Science.gov

Sample records for key insulin regulatory

  1. Current european regulatory perspectives on insulin analogues

    PubMed Central

    2011-01-01

    Insulin analogues are increasingly considered as an alternative to human insulin in the therapy of diabetes mellitus. Insulin analogues (IAs) are chemically different from human insulin and may have different pharmacokinetic or pharmacodynamic properties. The significance of the modifications of the insulin molecule for the safety profile of IAs must be considered. This review describes the regulatory procedure and the expectations for the scientific content of European marketing authorization applications for innovative IAs submitted to the European Medicines Agency. Particular consideration is given to a potential cancer hazard. Specific regulatory guidance on how to address a possible carcinogenic or tumor promoting effect of innovative IAs in non-clinical studies is available. After marketing authorization, the factual access of patients to the new product will be determined to great extent by health technology assessment bodies, reimbursement decisions and the price. Whereas the marketing authorization is a European decision, pricing and reimbursement are national or regional responsibilities. The assessment of benefit and risk by the European Medicines Agency is expected to influence future decisions on price and reimbursement on a national or regional level. Collaborations between regulatory agencies and health technology assessment bodies have been initiated on European and national level to facilitate the use of the European Medicines Agency's benefit risk assessment as basis on which to build the subsequent health technology assessment. The option for combined or joint scientific advice procedures with regulators and health technology assessment bodies on European level or on a national level in several European Member States may help applicants to optimize their development program and dossier preparation in regard of both European marketing authorization application and reimbursement decisions. PMID:21736748

  2. Imbalanced Insulin Actions in Obesity and Type 2 Diabetes: Key Mouse Models of Insulin Signaling Pathway.

    PubMed

    Kubota, Tetsuya; Kubota, Naoto; Kadowaki, Takashi

    2017-04-04

    Since the discovery of the tyrosine kinase activity of the insulin receptor (IR), researchers have been engaged in intensive efforts to resolve physiological functions of IR and its major downstream targets, insulin receptor substrate 1 (Irs1) and Irs2. Studies conducted using systemic and tissue-specific gene-knockout mice of IR, Irs1, and Irs2 have revealed the physiological roles of these molecules in each tissue and interactions among multiple tissues. In obesity and type 2 diabetes, selective downregulation of Irs2 and its downstream actions to cause reduced insulin actions was associated with increased insulin actions through Irs1 in variety tissues. Thus, we propose the novel concept of "organ- and pathway-specific imbalanced insulin action" in obesity and type 2 diabetes, which includes and extends "selective insulin resistance." This Review focuses on recent progress in understanding insulin signaling and insulin resistance using key mouse models for elucidating pathophysiology of human obesity and type 2 diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling.

    PubMed Central

    Shepherd, P R; Withers, D J; Siddle, K

    1998-01-01

    Insulin plays a key role in regulating a wide range of cellular processes. However, until recently little was known about the signalling pathways that are involved in linking the insulin receptor with downstream responses. It is now apparent that the activation of class 1a phosphoinositide 3-kinase (PI 3-kinase) is necessary and in some cases sufficient to elicit many of insulin's effects on glucose and lipid metabolism. The lipid products of PI 3-kinase act as both membrane anchors and allosteric regulators, serving to localize and activate downstream enzymes and their protein substrates. One of the major ways these lipid products of PI 3-kinase act in insulin signalling is by binding to pleckstrin homology (PH) domains of phosphoinositide-dependent protein kinase (PDK) and protein kinase B (PKB) and in the process regulating the phosphorylation of PKB by PDK. Using mechanisms such as this, PI 3-kinase is able to act as a molecular switch to regulate the activity of serine/threonine-specific kinase cascades important in mediating insulin's effects on endpoint responses. PMID:9677303

  4. Key proteins involved in insulin vesicle exocytosis and secretion

    PubMed Central

    Xiong, Qian-Yin; Yu, Cui; Zhang, Yao; Ling, Liefeng; Wang, Lizhuo; Gao, Jia-Lin

    2017-01-01

    In vivo insulin secretion is predominantly affected by blood glucose concentration, blood concentration of amino acids, gastrointestinal hormones and free nerve functional status, in addition to other factors. Insulin is one of the most important hormones in the body, and its secretion is precisely controlled by nutrients, neurotransmitters and hormones. The insulin exocytosis process is similar to the neurotransmitter release mechanism. There are various types of proteins and lipids that participate in the insulin secretory vesicle fusion process, such as soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein, Ras-related proteins and vacuolar-type H+-ATPase (V-ATPase). Notably, the SNARE protein is the molecular basis of exocytotic activity. In the current review, the role of the vesicle membrane proteins (synaptobrevins, vesicle associated membrane proteins and target membrane proteins) and auxiliary proteins (Rab proteins and Munc-18 proteins) in vesicle fusion activity were summarized. A summary of these key proteins involved in insulin granule secretion will facilitate understanding of the pathogenesis of diabetes. PMID:28357064

  5. Steroidogenic acute regulatory protein (StAR) overexpression reduces inflammation and insulin resistance in obese mice.

    PubMed

    Qiu, Yanyan; Sui, Xianxian; Cao, Shengxuan; Li, Xiaobo; Ning, Yanxia; Wang, Songmei; Yin, Lianhua; Zhi, Xiuling

    2017-04-12

    Steroidogenic acute regulatory protein (StAR), a mitochondrial cholesterol delivery protein, plays a beneficial role in hyperlipidemia, NAFLD and endothelial inflammation. Elevated circulating fatty acids and low grade inflammation are known as key risk factors of insulin resistance and type 2 diabetes. In the present study, C57BL/6J mice were fed with a HFD and infected with recombinant adenovirus expressing StAR by tail-vein injection. Intraperitoneal glucose/insulin tolerance test was performed to assess the insulin sensitivity. Morphological analysis and intramuscular lipid determination were used to illustrate the adipose hypertrophy and ectopic fat accumulation in skeletal muscle. The levels of inflammatory factor and nitric oxide were determined by ELISA and classic Griess reagent methods respectively. The fatty acids composition was analysis using gas chromatography -mass spectrometry (GC-MS). The expression of genes associated with inflammation and insulin resistance were determined by Western blotting and qPCR to elucidate the underlying mechanism.We demonstrated that StAR overexpression ameliorated insulin resistance and systemic inflammatory response with the reduction of adipose hypertrophy and intramuscular lipid in HFD fed mice. In addition, StAR overexpression increased serum unsaturated fatty acids and PPARγ expression in muscle and adipose tissue of obese mice. In conclusion, StAR may activate PPARγ by increasing unsaturated fatty acids, which leads to a protective role in systemic inflammation and insulin resistance in obese mice. This article is protected by copyright. All rights reserved.

  6. Identification of key player genes in gene regulatory networks.

    PubMed

    Nazarieh, Maryam; Wiese, Andreas; Will, Thorsten; Hamed, Mohamed; Helms, Volkhard

    2016-09-06

    Identifying the gene regulatory networks governing the workings and identity of cells is one of the main challenges in understanding processes such as cellular differentiation, reprogramming or cancerogenesis. One particular challenge is to identify the main drivers and master regulatory genes that control such cell fate transitions. In this work, we reformulate this problem as the optimization problems of computing a Minimum Dominating Set and a Minimum Connected Dominating Set for directed graphs. Both MDS and MCDS are applied to the well-studied gene regulatory networks of the model organisms E. coli and S. cerevisiae and to a pluripotency network for mouse embryonic stem cells. The results show that MCDS can capture most of the known key player genes identified so far in the model organisms. Moreover, this method suggests an additional small set of transcription factors as novel key players for governing the cell-specific gene regulatory network which can also be investigated with regard to diseases. To this aim, we investigated the ability of MCDS to define key drivers in breast cancer. The method identified many known drug targets as members of the MDS and MCDS. This paper proposes a new method to identify key player genes in gene regulatory networks. The Java implementation of the heuristic algorithm explained in this paper is available as a Cytoscape plugin at http://apps.cytoscape.org/apps/mcds . The SageMath programs for solving integer linear programming formulations used in the paper are available at https://github.com/maryamNazarieh/KeyRegulatoryGenes and as supplementary material.

  7. Human diabetes associated with defects in nuclear regulatory proteins for the insulin receptor gene.

    PubMed Central

    Brunetti, A; Brunetti, L; Foti, D; Accili, D; Goldfine, I D

    1996-01-01

    The control of gene transcription is mediated by sequence-specific DNA-binding proteins (trans-acting factors) that bind to upstream regulatory elements (cis elements). We have previously identified two DNA-binding proteins that specifically interact with two unique AT-rich sequences of the 5' regulatory region of the insulin receptor gene which have in vivo promoter activity. Herein we have investigated the expression of these DNA-binding proteins in cells from two unrelated patients with insulin resistance and non-insulin-dependent diabetes mellitus. In these patients, the insulin receptor gene was normal. In EBV-transformed lymphoblasts from both patients, insulin receptor mRNA levels and insulin receptor expression were decreased. The expression of nuclear-binding proteins for the 5' regulatory region of the insulin receptor gene was markedly reduced, and this defect paralleled the decrease in insulin receptor protein expression. These studies indicate that DNA-binding proteins to the regulatory region of the insulin receptor gene are important for expression of the insulin receptor. Further, they suggest that in affected individuals, defects in the expression of these proteins may cause decreased insulin receptor expression and insulin resistance. PMID:8550844

  8. An insulin-to-insulin regulatory network orchestrates phenotypic specificity in development and physiology.

    PubMed

    Fernandes de Abreu, Diana Andrea; Caballero, Antonio; Fardel, Pascal; Stroustrup, Nicholas; Chen, Zhunan; Lee, Kyunghwa; Keyes, William D; Nash, Zachary M; López-Moyado, Isaac F; Vaggi, Federico; Cornils, Astrid; Regenass, Martin; Neagu, Anca; Ostojic, Ivan; Liu, Chang; Cho, Yongmin; Sifoglu, Deniz; Shen, Yu; Fontana, Walter; Lu, Hang; Csikasz-Nagy, Attila; Murphy, Coleen T; Antebi, Adam; Blanc, Eric; Apfeld, Javier; Zhang, Yun; Alcedo, Joy; Ch'ng, Queelim

    2014-03-01

    Insulin-like peptides (ILPs) play highly conserved roles in development and physiology. Most animal genomes encode multiple ILPs. Here we identify mechanisms for how the forty Caenorhabditis elegans ILPs coordinate diverse processes, including development, reproduction, longevity and several specific stress responses. Our systematic studies identify an ILP-based combinatorial code for these phenotypes characterized by substantial functional specificity and diversity rather than global redundancy. Notably, we show that ILPs regulate each other transcriptionally, uncovering an ILP-to-ILP regulatory network that underlies the combinatorial phenotypic coding by the ILP family. Extensive analyses of genetic interactions among ILPs reveal how their signals are integrated. A combined analysis of these functional and regulatory ILP interactions identifies local genetic circuits that act in parallel and interact by crosstalk, feedback and compensation. This organization provides emergent mechanisms for phenotypic specificity and graded regulation for the combinatorial phenotypic coding we observe. Our findings also provide insights into how large hormonal networks regulate diverse traits.

  9. Insulin sensitivity and counter-regulatory hormones in hypothyroidism and during thyroid hormone replacement therapy.

    PubMed

    Stanická, Sona; Vondra, Karel; Pelikánová, Terezie; Vlcek, Petr; Hill, Martin; Zamrazil, Václav

    2005-01-01

    We examined insulin sensitivity and secretion, together with the levels of selected glucoregulatory hormones, in 15 female patients with severe hypothyroidism (H) and during subsequent thyroid hormone replacement therapy (HRT) using the euglycaemic hyperinsulinaemic clamp technique. Insulin action, as evaluated by glucose disposal, the insulin sensitivity index, and fasting post-hepatic insulin delivery rate were established. The basal levels of insulin, C-peptide and counter-regulatory hormones were measured in basal condition. In H, glucose disposal (p<0.01), the insulin sensitivity index (p<0.01) and post-hepatic insulin delivery rate (p<0.05) were significantly lower than during HRT. No significant changes in the levels of fasting insulin and C-peptide were observed. The levels of counter-regulatory hormones in patients with H were significantly higher than during HRT (glucagon, p<0.05; epinephrine, p<0.01; cortisol, p<0.05; growth hormone, p<0.05). In H, an inverse correlation between insulin sensitivity and insulin secretion was observed (p<0.05). Cortisol was the most important factor affecting the variability of insulin sensitivity values, regardless of thyroid function (p=0.0012). In conclusion, H altered both insulin sensitivity and the levels of selected counter-regulatory hormones. The situation was restored by HRT, as manifested not only by normalisation of insulin sensitivity, secretion and levels of glucoregulatory hormones, but also by improvement of their relationships.

  10. A computational model of the human glucose-insulin regulatory system☆

    PubMed Central

    Shiang, Keh-Dong; Kandeel, Fouad

    2010-01-01

    Objective A computational model of insulin secretion and glucose metabolism for assisting the diagnosis of diabetes mellitus in clinical research is introduced. The proposed method for the estimation of parameters for a system of ordinary differential equations (ODEs) that represent the time course of plasma glucose and insulin concentrations during glucose tolerance test (GTT) in physiological studies is presented. The aim of this study was to explore how to interpret those laboratory glucose and insulin data as well as enhance the Ackerman mathematical model. Methods Parameters estimation for a system of ODEs was performed by minimizing the sum of squared residuals (SSR) function, which quantifies the difference between theoretical model predictions and GTT's experimental observations. Our proposed perturbation search and multiple-shooting methods were applied during the estimating process. Results Based on the Ackerman's published data, we estimated the key parameters by applying R-based iterative computer programs. As a result, the theoretically simulated curves perfectly matched the experimental data points. Our model showed that the estimated parameters, computed frequency and period values, were proven a good indicator of diabetes. Conclusion The present paper introduces a computational algorithm to biomedical problems, particularly to endocrinology and metabolism fields, which involves two coupled differential equations with four parameters describing the glucose-insulin regulatory system that Ackerman proposed earlier. The enhanced approach may provide clinicians in endocrinology and metabolism field insight into the transition nature of human metabolic mechanism from normal to impaired glucose tolerance. PMID:23554650

  11. Key intestinal genes involved in lipoprotein metabolism are downregulated in dyslipidemic men with insulin resistance.

    PubMed

    Couture, Patrick; Tremblay, André J; Kelly, Isabelle; Lemelin, Valéry; Droit, Arnaud; Lamarche, Benoît

    2014-01-01

    Insulin resistance (IR) is associated with elevated plasma levels of triglyceride-rich lipoproteins (TRLs) of intestinal origin. However, the mechanisms underlying the overaccumulation of apolipoprotein (apo)B-48-containing TRLs in individuals with IR are not yet fully understood. This study examined the relationships between apoB-48-containing TRL kinetics and the expression of key intestinal genes and proteins involved in lipid/lipoprotein metabolism in 14 obese nondiabetic men with IR compared with 10 insulin-sensitive (IS) men matched for waist circumference. The in vivo kinetics of TRL apoB-48 were assessed using a primed-constant infusion of L-[5,5,5-D₃]leucine for 12 h with the participants in a constantly fed state. The expression of key intestinal genes and proteins involved in lipid/lipoprotein metabolism was assessed by performing real-time PCR quantification and LC-MS/MS on duodenal biopsy specimens. The TRL apoB-48 pool size and production rate were 102% (P < 0.0001) and 87% (P = 0.01) greater, respectively, in the men with IR versus the IS men. On the other hand, intestinal mRNA levels of sterol regulatory element binding factor-2, hepatocyte nuclear factor-4α, and microsomal triglyceride transfer protein were significantly lower in the men with IR than in the IS men. These data indicate that IR is associated with intestinal overproduction of lipoproteins and significant downregulation of key intestinal genes involved in lipid/lipoprotein metabolism.

  12. Drug lag and key regulatory barriers in the emerging markets.

    PubMed

    Wileman, Harriet; Mishra, Arun

    2010-04-01

    There have been numerous investigations targeted at identifying whether a drug lag exists in the mature markets of the US, EU and Japan. This work focuses on the emerging markets because of the potential they hold for the future of the pharmaceutical industry as a consequence of rapid economic and political development.The aims of this work are to ascertain whether a drug lag exists in the emerging markets and how it has changed over time from the 1960s to the 2000s. It will also highlight key regulatory barriers which may contribute to drug lag.The date of the marketing authorisation (MA) approval by the US Food and Drug Administration (FDA) was used as a reference point. A comparison against the company database regarding emerging market specific approval enabled the difference in time and thus the drug lag for that particular market to be calculated.This work concludes that the overall relative drug lag in the emerging markets has decreased over time and that there are seven key regulatory barriers which need to be targeted in order to make further improvements; 'Western Approval', local clinical development (LCD), Certificate of Pharmaceutical Product (CPP), Good Manufacturing Practice (GMP), pricing approval, document authentication and harmonisation.

  13. Drug Lag and Key Regulatory Barriers in the Emerging Markets

    PubMed Central

    Wileman, Harriet; Mishra, Arun

    2010-01-01

    There have been numerous investigations targeted at identifying whether a drug lag exists in the mature markets of the US, EU and Japan. This work focuses on the emerging markets because of the potential they hold for the future of the pharmaceutical industry as a consequence of rapid economic and political development. The aims of this work are to ascertain whether a drug lag exists in the emerging markets and how it has changed over time from the 1960s to the 2000s. It will also highlight key regulatory barriers which may contribute to drug lag. The date of the marketing authorisation (MA) approval by the US Food and Drug Administration (FDA) was used as a reference point. A comparison against the company database regarding emerging market specific approval enabled the difference in time and thus the drug lag for that particular market to be calculated. This work concludes that the overall relative drug lag in the emerging markets has decreased over time and that there are seven key regulatory barriers which need to be targeted in order to make further improvements; ‘Western Approval’, local clinical development (LCD), Certificate of Pharmaceutical Product (CPP), Good Manufacturing Practice (GMP), pricing approval, document authentication and harmonisation. PMID:21829782

  14. Key role of succinate dehydrogenase in insulin-induced inactivation of protein tyrosine phosphatases.

    PubMed

    Pomytkin, I A; Kolesova, O E

    2002-06-01

    We studied the role of mitochondria in insulin-induced inactivation of protein tyrosine phosphatases in the liver. The mitochondrial respiratory chain is an insulin-sensitive source of H(2)O(2)that acts as a physiological inhibitor of protein tyrosine phosphatases. Succinate dehydrogenase plays a key role in insulin-stimulated generation of H(2)O(2)and inactivation of liver protein tyrosine phosphatases.

  15. An Overview of Current Regulatory Requirements for Approval of Biosimilar Insulins.

    PubMed

    Heinemann, Lutz; Khatami, Hootan; McKinnon, Ross; Home, Philip

    2015-07-01

    Insulin analog patent expiry is likely to mean that, increasingly, copies of original biopharmaceutical products will be submitted for authorization. Experience with biosimilars in other therapeutic areas suggests that careful regulation and caution are needed. Published guidelines of regulatory authorities around the world on approval of biosimilars and, where available, insulin biosimilars were reviewed. Information was sourced through Internet searching and cross-referencing guidelines. As of August 2014, general biosimilar and insulin-specific guidelines are available in 34 countries and two countries/regulatory domains, respectively. Many guidelines are clearly related to, or partly derived from, the general and insulin-specific European Medicines Agency (EMA) guidelines. Areas covered by these guidelines are fairly consistent, covering preclinical, pharmacokinetic (PK), and pharmacodynamic (PD) studies in humans and clinical areas; however, there are differences in emphasis. The EMA insulin-specific guidelines include detailed criteria on PK/PD studies, as do most other general biosimilar guidelines and, to a lesser extent, clinical studies. The U.S. Food and Drug Administration has general biosimilar guidelines, emphasizing consideration of the whole package of in vitro, biological, and human studies, rather than concentrating on any one aspect. In countries such as Mexico, guidelines are broad, leaving wide discretion to the regulatory authority. In conclusion, from a global perspective, this area of drug regulation is heterogeneous and evolving, and the authors call for an initiative aimed at harmonizing the requirements for biosimilar insulins.

  16. An Overview of Current Regulatory Requirements for Approval of Biosimilar Insulins

    PubMed Central

    Khatami, Hootan; McKinnon, Ross; Home, Philip

    2015-01-01

    Abstract Insulin analog patent expiry is likely to mean that, increasingly, copies of original biopharmaceutical products will be submitted for authorization. Experience with biosimilars in other therapeutic areas suggests that careful regulation and caution are needed. Published guidelines of regulatory authorities around the world on approval of biosimilars and, where available, insulin biosimilars were reviewed. Information was sourced through Internet searching and cross-referencing guidelines. As of August 2014, general biosimilar and insulin-specific guidelines are available in 34 countries and two countries/regulatory domains, respectively. Many guidelines are clearly related to, or partly derived from, the general and insulin-specific European Medicines Agency (EMA) guidelines. Areas covered by these guidelines are fairly consistent, covering preclinical, pharmacokinetic (PK), and pharmacodynamic (PD) studies in humans and clinical areas; however, there are differences in emphasis. The EMA insulin-specific guidelines include detailed criteria on PK/PD studies, as do most other general biosimilar guidelines and, to a lesser extent, clinical studies. The U.S. Food and Drug Administration has general biosimilar guidelines, emphasizing consideration of the whole package of in vitro, biological, and human studies, rather than concentrating on any one aspect. In countries such as Mexico, guidelines are broad, leaving wide discretion to the regulatory authority. In conclusion, from a global perspective, this area of drug regulation is heterogeneous and evolving, and the authors call for an initiative aimed at harmonizing the requirements for biosimilar insulins. PMID:25789689

  17. Oligomers of grape-seed procyanidin extract activate the insulin receptor and key targets of the insulin signaling pathway differently from insulin.

    PubMed

    Montagut, Gemma; Onnockx, Sheela; Vaqué, Montserrat; Bladé, Cinta; Blay, Mayte; Fernández-Larrea, Juan; Pujadas, Gerard; Salvadó, M Josepa; Arola, Lluís; Pirson, Isabelle; Ardévol, Anna; Pinent, Montserrat

    2010-06-01

    Procyanidins are bioactive flavonoid compounds from fruits and vegetables that possess insulinomimetic properties, decreasing hyperglycaemia in streptozotocin-diabetic rats and stimulating glucose uptake in insulin-sensitive cell lines. Here we show that the oligomeric structures of a grape-seed procyanidin extract (GSPE) interact and induce the autophosphorylation of the insulin receptor in order to stimulate the uptake of glucose. However, their activation differs from insulin activation and results in differences in the downstream signaling. Oligomers of GSPE phosphorylate protein kinase B at Thr308 lower than insulin does, according to the lower insulin receptor activation by procyanidins. On the other hand, they phosphorylate Akt at Ser473 to the same extent as insulin. Moreover, we found that procyanidins phosphorylate p44/p42 and p38 MAPKs much more than insulin does. These results provide further insight into the molecular signaling mechanisms used by procyanidins, pointing to Akt and MAPK proteins as key points for GSPE-activated signaling pathways. Moreover, the differences between GSPE and insulin might help us to understand the wide range of biological effects that procyanidins have. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  18. Palmitate induces insulin resistance in human HepG2 hepatocytes by enhancing ubiquitination and proteasomal degradation of key insulin signaling molecules.

    PubMed

    Ishii, Megumi; Maeda, Ayumi; Tani, Shuji; Akagawa, Mitsugu

    2015-01-15

    Obesity-associated insulin resistance is a major pathogenesis of type 2 diabetes mellitus and is characterized by defects in insulin signaling. High concentrations of plasma free fatty acids (FFAs) are involved in the etiology of obesity-associated insulin resistance. However, the detailed mechanism by which FFAs contribute to the development of insulin resistance is not yet fully understood. We investigated the molecular basis of insulin resistance elicited by FFAs using the human hepatocyte cell line HepG2. Among major human FFAs, palmitate markedly inhibited insulin-stimulated phosphorylation of key insulin signaling molecules such as insulin receptor, insulin receptor substrate-1, and Akt, indicating that palmitate is the principal inducer of insulin resistance. We revealed that palmitate facilitates ubiquitination of the key insulin signaling molecules, and subsequently elicits their proteasomal degradation. Furthermore, we demonstrated that inhibition of ubiquitination by the ubiquitin-activating enzyme E1 inhibitor PYR41 significantly prevents palmitate-inducible insulin resistance but not by the proteasome inhibitor MG132, implying that ubiquitinated signaling molecules may be dysfunctional. In conclusion, inhibition of ubiquitination of the key insulin signaling molecules may be a potential strategy for preventing and treating obesity-associated insulin resistance.

  19. The regulatory system for diabetes mellitus: Modeling rates of glucose infusions and insulin injections

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Tang, Sanyi; Cheke, Robert A.

    2016-08-01

    Novel mathematical models with open and closed-loop control for type 1 or type 2 diabetes mellitus were developed to improve understanding of the glucose-insulin regulatory system. A hybrid impulsive glucose-insulin model with different frequencies of glucose infusions and insulin injections was analyzed, and the existence and uniqueness of the positive periodic solution for type 1 diabetes, which is globally asymptotically stable, was studied analytically. Moreover, permanence of the system for type 2 diabetes was demonstrated which showed that the glucose concentration level is uniformly bounded above and below. To investigate how to prevent hyperinsulinemia and hyperglycemia being caused by this system, we developed a model involving periodic intakes of glucose with insulin injections applied only when the blood glucose level reached a given critical glucose threshold. In addition, our numerical analysis revealed that the period, the frequency and the dose of glucose infusions and insulin injections are crucial for insulin therapies, and the results provide clinical strategies for insulin-administration practices.

  20. Glucokinase Regulatory Protein Genetic Variant Interacts with Omega-3 PUFA to Influence Insulin Resistance and Inflammation in Metabolic Syndrome

    PubMed Central

    Garcia-Rios, Antonio; Mc Monagle, Jolene; Gulseth, Hanne L.; Ordovas, Jose M.; Shaw, Danielle I.; Karlström, Brita; Kiec-Wilk, Beata; Blaak, Ellen E.; Helal, Olfa; Malczewska-Malec, Małgorzata; Defoort, Catherine; Risérus, Ulf; Saris, Wim H. M.; Lovegrove, Julie A.; Drevon, Christian A.; Roche, Helen M.; Lopez-Miranda, Jose

    2011-01-01

    Glucokinase Regulatory Protein (GCKR) plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been of considerable interest, due to their potential to reduce metabolic syndrome (MetS) risk. Objective To examine whether genetic variability at the GCKR gene locus was associated with the degree of insulin resistance, plasma concentrations of C-reactive protein (CRP) and n-3 PUFA in MetS subjects. Design Homeostasis model assessment of insulin resistance (HOMA-IR), HOMA-B, plasma concentrations of C-peptide, CRP, fatty acid composition and the GCKR rs1260326-P446L polymorphism, were determined in a cross-sectional analysis of 379 subjects with MetS participating in the LIPGENE dietary cohort. Results Among subjects with n-3 PUFA levels below the population median, carriers of the common C/C genotype had higher plasma concentrations of fasting insulin (P = 0.019), C-peptide (P = 0.004), HOMA-IR (P = 0.008) and CRP (P = 0.032) as compared with subjects carrying the minor T-allele (Leu446). In contrast, homozygous C/C carriers with n-3 PUFA levels above the median showed lower plasma concentrations of fasting insulin, peptide C, HOMA-IR and CRP, as compared with individuals with the T-allele. Conclusions We have demonstrated a significant interaction between the GCKR rs1260326-P446L polymorphism and plasma n-3 PUFA levels modulating insulin resistance and inflammatory markers in MetS subjects. Further studies are needed to confirm this gene-diet interaction in the general population and whether targeted dietary recommendations can prevent MetS in genetically susceptible individuals. Trial Registration ClinicalTrials.gov NCT00429195 PMID:21674002

  1. Persistence of counter-regulatory abnormalities in insulin-dependent diabetes mellitus after pancreas transplantation.

    PubMed

    Battezzati, A; Luzi, L; Perseghin, G; Bianchi, E; Spotti, D; Secchi, A; Vergani, S; Di Carlo, V; Pozza, G

    1994-11-01

    Conventional insulin therapy does not correct the counter-regulatory abnormalities of insulin-dependent diabetes mellitus. Pancreas transplantation is an alternative therapy that restores the endogenous insulin secretion in diabetes. In this study, the effects of segmental pancreas transplantation on counter-regulation to mild hypoglycaemia were evaluated. Glucose kinetics and the counter-regulatory hormonal responses were assessed in eight insulin-dependent diabetics with end-stage renal failure who had received pancreas and kidney transplantation 1 year previously, seven diabetic uraemic subjects (candidates for combined transplantation), five patients with chronic uveitis on immunosuppressive therapy comparable to pancreas recipients and 10 normal subjects. Insulin (0.3 mU kg-1 min-1) was infused for 2 h to induce mild hypoglycaemia (plasma glucose 3.2-3.5 mmol l-1) and exogenous glucose was infused as required to prevent any glucose decrease below 3.1 mmol l-1. After transplantation, two of eight recipients had hypoglycaemic episodes reported in their medical records. During the study, hepatic glucose production was rapidly suppressed in the controls and in the patients on immunosuppression (-80 +/- 7 and -54 +/- 7%, P < 0.001 vs. basal), and rebounded to the baseline values within 1 h (-3 +/- 1 and -6 +/- 2%, P = NS vs. basal). The transplant recipients had similar suppression in the first hour (-88 +/- 8%, P < 0.001 vs. basal), but the suppression persisted in the second hour (-69 +/- 11%, P < 0.001 vs. basal) indicating a lack of glucose counter-regulatory response.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Biosimilars: Key regulatory considerations and similarity assessment tools.

    PubMed

    Kirchhoff, Carol F; Wang, Xiao-Zhuo Michelle; Conlon, Hugh D; Anderson, Scott; Ryan, Anne M; Bose, Arindam

    2017-08-26

    A biosimilar drug is defined in the US Food and Drug Administration (FDA) guidance document as a biopharmaceutical that is highly similar to an already licensed biologic product (referred to as the reference product) notwithstanding minor differences in clinically inactive components and for which there are no clinically meaningful differences in purity, potency, and safety between the two products. The development of biosimilars is a challenging, multistep process. Typically, the assessment of similarity involves comprehensive structural and functional characterization throughout the development of the biosimilar in an iterative manner and, if required by the local regulatory authority, an in vivo nonclinical evaluation, all conducted with direct comparison to the reference product. In addition, comparative clinical pharmacology studies are conducted with the reference product. The approval of biosimilars is highly regulated although varied across the globe in terms of nomenclature and the precise criteria for demonstrating similarity. Despite varied regulatory requirements, differences between the proposed biosimilar and the reference product must be supported by strong scientific evidence that these differences are not clinically meaningful. This review discusses the challenges faced by pharmaceutical companies in the development of biosimilars. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Insulin inhibits IL-10-mediated regulatory T cell function: implications for obesity.

    PubMed

    Han, Jonathan M; Patterson, Scott J; Speck, Madeleine; Ehses, Jan A; Levings, Megan K

    2014-01-15

    Chronic inflammation is known to promote metabolic dysregulation in obesity and type 2 diabetes. Although the precise origin of the unchecked inflammatory response in obesity is unclear, it is known that overproduction of proinflammatory cytokines by innate immune cells affects metabolism. For example, TNF-α contributes to the inability of cells to respond to insulin and to the increase in levels of insulin. Whether this hyperinsulinemia itself is part of a feedback loop that affects the progression of chronic adipose inflammation is unknown. In this article, we show that regulatory T cells (Tregs) express the insulin receptor, and that high levels of insulin impair the ability of Tregs to suppress inflammatory responses via effects on the AKT/mTOR signaling pathway. Insulin activated AKT signaling in Tregs, leading to inhibition of both IL-10 production and the ability of Tregs to suppress the production of TNF-α by macrophages in a contact-independent manner. The effect of insulin on Treg suppression was limited to IL-10 production and it did not alter the expression of other proteins associated with Treg function, including CTLA-4, CD39, and TGF-β. In a model of diet-induced obesity, Tregs from the visceral adipose tissue of hyperinsulinemic, obese mice showed a similar specific decrease in IL-10 production, as well as a parallel increase in production of IFN-γ. These data suggest that hyperinsulinemia may contribute to the development of obesity-associated inflammation via a previously unknown effect of insulin on the IL-10-mediated function of Tregs.

  4. Hepatocyte growth factor plays a key role in insulin resistance-associated compensatory mechanisms.

    PubMed

    Araújo, Tiago G; Oliveira, Alexandre G; Carvalho, Bruno M; Guadagnini, Dioze; Protzek, André O P; Carvalheira, Jose B C; Boschero, Antonio C; Saad, Mario J A

    2012-12-01

    Insulin resistance is present in obesity and in type 2 diabetes and is associated with islet cell hyperplasia and hyperinsulinemia, but the driving forces behind this compensatory mechanism are incompletely understood. Previous data have suggested the involvement of an unknown circulating insulin resistance-related β-cell growth factor. In this context, looking for candidates to be a circulating factor, we realized that hepatocyte growth factor (HGF) is a strong candidate as a link between insulin resistance and increased mass of islets/hyperinsulinemia. Our approach aimed to show a possible cause-effect relationship between increase in circulating HGF levels and compensatory islet hyperplasia/hyperinsulinemia by showing the strength of the association, whether or not is a dose-dependent response, the temporality, consistency, plausibility, and reversibility of the association. In this regard, our data showed: 1) a strong and consistent correlation between HGF and the compensatory mechanism in three animal models of insulin resistance; 2) HGF increases β-cell mass in a dose-dependent manner; 3) blocking HGF shuts down the compensatory mechanisms; and 4) an increase in HGF levels seems to precede the compensatory response associated with insulin resistance, indicating that these events occur in a sequential mode. Additionally, blockages of HGF receptor (Met) worsen the impaired insulin-induced insulin signaling in liver of diet-induced obesity rats. Overall, our data indicate that HGF is a growth factor playing a key role in islet mass increase and hyperinsulinemia in diet-induced obesity rats and suggest that the HGF-Met axis may have a role on insulin signaling in the liver.

  5. GLUT4 and Glycogen Synthase Are Key Players in Bed Rest–Induced Insulin Resistance

    PubMed Central

    Biensø, Rasmus S.; Ringholm, Stine; Kiilerich, Kristian; Aachmann-Andersen, Niels-Jacob; Krogh-Madsen, Rikke; Guerra, Borja; Plomgaard, Peter; van Hall, Gerrit; Treebak, Jonas T.; Saltin, Bengt; Lundby, Carsten; Calbet, Jose A.L.; Pilegaard, Henriette; Wojtaszewski, Jørgen F.P.

    2012-01-01

    To elucidate the molecular mechanisms behind physical inactivity–induced insulin resistance in skeletal muscle, 12 young, healthy male subjects completed 7 days of bed rest with vastus lateralis muscle biopsies obtained before and after. In six of the subjects, muscle biopsies were taken from both legs before and after a 3-h hyperinsulinemic euglycemic clamp performed 3 h after a 45-min, one-legged exercise. Blood samples were obtained from one femoral artery and both femoral veins before and during the clamp. Glucose infusion rate and leg glucose extraction during the clamp were lower after than before bed rest. This bed rest–induced insulin resistance occurred together with reduced muscle GLUT4, hexokinase II, protein kinase B/Akt1, and Akt2 protein level, and a tendency for reduced 3-hydroxyacyl-CoA dehydrogenase activity. The ability of insulin to phosphorylate Akt and activate glycogen synthase (GS) was reduced with normal GS site 3 but abnormal GS site 2+2a phosphorylation after bed rest. Exercise enhanced insulin-stimulated leg glucose extraction both before and after bed rest, which was accompanied by higher GS activity in the prior-exercised leg than the rested leg. The present findings demonstrate that physical inactivity–induced insulin resistance in muscle is associated with lower content/activity of key proteins in glucose transport/phosphorylation and storage. PMID:22403297

  6. Brain insulin signaling: a key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes

    PubMed Central

    McNay, Ewan C.; Recknagel, Andrew K.

    2011-01-01

    Understanding of the role of insulin in the brain has gradually expanded, from initial conceptions of the brain as insulin-insensitive through identification of a role in regulation of feeding to recent demonstration of insulin as a key component of hippocampal memory processes. Conversely, systemic insulin resistance such as that seen in type 2 diabetes is associated with a range of cogntive and neural deficits. Here we review the evidence for insulin as a cognitive and neural modulator, including potential effector mechanisms, and examine the impact that type 2 diabetes has on these mechanisms in order to identify likely bases for the cognitive impairments seen in type 2 diabetic patients. PMID:21907815

  7. Eat to reproduce: a key role for the insulin signaling pathway in adult insects

    PubMed Central

    Badisco, Liesbeth; Van Wielendaele, Pieter; Vanden Broeck, Jozef

    2013-01-01

    Insects, like all heterotrophic organisms, acquire from their food the nutrients that are essential for anabolic processes that lead to growth (larval stages) or reproduction (adult stage). In adult females, this nutritional input is processed and results in a very specific output, i.e., the production of fully developed eggs ready for fertilization and deposition. An important role in this input-output transition is attributed to the insulin signaling pathway (ISP). The ISP is considered to act as a sensor of the organism's nutritional status and to stimulate the progression of anabolic events when the status is positive. In several insect species belonging to different orders, the ISP has been demonstrated to positively control vitellogenesis and oocyte growth. Whether or not ISP acts herein via a mediator action of lipophilic insect hormones (ecdysteroids and juvenile hormone) remains debatable and might be differently controlled in different insect orders. Most likely, insulin-related peptides, ecdysteroids and juvenile hormone are involved in a complex regulatory network, in which they mutually influence each other and in which the insect's nutritional status is a crucial determinant of the network's output. The current review will present an overview of the regulatory role of the ISP in female insect reproduction and its interaction with other pathways involving nutrients, lipophilic hormones and neuropeptides. PMID:23966944

  8. Signal regulatory protein-α interacts with the insulin receptor contributing to muscle wasting in chronic kidney disease.

    PubMed

    Thomas, Sandhya S; Dong, Yanjun; Zhang, Liping; Mitch, William E

    2013-08-01

    Insulin resistance from chronic kidney disease (CKD) stimulates muscle protein wasting but mechanisms causing this resistance are controversial. To help resolve this, we used microarray analyses to identify initiators of insulin resistance in the muscles of mice with CKD, glucose intolerance, and insulin resistance. CKD raised mRNAs of inflammatory cytokines in muscles and there was a 5.2-fold increase in signal regulatory protein-α (SIRP-α), a transmembrane glycoprotein principally present in muscle membranes. By immunoprecipitation we found it interacts with the insulin receptor and insulin receptor substrate-1 (IRS-1). Treatment of myotubes with a mixture of inflammatory cytokines showed that SIRP-α expression was increased by a NF-κB-dependent pathway. Blockade of NF-κB using a small-molecule chemical inhibitor or a dominant-negative IKKβ reduced cytokine-induced SIRP-α expression. The overexpression of SIRP-α in myotubes impaired insulin signaling and raised proteolysis while SIRP-α knockdown with siRNAs in skeletal muscle cells increased tyrosine phosphorylation of the insulin receptor and IRS-1 despite inclusion of cytokines. This led to increased p-Akt and suppression of protein degradation. Thus, SIRP-α is part of a novel mechanism for inflammation-mediated insulin resistance in muscle. In catabolic conditions with impaired insulin signaling, targeting SIRP-α may improve insulin sensitivity and prevent muscle atrophy.

  9. Insulin

    MedlinePlus

    ... Information by Audience For Women Women's Health Topics Insulin Share Tweet Linkedin Pin it More sharing options ... medicines. You can do it. Back to Top Insulin Safety Tips Never drink insulin. Do not share ...

  10. Glucose and Insulin Stimulate Lipogenesis in Porcine Adipocytes: Dissimilar and Identical Regulation Pathway for Key Transcription Factors

    PubMed Central

    Hua, Zhang Guo; Xiong, Lu Jian; Yan, Chen; Wei, Dai Hong; YingPai, ZhaXi; Qing, Zhao Yong; Lin, Qiao Zi; Fei, Feng Ruo; Ling, Wang Ya; Ren, Ma Zhong

    2016-01-01

    Lipogenesis is under the concerted action of ChREBP, SREBP-1c and other transcription factors in response to glucose and insulin. The isolated porcine preadipocytes were differentiated into mature adipocytes to investigate the roles and interrelation of these transcription factors in the context of glucose- and insulin-induced lipogenesis in pigs. In ChREBP-silenced adipocytes, glucose-induced lipogenesis decreased by ~70%, however insulin-induced lipogenesis was unaffected. Moreover, insulin had no effect on ChREBP expression of unperturbed adipocytes irrespective of glucose concentration, suggesting ChREBP mediate glucose-induced lipogenesis. Insulin stimulated SREBP-1c expression and when SREBP-1c activation was blocked, and the insulin-induced lipogenesis decreased by ~55%, suggesting SREBP-1c is a key transcription factor mediating insulin-induced lipogenesis. LXRα activation promoted lipogenesis and lipogenic genes expression. In ChREBP-silenced or SREBP-1c activation blocked adipocytes, LXRα activation facilitated lipogenesis and SREBP-1c expression, but had no effect on ChREBP expression. Therefore, LXRα might mediate lipogenesis via SREBP-1c rather than ChREBP. When ChREBP expression was silenced and SREBP-1c activation blocked simultaneously, glucose and insulin were still able to stimulated lipogenesis and lipogenic genes expression, and LXRα activation enhanced these effects, suggesting LXRα mediated directly glucose- and insulin-induced lipogenesis. In summary, glucose and insulin stimulated lipogenesis through both dissimilar and identical regulation pathway in porcine adipocytes. PMID:27871177

  11. Evidence for a regulatory role of Cullin-RING E3 ubiquitin ligase 7 in insulin signalling§

    PubMed Central

    Kruse, Michael; Hartmann, Thomas; Lempart, Justine; Mühlich, Susanne; Pfeiffer, Andreas F. H.; Field, Loren J.; Charron, Maureen J.; Pan, Zhen-Qiang; Engelhardt, Stefan; Sarikas, Antonio

    2014-01-01

    Dysfunctional regulation of signalling pathways downstream of the insulin receptor plays a pivotal role in the pathogenesis of insulin resistance and type 2 diabetes. In this study we report both in vitro and in vivo experimental evidence for a role of Cullin-RING E3 ubiquitin ligase 7 (CRL7) in the regulation of insulin signalling and glucose homeostasis. We show that Cul7−/− mouse embryonic fibroblasts displayed enhanced AKT and Erk MAP kinase phosphorylation upon insulin stimulation. Depletion of CUL7 by RNA interference in C2C12 myotubes led to increased activation of insulin signalling pathways and cellular glucose uptake, as well as a reduced capacity of these cells to execute insulin-induced degradation of insulin receptor substrate 1 (IRS1). In vivo, heterozygosity of either Cul7 or Fbxw8, both key components of CRL7, resulted in elevated PI3 kinase / AKT activation in skeletal muscle tissue upon insulin stimulation when compared to wild-type controls. Finally, Cul7+/− or Fbxw8+/− mice exhibited enhanced insulin sensitivity and plasma glucose clearance. Collectively, our findings point to a yet unrecognized role of CRL7 in insulin-mediated control of glucose homeostasis by restraining PI3 kinase / AKT activities in skeletal muscle cells. PMID:24219910

  12. Evidence for a regulatory role of Cullin-RING E3 ubiquitin ligase 7 in insulin signaling.

    PubMed

    Scheufele, Florian; Wolf, Benjamin; Kruse, Michael; Hartmann, Thomas; Lempart, Justine; Mühlich, Susanne; Pfeiffer, Andreas F H; Field, Loren J; Charron, Maureen J; Pan, Zhen-Qiang; Engelhardt, Stefan; Sarikas, Antonio

    2014-02-01

    Dysfunctional regulation of signaling pathways downstream of the insulin receptor plays a pivotal role in the pathogenesis of insulin resistance and type 2 diabetes. In this study we report both in vitro and in vivo experimental evidence for a role of Cullin-RING E3 ubiquitin ligase 7 (CRL7) in the regulation of insulin signaling and glucose homeostasis. We show that Cul7(-/-) mouse embryonic fibroblasts displayed enhanced AKT and Erk MAP kinase phosphorylation upon insulin stimulation. Depletion of CUL7 by RNA interference in C2C12 myotubes led to increased activation of insulin signaling pathways and cellular glucose uptake, as well as a reduced capacity of these cells to execute insulin-induced degradation of insulin receptor substrate 1 (IRS1). In vivo, heterozygosity of either Cul7 or Fbxw8, both key components of CRL7, resulted in elevated PI3 kinase/AKT activation in skeletal muscle tissue upon insulin stimulation when compared to wild-type controls. Finally, Cul7(+/-) or Fbxw8(+/-) mice exhibited enhanced insulin sensitivity and plasma glucose clearance. Collectively, our findings point to a yet unrecognized role of CRL7 in insulin-mediated control of glucose homeostasis by restraining PI3 kinase/AKT activities in skeletal muscle cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Ethylene Response Factors: A Key Regulatory Hub in Hormone and Stress Signaling.

    PubMed

    Müller, Maren; Munné-Bosch, Sergi

    2015-09-01

    Ethylene is essential for many developmental processes and a key mediator of biotic and abiotic stress responses in plants. The ethylene signaling and response pathway includes Ethylene Response Factors (ERFs), which belong to the transcription factor family APETALA2/ERF. It is well known that ERFs regulate molecular response to pathogen attack by binding to sequences containing AGCCGCC motifs (the GCC box), a cis-acting element. However, recent studies suggest that several ERFs also bind to dehydration-responsive elements and act as a key regulatory hub in plant responses to abiotic stresses. Here, we review some of the recent advances in our understanding of the ethylene signaling and response pathway, with emphasis on ERFs and their role in hormone cross talk and redox signaling under abiotic stresses. We conclude that ERFs act as a key regulatory hub, integrating ethylene, abscisic acid, jasmonate, and redox signaling in the plant response to a number of abiotic stresses.

  14. MicroRNA and Transcription Factor Gene Regulatory Network Analysis Reveals Key Regulatory Elements Associated with Prostate Cancer Progression

    PubMed Central

    Sadeghi, Mehdi; Ranjbar, Bijan; Ganjalikhany, Mohamad Reza; M. Khan, Faiz; Schmitz, Ulf; Wolkenhauer, Olaf; Gupta, Shailendra K.

    2016-01-01

    Technological and methodological advances in multi-omics data generation and integration approaches help elucidate genetic features of complex biological traits and diseases such as prostate cancer. Due to its heterogeneity, the identification of key functional components involved in the regulation and progression of prostate cancer is a methodological challenge. In this study, we identified key regulatory interactions responsible for primary to metastasis transitions in prostate cancer using network inference approaches by integrating patient derived transcriptomic and miRomics data into gene/miRNA/transcription factor regulatory networks. One such network was derived for each of the clinical states of prostate cancer based on differentially expressed and significantly correlated gene, miRNA and TF pairs from the patient data. We identified key elements of each network using a network analysis approach and validated our results using patient survival analysis. We observed that HOXD10, BCL2 and PGR are the most important factors affected in primary prostate samples, whereas, in the metastatic state, STAT3, JUN and JUNB are playing a central role. Benefiting integrative networks our analysis suggests that some of these molecules were targeted by several overexpressed miRNAs which may have a major effect on the dysregulation of these molecules. For example, in the metastatic tumors five miRNAs (miR-671-5p, miR-665, miR-663, miR-512-3p and miR-371-5p) are mainly responsible for the dysregulation of STAT3 and hence can provide an opportunity for early detection of metastasis and development of alternative therapeutic approaches. Our findings deliver new details on key functional components in prostate cancer progression and provide opportunities for the development of alternative therapeutic approaches. PMID:28005952

  15. MicroRNA and Transcription Factor Gene Regulatory Network Analysis Reveals Key Regulatory Elements Associated with Prostate Cancer Progression.

    PubMed

    Sadeghi, Mehdi; Ranjbar, Bijan; Ganjalikhany, Mohamad Reza; M Khan, Faiz; Schmitz, Ulf; Wolkenhauer, Olaf; Gupta, Shailendra K

    2016-01-01

    Technological and methodological advances in multi-omics data generation and integration approaches help elucidate genetic features of complex biological traits and diseases such as prostate cancer. Due to its heterogeneity, the identification of key functional components involved in the regulation and progression of prostate cancer is a methodological challenge. In this study, we identified key regulatory interactions responsible for primary to metastasis transitions in prostate cancer using network inference approaches by integrating patient derived transcriptomic and miRomics data into gene/miRNA/transcription factor regulatory networks. One such network was derived for each of the clinical states of prostate cancer based on differentially expressed and significantly correlated gene, miRNA and TF pairs from the patient data. We identified key elements of each network using a network analysis approach and validated our results using patient survival analysis. We observed that HOXD10, BCL2 and PGR are the most important factors affected in primary prostate samples, whereas, in the metastatic state, STAT3, JUN and JUNB are playing a central role. Benefiting integrative networks our analysis suggests that some of these molecules were targeted by several overexpressed miRNAs which may have a major effect on the dysregulation of these molecules. For example, in the metastatic tumors five miRNAs (miR-671-5p, miR-665, miR-663, miR-512-3p and miR-371-5p) are mainly responsible for the dysregulation of STAT3 and hence can provide an opportunity for early detection of metastasis and development of alternative therapeutic approaches. Our findings deliver new details on key functional components in prostate cancer progression and provide opportunities for the development of alternative therapeutic approaches.

  16. Quantitative Phosphoproteomics Reveals Novel Phosphorylation Events in Insulin Signaling Regulated by Protein Phosphatase 1 Regulatory Subunit 12A

    PubMed Central

    Zhang, Xiangmin; Ma, Danjun; Caruso, Michael; Lewis, Monique; Qi, Yue; Yi, Zhengping

    2014-01-01

    Serine/threonine protein phosphatase 1 regulatory subunit 12A (PPP1R12A) modulates the activity and specificity of the catalytic subunit of protein phosphatase 1, regulating various cellular processes via dephosphorylation. Nonetheless, little is known about phosphorylation events controlled by PPP1R12A in skeletal muscle insulin signaling. Here, we used quantitative phosphoproteomics to generate a global picture of phosphorylation events regulated by PPP1R12A in a L6 skeletal muscle cell line, which were engineered for inducible PPP1R12A knockdown. Phosphoproteomics revealed 3876 phosphorylation sites (620 were novel) in these cells. Furthermore, PPP1R12A knockdown resulted in increased overall phosphorylation in L6 cells at the basal condition, and changed phosphorylation levels for 698 sites (assigned to 295 phosphoproteins) at the basal and/or insulin-stimulated conditions. Pathway analysis on the 295 phosphoproteins revealed multiple significantly enriched pathways related to insulin signaling, such as mTOR signaling and RhoA signaling. Moreover, phosphorylation levels for numerous regulatory sites in these pathways were significantly changed due to PPP1R12A knockdown. These results indicate that PPP1R12A indeed plays a role in skeletal muscle insulin signaling, providing novel insights into the biology of insulin action. This new information may facilitate the design of experiments to better understand mechanisms underlying skeletal muscle insulin resistance and type 2 diabetes. PMID:24972320

  17. New Insights into VEGF-A Alternative Splicing: Key Regulatory Switching in the Pathological Process.

    PubMed

    Dehghanian, Fariba; Hojati, Zohreh; Kay, Maryam

    2014-10-01

    Vascular endothelial growth factor (VEGF-A) is one of the most important regulatory factors in pathological and physiological angiogenesis. Alternative splicing is a complicated molecular process in VEGF-A gene expression which adds complexity to VEGF-A biology. Among all VEGF-A exons, alternative splicing of exon 8 is the key determinant of isoform switching from pro-angio-genic VEGF-xxx to anti-angiogenic VEGF-xxxb. This is known as a key molecular switching in many pathological situations. In fact, the balance between VEGF-xxx and VEGF-xxxb isoforms is a critical controlling switch in both conditions of health and disease. Here, the properties of VEGF-xxx and VEGF-xxxb isoforms were discussed and their regulatory mechanism and their roles in certain pathological processes were evaluated. In summary, it was suggested that C-terminal VEGF-A alternative splicing can provide a new treatment opportunity in angiogenic diseases.

  18. Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways.

    PubMed

    Zanou, Nadège; Gailly, Philippe

    2013-11-01

    Adult skeletal muscle can regenerate in response to muscle damage. This ability is conferred by the presence of myogenic stem cells called satellite cells. In response to stimuli such as injury or exercise, these cells become activated and express myogenic regulatory factors (MRFs), i.e., transcription factors of the myogenic lineage including Myf5, MyoD, myogenin, and Mrf4 to proliferate and differentiate into myofibers. The MRF family of proteins controls the transcription of important muscle-specific proteins such as myosin heavy chain and muscle creatine kinase. Different growth factors are secreted during muscle repair among which insulin-like growth factors (IGFs) are the only ones that promote both muscle cell proliferation and differentiation and that play a key role in muscle regeneration and hypertrophy. Different isoforms of IGFs are expressed during muscle repair: IGF-IEa, IGF-IEb, or IGF-IEc (also known as mechano growth factor, MGF) and IGF-II. MGF is expressed first and is observed in satellite cells and in proliferating myoblasts whereas IGF-Ia and IGF-II expression occurs at the state of muscle fiber formation. Interestingly, several studies report the induction of MRFs in response to IGFs stimulation. Inversely, IGFs expression may also be regulated by MRFs. Various mechanisms are proposed to support these interactions. In this review, we describe the general process of muscle hypertrophy and regeneration and decipher the interactions between the two groups of factors involved in the process.

  19. Mathematical model of the glucose-insulin regulatory system: From the bursting electrical activity in pancreatic β-cells to the glucose dynamics in the whole body

    NASA Astrophysics Data System (ADS)

    Han, Kyungreem; Kang, Hyuk; Choi, M. Y.; Kim, Jinwoong; Lee, Myung-Shik

    2012-10-01

    A theoretical approach to the glucose-insulin regulatory system is presented. By means of integrated mathematical modeling and extensive numerical simulations, we probe the cell-level dynamics of the membrane potential, intracellular Ca2+ concentration, and insulin secretion in pancreatic β-cells, together with the whole-body level glucose-insulin dynamics in the liver, brain, muscle, and adipose tissues. In particular, the three oscillatory modes of insulin secretion are reproduced successfully. Such comprehensive mathematical modeling may provide a theoretical basis for the simultaneous assessment of the β-cell function and insulin resistance in clinical examination.

  20. Insulin-like growth factor-1 stimulates regulatory T cells and suppresses autoimmune disease

    PubMed Central

    Bilbao, Daniel; Luciani, Luisa; Johannesson, Bjarki; Piszczek, Agnieszka; Rosenthal, Nadia

    2014-01-01

    The recent precipitous rise in autoimmune diseases is placing an increasing clinical and economic burden on health systems worldwide. Current therapies are only moderately efficacious, often coupled with adverse side effects. Here, we show that recombinant human insulin-like growth factor-1 (rhIGF-1) stimulates proliferation of both human and mouse regulatory T (Treg) cells in vitro and when delivered systemically via continuous minipump, it halts autoimmune disease progression in mouse models of type 1 diabetes (STZ and NOD) and multiple sclerosis (EAE) in vivo. rhIGF-1 administration increased Treg cells in affected tissues, maintaining their suppressive properties. Genetically, ablation of the IGF-1 receptor specifically on Treg cell populations abrogated the beneficial effects of rhIGF-1 administration on the progression of multiple sclerotic symptoms in the EAE model, establishing a direct effect of IGF-1 on Treg cell proliferation. These results establish systemically delivered rhIGF-1 as a specific, effective stimulator of Treg cell action, underscoring the clinical feasibility of manipulating natural tolerance mechanisms to suppress autoimmune disease. PMID:25339185

  1. Intergenic GWAS SNPs are key components of the spatial and regulatory network for human growth.

    PubMed

    Schierding, William; Antony, Jisha; Cutfield, Wayne S; Horsfield, Julia A; O'Sullivan, Justin M

    2016-08-01

    Meta-analysis of genome-wide association studies has resulted in the identification of hundreds of genetic variants associated with growth and stature. Determining how these genetic variants influence growth is important, but most are non-coding, and there is little understanding of how these variants contribute to adult height. To determine the mechanisms by which human variation contributes to growth, we combined spatial genomic connectivity (high-throughput conformation capture) with functional (gene expression, expression Quantitative Trait Loci) data to determine how non-genic loci associated with infant length, pubertal and adult height and contribute to gene regulatory networks. This approach identified intergenic single-nucleotide polymorphisms (SNPs) ∼85 kb upstream of FBXW11 that spatially connect with distant loci. These regulatory connections are reinforced by evidence of SNP-enhancer effects and altered expression in genes influencing the action of human growth hormone. Functional assays provided evidence for enhancer activity of the intergenic region near FBXW11 that harbors SNP rs12153391, which is associated with an expression Quantitative Trait Loci. Our results suggest that variants in this locus have genome-wide effects as key modifiers of growth (both overgrowth and short stature) acting through a regulatory network. We believe that the genes and pathways connected with this regulatory network are potential targets that could be investigated for diagnostic, prenatal and carrier testing for growth disorders. Finally, the regulatory networks we generated illustrate the power of using existing datasets to interrogate the contribution of intergenic SNPs to common syndromes/diseases.

  2. Computational modeling identifies key gene regulatory interactions underlying phenobarbital-mediated tumor promotion

    PubMed Central

    Luisier, Raphaëlle; Unterberger, Elif B.; Goodman, Jay I.; Schwarz, Michael; Moggs, Jonathan; Terranova, Rémi; van Nimwegen, Erik

    2014-01-01

    Gene regulatory interactions underlying the early stages of non-genotoxic carcinogenesis are poorly understood. Here, we have identified key candidate regulators of phenobarbital (PB)-mediated mouse liver tumorigenesis, a well-characterized model of non-genotoxic carcinogenesis, by applying a new computational modeling approach to a comprehensive collection of in vivo gene expression studies. We have combined our previously developed motif activity response analysis (MARA), which models gene expression patterns in terms of computationally predicted transcription factor binding sites with singular value decomposition (SVD) of the inferred motif activities, to disentangle the roles that different transcriptional regulators play in specific biological pathways of tumor promotion. Furthermore, transgenic mouse models enabled us to identify which of these regulatory activities was downstream of constitutive androstane receptor and β-catenin signaling, both crucial components of PB-mediated liver tumorigenesis. We propose novel roles for E2F and ZFP161 in PB-mediated hepatocyte proliferation and suggest that PB-mediated suppression of ESR1 activity contributes to the development of a tumor-prone environment. Our study shows that combining MARA with SVD allows for automated identification of independent transcription regulatory programs within a complex in vivo tissue environment and provides novel mechanistic insights into PB-mediated hepatocarcinogenesis. PMID:24464994

  3. Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome

    PubMed Central

    Kim, Bhumsoo; Feldman, Eva L

    2015-01-01

    Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors that includes obesity, diabetes, and dyslipidemia. Accumulating evidence implies that MetS contributes to the development and progression of Alzheimer's disease (AD); however, the factors connecting this association have not been determined. Insulin resistance (IR) is at the core of MetS and likely represent the key link between MetS and AD. In the central nervous system, insulin plays key roles in learning and memory, and AD patients exhibit impaired insulin signaling that is similar to that observed in MetS. As we face an alarming increase in obesity and T2D in all age groups, understanding the relationship between MetS and AD is vital for the identification of potential therapeutic targets. Recently, several diabetes therapies that enhance insulin signaling are being tested for a potential therapeutic benefit in AD and dementia. In this review, we will discuss MetS as a risk factor for AD, focusing on IR and the recent progress and future directions of insulin-based therapies. PMID:25766618

  4. Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome.

    PubMed

    Kim, Bhumsoo; Feldman, Eva L

    2015-03-13

    Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors that includes obesity, diabetes, and dyslipidemia. Accumulating evidence implies that MetS contributes to the development and progression of Alzheimer's disease (AD); however, the factors connecting this association have not been determined. Insulin resistance (IR) is at the core of MetS and likely represent the key link between MetS and AD. In the central nervous system, insulin plays key roles in learning and memory, and AD patients exhibit impaired insulin signaling that is similar to that observed in MetS. As we face an alarming increase in obesity and T2D in all age groups, understanding the relationship between MetS and AD is vital for the identification of potential therapeutic targets. Recently, several diabetes therapies that enhance insulin signaling are being tested for a potential therapeutic benefit in AD and dementia. In this review, we will discuss MetS as a risk factor for AD, focusing on IR and the recent progress and future directions of insulin-based therapies.

  5. Key Role for Ceramides in Mediating Insulin Resistance in Human Muscle Cells

    USDA-ARS?s Scientific Manuscript database

    Elevated non-esterified fatty acids, triglyceride, diacylglycerol and ceramide have all been associated with insulin resistance in muscle. We set out to investigate the role of intramyocellular lipid metabolites in the induction of insulin resistance in human primary myoblast cultures. Muscle cell...

  6. Glycans as Regulatory Elements of the Insulin/IGF System: Impact in Cancer Progression

    PubMed Central

    Andrade-da-Costa, Jéssica; Silva, Mariana Costa

    2017-01-01

    The insulin/insulin-like growth factor (IGF) system in mammals comprises a dynamic network of proteins that modulate several biological processes such as development, cell growth, metabolism, and aging. Dysregulation of the insulin/IGF system has major implications for several pathological conditions such as diabetes and cancer. Metabolic changes also culminate in aberrant glycosylation, which has been highlighted as a hallmark of cancer. Changes in glycosylation regulate every pathophysiological step of cancer progression including tumour cell-cell dissociation, cell migration, cell signaling and metastasis. This review discusses how the insulin/IGF system integrates with glycosylation alterations and impacts on cell behaviour, metabolism and drug resistance in cancer. PMID:28880250

  7. Glycans as Regulatory Elements of the Insulin/IGF System: Impact in Cancer Progression.

    PubMed

    de-Freitas-Junior, Julio Cesar M; Andrade-da-Costa, Jéssica; Silva, Mariana Costa; Pinho, Salomé S

    2017-09-07

    The insulin/insulin-like growth factor (IGF) system in mammals comprises a dynamic network of proteins that modulate several biological processes such as development, cell growth, metabolism, and aging. Dysregulation of the insulin/IGF system has major implications for several pathological conditions such as diabetes and cancer. Metabolic changes also culminate in aberrant glycosylation, which has been highlighted as a hallmark of cancer. Changes in glycosylation regulate every pathophysiological step of cancer progression including tumour cell-cell dissociation, cell migration, cell signaling and metastasis. This review discusses how the insulin/IGF system integrates with glycosylation alterations and impacts on cell behaviour, metabolism and drug resistance in cancer.

  8. Insulin Is a Key Modulator of Fetoplacental Endothelium Metabolic Disturbances in Gestational Diabetes Mellitus

    PubMed Central

    Sobrevia, Luis; Salsoso, Rocío; Fuenzalida, Bárbara; Barros, Eric; Toledo, Lilian; Silva, Luis; Pizarro, Carolina; Subiabre, Mario; Villalobos, Roberto; Araos, Joaquín; Toledo, Fernando; González, Marcelo; Gutiérrez, Jaime; Farías, Marcelo; Chiarello, Delia I.; Pardo, Fabián; Leiva, Andrea

    2016-01-01

    Gestational diabetes mellitus (GDM) is a disease of the mother that associates with altered fetoplacental vascular function. GDM-associated maternal hyperglycaemia result in fetal hyperglycaemia, a condition that leads to fetal hyperinsulinemia and altered L-arginine transport and synthesis of nitric oxide, i.e., endothelial dysfunction. These alterations in the fetoplacental endothelial function are present in women with GDM that were under diet or insulin therapy. Since these women and their newborn show normal glycaemia at term, other factors or conditions could be altered and/or not resolved by restoring normal level of circulating D-glucose. GDM associates with metabolic disturbances, such as abnormal handling of the locally released vasodilator adenosine, and biosynthesis and metabolism of cholesterol lipoproteins, or metabolic diseases resulting in endoplasmic reticulum stress and altered angiogenesis. Insulin acts as a potent modulator of all these phenomena under normal conditions as reported in primary cultures of cells obtained from the human placenta; however, GDM and the role of insulin regarding these alterations in this disease are poorly understood. This review focuses on the potential link between insulin and endoplasmic reticulum stress, hypercholesterolemia, and angiogenesis in GDM in the human fetoplacental vasculature. Based in reports in primary culture placental endothelium we propose that insulin is a factor restoring endothelial function in GDM by reversing ERS, hypercholesterolaemia and angiogenesis to a physiological state involving insulin activation of insulin receptor isoforms and adenosine receptors and metabolism in the human placenta from GDM pregnancies. PMID:27065887

  9. Insulin counter-regulatory factors, fibrinogen and C-reactive protein during olanzapine administration: effects of the antidiabetic metformin.

    PubMed

    Baptista, Trino; Sandia, Ignacio; Lacruz, Anny; Rangel, Nairy; de Mendoza, Soaira; Beaulieu, Serge; Contreras, Quilianio; Galeazzi, Tatiana; Vargas, Doritza

    2007-03-01

    In this study, the Authors assessed some insulin counter-regulatory factors, fibrinogen and C-reactive protein after olanzapine administration, and the effect of metformin on these variables, 37 patients with chronic schizophrenia were given olanzapine (10 mg/day for 14 weeks). Nineteen patients received metformin (850-2550 mg/day) and 18 received placebo in a randomized, double-blind protocol. The following variables were quantified before and after olanzapine: cortisol, leptin, tumor necrosis factor-alpha, glucagon, growth hormone, fibrinogen and C-reactive protein. Results were correlated with the changes in body weight and the insulin resistance index. We have reported elsewhere that metformin did not prevent olanzapine-induced weight gain, and the insulin resistance index significantly decreased after metformin and placebo; Baptista T, et al. Can J Psychiatry 2006; 51: 192-196. Cortisol, tumor necrosis factor-alpha and fibrinogen levels significantly decreased in both groups. Glucagon significantly increased after metformin (P=0.03). Leptin tended to increase after placebo (P=0.1) and displayed a small nonsignificant reduction after metformin. The C-reactive protein did not change significantly in any group. Contrarily to most published studies, olanzapine was associated with decreased insulin resistance. Decrements in cortisol, fibrinogen and tumor necrosis factor-alpha levels point to an improvement in the metabolic profile. The trend for leptin to increase after placebo, but not after metformin in spite of similar weight gain suggests a beneficial effect of this antidiabetic agent.

  10. Insulin

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The manipulation of organic materials--cells, tissues, and even living organisms--offers many exciting possibilities for the future from organic computers to improved aquaculture. Commercial researchers are using the microgravity environment to produce large near perfect protein crystals Research on insulin has yielded crystals that far surpass the quality of insulin crystals grown on the ground. Using these crystals industry partners are working to develop new and improved treatments for diabetes. Other researchers are exploring the possibility of producing antibiotics using plant cell cultures which could lead to both orbital production and the improvement of ground-based antibiotic production.

  11. MicroRNA-29 Fine-tunes the Expression of Key FOXA2-Activated Lipid Metabolism Genes and Is Dysregulated in Animal Models of Insulin Resistance and Diabetes

    PubMed Central

    Kurtz, C. Lisa; Peck, Bailey C.E.; Fannin, Emily E.; Beysen, Carine; Miao, Ji; Landstreet, Stuart R.; Ding, Shengli; Turaga, Vandana; Lund, P. Kay; Turner, Scott; Biddinger, Sudha B.; Vickers, Kasey C.

    2014-01-01

    MicroRNAs (miRNAs) have emerged as biomarkers of metabolic status, etiological factors in complex disease, and promising drug targets. Recent reports suggest that miRNAs are critical regulators of pathways underlying the pathophysiology of type 2 diabetes. In this study, we demonstrate by deep sequencing and real-time quantitative PCR that hepatic levels of Foxa2 mRNA and miR-29 are elevated in a mouse model of diet-induced insulin resistance. We also show that Foxa2 and miR-29 are significantly upregulated in the livers of Zucker diabetic fatty (fa/fa) rats and that the levels of both returned to normal upon treatment with the insulin-sensitizing agent pioglitazone. We present evidence that miR-29 expression in human hepatoma cells is controlled in part by FOXA2, which is known to play a critical role in hepatic energy homeostasis. Moreover, we demonstrate that miR-29 fine-tunes FOXA2-mediated activation of key lipid metabolism genes, including PPARGC1A, HMGCS2, and ABHD5. These results suggest that miR-29 is an important regulatory factor in normal metabolism and may represent a novel therapeutic target in type 2 diabetes and related metabolic syndromes. PMID:24722248

  12. MicroRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes.

    PubMed

    Kurtz, C Lisa; Peck, Bailey C E; Fannin, Emily E; Beysen, Carine; Miao, Ji; Landstreet, Stuart R; Ding, Shengli; Turaga, Vandana; Lund, P Kay; Turner, Scott; Biddinger, Sudha B; Vickers, Kasey C; Sethupathy, Praveen

    2014-09-01

    MicroRNAs (miRNAs) have emerged as biomarkers of metabolic status, etiological factors in complex disease, and promising drug targets. Recent reports suggest that miRNAs are critical regulators of pathways underlying the pathophysiology of type 2 diabetes. In this study, we demonstrate by deep sequencing and real-time quantitative PCR that hepatic levels of Foxa2 mRNA and miR-29 are elevated in a mouse model of diet-induced insulin resistance. We also show that Foxa2 and miR-29 are significantly upregulated in the livers of Zucker diabetic fatty (fa/fa) rats and that the levels of both returned to normal upon treatment with the insulin-sensitizing agent pioglitazone. We present evidence that miR-29 expression in human hepatoma cells is controlled in part by FOXA2, which is known to play a critical role in hepatic energy homeostasis. Moreover, we demonstrate that miR-29 fine-tunes FOXA2-mediated activation of key lipid metabolism genes, including PPARGC1A, HMGCS2, and ABHD5. These results suggest that miR-29 is an important regulatory factor in normal metabolism and may represent a novel therapeutic target in type 2 diabetes and related metabolic syndromes.

  13. Grp1 plays a key role in linking insulin signaling to glut4 recycling

    PubMed Central

    Li, Jian; Malaby, Andrew W.; Famulok, Michael; Sabe, Hisataka; Lambright, David G.; Hsu, Victor W.

    2012-01-01

    SUMMARY The glucose transporter type 4 (glut4) is critical for metabolic homeostasis. Insulin regulates glut4 by modulating its expression on the cell surface. This regulation is achieved mainly by targeting the endocytic recycling of glut4. We identify Grp1 (general receptor for 3-phosphoinositides 1) as a GEF (guanine nucleotide exchange factor) for ARF6 (ADP-ribosylation factor 6) that promotes glut4 vesicle formation. Grp1 also promotes the later steps of glut4 recycling through ARF6. Insulin signaling regulates Grp1 through phosphorylation by Akt. We also find that mutations which mimic constitutive phosphorylation of Grp1 can bypass upstream insulin signaling to induce glut4 recycling. Thus, we have uncovered a major mechanism by which insulin regulates glut4 recycling. Our findings also reveal the complexity by which a single small GTPase in vesicular transport can coordinate its multiple steps to accomplish a round of transport. PMID:22609160

  14. Counterregulation of insulin by leptin as key component of autonomic regulation of body weight

    PubMed Central

    Borer, Katarina T

    2014-01-01

    A re-examination of the mechanism controlling eating, locomotion, and metabolism prompts formulation of a new explanatory model containing five features: a coordinating joint role of the (1) autonomic nervous system (ANS); (2) the suprachiasmatic (SCN) master clock in counterbalancing parasympathetic digestive and absorptive functions and feeding with sympathetic locomotor and thermogenic energy expenditure within a circadian framework; (3) interaction of the ANS/SCN command with brain substrates of reward encompassing dopaminergic projections to ventral striatum and limbic and cortical forebrain. These drive the nonhomeostatic feeding and locomotor motivated behaviors in interaction with circulating ghrelin and lateral hypothalamic neurons signaling through melanin concentrating hormone and orexin-hypocretin peptides; (4) counterregulation of insulin by leptin of both gastric and adipose tissue origin through: potentiation by leptin of cholecystokinin-mediated satiation, inhibition of insulin secretion, suppression of insulin lipogenesis by leptin lipolysis, and modulation of peripheral tissue and brain sensitivity to insulin action. Thus weight-loss induced hypoleptimia raises insulin sensitivity and promotes its parasympathetic anabolic actions while obesity-induced hyperleptinemia supresses insulin lipogenic action; and (5) inhibition by leptin of bone mineral accrual suggesting that leptin may contribute to the maintenance of stability of skeletal, lean-body, as well as adipose tissue masses. PMID:25317239

  15. Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa.

    PubMed

    Mikkelsen, Helga; Sivaneson, Melissa; Filloux, Alain

    2011-07-01

    Biofilm formation in P. aeruginosa is a highly regulated process that proceeds through a number of distinct stages. This development is controlled by a wide range of factors, of which two-component systems (TCSs) play a key role. In this review, we focus on some of the TCSs that regulate the switch from a motile to a sessile bacterial lifestyle, either via the production of extracellular appendages or by the production of exopolysaccharides. Extracellular appendages, such as flagella, type IV pili and Cup fimbriae are often involved in the initial attachment of bacteria to a surface. In P. aeruginosa, many of these surface structures are regulated by TCSs, and some systems regulate more than one type of appendage. Furthermore, the production of exopolysaccharides, such as Pel and Psl, is required for P. aeruginosa biofilm formation. The regulation of Pel and Psl is post-transcriptionally repressed by RsmA, the activity of which is controlled by a complex regulatory system involving several sensor kinases and accessory components. Furthermore, the Rsm system is a major control system that inversely regulates factors involved in motility and acute infection on one hand, and factors involved in biofilm formation and chronic infection on the other hand. Finally, a series of TCSs has recently been discovered that regulates biofilm development in a stage-specific manner. Taken together, these complex regulatory networks allow the bacterium to respond appropriately to diverse environmental stimuli, and increased knowledge of their mechanisms and signals could be of great importance in the design of novel antibacterial strategies. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  16. The DRE/DREF transcriptional regulatory system: a master key for cell proliferation.

    PubMed

    Matsukage, Akio; Hirose, Fumiko; Yoo, Mi-Ae; Yamaguchi, Masamitsu

    2008-02-01

    The coordinate expression of many cell proliferation-related genes is required for the cellular shift from the resting state into the proliferating state. One regulatory factor involved in this process, the transcription regulatory factor named DREF (DNA replication-related element-binding factor) was discovered in Drosophila and later found to have orthologues in other species including human. Drosophila DREF is a homo-dimer of a polypeptide of 709 amino acid residues, and shares about 22% identity in its amino acid sequence with the human homolog of 694 amino acid residues. The Drosophila DREF homo-dimer binds specifically to the DRE sequence (5'-TATCGATA) in the promoters of many DNA replication/ cell proliferation-related genes to activate their transcription, and the N-terminal region of DREF carries a domain for specific DRE-binding and homo-dimer formation. Ectopic expression of DREF in eye imaginal discs induces abnormal DNA synthesis, apoptosis and failure to differentiate. Conversely, expression of the dominant negative N-terminal region in larval salivary glands reduces endo-replication. Furthermore, RNA interference-mediated knockdown of DREF in vivo demonstrated its requirement for normal progression through the cell cycle and consequently for growth of imaginal discs and the endoreplicating organs. Both Drosophila and human DREF's interact genetically and physically with regulatory factors related to chromatin structures, suggesting that DREF activates the expression of proliferation-related genes through modification of the 3-D conformation of DNA. A search of the Drosophila genome database identified about 150 genes carrying DRE sequences in their promoter regions, many of which are related to reactions required for cell proliferation such as DNA replication, transcriptional regulation, cell cycle regulation, growth signal transduction and protein metabolism. Thus, DREF appears to be a master key-like factor for cell proliferation. Several

  17. Glucokinase regulatory proten genetic variant interacts with omega-3 PUFA to influence insulin resistance and inflammation in metabolic syndrome

    USDA-ARS?s Scientific Manuscript database

    Glucokinase Regulatory Protein (GCKR) plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3...

  18. Insulin-like growth factor 2 enhances regulatory T-cell functions and suppresses food allergy in an experimental model.

    PubMed

    Yang, Gui; Geng, Xiao-Rui; Song, Jiang-Ping; Wu, Yingying; Yan, Hao; Zhan, Zhengke; Yang, Litao; He, Weiyi; Liu, Zhi-Qiang; Qiu, Shuqi; Liu, Zhigang; Yang, Ping-Chang

    2014-06-01

    The functions of regulatory T (Treg) cells are important in immunity, and the regulatory mechanisms of Treg cell activities are not fully understood yet. We sought to investigate the role of insulin-like growth factor (IGF) 2 in the upregulation of Treg cell function. The expression of insulin-like growth factor 2 receptor (IGF2R) on T cells was assessed by using flow cytometry. Treg cell functions were evaluated by assessing the suppressor effect on proliferation of other effector T (Teff) cells. The effect of IGF2 on regulating Treg cell functions were evaluated with a cell-culture model and a food allergy mouse model. Expression of IGF2R was observed in more than 90% of murine and human Treg cells but in less than 10% of effector CD4(+) T cells. Activation of IGF2R and T-cell receptor induced marked Treg cell proliferation and release of TGF-β from Treg cells, which enhanced Treg cell immune suppressor effects on other Teff cell activities and allergic inflammation in the intestine. Activation of IGF2R enhances Treg cell functions in suppressing other Teff cell activities and inhibiting allergic inflammation in the intestine. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  19. A Generic Integrated Physiologically based Whole-body Model of the Glucose-Insulin-Glucagon Regulatory System.

    PubMed

    Schaller, S; Willmann, S; Lippert, J; Schaupp, L; Pieber, T R; Schuppert, A; Eissing, T

    2013-08-14

    Models of glucose metabolism are a valuable tool for fundamental and applied medical research in diabetes. Use cases range from pharmaceutical target selection to automatic blood glucose control. Standard compartmental models represent little biological detail, which hampers the integration of multiscale data and confines predictive capabilities. We developed a detailed, generic physiologically based whole-body model of the glucose-insulin-glucagon regulatory system, reflecting detailed physiological properties of healthy populations and type 1 diabetes individuals expressed in the respective parameterizations. The model features a detailed representation of absorption models for oral glucose, subcutaneous insulin and glucagon, and an insulin receptor model relating pharmacokinetic properties to pharmacodynamic effects. Model development and validation is based on literature data. The quality of predictions is high and captures relevant observed inter- and intra-individual variability. In the generic form, the model can be applied to the development and validation of novel diabetes treatment strategies.CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e65; doi:10.1038/psp.2013.40; published online 14 August 2013.

  20. An insight into the key genes and biological functions associated with insulin resistance in adipose tissue with microarray technology.

    PubMed

    Zhang, Li; Cui, Ying; Fu, Fangming; Li, Zhenzuo; Pan, Xiaoxia; Li, Hongzhuan; Li, Lin

    2015-03-01

    In the present study, the key genes and biological functions associated with insulin resistance were investigated by comparing the gene expression profiles of adipose tissue obtained from insulin‑sensitive and insulin‑resistant patients. The gene expression data set GSE20950 was downloaded from the Gene Expression Omnibus, including 39 adipose tissue samples obtained from insulin‑sensitive and insulin‑resistant patients undergoing gastric bypass surgery. Adipose samples were divided into two groups (the insulin‑sensitive and insulin‑resistant groups) and the differentially expressed genes (DEGs) were screened out with packages of R. The interactions among DEGs were retrieved with Osprey and functional enrichment analysis was performed with the WebGestalt system. Information regarding the interaction network and enriched biological functions was combined to construct a functional interaction network. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was then conducted using the Database for Annotation, Visualization and Integrated Discovery. A total of 170 DEGs were detected in the insulin‑sensitive group, 8 downregulated and 162 upregulated. Response to glucose stimulus was the most significantly over‑represented functional term. The focal adhesion pathway was identified to be significant in the genes of the functional interaction network. The present study revealed key biological functions and DEGs in adipose tissues associated with insulin resistance, which may facilitate the development of novel therapies for insulin resistance and diabetes.

  1. Drosophila neprilysins control insulin signaling and food intake via cleavage of regulatory peptides

    PubMed Central

    Hallier, Benjamin; Schiemann, Ronja; Cordes, Eva; Vitos-Faleato, Jessica; Walter, Stefan; Heinisch, Jürgen J; Malmendal, Anders; Paululat, Achim; Meyer, Heiko

    2016-01-01

    Insulin and IGF signaling are critical to numerous developmental and physiological processes, with perturbations being pathognomonic of various diseases, including diabetes. Although the functional roles of the respective signaling pathways have been extensively studied, the control of insulin production and release is only partially understood. Herein, we show that in Drosophila expression of insulin-like peptides is regulated by neprilysin activity. Concomitant phenotypes of altered neprilysin expression included impaired food intake, reduced body size, and characteristic changes in the metabolite composition. Ectopic expression of a catalytically inactive mutant did not elicit any of the phenotypes, which confirms abnormal peptide hydrolysis as a causative factor. A screen for corresponding substrates of the neprilysin identified distinct peptides that regulate insulin-like peptide expression, feeding behavior, or both. The high functional conservation of neprilysins and their substrates renders the characterized principles applicable to numerous species, including higher eukaryotes and humans. DOI: http://dx.doi.org/10.7554/eLife.19430.001 PMID:27919317

  2. Self-regulatory depletion in dogs: insulin release is not necessary for the replenishment of persistence.

    PubMed

    Miller, Holly C; Pattison, Kristina F; Laude, Jennifer R; Zentall, Thomas R

    2015-01-01

    It has been hypothesized that self-control is constrained by a limited energy resource that can be depleted through exertion. Once depleted, this resource can be replenished by the consumption or even the taste of glucose. For example, the need to inhibit reduces subsequent persistence at problem solving by humans and dogs, an effect that is not observed when a glucose drink (but not a placebo) is administered following initial inhibition. The mechanism for replenishment by glucose is currently unknown. Energy transfer is not necessary, although insulin secretion may be involved. This possibility was investigated in the current study by having dogs exert self-control (sit-stay) and subsequently giving them (1) glucose that causes the release of insulin, (2) fructose that does not result in the release of insulin nor does it affect glucose levels (but it is a carbohydrate), or (3) a calorie-free drink. Persistence measures indicated that both glucose and fructose replenished canine persistence, whereas the calorie-free drink did not. These results indicate that insulin release is probably not necessary for the replenishment that is presumed to be responsible for the increase in persistence. This article is part of a Special Issue entitled: Canine Behavior.

  3. Adjunct Strategies for Tuberculosis Vaccines: Modulating Key Immune Cell Regulatory Mechanisms to Potentiate Vaccination

    PubMed Central

    Jayashankar, Lakshmi; Hafner, Richard

    2016-01-01

    Tuberculosis (TB) remains a global health threat of alarming proportions, resulting in 1.5 million deaths worldwide. The only available licensed vaccine, Bacillus Calmette–Guérin, does not confer lifelong protection against active TB. To date, development of an effective vaccine against TB has proven to be elusive, and devising newer approaches for improved vaccination outcomes is an essential goal. Insights gained over the last several years have revealed multiple mechanisms of immune manipulation by Mycobacterium tuberculosis (Mtb) in infected macrophages and dendritic cells that support disease progression and block development of protective immunity. This review provides an assessment of the known immunoregulatory mechanisms altered by Mtb, and how new interventions may reverse these effects. Examples include blocking of inhibitory immune cell coreceptor checkpoints (e.g., programed death-1). Conversely, immune mechanisms that strengthen immune cell effector functions may be enhanced by interventions, including stimulatory immune cell coreceptors (e.g., OX40). Modification of the activity of key cell “immunometabolism” signaling pathway molecules, including mechanistic target of rapamycin, glycogen synthase kinase-3β, wnt/β-catenin, adenosine monophosophate-activated protein kinase, and sirtuins, related epigenetic changes, and preventing induction of immune regulatory cells (e.g., regulatory T cells, myeloid-derived suppressor cells) are powerful new approaches to improve vaccine responses. Interventions to favorably modulate these components have been studied primarily in oncology to induce efficient antitumor immune responses, often by potentiation of cancer vaccines. These agents include antibodies and a rapidly increasing number of small molecule drug classes that have contributed to the dramatic immune-based advances in treatment of cancer and other diseases. Because immune responses to malignancies and to Mtb share many similar mechanisms

  4. PGRN is a key adipokine mediating high fat diet-induced insulin resistance and obesity through IL-6 in adipose tissue.

    PubMed

    Matsubara, Toshiya; Mita, Ayako; Minami, Kohtaro; Hosooka, Tetsuya; Kitazawa, Sohei; Takahashi, Kenichi; Tamori, Yoshikazu; Yokoi, Norihide; Watanabe, Makoto; Matsuo, Ei-Ichi; Nishimura, Osamu; Seino, Susumu

    2012-01-04

    Adipose tissue secretes adipokines that mediate insulin resistance, a characteristic feature of obesity and type 2 diabetes. By differential proteome analysis of cellular models of insulin resistance, we identified progranulin (PGRN) as an adipokine induced by TNF-α and dexamethasone. PGRN in blood and adipose tissues was markedly increased in obese mouse models and was normalized with treatment of pioglitazone, an insulin-sensitizing agent. Ablation of PGRN (Grn(-/-)) prevented mice from high fat diet (HFD)-induced insulin resistance, adipocyte hypertrophy, and obesity. Grn deficiency blocked elevation of IL-6, an inflammatory cytokine, induced by HFD in blood and adipose tissues. Insulin resistance induced by chronic administration of PGRN was suppressed by neutralizing IL-6 in vivo. Thus, PGRN is a key adipokine that mediates HFD-induced insulin resistance and obesity through production of IL-6 in adipose tissue, and may be a promising therapeutic target for obesity. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. The key role of growth hormone — insulin — IGF-1 signaling in aging and cancer

    PubMed Central

    Anisimov, Vladimir N.; Bartke, Andrzej

    2014-01-01

    Studies in mammals have led to the suggestion that hyperglycemia and hyperinsulinemia are important factors in aging. GH/Insulin/insulin-like growth factor 1 (IGF-1) signaling molecules that have been linked to longevity include daf-2 and InR and their homologues in mammals, and inactivation of the corresponding genes increases lifespan in nematodes, fruit flies and mice. The life-prolonging effects of caloric restriction are likely related to decreasing IGF-1 levels. Evidence has emerged that antidiabetic drugs are promising candidates for both lifespan extension and prevention of cancer. Thus, antidiabetic drugs postpone spontaneous carcinogenesis in mice and rats, as well as chemical and radiation carcinogenesis in mice, rats and hamsters. Furthermore, metformin seems to decrease the risk for cancer in diabetic patients. PMID:23434537

  6. Dynamic and distinct histone modifications modulate the expression of key adipogenesis regulatory genes.

    PubMed

    Zhang, Qiongyi; Ramlee, Muhammad Khairul; Brunmeir, Reinhard; Villanueva, Claudio J; Halperin, Daniel; Xu, Feng

    2012-12-01

    Histone modifications and their modifying enzymes are fundamentally involved in the epigenetic regulation of adipogenesis. This study aimed to define the roles of various histone modifications and their "division of labor" in fat cell differentiation. To achieve these goals, we examined the distribution patterns of eight core histone modifications at five key adipogenic regulatory genes, Pref-1, C/EBPβ, C/EBPα, PPARγ2 and aP2, during the adipogenesis of C3H 10T1/2 mouse mesenchymal stem cells (MSCs) and 3T3-L1 preadipocytes. We found that the examined histone modifications are globally stable throughout adipogenesis but show distinct and highly dynamic distribution patterns at specific genes. For example, the Pref-1 gene has lower levels of active chromatin markers and significantly higher H3 K27 tri-methylation in MSCs compared with committed preadipocytes; the C/EBPβ gene is enriched in active chromatin markers at its 3'-UTR; the C/EBPα gene is predominantly marked by H3 K27 tri-methylation in adipogenic precursor cells, and this repressive marker decreases dramatically upon induction; the PPARγ2 and aP2 genes show increased histone acetylation on both H3 and H4 tails during adipogenesis. Further functional studies revealed that the decreased level of H3 K27 tri-methylation leads to de-repression of Pref-1 gene, while the increased level of histone acetylation activates the transcription of PPARγ2 and aP2 genes. Moreover, the active histone modification-marked 3'-UTR of C/EBPβ gene was demonstrated as a strong enhancer element by luciferase assay. Our results indicate that histone modifications are gene-specific at adipogenic regulator genes, and they play distinct roles in regulating the transcriptional network during adipogenesis.

  7. Impact of Biosimilar Insulins on Clinical Practice

    PubMed Central

    Dolinar, Richard O.; Heinemann, Lutz; Home, Philip; Goyal, Shefali; Polonsky, William H.; Schellekens, Huub

    2014-01-01

    The availability of biosimilar insulins can potentially lead to lower insulin costs and increased access for patients with diabetes, worldwide. However, clinicians and regulatory agencies have raised several concerns regarding the safety and efficacy of these new medications. The European regulatory agencies have established guidelines for market approval of biosimilar insulins; however, many issues remain unresolved. Moreover, although the FDA has developed preliminary pathways for biosimilar protein development and is prepared to review each application on a case-by-case basis, insulins do not fall under this pathway at this time. The development of effective postmarketing surveillance protocols, determination of product interchangeability, and product identification/labeling remain key concerns. Numerous issues surround the development and commercialization of biosimilar insulins; thus, it is important that all stakeholders fully understand the complexity of these issues and how they can potentially affect patient care. Bridging the educational gap among clinicians and regulatory agencies will be challenging but necessary for ensuring patient safety. PMID:24876554

  8. The effect of insulin on plasma glucose concentrations, expression of hepatic glucose transporters and key gluconeogenic enzymes during the perinatal period in broiler chickens.

    PubMed

    Franssens, Lies; Lesuisse, Jens; Wang, Yufeng; Willems, Els; Willemsen, Hilke; Koppenol, Astrid; Guo, Xiaoquan; Buyse, Johan; Decuypere, Eddy; Everaert, Nadia

    2016-06-01

    Chickens have blood glucose concentrations that are twofold higher than those observed in mammals. Moreover, the insulin sensitivity seems to decrease with postnatal age in both broiler and layer chickens. However, little is known about the response of insulin on plasma glucose concentrations and mRNA abundance of hepatic glucose transporters 1, 2, 3, 8, 9 and 12 (GLUT1, 2, 3, 8, 9 and 12) and three regulatory enzymes of the gluconeogenesis, phosphoenolpyruvate carboxykinase 1 and 2 (PCK1 and 2) or fructose-1,6-biphosphatase 1 (FBP1) in chicks during the perinatal period. In the present study, broiler embryos on embryonic day (ED)16, ED18 or newly-hatched broiler chicks were injected intravenously with bovine insulin (1μg/g body weight (BW)) to examine plasma glucose response and changes in hepatic mRNA abundance of the GLUTs, PCK1 and 2 and FBP1. Results were compared with a non-treated control group and a saline-injected sham group. Plasma glucose levels of insulin-treated ED18 embryos recovered faster from their minimum level than those of insulin-treated ED16 embryos or newly-hatched chicks. In addition, at the minimum plasma glucose level seven hours post-injection (PI), hepatic GLUT2, FBP1 and PCK2 mRNA abundance was decreased in insulin-injected embryos, compared to sham and control groups, being most pronounced when insulin injection occurred on ED16.

  9. BIOSIMILARS AND NEW INSULIN VERSIONS.

    PubMed

    Peters, Anne L; Pollom, R Daniel; Zielonka, Jason S; Carey, Michelle A; Edelman, Steven V

    2015-12-01

    To provide clinicians with an overview of similar biologic products including biosimilars and new insulin versions available in the U.S. and of key issues associated with such products, including differences in manufacturing and regulatory approaches and their impact on clinical use. We reviewed the relevant clinical and regulatory literature. Patent protections for many biologics including several insulin preparations have or will expire shortly. This opens the door for new insulin versions to enter the U.S. and global marketplace. The development, manufacturing, and approval process for similar biologic products is more complex than for generic versions of small molecules. Most similar biologic products in the U.S. will be submitted for approval under section 351(k), a newly created biosimilar regulatory pathway. However, some biologics, including new insulin versions, will be submitted via the existing 505(b)(2) regulatory pathway. These regulatory pathways have implications for how such products may be labeled, how they may be dispensed, and how patients may perceive them. The immunogenicity of biologics can affect safety and efficacy and can be altered through subtle changes in manufacturing. With the arrival of new insulin versions, health care providers will need to understand the implications of interchangeability, therapeutic equivalence, substitution, switching, and new delivery devices. An understanding of the above topics will be important as physicians, payers, and patients choose between similar versions of a reference listed biologic product.

  10. Regulatory Lymphocytes Are Key Factors in MHC-Independent Resistance to EAE

    PubMed Central

    Marín, Nieves; Mecha, Miriam; Espejo, Carmen; Mestre, Leyre; Eixarch, Herena; Montalban, Xavier; Álvarez-Cermeño, José C.; Guaza, Carmen; Villar, Luisa M.

    2014-01-01

    Background and Objectives. Resistant and susceptible mouse strains to experimental autoimmune encephalomyelitis (EAE), an inducible demyelinating experimental disease serving as animal model for multiple sclerosis, have been described. We aimed to explore MHC-independent mechanisms inducing resistance to EAE. Methods. For EAE induction, female C57BL/6 (susceptible strain) and CD1 (resistant outbred strain showing heterogeneous MHC antigens) mice were immunized with the 35–55 peptide of myelin oligodendrocyte glycoprotein (MOG35−55). We studied T cell proliferation, regulatory and effector cell subpopulations, intracellular and serum cytokine patterns, and titers of anti-MOG serum antibodies. Results. Upon immunization with MOG35−55, T lymphocytes from susceptible mice but not that of resistant strain were capable of proliferating when stimulated with MOG35−55. Accordingly, resistant mice experienced a rise in regulatory B cells (P = 0.001) and, to a lower extent, in regulatory T cells (P = 0.02) compared with C57BL/6 susceptible mice. As a consequence, MOG35−55-immunized C57BL/6 mice showed higher percentages of CD4+ T cells producing both IFN-gamma (P = 0.02) and IL-17 (P = 0.009) and higher serum levels of IL-17 (P = 0.04) than resistant mice. Conclusions. Expansion of regulatory B and T cells contributes to the induction of resistance to EAE by an MHC-independent mechanism. PMID:24868560

  11. Regulatory lymphocytes are key factors in MHC-independent resistance to EAE.

    PubMed

    Marín, Nieves; Mecha, Miriam; Espejo, Carmen; Mestre, Leyre; Eixarch, Herena; Montalban, Xavier; Álvarez-Cermeño, José C; Guaza, Carmen; Villar, Luisa M

    2014-01-01

    Resistant and susceptible mouse strains to experimental autoimmune encephalomyelitis (EAE), an inducible demyelinating experimental disease serving as animal model for multiple sclerosis, have been described. We aimed to explore MHC-independent mechanisms inducing resistance to EAE. For EAE induction, female C57BL/6 (susceptible strain) and CD1 (resistant outbred strain showing heterogeneous MHC antigens) mice were immunized with the 35-55 peptide of myelin oligodendrocyte glycoprotein (MOG35-55). We studied T cell proliferation, regulatory and effector cell subpopulations, intracellular and serum cytokine patterns, and titers of anti-MOG serum antibodies. Upon immunization with MOG35-55, T lymphocytes from susceptible mice but not that of resistant strain were capable of proliferating when stimulated with MOG35-55. Accordingly, resistant mice experienced a rise in regulatory B cells (P=0.001) and, to a lower extent, in regulatory T cells (P=0.02) compared with C57BL/6 susceptible mice. As a consequence, MOG35-55-immunized C57BL/6 mice showed higher percentages of CD4+ T cells producing both IFN-gamma (P=0.02) and IL-17 (P=0.009) and higher serum levels of IL-17 (P=0.04) than resistant mice. Expansion of regulatory B and T cells contributes to the induction of resistance to EAE by an MHC-independent mechanism.

  12. Steroidogenic acute regulatory protein (StAR) overexpression attenuates HFD-induced hepatic steatosis and insulin resistance.

    PubMed

    Qiu, Yanyan; Sui, Xianxian; Zhan, Yongkun; Xu, Chen; Li, Xiaobo; Ning, Yanxia; Zhi, Xiuling; Yin, Lianhua

    2017-04-01

    Non-alcoholic fatty liver disease (NAFLD) covers a wide spectrum of liver pathology. Intracellular lipid accumulation is the first step in the development and progression of NAFLD. Steroidogenic acute regulatory protein (StAR) plays an important role in the synthesis of bile acid and intracellular lipid homeostasis and cholesterol metabolism. We hypothesize that StAR is involved in non-alcoholic fatty liver disease (NAFLD) pathogenesis. The hypothesis was identified using free fatty acid (FFA)-overloaded NAFLD in vitro model and high-fat diet (HFD)-induced NAFLD mouse model transfected by recombinant adenovirus encoding StAR (StAR). StAR expression was also examined in pathology samples of patients with fatty liver by immunohistochemical staining. We found that the expression level of StAR was reduced in the livers obtained from fatty liver patients and NAFLD mice. Additionally, StAR overexpression decreased the levels of hepatic lipids and maintained the hepatic glucose homeostasis due to the activation of farnesoid x receptor (FXR). StAR overexpression attenuated the impairment of insulin signaling in fatty liver. This protective role of StAR was owing to a reduction of intracellular diacylglycerol levels and the phosphorylation of PKCε. Furthermore, FXR inactivation reversed the observed beneficial effects of StAR. The present study revealed that StAR overexpression can reduce hepatic lipid accumulation, regulate glucose metabolism and attenuate insulin resistance through a mechanism involving the activation of FXR. Our study suggests that StAR may be a potential therapeutic target for NAFLD. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Main regulatory pathways, key genes and microRNAs involved in flower formation and development of moso bamboo (Phyllostachys edulis).

    PubMed

    Ge, Wei; Zhang, Ying; Cheng, Zhanchao; Hou, Dan; Li, Xueping; Gao, Jian

    2017-01-01

    Moso bamboo is characterized by infrequent sexual reproduction and erratic flowering habit; however, the molecular biology of flower formation and development is not well studied in this species. We studied the molecular regulation mechanisms of moso bamboo development and flowering by selecting three key regulatory pathways: plant-pathogen interaction, plant hormone signal transduction and protein processing in endoplasmic reticulum at different stages of flowering in moso bamboo. We selected PheDof1, PheMADS14 and six microRNAs involved in the three pathways through KEGG pathway and cluster analysis. Subcellular localization, transcriptional activation, Western blotting, in situ hybridization and qRT-PCR were used to further investigate the expression patterns and regulatory roles of pivotal genes at different flower development stages. Differential expression patterns showed that PheDof1, PheMADS14 and six miRNAs may play vital regulatory roles in flower development and floral transition in moso bamboo. Our research paves way for further studies on metabolic regulatory networks and provides insight into the molecular regulation mechanisms of moso bamboo flowering and senescence.

  14. Downregulation of key regulatory proteins in androgen dependent prostate tumor cells by oncolytic reovirus.

    PubMed

    Gupta-Saraf, Pooja; Meseke, Tyler; Miller, Cathy L

    2015-11-01

    As prostate tumor cell growth depends on hormones, androgen ablation is an effective therapy for prostate cancer (PCa). However, progression of PCa cells to androgen independent growth (castrate resistant prostate cancer, CRPC) results in relapse and mortality. Hypoxia, a microenvironment of low oxygen that modifies the activity of PCa regulatory proteins including the androgen receptor (AR), plays a critical role in progression to CRPC. Therapies targeting hypoxia and the AR may lengthen the time to CRPC progression thereby increasing survival time of PCa patients. Mammalian Orthoreovirus (MRV) has shown promise for the treatment of prostate tumors in vitro and in vivo. In this study, we found that MRV infection induces downregulation of proteins implicated in CRPC progression, interferes with hypoxia-induced AR activity, and induces apoptosis in androgen dependent cells. This suggests MRV possesses traits that could be exploited to create novel therapies for the inhibition of progression to CRPC.

  15. MicroRNA and Transcription Factor: Key Players in Plant Regulatory Network

    PubMed Central

    Samad, Abdul F. A.; Sajad, Muhammad; Nazaruddin, Nazaruddin; Fauzi, Izzat A.; Murad, Abdul M. A.; Zainal, Zamri; Ismail, Ismanizan

    2017-01-01

    Recent achievements in plant microRNA (miRNA), a large class of small and non-coding RNAs, are very exciting. A wide array of techniques involving forward genetic, molecular cloning, bioinformatic analysis, and the latest technology, deep sequencing have greatly advanced miRNA discovery. A tiny miRNA sequence has the ability to target single/multiple mRNA targets. Most of the miRNA targets are transcription factors (TFs) which have paramount importance in regulating the plant growth and development. Various families of TFs, which have regulated a range of regulatory networks, may assist plants to grow under normal and stress environmental conditions. This present review focuses on the regulatory relationships between miRNAs and different families of TFs like; NF-Y, MYB, AP2, TCP, WRKY, NAC, GRF, and SPL. For instance NF-Y play important role during drought tolerance and flower development, MYB are involved in signal transduction and biosynthesis of secondary metabolites, AP2 regulate the floral development and nodule formation, TCP direct leaf development and growth hormones signaling. WRKY have known roles in multiple stress tolerances, NAC regulate lateral root formation, GRF are involved in root growth, flower, and seed development, and SPL regulate plant transition from juvenile to adult. We also studied the relation between miRNAs and TFs by consolidating the research findings from different plant species which will help plant scientists in understanding the mechanism of action and interaction between these regulators in the plant growth and development under normal and stress environmental conditions. PMID:28446918

  16. Development of novel cardiovascular therapeutics from small regulatory RNA molecules--an outline of key requirements.

    PubMed

    Poller, W; Fechner, H

    2010-01-01

    Understanding of the roles of RNAs within the cell has changed and expanded dramatically during the past few years. Based on fundamentally new insights it is now increasingly possible to employ RNAs as highly valuable tools in molecular biology and medicine. At present, the most important therapeutic strategies are based on non-coding regulatory RNAs inducing RNA interference (RNAi) to silence single genes, and on modulation of cellular microRNAs (miRNAs) to alter complex gene expression patterns in diseased organs. Only recently it became possible to target therapeutic RNAi to specific organs via organotropic viral vector systems and we discuss the most recent strategies in this field, e.g. heart failure treatment by cardiac-targeted RNAi. Due to the peculiar biochemical properties of small RNA molecules, true therapeutic translation of results in vitro is more demanding than with small molecule drugs or proteins. Specifically, there is a critical requirement for extensive studies in animal models of human disease after pre-testing of the RNAi tools in vitro. This requirement likewise applies for miRNA modulations which have complex consequences in the recipient dependent on biochemical stability and distribution of the therapeutic RNA. Problems not yet fully solved are the prediction of targets and specificity of the RNA tools. However, major progress has been made to achieve their tissue-specific and regulatable expression, and breakthroughs in vector technologies from the gene therapy field have fundamentally improved safety and efficacy of RNA-based therapeutic approaches, too. In summary, insight into the molecular mechanisms of action of regulatory RNAs in combination with new delivery tools for RNA therapeutics will significantly expand our cardiovascular therapeutic repertoire beyond classical pharmacology.

  17. Effects of inhibitors of key enzymes of sphingolipid metabolism on insulin-induced glucose uptake and glycogen synthesis in liver cells of old rats.

    PubMed

    Babenko, N A; Kharchenko, V S

    2015-01-01

    Sphingolipids play an important role in the development of insulin resistance. Ceramides are the most potent inhibitors of insulin signal transduction. Ceramides are generated in response to stress stimuli and in old age. In this work, we studied the possible contribution of different pathways of sphingolipid metabolism in age-dependent insulin resistance development in liver cells. Inhibition of key enzymes of sphingolipid synthesis (serine palmitoyl transferase, ceramide synthase) and degradation (neutral and acidic SMases) by means of specific inhibitors (myriocin, fumonisin B1, imipramine, and GW4869) was followed with the reduction of ceramide level and partly improved insulin regulation of glucose metabolism in "old" hepatocytes. Imipramine and GW4869 decreased significantly the acidic and neutral SMase activities, respectively. Treatment of "old" cells with myriocin or fumonisin B1 reduced the elevated in old age ceramide and SM synthesis. Ceramide and SM levels and glucose metabolism regulation by insulin could be improved with concerted action of all tested inhibitors of sphingolipid turnover on hepatocytes. The data demonstrate that not only newly synthesized ceramide and SM but also neutral and acidic SMase-dependent ceramide accumulation plays an important role in development of age-dependent insulin resistance.

  18. Expression of the rat sterol regulatory element-binding protein-1c gene in response to insulin is mediated by increased transactivating capacity of specificity protein 1 (Sp1).

    PubMed

    Deng, Xiong; Yellaturu, Chandrahasa; Cagen, Lauren; Wilcox, Henry G; Park, Edwards A; Raghow, Rajendra; Elam, Marshall B

    2007-06-15

    The induction of genes involved in lipid biosynthesis by insulin is mediated in part by the sterol regulatory element-binding protein-1c (SREBP-1c). SREBP-1c is directly regulated by insulin by transcriptional and post-transcriptional mechanisms. Previously, we have demonstrated that the insulin-responsive cis-acting unit of the rat SREBP-1c promoter is composed of several elements that include a sterol regulatory element, two liver X receptor elements, and a number of conserved GC boxes. Here we systematically dissected the role of these GC boxes and report that five bona fide Sp1-binding elements of the SREBP-1c promoter determine its basal and insulin-induced activation. Luciferase expression driven by the rat SREBP-1c promoter was accelerated by ectopic expression of Sp1, and insulin further enhanced the transactivation potential of Sp1. Introduction of a small interfering RNA against Sp1 reduced both basal and insulin-induced activation of the SREBP-1c promoter. We also found that Sp1 interacted with both SREBP-1c and LXRalpha proteins and that insulin promoted these interactions. Chromatin immunoprecipitation studies revealed that insulin facilitated the recruitment of the steroid receptor coactivator-1 to the SREBP-1c promoter. These studies identify a novel mechanism by which maximal activation of the rat SREBP-1c gene expression by insulin is mediated by Sp1 and its enhanced ability to interact with other transcriptional regulatory proteins.

  19. Regulatory roles for Tiam1, a guanine nucleotide exchange factor for Rac1, in glucose-stimulated insulin secretion in pancreatic beta-cells.

    PubMed

    Veluthakal, Rajakrishnan; Madathilparambil, Suresh Vasu; McDonald, Phillip; Olson, Lawrence Karl; Kowluru, Anjaneyulu

    2009-01-01

    Using various biochemical, pharmacological and molecular biological approaches, we have recently reported regulatory roles for Rac1, a small G-protein, in glucose-stimulated insulin secretion (GSIS). However, little is understood with respect to localization of, and regulation by, specific regulatory factors of Rac1 in GSIS. Herein, we investigated regulatory roles for Tiam1, a specific nucleotide exchange factor (GEF) for Rac1, in GSIS in pancreatic beta-cells. Western blot analysis indicated that Tiam1 is predominantly cytosolic in distribution. NSC23766, a specific inhibitor of Tiam1-mediated activation of Rac1, markedly attenuated glucose-induced, but not KCl-induced insulin secretion in INS 832/13 cells and normal rat islets. Further, NSC23766 significantly reduced glucose-induced activation (i.e. GTP-bound form) and membrane association of Rac1 in INS 832/13 cells and rat islets. Moreover, siRNA-mediated knock-down of Tiam1 markedly inhibited glucose-induced membrane trafficking and activation of Rac1 in INS 832/13 cells. Interestingly, however, in contrast to the inhibitory effects of NSC23766, Tiam1 gene depletion potentiated GSIS in these cells; such a potentiation of GSIS was sensitive to extracellular calcium. Together, our studies present the first evidence for a regulatory role for Tiam1/Rac1-sensitive signaling step in GSIS. They also provide evidence for the existence of a potential Rac1/Tiam1-independent, but calcium-sensitive component for GSIS in these cells.

  20. Metabolomic analysis reveals that carnitines are key regulatory metabolites in phase transition of the locusts.

    PubMed

    Wu, Rui; Wu, Zeming; Wang, Xianhui; Yang, Pengcheng; Yu, Dan; Zhao, Chunxia; Xu, Guowang; Kang, Le

    2012-02-28

    Phenotypic plasticity occurs prevalently and plays a vital role in adaptive evolution. However, the underlying molecular mechanisms responsible for the expression of alternate phenotypes remain unknown. Here, a density-dependent phase polyphenism of Locusta migratoria was used as the study model to identify key signaling molecules regulating the expression of phenotypic plasticity. Metabolomic analysis, using high-performance liquid chromatography and gas chromatography-mass spectrometry, showed that solitarious and gregarious locusts have distinct metabolic profiles in hemolymph. A total of 319 metabolites, many of which are involved in lipid metabolism, differed significantly in concentration between the phases. In addition, the time course of changes in the metabolic profiles of locust hemolymph that accompany phase transition was analyzed. Carnitine and its acyl derivatives, which are involved in the lipid β-oxidation process, were identified as key differential metabolites that display robust correlation with the time courses of phase transition. RNAi silencing of two key enzymes from the carnitine system, carnitine acetyltransferase and palmitoyltransferase, resulted in a behavioral transition from the gregarious to solitarious phase and the corresponding changes of metabolic profiles. In contrast, the injection of exogenous acetylcarnitine promoted the acquisition of gregarious behavior in solitarious locusts. These results suggest that carnitines mediate locust phase transition possibly through modulating lipid metabolism and influencing the nervous system of the locusts.

  1. Expression of flagellin and key regulatory flagellar genes in the non-motile bacterium Piscirickettsia salmonis.

    PubMed

    Carril, Gabriela P; Gómez, Fernando A; Marshall, Sergio H

    2017-02-08

    The Piscirickettsia salmonis genome was screened to evaluate potential flagella-related open reading frames, as well as their genomic organization and eventual expression. A complete and organized set of flagellar genes was found for P. salmonis, although no structural flagellum has ever been reported for this bacterium. To gain further understanding, the hierarchical flagellar cascade described for Legionella pneumophila was used as a reference model for putative analysis in P. salmonis. Specifically, 5 of the most relevant genes from this cascade were chosen, including 3 regulatory genes (fleQ, triggers the cascade; fliA, regulates the σ28-coding gene; and rpoN, an RNA polymerase-dependent gene) and 2 terminal structural genes (flaA and flaB, flagellin and a flagellin-like protein, respectively). Kinetic experiments evaluated gene expressions over time, with P. salmonis assessed in 2 liquid, cell-free media and during infection of the SHK-1 fish cell line. Under all conditions, the 5 target genes were primarily expressed during early growth/infection and were differentially expressed when bacteria encountered environmental stress (i.e. a high-salt concentration). Intriguingly, the flagellin monomer was fully expressed under all growth conditions and was located near the bacterial membrane. While no structural flagellum was detected under any condition, the recombinant flagellin monomer induced a proinflammatory response in SHK-1 cells, suggesting a possible immunomodulatory function. The potential implications of these observations are discussed in the context of P. salmonis biology and pathogenic potential.

  2. Zinc regulates a key transcriptional pathway for epileptogenesis via metal-regulatory transcription factor 1

    PubMed Central

    van Loo, Karen M. J.; Schaub, Christina; Pitsch, Julika; Kulbida, Rebecca; Opitz, Thoralf; Ekstein, Dana; Dalal, Adam; Urbach, Horst; Beck, Heinz; Yaari, Yoel; Schoch, Susanne; Becker, Albert J.

    2015-01-01

    Temporal lobe epilepsy (TLE) is the most common focal seizure disorder in adults. In many patients, transient brain insults, including status epilepticus (SE), are followed by a latent period of epileptogenesis, preceding the emergence of clinical seizures. In experimental animals, transcriptional upregulation of CaV3.2 T-type Ca2+-channels, resulting in an increased propensity for burst discharges of hippocampal neurons, is an important trigger for epileptogenesis. Here we provide evidence that the metal-regulatory transcription factor 1 (MTF1) mediates the increase of CaV3.2 mRNA and intrinsic excitability consequent to a rise in intracellular Zn2+ that is associated with SE. Adeno-associated viral (rAAV) transfer of MTF1 into murine hippocampi leads to increased CaV3.2 mRNA. Conversely, rAAV-mediated expression of a dominant-negative MTF1 abolishes SE-induced CaV3.2 mRNA upregulation and attenuates epileptogenesis. Finally, data from resected human hippocampi surgically treated for pharmacoresistant TLE support the Zn2+-MTF1-CaV3.2 cascade, thus providing new vistas for preventing and treating TLE. PMID:26498180

  3. Key regulatory drivers affecting shipments of mixed transuranic waste from Los Alamos National Laboratory to the Waste Isolation Pilot Plant

    SciTech Connect

    Schumann, P.B.; Bacigalupa, G.A.; Kosiewicz, S.T.; Sinkule, B.J.

    1997-02-01

    A number of key regulatory drivers affect the nature, scope, and timing of Los Alamos National Laboratory`s (LANL`s) plans for mixed transuranic (MTRU) waste shipments to the Waste Isolation Pilot Plant (WIPP), which are planned to commence as soon as possible following WIPP`s currently anticipated November, 1997 opening date. This paper provides an overview of some of the key drivers at LANL, particularly emphasizing those associated with the hazardous waste component of LANL`s MTRU waste (MTRU, like any mixed waste, contains both a radioactive and a hazardous waste component). The key drivers discussed here derive from the federal Resource Conservation and Recovery Act (RCRA) and its amendments, including the Federal Facility Compliance Act (FFCAU), and from the New Mexico Hazardous Waste Act (NMHWA). These statutory provisions are enforced through three major mechanisms: facility RCRA permits; the New Mexico Hazardous Waste Management Regulations, set forth in the New Mexico Administrative Code, Title 20, Chapter 4, Part 1: and compliance orders issued to enforce these requirements. General requirements in all three categories will apply to MTRU waste management and characterization activities at both WIPP and LANL. In addition, LANL is subject to facility-specific requirements in its RCRA hazardous waste facility permit, permit conditions as currently proposed in RCRA Part B permit applications presently being reviewed by the New Mexico Environment Department (NNED), and facility-specific compliance orders related to MTRU waste management. Likewise, permitting and compliance-related requirements specific to WIPP indirectly affect LANL`s characterization, packaging, record-keeping, and transportation requirements for MTRU waste. LANL must comply with this evolving set of regulatory requirements to begin shipments of MTRU waste to WIPP in a timely fashion.

  4. mir-660-p53-mir-486 Network: A New Key Regulatory Pathway in Lung Tumorigenesis

    PubMed Central

    Borzi, Cristina; Calzolari, Linda; Centonze, Giovanni; Milione, Massimo; Sozzi, Gabriella; Fortunato, Orazio

    2017-01-01

    Lung cancer is the most frequent cause of cancer-related death worldwide, with limited therapeutic options and rapid development of drug resistance. MicroRNAs, a class of small non-coding RNAs that control different physiological processes, have been associated with cancer development, as either oncomiRNAs or tumor-suppressor miRNAs. In the present study we investigated the interaction between mir-486-5p and mir-660-5p, two independent tumor-suppressor miRNAs, to assess their possible role and synergistic effect in lung cancer treatment. Our data show that mir-660-5p over-expression in A549 lung cancer cells induced a remarkable increase in mir-486-5p expression level and activity, detected as a reduction of its target gene, p85. mir-486-5p expression was confirmed by microRNA in situ hybridization. mir-660-5p modulated mir-486-5p through the silencing of Mouse Double Minute 2 (MDM2), one of its direct target, and then through p53 stimulation. This regulatory pathway was effective in A549, but not in H1299; therefore, only in the context of a functional p53 protein. Our findings support the conclusion that mir-486-5p is positively regulated by mir-660-5p in lung cancer cell lines, through the mir-660-MDM2-p53 pathway, making mir-660-5p even more interesting for its potential successful use in lung cancer therapy. PMID:28124991

  5. Citrate, a Ubiquitous Key Metabolite with Regulatory Function in the CNS.

    PubMed

    Westergaard, Niels; Waagepetersen, Helle S; Belhage, Bo; Schousboe, Arne

    2017-01-05

    Citrate is key constituent of the tricarboxylic acid (TCA) cycle, serves as substrate for fatty acid and sterol biosynthesis, and functions as a key regulator of intermediary energy metabolism. Ursula Sonnewald had initiated studies using for the first time both proton- and (13)C-NMR to investigate metabolic processes in cultured neurons and astrocytes resulting in the important observation that citrate was specifically synthesized in and released from astrocytes in large amounts which is in keeping with the high concentration found in the CSF. The aim of this review is to highlight the possible roles of citrate in physiological and pathophysiological processes in the CNS. An interesting feature of citrate is its ability to chelate Ca(2+), Mg(2+) and Zn(2+)and thereby playing a pivotal role as an endogenous modulator of glutamate receptors and in particular the NMDA subtypes of these receptors in the CNS. Besides its presence in cerebrospinal fluid (CSF) citrate is also found in high amounts in prostate fluid reaching concentrations as high as 180 mM and here Zn(2+) seems also to play an important role, which makes prostate cells interesting for comparison of features of citrate and Zn(2+) between these cells and cells in the CNS.

  6. Glutamate Acts as a Key Signal Linking Glucose Metabolism to Incretin/cAMP Action to Amplify Insulin Secretion

    PubMed Central

    Gheni, Ghupurjan; Ogura, Masahito; Iwasaki, Masahiro; Yokoi, Norihide; Minami, Kohtaro; Nakayama, Yasumune; Harada, Kazuo; Hastoy, Benoit; Wu, Xichen; Takahashi, Harumi; Kimura, Kazushi; Matsubara, Toshiya; Hoshikawa, Ritsuko; Hatano, Naoya; Sugawara, Kenji; Shibasaki, Tadao; Inagaki, Nobuya; Bamba, Takeshi; Mizoguchi, Akira; Fukusaki, Eiichiro; Rorsman, Patrik; Seino, Susumu

    2014-01-01

    Summary Incretins, hormones released by the gut after meal ingestion, are essential for maintaining systemic glucose homeostasis by stimulating insulin secretion. The effect of incretins on insulin secretion occurs only at elevated glucose concentrations and is mediated by cAMP signaling, but the mechanism linking glucose metabolism and cAMP action in insulin secretion is unknown. We show here, using a metabolomics-based approach, that cytosolic glutamate derived from the malate-aspartate shuttle upon glucose stimulation underlies the stimulatory effect of incretins and that glutamate uptake into insulin granules mediated by cAMP/PKA signaling amplifies insulin release. Glutamate production is diminished in an incretin-unresponsive, insulin-secreting β cell line and pancreatic islets of animal models of human diabetes and obesity. Conversely, a membrane-permeable glutamate precursor restores amplification of insulin secretion in these models. Thus, cytosolic glutamate represents the elusive link between glucose metabolism and cAMP action in incretin-induced insulin secretion. PMID:25373904

  7. Prefrontal cortical BDNF: A regulatory key in cocaine- and food-reinforced behaviors

    PubMed Central

    Pitts, Elizabeth G.; Taylor, Jane R.; Gourley, Shannon L.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) affects synaptic plasticity and neural structure and plays key roles in learning and memory processes. Recent evidence also points to important, yet complex, roles for BDNF in rodent models of cocaine abuse and addiction. Here we examine the role of prefrontal cortical (PFC) BDNF in reward-related decision making and behavioral sensitivity to, and responding for, cocaine. We focus on BDNF within the medial and orbital PFC, its regulation by cocaine during early postnatal development and in adulthood, and how BDNF in turn influences responding for drug reinforcement, including in reinstatement models. When relevant, we draw comparisons and contrasts with experiments using natural (food) reinforcers. We also summarize findings supporting, or refuting, the possibility that BDNF in the medial and orbital PFC regulate the development and maintenance of stimulus-response habits. Further investigation could assist in the development of novel treatment approaches for cocaine use disorders. PMID:26923993

  8. Metabolomic analysis of key regulatory metabolites in hepatitis C virus-infected tree shrews.

    PubMed

    Sun, Hui; Zhang, Aihua; Yan, Guangli; Piao, Chengyu; Li, Weiyun; Sun, Chang; Wu, Xiuhong; Li, Xinghua; Chen, Yun; Wang, Xijun

    2013-03-01

    Metabolomics is a powerful new technology that allows the assessment of global low-molecular-weight metabolites in a biological system and which shows great potential in biomarker discovery. Analysis of the key metabolites in body fluids has become an important part of improving the diagnosis, prognosis, and therapy of diseases. Hepatitis C virus (HCV) is a major leading cause of liver disease worldwide and a serious burden on public health. However, the lack of a small-animal model has hampered the analysis of HCV pathogenesis. We hypothesize that an animal model (Tupaia belangeri chinensis) of HCV would produce a unique characterization of metabolic phenotypes. Ultra-performance liquid-chromatography/electrospray ionization-SYNAPT-high-definition mass spectrometry (UPLC/ESI-SYNAPT-HDMS) coupled with pattern recognition methods and system analysis was carried out to obtain comprehensive metabolomics profiling and pathways of large biological data sets. Taurine, hypotaurine, ether lipid, glycerophospholipid, arachidonic acid, tryptophan, and primary bile acid metabolism pathways were acutely perturbed, and 38 differential metabolites were identified. More important, five metabolite markers were selected via the "significance analysis for microarrays" method as the most discriminant and interesting biomarkers that were effective for the diagnosis of HCV. Network construction has led to the integration of metabolites associated with the multiple perturbation pathways. Integrated network analysis of the key metabolites yields highly related signaling pathways associated with the differentially expressed proteins, which suggests that the creation of new treatment paradigms targeting and activating these networks in their entirety, rather than single proteins, might be necessary for controlling and treating HCV efficiently.

  9. Metabolomic Analysis of Key Regulatory Metabolites in Hepatitis C Virus–infected Tree Shrews*

    PubMed Central

    Sun, Hui; Zhang, Aihua; Yan, Guangli; Piao, Chengyu; Li, Weiyun; Sun, Chang; Wu, Xiuhong; Li, Xinghua; Chen, Yun; Wang, Xijun

    2013-01-01

    Metabolomics is a powerful new technology that allows the assessment of global low-molecular-weight metabolites in a biological system and which shows great potential in biomarker discovery. Analysis of the key metabolites in body fluids has become an important part of improving the diagnosis, prognosis, and therapy of diseases. Hepatitis C virus (HCV) is a major leading cause of liver disease worldwide and a serious burden on public health. However, the lack of a small-animal model has hampered the analysis of HCV pathogenesis. We hypothesize that an animal model (Tupaia belangeri chinensis) of HCV would produce a unique characterization of metabolic phenotypes. Ultra-performance liquid-chromatography/electrospray ionization-SYNAPT-high-definition mass spectrometry (UPLC/ESI-SYNAPT-HDMS) coupled with pattern recognition methods and system analysis was carried out to obtain comprehensive metabolomics profiling and pathways of large biological data sets. Taurine, hypotaurine, ether lipid, glycerophospholipid, arachidonic acid, tryptophan, and primary bile acid metabolism pathways were acutely perturbed, and 38 differential metabolites were identified. More important, five metabolite markers were selected via the “significance analysis for microarrays” method as the most discriminant and interesting biomarkers that were effective for the diagnosis of HCV. Network construction has led to the integration of metabolites associated with the multiple perturbation pathways. Integrated network analysis of the key metabolites yields highly related signaling pathways associated with the differentially expressed proteins, which suggests that the creation of new treatment paradigms targeting and activating these networks in their entirety, rather than single proteins, might be necessary for controlling and treating HCV efficiently. PMID:23264353

  10. CodY orchestrates the expression of virulence determinants in emetic Bacillus cereus by impacting key regulatory circuits.

    PubMed

    Frenzel, Elrike; Doll, Viktoria; Pauthner, Matthias; Lücking, Genia; Scherer, Siegfried; Ehling-Schulz, Monika

    2012-07-01

    Bacillus cereus causes gastrointestinal diseases and local and systemic infections elicited by the depsipeptide cereulide, enterotoxins, phospholipases, cytolysins and proteases. The PlcR-PapR quorum sensing system activates the expression of several virulence factors, whereas the Spo0A-AbrB regulatory circuit partially controls the plasmid-borne cereulide synthetase (ces) operon. Here, we show that CodY, a nutrient-responsive regulator of Gram-positive bacteria, has a profound effect on both regulatory systems, which have been assumed to operate independently of each other. Deletion of codY resulted in downregulation of virulence genes belonging to the PlcR regulon and a concomitant upregulation of the ces genes. CodY was found to be a repressor of the ces operon, but did not interact with the promoter regions of PlcR-dependent virulence genes in vitro, suggesting an indirect regulation of the latter. Furthermore, CodY binds to the promoter of the immune inhibitor metalloprotease InhA1, demonstrating that CodY directly links B. cereus metabolism to virulence. In vivo studies using a Galleria mellonella infection model, showed that the codY mutant was substantially attenuated, highlighting the importance of CodY as a key regulator of pathogenicity. Our results demonstrate that CodY profoundly modulates the virulence of B. cereus, possibly controlling the development of pathogenic traits in suitable host environments.

  11. Sequential Regulatory Loops as Key Gatekeepers for Neuronal Reprogramming in Human Cells

    PubMed Central

    Xue, Yuanchao; Qian, Hao; Hu, Jing; Zhou, Bing; Zhou, Yu; Hu, Xihao; Karakhanyan, Aziz; Pang, Zhiping; Fu, Xiang-Dong

    2016-01-01

    Direct conversion of somatic cells into neurons holds great promise for regenerative medicine. However, as neuronal conversion is relatively inefficient on human cells compared to mouse cells, it has been unclear what might be key barriers to reprogramming in human cells. We recently elucidated an RNA program mediated by the polypyrimidine tract binding protein PTB to convert mouse embryonic fibroblasts (MEFs) into functional neurons. On human adult fibroblasts (HAFs), however, we unexpectedly find that invoke of the documented PTB-REST-miR-124 loop only generates immature neurons. We now report that the functionality requires sequential inactivation of PTB and the PTB paralog nPTB in HAFs. Inactivation of nPTB triggers another self-enforcing loop essential for neuronal maturation, which comprises nPTB, the transcription factor BRN2, and miR-9. These findings suggest two separate gatekeepers to control neuronal conversion and maturation and consecutively overcoming these gatekeepers enables deterministic reprogramming of HAFs into functional neurons. PMID:27110916

  12. A PP2A regulatory subunit PPTR-1 regulates the C. elegans Insulin/IGF-1 signaling pathway by modulating AKT-1 phosphorylation

    PubMed Central

    Padmanabhan, Srivatsan; Mukhopadhyay, Arnab; Narasimhan, Sri Devi; Tesz, Gregory; Czech, Michael P.; Tissenbaum, Heidi A.

    2009-01-01

    Summary The C. elegans insulin/IGF-1 signaling (IIS) cascade plays a central role in the regulation of lifespan, dauer diapause, metabolism and stress response. The major regulatory control of IIS is through phosphorylation of its components by serine/threonine-specific protein kinases. In a RNAi screen for serine/threonine protein phosphatases that counter-balance the effect of the kinases in the IIS pathway, we identified pptr-1, a B56 regulatory subunit of the PP2A holoenzyme. Modulation of pptr-1 affects phenotypes associated with the IIS pathway including lifespan, dauer, stress resistance and fat storage. We show that PPTR-1 functions by regulating worm AKT-1 phosphorylation at Thr 350. With striking conservation, mammalian B56β regulates Akt phosphorylation at Thr 308 in 3T3-L1 adipocytes. In C. elegans, this modulation ultimately leads to changes in subcellular localization and transcriptional activity of the forkhead transcription factor DAF-16. This study reveals a conserved role for the B56 regulatory subunit in modulating insulin signaling through AKT dephosphorylation and thereby has widespread implications in cancer and diabetes research. PMID:19249087

  13. Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules.

    PubMed

    Filichkin, Sergei A; Breton, Ghislain; Priest, Henry D; Dharmawardhana, Palitha; Jaiswal, Pankaj; Fox, Samuel E; Michael, Todd P; Chory, Joanne; Kay, Steve A; Mockler, Todd C

    2011-01-01

    Circadian clocks provide an adaptive advantage through anticipation of daily and seasonal environmental changes. In plants, the central clock oscillator is regulated by several interlocking feedback loops. It was shown that a substantial proportion of the Arabidopsis genome cycles with phases of peak expression covering the entire day. Synchronized transcriptome cycling is driven through an extensive network of diurnal and clock-regulated transcription factors and their target cis-regulatory elements. Study of the cycling transcriptome in other plant species could thus help elucidate the similarities and differences and identify hubs of regulation common to monocot and dicot plants. Using a combination of oligonucleotide microarrays and data mining pipelines, we examined daily rhythms in gene expression in one monocotyledonous and one dicotyledonous plant, rice and poplar, respectively. Cycling transcriptomes were interrogated under different diurnal (driven) and circadian (free running) light and temperature conditions. Collectively, photocycles and thermocycles regulated about 60% of the expressed nuclear genes in rice and poplar. Depending on the condition tested, up to one third of oscillating Arabidopsis-poplar-rice orthologs were phased within three hours of each other suggesting a high degree of conservation in terms of rhythmic gene expression. We identified clusters of rhythmically co-expressed genes and searched their promoter sequences to identify phase-specific cis-elements, including elements that were conserved in the promoters of Arabidopsis, poplar, and rice. Our results show that the cycling patterns of many circadian clock genes are highly conserved across poplar, rice, and Arabidopsis. The expression of many orthologous genes in key metabolic and regulatory pathways is diurnal and/or circadian regulated and phased to similar times of day. Our results confirm previous findings in Arabidopsis of three major classes of cis-regulatory modules within

  14. Practice tips and tools for the successful use of U-500 regular human insulin: the diabetes educator is key.

    PubMed

    Cochran, Elaine K; Valentine, Virginia; Samaan, Karen H; Corey, Ilene B; Jackson, Jeffrey A

    2014-01-01

    This review provides information to equip diabetes educators to instruct and guide patients in using U-500 human regular insulin (U-500R). The article includes an overview of U-500R pharmacology and clinical data, strategies for outpatient and inpatient use, and tools for patient education. U-500R is useful for treating patients with any type of diabetes who require high doses of insulin. U-500R alleviates the volume-related problems associated with high doses of U-100 insulin, making treatment with high doses of insulin more feasible (because of the need for fewer injections for patients) as well as more cost-efficient and potentially more effective. These tools can help diabetes educators feel more comfortable and confident as they advise and educate patients who receive high-dose U-500R as part of their overall diabetes care plan. The diabetes educator plays a vital role in helping patients use U-500R safely and successfully.

  15. Estimation of umbilical cord blood leptin and insulin based on anthropometric data by means of artificial neural network approach: identifying key maternal and neonatal factors.

    PubMed

    Guzmán-Bárcenas, José; Hernández, José Alfredo; Arias-Martínez, Joel; Baptista-González, Héctor; Ceballos-Reyes, Guillermo; Irles, Claudine

    2016-07-21

    Leptin and insulin levels are key factors regulating fetal and neonatal energy homeostasis, development and growth. Both biomarkers are used as predictors of weight gain and obesity during infancy. There are currently no prediction algorithms for cord blood (UCB) hormone levels using Artificial Neural Networks (ANN) that have been directly trained with anthropometric maternal and neonatal data, from neonates exposed to distinct metabolic environments during pregnancy (obese with or without gestational diabetes mellitus or lean women). The aims were: 1) to develop ANN models that simulate leptin and insulin concentrations in UCB based on maternal and neonatal data (ANN perinatal model) or from only maternal data during early gestation (ANN prenatal model); 2) To evaluate the biological relevance of each parameter (maternal and neonatal anthropometric variables). We collected maternal and neonatal anthropometric data (n = 49) in normoglycemic healthy lean, obese or obese with gestational diabetes mellitus women, as well as determined UCB leptin and insulin concentrations by ELISA. The ANN perinatal model consisted of an input layer of 12 variables (maternal and neonatal anthropometric and biochemical data from early gestation and at term) while the ANN prenatal model used only 6 variables (maternal anthropometric from early gestation) in the input layer. For both networks, the output layer contained 1 variable to UCB leptin or to UCB insulin concentration. The best architectures for the ANN perinatal models estimating leptin and insulin were 12-5-1 while for the ANN prenatal models, 6-5-1 and 6-4-1 were found for leptin and insulin, respectively. ANN models presented an excellent agreement between experimental and simulated values. Interestingly, the use of only prenatal maternal anthropometric data was sufficient to estimate UCB leptin and insulin values. Maternal BMI, weight and age as well as neonatal birth were the most influential parameters for leptin while

  16. Biosimilar insulins.

    PubMed

    Heinemann, Lutz

    2012-08-01

    Until now most insulin used in developed countries is manufactured and distributed by a small number of multinational companies. Other pharmaceutical companies - many of these are located in countries such as India or China - are also able to manufacture insulin with modern biotechnological methods. Additionally, the patents for many insulin formulations have expired or are going to expire soon. This enables such companies to produce insulins and to apply for market approval of these as biosimilar insulins (BIs) in highly regulated markets such as the EU or the US. To understand the complexity of BIs' approval and usage, scientific and regulatory aspects have to be discussed. Differences in the manufacturing process (none of the insulin-manufacturing procedures are identical) result in the fact that all insulin that might become BIs differ from the originator insulin to some extent. The question is, have such differences in the structure of the insulin molecule and or the purity and so on clinically relevant consequences for the biological effects induced or not. The guidelines already in place in the EU for market approval require that the manufacturer demonstrates that his insulin has a safety and efficacy profile that is similar to that of the 'original' insulin formulation. Recently guidelines for biosimilars were issued in the US; however, these do not cover insulin. Although a challenging approval process for insulins to become BI might be regarded as a hurdle to keep companies out of certain markets, it is fair to say that the potential safety and efficacy issues surrounding BI are substantial and relevant, and do warrant a careful and evidence-driven approval process. Nevertheless, it is very likely that in the next years, BIs will come to the market also in highly regulated markets.

  17. Insulin receptor substrate 1 binds two novel splice variants of the regulatory subunit of phosphatidylinositol 3-kinase in muscle and brain.

    PubMed Central

    Antonetti, D A; Algenstaedt, P; Kahn, C R

    1996-01-01

    We have identified two novel alternatively spliced forms of the p85alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase by expression screening of a human skeletal muscle library with phosphorylated baculovirus- produced human insulin receptor substrate 1. One form is identical to p85alpha throughout the region which encodes both Src homology 2 (SH2) domains and the inter-SH2 domain/p110 binding region but diverges in sequence from p85alpha on the 5' side of nucleotide 953, where the entire break point cluster gene and SH3 regions are replaced by a unique 34-amino-acid N terminus. This form has an estimated molecular mass of approximately 53 kDa and has been termed p85/AS53. The second form is identical to p85 and p85/AS53 except for a 24-nucleotide insert between the SH2 domains that results in a replacement of aspartic acid 605 with nine amino acids, adding two potential serine phosphorylation sites in the vicinity of the known serine autophosphorylation site (Ser-608). Northern (RNA) analyses reveal a wide tissue distribution of p85alpha, whereas p85/AS53 is dominant in skeletal muscle and brain, and the insert isoforms are restricted to cardiac muscle and skeletal muscle. Western blot (immunoblot) analyses using an anti-p85 polyclonal antibody and a specific anti-p85/AS53 antibody confirmed the tissue distribution of p85/AS53 protein and indicate a approximately 7-fold higher expression of p85/AS53 protein than of p85 in skeletal muscle. Both p85 and p85/AS53 bind to p110 in coprecipitation experiments, but p85alpha itself appears to have preferential binding to insulin receptor substrate 1 following insulin stimulation. These data indicate that the gene for the p85alpha regulatory subunit of PI 3-kinase can undergo tissue-specific alternative splicing. Two novel splice variants of the regulatory subunit of PI 3-kinase are present in skeletal muscle, cardiac muscle, and brain; these variants may have important functional differences in activity and

  18. Expression of PD-1 Molecule on Regulatory T Lymphocytes in Patients with Insulin-Dependent Diabetes Mellitus.

    PubMed

    Perri, Valentina; Russo, Benedetta; Crinò, Antonino; Schiaffini, Riccardo; Giorda, Ezio; Cappa, Marco; Rosado, Maria Manuela; Fierabracci, Alessandra

    2015-09-18

    Type 1 diabetes is caused by autoreactive T cells that destroy pancreatic beta cells. Animal models suggested that a CD4⁺CD25⁺ population has a regulatory function capable of preventing activation and effector functions of autoreactive T cells. However, the role of CD4⁺CD25high T cells in autoimmunity and their molecular mechanisms remain the subject of investigation. We therefore evaluated T regulatory cell frequencies and their PD-1 expression in the peripheral blood of long-standing diabetics under basal conditions and after CD3/CD28 stimulation. Under basal conditions, the percentages of T regulatory cells were significantly higher while that of T effector cells were significantly lower in patients than in controls. The ratio of regulatory to effector T cells was higher in patients than that in controls, suggesting that T regulatory cells were functional in patients. Percentages of total PD-1⁺, PD-1low and PD-1high expressing T regulatory cells did not change in patients and in controls. After stimulation, a defect in T regulatory cell proliferation was observed in diabetics and the percentages of total PD-1⁺, PD-1low and PD-1high expressing cells were lower in patients. Our data suggest a defective activation of T regulatory cells in long-standing diabetics due to a lower expression of PD-1 on their surface.

  19. A Single Host-Derived Glycan Impacts Key Regulatory Nodes of Symbiont Metabolism in a Coevolved Mutualism.

    PubMed

    Pan, Min; Schwartzman, Julia A; Dunn, Anne K; Lu, Zuhong; Ruby, Edward G

    2015-07-14

    Most animal-microbe mutualistic associations are characterized by nutrient exchange between the partners. When the host provides the nutrients, it can gain the capacity to shape its microbial community, control the stability of the interaction, and promote its health and fitness. Using the bioluminescent squid-vibrio model, we demonstrate how a single host-derived glycan, chitin, regulates the metabolism of Vibrio fischeri at key points in the development and maintenance of the symbiosis. We first characterized the pathways for catabolism of chitin sugars by V. fischeri, demonstrating that the Ccr-dependent phosphoenolpyruvate-pyruvate phosphotransferase system (PTS) prioritizes transport of these sugars in V. fischeri by blocking the uptake of non-PTS carbohydrates, such as glycerol. Next, we found that PTS transport of chitin sugars into the bacterium shifted acetate homeostasis toward a net excretion of acetate and was sufficient to override an activation of the acetate switch by AinS-dependent quorum sensing. Finally, we showed that catabolism of chitin sugars decreases the rate of cell-specific oxygen consumption. Collectively, these three metabolic functions define a physiological shift that favors fermentative growth on chitin sugars and may support optimal symbiont luminescence, the functional basis of the squid-vibrio mutualism. Host-derived glycans have recently emerged as a link between symbiont nutrition and innate immune function. Unfortunately, the locations at which microbes typically access host-derived glycans are inaccessible to experimentation and imaging, and they take place in the context of diverse microbe-microbe interactions, creating a complex symbiotic ecology. Here we describe the metabolic state of a single microbial symbiont in a natural association with its coevolved host and, by doing so, infer key points at which a host-controlled tissue environment might regulate the physiological state of its symbionts. We show that the presence of

  20. TRPM channels phosphorylation as a potential bridge between old signals and novel regulatory mechanisms of insulin secretion.

    PubMed

    Diaz-Garcia, Carlos Manlio; Sanchez-Soto, Carmen; Hiriart, Marcia

    2013-03-01

    Transient receptor potential channels, especially the members of the melastatin family (TRPM), participate in insulin secretion. Some of them are substrates for protein kinases, which are involved in several neurotransmitter, incretin and hormonal signaling cascades in β cells. The functional relationships between protein kinases and TRPM channels in systems of heterologous expression and native tissues rise issues about novel regulation pathways of pancreatic β-cell excitability. The aim of the present work is to review the evidences about phosphorylation of TRPM channels in β cells and to discuss the perspectives on insulin secretion.

  1. The linker region in receptor guanylyl cyclases is a key regulatory module: mutational analysis of guanylyl cyclase C.

    PubMed

    Saha, Sayanti; Biswas, Kabir Hassan; Kondapalli, Chandana; Isloor, Nishitha; Visweswariah, Sandhya S

    2009-10-02

    Receptor guanylyl cyclases are multidomain proteins, and ligand binding to the extracellular domain increases the levels of intracellular cGMP. The intracellular domain of these receptors is composed of a kinase homology domain (KHD), a linker of approximately 70 amino acids, followed by the C-terminal guanylyl cyclase domain. Mechanisms by which these receptors are allosterically regulated by ligand binding to the extracellular domain and ATP binding to the KHD are not completely understood. Here we examine the role of the linker region in receptor guanylyl cyclases by a series of point mutations in receptor guanylyl cyclase C. The linker region is predicted to adopt a coiled coil structure and aid in dimerization, but we find that the effects of mutations neither follow a pattern predicted for a coiled coil peptide nor abrogate dimerization. Importantly, this region is critical for repressing the guanylyl cyclase activity of the receptor in the absence of ligand and permitting ligand-mediated activation of the cyclase domain. Mutant receptors with high basal guanylyl cyclase activity show no further activation in the presence of non-ionic detergents, suggesting that hydrophobic interactions in the basal and inactive conformation of the guanylyl cyclase domain are disrupted by mutation. Equivalent mutations in the linker region of guanylyl cyclase A also elevated the basal activity and abolished ligand- and detergent-mediated activation. We, therefore, have defined a key regulatory role for the linker region of receptor guanylyl cyclases which serves as a transducer of information from the extracellular domain via the KHD to the catalytic domain.

  2. Effect of one week of CPAP treatment of obstructive sleep apnoea on 24-hour profiles of glucose, insulin and counter-regulatory hormones in type 2 diabetes.

    PubMed

    Mokhlesi, Babak; Grimaldi, Daniela; Beccuti, Guglielmo; Van Cauter, Eve

    2017-03-01

    Studies examining the impact of CPAP treatment on glycaemic control have yielded conflicting results, partly because of insufficient nightly CPAP use. We examined the 24-hour profiles of glucose, insulin and counter-regulatory hormones in 12 subjects with type 2 diabetes and OSA before and after 1 week of effective in-laboratory CPAP therapy over an entire 8-hour night thus ensuring optimal CPAP compliance. Blood samples were collected every 15 to 30 minutes for 24 hours under controlled conditions. The 24-hour mean glucose decreased from 153.2 ± 33.0 to 139.7 ± 24.2 mg/dL with CPAP (-13.5 ± 13.5 mg/dL; P = .005) without change in insulin levels. Morning fasting glucose levels decreased by 14.6 ± 3 mg/dL (P = .001) and the dawn phenomenon decreased by 7.8 ± 9.8 mg/dL (P = .019). CPAP treatment decreased norepinephrine levels while the 24-hour profiles of growth hormone and cortisol remained unchanged. In conclusion, 1 week of effective treatment of OSA over an entire 8-hour night results in a clinically significant improvement in glycaemic control via an amelioration of evening fasting glucose metabolism and a reduction in the dawn phenomenon, a late-night glucose increase that is not adequately treated by oral medications. Clinical Trials Information: ClinicalTrials.gov Identifier: NCT01136785.

  3. Functional interaction of hepatic nuclear factor-4 and peroxisome proliferator-activated receptor-gamma coactivator 1alpha in CYP7A1 regulation is inhibited by a key lipogenic activator, sterol regulatory element-binding protein-1c.

    PubMed

    Ponugoti, Bhaskar; Fang, Sungsoon; Kemper, Jongsook Kim

    2007-11-01

    Insulin inhibits transcription of cholesterol 7alpha-hydroxylase (Cyp7a1), a key gene in bile acid synthesis, and the hepatic nuclear factor-4 (HNF-4) site in the promoter was identified as a negative insulin response sequence. Using a fasting/feeding protocol in mice and insulin treatment in HepG2 cells, we explored the inhibition mechanisms. Expression of sterol regulatory element-binding protein-1c (SREBP-1c), an insulin-induced lipogenic factor, inversely correlated with Cyp7a1 expression in mouse liver. Interaction of HNF-4 with its coactivator, peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha), was observed in livers of fasted mice and was reduced after feeding. Conversely, HNF-4 interaction with SREBP-1c was increased after feeding. In vitro studies suggested that SREBP-1c competed with PGC-1alpha for direct interaction with the AF2 domain of HNF-4. Reporter assays showed that SREBP-1c, but not of a SREBP-1c mutant lacking the HNF-4 interacting domain, inhibited HNF-4/PGC-1alpha transactivation of Cyp7a1. SREBP-1c also inhibited PGC-1alpha-coactivation of estrogen receptor, constitutive androstane receptor, pregnane X receptor, and farnesoid X receptor, implying inhibition of HNF-4 by SREBP-1c could extend to other nuclear receptors. In chromatin immunoprecipitation studies, HNF-4 binding to the promoter was not altered, but PGC-1alpha was dissociated, SREBP-1c and histone deacetylase-2 (HDAC2) were recruited, and acetylation of histone H3 was decreased upon feeding. Adenovirus-mediated expression of a SREBP-1c dominant-negative mutant, which blocks the interaction of SREBP-1c and HNF-4, partially but significantly reversed the inhibition of Cyp7a1 after feeding. Our data show that SREBP-1c functions as a non-DNA-binding inhibitor and mediates, in part, suppression of Cyp7a1 by blocking functional interaction of HNF-4 and PGC-1alpha. This mechanism may be relevant to known repression of many other HNF-4 target genes upon

  4. Longevity Pathways (mTOR, SIRT, Insulin/IGF-1) as Key Modulatory Targets on Aging and Neurodegeneration.

    PubMed

    Mazucanti, Caio Henrique; Cabral-Costa, João Victor; Vasconcelos, Andrea Rodrigues; Andreotti, Diana Zukas; Scavone, Cristoforo; Kawamoto, Elisa Mitiko

    2015-01-01

    Recent data from epidemiologic studies have shown that the majority of the public health costs are related to age-related disorders, and most of these diseases can lead to neuronal death. The specific signaling mechanisms underpinning neurodegeneration and aging are incompletely understood. Much work has been directed to the search for the etiology of neurodegeneration and aging and to new therapeutic strategies, including not only drugs but also non-pharmacological approaches, such as physical exercise and low-calorie dietary intake. The most important processes in aging-associated conditions, including neurodegeneration, include the mammalian (or mechanistic target of rapamycin (mTOR, sirtuin (SIRT and insulin/insulin growth factor 1 signaling (IIS pathways. These longevity pathways are involved in an array of different processes, including metabolism, cognition, stress response and brain plasticity. In this review we focus on the current advances involving the mTOR, SIRT and IIS longevity pathways during the course of healthy aging processes and neurodegenerative diseases, bringing new insights in the form of a better understanding of the signaling mechanisms underpinning neurodegeneration and how these differ from physiological normal aging processes. This also provides new targets for the therapeutic management and/or prevention of these devastating age-related disorders.

  5. Key Role of STAT4 Deficiency in the Hematopoietic Compartment in Insulin Resistance and Adipose Tissue Inflammation

    PubMed Central

    Ma, Kaiwen; Glenn, Lindsey M.; Hatcher, Margaret A.; Haynes, Bronson A.; Lehrer, Eric J.; Kaplan, Mark H.

    2017-01-01

    Visceral adipose tissue (AT) inflammation is linked to the complications of obesity, including insulin resistance (IR) and type 2 diabetes. Recent data from our lab showed that germline deficiency in STAT4 reduces inflammation and improves IR in obese mice. The objective of this study was to determine the contribution of selective STAT4 deficiency in subsets of hematopoietic cells to IR and AT inflammation. To determine the contribution of hematopoietic lineage, we sublethally irradiated Stat4−/−C57Bl6 mice and reconstituted them with bone marrow cells (BMC) from Stat4+/+C57Bl6 congenic donors. We also established the contribution of selective STAT4 deficiency in CD4+ or CD8+ T cells using adoptive transfer in Rag1−/− mice. All mice received a HFD for 15 weeks (n = 7–12 mice/group). BMC that expressed STAT4 induced increases in glucose intolerance and IR compared to STAT4-deficient cells. Also, AT inflammation was increased and the numbers of CD8+ cells infiltrating AT were higher in mice with STAT4 expressing BMC. Studies in Rag1−/− mice further confirmed the prominent role of CD8+ cells expressing STAT4 in insulin resistance and AT and islet inflammation. Collectively our results show specific and dominant contribution of STAT4 in the hematopoietic compartment to metabolic health and inflammation in diet-induced obesity. PMID:28400678

  6. Enhanced Production of Insulin-like Growth Factor I Protein in Escherichia coli by Optimization of Five Key Factors

    PubMed Central

    Ranjbari, Javad; Babaeipour, Valiollah; Vahidi, Hossein; Moghimi, Hamidreza; Mofid, Mohammad Reza; Namvaran, Mohammad Mehdi; Jafari, Sevda

    2015-01-01

    Human insulin-like growth factor I (hIGF-I) is a kind of growth factor with clinical significance in medicine. Up to now, E. coli expression system has been widely used as a host to produce rhIGF-1 with high yields. Batch cultures as non-continuous fermentations were carried out to overproduce rhIGF-I in E. coli. The major objective of this study is over- production of recombinant human insulin-like growth factor I (rhIGF-I) through a developed process by recruiting effective factors in order to achieve the most recombinant protein. In this study we investigated the effect of culture medium, induction temperature and amount of inducer on cell growth and IGF-1 production. Taguchi design of experiments (DOE) method was used as the statistical method. Analysis of experimental data showed that maximum production of rhIGF-I was occurred in 32y culture medium at 32 °C and 0.05 Mm IPTG. Under this condition, 0.694 g/L of rhIGF-I was produced as the inclusion bodies. Following optimization of these three factors, we have also optimized the amount of glucose and induction time in 5 liter top bench bioreactor. Full factorial design of experiment method was used for these two factors as the statistical method. 10 g/L and OD600=5 were selected as the optimum point of Glucose amount and induction time, respectively. Finally, we reached to a concentration of 1.26 g/L rhIGF-1 at optimum condition. PMID:26330880

  7. Changes in cis-regulatory elements of a key floral regulator are associated with divergence of inflorescence architectures.

    PubMed

    Kusters, Elske; Della Pina, Serena; Castel, Rob; Souer, Erik; Koes, Ronald

    2015-08-15

    Higher plant species diverged extensively with regard to the moment (flowering time) and position (inflorescence architecture) at which flowers are formed. This seems largely caused by variation in the expression patterns of conserved genes that specify floral meristem identity (FMI), rather than changes in the encoded proteins. Here, we report a functional comparison of the promoters of homologous FMI genes from Arabidopsis, petunia, tomato and Antirrhinum. Analysis of promoter-reporter constructs in petunia and Arabidopsis, as well as complementation experiments, showed that the divergent expression of leafy (LFY) and the petunia homolog aberrant leaf and flower (ALF) results from alterations in the upstream regulatory network rather than cis-regulatory changes. The divergent expression of unusual floral organs (UFO) from Arabidopsis, and the petunia homolog double top (DOT), however, is caused by the loss or gain of cis-regulatory promoter elements, which respond to trans-acting factors that are expressed in similar patterns in both species. Introduction of pUFO:UFO causes no obvious defects in Arabidopsis, but in petunia it causes the precocious and ectopic formation of flowers. This provides an example of how a change in a cis-regulatory region can account for a change in the plant body plan. © 2015. Published by The Company of Biologists Ltd.

  8. Stepwise organization of the β-structure identifies key regions essential for the propagation and cytotoxicity of insulin amyloid fibrils.

    PubMed

    Chatani, Eri; Imamura, Hiroshi; Yamamoto, Naoki; Kato, Minoru

    2014-04-11

    Amyloid fibrils are supramolecular assemblies, the deposition of which is associated with many serious diseases including Alzheimer, prion, and Huntington diseases. Several smaller aggregates such as oligomers and protofibrils have been proposed to play a role in early stages of the fibrillation process; however, little is known about how these species contribute to the formation of mature amyloid fibrils with a rigid cross-β structure. Here, we identified a new pathway for the formation of insulin amyloid fibrils at a high concentration of salt in which mature fibrils were formed in a stepwise manner via a prefibrillar intermediate: minute prefibrillar species initially accumulated, followed by the subsequent formation of thicker amyloid fibrils. Fourier transform infrared spectra suggested the sequential formation of two types of β-sheets with different strength hydrogen bonds, one of which was developed concomitantly with the mutual assembly of the prefibrillar intermediate to form mature fibrils. Interestingly, fibril propagation and cellular toxicity appeared only after the later step of structural organization, and a comparison of β-sheet regions between the prefibrillar intermediate and mature fibrils using proteolysis led to the proposal of specific regions essential for manifestation of these properties.

  9. A new single nucleotide polymorphism in the insulin-like growth factor I regulatory region associates with colorectal cancer risk in singapore chinese.

    PubMed

    Wong, Hui-Lee; Delellis, Katherine; Probst-Hensch, Nicole; Koh, Woon-Puay; Van Den Berg, David; Lee, Hin-Peng; Yu, Mimi C; Ingles, Sue A

    2005-01-01

    Elevated levels of plasma insulin-like growth factor I (IGF-I) are a potential risk factor for several cancers, including colorectal cancer. Physiologic levels of plasma IGF-I vary greatly; this variation may be in part genetically determined. We identified two single nucleotide polymorphisms (SNP) in perfect linkage disequilibrium with each other and in partial linkage disequilibrium with a previously studied cytosine-adenine microsatellite [-969(CA)(n)]. We investigated one of the SNPs, -533T/C,and the 969(CA)(n) in relation to the risk of colorectal cancer in a case-control study nested within a cohort of Singapore Chinese (cases/controls = 290:873). The (CA)(21) allele, rather than the previously implicated (CA)(19) allele, was associated with a reduced risk of colorectal cancer (odds ratio for 21/21 versus all other genotypes, 0.48; 95% confidence interval, 0.28-0.84). For the -533C/T SNP, persons carrying one or more copies of the C allele had a decreased in risk of colorectal cancer compared with noncarriers (odds ratio for CC/CT versus TT, 0.58; 95% confidence interval, 0.41-0.82). This association was specific for colon, as opposed to rectal cancer and was modified by age. We also examined a functional insulin-like growth factor binding protein (IGFBP3) promoter SNP, -202 A/C, previously reported to predict serum IGFBP3 levels. Although we were able to confirm this genotype-phenotype association, the -202A/C IGFBP3 SNP was not significantly associated with colorectal cancer risk. In conclusion, we report a novel SNP in the IGF-I regulatory region that is associated with colorectal cancer risk.

  10. Nuclear insulin-like growth factor-1 receptor (IGF1R) displays proliferative and regulatory activities in non-malignant cells.

    PubMed

    Solomon-Zemler, Ravid; Sarfstein, Rive; Werner, Haim

    2017-01-01

    The insulin-like growth factor-1 receptor (IGF1R) mediates the biological actions of IGF1 and IGF2. The IGF1R is involved in both physiological and pathological activities and is usually overexpressed in most types of cancer. In addition to its classical mechanism of action, recent evidence has shown a nuclear presence of IGF1R, associated with novel genomic/transcriptional types of activities. The present study was aimed at evaluating the hypothesis that nuclear IGF1R localization is not restricted to cancer cells and might constitute a novel physiologically relevant regulatory mechanism. Our data shows that nuclear translocation takes place in a wide array of cells, including normal diploid fibroblasts. In addition, we provide evidence for a synergistic effect of a nuclear translocation blocker along with selective IGF1R inhibitors in terms of decreasing cell proliferation. Given the important role of the IGF1R in mitogenesis, the present results may be of translational relevance in cancer research. In conclusion, results are consistent with the concept that nuclear IGF1R fulfills important physiological and pathological roles.

  11. How Stereotype Threat Affects Healthy Older Adults’ Performance on Clinical Assessments of Cognitive Decline: The Key Role of Regulatory Fit

    PubMed Central

    Mather, Mara; Gatz, Margaret

    2015-01-01

    Objectives. Stereotype threat can impair older adults’ performance on clinical assessments for cognitive decline. We examined why this occurs. Based upon the regulatory focus account of stereotype threat, we predicted that the effects of stereotype threat should depend upon the assessments’ reward structure. Stereotype threat should be associated with poor performance when the assessment emphasizes gaining correct answers, but not when it emphasizes avoiding mistakes. Method. Healthy older adults completed a series of mental status examinations. Half of the participants completed these examinations under stereotype threat about their cognitive abilities. Monetary incentives were also manipulated. For half of the participants correct responding led to gains. For the remaining participants incorrect responding/forgetting led to losses. Results. Consistent with the regulatory focus account, stereotype threat was associated with poor performance when the mental status examinations had a gains-based structure, but not when they had a losses-based structure. Discussion. Older adults respond to stereotype threat by becoming vigilant to avoid the losses that will make them their worst. Researchers and clinicians can capitalize on this motivational change to combat stereotype threat’s negative effects. By using a loss-avoidance frame, stereotype threat’s negative effects can be attenuated or even eliminated. PMID:25752896

  12. How Stereotype Threat Affects Healthy Older Adults' Performance on Clinical Assessments of Cognitive Decline: The Key Role of Regulatory Fit.

    PubMed

    Barber, Sarah J; Mather, Mara; Gatz, Margaret

    2015-11-01

    Stereotype threat can impair older adults' performance on clinical assessments for cognitive decline. We examined why this occurs. Based upon the regulatory focus account of stereotype threat, we predicted that the effects of stereotype threat should depend upon the assessments' reward structure. Stereotype threat should be associated with poor performance when the assessment emphasizes gaining correct answers, but not when it emphasizes avoiding mistakes. Healthy older adults completed a series of mental status examinations. Half of the participants completed these examinations under stereotype threat about their cognitive abilities. Monetary incentives were also manipulated. For half of the participants correct responding led to gains. For the remaining participants incorrect responding/forgetting led to losses. Consistent with the regulatory focus account, stereotype threat was associated with poor performance when the mental status examinations had a gains-based structure, but not when they had a losses-based structure. Older adults respond to stereotype threat by becoming vigilant to avoid the losses that will make them their worst. Researchers and clinicians can capitalize on this motivational change to combat stereotype threat's negative effects. By using a loss-avoidance frame, stereotype threat's negative effects can be attenuated or even eliminated. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion

    PubMed Central

    Sacco, Francesca; Humphrey, Sean J.; Cox, Jürgen; Mischnik, Marcel; Schulte, Anke; Klabunde, Thomas; Schäfer, Matthias; Mann, Matthias

    2016-01-01

    Insulin-secreting beta cells play an essential role in maintaining physiological blood glucose levels, and their dysfunction leads to the development of diabetes. To elucidate the signalling events regulating insulin secretion, we applied a recently developed phosphoproteomics workflow. We quantified the time-resolved phosphoproteome of murine pancreatic cells following their exposure to glucose and in combination with small molecule compounds that promote insulin secretion. The quantitative phosphoproteome of 30,000 sites clustered into three main groups in concordance with the modulation of the three key kinases: PKA, PKC and CK2A. A high-resolution time course revealed key novel regulatory sites, revealing the importance of methyltransferase DNMT3A phosphorylation in the glucose response. Remarkably a significant proportion of these novel regulatory sites is significantly downregulated in diabetic islets. Control of insulin secretion is embedded in an unexpectedly broad and complex range of cellular functions, which are perturbed by drugs in multiple ways. PMID:27841257

  14. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants

    PubMed Central

    Jin, Ying; Andersen, Genevieve; Yorgov, Daniel; Ferrara, Tracey M; Ben, Songtao; Brownson, Kelly M; Holland, Paulene J; Birlea, Stanca A; Siebert, Janet; Hartmann, Anke; Lienert, Anne; van Geel, Nanja; Lambert, Jo; Luiten, Rosalie M; Wolkerstorfer, Albert; van der Veen, JP Wietze; Bennett, Dorothy C; Taïeb, Alain; Ezzedine, Khaled; Kemp, E Helen; Gawkrodger, David J; Weetman, Anthony P; Kõks, Sulev; Prans, Ele; Kingo, Külli; Karelson, Maire; Wallace, Margaret R; McCormack, Wayne T; Overbeck, Andreas; Moretti, Silvia; Colucci, Roberta; Picardo, Mauro; Silverberg, Nanette B; Olsson, Mats; Valle, Yan; Korobko, Igor; Böhm, Markus; Lim, Henry W.; Hamzavi, Iltefat; Zhou, Li; Mi, Qing-Sheng; Fain, Pamela R.; Santorico, Stephanie A; Spritz, Richard A

    2016-01-01

    Vitiligo is an autoimmune disease in which depigmented skin results from destruction of melanocytes1, with epidemiologic association with other autoimmune diseases2. In previous linkage and genome-wide association studies (GWAS1, GWAS2), we identified 27 vitiligo susceptibility loci in patients of European (EUR) ancestry. We carried out a third GWAS (GWAS3) in EUR subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new loci and 7 suggestive loci, most encoding immune and apoptotic regulators, some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some corresponding to eQTL at these loci. Together, the identified genes provide a framework for vitiligo genetic architecture and pathobiology, highlight relationships to other autoimmune diseases and melanoma, and offer potential targets for treatment. PMID:27723757

  15. Specificity of insulin signalling in human skeletal muscle as revealed by small interfering RNA.

    PubMed

    Krook, A; Zierath, J R

    2009-07-01

    Insulin action on metabolically active tissues is a complex process involving positive and negative feedback regulation to control whole body glucose homeostasis. At the cellular level, glucose and lipid metabolism, as well as protein synthesis, are controlled through canonical insulin signalling cascades. The discovery of small interfering RNA (siRNA) allows for the molecular dissection of critical components of the regulation of metabolic and gene regulatory events in insulin-sensitive tissues. The application of siRNA to tissues of human origin allows for the molecular dissection of the mechanism(s) regulating glucose and lipid metabolism. Penetration of the pathways controlling insulin action in human tissue may aid in discovery efforts to develop diabetes prevention and treatment strategies. This review will focus on the use of siRNA to validate critical regulators controlling insulin action in human skeletal muscle, a key organ important for the control of whole body insulin-mediated glucose uptake and metabolism.

  16. Insulin use in NIDDM.

    PubMed

    Genuth, S

    1990-12-01

    The effects of insulin treatment on the pathophysiology of non-insulin-dependent diabetes mellitus (NIDDM) are reviewed herein. Short-term studies indicate variable and partial reduction in excessive hepatic glucose output, decrease in insulin resistance, and enhancement of beta-cell function. These beneficial actions may be due to a decrease in secondary glucose toxicity rather than a direct attack on the primary abnormality. Insulin should be used as initial treatment of new-onset NIDDM in the presence of ketosis, significant diabetes-induced weight loss (despite residual obesity), and severe hyperglycemic symptoms. In diet-failure patients, prospective randomized studies comparing insulin to sulfonylurea treatment show approximately equal glycemic outcomes or a slight advantage to insulin. A key goal of insulin therapy is to normalize the fasting plasma glucose level. In contrast to the conventional use of morning injections of intermediate- and long-acting insulin, preliminary studies suggest potential advantages of administering the same insulins only at bedtime. Obese patients may require several hundred units of insulin daily and still not achieve satisfactory control. In some, addition of a sulfonylurea to insulin may reduce hyperglycemia, the insulin dose, or both. However, long-term benefits from such combination therapy remain to be demonstrated conclusively. Established adverse effects of insulin treatment in NIDDM are hypoglycemia, particularly in the elderly, and weight gain. Self-monitoring of blood glucose can identify patients in whom excessive weight gain is caused by subtle hypoglycemia. Whether insulin causes weight gain by direct effects on appetite or energy utilization remains controversial. A potential adverse effect of insulin has been suggested by epidemiological studies showing associations between hyperinsulinemia or insulin resistance and increased risk for coronary artery disease, stroke, and hypertension. Although potential mechanisms

  17. Functional abolition of carotid body activity restores insulin action and glucose homeostasis in rats: key roles for visceral adipose tissue and the liver.

    PubMed

    Sacramento, Joana F; Ribeiro, Maria J; Rodrigues, Tiago; Olea, Elena; Melo, Bernardete F; Guarino, Maria P; Fonseca-Pinto, Rui; Ferreira, Cristiana R; Coelho, Joana; Obeso, Ana; Seiça, Raquel; Matafome, Paulo; Conde, Sílvia V

    2017-01-01

    We recently described that carotid body (CB) over-activation is involved in the aetiology of insulin resistance and arterial hypertension in animal models of the metabolic syndrome. Additionally, we have demonstrated that CB activity is increased in animal models of insulin resistance, and that carotid sinus nerve (CSN) resection prevents the development of insulin resistance and arterial hypertension induced by high-energy diets. Here, we tested whether the functional abolition of CB by CSN transection would reverse pre-established insulin resistance, dyslipidaemia, obesity, autonomic dysfunction and hypertension in animal models of the metabolic syndrome. The effect of CSN resection on insulin signalling pathways and tissue-specific glucose uptake was evaluated in skeletal muscle, adipose tissue and liver. Experiments were performed in male Wistar rats submitted to two high-energy diets: a high-fat diet, representing a model of insulin resistance, hypertension and obesity, and a high-sucrose diet, representing a lean model of insulin resistance and hypertension. Half of each group was submitted to chronic bilateral resection of the CSN. Age-matched control rats were also used. CSN resection normalised systemic sympathetic nervous system activity and reversed weight gain induced by high-energy diets. It also normalised plasma glucose and insulin levels, insulin sensitivity lipid profile, arterial pressure and endothelial function by improving glucose uptake by the liver and perienteric adipose tissue. We concluded that functional abolition of CB activity restores insulin sensitivity and glucose homeostasis by positively affecting insulin signalling pathways in visceral adipose tissue and liver.

  18. New ways of insulin delivery.

    PubMed

    Heinemann, L

    2011-02-01

    The predominant number of papers published from the middle of 2009 to the middle of 2010 about alternative routes of insulin administration (ARIA) were still about inhaled insulin. Long-term experience with Exubera was the topic of a number of publications that are also of relevance for inhaled insulin in general. The clinical trials performed with AIR insulin by Eli Lilly were published in a supplement issue of one diabetes technology journal and most of these will be presented. A number of other publications (also one in a high ranked journal) about their inhaled insulin were from another company: MannKind. The driving force behind Technosphere insulin (TI) - which is the only one still in clinical development - is Al Mann; he has put a lot of his personal fortune in this development. We will know the opinion of the regulatory authorities about TI in the near future; however, I am personally relatively confident that the Food and Drug Administration will provide TI with market approval. The more critical question for me is: will diabetologists and patients jump on this product once it becomes commercially available? Will it become a commercial success? In view of many negative feelings in the scientific community about inhaled insulin, it might be of help that MannKind publish their studies with TI systematically. Acknowledging being a believer in this route of insulin administration myself, one has to state that Exubera and AIR insulin had not offered profound advantages in terms of pharmacokinetic (PK) and pharmacodynamic (PD) properties in comparison with subcutaneously (SC) applied regular human insulin (RHI) and rapid-acting insulin analogues. The time-action profiles of these inhaled insulins were more or less comparable with that of rapid-acting insulin analogues. This is clearly different with TI which exhibits a strong metabolic effect shortly after application and a rapid decline in the metabolic effect thereafter; probably the duration of action is

  19. Construction of a Comprehensive Protein-Protein Interaction Map for Vitiligo Disease to Identify Key Regulatory Elements: A Systemic Approach.

    PubMed

    Malhotra, Anvita Gupta; Jha, Mohit; Singh, Sudha; Pandey, Khushhali M

    2017-03-13

    Vitiligo is an idiopathic disorder characterized by depigmented patches on the skin due to progressive loss of melanocytes. Several genetic, immunological, and pathophysiological investigations have established vitiligo as a polygenetic disorder with multifactorial etiology. However, no definite model explaining the interplay between these causative factors has been established hitherto. Therefore, we studied the disorder at the system level to identify the key proteins involved by exploring their molecular connectivity in terms of topological parameters. The existing research data helped us in collating 215 proteins involved in vitiligo onset or progression. Interaction study of these proteins leads to a comprehensive vitiligo map with 4845 protein nodes linked with 107,416 edges. Based on centrality measures, a backbone network with 500 nodes has been derived. This has presented a clear overview of the proteins and processes involved and the crosstalk between them. Clustering backbone proteins revealed densely connected regions inferring major molecular interaction modules essential for vitiligo. Finally, a list of top order proteins that play a key role in the disease pathomechanism has been formulated. This includes SUMO2, ESR1, COPS5, MYC, SMAD3, and Cullin proteins. While this list is in fair agreement with the available literature, it also introduces new candidate proteins that can be further explored. A subnetwork of 64 vitiligo core proteins was built by analyzing the backbone and seed protein networks. Our finding suggests that the topology, along with functional clustering, provides a deep insight into the behavior of proteins. This in turn aids in the illustration of disease condition and discovery of significant proteins involved in vitiligo.

  20. BDC12-4.1 T-cell receptor transgenic insulin-specific CD4 T cells are resistant to in vitro differentiation into functional Foxp3+ T regulatory cells.

    PubMed

    Sarikonda, Ghanashyam; Fousteri, Georgia; Sachithanantham, Sowbarnika; Miller, Jacqueline F; Dave, Amy; Juntti, Therese; Coppieters, Ken T; von Herrath, Matthias

    2014-01-01

    The infusion of ex vivo-expanded autologous T regulatory (Treg) cells is potentially an effective immunotherapeutic strategy against graft-versus-host disease (GvHD) and several autoimmune diseases, such as type 1 diabetes (T1D). However, in vitro differentiation of antigen-specific T cells into functional and stable Treg (iTreg) cells has proved challenging. As insulin is the major autoantigen leading to T1D, we tested the capacity of insulin-specific T-cell receptor (TCR) transgenic CD4(+) T cells of the BDC12-4.1 clone to convert into Foxp3(+) iTreg cells. We found that in vitro polarization toward Foxp3(+) iTreg was effective with a majority (>70%) of expanded cells expressing Foxp3. However, adoptive transfer of Foxp3(+) BDC12-4.1 cells did not prevent diabetes onset in immunocompetent NOD mice. Thus, in vitro polarization of insulin-specific BDC12-4.1 TCR transgenic CD4(+) T cells toward Foxp3+ cells did not provide dominant tolerance in recipient mice. These results highlight the disconnect between an in vitro acquired Foxp3(+) cell phenotype and its associated in vivo regulatory potential.

  1. Insulin and Insulin Resistance

    PubMed Central

    2005-01-01

    As obesity and diabetes reach epidemic proportions in the developed world, the role of insulin resistance and its consequences are gaining prominence. Understanding the role of insulin in wide-ranging physiological processes and the influences on its synthesis and secretion, alongside its actions from the molecular to the whole body level, has significant implications for much chronic disease seen in Westernised populations today. This review provides an overview of insulin, its history, structure, synthesis, secretion, actions and interactions followed by a discussion of insulin resistance and its associated clinical manifestations. Specific areas of focus include the actions of insulin and manifestations of insulin resistance in specific organs and tissues, physiological, environmental and pharmacological influences on insulin action and insulin resistance as well as clinical syndromes associated with insulin resistance. Clinical and functional measures of insulin resistance are also covered. Despite our incomplete understanding of the complex biological mechanisms of insulin action and insulin resistance, we need to consider the dramatic social changes of the past century with respect to physical activity, diet, work, socialisation and sleep patterns. Rapid globalisation, urbanisation and industrialisation have spawned epidemics of obesity, diabetes and their attendant co-morbidities, as physical inactivity and dietary imbalance unmask latent predisposing genetic traits. PMID:16278749

  2. Conserved insulin signaling in the regulation of oocyte growth, development, and maturation.

    PubMed

    Das, Debabrata; Arur, Swathi

    2017-04-05

    Insulin signaling regulates various aspects of physiology, such as glucose homeostasis and aging, and is a key determinant of female reproduction in metazoans. That insulin signaling is crucial for female reproductive health is clear from clinical data linking hyperinsulinemic and hypoinsulinemic condition with certain types of ovarian dysfunction, such as altered steroidogenesis, polycystic ovary syndrome, and infertility. Thus, understanding the signaling mechanisms that underlie the control of insulin-mediated ovarian development is important for the accurate diagnosis of and intervention for female infertility. Studies of invertebrate and vertebrate model systems have revealed the molecular determinants that transduce insulin signaling as well as which biological processes are regulated by the insulin-signaling pathway. The molecular determinants of the insulin-signaling pathway, from the insulin receptor to its downstream signaling components, are structurally and functionally conserved across evolution, from worms to mammals - yet, physiological differences in signaling still exist. Insulin signaling acts cooperatively with gonadotropins in mammals and lower vertebrates to mediate various aspects of ovarian development, mainly owing to evolution of the endocrine system in vertebrates. In contrast, insulin signaling in Drosophila and Caenorhabditis elegans directly regulates oocyte growth and maturation. In this review, we compare and contrast insulin-mediated regulation of ovarian functions in mammals, lower vertebrates, C. elegans, and Drosophila, and highlight conserved signaling pathways and regulatory mechanisms in general while illustrating insulin's unique role in specific reproductive processes. This article is protected by copyright. All rights reserved.

  3. A Single Host-Derived Glycan Impacts Key Regulatory Nodes of Symbiont Metabolism in a Coevolved Mutualism

    PubMed Central

    Pan, Min; Schwartzman, Julia A.; Dunn, Anne K.; Lu, Zuhong

    2015-01-01

    ABSTRACT Most animal-microbe mutualistic associations are characterized by nutrient exchange between the partners. When the host provides the nutrients, it can gain the capacity to shape its microbial community, control the stability of the interaction, and promote its health and fitness. Using the bioluminescent squid-vibrio model, we demonstrate how a single host-derived glycan, chitin, regulates the metabolism of Vibrio fischeri at key points in the development and maintenance of the symbiosis. We first characterized the pathways for catabolism of chitin sugars by V. fischeri, demonstrating that the Ccr-dependent phosphoenolpyruvate-pyruvate phosphotransferase system (PTS) prioritizes transport of these sugars in V. fischeri by blocking the uptake of non-PTS carbohydrates, such as glycerol. Next, we found that PTS transport of chitin sugars into the bacterium shifted acetate homeostasis toward a net excretion of acetate and was sufficient to override an activation of the acetate switch by AinS-dependent quorum sensing. Finally, we showed that catabolism of chitin sugars decreases the rate of cell-specific oxygen consumption. Collectively, these three metabolic functions define a physiological shift that favors fermentative growth on chitin sugars and may support optimal symbiont luminescence, the functional basis of the squid-vibrio mutualism. PMID:26173698

  4. Arginine 26 and aspartic acid 69 of the regulatory subunit are key residues of subunits interaction of acetohydroxyacid synthase isozyme III from E. coli.

    PubMed

    Zhao, Yuefang; Wen, Xin; Niu, Congwei; Xi, Zhen

    2012-11-05

    Acetohydroxyacid synthase (AHAS), which catalyzes the first step in the biosynthesis of branched-chain amino acids, is composed of catalytic and regulatory subunits. The enzyme exhibits full activity only when the regulatory subunit (RSU) binds to the catalytic subunit (CSU). However, the crystal structure of the holoenzyme has not been reported yet, and the molecular interaction between the CSU and RSU is also unknown. Herein, we introduced a global-surface, site-directed labeling scanning method to determine the potential interaction region of the RSU. This approach relies on the insertion of a bulky fluorescent probe at the designated site on the surface of the RSU to cause a dramatic change in holoenzyme activity by perturbing subunit interaction. Then, the key amino acid residues in the potential interaction regions were identified by site-directed mutagenesis. Compared to the wild-type, the single-point mutants R26A and D69A showed 54 and 64 % activity, respectively, whereas the double mutant (R26A+D69A) gave 14 %, thus suggesting that residues Arg26 and Asp69 are the key residues of subunit interaction with cooperative action. Additionally, the results of GST pull-down assays and pH-dependence experiments suggested that polar interaction is the main force for subunits interaction. A plausible protein-protein interaction model of the holoenzyme of Escherichia coli AHAS III is proposed, based on the mutagenesis and protein docking studies. The protocol established here should be useful for the identification of the molecular interactions between proteins. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Translating PrEP effectiveness into public health impact: key considerations for decision-makers on cost-effectiveness, price, regulatory issues, distributive justice and advocacy for access

    PubMed Central

    Hankins, Catherine; Macklin, Ruth; Warren, Mitchell

    2015-01-01

    Introduction The extraordinary feat of proving the effectiveness of oral pre-exposure prophylaxis (PrEP) in clinical trials in different populations in a variety of settings may prove to have been easier than ensuring it is used well. Decision-makers must make difficult choices to realize the promise of antiretroviral prophylaxis for their countries. This paper outlines key economic, regulatory and distributive justice issues that must be addressed for effective and acceptable PrEP implementation. Discussion In considering the role that PrEP can play in combination prevention programmes, decision-makers must determine who can benefit most from PrEP, how PrEP can be provided safely and efficiently, and what kind of health system support will ensure successful implementation. To do this, they need contextualized information on disease burden by population, analyses of how PrEP services might best be delivered, and projections of the human resource and infrastructure requirements for each potential delivery model. There are cost considerations, varying cost-effectiveness results and regulatory challenges. The principles of ethics can inform thorny discussions about who should be prioritized for oral PrEP and how best to introduce it fairly. We describe the cost-effectiveness of PrEP in different populations at higher risk of HIV exposure, its price in low- and middle-income countries, and the current regulatory situation. We explore the principles of ethics that can inform resource allocation decision-making about PrEP anchored in distributive justice, at a time when universal access to antiretroviral treatment remains to be assured. We then highlight the role of advocacy in moving the PrEP agenda forward. Conclusions The time is ripe now for decisions about whether, how and for whom PrEP should be introduced into a country's HIV response. It has the potential to contribute significantly to high impact HIV prevention if it is tailored to those who can most benefit

  6. Targeted sequencing for high-resolution evolutionary analyses following genome duplication in salmonid fish: Proof of concept for key components of the insulin-like growth factor axis.

    PubMed

    Lappin, Fiona M; Shaw, Rebecca L; Macqueen, Daniel J

    2016-12-01

    High-throughput sequencing has revolutionised comparative and evolutionary genome biology. It has now become relatively commonplace to generate multiple genomes and/or transcriptomes to characterize the evolution of large taxonomic groups of interest. Nevertheless, such efforts may be unsuited to some research questions or remain beyond the scope of some research groups. Here we show that targeted high-throughput sequencing offers a viable alternative to study genome evolution across a vertebrate family of great scientific interest. Specifically, we exploited sequence capture and Illumina sequencing to characterize the evolution of key components from the insulin-like growth (IGF) signalling axis of salmonid fish at unprecedented phylogenetic resolution. The IGF axis represents a central governor of vertebrate growth and its core components were expanded by whole genome duplication in the salmonid ancestor ~95Ma. Using RNA baits synthesised to genes encoding the complete family of IGF binding proteins (IGFBP) and an IGF hormone (IGF2), we captured, sequenced and assembled orthologous and paralogous exons from species representing all ten salmonid genera. This approach generated 299 novel sequences, most as complete or near-complete protein-coding sequences. Phylogenetic analyses confirmed congruent evolutionary histories for all nineteen recognized salmonid IGFBP family members and identified novel salmonid-specific IGF2 paralogues. Moreover, we reconstructed the evolution of duplicated IGF axis paralogues across a replete salmonid phylogeny, revealing complex historic selection regimes - both ancestral to salmonids and lineage-restricted - that frequently involved asymmetric paralogue divergence under positive and/or relaxed purifying selection. Our findings add to an emerging literature highlighting diverse applications for targeted sequencing in comparative-evolutionary genomics. We also set out a viable approach to obtain large sets of nuclear genes for any

  7. Systems biology study of transcriptional and post-transcriptional co-regulatory network sheds light on key regulators involved in important biological processes in Citrus sinensis.

    PubMed

    Khodadadi, Ehsan; Mehrabi, Ali Ashraf; Najafi, Ali; Rastad, Saber; Masoudi-Nejad, Ali

    2017-04-01

    Transcriptional and post-transcriptional regulators including transcription regulator, transcription factor and miRNA are the main endogenous molecular elements which control complex cellular mechanisms such as development, growth and response to biotic and abiotic stresses in a coordinated manner in plants. Utilizing the most recent information on such relationships in a plant species, obtained from high-throughput experimental technologies and advanced computational tools, we can reconstruct its co-regulatory network which consequently sheds light on key regulators involved in its important biological processes. In this article, combined systems biology approaches such as mining the literatures, various databases and network reconstruction, analysis, and visualization tools were employed to infer and visualize the coregulatory relationships between miRNAs and transcriptional regulators in Citrus sinensis. Using computationally and experimentally verified miRNA-target interactions and constructed co-expression networks on array-based data, 10 coregulatory networks and 10 corresponding subgraphs include FFL motifs were obtained for 10 distinct tissues/conditions. Then PPI subnetworks were extracted for transcripts/genes included in mentioned subgraphs in order to the functional analysis of extracted coregulatory circuits. These proposed coregulatory connections shed light on precisely identifying C. sinensis metabolic pathways key switches, which are demanded for ultimate goals such as genome editing.

  8. Insulin Basics

    MedlinePlus

    ... Text Size: A A A Listen En Español Insulin Basics There are different types of insulin depending ... you may be experiencing a reaction. Types of Insulin Rapid-acting insulin , begins to work about 15 ...

  9. Insulin Secretagogues

    MedlinePlus

    ... Your Body in Balance › Insulin Secretagogues Fact Sheet Insulin Secretagogues March, 2012 Download PDFs English Espanol Editors ... medicines can help you stay healthy. What are insulin secretagogues? Insulin secretagogues (pronounced seh-KREET-ah-gogs) ...

  10. Berberine-improved visceral white adipose tissue insulin resistance associated with altered sterol regulatory element-binding proteins, liver x receptors, and peroxisome proliferator-activated receptors transcriptional programs in diabetic hamsters.

    PubMed

    Li, Guo-Sheng; Liu, Xu-Han; Zhu, Hua; Huang, Lan; Liu, Ya-Li; Ma, Chun-Mei; Qin, Chuan

    2011-01-01

    The diabetic "lipotoxicity" hypothesis presents that fat-induced visceral white adipose tissue insulin resistance plays a central role in the pathogenesis of type 2 diabetes. Berberine, a hypolipidemic agent, has been reported to have antidiabetic activities. The molecular mechanisms for this property are, however, not well clarified. Therefore in this study type 2 diabetic hamsters were induced by high-fat diet with low-dose streptozotocin. Then, we investigated the gene expression alterations and explored the molecular mechanisms underlying the therapeutic effect of berberine on fat-induced visceral white adipose tissue insulin resistance in diabetic hamsters by microarray analysis followed by real-time reverse transcription-polymerase chain reaction (RT-PCR) confirmation. Type 2 diabetic hamsters exhibited hyperglycemia and relative hyperinsulinemia, glucose intolerance, insulin resistance, intra-adipocyte lipid accumulation, significant increase in body weight and visceral white adipose tissue weight, abnormal serum adipokines levels, and deleterious dyslipidemia. Furthermore, they had increased sterol regulatory element-binding proteins (SREBPs) expression and decreased liver X receptors (LXRs) and peroxisome proliferator-activated receptors (PPARs) expression in visceral white adipose tissue. After 9-week berberine treatment, fat-induced insulin resistance and diabetic phenotype in type 2 diabetic hamsters were significantly improved. Compared with diabetic hamsters, expression of LXRs and PPARs significantly increased and SREBPs significantly decreased in visceral white adipose tissue from berberine-treated diabetic hamsters. These results suggest that altered visceral white adipose tissue LXRs, PPARs, and SREBPs transcriptional programs are involved in the therapeutic mechanisms of berberine on fat-induced visceral white adipose tissue insulin resistance in type 2 diabetic hamsters.

  11. Insulin Directly Regulates Steroidogenesis via Induction of the Orphan Nuclear Receptor DAX-1 in Testicular Leydig Cells*

    PubMed Central

    Ahn, Seung Won; Gang, Gil-Tae; Kim, Yong Deuk; Ahn, Ryun-Sup; Harris, Robert A.; Lee, Chul-Ho; Choi, Hueng-Sik

    2013-01-01

    Testosterone level is low in insulin-resistant type 2 diabetes. Whether this is due to negative effects of high level of insulin on the testes caused by insulin resistance has not been studied in detail. In this study, we found that insulin directly binds to insulin receptors in Leydig cell membranes and activates phospho-insulin receptor-β (phospho-IR-β), phospho-IRS1, and phospho-AKT, leading to up-regulation of DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1) gene expression in the MA-10 mouse Leydig cell line. Insulin also inhibits cAMP-induced and liver receptor homolog-1 (LRH-1)-induced steroidogenic enzyme gene expression and steroidogenesis. In contrast, knockdown of DAX-1 reversed insulin-mediated inhibition of steroidogenesis. Whether insulin directly represses steroidogenesis through regulation of steroidogenic enzyme gene expression was assessed in insulin-injected mouse models and high fat diet-induced obesity. In insulin-injected mouse models, insulin receptor signal pathway was activated and subsequently inhibited steroidogenesis via induction of DAX-1 without significant change of luteinizing hormone or FSH levels. Likewise, the levels of steroidogenic enzyme gene expression and steroidogenesis were low, but interestingly, the level of DAX-1 was high in the testes of high fat diet-fed mice. These results represent a novel regulatory mechanism of steroidogenesis in Leydig cells. Insulin-mediated induction of DAX-1 in Leydig cells of testis may be a key regulatory step of serum sex hormone level in insulin-resistant states. PMID:23589295

  12. Insulin directly regulates steroidogenesis via induction of the orphan nuclear receptor DAX-1 in testicular Leydig cells.

    PubMed

    Ahn, Seung Won; Gang, Gil-Tae; Kim, Yong Deuk; Ahn, Ryun-Sup; Harris, Robert A; Lee, Chul-Ho; Choi, Hueng-Sik

    2013-05-31

    Testosterone level is low in insulin-resistant type 2 diabetes. Whether this is due to negative effects of high level of insulin on the testes caused by insulin resistance has not been studied in detail. In this study, we found that insulin directly binds to insulin receptors in Leydig cell membranes and activates phospho-insulin receptor-β (phospho-IR-β), phospho-IRS1, and phospho-AKT, leading to up-regulation of DAX-1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1) gene expression in the MA-10 mouse Leydig cell line. Insulin also inhibits cAMP-induced and liver receptor homolog-1 (LRH-1)-induced steroidogenic enzyme gene expression and steroidogenesis. In contrast, knockdown of DAX-1 reversed insulin-mediated inhibition of steroidogenesis. Whether insulin directly represses steroidogenesis through regulation of steroidogenic enzyme gene expression was assessed in insulin-injected mouse models and high fat diet-induced obesity. In insulin-injected mouse models, insulin receptor signal pathway was activated and subsequently inhibited steroidogenesis via induction of DAX-1 without significant change of luteinizing hormone or FSH levels. Likewise, the levels of steroidogenic enzyme gene expression and steroidogenesis were low, but interestingly, the level of DAX-1 was high in the testes of high fat diet-fed mice. These results represent a novel regulatory mechanism of steroidogenesis in Leydig cells. Insulin-mediated induction of DAX-1 in Leydig cells of testis may be a key regulatory step of serum sex hormone level in insulin-resistant states.

  13. Introduction of biosimilar insulins in Europe.

    PubMed

    Davies, M; Dahl, D; Heise, T; Kiljanski, J; Mathieu, C

    2017-10-01

    Regulatory approval of the first biosimilar insulin in Europe, LY2963016 insulin glargine (Abasaglar(®) ), in 2014 expanded the treatment options available to people with diabetes. As biosimilar insulin products come to market, it is important to recognize that insulin products are biologicals manufactured through complex biotechnology processes, and thus biosimilar insulins cannot be considered identical to their reference products. Strict regulatory guidelines adopted by authorities in Europe, the USA and some other countries help to ensure that efficacy and safety profiles of biosimilar insulins are not meaningfully different from those of the reference products, preventing entry of biological compounds not meeting quality standards and potentially affecting people's glycaemic outcomes. This review explains the concept of biosimilar medicines and outlines regulatory requirements for registration of biosimilar insulins in Europe, which is illustrated by the successful development of LY2963016 insulin glargine and MK-1293 insulin glargine (Lusduna(®) ). Preclinical and clinical comparative studies of the biosimilar insulin glargine programmes include in vitro bioassays for insulin and insulin-like growth factor 1 receptor binding, assessment of in vitro biological activity, evaluation of pharmacokinetic/pharmacodynamic profiles in phase I studies and assessment of long-term safety and efficacy in phase III studies. The emergence of biosimilar insulins may help broaden access to modern insulins, increase individualized treatment options and reduce costs of insulin therapy. © 2017 The Authors. Diabetic Medicine published by John Wiley & Sons Ltd on behalf of Diabetes UK.

  14. T helper 2 and regulatory T-cell cytokine production by mast cells: a key factor in the pathogenesis of IgG4-related disease.

    PubMed

    Takeuchi, Mai; Sato, Yasuharu; Ohno, Kyotaro; Tanaka, Satoshi; Takata, Katsuyoshi; Gion, Yuka; Orita, Yorihisa; Ito, Toshihiro; Tachibana, Tomoyasu; Yoshino, Tadashi

    2014-08-01

    IgG4-related disease is a systemic disorder with unique clinicopathological features and uncertain etiological features and is frequently related to allergic disease. T helper 2 and regulatory T-cell cytokines have been reported to be upregulated in the affected tissues; thus, the production of these cytokines by T helper 2 and regulatory T cells has been suggested as an important factor in the pathogenesis of IgG4-related disease. However, it is not yet clear which cells produce these cytokines in IgG4-related disease, and some aspects of the disorder cannot be completely explained by T-cell-related processes. To address this, we analyzed paraffin-embedded sections of tissues from nine cases of IgG4-related submandibular gland disease, five cases of submandibular sialolithiasis, and six cases of normal submandibular gland in order to identify potential key players in the pathogenesis of IgG4-related disease. Real-time polymerase chain reaction analysis confirmed the significant upregulation of interleukin (IL)4, IL10, and transforming growth factor beta 1 (TGFβ1) in IgG4-related disease. Interestingly, immunohistochemical studies indicated the presence of mast cells expressing these cytokines in diseased tissues. In addition, dual immunofluorescence assays identified cells that were double-positive for each cytokine and for KIT, which is expressed by mast cells. In contrast, the distribution of T cells did not correlate with cytokine distribution in affected tissues. We also found that the mast cells were strongly positive for IgE. This observation supports the hypothesis that mast cells are involved in IgG4-related disease, as mast cells are known to be closely related to allergic reactions and are activated in the presence of elevated non-specific IgE levels. In conclusion, our results indicate that mast cells produce T helper 2 and regulatory T-cell cytokines in tissues affected by IgG4-related disease and possibly have an important role in disease

  15. Dissociation between changes in cytoplasmic free Ca2+ concentration and insulin secretion as evidenced from measurements in mouse single pancreatic islets.

    PubMed Central

    Zaitsev, S V; Efendić, S; Arkhammar, P; Bertorello, A M; Berggren, P O

    1995-01-01

    Simultaneous measurements of cytosolic free Ca2+ concentration and insulin release, in mouse single pancreatic islets, revealed a direct correlation only initially after stimulation with glucose or K+. Later, there is an apparent dissociation between these two parameters, with translocation of alpha and epsilon isoenzymes of protein kinase C to membranes and simultaneous desensitization of insulin release in response to glucose. Recovery of insulin release, without any concomitant changes in cytosolic free Ca2+ concentration, after addition of phorbol 12-myristate 13-acetate, okadaic acid, and forskolin supports the notion that the desensitization process is accounted for by dephosphorylation of key regulatory sites of the insulin exocytotic machinery. Images Fig. 3 PMID:7568203

  16. Catecholamines are the key for explaining the biological relevance of insulin-melatonin antagonisms in type 1 and type 2 diabetes.

    PubMed

    Peschke, E; Hofmann, K; Pönicke, K; Wedekind, D; Mühlbauer, E

    2012-05-01

    In this paper, we analyze the biological relevance of melatonin in diabetogenesis. As has recently been demonstrated, melatonin decreases insulin secretion via specific melatonin receptor isoforms (MT1 and MT2) in the pancreatic β-cells. In addition, type 2 diabetic rats, as well as patients, exhibit decreased melatonin levels, whereas the levels in type 1 diabetic rats are increased. The latter effects were normalized by insulin substitution, which signifies that a specific receptor-mediated insulin-melatonin antagonism exists. These results are in agreement with several recent genome-wide association studies, which have identified a number of single nucleotide polymorphisms in the MTNR1B gene, encoding the MT2 receptor, that were closely associated with a higher prognostic risk of developing type 2 diabetes. We hypothesize that catecholamines, which decrease insulin levels and stimulate melatonin synthesis, control insulin-melatonin interactions. The present results support this assertion as we show that catecholamines are increased in type 1 but are diminished in type 2 diabetes. Another important line of inquiry involves the fact that melatonin protects the β-cells against functional overcharge and, consequently, hinders the development of type 2 diabetes. In this context, it is striking that at advanced ages, melatonin levels are reduced and the incidence of type 2 diabetes is increased. Thus, melatonin appears to have a protective biological role. Here, we strongly repudiate misconceptions, resulting from observations that melatonin reduces the plasma insulin level, that the blockage of melatonin receptors would be of benefit in the treatment of type 2 diabetes.

  17. An Integrative Approach for Mapping Differentially Expressed Genes and Network Components Using Novel Parameters to Elucidate Key Regulatory Genes in Colorectal Cancer.

    PubMed

    Sehgal, Manika; Gupta, Rajinder; Moussa, Ahmed; Singh, Tiratha Raj

    2015-01-01

    For examining the intricate biological processes concerned with colorectal cancer (CRC), a systems biology approach integrating several biological components and other influencing factors is essential to understand. We performed a comprehensive system level analysis for CRC which assisted in unravelling crucial network components and many regulatory elements through a coordinated view. Using this integrative approach, the perceptive of complexity hidden in a biological phenomenon is extensively simplified. The microarray analyses facilitated differential expression of 631 significant genes employed in the progression of disease and supplied interesting associated up and down regulated genes like jun, fos and mapk1. The transcriptional regulation of these genes was deliberated widely by examining transcription factors such as hnf4, nr2f1, znf219 and dr1 which directly influence the expression. Further, interactions of these genes/proteins were evaluated and crucial network motifs were detected to associate with the pathophysiology of CRC. The available standard statistical parameters such as z-score, p-value and significance profile were explored for the identification of key signatures from CRC pathway whereas a few novel parameters representing over-represented structures were also designed in the study. The applied approach revealed 5 key genes i.e. kras, araf, pik3r5, ralgds and akt3 via our novel designed parameters illustrating high statistical significance. These novel parameters can assist in scrutinizing candidate markers for diseases having known biological pathways. Further, investigating and targeting these proposed genes for experimental validations, instead being spellbound by the complicated pathway will certainly endow valuable insight in a well-timed systematic understanding of CRC.

  18. Role of insulin, insulin-like growth factor-1, hyperglycaemic food and milk consumption in the pathogenesis of acne vulgaris.

    PubMed

    Melnik, Bodo C; Schmitz, Gerd

    2009-10-01

    It is the purpose of this viewpoint article to delineate the regulatory network of growth hormone (GH), insulin, and insulin-like growth factor-1 (IGF-1) signalling during puberty, associated hormonal changes in adrenal and gonadal androgen metabolism, and the impact of dietary factors and smoking involved in the pathogenesis of acne. The key regulator IGF-1 rises during puberty by the action of increased GH secretion and correlates well with the clinical course of acne. In acne patients, associations between serum levels of IGF-1, dehydroepiandrosterone sulphate, dihydrotestosterone, acne lesion counts and facial sebum secretion rate have been reported. IGF-1 stimulates 5alpha-reductase, adrenal and gonadal androgen synthesis, androgen receptor signal transduction, sebocyte proliferation and lipogenesis. Milk consumption results in a significant increase in insulin and IGF-1 serum levels comparable with high glycaemic food. Insulin induces hepatic IGF-1 secretion, and both hormones amplify the stimulatory effect of GH on sebocytes and augment mitogenic downstream signalling pathways of insulin receptors, IGF-1 receptor and fibroblast growth factor receptor-2b. Acne is proposed to be an IGF-1-mediated disease, modified by diets and smoking increasing insulin/IGF1-signalling. Metformin treatment, and diets low in milk protein content and glycaemic index reduce increased IGF-1 signalling. Persistent acne in adulthood with high IGF-1 levels may be considered as an indicator for increased risk of cancer, which may require appropriate dietary intervention as well as treatment with insulin-sensitizing agents.

  19. A mitochondrial kinase complex is essential to mediate an ERK1/2-dependent phosphorylation of a key regulatory protein in steroid biosynthesis.

    PubMed

    Poderoso, Cecilia; Converso, Daniela P; Maloberti, Paula; Duarte, Alejandra; Neuman, Isabel; Galli, Soledad; Cornejo Maciel, Fabiana; Paz, Cristina; Carreras, María C; Poderoso, Juan J; Podestá, Ernesto J

    2008-01-16

    ERK1/2 is known to be involved in hormone-stimulated steroid synthesis, but its exact roles and the underlying mechanisms remain elusive. Both ERK1/2 phosphorylation and steroidogenesis may be triggered by cAMP/cAMP-dependent protein kinase (PKA)-dependent and-independent mechanisms; however, ERK1/2 activation by cAMP results in a maximal steroidogenic rate, whereas canonical activation by epidermal growth factor (EGF) does not. We demonstrate herein by Western blot analysis and confocal studies that temporal mitochondrial ERK1/2 activation is obligatory for PKA-mediated steroidogenesis in the Leydig-transformed MA-10 cell line. PKA activity leads to the phosphorylation of a constitutive mitochondrial MEK1/2 pool with a lower effect in cytosolic MEKs, while EGF allows predominant cytosolic MEK activation and nuclear pERK1/2 localization. These results would explain why PKA favors a more durable ERK1/2 activation in mitochondria than does EGF. By means of ex vivo experiments, we showed that mitochondrial maximal steroidogenesis occurred as a result of the mutual action of steroidogenic acute regulatory (StAR) protein -a key regulatory component in steroid biosynthesis-, active ERK1/2 and PKA. Our results indicate that there is an interaction between mitochondrial StAR and ERK1/2, involving a D domain with sequential basic-hydrophobic motifs similar to ERK substrates. As a result of this binding and only in the presence of cholesterol, ERK1/2 phosphorylates StAR at Ser(232). Directed mutagenesis of Ser(232) to a non-phosphorylable amino acid such as Ala (StAR S232A) inhibited in vitro StAR phosphorylation by active ERK1/2. Transient transfection of MA-10 cells with StAR S232A markedly reduced the yield of progesterone production. In summary, here we show that StAR is a novel substrate of ERK1/2, and that mitochondrial ERK1/2 is part of a multimeric protein kinase complex that regulates cholesterol transport. The role of MAPKs in mitochondrial function is underlined.

  20. Biosimilar Insulins: Basic Considerations.

    PubMed

    Heinemann, Lutz; Hompesch, Marcus

    2014-01-01

    Until now most of the insulin used in developed countries has been manufactured and distributed by a small number of multinational companies. Beyond the established insulin manufacturers, a number of new players have developed insulin manufacturing capacities based on modern biotechnological methods. Because the patents for many of the approved insulin formulations have expired or are going to expire soon, these not yet established companies are increasingly interested in seeking market approval for their insulin products as biosimilar insulins (BI) in highly regulated markets like the EU and the United States. Differences in the manufacturing process (none of the insulin manufacturing procedures are 100% identical) can lead to insulins that to some extent may differ from the originator insulin. The key questions are if subtle differences in the structure of the insulins, purity, and so on are clinically relevant and may result in different biological effects. The aim of this article is to introduce and discuss basic aspects that may be of relevance with regard to BI. © 2014 Diabetes Technology Society.

  1. Insulin Test

    MedlinePlus

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Insulin Share this page: Was this page helpful? Also known as: Fasting Insulin Formal name: Insulin, serum Related tests: C-peptide , ...

  2. Cadmium-induced malignant transformation of rat liver cells: Potential key role and regulatory mechanism of altered apolipoprotein E expression in enhanced invasiveness.

    PubMed

    Suzuki, Masayo; Takeda, Shuso; Teraoka-Nishitani, Noriko; Yamagata, Akane; Tanaka, Takahiro; Sasaki, Marika; Yasuda, Natsuki; Oda, Makiko; Okano, Tatsuji; Yamahira, Kazuhiro; Nakamura, Yuta; Kobayashi, Takanobu; Kino, Katsuhito; Miyazawa, Hiroshi; Waalkes, Michael P; Takiguchi, Masufumi

    2017-05-01

    Cadmium is a transition metal that is classified as human carcinogen by the International Agency for Research on Cancer (IARC) with multiple target sites. Many studies using various model systems provide evidence of cadmium-induced malignancy formation in vivo or malignant cell transformation in vitro. Nonetheless, further studies are needed to completely understand the mechanisms of cadmium carcinogenicity. Our prior studies have utilized a rat liver epithelial cell line (TRL 1215) as a model for cadmium-induced malignant transformation. In the present study, we focused on the molecular mechanisms of this malignant transformation, especially with regard to hyper-invasiveness stimulated by cadmium transformation. By performing a series of biochemical analyses on cadmium transformed cells, it was determined that cadmium had significantly down-regulated the expression of apolipoprotein E (ApoE). ApoE was recently established as a suppressor of cell invasion. A key factor in the suppression of ApoE by cadmium appeared to be that the metal evoked a 5-aza-2'-deoxycytidine-sensitive hypermethylation of the regulatory region of ApoE, coupled with interference of the action of liver X receptor α (LXRα), a transcriptional regulator for ApoE. Furthermore, the expression of LXRα itself was suppressed by cadmium-mediated epigenetic modification. Re-expression of ApoE clearly abrogated the cell invasion stimulated by cadmium-induced malignant transformation. Together, the current results suggest that the cadmium-mediated enhanced cell invasion is linked to down-regulation of ApoE during malignant transformation these liver cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Nε-(carboxymethyl)lysine-receptor for advanced glycation end product axis is a key modulator of obesity-induced dysregulation of adipokine expression and insulin resistance.

    PubMed

    Gaens, Katrien H J; Goossens, Gijs H; Niessen, Petra M; van Greevenbroek, Marleen M; van der Kallen, Carla J H; Niessen, Hans W; Rensen, Sander S; Buurman, Wim A; Greve, Jan Willem M; Blaak, Ellen E; van Zandvoort, Marc A; Bierhaus, Angelika; Stehouwer, Coen D A; Schalkwijk, Casper G

    2014-06-01

    Dysregulation of inflammatory adipokines by the adipose tissue plays an important role in obesity-associated insulin resistance. Pathways leading to this dysregulation remain largely unknown. We hypothesized that the receptor for advanced glycation end products (RAGE) and the ligand N(ε)-(carboxymethyl)lysine (CML) are increased in adipose tissue and, moreover, that activation of the CML-RAGE axis plays an important role in obesity-associated inflammation and insulin resistance. In this study, we observed a strong CML accumulation and increased expression of RAGE in adipose tissue in obesity. We confirmed in cultured human preadipocytes that adipogenesis is associated with increased levels of CML and RAGE. Moreover, CML induced a dysregulation of inflammatory adipokines in adipocytes via a RAGE-dependent pathway. To test the role of RAGE in obesity-associated inflammation further, we constructed an obese mouse model that is deficient for RAGE (ie, RAGE(-/-)/Leptr(Db-/-) mice). RAGE(-/-)/Leptr(Db-/-) mice displayed an improved inflammatory profile and glucose homeostasis when compared with RAGE(+/+)/Leptr(Db-/-) mice. In addition, CML was trapped in adipose tissue in RAGE(+/+)/Leptr(Db-/-) mice but not in RAGE(-/-)/Leptr(Db-/-). RAGE-mediated trapping in adipose tissue provides a mechanism underlying CML accumulation in adipose tissue and explaining decreased CML plasma levels in obese subjects. Decreased CML plasma levels in obese individuals were strongly associated with insulin resistance. RAGE-mediated CML accumulation in adipose tissue and the activation of the CML-RAGE axis are important mechanisms involved in the dysregulation of adipokines in obesity, thereby contributing to the development of obesity-associated insulin resistance. © 2014 American Heart Association, Inc.

  4. Valosin-containing protein is a key mediator between autophagic cell death and apoptosis in adult hippocampal neural stem cells following insulin withdrawal.

    PubMed

    Yeo, Bo Kyoung; Hong, Caroline Jeeyeon; Chung, Kyung Min; Woo, Hanwoong; Kim, Kyungchan; Jung, Seonghee; Kim, Eun-Kyoung; Yu, Seong-Woon

    2016-03-22

    Programmed cell death (PCD) plays essential roles in the regulation of survival and function of neural stem cells (NSCs). Abnormal regulation of this process is associated with developmental and degenerative neuronal disorders. However, the mechanisms underlying the PCD of NSCs remain largely unknown. Understanding the mechanisms of PCD in NSCs is crucial for exploring therapeutic strategies for the treatment of neurodegenerative diseases. We have previously reported that adult rat hippocampal neural stem (HCN) cells undergo autophagic cell death (ACD) following insulin withdrawal without apoptotic signs despite their normal apoptotic capabilities. It is unknown how interconnection between ACD and apoptosis is mediated in HCN cells. Valosin-containing protein (VCP) is known to be essential for autophagosome maturation in mammalian cells. VCP is abundantly expressed in HCN cells compared to hippocampal tissue and neurons. Pharmacological and genetic inhibition of VCP at basal state in the presence of insulin modestly impaired autophagic flux, consistent with its known role in autophagosome maturation. Of note, VCP inaction in insulin-deprived HCN cells significantly decreased ACD and down-regulated autophagy initiation signals with robust induction of apoptosis. Overall autophagy level was also substantially reduced, suggesting the novel roles of VCP at initial step of autophagy. Taken together, these data demonstrate that VCP may play an essential role in the initiation of autophagy and mediation of crosstalk between ACD and apoptosis in HCN cells when autophagy level is high upon insulin withdrawal. This is the first report on the role of VCP in regulation of NSC cell death. Elucidating the mechanism by which VCP regulates the crosstalk of ACD and apoptosis will contribute to understanding the molecular mechanism of PCD in NSCs.

  5. Novel methodology to determine the accuracy of the OmniPod insulin pump: a key component of the artificial pancreas system.

    PubMed

    Zisser, Howard; Breton, Marc; Dassau, Eyal; Markova, Kateryna; Bevier, Wendy; Seborg, Dale; Kovatchev, Boris

    2011-11-01

    This article describes two novel and easy approaches for assessing the accuracy of insulin pumps as implemented within the artificial pancreas system. The approaches are illustrated by data testing the OmniPod Insulin Management System at its lowest delivery volume (0.05 U) and at doses of 0.1, 0.2, 1, and 6U. In method 1, a pipette, digital microscope, and imaging software were used to measure average bolus delivery on a linear scale for multiple volumes. In method 2, a digital microscope and imaging software were used to measure the volume of a spherical bolus of 0.05 U of insulin. Bench testing results using the two novel methods demonstrated that the OmniPod is extremely accurate, with a relative error ranging from -0.90% to +0.96% for all measured doses (0.05, 0.1, 0.2, 1, and 6 U). In method 1, at target bolus dose of 0.05 U, the mean delivered dose (± standard deviation) was 0.0497 ± 0.003 U, 0.099 ± 0.005 U at 0.1 U, 0.2 ± <1e-5 U at 0.2 U, 1.001 ± 0.018 U at 1 U, and 6.03 ± 0.04 U at 6 U. In method 2, at target bolus dose of 0.5 ml, the mean delivered dose for both OmniPods was 0.505 ± 0.014. Both methods confirmed a high degree of accuracy for the OmniPod insulin pump. These techniques can be used to estimate delivery volume in other infusion pumps as well. © 2011 Diabetes Technology Society.

  6. Quantitative Phosphoproteomics Analysis Reveals a Key Role of Insulin Growth Factor 1 Receptor (IGF1R) Tyrosine Kinase in Human Sperm Capacitation*

    PubMed Central

    Wang, Jing; Qi, Lin; Huang, Shaoping; Zhou, Tao; Guo, Yueshuai; Wang, Gaigai; Guo, Xuejiang; Zhou, Zuomin; Sha, Jiahao

    2015-01-01

    One of the most important changes during sperm capacitation is the enhancement of tyrosine phosphorylation. However, the mechanisms of protein tyrosine phosphorylation during sperm capacitation are not well studied. We used label-free quantitative phosphoproteomics to investigate the overall phosphorylation events during sperm capacitation in humans and identified 231 sites with increased phosphorylation levels. Motif analysis using the NetworKIN algorithm revealed that the activity of tyrosine phosphorylation kinases insulin growth factor 1 receptor (IGF1R)/insulin receptor is significantly enriched among the up-regulated phosphorylation substrates during capacitation. Western blotting further confirmed inhibition of IGF1R with inhibitors GSK1904529A and NVP-AEW541, which inhibited the increase in tyrosine phosphorylation levels during sperm capacitation. Additionally, sperm hyperactivated motility was also inhibited by GSK1904529A and NVP-AEW541 but could be up-regulated by insulin growth factor 1, the ligand of IGF1R. Thus, the IGF1R-mediated tyrosine phosphorylation pathway may play important roles in the regulation of sperm capacitation in humans and could be a target for improvement in sperm functions in infertile men. PMID:25693802

  7. Recommendations for Insulin Dose Calculator Risk Management.

    PubMed

    Rees, Christen

    2014-01-01

    Several studies have shown the usefulness of an automated insulin dose bolus advisor (BA) in achieving improved glycemic control for insulin-using diabetes patients. Although regulatory agencies have approved several BAs over the past decades, these devices are not standardized in their approach to dosage calculation and include many features that may introduce risk to patients. Moreover, there is no single standard of care for diabetes worldwide and no guidance documents for BAs, specifically. Given the emerging and more stringent regulations on software used in medical devices, the approval process is becoming more difficult for manufacturers to navigate, with some manufacturers opting to remove BAs from their products altogether. A comprehensive literature search was performed, including publications discussing: diabetes BA use and benefit, infusion pump safety and regulation, regulatory submissions, novel BAs, and recommendations for regulation and risk management of BAs. Also included were country-specific and international guidance documents for medical device, infusion pump, medical software, and mobile medical application risk management and regulation. No definitive worldwide guidance exists regarding risk management requirements for BAs, specifically. However, local and international guidance documents for medical devices, infusion pumps, and medical device software offer guidance that can be applied to this technology. In addition, risk management exercises that are algorithm-specific can help prepare manufacturers for regulatory submissions. This article discusses key issues relevant to BA use and safety, and recommends risk management activities incorporating current research and guidance.

  8. Recommendations for Insulin Dose Calculator Risk Management

    PubMed Central

    2014-01-01

    Several studies have shown the usefulness of an automated insulin dose bolus advisor (BA) in achieving improved glycemic control for insulin-using diabetes patients. Although regulatory agencies have approved several BAs over the past decades, these devices are not standardized in their approach to dosage calculation and include many features that may introduce risk to patients. Moreover, there is no single standard of care for diabetes worldwide and no guidance documents for BAs, specifically. Given the emerging and more stringent regulations on software used in medical devices, the approval process is becoming more difficult for manufacturers to navigate, with some manufacturers opting to remove BAs from their products altogether. A comprehensive literature search was performed, including publications discussing: diabetes BA use and benefit, infusion pump safety and regulation, regulatory submissions, novel BAs, and recommendations for regulation and risk management of BAs. Also included were country-specific and international guidance documents for medical device, infusion pump, medical software, and mobile medical application risk management and regulation. No definitive worldwide guidance exists regarding risk management requirements for BAs, specifically. However, local and international guidance documents for medical devices, infusion pumps, and medical device software offer guidance that can be applied to this technology. In addition, risk management exercises that are algorithm-specific can help prepare manufacturers for regulatory submissions. This article discusses key issues relevant to BA use and safety, and recommends risk management activities incorporating current research and guidance. PMID:24876550

  9. Insulin signaling and the regulation of insect diapause

    PubMed Central

    Sim, Cheolho; Denlinger, David L.

    2013-01-01

    A rich chapter in the history of insect endocrinology has focused on hormonal control of diapause, especially the major roles played by juvenile hormones (JHs), ecdysteroids, and the neuropeptides that govern JH and ecdysteroid synthesis. More recently, experiments with adult diapause in Drosophila melanogaster and the mosquito Culex pipiens, and pupal diapause in the flesh fly Sarcophaga crassipalpis provide strong evidence that insulin signaling is also an important component of the regulatory pathway leading to the diapause phenotype. Insects produce many different insulin-like peptides (ILPs), and not all are involved in the diapause response; ILP-1 appears to be the one most closely linked to diapause in C. pipiens. Many steps in the pathway leading from perception of daylength (the primary environmental cue used to program diapause) to generation of the diapause phenotype remain unknown, but the role for insulin signaling in mosquito diapause appears to be upstream of JH, as evidenced by the fact that application of exogenous JH can rescue the effects of knocking down expression of ILP-1 or the Insulin Receptor. Fat accumulation, enhancement of stress tolerance, and other features of the diapause phenotype are likely linked to the insulin pathway through the action of a key transcription factor, FOXO. This review highlights many parallels for the role of insulin signaling as a regulator in insect diapause and dauer formation in the nematode Caenorhabditis elegans. PMID:23885240

  10. [Association between single-nucleotide polymorphisms of key genes in T regulatory cells signaling pathways and the efficacy of allergic rhinitis immune therapy].

    PubMed

    Ruan, Yu; Zhang, Yuan; Zhang, Luo

    2016-01-01

    To investigate the genetic association pattern between single-nucleotide polymorphisms (SNP) of key genes in T regulatory cells signaling pathways and the efficacy of allergic rhinitis (AR) specific immune therapy(SIT). A population of 102 AR patients(Beijing Tongren hospital, from January to Decemeber 2012) caused by simple dust mite received standardized specific immune therapy, who lived in Beijing region was recruited. In immunotherapy before and after 1 years of treatment, the study objects were scored by nasal symptoms score, nasal signs score and total score of daily life distress three indicators to assess the efficacy. A total of 43 reprehensive marker SNP which were in FOXP3, IL-2, TGF-βand EBI3 gene regions and the upstream and downstream 1 000 kb were selected according to the Beijing people database from Hapmap website. The individual genotyping was performed by MassARRAY platform.Plink software was used for statistic analysis. Subgroup analysis for the efficacy evaluation of three indicators displayed that IL-2_rs77468365, FOXP3(rs2280883, rs2232365 and rs3761548) were associated with the improvement of sneezing in nasal symptoms. IL-2_rs77468365, FOXP3(rs2280883, rs2232365 and rs3761548) were associated with the improvement of runny nose in nasal symptoms. TGF-β(rs747857, rs6508975, rs2241715, rs12462166, rs12983775, rs1800470 and rs2317130)and FOXP3(rs2280883, rs2232365 and rs3761548)were associated with the improvement of nasal obstruction in nasal symptoms. FOXP3(rs2280883, rs2232365 and rs3761548)were associated with the improvement of nasal itching in nasal symptoms. IL-2_rs77468365 and FOXP3(rs2280883, rs2232365 and rs3761548) were associated with the overall improvement in nasal symptoms. EBI3_rs670188 and FOXP3(rs2280883, rs2232365, rs3761549, rs3761548 and rs3761547) were associated with the improvement of inferior turbinate mucosa swelling in nasal signs. IL-2_rs77468365, EBI3_rs393581, TGF-β(rs11466359 and rs11466345), FOXP3(rs2280883

  11. Insulin Resistance in Alzheimer's Disease

    PubMed Central

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  12. Insulin resistance in Alzheimer's disease.

    PubMed

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-12-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Interferon regulatory factor 3 as key element of the interferon signature in plasmacytoid dendritic cells from systemic lupus erythematosus patients: novel genetic associations in the Mexican mestizo population

    PubMed Central

    Santana-de Anda, K; Gómez-Martín, D; Monsivais-Urenda, A E; Salgado-Bustamante, M; González-Amaro, R; Alcocer-Varela, J

    2014-01-01

    Many genetic studies have found an association between interferon regulatory factors (IRF) single nucleotide polymorphisms (SNPs) and systemic lupus erythematosus (SLE); however, specific dendritic cell (DC) alterations have not been assessed. The aim of the present study was to address the expression of IRF3 and IRF5 on different DC subsets from SLE patients, as well as their association with interferon (IFN)-α production and novel SNPs. For the genetic association analyses, 156 SLE patients and 272 healthy controls from the Mexican mestizo population were included. From these, 36 patients and 36 controls were included for functional analysis. Two IRF3 SNPs − rs2304206 and rs2304204 – were determined. We found an increased percentage of circulating pDC in SLE patients in comparison to controls (8·04 ± 1·48 versus 3·35 ± 0·8, P = 0·032). We also observed enhanced expression of IRF3 (64 ± 6·36 versus 36·1 ± 5·57, P = 0·004) and IRF5 (40 ± 5·25 versus 22·5 ± 2·6%, P = 0·010) restricted to this circulating pDC subset from SLE patients versus healthy controls. This finding was associated with higher IFN-α serum levels in SLE (160·2 ± 21 versus 106·1 ± 14 pg/ml, P = 0·036). Moreover, the IRF3 rs2304206 polymorphism was associated with increased susceptibility to SLE [odds ratio (OR), 95% confidence interval (CI) = 2·401 (1·187–4·858), P = 0·021] as well as enhanced levels of serum type I IFN in SLE patients who were positive for dsDNA autoantibodies. The IRF3 rs2304204 GG and AG genotypes conferred decreased risk for SLE. Our findings suggest that the predominant IRF3 expression on circulating pDC is a key element for the increased IFN-α activation based on the interplay between the rs2304206 gene variant and the presence of dsDNA autoantibodies in Mexican mestizo SLE patients. PMID:25130328

  14. [Insulin-like growth factor 1 and the key markers of proteolysis during the acute period of readaptation of the muscle atrophied as a result of unloading].

    PubMed

    Kachaeva, E V; Turtikova, O V; Leĭnsoo, T A; Shenkman, B S

    2010-01-01

    It has been shown that, after prolonged disuse, the accumulation of muscle mass and the recovery of soleus fibers volume are caused by water accumulation rather than protein synthesis intensification. At the same time, expression rate of the main markers of the activity of ubiquitin-proteasome system remained increased on the 3rd day of reloading and decreased to the control by the 7th day. Both the quantity of the insulin-like growth factor 1 and the number of satellite cells fused with muscle fibers and of myonuclei began to increase only on the 7th day of reloading. The data obtained evidenced a significant inertness of the postural muscle during its adaptation to the load (normal gravity) after prolonged disuse.

  15. Insulin signaling and insulin resistance.

    PubMed

    Beale, Elmus G

    2013-01-01

    Insulin resistance or its sequelae may be the common etiology of maladies associated with metabolic syndrome (eg, hypertension, type 2 diabetes, atherosclerosis, heart attack, stroke, and kidney failure). It is thus important to understand those factors that affect insulin sensitivity. This review stems from the surprising discovery that interference with angiotensin signaling improves insulin sensitivity, and it provides a general overview of insulin action and factors that control insulin sensitivity.

  16. Overview and discussion of the key regulatory issues in implementing the electric utility provisions of the Clean Air Act Amendments of 1990

    SciTech Connect

    Rose, K.; Burns, R.E.

    1991-06-01

    Title 4 of the Clean Air Act Amendments of 1990 (CAAA) created a new regulatory instrument that electric power producers (utilities and others) will be required to possess and expand in order to emit sulfur dioxide (SO{sub 2}) into the atmosphere. The emission allowance system created by the CAAA will be grafted onto an already complex system of state and federal electric utility regulation. How public utility commissions (PUCs) and the Federal Energy Regulatory Commission (FERC) regulate these allowances will greatly affect the decisions that electric utilities under their jurisdiction make to comply with the CAAA and, therefore, the cost of compliance to ratepayers. 2 figs., 9 tabs.

  17. ATF-2 stimulates the human insulin promoter through the conserved CRE2 sequence.

    PubMed

    Hay, Colin W; Ferguson, Laura A; Docherty, Kevin

    2007-02-01

    The insulin promoter contains a number of dissimilar cis-acting regulatory elements that bind a range of tissue specific and ubiquitous transcription factors. Of the regulatory elements within the insulin promoter, the cyclic AMP responsive element (CRE) binds by far the most diverse array of transcription factors. Rodent insulin promoters have a single CRE site, whereas there are four CREs within the human insulin gene, of which CRE2 is the only one conserved between species. The aim of this study was to characterise the human CRE2 site and to investigate the effects of the two principal CRE-associated transcription factors; CREB-1 and ATF-2. Co-transfection of INS-1 pancreatic beta-cells with promoter constructs containing the human insulin gene promoter placed upstream of the firefly luciferase reporter gene and expression plasmids for ATF-2 or CREB-1 showed that ATF-2 stimulated transcriptional activity while CREB-1 elicited an inhibitory effect. Mutagenesis of CRE2 diminished the effect of ATF-2 but not that of CREB-1. ATF-2 was shown to bind to the CRE2 site by electrophoretic mobility shift assay and by chromatin immunoprecipitation, while siRNA mediated knockdown of ATF-2 diminished the stimulatory effects of cAMP related signalling on promoter activity. These results suggest that ATF-2 may be a key regulator of the human insulin promoter possibly stimulating activity in response to extracellular signals.

  18. A gene browser of colorectal cancer with literature evidence and pre-computed regulatory information to identify key tumor suppressors and oncogenes

    PubMed Central

    Zhao, Min; Liu, Yining; Huang, Fuda; Qu, Hong

    2016-01-01

    Colorectal cancer (CRC) is a cancer of growing incidence that associates with a high mortality rate worldwide. There is a poor understanding of the heterogeneity of CRC with regard to causative genetic mutations and gene regulatory mechanisms. Previous studies have identified several susceptibility genes in small-scale experiments. However, the information has not been comprehensively and systematically compiled and interpreted. In this study, we constructed the gbCRC, the first literature-based gene resource for investigating CRC-related human genes. The features of our database include: (i) manual curation of experimentally-verified genes reported in the literature; (ii) comprehensive integration of five reliable data sources; and (iii) pre-computed regulatory patterns involving transcription factors, microRNAs and long non-coding RNAs. In total, 2067 genes associating with 2819 PubMed abstracts were compiled. Comprehensive functional annotations associated with all the genes, including gene expression profiles, homologous genes in other model species, protein-protein interactions, somatic mutations, and potential methylation sites. These comprehensive annotations and this pre-computed regulatory information highlighted the importance of the gbCRC with regard to the unexplored regulatory network of CRC. This information is available in a plain text format that is free to download. PMID:27477450

  19. The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes--chapter 1: Key ethical requirements and progress toward the definition of an international regulatory framework.

    PubMed

    Cozzi, Emanuele; Tallacchini, Mariachiara; Flanagan, Enda B; Pierson, Richard N; Sykes, Megan; Vanderpool, Harold Y

    2009-01-01

    The outstanding results recently obtained in islet xenotransplantation suggest that porcine islet clinical trials may soon be scientifically appropriate. Before the initiation of such clinical studies, however, it is essential that a series of key ethical and regulatory conditions are satisfied. As far as ethics is concerned, the fundamental requirements have been previously reported in a position paper of the Ethics Committee of the International Xenotransplantation Association. These include aspects related to the selection of adequately informed, appropriate recipients; animal breeding and welfare; safety issues and the need for a favorable risk/benefit assessment based on strong efficacy data in relevant xenotransplantation studies in the primate. As most diabetic patients are not at risk of short-term mortality without islet transplantation, only a small subset of patients could currently be considered for any type of islet transplant. However, there are potential advantages to xenotransplantation that could result in a favorable benefit-over-harm determination for islet xenotransplantation in this subpopulation and ultimately in a broader population of diabetic patients. With regard to regulatory aspects, the key concepts underlying the development of the regulatory models in existence in the United States, Europe and New Zealand are discussed. Each of these models provides an example of a well-defined regulatory approach to ensure the initiation of well-regulated and ethically acceptable clinical islet xenotransplantation trials. At this stage, it becomes apparent that only a well-coordinated international effort such as that initiated by the World Health Organization, aimed at harmonizing xenotransplantation procedures according to the highest ethical and regulatory standards on a global scale, will enable the initiation of clinical xenotransplantation trials under the best auspices for its success and minimize any risk of failure.

  20. Maternal and postweaning folic acid supplementation interact to influence body weight, insulin resistance, and food intake regulatory gene expression in rat offspring in a sex-specific manner.

    PubMed

    Huot, Pedro S P; Ly, Anna; Szeto, Ignatius M Y; Reza-López, Sandra A; Cho, Daniel; Kim, Young-In; Anderson, G Harvey

    2016-04-01

    Maternal intake of multivitamins or folic acid above the basal dietary requirement alters the growth and metabolic trajectory of rat offspring. We hypothesized that a modest increase in the folic acid content of maternal diets would alter the offspring's metabolic phenotype, and that these effects could be corrected by matching the folic acid content of the offspring's diet with that of the maternal diet. Female Sprague-Dawley rats were placed on a control or a 2.5× folic acid-supplemented diet prior to mating and during pregnancy and lactation. At weaning, pups from each maternal diet group were randomized to the control or to the 2.5× folic acid-supplemented diet for 25 weeks. Male pups from dams fed the folic acid-supplemented diet were 3.7% heavier than those from control-fed dams and had lower mRNA expression for leptin receptor Obrb isoform (Lepr) (11%) and Agouti-related protein (Agrp) (14%). In contrast, female pups from folic acid-supplemented dams were 5% lighter than those from control-fed dams and had lower proopiomelanocortin (Pomc) (42%), Lepr (32%), and Agrp (13%), but higher neuropeptide Y (Npy) (18%) mRNA expression. Folic acid supplementation ameliorated the alterations induced by maternal folic acid supplementation in male pups and led to the lowest insulin resistance, but the effects were smaller in female pups and led to the highest insulin resistance. In conclusion, maternal folic acid supplementation at 2.5× the control level was associated with alterations in body weight and hypothalamic gene expression in rat offspring in a sex-specific manner, and some of these effects were attenuated by postweaning folic acid supplementation.

  1. Gestational Diabetes Alters Offspring DNA Methylation Profiles in Human and Rat: Identification of Key Pathways Involved in Endocrine System Disorders, Insulin Signaling, Diabetes Signaling, and ILK Signaling.

    PubMed

    Petropoulos, Sophie; Guillemin, Claire; Ergaz, Zivanit; Dimov, Sergiy; Suderman, Matthew; Weinstein-Fudim, Liza; Ornoy, Asher; Szyf, Moshe

    2015-06-01

    Gestational diabetes is associated with risk for metabolic disease later in life. Using a cross-species approach in rat and humans, we examined the hypothesis that gestational diabetes during pregnancy triggers changes in the methylome of the offspring that might be mediating these risks. We show in a gestation diabetes rat model, the Cohen diabetic rat, that gestational diabetes triggers wide alterations in DNA methylation in the placenta in both candidate diabetes genes and genome-wide promoters, thus providing evidence for a causal relationship between diabetes during pregnancy and DNA methylation alterations. There is a significant overlap between differentially methylated genes in the placenta and the liver of the rat offspring. Several genes differentially methylated in rat placenta exposed to maternal diabetes are also differentially methylated in the human placenta of offspring exposed to gestational diabetes in utero. DNA methylation changes inversely correlate with changes in expression. The changes in DNA methylation affect known functional gene pathways involved in endocrine function, metabolism, and insulin responses. These data provide support to the hypothesis that early-life exposures and their effects on metabolic disease are mediated by DNA methylation changes. This has important diagnostic and therapeutic implications.

  2. Replacing serum in culture medium with albumin and insulin, transferrin and selenium is the key to successful bovine embryo development in individual culture.

    PubMed

    Wydooghe, E; Heras, S; Dewulf, J; Piepers, S; Van den Abbeel, E; De Sutter, P; Vandaele, L; Van Soom, A

    2014-06-01

    Individual culture of bovine embryos is usually associated with low blastocyst development. However, during preliminary experiments in our laboratory we observed high blastocyst development after individual embryo culture in a serum-free culture system. We therefore hypothesised that serum has a negative effect on embryos cultured individually whereas embryos in groups can counteract this. First, we determined whether the timing of removal of serum (during maturation or culture) had an influence on individual embryo development. The results clearly showed that removal of serum during embryo culture was the main contributing factor since high blastocyst development was observed after individual culture in synthetic oviductal fluid supplemented with bovine serum albumin (BSA) and insulin, transferrin and selenium (ITS), independent of the maturation medium. Second, we investigated whether an individual factor of the ITS supplement was essential for individual embryo development. We demonstrated that repeatable high blastocyst percentages were due to the synergistic effect of ITS. Finally, we investigated if a group-culture effect can still be observed under serum-free conditions. Group culture generated blastocysts with higher total cell numbers and less apoptosis. These data show that individual culture in serum-free conditions leads to high blastocyst development, but group culture still improves blastocyst quality.

  3. Cell and molecular mechanisms of insulin-induced angiogenesis

    PubMed Central

    Liu, Yan; Petreaca, Melissa; Martins-Green, Manuela

    2009-01-01

    Angiogenesis, the development of new blood vessel from pre-existing vessels, is a key process in the formation of the granulation tissue during wound healing. The appropriate development of new blood vessels, along with their subsequent maturation and differentiation, establishes the foundation for functional wound neovasculature. We performed studies in vivo and used a variety of cellular and molecular approaches in vitro to show that insulin stimulates angiogenesis and to elucidate the signalling mechanisms by which this protein stimulates microvessel development. Mice skin injected with insulin shows longer vessels with more branches, along with increased numbers of associated α-smooth muscle actin-expressing cells, suggesting the appropriate differentiation and maturation of the new vessels. We also found that insulin stimulates human microvascular endothelial cell migration and tube formation, and that these effects occur independently of VEGF/VEGFR signalling, but are dependent upon the insulin receptor itself. Downstream signalling pathways involve PI3K, Akt, sterol regulatory element-binding protein 1 (SREBP-1) and Rac1; inhibition of these pathways results in elimination of endothelial cell migration and tube formation and significantly decreases the development of microvessels. Our findings strongly suggest that insulin is a good candidate for the treatment of ischaemic wounds and other conditions in which blood vessel development is impaired. PMID:19602055

  4. Forkhead box A1 (FOXA1) is a key mediator of insulin-like growth factor I (IGF-I) activity.

    PubMed

    Potter, Adam S; Casa, Angelo J; Lee, Adrian V

    2012-01-01

    The insulin-like growth factor receptor (IGF-IR) has been implicated in a number of human tumors, including breast cancer. Data from human breast tumors has demonstrated that IGF-IR is over-expressed and hyper-phosphorylated. Additionally, microarray analysis has shown that IGF-I treatment of MCF7 cells leads to a gene signature comprised of induced and repressed genes, which correlated with luminal B tumors. FOXA1, a forkhead family transcription factor, has been shown to be crucial for mammary ductal morphogenesis, similar to IGF-IR, and expressed at high levels in luminal subtype B breast tumors. Here, we investigated the relationship between FOXA1 and IGF-I action in breast cancer cells. We show that genes regulated by IGF-I are enriched for FOXA1 binding sites, and knock down of FOXA1 blocked the ability of IGF-I to regulate gene expression. IGF-I treatment of MCF7 cells increased the half-life of FOXA1 protein and this increase in half-life appeared to be dependent on canonical IGF-I signal transduction through both MAPK and AKT pathways. Finally, knock down of FOXA1 led to a decreased ability of IGF-I to induce proliferation and protect against apoptosis. Together, these results demonstrate that IGF-I can increase the stability of FOXA1 protein expression and place it as a critical mediator of IGF-I regulation of gene expression and IGF-I-mediated biological responses. Copyright © 2011 Wiley Periodicals, Inc.

  5. [Insulin signaling and insulin resistance].

    PubMed

    Ferré, Pascal

    2007-01-01

    Insulin controls carbohydrate and lipid metabolism. Among other things, it stimulates glucose storage as glycogen and lipid storage as triglycerides. Insulin acts through a membrane receptor which is a tyrosine kinase. When activated by insulin binding, the tyrosine kinase will recruit and phosphorylate intracellular substrates called IRS (insulin receptor substrate). Phosphorylated IRS will be used as docking sites for proteins which will transmit the insulin signal through several systems (e.g. PI3-kinase). The insulin resistance which is concomitant with type 2 diabetes and obesity is linked to an increased intracellular availability of fatty acids which are precursors of lipid mediators inducing a decreased efficiency of insulin signal transmission. Therapies aimed at improving insulin sensitivity could then target proteins involved in the regulation of intacellular fatty acid availibility.

  6. Insulin Signalling: The Inside Story.

    PubMed

    Posner, Barry I

    2017-02-01

    Insulin signalling begins with binding to its cell surface insulin receptor (IR), which is a tyrosine kinase. The insulin receptor kinase (IRK) is subsequently autophosphorylated and activated to tyrosine phosphorylate key cellular substrates that are essential for entraining the insulin response. Although IRK activation begins at the cell surface, it is maintained and augmented following internalization into the endosomal system (ENS). The peroxovanadium compounds (pVs) were discovered to activate the IRK in the absence of insulin and lead to a full insulin response. Thus, IRK activation is both necessary and sufficient for insulin signalling. Furthermore, this could be shown to occur with activation of only the endosomal IRK. The mechanism of pV action was shown to be the inhibition of IRK-associated phosphotyrosine phosphatases (PTPs). Our studies showed that the duration and intensity of insulin signalling are modulated within ENS by the recruitment of cellular substrates to ENS; intra-endosomal acidification, which promotes dissociation of insulin from the IRK; an endosomal acidic insulinase, which degrades intra-endosomal insulin; and IRK-associated PTPs, which dephosphorylate and, hence, deactivate the IRK. Therefore, the internalization of IRKs is central to insulin signalling and its regulation.

  7. Sterols regulate 3β-hydroxysterol Δ24-reductase (DHCR24) via dual sterol regulatory elements: cooperative induction of key enzymes in lipid synthesis by Sterol Regulatory Element Binding Proteins.

    PubMed

    Zerenturk, Eser J; Sharpe, Laura J; Brown, Andrew J

    2012-10-01

    3β-Hydroxysterol Δ24-reductase (DHCR24) catalyzes a final step in cholesterol synthesis, and has been ascribed diverse functions, such as being anti-apoptotic and anti-inflammatory. How this enzyme is regulated transcriptionally by sterols is currently unclear. Some studies have suggested that its expression is regulated by Sterol Regulatory Element Binding Proteins (SREBPs) while another suggests it is through the Liver X Receptor (LXR). However, these transcription factors have opposing effects on cellular sterol levels, so it is likely that one predominates. Here we establish that sterol regulation of DHCR24 occurs predominantly through SREBP-2, and identify the particular region of the DHCR24 promoter to which SREBP-2 binds. We demonstrate that sterol regulation is mediated by two sterol regulatory elements (SREs) in the promoter of the gene, assisted by two nearby NF-Y binding sites. Moreover, we present evidence that the dual SREs work cooperatively to regulate DHCR24 expression by comparison to two known SREBP target genes, the LDL receptor with one SRE, and farnesyl-diphosphate farnesyltransferase 1, with two SREs. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Determination of a Comprehensive Alternative Splicing Regulatory Network and Combinatorial Regulation by Key Factors during the Epithelial-to-Mesenchymal Transition

    PubMed Central

    Yang, Yueqin; Park, Juw Won; Bebee, Thomas W.; Warzecha, Claude C.; Guo, Yang; Shang, Xuequn

    2016-01-01

    The epithelial-to-mesenchymal transition (EMT) is an essential biological process during embryonic development that is also implicated in cancer metastasis. While the transcriptional regulation of EMT has been well studied, the role of alternative splicing (AS) regulation in EMT remains relatively uncharacterized. We previously showed that the epithelial cell-type-specific proteins epithelial splicing regulatory proteins 1 (ESRP1) and ESRP2 are important for the regulation of many AS events that are altered during EMT. However, the contributions of the ESRPs and other splicing regulators to the AS regulatory network in EMT require further investigation. Here, we used a robust in vitro EMT model to comprehensively characterize splicing switches during EMT in a temporal manner. These investigations revealed that the ESRPs are the major regulators of some but not all AS events during EMT. We determined that the splicing factor RBM47 is downregulated during EMT and also regulates numerous transcripts that switch splicing during EMT. We also determined that Quaking (QKI) broadly promotes mesenchymal splicing patterns. Our study highlights the broad role of posttranscriptional regulation during the EMT and the important role of combinatorial regulation by different splicing factors to fine tune gene expression programs during these physiological and developmental transitions. PMID:27044866

  9. Insulin allergy.

    PubMed

    Ghazavi, Mohammad K; Johnston, Graham A

    2011-01-01

    Insulin reactions occur rarely but are of tremendous clinical importance. The first was reported in 1922 as a callus reaction at the injection site of insufficiently purified bovine insulin. Porcine insulin was subsequently found to be less allergenic than bovine insulin. Increasingly pure insulins have decreased the risk of adverse reactions, and the production of recombinant insulin with the same amino sequence as human insulin saw a large decrease in adverse reactions. Currently, the prevalence of allergic reactions to insulin products appears to be approximately 2%, and less than one-third of these events have been considered related to the insulin itself. Other reactions occur due to the preservatives added to insulin, including zinc, protamine, and meta-cresol. Allergic reactions can be type I or immunoglobulin E-mediated, type III or Arthus, and type IV or delayed-type hypersensitivity reactions. Type I reactions are the most common and can, rarely, cause anaphylaxis. In contrast, type IV reactions can occur after a delay of several days. Investigations include skin prick testing, patch testing, intradermal testing, and occasionally, skin biopsy.

  10. Insulin receptor substrate-2 phosphorylation is necessary for protein kinase C zeta activation by insulin in L6hIR cells.

    PubMed

    Oriente, F; Formisano, P; Miele, C; Fiory, F; Maitan, M A; Vigliotta, G; Trencia, A; Santopietro, S; Caruso, M; Van Obberghen, E; Beguinot, F

    2001-10-05

    We have investigated glycogen synthase (GS) activation in L6hIR cells expressing a peptide corresponding to the kinase regulatory loop binding domain of insulin receptor substrate-2 (IRS-2) (KRLB). In several clones of these cells (B2, F4), insulin-dependent binding of the KRLB to insulin receptors was accompanied by a block of IRS-2, but not IRS-1, phosphorylation, and insulin receptor binding. GS activation by insulin was also inhibited by >70% in these cells (p < 0.001). The impairment of GS activation was paralleled by a similarly sized inhibition of glycogen synthase kinase 3 alpha (GSK3 alpha) and GSK3 beta inactivation by insulin with no change in protein phosphatase 1 activity. PDK1 (a phosphatidylinositol trisphosphate-dependent kinase) and Akt/protein kinase B (PKB) activation by insulin showed no difference in B2, F4, and in control L6hIR cells. At variance, insulin did not activate PKC zeta in B2 and F4 cells. In L6hIR, inhibition of PKC zeta activity by either a PKC zeta antisense or a dominant negative mutant also reduced by 75% insulin inactivation of GSK3 alpha and -beta (p < 0.001) and insulin stimulation of GS (p < 0.002), similar to Akt/PKB inhibition. In L6hIR, insulin induced protein kinase C zeta (PKC zeta) co-precipitation with GSK3 alpha and beta. PKC zeta also phosphorylated GSK3 alpha and -beta. Alone, these events did not significantly affect GSK3 alpha and -beta activities. Inhibition of PKC zeta activity, however, reduced Akt/PKB phosphorylation of the key serine sites on GSK3 alpha and -beta by >80% (p < 0.001) and prevented full GSK3 inactivation by insulin. Thus, IRS-2, not IRS-1, signals insulin activation of GS in the L6hIR skeletal muscle cells. In these cells, insulin inhibition of GSK3 alpha and -beta requires dual phosphorylation by both Akt/PKB and PKC zeta.

  11. Insulin therapy in children and adolescents.

    PubMed

    Tamborlane, William V; Sikes, Kristin A

    2012-03-01

    Insulin therapy is the mainstay of treatment in children and adolescents with type 1 diabetes (T1D) and is a key component in the treatment of type 2 diabetes (T2D) in this population as well. A major aim of current insulin replacement therapy is to simulate the normal pattern of insulin secretion as closely as possible. This aim can best be achieved with basal-bolus therapy using multiple daily injections (MDI) or continuous insulin infusion (CSII) pump therapy. Only a few years ago, options for insulin formulations were limited. There are now more than 10 varieties of biosynthetic human and analogue insulin.

  12. A key role for interferon regulatory factors in mediating early-life metabolic defects in male offspring of maternal protein restricted rats.

    PubMed

    Silvestre, M F P; Kieswich, J; Yaqoob, M M; Holness, M J; Sugden, M C; Caton, P W

    2014-04-01

    An adverse intra-uterine environment, induced by maternal consumption of diets high in saturated fat or low in protein have been implicated as a potential trigger for development of metabolic disease in later life. However, the underlying mechanisms responsible for this programming of obesity have yet to be described. Recent studies have demonstrated that interferon regulatory factors 3 (IRF3) and 4 (IRF4) function to repress adipogenesis. We investigated whether impaired IRF3 and IRF4 function may predispose to development of metabolic disease in a model of programmed obesity. Changes in IRF3 and IRF4 levels, adipogenic gene expression, and adiponectin signalling were measured in white adipose tissue from programmed male offspring of rat dams fed a low-protein diet (MLP), which are predisposed to obesity. 3T3L1 adipocytes were used to determine novel regulatory mechanisms governing IRF expression. IRF3 and IRF4 levels were suppressed in MLP rats, together with raised lipogenic and adipogenic gene expression. Adiponectin and adiponectin receptor 1 and 2 mRNA levels were reduced in MLP rats, along with levels of PPARα and activity of AMP-activated protein kinase (AMPK), 2 downstream targets of adiponectin. Further studies determined that both IRF3 and IRF4 are induced by adiponectin, with adiponectin-AMPK and adiponectin-PPARα signalling regulating IRF3 and IRF4, respectively. We have demonstrated that impaired ability to repress adipogenesis and lipogenesis, through dysregulated adiponectin-PPARα-AMPK-IRF signalling, may play a causal role in predisposing MLP offspring to development of obesity and metabolic disease in later life. © Georg Thieme Verlag KG Stuttgart · New York.

  13. The neuronal kinesin UNC-104/KIF1A is a key regulator of synaptic aging and insulin signaling-regulated memory

    PubMed Central

    Li, Ling-Bo; Lei, Haoyun; Arey, Rachel N.; Li, Pengpeng; Liu, Jianfeng; Murphy, Coleen T.; Xu, X.Z. Shawn; Shen, Kang

    2016-01-01

    Summary Aging is the greatest risk factor for a number of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease. Furthermore, normal aging is associated with a decline in sensory, motor, and cognitive functions. Emerging evidence suggests that synapse alterations, rather than neuronal cell death, are the causes of neuronal dysfunctions in normal aging, and in early stages of neurodegenerative diseases. However, little is known about the mechanisms underlying age-related synaptic decline. Here we uncover a surprising role of the anterograde molecular motor UNC-104/KIF1A as a key regulator of neural circuit deterioration in aging C. elegans. Through analyses of synapse protein localization, synaptic transmission, and animal behaviors, we find that reduced function of UNC-104 accelerates motor circuit dysfunction with age, while upregulation of UNC-104 significantly improves motor function at advanced ages and also mildly extends lifespan. In addition, UNC-104-overexpressing animals outperform wild-type controls in associative learning and memory tests. Further genetic analyses suggest that UNC-104 functions downstream of the DAF-2 signaling pathway, and is regulated by the FOXO transcription factor DAF-16, which contributes to the effects of DAF-2 in neuronal aging. Together, our cellular, electrophysiological, and behavioral analyses highlight the importance of axonal transport in the maintenance of synaptic structural integrity and function during aging, and raise the possibility of targeting kinesins to slow age-related neural circuit dysfunction. PMID:26877087

  14. Activation of Peroxisome Proliferator-Activated Receptor γ (PPARγ) by Rosiglitazone Suppresses Components of the Insulin-Like Growth Factor Regulatory System in Vitro and in Vivo

    PubMed Central

    Lecka-Czernik, B.; Ackert-Bicknell, C.; Adamo, M. L.; Marmolejos, V.; Churchill, G. A.; Shockley, K. R.; Reid, I. R.; Grey, A.; Rosen, C. J.

    2007-01-01

    Rosiglitazone (Rosi) belongs to the class of thiazolidinediones (TZDs) that are ligands for peroxisome proliferator-activated receptor γ (PPARγ). Stimulation of PPARγ suppresses bone formation and enhances marrow adipogenesis. We hypothesized that activation of PPARγ down-regulates components of the IGF regulatory system, leading to impaired osteoblast function. Rosi treatment (1 μM) of a marrow stromal cell line (UAMS-33) transfected with empty vector (U-33/c) or with PPARγ2 (U-33/γ2) were analyzed by microarray. Rosi reduced IGF-I, IGF-II, IGFBP-4, and the type I and II IGF receptor (IGF1R and IGF2R) expression at 72 h in U-33/γ2 compared with U-33/c cells (P < 0.01); these findings were confirmed by RT-PCR. Rosi reduced secreted IGF-I from U-33/γ2 cells by 75% (P < 0.05). Primary marrow stromal cells (MSCs) extracted from adult (8 months) and old (24 months) C57BL/6J (B6) mice were treated with Rosi (1 μM) for 48 h. IGF-I, IGFBP-4, and IGF1R transcripts were reduced in Rosi-treated MSCs compared with vehicle (P < 0.01) and secreted IGF-I was also suppressed (P < 0.05). B6 mice treated with Rosi (20 mg/kg·d) for short duration (i.e. 4 d), and long term (i.e. 7 wk) had reduced serum IGF-I; this was accompanied by markedly suppressed IGF-I transcripts in the liver and peripheral fat of treated animals. To determine whether Rosi affected circulating IGF-I in humans, we measured serum IGF-I, IGFBP-2, and IGFBP-3 at four time points in 50 postmenopausal women randomized to either Rosi (8 mg/d) or placebo. Rosi-treated subjects had significantly lower IGF-I at 8 wk than baseline (−25%, P < 0.05), and at 16 wk their levels were reduced 14% vs. placebo (P = 0.15). We conclude that Rosi suppresses IGF-I expression in bone and liver; these changes could affect skeletal acquisition through endocrine and paracrine pathways. PMID:17122083

  15. Essential role of PSM/SH2-B variants in insulin receptor catalytic activation and the resulting cellular responses.

    PubMed

    Zhang, Manchao; Deng, Youping; Tandon, Ruchi; Bai, Cheng; Riedel, Heimo

    2008-01-01

    The positive regulatory role of PSM/SH2-B downstream of various mitogenic receptor tyrosine kinases or gene disruption experiments in mice support a role of PSM in the regulation of insulin action. Here, four alternative PSM splice variants and individual functional domains were compared for their role in the regulation of specific metabolic insulin responses. We found that individual PSM variants in 3T3-L1 adipocytes potentiated insulin-mediated glucose and amino acid transport, glycogenesis, lipogenesis, and key components in the metabolic insulin response including p70 S6 kinase, glycogen synthase, glycogen synthase kinase 3 (GSK3), Akt, Cbl, and IRS-1. Highest activity was consistently observed for PSM alpha, followed by beta, delta, and gamma with decreasing activity. In contrast, dominant-negative peptide mimetics of the PSM Pro-rich, pleckstrin homology (PH), or src homology 2 (SH2) domains inhibited any tested insulin response. Potentiation of the insulin response originated at the insulin receptor (IR) kinase level by PSM variant-specific regulation of the Km (ATP) whereas the Vmax remained unaffected. IR catalytic activation was inhibited by peptide mimetics of the PSM SH2 or dimerization domain (DD). Either peptide should disrupt the complex of a PSM dimer linked to IR via SH2 domains as proposed for PSM activation of tyrosine kinase JAK2. Either peptide abolished downstream insulin responses indistinguishable from PSM siRNA knockdown. Our results implicate an essential role of the PSM variants in the activation of the IR kinase and the resulting metabolic insulin response. PSM variants act as internal IR ligands that in addition to potentiating the insulin response stimulate IR catalytic activation even in the absence of insulin.

  16. Insulin in UW solution exacerbates hepatic ischemia / reperfusion injury by energy depletion through the IRS-2 / SREBP-1c pathway.

    PubMed

    Li, Xian Liang; Man, Kwan; Ng, Kevin T; Lee, Terence K; Lo, Chung Mau; Fan, Sheung Tat

    2004-09-01

    Ischemia / reperfusion (I / R) injury is related to tissue graft energy status. Insulin, which is currently used in the University of Wisconsin (UW) preservation solution with insulin (UWI), is an anabolic hormone and was shown to exacerbate the hepatic I / R injury in our previous study. In this study, the energy status and regulation of metabolism genes by insulin were investigated in liver grafts preserved by UW solution. Insulin could significantly decrease adenosine triphosphate (ATP) level after 3 hours of preservation, as well as total adenine nucleotides (TANs) and energy charge (EC) levels. Energy regeneration deteriorated in the grafts preserved by insulin in terms of ATP and EC levels at 24 hours after transplantation. The insulin signal was transduced through the insulin receptor substrate-2 (IRS-2) pathway and the activity of IRS-2 was decreased gradually at the messenger ribonucleic acid (mRNA) level during cold preservation. Downstream targeting genes such as sterol regulatory element-binding protein-1c (SREBP-1c), glucokinase (GKC), and fatty acid synthase (FAS) genes, as well as phospho-glycogen synthase kinase-3beta (GSK-3beta) were activated and they showed the similar expression profiles during cold preservation. Lipoprotein metabolism was accelerated by insulin through upregulation of the activity of apolipoprotein C-III (Apo C-III) during cold preservation. The insulin-like growth factor-binding protein-1 pathway was inhibited during cold preservation. In conclusion, insulin in UW solution exacerbates hepatic I / R injury by energy depletion as the graft maintains its anabolic activity. The key enzyme activities of the energy-consuming process of glycogen and fatty acid synthesis as well as lipoprotein metabolism were accelerated by insulin through the IRS-2 / SREBP-1c pathway.

  17. Lysosomal proteolysis: effects of aging and insulin.

    PubMed

    Gromakova, I A; Konovalenko, O A

    2003-07-01

    Age-related characteristics of the effect of insulin on the activity of lysosomal proteolytic enzymes were studied. The relationship between the insulin effect on protein degradation and insulin degradation was analyzed. The effect of insulin on the activities of lysosomal enzymes was opposite in young and old rats (inhibitory in 3-month-old and stimulatory in 24-month-old animals). The activities of proteolytic enzymes were regulated by insulin in a glucose-independent manner: similar hypoglycemic effects of insulin in animals of different ages were accompanied by opposite changes in the activities of lysosomal enzymes. The inhibition of lysosomal enzymes by insulin in 3-month-old rats is consistent with a notion on the inhibitory effect of insulin on protein degradation. An opposite insulin effect in 24-month-old rats (i.e., stimulation of proteolytic activity by insulin) may be partly associated with attenuation of the degradation of insulin, resulting in disturbances in signaling that mediates the regulatory effects of insulin on protein degradation.

  18. Structural Analysis of the Regulatory Domain of ExsA, a Key Transcriptional Regulator of the Type Three Secretion System in Pseudomonas aeruginosa

    SciTech Connect

    Shrestha, Manisha; Xiao, Yi; Robinson, Howard; Schubot, Florian D.

    2015-08-28

    Pseudomonas aeruginosa employs a type three secretion system to facilitate infections in mammalian hosts. The operons encoding genes of structural components of the secretion machinery and associated virulence factors are all under the control of the AraC-type transcriptional activator protein, ExsA. ExsA belongs to a unique subfamily of AraC-proteins that is regulated through protein-protein contacts rather than small molecule ligands. Prior to infection, ExsA is inhibited through a direct interaction with the anti-activator ExsD. To activate ExsA upon host cell contact this interaction is disrupted by the anti-antiactivator protein ExsC. Here we report the crystal structure of the regulatory domain of ExsA, which is known to mediate ExsA dimerization as well as ExsD binding. The crystal structure suggests two models for the ExsA dimer. Both models confirmed the previously shown involvement of helix α-3 in ExsA dimerization but one also suggest a role for helix α-2. These structural data are supported by the observation that a mutation in α-2 greatly diminished the ability of ExsA to activate transcription in vitro. Lastly, additional in vitro transcription studies revealed that a conserved pocket, used by AraC and the related ToxT protein for the binding of small molecule regulators, although present in ExsA is not involved in binding of ExsD.

  19. Magnolol causes alterations in the cell cycle in androgen insensitive human prostate cancer cells in vitro by affecting expression of key cell cycle regulatory proteins.

    PubMed

    McKeown, Brendan T; McDougall, Luke; Catalli, Adriana; Hurta, Robert A R

    2014-01-01

    Prostate cancer, one of the most common cancers in the Western world, affects many men worldwide. This study investigated the effects of magnolol, a compound found in the roots and bark of the magnolia tree Magnolia officinalis, on the behavior of 2 androgen insensitive human prostate cancer cell lines, DU145 and PC3, in vitro. Magnolol, in a 24-h exposure at 40 and 80 μM, was found to be cytotoxic to cells. Magnolol also affected cell cycle progression of DU145 and PC3 cells, resulting in alterations to the cell cycle and subsequently decreasing the proportion of cells entering the G2/M-phase of the cell cycle. Magnolol inhibited the expression of cell cycle regulatory proteins including cyclins A, B1, D1, and E, as well as CDK2 and CDK4. Protein expression levels of pRBp107 decreased and pRBp130 protein expression levels increased in response to magnolol exposure, whereas p16(INK4a), p21, and p27 protein expression levels were apparently unchanged post 24-h exposure. Magnolol exposure at 6 h did increase p27 protein expression levels. This study has demonstrated that magnolol can alter the behavior of androgen insensitive human prostate cancer cells in vitro and suggests that magnolol may have potential as a novel anti-prostate cancer agent.

  20. Structural Analysis of the Regulatory Domain of ExsA, a Key Transcriptional Regulator of the Type Three Secretion System in Pseudomonas aeruginosa

    PubMed Central

    Shrestha, Manisha; Xiao, Yi; Robinson, Howard; Schubot, Florian D.

    2015-01-01

    Pseudomonas aeruginosa employs a type three secretion system to facilitate infections in mammalian hosts. The operons encoding genes of structural components of the secretion machinery and associated virulence factors are all under the control of the AraC-type transcriptional activator protein, ExsA. ExsA belongs to a unique subfamily of AraC-proteins that is regulated through protein-protein contacts rather than small molecule ligands. Prior to infection, ExsA is inhibited through a direct interaction with the anti-activator ExsD. To activate ExsA upon host cell contact this interaction is disrupted by the anti-antiactivator protein ExsC. Here we report the crystal structure of the regulatory domain of ExsA, which is known to mediate ExsA dimerization as well as ExsD binding. The crystal structure suggests two models for the ExsA dimer. Both models confirmed the previously shown involvement of helix α-3 in ExsA dimerization but one also suggest a role for helix α-2. These structural data are supported by the observation that a mutation in α-2 greatly diminished the ability of ExsA to activate transcription in vitro. Additional in vitro transcription studies revealed that a conserved pocket, used by AraC and the related ToxT protein for the binding of small molecule regulators, although present in ExsA is not involved in binding of ExsD. PMID:26317977

  1. Previtellogenic oocyte growth in salmon: relationships among body growth, plasma insulin-like growth factor-1, estradiol-17beta, follicle-stimulating hormone and expression of ovarian genes for insulin-like growth factors, steroidogenic-acute regulatory protein and receptors for gonadotropins, growth hormone, and somatolactin.

    PubMed

    Campbell, B; Dickey, J; Beckman, B; Young, G; Pierce, A; Fukada, H; Swanson, P

    2006-07-01

    Body growth during critical periods is known to be an important factor in determining the age of maturity and fecundity in fish. However, the endocrine mechanisms controlling oogenesis in fish and the effects of growth on this process are poorly understood. In this study interactions between the growth and reproductive systems were examined by monitoring changes in various components of the FSH-ovary axis, plasma insulin-like growth factor 1 (Igf1), and ovarian gene expression in relation to body and previtellogenic oocyte growth in coho salmon. Samples were collected from females during two hypothesized critical periods when growth influences maturation in this species. Body growth during the fall-spring months was strongly related to the degree of oocyte development, with larger fish possessing more advanced oocytes than smaller, slower growing fish. The accumulation of cortical alveoli in the oocytes was associated with increases in plasma and pituitary FSH, plasma estradiol-17beta, and ovarian steroidogenic acute regulatory protein (star) gene expression, whereas ovarian transcripts for growth hormone receptor and somatolactin receptor decreased. As oocytes accumulated lipid droplets, a general increase occurred in plasma Igf1 and components of the FSH-ovary axis, including plasma FSH, estradiol-17beta, and ovarian mRNAs for gonadotropin receptors, star, igf1, and igf2. A consistent positive relationship between plasma Igf1, estradiol-17beta, and pituitary FSH during growth in the spring suggests that these factors are important links in the mechanism by which body growth influences the rate of oocyte development.

  2. Control of leptin by metabolic state and its regulatory interactions with pituitary growth hormone and hepatic growth hormone receptors and insulin like growth factors in the tilapia (Oreochromis mossambicus).

    PubMed

    Douros, Jonathan D; Baltzegar, David A; Mankiewicz, Jamie; Taylor, Jordan; Yamaguchi, Yoko; Lerner, Darren T; Seale, Andre P; Grau, E Gordon; Breves, Jason P; Borski, Russell J

    2017-01-01

    Leptin is an important cytokine for regulating energy homeostasis, however, relatively little is known about its function and control in teleost fishes or other ectotherms, particularly with regard to interactions with the growth hormone (GH)/insulin-like growth factors (IGFs) growth regulatory axis. Here we assessed the regulation of LepA, the dominant paralog in tilapia (Oreochromis mossambicus) and other teleosts under altered nutritional state, and evaluated how LepA might alter pituitary growth hormone (GH) and hepatic insulin-like growth factors (IGFs) that are known to be disparately regulated by metabolic state. Circulating LepA, and lepa and lepr gene expression increased after 3-weeks fasting and declined to control levels 10days following refeeding. This pattern of leptin regulation by metabolic state is similar to that previously observed for pituitary GH and opposite that of hepatic GHR and/or IGF dynamics in tilapia and other fishes. We therefore evaluated if LepA might differentially regulate pituitary GH, and hepatic GH receptors (GHRs) and IGFs. Recombinant tilapia LepA (rtLepA) increased hepatic gene expression of igf-1, igf-2, ghr-1, and ghr-2 from isolated hepatocytes following 24h incubation. Intraperitoneal rtLepA injection, on the other hand, stimulated hepatic igf-1, but had little effect on hepatic igf-2, ghr1, or ghr2 mRNA abundance. LepA suppressed GH accumulation and gh mRNA in pituitaries in vitro, but had no effect on GH release. We next sought to test if abolition of pituitary GH via hypophysectomy (Hx) affects the expression of hepatic lepa and lepr. Hypophysectomy significantly increases hepatic lepa mRNA abundance, while GH replacement in Hx fish restores lepa mRNA levels to that of sham controls. Leptin receptor (lepr) mRNA was unchanged by Hx. In in vitro hepatocyte incubations, GH inhibits lepa and lepr mRNA expression at low concentrations, while higher concentration stimulates lepa expression. Taken together, these findings

  3. Structural Analysis of the Regulatory Domain of ExsA, a Key Transcriptional Regulator of the Type Three Secretion System in Pseudomonas aeruginosa

    DOE PAGES

    Shrestha, Manisha; Xiao, Yi; Robinson, Howard; ...

    2015-08-28

    Pseudomonas aeruginosa employs a type three secretion system to facilitate infections in mammalian hosts. The operons encoding genes of structural components of the secretion machinery and associated virulence factors are all under the control of the AraC-type transcriptional activator protein, ExsA. ExsA belongs to a unique subfamily of AraC-proteins that is regulated through protein-protein contacts rather than small molecule ligands. Prior to infection, ExsA is inhibited through a direct interaction with the anti-activator ExsD. To activate ExsA upon host cell contact this interaction is disrupted by the anti-antiactivator protein ExsC. Here we report the crystal structure of the regulatory domainmore » of ExsA, which is known to mediate ExsA dimerization as well as ExsD binding. The crystal structure suggests two models for the ExsA dimer. Both models confirmed the previously shown involvement of helix α-3 in ExsA dimerization but one also suggest a role for helix α-2. These structural data are supported by the observation that a mutation in α-2 greatly diminished the ability of ExsA to activate transcription in vitro. Lastly, additional in vitro transcription studies revealed that a conserved pocket, used by AraC and the related ToxT protein for the binding of small molecule regulators, although present in ExsA is not involved in binding of ExsD.« less

  4. The Transcription Factor Interferon Regulatory Factor-1 (IRF1) Plays a Key Role in the Terminal Effector Pathways of Human Preterm Labor.

    PubMed

    Lim, Ratana; Tran, Ha Thi; Liong, Stella; Barker, Gillian; Lappas, Martha

    2016-02-01

    Preterm birth is the largest single cause of neonatal death and morbidity. By activating cytokine- and Toll-like receptor (TLR)-signaling pathways, infection and/or inflammation are strongly associated with preterm delivery. Interferon regulatory factor-1 (IRF1) is an important regulator of the inflammatory response. The aims of this study were to establish the effect of 1) labor on IRF1 expression in human fetal membranes and myometrium, 2) prolabor mediators on IRF1 expression and activity, and 3) IRF1 small interfering RNA on the expression of prolabor mediators. IRF1 expression was higher in fetal membranes and myometrium after spontaneous term labor and in preterm fetal membranes with infection. The proinflammatory cytokine IL1B, the bacterial product fsl-1, and viral analog polyinosinic:polycytidylic acid (poly [I:C]) significantly increased IRF1 mRNA expression and transcriptional activity in human primary myometrial cells. In addition, IL1B increased IRF1 activity in primary amnion cells. IRF1 silencing in myometrial cells decreased IL1B-, fsl-1-, and poly (I:C)-induced cytokine (IL6, TNF, IL1B) and chemokine (CXCL8, CCL2) mRNA expression and IL6, CXCL8, and CCL2 release. IL1B-, fsl-1-, and poly (I:C)-induced PTGS2 mRNA expression and IL1B-induced prostaglandin release was also decreased by IRF1 silencing. In conclusion, IRF1 upregulation in fetal membranes and myometrium after term labor indicates a proinflammatory role for IRF1 in human parturition. IRF1 is involved in TLR- and cytokine-mediated signaling in human myometrium. These data provide new insights into the mechanisms associated with inflammation- and infection-associated preterm birth. IRF1 inhibitors as therapeutics for the management of spontaneous preterm birth warrants further investigation. © 2016 by the Society for the Study of Reproduction, Inc.

  5. Hepatitis B virus nuclear export elements: RNA stem-loop α and β, key parts of the HBV post-transcriptional regulatory element.

    PubMed

    Lim, Chun Shen; Brown, Chris M

    2016-09-01

    Many viruses contain RNA elements that modulate splicing and/or promote nuclear export of their RNAs. The RNAs of the major human pathogen, hepatitis B virus (HBV) contain a large (~600 bases) composite cis-acting 'post-transcriptional regulatory element' (PRE). This element promotes expression from these naturally intronless transcripts. Indeed, the related woodchuck hepadnavirus PRE (WPRE) is used to enhance expression in gene therapy and other expression vectors. These PRE are likely to act through a combination of mechanisms, including promotion of RNA nuclear export. Functional components of both the HBV PRE and WPRE are 2 conserved RNA cis-acting stem-loop (SL) structures, SLα and SLβ. They are within the coding regions of polymerase (P) gene, and both P and X genes, respectively. Based on previous studies using mutagenesis and/or nuclear magnetic resonance (NMR), here we propose 2 covariance models for SLα and SLβ. The model for the 30-nucleotide SLα contains a G-bulge and a CNGG(U) apical loop of which the first and the fourth loop residues form a CG pair and the fifth loop residue is bulged out, as observed in the NMR structure. The model for the 23-nucleotide SLβ contains a 7-base-pair stem and a 9-nucleotide loop. Comparison of the models with other RNA structural elements, as well as similarity searches of human transcriptome and viral genomes demonstrate that SLα and SLβ are specific to HBV transcripts. However, they are well conserved among the hepadnaviruses of non-human primates, the woodchuck and ground squirrel.

  6. Inorganic phosphate (Pi) modulates the expression of key regulatory proteins of the inorganic pyrophosphate (PPi) metabolism in TGF-β1-stimulated chondrocytes.

    PubMed

    Hamade, Tala; Bianchi, Arnaud; Sebillaud, Sylvie; Netter, Patrick; Jouzeau, Jean-Yves; Cailotto, Frédéric

    2010-01-01

    The balance between extracellular inorganic phosphate (ePi) and extracellular inorganic pyrophosphate (ePPi) is controlled by four membrane proteins: the transporters ANK (exporting PPi outside the cells) and PiT-1 (importing ePi into the cells), and the enzymes PC-1 (generating ePPi from nucleotides) and Tissue Non-specific Alkaline Phosphatase (TNAP, hydrolyzing ePPi into ePi). TGF-β1 was shown to stimulate ANK and PC-1 expression in articular chondrocytes, and subsequent ePPi level, as well as to increase ePi uptake by inducing PiT-1 expression in a chondrogenic cell line. Thus, we investigated the ability of ePi to modulate the effect of TGF-β1 on the regulatory proteins of the ePi/ePPi balance in chondrocytes. In the pathophysiological range of 0.01-1 mM, ePi was inactive by itself but potentiated the stimulatory effects of TGF-β1 on ANK, PC-1 or PiT-1 mRNA (RT-qPCR) and protein (Western blot) levels. PC-1 activity was also increased by TGF-β1 and further potentiated by ePi supplementation. TNAP mRNA and activity became undetectable in response to TGF-β1. These data suggest that ePi could increase ePPi level by changing the control of ANK and PC-1 expression by TGF-β1, further highlighting an adaptative regulation of the Pi/PPi balance to prevent basic calcium phosphate deposition into the joints.

  7. The heme-regulatory motif of nuclear receptor Rev-erbβ is a key mediator of heme and redox signaling in circadian rhythm maintenance and metabolism.

    PubMed

    Carter, Eric L; Ramirez, Yanil; Ragsdale, Stephen W

    2017-07-07

    Rev-erbβ is a heme-responsive transcription factor that regulates genes involved in circadian rhythm maintenance and metabolism, effectively bridging these critical cellular processes. Heme binding to Rev-erbβ indirectly facilitates its interaction with the nuclear receptor co-repressor (NCoR1), resulting in repression of Rev-erbβ target genes. Fe(3+)-heme binds in a 6-coordinate complex with axial His and Cys ligands, the latter provided by a heme-regulatory motif (HRM). Rev-erbβ was thought to be a heme sensor based on a weak Kd value for the Rev-erbβ·heme complex of 2 μm determined with isothermal titration calorimetry. However, our group demonstrated with UV-visible difference titrations that the Kd value is in the low nanomolar range, and the Fe(3+)-heme off-rate is on the order of 10(-6) s(-1) making Rev-erbβ ineffective as a sensor of Fe(3+)-heme. In this study, we dissected the kinetics of heme binding to Rev-erbβ and provided a Kd for Fe(3+)-heme of ∼0.1 nm Loss of the HRM axial thiolate via redox processes, including oxidation to a disulfide with a neighboring cysteine or dissociation upon reduction of Fe(3+)- to Fe(2+)-heme, decreased binding affinity by >20-fold. Furthermore, as measured in a co-immunoprecipitation assay, substitution of the His or Cys heme ligands in Rev-erbβ was accompanied by a significant loss of NCoR1 binding. These results demonstrate the importance of the Rev-erbβ HRM in regulating interactions with heme and NCoR1 and advance our understanding of how signaling through HRMs affects the major cellular processes of circadian rhythm maintenance and metabolism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Caloric restriction-associated remodeling of rat white adipose tissue: effects on the growth hormone/insulin-like growth factor-1 axis, sterol regulatory element binding protein-1, and macrophage infiltration.

    PubMed

    Chujo, Yoshikazu; Fujii, Namiki; Okita, Naoyuki; Konishi, Tomokazu; Narita, Takumi; Yamada, Atsushi; Haruyama, Yushi; Tashiro, Kosuke; Chiba, Takuya; Shimokawa, Isao; Higami, Yoshikazu

    2013-08-01

    The role of the growth hormone (GH)-insulin-like growth factor (IGF)-1 axis in the lifelong caloric restriction (CR)-associated remodeling of white adipose tissue (WAT), adipocyte size, and gene expression profiles was explored in this study. We analyzed the WAT morphology of 6-7-month-old wild-type Wistar rats fed ad libitum (WdAL) or subjected to CR (WdCR), and of heterozygous transgenic dwarf rats bearing an anti-sense GH transgene fed ad libitum (TgAL) or subjected to CR (TgCR). Although less effective in TgAL, the adipocyte size was significantly reduced in WdCR compared with WdAL. This CR effect was blunted in Tg rats. We also used high-density oligonucleotide microarrays to examine the gene expression profile of WAT of WdAL, WdCR, and TgAL rats. The gene expression profile of WdCR, but not TgAL, differed greatly from that of WdAL. The gene clusters with the largest changes induced by CR but not by Tg were genes involved in lipid biosynthesis and inflammation, particularly sterol regulatory element binding proteins (SREBPs)-regulated and macrophage-related genes, respectively. Real-time reverse-transcription polymerase chain reaction analysis confirmed that the expression of SREBP-1 and its downstream targets was upregulated, whereas the macrophage-related genes were downregulated in WdCR, but not in TgAL. In addition, CR affected the gene expression profile of Tg rats similarly to wild-type rats. Our findings suggest that CR-associated remodeling of WAT, which involves SREBP-1-mediated transcriptional activation and suppression of macrophage infiltration, is regulated in a GH-IGF-1-independent manner.

  9. Regulatory perspectives on pharmacogenomics: a review of the literature on key issues faced by the United States Food and Drug Administration.

    PubMed

    Phillips, Kathryn A; Van Bebber, Stephanie L

    2006-06-01

    Pharmacogenomics (PGx), the use of genetic information to individualize drug therapy, is an immediate and important application of the Human Genome Project. The advent of PGx presents challenges to the U.S. Food and Drug Administration (FDA) in pursuing its mandate of protecting public health and safety. The authors conducted a review of academic, industry, and government literature using a technology diffusion framework to identify issues faced by the FDA relevant to the application of PGx. Two hundred and ten articles were reviewed. Key issues were categorized as rationale and structure for PGx regulation, regulation of PGx-based testing technologies, regulation of applications in clinical settings, regulation of data, and regulation of product life cycles. This review identifies issues faced by the FDA with respect to PGx, which the FDA is addressing through several initiatives. It also illustrates the complex issues involved in developing, implementing, and adopting new technologies.

  10. Label-Free Proteomic Identification of Endogenous, Insulin-Stimulated Interaction Partners of Insulin Receptor Substrate-1

    NASA Astrophysics Data System (ADS)

    Geetha, Thangiah; Langlais, Paul; Luo, Moulun; Mapes, Rebekka; Lefort, Natalie; Chen, Shu-Chuan; Mandarino, Lawrence J.; Yi, Zhengping

    2011-03-01

    Protein-protein interactions are key to most cellular processes. Tandem mass spectrometry (MS/MS)-based proteomics combined with co-immunoprecipitation (CO-IP) has emerged as a powerful approach for studying protein complexes. However, a majority of systematic proteomics studies on protein-protein interactions involve the use of protein overexpression and/or epitope-tagged bait proteins, which might affect binding stoichiometry and lead to higher false positives. Here, we report an application of a straightforward, label-free CO-IP-MS/MS method, without the use of protein overexpression or protein tags, to the investigation of changes in the abundance of endogenous proteins associated with a bait protein, which is in this case insulin receptor substrate-1 (IRS-1), under basal and insulin stimulated conditions. IRS-1 plays a central role in the insulin signaling cascade. Defects in the protein-protein interactions involving IRS-1 may lead to the development of insulin resistance and type 2 diabetes. HPLC-ESI-MS/MS analyses identified eleven novel endogenous insulin-stimulated IRS-1 interaction partners in L6 myotubes reproducibly, including proteins play an important role in protein dephosphorylation [protein phosphatase 1 regulatory subunit 12A, (PPP1R12A)], muscle contraction and actin cytoskeleton rearrangement, endoplasmic reticulum stress, and protein folding, as well as protein synthesis. This novel application of label-free CO-IP-MS/MS quantification to assess endogenous interaction partners of a specific protein will prove useful for understanding how various cell stimuli regulate insulin signal transduction.

  11. A large-scale, in vivo transcription factor screen defines bivalent chromatin as a key property of regulatory factors mediating Drosophila wing development

    PubMed Central

    Schertel, Claus; Albarca, Monica; Rockel-Bauer, Claudia; Kelley, Nicholas W.; Bischof, Johannes; Hens, Korneel

    2015-01-01

    Transcription factors (TFs) are key regulators of cell fate. The estimated 755 genes that encode DNA binding domain-containing proteins comprise ∼5% of all Drosophila genes. However, the majority has remained uncharacterized so far due to the lack of proper genetic tools. We generated 594 site-directed transgenic Drosophila lines that contain integrations of individual UAS-TF constructs to facilitate spatiotemporally controlled misexpression in vivo. All transgenes were expressed in the developing wing, and two-thirds induced specific phenotypic defects. In vivo knockdown of the same genes yielded a phenotype for 50%, with both methods indicating a great potential for misexpression to characterize novel functions in wing growth, patterning, and development. Thus, our UAS-TF library provides an important addition to the genetic toolbox of Drosophila research, enabling the identification of several novel wing development-related TFs. In parallel, we established the chromatin landscape of wing imaginal discs by ChIP-seq analyses of five chromatin marks and RNA Pol II. Subsequent clustering revealed six distinct chromatin states, with two clusters showing enrichment for both active and repressive marks. TFs that carry such “bivalent” chromatin are highly enriched for causing misexpression phenotypes in the wing, and analysis of existing expression data shows that these TFs tend to be differentially expressed across the wing disc. Thus, bivalently marked chromatin can be used as a marker for spatially regulated TFs that are functionally relevant in a developing tissue. PMID:25568052

  12. A large-scale, in vivo transcription factor screen defines bivalent chromatin as a key property of regulatory factors mediating Drosophila wing development.

    PubMed

    Schertel, Claus; Albarca, Monica; Rockel-Bauer, Claudia; Kelley, Nicholas W; Bischof, Johannes; Hens, Korneel; van Nimwegen, Erik; Basler, Konrad; Deplancke, Bart

    2015-04-01

    Transcription factors (TFs) are key regulators of cell fate. The estimated 755 genes that encode DNA binding domain-containing proteins comprise ∼ 5% of all Drosophila genes. However, the majority has remained uncharacterized so far due to the lack of proper genetic tools. We generated 594 site-directed transgenic Drosophila lines that contain integrations of individual UAS-TF constructs to facilitate spatiotemporally controlled misexpression in vivo. All transgenes were expressed in the developing wing, and two-thirds induced specific phenotypic defects. In vivo knockdown of the same genes yielded a phenotype for 50%, with both methods indicating a great potential for misexpression to characterize novel functions in wing growth, patterning, and development. Thus, our UAS-TF library provides an important addition to the genetic toolbox of Drosophila research, enabling the identification of several novel wing development-related TFs. In parallel, we established the chromatin landscape of wing imaginal discs by ChIP-seq analyses of five chromatin marks and RNA Pol II. Subsequent clustering revealed six distinct chromatin states, with two clusters showing enrichment for both active and repressive marks. TFs that carry such "bivalent" chromatin are highly enriched for causing misexpression phenotypes in the wing, and analysis of existing expression data shows that these TFs tend to be differentially expressed across the wing disc. Thus, bivalently marked chromatin can be used as a marker for spatially regulated TFs that are functionally relevant in a developing tissue.

  13. Insulin-Dependent Regulation of Insulin Receptor Concentrations: A Direct Demonstration in Cell Culture

    PubMed Central

    Gavin, James R.; Roth, Jesse; Neville, David M.; De Meyts, Pierre; Buell, Donald N.

    1974-01-01

    Chronic (5-16 hr) exposure of cultured human lymphocytes to 10-8 M insulin at 37° in vitro produced a decrease in insulin receptor concentrations unaccounted for by simple occupancy of sites; acute exposure (0-2 hr) was without effect. These results reproduced observations in vivo where chronic hyperinsulinemia (e.g., 10-8 M insulin in the circulation of obese insulinresistant hyperglycemic mice) is associated with a substantial reduction in the concentration of insulin receptors per cell, while acute hyperinsulinemia in vivo has no effect on receptor concentration. These data suggest a reciprocal relationship between insulin in the extracellular fluid and the concentration of insulin receptors per cell, which is mediated at the target cell itself by intracellular insulin-sensitive regulatory processes and directly affects target-cell sensitivity to hormone. PMID:4359334

  14. Anti-insulin antibody test

    MedlinePlus

    Insulin antibodies - serum; Insulin Ab test; Insulin resistance - insulin antibodies; Diabetes - insulin antibodies ... You appear to have an allergic response to insulin Insulin no longer seems to control your diabetes

  15. Role of insulin and insulin receptor in learning and memory.

    PubMed

    Zhao, W Q; Alkon, D L

    2001-05-25

    As one of the most extensively studied protein hormones, insulin and its receptor have been known to play key roles in a variety of important biological functions. Until recent years, the functions of insulin and insulin receptor (IR) in the central nervous system (CNS) have largely remained unclear. IR is abundantly expressed in several specific brain regions that govern fundamental behaviors such as food intake, reproduction and high cognition. The IR from the periphery and CNS exhibit differences in both structure and function. In addition to that from the peripheral system, locally synthesized insulin in the brain has also been identified. Accumulated evidence has demonstrated that insulin/IR plays important roles in associative learning, as suggested by results from both interventive and correlative studies. Interruption of insulin production and IR activity causes deficits in learning and memory formation. Abnormal insulin/IR levels and activities are seen in Alzheimer's dementia, whereas administration of insulin significantly improves the cognitive performance of these patients. The synaptic bases for the action of insulin/IR include modifying neurotransmitter release processes at various types of presynaptic terminals and modulating the activities of both excitatory and inhibitory postsynaptic receptors such as NMDA and GABA receptors, respectively. At the molecular level, insulin/IR participates in regulation of learning and memory via activation of specific signaling pathways, one of which is shown to be associated with the formation of long-term memory and is composed of intracellular molecules including the shc, Grb-r/SOS, Ras/Raf, and MEK/MAP kinases. Cross-talk with another IR pathway involving IRS1, PI3 kinase, and protein kinase C, as well as with the non-receptor tyrosine kinase pp60c-src, may also be associated with memory processing.

  16. Toward Development of Psychosocial Measures for Automated Insulin Delivery

    PubMed Central

    Weissberg-Benchell, Jill; Hood, Korey; Laffel, Lori; Heinemann, Lutz; Ball, Dana; Kowalski, Aaron; Peters, Anne; Damiano, Edward; Schiller, Marie; Davis, Aaron; Beck, Stayce; Barnard, Katharine

    2015-01-01

    The INSPIRE study working group launched its initial workshop in February 2015 to facilitate collaboration among key stakeholders interested in automated insulin delivery (AID) systems and the psychosocial outcomes of individuals who may use these new technologies. Specifically, the INSPIRE team’s goal is to facilitate measure development assessing the psychosocial factors associated with AID systems. A second working group was held to foster exchange among key stakeholders in AID system development. Patient, health care provider, engineering, industry, academic, regulatory and payer perspectives were presented. The INSPIRE working group will continue to serve as a platform to encourage open dialogue among all stakeholders with the aim of facilitating technology that offers minimal user burden and maximum benefit from both a psychological and physiologic perspective. PMID:26645792

  17. Fructose induced lipogenesis: from sugar to fat to insulin resistance.

    PubMed

    Samuel, Varman T

    2011-02-01

    Increasing consumption of sugars is one of the contributing factors to the obesity epidemic. Both cane sugar and high-fructose corn syrup contain glucose and fructose. Fructose, in contrast to glucose, is known to potently stimulate lipogenesis, but the mechanisms responsible are not yet fully known. This paper reviews several possible pathways that might be involved, such as activation of pyruvate dehydrogenase, and transcriptional activation of sterol regulatory element binding protein 1c by key regulators such as peroxisome proliferator activated receptor-γ co-activator 1β and the splice variant of X-box binding protein 1. Together, these pathways might establish a feed forward cycle that can rapidly increase hepatic lipogenesis. As a result, dietary fructose might promote the development of nonalcoholic fatty liver disease, which in and of itself, can result in hepatic insulin resistance, a key feature of type 2 diabetes mellitus. Published by Elsevier Ltd.

  18. Diabetes and Insulin

    MedlinePlus

    ... in the abdomen just behind the stomach, produces insulin. Insulin is a hormone that takes glucose from the ... occurs when the pancreas does not produce enough insulin or when the body doesn’t use insulin ...

  19. Obesity and metabolic dysfunction severely influence prostate cell function: role of insulin and IGF1.

    PubMed

    L-López, Fernando; Sarmento-Cabral, André; Herrero-Aguayo, Vicente; Gahete, Manuel D; Castaño, Justo P; Luque, Raúl M

    2017-09-01

    Obesity is a major health problem that courses with severe comorbidities and a drastic impairment of homeostasis and function of several organs, including the prostate gland (PG). The endocrine-metabolic regulatory axis comprising growth hormone (GH), insulin and IGF1, which is drastically altered under extreme metabolic conditions such as obesity, also plays relevant roles in the development, modulation and homeostasis of the PG. However, its implication in the pathophysiological interplay between obesity and prostate function is still to be elucidated. To explore this association, we used a high fat-diet obese mouse model, as well as in vitro primary cultures of normal-mouse PG cells and human prostate cancer cell lines. This approach revealed that most of the components of the GH/insulin/IGF1 regulatory axis are present in PGs, where their expression pattern is altered under obesity conditions and after an acute insulin treatment (e.g. Igfbp3), which might have some pathophysiological implications. Moreover, our results demonstrate, for the first time, that the PG becomes severely insulin resistant under diet-induced obesity in mice. Finally, use of in vitro approaches served to confirm and expand the conception that insulin and IGF1 play a direct, relevant role in the control of normal and pathological PG cell function. Altogether, these results uncover a fine, germane crosstalk between the endocrine-metabolic status and the development and homeostasis of the PG, wherein key components of the GH, insulin and IGF1 axes could play a relevant pathophysiological role. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  20. Administration of Biosimilar Insulin Analogs: Role of Devices.

    PubMed

    Heinemann, Lutz; Fritz, Ingo; Khatami, Hootan; Edelman, Steven V

    2017-02-01

    With the expiration of patent protection for several originator insulin analog molecules, the availability of insulin analog copies is set to increase. Many regulatory authorities have developed, and continue to refine, guidelines for the approval of biosimilar insulin analogs. Aspects such as the structure, pharmacokinetics and pharmacodynamics, efficacy, safety, and immunogenicity of biosimilar insulin analogs are extensively addressed in these guidelines, but how the biosimilar insulin analog is administered to people with diabetes is not usually a topic. The aim of this article is to highlight that the delivery device-drug combination is of particular importance. Regulatory, legal, and practical aspects of the delivery device, be it a syringe, pen, or pump, have to be considered in the context of biosimilar insulin analogs. Although the safety and efficacy of biosimilar insulin analogs per se are of primary importance for physicians and people with diabetes, functions and features of the devices used for administration also require attention from a practical point of view. Unfortunately, although there are several clinical studies investigating the technical aspects of and patient preference for the originator insulin analog pens, there are currently very little published data for nonoriginator or biosimilar insulin analog pens. In addition, it is not known if it is safe to assume that a biosimilar insulin analog cartridge is compatible with an existing originator insulin analog pen. We believe that there is a need for more discussion on the role of devices for administration of biosimilar insulin analogs.

  1. Regulation of pyruvate dehydrogenase kinase isoform 4 (PDK4) gene expression by glucocorticoids and insulin.

    PubMed

    Connaughton, Sara; Chowdhury, Farhana; Attia, Ramy R; Song, Shulan; Zhang, Yi; Elam, Marshall B; Cook, George A; Park, Edwards A

    2010-02-05

    The pyruvate dehydrogenase complex (PDC) catalyzes the conversion of pyruvate to acetyl-CoA in mitochondria and is a key regulatory enzyme in the oxidation of glucose to acetyl-CoA. Phosphorylation of PDC by the pyruvate dehydrogenase kinases (PDK) inhibits its activity. The expression of the pyruvate dehydrogenase kinase 4 (PDK4) gene is increased in fasting and other conditions associated with the switch from the utilization of glucose to fatty acids as an energy source. Transcription of the PDK4 gene is elevated by glucocorticoids and inhibited by insulin. In this study, we have investigated the factors involved in the regulation of the PDK4 gene by these hormones. Glucocorticoids stimulate PDK4 through two glucocorticoid receptor (GR) binding sites located more than 6000 base pairs upstream of the transcriptional start site. Insulin inhibits the glucocorticoid induction in part by causing dissociation of the GR from the promoter. Previously, we found that the estrogen related receptor alpha (ERRalpha) stimulates the expression of PDK4. Here, we determined that one of the ERRalpha binding sites contributes to the insulin inhibition of PDK4. A binding site for the forkhead transcription factor (FoxO1) is adjacent to the ERRalpha binding sites. FoxO1 participates in the glucocorticoid induction of PDK4 and the regulation of this gene by insulin. Our data demonstrate that glucocorticoids and insulin each modulate PDK4 gene expression through complex hormone response units that contain multiple factors.

  2. Insulin Therapy

    MedlinePlus

    ... results yourself or insert the strip into a machine called an electronic glucose meter. The results will tell you whether or not your blood sugar is in a healthy range. Your doctor will give you additional information about monitoring your blood sugar.When should I take insulin? ...

  3. The biosimilar insulin landscape: current developments.

    PubMed

    Lavalle-González, Fernando J; Khatami, Hootan

    2014-10-01

    Biosimilar insulins have the potential to increase access to treatment among patients with diabetes mellitus, reduce treatment costs, and expand market competition. The patents for several insulins are soon to expire, meaning there is room for copies of these products--or 'biosimilars'--to join the marketplace. It is vital that similar safety and efficacy to the innovator product is demonstrated for biosimilars. This presents many possible manufacturing and regulatory challenges. Complex manufacturing processes mean that even small differences between manufacturers can have a potential impact on the final product. Several companies are currently developing biosimilar insulins or are already producing these products in emerging markets with different regulatory requirements. For insulin biosimilars to be licensed in more established markets, manufacturers will need to meet the rigid criteria set out by agencies such as the European Medicines Agency and US Food and Drug Administration, and fulfill several pre-clinical, clinical, and pharmacovigilance surveillance criteria. As a result of differing regulatory requirements, there are possible gaps in the publically available clinical data to support the safety and efficacy of biosimilar insulins from around the world current as of July 2014. This review summarizes the current biosimilar insulin landscape.

  4. Effects of estradiol and genistein on the insulin signaling pathway in the cerebral cortex of aged female rats.

    PubMed

    Morán, Javier; Garrido, Pablo; Cabello, Estefanía; Alonso, Ana; González, Celestino

    2014-10-01

    Menopause leads to a decrease in estrogen production that increases central insulin resistance, contributing to the development of neurodegenerative diseases. We have evaluated the influence of aging and estradiol or genistein treatments on some key stages of the insulin signaling pathway in the cerebral cortex. Young and aged female Wistar rats were ovariectomized and treated acutely with 17β-estradiol (1.4μg/kg body weight), two doses of genistein (10 or 40mg/kg body weight), or vehicle. The cortical expression of several key insulin signaling pathway components was analyzed by western blotting. Our results showed an age-related deterioration in the interactions between the regulatory subunit of phosphatidylinositol 3-kinase (p85α) and the activated form of insulin receptor substrate 1 (p-IRS1tyr612), as well as between p85α and the 46kDa isoform of the estrogen receptor α (ERα46). Moreover, aging also decreased the translocation of glucose transporter-4 (GLUT4) to the plasma membrane. 17β-Estradiol but not genistein reduced the negative impact of aging on central insulin sensitivity by favoring this GLUT4 translocation, and therefore could be neuroprotective against the associated neurodegenerative diseases. However, protein kinase B (Akt) activation by genistein suggests that other possible mechanisms are involved in the neuroprotective effects of this phytoestrogen during the aging process. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Alteration of local adipose tissue trace element homeostasis as a possible mechanism of obesity-related insulin resistance.

    PubMed

    Tinkov, Alexey A; Sinitskii, Anton I; Popova, Elizaveta V; Nemereshina, Olga N; Gatiatulina, Evgenia R; Skalnaya, Margarita G; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-09-01

    The mechanisms of association between obesity and the related metabolic disturbances in general and insulin resistance in particular are extensively studied. Taking into account a key role of adipose tissue insulin resistance in the development of systemic obesity-related insulin resistance, the estimation of mechanisms linking increased adiposity and impaired insulin signaling in adipocytes will allow to develop novel prophylactic and therapeutic approaches to treatment of these states. A number of trace elements like chromium, zinc, and vanadium have been shown to take part in insulin signaling via various mechanisms. Taking into account a key role of adipocyte in systemic carbohydrate homeostasis it can be asked if trace element homeostasis in adipose tissue may influence regulatory mechanisms of glucose metabolism. We hypothesize that caloric excess through currently unknown mechanisms results in decreased chromium, vanadium, and zinc content in adipocytes. Decreased content of trace elements in the adipose tissue causes impairment of intra-adipocyte insulin signaling subsequently leading to adipose tissue insulin resistance. The latter significantly contributes to systemic insulin resistance and further metabolic disruption in obesity. It is also possible that decreased adipose tissue trace element content is associated with dysregulation of insulin-sensitizing and proinflammatory adipokines also leading to insulin resistance. We hypothesize that insulin resistance and adipokine dysbalance increase the severity of obesity subsequently aggravating alteration of adipose tissue trace element balance. Single indications of high relative adipose tissue trace element content, decreased Cr, V, and Zn content in obese adipose tissue, and tight association between fat tissue chromium, vanadium, and zinc levels and metabolic parameters in obesity may be useful for hypothesis validation. If our hypothesis will be confirmed by later studies, adipose tissue chromium

  6. Insilico docking study of compounds elucidated from helicteres isora fruits with ampkinase- insulin receptor

    PubMed Central

    Vennila, Subramanium; Bupesh, Giridharan; Saravanamurali, Krishnan; SenthilKumar, Viajayan; SenthilRaja, Ramalingam; Saran, Natarajan; Magesh, Sachidanandam

    2014-01-01

    Insulin receptor (IR) proteins were essential intracellular signaling peptides in the insulin action cascade. Insulin receptor substrate proteins (IRS-1and IRS-2) serve and regulate the insulin level in the normal insulin action. The broad role of IRS-1 and IRS-2 in cell growth and survival reveals a common regulatory pathway linking development, somatic growth, fertility, neuronal proliferation, and aging to the core mechanisms used by vertebrates for nutrient sensing. Such type of proteins were cyclic adenosine monophosphate-activated protein kinase, this proteins play a key role in the insulin response and regulation. Type -2 Diabetes mellitus occurs during prolonged periods of peripheral insulin resistance due to inactivation of IRS proteins. The compounds isolated from the medicinal plants were safer than synthetic drugs and possess high bio activity. In the present study, four compounds were elucidated from fruits of Helicteres isora. The elucidated compounds were evaluated for the antidiabetic activity using in silico docking study. The receptor was analyzed for the active site and pocket finder tools. The aminoacids such as Phenylalanine, Lysine, Glutamic acid and Asparigine were predicted as active site binding residues. Docking studies were done through Autodock 4 software. All the compounds from fruits of Helicteres isora showed good docking profiles with AMP Kinase, except compound-3 (1,2,3,4-tetrahydro-1,5,6,8-tetramethyl-7-(2-methylprop-1-enylnaphthalene-4-ylpivalate). Finally the result from the study demonstrates that the HS-1, HS-2 and HS-4 posses potent anti diabetic activity against type-2 diabetes mellitus through drug action on AMP kinase cascade system. PMID:24966532

  7. Insilico docking study of compounds elucidated from helicteres isora fruits with ampkinase- insulin receptor.

    PubMed

    Vennila, Subramanium; Bupesh, Giridharan; Saravanamurali, Krishnan; SenthilKumar, Viajayan; SenthilRaja, Ramalingam; Saran, Natarajan; Magesh, Sachidanandam

    2014-01-01

    Insulin receptor (IR) proteins were essential intracellular signaling peptides in the insulin action cascade. Insulin receptor substrate proteins (IRS-1and IRS-2) serve and regulate the insulin level in the normal insulin action. The broad role of IRS-1 and IRS-2 in cell growth and survival reveals a common regulatory pathway linking development, somatic growth, fertility, neuronal proliferation, and aging to the core mechanisms used by vertebrates for nutrient sensing. Such type of proteins were cyclic adenosine monophosphate-activated protein kinase, this proteins play a key role in the insulin response and regulation. Type -2 Diabetes mellitus occurs during prolonged periods of peripheral insulin resistance due to inactivation of IRS proteins. The compounds isolated from the medicinal plants were safer than synthetic drugs and possess high bio activity. In the present study, four compounds were elucidated from fruits of Helicteres isora. The elucidated compounds were evaluated for the antidiabetic activity using in silico docking study. The receptor was analyzed for the active site and pocket finder tools. The aminoacids such as Phenylalanine, Lysine, Glutamic acid and Asparigine were predicted as active site binding residues. Docking studies were done through Autodock 4 software. All the compounds from fruits of Helicteres isora showed good docking profiles with AMP Kinase, except compound-3 (1,2,3,4-tetrahydro-1,5,6,8-tetramethyl-7-(2-methylprop-1-enylnaphthalene-4-ylpivalate). Finally the result from the study demonstrates that the HS-1, HS-2 and HS-4 posses potent anti diabetic activity against type-2 diabetes mellitus through drug action on AMP kinase cascade system.

  8. Regulation of insulin gene expression and insulin production in Nile tilapia (Oreochromis niloticus).

    PubMed

    Hrytsenko, Olga; Wright, James R; Pohajdak, Bill

    2008-01-15

    Compared to mammals, little is known about insulin gene expression in fish. Using transient transfection experiments and mammalian insulinoma cell lines we demonstrate that transcription of the Nile tilapia (Oreochromis niloticus) insulin gene is (a) regulated in a beta-cell-specific manner; and (b) not sensitive to the glucose stimulations. Deletion analysis of the 1575 bp 5' insulin gene flanking sequence revealed that cooperative interactions between regulatory elements within the proximal (-1 to -396 bp) and the distal (-396 bp to -1575 bp) promoter regions were necessary for induction of the beta-cell-specific transcription. Effects of glucose and arginine on endogenous insulin secretion, translation, and transcription in isolated tilapia Brockmann bodies were determined using Northern hybridization, Western analysis, and quantitative RT-PCR. Similar to the regulation of mammalian insulin, we found that increases of glucose (1-70 mM) and arginine (0.4-25 mM) induced insulin secretion. However, transcription of the insulin gene was activated only by extremely high concentrations of glucose and arginine added simultaneously. When stimulated for 24 h with low concentrations of both inducers or with either of them added separately, tilapia beta-cells were able to replenish secreted insulin and to maintain insulin stores at a constant level without elevations of the insulin mRNA levels. Since the basal level of insulin mRNA was approximately 3.7-fold higher in tilapia beta-cells than it is in mammalian beta-cells, insulin production in tilapia cells probably relies on an enlarged intracellular insulin mRNA pool and does not require the transcriptional activation of the insulin gene.

  9. Insulin Receptor Signaling in POMC, but Not AgRP, Neurons Controls Adipose Tissue Insulin Action.

    PubMed

    Shin, Andrew C; Filatova, Nika; Lindtner, Claudia; Chi, Tiffany; Degann, Seta; Oberlin, Douglas; Buettner, Christoph

    2017-06-01

    Insulin is a key regulator of adipose tissue lipolysis, and impaired adipose tissue insulin action results in unrestrained lipolysis and lipotoxicity, which are hallmarks of the metabolic syndrome and diabetes. Insulin regulates adipose tissue metabolism through direct effects on adipocytes and through signaling in the central nervous system by dampening sympathetic outflow to the adipose tissue. Here we examined the role of insulin signaling in agouti-related protein (AgRP) and pro-opiomelanocortin (POMC) neurons in regulating hepatic and adipose tissue insulin action. Mice lacking the insulin receptor in AgRP neurons (AgRP IR KO) exhibited impaired hepatic insulin action because the ability of insulin to suppress hepatic glucose production (hGP) was reduced, but the ability of insulin to suppress lipolysis was unaltered. To the contrary, in POMC IR KO mice, insulin lowered hGP but failed to suppress adipose tissue lipolysis. High-fat diet equally worsened glucose tolerance in AgRP and POMC IR KO mice and their respective controls but increased hepatic triglyceride levels only in POMC IR KO mice, consistent with impaired lipolytic regulation resulting in fatty liver. These data suggest that although insulin signaling in AgRP neurons is important in regulating glucose metabolism, insulin signaling in POMC neurons controls adipose tissue lipolysis and prevents high-fat diet-induced hepatic steatosis. © 2017 by the American Diabetes Association.

  10. Regulatory T cell memory

    PubMed Central

    Rosenblum, Michael D.; Way, Sing Sing; Abbas, Abul K.

    2016-01-01

    Memory for antigen is a defining feature of adaptive immunity. Antigen-specific lymphocyte populations show an increase in number and function after antigen encounter and more rapidly re-expand upon subsequent antigen exposure. Studies of immune memory have primarily focused on effector B cells and T cells with microbial specificity, using prime challenge models of infection. However, recent work has also identified persistently expanded populations of antigen-specific regulatory T cells that protect against aberrant immune responses. In this Review, we consider the parallels between memory effector T cells and memory regulatory T cells, along with the functional implications of regulatory memory in autoimmunity, antimicrobial host defence and maternal fetal tolerance. In addition, we discuss emerging evidence for regulatory T cell memory in humans and key unanswered questions in this rapidly evolving field. PMID:26688349

  11. Animal models of insulin resistance: A review.

    PubMed

    Sah, Sangeeta Pilkhwal; Singh, Barinder; Choudhary, Supriti; Kumar, Anil

    2016-12-01

    Insulin resistance can be seen as a molecular and genetic mystery, with a role in the pathophysiology of type 2 diabetes mellitus. It is a basis for a number of chronic diseases like hypertension, dyslipidemia, glucose intolerance, coronary heart disease, cerebral vascular disease along with T2DM, thus the key is to cure and prevent insulin resistance. Critical perspicacity into the etiology of insulin resistance have been gained by the use of animal models where insulin action has been modulated by various transgenic and non-transgenic models which is not possible in human studies. The following review comprises the pathophysiology involved in insulin resistance, various factors causing insulin resistance, their screening and various genetic and non-genetic animal models highlighting the pathological and metabolic characteristics of each.

  12. Deletion of SenX3-RegX3, a key two-component regulatory system of Mycobacterium smegmatis, results in growth defects under phosphate-limiting conditions.

    PubMed

    James, Jade N; Hasan, Zeeshaan-ul; Ioerger, Thomas R; Brown, Amanda C; Personne, Yoann; Carroll, Paul; Ikeh, Melanie; Tilston-Lunel, Natasha L; Palavecino, Christian; Sacchettini, James C; Parish, Tanya

    2012-11-01

    Two component regulatory systems are key elements in the control of bacterial gene expression in response to environmental perturbations. The SenX3-RegX3 system is implicated in the control of phosphate uptake in Mycobacterium smegmatis and Mycobacterium tuberculosis. regX3 is reported to be essential in M. smegmatis, but not in M. tuberculosis. We attempted to construct complete senX3-regX3 operon deletion strains of M. smegmatis; initially we found that the operon could only be deleted when another functional copy was provided. Using a strain in which the only functional copy of the operon was present on an integrating plasmid, we attempted to replace the functional copy with an empty vector. Surprisingly, we obtained strains in which the functional copy had been deleted from the chromosome at a low frequency. We deleted the senX3 gene in a similar fashion, but it was not possible to delete regX3 alone. To identify possible compensatory mutations we sequenced the whole genome of two deletion strains and the wild-type. A synonymous single nucleotide polymorphism (SNP) in a lipoprotein was found in all deletion strains, but not the parental strains, and a frameshift mutation in nhaA was identified in three of the four deletion strains. Operon deletion strains were more sensitive to phosphate limitation, showing a reduced ability to grow at lower phosphate concentrations. The M. tuberculosis operon was able to functionally complement the growth phenotype in M. smegmatis under phosphate-replete conditions, but not under low phosphate conditions, reinforcing the difference between the two species. Our data show that, in contrast with previous reports, it is possible to delete the operon in M. smegmatis, possibly due to the accumulation of compensatory mutations, and that the deletion does affect growth in phosphate.

  13. Ganglioside GM3 as a gatekeeper of obesity-associated insulin resistance: Evidence and mechanisms.

    PubMed

    Lipina, Christopher; Hundal, Harinder S

    2015-10-24

    Gangliosides constitute a large family of sialic acid-containing glycosphingolipids which play a key regulatory role in a diverse array of cellular processes, including receptor-associated signalling. Accordingly, the aberrant production of the ganglioside GM3 has been linked to pathophysiological changes associated with obesity, which in turn can lead to metabolic disorders such as insulin resistance and type 2 diabetes mellitus. This review examines the role of GM3 in mediating obesity-induced perturbations in metabolic function, including impaired insulin action. By doing so, we highlight the potential use of therapies targeting GM3 biosynthesis in order to counteract obesity-related metabolic disorders. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Amelioration of palmitate-induced insulin resistance in C₂C₁₂ muscle cells by rooibos (Aspalathus linearis).

    PubMed

    Mazibuko, S E; Muller, C J F; Joubert, E; de Beer, D; Johnson, R; Opoku, A R; Louw, J

    2013-07-15

    Increased levels of free fatty acids (FFAs), specifically saturated free fatty acids such as palmitate are associated with insulin resistance of muscle, fat and liver. Skeletal muscle, responsible for up to 80% of the glucose disposal from the peripheral circulation, is particularly vulnerable to increased levels of saturated FFAs. Rooibos (Aspalathus linearis) and its unique dihydrochalcone C-glucoside, aspalathin, shown to reduce hyperglycemia in diabetic rats, could play a role in preventing or ameliorating the development of insulin resistance. This study aims to establish whether rooibos can ameliorate experimentally-induced insulin-resistance in C₂C₁₂ skeletal muscle cells. Palmitate-induced insulin resistant C₂C₁₂ cells were treated with an aspalathin-enriched green (unfermented) rooibos extract (GRE), previously shown for its blood glucose lowering effect in vitro and in vivo or an aqueous extract of fermented rooibos (FRE). Glucose uptake and mitochondrial activity were measured using 2-deoxy-[³H]-D-glucose, MTT and ATP assays, respectively. Expression of proteins relevant to glucose metabolism was analysed by Western blot. GRE contained higher levels of all compounds, except the enolic phenylpyruvic acid-2-O-glucoside and luteolin-7-O-glucoside. Both rooibos extracts increased glucose uptake, mitochondrial activity and ATP production. Compared to FRE, GRE was more effective at increasing glucose uptake and ATP production. At a mechanistic level both extracts down-regulated PKC θ activation, which is associated with palmitate-induced insulin resistance. Furthermore, the extracts increased activation of key regulatory proteins (AKT and AMPK) involved in insulin-dependent and non-insulin regulated signalling pathways. Protein levels of the glucose transporter (GLUT4) involved in glucose transport via these two pathways were also increased. This in vitro study therefore confirms that rooibos can ameliorate palmitate-induced insulin resistance in

  15. PEDF-induced alteration of metabolism leading to insulin resistance.

    PubMed

    Carnagarin, Revathy; Dharmarajan, Arunasalam M; Dass, Crispin R

    2015-02-05

    Pigment epithelium-derived factor (PEDF) is an anti-angiogenic, immunomodulatory, and neurotrophic serine protease inhibitor protein. PEDF is evolving as a novel metabolic regulatory protein that plays a causal role in insulin resistance. Insulin resistance is the central pathogenesis of metabolic disorders such as obesity, type 2 diabetes mellitus, polycystic ovarian disease, and metabolic syndrome, and PEDF is associated with them. The current evidence suggests that PEDF administration to animals induces insulin resistance, whereas neutralisation improves insulin sensitivity. Inflammation, lipolytic free fatty acid mobilisation, and mitochondrial dysfunction are the proposed mechanism of PEDF-mediated insulin resistance. This review summarises the probable mechanisms adopted by PEDF to induce insulin resistance, and identifies PEDF as a potential therapeutic target in ameliorating insulin resistance.

  16. 1 INSULIN TREATMENT DURING IN VITRO OOCYTE MATURATION LEADS TO DIFFERENT GENE EXPRESSION AND METHYLATION PATTERNS OF KEY GENES ASSOCIATED WITH METABOLISM AND STEROID SYNTHESIS IN THE BOVINE BLASTOCYST.

    PubMed

    Laskowski, D; Humblot, P; Sirard, M A; Sjunnesson, Y; Andersson, G; Bage, R

    2016-01-01

    Obesity and overfeeding are common causes for female infertility, leading to insulin resistance and hyperinsulinemia and associated with an increased risk for type 2 diabetes mellitus (Pasquali et al., http://dx.doi.org/10.1093/humupd/dmg024). We investigated here the effect of insulin during in vitro oocyte maturation on methylation changes in bovine Day 8 blastocysts (BC8) and focused on methylation patterns of candidate genes associated with metabolism and steroidogenesis (Day 0=day of oocyte collection). Abattoir-derived oocytes (n=882) were in vitro matured for 22h with 2 different insulin concentrations, INS10 (10µgmL(-1)) and INS0.1 (0.1µgmL(-1)) or without insulin (INS0, control). Subsequently, IVF and IVC were performed to equal standardized conditions for all groups. Parallel genomic DNA and total RNA extraction (AllPrepDNA/RNA micro kit, cat no. 80284, Qiagen®, Valencia, CA, USA) from pools of 10 frozen (-80°C) BC8 was followed by transcriptome and epigenome analysis (Laskowski et al., http://dx.doi.org/10.1071/RD15315). An empirical Bayes moderated t-test and the 'limma' package in R (http://www.r-project.org">www.r-project.org) were used to search for differentially expressed genes between the control and the insulin groups. Analysis of the epigenome by using a specific pipeline, described by Shojaei Saadi et al. (2014 BMC Genomics 15, 451), showed that 7632 and 3914 regions were hypomethylated in the INS0.1 and INS10v. INS0, whereas 6026 and 8504 regions were hypermethylated in INS0.1 and INS10v. INS0. Combining epigenetic and transcriptomic data, we found that high methylation and low expression or the reverse (low methylation and high expression) were observed for a set of 14 and 11 genes for INS0.1 and INS10 respectively. Most of these genes are associated with lipid metabolism, steroid synthesis, and oxidative stress. Further investigation of the localization of differentially methylated regions (DMR) in genes showed that the conservation odds

  17. Insulin Human Inhalation

    MedlinePlus

    Insulin inhalation is used in combination with a long-acting insulin to treat type 1 diabetes (condition in which the body does not produce insulin and therefore cannot control the amount of sugar ...

  18. Giving an insulin injection

    MedlinePlus

    ... want. Put the needle into and through the rubber top of the insulin bottle. Push the plunger ... longer-acting insulin. Put the needle into the rubber top of that insulin bottle. Push the plunger ...

  19. Mechanisms for increased insulin-stimulated Akt phosphorylation and glucose uptake in fast- and slow-twitch skeletal muscles of calorie-restricted rats.

    PubMed

    Sharma, Naveen; Arias, Edward B; Bhat, Abhijit D; Sequea, Donel A; Ho, Steve; Croff, Kelsey K; Sajan, Mini P; Farese, Robert V; Cartee, Gregory D

    2011-06-01

    Calorie restriction [CR; ~65% of ad libitum (AL) intake] improves insulin-stimulated glucose uptake (GU) and Akt phosphorylation in skeletal muscle. We aimed to elucidate the effects of CR on 1) processes that regulate Akt phosphorylation [insulin receptor (IR) tyrosine phosphorylation, IR substrate 1-phosphatidylinositol 3-kinase (IRS-PI3K) activity, and Akt binding to regulatory proteins (heat shock protein 90, Appl1, protein phosphatase 2A)]; 2) Akt substrate of 160-kDa (AS160) phosphorylation on key phosphorylation sites; and 3) atypical PKC (aPKC) activity. Isolated epitrochlearis (fast-twitch) and soleus (slow-twitch) muscles from AL or CR (6 mo duration) 9-mo-old male F344BN rats were incubated with 0, 1.2, or 30 nM insulin and 2-deoxy-[(3)H]glucose. Some CR effects were independent of insulin dose or muscle type: CR caused activation of Akt (Thr(308) and Ser(473)) and GU in both muscles at both insulin doses without CR effects on IRS1-PI3K, Akt-PP2A, or Akt-Appl1. Several muscle- and insulin dose-specific CR effects were revealed. Akt-HSP90 binding was increased in the epitrochlearis; AS160 phosphorylation (Ser(588) and Thr(642)) was greater for CR epitrochlearis at 1.2 nM insulin; and IR phosphorylation and aPKC activity were greater for CR in both muscles with 30 nM insulin. On the basis of these data, our working hypothesis for improved insulin-stimulated GU with CR is as follows: 1) elevated Akt phosphorylation is fundamental, regardless of muscle or insulin dose; 2) altered Akt binding to regulatory proteins (HSP90 and unidentified Akt partners) is involved in the effects of CR on Akt phosphorylation; 3) Akt effects on GU depend on muscle- and insulin dose-specific elevation in phosphorylation of Akt substrates, including, but not limited to, AS160; and 4) greater IR phosphorylation and aPKC activity may contribute at higher insulin doses.

  20. Targeted disruption of carcinoembryonic antigen-related cell adhesion molecule 1 promotes diet-induced hepatic steatosis and insulin resistance.

    PubMed

    Xu, Elaine; Dubois, Marie-Julie; Leung, Nelly; Charbonneau, Alexandre; Turbide, Claire; Avramoglu, Rita Kohen; DeMarte, Luisa; Elchebly, Mounib; Streichert, Thomas; Lévy, Emile; Beauchemin, Nicole; Marette, André

    2009-08-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CC1) is a cell adhesion molecule within the Ig superfamily. The Tyr-phosphorylated isoform of CC1 (CC1-L) plays an important metabolic role in the regulation of hepatic insulin clearance. In this report, we show that CC1-deficient (Cc1(-/-)) mice are prone to hepatic steatosis, as revealed by significantly elevated hepatic triglyceride and both total and esterified cholesterol levels compared with age-matched wild-type controls. Cc1(-/-) mice were also predisposed to lipid-induced hepatic steatosis and dysfunction as indicated by their greater susceptibility to store lipids and express elevated levels of enzymatic markers of liver damage after chronic feeding of a high-fat diet. Hepatic steatosis in the Cc1(-/-) mice was linked to a significant increase in the expression of key lipogenic (fatty acid synthase, acetyl CoA carboxylase) and cholesterol synthetic (3-hydroxy-3-methylglutaryl-coenzyme A reductase) enzymes under the control of sterol regulatory element binding proteins-1c and -2 transcription factors. Cc1(-/-) mice also exhibited impaired insulin clearance, glucose intolerance, liver insulin resistance, and elevated hepatic expression of the key gluconeogenic transcriptional activators peroxisome proliferator-activated receptor-gamma coactivator-1 and Forkhead box O1. Lack of CC1 also exacerbated both glucose intolerance and hepatic insulin resistance induced by high-fat feeding, but insulin clearance was not further deteriorated in the high-fat-fed Cc1(-/-) mice. In conclusion, our data indicate that CC1 is a key regulator of hepatic lipogenesis and that Cc1(-/-) mice are predisposed to liver steatosis, leading to hepatic insulin resistance and liver damage, particularly when chronically exposed to dietary fat.

  1. Islet Neogenesis Associated Protein (INGAP) induces the differentiation of an adult human pancreatic ductal cell line into insulin-expressing cells through stepwise activation of key transcription factors for embryonic beta cell development.

    PubMed

    Assouline-Thomas, Béatrice; Ellis, Daniel; Petropavlovskaia, Maria; Makhlin, Julia; Ding, Jieping; Rosenberg, Lawrence

    2015-01-01

    Regeneration of β-cells in diabetic patients is an important goal of diabetes research. Islet Neogenesis Associated Protein (INGAP) was discovered in the partially duct-obstructed hamster pancreas. Its bioactive fragment, pentadecapeptide 104-118 (INGAP-P), has been shown to reverse diabetes in animal models and to improve glucose homeostasis in patients with diabetes in clinical trials. Further development of INGAP as a therapy for diabetes requires identification of target cells in the pancreas and characterization of the mechanisms of action. We hypothesized that adult human pancreatic ductal cells retain morphogenetic plasticity and can be induced by INGAP to undergo endocrine differentiation. To test this hypothesis, we treated the normal human pancreatic ductal cell line (HPDE) with either INGAP-P or full-length recombinant protein (rINGAP) for short-term periods. Our data show that this single drug treatment induces both proliferation and transdifferentiation of HPDE cells, the latter being characterized by the rapid sequential activation of endocrine developmental transcription factors Pdx-1, Ngn3, NeuroD, IA-1, and MafA and subsequently the expression of insulin at both the mRNA and the protein levels. After 7 days, C-peptide was detected in the supernatant of INGAP-treated cells, reflecting their ability to secrete insulin. The magnitude of differentiation was enhanced by embedding the cells in Matrigel, which led to islet-like cluster formation. The islet-like clusters cells stained positive for nuclear Pdx-1 and Glut 2 proteins, and were expressing Insulin mRNA. These new data suggest that human adult pancreatic ductal cells retain morphogenetic plasticity and demonstrate that a short exposure to INGAP triggers their differentiation into insulin-expressing cells in vitro. In the context of the urgent search for a regenerative and/or cellular therapy for diabetes, these results make INGAP a promising therapeutic candidate.

  2. Clinical utility of insulin and insulin analogs.

    PubMed

    Sanlioglu, Ahter D; Altunbas, Hasan Ali; Balci, Mustafa Kemal; Griffith, Thomas S; Sanlioglu, Salih

    2013-01-01

    Diabetes is a pandemic disease characterized by autoimmune, genetic and metabolic abnormalities. While insulin deficiency manifested as hyperglycemia is a common sequel of both Type-1 and Type-2 diabetes (T1DM and T2DM), it does not result from a single genetic defect--rather insulin deficiency results from the functional loss of pancreatic β cells due to multifactorial mechanisms. Since pancreatic β cells of patients with T1DM are destroyed by autoimmune reaction, these patients require daily insulin injections. Insulin resistance followed by β cell dysfunction and β cell loss is the characteristics of T2DM. Therefore, most patients with T2DM will require insulin treatment due to eventual loss of insulin secretion. Despite the evidence of early insulin treatment lowering macrovascular (coronary artery disease, peripheral arterial disease and stroke) and microvascular (diabetic nephropathy, neuropathy and retinopathy) complications of T2DM, controversy exists among physicians on how to initiate and intensify insulin therapy. The slow acting nature of regular human insulin makes its use ineffective in counteracting postprandial hyperglycemia. Instead, recombinant insulin analogs have been generated with a variable degree of specificity and action. Due to the metabolic variability among individuals, optimum blood glucose management is a formidable task to accomplish despite the presence of novel insulin analogs. In this article, we present a recent update on insulin analog structure and function with an overview of the evidence on the various insulin regimens clinically used to treat diabetes.

  3. Clinical utility of insulin and insulin analogs

    PubMed Central

    Sanlioglu, Ahter D.; Altunbas, Hasan Ali; Balci, Mustafa Kemal; Griffith, Thomas S.; Sanlioglu, Salih

    2013-01-01

    Diabetes is a pandemic disease characterized by autoimmune, genetic and metabolic abnormalities. While insulin deficiency manifested as hyperglycemia is a common sequel of both Type-1 and Type-2 diabetes (T1DM and T2DM), it does not result from a single genetic defect—rather insulin deficiency results from the functional loss of pancreatic β cells due to multifactorial mechanisms. Since pancreatic β cells of patients with T1DM are destroyed by autoimmune reaction, these patients require daily insulin injections. Insulin resistance followed by β cell dysfunction and β cell loss is the characteristics of T2DM. Therefore, most patients with T2DM will require insulin treatment due to eventual loss of insulin secretion. Despite the evidence of early insulin treatment lowering macrovascular (coronary artery disease, peripheral arterial disease and stroke) and microvascular (diabetic nephropathy, neuropathy and retinopathy) complications of T2DM, controversy exists among physicians on how to initiate and intensify insulin therapy. The slow acting nature of regular human insulin makes its use ineffective in counteracting postprandial hyperglycemia. Instead, recombinant insulin analogs have been generated with a variable degree of specificity and action. Due to the metabolic variability among individuals, optimum blood glucose management is a formidable task to accomplish despite the presence of novel insulin analogs. In this article, we present a recent update on insulin analog structure and function with an overview of the evidence on the various insulin regimens clinically used to treat diabetes. PMID:23584214

  4. Individualized correction of insulin measurement in hemolyzed serum samples.

    PubMed

    Wu, Zhi-Qi; Lu, Ju; Chen, Huanhuan; Chen, Wensen; Xu, Hua-Guo

    2016-11-05

    Insulin measurement plays a key role in the investigation of patients with hypoglycemia, subtype classification of diabetes mellitus, insulin resistance, and impaired beta cell function. However, even slight hemolysis can negatively affect insulin measurement due to RBC insulin-degrading enzyme (IDE). Here, we derived and validated an individualized correction equation in an attempt to eliminate the effects of hemolysis on insulin measurement. The effects of hemolysis on insulin measurement were studied by adding lysed self-RBCs to serum. A correction equation was derived, accounting for both percentage and exposure time of hemolysis. The performance of this individualized correction was evaluated in intentionally hemolyzed samples. Insulin concentration decreased with increasing percentage and exposure time of hemolysis. Based on the effects of hemolysis on insulin measurement of 17 donors (baseline insulin concentrations ranged from 156 to 2119 pmol/L), the individualized hemolysis correction equation was derived: INScorr = INSmeas/(0.705lgHbplasma/Hbserum - 0.001Time - 0.612). This equation can revert insulin concentrations of the intentionally hemolyzed samples to values that were statistically not different from the corresponding insulin baseline concentrations (p = 0.1564). Hemolysis could lead to a negative interference on insulin measurement; by individualized hemolysis correction equation for insulin measurement, we can correct and report reliable serum insulin results for a wide range of degrees of sample hemolysis. This correction would increase diagnostic accuracy, reduce inappropriate therapeutic decisions, and improve patient satisfaction with care.

  5. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling

    PubMed Central

    Dávalos, Alberto; Goedeke, Leigh; Smibert, Peter; Ramírez, Cristina M.; Warrier, Nikhil P.; Andreo, Ursula; Cirera-Salinas, Daniel; Rayner, Katey; Suresh, Uthra; Pastor-Pareja, José Carlos; Esplugues, Enric; Fisher, Edward A.; Penalva, Luiz O. F.; Moore, Kathryn J.; Suárez, Yajaira; Lai, Eric C.; Fernández-Hernando, Carlos

    2011-01-01

    Cellular imbalances of cholesterol and fatty acid metabolism result in pathological processes, including atherosclerosis and metabolic syndrome. Recent work from our group and others has shown that the intronic microRNAs hsa-miR-33a and hsa-miR-33b are located within the sterol regulatory element-binding protein-2 and -1 genes, respectively, and regulate cholesterol homeostasis in concert with their host genes. Here, we show that miR-33a and -b also regulate genes involved in fatty acid metabolism and insulin signaling. miR-33a and -b target key enzymes involved in the regulation of fatty acid oxidation, including carnitine O-octaniltransferase, carnitine palmitoyltransferase 1A, hydroxyacyl-CoA-dehydrogenase, Sirtuin 6 (SIRT6), and AMP kinase subunit-α. Moreover, miR-33a and -b also target the insulin receptor substrate 2, an essential component of the insulin-signaling pathway in the liver. Overexpression of miR-33a and -b reduces both fatty acid oxidation and insulin signaling in hepatic cell lines, whereas inhibition of endogenous miR-33a and -b increases these two metabolic pathways. Together, these data establish that miR-33a and -b regulate pathways controlling three of the risk factors of metabolic syndrome, namely levels of HDL, triglycerides, and insulin signaling, and suggest that inhibitors of miR-33a and -b may be useful in the treatment of this growing health concern. PMID:21576456

  6. Fluidity of insulin action.

    PubMed

    Elmendorf, Jeffrey S

    2004-06-01

    Unlike the intensive research in pursuit of understanding the molecular mechanisms of insulin signaling and resistance to its biological action associated most significantly with obesity and type 2 diabetes, the influence of the plasma membrane on insulin sensitivity has been intermittently studied over the years-mainly because it was thought that mediators of insulin action, such as the insulin receptor and the insulin-responsive glucose transporter GLUT4, localize more or less uniformly in the lipids that form cell membranes. Recent insights into membrane physiology suggest that the plasma membrane impacts the function of membrane proteins mediating insulin action. Furthermore, membrane disturbances may be the basis of insulin resistance. Relevant insulin signal transduction data in terms of plasma membrane and insulin resistance are the focus of this review. The discussion visits the cell membrane hypothesis of insulin resistance that suggests insulin action could be related to changes in cell membrane properties.

  7. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses

    PubMed Central

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-01-01

    Abstract Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague–Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by ∼60%. However, supplementing gAd fully rescued insulin’s microvascular action and significantly improved the metabolic responses to insulin in HFD male rats and these actions were abolished by inhibition of either AMPK or nitric oxide production. We conclude that HFD induces vascular adiponectin and insulin resistance but gAd administration can restore vascular insulin responses and improve insulin’s metabolic action via an AMPK- and nitric oxide-dependent mechanism in male rats. Key points Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle

  8. PIK3R1 Mutations Cause Syndromic Insulin Resistance with Lipoatrophy

    PubMed Central

    Thauvin-Robinet, Christel; Auclair, Martine; Duplomb, Laurence; Caron-Debarle, Martine; Avila, Magali; St-Onge, Judith; Le Merrer, Martine; Le Luyer, Bernard; Héron, Delphine; Mathieu-Dramard, Michèle; Bitoun, Pierre; Petit, Jean-Michel; Odent, Sylvie; Amiel, Jeanne; Picot, Damien; Carmignac, Virginie; Thevenon, Julien; Callier, Patrick; Laville, Martine; Reznik, Yves; Fagour, Cédric; Nunes, Marie-Laure; Capeau, Jacqueline; Lascols, Olivier; Huet, Frédéric; Faivre, Laurence; Vigouroux, Corinne; Rivière, Jean-Baptiste

    2013-01-01

    Short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, Rieger anomaly, and teething delay (SHORT) syndrome is a developmental disorder with an unknown genetic cause and hallmarks that include insulin resistance and lack of subcutaneous fat. We ascertained two unrelated individuals with SHORT syndrome, hypothesized that the observed phenotype was most likely due to de novo mutations in the same gene, and performed whole-exome sequencing in the two probands and their unaffected parents. We then confirmed our initial observations in four other subjects with SHORT syndrome from three families, as well as 14 unrelated subjects presenting with syndromic insulin resistance and/or generalized lipoatrophy associated with dysmorphic features and growth retardation. Overall, we identified in nine affected individuals from eight families de novo or inherited PIK3R1 mutations, including a mutational hotspot (c.1945C>T [p.Arg649Trp]) present in four families. PIK3R1 encodes the p85α, p55α, and p50α regulatory subunits of class IA phosphatidylinositol 3 kinases (PI3Ks), which are known to play a key role in insulin signaling. Functional data from fibroblasts derived from individuals with PIK3R1 mutations showed severe insulin resistance for both proximal and distal PI3K-dependent signaling. Our findings extend the genetic causes of severe insulin-resistance syndromes and provide important information with respect to the function of PIK3R1 in normal development and its role in human diseases, including growth delay, Rieger anomaly and other ocular affections, insulin resistance, diabetes, paucity of fat, and ovarian cysts. PMID:23810378

  9. Lipid-induced insulin resistance: unravelling the mechanism

    PubMed Central

    Samuel, Varman T; Petersen, Kitt Falk; Shulman, Gerald I

    2010-01-01

    Insulin resistance has long been associated with obesity. More than 40 years ago, Randle and colleagues postulated that lipids impaired insulin-stimulated glucose use by muscles through inhibition of glycolysis at key points. However, work over the past two decades has shown that lipid-induced insulin resistance in skeletal muscle stems from defects in insulin-stimulated glucose transport activity. The steatotic liver is also resistant to insulin in terms of inhibition of hepatic glucose production and stimulation of glycogen synthesis. In muscle and liver, the intracellular accumulation of lipids—namely, diacylglycerol—triggers activation of novel protein kinases C with subsequent impairments in insulin signalling. This unifying hypothesis accounts for the mechanism of insulin resistance in obesity, type 2 diabetes, lipodystrophy, and ageing; and the insulin-sensitising effects of thiazolidinediones. PMID:20609972

  10. Florida Keys

    NASA Image and Video Library

    2002-12-13

    The Florida Keys are a chain of islands, islets and reefs extending from Virginia Key to the Dry Tortugas for about 309 kilometers (192 miles). The keys are chiefly limestone and coral formations. The larger islands of the group are Key West (with its airport), Key Largo, Sugarloaf Key, and Boca Chica Key. A causeway extends from the mainland to Key West. This image was acquired on October 28, 2001, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03890

  11. Curcuma longa polyphenols improve insulin-mediated lipid accumulation and attenuate proinflammatory response of 3T3-L1 adipose cells during oxidative stress through regulation of key adipokines and antioxidant enzymes.

    PubMed

    Septembre-Malaterre, Axelle; Le Sage, Fanny; Hatia, Sarah; Catan, Aurélie; Janci, Laurent; Gonthier, Marie-Paule

    2016-07-08

    Plant polyphenols may exert beneficial action against obesity-related oxidative stress and inflammation which promote insulin resistance. This study evaluated the effect of polyphenols extracted from French Curcuma longa on 3T3-L1 adipose cells exposed to H2 O2 -mediated oxidative stress. We found that Curcuma longa extract exhibited high amounts of curcuminoids identified as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which exerted free radical-scavenging activities. Curcuma longa polyphenols improved insulin-mediated lipid accumulation and upregulated peroxisome proliferator-activated receptor-gamma gene expression and adiponectin secretion which decreased in H2 O2 -treated cells. Curcuminoids attenuated H2 O2 -enhanced production of pro-inflammatory molecules such as interleukin-6, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and nuclear factor κappa B. Moreover, they reduced intracellular levels of reactive oxygen species elevated by H2 O2 and modulated the expression of genes encoding superoxide dismutase and catalase antioxidant enzymes. Collectively, these findings highlight that Curcuma longa polyphenols protect adipose cells against oxidative stress and may improve obesity-related metabolic disorders. © 2016 BioFactors, 42(4):418-430, 2016.

  12. A minimized human insulin-receptor-binding motif revealed in a Conus geographus venom insulin.

    PubMed

    Menting, John G; Gajewiak, Joanna; MacRaild, Christopher A; Chou, Danny Hung-Chieh; Disotuar, Maria M; Smith, Nicholas A; Miller, Charleen; Erchegyi, Judit; Rivier, Jean E; Olivera, Baldomero M; Forbes, Briony E; Smith, Brian J; Norton, Raymond S; Safavi-Hemami, Helena; Lawrence, Michael C

    2016-10-01

    Insulins in the venom of certain fish-hunting cone snails facilitate prey capture by rapidly inducing hypoglycemic shock. One such insulin, Conus geographus G1 (Con-Ins G1), is the smallest known insulin found in nature and lacks the C-terminal segment of the B chain that, in human insulin, mediates engagement of the insulin receptor and assembly of the hormone's hexameric storage form. Removal of this segment (residues B23-B30) in human insulin results in substantial loss of receptor affinity. Here, we found that Con-Ins G1 is monomeric, strongly binds the human insulin receptor and activates receptor signaling. Con-Ins G1 thus is a naturally occurring B-chain-minimized mimetic of human insulin. Our crystal structure of Con-Ins G1 reveals a tertiary structure highly similar to that of human insulin and indicates how Con-Ins G1's lack of an equivalent to the key receptor-engaging residue Phe(B24) is mitigated. These findings may facilitate efforts to design ultrarapid-acting therapeutic insulins.

  13. MicroRNA-99a inhibits insulin-induced proliferation, migration, dedifferentiation, and rapamycin resistance of vascular smooth muscle cells by inhibiting insulin-like growth factor-1 receptor and mammalian target of rapamycin.

    PubMed

    Zhang, Zi-Wei; Guo, Rui-Wei; Lv, Jin-Lin; Wang, Xian-Mei; Ye, Jin-Shan; Lu, Ni-Hong; Liang, Xing; Yang, Li-Xia

    2017-04-29

    Patients with type 2 diabetes mellitus (T2DM) are characterized by insulin resistance and are subsequently at high risk for atherosclerosis. Hyperinsulinemia has been associated with proliferation, migration, and dedifferentiation of vascular smooth muscle cells (VSMCs) during the pathogenesis of atherosclerosis. Moreover, insulin-like growth factor-1 receptor (IGF-1R) and mammalian target of rapamycin (mTOR) have been demonstrated to be the underlying signaling pathways. Recently, microRNA-99a (miR-99a) has been suggested to regulate the phenotypic changes of VSMCs in cancer cells. However, whether it is involved in insulin-induced changes of VSCMs has not been determined. In this study, we found that insulin induced proliferation, migration, and dedifferentiation of mouse VSMCs in a dose-dependent manner. Furthermore, the stimulating effects of high-dose insulin on proliferation, migration, and dedifferentiation of mouse VSMCs were found to be associated with the attenuation of the inhibitory effects of miR-99a on IGF-1R and mTOR signaling activities. Finally, we found that the inducing effect of high-dose insulin on proliferation, migration, and dedifferentiation of VSMCs was partially inhibited by an active mimic of miR-99a. Taken together, these results suggest that miR-99a plays a key regulatory role in the pathogenesis of insulin-induced proliferation, migration, and phenotype conversion of VSMCs at least partly via inhibition of IGF-1R and mTOR signaling. Our results provide evidence that miR-99a may be a novel target for the treatment of hyperinsulinemia-induced atherosclerosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Application of network construction to estimate functional changes to insulin receptor substrates 1 and 2 in Huh7 cells following infection with the hepatitis C virus

    PubMed Central

    Liu, Jingkun; Wang, Linbang; Wang, Wenjun; Li, Yaping; Jia, Xiaoli; Zhai, Song; Shi, Juan; Dang, Shuangsuo

    2016-01-01

    Hepatitis C virus (HCV) is closely associated with insulin resistance (IS), acting primarily by interfering with insulin signaling pathways, increasing cytokine-mediated (tumor necrosis factor α, interleukin 6) inflammatory responses and enhancing oxidative stress. In the insulin signaling pathways, the insulin receptor substrate (IRS) is one of the key regulatory factors. The present study constructed gene regulatory sub-networks specific for IRS1 and IRS2 in Huh7 cells and HCV-infected Huh7 (HCV-Huh7) cells using linear programming and a decomposition algorithm, and investigated the possible mechanisms underlying the function of IRS1/2 in HCV-induced IS in Huh7 cells. All data were obtained from GSE20948 of the Gene Expression Omnibus database from the National Center for Biotechnology Information. Genes which were significantly differentially expressed between Huh7 and HCV-Huh7 cells were analyzed using the significance analysis of microarray algorithm. The top 50 genes, including IRS1/2, were used as target genes to determine the gene regulatory networks and next the sub-networks of IRS1 and IRS2 in HCV-Huh7 and Huh7 cells using Gene Regulatory Network Inference Tool, an algorithm based on linear programming and the decomposition process. The IRS1/2 sub-networks were divided into upstream/downstream groups and activation/suppression clusters, and were further analyzed using Molecule Annotation System 3.0 and Database for Annotation, Visualization, and Integrated Discovery software, two online platforms for enrichment and clustering analysis and visualization. The results indicated that in Huh7 cells, the downstream network of IRS2 is more complex than that of IRS1, indicating that the insulin metabolism in Huh7 cells may be primarily mediated by IRS2. In HCV-Huh7 cells, the downstream pathway of IRS2 is blocked, suggesting that this may be the underlying mechanism in HCV infection that leads to insulin resistance. The present findings add a further dimension

  15. Peripheral nervous system insulin resistance in ob/ob mice

    PubMed Central

    2013-01-01

    Background A reduction in peripheral nervous system (PNS) insulin signaling is a proposed mechanism that may contribute to sensory neuron dysfunction and diabetic neuropathy. Neuronal insulin resistance is associated with several neurological disorders and recent evidence has indicated that dorsal root ganglion (DRG) neurons in primary culture display altered insulin signaling, yet in vivo results are lacking. Here, experiments were performed to test the hypothesis that the PNS of insulin-resistant mice displays altered insulin signal transduction in vivo. For these studies, nondiabetic control and type 2 diabetic ob/ob mice were challenged with an intrathecal injection of insulin or insulin-like growth factor 1 (IGF-1) and downstream signaling was evaluated in the DRG and sciatic nerve using Western blot analysis. Results The results indicate that insulin signaling abnormalities documented in other “insulin sensitive” tissues (i.e. muscle, fat, liver) of ob/ob mice are also present in the PNS. A robust increase in Akt activation was observed with insulin and IGF-1 stimulation in nondiabetic mice in both the sciatic nerve and DRG; however this response was blunted in both tissues from ob/ob mice. The results also suggest that upregulated JNK activation and reduced insulin receptor expression could be contributory mechanisms of PNS insulin resistance within sensory neurons. Conclusions These findings contribute to the growing body of evidence that alterations in insulin signaling occur in the PNS and may be a key factor in the pathogenesis of diabetic neuropathy. PMID:24252636

  16. A prospective evaluation of the influence of three bariatric procedures on insulin resistance improvement. Should the extent of undiluted bile transit be considered a key postoperative factor altering glucose metabolism?

    PubMed

    Kaska, Łukasz; Proczko, Monika; Wiśniewski, Piotr; Stankiewicz, Marta; Gill, Derek; Śledziński, Zbigniew

    2015-07-01

    Insulin resistance (IR), the essential step in development of type 2 diabetes mellitus (T2DM), resolves quickly after bariatric surgery, but the effectiveness depends on the type of the procedure. Although the long-term influence on IR improvement is well documented, the mechanisms of the ultra-fast response after restrictive and bypass procedures require explanation. To determine IR evolution from the initial preparative period to 6 months after the operation, exposing the rapid postoperative response while comparing the 3 bariatric methods, with the belief that the metabolic effect may be correlated with anatomical combinations. From January to December, 2013, a cohort of severely obese, insulin resistant individuals recruited to the prospective study underwent laparoscopic sleeve gastrectomy (SG-30), Roux-en-Y gastric bypass (RYGB-30) and one-anastomosis gastric bypass (OAGB-30). Main laboratory parameters of glucose metabolism were evaluated in fasting patients preoperatively, 4 days and 1, 3 and 6 months after surgery. Within the whole observation period the most significant improvement in homeostasis model assessment for IR (HOMA-IR) was observed in the first 4 days after each operation. The decrease of HOMA-IR was higher (p < 0.0001) in gastric bypass groups than in patients after SG (-41%). The difference between bypass groups favors OAGB over RYGB (63 vs. -56%, p = 0.0489). Among all bariatric management factors, operation type is the most important in IR improvement. The significant difference in response after SG vs. RYGB and OAGB supports the concept of metabolic competence of duodeno-jejunal exclusion. Altered bile flow after duodeno-jejunal exclusion may be responsible for enhanced glucose metabolism improvement.

  17. SGK1 dependence of insulin induced hypokalemia.

    PubMed

    Boini, Krishna M; Graf, Dirk; Kuhl, Dietmar; Häussinger, Dieter; Lang, Florian

    2009-02-01

    Insulin stimulates cellular K+ uptake leading to hypokalemia. Cellular K+ uptake is accomplished by parallel stimulation of Na+/H+ exchange, Na+,K+,2Cl- co-transport, and Na+/K+ ATPase and leads to cell swelling, a prerequisite for several metabolic effects of the hormone. Little is known about underlying signaling. Insulin is known to activate the serum and glucocorticoid-inducible kinase SGK1, which in turn enhances the activity of all three transport proteins. The present study thus explored the contribution of SGK1 to insulin-induced hypokalemia. To this end, gene-targeted mice lacking SGK1 (sgk1-/-) and their wild-type littermates (sgk1+/+) have been infused with insulin (2 mU kg(-1) min(-1)) and glucose at rates leaving the plasma glucose concentration constant. Moreover, isolated liver perfusion experiments have been performed to determine stimulation of cellular K+ uptake by insulin (100 nM). As a result, combined glucose and insulin infusion significantly decreased plasma K+ concentration despite a significant decrease of urinary K+ excretion in sgk1+/+ but not in sgk1-/- mice. Accordingly, the plasma K+ concentration was within 60 min significantly lower in sgk1+/+ than in sgk1-/- mice. In isolated liver perfusion experiments, cellular K+ uptake was stimulated by insulin (100 nM), an effect blunted by 72% in sgk1-/- mice as compared to sgk1+/+ mice. Accordingly, insulin-induced cell hydration was 63% lower in sgk1-/- mice than in sgk1+/+ mice. Moreover, volume regulatory K+ release was 31% smaller in sgk1-/- mice than in sgk1+/+ mice. In conclusion, the serum and glucocorticoid-inducible kinase SGK1 participates in the signaling mediating the hypokalemic effect of insulin.

  18. Plasma BDNF Is Reduced among Middle-Aged and Elderly Women with Impaired Insulin Function: Evidence of a Compensatory Mechanism

    ERIC Educational Resources Information Center

    Arentoft, Alyssa; Sweat, Victoria; Starr, Vanessa; Oliver, Stephen; Hassenstab, Jason; Bruehl, Hannah; Tirsi, Aziz; Javier, Elizabeth; McHugh, Pauline F.; Convit, Antonio

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) plays a regulatory role in neuronal differentiation and synaptic plasticity and has been linked to glucose regulation and cognition. Associations among plasma BDNF, cognition, and insulin function were explored. Forty-one participants with impaired insulin function (IIF), ranging from insulin resistance to…

  19. Plasma BDNF Is Reduced among Middle-Aged and Elderly Women with Impaired Insulin Function: Evidence of a Compensatory Mechanism

    ERIC Educational Resources Information Center

    Arentoft, Alyssa; Sweat, Victoria; Starr, Vanessa; Oliver, Stephen; Hassenstab, Jason; Bruehl, Hannah; Tirsi, Aziz; Javier, Elizabeth; McHugh, Pauline F.; Convit, Antonio

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) plays a regulatory role in neuronal differentiation and synaptic plasticity and has been linked to glucose regulation and cognition. Associations among plasma BDNF, cognition, and insulin function were explored. Forty-one participants with impaired insulin function (IIF), ranging from insulin resistance to…

  20. Metformin (Glucophage) inhibits tyrosine phosphatase activity to stimulate the insulin receptor tyrosine kinase.

    PubMed

    Holland, William; Morrison, Thomas; Chang, Ying; Wiernsperger, Nicholas; Stith, Bradley J

    2004-06-01

    Metformin is a commonly used anti-diabetic but whether its mechanism involves action on the insulin receptor or on downstream events is still controversial. With a time course that was slow compared with insulin action, metformin increased tyrosine phosphorylation of the regulatory domain of the insulin receptor (specifically, tyrosine residues 1150 and 1151). In a direct action, therapeutic levels of metformin stimulated the tyrosine kinase activity of the soluble intracellular portion of the beta subunit of the human insulin receptor toward a substrate derived from the insulin receptor regulatory domain. However, metformin did not alter the order of substrate phosphorylation by the insulin receptor kinase. Using a Xenopus oocyte preparation, we simultaneously recorded tyrosine kinase and phosphatase activities that regulate the insulin receptor by measuring the tyrosine phosphorylation and dephosphorylation of peptides derived from the regulatory domain of the human insulin receptor. In an indirect stimulation of the insulin receptor, metformin inhibited endogenous tyrosine phosphatases and purified human protein tyrosine phosphatase 1B that dephosphorylate and inhibit the insulin receptor kinase. Thus, there was evidence that metformin acted directly upon the insulin receptor and indirectly through inhibition of tyrosine phosphatases.

  1. Insulin in the Brain: There and Back Again

    PubMed Central

    Banks, William A.; Owen, Joshua B.; Erickson, Michelle A

    2012-01-01

    Insulin performs unique functions within the CNS. Produced nearly exclusively by the pancreas, insulin crosses the blood-brain barrier (BBB) using a saturable transporter, affecting feeding and cognition through CNS mechanisms largely independent of glucose utilization. Whereas peripheral insulin acts primarily as a metabolic regulatory hormone, CNS insulin has an array of effects on brain that may more closely resemble the actions of the ancestral insulin molecule. Brain endothelial cells (BEC), the cells that form the vascular BBB and contain the transporter that translocates insulin from blood to brain, is itself regulated by insulin. The insulin transporter is altered by physiological and pathological factors including hyperglycemia and the diabetic state. The latter can lead to BBB disruption. Pericytes, pluripotent cells in intimate contact with the BEC, protect the integrity of the BBB and its ability to transport insulin. Most of insulin’s known actions within the CNS are mediated through two canonical pathways, the phosphoinositide-3 kinase (PI3)/Akt and Ras/mitogen activated kinase (MAPK) cascades. Resistance to insulin action within the CNS, sometimes referred to as diabetes mellitus type III, is associated with peripheral insulin resistance, but it is possible that variable hormonal resistance syndromes exist so that resistance at one tissue bed may be independent of that at others. CNS insulin resistance is associated with Alzheimer’s disease, depression, and impaired baroreceptor gain in pregnancy. These aspects of CNS insulin action and the control of its entry by the BBB are likely only a small part of the story of insulin within the brain. PMID:22820012

  2. Generalised insulin oedema after intensification of treatment with insulin analogues.

    PubMed

    Adamo, Luigi; Thoelke, Mark

    2013-02-20

    We report a case of generalised insulin oedema after intensification of treatment with genetically modified insulin. This is the first case of generalised oedema in response to treatment with insulin analogues in a patient not insulin naive.

  3. Human insulin genome sequence map, biochemical structure of insulin for recombinant DNA insulin.

    PubMed

    Chakraborty, Chiranjib; Mungantiwar, Ashish A

    2003-08-01

    Insulin is a essential molecule for type I diabetes that is marketed by very few companies. It is the first molecule, which was made by recombinant technology; but the commercialization process is very difficult. Knowledge about biochemical structure of insulin and human insulin genome sequence map is pivotal to large scale manufacturing of recombinant DNA Insulin. This paper reviews human insulin genome sequence map, the amino acid sequence of porcine insulin, crystal structure of porcine insulin, insulin monomer, aggregation surfaces of insulin, conformational variation in the insulin monomer, insulin X-ray structures for recombinant DNA technology in the synthesis of human insulin in Escherichia coli.

  4. Metabolic Network Topology Reveals Transcriptional Regulatory Signatures of Type 2 Diabetes

    PubMed Central

    Patti, Mary Elizabeth; Patil, Kiran Raosaheb

    2010-01-01

    Type 2 diabetes mellitus (T2DM) is a disorder characterized by both insulin resistance and impaired insulin secretion. Recent transcriptomics studies related to T2DM have revealed changes in expression of a large number of metabolic genes in a variety of tissues. Identification of the molecular mechanisms underlying these transcriptional changes and their impact on the cellular metabolic phenotype is a challenging task due to the complexity of transcriptional regulation and the highly interconnected nature of the metabolic network. In this study we integrate skeletal muscle gene expression datasets with human metabolic network reconstructions to identify key metabolic regulatory features of T2DM. These features include reporter metabolites—metabolites with significant collective transcriptional response in the associated enzyme-coding genes, and transcription factors with significant enrichment of binding sites in the promoter regions of these genes. In addition to metabolites from TCA cycle, oxidative phosphorylation, and lipid metabolism (known to be associated with T2DM), we identified several reporter metabolites representing novel biomarker candidates. For example, the highly connected metabolites NAD+/NADH and ATP/ADP were also identified as reporter metabolites that are potentially contributing to the widespread gene expression changes observed in T2DM. An algorithm based on the analysis of the promoter regions of the genes associated with reporter metabolites revealed a transcription factor regulatory network connecting several parts of metabolism. The identified transcription factors include members of the CREB, NRF1 and PPAR family, among others, and represent regulatory targets for further experimental analysis. Overall, our results provide a holistic picture of key metabolic and regulatory nodes potentially involved in the pathogenesis of T2DM. PMID:20369014

  5. Hypothalamic Insulin Resistance in Obesity: Effects on Glucose Homeostasis.

    PubMed

    Chen, Weiyi; Balland, Eglantine; Cowley, Michael A

    2017-01-01

    The central link between obesity and type 2 diabetes is the development of insulin resistance. To date, it is still not clear whether hyperinsulinemia causes insulin resistance, which underlies the pathogenesis of obesity-associated type 2 diabetes, owing to the sophisticated regulatory mechanisms that exist in the periphery and in the brain. In recent years, accumulating evidence has demonstrated the existence of insulin resistance within the hypothalamus. In this review, we have integrated the recent discoveries surrounding both central and peripheral insulin resistance to provide a comprehensive overview of insulin resistance in obesity and the regulation of systemic glucose homeostasis. In particular, this review will discuss how hyperinsulinemia and hyperleptinemia in obesity impair insulin sensitivity in tissues such as the liver, skeletal muscle, adipose tissue, and the brain. In addition, this review highlights insulin transport into the brain, signaling pathways associated with hypothalamic insulin receptor expression in the regulation of hepatic glucose production, and finally the perturbation of systemic glucose homeostasis as a consequence of central insulin resistance. We also suggest future approaches to overcome both central and peripheral insulin resistance to treat obesity and type 2 diabetes. © 2017 S. Karger AG, Basel.

  6. Microbial regulatory and metabolic networks.

    PubMed

    Cho, Byung-Kwan; Charusanti, Pep; Herrgård, Markus J; Palsson, Bernhard O

    2007-08-01

    Reconstruction of transcriptional regulatory and metabolic networks is the foundation of large-scale microbial systems and synthetic biology. An enormous amount of information including the annotated genomic sequences and the genomic locations of DNA-binding regulatory proteins can be used to define metabolic and regulatory networks in cells. In particular, advances in experimental methods to map regulatory networks in microbial cells have allowed reliable data-driven reconstruction of these networks. Recent work on metabolic engineering and experimental evolution of microbes highlights the key role of global regulatory networks in controlling specific metabolic processes and the need to consider the integrated function of multiple types of networks for both scientific and engineering purposes.

  7. Insulin signalling mechanisms for triacylglycerol storage.

    PubMed

    Czech, M P; Tencerova, M; Pedersen, D J; Aouadi, M

    2013-05-01

    Insulin signalling is uniquely required for storing energy as fat in humans. While de novo synthesis of fatty acids and triacylglycerol occurs mostly in liver, adipose tissue is the primary site for triacylglycerol storage. Insulin signalling mechanisms in adipose tissue that stimulate hydrolysis of circulating triacylglycerol, uptake of the released fatty acids and their conversion to triacylglycerol are poorly understood. New findings include (1) activation of DNA-dependent protein kinase to stimulate upstream stimulatory factor (USF)1/USF2 heterodimers, enhancing the lipogenic transcription factor sterol regulatory element binding protein 1c (SREBP1c); (2) stimulation of fatty acid synthase through AMP kinase modulation; (3) mobilisation of lipid droplet proteins to promote retention of triacylglycerol; and (4) upregulation of a novel carbohydrate response element binding protein β isoform that potently stimulates transcription of lipogenic enzymes. Additionally, insulin signalling through mammalian target of rapamycin to activate transcription and processing of SREBP1c described in liver may apply to adipose tissue. Paradoxically, insulin resistance in obesity and type 2 diabetes is associated with increased triacylglycerol synthesis in liver, while it is decreased in adipose tissue. This and other mysteries about insulin signalling and insulin resistance in adipose tissue make this topic especially fertile for future research.

  8. Insulin signalling mechanisms for triacylglycerol storage

    PubMed Central

    Czech, M. P.; Tencerova, M.; Pedersen, D. J.; Aouadi, M.

    2013-01-01

    Insulin signalling is uniquely required for storing energy as fat in humans. While de novo synthesis of fatty acids and triacylglycerol occurs mostly in liver, adipose tissue is the primary site for triacylglycerol storage. Insulin signalling mechanisms in adipose tissue that stimulate hydrolysis of circulating triacylglycerol, uptake of the released fatty acids and their conversion to triacylglycerol are poorly understood. New findings include (1) activation of DNA-dependent protein kinase to stimulate upstream stimulatory factor (USF)1/USF2 heterodimers, enhancing the lipogenic transcription factor sterol regulatory element binding protein 1c (SREBP1c); (2) stimulation of fatty acid synthase through AMP kinase modulation; (3) mobilisation of lipid droplet proteins to promote retention of triacylglycerol; and (4) upregulation of a novel carbohydrate response element binding protein β isoform that potently stimulates transcription of lipogenic enzymes. Additionally, insulin signalling through mammalian target of rapamycin to activate transcription and processing of SREBP1c described in liver may apply to adipose tissue. Paradoxically, insulin resistance in obesity and type 2 diabetes is associated with increased triacylglycerol synthesis in liver, while it is decreased in adipose tissue. This and other mysteries about insulin signalling and insulin resistance in adipose tissue make this topic especially fertile for future research. PMID:23443243

  9. Use of insulin in diabetes: a century of treatment.

    PubMed

    Shahani, Savita; Shahani, Lokesh

    2015-12-01

    Insulin is a key player in the control of hyperglycaemia for patients with type 1 diabetes mellitus and selected patients with type 2 diabetes mellitus. There have been many advances in insulin drug delivery from its first administration as a crude pancreatic extract till today. The traditional and most predictable method for administration of insulin is by subcutaneous injection. Currently available insulin delivery systems include insulin syringes, infusion pumps, jet injectors, and pens. The major drawback of insulin therapy is its invasive nature. Non-invasive delivery of insulin has long been a major goal for the treatment of diabetes mellitus. Although there have been improvements in insulin therapy since it was first conceived, it is still far from mimicking the physiological secretion of pancreatic β-cells, and research to find new insulin formulations and new routes of administration continues. This article reviews the emerging technologies, including insulin inhalers, insulin buccal spray, insulin pill, islet cell transplant, and stem cell therapy, as treatment options for diabetes mellitus.

  10. Misadventures in insulin therapy: are you at risk?

    PubMed Central

    Grissinger, Matthew; Lease, Michael

    2003-01-01

    About dollar 1 out of every dollar 7 spent on health care is related to diabetes mellitus, a leading cause of blindness and kidney failure and a strong risk factor for heart disease. Prevalence of the disease has increased by a third among adults in general in the last decade, but intensive therapy has been shown to delay the onset and slow the progression of diabetes-related complications. While insulin therapy remains key in the management of type 1 diabetes, many patients with type 2, or insulin-resistant, diabetes encounter insulin administration errors that compromise the quality of insulin delivery. Insulin errors are a major, but modifiable, barrier to dosing accuracy and optimal diabetes control for many patients. Future trends to combat the problem include increased use of insulin inhalers and smaller doses of rapid- or short-acting insulin to supplement longer-acting injections. PMID:12653373

  11. Misadventures in insulin therapy: are you at risk?

    PubMed

    Grissinger, Matthew; Lease, Michael

    2003-02-01

    About dollar 1 out of every dollar 7 spent on health care is related to diabetes mellitus, a leading cause of blindness and kidney failure and a strong risk factor for heart disease. Prevalence of the disease has increased by a third among adults in general in the last decade, but intensive therapy has been shown to delay the onset and slow the progression of diabetes-related complications. While insulin therapy remains key in the management of type 1 diabetes, many patients with type 2, or insulin-resistant, diabetes encounter insulin administration errors that compromise the quality of insulin delivery. Insulin errors are a major, but modifiable, barrier to dosing accuracy and optimal diabetes control for many patients. Future trends to combat the problem include increased use of insulin inhalers and smaller doses of rapid- or short-acting insulin to supplement longer-acting injections.

  12. Insulin C-peptide

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003701.htm Insulin C-peptide test To use the sharing features ... a product that is created when the hormone insulin is produced and released into the body. The ...

  13. Insulin pump (image)

    MedlinePlus

    The catheter at the end of the insulin pump is inserted through a needle into the abdominal ... with diabetes. Dosage instructions are entered into the pump's small computer and the appropriate amount of insulin ...

  14. Suicide by Insulin?

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_165701.html Suicide by Insulin? Self-harm and suicidal behavior may ... higher rates of depression, the researchers explained. And suicide or suicide attempts using insulin or other diabetes ...

  15. High-mix insulins

    PubMed Central

    Kalra, Sanjay; Farooqi, Mohammad Hamed; El-Houni, Ali E.

    2015-01-01

    Premix insulins are commonly used insulin preparations, which are available in varying ratios of different molecules. These drugs contain one short- or rapid-acting, and one intermediate- or long-acting insulin. High-mix insulins are mixtures of insulins that contain 50% or more than 50% of short-acting insulin. This review describes the clinical pharmacology of high-mix insulins, including data from randomized controlled trials. It suggests various ways, in which high-mix insulin can be used, including once daily, twice daily, thrice daily, hetero-mix, and reverse regimes. The authors provide a rational framework to help diabetes care professionals, identify indications for pragmatic high-mix use. PMID:26425485

  16. All about Insulin Resistance

    MedlinePlus

    Toolkit No. 2 All About Insulin Resistance Insulin resistance is a condition that raises your risk for type 2 diabetes and heart disease. ... Diabetes Association, Inc. 1/15 Toolkit No. 2: All About Insulin Resistance continued J Order the smallest ...

  17. [Insulin pump in type 2 diabetes: B-cell focused treatment].

    PubMed

    Picková, Klára; Rušavý, Zdeněk

    2017-01-01

    Type 2 diabetes is a disorder characterized by insulin resistance and progressive deterioration of B-cell insulin secretion. B-cell protective strategies for lowering glucolipotoxicity by rapid achievement of normoglycemia using exogenous insulin improve their function and prolong diabetes remission. Insulin pump is an effective treatment method in newly diagnosed diabetes, where even short-term pump therapy is B-cell protective. Combination therapy with insulin pump and antidiabetics targeting the incretin system acts in synergy to protect the B-cell. While the positive effect of insulin pump is apparent even a year after stopping the therapy, the effect of incretins lasts only while on the medication. Short-term insulin treatment, especially delivered by insulin pump, is an effective method of B-cell protection in recent type 2 diabetes.Key words: B-cell function - diabetes mellitus - insulin pump - insulin resistance - type 2 diabetes.

  18. Insulin binding sites in various segments of the rabbit nephron

    SciTech Connect

    Nakamura, R.; Emmanouel, D.S.; Katz, A.I.

    1983-07-01

    Insulin binds specifically to basolateral renal cortical membranes and modifies tubular electrolyte transport, but the target sites of this hormone in the nephron have not been identified. Using a microassay that permits measurement of hormone binding in discrete tubule segments we have determined the binding sites of /sup 125/I-insulin along the rabbit nephron. Assays were performed under conditions that minimize insulin degradation, and specific binding was measured as the difference between /sup 125/I-insulin bound in the presence or absence of excess (10(-5) M) unlabeled hormone. Insulin monoiodinated in position A14 was used in all assays. Specific insulin binding (attomol . cm-1 +/- SE) was highest in the distal convoluted tubule (180.5 +/- 15.0) and medullary thick ascending limb of Henle's loop (132.9 +/- 14.6), followed by the proximal convoluted and straight tubule. When expressed per milligram protein, insulin binding capacity was highest along the entire thick ascending limb (medullary and cortical portions) and the distal convoluted tubule, i.e., the ''diluting segment'' (congruent to 10(-13) mol . mg protein-1), and was lower (congruent to 4 X 10(-14) mol . mg protein-1), and remarkably similar, in all other nephron segments. Binding specificity was verified in competition studies with unlabeled insulin, insulin analogues (proinsulin and desoctapeptide insulin), and unrelated hormones (glucagon, 1-34 parathyroid hormone, prolactin, follicle-stimulating hormone). In addition, serum containing antiinsulin receptor antibody from two patients with type B insulin resistance syndrome markedly inhibited insulin binding to isolated tubules. Whether calculated per unit tubule length or protein content, insulin binding is highest in the thick ascending limb and the distal convoluted tubule, the same nephron sites where a regulatory role in sodium transport has been postulated for this hormone.

  19. The neuronal insulin receptor in its environment.

    PubMed

    Gralle, Matthias

    2017-02-01

    Insulin is known mainly for its effects in peripheral tissues, such as the liver, skeletal muscles and adipose tissue, where the activation of the insulin receptor (IR) has both short-term and long-term effects. Insulin and the IR are also present in the brain, and since there is evidence that neuronal insulin signaling regulates synaptic plasticity and that it is impaired in disease, this pathway might be the key to protection or reversal of symptoms, especially in Alzheimer's disease. However, there are controversies about the importance of the neuronal IR, partly because biophysical data on its activation and signaling are much less complete than for the peripheral IR. This review briefly summarizes the neuronal IR signaling in health and disease, and then focuses on known differences between the neuronal and peripheral IR with regard to alternative splicing and glycosylation, and lack of data with respect to phosphorylation and membrane subdomain localization. Particularities in the neuronal IR itself and its environment may have consequences for downstream signaling and impact synaptic plasticity. Furthermore, establishing the relative importance of insulin signaling through IR or through hybrids with its homolog, the insulin-like growth factor 1 receptor, is crucial for evaluating the consequences of brain IR activation. An improved biophysical understanding of the neuronal IR may help predict the consequences of insulin-targeted interventions.

  20. Restoring insulin production for type 1 diabetes.

    PubMed

    Tudurí, Eva; Bruin, Jennifer E; Kieffer, Timothy J

    2012-12-01

    Current therapies for the treatment of type 1 diabetes include daily administration of exogenous insulin and, less frequently, whole-pancreas or islet transplantation. Insulin injections often result in inaccurate insulin doses, exposing the patient to hypo- and/or hyperglycemic episodes that lead to long-term complications. Islet transplantation is also limited by lack of high-quality islet donors, early graft failure, and chronic post-transplant immunosuppressive treatment. These barriers could be circumvented by designing a safe and efficient strategy to restore insulin production within the patient's body. Porcine islets have been considered as a possible alternative source of transplantable insulin-producing cells to replace human cadaveric islets. More recently, embryonic or induced pluripotent stem cells have also been examined for their ability to differentiate in vitro into pancreatic endocrine cells. Alternatively, it may be feasible to generate new β-cells by ectopic expression of key transcription factors in endogenous non-β-cells. Finally, engineering surrogate β-cells by in vivo delivery of the insulin gene to specific tissues is also being studied as a possible therapy for type 1 diabetes. In the present review, we discuss these different approaches to restore insulin production.

  1. Cardiovascular Action of Insulin in Health and Disease: Endothelial L-Arginine Transport and Cardiac Voltage-Dependent Potassium Channels

    PubMed Central

    Dubó, Sebastián; Gallegos, David; Cabrera, Lissette; Sobrevia, Luis; Zúñiga, Leandro; González, Marcelo

    2016-01-01

    Impairment of insulin signaling on diabetes mellitus has been related to cardiovascular dysfunction, heart failure, and sudden death. In human endothelium, cationic amino acid transporter 1 (hCAT-1) is related to the synthesis of nitric oxide (NO) and insulin has a vascular effect in endothelial cells through a signaling pathway that involves increases in hCAT-1 expression and L-arginine transport. This mechanism is disrupted in diabetes, a phenomenon potentiated by excessive accumulation of reactive oxygen species (ROS), which contribute to lower availability of NO and endothelial dysfunction. On the other hand, electrical remodeling in cardiomyocytes is considered a key factor in heart failure progression associated to diabetes mellitus. This generates a challenge to understand the specific role of insulin and the pathways involved in cardiac function. Studies on isolated mammalian cardiomyocytes have shown prolongated action potential in ventricular repolarization phase that produces a long QT interval, which is well explained by attenuation in the repolarizing potassium currents in cardiac ventricles. Impaired insulin signaling causes specific changes in these currents, such a decrease amplitude of the transient outward K+ (Ito) and the ultra-rapid delayed rectifier (IKur) currents where, together, a reduction of mRNA and protein expression levels of α-subunits (Ito, fast; Kv 4.2 and IKs; Kv 1.5) or β-subunits (KChIP2 and MiRP) of K+ channels involved in these currents in a MAPK mediated pathway process have been described. These results support the hypothesis that lack of insulin signaling can produce an abnormal repolarization in cardiomyocytes. Furthermore, the arrhythmogenic potential due to reduced Ito current can contribute to an increase in the incidence of sudden death in heart failure. This review aims to show, based on pathophysiological models, the regulatory function that would have insulin in vascular system and in cardiac electrophysiology. PMID

  2. Phytic acid and myo-inositol support adipocyte differentiation and improve insulin sensitivity in 3T3-L1 cells.

    PubMed

    Kim, Jin Nam; Han, Sung Nim; Kim, Hye-Kyeong

    2014-08-01

    Phytic acid, also known as myo-inositol hexaphosphate, has been shown to lower blood glucose levels and to improve insulin sensitivity in rodents. We investigated the effects of phytic acid and myo-inositol on differentiation, insulin-stimulated glucose uptake, and lipolysis of adipocytes to test the hypothesis that the antidiabetic properties of phytic acid and myo-inositol are mediated directly through adipocytes. 3T3-L1 cells were treated with 10, 50, or 200 μmol/L of phytic acid or myo-inositol. Oil Red O staining and an intracellular triacylglycerol assay were used to determine lipid accumulation during adipocyte differentiation. Immunoblotting and real-time polymerase chain reaction (PCR) were performed to evaluate expression of transcription factors, a target protein, and insulin signaling molecules. Phytic acid and myo-inositol exposures increased lipid accumulation in a dose-dependent manner (P < .01). The expression of key transcription factors associated with adipocyte differentiation, such as peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulatory element-binding protein 1c, and the expression of fatty acid synthase increased upon treatments with phytic acid and myo-inositol (P < .05). Insulin-stimulated glucose uptake in mature adipocytes increased with phytic acid and myo-inositol treatments (P < .01). In addition, mRNA levels of insulin receptor substrate 1 (IRS1), mRNA levels of glucose transporter 4, and phosphorylation of tyrosine in IRS1 increased upon phytic acid and myo-inositol treatments. In fully differentiated adipocytes, phytic acid and myo-inositol reduced basal lipolysis dose dependently (P < .01). These results suggest that phytic acid and myo-inositol increase insulin sensitivity in adipocytes by increasing lipid storage capacity, improving glucose uptake, and inhibiting lipolysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Lower NLRP3 inflammasome activity in NAG-1 transgenic mice is linked to a resistance to obesity and increased insulin sensitivity.

    PubMed

    Wang, Xingya; Chrysovergis, Kali; Kosak, Justin; Eling, Thomas E

    2014-05-01

    The NLRP3 inflammasome plays an important regulatory role in obesity-induced insulin resistance. NSAID activated gene-1 (NAG-1) is a divergent member of the TGF-β superfamily. NAG-1 Tg mice are resistant to dietary- and genetic-induced obesity and have improved insulin sensitivity. The objective was to examine whether NLRP3 inflammasome activity is associated with this observed phenotype in NAG-1 Tg mice. Key components of the NLRP3 inflammasome were examined in NAG-1 Tg mice on both regular and high fat diet (HFD) conditions. The expression of caspase-1 and ASC, key components of the NLRP3 inflammasome, is significantly reduced at mRNA and protein levels in white adipose tissue (WAT) of NAG-1 Tg mice. HFD increases the expression of caspase-1 and ASC in WT mice, but their expression is reduced in NAG-1 Tg mice. Furthermore, there is reduced IL-18, IL-1β, and TNF-α expression in the WAT of NAG-1 Tg mice. NAG-1 Tg mice have significantly lower serum leptin and insulin levels and reduced expression of macrophage infiltration markers (F4/80, CD11b, and CD11c) in WAT. The study suggests the lower NLRP3 inflammasome activity may play a role in the resistance of NAG-1 Tg mice to diet-induced obesity and improved insulin sensitivity. Copyright © 2013 The Obesity Society.

  4. Florida Keys

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Florida Keys are a chain of islands, islets and reefs extending from Virginia Key to the Dry Tortugas for about 309 kilometers (192 miles). The keys are chiefly limestone and coral formations. The larger islands of the group are Key West (with its airport), Key Largo, Sugarloaf Key, and Boca Chica Key. A causeway extends from the mainland to Key West.

    This image was acquired on October 28, 2001, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort to understand and protect our home planet. Through the study of Earth, NASA will help to provide sound science to policy and economic

  5. Florida Keys

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Florida Keys are a chain of islands, islets and reefs extending from Virginia Key to the Dry Tortugas for about 309 kilometers (192 miles). The keys are chiefly limestone and coral formations. The larger islands of the group are Key West (with its airport), Key Largo, Sugarloaf Key, and Boca Chica Key. A causeway extends from the mainland to Key West.

    This image was acquired on October 28, 2001, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort to understand and protect our home planet. Through the study of Earth, NASA will help to provide sound science to policy and economic

  6. Oral Insulin Reloaded

    PubMed Central

    Heinemann, Lutz; Plum-Mörschel, Leona

    2014-01-01

    Optimal coverage of insulin needs is the paramount aim of insulin replacement therapy in patients with diabetes mellitus. To apply insulin without breaking the skin barrier by a needle and/or to allow a more physiological provision of insulin are the main reasons triggering the continuous search for alternative routes of insulin administration. Despite numerous attempts over the past 9 decades to develop an insulin pill, no insulin for oral dosing is commercially available. By way of a structured approach, we aim to provide a systematic update on the most recent developments toward an orally available insulin formulation with a clear focus on data from clinical-experimental and clinical studies. Thirteen companies that claim to be working on oral insulin formulations were identified. However, only 6 of these companies published new clinical trial results within the past 5 years. Interestingly, these clinical data reports make up a mere 4% of the considerably high total number of publications on the development of oral insulin formulations within this time period. While this picture clearly reflects the rising research interest in orally bioavailable insulin formulations, it also highlights the fact that the lion’s share of research efforts is still allocated to the preclinical stages. PMID:24876606

  7. Syndromic insulin resistance: Models for the therapeutic basis of the metabolic syndrome and other targets of insulin resistance

    PubMed Central

    Gorden, Phillip; Zadeh, Elika Safar; Cochran, Elaine; Brown, Rebecca J.

    2013-01-01

    Objective Insulin resistance is the key feature of the “metabolic syndrome,” a cluster of risk factors for cardiovascular disease and diabetes that includes hypertension, dyslipidemia, obesity, and hyperglycemia. Existing treatments target individual metabolic syndrome components, and act non-specifically with respect to disease pathophysiology. Our goal is to understand the link between insulin resistance and the metabolic syndrome, and how to develop treatment approaches. Methods We present three cases of extreme, syndromic insulin resistance: lipodystrophy, autoantibodies to the insulin receptor, and mutations of the insulin receptor, with discussion of pathophysiology and treatment. Results In lipodystrophy, insulin resistance is a direct consequence of leptin deficiency, and thus leptin replacement reverses metabolic syndrome abnormalities, including diabetes and hypertriglyeridemia. The insulin “receptoropathies”, including autoantibodies to the insulin receptor and insulin receptor mutations, are characterized by extreme insulin resistance and ovarian hyperandrogenism, without dyslipidemia or fatty liver disease. Autoantibodies to the insulin receptor can be treated using an immunosuppressive paradigm adapted from treatment of other autoimmune and neoplastic conditions. Leptin treatment has shown some success in treating hyperglycemia in insulin receptor mutations. Treatment for this condition remains inadequate, and novel therapies that bypass insulin receptor signaling, such as enhancers of brown adipose tissue, are needed. Conclusion We presented a clinical approach to treatment of syndromic insulin resistance. The study of rare diseases that replicate the metabolic syndrome, with clear-cut pathophysiology, allows the opportunity to understand novel physiology, and develop targeted therapies that may be applicable to the broader population with obesity, insulin resistance, and diabetes. PMID:23047930

  8. Half-Unit Insulin Pens: Disease Management in Patients With Diabetes Who Are Sensitive to Insulin.

    PubMed

    Klonoff, David C; Nayberg, Irina; Stauder, Udo; Oualali, Hamid; Domenger, Catherine

    2017-05-01

    Insulin pens represent a significant technological advancement in diabetes management. While the vast majority have been designed with 1U-dosing increments, improved accuracy and precision facilitated by half-unit increments may be particularly significant in specific patients who are sensitive to insulin. These include patients with low insulin requirements and in those requiring more precise dose adjustments, such as the pediatric patient population. This review summarized functional characteristics of insulin half-unit pens (HUPs) and their effect on user experience. The literature search was restricted to articles published in English between January 1, 2000, and January 1, 2015. A total of 17 publications met the set criteria and were included in the review. Overall, studies outlined characteristics for 4 insulin HUPs. Based on their functionality, the pens were generally similar and all met the ISO 11608-1 criteria for accuracy. However, some had specific advantageous features in terms of size, weight, design, dialing torque, and injection force. Although limited, the currently available user preference studies in children and adolescents with diabetes and their carers suggest that the selection of an HUP is likely to be influenced by a combination of factors such as these, in addition to the prescribed insulin and dosing regimen. Insulin HUPs are likely to be a key diabetes management tool for patients who are sensitive to insulin; specific pen features may further advance diabetes management in these populations.

  9. Acupuncture Alters Expression of Insulin Signaling Related Molecules and Improves Insulin Resistance in OLETF Rats

    PubMed Central

    Sun, Jian

    2016-01-01

    To determine effect of acupuncture on insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF) rats and to evaluate expression of insulin signaling components. Rats were divided into three groups: Sprague-Dawley (SD) rats, OLETF rats, and acupuncture+OLETF rats. Acupuncture was subcutaneously applied to Neiguan (PC6), Zusanli (ST36), and Sanyinjiao (SP6); in contrast, acupuncture to Shenshu (BL23) was administered perpendicularly. For Neiguan (PC6) and Zusanli (ST36), needles were connected to an electroacupuncture (EA) apparatus. Fasting blood glucose (FPG) was measured by glucose oxidase method. Plasma fasting insulin (FINS) and serum C peptide (C-P) were determined by ELISA. Protein and mRNA expressions of insulin signaling molecules were determined by Western blot and real-time RT-PCR, respectively. OLETF rats exhibit increased levels of FPG, FINS, C-P, and homeostasis model assessment-estimated insulin resistance (HOMA-IR), which were effectively decreased by acupuncture treatment. mRNA expressions of several insulin signaling related molecules IRS1, IRS2, Akt2, aPKCζ, and GLUT4 were decreased in OLETF rats compared to SD controls. Expression of these molecules was restored back to normal levels upon acupuncture administration. PI3K-p85α was increased in OLETF rats; this increase was also reversed by acupuncture treatment. Acupuncture improves insulin resistance in OLETF rats, possibly via regulating expression of key insulin signaling related molecules. PMID:27738449

  10. Key Nutrients.

    ERIC Educational Resources Information Center

    Federal Extension Service (USDA), Washington, DC.

    Lessons written to help trainer agents prepare aides for work with families in the Food and Nutrition Program are presented in this booklet. The key nutrients discussed in the 10 lessons are protein, carbohydrates, fat, calcium, iron, iodine, and Vitamins A, B, C, and D. the format of each lesson is as follows: Purpose, Presentation, Application…

  11. Inhaled human insulin.

    PubMed

    Strack, Thomas R

    2006-04-01

    The benefit of subcutaneous insulin therapy in patients with diabetes is frequently limited due to difficulty in convincing patients of the importance of multiple daily insulin injections to cope effectively with meal-associated glycemic changes. Thus, the aim of achieving tight glycemic control, which is critical for reducing the risk of long-term diabetes-related complications, frequently remains elusive. The successful development of an inhalable insulin as a noninvasive alternative promises to change the management of diabetes. The first product to become available to patients is inhaled human insulin, a dry-powder formulation packaged into discrete blisters containing 1 or 3 mg of dry-powder human insulin and administered via a unique pulmonary inhaler device. It has recently been approved in both the United States and the European Union for the control of hyperglycemia in adult patients with type 1 or type 2 diabetes. The pharmacokinetic profile of inhaled human insulin closely mimics the natural pattern of insulin secretion, and resembles that of rapid-acting subcutaneous analogs. Similarly to rapid-acting subcutaneous analogs, inhaled human insulin has a more rapid onset of glucose-lowering activity compared to subcutaneous regular insulin, allowing it to be administered shortly before meals. It has a duration of glucose-lowering activity comparable to subcutaneous regular insulin and longer than rapid-acting insulin analogs. Inhaled human insulin effectively controls postprandial glucose concentrations in patients with type 1 or type 2 diabetes without increasing the risk of hypoglycemia, and even improves fasting glucose levels compared to subcutaneous insulin. Inhaled human insulin has an overall favorable safety profile. There are small reductions in lung function (1-1.5% of total lung forced expiratory volume in the first second [FEV1] capacity) after onset of treatment that are reversible in most patients if treatment is discontinued. Inhaled human

  12. Muscle expression of a malonyl-CoA-insensitive carnitine palmitoyltransferase-1 protects mice against high-fat/high-sucrose diet-induced insulin resistance.

    PubMed

    Vavrova, Eliska; Lenoir, Véronique; Alves-Guerra, Marie-Clotilde; Denis, Raphaël G; Castel, Julien; Esnous, Catherine; Dyck, Jason R B; Luquet, Serge; Metzger, Daniel; Bouillaud, Frédéric; Prip-Buus, Carina

    2016-09-01

    Impaired skeletal muscle mitochondrial fatty acid oxidation (mFAO) has been implicated in the etiology of insulin resistance. Carnitine palmitoyltransferase-1 (CPT1) is a key regulatory enzyme of mFAO whose activity is inhibited by malonyl-CoA, a lipogenic intermediate. Whereas increasing CPT1 activity in vitro has been shown to exert a protective effect against lipid-induced insulin resistance in skeletal muscle cells, only a few studies have addressed this issue in vivo. We thus examined whether a direct modulation of muscle CPT1/malonyl-CoA partnership is detrimental or beneficial for insulin sensitivity in the context of diet-induced obesity. By using a Cre-LoxP recombination approach, we generated mice with skeletal muscle-specific and inducible expression of a mutated CPT1 form (CPT1mt) that is active but insensitive to malonyl-CoA inhibition. When fed control chow, homozygous CPT1mt transgenic (dbTg) mice exhibited decreased CPT1 sensitivity to malonyl-CoA inhibition in isolated muscle mitochondria, which was sufficient to substantially increase ex vivo muscle mFAO capacity and whole body fatty acid utilization in vivo. Moreover, dbTg mice were less prone to high-fat/high-sucrose (HFHS) diet-induced insulin resistance and muscle lipotoxicity despite similar body weight gain, adiposity, and muscle malonyl-CoA content. Interestingly, these CPT1mt-protective effects in dbTg-HFHS mice were associated with preserved muscle insulin signaling, increased muscle glycogen content, and upregulation of key genes involved in muscle glucose metabolism. These beneficial effects of muscle CPT1mt expression suggest that a direct modulation of the malonyl-CoA/CPT1 partnership in skeletal muscle could represent a potential strategy to prevent obesity-induced insulin resistance. Copyright © 2016 the American Physiological Society.

  13. Regulatory Forum.

    PubMed

    Peden, W Michael

    2016-12-01

    Revision of the International Council for Harmonization (ICH) S1 guidance for rat carcinogenicity studies to be more selective of compounds requiring a 2-year rat carcinogenicity study has been proposed following extensive evaluation of rat carcinogenicity and chronic toxicity studies by industry and drug regulatory authorities. To inform the ICH S1 expert working group in their potential revision of ICH S1, a prospective evaluation study was initiated in 2013, in which sponsors would assess the pharmacologic and toxicologic findings present in the chronic toxicity studies and predict a positive or negative carcinogenicity outcome using a weight of evidence argument (a carcinogenicity assessment document [CAD]). The Scientific and Regulatory Policy Committee was asked by the Society of Toxicology Pathology (STP) executive committee to track these changes with ICH S1 and inform the STP membership of status changes. This commentary is intended to provide a brief summary of recent changes to the CAD guidance and highlight the importance of STP membership participation in the process of CAD submissions.

  14. Evidence-based clinical use of insulin premixtures

    PubMed Central

    2013-01-01

    Brazil is expected to have 19.6 million patients with diabetes by the year 2030. A key concept in the treatment of type 2 diabetes mellitus (T2DM) is establishing individualized glycemic goals based on each patient’s clinical characteristics, which impact the choice of antihyperglycemic therapy. Targets for glycemic control, including fasting blood glucose, postprandial blood glucose, and glycated hemoglobin (A1C), are often not reached solely with antihyperglycemic therapy, and insulin therapy is often required. Basal insulin is considered an initial strategy; however, premixed insulins are convenient and are equally or more effective, especially for patients who require both basal and prandial control but desire a more simplified strategy involving fewer daily injections than a basal-bolus regimen. Most physicians are reluctant to transition patients to insulin treatment due to inappropriate assumptions and insufficient information. We conducted a nonsystematic review in PubMed and identified the most relevant and recently published articles that compared the use of premixed insulin versus basal insulin analogues used alone or in combination with rapid-acting insulin analogues before meals in patients with T2DM. These studies suggest that premixed insulin analogues are equally or more effective in reducing A1C compared to basal insulin analogues alone in spite of the small increase in the risk of nonsevere hypoglycemic events and nonclinically significant weight gain. Premixed insulin analogues can be used in insulin-naïve patients, in patients already on basal insulin therapy, and those using basal-bolus therapy who are noncompliant with blood glucose self-monitoring and titration of multiple insulin doses. We additionally provide practical aspects related to titration for the specific premixed insulin analogue formulations commercially available in Brazil. PMID:24011173

  15. Basal insulin: beyond glycemia.

    PubMed

    Niswender, Kevin D

    2011-07-01

    Insulin is a pleiotropic hormone with numerous effects at the cellular, tissue, and organismal levels. Clinicians are familiar with physiological effects of insulin on carbohydrate metabolism, including stimulation of glucose uptake in skeletal muscle and the suppression of glucose production from the liver. Other metabolic effects of insulin include inhibiting the release of free fatty acids from adipose tissue and stimulating the incorporation of amino acids into proteins. Indeed, every organ in the body, including the brain, is a target for insulin action. Insulin resistance, typically defined with respect to glucose metabolism, is a condition in which normal levels of insulin do not trigger the signal for glucose disposition. The effects of insulin resistance and impaired insulin signaling have profound pathophysiologic effects, such as hyperglycemia-induced tissue damage, hypertension, dyslipidemia, metabolic syndrome, and cardiovascular and renal disease. An integrated view of insulin action in all of these tissues may yield improved therapeutic insight and possibly even illuminate new therapeutic opportunities. With the increase in the number of patients diagnosed with prediabetes and diabetes, an updated understanding of the disease and the pharmacologic armamentarium used to treat it is needed to improve outcomes. To help expand the clinical care provider's perspective, this article will provide a provocative discussion about the pathophysiology of diabetes, the role of insulin and insulin resistance, and the clinical efficacy potential of insulin. Understanding the cellular and molecular mechanisms underlying the effects of insulin and how these translate into clinical consequences beyond glycemia will assist primary care physicians in the care of their patients with diabetes and metabolic syndrome.

  16. Insulin Resistance in Children: Consensus, Perspective, and Future Directions

    PubMed Central

    Levy-Marchal, Claire; Arslanian, Silva; Cutfield, Wayne; Sinaiko, Alan; Druet, Celine; Marcovecchio, M. Loredana; Chiarelli, Francesco

    2010-01-01

    Objective: Emerging data indicate that insulin resistance is common among children and adolescents and is related to cardiometabolic risk, therefore requiring consideration early in life. However, there is still confusion on how to define insulin resistance, how to measure it, what its risk factors are, and whether there are effective strategies to prevent and treat it. A consensus conference was organized in order to clarify these points. Participants: The consensus was internationally supported by all the major scientific societies in pediatric endocrinology and 37 participants. Evidence: An independent and systematic search of the literature was conducted to identify key articles relating to insulin resistance in children. Consensus Process: The conference was divided into five themes and working groups: background and definition; methods of measurement and screening; risk factors and consequences; prevention; and treatment. Each group selected key issues, searched the literature, and developed a draft document. During a 3-d meeting, these papers were debated and finalized by each group before presenting them to the full forum for further discussion and agreement. Conclusions: Given the current childhood obesity epidemic, insulin resistance in children is an important issue confronting health care professionals. There are no clear criteria to define insulin resistance in children, and surrogate markers such as fasting insulin are poor measures of insulin sensitivity. Based on current screening criteria and methodology, there is no justification for screening children for insulin resistance. Lifestyle interventions including diet and exercise can improve insulin sensitivity, whereas drugs should be implemented only in selected cases. PMID:20829185

  17. The Impact of Adipose Tissue on Insulin Resistance in Acromegaly.

    PubMed

    Olarescu, Nicoleta Cristina; Bollerslev, Jens

    2016-04-01

    Adipose tissue (AT) is recognized as key contributor to the systemic insulin resistance and overt diabetes seen in metabolic syndrome. Acromegaly is a disease characterized by excessive secretion of growth hormone (GH) and insulin-like growth factor I (IGF-I). GH is known both for its action on AT and for its detrimental effect on glucose metabolism and insulin signaling. In active acromegaly, while body fat deports are diminished, insulin resistance is increased. Early studies have demonstrated defects in insulin action, both at the hepatic and extrahepatic (i.e., muscle and fat) levels, in active disease. This review discusses recent data suggesting that AT inflammation, altered AT distribution, and impaired adipogenesis are potential mechanisms contributing to systemic insulin resistance in acromegaly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Insulin: its role in the central control of reproduction.

    PubMed

    Sliwowska, Joanna H; Fergani, Chrysanthi; Gawałek, Monika; Skowronska, Bogda; Fichna, Piotr; Lehman, Michael N

    2014-06-22

    Insulin has long been recognized as a key regulator of energy homeostasis via its actions at the level of the brain, but in addition, plays a role in regulating neural control of reproduction. In this review, we consider and compare evidence from animal models demonstrating a role for insulin for physiological control of reproduction by effects on GnRH/LH secretion. We also review the role that insulin plays in prenatal programming of adult reproduction, and consider specific candidate neurons in the adult hypothalamus by which insulin may act to regulate reproductive function. Finally, we review clinical evidence of the role that insulin may play in adult human fertility and reproductive disorders. Overall, while insulin appears to have a significant impact on reproductive neuroendocrine function, there are many unanswered questions regarding its precise sites and mechanisms of action, and their impact on developing and adult reproductive neuroendocrine function.

  19. Insulin action and resistance in obesity and type 2 diabetes.

    PubMed

    Czech, Michael P

    2017-07-11

    Nutritional excess is a major forerunner of type 2 diabetes. It enhances the secretion of insulin, but attenuates insulin's metabolic actions in the liver, skeletal muscle and adipose tissue. However, conflicting evidence indicates a lack of knowledge of the timing of these events during the development of obesity and diabetes, pointing to a key gap in our understanding of metabolic disease. This Perspective reviews alternate viewpoints and recent results on the temporal and mechanistic connections between hyperinsulinemia, obesity and insulin resistance. Although much attention has addressed early steps in the insulin signaling cascade, insulin resistance in obesity seems to be largely elicited downstream of these steps. New findings also connect insulin resistance to extensive metabolic cross-talk between the liver, adipose tissue, pancreas and skeletal muscle. These and other advances over the past 5 years offer exciting opportunities and daunting challenges for the development of new therapeutic strategies for the treatment of type 2 diabetes.

  20. Genetic variation in insulin-induced kinase signaling

    PubMed Central

    Wang, Isabel Xiaorong; Ramrattan, Girish; Cheung, Vivian G

    2015-01-01

    Individual differences in sensitivity to insulin contribute to disease susceptibility including diabetes and metabolic syndrome. Cellular responses to insulin are well studied. However, which steps in these response pathways differ across individuals remains largely unknown. Such knowledge is needed to guide more precise therapeutic interventions. Here, we studied insulin response and found extensive individual variation in the activation of key signaling factors, including ERK whose induction differs by more than 20-fold among our subjects. This variation in kinase activity is propagated to differences in downstream gene expression response to insulin. By genetic analysis, we identified cis-acting DNA variants that influence signaling response, which in turn affects downstream changes in gene expression and cellular phenotypes, such as protein translation and cell proliferation. These findings show that polymorphic differences in signal transduction contribute to individual variation in insulin response, and suggest kinase modulators as promising therapeutics for diseases characterized by insulin resistance. PMID:26202599

  1. Toll-like receptor 2 deficiency improves insulin sensitivity and hepatic insulin signalling in the mouse.

    PubMed

    Kuo, L-H; Tsai, P-J; Jiang, M-J; Chuang, Y-L; Yu, L; Lai, K-T A; Tsai, Y-S

    2011-01-01

    Substantial evidence suggests a link between elevated inflammation and development of insulin resistance. Toll-like receptor 2 (TLR2) recognises a large number of lipid-containing molecules and transduces inflammatory signalling in a variety of cell types, including insulin-responsive cells. Considering the contribution of the fatty acid composition in TLR2-depedent signalling, we hypothesised that the inflammatory signals transduced by TLR2 contribute to insulin resistance. Mice deficient in TLR2 were used to investigate the in vivo roles of TLR2 in initiating and maintaining inflammation-associated insulin resistance and energy homeostasis. We first recapitulated the observation with elevated expression of TLR2 and inflammatory cytokines in white adipose tissue and liver of ob/ob mice. Aged or high-fat-fed TLR2-deficient mice were protected from obesity and adipocyte hypertrophy compared with wild-type mice. Moreover, mice lacking TLR2 exhibited improved glucose tolerance and insulin sensitivity regardless of feeding them regular chow or a high-fat diet. This is accompanied by reductions in expression of inflammatory cytokines and activation of extracellular signal-regulated kinase (ERK) in a liver-specific manner. The attenuated hepatic inflammatory cytokine expression and related signalling are correlated with increased insulin action specifically in the liver in TLR2-deficient mice, reflected by increased insulin-stimulated protein kinase B (Akt) phosphorylation and IRS1 tyrosine phosphorylation and increased insulin-suppressed hepatocyte glucose production. The absence of TLR2 attenuates local inflammatory cytokine expression and related signalling and increases insulin action specifically in the liver. Thus, our work has identified TLR2 as a key mediator of hepatic inflammation-related signalling and insulin resistance.

  2. Biosimilar Insulin and Costs

    PubMed Central

    Heinemann, Lutz

    2015-01-01

    The costs for insulin treatment are high, and the steady increase in the number of patients with diabetes on insulin presents a true challenge to health care systems. Therefore, all measures to lower these costs are welcomed by patients, physicians, and health care providers. The market introduction of biosimilar insulins presents an option to lower treatment costs as biosimilars are usually offered at a lower price than the originator product. However, the assumption that a drastic reduction in insulin prices will take place, as was observed with many generic drugs, is most probably not realistic. As the first biosimilar insulin has now been approved in the EU, this commentary discusses a number of aspects that are relevant when it comes to the potential cost reduction we will see with the use of biosimilar insulins. PMID:26350722

  3. Adipokines and insulin action

    PubMed Central

    Knights, Alexander J; Funnell, Alister PW; Pearson, Richard CM; Crossley, Merlin; Bell-Anderson, Kim S

    2014-01-01

    Obesity is a major public health concern and a strong risk factor for insulin resistance, type 2 diabetes mellitus (T2DM), and cardiovascular disease. The last two decades have seen a reconsideration of the role of white adipose tissue (WAT) in whole body metabolism and insulin action. Adipose tissue-derived cytokines and hormones, or adipokines, are likely mediators of metabolic function and dysfunction. While several adipokines have been associated with obese and insulin-resistant phenotypes, a select group has been linked with insulin sensitivity, namely leptin, adiponectin, and more recently, adipolin. What is known about these insulin-sensitizing molecules and their effects in healthy and insulin resistant states is the subject of this review. There remains a significant amount of research to do to fully elucidate the mechanisms of action of these adipokines for development of therapeutics in metabolic disease. PMID:24719781

  4. [Transdermal delivery of insulin].

    PubMed

    Sevast'ianov, V I; Salomatina, L A; Kuznetsova, E G; Iakovleva, N V; Shumakov, V I

    2003-01-01

    A possibility is studied of the transdermal delivery of insulin by using a mixture of synthetic analogues of phosphoglycerides (SAP), as a potential activator of hormone diffusion, through the skin. Experimentally in vitro, it was proven that the diffusion of insulin through the skin of two types of transdermal therapeutic form (TTF)--matrix-type and matrix-hydrogel-type--is possible only in presence of activator SAP-M-99. The detected optimal composition of insulin matrix TTF with the area of 40 sq cm enabled a trandermal hormone diffusion speed of 0.26 UNITS/h, which is compatible with the secretion of insulin by the pancreas of an adult (0.25-1.5 UNITS/h). A change-over for the matrix-hydrogel system of insulin delivery based on a 40 sq cm collagenous sponge enabled to increase the insulin diffusion up to 0.54 UNITS/h.

  5. Regulatory Physiology

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Whitson, Peggy A.; Putcha, Lakshmi; Baker, Ellen; Smith, Scott M.; Stewart, Karen; Gretebeck, Randall; Nimmagudda, R. R.; Schoeller, Dale A.; Davis-Street, Janis

    1999-01-01

    As noted elsewhere in this report, a central goal of the Extended Duration Orbiter Medical Project (EDOMP) was to ensure that cardiovascular and muscle function were adequate to perform an emergency egress after 16 days of spaceflight. The goals of the Regulatory Physiology component of the EDOMP were to identify and subsequently ameliorate those biochemical and nutritional factors that deplete physiological reserves or increase risk for disease, and to facilitate the development of effective muscle, exercise, and cardiovascular countermeasures. The component investigations designed to meet these goals focused on biochemical and physiological aspects of nutrition and metabolism, the risk of renal (kidney) stone formation, gastrointestinal function, and sleep in space. Investigations involved both ground-based protocols to validate proposed methods and flight studies to test those methods. Two hardware tests were also completed.

  6. Regulatory Anatomy

    PubMed Central

    2015-01-01

    This article proposes the term “safety logics” to understand attempts within the European Union (EU) to harmonize member state legislation to ensure a safe and stable supply of human biological material for transplants and transfusions. With safety logics, I refer to assemblages of discourses, legal documents, technological devices, organizational structures, and work practices aimed at minimizing risk. I use this term to reorient the analytical attention with respect to safety regulation. Instead of evaluating whether safety is achieved, the point is to explore the types of “safety” produced through these logics as well as to consider the sometimes unintended consequences of such safety work. In fact, the EU rules have been giving rise to complaints from practitioners finding the directives problematic and inadequate. In this article, I explore the problems practitioners face and why they arise. In short, I expose the regulatory anatomy of the policy landscape. PMID:26139952

  7. Insulin amyloid at injection sites of patients with diabetes.

    PubMed

    Nilsson, Melanie R

    2016-09-01

    The formation of insulin amyloid can dramatically impact glycemic control in patients with diabetes, making it an important therapeutic consideration. In addition, the cost associated with the excess insulin required by patients with amyloid is estimated to be $3K per patient per year, which adds to the growing financial burden of this disease. Insulin amyloid has been observed with every mode of therapeutic insulin administration (infusion, injection and inhalation), and the number of reported cases has increased significantly since 2002. The new cases represent a much broader demographic, and include many patients who have used exclusively human insulin and human insulin analogs. The reason for the increase in case reports is unknown, but this review explores the possibility that changes in patient care, improved differential diagnosis and/or changes in insulin type and insulin delivery systems may be important factors. The goal of this review is to raise key questions that will inspire proactive measures to prevent, identify and treat insulin amyloid. Furthermore, this comprehensive examination of insulin amyloid can provide insight into important considerations for other injectable drugs that are prone to form amyloid deposits.

  8. Florida Keys

    NASA Image and Video Library

    2017-09-28

    NASA image acquired January 4, 2012 The Florida Keys many colors were captured when the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite captured this true-color image. NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Magnetite nanoparticle interactions with insulin amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Chen, Yun-Wen; Chang, Chiung-Wen; Hung, Huey-Shan; Kung, Mei-Lang; Yeh, Bi-Wen; Hsieh, Shuchen

    2016-10-01

    Accumulation of amyloid fibrils is one of the likely key factors leading to the development of Alzheimer’s disease and other amyloidosis associated diseases. Magnetic nanoparticles (NPs) have been developed as promising medical materials for many medical applications. In this study, we have explored the effects of Fe3O4 NPs on the fibrillogenesis process of insulin fibrils. When Fe3O4 NPs were co-incubated with insulin, Fe3O4 NPs had no effect on the structural transformation into amyloid-like fibrils but had higher affinity toward insulin fibrils. We demonstrated that the zeta potential of insulin fibrils and Fe3O4 NPs were both positive, suggesting the binding forces between Fe3O4 NPs and insulin fibrils were van der Waals forces but not surface charge. Moreover, a different amount of Fe3O4 NPs added had no effect on secondary structural changes of insulin fibrils. These results propose the potential use of Fe3O4 NPs as therapeutic agents against diseases related to protein aggregation or contrast agents for magnetic resonance imaging.

  10. Tea enhances insulin activity.

    PubMed

    Anderson, Richard A; Polansky, Marilyn M

    2002-11-20

    The most widely known health benefits of tea relate to the polyphenols as the principal active ingredients in protection against oxidative damage and in antibacterial, antiviral, anticarcinogenic, and antimutagenic activities, but polyphenols in tea may also increase insulin activity. The objective of this study was to determine the insulin-enhancing properties of tea and its components. Tea, as normally consumed, was shown to increase insulin activity >15-fold in vitro in an epididymal fat cell assay. Black, green, and oolong teas but not herbal teas, which are not teas in the traditional sense because they do not contain leaves of Camellia senensis, were all shown to increase insulin activity. High-performance liquid chromatography fractionation of tea extracts utilizing a Waters SymmetryPrep C18 column showed that the majority of the insulin-potentiating activity for green and oolong teas was due to epigallocatechin gallate. For black tea, the activity was present in several regions of the chromatogram corresponding to, in addition to epigallocatechin gallate, tannins, theaflavins, and other undefined compounds. Several known compounds found in tea were shown to enhance insulin with the greatest activity due to epigallocatechin gallate followed by epicatechin gallate, tannins, and theaflavins. Caffeine, catechin, and epicatechin displayed insignificant insulin-enhancing activities. Addition of lemon to the tea did not affect the insulin-potentiating activity. Addition of 5 g of 2% milk per cup decreased the insulin-potentiating activity one-third, and addition of 50 g of milk per cup decreased the insulin-potentiating activity approximately 90%. Nondairy creamers and soy milk also decreased the insulin-enhancing activity. These data demonstrate that tea contains in vitro insulin-enhancing activity and the predominant active ingredient is epigallocatechin gallate.

  11. Nutrient sensing and insulin signaling in neuropeptide-expressing immortalized, hypothalamic neurons: A cellular model of insulin resistance.

    PubMed

    Fick, Laura J; Belsham, Denise D

    2010-08-15

    Obesity and type 2 diabetes mellitus represent a significant global health crisis. These two interrelated diseases are typified by perturbed insulin signaling in the hypothalamus. Using novel hypothalamic cell lines, we have begun to elucidate the molecular and intracellular mechanisms involved in the hypothalamic control of energy homeostasis and insulin resistance. In this review, we present evidence of insulin and glucose signaling pathways that lead to changes in neuropeptide gene expression. We have identified some of the molecular mechanisms involved in the control of de novo hypothalamic insulin mRNA expression. And finally, we have defined key mechanisms involved in the etiology of cellular insulin resistance in hypothalamic neurons that may play a fundamental role in cases of high levels of insulin or saturated fatty acids, often linked to the exacerbation of obesity and diabetes.

  12. Depth keying

    NASA Astrophysics Data System (ADS)

    Gvili, Ronen; Kaplan, Amir; Ofek, Eyal; Yahav, Giora

    2003-05-01

    We present a new solution to the known problem of video keying in a natural environment. We segment foreground objects from background objects using their relative distance from the camera, which makes it possible to do away with the use of color for keying. To do so, we developed and built a novel depth video camera, capable of producing RGB and D signals, where D stands for the distance to each pixel. The new RGBD camera enables the creation of a whole new gallery of effects and applications such as multi-layer background substitutions. This new modality makes the production of real time mixed reality video possible, as well as post-production manipulation of recorded video. We address the problem of color spill -- in which the color of the foreground object is mixed, along its boundary, with the background color. This problem prevents an accurate separation of the foreground object from its background, and it is most visible when compositing the foreground objects to a new background. Most existing techniques are limited to the use of a constant background color. We offer a novel general approach to the problem with enabling the use of the natural background, based upon the D channel generated by the camera.

  13. Immunologic insulin resistance.

    PubMed

    Davidson, J K; DeBra, D W

    1978-03-01

    The efficacy of sulfated beef insulin for plasma glucose control in 35 patients with immunologic insulin resistance was studied. Patients were on a mean dose of 550 U./day (range 200--2,000) of U-500 regular beef insulin. Mean maximum 125I-insulin-binding capacity was 191 mU./ml. serum (range 13--1,080). Mean in vivo half-life (T 1/2) of 125I-regular beef insulin was 614 minutes (range 114--1,300), as against a mean T 1/2 of 13.9 minutes (range 11.8--16.5) in normal controls. Treatment was successful in 34 patients and unsuccessful in one with lipoatrophic diabetes. The mean initial dose of sulfated insulin was 89 U./day (range 15--400) and at three months was 66 U./day (range 20--400). Twenty-eight patients who responded and survived have been on sulfated insulin for a mean of 39 months (range 2-66) and are on a mean dose of 25 U./day (range 0--100). The mean maximum binding capacity fell to 9 mU./ml. (range 0--34) during therapy (p less than 0.01). Mean 125I-insulin T 1/2 fell from 614 to 249 minutes after sulfated insulin therapy (p less than 0.001). A comparative study of 15 patients on consecutive days showed a 35 sulfated insulin T 1/2 of 60 minutes (range 15--94) and a mean 125I-regular insulin T 1/2 of 246 minutes (range 62--560, p less than 0.001). These results indicate that sulfated insulin is less antigenic than regular beef insulin and combines less avidly with human antibodies to regular beef insulin. The response to sulfated insulin therapy was significantly better than the response reported by other investigators to pork insulin or to steroid therapy in similar patients.

  14. Insulin resistance and atherosclerosis

    PubMed Central

    Semenkovich, Clay F.

    2006-01-01

    Considerable evidence supports the association between insulin resistance and vascular disease, and this has led to wide acceptance of the clustering of hyperlipidemia, glucose intolerance, hypertension, and obesity as a clinical entity, the metabolic syndrome. While insulin resistance, by promoting dyslipidemia and other metabolic abnormalities, is part of the proatherogenic milieu, it is possible that insulin resistance itself in the vascular wall does not promote atherosclerosis. Recent findings suggest that insulin resistance and atherosclerosis could represent independent and ultimately maladaptive responses to the disruption of cellular homeostasis caused by the excess delivery of fuel. PMID:16823479

  15. Insulin, cognition, and dementia

    PubMed Central

    Cholerton, Brenna; Baker, Laura D.; Craft, Suzanne

    2015-01-01

    Cognitive disorders of aging represent a serious threat to the social and economic welfare of current society. It is now widely recognized that pathology related to such conditions, particularly Alzheimer’s disease, likely begins years or decades prior to the onset of clinical dementia symptoms. This revelation has led researchers to consider candidate mechanisms precipitating the cascade of neuropathological events that eventually lead to clinical Alzheimer’s disease. Insulin, a hormone with potent effects in the brain, has recently received a great deal of attention for its potential beneficial and protective role in cognitive function. Insulin resistance, which refers to the reduced sensitivity of target tissues to the favorable effects of insulin, is related to multiple chronic conditions known to impact cognition and increase dementia risk. With insulin resistance-associated conditions reaching epidemic proportions, the prevalence of Alzheimer’s disease and other cognitive disorders will continue to rise exponentially. Fortunately, these chronic insulin-related conditions are amenable to pharmacological intervention. As a result, novel therapeutic strategies that focus on increasing insulin sensitivity in the brain may be an important target for protecting or treating cognitive decline. The following review will highlight our current understanding of the role of insulin in brain, potential mechanisms underlying the link between insulin resistance and dementia, and current experimental therapeutic strategies aimed at improving cognitive function via modifying the brain’s insulin sensitivity. PMID:24070815

  16. Computational modeling and analysis of insulin induced eukaryotic translation initiation.

    PubMed

    Lequieu, Joshua; Chakrabarti, Anirikh; Nayak, Satyaprakash; Varner, Jeffrey D

    2011-11-01

    Insulin, the primary hormone regulating the level of glucose in the bloodstream, modulates a variety of cellular and enzymatic processes in normal and diseased cells. Insulin signals are processed by a complex network of biochemical interactions which ultimately induce gene expression programs or other processes such as translation initiation. Surprisingly, despite the wealth of literature on insulin signaling, the relative importance of the components linking insulin with translation initiation remains unclear. We addressed this question by developing and interrogating a family of mathematical models of insulin induced translation initiation. The insulin network was modeled using mass-action kinetics within an ordinary differential equation (ODE) framework. A family of model parameters was estimated, starting from an initial best fit parameter set, using 24 experimental data sets taken from literature. The residual between model simulations and each of the experimental constraints were simultaneously minimized using multiobjective optimization. Interrogation of the model population, using sensitivity and robustness analysis, identified an insulin-dependent switch that controlled translation initiation. Our analysis suggested that without insulin, a balance between the pro-initiation activity of the GTP-binding protein Rheb and anti-initiation activity of PTEN controlled basal initiation. On the other hand, in the presence of insulin a combination of PI3K and Rheb activity controlled inducible initiation, where PI3K was only critical in the presence of insulin. Other well known regulatory mechanisms governing insulin action, for example IRS-1 negative feedback, modulated the relative importance of PI3K and Rheb but did not fundamentally change the signal flow.

  17. MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels

    PubMed Central

    Nagarajan, Arvindhan; Petersen, Max C.; Nasiri, Ali R.; Butrico, Gina; Fung, Annie; Ruan, Hai-Bin; Kursawe, Romy; Caprio, Sonia; Thibodeau, Jacques; Bourgeois-Daigneault, Marie-Claude; Sun, Lisha; Gao, Guangping; Bhanot, Sanjay; Jurczak, Michael J.; Green, Michael R.; Shulman, Gerald I.; Wajapeyee, Narendra

    2016-01-01

    Insulin resistance is a key driver of type 2 diabetes (T2D) and is characterized by defective insulin receptor (INSR) signalling. Although surface INSR downregulation is a well-established contributor to insulin resistance, the underlying molecular mechanisms remain obscure. Here we show that the E3 ubiquitin ligase MARCH1 impairs cellular insulin action by degrading cell surface INSR. Using a large-scale RNA interference screen, we identify MARCH1 as a negative regulator of INSR signalling. March1 loss-of-function enhances, and March1 overexpression impairs, hepatic insulin sensitivity in mice. MARCH1 ubiquitinates INSR to decrease cell surface INSR levels, but unlike other INSR ubiquitin ligases, MARCH1 acts in the basal state rather than after insulin stimulation. Thus, MARCH1 may help set the basal gain of insulin signalling. MARCH1 expression is increased in white adipose tissue of obese humans, suggesting that MARCH1 contributes to the pathophysiology of T2D and could be a new therapeutic target. PMID:27577745

  18. Regulatory Snapshots: integrative mining of regulatory modules from expression time series and regulatory networks.

    PubMed

    Gonçalves, Joana P; Aires, Ricardo S; Francisco, Alexandre P; Madeira, Sara C

    2012-01-01

    Explaining regulatory mechanisms is crucial to understand complex cellular responses leading to system perturbations. Some strategies reverse engineer regulatory interactions from experimental data, while others identify functional regulatory units (modules) under the assumption that biological systems yield a modular organization. Most modular studies focus on network structure and static properties, ignoring that gene regulation is largely driven by stimulus-response behavior. Expression time series are key to gain insight into dynamics, but have been insufficiently explored by current methods, which often (1) apply generic algorithms unsuited for expression analysis over time, due to inability to maintain the chronology of events or incorporate time dependency; (2) ignore local patterns, abundant in most interesting cases of transcriptional activity; (3) neglect physical binding or lack automatic association of regulators, focusing mainly on expression patterns; or (4) limit the discovery to a predefined number of modules. We propose Regulatory Snapshots, an integrative mining approach to identify regulatory modules over time by combining transcriptional control with response, while overcoming the above challenges. Temporal biclustering is first used to reveal transcriptional modules composed of genes showing coherent expression profiles over time. Personalized ranking is then applied to prioritize prominent regulators targeting the modules at each time point using a network of documented regulatory associations and the expression data. Custom graphics are finally depicted to expose the regulatory activity in a module at consecutive time points (snapshots). Regulatory Snapshots successfully unraveled modules underlying yeast response to heat shock and human epithelial-to-mesenchymal transition, based on regulations documented in the YEASTRACT and JASPAR databases, respectively, and available expression data. Regulatory players involved in functionally enriched

  19. Complement Factor H Is Expressed in Adipose Tissue in Association With Insulin Resistance

    PubMed Central

    Moreno-Navarrete, José María; Martínez-Barricarte, Rubén; Catalán, Victoria; Sabater, Mònica; Gómez-Ambrosi, Javier; Ortega, Francisco José; Ricart, Wifredo; Blüher, Mathias; Frühbeck, Gema; Rodríguez de Cordoba, Santiago; Fernández-Real, José Manuel

    2010-01-01

    OBJECTIVE Activation of the alternative pathway of the complement system, in which factor H (fH; complement fH [CFH]) is a key regulatory component, has been suggested as a link between obesity and metabolic disorders. Our objective was to study the associations between circulating and adipose tissue gene expressions of CFH and complement factor B (fB; CFB) with obesity and insulin resistance. RESEARCH DESIGN AND METHODS Circulating fH and fB were determined by enzyme-linked immunosorbent assay in 398 subjects. CFH and CFB gene expressions were evaluated in 76 adipose tissue samples, in isolated adipocytes, and in stromovascular cells (SVC) (n = 13). The effects of weight loss and rosiglitazone were investigated in independent cohorts. RESULTS Both circulating fH and fB were associated positively with BMI, waist circumference, triglycerides, and inflammatory parameters and negatively with insulin sensitivity and HDL cholesterol. For the first time, CFH gene expression was detected in human adipose tissue (significantly increased in subcutaneous compared with omental fat). CFH gene expression in omental fat was significantly associated with insulin resistance. In contrast, CFB gene expression was significantly increased in omental fat but also in association with fasting glucose and triglycerides. The SVC fraction was responsible for these differences, although isolated adipocytes also expressed fB and fH at low levels. Both weight loss and rosiglitazone led to significantly decreased circulating fB and fH levels. CONCLUSIONS Increased circulating fH and fB concentrations in subjects with altered glucose tolerance could reflect increased SVC-induced activation of the alternative pathway of complement in omental adipose tissue linked to insulin resistance and metabolic disturbances. PMID:19833879

  20. Complement factor H is expressed in adipose tissue in association with insulin resistance.

    PubMed

    Moreno-Navarrete, José María; Martínez-Barricarte, Rubén; Catalán, Victoria; Sabater, Mònica; Gómez-Ambrosi, Javier; Ortega, Francisco José; Ricart, Wifredo; Blüher, Mathias; Frühbeck, Gema; Rodríguez de Cordoba, Santiago; Fernández-Real, José Manuel

    2010-01-01

    Activation of the alternative pathway of the complement system, in which factor H (fH; complement fH [CFH]) is a key regulatory component, has been suggested as a link between obesity and metabolic disorders. Our objective was to study the associations between circulating and adipose tissue gene expressions of CFH and complement factor B (fB; CFB) with obesity and insulin resistance. Circulating fH and fB were determined by enzyme-linked immunosorbent assay in 398 subjects. CFH and CFB gene expressions were evaluated in 76 adipose tissue samples, in isolated adipocytes, and in stromovascular cells (SVC) (n = 13). The effects of weight loss and rosiglitazone were investigated in independent cohorts. Both circulating fH and fB were associated positively with BMI, waist circumference, triglycerides, and inflammatory parameters and negatively with insulin sensitivity and HDL cholesterol. For the first time, CFH gene expression was detected in human adipose tissue (significantly increased in subcutaneous compared with omental fat). CFH gene expression in omental fat was significantly associated with insulin resistance. In contrast, CFB gene expression was significantly increased in omental fat but also in association with fasting glucose and triglycerides. The SVC fraction was responsible for these differences, although isolated adipocytes also expressed fB and fH at low levels. Both weight loss and rosiglitazone led to significantly decreased circulating fB and fH levels. Increased circulating fH and fB concentrations in subjects with altered glucose tolerance could reflect increased SVC-induced activation of the alternative pathway of complement in omental adipose tissue linked to insulin resistance and metabolic disturbances.

  1. ERAD-icating mutant insulin promotes functional insulin secretion.

    PubMed

    Moore, Daniel J

    2017-01-18

    Overexpression of a chaperone protein liberates functional insulin from a misfolded mutant partner to improve insulin secretion. Copyright © 2017, American Association for the Advancement of Science.

  2. Emerging principles of regulatory evolution

    PubMed Central

    Prud'homme, Benjamin; Gompel, Nicolas; Carroll, Sean B.

    2007-01-01

    Understanding the genetic and molecular mechanisms governing the evolution of morphology is a major challenge in biology. Because most animals share a conserved repertoire of body-building and -patterning genes, morphological diversity appears to evolve primarily through changes in the deployment of these genes during development. The complex expression patterns of developmentally regulated genes are typically controlled by numerous independent cis-regulatory elements (CREs). It has been proposed that morphological evolution relies predominantly on changes in the architecture of gene regulatory networks and in particular on functional changes within CREs. Here, we discuss recent experimental studies that support this hypothesis and reveal some unanticipated features of how regulatory evolution occurs. From this growing body of evidence, we identify three key operating principles underlying regulatory evolution, that is, how regulatory evolution: (i) uses available genetic components in the form of preexisting and active transcription factors and CREs to generate novelty; (ii) minimizes the penalty to overall fitness by introducing discrete changes in gene expression; and (iii) allows interactions to arise among any transcription factor and downstream CRE. These principles endow regulatory evolution with a vast creative potential that accounts for both relatively modest morphological differences among closely related species and more profound anatomical divergences among groups at higher taxonomical levels. PMID:17494759

  3. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders.

    PubMed

    Li, Min; Quan, Chao; Toth, Rachel; Campbell, David G; MacKintosh, Carol; Wang, Hong Yu; Chen, Shuai

    2015-12-11

    Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser(858) of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease.

  4. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders*

    PubMed Central

    Li, Min; Quan, Chao; Toth, Rachel; Campbell, David G.; MacKintosh, Carol; Wang, Hong Yu; Chen, Shuai

    2015-01-01

    Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser858 of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease. PMID:26499801

  5. Glycoconjugate Vaccines: The Regulatory Framework.

    PubMed

    Jones, Christopher

    2015-01-01

    Most vaccines, including the currently available glycoconjugate vaccines, are administered to healthy infants, to prevent future disease. The safety of a prospective vaccine is a key prerequisite for approval. Undesired side effects would not only have the potential to damage the individual infant but also lead to a loss of confidence in the respective vaccine-or vaccines in general-on a population level. Thus, regulatory requirements, particularly with regard to safety, are extremely rigorous. This chapter highlights regulatory aspects on carbohydrate-based vaccines with an emphasis on analytical approaches to ensure the consistent quality of successive manufacturing lots.

  6. Importance of transcapillary insulin transport on insulin action in vivo

    SciTech Connect

    Yang, Y.J.

    1989-01-01

    The relationship between transcapillary insulin transport and insulin action was examined in normal conscious dogs. Plasma and thoracic duct lymph insulin, and insulin action were simultaneously measured during euglycemic clamps and intravenous glucose tolerance tests. During the clamps, while {sup 14}C-inulin reached an equilibrium, steady-state (ss) plasma insulin was higher than lymph and the ratio of 3:2 was maintained during basal, activation and deactivation phases: 18 {+-} 2 vs. 12 {+-} 1, 51 {+-} 2 vs. 32 {+-} 1, and 18 {+-} 3 vs. 13 {+-} 1 {mu}U/ml. In addition, it took longer for lymph insulin to reach ss than plasma insulin during activation and deactivation: 11 {+-} 2 vs. 31 {+-} 5 and 8 {+-} 2 vs. 32 {+-} 6 min. During IVGTT, plasma insulin peaked within 5 {+-} 2 min; lymph insulin rose slowly to a lower peak. The significant gradient and delay between plasma and lymph insulin concentrations suggest a restricted transcapillary insulin transport.

  7. Protein Crystal Bovine Insulin

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The comparison of protein crystal, Bovine Insulin space-grown (left) and earth-grown (right). Facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  8. [Hypersensitivity reactions to insulin].

    PubMed

    Becerril-Ángeles, Martín; Moctezuma-Trejo, Cristina; Espinosa-Larrañaga, Francisco

    2012-01-01

    Hypersensitivity reactions to insulin are infrequent, yet of clinical importance. The mechanisms of hypersensitivity involved can be of three types: I, III and IV. To describe the pathophysiology of hypersensitivity to insulin, its clinical features and diagnostic and therapeutic approach, that help identify the cases of allergy to insulin and begin a treatment, or if necessary, to refer patients to a specialists or appropriate medical attention. An electronic search of papers related to insulin hypersensitivity was performed in PubMed and the articles selected were those considered the most relevant for this review. Thirty eight papers about pathophysiology, mechanisms of injury and the different types of insulin involved in hypersensitivity reactions were included. Likewise, information for the diagnosis of insulin hypersensitivity and some options of treatment for first contact physicians or the referral of patients to specialists in endocrinology and allergy were included. Insulin hypersensitivity has a low prevalence and diverse clinical manifestations. The different types of insulin suitable allow the majority of cases of hypersensitivity to continue the treatment in a efficient and flexible manner.

  9. Protein Crystal Bovine Insulin

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The comparison of protein crystal, Bovine Insulin space-grown (left) and earth-grown (right). Facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  10. Intranasal Insulin Improves Age-Related Cognitive Deficits and Reverses Electrophysiological Correlates of Brain Aging

    PubMed Central

    Maimaiti, Shaniya; Anderson, Katie L.; DeMoll, Chris; Brewer, Lawrence D.; Rauh, Benjamin A.; Gant, John C.; Blalock, Eric M.; Porter, Nada M.

    2016-01-01

    Peripheral insulin resistance is a key component of metabolic syndrome associated with obesity, dyslipidemia, hypertension, and type 2 diabetes. While the impact of insulin resistance is well recognized in the periphery, it is also becoming apparent in the brain. Recent studies suggest that insulin resistance may be a factor in brain aging and Alzheimer’s disease (AD) whereby intranasal insulin therapy, which delivers insulin to the brain, improves cognition and memory in AD patients. Here, we tested a clinically relevant delivery method to determine the impact of two forms of insulin, short-acting insulin lispro (Humalog) or long-acting insulin detemir (Levemir), on cognitive functions in aged F344 rats. We also explored insulin effects on the Ca2+-dependent hippocampal afterhyperpolarization (AHP), a well-characterized neurophysiological marker of aging which is increased in the aged, memory impaired animal. Low-dose intranasal insulin improved memory recall in aged animals such that their performance was similar to that seen in younger animals. Further, because ex vivo insulin also reduced the AHP, our results suggest that the AHP may be a novel cellular target of insulin in the brain, and improved cognitive performance following intranasal insulin therapy may be the result of insulin actions on the AHP. PMID:25659889

  11. Insulin-Insulin-like Growth Factors Hybrids as Molecular Probes of Hormone:Receptor Binding Specificity.

    PubMed

    Křížková, Květoslava; Chrudinová, Martina; Povalová, Anna; Selicharová, Irena; Collinsová, Michaela; Vaněk, Václav; Brzozowski, Andrzej M; Jiráček, Jiří; Žáková, Lenka

    2016-05-31

    Insulin, insulin-like growth factors 1 and 2 (IGF-1 and -2, respectively), and their receptors (IR and IGF-1R) are the key elements of a complex hormonal system that is essential for the development and functioning of humans. The C and D domains of IGFs (absent in insulin) likely play important roles in the differential binding of IGF-1 and -2 to IGF-1R and to the isoforms of IR (IR-A and IR-B) and specific activation of these receptors. Here, we attempted to probe the impact of IGF-1 and IGF-2 D domains (DI and DII, respectively) and the IGF-2 C domain (CII) on the receptor specificity of these hormones. For this, we made two types of insulin hybrid analogues: (i) with the C-terminus of the insulin A chain extended by the amino acids from the DI and DII domains and (ii) with the C-terminus of the insulin B chain extended by some amino acids derived from the CII domain. The receptor binding affinities of these analogues and their receptor autophosphorylation potentials were characterized. Our results indicate that the DI domain has a more negative impact than the DII domain does on binding to IR, and that the DI domain Pro-Leu-Lys residues are important factors for a different IR-A versus IR-B binding affinity of IGF-1. We also showed that the additions of amino acids that partially "mimic" the CII domain, to the C-terminus of the insulin B chain, change the binding and autophosphorylation specificity of insulin in favor of the "metabolic" IR-B isoform. This opens new venues for rational enhancement of insulin IR-B specificity by modifications beyond the C-terminus of its B chain.

  12. Chromium and insulin resistance.

    PubMed

    Anderson, Richard A

    2003-12-01

    Insulin resistance leads to the inability of insulin to control the utilization and storage of glucose. It is associated initially with elevated levels of circulating insulin followed by glucose intolerance which may progress to type 2 diabetes, hyperlipidaemia, hypertension, obesity and cardiovascular diseases. While the causes of these diseases are multifactorial, one nutrient that is associated with all of these abnormalities is Cr. In the presence of Cr, in a biologically active form, much lower levels of insulin are required. Modern diets, which are often high in refined carbohydrates, are not only low in Cr, but lead to enhanced Cr losses. In response to the consumption of refined carbohydrates, there is a rapid rise in blood sugar leading to elevations in insulin that cause a mobilization of Cr. Once mobilized, Cr is not reabsorbed but lost via the urine leading to decreased Cr stores. Several studies involving both human subjects and experimental animals have reported improvements in insulin sensitivity, blood glucose, insulin, lipids, haemoglobin A1c, lean body mass and related variables in response to improved Cr nutrition. However, not all studies have reported beneficial effects associated with improved Cr nutrition. Well-controlled human studies are needed to document an unequivocal effect of Cr on insulin sensitivity in human subjects. Studies need to involve a significant number of subjects with insulin resistance, glucose intolerance or early stages of diabetes, who have not been taking supplements containing Cr for at least 4 months, and involve at least 400 to 600 microg supplemental Cr daily or more. Studies should be at least 4 months to document sustained effects of supplemental Cr on insulin resistance and related variables. Cr is a nutrient and not a therapeutic agent and therefore will only be of benefit to those whose problems are due to suboptimal intake of Cr.

  13. Rho GTPases in insulin-stimulated glucose uptake

    PubMed Central

    Satoh, Takaya

    2014-01-01

    Insulin is secreted into blood vessels from β cells of pancreatic islets in response to high blood glucose levels. Insulin stimulates an array of physiological responses in target tissues, including liver, skeletal muscle, and adipose tissue, thereby reducing the blood glucose level. Insulin-dependent glucose uptake in skeletal muscle and adipose tissue is primarily mediated by the redistribution of the glucose transporter type 4 from intracellular storage sites to the plasma membrane. Evidence for the participation of the Rho family GTPase Rac1 in glucose uptake signaling in skeletal muscle has emerged from studies using cell cultures and genetically engineered mice. Herein, recent progress in understanding the function and regulation of Rac1, especially the cross-talk with the protein kinase Akt2, is highlighted. In addition, the role for another Rho family member TC10 and its regulatory mechanism in adipocyte insulin signaling are described. PMID:24613967

  14. Sensing the Insulin Signaling Pathway with an Antibody Array

    PubMed Central

    He, Hua-Jun; Zong, Yaping; Bernier, Michel; Wang, Lili

    2012-01-01

    The development of insulin resistance and type 2 diabetes is determined by various factors, including defects within the insulin signaling pathway. Mediators of insulin resistance operate through activation of various protein kinase C (PKC) isoforms, IκB kinase β (IKKβ) and/or c-Jun N-terminal kinase (JNK), and subsequent inhibition of the proximal insulin signaling pathway via the insulin receptor substrate 1 (IRS1) and Akt. These mechanisms are still largely unresolved because of the complexity of the molecular events. In this study, an expression and activation state profiling of multiple known key signaling biomolecules involved in insulin metabolic and mitogenic signaling pathways was evaluated using a phosphospecific antibody array platform. The results of the arrayed antibodies were verified by the multiplexed bead array assay and conventional western blot analysis, and confirmed the well-known inhibitory effects of phorbol esters on insulin signaling pathway activation. Of interest, the increase in PKC signaling responses with phorbol esters was associated with activation of the lipid phosphatase PTEN and a 27 kDa heat shock protein. Thus, this insulin signaling antibody array provides a powerful and effective way to investigate the mechanism of insulin resistance and likely assist the development of innovative therapeutic drugs for type 2 diabetes. PMID:21136963

  15. Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis

    PubMed Central

    Semple, Robert K.; Sleigh, Alison; Murgatroyd, Peter R.; Adams, Claire A.; Bluck, Les; Jackson, Sarah; Vottero, Alessandra; Kanabar, Dipak; Charlton-Menys, Valentine; Durrington, Paul; Soos, Maria A.; Carpenter, T. Adrian; Lomas, David J.; Cochran, Elaine K.; Gorden, Phillip; O’Rahilly, Stephen; Savage, David B.

    2009-01-01

    Metabolic dyslipidemia is characterized by high circulating triglyceride (TG) and low HDL cholesterol levels and is frequently accompanied by hepatic steatosis. Increased hepatic lipogenesis contributes to both of these problems. Because insulin fails to suppress gluconeogenesis but continues to stimulate lipogenesis in both obese and lipodystrophic insulin-resistant mice, it has been proposed that a selective postreceptor defect in hepatic insulin action is central to the pathogenesis of fatty liver and hypertriglyceridemia in these mice. Here we show that humans with generalized insulin resistance caused by either mutations in the insulin receptor gene or inhibitory antibodies specific for the insulin receptor uniformly exhibited low serum TG and normal HDL cholesterol levels. This was due at least in part to surprisingly low rates of de novo lipogenesis and was associated with low liver fat content and the production of TG-depleted VLDL cholesterol particles. In contrast, humans with a selective postreceptor defect in AKT2 manifest increased lipogenesis, elevated liver fat content, TG-enriched VLDL, hypertriglyceridemia, and low HDL cholesterol levels. People with lipodystrophy, a disorder characterized by particularly severe insulin resistance and dyslipidemia, demonstrated similar abnormalities. Collectively these data from humans with molecularly characterized forms of insulin resistance suggest that partial postreceptor hepatic insulin resistance is a key element in the development of metabolic dyslipidemia and hepatic steatosis. PMID:19164855

  16. Effect of short hairpin RNA-mediated adiponectin/Acrp30 down-regulation on insulin signaling and glucose uptake in the 3T3-L1 adipocytes.

    PubMed

    Li, K; Li, L; Yang, G Y; Liu, H; Li, S B; Boden, G

    2010-02-01

    Adiponectin is a polypeptide hormone that is secreted by adipocytes with insulin-sensitizing and anti-inflammatory properties. The current study was to further investigate the role of adiponectin on glucose uptake and its underlying mechanism by down-regulation of adiponectin in 3T3-L1 adipocytes. Transfection of short hairpin RNA (shRNA)-vector significantly decreased adiponectin mRNA expression and its protein level in the cells. The down-regulation of adiponectin markedly reduced the cellular glucose uptake rate and increased intracellular triglyceride content. To study the mechanism of the physiologic action of adiponectin, several key regulatory factors in insulin signaling pathway were examined. The mRNA expression of insulin receptor substrate (IRS)-1 in both basal and insulin-stimulated states were down-regulated in the transfected cells (72% and 52% of controls, respectively), and the insulin-stimulated IRS-1 tyrosine phosphorylation was also significantly decreased. Adiponectin-deficient cells showed marked down-regulations of peroxisome proliferator-activated receptor alpha, glucose transporter (GLUT)-1, GLUT-4, hormone-sensitive lipase (HSL), and adipose triglyceride lipase. These results thus demonstrated that transfection of shRNA-vector effectively reduced the expression of adiponectin in 3T3-L1 adipocytes accompanied with a significant decrease in cellular glucose uptake rate and an increase in intracellular triglyceride content. Our data also suggested that adiponectin deficiency impair insulin action in vitro probably through the IRS-1 pathway, and increase intracellular fat accumulation partially through HSL down-regulation.

  17. Hypaphorine, an Indole Alkaloid Isolated from Caragana korshinskii Kom., Inhibites 3T3-L1 Adipocyte Differentiation and Improves Insulin Sensitivity in Vitro.

    PubMed

    Luan, Guangxiang; Tie, Fangfang; Yuan, Zhenzhen; Li, Gang; He, Jie; Wang, Zhenhua; Wang, Honglun

    2017-07-01

    Obesity, a major health problem worldwide, is a complex multifactorial chronic disease that increases the risk for insulin resistance, type 2 diabetes, coronary heart disease, and hypertension. In this study, we assessed methods to isolate hypaphorine, a potent drug candidate for obesity and insulin resistance. Semi-preparative reversed-phase liquid chromatography (semi-preparative RPLC) was established as a method to separate three compounds, adenosine, l-tryptophan, and hypaphorine, from the crude extracts of Caragana korshinskii Kom. Due to its specific chemical structure, the effect of hypaphorine on differentiation and dexamethasone (DXM) induced insulin resistance of 3T3-L1 cells was investigated. The structures of the three compounds were confirmed by UV, (1) H-NMR, and (13) C-NMR analysis and compared with published data. The activity results indicated that hypaphorine prevented the differentiation of 3T3-L1 preadipocytes into adipocytes by down-regulating hormone-stimulated protein expression of peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer binding protein (C/EBPα), and their downstream targets, sterol regulatory element binding protein 1 c (SREBP1c) and fatty acid synthase (FAS). Hypaphorine also alleviated DXM-induced insulin resistance in differentiated 3T3-L1 adipocytes via increasing the phosphorylation level of Akt2, a key protein in the insulin signaling pathway. Taken together, we suggest that the method can be applied to large-scale extraction and large-quantity preparation of hypaphorine for treatment of obesity and insulin resistance. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  18. Fully Convergent Chemical Synthesis of Ester Insulin: Determination of the High Resolution X-ray Structure by Racemic Protein Crystallography

    PubMed Central

    Avital-Shmilovici, Michal; Mandal, Kalyaneswar; Gates, Zachary P.; Phillips, Nelson B.; Weiss, Michael A.; Kent, Stephen B.H.

    2013-01-01

    Efficient total synthesis of insulin is important to enable the application of medicinal chemistry to the optimization of the properties of this important protein molecule. Recently we described ‘ester insulin’ – a novel form of insulin in which the function of the 35 residue C-peptide of proinsulin is replaced by a single covalent bond – as a key intermediate for the efficient total synthesis of insulin. Here we describe a fully convergent synthetic route to the ester insulin molecule from three unprotected peptide segments of approximately equal size. The synthetic ester insulin polypeptide chain folded much more rapidly than proinsulin, and at physiological pH. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin (i.e. [AspB10, LysB28, ProB29]ester insulin) were prepared by total chemical synthesis. The atomic structure of the synthetic ester insulin molecule was determined by racemic protein X-ray crystallography to a resolution of 1.6 Å. Diffraction quality crystals were readily obtained from the racemic mixture of {D-DKP ester insulin + L-DKP ester insulin}, whereas crystals were not obtained from the L-ester insulin alone even after extensive trials. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin were assayed for receptor binding and in diabetic rats, before and after conversion by saponification to the corresponding DKP insulin enantiomers. L-DKP ester insulin bound weakly to the insulin receptor, while synthetic L-DKP insulin derived from the L-DKP ester insulin intermediate was fully active in binding to the insulin receptor. The D- and L-DKP ester insulins and D-DKP insulin were inactive in lowering blood glucose in diabetic rats, while synthetic L-DKP insulin was fully active in this biological assay. The structural basis of the lack of biological activity of ester insulin is discussed. PMID:23343390

  19. Role of Osteocyte-derived Insulin-Like Growth Factor I in Developmental Growth, Modeling, Remodeling, and Regeneration of the Bone

    PubMed Central

    Sheng, Matilda H. C.; Lau, K. H. William

    2014-01-01

    The osteocyte has long been considered to be the primary mechanosensory cell in the bone. Recent evidence has emerged that the osteocyte is also a key regulator of various bone and mineral metabolism and that its regulatory effects are in part mediated through locally produced osteocyte-derived factors, such as sclerostin, receptor activator of nuclear factor-kappa B ligand (RANKL), and fibroblast growth factor (FGF)-23. Osteocytes secrete large amounts of insulin-like growth factor (IGF)-I in bone. Although IGF-I produced locally by other bone cells, such as osteoblasts and chondrocytes, has been shown to play important regulatory roles in bone turnover and developmental bone growth, the functional role of osteocyte-derived IGF-I in the bone and mineral metabolism has not been investigated and remains unclear. However, results of recent studies in osteocyte Igf1 conditional knockout transgenic mice have suggested potential regulatory roles of osteocyte-derived IGF-I in various aspects of bone and mineral metabolism. In this review, evidence supporting a regulatory role for osteocyte-derived IGF-I in the osteogenic response to mechanical loading, the developmental bone growth, the bone response to dietary calcium depletion and repletion, and in fracture repair is discussed. A potential coordinated regulatory relationship between the effect of osteocyte-derived IGF-I on bone size and the internal organ size is also proposed. PMID:24707466

  20. Role of Osteocyte-derived Insulin-Like Growth Factor I in Developmental Growth, Modeling, Remodeling, and Regeneration of the Bone.

    PubMed

    Sheng, Matilda H C; Lau, K H William; Baylink, David J

    2014-02-01

    The osteocyte has long been considered to be the primary mechanosensory cell in the bone. Recent evidence has emerged that the osteocyte is also a key regulator of various bone and mineral metabolism and that its regulatory effects are in part mediated through locally produced osteocyte-derived factors, such as sclerostin, receptor activator of nuclear factor-kappa B ligand (RANKL), and fibroblast growth factor (FGF)-23. Osteocytes secrete large amounts of insulin-like growth factor (IGF)-I in bone. Although IGF-I produced locally by other bone cells, such as osteoblasts and chondrocytes, has been shown to play important regulatory roles in bone turnover and developmental bone growth, the functional role of osteocyte-derived IGF-I in the bone and mineral metabolism has not been investigated and remains unclear. However, results of recent studies in osteocyte Igf1 conditional knockout transgenic mice have suggested potential regulatory roles of osteocyte-derived IGF-I in various aspects of bone and mineral metabolism. In this review, evidence supporting a regulatory role for osteocyte-derived IGF-I in the osteogenic response to mechanical loading, the developmental bone growth, the bone response to dietary calcium depletion and repletion, and in fracture repair is discussed. A potential coordinated regulatory relationship between the effect of osteocyte-derived IGF-I on bone size and the internal organ size is also proposed.

  1. Hypothalamic serotonin-insulin signaling cross-talk and alterations in a type 2 diabetic model.

    PubMed

    Papazoglou, Ioannis; Berthou, Flavien; Vicaire, Nicolas; Rouch, Claude; Markaki, Eirini M; Bailbe, Danielle; Portha, Bernard; Taouis, Mohammed; Gerozissis, Kyriaki

    2012-03-05

    Serotonin and insulin are key regulators of homeostatic mechanisms in the hypothalamus. However, in type 2 diabetes, the hypothalamic responsiveness to serotonin is not clearly established. We used a diabetic model, the Goto Kakizaki (GK) rats, to explore insulin receptor expression, insulin and serotonin efficiency in the hypothalamus and liver by means of Akt phosphorylation. Insulin or dexfenfluramine (stimulator of serotonin) treatment induced Akt phosphorylation in Wistar rats but not in GK rats that exhibit down-regulated insulin receptor. Studies in a neuroblastoma cell line showed that serotonin-induced Akt phosphorylation is PI3-kinase dependent. Finally, in response to food intake, hypothalamic serotonin release was reduced in GK rats, indicating impaired responsiveness of this neurotransmitter. In conclusion, hypothalamic serotonin as insulin efficiency is impaired in diabetic GK rats. The insulin-serotonin cross-talk and impairment observed is one potential key modification in the brain during the onset of diabetes.

  2. Tagging insulin in microgravity

    NASA Technical Reports Server (NTRS)

    Dobeck, Michael; Nelson, Ronald S.

    1992-01-01

    Knowing the exact subcellular sites of action of insulin in the body has the potential to give basic science investigators a basis from which a cause and cure for this disease can be approached. The goal of this project is to create a test reagent that can be used to visualize these subcellular sites. The unique microgravity environment of the Shuttle will allow the creation of a reagent that has the possibility of elucidating the subcellular sites of action of insulin. Several techniques have been used in an attempt to isolate the sites of action of items such as insulin. One of these is autoradiography in which the test item is obtained from animals fed radioactive materials. What is clearly needed is to visualize individual insulin molecules at their sites of action. The insulin tagging process to be used on G-399 involves the conjugation of insulin molecules with ferritin molecules to create a reagent that will be used back on Earth in an attempt to elucidate the sites of action of insulin.

  3. Etiopathogenesis of Insulin Autoimmunity

    PubMed Central

    Kanatsuna, Norio; Papadopoulos, George K.; Moustakas, Antonis K.; Lenmark, Åke

    2012-01-01

    Autoimmunity against pancreatic islet beta cells is strongly associated with proinsulin, insulin, or both. The insulin autoreactivity is particularly pronounced in children with young age at onset of type 1 diabetes. Possible mechanisms for (pro)insulin autoimmunity may involve beta-cell destruction resulting in proinsulin peptide presentation on HLA-DR-DQ Class II molecules in pancreatic draining lymphnodes. Recent data on proinsulin peptide binding to type 1 diabetes-associated HLA-DQ2 and -DQ8 is reviewed and illustrated by molecular modeling. The importance of the cellular immune reaction involving cytotoxic CD8-positive T cells to kill beta cells through Class I MHC is discussed along with speculations of the possible role of B lymphocytes in presenting the proinsulin autoantigen over and over again through insulin-carrying insulin autoantibodies. In contrast to autoantibodies against other islet autoantigens such as GAD65, IA-2, and ZnT8 transporters, it has not been possible yet to standardize the insulin autoantibody test. As islet autoantibodies predict type 1 diabetes, it is imperative to clarify the mechanisms of insulin autoimmunity. PMID:22567309

  4. Evidence that insulin and guanosine triphosphate regulate dephosphorylation of the beta-subunit of the insulin receptor in sarcolemma membranes isolated from skeletal muscle.

    PubMed Central

    Horn, R S; Lystad, E; Adler, A; Walaas, O

    1986-01-01

    When sarcolemma membranes isolated from rat skeletal muscle were incubated with [gamma-32P]ATP, a membrane protein of apparent Mr 95,000 was rapidly phosphorylated, with the 32P content reaching a maximum within 2 s. On the basis of immunoprecipitation with anti-insulin-receptor antiserum, phosphoamino acid analysis and Mr, this protein probably represents the beta-subunit of the insulin receptor. Similarly, on incubation of the membrane with adenosine 5'-[gamma-[35S]thio] triphosphate the 95 kDa protein was thiophosphorylated, indicating thiophosphorylation of the beta-subunit of the insulin receptor on the basis of immunoprecipitation studies. The effect of insulin on the phosphorylation of this protein in the membrane was studied. Insulin induced a 20% decrease in the 32P labelling of the protein when the membranes were phosphorylated for 10 s. This insulin effect was dose-dependent, with half-maximal effect obtained at 2-3 nM-insulin. Addition of GTP, but not GDP or guanosine 5'-[beta, gamma-imido]triphosphate, enhanced the effect to 35% inhibition, with half-maximal effect of GTP obtained at 0.5 microM. GTP had no effect on the phosphorylation of the protein in the absence of insulin. Analysis of this insulin effect showed that insulin increased the rate of dephosphorylation of the 95 kDa protein in the membrane. In contrast, insulin had no effect on thiophosphorylation of the 95 kDa membrane protein after incubation with adenosine 5'-[gamma-[35S]thio]triphosphate. Since thiophosphorylated proteins are less sensitive to phosphatase action, these investigations suggest that insulin stimulated a protein phosphatase activity in a GTP-dependent manner. The possibility that GTP-regulatory proteins are involved in the action of insulin on the phosphorylation of the insulin receptor and other membrane proteins is discussed. Images Fig. 1. Fig. 3. PMID:3521589

  5. Molecular profiling of gene copy number abnormalities in key regulatory genes in high-risk B-lineage acute lymphoblastic leukemia: frequency and their association with clinicopathological findings in Indian patients.

    PubMed

    Bhandari, Prerana; Ahmad, Firoz; Das, Bibhu Ranjan

    2017-05-01

    Genes related to key cellular pathways are frequently altered in B cell ALL and are associated with poor survival especially in high-risk (HR) subgroups. We examined gene copy number abnormalities (CNA) in 101 Indian HR B cell ALL patients and their correlation with clinicopathological features by multiplex ligation-dependent probe amplification. Overall, CNA were detected in 59 (59%) cases, with 26, 10 and 23% of cases harboring 1, 2 or +3 CNA. CNA were more prevalent in BCR-ABL1 (60%), pediatric (64%) and high WCC (WBC count) (63%) patients. Frequent genes deletions included CDNK2A/B (26%), IKZF1 (25%), PAX5 (14%), JAK2 (7%), BTG1 (6%), RB1 (5%), EBF1 (4%), ETV6 (4%), while PAR1 region genes were predominantly duplicated (20%). EBF1 deletions selectively associated with adults, IKZF1 deletions occurred frequently in high WCC and BCR-ABL1 cases, while PAR1 region gains significantly associated with MLL-AF4 cases. IKZF1 haploinsufficiency group was predominant, especially in adults (65%), high WCC (60%) patients and BCR-ABL1-negative (78%) patients. Most cases harbored multiple concurrent CNA, with IKZF1 concomitantly occurring with CDNK2A/B, PAX5 and BTG1, while JAK2 occurred with CDNK2A/B and PAX5. Mutually exclusive CNA included ETV6 and IKZF1/RB1, and EBF1 and JAK2. Our results corroborate with global reports, aggregating molecular markers in Indian HR B-ALL cases. Integration of CNA data from rapid methods like MLPA, onto background of existing gold-standard methods detecting significant chromosomal abnormalities, provides a comprehensive genetic profile in B-ALL.

  6. Amplification and analysis of promoter region of insulin receptor gene in a patient with leprechaunism associated with severe insulin resistance.

    PubMed

    Haruta, T; Imamura, T; Iwanishi, M; Egawa, K; Goji, K; Kobayashi, M

    1995-04-01

    A patient with leprechaunism associated with severe insulin resistance was studied to identify the molecular and genetic basis for insulin resistance. Insulin binding and surface labeling of transformed lymphocytes prepared from the patient showed a significantly decreased insulin receptor number on the cell surface. Southern blot analysis of the insulin receptor gene showed no evidence of large insertions or deletions. Furthermore, direct sequencing of all 22 exons and exon-intron junctions of the insulin receptor gene failed to show any missense mutations, nonsense mutations, or mutations at exon-intron junctions. However, Northern blot analysis indicated significantly decreased insulin receptor mRNA expression in the patient's cells. Moreover, restriction endonuclease digestion of the amplified cDNA suggested that the expression levels of one allele were less efficient than the other. These findings suggested that the regulatory region of the insulin receptor gene might have abnormalities. Therefore, we examined the 5' flanking region of the insulin receptor gene. Southern blot analysis showed no major deletions or insertions between positions -1,823 and -2 relative to the translation initiation site. A 5' flanking region of the insulin receptor gene spanning positions -881 approximately +7 was amplified by polymerase chain reaction (PCR) and introduced into a reporter plasmid carrying the human growth hormone (hGH) gene. The nucleotide sequence of the amplified fragment showed two polymorphic sites at positions -603 and -500 in the patient, as well as in normal subjects. No other abnormal sequence was found in the patient. Promoter activity measured by hGH expression in transfected mouse L cells was not influenced by the polymorphism at position -603 located in a cluster of GC boxes.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Drosophila insulin degrading enzyme and rat skeletal muscle insulin protease cleave insulin at similar sites

    SciTech Connect

    Duckworth, W.C.; Garcia, J.V.; Liepnieks, J.J.; Hamel, F.G.; Hermodson, M.A.; Frank, B.H.; Rosner, M.R. )

    1989-03-21

    Insulin degradation is an integral part of the cellular action of insulin. Recent evidence suggests that the enzyme insulin protease is involved in the degradation of insulin in mammalian tissues. Drosophila, which has insulin-like hormones and insulin receptor homologues, also expresses an insulin degrading enzyme with properties that are very similar to those of mammalian insulin protease. In the present study, the insulin cleavage products generated by the Drosophila insulin degrading enzyme were identified and compared with the products generated by the mammalian insulin protease. Both purified enzymes were incubated with porcine insulin specifically labeled with {sup 125}I on either the A19 or B26 position, and the degradation products were analyzed by HPLC before and after sulfitolysis. Isolation and sequencing of the cleavage products indicated that both enzymes cleave the A chain of intact insulin at identical sites between residues A13 and A14 and A14 and A15. These results demonstrate that all the insulin cleavage sites generated by the Drosopohila insulin degrading enzyme are shared in common with the mammalian insulin protease. These data support the hypothesis that there is evolutionary conservation of the insulin degrading enzyme and further suggest that this enzyme plays an important role in cellular function.

  8. Metabolic syndrome and insulin resistance: perioperative considerations.

    PubMed

    Bagry, Hema S; Raghavendran, Sreekrishna; Carli, Franco

    2008-03-01

    Metabolic syndrome represents a constellation of risk factors associated with increased incidence of cardiovascular disease and progression to diabetes mellitus. Insulin resistance, a state of decreased biologic response to physiologic concentrations of insulin, is a key component of this syndrome and seems to be the result of a primary defect at the skeletal muscle glucose transporter. Acute illness and the perioperative period are characterized by a state of insulin resistance that manifests as hyperglycemia and leads to various other metabolic and biochemical alterations that adversely affect end organ function. Hyperglycemia in acutely ill patients adversely affects outcome. Achieving euglycemia seems beneficial in certain clinical situations, but considerable disagreement exists regarding the target blood sugar levels, the duration of therapy, and the modality. Pharmacotherapy, exercise, and nutrition to improve insulin sensitivity seem promising but require further evaluation to confirm their efficacy for perioperative risk reduction. This review discusses the pathophysiology and the clinical implications of metabolic syndrome and insulin resistance in the acutely ill patient with an emphasis on perioperative modulation strategies.

  9. Infliximab and insulin resistance.

    PubMed

    Ursini, Francesco; Naty, Saverio; Grembiale, Rosa Daniela

    2010-06-01

    Insulin resistance is the most important pathophysiologic feature of obesity, type 2 diabetes mellitus and prediabetic states. TNF-alpha, a proinflammatory cytokine, plays a pivotal role in the pathogenesis of inflammation-associated insulin resistance during the course of rheumatic diseases. Therapies aimed at neutralizing TNF-alpha, such as the monoclonal antibody infliximab, represent a novel approach for the treatment of rheumatic diseases and allow to obtain significant results in terms of control of the inflammatory process. In this article we reviewed the scientific evidence published in the literature about a potential role of TNF-alpha blockade in improving insulin resistance in non-diabetic rheumatic patients.

  10. Regulatory and quality considerations for continuous manufacturing. May 20-21, 2014 Continuous Manufacturing Symposium.

    PubMed

    Allison, Gretchen; Cain, Yanxi Tan; Cooney, Charles; Garcia, Tom; Bizjak, Tara Gooen; Holte, Oyvind; Jagota, Nirdosh; Komas, Bekki; Korakianiti, Evdokia; Kourti, Dora; Madurawe, Rapti; Morefield, Elaine; Montgomery, Frank; Nasr, Moheb; Randolph, William; Robert, Jean-Louis; Rudd, Dave; Zezza, Diane

    2015-03-01

    This paper assesses the current regulatory environment, relevant regulations and guidelines, and their impact on continuous manufacturing. It summarizes current regulatory experience and learning from both review and inspection perspectives. It outlines key regulatory aspects, including continuous manufacturing process description and control strategy in regulatory files, process validation, and key Good Manufacturing Practice (GMP) requirements. In addition, the paper identifies regulatory gaps and challenges and proposes a way forward to facilitate implementation.

  11. Inhaled technosphere regular insulin powder.

    PubMed

    Anderson, Zachary L; Clements, Jennifer N

    2015-11-01

    The lungs are an effective way to deliver insulin for patients with diabetes, but an initial inhaled insulin product was withdrawn from the market because of high cost and inconsistent dosing. This article describes a recently approved inhaled insulin that appears to control blood glucose as well as rapid-acting injectable insulin.

  12. Regulatory T cells.

    PubMed

    Thompson, Claire; Powrie, Fiona

    2004-08-01

    Regulatory T (TR) cells are a subset of T cells that function to control immune responses. Different populations of TR cells have been described, including thymically derived CD4(+)CD25+ TR cells and Tr1 cells induced in the periphery through exposure to antigen. A transcription factor, Foxp3, has been identified that is essential for CD4(+)CD25+ TR cell development and function. There is now evidence that transforming growth factor-beta might play a role in this pathway. CD4(+)CD25+ TR cells proliferate extensively in vivo in an antigen-specific manner, and can respond to both self and foreign peptides. By suppressing excessive immune responses, TR cells play a key role in the maintenance of self-tolerance, thus preventing autoimmune disease, as well as inhibiting harmful inflammatory diseases such as asthma and inflammatory bowel disease.

  13. Insulin action and insulin resistance in vascular endothelium.

    PubMed

    Muniyappa, Ranganath; Quon, Michael J

    2007-07-01

    Vasodilator actions of insulin are mediated by phosphatidylinositol 3-kinase dependent insulin signaling pathways in endothelium, which stimulate production of nitric oxide. Insulin-stimulated nitric oxide mediates capillary recruitment, vasodilation, increased blood flow, and subsequent augmentation of glucose disposal in skeletal muscle. Distinct mitogen-activated protein kinase dependent insulin signaling pathways regulate secretion of the vasoconstrictor endothelin-1 from endothelium. These vascular actions of insulin contribute to the coupling of metabolic and hemodynamic homeostasis that occurs under healthy conditions. Insulin resistance is characterized by pathway-specific impairment in phosphatidylinositol 3-kinase dependent signaling in both metabolic and vascular insulin target tissues. Here we discuss consequences of pathway-specific insulin resistance in endothelium and therapeutic interventions targeting this selective impairment. Shared causal factors such as glucotoxicity, lipotoxicity, and inflammation selectively impair phosphatidylinositol 3-kinase dependent insulin signaling pathways, creating reciprocal relationships between insulin resistance and endothelial dysfunction. Diet, exercise, cardiovascular drugs, and insulin sensitizers simultaneously modulate phosphatidylinositol 3-kinase and mitogen-activated protein kinase dependent pathways, improving metabolic and vascular actions of insulin. Pathway-specific impairment in insulin action contributes to reciprocal relationships between endothelial dysfunction and insulin resistance, fostering clustering of metabolic and cardiovascular diseases in insulin-resistant states. Therapeutic interventions that target this selective impairment often simultaneously improve both metabolic and vascular function.

  14. Brain insulin controls adipose tissue lipolysis and lipogenesis.

    PubMed

    Scherer, Thomas; O'Hare, James; Diggs-Andrews, Kelly; Schweiger, Martina; Cheng, Bob; Lindtner, Claudia; Zielinski, Elizabeth; Vempati, Prashant; Su, Kai; Dighe, Shveta; Milsom, Thomas; Puchowicz, Michelle; Scheja, Ludger; Zechner, Rudolf; Fisher, Simon J; Previs, Stephen F; Buettner, Christoph

    2011-02-02

    White adipose tissue (WAT) dysfunction plays a key role in the pathogenesis of type 2 diabetes (DM2). Unrestrained WAT lipolysis results in increased fatty acid release, leading to insulin resistance and lipotoxicity, while impaired de novo lipogenesis in WAT decreases the synthesis of insulin-sensitizing fatty acid species like palmitoleate. Here, we show that insulin infused into the mediobasal hypothalamus (MBH) of Sprague-Dawley rats increases WAT lipogenic protein expression, inactivates hormone-sensitive lipase (Hsl), and suppresses lipolysis. Conversely, mice that lack the neuronal insulin receptor exhibit unrestrained lipolysis and decreased de novo lipogenesis in WAT. Thus, brain and, in particular, hypothalamic insulin action play a pivotal role in WAT functionality. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Insulin Lispro Injection

    MedlinePlus

    ... a solution (liquid) and a suspension (liquid with particles that will settle on standing) to inject subcutaneously ( ... if it is colored, cloudy, or contains solid particles. If you are using insulin lispro suspension, the ...

  16. Insulin Delivery System

    NASA Technical Reports Server (NTRS)

    1988-01-01

    When Programmable Implantable Medication System (PIMS) is implanted in human body, it delivers precise programmed amounts of insulin over long periods of time. Mini-Med Technologies has been refining the Technologies since initial development at APL. The size of a hockey puck, and encased in titanium shell, PIMS holds about 2 1/2 teaspoons of insulin at a programmed basal rate. If a change in measured blood sugar level dictates a different dose, the patient can vary the amount of insulin delivered by holding a small radio transceiver over the implanted system and dialing in a specific program held in the PIMS computer memory. Insulin refills are accomplished approximately 4 times a year by hypodermic needle.

  17. Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse

    PubMed Central

    Ning, Jie; Hong, Tao; Yang, Xuefeng; Mei, Shuang; Liu, Zhenqi; Liu, Hui-Yu

    2011-01-01

    The primary player that induces insulin resistance has not been established. Here, we studied whether or not fat can cause insulin resistance in the presence of insulin deficiency. Our results showed that high-fat diet (HFD) induced insulin resistance in C57BL/6 (B6) mice. The HFD-induced insulin resistance was prevented largely by the streptozotocin (STZ)-induced moderate insulin deficiency. The STZ-induced insulin deficiency prevented the HFD-induced ectopic fat accumulation and oxidative stress in liver and gastrocnemius. The STZ-induced insulin deficiency prevented the HFD- or insulin-induced increase in hepatic expression of long-chain acyl-CoA synthetases (ACSL), which are necessary for fatty acid activation. HFD increased mitochondrial contents of long-chain acyl-CoAs, whereas it decreased mitochondrial ADP/ATP ratio, and these HFD-induced changes were prevented by the STZ-induced insulin deficiency. In cultured hepatocytes, we observed that expressions of ACSL1 and -5 were stimulated by insulin signaling. Results in cultured cells also showed that blunting insulin signaling by the PI3K inhibitor LY-294002 prevented fat accumulation, oxidative stress, and insulin resistance induced by the prolonged exposure to either insulin or oleate plus sera that normally contain insulin. Finally, knockdown of the insulin receptor prevented the oxidative stress and insulin resistance induced by the prolonged exposure to insulin or oleate plus sera. Together, our results show that insulin and insulin signaling are required for fat induction of insulin resistance in mice and cultured mouse hepatocytes. PMID:21586696

  18. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    PubMed

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels.

  19. Pleiotropic action of insulin-like peptides of mollusk, Anodonta cygnea.

    PubMed

    Shipilov, V N; Shpakov, A O; Rusakov, Yu I

    2005-04-01

    Insulin-related peptides (IRPs) from ganglions of mollusk, Anodonta cygnea, were purified and characterized (IRP1-IRP13) using insulin and insulin-like growth factor-I (IGF-I) radioreceptor test systems. The IRPs were able to bind to insulin and IGF-I receptors. Dose-dependent curve slopes indicated that most IRPs bind with higher affinity to IGF-I receptors than to insulin receptors. The IRP regulatory action on the activity of the adenylyl cyclase signal system showed that these peptides stimulated adenylyl cyclase and GTP-binding activity of G-proteins to the same extent as insulin and IGF-I. The data obtained suggest polyfunctional IRP action that apparently is determined by the molecular structure of individual isoforms.

  20. Moving toward the ideal insulin for insulin pumps.

    PubMed

    Cengiz, Eda; Bode, Bruce; Van Name, Michelle; Tamborlane, William V

    2016-01-01

    Advances in insulin formulations have been important for diabetes management and achieving optimal glycemic control. Rapid-acting insulin analogs provide a faster time-action profile than regular insulin and are approved for use in pumps. However, the need remains for therapy to deliver a more physiologic insulin profile. New insulin formulations and delivery methods are in development, with the aim of accelerating insulin absorption to accomplish ultra-fast-acting insulin time-action profiles. Furthermore, the integration of continuous glucose monitoring with insulin pump therapy enables on-going adjustment of insulin delivery to optimize glycemic control throughout the day and night. These technological and pharmacological advances are likely to facilitate the development of closed-loop pump systems (i.e., artificial pancreas), and improve glycemic control and quality of life for patients with diabetes.

  1. Angiotensin II induces differential insulin action in rat skeletal muscle.

    PubMed

    Surapongchai, Juthamard; Prasannarong, Mujalin; Bupha-Intr, Tepmanas; Saengsirisuwan, Vitoon

    2017-03-01

    Angiotensin II (ANGII) is reportedly involved in the development of skeletal muscle insulin resistance. The present investigation evaluated the effects of two ANGII doses on the phenotypic characteristics of insulin resistance syndrome and insulin action and signaling in rat skeletal muscle. Male Sprague-Dawley rats were infused with either saline (SHAM) or ANGII at a commonly used pressor dose (100 ng/kg/min; ANGII-100) or a higher pressor dose (500 ng/kg/min; ANGII-500) via osmotic minipumps for 14 days. We demonstrated that ANGII-100-infused rats exhibited the phenotypic features of non-obese insulin resistance syndrome, including hypertension, impaired glucose tolerance and insulin resistance of glucose uptake in the soleus muscle, whereas ANGII-500-treated rats exhibited diabetes-like symptoms, such as post-prandial hyperglycemia, impaired insulin secretion and hypertriglyceridemia. At the cellular level, insulin-stimulated glucose uptake in the soleus muscle of the ANGII-100 group was 33% lower (P < 0.05) than that in the SHAM group and was associated with increased insulin-stimulated IRS-1 Ser(307) and decreased Akt Ser(473) and AS160 Thr(642) phosphorylation and GLUT-4 expression. However, ANGII-500 infusion did not induce skeletal muscle insulin resistance or impair insulin signaling elements as initially anticipated. Moreover, we found that insulin-stimulated glucose uptake in the ANGII-500 group was accompanied by the enhanced expression of ACE2 and MasR proteins, which are the key elements in the non-classical pathway of the renin-angiotensin system. Collectively, this study demonstrates for the first time that chronic infusion with these two pressor doses of ANGII induced differential metabolic responses at both the systemic and skeletal muscle levels. © 2017 Society for Endocrinology.

  2. Analysis of insulin receptor substrate signaling dynamics on microstructured surfaces.

    PubMed

    Lanzerstorfer, Peter; Yoneyama, Yosuke; Hakuno, Fumihiko; Müller, Ulrike; Höglinger, Otmar; Takahashi, Shin-Ichiro; Weghuber, Julian

    2015-03-01

    Insulin receptor substrates (IRS) are phosphorylated by activated insulin/insulin-like growth factor I receptor tyrosine kinases, with this comprising an initial key event for downstream signaling and bioactivities. Despite the structural similarities, increasing evidence shows that IRS family proteins have nonredundant functions. Although the specificity of insulin/insulin-like growth factor signaling and biological responses partly reflects which IRS proteins are dominantly phosphorylated by the receptors, the precise properties of the respective IRS interaction with the receptors remain elusive. In the present study, we utilized a technique that combines micropatterned surfaces and total internal reflection fluorescence microscopy for the quantitative analysis of the interaction between IRS proteins and insulin/insulin-like growth factor in living cells. Our experimental set-up enabled the measurement of equilibrium associations and interaction dynamics of these molecules with high specificity. We revealed that several domains of IRS including pleckstrin homology and phosphotyrosine binding domains critically determine the turnover rate of the receptors. Furthermore, we found significant differences among IRS proteins in the strength and kinetic stability of the interaction with the receptors, suggesting that these interaction properties could account for the diverse functions of IRS. In addition, our analyses using fluorescent recovery after photobleaching revealed that kinases such as c-Jun N-terminal kinase and IκB kinase β, which phosphorylate serine/threonine residues of IRS and contribute to insulin resistance, altered the interaction kinetics of IRS with insulin receptor. Collectively, our experimental set-up is a valuable system for quantitifying the physiological interaction of IRS with the receptors in insulin/insulin-like growth factor signaling. © 2015 FEBS.

  3. Phosphoinositides: Key modulators of energy metabolism☆

    PubMed Central

    Bridges, Dave; Saltiel, Alan R.

    2014-01-01

    Phosphoinositides are key players in many trafficking and signaling pathways. Recent advances regarding the synthesis, location and functions of these lipids have dramatically improved our understanding of how and when these lipids are generated and what their roles are in animal physiology. In particular, phosphoinositides play a central role in insulin signaling, and manipulation of PtdIns(3,4,5)P3 levels in particular, may be an important potential therapeutic target for the alleviation of insulin resistance associated with obesity and the metabolic syndrome. In this article we review the metabolism, regulation and functional roles of phosphoinositides in insulin signaling and the regulation of energy metabolism. This article is part of a Special Issue entitled Phosphoinositides. PMID:25463477

  4. Skeletal Muscle Insulin Resistance and Absence of Inflammation Characterize Insulin-Resistant Grade I Obese Women

    PubMed Central

    Bourret, Annick; Lambert, Karen; Birot, Olivier; Fédou, Christine; Dupuy, Anne-Marie; Cristol, Jean-Paul; Sutra, Thibault; Molinari, Nicolas; Maimoun, Laurent; Mariano-Goulart, Denis; Galtier, Florence; Avignon, Antoine; Stanke-Labesque, Françoise; Mercier, Jacques; Sultan, Ariane; Bisbal, Catherine

    2016-01-01

    Context Obesity is associated with insulin-resistance (IR), the key feature of type 2 diabetes. Although chronic low-grade inflammation has been identified as a central effector of IR development, it has never been investigated simultaneously at systemic level and locally in skeletal muscle and adipose tissue in obese humans characterized for their insulin sensitivity. Objectives We compared metabolic parameters and inflammation at systemic and tissue levels in normal-weight and obese subjects with different insulin sensitivity to better understand the mechanisms involved in IR development. Methods 30 post-menopausal women were classified as normal-weight insulin-sensitive (controls, CT) and obese (grade I) insulin-sensitive (OIS) or insulin-resistant (OIR) according to their body mass index and homeostasis model assessment of IR index. They underwent a hyperinsulinemic-euglycemic clamp, blood sampling, skeletal muscle and subcutaneous adipose tissue biopsies, an activity questionnaire and a self-administrated dietary recall. We analyzed insulin sensitivity, inflammation and IR-related parameters at the systemic level. In tissues, insulin response was assessed by P-Akt/Akt expression and inflammation by macrophage infiltration as well as cytokines and IκBα expression. Results Systemic levels of lipids, adipokines, inflammatory cytokines, and lipopolysaccharides were equivalent between OIS and OIR subjects. In subcutaneous adipose tissue, the number of anti-inflammatory macrophages was higher in OIR than in CT and OIS and was associated with higher IL-6 level. Insulin induced Akt phosphorylation to the same extent in CT, OIS and OIR. In skeletal muscle, we could not detect any inflammation even though IκBα expression was lower in OIR compared to CT. However, while P-Akt/Akt level increased following insulin stimulation in CT and OIS, it remained unchanged in OIR. Conclusion Our results show that systemic IR occurs without any change in systemic and tissues

  5. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1.

    PubMed Central

    Kim, J B; Sarraf, P; Wright, M; Yao, K M; Mueller, E; Solanes, G; Lowell, B B; Spiegelman, B M

    1998-01-01

    The ability to regulate specific genes of energy metabolism in response to fasting and feeding is an important adaptation allowing survival of intermittent food supplies. However, little is known about transcription factors involved in such responses in higher organisms. We show here that gene expression in adipose tissue for adipocyte determination differentiation dependent factor (ADD) 1/sterol regulatory element binding protein (SREBP) 1, a basic-helix-loop-helix protein that has a dual DNA-binding specificity, is reduced dramatically upon fasting and elevated upon refeeding; this parallels closely the regulation of two adipose cell genes that are crucial in energy homeostasis, fatty acid synthetase (FAS) and leptin. This elevation of ADD1/SREBP1, leptin, and FAS that is induced by feeding in vivo is mimicked by exposure of cultured adipocytes to insulin, the classic hormone of the fed state. We also show that the promoters for both leptin and FAS are transactivated by ADD1/SREBP1. A mutation in the basic domain of ADD1/SREBP1 that allows E-box binding but destroys sterol regulatory element-1 binding prevents leptin gene transactivation but has no effect on the increase in FAS promoter function. Molecular dissection of the FAS promoter shows that most if not all of this action of ADD1/SREBP1 is through an E-box motif at -64 to -59, contained with a sequence identified previously as the major insulin response element of this gene. These results indicate that ADD1/SREBP1 is a key transcription factor linking changes in nutritional status and insulin levels to the expression of certain genes that regulate systemic energy metabolism. PMID:9421459

  6. Activation of insulin signaling and energy sensing network by AICAR, an AMPK activator in insulin resistant rat tissues.

    PubMed

    Radika, Mutlur Krishnamoorthy; Anuradha, Carani Venkatraman

    2015-11-01

    The energy status of the cell is regulated by the energy sensing network constituted by AMP-activated protein kinase (AMPK), the NAD+-dependent type III deacetylase silence information regulator T1 (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). This study investigates the potential effect of 5-aminoimidazole-4-carboximide-1-b-D-ribofuranoside (AICAR), an AMPK activator on insulin signaling and energy sensing network in insulin resistant rats. Adult male albino Wistar rats with body weight of 150-180 g were fed high-fructose diet (HFD) for 60 days to induce insulin resistance. Rats fed HFD were divided into two and were treated or untreated with AICAR (0.7 mg/kg bw, i.p.) for the last 2 weeks. Insulin resistant rats displayed increased glucose and insulin levels and reduced tyrosine phosphorylation of insulin resistance receptor and insulin receptor substrate 1. The downstream signaling and glucose transport were also affected. Phosphorylation of AMPK, SIRT1 protein abundance and mRNA expression of PGC-1α were reduced. Treatment with AICAR reduced hyperglycemia and hyperinsulinemia and improved the activation of the key molecules of insulin signaling. Improved action of energy sensing network was noted after AICAR treatment. AICAR showed higher binding affinity with Akt (-8.2 kcal/mol) than with AMPK or insulin receptor (-8.0 kcal/mol) in the in silico study. The findings suggest that AICAR, the AMPK activator, influences insulin signaling proteins and molecules involved in energy modulation during insulin resistance.

  7. Glucose inhibits the insulin-induced activation of the insulin-degrading enzyme in HepG2 cells.

    PubMed

    Pivovarova, O; Gögebakan, O; Pfeiffer, A F H; Rudovich, N

    2009-08-01

    Hepatic insulin degradation decreases in type 2 diabetes. Insulin-degrading enzyme (IDE) plays a key role in insulin degradation and its gene is located in a diabetes-associated chromosomal region. We hypothesised that IDE may be regulated by insulin and/or glucose in a liver cell model. To validate the observed regulation of IDE in vivo, we analysed biopsies of human adipose tissue during different clamp experiments in men. Human hepatoma HepG2 cells were incubated in normal (1 g/l) or high (4.5 g/l) glucose medium and treated with insulin for 24 h. Catalytic activity, mRNA and protein levels of IDE were assessed. IDE mRNA levels were measured in biopsies of human subcutaneous adipose tissue before and at 240 min of hyperinsulinaemic, euglycaemic and hyperglycaemic clamps. In HepG2 cells, insulin increased IDE activity under normal glucose conditions with no change in IDE mRNA or protein levels. Under conditions of high glucose, insulin increased mRNA levels of IDE without changes in IDE activity. Both in normal and high glucose medium, insulin increased levels of the catalytically more active 15a IDE isoform compared with the 15b isoform. In subcutaneous adipose tissue, IDE mRNA levels were not significantly upregulated after euglycaemic or hyperglycaemic clamps. Insulin increases IDE activity in HepG2 cells in normal but not in high glucose conditions. This disturbance cannot be explained by corresponding alterations in IDE protein levels or IDE splicing. The loss of insulin-induced regulation of IDE activity under hyperglycaemia may contribute to the reduced insulin extraction and peripheral hyperinsulinaemia in type 2 diabetes.

  8. Mouse models of insulin resistance.

    PubMed

    Hribal, Marta Letizia; Oriente, Francesco; Accili, Domenico

    2002-05-01

    The hallmarks of type 2 diabetes are impaired insulin action in peripheral tissues and decreased pancreatic beta-cell function. Classically, the two defects have been viewed as separate entities, with insulin resistance arising primarily from impaired insulin-dependent glucose uptake in skeletal muscle, and beta-cell dysfunction arising from impaired coupling of glucose sensing to insulin secretion. Targeted mutagenesis and transgenesis involving components of the insulin action pathway have changed our understanding of these phenomena. It appears that the role of insulin signaling in the pathogenesis of type 2 diabetes has been overestimated in classic insulin target tissues, such as skeletal muscle, whereas it has been overlooked in liver, pancreatic beta-cells, and brain, which had been thought not to be primary insulin targets. We review recent progress and try to reconcile areas of apparent controversy surrounding insulin signaling in skeletal muscle and pancreatic beta-cells.

  9. Insulin pump therapy in pregnancy.

    PubMed

    Kesavadev, Jothydev

    2016-09-01

    Control of blood glucose during pregnancy is difficult because of wide variations, ongoing hormonal changes and mood swings. The need for multiple injections, pain at the injection site, regular monitoring and skillful handling of the syringes/pen further makes insulin therapy inconvenient. Insulin pump is gaining popularity in pregnancy because it mimics the insulin delivery of a healthy human pancreas. Multiple guidelines have also recommended the use of insulin pump in pregnancy to maintain the glycaemic control. The pump can release small doses of insulin continuously (basal), or a bolus dose close to mealtime to control the spike in blood glucose after a meal and the newer devices can shut down insulin delivery before the occurrence of hypoglycaemia. Pump insulin of choice is rapid acting analogue insulin. This review underscores the role of insulin pump in pregnancy, their usage, advantages and disadvantages in the light of existing literature and clinic experience.

  10. II - Insulin processing in mitochondria.

    PubMed

    Camberos, María Del Carmen; Pérez, Adriana A; Passicot, Gisel A; Martucci, Lucía C; Wanderley, María I; Udrisar, Daniel P; Cresto, Juan C

    2016-10-01

    Our objective was to know how insulin is processing in mitochondria; if IDE is the only participant in mitochondrial insulin degradation and the role of insulin degradation on IDE accumulation in mitoplasts. Mitochondria and its fractions were isolated as described by Greenwalt. IDE was purified and detected in immunoblot with specific antibodies. High insulin degradation was obtained through addition to rat's diet of 25 g/rat of apple and 10 g/rat of hard-boiled eggs, 3 days a week. Mitochondrial insulin degradation was assayed with 5 % TCA, insulin antibody or Sephadex G50 chromatography. Degradation was also assayed 60 min at 37 °C in mitochondrial fractions (IMS and Mx) with diet or not and without IDE. Degradation in fractions precipitated with ammonium sulfates (60-80 %) were studied after mitochondrial insulin incubation (1 ng. insulin during 15 min, at 30 °C) or with addition of 2.5 mM ATP. Supplementary diet increased insulin degradation. High insulin did not increase mitoplasts accumulation and did not decrease mitochondrial degradation. High insulin and inhibition of degradation evidence insulin competition for a putative transport system. Mitochondrial incubation with insulin increased IDE in matrix as observed in immunoblot. ATP decreased degradation in Mx and increased it in IMS. Chromatography of IMS demonstrated an ATP-dependent protease that degraded insulin, similar to described by Sitte et al. Mitochondria participate in insulin degradation and the diet increased it. High insulin did not accomplish mitochondrial decrease of degradation or its accumulation in mitoplasts. Mitochondrial incubation with insulin increased IDE in matrix. ATP suggested being a regulator of mitochondrial insulin degradation.

  11. Quantitation of Insulin Analogues in Serum Using Immunoaffinity Extraction, Liquid Chromatography, and Tandem Mass Spectrometry.

    PubMed

    Van Der Gugten, J Grace; Wong, Sophia; Holmes, Daniel T

    2016-01-01

    Insulin analysis is used in combination with glucose, C-peptide, beta-hydroxybutyrate, and proinsulin determination for the investigation of adult hypoglycemia. The most common cause is the administration of too much insulin or insulin secretagogue to a diabetic patient or inadequate caloric intake after administration of either. Occasionally there is a question as to whether hypoglycemia has been caused by an exogenous insulin-whether by accident, intent, or even malicious intent. While traditionally this was confirmed by a low or undetectable C-peptide in a hypoglycemic specimen, this finding is not entirely specific and would also be expected in the context of impaired counter-regulatory response, fatty acid oxidation defects, and liver failure-though beta-hydroxybutyrate levels can lend diagnostic clarity. For this reason, insulin is often requested. However, popular automated chemiluminescent immunoassays for insulin have distinctly heterogeneous performance in detecting analogue synthetic insulins with cross-reactivities ranging from near 0 % to greater than 100 %. The ability to detect synthetic insulins is vendor-specific and varies between insulin products. Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS) offers a means to circumvent these analytical issues and both quantify synthetic insulins and identify the specific type. We present an immunoaffinity extraction and LC-MS/MS method capable of independent identification and quantitation of native sequence insulins (endogenous, Insulin Regular, Insulin NPH), and analogues Glargine, Lispro, Detemir, and Aspart with an analytical sensitivity for endogenous insulin of between 1 and 2 μU/mL in patient serum samples.

  12. Reduced insulin/insulin-like growth factor signaling decreases translation in Drosophila and mice

    PubMed Central

    Essers, Paul; Tain, Luke S.; Nespital, Tobias; Goncalves, Joana; Froehlich, Jenny; Partridge, Linda

    2016-01-01

    Down-regulation of insulin/insulin-like growth factor signaling (IIS) can increase lifespan in C. elegans, Drosophila and mice. In C. elegans, reduced IIS results in down-regulation of translation, which itself can extend lifespan. However, the effect of reduced IIS on translation has yet to be determined in other multicellular organisms. Using two long-lived IIS models, namely Drosophila lacking three insulin-like peptides (dilp2-3,5−/−) and mice lacking insulin receptor substrate 1 (Irs1−/−), and two independent translation assays, polysome profiling and radiolabeled amino acid incorporation, we show that reduced IIS lowers translation in these organisms. In Drosophila, reduced IIS decreased polysome levels in fat body and gut, but reduced the rate of protein synthesis only in the fat body. Reduced IIS in mice decreased protein synthesis rate only in skeletal muscle, without reducing polysomes in any tissue. This lowered translation in muscle was independent of Irs1 loss in the muscle itself, but a secondary effect of Irs1 loss in the liver. In conclusion, down-regulation of translation is an evolutionarily conserved response to reduced IIS, but the tissues in which it occurs can vary between organisms. Furthermore, the mechanisms underlying lowered translation may differ in mice, possibly associated with the complexity of the regulatory processes. PMID:27452396

  13. The bile acid sensor FXR regulates insulin transcription and secretion.

    PubMed

    Renga, Barbara; Mencarelli, Andrea; Vavassori, Piero; Brancaleone, Vincenzo; Fiorucci, Stefano

    2010-03-01

    Farnesoid X Receptor plays an important role in maintaining bile acid, cholesterol homeostasis and glucose metabolism. Here we investigated whether FXR is expressed by pancreatic beta-cells and regulates insulin signaling in pancreatic beta-cell line and human islets. We found that FXR activation induces positive regulatory effects on glucose-induced insulin transcription and secretion by genomic and non-genomic activities. Genomic effects of FXR activation relay on the induction of the glucose regulated transcription factor KLF11. Indeed, results from silencing experiments of KLF11 demonstrate that this transcription factor is essential for FXR activity on glucose-induced insulin gene transcription. In addition FXR regulates insulin secretion by non-genomic effects. Thus, activation of FXR in betaTC6 cells increases Akt phosphorylation and translocation of the glucose transporter GLUT2 at plasma membrane, increasing the glucose uptake by these cells. In vivo experiments on Non Obese Diabetic (NOD) mice demonstrated that FXR activation delays development of signs of diabetes, hyperglycemia and glycosuria, by enhancing insulin secretion and by stimulating glucose uptake by the liver. These data established that an FXR-KLF11 regulated pathway has an essential role in the regulation of insulin transcription and secretion induced by glucose.

  14. A Hazard Analysis for a Generic Insulin Infusion Pump

    PubMed Central

    Zhang, Yi; Jones, Paul L.; Jetley, Raoul

    2010-01-01

    Background Researchers at the Food and Drug Administration (FDA)/Center for Device and Radiological Health/Office of Science and Engineering Laboratories have been exploring the concept of model-based engineering as a means for improving the quality of medical device software. Insulin pumps were chosen as a research subject because their design provides the desired degree of research complexity and these types of devices present an ongoing regulatory challenge. Methods Insulin pump hazards and their contributing factors are considered in the context of a highly abstract generic insulin infusion pump (GIIP) model. Hazards were identified by consulting with manufacturers, pump users, and clinicians; by reviewing national and international standards and adverse event reports collected by the FDA; and from workshops sponsored by Diabetes Technology Society. This information has been consolidated in tabular form to facilitate further community analysis and discussion. Results A generic insulin infusion pump model architecture has been established. A fairly comprehensive hazard analysis document, corresponding to the GIIP model, is presented in this article. Conclusions We believe that this work represents the genesis of an insulin pump safety reference standard upon which future insulin pump designs can be based to help ensure a basic level of safety. More interaction with the diabetes community is needed to assure the quality of this safety modeling process. PMID:20307387

  15. An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration

    PubMed Central

    Ye, Lihua; Robertson, Morgan A.; Mastracci, Teresa L.; Anderson, Ryan M.

    2016-01-01

    As one of the key nutrient sensors, insulin signaling plays an important role in integrating environmental energy cues with organism growth. In adult organisms, relative insufficiency of insulin signaling induces compensatory expansion of insulin-secreting pancreatic beta (β) cells. However, little is known about how insulin signaling feedback might influence neogenesis of β cells during embryonic development. Using genetic approaches and a unique cell transplantation system in developing zebrafish, we have uncovered a novel role for insulin signaling in the negative regulation of pancreatic progenitor cell differentiation. Blocking insulin signaling in the pancreatic progenitors hastened the expression of the essential β cell genes insulin and pdx1, and promoted β cell fate at the expense of alpha cell fate. In addition, loss of insulin signaling promoted β cell regeneration and destabilization of alpha cell character. These data indicate that insulin signaling constitutes a tunable mechanism for β cell compensatory plasticity during early development. Moreover, using a novel blastomere-to-larva transplantation strategy, we found that loss of insulin signaling in endoderm-committed blastomeres drove their differentiation into β cells. Furthermore, the extent of this differentiation was dependent on the function of the β cell mass in the host. Altogether, our results indicate that modulation of insulin signaling will be crucial for the development of β cell restoration therapies for diabetics; further clarification of the mechanisms of insulin signaling in β cell progenitors will reveal therapeutic targets for both in vivo and in vitro β cell generation. PMID:26658317

  16. [Reflections of a clinician on the switch from human to analogue insulin treatment].

    PubMed

    Deák, László

    2012-10-07

    The development of insulin therapy has not been stopped since the manufacturing of human insulin, because better mimic of physiological insulin response made it necessary to modify the human insulin molecule in order to create rapidly absorbing insulin analogues and 24-hour acting basal insulin analogues. Clinical observations indicate that the complete switch from human basal-bolus therapy to insulin analogues means not only "unit-for-unit" switch but it represents a transfer to an insulin therapy with different basal/bolus ratio as a result of different pharmacokinetic and pharmacodynamic properties of insulin and the level of insulin resistance of the patient. With reference to a case-history, the author presents his experience on a switch from human insulin to insulin analogue. Furthermore, the author summarizes data obtained from a few cases reported in international literature which draw the attention to the fact that the basal/bolus ratio should be adjusted individually, which may be the key for the success in the therapy in these cases.

  17. Molecular Mechanisms of Insulin Secretion and Insulin Action.

    ERIC Educational Resources Information Center

    Flatt, Peter R.; Bailey, Clifford J.

    1991-01-01

    Information and current ideas on the factors regulating insulin secretion, the mechanisms underlying the secretion and biological actions of insulin, and the main characteristics of diabetes mellitus are presented. (Author)

  18. Molecular Mechanisms of Insulin Secretion and Insulin Action.

    ERIC Educational Resources Information Center

    Flatt, Peter R.; Bailey, Clifford J.

    1991-01-01

    Information and current ideas on the factors regulating insulin secretion, the mechanisms underlying the secretion and biological actions of insulin, and the main characteristics of diabetes mellitus are presented. (Author)

  19. Biosimilar Insulins: How Similar is Similar?

    PubMed Central

    Heinemann, Lutz; Hompesch, Marcus

    2011-01-01

    Biosimilar insulins (BIs) are viewed as commercially attractive products by a number of companies. In order to obtain approval in the European Union or the United States, where there is not a single BI currently on the market, a manufacturer needs to demonstrate that a given BI has a safety and efficacy profile that is similar to that of the “original” insulin formulation that is already on the market. As trivial as this may appear at first glance, it is not trivial at all for a good number of reasons that will be discussed in this commentary. As with protein manufacturing, modifications in the structure of the insulin molecule can take place (which can have serious consequences for the biological effects induced), so a rigid and careful assessment is absolutely necessary. The example of Marvel's failed application with the European Medicines Agency provides insights into the regulatory and clinical challenges surrounding the matter of BI. Although a challenging BI approval process might be regarded as a hurdle to keep companies out of certain markets, it is fair to say that the potential safety and efficacy issues surrounding BI are substantial and relevant and do warrant a careful and evidence-driven approval process. PMID:21722590

  20. Variability control: key to regulatory compliance and sustainability goals.

    PubMed

    Englande, A J; Eckenfelder, W W; Jin, G

    2006-01-01

    The focus of this paper is on variability concerns in wastewater treatment and approaches to control unacceptable fluctuations in effluent quality. Areas considered include: factors contributing to variability in both waste loads and process technology performance; variability assessment; control of variability employing the process best management practice (BMP); design/operation of biological waste treatment technologies for variability reduction; and modelling to enhance process control.

  1. Development of insulin delivery systems.

    PubMed

    Siddiqui, N I; Siddiqui, Ni; Rahman, S; Nessa, A

    2008-01-01

    Delivery system of insulin is vital for its acceptance and adherence to therapy for achieving the glycemic targets. Enormous developments have occurred in the delivery system of insulin during the last twenty years and each improvement was aimed at two common goals: patients convenience and better glycemic control. Till to date, the various insulin delivery systems are: syringes/vials, injection aids, jet injectors, transmucosal delivery, transdermal delivery, external insulin infusion pump, implantable insulin pumps, insulin pens and insulin inhalers. Syringe/vial is the oldest and conventional method, still widely used and relatively cheaper. Modern plastic syringes are disposable, light weight with microfine needle for patients convenience and comfort. Oral route could be the most acceptable and viable, if the barriers can be overcome and under extensive trial. Insulin pen device is an important milestone in the delivery system of insulin as it is convenient, discrete, painless, attractive, portable with flexible life style and improved quality of life. More than 80% of European diabetic patients are using insulin pen. Future digital pen will have better memory option, blood glucose monitoring system, insulin dose calculator etc. Insulin infusion pump is a good option for the children, busy patients with flexible lifestyle and those who want to avoid multiple daily injections. Pulmonary route of insulin delivery is a promising, effective, non-invasive and acceptable alternative method. Exubera, the world first insulin inhaler was approved by FDA in 28 January 2006. But due to certain limitations, it has been withdrawn from the market in October 2007. The main concern of inhaled insulin are: long term pulmonary safety issues, cost effectiveness and user friendly device. In future, more acceptable and cost effective insulin inhaler will be introduced. Newer avenues are under extensive trial for better future insulin delivery systems.

  2. Professional and Regulatory Search

    EPA Pesticide Factsheets

    Professional and Regulatory search are designed for people who use EPA web resources to do their job. You will be searching collections where information that is not relevant to Environmental and Regulatory professionals.

  3. Insulin Pen—The “iPod” for Insulin Delivery (Why Pen Wins over Syringe)

    PubMed Central

    Asamoah, Ernest

    2008-01-01

    Diabetes affects most aspects of everyday life and places considerable responsibility on the patient; therefore, without patient acceptance of what we offer, the therapy is unlikely to be adhered to especially when that therapy happens to be insulin injection. In 2008, almost every physician/health care provider carries new and sleek cell phones (because the newer ones are well designed and function better). Why these same providers continue to prescribe insulin via syringes in 2008 is something that I cannot fathom. Previously, some insurance companies only paid for vials and there was no other choice, but today almost all insurance pay for pens and so the “insurance reason” is no longer tenable. Since Banting and Best discovered insulin in 1921, scientists have continued to improve the types of insulin (making them mimic physiology more closely in order to minimize hypoglycemia and improve glycemic control as seen with the latest analog insulins). In the same manner, the delivery process of insulin has also continued to evolve to make it easier and more acceptable to patients. Studies have shown that patients prefer device use over traditional vials/syringes. Pen devices used to inject insulin lead to better compliance, are quicker to inject, dosing is much more accurate, and, surprisingly, are more cost effective. I challenge my colleagues to take full responsibility for what their patients use. If a provider believes in pen devices, most of his/her patients will use them. The products your patients use is a direct reflection of what you practice. Educating providers to change their beliefs and practices is key to moving American diabetic patients from syringes to pen devices. PMID:19885358

  4. Countering neurodegeneration by reducing the activity of the insulin/IGF signaling pathway: current knowledge and future prospects.

    PubMed

    Cohen, Ehud

    2011-01-01

    Human neurodegenerative maladies share two common key features: a mechanistic link to the accumulation and deposition of aberrantly aggregated proteins and late onset. These similarities among otherwise unrelated disorders suggest that the aging process plays an active role in enabling the emergence of these diseases late in life. Invertebrate-based studies have shown that the manipulation of aging by the reduction of the Insulin/IGF signaling (IIS), a prominent aging regulatory pathway, protects model organisms from neurodegeneration-linked toxic protein aggregation. Recent studies have also indicated that the counter proteotoxic effect of IIS reduction is conserved from worms to mice as reduced IGF-1 signaling protected Alzheimer's-model mice from the disease-like behavioral impairments, pathological phenotypes and premature death typical to these model animals. In this article I review the current knowledge on the protective mechanisms that are suppressed by the IIS and discuss the future therapeutic potential of IIS reduction as a treatment for neurodegenerative disorders.

  5. Perspectives in regulatory science: translational and clinical pharmacology.

    PubMed

    Grillo, Joseph A; Huang, Shiew Mei

    This paper focuses on the role of clinical and translational pharmacology in the drug development and the regulatory process. Contemporary regulatory issues faced by FDA's Office of Clinical Pharmacology (OCP) in fulfilling its mission to advance the science of drug response and translate patient diversity into optimal drug therapy are discussed. Specifically current focus of the following key aspects of the drug development and regulatory science processes are discussed: the OCP vision and mission, two key OCP initiatives (i.e. guidance modernization, labeling and health communications), and translational and clinical pharmacology related regulatory science issues in (i.e. uncertainty, breakthrough therapies, individualization).

  6. Epigenetic markers to further understand insulin resistance.

    PubMed

    Ling, Charlotte; Rönn, Tina

    2016-11-01

    Epigenetic variation in human adipose tissue has been linked to type 2 diabetes and its related risk factors including age and obesity. Insulin resistance, a key risk factor for type 2 diabetes, may also be associated with altered DNA methylation in visceral and subcutaneous adipose tissue. Furthermore, linking epigenetic variation in target tissues to similar changes in blood cells may identify new blood-based biomarkers. In this issue of Diabetologia, Arner et al studied the transcriptome and methylome in subcutaneous and visceral adipose tissue of 80 obese women who were either insulin-sensitive or -resistant (DOI 10.1007/s00125-016-4074-5 ). While they found differences in gene expression between the two groups, no alterations in DNA methylation were found after correction for multiple testing. Nevertheless, based on nominal p values, their methylation data overlapped with methylation differences identified in adipose tissue of individuals with type 2 diabetes compared with healthy individuals. Differential methylation of these overlapping CpG sites may predispose to diabetes by occurring already in the insulin-resistant state. Furthermore, some methylation changes may contribute to an inflammatory process in adipose tissue since the identified CpG sites were annotated to genes encoding proteins involved in inflammation. Finally, the methylation pattern in circulating leucocytes did not mirror the adipose tissue methylome of these 80 women. Together, identifying novel molecular mechanisms contributing to insulin resistance and type 2 diabetes may help advance the search for new therapeutic alternatives.

  7. Fenofibrate Decreases Insulin Clearance and Insulin Secretion to Maintain Insulin Sensitivity.

    PubMed

    Ramakrishnan, Sadeesh K; Russo, Lucia; Ghanem, Simona S; Patel, Payal R; Oyarce, Ana Maria; Heinrich, Garrett; Najjar, Sonia M

    2016-11-11

    High fat diet reduces the expression of CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a transmembrane glycoprotein that promotes insulin clearance and down-regulates fatty acid synthase activity in the liver upon its phosphorylation by the insulin receptor. Because peroxisome proliferator-activated receptor α (PPARα) transcriptionally suppresses CEACAM1 expression, we herein examined whether high fat down-regulates CEACAM1 expression in a PPARα-dependent mechanism. By activating PPARα, the lipid-lowering drug fenofibrate reverses dyslipidemia and improves insulin sensitivity in type 2 diabetes in part by promoting fatty acid oxidation. Despite reducing glucose-stimulated insulin secretion, fenofibrate treatment does not result in insulin insufficiency. To examine whether this is mediated by a parallel decrease in CEACAM1-dependent hepatic insulin clearance pathways, we fed wild-type and Pparα(-/-) null mice a high fat diet supplemented with either fenofibrate or Wy14643, a selective PPARα agonist, and examined their effect on insulin metabolism and action. We demonstrated that the decrease in insulin secretion by fenofibrate and Wy14643 is accompanied by reduction in insulin clearance in wild-type but not Pparα(-/-) mice, thereby maintaining normoinsulinemia and insulin sensitivity despite continuous high fat intake. Intact insulin secretion in L-CC1 mice with protected hepatic insulin clearance and CEACAM1 levels provides in vivo evidence that insulin secretion responds to changes in insulin clearance to maintain physiologic insulin and glucose homeostasis. These results also emphasize the relevant role of hepatic insulin extraction in regulating insulin sensitivity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Molecular Basis of Catalytic Chamber-assisted Unfolding and Cleavage of Human Insulin by Human Insulin-degrading Enzyme*S⃞

    PubMed Central

    Manolopoulou, Marika; Guo, Qing; Malito, Enrico; Schilling, Alexander B.; Tang, Wei-Jen

    2009-01-01

    Insulin is a hormone vital for glucose homeostasis, and insulin-degrading enzyme (IDE) plays a key role in its clearance. IDE exhibits a remarkable specificity to degrade insulin without breaking the disulfide bonds that hold the insulin A and B chains together. Using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to obtain high mass accuracy, and electron capture dissociation (ECD) to selectively break the disulfide bonds in gas phase fragmentation, we determined the cleavage sites and composition of human insulin fragments generated by human IDE. Our time-dependent analysis of IDE-digested insulin fragments reveals that IDE is highly processive in its initial cleavage at the middle of both the insulin A and B chains. This ensures that IDE effectively splits insulin into inactive N- and C-terminal halves without breaking the disulfide bonds. To understand the molecular basis of the recognition and unfolding of insulin by IDE, we determined a 2.6-Å resolution insulin-bound IDE structure. Our structure reveals that IDE forms an enclosed catalytic chamber that completely engulfs and intimately interacts with a partially unfolded insulin molecule. This structure also highlights how the unique size, shape, charge distribution, and exosite of the IDE catalytic chamber contribute to its high affinity (∼100 nm) for insulin. In addition, this structure shows how IDE utilizes the interaction of its exosite with the N terminus of the insulin A chain as well as other properties of the catalytic chamber to guide the unfolding of insulin and allowing for the processive cleavages. PMID:19321446

  9. [Treatment by external insulin pump].

    PubMed

    Clavel, Sylvaine

    2010-12-01

    Since the recent recommendations by the French speaking association for research on diabetes and metabolic illnesses (Alfediam), treatment by insulin pump has found itself in competition with basal-bolus, a procedure using similar injections of insulin which has become a benchmark treatment. The latest Alfediam guidelines focus on defining ways of treating diabetics with an external insulin pump.

  10. Modest dietary K+ restriction provokes insulin resistance of cellular K+ uptake and phosphorylation of renal outer medulla K+ channel without fall in plasma K+ concentration.

    PubMed

    Chen, Pei; Guzman, John P; Leong, Patrick K K; Yang, Li E; Perianayagam, Anjana; Babilonia, Elisa; Ho, Jennifer S; Youn, Jang H; Wang, Wen Hui; McDonough, Alicia A

    2006-05-01

    Extracellular K(+) concentration ([K(+)]) is closely regulated by the concerted regulatory responses of kidney and muscle. In this study, we aimed to define the responses activated when dietary K(+) was moderately reduced from a control diet (1.0% K(+)) to a 0.33% K(+) diet for 15 days. Although body weight and baseline plasma [K(+)] (4.0 mM) were not reduced in the 0.33% K(+) group, regulatory responses to conserve plasma [K(+)] were evident in both muscle and kidney. Insulin-stimulated clearance of K(+) from the plasma was estimated in vivo in conscious rats with the use of tail venous and arterial cannulas. During infusion of insulin.(50 mU.kg(-1).min(-1)), plasma [K(+)] level fell to 3.2 +/- 0.1 mM in the 1.0% K(+) diet group and to only 3.47 +/- 0.07 mM in the 0.33% K(+) diet group (P < 0.01) with no reduction in urinary K(+) excretion, which is evidence of insulin resistance to cellular K(+) uptake. Insulin-stimulated cellular K(+) uptake was quantitated by measuring the K(+) infusion rate necessary to clamp plasma K(+) at baseline (in micromol.kg(-1).min(-1)) during 5 mU of insulin.kg(-1).min(-1) infusion: 9.7 +/- 1.5 in 1% K(+) diet was blunted to 5.2 +/- 1.7 in the 0.33% K(+) diet group (P < 0.001). Muscle [K(+)] and Na(+)-K(+)-ATPase activity and abundance were unchanged during the 0.33% K(+) diet. Renal excretion, which was measured overnight in metabolic cages, was reduced by 80%, from 117.6 +/- 10.5 micromol/h/animal (1% K(+) diet) to 24.2 +/- 1.7 micromol/h/animal (0.33% K(+) diet) (P < 0.001). There was no significant change in total abundance of key renal K(+) transporters, but 50% increases in both renal PTK cSrc abundance and ROMK phosphorylation in the 0.33% K(+) vs. 1% K(+) diet group, previously established to be associated with internalization of ROMK. These results indicate that plasma [K(+)] can be maintained during modest K(+) restriction due to a decrease in insulin-stimulated cellular K(+) uptake as well as renal K(+) conservation

  11. Role of reduced insulin-stimulated bone blood flow in the pathogenesis of metabolic insulin resistance and diabetic bone fragility.

    PubMed

    Hinton, Pamela S

    2016-08-01

    Worldwide, 387 million adults live with type 2 diabetes (T2D) and an additional 205 million cases are projected by 2035. Because T2D has numerous complications, there is significant morbidity and mortality associated with the disease. Identification of early events in the pathogenesis of insulin resistance and T2D might lead to more effective treatments that would mitigate health and monetary costs. Here, we present our hypothesis that impaired bone blood flow is an early event in the pathogenesis of whole-body metabolic insulin resistance that ultimately leads to T2D. Two recent developments in different fields form the basis for this hypothesis. First, reduced vascular function has been identified as an early event in the development of T2D. In particular, before the onset of tissue or whole body metabolic insulin resistance, insulin-stimulated, endothelium-mediated skeletal muscle blood flow is impaired. Insulin resistance of the vascular endothelium reduces delivery of insulin and glucose to skeletal muscle, which leads to tissue and whole-body metabolic insulin resistance. Second is the paradigm-shifting discovery that the skeleton has an endocrine function that is essential for maintenance of whole-body glucose homeostasis. Specifically, in response to insulin signaling, osteoblasts secret osteocalcin, which stimulates pancreatic insulin production and enhances insulin sensitivity in skeletal muscle, adipose, and liver. Furthermore, the skeleton is not metabolically inert, but contributes to whole-body glucose utilization, consuming 20% that of skeletal muscle and 50% that of white adipose tissue. Without insulin signaling or without osteocalcin activity, experimental animals become hyperglycemic and insulin resistant. Currently, it is not known if insulin-stimulated, endothelium-mediated blood flow to bone plays a role in the development of whole body metabolic insulin resistance. We hypothesize that it is a key, early event. Microvascular dysfunction is a

  12. Natural killer T cells in adipose tissue prevent insulin resistance

    PubMed Central

    Schipper, Henk S.; Rakhshandehroo, Maryam; van de Graaf, Stan F.J.; Venken, Koen; Koppen, Arjen; Stienstra, Rinke; Prop, Serge; Meerding, Jenny; Hamers, Nicole; Besra, Gurdyal; Boon, Louis; Nieuwenhuis, Edward E.S.; Elewaut, Dirk; Prakken, Berent; Kersten, Sander; Boes, Marianne; Kalkhoven, Eric

    2012-01-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell–deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue–resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue–resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance. PMID:22863618

  13. Natural killer T cells in adipose tissue prevent insulin resistance.

    PubMed

    Schipper, Henk S; Rakhshandehroo, Maryam; van de Graaf, Stan F J; Venken, Koen; Koppen, Arjen; Stienstra, Rinke; Prop, Serge; Meerding, Jenny; Hamers, Nicole; Besra, Gurdyal; Boon, Louis; Nieuwenhuis, Edward E S; Elewaut, Dirk; Prakken, Berent; Kersten, Sander; Boes, Marianne; Kalkhoven, Eric

    2012-09-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell-deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue-resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue-resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance.

  14. Insulin resistance: Is it time for primary prevention?

    PubMed

    Mercurio, Valentina; Carlomagno, Guido; Fazio, Valeria; Fazio, Serafino

    2012-01-26

    Insulin resistance is a clinical condition characterized by a decrease in sensitivity and responsiveness to the metabolic actions of insulin, so that a given concentration of insulin produces a less-than-expected biological effect. As a result, higher levels of insulin are needed to maintain normal glucose tolerance. Hyperinsulinemia, indeed, is one of the principal characteristics of insulin resistance states. This feature is common in several pathologic conditions, such as type 2 diabetes, obesity, and dyslipidemia, and it is also a prominent component of hypertension, coronary heart disease, and atherosclerosis. The presence of endothelial dysfunction, related to insulin resistance, plays a key role in the development and progression of atherosclerosis in all of these disorders. Insulin resistance represents the earliest detectable abnormality in type 2 diabetes, and is one of the major underlying mechanisms of hypertension and cardiovascular diseases. Its early detection could be of great importance, in order to set a therapeutic attack and to counteract the higher risk of diabetes and cardiovascular diseases.

  15. Insulin resistance in the liver: Deficiency or excess of insulin?

    PubMed Central

    Bazotte, Roberto B; Silva, Lorena G; Schiavon, Fabiana PM

    2014-01-01

    In insulin-resistant states (obesity, pre-diabetes, and type 2 diabetes), hepatic production of glucose and lipid synthesis are heightened in concert, implying that insulin deficiency and insulin excess coexists in this setting. The fact that insulin may be inadequate or excessive at any one point in differing organs and tissues has many biologic ramifications. In this context the concept of metabolic compartmentalization in the liver is offered herein as one perspective of this paradox. In particular, we focus on the hypothesis that insulin resistance accentuates differences in periportal and perivenous hepatocytes, namely periportal glucose production and perivenous lipid synthesis. Subsequently, excessive production of glucose and accumulation of lipids could be expected in the livers of patients with obesity and insulin resistance. Overall, in this review, we provide our integrative perspective regarding how excessive production of glucose in periportal hepatocytes and accumulation of lipids in perivenous hepatocytes interact in insulin resistant states. PMID:25486190

  16. Initiating insulin therapy in type 2 diabetes: benefits of insulin analogs and insulin pens.

    PubMed

    Brunton, Stephen

    2008-08-01

    Despite the development of alternative therapies in recent years, insulin injections remain essential treatment for type 2 diabetes once oral therapy alone becomes inadequate. However, neither patients nor physicians are proactive enough with regard to starting insulin, despite the well-known benefits of early insulin initiation and aggressive dose titration. Barriers to starting insulin therapy are being overcome by developments in insulin and delivery device technology and are the subject of this review. A literature search spanning the last 25 years was carried out to identify publications addressing issues of insulin initiation, how insulin analogs can help overcome barriers to initiation, and the advantages of pen-type insulin delivery systems. Seventy-five publications were identified. These references illustrate that the drawbacks associated with regular exogenous human insulins (soluble and NPH) are improved with modern insulin analogs. The more rapid absorption of prandial insulin analogs compared with human insulin eliminates the need for an injection-meal-interval, increasing convenience, while basal analogs have no discernible peak in activity. Modern insulin delivery devices also have advantages over the traditional vial and syringe. Currently available insulin pens are either durable (insulin cartridge is replaceable; e.g., HumaPen, Eli Lilly [Indianapolis, IN]; NovoPen series, Novo Nordisk [Bagsvaerd, Denmark]) or disposable (prefilled; e.g., FlexPen, Novo Nordisk; SoloSTAR, sanofi-aventis [Paris, France]), with features to aid ease-of-use. These include a large dose selector, dial-up and dial-down facility, and audible clicks when selecting the dose. The potential for dosing errors is thus reduced with pen-type devices, with other benefits including a discreet appearance, ease of learning, and greater user confidence. Collectively, these features contribute to overwhelming patient preference when compared with vials and syringes. Despite the greater

  17. An update on the treatment of type 1 and type 2 diabetes mellitus: focus on insulin detemir, a long-acting human insulin analog.

    PubMed

    Raslova, Katarina

    2010-06-01

    Basal insulin analogs are used to minimize unpredictable processes of NPH insulin. Modification of the human insulin molecule results in a slower distribution to peripheral target tissues, a longer duration of action with stable concentrations and thus a lower rate of hypoglycemia. Insulin detemir is a basal insulin analog that provides effective therapeutic options for patients with type 1 and type 2 diabetes. For glycemic control, no significant differences were found in HbA1c levels compared with NPH and insulin glargine. It is comparable with insulin glargine in significantly reducing rates of all types of hypoglycemia. Clinical studies have demonstrated that detemir is responsible for significantly lower within-subject variability and no or less weight gain than NPH insulin and glargine. Recent pharmacodynamic studies have shown that detemir can be used once daily in many patients with diabetes. Together with patient-friendly injection devices and dose adjustments, it provides a treatment option with the potential to lower the key barriers of adherence to insulin therapy in type 2 diabetes. Recent guidelines for treatment of type 2 diabetes suggest starting intensive therapy of hyperglycemia at an early stage of diabetes and recommend therapeutic options that provide the possibility of reaching HbA1c goals individually, with a low risk of hypoglycemia or other adverse effects of treatment. The properties of insulin detemir match these requirements.

  18. Insulin secretion from beta cells within intact islets: location matters.

    PubMed

    Hoang Do, Oanh; Thorn, Peter

    2015-04-01

    The control of hormone secretion is central to body homeostasis, and its dysfunction is important in many diseases. The key cellular steps that lead to hormone secretion have been identified, and the stimulus-secretion pathway is understood in outline for many endocrine cells. In the case of insulin secretion from pancreatic beta cells, this pathway involves the uptake of glucose, cell depolarization, calcium entry, and the triggering of the fusion of insulin-containing granules with the cell membrane. The wealth of information on the control of insulin secretion has largely been obtained from isolated single-cell studies. However, physiologically, beta cells exist within the islets of Langerhans, with structural and functional specializations that are not preserved in single-cell cultures. This review focuses on recent work that is revealing distinct aspects of insulin secretion from beta cells within the islet.

  19. Genetics of Insulin Resistance and the Metabolic Syndrome.

    PubMed

    Brown, Audrey E; Walker, Mark

    2016-08-01

    Insulin resistance and the metabolic syndrome are complex metabolic traits and key risk factors for the development of cardiovascular disease. They result from the interplay of environmental and genetic factors but the full extent of the genetic background to these conditions remains incomplete. Large-scale genome-wide association studies have helped advance the identification of common genetic variation associated with insulin resistance and the metabolic syndrome, and more recently, exome sequencing has allowed the identification of rare variants associated with the pathogenesis of these conditions. Many variants associated with insulin resistance are directly involved in glucose metabolism; however, functional studies are required to assess the contribution of other variants to the development of insulin resistance. Many genetic variants involved in the pathogenesis of the metabolic syndrome are associated with lipid metabolism.

  20. Increased insulin translation from an insulin splice-variant overexpressed in diabetes, obesity, and insulin resistance.

    PubMed

    Minn, Alexandra H; Lan, Hong; Rabaglia, Mary E; Harlan, David M; Peculis, Brenda A; Attie, Alan D; Shalev, Anath

    2005-03-01

    Type 2 diabetes occurs when pancreatic beta-cells become unable to compensate for the underlying insulin resistance. Insulin secretion requires beta-cell insulin stores to be replenished by insulin biosynthesis, which is mainly regulated at the translational level. Such translational regulation often involves the 5'-untranslated region. Recently, we identified a human insulin splice-variant (SPV) altering only the 5'-untranslated region and conferring increased translation efficiency. We now describe a mouse SPV (mSPV) that is found in the cytoplasm and exhibits increased translation efficiency resulting in more normal (prepro)insulin protein per RNA. The RNA stability of mSPV is not increased, but the predicted secondary RNA structure is altered, which may facilitate translation. To determine the role of mSPV in insulin resistance and diabetes, mSPV expression was measured by quantitative real-time RT-PCR in islets from three diabetic and/or insulin-resistant, obese and nonobese, mouse models (BTBRob/ob, C57BL/6ob/ob, and C57BL/6azip). Interestingly, mSPV expression was significantly higher in all diabetic/insulin-resistant mice compared with wild-type littermates and was dramatically induced in primary mouse islets incubated at high glucose. This raises the possibility that the mSPV may represent a compensatory beta-cell mechanism to enhance insulin biosynthesis when insulin requirements are elevated by hyperglycemia/insulin resistance.

  1. Small molecule insulin mimetics reduce food intake and body weight and prevent development of obesity.

    PubMed

    Air, Ellen L; Strowski, Mathias Z; Benoit, Stephen C; Conarello, Stacey L; Salituro, Gino M; Guan, Xiao-Ming; Liu, Kun; Woods, Stephen C; Zhang, Bei B

    2002-02-01

    Obesity and insulin resistance are major risk factors for a number of metabolic disorders, such as type 2 diabetes mellitus. Insulin has been suggested to function as one of the adiposity signals to the brain for modulation of energy balance. Administration of insulin into the brain reduces food intake and body weight, and mice with a genetic deletion of neuronal insulin receptors are hyperphagic and obese. However, insulin is also an anabolic factor; when administered systemically, pharmacological levels of insulin are associated with body weight gain in patients. In this study, we investigated the efficacy and feasibility of small molecule insulin mimetic compounds to regulate key parameters of energy homeostasis. Central intracerebroventricular (i.c.v.) administration of an insulin mimetic resulted in a dose-dependent reduction of food intake and body weight in rats, and altered the expression of hypothalamic genes known to regulate food intake and body weight. Oral administration of a mimetic in a mouse model of high-fat diet-induced obesity reduced body weight gain, adiposity and insulin resistance. Thus, insulin mimetics have a unique advantage over insulin in the control of body weight and hold potential as a novel anti-obesity treatment.

  2. 10 CFR 95.18 - Key personnel.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY CLEARANCE AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION AND RESTRICTED DATA Physical Security § 95.18 Key personnel. The senior management official and the Facility Security Officer must always be cleared to a level commensurate with the...

  3. Inhibition of insulin receptor gene expression and insulin signaling by fatty acid: interplay of PKC isoforms therein.

    PubMed

    Dey, Debleena; Mukherjee, Mohua; Basu, Dipanjan; Datta, Malabika; Roy, Sib Sankar; Bandyopadhyay, Arun; Bhattacharya, Samir

    2005-01-01

    Fatty acids are known to play a key role in promoting the loss of insulin sensitivity causing insulin resistance and type 2 diabetes. However, underlying mechanism involved here is still unclear. Incubation of rat skeletal muscle cells with palmitate followed by I(125)- insulin binding to the plasma membrane receptor preparation demonstrated a two-fold decrease in receptor occupation. In searching the cause for this reduction, we found that palmitate inhibition of insulin receptor (IR) gene expression effecting reduced amount of IR protein in skeletal muscle cells. This was followed by the inhibition of insulin-stimulated IRbeta tyrosine phosphorylation that consequently resulted inhibition of insulin receptor substrate 1 (IRS 1) and IRS 1 associated phosphatidylinositol-3 kinase (PI3 Kinase), phosphoinositide dependent kinase-1 (PDK 1) phosphorylation. PDK 1 dependent phosphorylation of PKCzeta and Akt/PKB were also inhibited by palmitate. Surprisingly, although PKCepsilon phosphorylation is PDK1 dependent, palmitate effected its constitutive phosphorylation independent of PDK1. Time kinetics study showed translocation of palmitate induced phosphorylated PKCepsilon from cell membrane to nuclear region and its possible association with the inhibition of IR gene transcription. Our study suggests one of the pathways through which fatty acid can induce insulin resistance in skeletal muscle cell.

  4. Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons

    USDA-ARS?s Scientific Manuscript database

    Glucagon-like peptides (GLP-1/GLP-2) are coproduced and highlighted as key modulators to improve glucose homeostasis and insulin sensitivity after bariatric surgery. However, it is unknown if CNS GLP-2 plays any physiological role in the control of glucose homeostasis and insulin sensitivity. We sho...

  5. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance

    USDA-ARS?s Scientific Manuscript database

    Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammat...

  6. Leptin, Insulin, and Cinnamon Polyphenols Attenuate Glial Swelling and Mitochondrial Dysfunction in Ischemic Injury

    USDA-ARS?s Scientific Manuscript database

    Obesity is a major risk factor for stroke, and tissue injury following a stroke may be more severe in the obese. A key feature of obesity is increased serum levels of obesity-related hormones including leptin and insulin, indicating a state of resistance to these hormones. Insulin resistance is gen...

  7. Dopamine-Mediated Autocrine Inhibitory Circuit Regulating Human Insulin Secretion in Vitro

    PubMed Central

    Simpson, Norman; Maffei, Antonella; Freeby, Matthew; Burroughs, Steven; Freyberg, Zachary; Javitch, Jonathan; Leibel, Rudolph L.

    2012-01-01

    We describe a negative feedback autocrine regulatory circuit for glucose-stimulated insulin secretion in purified human islets in vitro. Using chronoamperometry and in vitro glucose-stimulated insulin secretion measurements, evidence is provided that dopamine (DA), which is loaded into insulin-containing secretory granules by vesicular monoamine transporter type 2 in human β-cells, is released in response to glucose stimulation. DA then acts as a negative regulator of insulin secretion via its action on D2R, which are also expressed on β-cells. We found that antagonism of receptors participating in islet DA signaling generally drive increased glucose-stimulated insulin secretion. These in vitro observations may represent correlates of the in vivo metabolic changes associated with the use of atypical antipsychotics, such as increased adiposity. PMID:22915827

  8. Selective insulin resistance in adipocytes.

    PubMed

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H; Fazakerley, Daniel J; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C; Coster, Adelle C F; Stöckli, Jacqueline; James, David E

    2015-05-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Selective Insulin Resistance in Adipocytes*

    PubMed Central

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H.; Fazakerley, Daniel J.; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C.; Coster, Adelle C. F.; Stöckli, Jacqueline; James, David E.

    2015-01-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. PMID:25720492

  10. Transdermal Insulin Delivery Using Microdermabrasion

    PubMed Central

    Andrews, Samantha; Lee, Jeong Woo; Choi, Seong-O

    2011-01-01

    Purpose Transdermal insulin delivery is an attractive needle-free alternative to subcutaneous injection conventionally used to treat diabetes. However, skin’s barrier properties prevent insulin permeation at useful levels. Methods We investigated whether microdermabrasion can selectively remove skin’s surface layers to increase skin permeability as a method to administer insulin to diabetic rats. We further assessed the relative roles of stratum corneum and viable epidermis as barriers to insulin delivery. Results Pretreatment of skin with microdermabrasion to selectively remove stratum corneum did not have a significant effect on insulin delivery or reduction in blood glucose level (BGL). Removal of full epidermis by microdermabrasion significantly reduced BGL, similar to the positive control involving subcutaneous injection of 0.1U insulin. Significant pharmacokinetic differences between microdermabrasion and subcutaneous injection were faster time to peak insulin concentration after injection and larger peak insulin concentration and area-under-the-curve after microdermabrasion. Conclusions Microdermabrasion can increase skin permeability to insulin at levels sufficient to reduce BGL. Viable epidermis is a barrier to insulin delivery such that removal of full epidermis enables significantly more insulin delivery than removal of stratum corneum alone. PMID:21499837

  11. Protein kinase C-alpha regulates insulin action and degradation by interacting with insulin receptor substrate-1 and 14-3-3 epsilon.

    PubMed

    Oriente, Francesco; Andreozzi, Francesco; Romano, Chiara; Perruolo, Giuseppe; Perfetti, Anna; Fiory, Francesca; Miele, Claudia; Beguinot, Francesco; Formisano, Pietro

    2005-12-09

    Protein kinase C (PKC)-alpha exerts a regulatory function on insulin action. We showed by overlay blot that PKCalpha directly binds a 180-kDa protein, corresponding to IRS-1, and a 30-kDa molecular species, identified as 14-3-3epsilon. In intact NIH-3T3 cells overexpressing insulin receptors (3T3-hIR), insulin selectively increased PKCalpha co-precipitation with IRS-1, but not with IRS-2, and with 14-3-3epsilon, but not with other 14-3-3 isoforms. Overexpression of 14-3-3epsilon in 3T3-hIR cells significantly reduced IRS-1-bound PKCalpha activity, without altering IRS-1/PKCalpha co-precipitation. 14-3-3epsilon overexpression also increased insulin-stimulated insulin receptor and IRS-1 tyrosine phosphorylation, followed by increased activation of Raf1, ERK1/2, and Akt/protein kinase B. Insulin-induced glycogen synthase activity and thymidine incorporation were also augmented. Consistently, selective depletion of 14-3-3epsilon by antisense oligonucleotides caused a 3-fold increase of IRS-1-bound PKCalpha activity and a similarly sized reduction of insulin receptor and IRS-1 tyrosine phosphorylation and signaling. In turn, selective inhibition of PKCalpha expression by antisense oligonucleotides reverted the negative effect of 14-3-3epsilon depletion on insulin signaling. Moreover, PKCalpha inhibition was accompanied by a >2-fold decrease of insulin degradation. Similar results were also obtained by overexpressing 14-3-3epsilon. Thus, in NIH-3T3 cells, insulin induces the formation of multimolecular complexes, including IRS-1, PKCalpha, and 14-3-3epsilon. The presence of 14-3-3epsilon in the complex is not necessary for IRS-1/PKCalpha interaction but modulates PKCalpha activity, thereby regulating insulin signaling and degradation.

  12. Increased P85alpha is a potent negative regulator of skeletal muscle insulin signaling and induces in vivo insulin resistance associated with growth hormone excess.

    PubMed

    Barbour, Linda A; Mizanoor Rahman, Shaikh; Gurevich, Inga; Leitner, J Wayne; Fischer, Stephanie J; Roper, Michael D; Knotts, Trina A; Vo, Yen; McCurdy, Carrie E; Yakar, Shoshana; Leroith, Derek; Kahn, C Ronald; Cantley, Lewis C; Friedman, Jacob E; Draznin, Boris

    2005-11-11

    Insulin resistance is a cardinal feature of normal pregnancy and excess growth hormone (GH) states, but its underlying mechanism remains enigmatic. We previously found a significant increase in the p85 regulatory subunit of phosphatidylinositol kinase (PI 3-kinase) and striking decrease in IRS-1-associated PI 3-kinase activity in the skeletal muscle of transgenic animals overexpressing human placental growth hormone. Herein, using transgenic mice bearing deletions in p85alpha, p85beta, or insulin-like growth factor-1, we provide novel evidence suggesting that overexpression of p85alpha is a primary mechanism for skeletal muscle insulin resistance in response to GH. We found that the excess in total p85 was entirely accounted for by an increase in the free p85alpha-specific isoform. In mice with a liver-specific deletion in insulin-like growth factor-1, excess GH caused insulin resistance and an increase in skeletal muscle p85alpha, which was completely reversible using a GH-releasing hormone antagonist. To understand the role of p85alpha in GH-induced insulin resistance, we used mice bearing deletions of the genes coding for p85alpha or p85beta, respectively (p85alpha (+/-) and p85beta(-/-)). Wild type and p85beta(-/-) mice developed in vivo insulin resistance and demonstrated overexpression of p85alpha and reduced insulin-stimulated PI 3-kinase activity in skeletal muscle in response to GH. In contrast, p85alpha(+/-)mice retained global insulin sensitivity and PI 3-kinase activity associated with reduced p85alpha expression. These findings demonstrated the importance of increased p85alpha in mediating skeletal muscle insulin resistance in response to GH and suggested a potential role for reducing p85alpha as a therapeutic strategy for enhancing insulin sensitivity in skeletal muscle.

  13. Overexpression of the LAR (leukocyte antigen-related) protein-tyrosine phosphatase in muscle causes insulin resistance

    PubMed Central

    Zabolotny, Janice M.; Kim, Young-Bum; Peroni, Odile D.; Kim, Jason K.; Pani, Michael A.; Boss, Olivier; Klaman, Lori D.; Kamatkar, Shubhangi; Shulman, Gerald I.; Kahn, Barbara B.; Neel, Benjamin G.

    2001-01-01

    Previous reports indicate that the expression and/or activity of the protein-tyrosine phosphatase (PTP) LAR are increased in insulin-responsive tissues of obese, insulin-resistant humans and rodents, but it is not known whether these alterations contribute to the pathogenesis of insulin resistance. To address this question, we generated transgenic mice that overexpress human LAR, specifically in muscle, to levels comparable to those reported in insulin-resistant humans. In LAR-transgenic mice, fasting plasma insulin was increased 2.5-fold compared with wild-type controls, whereas fasting glucose was normal. Whole-body glucose disposal and glucose uptake into muscle in vivo were reduced by 39–50%. Insulin injection resulted in normal tyrosyl phosphorylation of the insulin receptor and insulin receptor substrate 1 (IRS-1) in muscle of transgenic mice. However, phosphorylation of IRS-2 was reduced by 62%, PI3′ kinase activity associated with phosphotyrosine, IRS-1, or IRS-2 was reduced by 34–57%, and association of p85α with both IRS proteins was reduced by 39–52%. Thus, overexpression of LAR in muscle causes whole-body insulin resistance, most likely due to dephosphorylation of specific regulatory phosphotyrosines on IRS proteins. Our data suggest that increased expression and/or activity of LAR or related PTPs in insulin target tissues of obese humans may contribute to the pathogenesis of insulin resistance. PMID:11309481

  14. [Current concept of insulin therapy intensification, and the role of human regular insulin and rapid-acting insulin analogs in insulin treatment].

    PubMed

    Hamaguchi, Tomoya; Sadahiro, Katsuhiko; Satoh, Tomomi

    2015-03-01

    The evolution of insulin therapy from animal insulin to recombinant human regular insulin has improved diabetes treatment. Generating of rapid-acting insulin analogs, mimicking physiologic insulin action enables us to provide better control of post-prandial glucose level and lower incidence of hypoglycemia compared with human regular insulin. These rapid-acting insulin analogs show lower susceptibility of insulin precipitation and catheter occlusions, and are suitable for insulin pump therapy of continuous subcutaneous insulin infusion. Insulin lispro and insulin aspart are also applicable for diabetic patients with pregnancy, requiring excellent glycemic control. In some studies, stepwise addition of prandial insulin, as well as full basal-bolus regimen can improve glycemic control with less hypoglycemia. Treatment intensification with rapid-acting insulin analogs may offer a proper method to reach glycemic goals.

  15. p75 neurotrophin receptor regulates glucose homeostasis and insulin sensitivity

    PubMed Central

    Baeza-Raja, Bernat; Li, Pingping; Le Moan, Natacha; Sachs, Benjamin D.; Schachtrup, Christian; Davalos, Dimitrios; Vagena, Eirini; Bridges, Dave; Kim, Choel; Saltiel, Alan R.; Olefsky, Jerrold M.; Akassoglou, Katerina

    2012-01-01

    Insulin resistance is a key factor in the etiology of type 2 diabetes. Insulin-stimulated glucose uptake is mediated by the glucose transporter 4 (GLUT4), which is expressed mainly in skeletal muscle and adipose tissue. Insulin-stimulated translocation of GLUT4 from its intracellular compartment to the plasma membrane is regulated by small guanosine triphosphate hydrolases (GTPases) and is essential for the maintenance of normal glucose homeostasis. Here we show that the p75 neurotrophin receptor (p75NTR) is a regulator of glucose uptake and insulin resistance. p75NTR knockout mice show increased insulin sensitivity on normal chow diet, independent of changes in body weight. Euglycemic-hyperinsulinemic clamp studies demonstrate that deletion of the p75NTR gene increases the insulin-stimulated glucose disposal rate and suppression of hepatic glucose production. Genetic depletion or shRNA knockdown of p75NTR in adipocytes or myoblasts increases insulin-stimulated glucose uptake and GLUT4 translocation. Conversely, overexpression of p75NTR in adipocytes decreases insulin-stimulated glucose transport. In adipocytes, p75NTR forms a complex with the Rab5 family GTPases Rab5 and Rab31 that regulate GLUT4 trafficking. Rab5 and Rab31 directly interact with p75NTR primarily via helix 4 of the p75NTR death domain. Adipocytes from p75NTR knockout mice show increased Rab5 and decreased Rab31 activities, and dominant negative Rab5 rescues the increase in glucose uptake seen in p75NTR knockout adipocytes. Our results identify p75NTR as a unique player in glucose metabolism and suggest that signaling from p75NTR to Rab5 family GTPases may represent a unique therapeutic target for insulin resistance and diabetes. PMID:22460790

  16. Melatonin-insulin interactions in patients with metabolic syndrome.

    PubMed

    Robeva, R; Kirilov, G; Tomova, A; Kumanov, Ph

    2008-01-01

    Metabolic syndrome (MS) as a group of risk factors is strongly associated with diabetes type 2 and cardiovascular disease. Insulin resistance plays a key role in the pathogenesis of MS. Recent studies have shown that melatonin may influence insulin secretion and glucose homeostasis. Therefore, the present study analyzed the relationships between the melatonin and the insulin in patients with MS and controls. The melatonin rhythm, insulin and lipid levels were studied in 40 subjects (21 patients and 19 controls) in reproductive age. The night melatonin-insulin ratio was correlated negatively with low-density lipoprotein cholesterol (r = -0.370, p = 0.024) and total cholesterol (r = -0.348, p = 0.030), and positively with high-density lipoprotein cholesterol levels (r = +0.414, p = 0.010). Night-time melatonin levels were related to night-time insulin concentrations (r = +0.313, p = 0.049). The correlation was pronounced in patients with MS (r = +0.640, p = 0.002), but did not reach statistical significance in controls (P > 0.05). In the patients with MS unlike the controls the night-day melatonin difference (%) correlated negatively with the fasting glucose (r = -0.494, p = 0.023) and positively to daily insulin (r = +0.536, p = 0.012). Our results show that melatonin-insulin interactions may exist in patients with MS, as well as relationships between melatonin-insulin ratio and the lipid profile. Pineal disturbances could influence the pathogenesis and the phenotype variations of the MS. Larger studies are needed to confirm or reject this hypothesis and to clarify the role of the melatonin in the metabolic disturbances.

  17. Comparison of the physiological relevance of systemic vs. portal insulin delivery to evaluate whole body glucose flux during an insulin clamp

    PubMed Central

    Farmer, Tiffany D.; Jenkins, Erin C.; O'Brien, Tracy P.; McCoy, Gregory A.; Havlik, Allison E.; Nass, Erik R.; Nicholson, Wendell E.; Printz, Richard L.

    2014-01-01

    To understand the underlying pathology of metabolic diseases, such as diabetes, an accurate determination of whole body glucose flux needs to be made by a method that maintains key physiological features. One such feature is a positive differential in insulin concentration between the portal venous and systemic arterial circulation (P/S-IG). P/S-IG during the determination of the relative contribution of liver and extra-liver tissues/organs to whole body glucose flux during an insulin clamp with either systemic (SID) or portal (PID) insulin delivery was examined with insulin infusion rates of 1, 2, and 5 mU·kg−1·min−1 under either euglycemic or hyperglycemic conditions in 6-h-fasted conscious normal rats. A P/S-IG was initially determined with endogenous insulin secretion to exist with a value of 2.07. During an insulin clamp, while inhibiting endogenous insulin secretion by somatostatin, P/S-IG remained at 2.2 with PID, whereas, P/S-IG disappeared completely with SID, which exhibited higher arterial and lower portal insulin levels compared with PID. Consequently, glucose disappearance rates and muscle glycogen synthetic rates were higher, but suppression of endogenous glucose production and liver glycogen synthetic rates were lower with SID compared with PID. When the insulin clamp was performed with SID at 2 and 5 mU·kg−1·min−1 without managing endogenous insulin secretion under euglycemic but not hyperglycemic conditions, endogenous insulin secretion was completely suppressed with SID, and the P/S-IG disappeared. Thus, compared with PID, an insulin clamp with SID underestimates the contribution of liver in response to insulin to whole body glucose flux. PMID:25516552

  18. Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase.

    PubMed

    Li, Changhong; Allen, Aron; Kwagh, Jae; Doliba, Nicolai M; Qin, Wei; Najafi, Habiba; Collins, Heather W; Matschinsky, Franz M; Stanley, Charles A; Smith, Thomas J

    2006-04-14

    Insulin secretion by pancreatic beta-cells is stimulated by glucose, amino acids, and other metabolic fuels. Glutamate dehydrogenase (GDH) has been shown to play a regulatory role in this process. The importance of GDH was underscored by features of hyperinsulinemia/hyperammonemia syndrome, where a dominant mutation causes the loss of inhibition by GTP and ATP. Here we report the effects of green tea polyphenols on GDH and insulin secretion. Of the four compounds tested, epigallocatechin gallate (EGCG) and epicatechin gallate were found to inhibit GDH with nanomolar ED(50) values and were therefore found to be as potent as the physiologically important inhibitor GTP. Furthermore, we have demonstrated that EGCG inhibits BCH-stimulated insulin secretion, a process that is mediated by GDH, under conditions where GDH is no longer inhibited by high energy metabolites. EGCG does not affect glucose-stimulated insulin secretion under high energy conditions where GDH is probably fully inhibited. We have further shown that these compounds act in an allosteric manner independent of their antioxidant activity and that the beta-cell stimulatory effects are directly correlated with glutamine oxidation. These results demonstrate that EGCG, much like the activator of GDH (BCH), can facilitate dissecting the complex regulation of insulin secretion by pharmacologically modulating the effects of GDH.

  19. Insulin treatment of type 2 diabetes: considerations when converting from human insulin to insulin analogs.

    PubMed

    Griffin, Stacy

    2013-03-01

    Type 2 diabetes mellitus is a highly prevalent disease characterized by insulin resistance, hyperglycemia, and diminished pancreatic β-cell function. Conventional insulin products used to manage this disease include regular human insulin and intermediate-acting human insulin. However, due to several limitations imposed by human insulins, such as onset and duration of action that do not coincide with physiologic needs and increased risk of hypoglycemia, insulin analogs were developed. Because they more closely mimic the physiologic action of endogenous insulin, insulin analogs are associated with more effective glucose control, a lower risk of hypoglycemia, greater convenience, and, in some instances, less weight gain. Switching from human insulin to insulin analogs is easily accomplished. Several studies have demonstrated a high rate of success with patient-initiated, self-adjusted dosing algorithms compared to investigator/clinician-initiated dose adjustments. These studies and several other published guidelines on insulin analogs provide patients and clinicians with information pertaining to better treatment options and can help increase overall patient satisfaction.

  20. [Phylogenesis, etiology and pathogenesis of insulin resistance. Differences from type II diabetes mellitus].

    PubMed

    Titov, V N

    2012-01-01

    We believe that etiological factor of insulin resistance is phylogenetically late formation of insulin and its specific functionality, i.e., providing energy substrates for the biological function of locomotion. According to biological subordination, insulin cannot change regulation formed at the early stages of phylogenesis in all cells, including those that become insulin-dependent at the late stages of phylogenesis. This involves a) beta-oxidation of fatty acids in the mitochondria, b) synthesis of C 16:0 palmitic saturated fatty acid, c) glucose metabolism in pro- and eukaryotes, d) regulation of biochemical reactions in insulin-independent cells, e) humoral effects of mediators at the level of paracrine cell communities which are structural and functional units of all internal organs, and f) hormonal regulation at the entire organism level. Pathogenetic factors of insulin resistance are biochemical and functional disorders occurring in vivo upon activation of biological functions and reactions that formed phylogenetically earlier than insulin. During phylogenesis the insulin system has intrinsically built up over the regulatory mechanisms of mitochondria, early unicellular organisms and paracrine cell communities. Insulin functionally interacts with them all, but it cannot abolish the effects of any phylogenetically earlier humoral mediator. Insulin resistance is a pathophysiological disparity between humoral regulation of metabolism at the level of phylogenetically earlier paracrine cell communities and at the level of phylogenetically late total organism, on the one hand, and successive phylogenetic formation of passive cellular uptake of fatty acids as unesterified fatty acids and later triglycerides, on the other. If insulin resistance results from changes in the primary structure of transport proteins, in glucose storage and cellular insulin reception, it can be referred to as type II diabetes mellitus.

  1. Regulatory RNAs in Planarians.

    PubMed

    Pawlicka, Kamila; Perrigue, Patrick M; Barciszewski, Jan

    2016-01-01

    The full scope of regulatory RNA evolution and function in epigenetic processes is still not well understood. The development of planarian flatworms to be used as a simple model organism for research has shown a great potential to address gaps in the knowledge in this field of study. The genomes of planarians encode a wide array of regulatory RNAs that function in gene regulation. Here, we review planarians as a suitable model organism for the identification and function of regulatory RNAs.

  2. Understanding genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Kauffman, Stuart

    2003-04-01

    Random Boolean networks (RBM) were introduced about 35 years ago as first crude models of genetic regulatory networks. RBNs are comprised of N on-off genes, connected by a randomly assigned regulatory wiring diagram where each gene has K inputs, and each gene is controlled by a randomly assigned Boolean function. This procedure samples at random from the ensemble of all possible NK Boolean networks. The central ideas are to study the typical, or generic properties of this ensemble, and see 1) whether characteristic differences appear as K and biases in Boolean functions are introducted, and 2) whether a subclass of this ensemble has properties matching real cells. Such networks behave in an ordered or a chaotic regime, with a phase transition, "the edge of chaos" between the two regimes. Networks with continuous variables exhibit the same two regimes. Substantial evidence suggests that real cells are in the ordered regime. A key concept is that of an attractor. This is a reentrant trajectory of states of the network, called a state cycle. The central biological interpretation is that cell types are attractors. A number of properties differentiate the ordered and chaotic regimes. These include the size and number of attractors, the existence in the ordered regime of a percolating "sea" of genes frozen in the on or off state, with a remainder of isolated twinkling islands of genes, a power law distribution of avalanches of gene activity changes following perturbation to a single gene in the ordered regime versus a similar power law distribution plus a spike of enormous avalanches of gene changes in the chaotic regime, and the existence of branching pathway of "differentiation" between attractors induced by perturbations in the ordered regime. Noise is serious issue, since noise disrupts attractors. But numerical evidence suggests that attractors can be made very stable to noise, and meanwhile, metaplasias may be a biological manifestation of noise. As we learn more

  3. Insulin and Metabolic Stress Stimulate Multisite Serine/Threonine Phosphorylation of Insulin Receptor Substrate 1 and Inhibit Tyrosine Phosphorylation*

    PubMed Central

    Hançer, Nancy J.; Qiu, Wei; Cherella, Christine; Li, Yedan; Copps, Kyle D.; White, Morris F.

    2014-01-01

    IRS1 and IRS2 are key substrates of the insulin receptor tyrosine kinase. Mass spectrometry reveals more than 50 phosphorylated IRS1 serine and threonine residues (Ser(P)/Thr(P) residues) in IRS1 from insulin-stimulated cells or human tissues. We investigated a subset of IRS1 Ser(P)/Thr(P) residues using a newly developed panel of 25 phospho-specific monoclonal antibodies (αpS/TmAbIrs1). CHO cells overexpressing the human insulin receptor and rat IRS1 were stimulated with insulin in the absence or presence of inhibitors of the PI3K → Akt → mechanistic target of rapamycin (mTOR) → S6 kinase or MEK pathways. Nearly all IRS1 Ser(P)/Thr(P) residues were stimulated by insulin and significantly suppressed by PI3K inhibition; fewer were suppressed by Akt or mTOR inhibition, and none were suppressed by MEK inhibition. Insulin-stimulated Irs1 tyrosine phosphorylation (Tyr(P)Irs1) was enhanced by inhibition of the PI3K → Akt → mTOR pathway and correlated with decreased Ser(P)-302Irs1, Ser(P)-307Irs1, Ser(P)-318Irs1, Ser(P)-325Irs1, and Ser(P)-346Irs1. Metabolic stress modeled by anisomycin, thapsigargin, or tunicamycin increased many of the same Ser(P)/Thr(P) residues as insulin, some of which (Ser(P)-302Irs1, Ser(P)-307Irs1, and four others) correlated significantly with impaired insulin-stimulated Tyr(P)Irs1. Thus, IRS1 Ser(P)/Thr(P) is an integrated response to insulin stimulation and metabolic stress, which associates with reduced Tyr(P)Irs1 in CHOIR/IRS1 cells. PMID:24652289

  4. Insulin and metabolic stress stimulate multisite serine/threonine phosphorylation of insulin receptor substrate 1 and inhibit tyrosine phosphorylation.

    PubMed

    Hançer, Nancy J; Qiu, Wei; Cherella, Christine; Li, Yedan; Copps, Kyle D; White, Morris F

    2014-05-02

    IRS1 and IRS2 are key substrates of the insulin receptor tyrosine kinase. Mass spectrometry reveals more than 50 phosphorylated IRS1 serine and threonine residues (Ser(P)/Thr(P) residues) in IRS1 from insulin-stimulated cells or human tissues. We investigated a subset of IRS1 Ser(P)/Thr(P) residues using a newly developed panel of 25 phospho-specific monoclonal antibodies (αpS/TmAb(Irs1)). CHO cells overexpressing the human insulin receptor and rat IRS1 were stimulated with insulin in the absence or presence of inhibitors of the PI3K → Akt → mechanistic target of rapamycin (mTOR) → S6 kinase or MEK pathways. Nearly all IRS1 Ser(P)/Thr(P) residues were stimulated by insulin and significantly suppressed by PI3K inhibition; fewer were suppressed by Akt or mTOR inhibition, and none were suppressed by MEK inhibition. Insulin-stimulated Irs1 tyrosine phosphorylation (Tyr(P)(Irs1)) was enhanced by inhibition of the PI3K → Akt → mTOR pathway and correlated with decreased Ser(P)-302(Irs1), Ser(P)-307(Irs1), Ser(P)-318(Irs1), Ser(P)-325(Irs1), and Ser(P)-346(Irs1). Metabolic stress modeled by anisomycin, thapsigargin, or tunicamycin increased many of the same Ser(P)/Thr(P) residues as insulin, some of which (Ser(P)-302(Irs1), Ser(P)-307(Irs1), and four others) correlated significantly with impaired insulin-stimulated Tyr(P)(Irs1). Thus, IRS1 Ser(P)/Thr(P) is an integrated response to insulin stimulation and metabolic stress, which associates with reduced Tyr(P)(Irs1) in CHO(IR)/IRS1 cells.

  5. Effect of adiponectin on the steroidogenic acute regulatory protein, P450 side chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase gene expression, progesterone and androstenedione production by the porcine uterus during early pregnancy.

    PubMed

    Smolinska, N; Dobrzyn, K; Kiezun, M; Szeszko, K; Maleszka, A; Kaminski, T

    2016-06-01

    Adiponectin and its receptors are expressed in the human and porcine uterus and this endocrine system has important role in the regulation of reproductive processes. The expression of steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase (HSD3B1) were observed in the human and porcine uterus during the oestrous cycle and pregnancy. The de novo synthesis of steroids in the uterus might be a crucial factor for effective implantation and maintenance of pregnancy. We hypothesized that adiponectin modulates the expression of key enzymes in the synthesis of the steroids: StAR, P450 side chain cleavage enzyme (CYP11A1) and HSD3B1, as well as progesterone (P4) and androstenedione (A4) secretion by the porcine uterus. Endometrial and myometrial explants harvested from gilts (n = 5) on days 10 to 11, 12 to 13, 15 to 16 and 27 to 28 of pregnancy and on days 10 to 11 of the oestrous cycle were cultured in vitro in the presence of adiponectin (1, 10 μg/ml), adiponectin with insulin (10 ng/ml) and insulin alone (10 ng/ml). Gene expression was examined by real-time PCR, and the secretion of the steroids was determined by radioimmunoassay. The content of StAR, CYP11A1 and HSD3B1 mRNAs and the secretion of P4 and A4 was modulated by adiponectin in endometrial and myometrial tissue explants during early pregnancy and the oestrous cycle. In this action adiponectin interacted with insulin. Insulin itself also regulated the steroidogenic activity of the porcine uterus. ere we reported, for the first time, the expression of CYP11A1 genes in the porcine endometrium and myometrium. Our novel findings indicate that adiponectin affects basal and insulin-stimulated expression of key steroidogenic genes and production of steroid hormones by the porcine uterus during maternal recognition of pregnancy and implantation.

  6. Regulatory Information By Sector

    EPA Pesticide Factsheets

    Find environmental regulatory, compliance, & enforcement information for various business, industry and government sectors, listed by NAICS code. Sectors include agriculture, automotive, petroleum manufacturing, oil & gas extraction & other manufacturing

  7. Variability of NPH insulin preparations.

    PubMed

    Belmonte, M M; Colle, E; DeBelle, R; Murthy, D Y

    1971-01-23

    In 1968-69 certain juvenile diabetics receiving NPH insulin began having pre-breakfast glucosuria and mid-morning hypoglycemic reactions. A mail survey of our clinic population and a study done at the Quebec camp for diabetic children in 1969 revealed that certain lot numbers were associated with poor control and that a change to new lot numbers or alternate insulin preparations resulted in better control. "Suspect" insulin preparations and non-suspect insulins were given to newly diagnosed diabetics, and plasma insulin and glucose levels were measured over a 24-hour period. The data confirmed that the "suspect" insulins were causing early hypoglycemia and failing to control hyperglycemia during the latter hours of the 24-hour period. The lower glucose levels were associated with higher plasma insulin levels. The "suspect" insulins were further found to have elevated levels of free insulin in the supernatant fluid.The requirements for quality control of modified insulin preparations are reviewed and suggestions are offered for their improvement.

  8. Insulin receptor in Drosophila melanogaster

    SciTech Connect

    Petruzzelli, L.; Herrera, R.; Rosen, O.

    1986-05-01

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound /sup 125/I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to /sup 125/I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to /sup 125/I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development.

  9. Administration technique and storage of disposable insulin pens reported by patients with diabetes.

    PubMed

    Mitchell, Virginia D; Porter, Kyle; Beatty, Stuart J

    2012-01-01

    The purpose of the study was to evaluate insulin injection technique and storage of insulin pens as reported by patients with diabetes and to compare correct pen use to initial education on injection technique, hemoglobin A1C, duration of insulin therapy, and duration of insulin pen. Cross-sectional questionnaire orally administered to patients at a university-affiliated primary care practice. Subjects were patients with diabetes who were 18 years or older and prescribed a disposable insulin pen for at least 4 weeks. A correct usage score was calculated for each patient based on manufacturer recommendations for disposable insulin pen use. Associations were made between the correct usage score and certainty in technique, initial education, years of insulin therapy, duration of pen use, and hemoglobin A1C. Sixty-seven patients completed the questionnaire, reporting total use of 94 insulin pens. The 3 components most often neglected by patients were priming pen needle, holding for specific count time before withdrawal of pen needle from skin, and storing an in-use pen. For three-fourths of the insulin pens being used, users did not follow the manufacturer's instructions for proper administration and storage of insulin pens. Correct usage scores were significantly higher if initial education on insulin pens was performed by a pharmacist or nurse. The majority of patients may be ignoring or unaware of key components for consistent insulin dosing using disposable insulin pens; therefore, initial education and reeducation on correct use of disposable insulin pens by health care professionals are needed.

  10. Insulin analog with additional disulfide bond has increased stability and preserved activity

    PubMed Central

    Vinther, Tine N; Norrman, Mathias; Ribel, Ulla; Huus, Kasper; Schlein, Morten; Steensgaard, Dorte B; Pedersen, Thomas Å; Pettersson, Ingrid; Ludvigsen, Svend; Kjeldsen, Thomas; Jensen, Knud J; Hubálek, František

    2013-01-01

    Insulin is a key hormone controlling glucose homeostasis. All known vertebrate insulin analogs have a classical structure with three 100% conserved disulfide bonds that are essential for structural stability and thus the function of insulin. It might be hypothesized that an additional disulfide bond may enhance insulin structural stability which would be highly desirable in a pharmaceutical use. To address this hypothesis, we designed insulin with an additional interchain disulfide bond in positions A10/B4 based on Cα-Cα distances, solvent exposure, and side-chain orientation in human insulin (HI) structure. This insulin analog had increased affinity for the insulin receptor and apparently augmented glucodynamic potency in a normal rat model compared with HI. Addition of the disulfide bond also resulted in a 34.6°C increase in melting temperature and prevented insulin fibril formation under high physical stress even though the C-terminus of the B-chain thought to be directly involved in fibril formation was not modified. Importantly, this analog was capable of forming hexamer upon Zn addition as typical for wild-type insulin and its crystal structure showed only minor deviations from the classical insulin structure. Furthermore, the additional disulfide bond prevented this insulin analog from adopting the R-state conformation and thus showing that the R-state conformation is not a prerequisite for binding to insulin receptor as previously suggested. In summary, this is the first example of an insulin analog featuring a fourth disulfide bond with increased structural stability and retained function. PMID:23281053

  11. Pitfalls of Insulin Pump Clocks

    PubMed Central

    Reed, Amy J.

    2014-01-01

    The objective was to raise awareness about the importance of ensuring that insulin pumps internal clocks are set up correctly at all times. This is a very important safety issue because all commercially available insulin pumps are not GPS-enabled (though this is controversial), nor equipped with automatically adjusting internal clocks. Special attention is paid to how basal and bolus dose errors can be introduced by daylight savings time changes, travel across time zones, and am-pm clock errors. Correct setting of insulin pump internal clock is crucial for appropriate insulin delivery. A comprehensive literature review is provided, as are illustrative cases. Incorrect setting can potentially result in incorrect insulin delivery, with potential harmful consequences, if too much or too little insulin is delivered. Daylight saving time changes may not significantly affect basal insulin delivery, given the triviality of the time difference. However, bolus insulin doses can be dramatically affected. Such problems may occur when pump wearers have large variations in their insulin to carb ratio, especially if they forget to change their pump clock in the spring. More worrisome than daylight saving time change is the am-pm clock setting. If this setting is set up incorrectly, both basal rates and bolus doses will be affected. Appropriate insulin delivery through insulin pumps requires correct correlation between dose settings and internal clock time settings. Because insulin pumps are not GPS-enabled or automatically time-adjusting, extra caution should be practiced by patients to ensure correct time settings at all times. Clinicians and diabetes educators should verify the date/time of insulin pumps during patients’ visits, and should remind their patients to always verify these settings. PMID:25355713

  12. Central Resistin Overexposure Induces Insulin Resistance Through Toll-Like Receptor 4

    PubMed Central

    Benomar, Yacir; Gertler, Arieh; De Lacy, Pamela; Crépin, Delphine; Ould Hamouda, Hassina; Riffault, Laure; Taouis, Mohammed

    2013-01-01

    Resistin promotes both inflammation and insulin resistance associated with energy homeostasis impairment. However, the resistin receptor and the molecular mechanisms mediating its effects in the hypothalamus, crucial for energy homeostasis control, and key insulin-sensitive tissues are still unknown. In the current study, we report that chronic resistin infusion in the lateral cerebral ventricle of normal rats markedly affects both hypothalamic and peripheral insulin responsiveness. Central resistin treatment inhibited insulin-dependent phosphorylation of insulin receptor (IR), AKT, and extracellular signal–related kinase 1/2 associated with reduced IR expression and with upregulation of suppressor of cytokine signaling-3 and phosphotyrosine phosphatase 1B, two negative regulators of insulin signaling. Additionally, central resistin promotes the activation of the serine kinases Jun NH2-terminal kinase and p38 mitogen-activated protein kinase, enhances the serine phosphorylation of insulin receptor substrate-1, and increases the expression of the proinflammatory cytokine interleukin-6 in the hypothalamus and key peripheral insulin-sensitive tissues. Interestingly, we also report for the first time, to our knowledge, the direct binding of resistin to Toll-like receptor (TLR) 4 receptors in the hypothalamus, leading to the activation of the associated proinflammatory pathways. Taken together, our findings clearly identify TLR4 as the binding site for resistin in the hypothalamus and bring new insight into the molecular mechanisms involved in resistin-induced inflammation and insulin resistance in the whole animal. PMID:22961082

  13. Symplocos cochinchinensis enhances insulin sensitivity via the down regulation of lipogenesis and insulin resistance in high energy diet rat model.

    PubMed

    Antu, Kalathookunnel Antony; Riya, Mariam Philip; Nair, Anupama; Mishra, Arvind; Srivastava, Arvind K; Raghu, Kozhiparambil Gopalan

    2016-12-04

    This plant has been utilized in Indian system of medicine for treatment of diabetes. This is clearly evident from the composition of Ayurvedic preparation for diabetes 'Nisakathakadi Kashayam' where this is one of the main ingredients of this preparation AIM OF THE STUDY: The study aims in elucidating the molecular mechanisms underlying the insulin sensitizing effects of Symplocos cochinchinensis ethanol extract (SCE) using a high fructose and saturated fat (HFS) fed insulin resistant rat model. Experimental groups consisted of normal diet (ND), ND+SCE 500mg/kg bwd, HFS+vehicle, HFS+metformin 100mg/kg bwd, HFS+SCE 250/500mg/kg bwd. Initially the animals were kept under HFS diet for 8 weeks, and at the end of 8 week period, animals were found to develop insulin resistance and dyslipidemia. Post-administration of SCE, metformin or vehicle were carried out for 3 weeks. Gene and protein expressions relevant to insulin signalling pathway were analysed. HFS significantly altered the normal physiology of animals via proteins and genes relevant to metabolism like stearoyl-CoA desaturase (SCD1), sterol regulatory element binding protein 1 (SREBP-1c), fatty acid synthase (FAS), glucose 6 phosphatase (G6Pase), phosphoenol pyruvate carboxykinase (PEPCK), glucose transporter 2 (GLUT2), protein tyrosine phosphatse 1B (PTP1B), peroxisome proliferator activated receptor alpha (PPAR alpha), sirtuin 1 (SIRT1) and glucokinase. SCE administration attenuates the insulin resistance in HFS rat by the down regulation of SCD1 gene expression that modulates SREBP-1c dependent and independent hepatic lipid accumulation. SCE enhances insulin sensitivity via the down regulation of lipogenesis and insulin resistance in HFS rat model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Interactions of endothelin and insulin: expanding parameters of insulin resistance.

    PubMed

    Strawbridge, Andrew B; Elmendorf, Jeffrey S; Mather, Kieren J

    2006-08-01

    Since the discovery of endothelin peptides in the mid-1980s by Yanigasawa and colleagues, accumulating evidence demonstrates that these peptides may function beyond vasoconstriction. Strong epidemiologic associations between insulin resistance and increased endothelin levels or activity have been found, and these associations have prompted studies investigating the interactions of endothelin with insulin. In this review we explore the evidence for such interactions at multiple levels of physiology, ranging from effects on tissue perfusion through modulation of vascular tone to subcellular interactions of endothelin signaling with insulin signaling. The evidence implicating endothelin in insulin resistance and its associated vascular and metabolic abnormalities is reviewed.

  15. Zinc, insulin, and the liver: a ménage à trois.

    PubMed

    O'Halloran, Thomas V; Kebede, Melkam; Philips, Steven J; Attie, Alan D

    2013-10-01

    Insulin and Zn2+ enjoy a multivalent relationship. Zn2+ binds insulin in pancreatic β cells to form crystalline aggregates in dense core vesicles (DCVs), which are released in response to physiological signals such as increased blood glucose. This transition metal is an essential cofactor in insulin-degrading enzyme and several key Zn2+ finger transcription factors that are required for β cell development and insulin gene expression. Studies are increasingly revealing that fluctuations in Zn2+ concentration can mediate signaling events, including dynamic roles that extend beyond that of a static structural or catalytic cofactor. In this issue of the JCI, Tamaki et al. propose an additional function for Zn2+ in relation to insulin: regulation of insulin clearance from the bloodstream.

  16. The association of phosphoinositide 3-kinase enhancer A with hepatic insulin receptor enhances its kinase activity.

    PubMed

    Chan, Chi Bun; Liu, Xia; He, Kunyan; Qi, Qi; Jung, Dae Y; Kim, Jason K; Ye, Keqiang

    2011-07-01

    Dysfunction of hepatic insulin receptor tyrosine kinase (IRTK) causes the development of type 2 diabetes. However, the molecular mechanism regulating IRTK activity in the liver remains poorly understood. Here, we show that phosphoinositide 3-kinase enhancer A (PIKE-A) is a new insulin-dependent enhancer of hepatic IRTK. Liver-specific Pike-knockout (LPKO) mice display glucose intolerance with impaired hepatic insulin sensitivity. Specifically, insulin-provoked phosphoinositide 3-kinase/Akt signalling is diminished in the liver of LPKO mice, leading to the failure of insulin-suppressed gluconeogenesis and hyperglycaemia. Thus, hepatic PIKE-A has a key role in mediating insulin signal transduction and regulating glucose homeostasis in the liver.

  17. Obesity-induced miR-15b is linked causally to the development of insulin resistance through the repression of the insulin receptor in hepatocytes.

    PubMed

    Yang, Won-Mo; Jeong, Hyo-Jin; Park, Se-Whan; Lee, Wan

    2015-11-01

    Obesity increases intracellular lipid accumulation in key tissues or organs, which often leads to metabolic dysfunction and insulin resistance. Diets rich in saturated fatty acid (SFA) exacerbate obesity and hepatic steatosis, which accentuate the risk of insulin resistance and type 2 diabetes (T2DM). Although microRNAs (miRNAs) play a critical role in the regulation of gene expression, the implication of obesity-induced miRNAs in metabolic disorders particularly in the development of insulin resistance is largely unknown. Here, we investigated the implication of miR-15b, which is induced by SFA palmitate or obesity, in hepatic insulin resistance. Diet-induced obesity (DIO) in mice developed hyperglycemia and insulin resistance, accompanying with a reduction of insulin receptor (INSR) expression. Palmitate impaired insulin signaling as well as a decrease of INSR in hepatocytes. The expression of miR-15b was upregulated by DIO or palmitate in hepatocytes. Furthermore, the overexpression of miR-15b suppressed the protein expression of INSR through targeting INSR 3' untranslated region directly, resulting in an impairment of the insulin signaling and glycogen synthesis in hepatocytes. These results unveil a novel mechanism whereby miR-15b is linked causally to the pathogenesis of hepatic insulin resistance in SFA-induced obesity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Clinical Use and Evaluation of Insulin Pens

    PubMed Central

    Ginsberg, Barry H.

    2015-01-01

    Insulin pens are more accurate and easier to teach than other methods of insulin delivery. They also do not suffer from the risk of mismatch of insulin concentration and type of insulin syringe. The ISO standard used to test insulin pens, however, needs to be updated to reflect their clinical use. PMID:26323484

  19. Clinical Use and Evaluation of Insulin Pens.

    PubMed

    Ginsberg, Barry H

    2015-08-31

    Insulin pens are more accurate and easier to teach than other methods of insulin delivery. They also do not suffer from the risk of mismatch of insulin concentration and type of insulin syringe. The ISO standard used to test insulin pens, however, needs to be updated to reflect their clinical use. © 2015 Diabetes Technology Society.

  20. Exercise rescues obese mothers’ insulin sensitivity, placental hypoxia and male offspring insulin sensitivity

    PubMed Central

    Fernandez-Twinn, Denise S.; Gascoin, Geraldine; Musial, Barbara; Carr, Sarah; Duque-Guimaraes, Daniella; Blackmore, Heather L.; Alfaradhi, Maria Z.; Loche, Elena; Sferruzzi-Perri, Amanda N.; Fowden, Abigail L.; Ozanne, Susan E.

    2017-01-01

    The prevalence of obesity during pregnancy continues to increase at alarming rates. This is concerning as in addition to immediate impacts on maternal wellbeing, obesity during pregnancy has detrimental effects on the long-term health of the offspring through non-genetic mechanisms. A major knowledge gap limiting our capacity to develop intervention strategies is the lack of understanding of the factors in the obese mother that mediate these epigenetic effects on the offspring. We used a mouse model of maternal-diet induced obesity to define predictive correlations between maternal factors and offspring insulin resistance. Maternal hyperinsulinemia (independent of maternal body weight and composition) strongly associated with offspring insulin resistance. To test causality, we implemented an exercise intervention that improved maternal insulin sensitivity without changing maternal body weight or composition. This maternal intervention prevented excess placental lipid deposition and hypoxia (independent of sex) and insulin resistance in male offspring. We conclude that hyperinsulinemia is a key programming factor and therefore an important interventional target during obese pregnancy, and propose moderate exercise as a promising strategy to improve metabolic outcome in both the obese mother and her offspring. PMID:28291256

  1. Hypoglycemic effect of insulin-like growth factor-1 in mice lacking insulin receptors.

    PubMed Central

    Di Cola, G; Cool, M H; Accili, D

    1997-01-01

    We have investigated the metabolic actions of recombinant human IGF-1 in mice genetically deficient of insulin receptors (IR-/-). After intraperitoneal administration, IGF-1 caused a prompt and sustained decrease of plasma glucose levels in IR-/- mice. Plasma free fatty acid concentrations were unaffected. Interestingly, the effects of IGF-1 were identical in normal mice (IR+/+) and in IR-/- mice. Despite decreased glucose levels, IR-/- mice treated with IGF-1 died within 2-3 d of birth, like sham-treated IR-/- controls. In skeletal muscle, IGF-1 treatment caused phosphorylation of IGF-1 receptors and increased the levels of the phosphatidylinositol-3-kinase p85 subunit detected in antiphosphotyrosine immunoprecipitates, consistent with the possibility that IGF-1 stimulates glucose uptake in a phosphatidylinositol-3-kinase-dependent manner. IGF-1 receptor phosphorylation and coimmunoprecipitation of phosphatidylinositol3-kinase by antiphosphotyrosine antibodies was also observed in liver, and was associated with a decrease in mRNA levels of the key gluconeogenetic enzyme phosphoenolpyruvate carboxykinase. Thus, the effect of IGF-1 on plasma glucose levels may be accounted for by increased peripheral glucose use and by inhibition of hepatic gluconeogenesis. These data indicate that IGF-1 can mimic insulin's effects on glucose metabolism by acting through its own receptor. The failure of IGF-1 to rescue the lethal phenotype due to lack of insulin receptors suggests that IGF-1 receptors cannot effectively mediate all the metabolic actions of insulin receptors. PMID:9153298

  2. Mathematical modeling of the insulin signal transduction pathway for prediction of insulin sensitivity from expression data.

    PubMed

    Ho, Clark K; Rahib, Lola; Liao, James C; Sriram, Ganesh; Dipple, Katrina M

    2015-01-01

    Mathematical models of biological pathways facilitate a systems biology approach to medicine. However, these models need to be updated to reflect the latest available knowledge of the underlying pathways. We developed a mathematical model of the insulin signal transduction pathway by expanding the last major previously reported model and incorporating pathway components elucidated since the original model was reported. Furthermore, we show that inputting gene expression data of key components of the insulin signal transduction pathway leads to sensible predictions of glucose clearance rates in agreement with reported clinical measurements. In one set of simulations, our model predicted that glycerol kinase knockout mice have reduced GLUT4 translocation, and consequently, reduced glucose uptake. Additionally, a comparison of our extended model with the original model showed that the added pathway components improve simulations of glucose clearance rates. We anticipate this expanded model to be a useful tool for predicting insulin sensitivity in mammalian tissues with altered expression protein phosphorylation or mRNA levels of insulin signal transduction pathway components. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Developmental programming of obesity and insulin resistance: does mitochondrial dysfunction in oocytes play a role?

    PubMed

    Turner, Nigel; Robker, Rebecca L

    2015-01-01

    Insulin resistance is a key defect associated with obesity, type 2 diabetes and other metabolic diseases. While a number of factors have been suggested to cause defects in insulin action, there is a very strong association between inappropriate lipid deposition in insulin target tissues and the development of insulin resistance. In recent times, a large number of studies have reported changes in markers of mitochondrial metabolism in insulin-resistant individuals, leading to the theory that defects in mitochondrial substrate oxidation are responsible for the buildup of lipid intermediates and the development of insulin resistance. The primary support for the mitochondrial theory of insulin resistance comes from studies in skeletal muscle; however, there is recent evidence in murine models that mitochondrial dysfunction in oocytes may also play a role. Oocytes from obese or insulin-resistant mice have been shown to exhibit abnormalities in many different mitochondrial parameters, including mitochondrial morphology and membrane potential. Here we review the findings regarding the link between mitochondrial dysfunction and insulin resistance, and propose that abnormalities in mitochondrial metabolism in oocytes may predispose to the development of obesity and insulin resistance and thus contribute to the inter-generational programming of metabolic disease. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Alteration in mitochondrial Ca(2+) uptake disrupts insulin signaling in hypertrophic cardiomyocytes.

    PubMed

    Gutiérrez, Tomás; Parra, Valentina; Troncoso, Rodrigo; Pennanen, Christian; Contreras-Ferrat, Ariel; Vasquez-Trincado, César; Morales, Pablo E; Lopez-Crisosto, Camila; Sotomayor-Flores, Cristian; Chiong, Mario; Rothermel, Beverly A; Lavandero, Sergio

    2014-11-07

    Cardiac hypertrophy is characterized by alterations in both cardiac bioenergetics and insulin sensitivity. Insulin promotes glucose uptake by cardiomyocytes and its use as a substrate for glycolysis and mitochondrial oxidation in order to maintain the high cardiac energy demands. Insulin stimulates Ca(2+) release from the endoplasmic reticulum, however, how this translates to changes in mitochondrial metabolism in either healthy or hypertrophic cardiomyocytes is not fully understood. In the present study we investigated insulin-dependent mitochondrial Ca(2+) signaling in normal and norepinephrine or insulin like growth factor-1-induced hypertrophic cardiomyocytes. Using mitochondrion-selective Ca(2+)-fluorescent probes we showed that insulin increases mitochondrial Ca(2+) levels. This signal was inhibited by the pharmacological blockade of either the inositol 1,4,5-triphosphate receptor or the mitochondrial Ca(2+) uniporter, as well as by siRNA-dependent mitochondrial Ca(2+) uniporter knockdown. Norepinephrine-stimulated cardiomyocytes showed a significant decrease in endoplasmic reticulum-mitochondrial contacts compared to either control or insulin like growth factor-1-stimulated cells. This resulted in a reduction in mitochondrial Ca(2+) uptake, Akt activation, glucose uptake and oxygen consumption in response to insulin. Blocking mitochondrial Ca(2+) uptake was sufficient to mimic the effect of norepinephrine-induced cardiomyocyte hypertrophy on insulin signaling. Mitochondrial Ca(2+) uptake is a key event in insulin signaling and metabolism in cardiomyocytes.

  5. The good and bad effects of statins on insulin sensitivity and secretion.

    PubMed

    Muscogiuri, Giovanna; Sarno, Gerardo; Gastaldelli, Amalia; Savastano, Silvia; Ascione, Antonio; Colao, Annamaria; Orio, Francesco

    2014-01-01

    Statins are the main lipid-lowering treatment in both primary and secondary prevention populations. Whether statins deteriorates glycemic control, predisposing to the onset of diabetes mellitus has been a matter of recent concern. Statins may accelerate progression to diabetes via molecular mechanisms that impact insulin sensitivity and secretion. In this review, we debate the relative effect of statins in driving insulin resistance and the impairment of insulin secretion. Narrative overview of the literature synthesizing the findings of literature was retrieved from searches of computerized databases, hand searches, and authoritative texts employing the key words "Statins", "Randomized Clinical Trial", "Insulin sensitivity", "Insulin resistance", "Insulin Secretion", "Diabetes Mellitus" alone and/or in combination. The weight of clinical evidence suggests a worsening effect of statins on insulin resistance and secretion, anyway basic science studies did not find a clear molecular explanation, providing conflicting evidence regarding both the beneficial and the adverse effects of statin therapy on insulin sensitivity. Although most of the clinical studies suggest a worsening of insulin resistance and secretion, the cardiovascular benefits of statin therapy outweigh the risk of developing insulin resistance, thus the data suggest the need to treat dyslipidemia and to make patients aware of the possible risk of developing type 2 diabetes or, if they already are diabetic, of worsening their metabolic control.

  6. Modelling the regulatory system for diabetes mellitus with a threshold window

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Tang, Sanyi; Cheke, Robert A.

    2015-05-01

    Piecewise (or non-smooth) glucose-insulin models with threshold windows for type 1 and type 2 diabetes mellitus are proposed and analyzed with a view to improving understanding of the glucose-insulin regulatory system. For glucose-insulin models with a single threshold, the existence and stability of regular, virtual, pseudo-equilibria and tangent points are addressed. Then the relations between regular equilibria and a pseudo-equilibrium are studied. Furthermore, the sufficient and necessary conditions for the global stability of regular equilibria and the pseudo-equilibrium are provided by using qualitative analysis techniques of non-smooth Filippov dynamic systems. Sliding bifurcations related to boundary node bifurcations were investigated with theoretical and numerical techniques, and insulin clinical therapies are discussed. For glucose-insulin models with a threshold window, the effects of glucose thresholds or the widths of threshold windows on the durations of insulin therapy and glucose infusion were addressed. The duration of the effects of an insulin injection is sensitive to the variation of thresholds. Our results indicate that blood glucose level can be maintained within a normal range using piecewise glucose-insulin models with a single threshold or a threshold window. Moreover, our findings suggest that it is critical to individualise insulin therapy for each patient separately, based on initial blood glucose levels.

  7. Salt, aldosterone, and insulin resistance: impact on the cardiovascular system.

    PubMed

    Lastra, Guido; Dhuper, Sonal; Johnson, Megan S; Sowers, James R

    2010-10-01

    Hypertension and type 2 diabetes mellitus (T2DM) are powerful risk factors for cardiovascular disease (CVD) and chronic kidney disease (CKD), both of which are leading causes of morbidity and mortality worldwide. Research into the pathophysiology of CVD and CKD risk factors has identified salt sensitivity and insulin resistance as key elements underlying the relationship between hypertension and T2DM. Excess dietary salt and caloric intake, as commonly found in westernized diets, is linked not only to increased blood pressure, but also to defective insulin sensitivity and impaired glucose homeostasis. In this setting, activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system (RAAS), as well as increased signaling through the mineralocorticoid receptor (MR), result in increased production of reactive oxygen species and oxidative stress, which in turn contribute to insulin resistance and impaired vascular function. In addition, insulin resistance is not limited to classic insulin-sensitive tissues such as skeletal muscle, but it also affects the cardiovascular system, where it participates in the development of CVD and CKD. Current clinical knowledge points towards an impact of salt restriction, RAAS blockade, and MR antagonism on cardiovascular and renal protection, but also on improved insulin sensitivity and glucose homeostasis.

  8. Pathogenesis of selective insulin resistance in isolated hepatocytes.

    PubMed

    Cook, Joshua R; Langlet, Fanny; Kido, Yoshiaki; Accili, Domenico

    2015-05-29

    The development of insulin resistance (IR) in the liver is a key pathophysiologic event in the development of type 2 diabetes. Although insulin loses its ability to suppress glucose production, it largely retains its capacity to drive lipogenesis. This selective IR results in the characteristic hyperglycemia and dyslipidemia of type 2 diabetes. The delineation of two branched pathways of insulin receptor (InsR) signaling to glucose versus triglyceride production, one through FoxO and the other through SREBP-1c, provides a mechanism to account for this pathophysiological abnormality. We tested the complementary hypothesis that selective IR arises due to different intrinsic sensitivities of glucose production versus de novo lipogenesis to insulin as a result of cell-autonomous down-regulation of InsR number in response to chronic hyperinsulinemia. We demonstrate in mouse primary hepatocytes that chronic hyperinsulinemia abrogates insulin's inhibition of glucose production, but not its stimulation of de novo lipogenesis. Using a competitive inhibitor of InsR, we show that there is a 4-fold difference between levels of InsR inhibition required to cause resistance of glucose production versus lipogenesis to the actions of insulin. Our data support a parsimonious model in which differential InsR activation underlies the selective IR of glucose production relative to lipogenesis, but both processes require signaling through Akt1/2. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Leptin selectively decreases visceral adiposity and enhances insulin action.

    PubMed Central

    Barzilai, N; Wang, J; Massilon, D; Vuguin, P; Hawkins, M; Rossetti, L

    1997-01-01

    Intraabdominal adiposity and insulin resistance are risk factors for diabetes mellitus, dyslipidemia, arteriosclerosis, and mortality. Leptin, a fat-derived protein encoded by the ob gene, has been postulated to be a sensor of energy storage in adipose tissue capable of mediating a feedback signal to sites involved in the regulation of energy homeostasis. Here, we provide evidence for specific effects of leptin on fat distribution and in vivo insulin action. Leptin (LEP) or vehicle (CON) was administered by osmotic minipumps for 8 d to pair-fed adult rats. During the 8 d of the study, body weight and total fat mass decreased similarly in LEP and in CON. However, while moderate calorie restriction (CON) resulted in similar decreases in whole body (by 20%) and visceral (by 21%) fat, leptin administration led to a specific and marked decrease (by 62%) in visceral adiposity. During physiologic hyperinsulinemia (insulin clamp), leptin markedly enhanced insulin action on both inhibition of hepatic glucose production and stimulation of glucose uptake. Finally, leptin exerted complex effects on the hepatic gene expression of key metabolic enzymes and on the intrahepatic partitioning of metabolic fluxes, which are likely to represent a defense against excessive storage of energy in adipose depots. These studies demonstrate novel actions of circulating leptin in the regulation of fat distribution, insulin action, and hepatic gene expression and suggest that it may play a role in the pathophysiology of abdominal obesity and insulin resistance. PMID:9399957

  10. Protein Crystal Recombinant Human Insulin

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  11. Protein Crystal Recombinant Human Insulin

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  12. Insulin signalling regulates remating in female Drosophila.

    PubMed

    Wigby, Stuart; Slack, Cathy; Grönke, Sebastian; Martinez, Pedro; Calboli, Federico C F; Chapman, Tracey; Partridge, Linda

    2011-02-07

    Mating rate is a major determinant of female lifespan and fitness, and is predicted to optimize at an intermediate level, beyond which superfluous matings are costly. In female Drosophila melanogaster, nutrition is a key regulator of mating rate but the underlying mechanism is unknown. The evolutionarily conserved insulin/insulin-like growth factor-like signalling (IIS) pathway is responsive to nutrition, and regulates development, metabolism, stress resistance, fecundity and lifespan. Here we show that inhibition of IIS, by ablation of Drosophila insulin-like peptide (DILP)-producing median neurosecretory cells, knockout of dilp2, dilp3 or dilp5 genes, expression of a dominant-negative DILP-receptor (InR) transgene or knockout of Lnk, results in reduced female remating rates. IIS-mediated regulation of female remating can occur independent of virgin receptivity, developmental defects, reduced body size or fecundity, and the receipt of the female receptivity-inhibiting male sex peptide. Our results provide a likely mechanism by which females match remating rates to the perceived nutritional environment. The findings suggest that longevity-mediating genes could often have pleiotropic effects on remating rate. However, overexpression of the IIS-regulated transcription factor dFOXO in the fat body-which extends lifespan-does not affect remating rate. Thus, long life and reduced remating are not obligatorily coupled.

  13. Insulin signal transduction pathways and insulin-induced gene expression.

    PubMed

    Keeton, Adam B; Amsler, Maggie O; Venable, Derwei Y; Messina, Joseph L

    2002-12-13

    Insulin regulates metabolic activity, gene transcription, and cell growth by modulating the activity of several intracellular signaling pathways. Insulin activation of one mitogen-activated protein kinase cascade, the MEK/ERK kinase cascade, is well described. However, the effect of insulin on the parallel p38 pathway is less well understood. The present work examines the effect of inhibiting the p38 signaling pathway by use of specific inhibitors, either alone or in combination with insulin, on the activation of ERK1/2 and on the regulation of gene transcription in rat hepatoma cells. Activation of ERK1/2 was induced by insulin and was dependent on the activation of MEK1, the kinase upstream of ERK in this pathway. Treatment of cells with p38 inhibitors also induced ERK1/2 activation/phosphorylation. The addition of p38 inhibitors followed by insulin addition resulted in a greater than additive activation of ERK1/2. The two genes studied, c-Fos and Pip92, are immediate-early genes that are dependent on the ERK1/2 pathway for insulin-regulated induction because the insulin effect was inhibited by pretreatment with a MEK1 inhibitor. The addition of p38 inhibitors induced transcription of both genes in a dose-dependent manner, and insulin stimulation of both genes was enhanced by prior treatment with p38 inhibitors. The ability of the p38 inhibitors to induce ERK1/2 and gene transcription, both alone and in combination with insulin, was abolished by prior inhibition of MEK1. These data suggest possible cross-talk between the p38 and ERK1/2 signaling pathways and a potential role of p38 in insulin signaling.

  14. Lipid mediators of insulin resistance.

    PubMed

    Holland, William L; Knotts, Trina A; Chavez, Jose A; Wang, Li-Ping; Hoehn, Kyle L; Summers, Scott A

    2007-06-01

    Lipid abnormalities such as obesity, increased circulating free fatty acid levels, and excess intramyocellular lipid accumulation are frequently associated with insulin resistance. These observations have prompted investigators to speculate that the accumulation of lipids in tissues not suited for fat storage (e.g., skeletal muscle and liver) is an underlying component of insulin resistance and the metabolic syndrome. We review the metabolic fates of lipids in insulin-responsive tissues and discuss the roles of specific lipid metabolites (e.g., ceramides, GM3 ganglioside, and diacylglycerol) as antagonists of insulin signaling and action.

  15. Insulin Resistance and Mitochondrial Dysfunction.

    PubMed

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  16. Glucose Induces Mouse β-Cell Proliferation via IRS2, MTOR, and Cyclin D2 but Not the Insulin Receptor

    PubMed Central

    Stamateris, Rachel E.; Sharma, Rohit B.; Kong, Yahui; Ebrahimpour, Pantea; Panday, Deepika; Ranganath, Pavana; Zou, Baobo; Levitt, Helena; Parambil, Nisha Abraham; O’Donnell, Christopher P.; García-Ocaña, Adolfo

    2016-01-01

    An important goal in diabetes research is to understand the processes that trigger endogenous β-cell proliferation. Hyperglycemia induces β-cell replication, but the mechanism remains debated. A prime candidate is insulin, which acts locally through the insulin receptor. Having previously developed an in vivo mouse hyperglycemia model, we tested whether glucose induces β-cell proliferation through insulin signaling. By using mice lacking insulin signaling intermediate insulin receptor substrate 2 (IRS2), we confirmed that hyperglycemia-induced β-cell proliferation requires IRS2 both in vivo and ex vivo. Of note, insulin receptor activation was not required for glucose-induced proliferation, and insulin itself was not sufficient to drive replication. Glucose and insulin caused similar acute signaling in mouse islets, but chronic signaling differed markedly, with mammalian target of rapamycin (MTOR) and extracellular signal–related kinase (ERK) activation by glucose and AKT activation by insulin. MTOR but not ERK activation was required for glucose-induced proliferation. Cyclin D2 was necessary for glucose-induced β-cell proliferation. Cyclin D2 expression was reduced when either IRS2 or MTOR signaling was lost, and restoring cyclin D2 expression rescued the proliferation defect. Human islets shared many of these regulatory pathways. Taken together, these results support a model in which IRS2, MTOR, and cyclin D2, but not the insulin receptor, mediate glucose-induced proliferation. PMID:26740601

  17. Insulin secretion in health and disease: nutrients dictate the pace.

    PubMed

    Regazzi, Romano; Rodriguez-Trejo, Adriana; Jacovetti, Cécile

    2016-02-01

    Insulin is a key hormone controlling metabolic homeostasis. Loss or dysfunction of pancreatic β-cells lead to the release of insufficient insulin to cover the organism needs, promoting diabetes development. Since dietary nutrients influence the activity of β-cells, their inadequate intake, absorption and/or utilisation can be detrimental. This review will highlight the physiological and pathological effects of nutrients on insulin secretion and discuss the underlying mechanisms. Glucose uptake and metabolism in β-cells trigger insulin secretion. This effect of glucose is potentiated by amino acids and fatty acids, as well as by entero-endocrine hormones and neuropeptides released by the digestive tract in response to nutrients. Glucose controls also basal and compensatory β-cell proliferation and, along with fatty acids, regulates insulin biosynthesis. If in the short-term nutrients promote β-cell activities, chronic exposure to nutrients can be detrimental to β-cells and causes reduced insulin transcription, increased basal secretion and impaired insulin release in response to stimulatory glucose concentrations, with a consequent increase in diabetes risk. Likewise, suboptimal early-life nutrition (e.g. parental high-fat or low-protein diet) causes altered β-cell mass and function in adulthood. The mechanisms mediating nutrient-induced β-cell dysfunction include transcriptional, post-transcriptional and translational modifications of genes involved in insulin biosynthesis and secretion, carbohydrate and lipid metabolism, cell differentiation, proliferation and survival. Altered expression of these genes is partly caused by changes in non-coding RNA transcripts induced by unbalanced nutrient uptake. A better understanding of the mechanisms leading to β-cell dysfunction will be critical to improve treatment and find a cure for diabetes.

  18. Resistin: insulin resistance to malignancy.

    PubMed

    Codoñer-Franch, Pilar; Alonso-Iglesias, Eulalia

    2015-01-01

    Adipose tissue is recognized as an endocrine organ that secretes bioactive substances known as adipokines. Excess adipose tissue and adipose tissue dysfunction lead to dysregulated adipokine production that can contribute to the development of obesity-related co-morbidities. Among the various adipokines, resistin, which was initially considered as a determinant of the emergence of insulin resistance in obesity, has appeared as an important link between obesity and inflammatory processes. Several experimental and clinical studies have suggested an association between increased resistin levels and severe conditions associated with obesity such as cardiovascular disease and malignancies. In this review, we present the growing body of evidence that human resistin is an inflammatory biomarker and potential mediator of obesity-associated diseases. A common pathway seems to involve the combined alteration of immune and inflammatory processes that favor metabolic disturbances, atherosclerosis and carcinogenesis. The mode of action and the signaling pathways utilized by resistin in its interactions with target cells could involve oxidative and nitrosative stress. Therefore, resistin could function as a key molecule in the complications of obesity development and could potentially be used as a diagnostic and prognostic marker. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Overview of insulin delivery pen devices.

    PubMed

    Kroon, Lisa

    2009-01-01

    To review currently available insulin delivery pen devices for use in diabetes and to describe their primary benefits and drawbacks in comparison with the traditional vial/syringe method of insulin administration. Not applicable. Insulin delivery pen devices are available for most types of insulin, including all insulin analog preparations and insulin premixes with rapid-acting insulin or regular insulin with neutral protamine Hagedorn insulin. Some devices have a replaceable insulin cartridge (categorized as reusable or durable); other devices are prefilled and are disposed of after the insulin reservoir is emptied. Insulin delivery pens offer several advantages over the vial and syringe method of injection, including greater ease and discretion of use and improved portability, adherence, and dosing accuracy. The tactile and auditory feedback provided by the dosing dial on insulin delivery pen devices may be particularly helpful for patients who have impaired manual dexterity or vision. Studies also show a strong preference among patients in favor of insulin delivery pen devices compared with the vial/syringe method. Finally, despite greater per-unit cost, insulin delivery pen devices have also been associated with reductions in health resource use and associated costs compared with vial/syringe therapy. Insulin delivery pen devices offer another option to patients with diabetes for insulin administration. They are associated with not only improved ease of use but also improved dosing accuracy and adherence to therapy. To develop the most suitable insulin regimens for their patients, health providers should be informed about available insulin delivery pen devices.

  20. Scope and Limitations of Fmoc Chemistry SPPS-Based Approaches to the Total Synthesis of Insulin Lispro via Ester Insulin.

    PubMed

    Dhayalan, Balamurugan; Mandal, Kalyaneswar; Rege, Nischay; Weiss, Michael A; Eitel, Simon H; Meier, Thomas; Schoenleber, Ralph O; Kent, Stephen B H

    2017-01-31

    We have systematically explored three approaches based on 9-fluorenylmethoxycarbonyl (Fmoc) chemistry solid phase peptide synthesis (SPPS) for the total chemical synthesis of the key depsipeptide intermediate for the efficient total chemical synthesis of insulin. The approaches used were: stepwise Fmoc chemistry SPPS; the "hybrid method", in which maximally protected peptide segments made by Fmoc chemistry SPPS are condensed in solution; and, native chemical ligation using peptide-thioester segments generated by Fmoc chemistry SPPS. A key building block in all three approaches was a Glu[O-β-(Thr)] ester-linked dipeptide equipped with a set of orthogonal protecting groups compatible with Fmoc chemistry SPPS. The most effective method for the preparation of the 51 residue ester-linked polypeptide chain of ester insulin was the use of unprotected peptide-thioester segments, prepared from peptide-hydrazides synthesized by Fmoc chemistry SPPS, and condensed by native chemical ligation. High-resolution X-ray crystallography confirmed the disulfide pairings and three-dimensional structure of synthetic insulin lispro prepared from ester insulin lispro by this route. Further optimization of these pilot studies could yield an efficient total chemical synthesis of insulin lispro (Humalog) based on peptide synthesis by Fmoc chemistry SPPS. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Scope & Limitations of Fmoc Chemistry SPPS-Based Approaches to the Total Synthesis of Insulin Lispro via Ester Insulin

    PubMed Central

    Dhayalan, Balamurugan; Mandal, Kalyaneswar; Rege, Nischay; Weiss, Michael A.; Eitel, Simon H.; Meier, Thomas; Schoenleber, Ralph O.; Kent, Stephen B.H.

    2017-01-01

    We have systematically explored three approaches based on Fmoc chemistry SPPS for the total chemical synthesis of the key depsipeptide intermediate for the efficient total chemical synthesis of insulin. The approaches used were: stepwise Fmoc chemistry SPPS; the ‘hybrid method’, in which maximally-protected peptide segments made by Fmoc chemistry SPPS are condensed in solution; and, native chemical ligation using peptide-thioester segments generated by Fmoc chemistry SPPS. A key building block in all three approaches was a Glu[Oβ(Thr)] ester-linked dipeptide equipped with a set of orthogonal protecting groups compatible with Fmoc chemistry SPPS. The most effective method for the preparation of the 51 residue ester-linked polypeptide chain of ester insulin was the use of unprotected peptide-thioester segments, prepared from peptide-hydrazides synthesized by Fmoc chemistry SPPS, and condensed by native chemical ligation. High resolution X-ray crystallography confirmed the disulfide pairings and three-dimensional structure of synthetic insulin lispro prepared from ester insulin lispro by this route. Further optimization of these pilot studies should yield an effective total chemical synthesis of insulin lispro (Humalog) based on peptide synthesis by Fmoc chemistry SPPS. PMID:27905149

  2. Neferine enhances insulin sensitivity in insulin resistant rats.

    PubMed

    Pan, Yang; Cai, Baochang; Wang, Kelin; Wang, Sumin; Zhou, Shuyuan; Yu, Xiaochun; Xu, Bin; Chen, Long

    2009-07-06

    Neferine was isolated from green seed embryo of Nelumbo nucifera Gaertn which has been used as an anti-obesity agent in traditional Chinese herbal medicine. This study was conducted to investigate the effects of neferine on enhancing insulin sensitivity in insulin resistant rats compared with rosiglitazone and to potentially reveal its role in mediating the anti-obesity properties of Nelumbo nucifera Gaertn. Fasting blood glucose (FBG), fasting blood insulin (FINS), triglycerides (TG) and tumor necrosis factor-alpha (TNF-alpha) were measured, and the oral glucose tolerance test for 2-h plasma glucose level (2-h PG) was carried out. The glucose infusion rate (GIR) was used to measure the insulin sensitivity by hyperinsulinemic euglycemic clamp technique. The levels of FBG, FINS, TG, TNF-alpha and 2-h PG all decreased significantly in the rosiglitazone and neferine groups compared with the insulin resistance (IR) model group. Neferine diminished the 2-h PG more than did rosiglitazone treatment. Compared to the IR model group, the treatments of neferine and rosiglitazone remarkably increased GIRs but no difference between these two treatments themselves was evident. These data demonstrate that neferine has effects similar to rosiglitazone in decreasing fasting blood glucose, insulin, TG, TNF-alpha and enhancing insulin sensitivity in insulin resistant rats.

  3. Intensive Insulin Therapy: Tight Blood Sugar Control

    MedlinePlus

    ... insulin therapy can help you achieve desired blood sugar control and what intensive insulin therapy requires of ... aggressive treatment approach designed to control your blood sugar levels. Intensive insulin therapy requires close monitoring of ...

  4. Insulin Degludec (rDNA Origin) Injection

    MedlinePlus

    ... insulin from the pharmacy.Insulin degludec comes in prefilled dosing pens. Be sure you know what type ... pens. Do not transfer the medication to a syringe. When you are using an insulin pen, always ...

  5. Brain insulin signalling in the regulation of energy balance and peripheral metabolism.

    PubMed

    Diamant, Michaela

    2007-03-30

    The unparalleled global rates of obesity and type 2 diabetes, together with the associated cardiovascular morbidity and mortality, are referred to as the "diabesity pandemic". Changes in lifestyle occurring worldwide, including the increased consumption of high-caloric foods and reduced exercise, are regarded as the main causal factors. Central obesity and insulin resistance have emerged as important linking components. Understanding the aetiology of the cluster of pathologies that leads to the increased risk is instrumental in the development of preventive and therapeutic strategies. Historically, skeletal muscle, adipose tissue and liver were regarded as key insulin target organs involved in insulin-mediated regulation of peripheral carbohydrate, lipid and protein metabolism. The consequences of impaired insulin action in these organs were deemed to explain the functional and structural abnormalities associated with insulin resistance. The discovery of insulin receptors in the central nervous system, the detection of insulin in the cerebrospinal fluid after peripheral insulin administration and the well-documented effects of intracerebroventricularly injected insulin on energy homeostasis, have identified the brain as an important target for insulin action. In addition to its critical role as a peripheral signal integrating the complex network of hypothalamic neuropeptides and neurotransmitters that influence parameters of energy balance, central nervous insulin signalling is also implicated in the regulation of peripheral glucose metabolism. This review summarizes the evidence of insulin action in the brain as part of the multifaceted circuit involved in the central regulation of energy and glucose homeostasis, and discuss the role of impaired central nervous insulin signalling as a pathogenic factor in the obesity and type 2 diabetes epidemic.

  6. Regulatory and technical reports compilation for 1980

    SciTech Connect

    Oliu, W.E.; McKenzi, L.

    1981-04-01

    This compilation lists formal regulatory and technical reports and conference proceedings issued in 1980 by the US Nuclear Regulatory Commission. The compilation is divided into four major sections. The first major section consists of a sequential listing of all NRC reports in report-number order. The second major section of this compilation consists of a key-word index to report titles. The third major section contains an alphabetically arranged listing of contractor report numbers cross-referenced to their corresponding NRC report numbers. Finally, the fourth section is an errata supplement.

  7. Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells.

    PubMed

    Najem, Dema; Bamji-Mirza, Michelle; Yang, Ze; Zhang, Wandong

    2016-06-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) toxicity, tau pathology, insulin resistance, neuroinflammation, and dysregulation of cholesterol homeostasis, all of which play roles in neurodegeneration. Insulin has polytrophic effects on neurons and may be at the center of these pathophysiological changes. In this study, we investigated possible relationships among insulin signaling and cholesterol biosynthesis, along with the effects of Aβ42 on these pathways in vitro. We found that neuroblastoma 2a (N2a) cells transfected with the human gene encoding amyloid-β protein precursor (AβPP) (N2a-AβPP) produced Aβ and exhibited insulin resistance by reduced p-Akt and a suppressed cholesterol-synthesis pathway following insulin treatment, and by increased phosphorylation of insulin receptor subunit-1 at serine 612 (p-IRS-S612) as compared to parental N2a cells. Treatment of human neuroblastoma SH-SY5Y cells with Aβ42 also increased p-IRS-S612, suggesting that Aβ42 is responsible for insulin resistance. The insulin resistance was alleviated when N2a-AβPP cells were treated with higher insulin concentrations. Insulin increased Aβ release from N2a-AβPP cells, by which it may promote Aβ clearance. Insulin increased cholesterol-synthesis gene expression in SH-SY5Y and N2a cells, including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) through sterol-regulatory element-binding protein-2 (SREBP2). While Aβ42-treated SH-SY5Y cells exhibited increased HMGCR expression and c-Jun phosphorylation as pro-inflammatory responses, they also showed down-regulation of neuro-protective/anti-inflammatory DHCR24. These results suggest that Aβ42 may cause insulin resistance, activate JNK for c-Jun phosphorylation, and lead to dysregulation of cholesterol homeostasis, and that enhancing insulin signaling may relieve the insulin-resistant phenotype and the dysregulated cholesterol-synthesis pathway to promote A

  8. Adipocyte lipolysis and insulin resistance.

    PubMed

    Morigny, Pauline; Houssier, Marianne; Mouisel, Etienne; Langin, Dominique

    2016-06-01

    Obesity-induced insulin resistance is a major risk factor for the development of type 2 diabetes. Basal fat cell lipolysis (i.e., fat cell triacylglycerol breakdown into fatty acids and glycerol in the absence of stimulatory factors) is elevated during obesity and is closely associated with insulin resistance. Inhibition of adipocyte lipolysis may therefore be a promising therapeutic strategy for treating insulin resistance and preventing obesity-associated type 2 diabetes. In this review, we explore the relationship between adipose lipolysis and insulin sensitivity. After providing an overview of the components of fat cell lipolytic machinery, we describe the hypotheses that may support the causality between lipolysis and insulin resistance. Excessive circulating fatty acids may ectopically accumulate in insulin-sensitive tissues and impair insulin action. Increased basal lipolysis may also modify the secretory profile of adipose tissue, influencing whole body insulin sensitivity. Finally, excessive fatty acid release may also worsen adipose tissue inflammation, a well-known parameter contributing to insulin resistance. Partial genetic or pharmacologic inhibition of fat cell lipases in mice as well as short term clinical trials using antilipolytic drugs in humans support the benefit of fat cell lipolysis inhibition on systemic insulin sensitivity and glucose metabolism, which occurs without an increase of fat mass. Modulation of fatty acid fluxes and, putatively, of fat cell secretory pattern may explain the amelioration of insulin sensitivity whereas cha