary M23C6 carbides and hold time crack growth was identified which further brings into question the importance of the grain boundary phases in determining hold time crack growth behavior. The linear elastic fracture mechanics parameter, Kmax, is unable to account for visco-plastic redistribution of the crack tip stress field during hold times and thus is inadequate for correlating time dependent crack growth data. A novel methodology was developed which captures the intrinsic crack driving force and was able to collapse hold time crack growth data onto a single curve.

  2. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.

    1992-01-01

    The purpose of this program was to extend the work performed in the base program (CR 182247) into the regime of time-dependent crack growth under isothermal and thermal mechanical fatigue (TMF) loading, where creep deformation also influences the crack growth behavior. The investigation was performed in a two-year, six-task, combined experimental and analytical program. The path-independent integrals for application to time-dependent crack growth were critically reviewed. The crack growth was simulated using a finite element method. The path-independent integrals were computed from the results of finite-element analyses. The ability of these integrals to correlate experimental crack growth data were evaluated under various loading and temperature conditions. The results indicate that some of these integrals are viable parameters for crack growth prediction at elevated temperatures.

  3. Potato stolon and tuber growth influenced by nitrogen form

    USDA-ARS?s Scientific Manuscript database

    Potato tuber initiation and its growth are key processes determining tuber yield, which are closely related to stolon growth, and are influenced by many factors including N nutrition. We investigated the influences of different forms of nitrogen (N) on stolon and tuber growth in sand culture with a ...

  4. Project 5322 Mid-Term Report: Key Eco-Hydrological Parameters Retrieval And Land Data Assimilation System Development In A Typical Inland River Basin Of Chinas Arid Region

    NASA Astrophysics Data System (ADS)

    Faivre, R.; Colin, J.; Menenti, M.; Lindenbergh, R.; Van Den Bergh, L.; Yu, H.; Jia, L.; Xin, L.

    2010-10-01

    Improving the understanding and the monitoring of high elevation regions hydrology is of major relevance from both societal and environmental points of view for many Asian countries, in particular in terms of flood and drought, but also in terms of food security in a chang- ing environment. Satellite and airborne remote sensing technologies are of utmost for such a challenge. Exist- ing imaging spectro-radiometers, radars, microwave ra- diometers and backscatter LIDAR provide a very com- prehensive suite of measurements over a wide rage of wavelengths, time frequencies and spatial resolu- tions. It is however needed to devise new algorithms to convert these radiometric measurements into useful eco-hydrological quantitative parameters for hydrologi- cal modeling and water management. The DRAGON II project entitled Key Eco-Hydrological Parameters Re- trieval and Land Data Assimilation System Development in a Typical Inland River Basin of Chinas Arid Region (ID 5322) aims at improving the monitoring, understand- ing, and predictability of hydrological and ecological pro- cesses at catchment scale, and promote the applicability of quantitative remote sensing in watershed science. Ex- isting Earth Observation platforms provided by the Euro- pean Space Agency as well as prototype airborne systems developed in China - ENVISAT/AATSR, ALOS/PRISM and PALSAR, Airborne LIDAR - are used and combined to retrieve advanced land surface physical properties over high elevation arid regions of China. The existing syn- ergies between this project, the CEOP-AEGIS project (FP7) and the WATER project (CAS) provide incentives for innovative studies. The investigations presented in the following report focus on the development of advanced and innovative methodologies and algorithms to monitor both the state and the trend of key eco-hydrological vari- ables: 3D vegetation properties, land surface evaporation, glacier mass balance and drought indicators.

  5. Sustainable health systems: addressing three key areas.

    PubMed

    Chhanabhai, Prajesh N; Holt, Alec; Benwell, George

    2007-01-01

    In the modern context sustainable health systems are being developed using the newest technological and communication technologies. This is proving to be a great success for the growth of Health Informatics and healthcare improvement. However this revolution is not being reached by a lot of the world population. This paper will address the importance of closing the Digital Divide, Empowerment of health consumers and the importance of converging communications. Key areas in the development of a truly sustainable health system.

  6. The statistical mechanics of complex signaling networks: nerve growth factor signaling

    NASA Astrophysics Data System (ADS)

    Brown, K. S.; Hill, C. C.; Calero, G. A.; Myers, C. R.; Lee, K. H.; Sethna, J. P.; Cerione, R. A.

    2004-10-01

    The inherent complexity of cellular signaling networks and their importance to a wide range of cellular functions necessitates the development of modeling methods that can be applied toward making predictions and highlighting the appropriate experiments to test our understanding of how these systems are designed and function. We use methods of statistical mechanics to extract useful predictions for complex cellular signaling networks. A key difficulty with signaling models is that, while significant effort is being made to experimentally measure the rate constants for individual steps in these networks, many of the parameters required to describe their behavior remain unknown or at best represent estimates. To establish the usefulness of our approach, we have applied our methods toward modeling the nerve growth factor (NGF)-induced differentiation of neuronal cells. In particular, we study the actions of NGF and mitogenic epidermal growth factor (EGF) in rat pheochromocytoma (PC12) cells. Through a network of intermediate signaling proteins, each of these growth factors stimulates extracellular regulated kinase (Erk) phosphorylation with distinct dynamical profiles. Using our modeling approach, we are able to predict the influence of specific signaling modules in determining the integrated cellular response to the two growth factors. Our methods also raise some interesting insights into the design and possible evolution of cellular systems, highlighting an inherent property of these systems that we call 'sloppiness.'

  7. Decohesion Elements using Two and Three-Parameter Mixed-Mode Criteria

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Camanho, Pedro P.

    2001-01-01

    An eight-node decohesion element implementing different criteria to predict delamination growth under mixed-mode loading is proposed. The element is used at the interface between solid finite elements to model the initiation and propagation of delamination. A single displacement-based damage parameter is used in a softening law to track the damage state of the interface. The power law criterion and a three-parameter mixed-mode criterion are used to predict delamination growth. The accuracy of the predictions is evaluated in single mode delamination and in the mixed-mode bending tests.

  8. Universally Sloppy Parameter Sensitivities in Systems Biology Models

    PubMed Central

    Gutenkunst, Ryan N; Waterfall, Joshua J; Casey, Fergal P; Brown, Kevin S; Myers, Christopher R; Sethna, James P

    2007-01-01

    Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a “sloppy” spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters. PMID:17922568

  9. Universally sloppy parameter sensitivities in systems biology models.

    PubMed

    Gutenkunst, Ryan N; Waterfall, Joshua J; Casey, Fergal P; Brown, Kevin S; Myers, Christopher R; Sethna, James P

    2007-10-01

    Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a "sloppy" spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.

  10. A global resource allocation strategy governs growth transition kinetics of Escherichia coli

    PubMed Central

    Erickson, David W; Schink, Severin J.; Patsalo, Vadim; Williamson, James R.; Gerland, Ulrich; Hwa, Terence

    2018-01-01

    A grand challenge of systems biology is to predict the kinetic responses of living systems to perturbations starting from the underlying molecular interactions. Changes in the nutrient environment have long been used to study regulation and adaptation phenomena in microorganisms1–3 and they remain a topic of active investigation4–11. Although much is known about the molecular interactions that govern the regulation of key metabolic processes in response to applied perturbations12–17, they are insufficiently quantified for predictive bottom-up modelling. Here we develop a top-down approach, expanding the recently established coarse-grained proteome allocation models15,18–20 from steady-state growth into the kinetic regime. Using only qualitative knowledge of the underlying regulatory processes and imposing the condition of flux balance, we derive a quantitative model of bacterial growth transitions that is independent of inaccessible kinetic parameters. The resulting flux-controlled regulation model accurately predicts the time course of gene expression and biomass accumulation in response to carbon upshifts and downshifts (for example, diauxic shifts) without adjustable parameters. As predicted by the model and validated by quantitative proteomics, cells exhibit suboptimal recovery kinetics in response to nutrient shifts owing to a rigid strategy of protein synthesis allocation, which is not directed towards alleviating specific metabolic bottlenecks. Our approach does not rely on kinetic parameters, and therefore points to a theoretical framework for describing a broad range of such kinetic processes without detailed knowledge of the underlying biochemical reactions. PMID:29072300

  11. The effects of Lactobacillus acidophilus as feed supplement on skin mucosal immune parameters, intestinal microbiota, stress resistance and growth performance of black swordtail (Xiphophorus helleri).

    PubMed

    Hoseinifar, Seyed Hossein; Roosta, Zahra; Hajimoradloo, Abdolmajid; Vakili, Farzaneh

    2015-02-01

    The present study evaluates the effects of different levels of dietary Lactobacillus acidophilus as feed supplement on intestinal microbiota, skin mucus immune parameters and salinity stress resistance as well as growth performance of black swordtail (Xiphophorus helleri). One-thousand and eight hundred healthy black swordtail larvae (0.03 ± 0.001 g) were randomly distributed in 12 tanks (100 L) at a density of 150 fish per aquaria and fed different levels of dietary L. acidophilus (0, 1.5 × 10(8), 3 × 10(8) and 6 × 10(8) CFU g(-1)) for 10 weeks. At the end of trial, there were significant differences among antibacterial activity of skin mucus in probiotic fed fish and control group (P < 0.05). Furthermore, the skin mucus protein level and alkaline phosphatase activity in control group were significantly lower than those of L. acidophilus fed fish (P < 0.05). Microbiological assessments revealed that feeding with probiotic supplemented diet remarkably increased total autochthonous bacteria and autochthonous lactic acid bacteria levels (P < 0.05). The results showed that dietary administration of L. acidophilus significantly elevated black swordtail resistance against salinity stress (i.e survival %) (P < 0.05). Also, dietary administration of different levels of L. acidophilus improved weight gain, SGR, FCR compared to fish fed unsupplemented diet (P < 0.05). These results demonstrate beneficial effects of dietary L. acidophilus on mucosal immune parameters, intestinal microbiota, stress resistance and growth parameters of black swordtail and the appropriate inclusion is 6 × 10(8) CFU g(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Numerical solution of a logistic growth model for a population with Allee effect considering fuzzy initial values and fuzzy parameters

    NASA Astrophysics Data System (ADS)

    Amarti, Z.; Nurkholipah, N. S.; Anggriani, N.; Supriatna, A. K.

    2018-03-01

    Predicting the future of population number is among the important factors that affect the consideration in preparing a good management for the population. This has been done by various known method, one among them is by developing a mathematical model describing the growth of the population. The model usually takes form in a differential equation or a system of differential equations, depending on the complexity of the underlying properties of the population. The most widely used growth models currently are those having a sigmoid solution of time series, including the Verhulst logistic equation and the Gompertz equation. In this paper we consider the Allee effect of the Verhulst’s logistic population model. The Allee effect is a phenomenon in biology showing a high correlation between population size or density and the mean individual fitness of the population. The method used to derive the solution is the Runge-Kutta numerical scheme, since it is in general regarded as one among the good numerical scheme which is relatively easy to implement. Further exploration is done via the fuzzy theoretical approach to accommodate the impreciseness of the initial values and parameters in the model.

  13. Thermodynamic analysis of fermentation and anaerobic growth of baker's yeast for ethanol production.

    PubMed

    Teh, Kwee-Yan; Lutz, Andrew E

    2010-05-17

    Thermodynamic concepts have been used in the past to predict microbial growth yield. This may be the key consideration in many industrial biotechnology applications. It is not the case, however, in the context of ethanol fuel production. In this paper, we examine the thermodynamics of fermentation and concomitant growth of baker's yeast in continuous culture experiments under anaerobic, glucose-limited conditions, with emphasis on the yield and efficiency of bio-ethanol production. We find that anaerobic metabolism of yeast is very efficient; the process retains more than 90% of the maximum work that could be extracted from the growth medium supplied to the chemostat reactor. Yeast cells and other metabolic by-products are also formed, which reduces the glucose-to-ethanol conversion efficiency to less than 75%. Varying the specific ATP consumption rate, which is the fundamental parameter in this paper for modeling the energy demands of cell growth, shows the usual trade-off between ethanol production and biomass yield. The minimum ATP consumption rate required for synthesizing cell materials leads to biomass yield and Gibbs energy dissipation limits that are much more severe than those imposed by mass balance and thermodynamic equilibrium constraints. 2010 Elsevier B.V. All rights reserved.

  14. Crack Growth Properties of Sealing Glasses

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Tandon, R.

    2008-01-01

    The crack growth properties of several sealing glasses were measured using constant stress rate testing in 2% and 95% RH (relative humidity). Crack growth parameters measured in high humidity are systematically smaller (n and B) than those measured in low humidity, and velocities for dry environments are approx. 100x lower than for wet environments. The crack velocity is very sensitivity to small changes in RH at low RH. Confidence intervals on parameters that were estimated from propagation of errors were comparable to those from Monte Carlo simulation.

  15. The effect of growth sequence on magnetization damping in Ta/CoFeB/MgO structures

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Huang, Dawei; Gao, Ming; Tu, Hongqing; Wang, Kejie; Ruan, Xuezhong; Du, Jun; Cai, Jian-Wang; He, Liang; Wu, Jing; Wang, Xinran; Xu, Yongbing

    2018-03-01

    Magnetization damping is a key parameter to control the critical current and the switching speed in magnetic random access memory, and here we report the effect of the growth sequence on the magnetic dynamics properties of perpendicularly magnetized Ta/CoFeB/MgO structures. Ultrathin CoFeB films have been grown between Ta and MgO but with different stack sequences, i.e. substrate/Ta/CoFeB/MgO/Ta and substrate/Ta/MgO/CoFeB/Ta. The magnetization dynamics induced by femtosecond laser was investigated by using all-optical pump-probe measurements. We found that the Gilbert damping constant was modulated by reversing stack structures, which offers the potential to tune the damping parameter by the growth sequence. The Gilbert damping constant was enhanced from 0.017 for substrate/Ta/CoFeB/MgO/Ta to 0.027 for substrate/Ta/MgO/CoFeB/Ta. We believe that this enhancement originates from the increase of intermixing at the CoFeB/Ta when the Ta atom layer was grown after the CoFeB layer.

  16. Key-value store with internal key-value storage interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, John M.; Faibish, Sorin; Ting, Dennis P. J.

    A key-value store is provided having one or more key-value storage interfaces. A key-value store on at least one compute node comprises a memory for storing a plurality of key-value pairs; and an abstract storage interface comprising a software interface module that communicates with at least one persistent storage device providing a key-value interface for persistent storage of one or more of the plurality of key-value pairs, wherein the software interface module provides the one or more key-value pairs to the at least one persistent storage device in a key-value format. The abstract storage interface optionally processes one or moremore » batch operations on the plurality of key-value pairs. A distributed embodiment for a partitioned key-value store is also provided.« less

  17. A Training Framework for the Department of Defense Public Key Infrastructure

    DTIC Science & Technology

    2001-09-01

    and the growth of electronic commerce within the Department of Defense (DoD) has led to the development and implementation of the DoD Public Key...also grown within the Department of Defense. Electronic commerce and business to business transactions have become more commonplace and have

  18. Resolving nanoparticle growth mechanisms from size- and time-dependent growth rate analysis

    NASA Astrophysics Data System (ADS)

    Pichelstorfer, Lukas; Stolzenburg, Dominik; Ortega, John; Karl, Thomas; Kokkola, Harri; Laakso, Anton; Lehtinen, Kari E. J.; Smith, James N.; McMurry, Peter H.; Winkler, Paul M.

    2018-01-01

    Atmospheric new particle formation occurs frequently in the global atmosphere and may play a crucial role in climate by affecting cloud properties. The relevance of newly formed nanoparticles depends largely on the dynamics governing their initial formation and growth to sizes where they become important for cloud microphysics. One key to the proper understanding of nanoparticle effects on climate is therefore hidden in the growth mechanisms. In this study we have developed and successfully tested two independent methods based on the aerosol general dynamics equation, allowing detailed retrieval of time- and size-dependent nanoparticle growth rates. Both methods were used to analyze particle formation from two different biogenic precursor vapors in controlled chamber experiments. Our results suggest that growth rates below 10 nm show much more variation than is currently thought and pin down the decisive size range of growth at around 5 nm where in-depth studies of physical and chemical particle properties are needed.

  19. Determining the profiles and parameters for gene amplification testing of growth factor receptors in lung cancer.

    PubMed

    Pros, Eva; Lantuejoul, Sylvie; Sanchez-Verde, Lydia; Castillo, Sandra D; Bonastre, Ester; Suarez-Gauthier, Ana; Conde, Esther; Cigudosa, Juan C; Lopez-Rios, Fernando; Torres-Lanzas, Juan; Castellví, Josep; Ramon y Cajal, Santiago; Brambilla, Elisabeth; Sanchez-Cespedes, Montse

    2013-08-15

    Growth factor receptors (GFRs) are amenable to therapeutic intervention in cancer and it is important to select patients appropriately. One of the mechanisms for activation of GFRs is gene amplification (GA) but discrepancies arising from the difficulties associated with data interpretation and the lack of agreed parameters confound the comparison of results from different laboratories. Here, we attempt to establish appropriate conditions for standardization of the determination of GA in a panel of GFRs. A NSCLC tissue microarray panel containing 302 samples was screened for alterations at ALK, FGFR1, FGFR2, FGFR3, ERBB2, IGF1R, KIT, MET and PDGFRA by FISH, immunostaining and/or real-time quantitative RT-PCR. Strong amplification was found for FGFR1, ERBB2, KIT/PDFGRA and MET, with frequencies ranging from 1 to 6%. Thresholds for overexpression and GA were established. Strong immunostaining was found in most tumors with ERBB2, MET and KIT amplification, although some tumors underwent strong immunostaining in the absence of GA. KIT and PDFGRA were always coamplified, but only one tumor showed PDGFRA overexpression, indicating that KIT is the main target. Amplification of FGFR1 predominated in squamous cell carcinomas, although the association with overexpression was inconclusive. Interestingly, alterations at ALK, MET, EGFR, ERBB2 and KRAS correlated with augmented levels of phospho-S6 protein, suggesting activation of the mTOR pathway, which may prove useful to pre-select tumors for testing. Overall, here, we provide with parameters for the determination of GA at ERBB2, MET, KIT and PDGFRA which could be implemented in the clinic to stratify lung cancer patients for specific treatments. Copyright © 2013 UICC.

  20. Using the LMS method to calculate z-scores for the Fenton preterm infant growth chart.

    PubMed

    Fenton, T R; Sauve, R S

    2007-12-01

    The use of exact percentiles and z-scores permit optimal assessment of infants' growth. In addition, z-scores allow the precise description of size outside of the 3rd and 97th percentiles of a growth reference. To calculate percentiles and z-scores, health professionals require the LMS parameters (Lambda for the skew, Mu for the median, and Sigma for the generalized coefficient of variation; Cole, 1990). The objective of this study was to calculate the LMS parameters for the Fenton preterm growth chart (2003). Secondary data analysis of the Fenton preterm growth chart data. The Cole methods were used to produce the LMS parameters and to smooth the L parameter. New percentiles were generated from the smooth LMS parameters, which were then compared with the original growth chart percentiles. The maximum differences between the original percentile curves and the percentile curves generated from the LMS parameters were: for weight; a difference of 66 g (2.9%) at 32 weeks along the 90th percentile; for head circumference; some differences of 0.3 cm (0.6-1.0%); and for length; a difference of 0.5 cm (1.6%) at 22 weeks on the 97th percentile. The percentile curves generated from the smoothed LMS parameters for the Fenton growth chart are similar to the original curves. These LMS parameters for the Fenton preterm growth chart facilitate the calculation of z-scores, which will permit the more precise assessment of growth of infants who are born preterm.

  1. The Application of a Nonlinear Fracture Mechanics Parameter to Ductile Fatigue Crack Growth

    DTIC Science & Technology

    1982-12-01

    ADAl I4~ � AFWAL-TR-83-4023 0 THE APPLICATION OF A NONLINEAR FRACTURE MECHANICS PARAMETER TO DUCTILE FATIGUE CRACK GROW4TH University of Dayton...SubtSle) S. TYPE OF REPORT & PERIOD COVERED The Application of a Nonlinear Fracture Final Report Mechanics Parameter to Ductile Fatigue Sept. 1978...5, and 6. To date, no single elastic-plastic fracture mechanics ( EPFM ) "type parameter has achieved universal acceptance for its corre- lation

  2. Revisiting a model of ontogenetic growth: estimating model parameters from theory and data.

    PubMed

    Moses, Melanie E; Hou, Chen; Woodruff, William H; West, Geoffrey B; Nekola, Jeffery C; Zuo, Wenyun; Brown, James H

    2008-05-01

    The ontogenetic growth model (OGM) of West et al. provides a general description of how metabolic energy is allocated between production of new biomass and maintenance of existing biomass during ontogeny. Here, we reexamine the OGM, make some minor modifications and corrections, and further evaluate its ability to account for empirical variation on rates of metabolism and biomass in vertebrates both during ontogeny and across species of varying adult body size. We show that the updated version of the model is internally consistent and is consistent with other predictions of metabolic scaling theory and empirical data. The OGM predicts not only the near universal sigmoidal form of growth curves but also the M(1/4) scaling of the characteristic times of ontogenetic stages in addition to the curvilinear decline in growth efficiency described by Brody. Additionally, the OGM relates the M(3/4) scaling across adults of different species to the scaling of metabolic rate across ontogeny within species. In providing a simple, quantitative description of how energy is allocated to growth, the OGM calls attention to unexplained variation, unanswered questions, and opportunities for future research.

  3. Modelling the root system architecture of Poaceae. Can we simulate integrated traits from morphological parameters of growth and branching?

    PubMed

    Pagès, Loïc; Picon-Cochard, Catherine

    2014-10-01

    Our objective was to calibrate a model of the root system architecture on several Poaceae species and to assess its value to simulate several 'integrated' traits measured at the root system level: specific root length (SRL), maximum root depth and root mass. We used the model ArchiSimple, made up of sub-models that represent and combine the basic developmental processes, and an experiment on 13 perennial grassland Poaceae species grown in 1.5-m-deep containers and sampled at two different dates after planting (80 and 120 d). Model parameters were estimated almost independently using small samples of the root systems taken at both dates. The relationships obtained for calibration validated the sub-models, and showed species effects on the parameter values. The simulations of integrated traits were relatively correct for SRL and were good for root depth and root mass at the two dates. We obtained some systematic discrepancies that were related to the slight decline of root growth in the last period of the experiment. Because the model allowed correct predictions on a large set of Poaceae species without global fitting, we consider that it is a suitable tool for linking root traits at different organisation levels. © 2014 INRA. New Phytologist © 2014 New Phytologist Trust.

  4. Changes in macrominerals, trace elements and pigments content during lettuce (Lactuca sativa L.) growth: influence of soil composition.

    PubMed

    Pinto, Edgar; Almeida, Agostinho A; Aguiar, Ana A R M; Ferreira, Isabel M P L V O

    2014-01-01

    Changes in macrominerals, trace elements and photosynthetic pigments were monitored at 5 stages of lettuce growth. Plants were grown in three experimental agriculture greenhouse fields (A1, A2 and A3). Soil composition was also monitored to understand its influence on lettuce composition. In general, the content of macrominerals, trace elements, chlorophylls and carotenoids decreased during lettuce growth and consequently, high nutritional value was observed at younger stages. A2 lettuces showed an increase of Fe, Al, Cr, V and Pb due to the different soil physicochemical parameters. Multiple linear regression analysis with stepwise variable selection, indicated that soil characteristics, namely, pH(CaCl2) for Fe and Cr, silt and fine-sand for Al and V, OM for Al and Pb, coarse-sand and CEC for Cr, had a key role determining element bioavailability and plant mineral content. Thus, lettuce nutritional value was strongly dependent of growth stage and soil characteristics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Rate Constants of PSII Photoinhibition and its Repair, and PSII Fluorescence Parameters in Field Plants in Relation to their Growth Light Environments.

    PubMed

    Miyata, Kazunori; Ikeda, Hiroshi; Nakaji, Masayoshi; Kanel, Dhana Raj; Terashima, Ichiro

    2015-09-01

    The extent of photoinhibition of PSII is determined by a balance between the rate of photodamage to PSII and that of repair of the damaged PSII. It has already been indicated that the rate constants of photodamage (kpi) and repair (krec) of the leaves differ depending on their growth light environment. However, there are no studies using plants in the field. We examined these rate constants and fluorescence parameters of several field-grown plants to determine inter-relationships between these values and the growth environment. The kpi values were strongly related to the excess energy, EY, of the puddle model and non-regulated energy dissipation, Y(NO), of the lake model, both multiplied by the photosynthetically active photon flux density (PPFD) level during the photoinhibitory treatment. In contrast, the krec values corrected against in situ air temperature were very strongly related to the daily PPFD level. The plants from the fields showed higher NPQ than the chamber-grown plants, probably because these field plants acclimated to stronger lightflecks than the averaged growth PPFD. Comparing chamber-grown plants and the field plants, we showed that kpi is determined by the incident light level and the photosynthetic capacities such as in situ rate of PSII electron transport and non-photochemical quenching (NPQ) [e.g. Y(NO)×PPFD] and that krec is mostly determined by the growth light and temperature levels. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Vertical-Substrate MPCVD Epitaxial Nanodiamond Growth

    DOE PAGES

    Tzeng, Yan-Kai; Zhang, Jingyuan Linda; Lu, Haiyu; ...

    2017-02-09

    Color center-containing nanodiamonds have many applications in quantum technologies and biology. Diamondoids, molecular-sized diamonds have been used as seeds in chemical vapor deposition (CVD) growth. However, optimizing growth conditions to produce high crystal quality nanodiamonds with color centers requires varying growth conditions that often leads to ad-hoc and time-consuming, one-at-a-time testing of reaction conditions. In order to rapidly explore parameter space, we developed a microwave plasma CVD technique using a vertical, rather than horizontally oriented stage-substrate geometry. With this configuration, temperature, plasma density, and atomic hydrogen density vary continuously along the vertical axis of the substrate. Finally, this variation allowedmore » rapid identification of growth parameters that yield single crystal diamonds down to 10 nm in size and 75 nm diameter optically active center silicon-vacancy (Si-V) nanoparticles. Furthermore, this method may provide a means of incorporating a wide variety of dopants in nanodiamonds without ion irradiation damage.« less

  7. Plant growth and respiration re-visited: maintenance respiration defined – it is an emergent property of, not a separate process within, the system – and why the respiration : photosynthesis ratio is conservative

    PubMed Central

    Thornley, John H. M.

    2011-01-01

    Background and Aims Plant growth and respiration still has unresolved issues, examined here using a model. The aims of this work are to compare the model's predictions with McCree's observation-based respiration equation which led to the ‘growth respiration/maintenance respiration paradigm’ (GMRP) – this is required to give the model credibility; to clarify the nature of maintenance respiration (MR) using a model which does not represent MR explicitly; and to examine algebraic and numerical predictions for the respiration:photosynthesis ratio. Methods A two-state variable growth model is constructed, with structure and substrate, applicable on plant to ecosystem scales. Four processes are represented: photosynthesis, growth with growth respiration (GR), senescence giving a flux towards litter, and a recycling of some of this flux. There are four significant parameters: growth efficiency, rate constants for substrate utilization and structure senescence, and fraction of structure returned to the substrate pool. Key Results The model can simulate McCree's data on respiration, providing an alternative interpretation to the GMRP. The model's parameters are related to parameters used in this paradigm. MR is defined and calculated in terms of the model's parameters in two ways: first during exponential growth at zero growth rate; and secondly at equilibrium. The approaches concur. The equilibrium respiration:photosynthesis ratio has the value of 0·4, depending only on growth efficiency and recycling fraction. Conclusions McCree's equation is an approximation that the model can describe; it is mistaken to interpret his second coefficient as a maintenance requirement. An MR rate is defined and extracted algebraically from the model. MR as a specific process is not required and may be replaced with an approach from which an MR rate emerges. The model suggests that the respiration:photosynthesis ratio is conservative because it depends on two parameters only whose

  8. Growth Angle - a Microscopic View

    NASA Technical Reports Server (NTRS)

    Mazurak, K.; Volz, M. P.; Croll, A.

    2017-01-01

    The growth angle that is formed between the side of the growing crystal and the melt meniscus is an important parameter in the detached Bridgman crystal growth method, where it determines the extent of the crystal-crucible wall gap, and in the Czochralski and float zone methods, where it influences the size and stability of the crystals. The growth angle is a non-equilibrium parameter, defined for the crystal growth process only. For a melt-crystal interface translating towards the crystal (melting), there is no specific angle defined between the melt and the sidewall of the solid. In this case, the corner at the triple line becomes rounded, and the angle between the sidewall and the incipience of meniscus can take a number of values, depending on the position of the triple line. In this work, a microscopic model is developed in which the fluid interacts with the solid surface through long range van der Waals or Casimir dispersive forces. This growth angle model is applied to Si and Ge and compared with the macroscopic approach of Herring. In the limit of a rounded corner with a large radius of curvature, the wetting of the melt on the crystal is defined by the contact angle. The proposed microscopic approach addresses the interesting issue of the transition from a contact angle to a growth angle as the radius of curvature decreases.

  9. Sensitivity of DIVWAG to Variations in Weather Parameters

    DTIC Science & Technology

    1976-04-01

    1 18. SUPPLEMENTARY NOTES 1 19. KEY WORDS (Continue on reverse aide if necessary and Identify by block number) DIVWAG WAR GAME SIMULATION...simulation of a Division Level War Game , to determine the signif- icance of varying battlefield parameters; i.e., artillery parameters, troop and...The only Red artillery weapons doing better in bad weather are the 130MM guns , but this statistic is tempered by the few casualties occuring in

  10. Simulation of carbon allocation and organ growth variability in apple tree by connecting architectural and source–sink models

    PubMed Central

    Pallas, Benoît; Da Silva, David; Valsesia, Pierre; Yang, Weiwei; Guillaume, Olivier; Lauri, Pierre-Eric; Vercambre, Gilles; Génard, Michel; Costes, Evelyne

    2016-01-01

    Background and aims Plant growth depends on carbon availability and allocation among organs. QualiTree has been designed to simulate carbon allocation and partitioning in the peach tree (Prunus persica), whereas MappleT is dedicated to the simulation of apple tree (Malus × domestica) architecture. The objective of this study was to couple both models and adapt QualiTree to apple trees to simulate organ growth traits and their within-tree variability. Methods MappleT was used to generate architectures corresponding to the ‘Fuji’ cultivar, accounting for the variability within and among individuals. These architectures were input into QualiTree to simulate shoot and fruit growth during a growth cycle. We modified QualiTree to account for the observed shoot polymorphism in apple trees, i.e. different classes (long, medium and short) that were characterized by different growth function parameters. Model outputs were compared with observed 3D tree geometries, considering shoot and final fruit size and growth dynamics. Key Results The modelling approach connecting MappleT and QualiTree was appropriate to the simulation of growth and architectural characteristics at the tree scale (plant leaf area, shoot number and types, fruit weight at harvest). At the shoot scale, mean fruit weight and its variability within trees was accurately simulated, whereas the model tended to overestimate individual shoot leaf area and underestimate its variability for each shoot type. Varying the parameter related to the intensity of carbon exchange between shoots revealed that behaviour intermediate between shoot autonomy and a common assimilate pool was required to properly simulate within-tree fruit growth variability. Moreover, the model correctly dealt with the crop load effect on organ growth. Conclusions This study provides understanding of the integration of shoot ontogenetic properties, carbon supply and transport between entities for simulating organ growth in trees. Further

  11. Results from the PharmaSat Nanosatellite Mission: Dose Dependence of Growth and Metabolic Parameters for S. cerevisiae Grown in Microgravity and Challenged by Voriconazole

    NASA Astrophysics Data System (ADS)

    Ricco, Antonio; Parra, Macarena; Niesel, David; Ly, Diana; Kudlicki, Andrzej; McGinnis, Michael; Hines, John

    We report cellular growth and metabolic activity results for Saccharomyces cerevisiae grown aboard PharmaSat, a 5.0-kg autonomous, self-contained biological nanosatellite launched as a secondary payload in May of 2009 and presently in Earth orbit at 450 km. The response of S. cerevisiae to three dose levels bracketing the minimum inhibitory concentration (MIC) of the antifungal voriconazole was monitored in microgravity using 3-color absorbance to measure metabolic activity and turbidity (cell number), which were characterized chiefly by two param-eters: (1) the doubling time and (2) the time delay before the onset of rapid growth. Growth was conducted in forty-eight 100-L microwells containing the yeast—one fluidically separate bank of 12 wells for each voriconazole concentration, plus a control bank. Yeast were main-tained in stasis until the satellite had been deployed, the orbit stabilized, the communications links established, and the growth temperature of 27 ° C stabilized. To re-initiate yeast growth, RPMI growth medium was added. The S. cerevisiae were grown for approximately 12 hr, at which time they were challenged with varying concentrations (0, 0.25xMIC, MIC, 4xMIC) of voriconazole; the optical density and the color change of the redox-based viability indicator alamar blue were recorded as growth proceeded for an additional 84 hr. Results telemetered to the ground reveal a 33 percent longer lag time in microgravity and 60 percent longer dou-bling time than identical ground control experiments. Lag and doubling times are essentially unaffected by voriconazole at 0.125 g/mL in either environment; they lengthen similarly at 0.5 g/mL, voriconazole's MIC. At four times MIC, ground controls show no significant growth nor metabolic activity as tracked by alamar blue; in space, while there was also no measurable cellu-lar growth, remarkably, metabolic activity was clearly present (n = 12 wells). Explanations for the differences in metabolic activity and

  12. Florida Keys

    NASA Image and Video Library

    2002-12-13

    The Florida Keys are a chain of islands, islets and reefs extending from Virginia Key to the Dry Tortugas for about 309 kilometers (192 miles). The keys are chiefly limestone and coral formations. The larger islands of the group are Key West (with its airport), Key Largo, Sugarloaf Key, and Boca Chica Key. A causeway extends from the mainland to Key West. This image was acquired on October 28, 2001, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03890

  13. Interactions of viruses in Cowpea: effects on growth and yield parameters

    PubMed Central

    Kareem, KT; Taiwo, MA

    2007-01-01

    The study was carried out to investigate the effects of inoculating three cowpea cultivars: "OLO II", "OLOYIN" and IT86D-719 with three unrelated viruses: Cowpea aphid-borne mosaic virus (CABMV), genus Potyvirus, Cowpea mottle virus (CMeV), genus Carmovirus and Southern bean mosaic virus (SBMV), genus Sobemovirus singly and in mixture on growth and yield of cultivars at 10 and 30 days after planting (DAP). Generally, the growth and yield of the buffer inoculated control plants were significantly higher than those of the virus inoculated plants. Inoculation of plants at an early age of 10 DAP resulted in more severe effect than inoculations at a later stage of 30 DAP. The average values of plant height and number of leaves produced by plants inoculated 30 DAP were higher than those produced by plants inoculated 10 DAP. Most of the plants inoculated 10 DAP died and did not produce seeds. However, " OLOYIN" cultivar was most tolerant and produced reasonable yields when infected 30 DAP. The effect of single viruses on growth and yield of cultivars showed that CABMV caused more severe effects in IT86D-719, SBMV had the greatest effect on "OLO II" while CMeV induced the greatest effect on "OLOYIN". Yield was greatly reduced in double infections involving CABMV in combination with either CMeV or SBMV in "OLOYIN" and "OLO II", however, there was complete loss in yield of IT86D-719. Triple infection led to complete yield loss in all the three cultivars. PMID:17286870

  14. A Vernacular for Linear Latent Growth Models

    ERIC Educational Resources Information Center

    Hancock, Gregory R.; Choi, Jaehwa

    2006-01-01

    In its most basic form, latent growth modeling (latent curve analysis) allows an assessment of individuals' change in a measured variable X over time. For simple linear models, as with other growth models, parameter estimates associated with the a construct (amount of X at a chosen temporal reference point) and b construct (growth in X per unit…

  15. Pleistocene corals of the Florida keys: Architects of imposing reefs - Why?

    USGS Publications Warehouse

    Lidz, B.H.

    2006-01-01

    Five asymmetrical, discontinuous, stratigraphically successive Pleistocene reef tracts rim the windward platform margin off the Florida Keys. Built of large head corals, the reefs are imposing in relief (???30 m high by 1 km wide), as measured from seismic profiles. Well dated to marine oxygen isotope substages 5c, 5b, and 5a, corals at depth are inferred to date to the Stage 6/5 transition. The size of these reefs attests to late Pleistocene conditions that repeatedly induced vigorous and sustained coral growth. In contrast, the setting today, linked to Florida Bay and the Gulf of Mexico, is generally deemed marginal for reef accretion. Incursion onto the reef tract of waters that contain seasonally inconsistent temperature, salinity, turbidity, and nutrient content impedes coral growth. Fluctuating sea level and consequent settings controlled deposition. The primary dynamic was position of eustatic zeniths relative to regional topographic elevations. Sea level during the past 150 ka reached a maximum of ???10.6 m higher than at present ???125 ka, which gave rise to an inland coral reef (Key Largo Limestone) and ooid complex (Miami Limestone) during isotope substage 5e. These formations now form the Florida Keys and a bedrock ridge beneath The Quicksands (Gulf of Mexico). High-precision radiometric ages and depths of dated corals indicate subsequent apices remained ???15 to 9 m, respectively, below present sea level. Those peaks provided accommodation space sufficient for vertical reef growth yet exposed a broad landmass landward of the reefs for >100 ka. With time, space, lack of bay waters, and protection from the Gulf of Mexico, corals thrived in clear oceanic waters of the Gulf Stream, the only waters to reach them.

  16. Differential effects of caffeine on hair shaft elongation, matrix and outer root sheath keratinocyte proliferation, and transforming growth factor-β2/insulin-like growth factor-1-mediated regulation of the hair cycle in male and female human hair follicles in vitro.

    PubMed

    Fischer, T W; Herczeg-Lisztes, E; Funk, W; Zillikens, D; Bíró, T; Paus, R

    2014-11-01

    Caffeine reportedly counteracts the suppression of hair shaft production by testosterone in organ-cultured male human hair follicles (HFs). We aimed to investigate the impact of caffeine (i) on additional key hair growth parameters, (ii) on major hair growth regulatory factors and (iii) on male vs. female HFs in the presence of testosterone. Microdissected male and female human scalp HFs were treated in serum-free organ culture for 120 h with testosterone alone (0·5 μg mL(-1)) or in combination with caffeine (0·005-0·0005%). The following effects on hair shaft elongation were evaluated by quantitative (immuno)histomorphometry: HF cycling (anagen-catagen transition); hair matrix keratinocyte proliferation; expression of a key catagen inducer, transforming growth factor (TGF)-β2; and expression of the anagen-prolonging insulin-like growth factor (IGF)-1. Caffeine effects were further investigated in human outer root sheath keratinocytes (ORSKs). Caffeine enhanced hair shaft elongation, prolonged anagen duration and stimulated hair matrix keratinocyte proliferation. Female HFs showed higher sensitivity to caffeine than male HFs. Caffeine counteracted testosterone-enhanced TGF-β2 protein expression in male HFs. In female HFs, testosterone failed to induce TGF-β2 expression, while caffeine reduced it. In male and female HFs, caffeine enhanced IGF-1 protein expression. In ORSKs, caffeine stimulated cell proliferation, inhibited apoptosis/necrosis, and upregulated IGF-1 gene expression and protein secretion, while TGF-β2 protein secretion was downregulated. This study reveals new growth-promoting effects of caffeine on human hair follicles in subjects of both sexes at different levels (molecular, cellular and organ). © 2014 British Association of Dermatologists.

  17. Diallel Analysis and Growth Parameters as Selection Tools for Drought Tolerance in Young Theobroma cacao Plants

    PubMed Central

    dos Santos, Emerson Alves; de Almeida, Alex-Alan Furtado; Ahnert, Dario; Branco, Marcia Christina da Silva; Valle, Raúl René; Baligar, Virupax C.

    2016-01-01

    This study aimed to estimate the combining ability, of T. cacao genotypes preselected for drought tolerance through diallel crosses. The experiment was conducted under greenhouse conditions at the Cacao Research Center (CEPEC), Ilhéus, Bahia, Brazil, in a completely randomized block design, in an experimental arrangement 21 x 2 [21 complete diallel crosses and two water regimes (control and stressed)]. In the control, soil moisture was kept close to field capacity, with predawn leaf water potential (ΨWL) ranging from -0.1 to -0.5 MPa. In the drought regime, the soil moisture was reduced gradually by decreasing the amount of water application until ΨWL reached -2.0 to -2.5 MPa. Significant differences (p < 0.05) were observed for most morphological attributes analyzed regarding progenies, water regime and their interactions. The results of the joint diallel analysis revealed significant effects between general combining ability (GCA) x water regimes and between specific combining ability (SCA) x water regimes. The SCA 6 genetic material showed high general combining ability for growth variables regardless of the water regime. In general, the water deficit influenced the production of biomass in most of the evaluated T. cacao crosses, except for SCA-6 x IMC-67, Catongo x SCA, MOC-01 x Catongo, Catongo x IMC-67 and RB-40 x Catongo. Multivariate analysis showed that stem diameter (CD), total leaf area (TLA), leaf dry biomass (LDB), stem dry biomass (SDB), root dry biomass (RDB), total dry biomass (TDB), root length (RL), root volume (RV), root diameter (RD) <1 mm and 1 <(RD) <2 mm were the most important growth parameters in the separation of T. cacao genotypes in to tolerant and intolerant to soil water deficit. PMID:27504627

  18. Diallel Analysis and Growth Parameters as Selection Tools for Drought Tolerance in Young Theobroma cacao Plants.

    PubMed

    Dos Santos, Emerson Alves; Almeida, Alex-Alan Furtado de; Ahnert, Dario; Branco, Marcia Christina da Silva; Valle, Raúl René; Baligar, Virupax C

    2016-01-01

    This study aimed to estimate the combining ability, of T. cacao genotypes preselected for drought tolerance through diallel crosses. The experiment was conducted under greenhouse conditions at the Cacao Research Center (CEPEC), Ilhéus, Bahia, Brazil, in a completely randomized block design, in an experimental arrangement 21 x 2 [21 complete diallel crosses and two water regimes (control and stressed)]. In the control, soil moisture was kept close to field capacity, with predawn leaf water potential (ΨWL) ranging from -0.1 to -0.5 MPa. In the drought regime, the soil moisture was reduced gradually by decreasing the amount of water application until ΨWL reached -2.0 to -2.5 MPa. Significant differences (p < 0.05) were observed for most morphological attributes analyzed regarding progenies, water regime and their interactions. The results of the joint diallel analysis revealed significant effects between general combining ability (GCA) x water regimes and between specific combining ability (SCA) x water regimes. The SCA 6 genetic material showed high general combining ability for growth variables regardless of the water regime. In general, the water deficit influenced the production of biomass in most of the evaluated T. cacao crosses, except for SCA-6 x IMC-67, Catongo x SCA, MOC-01 x Catongo, Catongo x IMC-67 and RB-40 x Catongo. Multivariate analysis showed that stem diameter (CD), total leaf area (TLA), leaf dry biomass (LDB), stem dry biomass (SDB), root dry biomass (RDB), total dry biomass (TDB), root length (RL), root volume (RV), root diameter (RD) <1 mm and 1 <(RD) <2 mm were the most important growth parameters in the separation of T. cacao genotypes in to tolerant and intolerant to soil water deficit.

  19. Is midsole thickness a key parameter for the running pattern?

    PubMed

    Chambon, Nicolas; Delattre, Nicolas; Guéguen, Nils; Berton, Eric; Rao, Guillaume

    2014-01-01

    Many studies have highlighted differences in foot strike pattern comparing habitually shod runners who ran barefoot and with running shoes. Barefoot running results in a flatter foot landing and in a decreased vertical ground reaction force compared to shod running. The aim of this study was to investigate one possible parameter influencing running pattern: the midsole thickness. Fifteen participants ran overground at 3.3 ms(-1) barefoot and with five shoes of different midsole thickness (0 mm, 2 mm, 4 mm, 8 mm, 16 mm) with no difference of height between rearfoot and forefoot. Impact magnitude was evaluated using transient peak of vertical ground reaction force, loading rate, tibial acceleration peak and rate. Hip, knee and ankle flexion angles were computed at touch-down and during stance phase (range of motion and maximum values). External net joint moments and stiffness for hip, knee and ankle joints were also observed as well as global leg stiffness. No significant effect of midsole thickness was observed on ground reaction force and tibial acceleration. However, the contact time increased with midsole thickness. Barefoot running compared to shod running induced ankle in plantar flexion at touch-down, higher ankle dorsiflexion and lower knee flexion during stance phase. These adjustments are suspected to explain the absence of difference on ground reaction force and tibial acceleration. This study showed that the presence of very thin footwear upper and sole was sufficient to significantly influence the running pattern. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Finite-size analysis of a continuous-variable quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leverrier, Anthony; Grosshans, Frederic; Grangier, Philippe

    2010-06-15

    The goal of this paper is to extend the framework of finite-size analysis recently developed for quantum key distribution to continuous-variable protocols. We do not solve this problem completely here, and we mainly consider the finite-size effects on the parameter estimation procedure. Despite the fact that some questions are left open, we are able to give an estimation of the secret key rate for protocols which do not contain a postselection procedure. As expected, these results are significantly more pessimistic than those obtained in the asymptotic regime. However, we show that recent continuous-variable protocols are able to provide fully securemore » secret keys in the finite-size scenario, over distances larger than 50 km.« less

  1. Effects of high-fat diet on somatic growth, metabolic parameters and function of peritoneal macrophages of young rats submitted to a maternal low-protein diet.

    PubMed

    Alheiros-Lira, Maria Cláudia; Jurema-Santos, Gabriela Carvalho; da-Silva, Helyson Tomaz; da-Silva, Amanda Cabral; Moreno Senna, Sueli; Ferreira E Silva, Wylla Tatiana; Ferraz, José Candido; Leandro, Carol Góis

    2017-03-01

    This study evaluated the effects of a post-weaning high-fat (HF) diet on somatic growth, food consumption, metabolic parameters, phagocytic rate and nitric oxide (NO) production of peritoneal macrophages in young rats submitted to a maternal low-protein (LP) diet. Male Wistar rats (aged 60 d) were divided in two groups (n 22/each) according to their maternal diet during gestation and lactation: control (C, dams fed 17 % casein) and LP (dams fed 8 % casein). At weaning, half of the groups were fed HF diet and two more groups were formed (HF and low protein-high fat (LP-HF)). Somatic growth, food and energy intake, fat depots, serum glucose, cholesterol and leptin concentrations were evaluated. Phagocytic rate and NO production were analysed in peritoneal macrophages under stimulation of zymosan and lipopolysaccharide (LPS)+interferon γ (IFN-γ), respectively. The maternal LP diet altered the somatic parameters of growth and development of pups. LP and LP-HF pups showed a higher body weight gain and food intake than C pups. HF and LP-HF pups showed increased retroperitoneal and epididymal fat depots, serum level of TAG and total cholesterol compared with C and LP pups. After LPS+IFN-γ stimulation, LP and LP-HF pups showed reduced NO production when compared with their pairs. Increased phagocytic activity and NO production were seen in LP but not LP-HF peritoneal macrophages. However, peritoneal macrophages of LP pups were hyporesponsive to LPS+IFN-γ induced NO release, even after a post-weaning HF diet. Our data demonstrated that there was an immunomodulation related to dietary fatty acids after the maternal LP diet-induced metabolic programming.

  2. Growth Control: Some Questions for Urban Decisionmakers.

    ERIC Educational Resources Information Center

    Levine, Robert A.

    This report is intended to provide urban decisionmakers--mayors, city managers, planning directors, key staff and line officials, city councilmen--and citizen groups with a guide to some of the issues that surround the effort to bring urban growth under control. The report attempts to be neutral in regard to whether urban growth should be…

  3. Effects of ambient temperature and dietary glycerol addition on growth performance, blood parameters and immune cell populations of Korean cattle steers

    PubMed Central

    Kang, Hyeok Joong; Piao, Min Yu; Lee, In Kyu; Kim, Hyun Jin; Gu, Min Jeong; Yun, Cheol-Heui; Seo, Jagyeom; Baik, Myunggi

    2017-01-01

    Objective This study was performed to evaluate whether ambient temperature and dietary glycerol addition affect growth performance, and blood metabolic and immunological parameters, in beef cattle. Methods Twenty Korean cattle steers (405.1±7.11 kg of body weight [BW], 14.2±0.15 months of age) were divided into a conventional control diet group (n = 10) and a 2% glycerol- added group (n = 10). Steers were fed 1.6% BW of a concentrate diet and 0.75% BW of a timothy hay diet for 8 weeks (4 weeks from July 28th to August 26th and 4 weeks from August 27th to September 26th). Blood was collected four times on July 28th, August 11th, August 27th, and September 26th. Results The maximum indoor ambient temperature-humidity index in August (75.8) was higher (p<0.001) than that in September (70.0), and in August was within the mild heat stress (HS) category range previously reported for dairy cattle. The average daily gain (ADG; p = 0.03) and feed efficiency (p<0.001) were higher in hotter August than in September. Glycerol addition did not affect ADG and feed efficiency. Neither month nor glycerol addition affected blood concentrations of cortisol, triglyceride, or non-esterified fatty acid. Blood concentrations of cholesterol, low-density lipoprotein, high-density lipoprotein, glucose, and albumin were lower (p<0.05) on August 27th than on September 26 th, and blood phosphorus, calcium and magnesium concentrations were also lower on August 27th than on September 27th. Glycerol addition did not affect these blood parameters. Percentages of CD4+ T cells and CD8+ T cells were higher (p<0.05) on July 28th than on August 27th and September 26th. The blood CD8+ T cell population was lower in the glycerol supplemented-group compared to the control group on July 28th and August 27th. Conclusion Korean cattle may not be significantly affected by mild HS, considering that growth performance of cattle was better in hotter conditions, although some changes in blood metabolic and

  4. Volume Diffusion Growth Kinetics and Step Geometry in Crystal Growth

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan

    1998-01-01

    The role of step geometry in two-dimensional stationary volume diff4sion process used in crystal growth kinetics models is investigated. Three different interface shapes: a) a planar interface, b) an equidistant hemispherical bumps train tAx interface, and c) a train of right angled steps, are used in this comparative study. The ratio of the super-saturation to the diffusive flux at the step position is used as a control parameter. The value of this parameter can vary as much as 50% for different geometries. An approximate analytical formula is derived for the right angled steps geometry. In addition to the kinetic models, this formula can be utilized in macrostep growth models. Finally, numerical modeling of the diffusive and convective transport for equidistant steps is conducted. In particular, the role of fluid flow resulting from the advancement of steps and its contribution to the transport of species to the steps is investigated.

  5. GGOS and the EOP - the key role of SLR for a stable estimation of highly accurate Earth orientation parameters

    NASA Astrophysics Data System (ADS)

    Bloßfeld, Mathis; Panzetta, Francesca; Müller, Horst; Gerstl, Michael

    2016-04-01

    The GGOS vision is to integrate geometric and gravimetric observation techniques to estimate consistent geodetic-geophysical parameters. In order to reach this goal, the common estimation of station coordinates, Stokes coefficients and Earth Orientation Parameters (EOP) is necessary. Satellite Laser Ranging (SLR) provides the ability to study correlations between the different parameter groups since the observed satellite orbit dynamics are sensitive to the above mentioned geodetic parameters. To decrease the correlations, SLR observations to multiple satellites have to be combined. In this paper, we compare the estimated EOP of (i) single satellite SLR solutions and (ii) multi-satellite SLR solutions. Therefore, we jointly estimate station coordinates, EOP, Stokes coefficients and orbit parameters using different satellite constellations. A special focus in this investigation is put on the de-correlation of different geodetic parameter groups due to the combination of SLR observations. Besides SLR observations to spherical satellites (commonly used), we discuss the impact of SLR observations to non-spherical satellites such as, e.g., the JASON-2 satellite. The goal of this study is to discuss the existing parameter interactions and to present a strategy how to obtain reliable estimates of station coordinates, EOP, orbit parameter and Stokes coefficients in one common adjustment. Thereby, the benefits of a multi-satellite SLR solution are evaluated.

  6. Security of Color Image Data Designed by Public-Key Cryptosystem Associated with 2D-DWT

    NASA Astrophysics Data System (ADS)

    Mishra, D. C.; Sharma, R. K.; Kumar, Manish; Kumar, Kuldeep

    2014-08-01

    In present times the security of image data is a major issue. So, we have proposed a novel technique for security of color image data by public-key cryptosystem or asymmetric cryptosystem. In this technique, we have developed security of color image data using RSA (Rivest-Shamir-Adleman) cryptosystem with two-dimensional discrete wavelet transform (2D-DWT). Earlier proposed schemes for security of color images designed on the basis of keys, but this approach provides security of color images with the help of keys and correct arrangement of RSA parameters. If the attacker knows about exact keys, but has no information of exact arrangement of RSA parameters, then the original information cannot be recovered from the encrypted data. Computer simulation based on standard example is critically examining the behavior of the proposed technique. Security analysis and a detailed comparison between earlier developed schemes for security of color images and proposed technique are also mentioned for the robustness of the cryptosystem.

  7. Interspecific Competition and Trade-offs in Resource Allocation are the Key to Successful Growth of Seedlings of White Spruce (Picea glauca (Moench) Voss) at Subarctic Treelines in Warming Alaska.

    NASA Astrophysics Data System (ADS)

    Okano, K.; Bret-Harte, M. S.

    2015-12-01

    Alpine treelines in Alaska have advanced for the past 50 years in response to the recent climate warming. However, further increases in temperatures may cause treeline species drought stress and increase susceptibility to insect outbreaks and fire. Complex factors such as soil conditions and plant species composition also impact the growth of seedlings, which are essential to sustain boreal forests. Our goals were to assess 1) the current optimal elevation for the treeline species Picea glauca (white spruce) seedlings and how it is altered by climate change, and 2) their growth/survival strategies at each environmental site. We studied the growth response of spruce seedlings along an altitudinal gradient at 6 sites, consisting of tundra, forest, or transitional ecotone in Denali National Park and one forest site in Fairbanks, AK. In May 2012, four-month old seedlings were planted with or without naturally occurring plants to compare the presence or absence of the interspecific interaction. Summer temperatures were increased by one small greenhouse per site. Over 2 growing seasons, growth was measured non-destructively, and then the seedlings were harvested. Relative growth rate (RGR) in height was increased significantly as the altitude was increased. Elevated temperature increased height only in seedlings at a high-altitude forest. Seedlings with neighboring plants had a higher RGR in height than seedlings that had neighbors removed, while significantly wider diameters were measured from the seedlings without neighbors. A weak trend of declining diameter width with increasing altitudes was seen. Seedlings that grew taller did not grow their stems wider, indicating trade-offs in resource allocation. None of the altitudinal sites had a clear advantage for the growth of the seedlings. Habitat microclimate and the interaction with other species could be more important than the altitude or temperatures and hence, key to the survival and growth of spruce seedlings in

  8. Novelties of the flowering plant pollen tube underlie diversification of a key life history stage.

    PubMed

    Williams, Joseph H

    2008-08-12

    The origin and rapid diversification of flowering plants has puzzled evolutionary biologists, dating back to Charles Darwin. Since that time a number of key life history and morphological traits have been proposed as developmental correlates of the extraordinary diversity and ecological success of angiosperms. Here, I identify several innovations that were fundamental to the evolutionary lability of angiosperm reproduction, and hence to their diversification. In gymnosperms pollen reception must be near the egg largely because sperm swim or are transported by pollen tubes that grow at very slow rates (< approximately 20 microm/h). In contrast, pollen tube growth rates of taxa in ancient angiosperm lineages (Amborella, Nuphar, and Austrobaileya) range from approximately 80 to 600 microm/h. Comparative analyses point to accelerated pollen tube growth rate as a critical innovation that preceded the origin of the true closed carpel, long styles, multiseeded ovaries, and, in monocots and eudicots, much faster pollen tube growth rates. Ancient angiosperm pollen tubes all have callosic walls and callose plugs (in contrast, no gymnosperms have these features). The early association of the callose-walled growth pattern with accelerated pollen tube growth rate underlies a striking repeated pattern of faster and longer-distance pollen tube growth often within solid pathways in phylogenetically derived angiosperms. Pollen tube innovations are a key component of the spectacular diversification of carpel (flower and fruit) form and reproductive cycles in flowering plants.

  9. In situ monitoring of laser-assisted hydrothermal growth of ZnO nanowires: thermally deactivating growth kinetics.

    PubMed

    In, Jung Bin; Kwon, Hyuk-Jun; Lee, Daeho; Ko, Seung Hwan; Grigoropoulos, Costas P

    2014-02-26

    The laser-assisted hydrothermal growth kinetics of a cluster of ZnO nanowires are studied based on optical in situ growth monitoring. The growth yields are orders of magnitude higher than those of conventional hydrothermal methods that use bulk heating. This remarkable improvement is attributed to suppression of precursor depletion occurring by homogeneous growth reactions, as well as to enhanced mass transport. The obtained in situ data show gradually decaying growth kinetics even with negligible precursor consumption. It is revealed that the growth deceleration is caused by thermal deactivation resulting from heat dissipation through the growing nanowires. Finally, it is demonstrated that the tailored temporal modulation of the input power enables sustained growth to extended dimensions. These results provide a key to highly efficient use of growth precursors that has been pursued for industrial use of this functional metal oxide semiconductor. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. [Atmospheric parameter estimation for LAMOST/GUOSHOUJING spectra].

    PubMed

    Lu, Yu; Li, Xiang-Ru; Yang, Tan

    2014-11-01

    It is a key task to estimate the atmospheric parameters from the observed stellar spectra in exploring the nature of stars and universe. With our Large Sky Area Multi-Object Fiber Spectroscopy Telescope (LAMOST) which begun its formal Sky Survey in September 2012, we are obtaining a mass of stellar spectra in an unprecedented speed. It has brought a new opportunity and a challenge for the research of galaxies. Due to the complexity of the observing system, the noise in the spectrum is relatively large. At the same time, the preprocessing procedures of spectrum are also not ideal, such as the wavelength calibration and the flow calibration. Therefore, there is a slight distortion of the spectrum. They result in the high difficulty of estimating the atmospheric parameters for the measured stellar spectra. It is one of the important issues to estimate the atmospheric parameters for the massive stellar spectra of LAMOST. The key of this study is how to eliminate noise and improve the accuracy and robustness of estimating the atmospheric parameters for the measured stellar spectra. We propose a regression model for estimating the atmospheric parameters of LAMOST stellar(SVM(lasso)). The basic idea of this model is: First, we use the Haar wavelet to filter spectrum, suppress the adverse effects of the spectral noise and retain the most discrimination information of spectrum. Secondly, We use the lasso algorithm for feature selection and extract the features of strongly correlating with the atmospheric parameters. Finally, the features are input to the support vector regression model for estimating the parameters. Because the model has better tolerance to the slight distortion and the noise of the spectrum, the accuracy of the measurement is improved. To evaluate the feasibility of the above scheme, we conduct experiments extensively on the 33 963 pilot surveys spectrums by LAMOST. The accuracy of three atmospheric parameters is log Teff: 0.006 8 dex, log g: 0.155 1 dex

  11. Growth and decay of runaway electrons above the critical electric field under quiescent conditions

    DOE PAGES

    Paz-Soldan, Carlos; Eidietis, Nicholas W.; Granetz, Robert S.; ...

    2014-02-27

    Extremely low density operation free of error eld penetration supports the excitation of trace-level quiescent runaway electron (RE) populations during the at-top of DIII-D Ohmic discharges. Operation in the quiescent regime allows accurate measurement of all key parameters important to RE excitation, including the internal broadband magnetic fluctuation level. RE onset is characterized and found to be consistent with primary (Dreicer) generation rates. Impurity-free collisional suppression of the RE population is investigated by stepping the late-time main-ion density until RE decay is observed. The transition from growth to decay is found to occur 3-5 times above the theoretical critical electricmore » eld for avalanche growth and is thus indicative of anomalous RE loss. Lastly, this suggests that suppression of tokamak RE avalanches can be achieved at lower density than previously expected, though extrapolation requires predictive understanding of the RE loss mechanism and magnitude.« less

  12. Clonal growth and plant species abundance.

    PubMed

    Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka

    2014-08-01

    Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf-height-seed) traits and by actual performance in the botanical garden. Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area - height - seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially underlying clonal growth effects on abundance. Garden

  13. Automated Cell Detection and Morphometry on Growth Plate Images of Mouse Bone

    PubMed Central

    Ascenzi, Maria-Grazia; Du, Xia; Harding, James I; Beylerian, Emily N; de Silva, Brian M; Gross, Ben J; Kastein, Hannah K; Wang, Weiguang; Lyons, Karen M; Schaeffer, Hayden

    2014-01-01

    Microscopy imaging of mouse growth plates is extensively used in biology to understand the effect of specific molecules on various stages of normal bone development and on bone disease. Until now, such image analysis has been conducted by manual detection. In fact, when existing automated detection techniques were applied, morphological variations across the growth plate and heterogeneity of image background color, including the faint presence of cells (chondrocytes) located deeper in tissue away from the image’s plane of focus, and lack of cell-specific features, interfered with identification of cell. We propose the first method of automated detection and morphometry applicable to images of cells in the growth plate of long bone. Through ad hoc sequential application of the Retinex method, anisotropic diffusion and thresholding, our new cell detection algorithm (CDA) addresses these challenges on bright-field microscopy images of mouse growth plates. Five parameters, chosen by the user in respect of image characteristics, regulate our CDA. Our results demonstrate effectiveness of the proposed numerical method relative to manual methods. Our CDA confirms previously established results regarding chondrocytes’ number, area, orientation, height and shape of normal growth plates. Our CDA also confirms differences previously found between the genetic mutated mouse Smad1/5CKO and its control mouse on fluorescence images. The CDA aims to aid biomedical research by increasing efficiency and consistency of data collection regarding arrangement and characteristics of chondrocytes. Our results suggest that automated extraction of data from microscopy imaging of growth plates can assist in unlocking information on normal and pathological development, key to the underlying biological mechanisms of bone growth. PMID:25525552

  14. Key aspects of cost effective collector and solar field design

    NASA Astrophysics Data System (ADS)

    von Reeken, Finn; Nicodemo, Dario; Keck, Thomas; Weinrebe, Gerhard; Balz, Markus

    2016-05-01

    A study has been performed where different key parameters influencing solar field cost are varied. By using levelised cost of energy as figure of merit it is shown that parameters like GoToStow wind speed, heliostat stiffness or tower height should be adapted to respective site conditions from an economical point of view. The benchmark site Redstone (Northern Cape Province, South Africa) has been compared to an alternate site close to Phoenix (AZ, USA) regarding site conditions and their effect on cost-effective collector and solar field design.

  15. [Human growth hormone and Turner syndrome].

    PubMed

    Sánchez Marco, Silvia Beatriz; de Arriba Muñoz, Antonio; Ferrer Lozano, Marta; Labarta Aizpún, José Ignacio; Garagorri Otero, Jesús María

    2017-02-01

    The evaluation of clinical and analytical parameters as predictors of the final growth response in Turner syndrome patients treated with growth hormone. A retrospective study was performed on 25 girls with Turner syndrome (17 treated with growth hormone), followed-up until adult height. Auxological, analytical, genetic and pharmacological parameters were collected. A descriptive and analytical study was conducted to evaluate short (12 months) and long term response to treatment with growth hormone. A favourable treatment response was shown during the first year of treatment in terms of height velocity gain in 66.6% of cases (height-gain velocity >3cm/year). A favourable long-term treatment response was also observed in terms of adult height, which increased by 42.82±21.23cm (1.25±0.76 SDS), with an adult height gain of 9.59±5.39cm (1.68±1.51 SDS). Predictors of good response to growth hormone treatment are: A) initial growth hormone dose, B) time on growth hormone treatment until starting oestrogen therapy, C) increased IGF1 and IGFBP-3 levels in the first year of treatment, and D) height gain velocity in the first year of treatment. Copyright © 2015 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Shaping thin film growth and microstructure pathways via plasma and deposition energy: a detailed theoretical, computational and experimental analysis.

    PubMed

    Sahu, Bibhuti Bhusan; Han, Jeon Geon; Kersten, Holger

    2017-02-15

    Understanding the science and engineering of thin films using plasma assisted deposition methods with controlled growth and microstructure is a key issue in modern nanotechnology, impacting both fundamental research and technological applications. Different plasma parameters like electrons, ions, radical species and neutrals play a critical role in nucleation and growth and the corresponding film microstructure as well as plasma-induced surface chemistry. The film microstructure is also closely associated with deposition energy which is controlled by electrons, ions, radical species and activated neutrals. The integrated studies on the fundamental physical properties that govern the plasmas seek to determine their structure and modification capabilities under specific experimental conditions. There is a requirement for identification, determination, and quantification of the surface activity of the species in the plasma. Here, we report a detailed study of hydrogenated amorphous and crystalline silicon (c-Si:H) processes to investigate the evolution of plasma parameters using a theoretical model. The deposition processes undertaken using a plasma enhanced chemical vapor deposition method are characterized by a reactive mixture of hydrogen and silane. Later, various contributions of energy fluxes on the substrate are considered and modeled to investigate their role in the growth of the microstructure of the deposited film. Numerous plasma diagnostic tools are used to compare the experimental data with the theoretical results. The film growth and microstructure are evaluated in light of deposition energy flux under different operating conditions.

  17. Function key and shortcut key use in airway facilities.

    DOT National Transportation Integrated Search

    2003-02-01

    This document provides information on the function keys and shortcut keys used by systems in the Federal Aviation Administration : Airway Facilities (AF) work environment. It includes a catalog of the function keys and shortcut keys used by each syst...

  18. Effects of low-protein diets supplemented with indispensable amino acids on growth performance, intestinal morphology and immunological parameters in 13 to 35 kg pigs.

    PubMed

    Peng, X; Hu, L; Liu, Y; Yan, C; Fang, Z F; Lin, Y; Xu, S Y; Li, J; Wu, C M; Chen, D W; Sun, H; Wu, D; Che, L Q

    2016-11-01

    The objective of this study was to determine if a moderate or high reduction of dietary CP, supplemented with indispensable amino acids (IAA), would affect growth, intestinal morphology and immunological parameters of pigs. A total of 40 barrows (initial BW=13.50±0.50 kg, 45±2 day of age) were used in a completely randomized block design, and allocated to four dietary treatments containing CP levels at 20.00%, 17.16%, 15.30% and 13.90%, respectively. Industrial AA were added to meet the IAA requirements of pigs. After 4-week feeding, blood and tissue samples were obtained from pigs. The results showed that reducing dietary CP level decreased average daily gain, plasma urea nitrogen concentration and relative organ weights of liver and pancreas (P<0.01), and increased feed conversion ratio (P<0.01). Pigs fed the 13.90% CP diet had significantly lower growth performance than that of pigs fed higher CP at 20.00%, 17.16% or 15.30%. Moreover, reducing dietary CP level decreased villous height in duodenum (P<0.01) and crypt depth in duodenum, jejunum and ileum (P<0.01). The reduction in the dietary CP level increased plasma concentrations of methionine, alanine (P<0.01) and lysine (P<0.05), and decreased arginine (P<0.05). Intriguingly, reducing dietary CP level from 20.00% to 13.90% resulted in a significant decrease in plasma concentration of IgG (P<0.05), percentage of CD3+T cells of the peripheral blood (P<0.01), also down-regulated the mRNA abundance of innate immunity-related genes on toll-like receptor 4, myeloid differentiation factor 88 (P<0.01) and nuclear factor kappa B (P<0.05) in the ileum. These results indicate that reducing dietary CP level from 20.00% to 15.30%, supplemented with IAA, had no significant effect on growth performance and had a limited effect on immunological parameters. However, a further reduction of dietary CP level up to 13.90% would lead to poor growth performance and organ development, associated with the modifications of intestinal

  19. Impact of dyeing industry effluent on germination and growth of pea (Pisum sativum).

    PubMed

    Malaviya, Piyush; Hali, Rajesh; Sharma, Neeru

    2012-11-01

    Dye industry effluent was analyzed for physico-chemical characteristics and its impact on germination and growth behaviour of Pea (Pisum sativum). The 100% effluent showed high pH (10.3) and TDS (1088 mg l(-1)). The germination parameters included percent germination, delay index, speed of germination, peak value and germination period while growth parameters comprised of root and shoot length, root and shootweight, root-shoot ratio and number of stipules. The study showed the maximum values of positive germination parameters viz. speed of germination (7.85), peak value (3.28), germination index (123.87) and all growth parameters at 20% effluent concentration while the values of negative germination parameters viz. delay index (-0.14) and percent inhibition (-8.34) were found to be minimum at 20% effluent concentration. The study demonstrated that at lower concentrations the dyeing industry effluent caused a positive impact on germination and growth of Pisum sativum.

  20. From Personal Growth (1966) to Personal Growth and Social Agency (2016)--Proposing an Invigorated Model for the 21st Century

    ERIC Educational Resources Information Center

    Goodwyn, Andrew

    2017-01-01

    The Personal Growth (PG) model, as outlined by John Dixon in 1967, is unquestionably still recognisable to English teachers, remaining aligned to their philosophy of teaching English. This article traces a key aspect of the history of Personal Growth and explores present continuities traceable to Dartmouth in 1966, in suggesting an invigorated…

  1. Kinetic Model of Photoautotrophic Growth of Chlorella sp. Microalga, Isolated from the Setúbal Lagoon.

    PubMed

    Heinrich, Josué Miguel; Irazoqui, Horacio Antonio

    2015-01-01

    In this work, a kinetic expression relating light availability in the culture medium with the rate of microalgal growth is obtained. This expression, which is valid for low illumination conditions, was derived from the reactions that take part in the light-dependent stage of photosynthesis. The kinetic expression obtained is a function of the biomass concentration in the culture, as well as of the local volumetric rate of absorption of photons, and only includes two adjustable parameters. To determine the value of these parameters and to test the validity of the hypotheses made, autotrophic cultures of the Chlorella sp. strain were carried out in a modified BBM medium at three CO2 concentrations in the gas stream, namely 0.034%, 0.34% and 3.4%. Moreover, the local volumetric rate of photon absorption was predicted based on a physical model of the interaction of the radiant energy with the suspended biomass, together with a Monte Carlo simulation algorithm. The proposed intrinsic expression of the biomass growth rate, together with the Monte Carlo radiation field simulator, are key to scale up photobioreactors when operating under low irradiation conditions, independently of the configuration of the reactor and of its light source. © 2015 The American Society of Photobiology.

  2. Optimization of medium components and physicochemical parameters to simultaneously enhance microbial growth and production of lypolitic enzymes by Stenotrophomonas sp.

    PubMed

    Mazzucotelli, Cintia Anabela; Agüero, María Victoria; Del Rosario Moreira, María; Ansorena, María Roberta

    2016-05-01

    The optimization of lipase and esterase production (LP and EP) and bacterial growth (BG) of a Stenotrophomonas sp. strain was developed. For this purpose, the effect of five different medium components and three physicochemical parameters were evaluated using a Plackett-Burman statistical design. Among eight variables, stirring speed, pH, and peptone concentration were found to be the most effective factors on the three responses under evaluation. An optimization study applying Box-Behnken response surface methodology was used to study the interactive effects of the three selected variables on LP/EP and microorganism growth. Predicted models were found to be significant with high regression coefficients (90%-99%). By using the desirability function approach, the optimum condition applying simultaneous optimization of the three responses under study resulted to be: stirring speed of 100 rpm, pH of 7.5, and a peptone concentration of 10 g/L, with a desirability value of 0.977. Under these optimal conditions, it is possible to achieve in the optimized medium a 15-fold increase in esterase productivity, a 117-fold increase in lipase production, and a 9-log CFU/mL increase in BG, compared with the basal medium without agitation. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  3. Intermediate Diastolic Velocity as a Parameter of Cardiac Dysfunction in Growth-Restricted Fetuses.

    PubMed

    Tang, Xiangna; Hernandez-Andrade, Edgar; Ahn, Hyunyoung; Garcia, Maynor; Saker, Homam; Korzeniewski, Steven J; Tarca, Adi L; Yeo, Lami; Hassan, Sonia S; Romero, Roberto

    2016-01-01

    To evaluate the intermediate intracardiac diastolic velocities in fetuses with growth restriction. Doppler waveforms of the two atrioventricular valves were obtained. Peak velocities of the E (early) and A (atrial) components, and the lowest intermediate velocity (IDV) between them, were measured in 400 normally grown and in 100 growth-restricted fetuses. The prevalence of abnormal IDV, E/IDV, and A/IDV ratios in fetuses presenting with perinatal death or acidemia at birth (pH ≤7.1) was estimated. IDV was significantly lower and E/IDV ratios significantly higher in the two ventricles of growth-restricted fetuses with reduced diastolic velocities in the umbilical artery (p < 0.05). In 13 fetuses presenting with perinatal death or acidemia at birth, 11 (85%) had either an E/IDV or A/IDV ratio >95th percentile, whereas 5 (38%) showed absent or reversed atrial velocities in the ductus venosus (DV-ARAV; p < 0.04). Fetuses without DV-ARAV but with elevated E/IDV ratios in either ventricle were nearly 7-fold more likely to have perinatal demise or acidemia at birth (OR 6.9, 95% CI 1.4-34) than those with E/IDV ratios <95th percentile. The E/IDV and A/IDV ratios in the two cardiac ventricles might provide information about the risk of perinatal demise or acidemia in growth-restricted fetuses. © 2015 S. Karger AG, Basel.

  4. Long-distance continuous-variable quantum key distribution with a Gaussian modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouguet, Paul; SeQureNet, 23 avenue d'Italie, F-75013 Paris; Kunz-Jacques, Sebastien

    2011-12-15

    We designed high-efficiency error correcting codes allowing us to extract an errorless secret key in a continuous-variable quantum key distribution (CVQKD) protocol using a Gaussian modulation of coherent states and a homodyne detection. These codes are available for a wide range of signal-to-noise ratios on an additive white Gaussian noise channel with a binary modulation and can be combined with a multidimensional reconciliation method proven secure against arbitrary collective attacks. This improved reconciliation procedure considerably extends the secure range of a CVQKD with a Gaussian modulation, giving a secret key rate of about 10{sup -3} bit per pulse at amore » distance of 120 km for reasonable physical parameters.« less

  5. The review of dynamic monitoring technology for crop growth

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-wei; Chen, Huai-liang; Zou, Chun-hui; Yu, Wei-dong

    2010-10-01

    In this paper, crop growth monitoring methods are described elaborately. The crop growth models, Netherlands-Wageningen model system, the United States-GOSSYM model and CERES models, Australia APSIM model and CCSODS model system in China, are introduced here more focus on the theories of mechanism, applications, etc. The methods and application of remote sensing monitoring methods, which based on leaf area index (LAI) and biomass were proposed by different scholars at home and abroad, are highly stressed in the paper. The monitoring methods of remote sensing coupling with crop growth models are talked out at large, including the method of "forced law" which using remote sensing retrieval state parameters as the crop growth model parameters input, and then to enhance the dynamic simulation accuracy of crop growth model and the method of "assimilation of Law" which by reducing the gap difference between the value of remote sensing retrieval and the simulated values of crop growth model and thus to estimate the initial value or parameter values to increasing the simulation accuracy. At last, the developing trend of monitoring methods are proposed based on the advantages and shortcomings in previous studies, it is assured that the combination of remote sensing with moderate resolution data of FY-3A, MODIS, etc., crop growth model, "3S" system and observation in situ are the main methods in refinement of dynamic monitoring and quantitative assessment techniques for crop growth in future.

  6. A Discussion of Oxygen Recovery Definitions and Key Performance Parameters for Closed-Loop Atmosphere Revitalization Life Support Technology Development

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Perry, Jay L.

    2016-01-01

    Over the last 55 years, NASA has evolved life support for crewed space exploration vehicles from simple resupply during Project Mercury to the complex and highly integrated system of systems aboard the International Space Station. As NASA targets exploration destinations farther from low Earth orbit and mission durations of 500 to 1000 days, life support systems must evolve to meet new requirements. In addition to having more robust, reliable, and maintainable hardware, limiting resupply becomes critical for managing mission logistics and cost. Supplying a crew with the basics of food, water, and oxygen become more challenging as the destination ventures further from Earth. Aboard ISS the Atmosphere Revitalization Subsystem (ARS) supplies the crew's oxygen demand by electrolyzing water. This approach makes water a primary logistics commodity that must be managed carefully. Chemical reduction of metabolic carbon dioxide (CO2) provides a method of recycling oxygen thereby reducing the net ARS water demand and therefore minimizing logistics needs. Multiple methods have been proposed to achieve this recovery and have been reported in the literature. However, depending on the architecture and the technology approach, "oxygen recovery" can be defined in various ways. This discontinuity makes it difficult to compare technologies directly. In an effort to clarify community discussions of Oxygen Recovery, we propose specific definitions and describe the methodology used to arrive at those definitions. Additionally, we discuss key performance parameters for Oxygen Recovery technology development including challenges with comparisons to state-of-the-art.

  7. Seasonal microbial and environmental parameters at Crocker Reef, Florida Keys, 2014–2015

    USGS Publications Warehouse

    Kellogg, Christina A.; Yates, Kimberly K.; Lawler, Stephanie N.; Moore, Christopher S.; Smiley, Nathan A.

    2015-11-04

    Microbial measurements included enumeration of total bacteria, enumeration of virus-like particles, and plate counts of Vibrio spp. colony-forming units (CFU). These measurements were intended to give a sense of any seasonal changes in the total microbial load and to provide an indication of water quality. Additional environmental parameters measured included water temperature, salinity, dissolved oxygen, and pH. Four sites (table 1) were intensively sampled for periods of approximately 48 hours during summer (July 2014) and winter (January–February 2015), during which water samples were collected every 4 hours for analysis, except when prevented by weather conditions.

  8. Human Papillomavirus and Epidermal Growth Factor Receptor in Oral Cavity and Oropharyngeal Squamous Cell Carcinoma: Correlation With Dynamic Contrast-Enhanced MRI Parameters.

    PubMed

    Choi, Yoon Seong; Park, Mina; Kwon, Hyeong Ju; Koh, Yoon Woo; Lee, Seung-Koo; Kim, Jinna

    2016-02-01

    The objective of this study was to investigate differences in dynamic contrast-enhanced MRI (DCE-MRI) parameters on the basis of the status of human papillomavirus (HPV) and epidermal growth factor receptor (EGFR) biomarkers in patients with squamous cell carcinoma (SCC) of the oral cavity and oropharynx by use of histogram analysis. A total of 22 consecutive patients with oral cavity and oropharyngeal SCC underwent DCE-MRI before receiving treatment. DCE parameter maps of the volume transfer constant (K(trans)), the flux rate constant (kep), and the extravascular extracellular volume fraction (ve) were obtained. The histogram parameters were calculated using the entire enhancing tumor volume and were compared between the patient subgroups on the basis of HPV and EGFR biomarker statuses. The cumulative histogram parameters of K(trans) and kep showed lower values in the HPV-negative and EFGR-overexpression group than in the HPV-positive EGFR-negative group. These differences were statistically significant for the mean (p = 0.009), 25th, 50th, and 75th percentile values of K(trans) and for the 25th percentile value of kep when correlated with HPV status in addition to the mean K(trans) value (p = 0.047) and kep value (p = 0.004) when correlated with EGFR status. No statistically significant difference in ve was found on the basis of HPV and EGFR status. DCE-MRI is useful for the assessment of the tumor microenvironment associated with HPV and EGFR biomarkers before treatment of patients with oral cavity and oropharyngeal SCC.

  9. Analysis of crack initiation and growth in the high level vibration test at Tadotsu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassir, M.K.; Park, Y.J.; Hofmayer, C.H.

    1993-08-01

    The High Level Vibration Test data are used to assess the accuracy and usefulness of current engineering methodologies for predicting crack initiation and growth in a cast stainless steel pipe elbow under complex, large amplitude loading. The data were obtained by testing at room temperature a large scale modified model of one loop of a PWR primary coolant system at the Tadotsu Engineering Laboratory in Japan. Fatigue crack initiation time is reasonably predicted by applying a modified local strain approach (Coffin-Mason-Goodman equation) in conjunction with Miner`s rule of cumulative damage. Three fracture mechanics methodologies are applied to investigate the crackmore » growth behavior observed in the hot leg of the model. These are: the {Delta}K methodology (Paris law), {Delta}J concepts and a recently developed limit load stress-range criterion. The report includes a discussion on the pros and cons of the analysis involved in each of the methods, the role played by the key parameters influencing the formulation and a comparison of the results with the actual crack growth behavior observed in the vibration test program. Some conclusions and recommendations for improvement of the methodologies are also provided.« less

  10. In vivo quantitative evaluation of vascular parameters for angiogenesis based on sparse principal component analysis and aggregated boosted trees

    NASA Astrophysics Data System (ADS)

    Zhao, Fengjun; Liu, Junting; Qu, Xiaochao; Xu, Xianhui; Chen, Xueli; Yang, Xiang; Cao, Feng; Liang, Jimin; Tian, Jie

    2014-12-01

    To solve the multicollinearity issue and unequal contribution of vascular parameters for the quantification of angiogenesis, we developed a quantification evaluation method of vascular parameters for angiogenesis based on in vivo micro-CT imaging of hindlimb ischemic model mice. Taking vascular volume as the ground truth parameter, nine vascular parameters were first assembled into sparse principal components (PCs) to reduce the multicolinearity issue. Aggregated boosted trees (ABTs) were then employed to analyze the importance of vascular parameters for the quantification of angiogenesis via the loadings of sparse PCs. The results demonstrated that vascular volume was mainly characterized by vascular area, vascular junction, connectivity density, segment number and vascular length, which indicated they were the key vascular parameters for the quantification of angiogenesis. The proposed quantitative evaluation method was compared with both the ABTs directly using the nine vascular parameters and Pearson correlation, which were consistent. In contrast to the ABTs directly using the vascular parameters, the proposed method can select all the key vascular parameters simultaneously, because all the key vascular parameters were assembled into the sparse PCs with the highest relative importance.

  11. Effects of lactic acid bacteria and smectite after aflatoxin B1 challenge on the growth performance, nutrient digestibility and blood parameters of broilers.

    PubMed

    Liu, N; Ding, K; Wang, J; Deng, Q; Gu, K; Wang, J

    2018-04-11

    This study aimed to investigate the effect of lactic acid bacteria (LAB) and smectite on the growth performance, nutrient digestibility and blood parameters of broilers that were fed diets contaminated with aflatoxin B 1 (AFB 1 ). A total of 480 newly hatched male Arbor Acres broilers were randomly allocated into four groups with six replicates of 20 chicks each. The broilers were fed diets with the AFB 1 (40 μg/kg) challenge or without (control) it and supplemented with smectite (3.0 g/kg) or LAB (4.0 × 10 10  CFU/kg) based on the AFB 1 diet. The trial lasted for 42 days. The results showed that during days 1-42 of AFB 1 challenge, the feed intake (FI) and body weight gain (BWG) were depressed (p < .05). The inclusion of LAB and smectite increased (p < .05) the BWG by 71.58 and 41.89 g/bird, respectively, which reached the level of the control diet (p ≥ .05), but there were no differences (p ≥ .05) in performance between LAB and smectite. LAB and smectite also increased (p < .05) the apparent total tract digestibility of the crude protein. Regarding the blood parameters, AFB 1 decreased (p < .05) the levels of red blood cell count, haematocrit, mean corpuscular volume, haemoglobin, albumin and total protein. In the meantime, the AFB 1 increased (p < .05) leucocyte counts, urea nitrogen, cholesterol, total bilirubin, creatinine, glutamic-pyruvic transaminase, glutamic oxaloacetic transaminase and alkaline phosphatase. By contrast, LAB and smectite affected (p < .05) these parameters in the opposite direction. It can be concluded that after the AFB 1 challenge, LAB and smectite have similar effects on the growth and health of the broilers, suggesting that LAB could be an alternative against AFB 1 in commercial animal feeds. © 2018 Blackwell Verlag GmbH.

  12. Wheat growth monitoring with radar vegetation indices

    USDA-ARS?s Scientific Manuscript database

    Microwave remote sensing can help in the monitoring of crop growth. Many experiments have been carried out to investigate the sensitivity of microwave sensors to crop growth parameters. These have clearly shown that canopy structure and water content can greatly affect the measurements. For agricult...

  13. An ordered EST catalogue and gene expression profiles of cassava (Manihot esculenta) at key growth stages.

    PubMed

    Li, You-Zhi; Pan, Ying-Hua; Sun, Chang-Bin; Dong, Hai-Tao; Luo, Xing-Lu; Wang, Zhi-Qiang; Tang, Ji-Liang; Chen, Baoshan

    2010-12-01

    A cDNA library was constructed from the root tissues of cassava variety Huanan 124 at the root bulking stage. A total of 9,600 cDNA clones from the library were sequenced with single-pass from the 5'-terminus to establish a catalogue of expressed sequence tags (ESTs). Assembly of the resulting EST sequences resulted in 2,878 putative unigenes. Blastn analysis showed that 62.6% of the unigenes matched with known cassava ESTs and the rest had no 'hits' against the cassava database in the integrative PlantGDB database. Blastx analysis showed that 1,715 (59.59%) of the unigenes matched with one or more GenBank protein entries and 1,163 (40.41%) had no 'hits'. A cDNA microarray with 2,878 unigenes was developed and used to analyze gene expression profiling of Huanan 124 at key growth stages including seedling, formation of root system, root bulking, and starch maturity. Array data analysis revealed that (1) the higher ratio of up-regulated ribosome-related genes was accompanied by a high ratio of up-regulated ubiquitin, proteasome-related and protease genes in cassava roots; (2) starch formation and degradation simultaneously occur at the early stages of root development but starch degradation is declined partially due to decrease in UDP-glucose dehydrogenase activity with root maturity; (3) starch may also be synthesized in situ in roots; (4) starch synthesis, translocation, and accumulation are also associated probably with signaling pathways that parallel Wnt, LAM, TCS and ErbB signaling pathways in animals; (5) constitutive expression of stress-responsive genes may be due to the adaptation of cassava to harsh environments during long-term evolution.

  14. Assessment of chronic kidney disease using skin texture as a key parameter: for South Indian population.

    PubMed

    Udhayarasu, Madhanlal; Ramakrishnan, Kalpana; Periasamy, Soundararajan

    2017-12-01

    Periodical monitoring of renal function, specifically for subjects with history of diabetic or hypertension would prevent them from entering into chronic kidney disease (CKD) condition. The recent increase in numbers may be due to food habits or lack of physical exercise, necessitates a rapid kidney function monitoring system. Presently, it is determined by evaluating glomerular filtration rate (GFR) that is mainly dependent on serum creatinine value and demographic parameters and ethnic value. Attempted here is to develop ethnic parameter based on skin texture for every individual. This value when used in GFR computation, the results are much agreeable with GFR obtained through standard modification of diet in renal disease and CKD epidemiology collaboration equations. Once correlation between CKD and skin texture is established, classification tool using artificial neural network is built to categorise CKD level based on demographic values and parameter obtained through skin texture (without using creatinine). This network when tested gives almost at par results with the network that is trained with demographic and creatinine values. The results of this Letter demonstrate the possibility of non-invasively determining kidney function and hence for making a device that would readily assess the kidney function even at home.

  15. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Malik, S. N.; Vanstone, R. H.; Kim, K. S.; Laflen, J. H.

    1987-01-01

    The objective of the Elevated Temperature Crack Growth Program is to evaluate proposed nonlinear fracture mechanics methods for application to hot section components of aircraft gas turbine engines. Progress during the past year included linear-elastic fracture mechanics data reduction on nonlinear crack growth rate data on Alloy 718. The bulk of the analytical work centered on thermal gradient problems and proposed fracture mechanics parameters. Good correlation of thermal gradient experimental displacement data and finite element prediction was obtained.

  16. Growth-rate dependent global effects on gene expression in bacteria

    PubMed Central

    Klumpp, Stefan; Zhang, Zhongge; Hwa, Terence

    2010-01-01

    Summary Bacterial gene expression depends not only on specific regulations but also directly on bacterial growth, because important global parameters such as the abundance of RNA polymerases and ribosomes are all growth-rate dependent. Understanding these global effects is necessary for a quantitative understanding of gene regulation and for the robust design of synthetic genetic circuits. The observed growth-rate dependence of constitutive gene expression can be explained by a simple model using the measured growth-rate dependence of the relevant cellular parameters. More complex growth dependences for genetic circuits involving activators, repressors and feedback control were analyzed, and salient features were verified experimentally using synthetic circuits. The results suggest a novel feedback mechanism mediated by general growth-dependent effects and not requiring explicit gene regulation, if the expressed protein affects cell growth. This mechanism can lead to growth bistability and promote the acquisition of important physiological functions such as antibiotic resistance and tolerance (persistence). PMID:20064380

  17. Dimensionless number is central to stress relaxation and expansive growth of the cell wall.

    PubMed

    Ortega, Joseph K E

    2017-06-07

    Experiments demonstrate that both plastic and elastic deformation of the cell wall are necessary for wall stress relaxation and expansive growth of walled cells. A biophysical equation (Augmented Growth Equation) was previously shown to accurately model the experimentally observed wall stress relaxation and expansive growth rate. Here, dimensional analysis is used to obtain a dimensionless Augmented Growth Equation with dimensionless coefficients (groups of variables, or Π parameters). It is shown that a single Π parameter controls the wall stress relaxation rate. The Π parameter represents the ratio of plastic and elastic deformation rates, and provides an explicit relationship between expansive growth rate and the wall's mechanical properties. Values for Π are calculated for plant, algal, and fungal cells from previously reported experimental results. It is found that the Π values for each cell species are large and very different from each other. Expansive growth rates are calculated using the calculated Π values and are compared to those measured for plant and fungal cells during different growth conditions, after treatment with IAA, and in different developmental stages. The comparison shows good agreement and supports the claim that the Π parameter is central to expansive growth rate of walled cells.

  18. Regulation of body growth by microRNAs.

    PubMed

    Lui, Julian C

    2017-11-15

    Regulation of body growth remains a fascinating and unresolved biological mystery. One key component of body growth is skeletal and longitudinal bone growth. Children grow taller because their bones grew longer, and the predominant driver of longitudinal bone growth is a cartilaginous structure found near the ends of long bone named the growth plate. Numerous recent studies have started to unveil the importance of microRNAs in regulation of growth plate functions, therefore contributing to regulation of linear growth. In addition to longitudinal growth, other organs in our body need to increase in size and cell number as we grow, and the regulation of organ growth involves both systemic factors like hormones; and other intrinsic mechanisms, which we are just beginning to understand. This review aims to summarize some recent important findings on how microRNAs are involved in both of these processes: the regulation of longitudinal bone growth, and the regulation of organs and overall body growth. Published by Elsevier B.V.

  19. The growth temperature and measurement temperature dependences of soft magnetic properties and effective damping parameter of (FeCo)-Al alloy thin films

    NASA Astrophysics Data System (ADS)

    Ariake, Yusuke; Wu, Shuang; Kanada, Isao; Mewes, Tim; Tanaka, Yoshitomo; Mankey, Gary; Mewes, Claudia; Suzuki, Takao

    2018-05-01

    The soft magnetic properties and effective damping parameters of Fe73Co25Al2 alloy thin films are discussed. The effective damping parameter αeff measured by ferromagnetic resonance for the 10 nm-thick sample is nearly constant (≈0.004 ± 0.0008) for a growth temperature Ts from ambient to 200 °C, and then tends to decrease for higher temperatures and αeff is 0.002 ± 0.0004 at Ts = 300 °C. For the 80 nm-thick sample, the αeff seems to increase with Ts from αeff = 0.001 ± 0.0002 at Ts = ambient to αeff = 0.002 ± 0.0004. The αeff is found nearly constant (αeff = 0.004 ± 0.0008) over a temperature range from 10 to 300 K for the 10 nm films with the different Ts (ambient, 100 and 200 °C). Together with an increasing non-linearity of the frequency dependence of the linewidth at low Ts, extrinsic contributions such as two-magnon scattering dominate the observed temperature dependence of effective damping and linewidth.

  20. Radio Telescopes Provide Key Clue on Black Hole Growth

    NASA Astrophysics Data System (ADS)

    2007-01-01

    Astronomers have discovered the strongest evidence yet found indicating that matter is being ejected by a medium-sized black hole, providing valuable insight on a process that may have been key to the development of larger black holes in the early Universe. The scientists combined the power of all the operational telescopes of the National Science Foundation's National Radio Astronomy Observatory (NRAO) to peer deep into the heart of the galaxy NGC 4395, 14 million light-years from Earth in the direction of the constellation Canes Venatici. NGC 4395 Core VLBI image of extended radio emission from core of NGC 4395, indicating suspected outflow powered by black hole CREDIT: Wrobel & Ho, NRAO/AUI/NSF Click on image for larger file Optical (visible light) image of NGC 4395 See here for detail and credit information for optical image. "We are seeing in this relatively nearby galaxy a process that may have been responsible for building intermediate-mass black holes into supermassive ones in the early Universe," said Joan Wrobel, an NRAO scientist in Socorro, NM. Wrobel and Luis Ho of the Observatories of the Carnegie Institution of Washington in Pasadena, CA, presented their findings to the American Astronomical Society's meeting in Seattle, WA. Black holes are concentrations of matter so dense that not even light can escape their powerful gravitational pull. The black hole in NGC 4395 is about 400,000 times more massive than the Sun. This puts it in a rarely-seen intermediate range between the supermassive black holes at the cores of many galaxies, which have masses millions to billions of times that of the Sun, and stellar-mass black holes only a few times more massive than the Sun. Energetic outflows of matter are common to both the supermassive and the stellar-mass black holes, but the new radio observations of NGC 4395 provided the first direct image of such a suspected outflow from an intermediate-mass black hole. The outflows presumably are generated by little

  1. Development and validation of an extensive growth and growth boundary model for psychrotolerant Lactobacillus spp. in seafood and meat products.

    PubMed

    Mejlholm, Ole; Dalgaard, Paw

    2013-10-15

    A new and extensive growth and growth boundary model for psychrotolerant Lactobacillus spp. was developed and validated for processed and unprocessed products of seafood and meat. The new model was developed by refitting and expanding an existing cardinal parameter model for growth and the growth boundary of lactic acid bacteria (LAB) in processed seafood (O. Mejlholm and P. Dalgaard, J. Food Prot. 70. 2485-2497, 2007). Initially, to estimate values for the maximum specific growth rate at the reference temperature of 25 °C (μref) and the theoretical minimum temperature that prevents growth of psychrotolerant LAB (T(min)), the existing LAB model was refitted to data from experiments with seafood and meat products reported not to include nitrite or any of the four organic acids evaluated in the present study. Next, dimensionless terms modelling the antimicrobial effect of nitrite, and acetic, benzoic, citric and sorbic acids on growth of Lactobacillus sakei were added to the refitted model, together with minimum inhibitory concentrations determined for the five environmental parameters. The new model including the effect of 12 environmental parameters, as well as their interactive effects, was successfully validated using 229 growth rates (μ(max) values) for psychrotolerant Lactobacillus spp. in seafood and meat products. Average bias and accuracy factor values of 1.08 and 1.27, respectively, were obtained when observed and predicted μ(max) values of psychrotolerant Lactobacillus spp. were compared. Thus, on average μ(max) values were only overestimated by 8%. The performance of the new model was equally good for seafood and meat products, and the importance of including the effect of acetic, benzoic, citric and sorbic acids and to a lesser extent nitrite in order to accurately predict growth of psychrotolerant Lactobacillus spp. was clearly demonstrated. The new model can be used to predict growth of psychrotolerant Lactobacillus spp. in seafood and meat

  2. Unique effects on hepatic function, lipid metabolism, bone and growth endocrine parameters of estetrol in combined oral contraceptives

    PubMed Central

    Mawet, Marie; Maillard, Catherine; Klipping, Christine; Zimmerman, Yvette; Foidart, Jean-Michel; Coelingh Bennink, Herjan J.T.

    2015-01-01

    Abstract Objectives Estetrol (E4) is a natural estrogen produced by the human fetal liver. In combination with drospirenone (DRSP) or levonorgestrel (LNG), E4 blocks ovulation and has less effect on haemostatic biomarkers in comparison with ethinylestradiol (EE) combined with DRSP. This study evaluates the impact of several doses of E4/DRSP and E4/LNG on safety parameters such as liver function, lipid metabolism, bone markers and growth endocrine parameters. Methods This was a dose-finding, single-centre, controlled study performed in healthy women aged 18 to 35 years with a documented pretreatment ovulatory cycle. Participants received 5 mg or 10 mg E4/3 mg DRSP; 5 mg, 10 mg or 20 mg E4/150 μg LNG; or 20 μg EE/3 mg DRSP as a comparator for three consecutive cycles in a 24/4-day regimen. Changes from baseline to end of treatment in liver parameters, lipid metabolism, bone markers and growth endocrinology were evaluated. Results A total of 109 women were included in the study. Carrier proteins were minimally affected in the E4/DRSP and E4/LNG groups, in comparison with the EE/DRSP group, where a significant increase in sex hormone-binding globulin was observed. Similarly, minor effects on lipoproteins were observed in the E4 groups, and the effects on triglycerides elicited by the E4 groups were significantly lower than those in the EE/DRSP group. No imbalances in bone markers were observed in any groups. No alterations in insulin-like growth factor were observed in the E4 groups. Conclusions E4-containing combinations have a limited effect on liver function, lipid metabolism, and bone and growth endocrine parameters. Chinese Abstract 摘要 目的 雌四醇(E4)是来源于人胎儿肝脏的天然雌激素。雌四醇与屈螺酮(DRSP)或左炔诺孕酮(LNG)配伍的复方口服避孕药制剂,能够抑制排卵,同时相较于炔雌醇(EE)与屈螺酮配伍制剂,它对凝血功能的各

  3. Feeding different dietary protein to energy ratios to Holstein heifers: effects on growth performance, blood metabolites and rumen fermentation parameters.

    PubMed

    Dong, L F; Zhang, W B; Zhang, N F; Tu, Y; Diao, Q Y

    2017-02-01

    Eighteen Chinese Holstein heifers average age 230 ± 14 days were allocated to 1 of 3 dietary crude protein (CP) to metabolizable energy (ME) ratios to examine the effects on growth performance, blood metabolites and rumen fermentation parameters with 90-days experiment. Three different dietary CP:ME ratios were targeted based on the formulation of dietary CP contents of 10.85%, 12.78% and 14.63% on dry matter (DM) basis with similar ME contents (10.42 MJ/kg DM), which were categorized as low, medium and high dietary CP:ME ratios. The actual CP:ME ratios obtained in this study significantly increased from low to high CP:ME ratio groups with a value of 10.59, 11.83 and 13.38 g/MJ respectively. Elevated CP:ME ratios significantly increased CP intake (kg/day) and feed efficiency (FE) which was defined as dry matter intake as a proportion of average daily gain (ADG), whereas little difference was observed in body weight (kg), ADG (kg/day), DM intake (kg/day) and ME intake (MJ/day) among the three different CP:ME ratio groups. Increasing dietary CP to ME ratios significantly increased CP digestibility, whereas digestibility of DM and gross energy remained constant in the current experiment. Blood urea nitrogen and insulin-like growth factor-1 linearly increased with increasing dietary CP:ME ratios. There was significantly dietary treatment effect on rumen fermentation parameters including acetate, propionate, butyrate and total volatile fatty acids. Therefore, this study indicated that increasing dietary CP levels with similar energy content contributed to increased protein intake and its digestibility, as well as FE. Holstein heifers between 200 and 341 kg subjected to 13.38 dietary CP:ME ratio showed improved feed efficiency, nutrient digestibility, some blood metabolites and rumen fermentation characteristics for 0.90 kg/day rate of gain. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  4. Study of key factors influencing dust emission: An assessment of GEOS-Chem and DEAD simulations with observations

    NASA Astrophysics Data System (ADS)

    Bartlett, Kevin S.

    Mineral dust aerosols can impact air quality, climate change, biological cycles, tropical cyclone development and flight operations due to reduced visibility. Dust emissions are primarily limited to the extensive arid regions of the world, yet can negatively impact local to global scales, and are extremely complex to model accurately. Within this dissertation, the Dust Entrainment And Deposition (DEAD) model was adapted to run, for the first known time, using high temporal (hourly) and spatial (0.3°x0.3°) resolution data to methodically interrogate the key parameters and factors influencing global dust emissions. The dependence of dust emissions on key parameters under various conditions has been quantified and it has been shown that dust emissions within DEAD are largely determined by wind speeds, vegetation extent, soil moisture and topographic depressions. Important findings were that grid degradation from 0.3ºx0.3º to 1ºx1º, 2ºx2.5º, and 4°x5° of key meteorological, soil, and surface input parameters greatly reduced emissions approximately 13% and 29% and 64% respectively, as a result of the loss of sub grid detail within these key parameters at coarse grids. After running high resolution DEAD emissions globally for 2 years, two severe dust emission cases were chosen for an in-depth investigation of the root causes of the events and evaluation of the 2°x2.5° Goddard Earth Observing System (GEOS)-Chem and 0.3°x0.3° DEAD model capabilities to simulate the events: one over South West Asia (SWA) in June 2008 and the other over the Middle East in July 2009. The 2 year lack of rain over SWA preceding June 2008 with a 43% decrease in mean rainfall, yielded less than normal plant growth, a 28% increase in Aerosol Optical Depth (AOD), and a 24% decrease in Meteorological Aerodrome Report (METAR) observed visibility (VSBY) compared to average years. GEOS-Chem captured the observed higher AOD over SWA in June 2008. More detailed comparisons of GEOS

  5. Measurement-device-independent quantum key distribution with source state errors and statistical fluctuation

    NASA Astrophysics Data System (ADS)

    Jiang, Cong; Yu, Zong-Wen; Wang, Xiang-Bin

    2017-03-01

    We show how to calculate the secure final key rate in the four-intensity decoy-state measurement-device-independent quantum key distribution protocol with both source errors and statistical fluctuations with a certain failure probability. Our results rely only on the range of only a few parameters in the source state. All imperfections in this protocol have been taken into consideration without assuming any specific error patterns of the source.

  6. Compost mixture influence of interactive physical parameters on microbial kinetics and substrate fractionation.

    PubMed

    Mohajer, Ardavan; Tremier, Anne; Barrington, Suzelle; Teglia, Cecile

    2010-01-01

    Composting is a feasible biological treatment for the recycling of wastewater sludge as a soil amendment. The process can be optimized by selecting an initial compost recipe with physical properties that enhance microbial activity. The present study measured the microbial O(2) uptake rate (OUR) in 16 sludge and wood residue mixtures to estimate the kinetics parameters of maximum growth rate mu(m) and rate of organic matter hydrolysis K(h), as well as the initial biodegradable organic matter fractions present. The starting mixtures consisted of a wide range of moisture content (MC), waste to bulking agent (BA) ratio (W/BA ratio) and BA particle size, which were placed in a laboratory respirometry apparatus to measure their OUR over 4 weeks. A microbial model based on the activated sludge process was used to calculate the kinetic parameters and was found to adequately reproduced OUR curves over time, except for the lag phase and peak OUR, which was not represented and generally over-estimated, respectively. The maximum growth rate mu(m), was found to have a quadratic relationship with MC and a negative association with BA particle size. As a result, increasing MC up to 50% and using a smaller BA particle size of 8-12 mm was seen to maximize mu(m). The rate of hydrolysis K(h) was found to have a linear association with both MC and BA particle size. The model also estimated the initial readily biodegradable organic matter fraction, MB(0), and the slower biodegradable matter requiring hydrolysis, MH(0). The sum of MB(0) and MH(0) was associated with MC, W/BA ratio and the interaction between these two parameters, suggesting that O(2) availability was a key factor in determining the value of these two fractions. The study reinforced the idea that optimization of the physical characteristics of a compost mixture requires a holistic approach. 2010 Elsevier Ltd. All rights reserved.

  7. Capture of algae promotes growth and propagation in aquatic Utricularia

    PubMed Central

    Koller-Peroutka, Marianne; Lendl, Thomas; Watzka, Margarete; Adlassnig, Wolfram

    2015-01-01

    Background and Aims Some carnivorous plants trap not only small animals but also algae and pollen grains. However, it remains unclear if these trapped particles are useless bycatch or whether they provide nutrients for the plant. The present study examines this question in Utricularia, which forms the largest and most widely spread genus of carnivorous plants, and which captures prey by means of sophisticated suction traps. Methods Utricularia plants of three different species (U. australis, U. vulgaris and U. minor) were collected in eight different water bodies including peat bogs, lakes and artificial ponds in three regions of Austria. The prey spectrum of each population was analysed qualitatively and quantitatively, and correlated with data on growth and propagation, C/N ratio and δ15N. Key Results More than 50 % of the prey of the Utricularia populations investigated consisted of algae and pollen, and U. vulgaris in particular was found to capture large amounts of gymnosperm pollen. The capture of algae and pollen grains was strongly correlated with most growth parameters, including weight, length, budding and elongation of internodes. The C/N ratio, however, was less well correlated. Other prey, such as moss leaflets, fungal hyphae and mineral particles, were negatively correlated with most growth parameters. δ15N was positively correlated with prey capture, but in situations where algae were the main prey objects it was found that the standard formula for calculation of prey-derived N was no longer applicable. Conclusions The mass capture of immotile particles confirms the ecological importance of autonomous firing of the traps. Although the C/N ratio was little influenced by algae, they clearly provide other nutrients, possibly including phosphorus and trace elements. By contrast, mosses, fungi and mineral particles appear to be useless bycatch. Correlations with chemical parameters indicate that Utricularia benefits from nutrient-rich waters by uptake

  8. Simple Web-based interactive key development software (WEBiKEY) and an example key for Kuruna (Poaceae: Bambusoideae).

    PubMed

    Attigala, Lakshmi; De Silva, Nuwan I; Clark, Lynn G

    2016-04-01

    Programs that are user-friendly and freely available for developing Web-based interactive keys are scarce and most of the well-structured applications are relatively expensive. WEBiKEY was developed to enable researchers to easily develop their own Web-based interactive keys with fewer resources. A Web-based multiaccess identification tool (WEBiKEY) was developed that uses freely available Microsoft ASP.NET technologies and an SQL Server database for Windows-based hosting environments. WEBiKEY was tested for its usability with a sample data set, the temperate woody bamboo genus Kuruna (Poaceae). WEBiKEY is freely available to the public and can be used to develop Web-based interactive keys for any group of species. The interactive key we developed for Kuruna using WEBiKEY enables users to visually inspect characteristics of Kuruna and identify an unknown specimen as one of seven possible species in the genus.

  9. Relationship of maternal mean platelet volume with fetal Doppler parameters and neonatal complications in pregnancies with and without intrauterine growth restriction.

    PubMed

    Ureyen, Isin; Ozyuncu, Ozgur; Sahin-Uysal, Nihal; Kara, Ozgur; Basaran, Derman; Turgal, Mert; Deren, Ozgur

    2017-02-01

    In this study, we investigated the relationship of mean platelet volume (MPV) with the presence and the severity of intrauterine growth restriction (IUGR) and with neonatal complications. The pregnancies with and without IUGR, that were followed-up in our hospital between 2003 and 2009 were analyzed retrospectively. Pregnancies which resulted in birth of a newborn with a birthweight less than 10th percentile for the gestational age were selected for IUGR group. IUGR cases were divided into three groups according to the Doppler parameters. There was no significant difference between the MPV values in the groups. There was no association between MPV and Doppler parameters that can be used in predicting the severity of IUGR. There was no significant relation between MPV and the perinatal complications such as intracranial hemorrhage (ICH), bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), the development of sepsis, postpartum exitus (PPEX) and intrauterine exitus (IUEX). Higher MPV values were associated with hospitalization in the neonatal intensive care unit (NICU) and respiratory distress syndrome (RDS) in the IUGR group. Analysis of MPV is a simple and readily available laboratory test. Prospective researches employing standard measurement technics are required to clarify the relationship between MPV and IUGR.

  10. Growth and characterization of struvite-Na crystals

    NASA Astrophysics Data System (ADS)

    Chauhan, Chetan K.; Joshi, Mihirkumar J.

    2014-09-01

    Sodium magnesium phosphate heptahydrate [NaMgPO4·7H2O], also known as struvite-Na, is the sodium analog to struvite. Among phosphate containing bio-minerals, struvite has attracted considerable attention, because of its common occurrence in a wide variety of environments. Struvite and family crystals were found as urinary calculi in humans and animals. Struvite-Na crystals were grown by a single diffusion gel growth technique in a silica hydro gel medium. Struvite-Na crystals with different morphologies having transparent to translucent diaphaneity were grown with different growth parameters. The phenomenon of Liesegang rings was also observed with some particular growth parameters. The powder XRD study confirmed the structural similarity of the grown struvite-Na crystals with struvite and found that struvite-Na crystallized in the orthorhombic Pmn21 space group with unit cell parameters such as a= 6.893 Å, b=6.124 Å, c=11.150 Å, and α=β=γ=90°. FT-IR spectra of struvite-Na crystals revealed the presence of functional groups. The TGA, DTA and DSC were carried out simultaneously. The kinetic and thermodynamic parameters of dehydration/decomposition process were calculated. The variation of dielectric constant with frequency of applied field was studied in the range from 400 Hz to 100 kHz.

  11. Isothermal dendritic growth: A low gravity experiment

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Hahn, R. C.; Lograsso, T. A.; Rubinstein, E. R.; Selleck, M. E.; Winsa, E.

    1988-01-01

    The Isothermal Dendritic Growth Experiment is an active crystal growth experiment designed to test dendritic growth theory at low undercoolings where convection prohibits such studies at 1 g. The experiment will be essentially autonomous, though limited in-flight interaction through a computer interface is planned. One of the key components of the apparatus will be a crystal growth chamber capable of achieving oriented single crystal dendritic growth. Recent work indicates that seeding the chamber with a crystal of the proper orientation will not, in and of itself, be sufficient to meet this requirement. Additional flight hardware and software required for the STS flight experiment are currently being developed at NASA Lewis Research Center and at Rensselaer Polytechnic Institute.

  12. Novelties of the flowering plant pollen tube underlie diversification of a key life history stage

    PubMed Central

    Williams, Joseph H.

    2008-01-01

    The origin and rapid diversification of flowering plants has puzzled evolutionary biologists, dating back to Charles Darwin. Since that time a number of key life history and morphological traits have been proposed as developmental correlates of the extraordinary diversity and ecological success of angiosperms. Here, I identify several innovations that were fundamental to the evolutionary lability of angiosperm reproduction, and hence to their diversification. In gymnosperms pollen reception must be near the egg largely because sperm swim or are transported by pollen tubes that grow at very slow rates (< ≈20 μm/h). In contrast, pollen tube growth rates of taxa in ancient angiosperm lineages (Amborella, Nuphar, and Austrobaileya) range from ≈80 to 600 μm/h. Comparative analyses point to accelerated pollen tube growth rate as a critical innovation that preceded the origin of the true closed carpel, long styles, multiseeded ovaries, and, in monocots and eudicots, much faster pollen tube growth rates. Ancient angiosperm pollen tubes all have callosic walls and callose plugs (in contrast, no gymnosperms have these features). The early association of the callose-walled growth pattern with accelerated pollen tube growth rate underlies a striking repeated pattern of faster and longer-distance pollen tube growth often within solid pathways in phylogenetically derived angiosperms. Pollen tube innovations are a key component of the spectacular diversification of carpel (flower and fruit) form and reproductive cycles in flowering plants. PMID:18678915

  13. Comparison of conventional and organic management conditions on growth performance, carcass characteristics and haematological parameters in Karacabey Merino and Kivircik breeds.

    PubMed

    Soysal, Deniz; Cibik, Recep; Aydin, Cenk; Ak, İbrahim

    2011-04-01

    Growth performance, carcass characteristics, post-slaughtering and haematological parameters of Kivircik and Karacabey Merino male lambs in conventional and organic management systems were compared. The animals which were weaned at 7 weeks of age were divided into Kivircik conventional, Kivircik organic (KO), Karacabey Merino conventional and Karacabey Merino organic (MO) groups containing 12 lambs each. Fattening was ended when lambs attained 35 kg of live weight. The time to attain the determined fattening weight was significantly different among the groups, and Merino lambs having higher live weight gain were earlier than Kivircik lambs (p < 0.05). Overall conventional (CG) and organic group lambs were also compared. Live weight gain, intra-abdominal fat amount, external fat thickness and visceral organ weight were significantly higher in CG lambs (p < 0.05). Higher haematocrit and erythrocyte counts were obtained with the CG group (p < 0.05), whilst triglyceride, total plasma cholesterol and lipoprotein (HDL, LDL, VLDL) levels between groups were not significant. Pneumonia was the unique infection, with an incidence of 50% (six lambs) and 16.6% (two lambs) for MO and KO animals, respectively. The mortality rate was 16.6% (two lambs) for MO group, whilst no mortality was recorded for KO group animals. The present study has shown that although Karacabey merino lambs had higher growth performance compared to Kivircik lambs, organically fattened lambs in whole exhibited inferior growth performance. Lower infection and mortality observed with Kivircik lambs suggested that they could be more resistant to infections and outdoor environmental conditions.

  14. Thin film growth studies using time-resolved x-ray scattering

    NASA Astrophysics Data System (ADS)

    Kowarik, Stefan

    2017-02-01

    Thin-film growth is important for novel functional materials and new generations of devices. The non-equilibrium growth physics involved is very challenging, because the energy landscape for atomic scale processes is determined by many parameters, such as the diffusion and Ehrlich-Schwoebel barriers. We review the in situ real-time techniques of x-ray diffraction (XRD), x-ray growth oscillations and diffuse x-ray scattering (GISAXS) for the determination of structure and morphology on length scales from Å to µm. We give examples of time resolved growth experiments mainly from molecular thin film growth, but also highlight growth of inorganic materials using molecular beam epitaxy (MBE) and electrochemical deposition from liquids. We discuss how scaling parameters of rate equation models and fundamental energy barriers in kinetic Monte Carlo methods can be determined from fits of the real-time x-ray data.

  15. Thin film growth studies using time-resolved x-ray scattering.

    PubMed

    Kowarik, Stefan

    2017-02-01

    Thin-film growth is important for novel functional materials and new generations of devices. The non-equilibrium growth physics involved is very challenging, because the energy landscape for atomic scale processes is determined by many parameters, such as the diffusion and Ehrlich-Schwoebel barriers. We review the in situ real-time techniques of x-ray diffraction (XRD), x-ray growth oscillations and diffuse x-ray scattering (GISAXS) for the determination of structure and morphology on length scales from Å to µm. We give examples of time resolved growth experiments mainly from molecular thin film growth, but also highlight growth of inorganic materials using molecular beam epitaxy (MBE) and electrochemical deposition from liquids. We discuss how scaling parameters of rate equation models and fundamental energy barriers in kinetic Monte Carlo methods can be determined from fits of the real-time x-ray data.

  16. Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook salmon

    USGS Publications Warehouse

    Plumb, John M.; Moffitt, Christine M.

    2015-01-01

    Researchers have cautioned against the borrowing of consumption and growth parameters from other species and life stages in bioenergetics growth models. In particular, the function that dictates temperature dependence in maximum consumption (Cmax) within the Wisconsin bioenergetics model for Chinook Salmon Oncorhynchus tshawytscha produces estimates that are lower than those measured in published laboratory feeding trials. We used published and unpublished data from laboratory feeding trials with subyearling Chinook Salmon from three stocks (Snake, Nechako, and Big Qualicum rivers) to estimate and adjust the model parameters for temperature dependence in Cmax. The data included growth measures in fish ranging from 1.5 to 7.2 g that were held at temperatures from 14°C to 26°C. Parameters for temperature dependence in Cmax were estimated based on relative differences in food consumption, and bootstrapping techniques were then used to estimate the error about the parameters. We found that at temperatures between 17°C and 25°C, the current parameter values did not match the observed data, indicating that Cmax should be shifted by about 4°C relative to the current implementation under the bioenergetics model. We conclude that the adjusted parameters for Cmax should produce more accurate predictions from the bioenergetics model for subyearling Chinook Salmon.

  17. Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Xueying; Zhang, Yichen; Zhao, Yijia; Wang, Xiangyu; Yu, Song; Guo, Hong

    2017-10-01

    We study the impact of the finite-size effect on the continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocol, mainly considering the finite-size effect on the parameter estimation procedure. The central-limit theorem and maximum likelihood estimation theorem are used to estimate the parameters. We also analyze the relationship between the number of exchanged signals and the optimal modulation variance in the protocol. It is proved that when Charlie's position is close to Bob, the CV-MDI QKD protocol has the farthest transmission distance in the finite-size scenario. Finally, we discuss the impact of finite-size effects related to the practical detection in the CV-MDI QKD protocol. The overall results indicate that the finite-size effect has a great influence on the secret-key rate of the CV-MDI QKD protocol and should not be ignored.

  18. Why sustainable population growth is a key to climate change and public health equity.

    PubMed

    Howat, Peter; Stoneham, Melissa

    2011-12-01

    Australia's population could reach 42 million by 2050. This rapid population growth, if unabated, will have significant social, public health and environmental implications. On the one hand, it is a major driver of climate change and environmental degradation; on the other it is likely to be a major contributor to growing social and health issues including a decline in quality of life for many residents. Disadvantaged and vulnerable groups will be most affected. The environmental, social and health-related issues include: pressure on the limited arable land in Australia; increased volumes of industrial and domestic waste; inadequate essential services; traffic congestion; lack of affordable housing; declining mental health; increased obesity problems; and inadequate aged care services. Many of these factors are related to the aggravation of climate change and health inequities. It is critical that the Australian Government develops a sustainable population plan with stabilisation of population growth as an option. The plan needs to ensure adequate hospitals and healthcare services, education facilities, road infrastructure, sustainable transport options, water quality and quantity, utilities and other amenities that are already severely overburdened in Australian cities. There is a need for a guarantee that affordable housing will be available and priority be given to training young people and Indigenous people for employment. This paper presents evidence to support the need for the stabilisation of population growth as one of the most significant measures to control climate change as well as to improve public health equity.

  19. Parameter Estimation for Viscoplastic Material Modeling

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Gendy, Atef S.; Wilt, Thomas E.

    1997-01-01

    A key ingredient in the design of engineering components and structures under general thermomechanical loading is the use of mathematical constitutive models (e.g. in finite element analysis) capable of accurate representation of short and long term stress/deformation responses. In addition to the ever-increasing complexity of recent viscoplastic models of this type, they often also require a large number of material constants to describe a host of (anticipated) physical phenomena and complicated deformation mechanisms. In turn, the experimental characterization of these material parameters constitutes the major factor in the successful and effective utilization of any given constitutive model; i.e., the problem of constitutive parameter estimation from experimental measurements.

  20. Multi-party Measurement-Device-Independent Quantum Key Distribution Based on Cluster States

    NASA Astrophysics Data System (ADS)

    Liu, Chuanqi; Zhu, Changhua; Ma, Shuquan; Pei, Changxing

    2018-03-01

    We propose a novel multi-party measurement-device-independent quantum key distribution (MDI-QKD) protocol based on cluster states. A four-photon analyzer which can distinguish all the 16 cluster states serves as the measurement device for four-party MDI-QKD. Any two out of four participants can build secure keys after the analyzers obtains successful outputs and the two participants perform post-processing. We derive a security analysis for the protocol, and analyze the key rates under different values of polarization misalignment. The results show that four-party MDI-QKD is feasible over 280 km in the optical fiber channel when the key rate is about 10- 6 with the polarization misalignment parameter 0.015. Moreover, our work takes an important step toward a quantum communication network.

  1. Targeting Insulin-Like Growth Factor 1 Receptor Inhibits Pancreatic Cancer Growth and Metastasis

    PubMed Central

    Subramani, Ramadevi; Lopez-Valdez, Rebecca; Arumugam, Arunkumar; Nandy, Sushmita; Boopalan, Thiyagarajan; Lakshmanaswamy, Rajkumar

    2014-01-01

    Pancreatic cancer is one of the most lethal cancers. Increasing incidence and mortality indicates that there is still much lacking in detection and management of the disease. This is partly due to a lack of specific symptoms during early stages of the disease. Several growth factor receptors have been associated with pancreatic cancer. Here, we have investigated if an RNA interference approach targeted to IGF-IR could be effective and efficient against pancreatic cancer growth and metastasis. For that, we evaluated the effects of IGF-1R inhibition using small interfering RNA (siRNAs) on tumor growth and metastasis in HPAC and PANC-1 pancreatic cancer cell lines. We found that silencing IGF-1R inhibits pancreatic cancer growth and metastasis by blocking key signaling pathways such AKT/PI3K, MAPK, JAK/STAT and EMT. Silencing IGF-1R resulted in an anti-proliferative effect in PANC-1 and HPAC pancreatic cancer cell lines. Matrigel invasion, transwell migration and wound healing assays also revealed a role for IGF-1R in metastatic properties of pancreatic cancer. These results were further confirmed using Western blotting analysis of key intermediates involved in proliferation, epithelial mesenchymal transition, migration, and invasion. In addition, soft agar assays showed that silencing IGF-1R also blocks the colony forming capabilities of pancreatic cancer cells in vitro. Western blots, as well as, flow cytometric analysis revealed the induction of apoptosis in IGF-1R silenced cells. Interestingly, silencing IGF-1R also suppressed the expression of insulin receptor β. All these effects together significantly control pancreatic cancer cell growth and metastasis. To conclude, our results demonstrate the significance of IGF-1R in pancreatic cancer. PMID:24809702

  2. Responses of lactating ewes to exogenous growth hormone: short- and long-term effects on productivity and tissue utilization of key metabolites.

    PubMed

    Sandles, L D; Sun, Y X; D'Cruz, A G; McDowell, G H; Gooden, J M

    1988-01-01

    Responses to daily injections of bovine growth hormone (GH, 0.15 mg kg-1 liveweight), beginning on day 10 of lactation, were measured in lactating ewes. Milk yields of GH-treated ewes increased soon after commencement of injections and continued to increase for some 25 days before reaching plateau levels. By comparison, yields of ewes injected with excipient (controls) decreased over the experiment. There was a tendency for contents of milk fat to be higher and milk protein to be lower for GH-treated than for control ewes during the first 15-20 days after injections were started. At the beginning and over the first 15-20 days of the experiment feed intakes of both groups of ewes were similar, but thereafter intakes of GH-treated ewes gradually increased to reach plateau levels some 200-300 g day-1 higher than for control ewes by about day 35. Liveweights of both groups of ewes decreased during the first 2 weeks of treatment then increased, with GH-treated ewes losing, then gaining, more weight than control ewes. The efficiency of food utilization for milk production was higher for GH-treated than control ewes throughout the experiment but digestibility of food organic matter was not different during the eighth week of the experiment. At the end of the experiment, body composition, assessed by dilution of tritiated water, was similar for both groups of ewes. Differences in milk production were not sustained after withdrawal of GH injections. Measurements of tissue uptake of key metabolites were made on days 3 and 45 of GH treatment. On day 3, GH lowered uptake of glucose and non-esterified fatty acids by leg muscle tissue and increased mammary uptake of non-esterified fatty acids. By day 45 there were no apparent differences of tissue uptake of key metabolites. The results indicate that there is a biphasic response to exogenous GH in the lactating ruminant. It appears that initially GH affects nutrient partition thereby increasing supplies to the mammary gland of

  3. Uncertainty in Population Growth Rates: Determining Confidence Intervals from Point Estimates of Parameters

    PubMed Central

    Devenish Nelson, Eleanor S.; Harris, Stephen; Soulsbury, Carl D.; Richards, Shane A.; Stephens, Philip A.

    2010-01-01

    Background Demographic models are widely used in conservation and management, and their parameterisation often relies on data collected for other purposes. When underlying data lack clear indications of associated uncertainty, modellers often fail to account for that uncertainty in model outputs, such as estimates of population growth. Methodology/Principal Findings We applied a likelihood approach to infer uncertainty retrospectively from point estimates of vital rates. Combining this with resampling techniques and projection modelling, we show that confidence intervals for population growth estimates are easy to derive. We used similar techniques to examine the effects of sample size on uncertainty. Our approach is illustrated using data on the red fox, Vulpes vulpes, a predator of ecological and cultural importance, and the most widespread extant terrestrial mammal. We show that uncertainty surrounding estimated population growth rates can be high, even for relatively well-studied populations. Halving that uncertainty typically requires a quadrupling of sampling effort. Conclusions/Significance Our results compel caution when comparing demographic trends between populations without accounting for uncertainty. Our methods will be widely applicable to demographic studies of many species. PMID:21049049

  4. Experimental Demonstration of Polarization Encoding Measurement-Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Tang, Zhiyuan; Liao, Zhongfa; Xu, Feihu; Qi, Bing; Qian, Li; Lo, Hoi-Kwong

    2014-05-01

    We demonstrate the first implementation of polarization encoding measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks. Active phase randomization of each individual pulse is implemented to protect against attacks on imperfect sources. By optimizing the parameters in the decoy state protocol, we show that it is feasible to implement polarization encoding MDI-QKD with commercial off-the-shelf devices. A rigorous finite key analysis is applied to estimate the secure key rate. Our work paves the way for the realization of a MDI-QKD network, in which the users only need compact and low-cost state-preparation devices and can share complicated and expensive detectors provided by an untrusted network server.

  5. Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution.

    PubMed

    Tang, Zhiyuan; Liao, Zhongfa; Xu, Feihu; Qi, Bing; Qian, Li; Lo, Hoi-Kwong

    2014-05-16

    We demonstrate the first implementation of polarization encoding measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks. Active phase randomization of each individual pulse is implemented to protect against attacks on imperfect sources. By optimizing the parameters in the decoy state protocol, we show that it is feasible to implement polarization encoding MDI-QKD with commercial off-the-shelf devices. A rigorous finite key analysis is applied to estimate the secure key rate. Our work paves the way for the realization of a MDI-QKD network, in which the users only need compact and low-cost state-preparation devices and can share complicated and expensive detectors provided by an untrusted network server.

  6. Coherent attacking continuous-variable quantum key distribution with entanglement in the middle

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyuan; Shi, Ronghua; Zeng, Guihua; Guo, Ying

    2018-06-01

    We suggest an approach on the coherent attack of continuous-variable quantum key distribution (CVQKD) with an untrusted entangled source in the middle. The coherent attack strategy can be performed on the double links of quantum system, enabling the eavesdropper to steal more information from the proposed scheme using the entanglement correlation. Numeric simulation results show the improved performance of the attacked CVQKD system in terms of the derived secret key rate with the controllable parameters maximizing the stolen information.

  7. Evaluation of hydrogen embrittlement and temper embrittlement by key curve method in instrumented Charpy test

    NASA Astrophysics Data System (ADS)

    Ohtsuka, N.; Shindo, Y.; Makita, A.

    2010-06-01

    Instrumented Charpy test was conducted on small sized specimen of 21/4Cr-1Mo steel. In the test the single specimen key curve method was applied to determine the value of fracture toughness for the initiation of crack extension with hydrogen free, KIC, and for hydrogen embrittlement cracking, KIH. Also the tearing modulus as a parameter for resistance to crack extension was determined. The role of these parameters was discussed at an upper shelf temperature and at a transition temperature. Then the key curve method combined with instrumented Charpy test was proven to be used to evaluate not only temper embrittlement but also hydrogen embrittlement.

  8. Extracellular matrix and growth factors in branching morphogenesis

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Spooner, B. S.

    1993-01-01

    The unifying hypothesis of the NSCORT in gravitational biology postulates that the ECM and growth factors are key interrelated components of a macromolecular regulatory system. The ECM is known to be important in growth and branching morphogenesis of embryonic organs. Growth factors have been detected in the developing embryo, and often the pattern of localization is associated with areas undergoing epithelial-mesenchymal interactions. Causal relationships between these components may be of fundamental importance in control of branching morphogenesis.

  9. Research on fatigue cracking growth parameters in asphaltic mixtures using computed tomography

    NASA Astrophysics Data System (ADS)

    Braz, D.; Lopes, R. T.; Motta, L. M. G.

    2004-01-01

    Distress of asphalt concrete pavement due to repeated bending from traffic loads has been a well-recognized problem in Brazil. If it is assumed that fatigue cracking growth is governed by the conditions at the crack tip, and that the crack tip conditions can be characterized by the stress intensity factor, then fatigue cracking growth as a function of stress intensity range Δ K can be determined. Computed tomography technique is used to detect crack evolution in asphaltic mixtures which were submitted to fatigue tests. Fatigue tests under conditions of controlled stress were carried out using diametral compression equipment and repeat loading. The aim of this work is imaging several specimens at different stages of the fatigue tests. In preliminary studies it was noted that the trajectory of a crack was influenced by the existence of voids in the originally unloaded specimens. Cracks would first be observed in the central region of a specimen, propagating in the direction of the extremities. Analyzing the graphics, that represent the fatigue cracking growth (d c/d N) as a function of stress intensity factor (Δ K), it is noticed that the curve has practically shown the same behavior for all specimens at the same level of the static tension rupture stress. The experimental values obtained for the constants A and n (of the Paris-Erdogan Law) present good agreement with the results obtained by Liang and Zhou.

  10. Growth in very preterm children: Head growth after discharge is the best independent predictor for cognitive outcome.

    PubMed

    Lidzba, Karen; Rodemann, Susanne; Goelz, Rangmar; Krägeloh-Mann, Ingeborg; Bevot, Andrea

    2016-12-01

    The contribution of growth parameters to the cognitive outcome of very low birth weight (VLBW)/very preterm (VP) infants is difficult to disentangle from other preterm-birth related factors. We hypothesized that long-term cognitive and motor outcome of VLBW/VP infants is most strongly associated with growth in head circumference after hospital discharge. Single-centre prospective longitudinal study: anthropometric measures at different time points (birth, discharge, school-age). 136 VLBW/VP infants (<32weeks gestation/birth weight<1.500g). Cognitive and motor function (Kaufman Assessment Battery for Children; Movement Assessment Battery for Children) at school-age (6.7-10.0years, mean=8.2). In hierarchical multiple regression analyses, growth from birth to discharge significantly predicted cognitive outcome (weight: R 2 change =0.063, p=0.014; length: R 2 change =0.078, p=0.007; HC: R 2 change =0.050, p=0.030), as well as weight gain (R 2 change =0.096, p=0.001) and head growth (R 2 change =0.134, p<0.001) from discharge to school-age. While most growth parameters, especially those from birth to discharge, were significantly influenced by prenatal growth and immaturity related morbidity (R 2 =0.151 to 0.605, all p≤0.001), head growth after discharge was not (R 2 =0.029, p=0.461). Amongst all anthropometric measures, head growth between discharge and school-age is the best independent predictor for cognitive outcome in VLBW/VP infants. Determinants of head growth after discharge need further studies to identify targets for intervention. Copyright © 2016. Published by Elsevier Ireland Ltd.

  11. Autoimmune control of lesion growth in CNS with minimal damage

    NASA Astrophysics Data System (ADS)

    Mathankumar, R.; Mohan, T. R. Krishna

    2013-07-01

    Lesions in central nervous system (CNS) and their growth leads to debilitating diseases like Multiple Sclerosis (MS), Alzheimer's etc. We developed a model earlier [1, 2] which shows how the lesion growth can be arrested through a beneficial auto-immune mechanism. We compared some of the dynamical patterns in the model with different facets of MS. The success of the approach depends on a set of control parameters and their phase space was shown to have a smooth manifold separating the uncontrolled lesion growth region from the controlled. Here we show that an optimal set of parameter values exist in the model which minimizes system damage while, at once, achieving control of lesion growth.

  12. Fast Simulation of the Impact Parameter Calculation of Electrons through Pair Production

    NASA Astrophysics Data System (ADS)

    Bang, Hyesun; Kweon, MinJung; Huh, Kyoung Bum; Pachmayer, Yvonne

    2018-05-01

    A fast simulation method is introduced that reduces tremendously the time required for the impact parameter calculation, a key observable in physics analyses of high energy physics experiments and detector optimisation studies. The impact parameter of electrons produced through pair production was calculated considering key related processes using the Bethe-Heitler formula, the Tsai formula and a simple geometric model. The calculations were performed at various conditions and the results were compared with those from full GEANT4 simulations. The computation time using this fast simulation method is 104 times shorter than that of the full GEANT4 simulation.

  13. Effects of TiO2 nanoparticles on the aquatic plant Spirodela polyrrhiza: Evaluation of growth parameters, pigment contents and antioxidant enzyme activities.

    PubMed

    Movafeghi, Ali; Khataee, Alireza; Abedi, Mahboubeh; Tarrahi, Roshanak; Dadpour, Mohammadreza; Vafaei, Fatemeh

    2018-02-01

    Plants are essential components of all ecosystems and play a critical role in environmental fate of nanoparticles. However, the toxicological impacts of nanoparticles on plants are not well documented. Titanium dioxide nanoparticles (TiO 2 -NPs) are produced worldwide in large quantities for a wide range of purposes. In the present study, the uptake of TiO 2 -NPs by the aquatic plant Spirodela polyrrhiza and the consequent effects on the plant were evaluated. Initially, structural and morphological characteristics of the used TiO 2 -NPs were determined using XRD, SEM, TEM and BET techniques. As a result, an anatase structure with the average crystalline size of 8nm was confirmed for the synthesized TiO 2 -NPs. Subsequently, entrance of TiO 2 -NP S to plant roots was verified by fluorescence microscopic images. Activity of a number of antioxidant enzymes, as well as, changes in growth parameters and photosynthetic pigment contents as physiological indices were assessed to investigate the effects of TiO 2 -NPs on S. polyrrhiza. The increasing concentration of TiO 2 -NPs led to the significant decrease in all of the growth parameters and changes in antioxidant enzyme activities. The activity of superoxide dismutase enhanced significantly by the increasing concentration of TiO 2 -NPs. Enhancement of superoxide dismutase activity could be explained as promoting antioxidant system to scavenging the reactive oxygen species. In contrast, the activity of peroxidase was notably decreased in the treated plants. Reduced peroxidase activity could be attributed to either direct effect of these particles on the molecular structure of the enzyme or plant defense system damage due to reactive oxygen species. Copyright © 2017. Published by Elsevier B.V.

  14. Randomized Controlled Trial to Compare Growth Parameters and Nutrient Adequacy in Children with Picky Eating Behaviors Who Received Nutritional Counseling With or Without an Oral Nutritional Supplement

    PubMed Central

    Sheng, Xiaoyang; Tong, Meiling; Zhao, Dongmei; Leung, Ting Fan; Zhang, Feng; Hays, Nicholas P; Ge, John; Ho, Wing Man; Northington, Robert; Terry, Donna L; Yao, Manjiang

    2014-01-01

    In this study, changes in growth parameters and nutrient intake were compared in Chinese children (ages 30–60 months) with picky eating (PE) behaviors and weight-for-height ≤25th percentile, who were randomized to receive nutrition counseling alone (NC; n = 76) or with a nutritional milk supplement (NC + NS; n = 77) for 120 days. Increases in weight-for-height z-scores were significantly greater in the NC + NS group at days 30 and 90 and over the entire study period (all P < 0.05), but not at day 120. Increases in weight-for-age z-scores were significantly greater in the NC + NS group at day 90 (P = 0.025) and over the entire study period (P = 0.046). Mean intakes of energy, protein, carbohydrate, docosahexaenoic acid, arachidonic acid, calcium, phosphorous, iron, zinc, and vitamins A, C, D, E, and B6 were significantly higher in the NC + NS group at days 60 and 120 (all P < 0.01). Thus, in young children with PE behaviors, nutritional supplementation given as an adjunct to NC resulted in greater improvements in nutrient intake compared with NC alone. Growth parameters differed between groups at several timepoints during the study, but not at day 120. PMID:25342910

  15. Web-dendritic growth. [single crystal silicon ribbons for solar cells

    NASA Technical Reports Server (NTRS)

    Hilborn, R. B.; Faust, J. W., Jr.; Rhodes, C.

    1977-01-01

    The effects of various machine design parameters on the growth of web dendritic silicon ribbon were investigated. Ribbons were grown up to lengths of one meter, with widths increasing linearly up to one cm at the point of termination of growth. Thermal data were collected and evaluated for actual seeding and growth with variations in parameters affecting heat loss. It was found that for suitable growth, the mechanical system should be very rigid and stable, and the tolerances and specifications of the quartz crucibles must be far tighter than normal quartz tolerances. The widening rates of the ribbons were found to be a function of the temperature gradient rather than the temperature differences alone. A twin spacing in the seed of 3 microns to 2 microns was found to be unfavorable for growth; whereas spacing of 0.9 microns to 2 microns and 8 microns to 2 microns were favorable. Thermal modeling studies of the effects of furnace design parameters on the temperature distributions in melt and the growth of the dendritic web ribbon showed that the pull rate of the ribbon is strongly dependent on the temperature of the top thermal shield, the spacing between this shield and the melt, and the thickness of the growing web.

  16. Opiate and Cocaine Exposed Newborns: Growth Outcomes.

    ERIC Educational Resources Information Center

    Butz, Arlene M.; Kaufmann, Walter E.; Royall, Richard; Kolodner, Ken; Pulsifer, Margaret B.; Lears, Mary Kathleen; Henderson, Robin; Belcher, Harolyn; Sellers, Sherri; Wilson, Modena

    1999-01-01

    Examines growth parameters at birth in 204 infants born to mothers who used cocaine and/or opiates during pregnancy. Outcome measures included birth weight, length, and head circumference. Study provides support that in utero cocaine exposure may confer more risk for somatic growth retardation at birth than opiate exposure. (Author/GCP)

  17. Emergency medical services key performance measurement in Asian cities.

    PubMed

    Rahman, Nik Hisamuddin; Tanaka, Hideharu; Shin, Sang Do; Ng, Yih Yng; Piyasuwankul, Thammapad; Lin, Chih-Hao; Ong, Marcus Eng Hock

    2015-01-01

    One of the key principles in the recommended standards is that emergency medical service (EMS) providers should continuously monitor the quality and safety of their services. This requires service providers to implement performance monitoring using appropriate and relevant measures including key performance indicators. In Asia, EMS systems are at different developmental phases and maturity. This will create difficultly in benchmarking or assessing the quality of EMS performance across the region. An attempt was made to compare the EMS performance index based on the structure, process, and outcome analysis. The data was collected from the Pan-Asian Resuscitation Outcome Study (PAROS) data among few Asian cities, namely, Tokyo, Osaka, Singapore, Bangkok, Kuala Lumpur, Taipei, and Seoul. The parameters of inclusions were broadly divided into structure, process, and outcome measurements. The data was collected by the site investigators from each city and keyed into the electronic web-based data form which is secured strictly by username and passwords. Generally, there seems to be a more uniformity for EMS performance parameters among the more developed EMS systems. The major problem with the EMS agencies in the cities of developing countries like Bangkok and Kuala Lumpur is inadequate or unavailable data pertaining to EMS performance. There is non-uniformity in the EMS performance measurement across the Asian cities. This creates difficulty for EMS performance index comparison and benchmarking. Hopefully, in the future, collaborative efforts such as the PAROS networking group will further enhance the standardization in EMS performance reporting across the region.

  18. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1991-01-01

    The objective of this research is to study the effect of low gravity on the growth of protein crystals and those parameters which will affect growth and crystal quality. The application of graphoepitaxy (artificial epitaxy) to proteins is detailed. The development of a method for the control of nucleation is discussed. The factor affecting the morphology of isocitrate lyase crystals is presented.

  19. Respiration, and growth-efficiency of coastal prokaryote communities in continuous cultures under different growth rates and temperatures.

    NASA Astrophysics Data System (ADS)

    Maske, H.; Cajal-Medrano, R.; Villegas-Mendoza, J.

    2016-02-01

    Organotrophic prokaryotes in aquatic environments account for about half of community respiration in surface oceans and are key trophic links in the plankton food web connecting dissolved organics and higher trophic levels. The transfer efficiency is partially characterized by the ratio of prokaryote respiration rates (r, day-1) to growth rates (m, day-1) and the resulting growth efficiency (Y). Much literature has been published about the response of these parameters to temperature in monospecific cultures, but little is known about the response of a community of pelagic prokaryotes were the sum of the genotypes and phenotype define the physiological potential. We inoculated 10 turbidostats and 39 chemostats with coastal bacteria and measured CO2 production, carbon biomass and cell abundance, with m ranging from 0.05 to 62 day-1 between 10 and 26oC. Under substrate limited conditions, common in the ocean, r showed no significant trend with temperature and was proportional to m implying constant Y. Under temperature-limited, nutrient replete growth the m of coastal prokaryote communities increased with temperature but r decreased (Q10: 0.4), resulting in an increase of Y with temperature (Q10: 2.5). The carbon demand rate (b, fmol C (cell day)-1) of turbidostat cultures showed a very high Q10 of 8.4. Casting the data in the framework of the metabolic theory of ecology (MTE), the physiological rates normalized to cell carbon showed no significant changes with temperature using either respiration or carbon demand as a proxy for physiological rate. Our results suggest that physiological patterns related to temperature are very different under nutrient limited or replete conditions and under neither condition it followed the pattern expected by MTE.

  20. The adenoid as a key factor in upper airway infections.

    PubMed

    van Cauwenberge, P B; Bellussi, L; Maw, A R; Paradise, J L; Solow, B

    1995-06-01

    The adenoids (and the nasopharynx) play a key role in the normal functioning and in various pathologies of the upper respiratory tract. In this paper the role of adenoidal pathology and the beneficial effect of adenoidectomy in some upper respiratory tract and facial anomalies and diseases are discussed; otitis media with effusion, recurrent acute otitis media, sinusitis, snoring and sleep apnea and abnormal patterns in the midface growth and development.