Field spectrometer (S191H) preprocessor tape quality test program design document
NASA Technical Reports Server (NTRS)
Campbell, H. M.
1976-01-01
Program QA191H performs quality assurance tests on field spectrometer data recorded on 9-track magnetic tape. The quality testing involves the comparison of key housekeeping and data parameters with historic and predetermined tolerance limits. Samples of key parameters are processed during the calibration period and wavelength cal period, and the results are printed out and recorded on an historical file tape.
Key aspects of cost effective collector and solar field design
NASA Astrophysics Data System (ADS)
von Reeken, Finn; Nicodemo, Dario; Keck, Thomas; Weinrebe, Gerhard; Balz, Markus
2016-05-01
A study has been performed where different key parameters influencing solar field cost are varied. By using levelised cost of energy as figure of merit it is shown that parameters like GoToStow wind speed, heliostat stiffness or tower height should be adapted to respective site conditions from an economical point of view. The benchmark site Redstone (Northern Cape Province, South Africa) has been compared to an alternate site close to Phoenix (AZ, USA) regarding site conditions and their effect on cost-effective collector and solar field design.
NASA Astrophysics Data System (ADS)
Samsonov, Andrey; Gordeev, Evgeny; Sergeev, Victor
2017-04-01
As it was recently suggested (e.g., Gordeev et al., 2015), the global magnetospheric configuration can be characterized by a set of key parameters, such as the magnetopause distance at the subsolar point and on the terminator plane, the magnetic field in the magnetotail lobe and the plasma sheet thermal pressure, the cross polar cap electric potential drop and the total field-aligned current. For given solar wind conditions, the values of these parameters can be obtained from both empirical models and global MHD simulations. We validate the recently developed global MHD code SPSU-16 using the key magnetospheric parameters mentioned above. The code SPSU-16 can calculate both the isotropic and anisotropic MHD equations. In the anisotropic version, we use the modified double-adiabatic equations in which the T⊥/T∥ (the ratio of perpendicular to parallel thermal pressures) has been bounded from above by the mirror and ion-cyclotron thresholds and from below by the firehose threshold. The results of validation for the SPSU-16 code well agree with the previously published results of other global codes. Some key parameters coincide in the isotropic and anisotropic MHD simulations, but some are different.
Microwave moisture sensing of seedcotton: Part 1: Seedcotton microwave material properties
USDA-ARS?s Scientific Manuscript database
Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as alter the...
Microwave moisture sensing of seedcotton: Part 1: Seedcotton microwave material properties
USDA-ARS?s Scientific Manuscript database
Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as skew the...
Key parameters controlling the performance of catalytic motors.
Esplandiu, Maria J; Afshar Farniya, Ali; Reguera, David
2016-03-28
The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential and the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.
Application of lab derived kinetic biodegradation parameters at the field scale
NASA Astrophysics Data System (ADS)
Schirmer, M.; Barker, J. F.; Butler, B. J.; Frind, E. O.
2003-04-01
Estimating the intrinsic remediation potential of an aquifer typically requires the accurate assessment of the biodegradation kinetics, the level of available electron acceptors and the flow field. Zero- and first-order degradation rates derived at the laboratory scale generally overpredict the rate of biodegradation when applied to the field scale, because limited electron acceptor availability and microbial growth are typically not considered. On the other hand, field estimated zero- and first-order rates are often not suitable to forecast plume development because they may be an oversimplification of the processes at the field scale and ignore several key processes, phenomena and characteristics of the aquifer. This study uses the numerical model BIO3D to link the laboratory and field scale by applying laboratory derived Monod kinetic degradation parameters to simulate a dissolved gasoline field experiment at Canadian Forces Base (CFB) Borden. All additional input parameters were derived from laboratory and field measurements or taken from the literature. The simulated results match the experimental results reasonably well without having to calibrate the model. An extensive sensitivity analysis was performed to estimate the influence of the most uncertain input parameters and to define the key controlling factors at the field scale. It is shown that the most uncertain input parameters have only a minor influence on the simulation results. Furthermore it is shown that the flow field, the amount of electron acceptor (oxygen) available and the Monod kinetic parameters have a significant influence on the simulated results. Under the field conditions modelled and the assumptions made for the simulations, it can be concluded that laboratory derived Monod kinetic parameters can adequately describe field scale degradation processes, if all controlling factors are incorporated in the field scale modelling that are not necessarily observed at the lab scale. In this way, there are no scale relationships to be found that link the laboratory and the field scale, accurately incorporating the additional processes, phenomena and characteristics, such as a) advective and dispersive transport of one or more contaminants, b) advective and dispersive transport and availability of electron acceptors, c) mass transfer limitations and d) spatial heterogeneities, at the larger scale and applying well defined lab scale parameters should accurately describe field scale processes.
FIELD MEASUREMENT OF DISSOLVED OXYGEN: A COMPARISON OF TECHNIQUES
The measurement and interpretation of geochemical redox parameters are key components of ground water remedial investigations. Dissolved oxygen (DO) is perhaps the most robust geochemical parameter in redox characterization; however, recent work has indicated a need for proper da...
Key parameters controlling the performance of catalytic motors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esplandiu, Maria J.; Afshar Farniya, Ali; Reguera, David, E-mail: dreguera@ub.edu
2016-03-28
The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential andmore » the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.« less
Retrieval of effective cloud field parameters from radiometric data
NASA Astrophysics Data System (ADS)
Paulescu, Marius; Badescu, Viorel; Brabec, Marek
2017-06-01
Clouds play a key role in establishing the Earth's climate. Real cloud fields are very different and very complex in both morphological and microphysical senses. Consequently, the numerical description of the cloud field is a critical task for accurate climate modeling. This study explores the feasibility of retrieving the effective cloud field parameters (namely the cloud aspect ratio and cloud factor) from systematic radiometric measurements at high frequency (measurement is taken every 15 s). Two different procedures are proposed, evaluated, and discussed with respect to both physical and numerical restrictions. None of the procedures is classified as best; therefore, the specific advantages and weaknesses are discussed. It is shown that the relationship between the cloud shade and point cloudiness computed using the estimated cloud field parameters recovers the typical relationship derived from measurements.
Induced unconventional superconductivity on the surface states of Bi2Te3 topological insulator.
Charpentier, Sophie; Galletti, Luca; Kunakova, Gunta; Arpaia, Riccardo; Song, Yuxin; Baghdadi, Reza; Wang, Shu Min; Kalaboukhov, Alexei; Olsson, Eva; Tafuri, Francesco; Golubev, Dmitry; Linder, Jacob; Bauch, Thilo; Lombardi, Floriana
2017-12-08
Topological superconductivity is central to a variety of novel phenomena involving the interplay between topologically ordered phases and broken-symmetry states. The key ingredient is an unconventional order parameter, with an orbital component containing a chiral p x + ip y wave term. Here we present phase-sensitive measurements, based on the quantum interference in nanoscale Josephson junctions, realized by using Bi 2 Te 3 topological insulator. We demonstrate that the induced superconductivity is unconventional and consistent with a sign-changing order parameter, such as a chiral p x + ip y component. The magnetic field pattern of the junctions shows a dip at zero externally applied magnetic field, which is an incontrovertible signature of the simultaneous existence of 0 and π coupling within the junction, inherent to a non trivial order parameter phase. The nano-textured morphology of the Bi 2 Te 3 flakes, and the dramatic role played by thermal strain are the surprising key factors for the display of an unconventional induced order parameter.
NASA Astrophysics Data System (ADS)
Fallarino, Lorenzo; Berger, Andreas; Binek, Christian
2015-02-01
A Landau-theoretical approach is utilized to model the magnetic field induced reversal of the antiferromagnetic order parameter in thin films of magnetoelectric antiferromagnets. A key ingredient of this peculiar switching phenomenon is the presence of a robust spin polarized state at the surface of the antiferromagnetic films. Surface or boundary magnetization is symmetry allowed in magnetoelectric antiferromagnets and experimentally established for chromia thin films. It couples rigidly to the antiferromagnetic order parameter and its Zeeman energy creates a pathway to switch the antiferromagnet via magnetic field application. In the framework of a minimalist Landau free energy expansion, the temperature dependence of the switching field and the field dependence of the transition width are derived. Least-squares fits to magnetometry data of (0001 ) textured chromia thin films strongly support this model of the magnetic reversal mechanism.
Determination of key parameters of vector multifractal vector fields
NASA Astrophysics Data System (ADS)
Schertzer, D. J. M.; Tchiguirinskaia, I.
2017-12-01
For too long time, multifractal analyses and simulations have been restricted to scalar-valued fields (Schertzer and Tchiguirinskaia, 2017a,b). For instance, the wind velocity multifractality has been mostly analysed in terms of scalar structure functions and with the scalar energy flux. This restriction has had the unfortunate consequences that multifractals were applicable to their full extent in geophysics, whereas it has inspired them. Indeed a key question in geophysics is the complexity of the interactions between various fields or they components. Nevertheless, sophisticated methods have been developed to determine the key parameters of scalar valued fields. In this communication, we first present the vector extensions of the universal multifractal analysis techniques to multifractals whose generator belong to a Levy-Clifford algebra (Schertzer and Tchiguirinskaia, 2015). We point out further extensions noting the increased complexity. For instance, the (scalar) index of multifractality becomes a matrice. Schertzer, D. and Tchiguirinskaia, I. (2015) `Multifractal vector fields and stochastic Clifford algebra', Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(12), p. 123127. doi: 10.1063/1.4937364. Schertzer, D. and Tchiguirinskaia, I. (2017) `An Introduction to Multifractals and Scale Symmetry Groups', in Ghanbarian, B. and Hunt, A. (eds) Fractals: Concepts and Applications in Geosciences. CRC Press, p. (in press). Schertzer, D. and Tchiguirinskaia, I. (2017b) `Pandora Box of Multifractals: Barely Open ?', in Tsonis, A. A. (ed.) 30 Years of Nonlinear Dynamics in Geophysics. Berlin: Springer, p. (in press).
Continuous Variable Quantum Key Distribution Using Polarized Coherent States
NASA Astrophysics Data System (ADS)
Vidiella-Barranco, A.; Borelli, L. F. M.
We discuss a continuous variables method of quantum key distribution employing strongly polarized coherent states of light. The key encoding is performed using the variables known as Stokes parameters, rather than the field quadratures. Their quantum counterpart, the Stokes operators Ŝi (i=1,2,3), constitute a set of non-commuting operators, being the precision of simultaneous measurements of a pair of them limited by an uncertainty-like relation. Alice transmits a conveniently modulated two-mode coherent state, and Bob randomly measures one of the Stokes parameters of the incoming beam. After performing reconciliation and privacy amplification procedures, it is possible to distill a secret common key. We also consider a non-ideal situation, in which coherent states with thermal noise, instead of pure coherent states, are used for encoding.
Thermal inflation with a thermal waterfall scalar field coupled to a light spectator scalar field
NASA Astrophysics Data System (ADS)
Dimopoulos, Konstantinos; Lyth, David H.; Rumsey, Arron
2017-05-01
A new model of thermal inflation is introduced, in which the mass of the thermal waterfall field is dependent on a light spectator scalar field. Using the δ N formalism, the "end of inflation" scenario is investigated in order to ascertain whether this model is able to produce the dominant contribution to the primordial curvature perturbation. A multitude of constraints are considered so as to explore the parameter space, with particular emphasis on key observational signatures. For natural values of the parameters, the model is found to yield a sharp prediction for the scalar spectral index and its running, well within the current observational bounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boscá, A., E-mail: alberto.bosca@upm.es; Dpto. de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Madrid 28040; Pedrós, J.
2015-01-28
Due to its intrinsic high mobility, graphene has proved to be a suitable material for high-speed electronics, where graphene field-effect transistor (GFET) has shown excellent properties. In this work, we present a method for extracting relevant electrical parameters from GFET devices using a simple electrical characterization and a model fitting. With experimental data from the device output characteristics, the method allows to calculate parameters such as the mobility, the contact resistance, and the fixed charge. Differentiated electron and hole mobilities and direct connection with intrinsic material properties are some of the key aspects of this method. Moreover, the method outputmore » values can be correlated with several issues during key fabrication steps such as the graphene growth and transfer, the lithographic steps, or the metalization processes, providing a flexible tool for quality control in GFET fabrication, as well as a valuable feedback for improving the material-growth process.« less
Leishman, Timothy W; Anderson, Brian E
2013-07-01
The parameters of moving-coil loudspeaker drivers are typically determined using direct electrical excitation and measurement. However, as electro-mechano-acoustical devices, their parameters should also follow from suitable mechanical or acoustical evaluations. This paper presents the theory of an acoustical method of excitation and measurement using normal-incidence sound transmission through a baffled driver as a plane-wave tube partition. Analogous circuits enable key parameters to be extracted from measurement results in terms of open and closed-circuit driver conditions. Associated tools are presented that facilitate adjacent field decompositions and derivations of sound transmission coefficients (in terms of driver parameters) directly from the circuits. The paper also clarifies the impact of nonanechoic receiving tube terminations and the specific benefits of downstream field decompositions.
NASA Astrophysics Data System (ADS)
Schirmer, Mario; Molson, John W.; Frind, Emil O.; Barker, James F.
2000-12-01
Biodegradation of organic contaminants in groundwater is a microscale process which is often observed on scales of 100s of metres or larger. Unfortunately, there are no known equivalent parameters for characterizing the biodegradation process at the macroscale as there are, for example, in the case of hydrodynamic dispersion. Zero- and first-order degradation rates estimated at the laboratory scale by model fitting generally overpredict the rate of biodegradation when applied to the field scale because limited electron acceptor availability and microbial growth are not considered. On the other hand, field-estimated zero- and first-order rates are often not suitable for predicting plume development because they may oversimplify or neglect several key field scale processes, phenomena and characteristics. This study uses the numerical model BIO3D to link the laboratory and field scales by applying laboratory-derived Monod kinetic degradation parameters to simulate a dissolved gasoline field experiment at the Canadian Forces Base (CFB) Borden. All input parameters were derived from independent laboratory and field measurements or taken from the literature a priori to the simulations. The simulated results match the experimental results reasonably well without model calibration. A sensitivity analysis on the most uncertain input parameters showed only a minor influence on the simulation results. Furthermore, it is shown that the flow field, the amount of electron acceptor (oxygen) available, and the Monod kinetic parameters have a significant influence on the simulated results. It is concluded that laboratory-derived Monod kinetic parameters can adequately describe field scale degradation, provided all controlling factors are incorporated in the field scale model. These factors include advective-dispersive transport of multiple contaminants and electron acceptors and large-scale spatial heterogeneities.
NASA Astrophysics Data System (ADS)
Fan, Shuwei; Bai, Liang; Chen, Nana
2016-08-01
As one of the key elements of high-power laser systems, the pulse compression multilayer dielectric grating is required for broader band, higher diffraction efficiency and higher damage threshold. In this paper, the multilayer dielectric film and the multilayer dielectric gratings(MDG) were designed by eigen matrix and optimized with the help of generic algorithm and rigorous coupled wave method. The reflectivity was close to 100% and the bandwith were over 250nm, twice compared to the unoptimized film structure. The simulation software of standing wave field distribution within MDG was developed and the electric field of the MDG was calculated. And the key parameters which affected the electric field distribution were also studied.
Assessment of the integrity of concrete bridge structures by acoustic emission technique
NASA Astrophysics Data System (ADS)
Yoon, Dong-Jin; Park, Philip; Jung, Juong-Chae; Lee, Seung-Seok
2002-06-01
This study was aimed at developing a new method for assessing the integrity of concrete structures. Especially acoustic emission technique was used in carrying out both laboratory experiment and field application. From the previous laboratory study, we confirmed that AE analysis provided a promising approach for estimating the level of damage and distress in concrete structures. The Felicity ratio, one of the key parameter for assessing damage, exhibits a favorable correlation with the overall damage level. The total number of AE events under stepwise cyclic loading also showed a good agreement with the damage level. In this study, a new suggested technique was applied to several concrete bridges in Korea in order to verify the applicability in field. The AE response was analyzed to obtain key parameters such as the total number and rate of AE events, AE parameter analysis for each event, and the characteristic features of the waveform as well as Felicity ratio analysis. Stepwise loading-unloading procedure for AE generation was introduced in field test by using each different weight of vehicle. According to the condition of bridge, for instance new or old bridge, AE event rate and AE generation behavior indicated many different aspects. The results showed that the suggested analyzing method would be a promising approach for assessing the integrity of concrete structures.
NASA Astrophysics Data System (ADS)
Gordeev, E.; Sergeev, V.; Honkonen, I.; Kuznetsova, M.; Rastätter, L.; Palmroth, M.; Janhunen, P.; Tóth, G.; Lyon, J.; Wiltberger, M.
2015-12-01
Global magnetohydrodynamic (MHD) modeling is a powerful tool in space weather research and predictions. There are several advanced and still developing global MHD (GMHD) models that are publicly available via Community Coordinated Modeling Center's (CCMC) Run on Request system, which allows the users to simulate the magnetospheric response to different solar wind conditions including extraordinary events, like geomagnetic storms. Systematic validation of GMHD models against observations still continues to be a challenge, as well as comparative benchmarking of different models against each other. In this paper we describe and test a new approach in which (i) a set of critical large-scale system parameters is explored/tested, which are produced by (ii) specially designed set of computer runs to simulate realistic statistical distributions of critical solar wind parameters and are compared to (iii) observation-based empirical relationships for these parameters. Being tested in approximately similar conditions (similar inputs, comparable grid resolution, etc.), the four models publicly available at the CCMC predict rather well the absolute values and variations of those key parameters (magnetospheric size, magnetic field, and pressure) which are directly related to the large-scale magnetospheric equilibrium in the outer magnetosphere, for which the MHD is supposed to be a valid approach. At the same time, the models have systematic differences in other parameters, being especially different in predicting the global convection rate, total field-aligned current, and magnetic flux loading into the magnetotail after the north-south interplanetary magnetic field turning. According to validation results, none of the models emerges as an absolute leader. The new approach suggested for the evaluation of the models performance against reality may be used by model users while planning their investigations, as well as by model developers and those interesting to quantitatively evaluate progress in magnetospheric modeling.
Modeling temperature and moisture state effects on acoustic velocity in wood
Shan Gao; X. Wang; L. Wang; R.B. Bruce
2011-01-01
Previous research has proved the concept of acoustic wave propagation methods for evaluating wood quality of trees and logs during forest operations. As commercial acoustic equipment is implemented in field for various purposes, one has to consider the influence of operating temperature on acoustic velocity â a key parameter for wood property prediction. Our field...
Johannes Breidenbach; Clara Antón-Fernández; Hans Petersson; Ronald E. McRoberts; Rasmus Astrup
2014-01-01
National Forest Inventories (NFIs) provide estimates of forest parameters for national and regional scales. Many key variables of interest, such as biomass and timber volume, cannot be measured directly in the field. Instead, models are used to predict those variables from measurements of other field variables. Therefore, the uncertainty or variability of NFI estimates...
The Crust of Mercury After the MESSENGER Gravity Investigation
NASA Astrophysics Data System (ADS)
Mazarico, E.; Genova, A.; Goossens, S.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.
2018-05-01
We present the results of an improved analysis of the entire MESSENGER radio tracking dataset to derive key geophysical parameters of Mercury such as its gravity field. In particular, we derive and interpret a new crustal thickness model.
NASA Astrophysics Data System (ADS)
Verbeke, C.; Asvestari, E.; Scolini, C.; Pomoell, J.; Poedts, S.; Kilpua, E.
2017-12-01
Coronal Mass Ejections (CMEs) are one of the big influencers on the coronal and interplanetary dynamics. Understanding their origin and evolution from the Sun to the Earth is crucial in order to determine the impact on our Earth and society. One of the key parameters that determine the geo-effectiveness of the coronal mass ejection is its internal magnetic configuration. We present a detailed parameter study of the Gibson-Low flux rope model. We focus on changes in the input parameters and how these changes affect the characteristics of the CME at Earth. Recently, the Gibson-Low flux rope model has been implemented into the inner heliosphere model EUHFORIA, a magnetohydrodynamics forecasting model of large-scale dynamics from 0.1 AU up to 2 AU. Coronagraph observations can be used to constrain the kinematics and morphology of the flux rope. One of the key parameters, the magnetic field, is difficult to determine directly from observations. In this work, we approach the problem by conducting a parameter study in which flux ropes with varying magnetic configurations are simulated. We then use the obtained dataset to look for signatures in imaging observations and in-situ observations in order to find an empirical way of constraining the parameters related to the magnetic field of the flux rope. In particular, we focus on events observed by at least two spacecraft (STEREO + L1) in order to discuss the merits of using observations from multiple viewpoints in constraining the parameters.
Magnetic Field Response Measurement Acquisition System
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.
2005-01-01
A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.
Experimental results on current-driven turbulence in plasmas - a survey
NASA Astrophysics Data System (ADS)
de Kluiver, H.; Perepelkin, N. F.; Hirose, A.
1991-01-01
The experimental consequences of plasma turbulence driven by a current parallel to a magnetic field and concurrent anomalous plasma heating are reviewed, with an attempt to deduce universalities in key parameters such as the anomalous electrical conductivities observed in diverse devices. It has been found that the nature of plasma turbulence and turbulent heating depends on several parameters including the electric field, current and magnetic fields. A classification of turbulence regimes based on these parameters has been made. Experimental observations of the anomalous electrical conductivity, plasma heating, skin effect, runaway electron braking and turbulent fluctuations are surveyed, and current theoretical understanding is briefly reviewed. Experimental results recently obtained in stellarators (SIRIUS, URAGAN at Kharkov), and in tokamaks (TORTUR at Nieuwegein, STOR-1M at Saskatoon) are presented in some detail in the light of investigating the feasibility of using turbulent heating as a means of injecting a large power into toroidal devices.
Hierarchical atom type definitions and extensible all-atom force fields.
Jin, Zhao; Yang, Chunwei; Cao, Fenglei; Li, Feng; Jing, Zhifeng; Chen, Long; Shen, Zhe; Xin, Liang; Tong, Sijia; Sun, Huai
2016-03-15
The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Full-field implementation of a perfect eavesdropper on a quantum cryptography system.
Gerhardt, Ilja; Liu, Qin; Lamas-Linares, Antía; Skaar, Johannes; Kurtsiefer, Christian; Makarov, Vadim
2011-06-14
Quantum key distribution (QKD) allows two remote parties to grow a shared secret key. Its security is founded on the principles of quantum mechanics, but in reality it significantly relies on the physical implementation. Technological imperfections of QKD systems have been previously explored, but no attack on an established QKD connection has been realized so far. Here we show the first full-field implementation of a complete attack on a running QKD connection. An installed eavesdropper obtains the entire 'secret' key, while none of the parameters monitored by the legitimate parties indicate a security breach. This confirms that non-idealities in physical implementations of QKD can be fully practically exploitable, and must be given increased scrutiny if quantum cryptography is to become highly secure.
Żak, Arkadiusz
2014-01-01
One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms—two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields. PMID:25136557
NASA Astrophysics Data System (ADS)
Xiao, D.; Shi, Y.; Li, L.
2016-12-01
Field measurements are important to understand the fluxes of water, energy, sediment, and solute in the Critical Zone however are expensive in time, money, and labor. This study aims to assess the model predictability of hydrological processes in a watershed using information from another intensively-measured watershed. We compare two watersheds of different lithology using national datasets, field measurements, and physics-based model, Flux-PIHM. We focus on two monolithological, forested watersheds under the same climate in the Shale Hills Susquehanna CZO in central Pennsylvania: the Shale-based Shale Hills (SSH, 0.08 km2) and the sandstone-based Garner Run (GR, 1.34 km2). We firstly tested the transferability of calibration coefficients from SSH to GR. We found that without any calibration the model can successfully predict seasonal average soil moisture and discharge which shows the advantage of a physics-based model, however, cannot precisely capture some peaks or the runoff in summer. The model reproduces the GR field data better after calibrating the soil hydrology parameters. In particular, the percentage of sand turns out to be a critical parameter in reproducing data. With sandstone being the dominant lithology, GR has much higher sand percentage than SSH (48.02% vs. 29.01%), leading to higher hydraulic conductivity, lower overall water storage capacity, and in general lower soil moisture. This is consistent with area averaged soil moisture observations using the cosmic-ray soil moisture observing system (COSMOS) at the two sites. This work indicates that some parameters, including evapotranspiration parameters, are transferrable due to similar climatic and land cover conditions. However, the key parameters that control soil moisture, including the sand percentage, need to be recalibrated, reflecting the key role of soil hydrological properties.
A key factor to the spin parameter of uniformly rotating compact stars: crust structure
NASA Astrophysics Data System (ADS)
Qi, Bin; Zhang, Nai-Bo; Sun, Bao-Yuan; Wang, Shou-Yu; Gao, Jian-Hua
2016-04-01
We study the dimensionless spin parameter j ≡ cJ/(GM2) of different kinds of uniformly rotating compact stars, including traditional neutron stars, hyperonic neutron stars and hybrid stars, based on relativistic mean field theory and the MIT bag model. It is found that jmax ˜ 0.7, which had been suggested in traditional neutron stars, is sustained for hyperonic neutron stars and hybrid stars with M > 0.5 M⊙. Not the interior but rather the crust structure of the stars is a key factor to determine jmax for three kinds of selected compact stars. Furthermore, a universal formula j = 0.63(f/fK) - 0.42(f/fK)2 + 0.48(f/fK)3 is suggested to determine the spin parameter at any rotational frequency f smaller than the Keplerian frequency fK.
Tunable far infrared studies of molecular parameters in support of stratospheric measurements
NASA Technical Reports Server (NTRS)
Chance, K. V.; Nolt, Ira G.; Radostitz, J. V.; Park, K.
1990-01-01
The purpose of this research is to make precise, fully line-resolved measurements of molecular parameters that are necessary for the analysis of spectra obtained in far infrared field measurement programs. These measurements make it possible to accurately analyze the data from field measurements to obtain atmospheric concentration profiles of key trace gases involved in the ozone chemistry. The research objectives include: measurements of pressure broadening of molecular lines of OH, O2, O3, HCl, and H2O, their temperature dependence, and, when possible, the pressure-induced frequency shifts of the lines; measurements of line positions of radical species, such as HO2.
Optical guidance vidicon test program
NASA Technical Reports Server (NTRS)
Eiseman, A. R.; Stanton, R. H.; Voge, C. C.
1976-01-01
A laboratory and field test program was conducted to quantify the optical navigation parameters of the Mariner vidicons. A scene simulator and a camera were designed and built for vidicon tests under a wide variety of conditions. Laboratory tests characterized error sources important to the optical navigation process and field tests verified star sensitivity and characterized comet optical guidance parameters. The equipment, tests and data reduction techniques used are described. Key test results are listed. A substantial increase in the understanding of the use of selenium vidicons as detectors for spacecraft optical guidance was achieved, indicating a reduction in residual offset errors by a factor of two to four to the single pixel level.
A new car-following model for autonomous vehicles flow with mean expected velocity field
NASA Astrophysics Data System (ADS)
Wen-Xing, Zhu; Li-Dong, Zhang
2018-02-01
Due to the development of the modern scientific technology, autonomous vehicles may realize to connect with each other and share the information collected from each vehicle. An improved forward considering car-following model was proposed with mean expected velocity field to describe the autonomous vehicles flow behavior. The new model has three key parameters: adjustable sensitivity, strength factor and mean expected velocity field size. Two lemmas and one theorem were proven as criteria for judging the stability of homogeneousautonomous vehicles flow. Theoretical results show that the greater parameters means larger stability regions. A series of numerical simulations were carried out to check the stability and fundamental diagram of autonomous flow. From the numerical simulation results, the profiles, hysteresis loop and density waves of the autonomous vehicles flow were exhibited. The results show that with increased sensitivity, strength factor or field size the traffic jam was suppressed effectively which are well in accordance with the theoretical results. Moreover, the fundamental diagrams corresponding to three parameters respectively were obtained. It demonstrates that these parameters play almost the same role on traffic flux: i.e. before the critical density the bigger parameter is, the greater flux is and after the critical density, the opposite tendency is. In general, the three parameters have a great influence on the stability and jam state of the autonomous vehicles flow.
TxACOL workshop : Texas asphalt concrete overlay design and analysis system.
DOT National Transportation Integrated Search
2010-01-01
General Information: : -Two workshops were held respectively on Aug. 25 at Paris, Tx and on Oct. 6 at Austin, Tx, : -More than 30 representatives from TxDOT attended, : -Introduction of TxACOL software, key input parameters, and related lab and field...
Kathleen Bandt, S; Dacey, Ralph G
2017-09-01
The authors propose a novel bibilometric index, the reverberation index (r-index), as a comparative assessment tool for use in determining differential reverberation between scientific fields for a given scientific entity. Conversely, this may allow comparison of 2 similar scientific entities within a single scientific field. This index is calculated using a relatively simple 3-step process. Briefly, Thompson Reuters' Web of Science is used to produce a citation report for a unique search parameter (this may be an author, journal article, or topical key word). From this citation report, a list of citing journals is retrieved from which a weighted ratio of citation patterns across journals can be calculated. This r-index is then used to compare the reverberation of the original search parameter across different fields of study or wherever a comparison is required. The advantage of this novel tool is its ability to transcend a specific component of the scientific process. This affords application to a diverse range of entities, including an author, a journal article, or a topical key word, for effective comparison of that entity's reverberation within a scientific arena. The authors introduce the context for and applications of the r-index, emphasizing neurosurgical topics and journals for illustration purposes. It should be kept in mind, however, that the r-index is readily applicable across all fields of study.
NASA Technical Reports Server (NTRS)
Varsi, Giulio
1989-01-01
The problem of the remote control of space operations is addressed by identifying the key technical challenge: the management of contact forces and the principal performance parameters. Three principal classes of devices for remote operation are identified: anthropomorphic exoskeletons, computer aided teleoperators, and supervised telerobots. Their fields of application are described, and areas in which progress has reached the level of system or subsystem laboratory demonstrations are indicated. Key test results, indicating performance at a level useful for design tradeoffs, are reported.
Early universe with modified scalar-tensor theory of gravity
NASA Astrophysics Data System (ADS)
Mandal, Ranajit; Sarkar, Chandramouli; Sanyal, Abhik Kumar
2018-05-01
Scalar-tensor theory of gravity with non-minimal coupling is a fairly good candidate for dark energy, required to explain late-time cosmic evolution. Here we study the very early stage of evolution of the universe with a modified version of the theory, which includes scalar curvature squared term. One of the key aspects of the present study is that, the quantum dynamics of the action under consideration ends up generically with de-Sitter expansion under semiclassical approximation, rather than power-law. This justifies the analysis of inflationary regime with de-Sitter expansion. The other key aspect is that, while studying gravitational perturbation, the perturbed generalized scalar field equation obtained from the perturbed action, when matched with the perturbed form of the background scalar field equation, relates the coupling parameter and the potential exactly in the same manner as the solution of classical field equations does, assuming de-Sitter expansion. The study also reveals that the quantum theory is well behaved, inflationary parameters fall well within the observational limit and quantum perturbation analysis shows that the power-spectrum does not deviate considerably from the standard one obtained from minimally coupled theory.
Near-field exposure to chemicals in consumer products has been identified as a significant source of exposure for many chemicals. Quantitative data on product chemical composition and weight fraction is a key parameter for characterizing this exposure. While data on product compo...
Reinventing Discovery Learning: A Field-Wide Research Program
ERIC Educational Resources Information Center
Abrahamson, Dor; Kapur, Manu
2018-01-01
Whereas some educational designers believe that students should learn new concepts through explorative problem solving within dedicated environments that constrain key parameters of their search and then support their progressive appropriation of empowering disciplinary forms, others are critical of the ultimate efficacy of this discovery-based…
Garson, Christopher D; Li, Bing; Acton, Scott T; Hossack, John A
2008-06-01
The active surface technique using gradient vector flow allows semi-automated segmentation of ventricular borders. The accuracy of the algorithm depends on the optimal selection of several key parameters. We investigated the use of conservation of myocardial volume for quantitative assessment of each of these parameters using synthetic and in vivo data. We predicted that for a given set of model parameters, strong conservation of volume would correlate with accurate segmentation. The metric was most useful when applied to the gradient vector field weighting and temporal step-size parameters, but less effective in guiding an optimal choice of the active surface tension and rigidity parameters.
Wang, Xuan; Tandeo, Pierre; Fablet, Ronan; Husson, Romain; Guan, Lei; Chen, Ge
2016-01-01
The swell propagation model built on geometric optics is known to work well when simulating radiated swells from a far located storm. Based on this simple approximation, satellites have acquired plenty of large samples on basin-traversing swells induced by fierce storms situated in mid-latitudes. How to routinely reconstruct swell fields with these irregularly sampled observations from space via known swell propagation principle requires more examination. In this study, we apply 3-h interval pseudo SAR observations in the ensemble Kalman filter (EnKF) to reconstruct a swell field in ocean basin, and compare it with buoy swell partitions and polynomial regression results. As validated against in situ measurements, EnKF works well in terms of spatial–temporal consistency in far-field swell propagation scenarios. Using this framework, we further address the influence of EnKF parameters, and perform a sensitivity analysis to evaluate estimations made under different sets of parameters. Such analysis is of key interest with respect to future multiple-source routinely recorded swell field data. Satellite-derived swell data can serve as a valuable complementary dataset to in situ or wave re-analysis datasets. PMID:27898005
Zheng, Ming-Yang; Shentu, Guo-Liang; Ma, Fei; Zhou, Fei; Zhang, Hai-Ting; Dai, Yun-Qi; Xie, Xiuping; Zhang, Qiang; Pan, Jian-Wei
2016-09-01
Up-conversion single photon detector (UCSPD) has been widely used in many research fields including quantum key distribution, lidar, optical time domain reflectrometry, and deep space communication. For the first time in laboratory, we have developed an integrated four-channel all-fiber UCSPD which can work in both free-running and gate modes. This compact module can satisfy different experimental demands with adjustable detection efficiency and dark count. We have characterized the key parameters of the UCSPD system.
Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells
NASA Astrophysics Data System (ADS)
Spyridopoulou, K.; Makridis, A.; Maniotis, N.; Karypidou, N.; Myrovali, E.; Samaras, T.; Angelakeris, M.; Chlichlia, K.; Kalogirou, O.
2018-04-01
Recent investigations have attempted to understand and exploit the impact of magnetic field-actuated internalized magnetic nanoparticles (MNPs) on the proliferation rate of cancer cells. Due to the complexity of the parameters governing magnetic field-exposure though, individual studies to date have raised contradictory results. In our approach we performed a comparative analysis of key parameters related to the cell exposure of cancer cells to magnetic field-actuated MNPs, and to the magnetic field, in order to better understand the factors affecting cellular responses to magnetic field-stimulated MNPs. We used magnetite MNPs with a hydrodynamic diameter of 100 nm and studied the proliferation rate of MNPs-treated versus untreated HT29 human colon cancer cells, exposed to either static or alternating low frequency magnetic fields with varying intensity (40-200 mT), frequency (0-8 Hz) and field gradient. All three parameters, field intensity, frequency, and field gradient affected the growth rate of cells, with or without internalized MNPs, as compared to control MNPs-untreated and magnetic field-untreated cells. We observed that the growth inhibitory effects induced by static and rotating magnetic fields were enhanced by pre-treating the cells with MNPs, while the growth promoting effects observed in alternating field-treated cells were weakened by MNPs. Compared to static, rotating magnetic fields of the same intensity induced a similar extend of cell growth inhibition, while alternating fields of varying intensity (70 or 100 mT) and frequency (0, 4 or 8 Hz) induced cell proliferation in a frequency-dependent manner. These results, highlighting the diverse effects of mode, intensity, and frequency of the magnetic field on cell growth, indicate that consistent and reproducible results can be achieved by controlling the complexity of the exposure of biological samples to MNPs and external magnetic fields, through monitoring crucial experimental parameters. We demonstrate that further research focusing on the accurate manipulation of the aforementioned magnetic field exposure parameters could lead to the development of successful non-invasive therapeutic anticancer approaches.
Perspective: Ab initio force field methods derived from quantum mechanics
NASA Astrophysics Data System (ADS)
Xu, Peng; Guidez, Emilie B.; Bertoni, Colleen; Gordon, Mark S.
2018-03-01
It is often desirable to accurately and efficiently model the behavior of large molecular systems in the condensed phase (thousands to tens of thousands of atoms) over long time scales (from nanoseconds to milliseconds). In these cases, ab initio methods are difficult due to the increasing computational cost with the number of electrons. A more computationally attractive alternative is to perform the simulations at the atomic level using a parameterized function to model the electronic energy. Many empirical force fields have been developed for this purpose. However, the functions that are used to model interatomic and intermolecular interactions contain many fitted parameters obtained from selected model systems, and such classical force fields cannot properly simulate important electronic effects. Furthermore, while such force fields are computationally affordable, they are not reliable when applied to systems that differ significantly from those used in their parameterization. They also cannot provide the information necessary to analyze the interactions that occur in the system, making the systematic improvement of the functional forms that are used difficult. Ab initio force field methods aim to combine the merits of both types of methods. The ideal ab initio force fields are built on first principles and require no fitted parameters. Ab initio force field methods surveyed in this perspective are based on fragmentation approaches and intermolecular perturbation theory. This perspective summarizes their theoretical foundation, key components in their formulation, and discusses key aspects of these methods such as accuracy and formal computational cost. The ab initio force fields considered here were developed for different targets, and this perspective also aims to provide a balanced presentation of their strengths and shortcomings. Finally, this perspective suggests some future directions for this actively developing area.
Lee, Kuo Hao; Chen, Jianhan
2017-06-15
Accurate treatment of solvent environment is critical for reliable simulations of protein conformational equilibria. Implicit treatment of solvation, such as using the generalized Born (GB) class of models arguably provides an optimal balance between computational efficiency and physical accuracy. Yet, GB models are frequently plagued by a tendency to generate overly compact structures. The physical origins of this drawback are relatively well understood, and the key to a balanced implicit solvent protein force field is careful optimization of physical parameters to achieve a sufficient level of cancellation of errors. The latter has been hampered by the difficulty of generating converged conformational ensembles of non-trivial model proteins using the popular replica exchange sampling technique. Here, we leverage improved sampling efficiency of a newly developed multi-scale enhanced sampling technique to re-optimize the generalized-Born with molecular volume (GBMV2) implicit solvent model with the CHARMM36 protein force field. Recursive optimization of key GBMV2 parameters (such as input radii) and protein torsion profiles (via the CMAP torsion cross terms) has led to a more balanced GBMV2 protein force field that recapitulates the structures and stabilities of both helical and β-hairpin model peptides. Importantly, this force field appears to be free of the over-compaction bias, and can generate structural ensembles of several intrinsically disordered proteins of various lengths that seem highly consistent with available experimental data. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Study of ATES thermal behavior using a steady flow model
NASA Astrophysics Data System (ADS)
Doughty, C.; Hellstroem, G.; Tsang, C. F.; Claesson, J.
1981-01-01
The thermal behavior of a single well aquifer thermal energy storage system in which buoyancy flow is neglected is studied. A dimensionless formulation of the energy transport equations for the aquifer system is presented, and the key dimensionless parameters are discussed. A simple numerical model is used to generate graphs showing the thermal behavior of the system as a function of these parameters. Some comparisons with field experiments are given to illustrate the use of the dimensionless groups and graphs.
NASA Astrophysics Data System (ADS)
Meyer, P. D.; Yabusaki, S.; Curtis, G. P.; Ye, M.; Fang, Y.
2011-12-01
A three-dimensional, variably-saturated flow and multicomponent biogeochemical reactive transport model of uranium bioremediation was used to generate synthetic data . The 3-D model was based on a field experiment at the U.S. Dept. of Energy Rifle Integrated Field Research Challenge site that used acetate biostimulation of indigenous metal reducing bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. A key assumption in past modeling studies at this site was that a comprehensive reaction network could be developed largely through one-dimensional modeling. Sensitivity analyses and parameter estimation were completed for a 1-D reactive transport model abstracted from the 3-D model to test this assumption, to identify parameters with the greatest potential to contribute to model predictive uncertainty, and to evaluate model structure and data limitations. Results showed that sensitivities of key biogeochemical concentrations varied in space and time, that model nonlinearities and/or parameter interactions have a significant impact on calculated sensitivities, and that the complexity of the model's representation of processes affecting Fe(II) in the system may make it difficult to correctly attribute observed Fe(II) behavior to modeled processes. Non-uniformity of the 3-D simulated groundwater flux and averaging of the 3-D synthetic data for use as calibration targets in the 1-D modeling resulted in systematic errors in the 1-D model parameter estimates and outputs. This occurred despite using the same reaction network for 1-D modeling as used in the data-generating 3-D model. Predictive uncertainty of the 1-D model appeared to be significantly underestimated by linear parameter uncertainty estimates.
NASA Astrophysics Data System (ADS)
Borie, B.; Kehlberger, A.; Wahrhusen, J.; Grimm, H.; Kläui, M.
2017-08-01
We study the key domain-wall properties in segmented nanowire loop-based structures used in domain-wall-based sensors. The two reasons for device failure, namely, distribution of the domain-wall propagation field (depinning) and the nucleation field are determined with magneto-optical Kerr effect and giant-magnetoresistance (GMR) measurements for thousands of elements to obtain significant statistics. Single layers of Ni81 Fe19 , a complete GMR stack with Co90 Fe10 /Ni81Fe19 as a free layer, and a single layer of Co90 Fe10 are deposited and industrially patterned to determine the influence of the shape anisotropy, the magnetocrystalline anisotropy, and the fabrication processes. We show that the propagation field is influenced only slightly by the geometry but significantly by material parameters. Simulations for a realistic wire shape yield a curling-mode type of magnetization configuration close to the nucleation field. Nonetheless, we find that the domain-wall nucleation fields can be described by a typical Stoner-Wohlfarth model related to the measured geometrical parameters of the wires and fitted by considering the process parameters. The GMR effect is subsequently measured in a substantial number of devices (3000) in order to accurately gauge the variation between devices. This measurement scheme reveals a corrected upper limit to the nucleation fields of the sensors that can be exploited for fast characterization of the working elements.
NASA Astrophysics Data System (ADS)
Tan, R. P.; Carrey, J.; Respaud, M.
2014-12-01
Understanding the influence of dipolar interactions in magnetic hyperthermia experiments is of crucial importance for fine optimization of nanoparticle (NP) heating power. In this study we use a kinetic Monte Carlo algorithm to calculate hysteresis loops that correctly account for both time and temperature. This algorithm is shown to correctly reproduce the high-frequency hysteresis loop of both superparamagnetic and ferromagnetic NPs without any ad hoc or artificial parameters. The algorithm is easily parallelizable with a good speed-up behavior, which considerably decreases the calculation time on several processors and enables the study of assemblies of several thousands of NPs. The specific absorption rate (SAR) of magnetic NPs dispersed inside spherical lysosomes is studied as a function of several key parameters: volume concentration, applied magnetic field, lysosome size, NP diameter, and anisotropy. The influence of these parameters is illustrated and comprehensively explained. In summary, magnetic interactions increase the coercive field, saturation field, and hysteresis area of major loops. However, for small amplitude magnetic fields such as those used in magnetic hyperthermia, the heating power as a function of concentration can increase, decrease, or display a bell shape, depending on the relationship between the applied magnetic field and the coercive/saturation fields of the NPs. The hysteresis area is found to be well correlated with the parallel or antiparallel nature of the dipolar field acting on each particle. The heating power of a given NP is strongly influenced by a local concentration involving approximately 20 neighbors. Because this local concentration strongly decreases upon approaching the surface, the heating power increases or decreases in the vicinity of the lysosome membrane. The amplitude of variation reaches more than one order of magnitude in certain conditions. This transition occurs on a thickness corresponding to approximately 1.3 times the mean distance between two neighbors. The amplitude and sign of this variation is explained. Finally, implications of these various findings are discussed in the framework of magnetic hyperthermia optimization. It is concluded that feedback on two specific points from biology experiments is required for further advancement of the optimization of magnetic NPs for magnetic hyperthermia. The present simulations will be an advantageous tool to optimize magnetic NPs heating power and interpret experimental results.
USDA-ARS?s Scientific Manuscript database
Accurate determination of predicted environmental concentrations (PECs) is a continuing and often elusive goal of pesticide risk assessment. PECs are typically derived using simulation models that depend on laboratory generated data for key input parameters (t1/2, Koc, etc.). Model flexibility in ...
USDA-ARS?s Scientific Manuscript database
Accurate determination of predicted environmental concentrations (PECs) is a continuing and often elusive goal of pesticide risk assessment. PECs are typically derived using simulation models that depend on laboratory generated data for key input parameters (t1/2, Koc, etc.). Model flexibility in ev...
USDA-ARS?s Scientific Manuscript database
Micronaire is a key quality and processing parameter for cotton fiber. A program was implemented to determine the capabilities of portable Near Infrared (NIR) instrumentation to monitor cotton fiber micronaire both in the laboratory and in/near the field. Previous evaluations on one NIR unit demon...
Curve squeal of urban rolling stock—Part 1: State of the art and field measurements
NASA Astrophysics Data System (ADS)
Vincent, N.; Koch, J. R.; Chollet, H.; Guerder, J. Y.
2006-06-01
This is the first part of a series of three papers dealing with curve squeal of urban rolling stock such as metros and trams. After a brief review of the present state of the art, the key parameters involved in curve squeal generation are discussed. Then, some results of field measurement campaigns, on metro and on tramway systems, are presented. A specific measurement methodology is applied for both campaigns in order to record the main key parameters: rolling speed, axle angle of attack, wheel/rail lateral position and modal damping of relevant wheel modes. On-board microphones are mounted close to each wheel of the instrumented bogies in order to locate the squealing wheels. No squeal occurs on the outer wheel of the leading axle in flange contact with the rail. The highest squeal levels are generally found on the front inner wheel. Pure tone frequencies are related to wheel axial modes for metro (undamped steel wheel) and for tramway (resilient wheels). Squeal occurrence is also observed on a bogie with independent wheels.
Coarse grained modeling of directed assembly to form functional nanoporous films
NASA Astrophysics Data System (ADS)
Al Khatib, Amir
A coarse-grained (CG) simulation of polyethylene glycol (PEG) and Polymethylsilsesquixane nanoparticle (PMSSQ) referred to as (NP) at different sizes and concentrations were done using the Martini coarse-grained (CG) force field. The interactions between CG PEG and CG NP were parameterized from the chemical compound of each molecule and based on Martini force field. NP particles migrates to the surface of the substrate in an agreement with the experimental output at high temperature of 800K. This demonstration of nanoparticles-polymer film to direct it to self-assemble a systematically spatial pattern using the substrate surface energy as the key gating parameter. Validation of the model comparing molecular dynamics simulations with experimental data collected from previous study. NP interaction with the substrate at low interactions energy using Lennard-Johns potential were able to direct the NP to self-assemble in a hexagonal shape up to 4 layers above the substrate. This thesis established that substrate surface energy is a key gating parameter to direct the collective behavior of functional nanoparticles to form thin nanoporous films with spatially predetermined optical/dielectric constants.
Tuning magnetofluidic spreading in microchannels
NASA Astrophysics Data System (ADS)
Wang, Zhaomeng; Varma, V. B.; Wang, Z. P.; Ramanujan, R. V.
2015-12-01
Magnetofluidic spreading (MFS) is a phenomenon in which a uniform magnetic field is used to induce spreading of a ferrofluid core cladded by diamagnetic fluidic streams in a three-stream channel. Applications of MFS include micromixing, cell sorting and novel microfluidic lab-on-a-chip design. However, the relative importance of the parameters which govern MFS is still unclear, leading to non-optimal control of MFS. Hence, in this work, the effect of various key parameters on MFS was experimentally and numerically studied. Our multi-physics model, which combines magnetic and fluidic analysis, showed excellent agreement between theory and experiment. It was found that spreading was mainly due to cross-sectional convection induced by magnetic forces, and can be enhanced by tuning various parameters. Smaller flow rate ratio, higher magnetic field, higher core stream or lower cladding stream dynamic viscosity, and larger magnetic particle size can increase MFS. These results can be used to tune magnetofluidic spreading in microchannels.
Susceptible-infected-susceptible epidemics on networks with general infection and cure times.
Cator, E; van de Bovenkamp, R; Van Mieghem, P
2013-06-01
The classical, continuous-time susceptible-infected-susceptible (SIS) Markov epidemic model on an arbitrary network is extended to incorporate infection and curing or recovery times each characterized by a general distribution (rather than an exponential distribution as in Markov processes). This extension, called the generalized SIS (GSIS) model, is believed to have a much larger applicability to real-world epidemics (such as information spread in online social networks, real diseases, malware spread in computer networks, etc.) that likely do not feature exponential times. While the exact governing equations for the GSIS model are difficult to deduce due to their non-Markovian nature, accurate mean-field equations are derived that resemble our previous N-intertwined mean-field approximation (NIMFA) and so allow us to transfer the whole analytic machinery of the NIMFA to the GSIS model. In particular, we establish the criterion to compute the epidemic threshold in the GSIS model. Moreover, we show that the average number of infection attempts during a recovery time is the more natural key parameter, instead of the effective infection rate in the classical, continuous-time SIS Markov model. The relative simplicity of our mean-field results enables us to treat more general types of SIS epidemics, while offering an easier key parameter to measure the average activity of those general viral agents.
Susceptible-infected-susceptible epidemics on networks with general infection and cure times
NASA Astrophysics Data System (ADS)
Cator, E.; van de Bovenkamp, R.; Van Mieghem, P.
2013-06-01
The classical, continuous-time susceptible-infected-susceptible (SIS) Markov epidemic model on an arbitrary network is extended to incorporate infection and curing or recovery times each characterized by a general distribution (rather than an exponential distribution as in Markov processes). This extension, called the generalized SIS (GSIS) model, is believed to have a much larger applicability to real-world epidemics (such as information spread in online social networks, real diseases, malware spread in computer networks, etc.) that likely do not feature exponential times. While the exact governing equations for the GSIS model are difficult to deduce due to their non-Markovian nature, accurate mean-field equations are derived that resemble our previous N-intertwined mean-field approximation (NIMFA) and so allow us to transfer the whole analytic machinery of the NIMFA to the GSIS model. In particular, we establish the criterion to compute the epidemic threshold in the GSIS model. Moreover, we show that the average number of infection attempts during a recovery time is the more natural key parameter, instead of the effective infection rate in the classical, continuous-time SIS Markov model. The relative simplicity of our mean-field results enables us to treat more general types of SIS epidemics, while offering an easier key parameter to measure the average activity of those general viral agents.
Inverse modeling of geochemical and mechanical compaction in sedimentary basins
NASA Astrophysics Data System (ADS)
Colombo, Ivo; Porta, Giovanni Michele; Guadagnini, Alberto
2015-04-01
We study key phenomena driving the feedback between sediment compaction processes and fluid flow in stratified sedimentary basins formed through lithification of sand and clay sediments after deposition. Processes we consider are mechanic compaction of the host rock and the geochemical compaction due to quartz cementation in sandstones. Key objectives of our study include (i) the quantification of the influence of the uncertainty of the model input parameters on the model output and (ii) the application of an inverse modeling technique to field scale data. Proper accounting of the feedback between sediment compaction processes and fluid flow in the subsurface is key to quantify a wide set of environmentally and industrially relevant phenomena. These include, e.g., compaction-driven brine and/or saltwater flow at deep locations and its influence on (a) tracer concentrations observed in shallow sediments, (b) build up of fluid overpressure, (c) hydrocarbon generation and migration, (d) subsidence due to groundwater and/or hydrocarbons withdrawal, and (e) formation of ore deposits. Main processes driving the diagenesis of sediments after deposition are mechanical compaction due to overburden and precipitation/dissolution associated with reactive transport. The natural evolution of sedimentary basins is characterized by geological time scales, thus preventing direct and exhaustive measurement of the system dynamical changes. The outputs of compaction models are plagued by uncertainty because of the incomplete knowledge of the models and parameters governing diagenesis. Development of robust methodologies for inverse modeling and parameter estimation under uncertainty is therefore crucial to the quantification of natural compaction phenomena. We employ a numerical methodology based on three building blocks: (i) space-time discretization of the compaction process; (ii) representation of target output variables through a Polynomial Chaos Expansion (PCE); and (iii) model inversion (parameter estimation) within a maximum likelihood framework. In this context, the PCE-based surrogate model enables one to (i) minimize the computational cost associated with the (forward and inverse) modeling procedures leading to uncertainty quantification and parameter estimation, and (ii) compute the full set of Sobol indices quantifying the contribution of each uncertain parameter to the variability of target state variables. Results are illustrated through the simulation of one-dimensional test cases. The analyses focuses on the calibration of model parameters through literature field cases. The quality of parameter estimates is then analyzed as a function of number, type and location of data.
Untangling Galaxy Components - The Angular Momentum Parameter
NASA Astrophysics Data System (ADS)
Tabor, Martha; Merrifield, Michael; Aragon-Salamanca, Alfonso
2017-06-01
We have developed a new technique to decompose Integral Field spectral data cubes into separate bulge and disk components, allowing us to study the kinematic and stellar population properties of the individual components and how they vary with position. We present here the application of this method to a sample of fast rotator early type galaxies from the MaNGA integral field survey, and demonstrate how it can be used to explore key properties of the individual components. By extracting ages, metallicities and the angular momentum parameter lambda of the bulges and disks, we show how this method can give us new insights into the underlying structure of the galaxies and discuss what this can tell us about their evolution history.
Topological Structures in Multiferroics - Domain Walls, Skyrmions and Vortices
Seidel, Jan; Vasudevan, Rama K.; Valanoor, Nagarajan
2015-12-15
Topological structures in multiferroic materials have recently received considerable attention because of their potential use as nanoscale functional elements. Their reduced size in conjunction with exotic arrangement of the ferroic order parameter and potential order parameter coupling allows for emergent and unexplored phenomena in condensed matter and functional materials systems. This will lead to exciting new fundamental discoveries as well as application concepts that exploit their response to external stimuli such as mechanical strain, electric and magnetic fields. In this review we capture the current development of this rapidly moving field with specific emphasis on key achievements that have castmore » light on how such topological structures in multiferroic materials systems can be exploited for use in complex oxide nanoelectronics and spintronics.« less
The Athena X-ray Integral Field Unit (X-IFU)
NASA Astrophysics Data System (ADS)
Pajot, F.; Barret, D.; Lam-Trong, T.; den Herder, J.-W.; Piro, L.; Cappi, M.; Huovelin, J.; Kelley, R.; Mas-Hesse, J. M.; Mitsuda, K.; Paltani, S.; Rauw, G.; Rozanska, A.; Wilms, J.; Barbera, M.; Douchin, F.; Geoffray, H.; den Hartog, R.; Kilbourne, C.; Le Du, M.; Macculi, C.; Mesnager, J.-M.; Peille, P.
2018-04-01
The X-ray Integral Field Unit (X-IFU) of the Advanced Telescope for High-ENergy Astrophysics (Athena) large-scale mission of ESA will provide spatially resolved high-resolution X-ray spectroscopy from 0.2 to 12 keV, with 5^' ' } pixels over a field of view of 5 arc minute equivalent diameter and a spectral resolution of 2.5 eV (FWHM) up to 7 keV. The core scientific objectives of Athena drive the main performance parameters of the X-IFU. We present the current reference configuration of the X-IFU, and the key issues driving the design of the instrument.
Wearable, multimodal, vitals acquisition unit for intelligent field triage.
Beck, Christoph; Georgiou, Julius
2016-09-01
In this Letter, the authors describe the characterisation design and development of the authors' wearable, multimodal vitals acquisition unit for intelligent field triage. The unit is able to record the standard electrocardiogram, blood oxygen and body temperature parameters and also has the unique capability to record up to eight custom designed acoustic streams for heart and lung sound auscultation. These acquisition channels are highly synchronised to fully maintain the time correlation of the signals. The unit is a key component enabling systematic and intelligent field triage to continuously acquire vital patient information. With the realised unit a novel data-set with highly synchronised vital signs was recorded. The new data-set may be used for algorithm design in vital sign analysis or decision making. The monitoring unit is the only known body worn system that records standard emergency parameters plus eight multi-channel auscultatory streams and stores the recordings and wirelessly transmits them to mobile response teams.
NASA Astrophysics Data System (ADS)
Hina, A.
2017-12-01
Although Thar coal is recognized to be one of the most abundant fossil fuel that could meet the need to combat energy crisis of Pakistan, but there still remains a challenge to tackle the associated environmental and socio-ecological changes and its linkage to the provision of ecosystem services of the region. The study highlights the importance of considering Ecosystem service assessment to be undertaken in all strategic Environmental and Social Assessments of Thar coal field projects. The three-step approach has been formulated to link the project impacts to the provision of important ecosystem services; 1) Identification of impact indicators and parameters by analyzing the environmental and social impacts of surface mining in Thar Coal field through field investigation, literature review and stakeholder consultations; 2) Ranking of parameters and criteria alternatives using Multi-criteria Decision Analysis(MCDA) tool: (AHP method); 3) Using ranked parameters as a proxy to prioritize important ecosystem services of the region; The ecosystem services that were prioritized because of both high significance of project impact and high project dependence are highlighted as: Water is a key ecosystem service to be addressed and valued due to its high dependency in the area for livestock, human wellbeing, agriculture and other purposes. Crop production related to agricultural services, in association with supply services such as soil quality, fertility, and nutrient recycling and water retention need to be valued. Cultural services affected in terms of land use change and resettlement and rehabilitation factors are recommended to be addressed. The results of the analysis outline a framework of identifying these linkages as key constraints to foster the emergence of green growth and development in Pakistan. The practicality of implementing these assessments requires policy instruments and strategies to support human well-being and social inclusion while minimizing environmental degradation and loss of ecosystem services. Keywords Ecosystem service assessment; Environmental and Social Impact Assessment; coal mining; Thar Coal Field; Sustainable development
Computing elastic anisotropy to discover gum-metal-like structural alloys
NASA Astrophysics Data System (ADS)
Winter, I. S.; de Jong, M.; Asta, M.; Chrzan, D. C.
2017-08-01
The computer aided discovery of structural alloys is a burgeoning but still challenging area of research. A primary challenge in the field is to identify computable screening parameters that embody key structural alloy properties. Here, an elastic anisotropy parameter that captures a material's susceptibility to solute solution strengthening is identified. The parameter has many applications in the discovery and optimization of structural materials. As a first example, the parameter is used to identify alloys that might display the super elasticity, super strength, and high ductility of the class of TiNb alloys known as gum metals. In addition, it is noted that the parameter can be used to screen candidate alloys for shape memory response, and potentially aid in the optimization of the mechanical properties of high-entropy alloys.
NASA Astrophysics Data System (ADS)
Colombo, Ivo; Porta, Giovanni M.; Ruffo, Paolo; Guadagnini, Alberto
2017-03-01
This study illustrates a procedure conducive to a preliminary risk analysis of overpressure development in sedimentary basins characterized by alternating depositional events of sandstone and shale layers. The approach rests on two key elements: (1) forward modeling of fluid flow and compaction, and (2) application of a model-complexity reduction technique based on a generalized polynomial chaos expansion (gPCE). The forward model considers a one-dimensional vertical compaction processes. The gPCE model is then used in an inverse modeling context to obtain efficient model parameter estimation and uncertainty quantification. The methodology is applied to two field settings considered in previous literature works, i.e. the Venture Field (Scotian Shelf, Canada) and the Navarin Basin (Bering Sea, Alaska, USA), relying on available porosity and pressure information for model calibration. It is found that the best result is obtained when porosity and pressure data are considered jointly in the model calibration procedure. Uncertainty propagation from unknown input parameters to model outputs, such as pore pressure vertical distribution, is investigated and quantified. This modeling strategy enables one to quantify the relative importance of key phenomena governing the feedback between sediment compaction and fluid flow processes and driving the buildup of fluid overpressure in stratified sedimentary basins characterized by the presence of low-permeability layers. The results here illustrated (1) allow for diagnosis of the critical role played by the parameters of quantitative formulations linking porosity and permeability in compacted shales and (2) provide an explicit and detailed quantification of the effects of their uncertainty in field settings.
Connecting the large- and the small-scale magnetic fields of solar-like stars
NASA Astrophysics Data System (ADS)
Lehmann, L. T.; Jardine, M. M.; Mackay, D. H.; Vidotto, A. A.
2018-05-01
A key question in understanding the observed magnetic field topologies of cool stars is the link between the small- and the large-scale magnetic field and the influence of the stellar parameters on the magnetic field topology. We examine various simulated stars to connect the small-scale with the observable large-scale field. The highly resolved 3D simulations we used couple a flux transport model with a non-potential coronal model using a magnetofrictional technique. The surface magnetic field of these simulations is decomposed into spherical harmonics which enables us to analyse the magnetic field topologies on a wide range of length scales and to filter the large-scale magnetic field for a direct comparison with the observations. We show that the large-scale field of the self-consistent simulations fits the observed solar-like stars and is mainly set up by the global dipolar field and the large-scale properties of the flux pattern, e.g. the averaged latitudinal position of the emerging small-scale field and its global polarity pattern. The stellar parameters flux emergence rate, differential rotation and meridional flow affect the large-scale magnetic field topology. An increased flux emergence rate increases the magnetic flux in all field components and an increased differential rotation increases the toroidal field fraction by decreasing the poloidal field. The meridional flow affects the distribution of the magnetic energy across the spherical harmonic modes.
NASA Astrophysics Data System (ADS)
Fusco, T.; Villecroze, R.; Jarno, A.; Bacon, R.
2011-09-01
The second generation instrument MUSE for the VLT has been designed to profit of the ESO Adaptive Optics Facility (AOF). The two Adaptive Optics (AO) modes (GLAO in Wide Field Mode [WFM] and LTAO in Narrow Field Mode [NFM]) will be used. To achieve its key science goals, MUSE will require information on the full system (Atmosphere, AO, telescope and instrument) image quality and its variation with Field position and wavelength. For example, optimal summation of a large number of deep field exposures in WFM will require a good knowledge of the PSF. In this paper, we will present an exhaustive analysis of the MUSE Wide Field Mode PSF evolution both spatially and spectrally. For that purpose we have coupled a complete AO simulation tool developed at ONERA with the MUSE instrumental PSF simulation. Relative impact of atmospheric and system parameters (seeing, Cn^2, LGS and NGS positions etc ...) with respect to differential MUSE aberrations per channel (i.e. slicer and IFU) is analysed. The results allow us (in close collaboration with astronomers) to define pertinent parameters (fit parameters using a Moffat function) for a PSF reconstruction process (estimation of this parameters using GLAO telemetry) and to propose an efficient and robust algorithm to be implemented in the MUSE pipeline. The extension of the spatial and spectral PSF analysis to the NFM case is discussed and preliminary results are given. Some specific requirements for the generalisation of the GLAO PSF reconstruction process to the LTAO case are derived from these early results.
The Development of Even-Aged Plantation Forests: An Exercise in Forest Stand Dynamics
ERIC Educational Resources Information Center
Wilson, E. R.; Leslie, A. D.
2008-01-01
In this paper we present a field-based practical exercise that allows students in forestry, ecology and natural resources to develop their understanding of forest stand dynamics. The exercise involves measurement of key tree growth parameters in four even-aged, single-species plantation stands of different age but occupying sites with similar soil…
Technical Note: Field-observed angles of repose for stored grain in the United States
USDA-ARS?s Scientific Manuscript database
Bulk grain angle of repose (AoR) is a key parameter for inventorying grain, predicting flow characteristics, and designing bins and grain handling systems. The AoR is defined for two cases, piling (dynamic) or emptying (static), and usually varies with grain type. The objective of this study was to ...
Müller, Erich A; Jackson, George
2014-01-01
A description of fluid systems with molecular-based algebraic equations of state (EoSs) and by direct molecular simulation is common practice in chemical engineering and the physical sciences, but the two approaches are rarely closely coupled. The key for an integrated representation is through a well-defined force field and Hamiltonian at the molecular level. In developing coarse-grained intermolecular potential functions for the fluid state, one typically starts with a detailed, bottom-up quantum-mechanical or atomic-level description and then integrates out the unwanted degrees of freedom using a variety of techniques; an iterative heuristic simulation procedure is then used to refine the parameters of the model. By contrast, with a top-down technique, one can use an accurate EoS to link the macroscopic properties of the fluid and the force-field parameters. We discuss the latest developments in a top-down representation of fluids, with a particular focus on a group-contribution formulation of the statistical associating fluid theory (SAFT-γ). The accurate SAFT-γ EoS is used to estimate the parameters of the Mie force field, which can then be used with confidence in direct molecular simulations to obtain thermodynamic, structural, interfacial, and dynamical properties that are otherwise inaccessible from the EoS. This is exemplified for several prototypical fluids and mixtures, including carbon dioxide, hydrocarbons, perfluorohydrocarbons, and aqueous surfactants.
1977-11-13
Page 13 DEPENDENCE OF MEDIAN LOG POWER 1.0 ON SOLAR WIND VELOCITY Pc3 PULSATIONS June - September 1974 UCLA Fluxgate Magnetometer ATS - 6 0 Log P=-3.3...interplanetary medium; Cosmic Elec., 1, 90-114, Space Sci. Rev., in press, 1978. 1970. Rusaell, C T., The ISEE I and 2 fluxgate magnetometers IEEE Fairfield. D...investigation is to attain the capacity to use micropulsation records acquired from surface magnetometers to infer certain key parameters of the solar wind
Phase-only asymmetric optical cryptosystem based on random modulus decomposition
NASA Astrophysics Data System (ADS)
Xu, Hongfeng; Xu, Wenhui; Wang, Shuaihua; Wu, Shaofan
2018-06-01
We propose a phase-only asymmetric optical cryptosystem based on random modulus decomposition (RMD). The cryptosystem is presented for effectively improving the capacity to resist various attacks, including the attack of iterative algorithms. On the one hand, RMD and phase encoding are combined to remove the constraints that can be used in the attacking process. On the other hand, the security keys (geometrical parameters) introduced by Fresnel transform can increase the key variety and enlarge the key space simultaneously. Numerical simulation results demonstrate the strong feasibility, security and robustness of the proposed cryptosystem. This cryptosystem will open up many new opportunities in the application fields of optical encryption and authentication.
Ethnographic field work in requirements engineering
NASA Astrophysics Data System (ADS)
Reddivari, Sandeep; Asaithambi, Asai; Niu, Nan; Wang, Wentao; Xu, Li Da; Cheng, Jing-Ru C.
2017-01-01
The requirements engineering (RE) processes have become a key in developing and deploying enterprise information system (EIS) for organisations and corporations in various fields and industrial sectors. Ethnography is a contextual method allowing scientific description of the stakeholders, their needs and their organisational customs. Despite the recognition in the RE literature that ethnography could be helpful, the actual leverage of the method has been limited and ad hoc. To overcome the problems, we report in this paper a systematic mapping study where the relevant literature is examined. Building on the literature review, we further identify key parameters, their variations and their connections. The improved understanding about the role of ethnography in EIS RE is then presented in a consolidated model, and the guidelines of how to apply ethnography are organised by the key factors uncovered. Our study can direct researchers towards thorough understanding about the role that ethnography plays in EIS RE, and more importantly, to help practitioners better integrate contextually rich and ecologically valid methods in their daily practices.
NASA Astrophysics Data System (ADS)
Farhadi, L.; Abdolghafoorian, A.
2015-12-01
The land surface is a key component of climate system. It controls the partitioning of available energy at the surface between sensible and latent heat, and partitioning of available water between evaporation and runoff. Water and energy cycle are intrinsically coupled through evaporation, which represents a heat exchange as latent heat flux. Accurate estimation of fluxes of heat and moisture are of significant importance in many fields such as hydrology, climatology and meteorology. In this study we develop and apply a Bayesian framework for estimating the key unknown parameters of terrestrial water and energy balance equations (i.e. moisture and heat diffusion) and their uncertainty in land surface models. These equations are coupled through flux of evaporation. The estimation system is based on the adjoint method for solving a least-squares optimization problem. The cost function consists of aggregated errors on state (i.e. moisture and temperature) with respect to observation and parameters estimation with respect to prior values over the entire assimilation period. This cost function is minimized with respect to parameters to identify models of sensible heat, latent heat/evaporation and drainage and runoff. Inverse of Hessian of the cost function is an approximation of the posterior uncertainty of parameter estimates. Uncertainty of estimated fluxes is estimated by propagating the uncertainty for linear and nonlinear function of key parameters through the method of First Order Second Moment (FOSM). Uncertainty analysis is used in this method to guide the formulation of a well-posed estimation problem. Accuracy of the method is assessed at point scale using surface energy and water fluxes generated by the Simultaneous Heat and Water (SHAW) model at the selected AmeriFlux stations. This method can be applied to diverse climates and land surface conditions with different spatial scales, using remotely sensed measurements of surface moisture and temperature states
LiDAR-derived site index in the U.S. Pacihic Northwest--challenges and opportunities
Demetrios Gatziolis
2007-01-01
Site Index (SI), a key inventory parameter, is traditionally estimated by using costly and laborious field assessments of tree height and age. The increasing availability of reliable information on stand initiation timing and extent of planted, even-aged stands maintained in digital databases suggests that information on the height of dominant trees suffices for...
Microdesigning of Lightweight/High Strength Ceramic Materials
1989-07-31
Continue on reverse if necessary and identiy by block number) FIELD GROUP SUB- GROUP Ceramics, Composite Materials, Colloidal Processing Iii 19. ABSTRACT...to identify key processing parameters that affect the microstructure of the composite material. The second section describes experimental results in...results of the significant theoretical effort made in our group . Theoretical models of particle-particle interaction, particle-polymer interaction
Application of Unmanned Aircraft System Instrumentation to Study Coastal Geochemistry
NASA Astrophysics Data System (ADS)
Coffin, R. B.; Osburn, C. L.; Smith, J. P.
2016-02-01
Coastal evaluation of key geochemical cycles is in strong need for thorough spatial data to address diverse topics. In many field studies we find that fixed station data taken from ship operations does not provide complete understanding of key research questions. In complicated systems where there is a need to integrate physical, chemical and biological parameters data taken from research vessels needs to be interpreted across large spatial areas. New technology in Unmanned Aircraft System (UAS) instrumentation coupled with ship board data can provide the thorough spatial data needed for a thorough evaluation of coastal sciences. This presentation will provide field data related to UAS application in two diverse environments. One study focuses on the flux of carbon dioxide and methane from Alaskan Arctic tundra and shallow Beaufort Sea coastal region to the atmosphere. In this study gas chemistry from samples is used to predict the relative fluxes to the atmosphere. A second study applies bio-optical analyses to differentiate between Gulf of Mexico coastal water column DOC and Lignin. This wide range of parameters in diverse ecosystems is selected to show current capability for application of UAS and the potential for understanding large scale questions about climate change and carbon cycling in coastal waters.
Aerodynamic Interaction between Delta Wing and Hemisphere-Cylinder in Supersonic Flow
NASA Astrophysics Data System (ADS)
Nishino, Atsuhiro; Ishikawa, Takahumi; Nakamura, Yoshiaki
As future space vehicles, Reusable Launch Vehicle (RLV) needs to be developed, where there are two kinds of RLV: Single Stage To Orbit (SSTO) and Two Stage To Orbit (TSTO). In the latter case, the shock/shock interaction and shock/boundary layer interaction play a key role. In the present study, we focus on the supersonic flow field with aerodynamic interaction between a delta wing and a hemisphere-cylinder, which imitate a TSTO, where the clearance, h, between the delta wing and hemisphere-cylinder is a key parameter. As a result, complicated flow patterns were made clear, including separation bubbles.
Geothermal Life Cycle Calculator
Sullivan, John
2014-03-11
This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.
Parameterizations for ensemble Kalman inversion
NASA Astrophysics Data System (ADS)
Chada, Neil K.; Iglesias, Marco A.; Roininen, Lassi; Stuart, Andrew M.
2018-05-01
The use of ensemble methods to solve inverse problems is attractive because it is a derivative-free methodology which is also well-adapted to parallelization. In its basic iterative form the method produces an ensemble of solutions which lie in the linear span of the initial ensemble. Choice of the parameterization of the unknown field is thus a key component of the success of the method. We demonstrate how both geometric ideas and hierarchical ideas can be used to design effective parameterizations for a number of applied inverse problems arising in electrical impedance tomography, groundwater flow and source inversion. In particular we show how geometric ideas, including the level set method, can be used to reconstruct piecewise continuous fields, and we show how hierarchical methods can be used to learn key parameters in continuous fields, such as length-scales, resulting in improved reconstructions. Geometric and hierarchical ideas are combined in the level set method to find piecewise constant reconstructions with interfaces of unknown topology.
Songhurst, Anna; Coulson, Tim
2014-03-01
Few universal trends in spatial patterns of wildlife crop-raiding have been found. Variations in wildlife ecology and movements, and human spatial use have been identified as causes of this apparent unpredictability. However, varying spatial patterns of spatial autocorrelation (SA) in human-wildlife conflict (HWC) data could also contribute. We explicitly explore the effects of SA on wildlife crop-raiding data in order to facilitate the design of future HWC studies. We conducted a comparative survey of raided and nonraided fields to determine key drivers of crop-raiding. Data were subsampled at different spatial scales to select independent raiding data points. The model derived from all data was fitted to subsample data sets. Model parameters from these models were compared to determine the effect of SA. Most methods used to account for SA in data attempt to correct for the change in P-values; yet, by subsampling data at broader spatial scales, we identified changes in regression estimates. We consequently advocate reporting both model parameters across a range of spatial scales to help biological interpretation. Patterns of SA vary spatially in our crop-raiding data. Spatial distribution of fields should therefore be considered when choosing the spatial scale for analyses of HWC studies. Robust key drivers of elephant crop-raiding included raiding history of a field and distance of field to a main elephant pathway. Understanding spatial patterns and determining reliable socio-ecological drivers of wildlife crop-raiding is paramount for designing mitigation and land-use planning strategies to reduce HWC. Spatial patterns of HWC are complex, determined by multiple factors acting at more than one scale; therefore, studies need to be designed with an understanding of the effects of SA. Our methods are accessible to a variety of practitioners to assess the effects of SA, thereby improving the reliability of conservation management actions.
NASA Astrophysics Data System (ADS)
Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Xiong, Jie; Jiang, Ping
2015-07-01
We present the design, implementation and detailed performance analysis for a class of trapeziform and flat acoustic cloaks. An effective large invisible area is obtained compared with the traditional carpet cloak. The cloaks are realized with homogeneous metamaterials which are made of periodic arrangements of subwavelength unit cells composed of steel embedded in air. The microstructures and its effective parameters of the cloaks are determined quickly and precisely in a broadband frequency range by using the effective medium theory and the proposed parameters optimization method. The invisibility capability of the cloaks can be controlled by the variation of the key design parameters and scale factor which are proved to have more influence on the performance in the near field than that in the far field. Different designs are suitable for different application situations. Good cloaking performance demonstrates that such a device can be physically realized with natural materials which will greatly promote the real applications of invisibility cloak.
Non-linear Parameter Estimates from Non-stationary MEG Data
Martínez-Vargas, Juan D.; López, Jose D.; Baker, Adam; Castellanos-Dominguez, German; Woolrich, Mark W.; Barnes, Gareth
2016-01-01
We demonstrate a method to estimate key electrophysiological parameters from resting state data. In this paper, we focus on the estimation of head-position parameters. The recovery of these parameters is especially challenging as they are non-linearly related to the measured field. In order to do this we use an empirical Bayesian scheme to estimate the cortical current distribution due to a range of laterally shifted head-models. We compare different methods of approaching this problem from the division of M/EEG data into stationary sections and performing separate source inversions, to explaining all of the M/EEG data with a single inversion. We demonstrate this through estimation of head position in both simulated and empirical resting state MEG data collected using a head-cast. PMID:27597815
Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field
2015-01-01
Recently we presented a first-generation all-atom Drude polarizable force field for DNA based on the classical Drude oscillator model, focusing on optimization of key dihedral angles followed by extensive validation of the force field parameters. Presently, we describe the procedure for balancing the electrostatic interactions between ions, water, and DNA as required for development of the Drude force field for DNA. The proper balance of these interactions is shown to impact DNA stability and subtler conformational properties, including the conformational equilibrium between the BI and BII states, and the A and B forms of DNA. The parametrization efforts were simultaneously guided by gas-phase quantum mechanics (QM) data on small model compounds and condensed-phase experimental data on the hydration and osmotic properties of biologically relevant ions and their solutions, as well as theoretical predictions for ionic distribution around DNA oligomer. In addition, fine-tuning of the internal base parameters was performed to obtain the final DNA model. Notably, the Drude model is shown to more accurately reproduce counterion condensation theory predictions of DNA charge neutralization by the condensed ions as compared to the CHARMM36 additive DNA force field, indicating an improved physical description of the forces dictating the ionic solvation of DNA due to the explicit treatment of electronic polarizability. In combination with the polarizable DNA force field, the availability of Drude polarizable parameters for proteins, lipids, and carbohydrates will allow for simulation studies of heterogeneous biological systems. PMID:24874104
NASA Astrophysics Data System (ADS)
Balakin, Alexander B.; Bochkarev, Vladimir V.; Lemos, José P. S.
2008-04-01
Using a Lagrangian formalism, a three-parameter nonminimal Einstein-Maxwell theory is established. The three parameters q1, q2, and q3 characterize the cross-terms in the Lagrangian, between the Maxwell field and terms linear in the Ricci scalar, Ricci tensor, and Riemann tensor, respectively. Static spherically symmetric equations are set up, and the three parameters are interrelated and chosen so that effectively the system reduces to a one parameter only, q. Specific black hole and other type of one-parameter solutions are studied. First, as a preparation, the Reissner-Nordström solution, with q1=q2=q3=0, is displayed. Then, we search for solutions in which the electric field is regular everywhere as well as asymptotically Coulombian, and the metric potentials are regular at the center as well as asymptotically flat. In this context, the one-parameter model with q1≡-q, q2=2q, q3=-q, called the Gauss-Bonnet model, is analyzed in detail. The study is done through the solution of the Abel equation (the key equation), and the dynamical system associated with the model. There is extra focus on an exact solution of the model and its critical properties. Finally, an exactly integrable one-parameter model, with q1≡-q, q2=q, q3=0, is considered also in detail. A special submodel, in which the Fibonacci number appears naturally, of this one-parameter model is shown, and the corresponding exact solution is presented. Interestingly enough, it is a soliton of the theory, the Fibonacci soliton, without horizons and with a mild conical singularity at the center.
Polarization variations in installed fibers and their influence on quantum key distribution systems.
Ding, Yu-Yang; Chen, Hua; Wang, Shuang; He, De-Yong; Yin, Zhen-Qiang; Chen, Wei; Zhou, Zheng; Guo, Guang-Can; Han, Zheng-Fu
2017-10-30
Polarization variations in the installed fibers are complex and volatile, and would severely affect the performances of polarization-sensitive quantum key distribution (QKD) systems. Based on the recorded data about polarization variations of different installed fibers, we establish an analytical methodology to quantitatively evaluate the influence of polarization variations on polarization-sensitive QKD systems. Using the increased quantum bit error rate induced by polarization variations as a key criteria, we propose two parameters - polarization drift time and required tracking speed - to characterize polarization variations. For field buried and aerial fibers with different length, we quantitatively evaluate the influence of polarization variations, and also provide requirements and suggestions for polarization basis alignment modules of QKD systems deployed in different kind of fibers.
NASA Technical Reports Server (NTRS)
Russell, Christopher T.; Hoffman, Robert (Technical Monitor)
2002-01-01
At this writing we have received all the CDROMs for the grant period. We have completed generating our timing tables past September 20, 2001. The calibration of the instrument has been checked for the entire mission up to the end of December 2000 and the key parameters provided to the project until the end of December 2000. These data are available to other experimenters over the web at http://www-ssc.igpp.ucla.edu/forms/polar/. High resolution spun data, 8 samples per see, have been created up to November, 2000 and have been made available to the community over the world wide web. This is a new data set that was a major effort this year. Our near term plans are to continue to provide key parameter data to the Polar project with the highest possible speed and to continue to reduce all high resolution magnetometer data and provide these data to the scientific community over the web.
SOLAR MODULATION OF THE LOCAL INTERSTELLAR SPECTRUM WITH VOYAGER 1 , AMS-02, PAMELA , AND BESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corti, C.; Bindi, V.; Consolandi, C.
In recent years, the increasing precision of direct cosmic rays measurements opened the door to high-sensitivity indirect searches of dark matter and to more accurate predictions for radiation doses received by astronauts and electronics in space. The key ingredients in the study of these phenomena are the knowledge of the local interstellar spectrum (LIS) of galactic cosmic rays and the understanding of how the solar modulation affects the LIS inside the heliosphere. Voyager 1 , AMS-02, PAMELA , and BESS measurements of proton and helium fluxes provide valuable information, allowing us to shed light on the shape of the LISmore » and the details of the solar modulation during solar cycles 22-24. A new parametrization of the LIS is presented, based on the latest data from Voyager 1 and AMS-02. Using the framework of the force-field approximation, the solar modulation parameter is extracted from the time-dependent fluxes measured by PAMELA and BESS . A modified version of the force-field approximation with a rigidity-dependent modulation parameter is introduced, yielding better fits than the force-field approximation. The results are compared with the modulation parameter inferred by neutron monitors.« less
Model Parameter Variability for Enhanced Anaerobic Bioremediation of DNAPL Source Zones
NASA Astrophysics Data System (ADS)
Mao, X.; Gerhard, J. I.; Barry, D. A.
2005-12-01
The objective of the Source Area Bioremediation (SABRE) project, an international collaboration of twelve companies, two government agencies and three research institutions, is to evaluate the performance of enhanced anaerobic bioremediation for the treatment of chlorinated ethene source areas containing dense, non-aqueous phase liquids (DNAPL). This 4-year, 5.7 million dollars research effort focuses on a pilot-scale demonstration of enhanced bioremediation at a trichloroethene (TCE) DNAPL field site in the United Kingdom, and includes a significant program of laboratory and modelling studies. Prior to field implementation, a large-scale, multi-laboratory microcosm study was performed to determine the optimal system properties to support dehalogenation of TCE in site soil and groundwater. This statistically-based suite of experiments measured the influence of key variables (electron donor, nutrient addition, bioaugmentation, TCE concentration and sulphate concentration) in promoting the reductive dechlorination of TCE to ethene. As well, a comprehensive biogeochemical numerical model was developed for simulating the anaerobic dehalogenation of chlorinated ethenes. An appropriate (reduced) version of this model was combined with a parameter estimation method based on fitting of the experimental results. Each of over 150 individual microcosm calibrations involved matching predicted and observed time-varying concentrations of all chlorinated compounds. This study focuses on an analysis of this suite of fitted model parameter values. This includes determining the statistical correlation between parameters typically employed in standard Michaelis-Menten type rate descriptions (e.g., maximum dechlorination rates, half-saturation constants) and the key experimental variables. The analysis provides insight into the degree to which aqueous phase TCE and cis-DCE inhibit dechlorination of less-chlorinated compounds. Overall, this work provides a database of the numerical modelling parameters typically employed for simulating TCE dechlorination relevant for a range of system conditions (e.g, bioaugmented, high TCE concentrations, etc.). The significance of the obtained variability of parameters is illustrated with one-dimensional simulations of enhanced anaerobic bioremediation of residual TCE DNAPL.
The drift velocity monitoring system of the CMS barrel muon chambers
NASA Astrophysics Data System (ADS)
Altenhöfer, Georg; Hebbeker, Thomas; Heidemann, Carsten; Reithler, Hans; Sonnenschein, Lars; Teyssier, Daniel
2018-04-01
The drift velocity is a key parameter of drift chambers. Its value depends on several parameters: electric field, pressure, temperature, gas mixture, and contamination, for example, by ambient air. A dedicated Velocity Drift Chamber (VDC) with 1-L volume has been built at the III. Phys. Institute A, RWTH Aachen, in order to monitor the drift velocity of all CMS barrel muon Drift Tube chambers. A system of six VDCs was installed at CMS and has been running since January 2011. We present the VDC monitoring system, its principle of operation, and measurements performed.
Wearable, multimodal, vitals acquisition unit for intelligent field triage
Georgiou, Julius
2016-01-01
In this Letter, the authors describe the characterisation design and development of the authors’ wearable, multimodal vitals acquisition unit for intelligent field triage. The unit is able to record the standard electrocardiogram, blood oxygen and body temperature parameters and also has the unique capability to record up to eight custom designed acoustic streams for heart and lung sound auscultation. These acquisition channels are highly synchronised to fully maintain the time correlation of the signals. The unit is a key component enabling systematic and intelligent field triage to continuously acquire vital patient information. With the realised unit a novel data-set with highly synchronised vital signs was recorded. The new data-set may be used for algorithm design in vital sign analysis or decision making. The monitoring unit is the only known body worn system that records standard emergency parameters plus eight multi-channel auscultatory streams and stores the recordings and wirelessly transmits them to mobile response teams. PMID:27733926
Analytic quantum-interference conditions in Coulomb corrected photoelectron holography
NASA Astrophysics Data System (ADS)
Maxwell, A. S.; Al-Jawahiry, A.; Lai, X. Y.; Figueira de Morisson Faria, C.
2018-02-01
We provide approximate analytic expressions for above-threshold ionization (ATI) transition probabilities and photoelectron angular distributions. These analytic expressions are more general than those existing in the literature and include the residual binding potential in the electron continuum propagation. They successfully reproduce the ATI side lobes and specific holographic structures such as the near-threshold fan-shaped pattern and the spider-like structure that extends up to relatively high photoelectron energies. We compare such expressions with the Coulomb quantum orbit strong-field approximation (CQSFA) and the full solution of the time-dependent Schrödinger equation for different driving-field frequencies and intensities, and provide an in-depth analysis of the physical mechanisms behind specific holographic structures. Our results shed additional light on what aspects of the CQSFA must be prioritized in order to obtain the key holographic features, and highlight the importance of forward scattered trajectories. Furthermore, we find that the holographic patterns change considerably for different field parameters, even if the Keldysh parameter is kept roughly the same.
The application of the pilot points in groundwater numerical inversion model
NASA Astrophysics Data System (ADS)
Hu, Bin; Teng, Yanguo; Cheng, Lirong
2015-04-01
Numerical inversion simulation of groundwater has been widely applied in groundwater. Compared to traditional forward modeling, inversion model has more space to study. Zones and inversing modeling cell by cell are conventional methods. Pilot points is a method between them. The traditional inverse modeling method often uses software dividing the model into several zones with a few parameters needed to be inversed. However, distribution is usually too simple for modeler and result of simulation deviation. Inverse cell by cell will get the most actual parameter distribution in theory, but it need computational complexity greatly and quantity of survey data for geological statistical simulation areas. Compared to those methods, pilot points distribute a set of points throughout the different model domains for parameter estimation. Property values are assigned to model cells by Kriging to ensure geological units within the parameters of heterogeneity. It will reduce requirements of simulation area geological statistics and offset the gap between above methods. Pilot points can not only save calculation time, increase fitting degree, but also reduce instability of numerical model caused by numbers of parameters and other advantages. In this paper, we use pilot point in a field which structure formation heterogeneity and hydraulics parameter was unknown. We compare inversion modeling results of zones and pilot point methods. With the method of comparative analysis, we explore the characteristic of pilot point in groundwater inversion model. First, modeler generates an initial spatially correlated field given a geostatistical model by the description of the case site with the software named Groundwater Vistas 6. Defining Kriging to obtain the value of the field functions over the model domain on the basis of their values at measurement and pilot point locations (hydraulic conductivity), then we assign pilot points to the interpolated field which have been divided into 4 zones. And add range of disturbance values to inversion targets to calculate the value of hydraulic conductivity. Third, after inversion calculation (PEST), the interpolated field will minimize an objective function measuring the misfit between calculated and measured data. It's an optimization problem to find the optimum value of parameters. After the inversion modeling, the following major conclusion can be found out: (1) In a field structure formation is heterogeneity, the results of pilot point method is more real: better fitting result of parameters, more stable calculation of numerical simulation (stable residual distribution). Compared to zones, it is better of reflecting the heterogeneity of study field. (2) Pilot point method ensures that each parameter is sensitive and not entirely dependent on other parameters. Thus it guarantees the relative independence and authenticity of parameters evaluation results. However, it costs more time to calculate than zones. Key words: groundwater; pilot point; inverse model; heterogeneity; hydraulic conductivity
NASA Astrophysics Data System (ADS)
Jeong, Donghui; Desjacques, Vincent; Schmidt, Fabian
2018-01-01
Here, we briefly introduce the key results of the recent review (arXiv:1611.09787), whose abstract is as following. This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy (or halo) statistics. We then review the excursion set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.
NASA Astrophysics Data System (ADS)
Foroutan, Shahin; Haghshenas, Amin; Hashemian, Mohammad; Eftekhari, S. Ali; Toghraie, Davood
2018-03-01
In this paper, three-dimensional buckling behavior of nanowires was investigated based on Eringen's Nonlocal Elasticity Theory. The electric current-carrying nanowires were affected by a longitudinal magnetic field based upon the Lorentz force. The nanowires (NWs) were modeled based on Timoshenko beam theory and the Gurtin-Murdoch's surface elasticity theory. Generalized Differential Quadrature (GDQ) method was used to solve the governing equations of the NWs. Two sets of boundary conditions namely simple-simple and clamped-clamped were applied and the obtained results were discussed. Results demonstrated the effect of electric current, magnetic field, small-scale parameter, slenderness ratio, and nanowires diameter on the critical compressive buckling load of nanowires. As a key result, increasing the small-scale parameter decreased the critical load. By the same token, increasing the electric current, magnetic field, and slenderness ratio resulted in a decrease in the critical load. As the slenderness ratio increased, the effect of nonlocal theory decreased. In contrast, by expanding the NWs diameter, the nonlocal effect increased. Moreover, in the present article, the critical values of the magnetic field of strength and slenderness ratio were revealed, and the roles of the magnetic field, slenderness ratio, and NWs diameter on higher buckling loads were discussed.
The Wide Field Imager for Athena
NASA Astrophysics Data System (ADS)
Rau, A.; Nandra, K.; Meidinger, N.; Plattner, M.
2017-10-01
The Wide Field Imager (WFI) is one of the two scientific instruments of Athena, ESA's next large X-ray Observatory with launch in 2028. The instrument will provide two defining capabilities to the mission sensitive wide-field imaging spectroscopy and excellent high-count rate performance. It will do so with the use of two separate detectors systems, the Large Detector Array (LDA) optimized for its field of view (40'×40') with a 100 fold survey speed increase compared to existing X-ray missions, and the Fast Detector (FD) tweaked for high throughput and low pile-up for point sources as bright as the Crab. In my talk I will present the key performance parameters of the instrument and their links to the scientific goals of Athena and summarize the status of the ongoing development activities.
Magnetic induced heating of nanoparticle solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murph, S. Hunyadi; Brown, M.; Coopersmith, K.
2016-12-02
Magnetic induced heating of nanoparticles (NP) provides a useful advantage for many energy transfer applications. This study aims to gain an understanding of the key parameters responsible for maximizing the energy transfer leading to nanoparticle heating through the use of simulations and experimental results. It was found that magnetic field strength, NP concentration, NP composition, and coil size can be controlled to generate accurate temperature profiles in NP aqueous solutions.
NASA Astrophysics Data System (ADS)
Zehe, E.; Klaus, J.
2011-12-01
Rapid flow in connected preferential flow paths is crucial for fast transport of water and solutes through soils, especially at tile drained field sites. The present study tests whether an explicit treatment of worm burrows is feasible for modeling water flow, bromide and pesticide transport in structured heterogeneous soils with a 2-dimensional Richards based model. The essence is to represent worm burrows as morphologically connected paths of low flow resistance and low retention capacity in the spatially highly resolved model domain. The underlying extensive database to test this approach was collected during an irrigation experiment, which investigated transport of bromide and the herbicide Isoproturon at a 900 sqm tile drained field site. In a first step we investigated whether the inherent uncertainty in key data causes equifinality i.e. whether there are several spatial model setups that reproduce tile drain event discharge in an acceptable manner. We found a considerable equifinality in the spatial setup of the model, when key parameters such as the area density of worm burrows and the maximum volumetric water flows inside these macropores were varied within the ranges of either our measurement errors or measurements reported in the literature. Thirteen model runs yielded a Nash-Sutcliffe coefficient of more than 0.9. Also, the flow volumes were in good accordance and peak timing errors where less than or equal to 20 min. In the second step we investigated thus whether this "equifinality" in spatial model setups may be reduced when including the bromide tracer data into the model falsification process. We simulated transport of bromide for the 13 spatial model setups, which performed best with respect to reproduce tile drain event discharge, without any further calibration. Four of this 13 model setups allowed to model bromide transport within fixed limits of acceptability. Parameter uncertainty and equifinality could thus be reduced. Thirdly, we selected one of those four setups for simulating transport of Isoproturon, which was applied the day before the irrigation experiment, and tested different parameter combinations to characterise adsorption according to the footprint data base. Simulations could, however, only reproduce the observed event based leaching behaviour, when we allowed for retardation coefficients that were very close to one. This finding is consistent with observations various field observations. We conclude: a) A realistic representation of dominating structures and their topology is of key importance for predicting preferential water and mass flows at tile drained hillslopes. b) Parameter uncertainty and equifinality could be reduced, but a system inherent equifinality in a 2-dimensional Richards based model has to be accepted.
Analysis of Design Parameters Effects on Vibration Characteristics of Fluidlastic Isolators
NASA Astrophysics Data System (ADS)
Deng, Jing-hui; Cheng, Qi-you
2017-07-01
The control of vibration in helicopters which consists of reducing vibration levels below the acceptable limit is one of the key problems. The fluidlastic isolators become more and more widely used because the fluids are non-toxic, non-corrosive, nonflammable, and compatible with most elastomers and adhesives. In the field of the fluidlastic isolators design, the selection of design parameters is very important to obtain efficient vibration-suppressed. Aiming at getting the effect of design parameters on the property of fluidlastic isolator, a dynamic equation is set up based on the theory of dynamics. And the dynamic analysis is carried out. The influences of design parameters on the property of fluidlastic isolator are calculated. Dynamic analysis results have shown that fluidlastic isolator can reduce the vibration effectively. Analysis results also showed that the design parameters such as the fluid density, viscosity coefficient, stiffness (K1 and K2) and loss coefficient have obvious influence on the performance of isolator. The efficient vibration-suppressed can be obtained by the design optimization of parameters.
See-through ophthalmoscope for retinal imaging
NASA Astrophysics Data System (ADS)
Carpentras, Dino; Moser, Christophe
2017-05-01
With the miniaturization of scanning mirrors and the emergence of wearable health monitoring, an intriguing step is to investigate the potential of a laser scanning ophthalmoscope (LSO) for retinal imaging with wearable glasses. In addition to providing morphological information of the retina, such as vasculature, LSO images could also be used to provide information on general health conditions. A compact eyeglass with LSO capability would give access, on demand, to retinal parameters without disturbing the subject's activity. One of the main challenges in this field is the creation of a device that does not interrupt the user's field of view. We report, to our knowledge, the first see-through ophthalmoscope. The system is analyzed with three-dimensional simulations and tested in a proof-of-concept setup with the same key parameters of a wearable device. Finally, image quality is analyzed by acquiring images of an ex-vivo human eye sample.
Density scaling on n = 1 error field penetration in ohmically heated discharges in EAST
NASA Astrophysics Data System (ADS)
Wang, Hui-Hui; Sun, You-Wen; Shi, Tong-Hui; Zang, Qing; Liu, Yue-Qiang; Yang, Xu; Gu, Shuai; He, Kai-Yang; Gu, Xiang; Qian, Jin-Ping; Shen, Biao; Luo, Zheng-Ping; Chu, Nan; Jia, Man-Ni; Sheng, Zhi-Cai; Liu, Hai-Qing; Gong, Xian-Zu; Wan, Bao-Nian; Contributors, EAST
2018-05-01
Density scaling of error field penetration in EAST is investigated with different n = 1 magnetic perturbation coil configurations in ohmically heated discharges. The density scalings of error field penetration thresholds under two magnetic perturbation spectra are br\\propto n_e0.5 and br\\propto n_e0.6 , where b r is the error field and n e is the line averaged electron density. One difficulty in understanding the density scaling is that key parameters other than density in determining the field penetration process may also be changed when the plasma density changes. Therefore, they should be determined from experiments. The estimated theoretical analysis (br\\propto n_e0.54 in lower density region and br\\propto n_e0.40 in higher density region), using the density dependence of viscosity diffusion time, electron temperature and mode frequency measured from the experiments, is consistent with the observed scaling. One of the key points to reproduce the observed scaling in EAST is that the viscosity diffusion time estimated from energy confinement time is almost constant. It means that the plasma confinement lies in saturation ohmic confinement regime rather than the linear Neo-Alcator regime causing weak density dependence in the previous theoretical studies.
The STAR Data Reporting Guidelines for Clinical High Altitude Research.
Brodmann Maeder, Monika; Brugger, Hermann; Pun, Matiram; Strapazzon, Giacomo; Dal Cappello, Tomas; Maggiorini, Marco; Hackett, Peter; Bärtsch, Peter; Swenson, Erik R; Zafren, Ken
2018-03-01
Brodmann Maeder, Monika, Hermann Brugger, Matiram Pun, Giacomo Strapazzon, Tomas Dal Cappello, Marco Maggiorini, Peter Hackett, Peter Baärtsch, Erik R. Swenson, Ken Zafren (STAR Core Group), and the STAR Delphi Expert Group. The STARdata reporting guidelines for clinical high altitude research. High AltMedBiol. 19:7-14, 2018. The goal of the STAR (STrengthening Altitude Research) initiative was to produce a uniform set of key elements for research and reporting in clinical high-altitude (HA) medicine. The STAR initiative was inspired by research on treatment of cardiac arrest, in which the establishment of the Utstein Style, a uniform data reporting protocol, substantially contributed to improving data reporting and subsequently the quality of scientific evidence. The STAR core group used the Delphi method, in which a group of experts reaches a consensus over multiple rounds using a formal method. We selected experts in the field of clinical HA medicine based on their scientific credentials and identified an initial set of parameters for evaluation by the experts. Of 51 experts in HA research who were identified initially, 21 experts completed both rounds. The experts identified 42 key parameters in 5 categories (setting, individual factors, acute mountain sickness and HA cerebral edema, HA pulmonary edema, and treatment) that were considered essential for research and reporting in clinical HA research. An additional 47 supplemental parameters were identified that should be reported depending on the nature of the research. The STAR initiative, using the Delphi method, identified a set of key parameters essential for research and reporting in clinical HA medicine.
NASA Astrophysics Data System (ADS)
Noh, Seong Jin; An, Hyunuk; Kim, Sanghyun
2015-04-01
Soil moisture, a critical factor in hydrologic systems, plays a key role in synthesizing interactions among soil, climate, hydrological response, solute transport and ecosystem dynamics. The spatial and temporal distribution of soil moisture at a hillslope scale is essential for understanding hillslope runoff generation processes. In this study, we implement Monte Carlo simulations in the hillslope scale using a three-dimensional surface-subsurface integrated model (3D model). Numerical simulations are compared with multiple soil moistures which had been measured using TDR(Mini_TRASE) for 22 locations in 2 or 3 depths during a whole year at a hillslope (area: 2100 square meters) located in Bongsunsa Watershed, South Korea. In stochastic simulations via Monte Carlo, uncertainty of the soil parameters and input forcing are considered and model ensembles showing good performance are selected separately for several seasonal periods. The presentation will be focused on the characterization of seasonal variations of model parameters based on simulations with field measurements. In addition, structural limitations of the contemporary modeling method will be discussed.
Rotor Wake Vortex Definition: Initial Evaluation of 3-C PIV Results of the Hart-II Study
NASA Technical Reports Server (NTRS)
Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughes; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee
2002-01-01
An initial evaluation is made of extensive three-component (3C) particle image velocimetry (PIV) measurements within the wake across a rotor disk plane. The model is a 40 percent scale BO-105 helicopter main rotor in forward flight simulation. This study is part of the HART II test program conducted in the German-Dutch Wind Tunnel (DNW). Included are wake vortex field measurements over the advancing and retreating sides of the rotor operating at a typical descent landing condition important for impulsive blade-vortex interaction (BVI) noise. Also included are advancing side results for rotor angle variations from climb to steep descent. Using detailed PIV vector maps of the vortex fields, methods of extracting key vortex parameters are examined and a new method was developed and evaluated. An objective processing method, involving a center-of-vorticity criterion and a vorticity 'disk' integration, was used to determine vortex core size, strength, core velocity distribution characteristics, and unsteadiness. These parameters are mapped over the rotor disk and offer unique physical insight for these parameters of importance for rotor noise and vibration prediction.
Gangele, Aparna; Sharma, Chandra Shekhar; Pandey, Ashok Kumar
2017-04-01
Immense development has been taken place not only to increase the bulk production, repeatability and yield of carbon nanotubes (CNTs) in last 25 years but preference is also given to acknowledge the basic concepts of nucleation and growth methods. Vertically aligned carbon nanotubes (VAC-NTs) are forest of CNTs accommodated perpendicular on a substrate. Their exceptional chemical and physical properties along with sequential arrangement and dense structure make them suitable in various fields. The effect of different type of selected substrate, carbon precursor, catalyst and their physical and chemical status, reaction conditions and many other key parameters have been thoroughly studied and analysed. The aim of this paper is to specify the trend and summarize the effect of key parameters instead of only presenting all the experiments reported till date. The identified trends will be compared with the recent observations on the growth of different types of patterned VACNTs. In this review article, we have presented a comprehensive analysis of different techniques to precisely determine the role of different parameters responsible for the growth of patterned vertical aligned carbon nanotubes. We have covered various techniques proposed in the span of more than two decades to fabricate the different structures and configurations of carbon nanotubes on different types of substrates. Apart from a detailed discussion of each technique along with their specific process and implementation, we have also provided a critical analysis of the associated constraints, benefits and shortcomings. To sum it all for easy reference for researchers, we have tabulated all the techniques based on certain main key factors. This review article comprises of an exhaustive discussion and a handy reference for researchers who are new in the field of synthesis of CNTs or who wants to get abreast with the techniques of determining the growth of VACNTs arrays.
Doherty, John E.; Fienen, Michael N.; Hunt, Randall J.
2011-01-01
Pilot points have been used in geophysics and hydrogeology for at least 30 years as a means to bridge the gap between estimating a parameter value in every cell of a model and subdividing models into a small number of homogeneous zones. Pilot points serve as surrogate parameters at which values are estimated in the inverse-modeling process, and their values are interpolated onto the modeling domain in such a way that heterogeneity can be represented at a much lower computational cost than trying to estimate parameters in every cell of a model. Although the use of pilot points is increasingly common, there are few works documenting the mathematical implications of their use and even fewer sources of guidelines for their implementation in hydrogeologic modeling studies. This report describes the mathematics of pilot-point use, provides guidelines for their use in the parameter-estimation software suite (PEST), and outlines several research directions. Two key attributes for pilot-point definitions are highlighted. First, the difference between the information contained in the every-cell parameter field and the surrogate parameter field created using pilot points should be in the realm of parameters which are not informed by the observed data (the null space). Second, the interpolation scheme for projecting pilot-point values onto model cells ideally should be orthogonal. These attributes are informed by the mathematics and have important ramifications for both the guidelines and suggestions for future research.
NASA Astrophysics Data System (ADS)
Rüegg, Andreas; Pilgram, Sebastian; Sigrist, Manfred
2008-06-01
We investigate the low-temperature electrical and thermal transport properties in atomically precise metallic heterostructures involving strongly correlated electron systems. The model of the Mott-insulator/band-insulator superlattice was discussed in the framework of the slave-boson mean-field approximation and transport quantities were derived by use of the Boltzmann transport equation in the relaxation-time approximation. The results for the optical conductivity are in good agreement with recently published experimental data on (LaTiO3)N/(SrTiO3)M superlattices and allow us to estimate the values of key parameters of the model. Furthermore, predictions for the thermoelectric response were made and the dependence of the Seebeck coefficient on model parameters was studied in detail. The width of the Mott-insulating material was identified as the most relevant parameter, in particular, this parameter provides a way to optimize the thermoelectric power factor at low temperatures.
List-Based Simulated Annealing Algorithm for Traveling Salesman Problem.
Zhan, Shi-hua; Lin, Juan; Zhang, Ze-jun; Zhong, Yi-wen
2016-01-01
Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters' setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms.
Magnetic Field Response Measurement Acquisition System
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.
2007-01-01
This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.
NASA Astrophysics Data System (ADS)
Freidberg, Jeffrey; Dogra, Akshunna; Redman, William; Cerfon, Antoine
2016-10-01
The development of high field, high temperature superconductors is thought to be a game changer for the development of fusion power based on the tokamak concept. We test the validity of this assertion for pilot plant scale reactors (Q 10) for two different but related missions: pulsed operation and steady-state operation. Specifically, we derive a set of analytic criteria that determines the basic design parameters of a given fusion reactor mission. As expected there are far more constraints than degrees of freedom in any given design application. However, by defining the mission of the reactor under consideration, we have been able to determine the subset of constraints that drive the design, and calculate the values for the key parameters characterizing the tokamak. Our conclusions are as follows: 1) for pulsed reactors, high field leads to more compact designs and thus cheaper reactors - high B is the way to go; 2) steady-state reactors with H-mode like transport are large, even with high fields. The steady-state constraint is hard to satisfy in compact designs - high B helps but is not enough; 3) I-mode like transport, when combined with high fields, yields relatively compact steady-state reactors - why is there not more research on this favorable transport regime?
Quantifying Uncertainty in Inverse Models of Geologic Data from Shear Zones
NASA Astrophysics Data System (ADS)
Davis, J. R.; Titus, S.
2016-12-01
We use Bayesian Markov chain Monte Carlo simulation to quantify uncertainty in inverse models of geologic data. Although this approach can be applied to many tectonic settings, field areas, and mathematical models, we focus on transpressional shear zones. The underlying forward model, either kinematic or dynamic, produces a velocity field, which predicts the dikes, foliation-lineations, crystallographic preferred orientation (CPO), shape preferred orientation (SPO), and other geologic data that should arise in the shear zone. These predictions are compared to data using modern methods of geometric statistics, including the Watson (for lines such as dike poles), isotropic matrix Fisher (for orientations such as foliation-lineations and CPO), and multivariate normal (for log-ellipsoids such as SPO) distributions. The result of the comparison is a likelihood, which is a key ingredient in the Bayesian approach. The other key ingredient is a prior distribution, which reflects the geologist's knowledge of the parameters before seeing the data. For some parameters, such as shear zone strike and dip, we identify realistic informative priors. For other parameters, where the geologist has no prior knowledge, we identify useful uninformative priors.We investigate the performance of this approach through numerical experiments on synthetic data sets. A fundamental issue is that many models of deformation exhibit asymptotic behavior (e.g., flow apophyses, fabric attractors) or periodic behavior (e.g., SPO when the clasts are rigid), which causes the likelihood to be too uniform. Based on our experiments, we offer rules of thumb for how many data, of which types, are needed to constrain deformation.
Impact of ADC parameters on linear optical sampling systems
NASA Astrophysics Data System (ADS)
Nguyen, Trung-Hien; Gay, Mathilde; Gomez-Agis, Fausto; Lobo, Sébastien; Sentieys, Olivier; Simon, Jean-Claude; Peucheret, Christophe; Bramerie, Laurent
2017-11-01
Linear optical sampling (LOS), based on the coherent photodetection of an optical signal under test with a low repetition-rate signal originating from a pulsed local oscillator (LO), enables the characterization of the temporal electric field of optical sources. Thanks to this technique, low-speed photodetectors and analog-to-digital converters (ADCs) can be integrated in the LOS system providing a cost-effective tool for characterizing high-speed signals. However, the impact of photodetector and ADC parameters on such LOS systems has not been explored in detail so far. These parameters, including the integration time of the track-and-hold function, the effective number of bits (ENOB) of the ADC, as well as the combined limited bandwidth of the photodetector and ADC are experimentally and numerically investigated in a LOS system for the first time. More specifically, by reconstructing 10-Gbit/s non-return-to-zero on-off keying (NRZ-OOK) and 10-Gbaud NRZ-quadrature phase-shift-keying (QPSK) signals, it is shown that a short integration time provides a better recovered signal fidelity. Furthermore, an ENOB of 6 bits and an ADC bandwidth normalized to the sampling rate of 2.8 are found to be sufficient in order to reliably monitor the considered signals.
A sensitivity analysis of a surface energy balance model to LAI (Leaf Area Index)
NASA Astrophysics Data System (ADS)
Maltese, A.; Cannarozzo, M.; Capodici, F.; La Loggia, G.; Santangelo, T.
2008-10-01
The LAI is a key parameter in hydrological processes, especially in the physically based distribution models. It is a critical ecosystem attribute since physiological processes such as photosynthesis, transpiration and evaporation depend on it. The diffusion of water vapor, momentum, heat and light through the canopy is regulated by the distribution and density of the leaves, branches, twigs and stems. The LAI influences the sensible heat flux H in the surface energy balance single source models through the calculation of the roughness length and of the displacement height. The aerodynamic resistance between the soil and within-canopy source height is a function of the LAI through the roughness length. This research carried out a sensitivity analysis of some of the most important parameters of surface energy balance models to the LAI time variation, in order to take into account the effects of the LAI variation with the phenological period. Finally empirical retrieved relationships between field spectroradiometric data and the field LAI measured via a light-sensitive instrument are presented for a cereal field.
A dissipative random velocity field for fully developed fluid turbulence
NASA Astrophysics Data System (ADS)
Chevillard, Laurent; Pereira, Rodrigo; Garban, Christophe
2016-11-01
We investigate the statistical properties, based on numerical simulations and analytical calculations, of a recently proposed stochastic model for the velocity field of an incompressible, homogeneous, isotropic and fully developed turbulent flow. A key step in the construction of this model is the introduction of some aspects of the vorticity stretching mechanism that governs the dynamics of fluid particles along their trajectory. An additional further phenomenological step aimed at including the long range correlated nature of turbulence makes this model depending on a single free parameter that can be estimated from experimental measurements. We confirm the realism of the model regarding the geometry of the velocity gradient tensor, the power-law behaviour of the moments of velocity increments, including the intermittent corrections, and the existence of energy transfers across scales. We quantify the dependence of these basic properties of turbulent flows on the free parameter and derive analytically the spectrum of exponents of the structure functions in a simplified non dissipative case. A perturbative expansion shows that energy transfers indeed take place, justifying the dissipative nature of this random field.
Reentrant behaviors in the phase diagram of spin-1 planar ferromagnet with single-ion anisotropy
NASA Astrophysics Data System (ADS)
Rabuffo, I.; De Cesare, L.; Caramico D'Auria, A.; Mercaldo, M. T.
2018-05-01
We used the two-time Green function framework to investigate the role played by the easy-axis single-ion anisotropy on the phase diagram of (d > 2)-dimensional spin-1planar ferromagnets, which exhibit a magnetic field induced quantum phase transition. We tackled the problem using two different kind of approximations: the Anderson-Callen decoupling scheme and the Devlin approach. In the latter scheme, the exchange anisotropy terms in the equations of motion are treated at the Tyablikov decoupling level while the crystal field anisotropy contribution is handled exactly. The emerging key result is a reentrant structure of the phase diagram close to the quantum critical point, for certain values of the single-ion anisotropy parameter. We compare the results obtained within the two approximation schemes. In particular, we recover the same qualitative behavior. We show the phase diagram, close to the field-induced quantum critical point and the behavior of the susceptibility for different values of the single-ion anisotropy parameter, enhancing the differences between the two different scenarios (i.e. with and without reentrant behavior).
NASA Astrophysics Data System (ADS)
Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.
2016-09-01
Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.
Rusling, James
2016-01-01
Immobilized antibody systems are the key to develop efficient diagnostics and separations tools. In the last decade, developments in the field of biomolecular engineering and crosslinker chemistry have greatly influenced the development of this field. With all these new approaches at our disposal, several new immobilization methods have been created to address the main challenges associated with immobilized antibodies. Few of these challenges that we have discussed in this review are mainly associated to the site-specific immobilization, appropriate orientation, and activity retention. We have discussed the effect of antibody immobilization approaches on the parameters on the performance of an immunoassay. PMID:27876681
Electric-field-induced modification in Curie temperature of Co monolayer on Pt(111)
NASA Astrophysics Data System (ADS)
Nakamura, Kohji; Oba, Mikito; Akiyama, Toru; Ito, Tomonori; Weinert, Michael
2015-03-01
Magnetism induced by an external electric field (E-field) has received much attention as a potential approach for controlling magnetism at the nano-scale with the promise of ultra-low energy power consumption. Here, the E-field-induced modification of the Curie temperature for a prototypical transition-metal thin layer of a Co monolayer on Pt(111) is investigated by first-principles calculations by using the full-potential linearized augmented plane wave method that treats spin-spiral structures in an E-field. An applied E-field modifies the magnon (spin-spiral formation) energies by a few meV, which leads to a modification of the exchange pair interaction parameters within the classical Heisenberg model. With inclusion of the spin-orbit coupling (SOC), the magnetocrystalline anisotropy and the Dzyaloshinskii-Morita interaction are obtained by the second variation SOC method. An E-field-induced modification of the Curie temperature is demonstrated by Monte Carlo simulations, in which a change in the exchange interaction is found to play a key role.
Core Problem: Does the CV Parent Body Magnetization require differentiation?
NASA Astrophysics Data System (ADS)
O'Brien, T.; Tarduno, J. A.; Smirnov, A. V.
2016-12-01
Evidence for the presence of past dynamos from magnetic studies of meteorites can provide key information on the nature and evolution of parent bodies. However, the suggestion of a past core dynamo for the CV parent body based on the study of the Allende meteorite has led to a paradox: a core dynamo requires differentiation, evidence for which is missing in the meteorite record. The key parameter used to distinguish core dynamo versus external field mechanisms is absolute field paleointensity, with high values (>>1 μT) favoring the former. Here we explore the fundamental requirements for absolute field intensity measurement in the Allende meteorite: single domain grains that are non-interacting. Magnetic hysteresis and directional data define strong magnetic interactions, negating a standard interpretation of paleointensity measurements in terms of absolute paleofield values. The Allende low field magnetic susceptibility is dominated by magnetite and FeNi grains, whereas the magnetic remanence is carried by an iron sulfide whose remanence-carrying capacity increases with laboratory cycling at constant field values, indicating reordering. The iron sulfide and FeNi grains are in close proximity, providing mineralogical context for interactions. We interpret the magnetization of Allende to record the intense early solar wind with metal-sulfide interactions amplifying the field, giving the false impression of a higher field value in some prior studies. An undifferentiated CV parent body is thus compatible with Allende's magnetization. Early solar wind magnetization should be the null hypothesis for evaluating the source of magnetization for chondrites and other meteorites.
Regnery, J; Wing, A D; Alidina, M; Drewes, J E
2015-08-01
This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e., redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e., less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR. Copyright © 2015 Elsevier B.V. All rights reserved.
Microwave Moisture Sensing of Seedcotton: Part 1: Seedcotton Microwave Material Properties.
Pelletier, Mathew G; Wanjura, John D; Holt, Greg A
2016-11-02
Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as skew the results of in-field yield and quality assessments. Microwave sensing of moisture has several unique advantages over lower frequency sensing approaches. The first is that microwaves are insensitive to variations in conductivity, due to presence of salts or minerals. The second advantage is that microwaves can peer deep inside large bulk packaging to assess the internal moisture content without performing a destructive tear down of the package. To help facilitate the development of a microwave moisture sensor for seedcotton; research was performed to determine the basic microwave properties of seedcotton. The research was performed on 110 kg micro-modules, which are of direct interest to research teams for use in ongoing field-based research projects. It should also prove useful for the enhancement of existing and future yield monitor designs. Experimental data was gathered on the basic relations between microwave material properties and seedcotton over the range from 1.0 GHz to 2.5 GHz and is reported on herein. This research is part one of a two-part series that reports on the fundamental microwave properties of seedcotton as moisture and density vary naturally during the course of typical harvesting operations; part two will utilize this data to formulate a prediction algorithm to form the basis for a prototype microwave moisture sensor.
Microwave Moisture Sensing of Seedcotton: Part 1: Seedcotton Microwave Material Properties
Pelletier, Mathew G.; Wanjura, John D.; Holt, Greg A.
2016-01-01
Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as skew the results of in-field yield and quality assessments. Microwave sensing of moisture has several unique advantages over lower frequency sensing approaches. The first is that microwaves are insensitive to variations in conductivity, due to presence of salts or minerals. The second advantage is that microwaves can peer deep inside large bulk packaging to assess the internal moisture content without performing a destructive tear down of the package. To help facilitate the development of a microwave moisture sensor for seedcotton; research was performed to determine the basic microwave properties of seedcotton. The research was performed on 110 kg micro-modules, which are of direct interest to research teams for use in ongoing field-based research projects. It should also prove useful for the enhancement of existing and future yield monitor designs. Experimental data was gathered on the basic relations between microwave material properties and seedcotton over the range from 1.0 GHz to 2.5 GHz and is reported on herein. This research is part one of a two-part series that reports on the fundamental microwave properties of seedcotton as moisture and density vary naturally during the course of typical harvesting operations; part two will utilize this data to formulate a prediction algorithm to form the basis for a prototype microwave moisture sensor. PMID:27827857
NASA Astrophysics Data System (ADS)
Yuen, Anthony C. Y.; Yeoh, Guan H.; Timchenko, Victoria; Cheung, Sherman C. P.; Chan, Qing N.; Chen, Timothy
2017-09-01
An in-house large eddy simulation (LES) based fire field model has been developed for large-scale compartment fire simulations. The model incorporates four major components, including subgrid-scale turbulence, combustion, soot and radiation models which are fully coupled. It is designed to simulate the temporal and fluid dynamical effects of turbulent reaction flow for non-premixed diffusion flame. Parametric studies were performed based on a large-scale fire experiment carried out in a 39-m long test hall facility. Several turbulent Prandtl and Schmidt numbers ranging from 0.2 to 0.5, and Smagorinsky constants ranging from 0.18 to 0.23 were investigated. It was found that the temperature and flow field predictions were most accurate with turbulent Prandtl and Schmidt numbers of 0.3, respectively, and a Smagorinsky constant of 0.2 applied. In addition, by utilising a set of numerically verified key modelling parameters, the smoke filling process was successfully captured by the present LES model.
Induction of apoptosis of liver cancer cells by nanosecond pulsed electric fields (nsPEFs).
He, Ling; Xiao, Deyou; Feng, Jianguo; Yao, Chenguo; Tang, Liling
2017-02-01
The application of nanosecond pulsed electric fields (nsPEFs) is a novel method to induce the death of cancer cells. NsPEFs could directly function on the cell membrane and activate the apoptosis pathways, then induce apoptosis in various cell lines. However, the nsPEFs-inducing-apoptosis action sites and the exact pathways are not clear now. In this study, nsPEFs were applied to the human liver cancer cells HepG2 with different parameters. By apoptosis assay, morphological observation, detecting the mitochondrial membrane potential (ΔΨ m ), intracellular calcium ion concentration ([Ca 2+ ]i) and the expressions of key apoptosis factors, we demonstrated that nsPEFs could induce the morphology of cell apoptosis, the change in ΔΨ m , [Ca 2+ ]i and the upregulation of some key apoptosis factors, which revealed the responses of liver cancer cells and indicated that cells may undergo apoptosis through the mitochondria-dependent pathway after nsPEFs were applied.
Retrieval of Aerosol Parameters from Continuous H24 Lidar-Ceilometer Measurements
NASA Astrophysics Data System (ADS)
Dionisi, D.; Barnaba, F.; Costabile, F.; Di Liberto, L.; Gobbi, G. P.; Wille, H.
2016-06-01
Ceilometer technology is increasingly applied to the monitoring and the characterization of tropospheric aerosols. In this work, a method to estimate some key aerosol parameters (extinction coefficient, surface area concentration and volume concentration) from ceilometer measurements is presented. A numerical model has been set up to derive a mean functional relationships between backscatter and the above mentioned parameters based on a large set of simulated aerosol optical properties. A good agreement was found between the modeled backscatter and extinction coefficients and the ones measured by the EARLINET Raman lidars. The developed methodology has then been applied to the measurements acquired by a prototype Polarization Lidar-Ceilometer (PLC). This PLC instrument was developed within the EC- LIFE+ project "DIAPASON" as an upgrade of the commercial, single-channel Jenoptik CHM15k system. The PLC run continuously (h24) close to Rome (Italy) for a whole year (2013-2014). Retrievals of the aerosol backscatter coefficient at 1064 nm and of the relevant aerosol properties were performed using the proposed methodology. This information, coupled to some key aerosol type identification made possible by the depolarization channel, allowed a year-round characterization of the aerosol field at this site. Examples are given to show how this technology coupled to appropriate data inversion methods is potentially useful in the operational monitoring of parameters of air quality and meteorological interest.
Review of concrete biodeterioration in relation to nuclear waste.
Turick, Charles E; Berry, Christopher J
2016-01-01
Storage of radioactive waste in concrete structures is a means of containing wastes and related radionuclides generated from nuclear operations in many countries. Previous efforts related to microbial impacts on concrete structures that are used to contain radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete structures used to store or dispose of radioactive waste. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources such as components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The microbial contribution to degradation of the concrete structures containing radioactive waste is a constant possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Parameters to focus on for modeling activities and possible options for mitigation that would minimize concrete biodegradation are discussed and include key conditions that drive microbial activity on concrete surfaces. Copyright © 2015. Published by Elsevier Ltd.
Advanced Microwave Ferrite Research (AMFeR): Phase Two
2006-12-31
motion for the single crystal LPE films were a qualitative success, but a complete set of parameters for these films has not yet been achieved. Key...biasing field. In order to address these issues, we investigated and optimized a new LPE flux system to grow high quality thick films and bulk single...self-biased circulators. III. Methodology: BaM thick film and bulk single crystal growth by LPE process BaFe 120 19 flux melt was prepared from a
NASA Astrophysics Data System (ADS)
Zhao, Huafeng; Zhou, Binwu; Wu, Xuecheng; Wu, Yingchun; Gao, Xiang; Gréhan, Gérard; Cen, Kefa
2014-04-01
Digital holography plays a key role in particle field measurement, and appears to be a strong contender as the next-generation technology for diagnostics of 3D particle field. However, various recording parameters, such as the recording distance, the particle size, the wavelength, the size of the CCD chip, the pixel size and the particle concentration, will affect the results of the reconstruction, and may even determine the success or failure of a measurement. This paper presents a numerical investigation on the effect of particle concentration, the volume depth to evaluate the capability of digital holographic microscopy. Standard particles holograms with all known recording parameters are numerically generated by using a common procedure based on Lorenz-Mie scattering theory. Reconstruction of those holograms are then performed by a wavelet-transform based method. Results show that the reconstruction efficiency decreases quickly until particle concentration reaches 50×104 (mm-3), and decreases linearly with the increase of particle concentration from 50 × 104 (mm-3) to 860 × 104 (mm-3) in the same volume. The first half of the line waves larger than the second half. It also indicates that the increase of concentration leads the rise in average diameter error and z position error of particles. Besides, the volume depth also plays a key role in reconstruction.
Model verification of mixed dynamic systems. [POGO problem in liquid propellant rockets
NASA Technical Reports Server (NTRS)
Chrostowski, J. D.; Evensen, D. A.; Hasselman, T. K.
1978-01-01
A parameter-estimation method is described for verifying the mathematical model of mixed (combined interactive components from various engineering fields) dynamic systems against pertinent experimental data. The model verification problem is divided into two separate parts: defining a proper model and evaluating the parameters of that model. The main idea is to use differences between measured and predicted behavior (response) to adjust automatically the key parameters of a model so as to minimize response differences. To achieve the goal of modeling flexibility, the method combines the convenience of automated matrix generation with the generality of direct matrix input. The equations of motion are treated in first-order form, allowing for nonsymmetric matrices, modeling of general networks, and complex-mode analysis. The effectiveness of the method is demonstrated for an example problem involving a complex hydraulic-mechanical system.
NASA Astrophysics Data System (ADS)
Semenko, E. A.; Romanyuk, I. I.; Semenova, E. S.; Moiseeva, A. V.; Kudryavtsev, D. O.; Yakunin, I. A.
2017-10-01
Observations of the chemically peculiar star HD 27404 with the 6-m SAO RAS telescope showed a strong magnetic field with the longitudinal field component varying in a complicated way in the range of -2.5 to 1 kG. Fundamental parameters of the star ( T eff = 11 300 K, log g = 3.9) were estimated analyzing photometric indices in the Geneva and in the Stro¨ mgren-Crawford photometric systems. We detected weak radial velocity variations which can be due to the presence of a close star companion or chemical spots in the photosphere. Rapid estimation of the key chemical element abundance allows us to refer HD 27404 to a SiCr or Si+ chemically peculiar A0-B9 star.
Thermodynamic properties for applications in chemical industry via classical force fields.
Guevara-Carrion, Gabriela; Hasse, Hans; Vrabec, Jadran
2012-01-01
Thermodynamic properties of fluids are of key importance for the chemical industry. Presently, the fluid property models used in process design and optimization are mostly equations of state or G (E) models, which are parameterized using experimental data. Molecular modeling and simulation based on classical force fields is a promising alternative route, which in many cases reasonably complements the well established methods. This chapter gives an introduction to the state-of-the-art in this field regarding molecular models, simulation methods, and tools. Attention is given to the way modeling and simulation on the scale of molecular force fields interact with other scales, which is mainly by parameter inheritance. Parameters for molecular force fields are determined both bottom-up from quantum chemistry and top-down from experimental data. Commonly used functional forms for describing the intra- and intermolecular interactions are presented. Several approaches for ab initio to empirical force field parameterization are discussed. Some transferable force field families, which are frequently used in chemical engineering applications, are described. Furthermore, some examples of force fields that were parameterized for specific molecules are given. Molecular dynamics and Monte Carlo methods for the calculation of transport properties and vapor-liquid equilibria are introduced. Two case studies are presented. First, using liquid ammonia as an example, the capabilities of semi-empirical force fields, parameterized on the basis of quantum chemical information and experimental data, are discussed with respect to thermodynamic properties that are relevant for the chemical industry. Second, the ability of molecular simulation methods to describe accurately vapor-liquid equilibrium properties of binary mixtures containing CO(2) is shown.
Samiee, Farzaneh; Samiee, Keivandokht
2017-01-01
There is limited research on the effect of electromagnetic field on aquatic organisms, especially freshwater fish species. This study was conducted to evaluate the effect of extremely low frequency electromagnetic field (ELF-EMF) (50 Hz) exposure on brain histopathology of Cyprinus carpio, one of the important species of Caspian Sea with significant economic value. A total of 200 healthy fish were used in this study. They were classified randomly in two groups: sham-exposed group and experimental group, which were exposed to five different magnetic field intensities (0.1, 1, 3, 5, and 7 mT) at two different exposure times (0.5 and 1 h). Histologic results indicate that exposure of C. carpio to artificial ELF-EMF caused severe histopathological changes in the brain at field intensities ≥3 mT leading to brain necrosis. Field intensity and duration of exposure were key parameters in induction of lesion in the brain. Further studies are needed to elucidate exact mechanism of EMF exposure on the brain.
The use of handheld GPS to determine tidal slack in estuaries
NASA Astrophysics Data System (ADS)
Lievens, M.; Savenije, H.; Luxemburg, W.
2010-12-01
The phase lag between the moment of high water and high water slack, respectively low water and low water slack, is a key parameter in tidal hydraulics which is often disregarded. Savenije (1992) found that there are simple analytical relations for estuary topography, wave celerity and phase lag, that can be derived from the equation for conservation of mass and momentum. At present, methods to determine the phase lag by measuring the moment of tidal slack in the field are often either inadequate or very expensive. To be sure if assumptions made for the analytical derivation are acceptable, measuring the ‘real’ moment of tidal slack in the field is necessary. The method to determine the exact moment of tidal slack, developed in this work, is based on the use of a simple handheld GPS at some locations in the Dutch part of the Scheldt estuary. The GPS device is attached to a shipping lane buoy, which is fixed to the bottom of the estuary with a long chain. The chain gives the buoy enough space for an amplitude of approximately 25 - 30 meters. The GPS device measures the location of the buoy every 30 seconds for a few days. The data from the GPS results in a nice view of the path that the buoy travelled. The moment that the buoy switches direction, should be the moment of tidal slack. The “GPS method” of measuring the phase lag would allow application on full estuary scale in the future. Besides that, we get more insight in the key parameter of slack times for tidal hydraulics. The results are also of key importance to commercial shipping, towage and salvage companies and other users of estuaries worldwide.
Satellite-instrument system engineering best practices and lessons
NASA Astrophysics Data System (ADS)
Schueler, Carl F.
2009-08-01
This paper focuses on system engineering development issues driving satellite remote sensing instrumentation cost and schedule. A key best practice is early assessment of mission and instrumentation requirements priorities driving performance trades among major instrumentation measurements: Radiometry, spatial field of view and image quality, and spectral performance. Key lessons include attention to technology availability and applicability to prioritized requirements, care in applying heritage, approaching fixed-price and cost-plus contracts with appropriate attention to risk, and assessing design options with attention to customer preference as well as design performance, and development cost and schedule. A key element of success either in contract competition or execution is team experience. Perhaps the most crucial aspect of success, however, is thorough requirements analysis and flowdown to specifications driving design performance with sufficient parameter margin to allow for mistakes or oversights - the province of system engineering from design inception to development, test and delivery.
Song, Xianzhi; Peng, Chi; Li, Gensheng; He, Zhenguo; Wang, Haizhu
2016-01-01
Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN) was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells.
Song, Xianzhi; Peng, Chi; Li, Gensheng
2016-01-01
Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN) was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells. PMID:27249026
Convective Electrokinetic Instability With Conductivity Gradients
NASA Astrophysics Data System (ADS)
Chen, Chuan-Hua; Lin, Hao; Lele, Sanjiva; Santiago, Juan
2003-11-01
Electrokinetic flow instability has been experimentally identified and quantified in a glass T-junction microchannel system with a cross section of 11 um x 155 um. In this system, buffers of different conductivities were electrokinetically driven into a common mixing channel by a DC electric field. A convective instability was observed with a threshold electric field of 0.45 kV/cm for a 10:1 conductivity ratio. A physical model has been developed which consists of a modified Ohmic model formulation for electrolyte solutions and the Navier-Stokes equations with an electric body force term. The model and experiments show that bulk charge accumulation in regions of conductivity gradients is the key mechanism of such instabilities. A linear stability analysis was performed in a convective framework, and Briggs-Bers criteria were applied to determine the nature of instability. The analysis shows the instability is governed by two key parameters: the ratio of molecular diffusion to electroviscous time scale which governs the onset of instability, and the ratio of electroviscous to electroosmotic velocity which governs whether the instability is convective or absolute. The model predicted critical electric field, growth rate, wavelength, and phase speed which were comparable to experimental data.
An implicit divalent counterion force field for RNA molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henke, Paul S.; Mak, Chi H., E-mail: cmak@usc.edu; Center of Applied Mathematical Sciences, University of Southern California, Los Angeles, California 90089
How to properly account for polyvalent counterions in a molecular dynamics simulation of polyelectrolytes such as nucleic acids remains an open question. Not only do counterions such as Mg{sup 2+} screen electrostatic interactions, they also produce attractive intrachain interactions that stabilize secondary and tertiary structures. Here, we show how a simple force field derived from a recently reported implicit counterion model can be integrated into a molecular dynamics simulation for RNAs to realistically reproduce key structural details of both single-stranded and base-paired RNA constructs. This divalent counterion model is computationally efficient. It works with existing atomistic force fields, or coarse-grainedmore » models may be tuned to work with it. We provide optimized parameters for a coarse-grained RNA model that takes advantage of this new counterion force field. Using the new model, we illustrate how the structural flexibility of RNA two-way junctions is modified under different salt conditions.« less
Analysis of flow field characteristics in IC equipment chamber based on orthogonal design
NASA Astrophysics Data System (ADS)
Liu, W. F.; Yang, Y. Y.; Wang, C. N.
2017-01-01
This paper aims to study the influence of the configuration of processing chamber as a part of IC equipment on flow field characteristics. Four parameters, including chamber height, chamber diameter, inlet mass flow rate and outlet area, are arranged using orthogonally design method to study their influence on flow distribution in the processing chamber with the commercial software-Fluent. The velocity, pressure and temperature distribution above the holder were analysed respectively. The velocity difference value of the gas flow above the holder is defined as the evaluation criteria to evaluate the uniformity of the gas flow. The quantitative relationship between key parameters and the uniformity of gas flow was found through analysis of experimental results. According to our study, the chamber height is the most significant factor, and then follows the outlet area, chamber diameter and inlet mass flow rate. This research can provide insights into the study and design of configuration of etcher, plasma enhanced chemical vapor deposition (PECVD) equipment, and other systems with similar configuration and processing condition.
Perceiving while producing: Modeling the dynamics of phonological planning
Roon, Kevin D.; Gafos, Adamantios I.
2016-01-01
We offer a dynamical model of phonological planning that provides a formal instantiation of how the speech production and perception systems interact during online processing. The model is developed on the basis of evidence from an experimental task that requires concurrent use of both systems, the so-called response-distractor task in which speakers hear distractor syllables while they are preparing to produce required responses. The model formalizes how ongoing response planning is affected by perception and accounts for a range of results reported across previous studies. It does so by explicitly addressing the setting of parameter values in representations. The key unit of the model is that of the dynamic field, a distribution of activation over the range of values associated with each representational parameter. The setting of parameter values takes place by the attainment of a stable distribution of activation over the entire field, stable in the sense that it persists even after the response cue in the above experiments has been removed. This and other properties of representations that have been taken as axiomatic in previous work are derived by the dynamics of the proposed model. PMID:27440947
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Justin
Here we report the results from a project aimed at developing a fully superconducting joint between two REBCO coated conductors using electric field processing (EFP). Due to a reduction in the budget and time period of this contract, we reduced the project scope and focused first on the key scientific issues for forming a strong bond between conductors, and subsequently focused on improving through-the-joint transport. A modified timeline and task list is shown in Table 1, summarizing accomplishments to date. In the first period, we accomplished initial surface characterization as well as rounds of EFP experiments to begin to understandmore » processing parameters which produce well-bonded tapes. In the second phase, we explored the effects of two fundamental EFP parameters, voltage and pressure, and the limitations they place on the process. In the third phase, we achieved superconducting joints and established base characteristics of both the bonding process and the types of tapes best suited to this process. Finally, we investigated some of the parameters related to kinetics which appeared inhibit joint quality and performance.« less
He, Yujie; Zhuang, Qianlai; McGuire, David; Liu, Yaling; Chen, Min
2013-01-01
Model-data fusion is a process in which field observations are used to constrain model parameters. How observations are used to constrain parameters has a direct impact on the carbon cycle dynamics simulated by ecosystem models. In this study, we present an evaluation of several options for the use of observations in modeling regional carbon dynamics and explore the implications of those options. We calibrated the Terrestrial Ecosystem Model on a hierarchy of three vegetation classification levels for the Alaskan boreal forest: species level, plant-functional-type level (PFT level), and biome level, and we examined the differences in simulated carbon dynamics. Species-specific field-based estimates were directly used to parameterize the model for species-level simulations, while weighted averages based on species percent cover were used to generate estimates for PFT- and biome-level model parameterization. We found that calibrated key ecosystem process parameters differed substantially among species and overlapped for species that are categorized into different PFTs. Our analysis of parameter sets suggests that the PFT-level parameterizations primarily reflected the dominant species and that functional information of some species were lost from the PFT-level parameterizations. The biome-level parameterization was primarily representative of the needleleaf PFT and lost information on broadleaf species or PFT function. Our results indicate that PFT-level simulations may be potentially representative of the performance of species-level simulations while biome-level simulations may result in biased estimates. Improved theoretical and empirical justifications for grouping species into PFTs or biomes are needed to adequately represent the dynamics of ecosystem functioning and structure.
Forward Bay Cover Separation Modeling and Testing for the Orion Multi-Purpose Crew Vehicle
NASA Technical Reports Server (NTRS)
Ali, Yasmin; Radke, Tara; Chuhta, Jesse; Hughes, Michael
2014-01-01
Spacecraft multi-body separation events during atmospheric descent require complex testing and analysis to validate the flight separation dynamics model and to verify no recontact. NASA Orion Multi-Purpose Crew Vehicle (MPCV) teams examined key model parameters and risk areas to develop a robust but affordable test campaign in order to validate and verify the Forward Bay Cover (FBC) separation event for Exploration Flight Test-1 (EFT-1). The FBC jettison simulation model is highly complex, consisting of dozens of parameters varied simultaneously, with numerous multi-parameter interactions (coupling and feedback) among the various model elements, and encompassing distinct near-field, mid-field, and far-field regimes. The test campaign was composed of component-level testing (for example gas-piston thrusters and parachute mortars), ground FBC jettison tests, and FBC jettison air-drop tests that were accomplished by a highly multi-disciplinary team. Three ground jettison tests isolated the testing of mechanisms and structures to anchor the simulation models excluding aerodynamic effects. Subsequently, two air-drop tests added aerodynamic and parachute parameters, and served as integrated system demonstrations, which had been preliminarily explored during the Orion Pad Abort-1 (PA-1) flight test in May 2010. Both ground and drop tests provided extensive data to validate analytical models and to verify the FBC jettison event for EFT-1, but more testing is required to support human certification, for which NASA and Lockheed Martin are applying knowledge from Apollo and EFT-1 testing and modeling to develop a robust but affordable human spacecraft capability.
Improvement in hardness of soda-lime-silica glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Riya; De, Moumita; Roy, Sudakshina
2012-06-05
Hardness is a key design parameter for structural application of brittle solids like glass. Here we report for the first time the significant improvement of about 10% in Vicker's hardness of a soda-lime-silica glass with loading rate in the range of 0.1-10 N.s{sup -1}. Corroborative dark field optical and scanning electron microscopy provided clue to this improvement through evidence of variations in spatial density of shear deformation band formation as a function of loading rate.
High pressure rinsing system comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Sertore; M. Fusetti; P. Michelato
2007-06-01
High pressure rinsing (HPR) is a key process for the surface preparation of high field superconducting cavities. A portable apparatus for the water jet characterization, based on the transferred momentum between the water jet and a load cell, has been used in different laboratories. This apparatus allows to collected quantitative parameters that characterize the HPR water jet. In this paper, we present a quantitative comparison of the different water jet produced by various nozzles routinely used in different laboratories for the HPR process
Earth's magnetic field effect on MUF calculation and consequences for hmF2 trend estimates
NASA Astrophysics Data System (ADS)
Elias, Ana G.; Zossi, Bruno S.; Yiğit, Erdal; Saavedra, Zenon; de Haro Barbas, Blas F.
2017-10-01
Knowledge of the state of the upper atmosphere, and in particular of the ionosphere, is essential in several applications such as systems used in radio frequency communications, satellite positioning and navigation. In general, these systems depend on the state and evolution of the ionosphere. In all applications involving the ionosphere an essential task is to determine the path and modifications of ray propagation through the ionospheric plasma. The ionospheric refractive index and the maximum usable frequency (MUF) that can be received over a given distance are some key parameters that are crucial for such technological applications. However, currently the representation of these parameters are in general simplified, neglecting the effects of Earth's magnetic field. The value of M(3000)F2, related to the MUF that can be received over 3000 km is routinely scaled from ionograms using a technique which also neglects the geomagnetic field effects assuming a standard simplified propagation model. M(3000)F2 is expected to be affected by a systematic trend linked to the secular variations of Earth's magnetic field. On the other hand, among the upper atmospheric effects expected from increasing greenhouse gases concentration is the lowering of the F2-layer peak density height, hmF2. This ionospheric parameter is usually estimated using the M(3000)F2 factor, so it would also carry this ;systematic trend;. In this study, the geomagnetic field effect on MUF estimations is analyzed as well as its impact on hmF2 long-term trend estimations. We find that M(3000)F2 increases when the geomagnetic field is included in its calculation, and hence hmF2, estimated using existing methods involving no magnetic field for M(3000)F2 scaling, would present a weak but steady trend linked to these variations which would increase or compensate the few kilometers decrease ( 2 km per decade) expected from greenhouse gases effect.
Statistical sensitivity analysis of a simple nuclear waste repository model
NASA Astrophysics Data System (ADS)
Ronen, Y.; Lucius, J. L.; Blow, E. M.
1980-06-01
A preliminary step in a comprehensive sensitivity analysis of the modeling of a nuclear waste repository. The purpose of the complete analysis is to determine which modeling parameters and physical data are most important in determining key design performance criteria and then to obtain the uncertainty in the design for safety considerations. The theory for a statistical screening design methodology is developed for later use in the overall program. The theory was applied to the test case of determining the relative importance of the sensitivity of near field temperature distribution in a single level salt repository to modeling parameters. The exact values of the sensitivities to these physical and modeling parameters were then obtained using direct methods of recalculation. The sensitivity coefficients found to be important for the sample problem were thermal loading, distance between the spent fuel canisters and their radius. Other important parameters were those related to salt properties at a point of interest in the repository.
List-Based Simulated Annealing Algorithm for Traveling Salesman Problem
Zhan, Shi-hua; Lin, Juan; Zhang, Ze-jun
2016-01-01
Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters' setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms. PMID:27034650
Model based estimation of sediment erosion in groyne fields along the River Elbe
NASA Astrophysics Data System (ADS)
Prohaska, Sandra; Jancke, Thomas; Westrich, Bernhard
2008-11-01
River water quality is still a vital environmental issue, even though ongoing emissions of contaminants are being reduced in several European rivers. The mobility of historically contaminated deposits is key issue in sediment management strategy and remediation planning. Resuspension of contaminated sediments impacts the water quality and thus, it is important for river engineering and ecological rehabilitation. The erodibility of the sediments and associated contaminants is difficult to predict due to complex time depended physical, chemical, and biological processes, as well as due to the lack of information. Therefore, in engineering practice the values for erosion parameters are usually assumed to be constant despite their high spatial and temporal variability, which leads to a large uncertainty of the erosion parameters. The goal of presented study is to compare the deterministic approach assuming constant critical erosion shear stress and an innovative approach which takes the critical erosion shear stress as a random variable. Furthermore, quantification of the effective value of the critical erosion shear stress, its applicability in numerical models, and erosion probability will be estimated. The results presented here are based on field measurements and numerical modelling of the River Elbe groyne fields.
NASA Astrophysics Data System (ADS)
Marshall, T. C.; Stolzenburg, M.
2006-12-01
One of Benjamin Franklin's most famous experiments was the kite experiment, which showed that thunderstorms are electrically charged. It is not as commonly noted that the kite experiment was also one of the the first attempts to make an in situ measurement of any storm parameter. Franklin realized the importance of making measurements close to and within storms, and this realization has been shared by later atomspheric scientists. In this presentation we focus on a modern version of Franklin's kite--instrumented balloons--used for in situ measurements of electric field and other storm parameters. In particular, most of our knowledge of the charge structure inside thunderstorms is based on balloon soundings of electric field. Balloon measurements of storm electricity began with the work of Simpson and colleagues in the 1930's and 1940's. The next major instrumentation advances were made by Winn and colleagues in the 1970's and 1980's. Today's instruments are digital versions of the Winn design. We review the main instrument techniques that have allowed balloons to be the worthy successors to kites. We also discuss some of the key advances in our understanding of thunderstorm electrification made with in situ balloon-borne instruments.
Zradziński, Patryk
2013-06-01
According to international guidelines, the assessment of biophysical effects of exposure to electromagnetic fields (EMF) generated by hand-operated sources needs the evaluation of induced electric field (E(in)) or specific energy absorption rate (SAR) caused by EMF inside a worker's body and is usually done by the numerical simulations with different protocols applied to these two exposure cases. The crucial element of these simulations is the numerical phantom of the human body. Procedures of E(in) and SAR evaluation due to compliance analysis with exposure limits have been defined in Institute of Electrical and Electronics Engineers standards and International Commission on Non-Ionizing Radiation Protection guidelines, but a detailed specification of human body phantoms has not been described. An analysis of the properties of over 30 human body numerical phantoms was performed which has been used in recently published investigations related to the assessment of EMF exposure by various sources. The differences in applicability of these phantoms in the evaluation of E(in) and SAR while operating industrial devices and SAR while using mobile communication handsets are discussed. The whole human body numerical phantom dimensions, posture, spatial resolution and electric contact with the ground constitute the key parameters in modeling the exposure related to industrial devices, while modeling the exposure from mobile communication handsets, which needs only to represent the exposed part of the human body nearest to the handset, mainly depends on spatial resolution of the phantom. The specification and standardization of these parameters of numerical human body phantoms are key requirements to achieve comparable and reliable results from numerical simulations carried out for compliance analysis against exposure limits or within the exposure assessment in EMF-related epidemiological studies.
Hass, Joachim; Hertäg, Loreen; Durstewitz, Daniel
2016-01-01
The prefrontal cortex is centrally involved in a wide range of cognitive functions and their impairment in psychiatric disorders. Yet, the computational principles that govern the dynamics of prefrontal neural networks, and link their physiological, biochemical and anatomical properties to cognitive functions, are not well understood. Computational models can help to bridge the gap between these different levels of description, provided they are sufficiently constrained by experimental data and capable of predicting key properties of the intact cortex. Here, we present a detailed network model of the prefrontal cortex, based on a simple computationally efficient single neuron model (simpAdEx), with all parameters derived from in vitro electrophysiological and anatomical data. Without additional tuning, this model could be shown to quantitatively reproduce a wide range of measures from in vivo electrophysiological recordings, to a degree where simulated and experimentally observed activities were statistically indistinguishable. These measures include spike train statistics, membrane potential fluctuations, local field potentials, and the transmission of transient stimulus information across layers. We further demonstrate that model predictions are robust against moderate changes in key parameters, and that synaptic heterogeneity is a crucial ingredient to the quantitative reproduction of in vivo-like electrophysiological behavior. Thus, we have produced a physiologically highly valid, in a quantitative sense, yet computationally efficient PFC network model, which helped to identify key properties underlying spike time dynamics as observed in vivo, and can be harvested for in-depth investigation of the links between physiology and cognition. PMID:27203563
Loxley, P N
2017-10-01
The two-dimensional Gabor function is adapted to natural image statistics, leading to a tractable probabilistic generative model that can be used to model simple cell receptive field profiles, or generate basis functions for sparse coding applications. Learning is found to be most pronounced in three Gabor function parameters representing the size and spatial frequency of the two-dimensional Gabor function and characterized by a nonuniform probability distribution with heavy tails. All three parameters are found to be strongly correlated, resulting in a basis of multiscale Gabor functions with similar aspect ratios and size-dependent spatial frequencies. A key finding is that the distribution of receptive-field sizes is scale invariant over a wide range of values, so there is no characteristic receptive field size selected by natural image statistics. The Gabor function aspect ratio is found to be approximately conserved by the learning rules and is therefore not well determined by natural image statistics. This allows for three distinct solutions: a basis of Gabor functions with sharp orientation resolution at the expense of spatial-frequency resolution, a basis of Gabor functions with sharp spatial-frequency resolution at the expense of orientation resolution, or a basis with unit aspect ratio. Arbitrary mixtures of all three cases are also possible. Two parameters controlling the shape of the marginal distributions in a probabilistic generative model fully account for all three solutions. The best-performing probabilistic generative model for sparse coding applications is found to be a gaussian copula with Pareto marginal probability density functions.
Recent advances in ultrafast-laser-based spectroscopy and imaging for reacting plasmas and flames
NASA Astrophysics Data System (ADS)
Patnaik, Anil K.; Adamovich, Igor; Gord, James R.; Roy, Sukesh
2017-10-01
Reacting flows and plasmas are prevalent in a wide array of systems involving defense, commercial, space, energy, medical, and consumer products. Understanding the complex physical and chemical processes involving reacting flows and plasmas requires measurements of key parameters, such as temperature, pressure, electric field, velocity, and number densities of chemical species. Time-resolved measurements of key chemical species and temperature are required to determine kinetics related to the chemical reactions and transient phenomena. Laser-based, noninvasive linear and nonlinear spectroscopic approaches have proved to be very valuable in providing key insights into the physico-chemical processes governing reacting flows and plasmas as well as validating numerical models. The advent of kilohertz rate amplified femtosecond lasers has expanded the multidimensional imaging of key atomic species such as H, O, and N in a significant way, providing unprecedented insight into preferential diffusion and production of these species under chemical reactions or electric-field driven processes. These lasers not only provide 2D imaging of chemical species but have the ability to perform measurements free of various interferences. Moreover, these lasers allow 1D and 2D temperature-field measurements, which were quite unimaginable only a few years ago. The rapid growth of the ultrafast-laser-based spectroscopic measurements has been fueled by the need to achieve the following when measurements are performed in reacting flows and plasmas. They are: (1) interference-free measurements (collision broadening, photolytic dissociation, Stark broadening, etc), (2) time-resolved single-shot measurements at a rate of 1-10 kHz, (3) spatially-resolved measurements, (4) higher dimensionality (line, planar, or volumetric), and (5) simultaneous detection of multiple species. The overarching goal of this article is to review the current state-of-the-art ultrafast-laser-based spectroscopic techniques and their remarkable development in the past two decades in meeting one or all of the above five goals for the spectroscopic measurement of temperature, number density of the atomic and molecular species, and electric field.
Ma, Yuntao; Li, Baoguo; Zhan, Zhigang; Guo, Yan; Luquet, Delphine; de Reffye, Philippe; Dingkuhn, Michael
2007-01-01
Background and Aims It is increasingly accepted that crop models, if they are to simulate genotype-specific behaviour accurately, should simulate the morphogenetic process generating plant architecture. A functional–structural plant model, GREENLAB, was previously presented and validated for maize. The model is based on a recursive mathematical process, with parameters whose values cannot be measured directly and need to be optimized statistically. This study aims at evaluating the stability of GREENLAB parameters in response to three types of phenotype variability: (1) among individuals from a common population; (2) among populations subjected to different environments (seasons); and (3) among different development stages of the same plants. Methods Five field experiments were conducted in the course of 4 years on irrigated fields near Beijing, China. Detailed observations were conducted throughout the seasons on the dimensions and fresh biomass of all above-ground plant organs for each metamer. Growth stage-specific target files were assembled from the data for GREENLAB parameter optimization. Optimization was conducted for specific developmental stages or the entire growth cycle, for individual plants (replicates), and for different seasons. Parameter stability was evaluated by comparing their CV with that of phenotype observation for the different sources of variability. A reduced data set was developed for easier model parameterization using one season, and validated for the four other seasons. Key Results and Conclusions The analysis of parameter stability among plants sharing the same environment and among populations grown in different environments indicated that the model explains some of the inter-seasonal variability of phenotype (parameters varied less than the phenotype itself), but not inter-plant variability (parameter and phenotype variability were similar). Parameter variability among developmental stages was small, indicating that parameter values were largely development-stage independent. The authors suggest that the high level of parameter stability observed in GREENLAB can be used to conduct comparisons among genotypes and, ultimately, genetic analyses. PMID:17158141
The feature-weighted receptive field: an interpretable encoding model for complex feature spaces.
St-Yves, Ghislain; Naselaris, Thomas
2017-06-20
We introduce the feature-weighted receptive field (fwRF), an encoding model designed to balance expressiveness, interpretability and scalability. The fwRF is organized around the notion of a feature map-a transformation of visual stimuli into visual features that preserves the topology of visual space (but not necessarily the native resolution of the stimulus). The key assumption of the fwRF model is that activity in each voxel encodes variation in a spatially localized region across multiple feature maps. This region is fixed for all feature maps; however, the contribution of each feature map to voxel activity is weighted. Thus, the model has two separable sets of parameters: "where" parameters that characterize the location and extent of pooling over visual features, and "what" parameters that characterize tuning to visual features. The "where" parameters are analogous to classical receptive fields, while "what" parameters are analogous to classical tuning functions. By treating these as separable parameters, the fwRF model complexity is independent of the resolution of the underlying feature maps. This makes it possible to estimate models with thousands of high-resolution feature maps from relatively small amounts of data. Once a fwRF model has been estimated from data, spatial pooling and feature tuning can be read-off directly with no (or very little) additional post-processing or in-silico experimentation. We describe an optimization algorithm for estimating fwRF models from data acquired during standard visual neuroimaging experiments. We then demonstrate the model's application to two distinct sets of features: Gabor wavelets and features supplied by a deep convolutional neural network. We show that when Gabor feature maps are used, the fwRF model recovers receptive fields and spatial frequency tuning functions consistent with known organizational principles of the visual cortex. We also show that a fwRF model can be used to regress entire deep convolutional networks against brain activity. The ability to use whole networks in a single encoding model yields state-of-the-art prediction accuracy. Our results suggest a wide variety of uses for the feature-weighted receptive field model, from retinotopic mapping with natural scenes, to regressing the activities of whole deep neural networks onto measured brain activity. Copyright © 2017. Published by Elsevier Inc.
Self-regulation in self-propelled nematic fluids.
Baskaran, A; Marchetti, M C
2012-09-01
We consider the hydrodynamic theory of an active fluid of self-propelled particles with nematic aligning interactions. This class of materials has polar symmetry at the microscopic level, but forms macrostates of nematic symmetry. We highlight three key features of the dynamics. First, as in polar active fluids, the control parameter for the order-disorder transition, namely the density, is dynamically convected by the order parameter via active currents. The resulting dynamical self-regulation of the order parameter is a generic property of active fluids and destabilizes the uniform nematic state near the mean-field transition. Secondly, curvature-driven currents render the system unstable deep in the nematic state, as found previously. Finally, and unique to self-propelled nematics, nematic order induces local polar order that in turn leads to the growth of density fluctuations. We propose this as a possible mechanism for the smectic order of polar clusters seen in numerical simulations.
NASA Astrophysics Data System (ADS)
Green, Jonathan; Schmitz, Oliver; Severn, Greg; van Ruremonde, Lars; Winters, Victoria
2017-10-01
The MARIA device at the UW-Madison is used primarily to investigate the dynamics and fueling of neutral particles in helicon discharges. A new systematic method is in development to measure key plasma and neutral particle parameters by spectroscopic methods. The setup relies on spectroscopic line ratios for investigating basic plasma parameters and extrapolation to other states using a collisional radiative model. Active pumping using a Nd:YAG pumped dye laser is used to benchmark and correct the underlying atomic data for the collisional radiative model. First results show a matching linear dependence between electron density and laser induced fluorescence on the magnetic field above 500G. This linear dependence agrees with the helicon dispersion relation and implies MARIA can reliably support the helicon mode and support future measurements. This work was funded by the NSF CAREER award PHY-1455210.
NASA Astrophysics Data System (ADS)
Farroni, Flavio; Lamberti, Raffaele; Mancinelli, Nicolò; Timpone, Francesco
2018-03-01
Tyres play a key role in ground vehicles' dynamics because they are responsible for traction, braking and cornering. A proper tyre-road interaction model is essential for a useful and reliable vehicle dynamics model. In the last two decades Pacejka's Magic Formula (MF) has become a standard in simulation field. This paper presents a Tool, called TRIP-ID (Tyre Road Interaction Parameters IDentification), developed to characterize and to identify with a high grade of accuracy and reliability MF micro-parameters from experimental data deriving from telemetry or from test rig. The tool guides interactively the user through the identification process on the basis of strong diagnostic considerations about the experimental data made evident by the tool itself. A motorsport application of the tool is shown as a case study.
NASA Astrophysics Data System (ADS)
Farhadi, Leila; Entekhabi, Dara; Salvucci, Guido
2016-04-01
In this study, we develop and apply a mapping estimation capability for key unknown parameters that link the surface water and energy balance equations. The method is applied to the Gourma region in West Africa. The accuracy of the estimation method at point scale was previously examined using flux tower data. In this study, the capability is scaled to be applicable with remotely sensed data products and hence allow mapping. Parameters of the system are estimated through a process that links atmospheric forcing (precipitation and incident radiation), surface states, and unknown parameters. Based on conditional averaging of land surface temperature and moisture states, respectively, a single objective function is posed that measures moisture and temperature-dependent errors solely in terms of observed forcings and surface states. This objective function is minimized with respect to parameters to identify evapotranspiration and drainage models and estimate water and energy balance flux components. The uncertainty of the estimated parameters (and associated statistical confidence limits) is obtained through the inverse of Hessian of the objective function, which is an approximation of the covariance matrix. This calibration-free method is applied to the mesoscale region of Gourma in West Africa using multiplatform remote sensing data. The retrievals are verified against tower-flux field site data and physiographic characteristics of the region. The focus is to find the functional form of the evaporative fraction dependence on soil moisture, a key closure function for surface and subsurface heat and moisture dynamics, using remote sensing data.
NASA Astrophysics Data System (ADS)
Hayashi, K.; Umeo, K.; Takeuchi, T.; Kawabata, J.; Muro, Y.; Takabatake, T.
2017-12-01
We have measured the strain, magnetization, and specific heat of the antiferromagnetic (AFM) Kondo semiconductors Ce T2A l10 (T =Ru and Os) under uniaxial pressures applied along the orthorhombic axes. We found a linear dependence of TN on the b -axis parameter for both compounds under uniaxial pressure P ∥b and hydrostatic pressure. This relation indicates that the distance between the Ce-T layers along the b axis is the key structural parameter determining TN. Furthermore, the pressure dependence of the spin-flop transition field indicates that Ce-Ce interchain interactions stabilize the AFM state with the ordered moments pointing to the c axis.
NASA Astrophysics Data System (ADS)
Torrisi, Lorenzo
2018-01-01
Measurements of ion acceleration in plasma produced by fs lasers at intensity of the order of 1018 W/cm2 have been performed in different European laboratories. The forward emission in target-normal-sheath-acceleration (TNSA) regime indicated that the maximum energy is a function of the laser parameters, of the irradiation conditions and of the target properties.In particular the laser intensity and contrast play an important role to maximize the ion acceleration enhancing the conversion efficiency. Also the use of suitable prepulses, focal distances and polarized laser light has important roles. Finally the target composition, surface, geometry and multilayered structure, permit to enhance the electric field driving the forward ion acceleration.Experimental measurements will be reported and discussed.
Interplanetary Magnetic Field Power Spectrum Variations: A VHO Enabled Study
NASA Astrophysics Data System (ADS)
Szabo, A.; Koval, A.; Merka, J.; Narock, T. W.
2010-12-01
The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the solar wind key parameter search capability of the Virtual Heliospheric Observatory (VHO) affords an opportunity to study magnetic field power spectral density variations as a function of solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the ~2 Hz limit above which digitization noise becomes apparent. The power spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions . The time periods of fixed solar wind conditions are obtained from VHO searches that greatly simplify the process. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed.
Top-gated field-effect LaAlO{sub 3}/SrTiO{sub 3} devices made by ion-irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurand, S.; Jouan, A.; Feuillet-Palma, C.
2016-02-01
We present a method to fabricate top-gated field-effect devices in a LaAlO{sub 3}/SrTiO{sub 3} two-dimensional electron gas (2-DEG). Prior to the gate deposition, the realisation of micron size conducting channels in the 2-DEG is achieved by an ion-irradiation with high-energy oxygen ions. After identifying the ion fluence as the key parameter that determines the electrical transport properties of the channels, we demonstrate the field-effect operation. At low temperature, the normal state resistance and the superconducting T{sub c} can be tuned over a wide range by a top-gate voltage without any leakage. A superconductor-to-insulator quantum phase transition is observed for amore » strong depletion of the 2-DEG.« less
Target tracking system based on preliminary and precise two-stage compound cameras
NASA Astrophysics Data System (ADS)
Shen, Yiyan; Hu, Ruolan; She, Jun; Luo, Yiming; Zhou, Jie
2018-02-01
Early detection of goals and high-precision of target tracking is two important performance indicators which need to be balanced in actual target search tracking system. This paper proposed a target tracking system with preliminary and precise two - stage compound. This system using a large field of view to achieve the target search. After the target was searched and confirmed, switch into a small field of view for two field of view target tracking. In this system, an appropriate filed switching strategy is the key to achieve tracking. At the same time, two groups PID parameters are add into the system to reduce tracking error. This combination way with preliminary and precise two-stage compound can extend the scope of the target and improve the target tracking accuracy and this method has practical value.
Magnetic field control of microstructural development in melt-spun Pr2Co14 B
NASA Astrophysics Data System (ADS)
McGuire, Michael A.; Rios, Orlando; Conner, Ben S.; Carter, William G.; Huang, Mianliang; Sun, Kewei; Palasyuk, Olena; Jensen, Brandt; Zhou, Lin; Dennis, Kevin; Nlebedim, Ikenna C.; Kramer, Matthew J.
2017-05-01
In the processing of commercial rare earth permanent magnets, use of external magnetic fields is limited mainly to the alignment of anisotropic particles and the polarization of the finished magnets. Here we explore the effects of high magnetic fields on earlier stages of magnet synthesis, including the crystallization and chemical phase transformations that produce the 2:14:1 phase in the Pr-Co-B system. Pr2Co14 B alloys produced by melt-spinning were annealed in the presence of strong applied magnetic fields (H=90 kOe). The resulting materials were characterized by x-ray diffraction, electron microscopy, and magnetization measurements. We find that magnetic fields suppress the nucleation and growth of crystalline phases, resulting in significantly smaller particle sizes. In addition, magnetic fields applied during processing strongly affects chemical phase selection, suppressing the formation of Pr2Co14 B and α-Co in favor of Pr2Co17 . The results demonstrate that increased control over key microstructural properties is achievable by including a strong magnetic field as a processing parameter for rare-earth magnet materials.
Identification of the Key Fields and Their Key Technical Points of Oncology by Patent Analysis
Zhang, Ting; Chen, Juan; Jia, Xiaofeng
2015-01-01
Background This paper aims to identify the key fields and their key technical points of oncology by patent analysis. Methodology/Principal Findings Patents of oncology applied from 2006 to 2012 were searched in the Thomson Innovation database. The key fields and their key technical points were determined by analyzing the Derwent Classification (DC) and the International Patent Classification (IPC), respectively. Patent applications in the top ten DC occupied 80% of all the patent applications of oncology, which were the ten fields of oncology to be analyzed. The number of patent applications in these ten fields of oncology was standardized based on patent applications of oncology from 2006 to 2012. For each field, standardization was conducted separately for each of the seven years (2006–2012) and the mean of the seven standardized values was calculated to reflect the relative amount of patent applications in that field; meanwhile, regression analysis using time (year) and the standardized values of patent applications in seven years (2006–2012) was conducted so as to evaluate the trend of patent applications in each field. Two-dimensional quadrant analysis, together with the professional knowledge of oncology, was taken into consideration in determining the key fields of oncology. The fields located in the quadrant with high relative amount or increasing trend of patent applications are identified as key ones. By using the same method, the key technical points in each key field were identified. Altogether 116,820 patents of oncology applied from 2006 to 2012 were retrieved, and four key fields with twenty-nine key technical points were identified, including “natural products and polymers” with nine key technical points, “fermentation industry” with twelve ones, “electrical medical equipment” with four ones, and “diagnosis, surgery” with four ones. Conclusions/Significance The results of this study could provide guidance on the development direction of oncology, and also help researchers broaden innovative ideas and discover new technological opportunities. PMID:26599967
Identification of the Key Fields and Their Key Technical Points of Oncology by Patent Analysis.
Zhang, Ting; Chen, Juan; Jia, Xiaofeng
2015-01-01
This paper aims to identify the key fields and their key technical points of oncology by patent analysis. Patents of oncology applied from 2006 to 2012 were searched in the Thomson Innovation database. The key fields and their key technical points were determined by analyzing the Derwent Classification (DC) and the International Patent Classification (IPC), respectively. Patent applications in the top ten DC occupied 80% of all the patent applications of oncology, which were the ten fields of oncology to be analyzed. The number of patent applications in these ten fields of oncology was standardized based on patent applications of oncology from 2006 to 2012. For each field, standardization was conducted separately for each of the seven years (2006-2012) and the mean of the seven standardized values was calculated to reflect the relative amount of patent applications in that field; meanwhile, regression analysis using time (year) and the standardized values of patent applications in seven years (2006-2012) was conducted so as to evaluate the trend of patent applications in each field. Two-dimensional quadrant analysis, together with the professional knowledge of oncology, was taken into consideration in determining the key fields of oncology. The fields located in the quadrant with high relative amount or increasing trend of patent applications are identified as key ones. By using the same method, the key technical points in each key field were identified. Altogether 116,820 patents of oncology applied from 2006 to 2012 were retrieved, and four key fields with twenty-nine key technical points were identified, including "natural products and polymers" with nine key technical points, "fermentation industry" with twelve ones, "electrical medical equipment" with four ones, and "diagnosis, surgery" with four ones. The results of this study could provide guidance on the development direction of oncology, and also help researchers broaden innovative ideas and discover new technological opportunities.
NASA Astrophysics Data System (ADS)
Tong, Hua; Tanaka, Hajime
2018-01-01
The dynamics of a supercooled liquid near the glass transition is characterized by two-step relaxation, fast β and slow α relaxations. Because of the apparently disordered nature of glassy structures, there have been long debates over whether the origin of drastic slowing-down of the α relaxation accompanied by heterogeneous dynamics is thermodynamic or dynamic. Furthermore, it has been elusive whether there is any deep connection between fast β and slow α modes. To settle these issues, here we introduce a set of new structural order parameters characterizing sterically favored structures with high local packing capability, and then access structure-dynamics correlation by a novel nonlocal approach. We find that the particle mobility is under control of the static order parameter field. The fast β process is controlled by the instantaneous order parameter field locally, resulting in short-time particle-scale dynamics. Then the mobility field progressively develops with time t , following the initial order parameter field from disorder to more ordered regions. As is well known, the heterogeneity in the mobility field (dynamic heterogeneity) is maximized with a characteristic length ξ4, when t reaches the relaxation time τα. We discover that this mobility pattern can be predicted solely by a spatial coarse graining of the initial order parameter field at t =0 over a length ξ without any dynamical information. Furthermore, we find a relation ξ ˜ξ4, indicating that the static length ξ grows coherently with the dynamic one ξ4 upon cooling. This further suggests an intrinsic link between τα and ξ : the growth of the static length ξ is the origin of dynamical slowing-down. These we confirm for the first time in binary glass formers both in two and three spatial dimensions. Thus, a static structure has two intrinsic characteristic lengths, particle size and ξ , which control dynamics in local and nonlocal manners, resulting in the emergence of the two key relaxation modes, fast β and slow α processes, respectively. Because the two processes share a common structural origin, we can even predict a dynamic propensity pattern at long timescale from the fast β pattern. The presence of such intrinsic structure-dynamics correlation strongly indicates a thermodynamic nature of glass transition.
Modelling the water balance of irrigated fields in tropical floodplain soils using Hydrus-1D
NASA Astrophysics Data System (ADS)
Beyene, Abebech; Frankl, Amaury; Verhoest, Niko E. C.; Tilahun, Seifu; Alamirew, Tena; Adgo, Enyew; Nyssen, Jan
2017-04-01
Accurate estimation of evaporation, transpiration and deep percolation is crucial in irrigated agriculture and the sustainable management of water resources. Here, the Hydrus-1D process-based numerical model was used to estimate the actual transpiration, soil evaporation and deep percolation from irrigated fields of floodplain soils. Field experiments were conducted from Dec 2015 to May 2016 in a small irrigation scheme (50 ha) called 'Shina' located in the Lake Tana floodplains of Ethiopia. Six experimental plots (three for onion and three for maize) were selected along a topographic transect to account for soil and groundwater variability. Irrigation amount (400 to 550 mm during the growing period) was measured using V-notches installed at each plot boundary and daily groundwater levels were measured manually from piezometers. There was no surface runoff observed in the growing period and rainfall was measured using a manual rain gauge. All daily weather data required for the evapotranspiration calculation using Pen Man Monteith equation were collected from a nearby metrological station. The soil profiles were described for each field to include the vertical soil heterogeneity in the soil water balance simulations. The soil texture, organic matter, bulk density, field capacity, wilting point and saturated moisture content were measured for all the soil horizons. Soil moisture monitoring at 30 and 60 cm depths was performed. The soil hydraulic parameters for each horizon was estimated using KNN pedotransfer functions for tropical soils and were effectively fitted using the RETC program (R2= 0.98±0.011) for initial prediction. A local sensitivity analysis was performed to select and optimize the most important hydraulic parameters for soil water flow in the unsaturated zone. The most sensitive parameters were saturated hydraulic conductivity (Ks), saturated moisture content (θs) and pore size distribution (n). Inverse modelling using Hydrus-1D further optimized these parameters (R2 =0.74±0.13). Using the optimized hydraulic parameters, the soil water dynamics were simulated using Hydrus-1D. The atmospheric boundary conditions with surface runoff was used as upper boundary condition with measured rainfall and irrigation input data. The variable pressure head was selected as lower boundary conditions with daily records of groundwater level as time-variable input data. The Hydrus-1D model was successfully applied and calibrated in the study area. The average seasonal actual transpiration values are 310±13 mm for onion and 429±24.7 mm for maize fields. The seasonal average soil evaporation ranges from 12±2.05 mm for maize fields to 38±2.85 mm for onion fields. The seasonal deep percolation from irrigation appeared to be 12 to 40% of applied irrigation. The Hydrus-1D model was able to simulate the temporal and the spatial variations of soil water dynamics in the unsaturated zone of tropical floodplain soils. Key words: floodplains, hydraulic parameters, parameter optimization, small-scale irrigation
The detectability of radio emission from exoplanets
NASA Astrophysics Data System (ADS)
Lynch, C. R.; Murphy, Tara; Lenc, E.; Kaplan, D. L.
2018-05-01
Like the magnetised planets in our Solar System, magnetised exoplanets should emit strongly at radio wavelengths. Radio emission directly traces the planetary magnetic fields and radio detections can place constraints on the physical parameters of these features. Large comparative studies of predicted radio emission characteristics for the known population of exoplanets help to identify what physical parameters could be key for producing bright, observable radio emission. Since the last comparative study, many thousands of exoplanets have been discovered. We report new estimates for the radio flux densities and maximum emission frequencies for the current population of known exoplanets orbiting pre-main sequence and main-sequence stars with spectral types F-M. The set of exoplanets predicted to produce observable radio emission are Hot Jupiters orbiting young stars. The youth of these system predicts strong stellar magnetic fields and/or dense winds, which are key for producing bright, observable radio emission. We use a new all-sky circular polarisation Murchison Widefield Array survey to place sensitive limits on 200 MHz emission from exoplanets, with 3σ values ranging from 4.0 - 45.0 mJy. Using a targeted Giant Metre Wave Radio Telescope observing campaign, we also report a 3σ upper limit of 4.5 mJy on the radio emission from V830 Tau b, the first Hot Jupiter to be discovered orbiting a pre-main sequence star. Our limit is the first to be reported for the low-frequency radio emission from this source.
NASA Astrophysics Data System (ADS)
Lupo, Cosmo; Ottaviani, Carlo; Papanastasiou, Panagiotis; Pirandola, Stefano
2018-06-01
One crucial step in any quantum key distribution (QKD) scheme is parameter estimation. In a typical QKD protocol the users have to sacrifice part of their raw data to estimate the parameters of the communication channel as, for example, the error rate. This introduces a trade-off between the secret key rate and the accuracy of parameter estimation in the finite-size regime. Here we show that continuous-variable QKD is not subject to this constraint as the whole raw keys can be used for both parameter estimation and secret key generation, without compromising the security. First, we show that this property holds for measurement-device-independent (MDI) protocols, as a consequence of the fact that in a MDI protocol the correlations between Alice and Bob are postselected by the measurement performed by an untrusted relay. This result is then extended beyond the MDI framework by exploiting the fact that MDI protocols can simulate device-dependent one-way QKD with arbitrarily high precision.
[The current state of the brain-computer interface problem].
Shurkhay, V A; Aleksandrova, E V; Potapov, A A; Goryainov, S A
2015-01-01
It was only 40 years ago that the first PC appeared. Over this period, rather short in historical terms, we have witnessed the revolutionary changes in lives of individuals and the entire society. Computer technologies are tightly connected with any field, either directly or indirectly. We can currently claim that computers are manifold superior to a human mind in terms of a number of parameters; however, machines lack the key feature: they are incapable of independent thinking (like a human). However, the key to successful development of humankind is collaboration between the brain and the computer rather than competition. Such collaboration when a computer broadens, supplements, or replaces some brain functions is known as the brain-computer interface. Our review focuses on real-life implementation of this collaboration.
Solar Surface Velocity in the Large Scale estimated by Magnetic Element Tracking Method
NASA Astrophysics Data System (ADS)
Fujiyama, M.; Imada, S.; Iijima, H.; Machida, S.
2017-12-01
The 11years variation in the solar activity is one of the important sources of decadal variation in the solar-terrestrial environment. Therefore, predicting the solar cycle activity is crucial for the space weather. To build the prediction schemes for the next solar cycle is a key for the long-term space weather study. Recently, the relationship between polar magnetic field at the solar minimum and next solar cycle activity is intensively discussed. Nowadays, many people believe that the polar magnetic field at the solar minimum is one of the best predictor for the next solar cycle. To estimate polar magnetic field, Surface Flux Transport (SFT) model have been often used. On the other hand, SFT model needs several parameters, for example Meridional circulation, differential rotation, turbulent diffusion etc.. So far, those parameters have not been fully understood, and their uncertainties may affect the accuracy of the prediction. In this study, we try to discuss the parameters which are used in SFT model. We focus on two kinds of the solar surface motions, Differential rotation and Meridional circulation. First, we have developed Magnetic Element Tracking (MET) module, which is able to obtain the surface velocity by using the magnetic field data. We have used SOHO/MDI and SDO/HMI for the magnetic field data. By using MET, we study the solar surface motion over 2 cycle (nearly 24 years), and we found that the velocity variation is related to the active region belt. This result is consistent with [Hathaway et al., 2011]. Further, we apply our module to the Hinode/SOT data which spatial resolution is high. Because of its high resolution, we can discuss the surface motion close to the pole which has not been discussed enough. Further, we discuss the relationship between the surface motion and the magnetic field strength and the location of longitude.
A detailed comparison of single-camera light-field PIV and tomographic PIV
NASA Astrophysics Data System (ADS)
Shi, Shengxian; Ding, Junfei; Atkinson, Callum; Soria, Julio; New, T. H.
2018-03-01
This paper conducts a comprehensive study between the single-camera light-field particle image velocimetry (LF-PIV) and the multi-camera tomographic particle image velocimetry (Tomo-PIV). Simulation studies were first performed using synthetic light-field and tomographic particle images, which extensively examine the difference between these two techniques by varying key parameters such as pixel to microlens ratio (PMR), light-field camera Tomo-camera pixel ratio (LTPR), particle seeding density and tomographic camera number. Simulation results indicate that the single LF-PIV can achieve accuracy consistent with that of multi-camera Tomo-PIV, but requires the use of overall greater number of pixels. Experimental studies were then conducted by simultaneously measuring low-speed jet flow with single-camera LF-PIV and four-camera Tomo-PIV systems. Experiments confirm that given a sufficiently high pixel resolution, a single-camera LF-PIV system can indeed deliver volumetric velocity field measurements for an equivalent field of view with a spatial resolution commensurate with those of multi-camera Tomo-PIV system, enabling accurate 3D measurements in applications where optical access is limited.
NASA Astrophysics Data System (ADS)
Ezzedine, S. M.; Pitarka, A.; Vorobiev, O.; Glenn, L.; Antoun, T.
2017-12-01
We have performed three-dimensional high resolution simulations of underground chemical explosions conducted recently in jointed rock outcrop as part of the Source Physics Experiments (SPE) being conducted at the Nevada National Security Site (NNSS). The main goal of the current study is to investigate the effects of the structural and geomechanical properties on the spall phenomena due to underground chemical explosions and its subsequent effect on the seismo-acoustic signature at far distances. Two parametric studies have been undertaken to assess the impact of different 1) conceptual geological models including a single layer and two layers model, with and without joints and with and without varying geomechanical properties, and 2) depth of bursts of the chemical explosions and explosion yields. Through these investigations we have explored not only the near-field response of the chemical explosions but also the far-field responses of the seismic and the acoustic signatures. The near-field simulations were conducted using the Eulerian and Lagrangian codes, GEODYN and GEODYN -L, respectively, while the far-field seismic simulations were conducted using the elastic wave propagation code, WPP, and the acoustic response using the Kirchhoff-Helmholtz-Rayleigh time-dependent approximation code, KHR. Though a series of simulations we have recorded the velocity field histories a) at the ground surface on an acoustic-source-patch for the acoustic simulations, and 2) on a seismic-source-box for the seismic simulations. We first analyzed the SPE3 experimental data and simulated results, then simulated SPE4-prime, SPE5, and SPE6 to anticipate their seismo-acoustic responses given conditions of uncertainties. SPE experiments were conducted in a granitic formation; we have extended the parametric study to include other geological settings such dolomite and alluvial formations. These parametric studies enabled us 1) investigating the geotechnical and geophysical key parameters that impact the seismo-acoustic responses of underground chemical explosions and 2) deciphering and ranking through a global sensitivity analysis the most important key parameters to be characterized on site to minimize uncertainties in prediction and discrimination.
NASA Astrophysics Data System (ADS)
Zhou, H.; Luo, Z.; Li, Q.; Zhong, B.
2016-12-01
The monthly gravity field model can be used to compute the information about the mass variation within the system Earth, i.e., the relationship between mass variation in the oceans, land hydrology, and ice sheets. For more than ten years, GRACE has provided valuable information for recovering monthly gravity field model. In this study, a new time series of GRACE monthly solution, which is truncated to degree and order 60, is computed by the modified dynamic approach. Compared with the traditional dynamic approach, the major difference of our modified approach is the way to process the nuisance parameters. This type of parameters is mainly used to absorb low-frequency errors in KBRR data. One way is to remove the nuisance parameters before estimating the geo-potential coefficients, called Pure Predetermined Strategy (PPS). The other way is to determine the nuisance parameters and geo-potential coefficients simultaneously, called Pure Simultaneous Strategy (PSS). It is convenient to detect the gross error by PPS, while there is also obvious signal loss compared with the solutions derived from PSS. After comparing the difference of practical calculation formulas between PPS and PSS, we create the Filter Predetermine Strategy (FPS), which can combine the advantages of PPS and PSS efficiently. With FPS, a new monthly gravity field model entitled HUST-Grace2016s is developed. The comparisons of geoid degree powers and mass change signals in the Amazon basin, the Greenland and the Antarctic demonstrate that our model is comparable with the other published models, e.g., the CSR RL05, JPL RL05 and GFZ RL05 models. Acknowledgements: This work is supported by China Postdoctoral Science Foundation (Grant No.2016M592337), the National Natural Science Foundation of China (Grant Nos. 41131067, 41504014), the Open Research Fund Program of the State Key Laboratory of Geodesy and Earth's Dynamics (Grant No. SKLGED2015-1-3-E).
Phase diagram of the underdoped cuprates at high magnetic field
NASA Astrophysics Data System (ADS)
Chakraborty, Debmalya; Morice, Corentin; Pépin, Catherine
2018-06-01
The experimentally measured phase diagram of cuprate superconductors in the temperature-applied magnetic field plane illuminates key issues in understanding the physics of these materials. At low temperature, the superconducting state gives way to a long-range charge order with increasing magnetic field; both the orders coexist in a small intermediate region. The charge order transition is strikingly insensitive to temperature and quickly reaches a transition temperature close to the zero-field superconducting Tc. We argue that such a transition along with the presence of the coexisting phase is difficult to obtain in a weak coupling competing orders formalism. We demonstrate that for some range of parameters there is an enlarged symmetry of the strongly coupled charge and superconducting orders in the system depending on their relative masses and the coupling strength of the two orders. We establish that this sharp switch from the superconducting phase to the charge order phase can be understood in the framework of a composite SU(2) order parameter comprising the charge and superconducting orders. Finally, we illustrate that there is a possibility of the coexisting phase of the competing charge and superconducting orders only when the SU(2) symmetry between them is weakly broken due to biquadratic terms in the free energy. The relation of this sharp transition to the proximity to the pseudogap quantum critical doping is also discussed.
Video Image Stabilization and Registration
NASA Technical Reports Server (NTRS)
Hathaway, David H. (Inventor); Meyer, Paul J. (Inventor)
2002-01-01
A method of stabilizing and registering a video image in multiple video fields of a video sequence provides accurate determination of the image change in magnification, rotation and translation between video fields, so that the video fields may be accurately corrected for these changes in the image in the video sequence. In a described embodiment, a key area of a key video field is selected which contains an image which it is desired to stabilize in a video sequence. The key area is subdivided into nested pixel blocks and the translation of each of the pixel blocks from the key video field to a new video field is determined as a precursor to determining change in magnification, rotation and translation of the image from the key video field to the new video field.
Video Image Stabilization and Registration
NASA Technical Reports Server (NTRS)
Hathaway, David H. (Inventor); Meyer, Paul J. (Inventor)
2003-01-01
A method of stabilizing and registering a video image in multiple video fields of a video sequence provides accurate determination of the image change in magnification, rotation and translation between video fields, so that the video fields may be accurately corrected for these changes in the image in the video sequence. In a described embodiment, a key area of a key video field is selected which contains an image which it is desired to stabilize in a video sequence. The key area is subdivided into nested pixel blocks and the translation of each of the pixel blocks from the key video field to a new video field is determined as a precursor to determining change in magnification, rotation and translation of the image from the key video field to the new video field.
Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies.
Kührová, Petra; Best, Robert B; Bottaro, Sandro; Bussi, Giovanni; Šponer, Jiří; Otyepka, Michal; Banáš, Pavel
2016-09-13
The computer-aided folding of biomolecules, particularly RNAs, is one of the most difficult challenges in computational structural biology. RNA tetraloops are fundamental RNA motifs playing key roles in RNA folding and RNA-RNA and RNA-protein interactions. Although state-of-the-art Molecular Dynamics (MD) force fields correctly describe the native state of these tetraloops as a stable free-energy basin on the microsecond time scale, enhanced sampling techniques reveal that the native state is not the global free energy minimum, suggesting yet unidentified significant imbalances in the force fields. Here, we tested our ability to fold the RNA tetraloops in various force fields and simulation settings. We employed three different enhanced sampling techniques, namely, temperature replica exchange MD (T-REMD), replica exchange with solute tempering (REST2), and well-tempered metadynamics (WT-MetaD). We aimed to separate problems caused by limited sampling from those due to force-field inaccuracies. We found that none of the contemporary force fields is able to correctly describe folding of the 5'-GAGA-3' tetraloop over a range of simulation conditions. We thus aimed to identify which terms of the force field are responsible for this poor description of TL folding. We showed that at least two different imbalances contribute to this behavior, namely, overstabilization of base-phosphate and/or sugar-phosphate interactions and underestimated stability of the hydrogen bonding interaction in base pairing. The first artifact stabilizes the unfolded ensemble, while the second one destabilizes the folded state. The former problem might be partially alleviated by reparametrization of the van der Waals parameters of the phosphate oxygens suggested by Case et al., while in order to overcome the latter effect we suggest local potentials to better capture hydrogen bonding interactions.
Simulation of a high-efficiency silicon-based heterojunction solar cell
NASA Astrophysics Data System (ADS)
Jian, Liu; Shihua, Huang; Lü, He
2015-04-01
The basic parameters of a-Si:H/c-Si heterojunction solar cells, such as layer thickness, doping concentration, a-Si:H/c-Si interface defect density, and the work functions of the transparent conducting oxide (TCO) and back surface field (BSF) layer, are crucial factors that influence the carrier transport properties and the efficiency of the solar cells. The correlations between the carrier transport properties and these parameters and the performance of a-Si:H/c-Si heterojunction solar cells were investigated using the AFORS-HET program. Through the analysis and optimization of a TCO/n-a-Si:H/i-a-Si:H/p-c-Si/p+-a-Si:H/Ag solar cell, a photoelectric conversion efficiency of 27.07% (VOC) 749 mV, JSC: 42.86 mA/cm2, FF: 84.33%) was obtained through simulation. An in-depth understanding of the transport properties can help to improve the efficiency of a-Si:H/c-Si heterojunction solar cells, and provide useful guidance for actual heterojunction with intrinsic thin layer (HIT) solar cell manufacturing. Project supported by the National Natural Science Foundation of China (No. 61076055), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. FDS-KL2011-04), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).
Discrete Event Simulation Modeling and Analysis of Key Leader Engagements
2012-06-01
to offer. GreenPlayer agents require four parameters, pC, pKLK, pTK, and pRK , which give probabilities for being corrupt, having key leader...HandleMessageRequest component. The same parameter constraints apply to these four parameters. The parameter pRK is the same parameter from the CreatePlayers component...whether the local Green player has resource critical knowledge by using the parameter pRK . It schedules an EndResourceKnowledgeRequest event, passing
Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration
Deng, Mingjun; Li, Jiansong
2017-01-01
The Chinese Gaofen-3 (GF-3) mission was launched in August 2016, equipped with a full polarimetric synthetic aperture radar (SAR) sensor in the C-band, with a resolution of up to 1 m. The absolute positioning accuracy of GF-3 is of great importance, and in-orbit geometric calibration is a key technology for improving absolute positioning accuracy. Conventional geometric calibration is used to accurately calibrate the geometric calibration parameters of the image (internal delay and azimuth shifts) using high-precision ground control data, which are highly dependent on the control data of the calibration field, but it remains costly and labor-intensive to monitor changes in GF-3’s geometric calibration parameters. Based on the positioning consistency constraint of the conjugate points, this study presents a geometric cross-calibration method for the rapid and accurate calibration of GF-3. The proposed method can accurately calibrate geometric calibration parameters without using corner reflectors and high-precision digital elevation models, thus improving absolute positioning accuracy of the GF-3 image. GF-3 images from multiple regions were collected to verify the absolute positioning accuracy after cross-calibration. The results show that this method can achieve a calibration accuracy as high as that achieved by the conventional field calibration method. PMID:29240675
Electronic structure and the origin of the Dzyaloshinskii-Moriya interaction in MnSi
Satpathy, S.; Shanavas, K. V.
2016-05-02
Here, the metallic helimagnet MnSi has been found to exhibit skyrmionic spin textures when subjected to magnetic fields at low temperatures. The Dzyaloshinskii-Moriya (DM) interaction plays a key role in stabilizing the skyrmion state. With the help of first-principles calculations, crystal field theory and a tight-binding model we study the electronic structure and the origin of the DM interaction in the B20 phase of MnSi. The strength ofmore » $$\\vec{D}$$ parameter is determined by the magnitude of the spin-orbit interaction and the degree of orbital mixing, induced by the symmetry-breaking distortions in the B20 phase. We find that, strong coupling between Mn-$d$ and Si-$p$ states lead to a mixed valence ground state $$|d^{7-x}p^{2+x}\\rangle$$ configuration. The experimental magnetic moment of $$0.4~\\mu_B$$ is consistent with the Coulomb-corrected DFT+$U$ calculations, which redistributes electrons between the majority and minority spin channels. We derive the magnetic interaction parameters $J$ and $$\\vec{D}$$ for Mn-Si-Mn superexchange paths using Moriya's theory assuming the interaction to be mediated by $$e_g$$ electrons near the Fermi level. Finally, using parameters from our calculations, we get reasonable agreement with the observations.« less
Non-polarizable force field of water based on the dielectric constant: TIP4P/ε.
Fuentes-Azcatl, Raúl; Alejandre, José
2014-02-06
The static dielectric constant at room temperature and the temperature of maximum density are used as target properties to develop, by molecular dynamics simulations, the TIP4P/ε force field of water. The TIP4P parameters are used as a starting point. The key step, to determine simultaneously both properties, is to perform simulations at 240 K where a molecular dipole moment of minimum density is found. The minimum is shifted to larger values of μ as the distance between the oxygen atom and site M, lOM, decreases. First, the parameters that define the dipole moment are adjusted to reproduce the experimental dielectric constant and then the Lennard-Jones parameters are varied to match the temperature of maximum density. The minimum on density at 240 K allows understanding why reported TIP4P models fail to reproduce the temperature of maximum density, the dielectric constant, or both properties. The new model reproduces some of the thermodynamic and transport anomalies of water. Additionally, the dielectric constant, thermodynamics, and dynamical and structural properties at different temperatures and pressures are in excellent agreement with experimental data. The computational cost of the new model is the same as that of the TIP4P.
Nanoparticles for Radiation Therapy Enhancement: the Key Parameters
Retif, Paul; Pinel, Sophie; Toussaint, Magali; Frochot, Céline; Chouikrat, Rima; Bastogne, Thierry; Barberi-Heyob, Muriel
2015-01-01
This review focuses on the radiosensitization strategies that use high-Z nanoparticles. It does not establish an exhaustive list of the works in this field but rather propose constructive criticisms pointing out critical factors that could improve the nano-radiation therapy. Whereas most reviews show the chemists and/or biologists points of view, the present analysis is also seen through the prism of the medical physicist. In particular, we described and evaluated the influence of X-rays energy spectra using a numerical analysis. We observed a lack of standardization in preclinical studies that could partially explain the low number of translation to clinical applications for this innovative therapeutic strategy. Pointing out the critical parameters of high-Z nanoparticles radiosensitization, this review is expected to contribute to a larger preclinical and clinical development. PMID:26155318
Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review
Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen
2018-01-01
Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on. PMID:29614024
Towards Prognostics of Power MOSFETs: Accelerated Aging and Precursors of Failure
NASA Technical Reports Server (NTRS)
Celaya, Jose R.; Saxena, Abhinav; Wysocki, Philip; Saha, Sankalita; Goebel, Kai
2010-01-01
This paper presents research results dealing with power MOSFETs (metal oxide semiconductor field effect transistor) within the prognostics and health management of electronics. Experimental results are presented for the identification of the on-resistance as a precursor to failure of devices with die-attach degradation as a failure mechanism. Devices are aged under power cycling in order to trigger die-attach damage. In situ measurements of key electrical and thermal parameters are collected throughout the aging process and further used for analysis and computation of the on-resistance parameter. Experimental results show that the devices experience die-attach damage and that the on-resistance captures the degradation process in such a way that it could be used for the development of prognostics algorithms (data-driven or physics-based).
Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review.
Ding, Zhenyang; Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen
2018-04-03
Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on.
Nanoparticles for Radiation Therapy Enhancement: the Key Parameters.
Retif, Paul; Pinel, Sophie; Toussaint, Magali; Frochot, Céline; Chouikrat, Rima; Bastogne, Thierry; Barberi-Heyob, Muriel
2015-01-01
This review focuses on the radiosensitization strategies that use high-Z nanoparticles. It does not establish an exhaustive list of the works in this field but rather propose constructive criticisms pointing out critical factors that could improve the nano-radiation therapy. Whereas most reviews show the chemists and/or biologists points of view, the present analysis is also seen through the prism of the medical physicist. In particular, we described and evaluated the influence of X-rays energy spectra using a numerical analysis. We observed a lack of standardization in preclinical studies that could partially explain the low number of translation to clinical applications for this innovative therapeutic strategy. Pointing out the critical parameters of high-Z nanoparticles radiosensitization, this review is expected to contribute to a larger preclinical and clinical development.
Field-Scale Evaluation of Infiltration Parameters From Soil Texture for Hydrologic Analysis
NASA Astrophysics Data System (ADS)
Springer, Everett P.; Cundy, Terrance W.
1987-02-01
Recent interest in predicting soil hydraulic properties from simple physical properties such as texture has major implications in the parameterization of physically based models of surface runoff. This study was undertaken to (1) compare, on a field scale, soil hydraulic parameters predicted from texture to those derived from field measurements and (2) compare simulated overland flow response using these two parameter sets. The parameters for the Green-Ampt infiltration equation were obtained from field measurements and using texture-based predictors for two agricultural fields, which were mapped as single soil units. Results of the analyses were that (1) the mean and variance of the field-based parameters were not preserved by the texture-based estimates, (2) spatial and cross correlations between parameters were induced by the texture-based estimation procedures, (3) the overland flow simulations using texture-based parameters were significantly different than those from field-based parameters, and (4) simulations using field-measured hydraulic conductivities and texture-based storage parameters were very close to simulations using only field-based parameters.
Nieves, Eliana L; Pereyra, Patricia C; Luna, María G; Medone, Paula; Sánchez, Norma E
2015-08-01
The tomato moth, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), is a key pest of tomato, Lycopersicon esculentum L., crops in Central and South America. At present it is dispersing rapidly in Africa and Eurasian continents as an invasive pest, threatening worldwide tomato production. Pseudapanteles dignus (Muesebeck) (Hymenoptera: Braconidae) is an American endoparasitoid reported as the main natural enemy of T. absoluta in commercial tomato. To gain knowledge of the potential role of P. dignus in the biological control of this pest, we determined its population parameters in laboratory and the parasitoid's impact on T. absoluta in the field. In laboratory, lifetime fecundity was 193 eggs per female, and longevity was 24 and 26 d for female and male, respectively. The finite rate of increase (λ) was 1.15 per female per day and the intrinsic rate of natural increase (r(m)) was 0.14. The net reproductive rate (R(0)) was found to be 51.2, and generation time (T) 28.8 d. The time for doubling the population (DT) was 5 d. Furthermore, field parasitism of T. absoluta varied between 33 and 64% in the different years studied. Population parameters estimated in this study can be considered baseline information for a mass-rearing protocol of this parasitoid. Moreover, growth rates of P. dignus, particularly r(m), and its impact on field populations of T. absoluta indicated that this parasitoid is a valuable candidate for biological control of this pest. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Van Oyen, Tomas; Blondeaux, Paolo; Van den Eynde, Dries
2013-07-01
A site-by-site comparison between field observations and theoretical predictions of sediment sorting patterns along tidal sand waves is performed for ten locations in the North Sea. At each site, the observed grain size distribution along the bottom topography and the geometry of the bed forms is described in detail and the procedure used to obtain the model parameters is summarized. The model appears to accurately describe the wavelength of the observed sand waves for the majority of the locations; still providing a reliable estimate for the other sites. In addition, it is found that for seven out of the ten locations, the qualitative sorting process provided by the model agrees with the observed grain size distribution. A discussion of the site-by-site comparison is provided which, taking into account uncertainties in the field data, indicates that the model grasps the major part of the key processes controlling the phenomenon.
NASA Astrophysics Data System (ADS)
Roelofs, W. S. C.; Mathijssen, S. G. J.; Janssen, R. A. J.; de Leeuw, D. M.; Kemerink, M.
2012-02-01
The width and shape of the density of states (DOS) are key parameters to describe the charge transport of organic semiconductors. Here we extract the DOS using scanning Kelvin probe microscopy on a self-assembled monolayer field effect transistor (SAMFET). The semiconductor is only a single monolayer which has allowed extraction of the DOS over a wide energy range, pushing the methodology to its fundamental limit. The measured DOS consists of an exponential distribution of deep states with additional localized states on top. The charge transport has been calculated in a generic variable range-hopping model that allows any DOS as input. We show that with the experimentally extracted DOS an excellent agreement between measured and calculated transfer curves is obtained. This shows that detailed knowledge of the density of states is a prerequisite to consistently describe the transfer characteristics of organic field effect transistors.
Fault Diagnosis of Rolling Bearing Based on Fast Nonlocal Means and Envelop Spectrum
Lv, Yong; Zhu, Qinglin; Yuan, Rui
2015-01-01
The nonlocal means (NL-Means) method that has been widely used in the field of image processing in recent years effectively overcomes the limitations of the neighborhood filter and eliminates the artifact and edge problems caused by the traditional image denoising methods. Although NL-Means is very popular in the field of 2D image signal processing, it has not received enough attention in the field of 1D signal processing. This paper proposes a novel approach that diagnoses the fault of a rolling bearing based on fast NL-Means and the envelop spectrum. The parameters of the rolling bearing signals are optimized in the proposed method, which is the key contribution of this paper. This approach is applied to the fault diagnosis of rolling bearing, and the results have shown the efficiency at detecting roller bearing failures. PMID:25585105
1996-01-01
multi CCD arrays for wide field telescopes with an array of 8x8 1K CCDs in use at Las Campanas Observatory in Chile . The same group is also involved...Verify key EPROM -292H VIH . VIH Program security bitl 1 29AH . VPP Program security’ bit 2 *. .298H -Vpp Verify security bits - 9HVIH ViI NOTE: 1...Pulsed from V.. to VIL and returned to VIH . EPROM PROGRAMMING AND VERIFICATION ..t= 21’C to-+27 ’rC:-VCC= 5V ±10%VS3 = OV. SYMBOL I .-- PARAMETER MIN MAX
Regularized Semiparametric Estimation for Ordinary Differential Equations
Li, Yun; Zhu, Ji; Wang, Naisyin
2015-01-01
Ordinary differential equations (ODEs) are widely used in modeling dynamic systems and have ample applications in the fields of physics, engineering, economics and biological sciences. The ODE parameters often possess physiological meanings and can help scientists gain better understanding of the system. One key interest is thus to well estimate these parameters. Ideally, constant parameters are preferred due to their easy interpretation. In reality, however, constant parameters can be too restrictive such that even after incorporating error terms, there could still be unknown sources of disturbance that lead to poor agreement between observed data and the estimated ODE system. In this paper, we address this issue and accommodate short-term interferences by allowing parameters to vary with time. We propose a new regularized estimation procedure on the time-varying parameters of an ODE system so that these parameters could change with time during transitions but remain constants within stable stages. We found, through simulation studies, that the proposed method performs well and tends to have less variation in comparison to the non-regularized approach. On the theoretical front, we derive finite-sample estimation error bounds for the proposed method. Applications of the proposed method to modeling the hare-lynx relationship and the measles incidence dynamic in Ontario, Canada lead to satisfactory and meaningful results. PMID:26392639
Zhou, Yu-Ping; Jiang, Jin-Wu
2017-01-01
While most existing theoretical studies on the borophene are based on first-principles calculations, the present work presents molecular dynamics simulations for the lattice dynamical and mechanical properties in borophene. The obtained mechanical quantities are in good agreement with previous first-principles calculations. The key ingredients for these molecular dynamics simulations are the two efficient empirical potentials developed in the present work for the interaction of borophene with low-energy triangular structure. The first one is the valence force field model, which is developed with the assistance of the phonon dispersion of borophene. The valence force field model is a linear potential, so it is rather efficient for the calculation of linear quantities in borophene. The second one is the Stillinger-Weber potential, whose parameters are derived based on the valence force field model. The Stillinger-Weber potential is applicable in molecular dynamics simulations of nonlinear physical or mechanical quantities in borophene. PMID:28349983
Unitarity and predictiveness in new Higgs inflation
NASA Astrophysics Data System (ADS)
Fumagalli, Jacopo; Mooij, Sander; Postma, Marieke
2018-03-01
In new Higgs inflation the Higgs kinetic terms are non-minimally coupled to the Einstein tensor, allowing the Higgs field to play the role of the inflaton. The new interaction is non-renormalizable, and the model only describes physics below some cutoff scale. Even if the unknown UV physics does not affect the tree level inflaton potential significantly, it may still enter at loop level and modify the running of the Standard Model (SM) parameters. This is analogous to what happens in the original model for Higgs inflation. A key difference, though, is that in new Higgs inflation the inflationary predictions are sensitive to this running. Thus the boundary conditions at the EW scale as well as the unknown UV completion may leave a signature on the inflationary parameters. However, this dependence can be evaded if the kinetic terms of the SM fermions and gauge fields are non-minimally coupled to gravity as well. Our approach to determine the model's UV dependence and the connection between low and high scale physics can be used in any particle physics model of inflation.
Study of plasma natural convection induced by electron beam in atmosphere [
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Yongfeng, E-mail: yfdeng@mail.dlut.edu.cn; Han, Xianwei; Tan, Yonghua
2014-06-15
Using high-energy electron beams to ionize air is an effective way to produce a large-size plasma in the atmosphere. In particular, with a steady-state high power generator, some unique phenomena can be achieved, including natural convection of the plasma. The characteristics of this convection are studied both experimentally and numerically. The results show that an asymmetrical temperature field develops with magnitudes that vary from 295 K to 389 K at a pressure of 100 Torr. Natural convection is greatly enhanced under 760 Torr. Nevertheless, plasma transport is negligible in this convection flow field and only the plasma core tends to move upward. Parameter analysismore » is performed to discern influencing factors on this phenomenon. The beam current, reflecting the Rayleigh number Ra effect, correlates with convection intensity, which indicates that energy deposition is the underlying key factor in determining such convections. Finally, natural convection is concluded to be an intrinsic property of the electron beam when focused into dense air, and can be achieved by carefully adjusting equipment operations parameters.« less
Interfacial fluctuations of block copolymers: a coarse-grain molecular dynamics simulation study.
Srinivas, Goundla; Swope, William C; Pitera, Jed W
2007-12-13
The lamellar and cylindrical phases of block copolymers have a number of technological applications, particularly when they occur in supported thin films. One such application is block copolymer lithography, the use of these materials to subdivide or enhance submicrometer patterns defined by optical or electron beam methods. A key parameter of all lithographic methods is the line edge roughness (LER), because the electronic or optical activities of interest are sensitive to small pattern variations. While mean-field models provide a partial picture of the LER and interfacial width expected for the block interface in a diblock copolymer, these models lack chemical detail. To complement mean-field approaches, we have carried out coarse-grain molecular dynamics simulations on model poly(ethyleneoxide)-poly(ethylethylene) (PEO-PEE) lamellae, exploring the influence of chain length and hypothetical chemical modifications on the observed line edge roughness. As expected, our simulations show that increasing chi (the Flory-Huggins parameter) is the most direct route to decreased roughness, although the addition of strong specific interactions at the block interface can also produce smoother patterns.
NASA Technical Reports Server (NTRS)
Riley, Pete; Mikic, Z.; Linker, J. A.
2003-01-01
In this study we describe a series of MHD simulations covering the time period from 12 January 1999 to 19 September 2001 (Carrington Rotation 1945 to 1980). This interval coincided with: (1) the Sun s approach toward solar maximum; and (2) Ulysses second descent to the southern polar regions, rapid latitude scan, and arrival into the northern polar regions. We focus on the evolution of several key parameters during this time, including the photospheric magnetic field, the computed coronal hole boundaries, the computed velocity profile near the Sun, and the plasma and magnetic field parameters at the location of Ulysses. The model results provide a global context for interpreting the often complex in situ measurements. We also present a heuristic explanation of stream dynamics to describe the morphology of interaction regions at solar maximum and contrast it with the picture that resulted from Ulysses first orbit, which occurred during more quiescent solar conditions. The simulation results described here are available at: http://sun.saic.com.
Quantum Dense Coding About a Two-Qubit Heisenberg XYZ Model
NASA Astrophysics Data System (ADS)
Xu, Hui-Yun; Yang, Guo-Hui
2017-09-01
By taking into account the nonuniform magnetic field, the quantum dense coding with thermal entangled states of a two-qubit anisotropic Heisenberg XYZ chain are investigated in detail. We mainly show the different properties about the dense coding capacity ( χ) with the changes of different parameters. It is found that dense coding capacity χ can be enhanced by decreasing the magnetic field B, the degree of inhomogeneity b and temperature T, or increasing the coupling constant along z-axis J z . In addition, we also find χ remains the stable value as the change of the anisotropy of the XY plane Δ in a certain temperature condition. Through studying different parameters effect on χ, it presents that we can properly turn the values of B, b, J z , Δ or adjust the temperature T to obtain a valid dense coding capacity ( χ satisfies χ > 1). Moreover, the temperature plays a key role in adjusting the value of dense coding capacity χ. The valid dense coding capacity could be always obtained in the lower temperature-limit case.
Machine-Thermal Coupling Stresses Analysis of the Fin-Type Structural Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Yue, Hao; Chen, Dongbo; Qin, Delei; Chen, Zijian
2017-05-01
The design structure and heat-transfer mechanism of a thermoelectric generator (TEG) determine its body temperature state. Thermal stress and thermal deformation generated by the temperature variation directly affect the stress state of thermoelectric modules (TEMs). Therefore, the rated temperature and pressing force of TEMs are important parameters in TEG design. Here, the relationships between structural of a fin-type TEG (FTEG) and these parameters are studied by modeling and "machine-thermal" coupling simulation. An indirect calculation method is adopted in the coupling simulation. First, numerical heat transfer calculations of a three-dimensional FTEG model are conducted according to an orthogonal simulation table. The influences of structural parameters for heat transfer in the channel and outer fin temperature distribution are analyzed. The optimal structural parameters are obtained and used to simulate temperature field of the outer fins. Second, taking the thermal calculation results as the initial condition, the thermal-solid coupling calculation is adopted. The thermal stresses of outer fin, mechanical force of spring-angle pressing mechanism, and clamping force on a TEM are analyzed. The simulation results show that the heat transfer area of the inner fin and the physical parameters of the metal materials are the keys to determining the FTEG temperature field. The pressing mechanism's mechanical force can be reduced by reducing the outer fin angle. In addition, a corrugated cooling water pipe, which has cooling and spring functionality, is conducive to establishing an adaptable clamping force to avoid the TEMs being crushed by the thermal stresses in the body.
NASA Astrophysics Data System (ADS)
Ferreyra, R.; Stockle, C. O.; Huggins, D. R.
2014-12-01
Soil water storage and dynamics are of critical importance for a variety of processes in terrestrial ecosystems, including agriculture. Many of those systems are under significant pressure in terms of water availability and use. Therefore, assessing alternative scenarios through hydrological models is an increasingly valuable exercise. Soil water holding capacity is defined by the concepts of soil field capacity and plant available water, which are directly related to soil physical properties. Both concepts define the energy status of water in the root system and closely interact with plant physiological processes. Furthermore, these concepts play a key role in the environmental transport of nutrients and pollutants. Soil physical parameters (e.g. saturated hydraulic conductivity, total porosity and water release curve) are required as input for field-scale soil water redistribution models. These parameters are normally not easy to measure or monitor, and estimation through pedotransfer functions is often inadequate. Our objectives are to improve field-scale hydrological modeling by: (1) assessing new undisturbed methodologies for determining important soil physical parameters necessary for model inputs; and (2) evaluating model outputs, making a detailed specification of soil parameters and the particular boundary condition that are driving water movement under two contrasting environments. Soil physical properties (saturated hydraulic conductivity and determination of water release curves) were quantified using undisturbed laboratory methodologies for two different soil textural classes (silt loam and sandy loam) and used to evaluate two soil water redistribution models (finite difference solution and hourly cascade approach). We will report on model corroboration results performed using in situ, continuous, field measurements with soil water content capacitance probes and digital tensiometers. Here, natural drainage and water redistribution were monitored following a controlled water application where the study areas were isolated from other water inputs and outputs. We will also report on the assessment of two soil water sensors (Decagon Devices 5TM capacitance probe and UMS T4 tensiometers) for the two soil textural classes in terms of consistency and replicability.
He, Qin; Mohaghegh, Shahab D.; Gholami, Vida
2013-01-01
CO 2 sequestration into a coal seam project was studied and a numerical model was developed in this paper to simulate the primary and secondary coal bed methane production (CBM/ECBM) and carbon dioxide (CO 2 ) injection. The key geological and reservoir parameters, which are germane to driving enhanced coal bed methane (ECBM) and CO 2 sequestration processes, including cleat permeability, cleat porosity, CH 4 adsorption time, CO 2 adsorption time, CH 4 Langmuir isotherm, CO 2 Langmuir isotherm, and Palmer and Mansoori parameters, have been analyzed within a reasonable range. The model simulation results showed good matches for bothmore » CBM/ECBM production and CO 2 injection compared with the field data. The history-matched model was used to estimate the total CO 2 sequestration capacity in the field. The model forecast showed that the total CO 2 injection capacity in the coal seam could be 22,817 tons, which is in agreement with the initial estimations based on the Langmuir isotherm experiment. Total CO 2 injected in the first three years was 2,600 tons, which according to the model has increased methane recovery (due to ECBM) by 6,700 scf/d.« less
Jung, Kyung-Won; Park, Dae-Seon; Hwang, Min-Jin; Ahn, Kyu-Hong
2015-09-01
In this study, the decolorization of Acid Orange 7 (AO-7) with intensified performance was obtained using hydrodynamic cavitation (HC) combined with an electric field (graphite electrodes). As a preliminary step, various HC systems were compared in terms of decolorization, and, among them, the electric field-assisted modified orifice plate HC (EFM-HC) system exhibited perfect decolorization performance within 40 min of reaction time. Interestingly, when H2O2 was injected into the EFM-HC system as an additional oxidant, the reactor performance gradually decreased as the dosing ratio increased; thus, the remaining experiments were performed without H2O2. Subsequently, an optimization process was conducted using response surface methodology with a Box-Behnken design. The inlet pressure, initial pH, applied voltage, and reaction time were chosen as operational key factors, while decolorization was selected as the response variable. The overall performance revealed that the selected parameters were either slightly interdependent, or had significant interactive effects on the decolorization. In the verification test, complete decolorization was observed under statistically optimized conditions. This study suggests that EFM-HC is a useful method for pretreatment of dye wastewater with positive economic and commercial benefits. Copyright © 2015 Elsevier B.V. All rights reserved.
SOFT: a synthetic synchrotron diagnostic for runaway electrons
NASA Astrophysics Data System (ADS)
Hoppe, M.; Embréus, O.; Tinguely, R. A.; Granetz, R. S.; Stahl, A.; Fülöp, T.
2018-02-01
Improved understanding of the dynamics of runaway electrons can be obtained by measurement and interpretation of their synchrotron radiation emission. Models for synchrotron radiation emitted by relativistic electrons are well established, but the question of how various geometric effects—such as magnetic field inhomogeneity and camera placement—influence the synchrotron measurements and their interpretation remains open. In this paper we address this issue by simulating synchrotron images and spectra using the new synthetic synchrotron diagnostic tool SOFT (Synchrotron-detecting Orbit Following Toolkit). We identify the key parameters influencing the synchrotron radiation spot and present scans in those parameters. Using a runaway electron distribution function obtained by Fokker-Planck simulations for parameters from an Alcator C-Mod discharge, we demonstrate that the corresponding synchrotron image is well-reproduced by SOFT simulations, and we explain how it can be understood in terms of the parameter scans. Geometric effects are shown to significantly influence the synchrotron spectrum, and we show that inherent inconsistencies in a simple emission model (i.e. not modeling detection) can lead to incorrect interpretation of the images.
Intrinsic physical conditions and structure of relativistic jets in active galactic nuclei
NASA Astrophysics Data System (ADS)
Nokhrina, E. E.; Beskin, V. S.; Kovalev, Y. Y.; Zheltoukhov, A. A.
2015-03-01
The analysis of the frequency dependence of the observed shift of the cores of relativistic jets in active galactic nuclei (AGNs) allows us to evaluate the number density of the outflowing plasma ne and, hence, the multiplicity parameter λ = ne/nGJ, where nGJ is the Goldreich-Julian number density. We have obtained the median value for λmed = 3 × 1013 and the median value for the Michel magnetization parameter σM, med = 8 from an analysis of 97 sources. Since the magnetization parameter can be interpreted as the maximum possible Lorentz factor Γ of the bulk motion which can be obtained for relativistic magnetohydrodynamic (MHD) flow, this estimate is in agreement with the observed superluminal motion of bright features in AGN jets. Moreover, knowing these key parameters, one can determine the transverse structure of the flow. We show that the poloidal magnetic field and particle number density are much larger in the centre of the jet than near the jet boundary. The MHD model can also explain the typical observed level of jet acceleration. Finally, casual connectivity of strongly collimated jets is discussed.
Magnetic field control of microstructural development in melt-spun Pr 2 Co 14 B
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, Michael A.; Rios, Orlando; Conner, Ben S.
In the processing of commercial rare earth permanent magnets, use of external magnetic fields is limited mainly to the alignment of anisotropic particles and the polarization of the finished magnets. Here we explore the effects of high magnetic fields on earlier stages of magnet synthesis, including the crystallization and chemical phase transformations that produce the 2:14:1 phase in the Pr-Co-B system. Pr 2Co 14B alloys produced by melt-spinning were annealed in the presence of strong applied magnetic fields (H=90 kOe). The resulting materials were characterized by x-ray diffraction, electron microscopy, and magnetization measurements. We find that magnetic fields suppress themore » nucleation and growth of crystalline phases, resulting in significantly smaller particle sizes. In addition, magnetic fields applied during processing strongly affects chemical phase selection, suppressing the formation of Pr 2Co 14B and α-Co in favor of Pr 2Co 17. Here, the results demonstrate that increased control over key microstructural properties is achievable by including a strong magnetic field as a processing parameter for rare-earth magnet materials.« less
Magnetic Field Tailored Annular Hall Thruster with Anode Layer
NASA Astrophysics Data System (ADS)
Lee, Seunghun; Kim, Holak; Kim, Junbum; Lim, Youbong; Choe, Wonho; Korea Institute of Materials Science Collaboration
2016-09-01
Plasma propulsion system is one of the key components for advanced missions of satellites as well as deep space exploration. A typical plasma propulsion system is Hall effect thruster that uses crossed electric and magnetic fields to ionize a propellant gas and to accelerate the ionized gas to generate momentum. In Hall thruster plasmas, magnetic field configuration is important due to the fact that electron confinement in the electromagnetic fields affects both plasma and ion beam characteristics as well as thruster performance parameters including thrust, specific impulse, power efficiency, and life time. In this work, development of an anode layer Hall thruster (TAL) with magnetic field tailoring has been attempted. The TAL is possible to keep discharge in 1 to 2 kilovolts of anode voltage, which is useful to obtain high specific impulse. The magnetic field tailoring is used to minimize undesirable heat dissipation and secondary electron emission from the wall surrounding the plasma. We will report 3 W and 200 W thrusters performances measured by a pendulum thrust stand according to the magnetic field configuration. Also, the measured result will be compared with the plasma diagnostics conducted by an angular Faraday probe, a retarding potential analyzer, and a ExB probe.
Magnetic field control of microstructural development in melt-spun Pr 2 Co 14 B
McGuire, Michael A.; Rios, Orlando; Conner, Ben S.; ...
2017-01-27
In the processing of commercial rare earth permanent magnets, use of external magnetic fields is limited mainly to the alignment of anisotropic particles and the polarization of the finished magnets. Here we explore the effects of high magnetic fields on earlier stages of magnet synthesis, including the crystallization and chemical phase transformations that produce the 2:14:1 phase in the Pr-Co-B system. Pr 2Co 14B alloys produced by melt-spinning were annealed in the presence of strong applied magnetic fields (H=90 kOe). The resulting materials were characterized by x-ray diffraction, electron microscopy, and magnetization measurements. We find that magnetic fields suppress themore » nucleation and growth of crystalline phases, resulting in significantly smaller particle sizes. In addition, magnetic fields applied during processing strongly affects chemical phase selection, suppressing the formation of Pr 2Co 14B and α-Co in favor of Pr 2Co 17. Here, the results demonstrate that increased control over key microstructural properties is achievable by including a strong magnetic field as a processing parameter for rare-earth magnet materials.« less
Effect of varying two key parameters in simulating evacuation for a dormitory in China
NASA Astrophysics Data System (ADS)
Lei, Wenjun; Li, Angui; Gao, Ran
2013-01-01
Student dormitories are both living and resting areas for students in their spare time. There are many small rooms in the dormitories. And the students are distributed densely in the dormitories. High occupant density is the main characteristic of student dormitories. Once there is an accident, such as fire or earthquake, the losses will be cruel. Computer evacuation models developed overseas are commonly applied in working out safety management schemes. The average minimum widths of corridor and exit are the two key parameters affecting the evacuation for the dormitory. The effect of varying these two parameters will be studied in this paper by taking a dormitory in our university as an example. Evacuation performance is predicted with the software FDS + Evac. The default values in the software are used and adjusted through a field survey. The effect of varying either of the two parameters is discussed. It is found that the simulated results agree well with the experimental results. From our study it seems that the evacuation time is not in proportion to the evacuation distance. And we also named a phenomenon of “the closer is not the faster”. For the building researched in this article, a corridor width of 3 m is the most appropriate. And the suitable exit width of the dormitory for evacuation is about 2.5 to 3 m. The number of people has great influence on the walking speed of people. The purpose of this study is to optimize the building, and to make the building in favor of personnel evacuation. Then the damage could be minimized.
Mars environment and magnetic orbiter scientific and measurement objectives.
Leblanc, F; Langlais, B; Fouchet, T; Barabash, S; Breuer, D; Chassefière, E; Coates, A; Dehant, V; Forget, F; Lammer, H; Lewis, S; Lopez-Valverde, M; Mandea, M; Menvielle, M; Pais, A; Paetzold, M; Read, P; Sotin, C; Tarits, P; Vennerstrom, S
2009-01-01
In this paper, we summarize our present understanding of Mars' atmosphere, magnetic field, and surface and address past evolution of these features. Key scientific questions concerning Mars' surface, atmosphere, and magnetic field, along with the planet's interaction with solar wind, are discussed. We also define what key parameters and measurements should be performed and the main characteristics of a martian mission that would help to provide answers to these questions. Such a mission--Mars Environment and Magnetic Orbiter (MEMO)--was proposed as an answer to the Cosmic Vision Call of Opportunity as an M-class mission (corresponding to a total European Space Agency cost of less than 300 Meuro). MEMO was designed to study the strong interconnection between the planetary interior, atmosphere, and solar conditions, which is essential to our understanding of planetary evolution, the appearance of life, and its sustainability. The MEMO main platform combined remote sensing and in situ measurements of the atmosphere and the magnetic field during regular incursions into the martian upper atmosphere. The micro-satellite was designed to perform simultaneous in situ solar wind measurements. MEMO was defined to conduct: * Four-dimensional mapping of the martian atmosphere from the surface up to 120 km by measuring wind, temperature, water, and composition, all of which would provide a complete view of the martian climate and photochemical system; Mapping of the low-altitude magnetic field with unprecedented geographical, altitude, local time, and seasonal resolutions; A characterization of the simultaneous responses of the atmosphere, magnetic field, and near-Mars space to solar variability by means of in situ atmospheric and solar wind measurements.
2013-06-01
1 18th ICCRTS Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables...AND SUBTITLE Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables 5a. CONTRACT...command in crisis management. C2 Agility Model Agility can be conceptualized at a number of different levels; for instance at the team
NASA Astrophysics Data System (ADS)
Koch, Jonas; Nowak, Wolfgang
2013-04-01
At many hazardous waste sites and accidental spills, dense non-aqueous phase liquids (DNAPLs) such as TCE, PCE, or TCA have been released into the subsurface. Once a DNAPL is released into the subsurface, it serves as persistent source of dissolved-phase contamination. In chronological order, the DNAPL migrates through the porous medium and penetrates the aquifer, it forms a complex pattern of immobile DNAPL saturation, it dissolves into the groundwater and forms a contaminant plume, and it slowly depletes and bio-degrades in the long-term. In industrial countries the number of such contaminated sites is tremendously high to the point that a ranking from most risky to least risky is advisable. Such a ranking helps to decide whether a site needs to be remediated or may be left to natural attenuation. Both the ranking and the designing of proper remediation or monitoring strategies require a good understanding of the relevant physical processes and their inherent uncertainty. To this end, we conceptualize a probabilistic simulation framework that estimates probability density functions of mass discharge, source depletion time, and critical concentration values at crucial target locations. Furthermore, it supports the inference of contaminant source architectures from arbitrary site data. As an essential novelty, the mutual dependencies of the key parameters and interacting physical processes are taken into account throughout the whole simulation. In an uncertain and heterogeneous subsurface setting, we identify three key parameter fields: the local velocities, the hydraulic permeabilities and the DNAPL phase saturations. Obviously, these parameters depend on each other during DNAPL infiltration, dissolution and depletion. In order to highlight the importance of these mutual dependencies and interactions, we present results of several model set ups where we vary the physical and stochastic dependencies of the input parameters and simulated processes. Under these changes, the probability density functions demonstrate strong statistical shifts in their expected values and in their uncertainty. Considering the uncertainties of all key parameters but neglecting their interactions overestimates the output uncertainty. However, consistently using all available physical knowledge when assigning input parameters and simulating all relevant interactions of the involved processes reduces the output uncertainty significantly back down to useful and plausible ranges. When using our framework in an inverse setting, omitting a parameter dependency within a crucial physical process would lead to physical meaningless identified parameters. Thus, we conclude that the additional complexity we propose is both necessary and adequate. Overall, our framework provides a tool for reliable and plausible prediction, risk assessment, and model based decision support for DNAPL contaminated sites.
Effects of Viscosity on the Performance of Air-Powered Liquid Jet Injectors
NASA Astrophysics Data System (ADS)
Portaro, Rocco; Jaber, Hadi; Ng, Hoi Dick
2017-11-01
Drug delivery without the use of hypodermic needles has been a long-term objective within the medical field. This study focuses on observing the effects of drug viscosity on injector performance for air-powered liquid jet injectors, as well as the viability of using this technology for delivering viscous-type medications such as monoclonal antibodies. The experiments are conducted through the use of a prototype injector which allows key parameters such as driver pressure, injection volume and nozzle size to be varied. Different viscosities which range from 0.9 cP to 87 cP are obtained by using a water-glycerol mix. The liquid jets emanating from the injector are assessed using high speed photography as well as a pressure transducer. Experimental findings are then compared to a CFD model which considered experimental geometry and parameters. The results of this study highlight the effect of viscosity on the operating pressure of the injector and the reduction in jet stagnation pressure. It also illustrates improved jet confinement as viscosity is increased, a finding which is in line with the numerical model, and should play a key role in improving the device's characteristics for puncturing skin.
Investigating the Martian Ionospheric Conductivity Using MAVEN Key Parameter Data
NASA Astrophysics Data System (ADS)
Aleryani, O.; Raftery, C. L.; Fillingim, M. O.; Fogle, A. L.; Dunn, P.; McFadden, J. P.; Connerney, J. E. P.; Mahaffy, P. R.; Ergun, R. E.; Andersson, L.
2015-12-01
Since the Viking orbiters and landers in 1976, the Martian atmospheric composition has scarcely been investigated. New data from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, launched in 2013, allows for a thorough study of the electrically conductive nature of the Martian ionosphere. Determinations of the electrical conductivity will be made using in-situ atmospheric and ionospheric measurements, rather than scientific models for the first time. The objective of this project is to calculate the conductivity of the Martian atmosphere, whenever possible, throughout the trajectory of the MAVEN spacecraft. MAVEN instrumentation used includes the Neutral Gas and Ion Mass Spectrometer (NGIMS) for neutral species density, the Suprathermal and Thermal Ion Compositions (STATIC) for ion composition, temperature and density, the Magnetometer (MAG) for the magnetic field strength and the Langmuir Probe and Waves (LPW) for electron temperature and density. MAVEN key parameter data are used for these calculations. We compare our results with previous, model-based estimates of the conductivity. These results will allow us to quantify the flow of atmospheric electric currents which can be analyzed further for a deeper understanding of the Martian ionospheric electrodynamics, bringing us closer to understanding the mystery of the loss of the Martian atmosphere.
First results from the new RIKEN superconducting electron cyclotron resonance ion source (invited).
Nakagawa, T; Higurashi, Y; Ohnishi, J; Aihara, T; Tamura, M; Uchiyama, A; Okuno, H; Kusaka, K; Kidera, M; Ikezawa, E; Fujimaki, M; Sato, Y; Watanabe, Y; Komiyama, M; Kase, M; Goto, A; Kamigaito, O; Yano, Y
2010-02-01
The next generation heavy ion accelerator facility, such as the RIKEN radio isotope (RI) beam factory, requires an intense beam of high charged heavy ions. In the past decade, performance of the electron cyclotron resonance (ECR) ion sources has been dramatically improved with increasing the magnetic field and rf frequency to enhance the density and confinement time of plasma. Furthermore, the effects of the key parameters (magnetic field configuration, gas pressure, etc.) on the ECR plasma have been revealed. Such basic studies give us how to optimize the ion source structure. Based on these studies and modern superconducting (SC) technology, we successfully constructed the new 28 GHz SC-ECRIS, which has a flexible magnetic field configuration to enlarge the ECR zone and to optimize the field gradient at ECR point. Using it, we investigated the effect of ECR zone size, magnetic field configuration, and biased disk on the beam intensity of the highly charged heavy ions with 18 GHz microwaves. In this article, we present the structure of the ion source and first experimental results with 18 GHz microwave in detail.
NASA Astrophysics Data System (ADS)
Yang, Yue; Wang, Liping
2017-08-01
In this work, we propose a hybrid near-field radiative thermal modulator made of two graphene-covered silicon carbide (SiC) plates separated by a nanometer vacuum gap. The near-field photon tunneling between the emitter and receiver is modulated by changing graphene chemical potentials with symmetrically or asymmetrically applied voltage biases. The radiative heat flux calculated from fluctuational electrodynamics significantly varies with graphene chemical potentials due to tunable near-field coupling strength between graphene plasmons across the vacuum gap. Thermal modulation and switching, which are the key functionalities required for a thermal modulator, are theoretically realized and analyzed. Newly introduced quantities of the modulation factor, the sensitivity factor and switching factor are studied quite extensively in a large parameter range for both graphene chemical potential and vacuum gap distance. This opto-electronic device with faster operating mode, which is in principle only limited by electronics and not by the thermal inertia, will facilitate the practical application of active thermal management, thermal circuits, and thermal computing with photon-based near-field thermal transport.
Differential detection of Gaussian MSK in a mobile radio environment
NASA Technical Reports Server (NTRS)
Simon, M. K.; Wang, C. C.
1984-01-01
Minimum shift keying with Gaussian shaped transmit pulses is a strong candidate for a modulation technique that satisfies the stringent out-of-band radiated power requirements of the mobil radio application. Numerous studies and field experiments have been conducted by the Japanese on urban and suburban mobile radio channels with systems employing Gaussian minimum-shift keying (GMSK) transmission and differentially coherent reception. A comprehensive analytical treatment is presented of the performance of such systems emphasizing the important trade-offs among the various system design parameters such as transmit and receiver filter bandwidths and detection threshold level. It is shown that two-bit differential detection of GMSK is capable of offering far superior performance to the more conventional one-bit detection method both in the presence of an additive Gaussian noise background and Rician fading.
Differential detection of Gaussian MSK in a mobile radio environment
NASA Astrophysics Data System (ADS)
Simon, M. K.; Wang, C. C.
1984-11-01
Minimum shift keying with Gaussian shaped transmit pulses is a strong candidate for a modulation technique that satisfies the stringent out-of-band radiated power requirements of the mobil radio application. Numerous studies and field experiments have been conducted by the Japanese on urban and suburban mobile radio channels with systems employing Gaussian minimum-shift keying (GMSK) transmission and differentially coherent reception. A comprehensive analytical treatment is presented of the performance of such systems emphasizing the important trade-offs among the various system design parameters such as transmit and receiver filter bandwidths and detection threshold level. It is shown that two-bit differential detection of GMSK is capable of offering far superior performance to the more conventional one-bit detection method both in the presence of an additive Gaussian noise background and Rician fading.
KeySlinger and StarSlinger: Secure Key Exchange and Encrypted File Transfer on Smartphones
2011-05-01
format data to exchange because contact information can be exported to V- Cards using existing APIs. For these reasons it was chosen as the medium to... Card format allows customization of this field. The service provider field serves to identify the app the key is for and the username field stores the...public key data. A sample V- Card field looks like Listing 1 below. IMPP;TextSecure
Optimization of curved drift tubes for ultraviolet-ion mobility spectrometry
NASA Astrophysics Data System (ADS)
Ni, Kai; Ou, Guangli; Zhang, Xiaoguo; Yu, Zhou; Yu, Quan; Qian, Xiang; Wang, Xiaohao
2015-08-01
Ion mobility spectrometry (IMS) is a key trace detection technique for toxic pollutants and explosives in the atmosphere. Ultraviolet radiation photoionization source is widely used as an ionization source for IMS due to its advantages of high selectivity and non-radioactivity. However, UV-IMS bring problems that UV rays will be launched into the drift tube which will cause secondary ionization and lead to the photoelectric effect of the Faraday disk. So air is often used as working gas to reduce the effective distance of UV rays, but it will limit the application areas of UV-IMS. In this paper, we propose a new structure of curved drift tube, which can avoid abnormally incident UV rays. Furthermore, using curved drift tube may increase the length of drift tube and then improve the resolution of UV-IMS according to previous research. We studied the homogeneity of electric field in the curved drift tube, which determined the performance of UV-IMS. Numerical simulation of electric field in curved drift tube was conducted by SIMION in our study. In addition, modeling method and homogeneity standard for electric field were also presented. The influences of key parameters include radius of gyration, gap between electrode as well as inner diameter of curved drift tube, on the homogeneity of electric field were researched and some useful laws were summarized. Finally, an optimized curved drift tube is designed to achieve homogenous drift electric field. There is more than 98.75% of the region inside the curved drift tube where the fluctuation of the electric field strength along the radial direction is less than 0.2% of that along the axial direction.
Novel formulations of ballistic gelatin. 1. Rheological properties.
Zecheru, Teodora; Său, Ciprian; Lăzăroaie, Claudiu; Zaharia, Cătălin; Rotariu, Traian; Stănescu, Paul-Octavian
2016-06-01
Ballistic gelatin is the simulant of the human body during field tests in forensics and other related fields, due to its physical and mechanical similarities to human trunk and organs. Since the ballistic gelatin used in present has important issues to overcome, an alternative approach is the use of gelatin-polymer composites, where a key factor is the insertion of biocompatible materials, which replicate accurately the human tissues. In order to be able to obtain an improved material in terms of mechanical performances by an easy industrial-scale technology, before the verification of the ballistic parameters by shooting in agreement with military standards, one of the best and cheapest solutions is to perform a thorough check of their rheological properties, in standard conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Phase-locked loop based on nanoelectromechanical resonant-body field effect transistor
NASA Astrophysics Data System (ADS)
Bartsch, S. T.; Rusu, A.; Ionescu, A. M.
2012-10-01
We demonstrate the room-temperature operation of a silicon nanoelectromechanical resonant-body field effect transistor (RB-FET) embedded into phase-locked loop (PLL). The very-high frequency resonator uses on-chip electrostatic actuation and transistor-based displacement detection. The heterodyne frequency down-conversion based on resistive FET mixing provides a loop feedback signal with high signal-to-noise ratio. We identify key parameters for PLL operation, and analyze the performance of the RB-FET at the system level. Used as resonant mass detector, the experimental frequency stability in the ppm-range translates into sub atto-gram (10-18 g) sensitivity in high vacuum. The feedback and control system are generic and may be extended to other mechanical resonators with transistor properties, such as graphene membranes and carbon nanotubes.
Pesch, Georg R; Du, Fei; Baune, Michael; Thöming, Jorg
2017-02-03
Insulator-based dielectrophoresis (iDEP) is a powerful particle analysis technique based on electric field scattering at material boundaries which can be used, for example, for particle filtration or to achieve chromatographic separation. Typical devices consist of microchannels containing an array of posts but large scale application was also successfully tested. Distribution and magnitude of the generated field gradients and thus the possibility to trap particles depends apart from the applied field strength on the material combination between post and surrounding medium and on the boundary shape. In this study we simulate trajectories of singe particles under the influence of positive DEP that are flowing past one single post due to an external fluid flow. We analyze the influence of key parameters (excitatory field strength, fluid flow velocity, particle size, distance from the post, post size, and cross-sectional geometry) on two benchmark criteria, i.e., a critical initial distance from the post so that trapping still occurs (at fixed particle size) and a critical minimum particle size necessary for trapping (at fixed initial distance). Our approach is fundamental and not based on finding an optimal geometry of insulating structures but rather aims to understand the underlying phenomena of particle trapping. A sensitivity analysis reveals that electric field strength and particle size have the same impact, as have fluid flow velocity and post dimension. Compared to these parameters the geometry of the post's cross-section (i.e. rhomboidal or elliptical with varying width-to-height or aspect ratio) has a rather small influence but can be used to optimize the trapping efficiency at a specific distance. We hence found an ideal aspect ratio for trapping for each base geometry and initial distance to the tip which is independent of the other parameters. As a result we present design criteria which we believe to be a valuable addition to the existing literature. Copyright © 2016 Elsevier B.V. All rights reserved.
Hydrologic Modeling in the Kenai River Watershed using Event Based Calibration
NASA Astrophysics Data System (ADS)
Wells, B.; Toniolo, H. A.; Stuefer, S. L.
2015-12-01
Understanding hydrologic changes is key for preparing for possible future scenarios. On the Kenai Peninsula in Alaska the yearly salmon runs provide a valuable stimulus to the economy. It is the focus of a large commercial fishing fleet, but also a prime tourist attraction. Modeling of anadromous waters provides a tool that assists in the prediction of future salmon run size. Beaver Creek, in Kenai, Alaska, is a lowlands stream that has been modeled using the Army Corps of Engineers event based modeling package HEC-HMS. With the use of historic precipitation and discharge data, the model was calibrated to observed discharge values. The hydrologic parameters were measured in the field or calculated, while soil parameters were estimated and adjusted during the calibration. With the calibrated parameter for HEC-HMS, discharge estimates can be used by other researches studying the area and help guide communities and officials to make better-educated decisions regarding the changing hydrology in the area and the tied economic drivers.
Parametric study of a concentric coaxial glass tube solar air collector: a theoretical approach
NASA Astrophysics Data System (ADS)
Dabra, Vishal; Yadav, Avadhesh
2018-06-01
Concentric coaxial glass tube solar air collector (CCGTSAC) is a quite innovative development in the field of solar collectors. This type of collector is specially designed to produce hot air. A mathematical model based on the energy conservation equations for small control volumes along the axial direction of concentric coaxial glass tube (CCGT) is developed in this paper. It is applied to predict the effect of thirteen different parameters on the exit air temperature rise and appeared that absorber tube size, length of CCGT, absorptivity of transparent glazing, transmissivity of transparent glazing, absorptivity of absorber coating, inlet or ambient air temperature, mass flow rate, variation of thermo-physical properties of air, wind speed, solar intensity and vacuum present between transparent glazing and absorber tube are significant parameters. Results of the model were analysed to predict the effect of key parameters on the thermal performance of a CCGTSAC for exit air temperature rise about 43.9-58.4 °C.
Cahill, Lindsay S; Hanna, John V; Wong, Alan; Freitas, Jair C C; Yates, Jonathan R; Harris, Robin K; Smith, Mark E
2009-09-28
Solid-state (25)Mg magic angle spinning nuclear magnetic resonance (MAS NMR) data are reported from a range of organic and inorganic magnesium-oxyanion compounds at natural abundance. To constrain the determination of the NMR interaction parameters (delta(iso), chi(Q), eta(Q)) data have been collected at three external magnetic fields (11.7, 14.1 and 18.8 T). Corresponding NMR parameters have also been calculated by using density functional theory (DFT) methods using the GIPAW approach, with good correlations being established between experimental and calculated values of both chi(Q) and delta(iso). These correlations demonstrate that the (25)Mg NMR parameters are very sensitive to the structure, with small changes in the local Mg(2+) environment and the overall hydration state profoundly affecting the observed spectra. The observations suggest that (25)Mg NMR spectroscopy is a potentially potent probe for addressing some key problems in inorganic materials and of metal centres in biologically relevant molecules.
Parameter and Process Significance in Mechanistic Modeling of Cellulose Hydrolysis
NASA Astrophysics Data System (ADS)
Rotter, B.; Barry, A.; Gerhard, J.; Small, J.; Tahar, B.
2005-12-01
The rate of cellulose hydrolysis, and of associated microbial processes, is important in determining the stability of landfills and their potential impact on the environment, as well as associated time scales. To permit further exploration in this field, a process-based model of cellulose hydrolysis was developed. The model, which is relevant to both landfill and anaerobic digesters, includes a novel approach to biomass transfer between a cellulose-bound biofilm and biomass in the surrounding liquid. Model results highlight the significance of the bacterial colonization of cellulose particles by attachment through contact in solution. Simulations revealed that enhanced colonization, and therefore cellulose degradation, was associated with reduced cellulose particle size, higher biomass populations in solution, and increased cellulose-binding ability of the biomass. A sensitivity analysis of the system parameters revealed different sensitivities to model parameters for a typical landfill scenario versus that for an anaerobic digester. The results indicate that relative surface area of cellulose and proximity of hydrolyzing bacteria are key factors determining the cellulose degradation rate.
Parametric study of a concentric coaxial glass tube solar air collector: a theoretical approach
NASA Astrophysics Data System (ADS)
Dabra, Vishal; Yadav, Avadhesh
2017-12-01
Concentric coaxial glass tube solar air collector (CCGTSAC) is a quite innovative development in the field of solar collectors. This type of collector is specially designed to produce hot air. A mathematical model based on the energy conservation equations for small control volumes along the axial direction of concentric coaxial glass tube (CCGT) is developed in this paper. It is applied to predict the effect of thirteen different parameters on the exit air temperature rise and appeared that absorber tube size, length of CCGT, absorptivity of transparent glazing, transmissivity of transparent glazing, absorptivity of absorber coating, inlet or ambient air temperature, mass flow rate, variation of thermo-physical properties of air, wind speed, solar intensity and vacuum present between transparent glazing and absorber tube are significant parameters. Results of the model were analysed to predict the effect of key parameters on the thermal performance of a CCGTSAC for exit air temperature rise about 43.9-58.4 °C.
NASA Astrophysics Data System (ADS)
Alkharji, Mohammed N.
Most fracture characterization methods provide a general description of the fracture parameters as part of the reservoirs parameters; the fracture interaction and geometry within the reservoir is given less attention. T-Matrix and Linear Slip effective medium fracture models are implemented to invert the elastic tensor for the parameters and geometries of the fractures within the reservoir. The fracture inverse problem has an ill-posed, overdetermined, underconstrained rank-deficit system of equations. Least-squares inverse methods are used to solve the problem. A good starting initial model for the parameters is a key factor in the reliability of the inversion. Most methods assume that the starting parameters are close to the solution to avoid inaccurate local minimum solutions. The prior knowledge of the fracture parameters and their geometry is not available. We develop a hybrid, enumerative and Gauss-Newton, method that estimates the fracture parameters and geometry from the elastic tensor with no prior knowledge of the initial parameter values. The fracture parameters are separated into two groups. The first group contains the fracture parameters with no prior information, and the second group contains the parameters with known prior information. Different models are generated from the first group parameters by sampling the solution space over a predefined range of possible solutions for each parameter. Each model generated by the first group is fixed and used as a starting model to invert for the second group of parameters using the Gauss-Newton method. The least-squares residual between the observed elastic tensor and the estimated elastic tensor is calculated for each model. The model parameters that yield the least-squares residual corresponds to the correct fracture reservoir parameters and geometry. Two synthetic examples of fractured reservoirs with oil and gas saturations were inverted with no prior information about the fracture properties. The results showed that the hybrid algorithm successfully predicted the fracture parametrization, geometry, and the fluid content within the modeled reservoir. The method was also applied on an elastic tensor extracted from the Weyburn field in Saskatchewan, Canada. The solution suggested no presence of fractures but only a VTI system caused by the shale layering in the targeted reservoir, this interpretation is supported by other Weyburn field data.
Gansau, Jennifer; Kelly, Lara; Buckley, Conor
2018-06-11
Cell delivery and leakage during injection remains a challenge for cell-based intervertebral disc regeneration strategies. Cellular microencapsulation may offer a promising approach to overcome these limitations by providing a protective niche during intradiscal injection. Electrohydrodynamic spraying (EHDS) is a versatile one-step approach for microencapsulation of cells using a high voltage electric field. The primary objective of this work was to characterise key processing parameters such as applied voltage (0, 5, 10 or 15kV), emitter needle gauge (21, 26 or 30G), alginate concentration (1, 2 or 3%) and flow rate (50, 100, 250 or 500 µl/min) to regulate the morphology of alginate microcapsules and subsequent cell viability when altering these parameters. The effect of initial cell seeding density (5, 10 and 20x10<sup>6</sup> cells/ml) on subsequent matrix accumulation of microencapsulated articular chondrocytes was also evaluated. Results showed that increasing alginate concentration and thus viscosity increased overall microcapsule size but also affected the geometry towards ellipsoidal-shaped gels. Altering the electric field strength and needle diameter regulated microcapsule size towards a smaller diameter with increasing voltage and smaller needle diameter. Needle size did not appear to affect cell viability when operating with lower alginate concentrations (1% and 2%), although higher concentrations (3%) and thus higher viscosity hydrogels resulted in diminished viability with decreasing needle diameter. Increasing cell density resulted in decreased cell viability and a concomitant decrease in DNA content, perhaps due to competing nutrient demands as a result of more closely packed cells. However, higher cell densities resulted in increased levels of extracellular matrix accumulated. Overall, this work highlights the potential of EHDS as a controllable and versatile approach to fabricate microcapsules for injectable delivery which can be used in a variety of applications such as drug development or cell therapies. . © 2018 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Kolzenburg, S.; Jaenicke, J.; Münzer, U.; Dingwell, D. B.
2018-05-01
Morphology-derived lava flow rheology is a frequently used tool in volcanology and planetary science to determine rheological parameters and deduce the composition of lavas on terrestrial planets and their moons. These calculations are usually based on physical equations incorporating 1) lava flow driving forces: gravity, slope and flow-rate and 2) morphological data such as lava flow geometry: flow-width, -height or shape of the flow outline. All available methods assume that no geometrical changes occur after emplacement and that the measured flow geometry reflects the lava's apparent viscosity and/or yield strength during emplacement. It is however well-established from terrestrial examples that lava flows may inflate significantly after the cessation of flow advance. This inflation affects, in turn, the width-to-height ratio upon which the rheological estimates are based and thus must result in uncertainties in the determination of flow rheology, as the flow height is one of the key parameters in the morphology-based deduction of flow properties. Previous studies have recognized this issue but, to date, no assessment of the magnitude of this error has been presented. This is likely due to a lack of digital elevation models (DEMs) at sufficiently high spatial and temporal resolution. The 2014/15 Holuhraun eruption in central Iceland represents one of the best monitored large volume (1.5 km3) lava flow fields (85 km2) to date. An abundance of scientific field and remote sensing data were collected during its emplacement. Moreover, inflation plays a key role in the emplacement dynamics of the late stage of the lava field. Here, we use a time series of high resolution DEMs acquired by the TanDEM-X satellite mission prior, during and after the eruption to evaluate the error associated with the most common methods of deriving lava flow rheology from morphological parameters used in planetary science. We can distinguish two dominant processes as sources of error in the determination of lava flow rheology from morphology 1) wholesale inflation of lava channels and 2) post halting inflation of individual lava toes. These result in a 2.4- to 17 - fold overestimation of apparent viscosity and a 0.7- to 2.4 - fold overestimation of yield strength. When applied in planetary sciences, this overestimation in rheological parameters translates directly to an overestimation of the respective lavas silica content. We conclude that, although qualitatively informative, morphological analysis is insufficient to discern lava rheology and composition. Instead, in-situ analysis together with high resolution remote sensing data is needed to properly constrain the compositions involved in planetary volcanism.
Imaging on a Shoestring: Cost-Effective Technologies for Probing Vadose Zone Transport Processes
NASA Astrophysics Data System (ADS)
Corkhill, C.; Bridge, J. W.; Barns, G.; Fraser, R.; Romero-Gonzalez, M.; Wilson, R.; Banwart, S.
2010-12-01
Key barriers to the widespread uptake of imaging technology for high spatial resolution monitoring of porous media systems are cost and accessibility. X-ray tomography, magnetic resonance imaging (MRI), gamma and neutron radiography require highly specialised equipment, controlled laboratory environments and/or access to large synchrotron facilities. Here we present results from visible light, fluorescence and autoradiographic imaging techniques developed at low cost and applied in standard analytical laboratories, adapted where necessary at minimal capital expense. UV-visible time lapse fluorescence imaging (UV-vis TLFI) in a transparent thin bed chamber enabled microspheres labelled with fluorescent dye and a conservative fluorophore solute (disodium fluorescein) to be measured simultaneously in saturated, partially-saturated and actively draining quartz sand to elucidate empirical values for colloid transport and deposition parameters distributed throughout the flow field, independently of theoretical approximations. Key results include the first experimental quantification of the effects of ionic strength and air-water interfacial area on colloid deposition above a capillary fringe, and the first direct observations of particle mobilisation and redeposition by moving saturation gradients during drainage. UV-vis imaging was also used to study biodegradation and reactive transport in a variety of saturated conditions, applying fluorescence as a probe for oxygen and nitrate concentration gradients, pH, solute transport parameters, reduction of uranium, and mapping of two-dimensional flow fields around a model dipole flow borehole system to validate numerical models. Costs are low: LED excitation sources (< US 50), flow chambers (US 200) and detectors (although a complete scientific-grade CCD set-up costs around US$ 8000, robust datasets can be obtained using a commercial digital SLR camera) mean that set-ups can be flexible to meet changing experimental requirements. The critical limitations of UV-vis fluorescence imaging are the need for reliable fluorescent probes suited to the experimental objective, and the reliance on thin-bed (2D) transparent porous media. Autoradiographic techniques address some of these limitations permit imaging of key biogeochemical processes in opaque media using radioactive probes, without the need for specialised radiation sources. We present initial calibration data for the use of autoradiography to monitor transport parameters for radionuclides (99-technetium), and a novel application of a radioactive salt tracer as a probe for pore water content, in model porous media systems.
Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter
2015-06-01
Methane (CH₄) generated from low-organic waste degradation at four Danish landfills was estimated by three first-order decay (FOD) landfill gas (LFG) generation models (LandGEM, IPCC, and Afvalzorg). Actual waste data from Danish landfills were applied to fit model (IPCC and Afvalzorg) required categories. In general, the single-phase model, LandGEM, significantly overestimated CH₄generation, because it applied too high default values for key parameters to handle low-organic waste scenarios. The key parameters were biochemical CH₄potential (BMP) and CH₄generation rate constant (k-value). In comparison to the IPCC model, the Afvalzorg model was more suitable for estimating CH₄generation at Danish landfills, because it defined more proper waste categories rather than traditional municipal solid waste (MSW) fractions. Moreover, the Afvalzorg model could better show the influence of not only the total disposed waste amount, but also various waste categories. By using laboratory-determined BMPs and k-values for shredder, sludge, mixed bulky waste, and street-cleaning waste, the Afvalzorg model was revised. The revised model estimated smaller cumulative CH₄generation results at the four Danish landfills (from the start of disposal until 2020 and until 2100). Through a CH₄mass balance approach, fugitive CH₄emissions from whole sites and a specific cell for shredder waste were aggregated based on the revised Afvalzorg model outcomes. Aggregated results were in good agreement with field measurements, indicating that the revised Afvalzorg model could provide practical and accurate estimation for Danish LFG emissions. This study is valuable for both researchers and engineers aiming to predict, control, and mitigate fugitive CH₄emissions from landfills receiving low-organic waste. Landfill operators use the first-order decay (FOD) models to estimate methane (CH₄) generation. A single-phase model (LandGEM) and a traditional model (IPCC) could result in overestimation when handling a low-organic waste scenario. Site-specific data were important and capable of calibrating key parameter values in FOD models. The comparison study of the revised Afvalzorg model outcomes and field measurements at four Danish landfills provided a guideline for revising the Pollutants Release and Transfer Registers (PRTR) model, as well as indicating noteworthy waste fractions that could emit CH₄at modern landfills.
NASA Astrophysics Data System (ADS)
Song, W. M.; Fan, D. W.; Su, L. Y.; Cui, C. Z.
2017-11-01
Calculating the coordinate parameters recorded in the form of key/value pairs in FITS (Flexible Image Transport System) header is the key to determine FITS images' position in the celestial system. As a result, it has great significance in researching the general process of calculating the coordinate parameters. By combining CCD related parameters of astronomical telescope (such as field, focal length, and celestial coordinates in optical axis, etc.), astronomical images recognition algorithm, and WCS (World Coordinate System) theory, the parameters can be calculated effectively. CCD parameters determine the scope of star catalogue, so that they can be used to build a reference star catalogue by the corresponding celestial region of astronomical images; Star pattern recognition completes the matching between the astronomical image and reference star catalogue, and obtains a table with a certain number of stars between CCD plane coordinates and their celestial coordinates for comparison; According to different projection of the sphere to the plane, WCS can build different transfer functions between these two coordinates, and the astronomical position of image pixels can be determined by the table's data we have worked before. FITS images are used to carry out scientific data transmission and analyze as a kind of mainstream data format, but only to be viewed, edited, and analyzed in the professional astronomy software. It decides the limitation of popular science education in astronomy. The realization of a general image visualization method is significant. FITS is converted to PNG or JPEG images firstly. The coordinate parameters in the FITS header are converted to metadata in the form of AVM (Astronomy Visualization Metadata), and then the metadata is added to the PNG or JPEG header. This method can meet amateur astronomers' general needs of viewing and analyzing astronomical images in the non-astronomical software platform. The overall design flow is realized through the java program and tested by SExtractor, WorldWide Telescope, picture viewer, and other software.
NASA Astrophysics Data System (ADS)
Acharya, Nilankush; Das, Kalidas; Kundu, Prabir Kumar
2018-04-01
In this piece of writing, we have demonstrated the rotating flow of carbon nanotube passing over a stretching sheet. Two types of carbon nanotube, i.e. single-wall carbon nanotube (SWCNT) and multi-wall carbon nanotube, (MWCNT) have been employed to illustrate the fine points of the flow. Suitable transformations have been consumed to construct its non-dimensional appearance from the partial ones. Transformed forms of equations have been sketched out by RK-4 procedure. Outcomes of the key flow factors on velocity along with temperature outline have been exemplified through tables and graphs, and scrutinized from the sensible judgement. Our investigation authenticates that the temperature of the fluid enhances owing to the improvisation of rotation parameter. Nusselt number goes down with the authority of magnetic parameter.
Schemm, E R; Gannon, W J; Wishne, C M; Halperin, W P; Kapitulnik, A
2014-07-11
Models of superconductivity in unconventional materials can be experimentally differentiated by the predictions they make for the symmetries of the superconducting order parameter. In the case of the heavy-fermion superconductor UPt3, a key question is whether its multiple superconducting phases preserve or break time-reversal symmetry (TRS). We tested for asymmetry in the phase shift between left and right circularly polarized light reflected from a single crystal of UPt3 at normal incidence and found that this so-called polar Kerr effect appears only below the lower of the two zero-field superconducting transition temperatures. Our results provide evidence for broken TRS in the low-temperature superconducting phase of UPt3, implying a complex two-component order parameter for superconductivity in this system. Copyright © 2014, American Association for the Advancement of Science.
Cross-section analysis of the Magnum-PSI plasma beam using a 2D multi-probe system
NASA Astrophysics Data System (ADS)
Costin, C.; Anita, V.; Ghiorghiu, F.; Popa, G.; De Temmerman, G.; van den Berg, M. A.; Scholten, J.; Brons, S.
2015-02-01
The linear plasma generator Magnum-PSI was designed for the study of plasma-surface interactions under relevant conditions of fusion devices. A key factor for such studies is the knowledge of a set of parameters that characterize the plasma interacting with the solid surface. This paper reports on the electrical diagnosis of the plasma beam in Magnum-PSI using a multi-probe system consisting of 64 probes arranged in a 2D square matrix. Cross-section distributions of floating potential and ion current intensity were registered for a hydrogen plasma beam under various discharge currents (80-175 A) and magnetic field strengths (0.47-1.41 T in the middle of the coils). Probe measurements revealed a high level of flexibility of plasma beam parameters with respect to the operating conditions.
NASA Astrophysics Data System (ADS)
Dhumale, R. B.; Lokhande, S. D.
2017-05-01
Three phase Pulse Width Modulation inverter plays vital role in industrial applications. The performance of inverter demeans as several types of faults take place in it. The widely used switching devices in power electronics are Insulated Gate Bipolar Transistors (IGBTs) and Metal Oxide Field Effect Transistors (MOSFET). The IGBTs faults are broadly classified as base or collector open circuit fault, misfiring fault and short circuit fault. To develop consistency and performance of inverter, knowledge of fault mode is extremely important. This paper presents the comparative study of IGBTs fault diagnosis. Experimental set up is implemented for data acquisition under various faulty and healthy conditions. Recent methods are executed using MATLAB-Simulink and compared using key parameters like average accuracy, fault detection time, implementation efforts, threshold dependency, and detection parameter, resistivity against noise and load dependency.
He, Wenjing; Zhu, Yuanzhong; Wang, Wenzhou; Zou, Kai; Zhang, Kai; He, Chao
2017-04-01
Pulsed magnetic field gradients generated by gradient coils are widely used in signal location in magnetic resonance imaging (MRI). However, gradient coils can also induce eddy currents in final magnetic field in the nearby conducting structures which lead to distortion and artifact in images, misguiding clinical diagnosis. We tried in our laboratory to measure the magnetic field of gradient-induced eddy current in 1.5 T superconducting magnetic resonance imaging device; and extracted key parameters including amplitude and time constant of exponential terms according to inductance-resistance series mathematical module. These parameters of both self-induced component and crossing component are useful to design digital filters to implement pulse pre-emphasize to reshape the waveform. A measure device that is a basement equipped with phantoms and receiving coils was designed and placed in the isocenter of the magnetic field. By applying testing sequence, contrast experiments were carried out in a superconducting magnet before and after eddy current compensation. Sets of one dimension signal were obtained as raw data to calculate gradient-induced eddy currents. Curve fitting by least squares method was also done to match inductance-resistance series module. The results also illustrated that pulse pre-emphasize measurement with digital filter was correct and effective in reducing eddy current effect. Pre-emphasize waveform was developed based on system function. The usefulness of pre-emphasize measurement in reducing eddy current was confirmed and the improvement was also presented. All these are valuable for reducing artifact in magnetic resonance imaging device.
NASA Astrophysics Data System (ADS)
Zhao, Fengjun; Liu, Junting; Qu, Xiaochao; Xu, Xianhui; Chen, Xueli; Yang, Xiang; Cao, Feng; Liang, Jimin; Tian, Jie
2014-12-01
To solve the multicollinearity issue and unequal contribution of vascular parameters for the quantification of angiogenesis, we developed a quantification evaluation method of vascular parameters for angiogenesis based on in vivo micro-CT imaging of hindlimb ischemic model mice. Taking vascular volume as the ground truth parameter, nine vascular parameters were first assembled into sparse principal components (PCs) to reduce the multicolinearity issue. Aggregated boosted trees (ABTs) were then employed to analyze the importance of vascular parameters for the quantification of angiogenesis via the loadings of sparse PCs. The results demonstrated that vascular volume was mainly characterized by vascular area, vascular junction, connectivity density, segment number and vascular length, which indicated they were the key vascular parameters for the quantification of angiogenesis. The proposed quantitative evaluation method was compared with both the ABTs directly using the nine vascular parameters and Pearson correlation, which were consistent. In contrast to the ABTs directly using the vascular parameters, the proposed method can select all the key vascular parameters simultaneously, because all the key vascular parameters were assembled into the sparse PCs with the highest relative importance.
Design and characterization of microstrip based E-field sensor for GSM and UMTS frequency bands
NASA Astrophysics Data System (ADS)
Narang, N.; Dubey, S. K.; Negi, P. S.; Ojha, V. N.
2016-12-01
An Electric (E-) field sensor based on coplanar waveguide-fed microstrip antenna to measure E-field strength for dual-band operation at 914 MHz and 2.1 GHz is proposed, designed, and characterized. The parametric optimization of the design has been performed to obtain resonance at global system for mobile communication and universal mobile telecommunication system frequency band. Low return loss (-17 dB and -19 dB), appropriate gain (0.50 dB and 1.55 dB), and isotropic behaviour (directivity ˜ 1 dB), respectively, at 914 MHz and 2.1 GHz, are obtained for probing application. Antenna factor (AF) is used as an important parameter to characterize the performance of the E-field sensor. The AF measurement is explained in detail and results are reported. Finally, using the designed E-field sensor, the E-field strength measurements are carried out in a transverse electromagnetic cell. The key sources of uncertainties in the measurement are identified, evaluated, and incorporated into the final results. The measurement results are compared with theoretical values, which are found in good agreement. For comparative validation, the results are evaluated with reference to an already calibrated commercially available isotropic probe.
NASA Astrophysics Data System (ADS)
Hiramoto, Kenta; Nakagawa, Yuichi; Koizumi, Hiroyuki; Takao, Yoshinori
2017-06-01
Using a three-dimensional particle-in-cell model, electron transport across a magnetic field has been investigated by obtaining the time-varying electric field and plasma parameters in a miniature microwave discharge neutralizer. The size of the neutralizer is 20 × 20 × 4 mm3. Ring-shaped antenna producing 4.2 GHz microwaves and permanent magnets for xenon plasma discharges are present inside. There are four orifices for electron extraction. The simulation area consists of both the discharge chamber and the vacuum region for the extraction. The numerical results show that radial striped patterns occur where the peak electron density is obtained, and the patterns seem to rotate in the azimuthal direction. This characteristic structure is very similar to recent results obtained in Hall thrusters and is probably due to the electron drift instability. Owing to the plasma structure, the azimuthal electric field is generated, which results in the E × B drift velocity in the axial direction with the radial magnetic field of the permanent magnets. This E × B drift velocity is a key factor in the electron transport across the magnetic field, leading to the electron extraction from the discharge chamber.
Design and characterization of microstrip based E-field sensor for GSM and UMTS frequency bands.
Narang, N; Dubey, S K; Negi, P S; Ojha, V N
2016-12-01
An Electric (E-) field sensor based on coplanar waveguide-fed microstrip antenna to measure E-field strength for dual-band operation at 914 MHz and 2.1 GHz is proposed, designed, and characterized. The parametric optimization of the design has been performed to obtain resonance at global system for mobile communication and universal mobile telecommunication system frequency band. Low return loss (-17 dB and -19 dB), appropriate gain (0.50 dB and 1.55 dB), and isotropic behaviour (directivity ∼ 1 dB), respectively, at 914 MHz and 2.1 GHz, are obtained for probing application. Antenna factor (AF) is used as an important parameter to characterize the performance of the E-field sensor. The AF measurement is explained in detail and results are reported. Finally, using the designed E-field sensor, the E-field strength measurements are carried out in a transverse electromagnetic cell. The key sources of uncertainties in the measurement are identified, evaluated, and incorporated into the final results. The measurement results are compared with theoretical values, which are found in good agreement. For comparative validation, the results are evaluated with reference to an already calibrated commercially available isotropic probe.
Panter, S; Chu, P G; Ludlow, E; Garrett, R; Kalla, R; Jahufer, M Z Z; de Lucas Arbiza, A; Rochfort, S; Mouradov, A; Smith, K F; Spangenberg, G
2012-06-01
Viral diseases, such as Alfalfa mosaic virus (AMV), cause significant reductions in the productivity and vegetative persistence of white clover plants in the field. Transgenic white clover plants ectopically expressing the viral coat protein gene encoded by the sub-genomic RNA4 of AMV were generated. Lines carrying a single copy of the transgene were analysed at the molecular, biochemical and phenotypic level under glasshouse and field conditions. Field resistance to AMV infection, as well as mitotic and meiotic stability of the transgene, were confirmed by phenotypic evaluation of the transgenic plants at two sites within Australia. The T(0) and T(1) generations of transgenic plants showed immunity to infection by AMV under glasshouse and field conditions, while the T(4) generation in an agronomically elite 'Grasslands Sustain' genetic background, showed a very high level of resistance to AMV in the field. An extensive biochemical study of the T(4) generation of transgenic plants, aiming to evaluate the level and composition of natural toxicants and key nutritional parameters, showed that the composition of the transgenic plants was within the range of variation seen in non-transgenic populations.
Measuring Energy Scaling of Laser Driven Magnetic Fields
NASA Astrophysics Data System (ADS)
Williams, Jackson; Goyon, Clement; Mariscal, Derek; Pollock, Brad; Patankar, Siddharth; Moody, John
2016-10-01
Laser-driven magnetic fields are of interest in particle confinement, fast ignition, and ICF platforms as an alternative to pulsed power systems to achieve many times higher fields. A comprehensive model describing the mechanism responsible for creating and maintaining magnetic fields from laser-driven coils has not yet been established. Understanding the scaling of key experimental parameters such as spatial and temporal uniformity and duration are necessary to implement coil targets in practical applications yet these measurements prove difficult due to the highly transient nature of the fields. We report on direct voltage measurements of laser-driven coil targets in which the laser energy spans more than four orders of magnitude. Results suggest that at low energies, laser-driven coils can be modeled as an electric circuit; however, at higher energies plasma effects dominate and a simple circuit treatment is insufficient to describe all observed phenomenon. The favorable scaling with laser power and pulse duration, observed in the present study and others at kilojoule energies, has positive implications for sustained, large magnetic fields for applications on the NIF. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Economic evaluation in chronic pain: a systematic review and de novo flexible economic model.
Sullivan, W; Hirst, M; Beard, S; Gladwell, D; Fagnani, F; López Bastida, J; Phillips, C; Dunlop, W C N
2016-07-01
There is unmet need in patients suffering from chronic pain, yet innovation may be impeded by the difficulty of justifying economic value in a field beset by data limitations and methodological variability. A systematic review was conducted to identify and summarise the key areas of variability and limitations in modelling approaches in the economic evaluation of treatments for chronic pain. The results of the literature review were then used to support the development of a fully flexible open-source economic model structure, designed to test structural and data assumptions and act as a reference for future modelling practice. The key model design themes identified from the systematic review included: time horizon; titration and stabilisation; number of treatment lines; choice/ordering of treatment; and the impact of parameter uncertainty (given reliance on expert opinion). Exploratory analyses using the model to compare a hypothetical novel therapy versus morphine as first-line treatments showed cost-effectiveness results to be sensitive to structural and data assumptions. Assumptions about the treatment pathway and choice of time horizon were key model drivers. Our results suggest structural model design and data assumptions may have driven previous cost-effectiveness results and ultimately decisions based on economic value. We therefore conclude that it is vital that future economic models in chronic pain are designed to be fully transparent and hope our open-source code is useful in order to aspire to a common approach to modelling pain that includes robust sensitivity analyses to test structural and parameter uncertainty.
3D Reconstruction and Approximation of Vegetation Geometry for Modeling of Within-canopy Flows
NASA Astrophysics Data System (ADS)
Henderson, S. M.; Lynn, K.; Lienard, J.; Strigul, N.; Mullarney, J. C.; Norris, B. K.; Bryan, K. R.
2016-02-01
Aquatic vegetation can shelter coastlines from waves and currents, sometimes resulting in accretion of fine sediments. We developed a photogrammetric technique for estimating the key geometric vegetation parameters that are required for modeling of within-canopy flows. Accurate estimates of vegetation geometry and density are essential to refine hydrodynamic models, but accurate, convenient, and time-efficient methodologies for measuring complex canopy geometries have been lacking. The novel approach presented here builds on recent progress in photogrammetry and computer vision. We analyzed the geometry of aerial mangrove roots, called pneumatophores, in Vietnam's Mekong River Delta. Although comparatively thin, pneumatophores are more numerous than mangrove trunks, and thus influence near bed flow and sediment transport. Quadrats (1 m2) were placed at low tide among pneumatophores. Roots were counted and measured for height and diameter. Photos were taken from multiple angles around each quadrat. Relative camera locations and orientations were estimated from key features identified in multiple images using open-source software (VisualSfM). Next, a dense 3D point cloud was produced. Finally, algorithms were developed for automated estimation of pneumatophore geometry from the 3D point cloud. We found good agreement between hand-measured and photogrammetric estimates of key geometric parameters, including mean stem diameter, total number of stems, and frontal area density. These methods can reduce time spent measuring in the field, thereby enabling future studies to refine models of water flows and sediment transport within heterogenous vegetation canopies.
Spatial characterization of the meltwater field from icebergs in the Weddell Sea.
Helly, John J; Kaufmann, Ronald S; Vernet, Maria; Stephenson, Gordon R
2011-04-05
We describe the results from a spatial cyberinfrastructure developed to characterize the meltwater field around individual icebergs and integrate the results with regional- and global-scale data. During the course of the cyberinfrastructure development, it became clear that we were also building an integrated sampling planning capability across multidisciplinary teams that provided greater agility in allocating expedition resources resulting in new scientific insights. The cyberinfrastructure-enabled method is a complement to the conventional methods of hydrographic sampling in which the ship provides a static platform on a station-by-station basis. We adapted a sea-floor mapping method to more rapidly characterize the sea surface geophysically and biologically. By jointly analyzing the multisource, continuously sampled biological, chemical, and physical parameters, using Global Positioning System time as the data fusion key, this surface-mapping method enables us to examine the relationship between the meltwater field of the iceberg to the larger-scale marine ecosystem of the Southern Ocean. Through geospatial data fusion, we are able to combine very fine-scale maps of dynamic processes with more synoptic but lower-resolution data from satellite systems. Our results illustrate the importance of spatial cyberinfrastructure in the overall scientific enterprise and identify key interfaces and sources of error that require improved controls for the development of future Earth observing systems as we move into an era of peta- and exascale, data-intensive computing.
Spatial characterization of the meltwater field from icebergs in the Weddell Sea
Helly, John J.; Kaufmann, Ronald S.; Vernet, Maria; Stephenson, Gordon R.
2011-01-01
We describe the results from a spatial cyberinfrastructure developed to characterize the meltwater field around individual icebergs and integrate the results with regional- and global-scale data. During the course of the cyberinfrastructure development, it became clear that we were also building an integrated sampling planning capability across multidisciplinary teams that provided greater agility in allocating expedition resources resulting in new scientific insights. The cyberinfrastructure-enabled method is a complement to the conventional methods of hydrographic sampling in which the ship provides a static platform on a station-by-station basis. We adapted a sea-floor mapping method to more rapidly characterize the sea surface geophysically and biologically. By jointly analyzing the multisource, continuously sampled biological, chemical, and physical parameters, using Global Positioning System time as the data fusion key, this surface-mapping method enables us to examine the relationship between the meltwater field of the iceberg to the larger-scale marine ecosystem of the Southern Ocean. Through geospatial data fusion, we are able to combine very fine-scale maps of dynamic processes with more synoptic but lower-resolution data from satellite systems. Our results illustrate the importance of spatial cyberinfrastructure in the overall scientific enterprise and identify key interfaces and sources of error that require improved controls for the development of future Earth observing systems as we move into an era of peta- and exascale, data-intensive computing. PMID:21444769
NASA Astrophysics Data System (ADS)
Brown, Justin; Woolf, David; Hensley, Joel
2016-05-01
Quantum key distribution can provide secure optical data links using the established BB84 protocol, though solar backgrounds severely limit the performance through free space. Several approaches to reduce the solar background include time-gating the photon signal, limiting the field of view through geometrical design of the optical system, and spectral rejection using interference filters. Despite optimization of these parameters, the solar background continues to dominate under daytime atmospheric conditions. We demonstrate an improved spectral filter by replacing the interference filter (Δν ~ 50 GHz) with an atomic line filter (Δν ~ 1 GHz) based on optical rotation of linearly polarized light through a warm Rb vapor. By controlling the magnetic field and the optical depth of the vapor, a spectrally narrow region can be transmitted between crossed polarizers. We find that the transmission is more complex than a single peak and evaluate peak transmission as well as a ratio of peak transmission to average transmission of the local spectrum. We compare filters containing a natural abundance of Rb with those containing isotopically pure 87 Rb and 85 Rb. A filter providing > 95 % transmission and Δν ~ 1.1 GHz is achieved.
Efficiency Versus Instability in Plasma Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebedev, Valeri; Burov, Alexey; Nagaitsev, Sergei
2017-01-05
Plasma wake-field acceleration in a strongly nonlinear (a.k.a. the blowout) regime is one of the main candidates for future high-energy colliders. For this case, we derive a universal efficiency-instability relation, between the power efficiency and the key instability parameter of the witness bunch. We also show that in order to stabilize the witness bunch in a regime with high power efficiency, the bunch needs to have high energy spread, which is not presently compatible with collider-quality beam properties. It is unclear how such limitations could be overcome for high-luminosity linear colliders.
Verification of capillary pressure functions and relative permeability equations for gas production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Jaewon
The understanding of multiphase fluid flow in porous media is of great importance in many fields such as enhanced oil recovery, hydrology, CO 2 sequestration, contaminants cleanup and natural gas production from hydrate bearing sediments. However, there are many unanswered questions about the key parameters that characterize gas and water flows in porous media. The characteristics of multiphase fluid flow in porous media such as water retention curve, relative permeability, preferential fluid flow patterns and fluid-particle interaction should be taken into consideration for a fundamental understanding of the behavior of pore scale systems.
Scientific guidelines for preservation of samples collected from Mars
NASA Technical Reports Server (NTRS)
Gooding, James L. (Editor)
1990-01-01
The maximum scientific value of Martian geologic and atmospheric samples is retained when the samples are preserved in the conditions that applied prior to their collection. Any sample degradation equates to loss of information. Based on detailed review of pertinent scientific literature, and advice from experts in planetary sample analysis, number values are recommended for key parameters in the environmental control of collected samples with respect to material contamination, temperature, head-space gas pressure, ionizing radiation, magnetic fields, and acceleration/shock. Parametric values recommended for the most sensitive geologic samples should also be adequate to preserve any biogenic compounds or exobiological relics.
High throughput nanoimprint lithography for semiconductor memory applications
NASA Astrophysics Data System (ADS)
Ye, Zhengmao; Zhang, Wei; Khusnatdinov, Niyaz; Stachowiak, Tim; Irving, J. W.; Longsine, Whitney; Traub, Matthew; Fletcher, Brian; Liu, Weijun
2017-03-01
Imprint lithography is a promising technology for replication of nano-scale features. For semiconductor device applications, Canon deposits a low viscosity resist on a field by field basis using jetting technology. A patterned mask is lowered into the resist fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. There are two critical components to meeting throughput requirements for imprint lithography. Using a similar approach to what is already done for many deposition and etch processes, imprint stations can be clustered to enhance throughput. The FPA-1200NZ2C is a four station cluster system designed for high volume manufacturing. For a single station, throughput includes overhead, resist dispense, resist fill time (or spread time), exposure and separation. Resist exposure time and mask/wafer separation are well understood processing steps with typical durations on the order of 0.10 to 0.20 seconds. To achieve a total process throughput of 17 wafers per hour (wph) for a single station, it is necessary to complete the fluid fill step in 1.2 seconds. For a throughput of 20 wph, fill time must be reduced to only one 1.1 seconds. There are several parameters that can impact resist filling. Key parameters include resist drop volume (smaller is better), system controls (which address drop spreading after jetting), Design for Imprint or DFI (to accelerate drop spreading) and material engineering (to promote wetting between the resist and underlying adhesion layer). In addition, it is mandatory to maintain fast filling, even for edge field imprinting. In this paper, we address the improvements made in all of these parameters to first enable a 1.20 second filling process for a device like pattern and have demonstrated this capability for both full fields and edge fields. Non-fill defectivity is well under 1.0 defects/cm2 for both field types. Next, by further reducing drop volume and optimizing drop patterns, a fill time of 1.1 seconds was demonstrated.
An all-electric single-molecule motor.
Seldenthuis, Johannes S; Prins, Ferry; Thijssen, Joseph M; van der Zant, Herre S J
2010-11-23
Many types of molecular motors have been proposed and synthesized in recent years, displaying different kinds of motion, and fueled by different driving forces such as light, heat, or chemical reactions. We propose a new type of molecular motor based on electric field actuation and electric current detection of the rotational motion of a molecular dipole embedded in a three-terminal single-molecule device. The key aspect of this all-electronic design is the conjugated backbone of the molecule, which simultaneously provides the potential landscape of the rotor orientation and a real-time measure of that orientation through the modulation of the conductivity. Using quantum chemistry calculations, we show that this approach provides full control over the speed and continuity of motion, thereby combining electrical and mechanical control at the molecular level over a wide range of temperatures. Moreover, chemistry can be used to change all key parameters of the device, enabling a variety of new experiments on molecular motors.
Security analysis of quadratic phase based cryptography
NASA Astrophysics Data System (ADS)
Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Healy, John J.; Sheridan, John T.
2016-09-01
The linear canonical transform (LCT) is essential in modeling a coherent light field propagation through first-order optical systems. Recently, a generic optical system, known as a Quadratic Phase Encoding System (QPES), for encrypting a two-dimensional (2D) image has been reported. It has been reported together with two phase keys the individual LCT parameters serve as keys of the cryptosystem. However, it is important that such the encryption systems also satisfies some dynamic security properties. Therefore, in this work, we examine some cryptographic evaluation methods, such as Avalanche Criterion and Bit Independence, which indicates the degree of security of the cryptographic algorithms on QPES. We compare our simulation results with the conventional Fourier and the Fresnel transform based DRPE systems. The results show that the LCT based DRPE has an excellent avalanche and bit independence characteristics than that of using the conventional Fourier and Fresnel based encryption systems.
Choice of optical system is critical for the security of double random phase encryption systems
NASA Astrophysics Data System (ADS)
Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Cassidy, Derek; Zhao, Liang; Ryle, James P.; Healy, John J.; Sheridan, John T.
2017-06-01
The linear canonical transform (LCT) is used in modeling a coherent light-field propagation through first-order optical systems. Recently, a generic optical system, known as the quadratic phase encoding system (QPES), for encrypting a two-dimensional image has been reported. In such systems, two random phase keys and the individual LCT parameters (α,β,γ) serve as secret keys of the cryptosystem. It is important that such encryption systems also satisfy some dynamic security properties. We, therefore, examine such systems using two cryptographic evaluation methods, the avalanche effect and bit independence criterion, which indicate the degree of security of the cryptographic algorithms using QPES. We compared our simulation results with the conventional Fourier and the Fresnel transform-based double random phase encryption (DRPE) systems. The results show that the LCT-based DRPE has an excellent avalanche and bit independence characteristics compared to the conventional Fourier and Fresnel-based encryption systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Yu-Cheng; Wray, L. Andrew; Huang, Shih-Wen
Endohedral metallofullerenes, formed by encaging Gd inside fullerenes like C 80, can exhibit enhanced proton relaxitivities compared with other Gd-chelates, making them the promising contrast agents for magnetic resonance imaging (MRI). However, the underlying key energy scales of Gd x Sc 3-xN@C 80 (x = 1–3) remain unclear. Here, we carry out resonant inelastic x-ray scattering (RIXS) experiments on Gd xSc 3-xN@C 80 at Gd N 4,5-edges to directly study the electronic structure and spin flip excitations of Gd 4f electrons. Compared with reference Gd 2O 3 and contrast agent Gadodiamide, the features in the RIXS spectra of all metallofullerenesmore » exhibit broader spectral lineshape and noticeable energy shift. Using atomic multiplet calculations, we have estimated the key energy scales such as the inter-site spin exchange field, intra-atomic 4f–4f Coulomb interactions, and spin-orbit coupling. The implications of these parameters to the 4f states of encapsulated Gd atoms are discussed.« less
Shao, Yu-Cheng; Wray, L. Andrew; Huang, Shih-Wen; ...
2017-08-15
Endohedral metallofullerenes, formed by encaging Gd inside fullerenes like C 80, can exhibit enhanced proton relaxitivities compared with other Gd-chelates, making them the promising contrast agents for magnetic resonance imaging (MRI). However, the underlying key energy scales of Gd x Sc 3-xN@C 80 (x = 1–3) remain unclear. Here, we carry out resonant inelastic x-ray scattering (RIXS) experiments on Gd xSc 3-xN@C 80 at Gd N 4,5-edges to directly study the electronic structure and spin flip excitations of Gd 4f electrons. Compared with reference Gd 2O 3 and contrast agent Gadodiamide, the features in the RIXS spectra of all metallofullerenesmore » exhibit broader spectral lineshape and noticeable energy shift. Using atomic multiplet calculations, we have estimated the key energy scales such as the inter-site spin exchange field, intra-atomic 4f–4f Coulomb interactions, and spin-orbit coupling. The implications of these parameters to the 4f states of encapsulated Gd atoms are discussed.« less
Adaptive Multichannel Radiation Sensors for Plant Parameter Monitoring
NASA Astrophysics Data System (ADS)
Mollenhauer, Hannes; Remmler, Paul; Schuhmann, Gudrun; Lausch, Angela; Merbach, Ines; Assing, Martin; Mollenhauer, Olaf; Dietrich, Peter; Bumberger, Jan
2016-04-01
Nutrients such as nitrogen are playing a key role in the plant life cycle. They are much needed for chlorophyll production and other plant cell components. Therefore, the crop yield is strongly affected by plant nutrient status. Due to the spatial and temporal variability of soil characteristics or swaying agricultural inputs the plant development varies within a field. Thus, the determination of these fluctuations in the plant development is valuable for a detection of stress conditions and optimization of fertilisation due to its high environmental and economic impact. Plant parameters play crucial roles in plant growth estimation and prediction since they are used as indicators of plant performance. Especially indices derived out of remote sensing techniques provide quantitative information about agricultural crops instantaneously, and above all, non-destructively. Due to the specific absorption of certain plant pigments, a characteristic spectral signature can be seen in the visible and IR part of the electromagnetic spectrum, known as narrow-band peaks. In an analogous manner, the presence and concentration of different nutrients cause a characteristic spectral signature. To this end, an adequate remote sensing monitoring concept is needed, considering heterogeneity and dynamic of the plant population and economical aspects. This work will present the development and field investigations of an inexpensive multichannel radiation sensor to observe the incoming and reflected specific parts or rather distinct wavelengths of the solar light spectrum on the crop and facilitate the determination of different plant indices. Based on the selected sensor wavelengths, the sensing device allows the detection of specific parameters, e.g. plant vitality, chlorophyll content or nitrogen content. Besides the improvement of the sensor characteristic, the simple wavelength adaption, and the price-performance ratio, the achievement of appropriate energy efficiency as well as a suitable protection against disturbances and environmental influences are key challenges of this work. The multichannel sensors were tested in a mobile wireless sensor network in the frame of the Static Fertilisation Experiment in Bad Lauchstädt, Germany. The sensor nodes were permanently installed for one crop cycle on three different spring barley plots with diverse nitrogen fertilisation levels. In addition, weekly surveys of field spectrometer and chlorophyll meter measurements as well as tissue analyses of plant samples were implemented. The results of this experiment show a strong correlation of chlorophyll and nitrogen content indices in comparison to the simultaneously running commercial radiation transmittance or reflectance sensors.
NASA Astrophysics Data System (ADS)
Shan, Feng; Guo, Xiasheng; Tu, Juan; Cheng, Jianchun; Zhang, Dong
The high-intensity focused ultrasound (HIFU) has become an attractive therapeutic tool for the noninvasive tumor treatment. The ultrasonic transducer is the key component in HIFU treatment to generate the HIFU energy. The dimension of focal region generated by the transducer is closely relevant to the safety of HIFU treatment. Therefore, it is essential to numerically investigate the focal region of the transducer. Although the conventional acoustic wave equations have been used successfully to describe the acoustic field, there still exist some inherent drawbacks. In this work, we presented an axisymmetric isothermal multi-relaxation-time lattice Boltzmann method (MRT-LBM) model with the Bouzidi-Firdaouss-Lallemand (BFL) boundary condition in cylindrical coordinate system. With this model, some preliminary simulations were firstly conducted to determine a reasonable value of the relaxation parameter. Then, the validity of the model was examined by comparing the results obtained with the LBM results with the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and the Spheroidal beam equation (SBE) for the focused transducers with different aperture angles, respectively. In addition, the influences of the aperture angle on the focal region were investigated. The proposed model in this work will provide significant references for the parameter optimization of the focused transducer for applications in the HIFU treatment or other fields, and provide new insights into the conventional acoustic numerical simulations.
Creating photorealistic virtual model with polarization-based vision system
NASA Astrophysics Data System (ADS)
Shibata, Takushi; Takahashi, Toru; Miyazaki, Daisuke; Sato, Yoichi; Ikeuchi, Katsushi
2005-08-01
Recently, 3D models are used in many fields such as education, medical services, entertainment, art, digital archive, etc., because of the progress of computational time and demand for creating photorealistic virtual model is increasing for higher reality. In computer vision field, a number of techniques have been developed for creating the virtual model by observing the real object in computer vision field. In this paper, we propose the method for creating photorealistic virtual model by using laser range sensor and polarization based image capture system. We capture the range and color images of the object which is rotated on the rotary table. By using the reconstructed object shape and sequence of color images of the object, parameter of a reflection model are estimated in a robust manner. As a result, then, we can make photorealistic 3D model in consideration of surface reflection. The key point of the proposed method is that, first, the diffuse and specular reflection components are separated from the color image sequence, and then, reflectance parameters of each reflection component are estimated separately. In separation of reflection components, we use polarization filter. This approach enables estimation of reflectance properties of real objects whose surfaces show specularity as well as diffusely reflected lights. The recovered object shape and reflectance properties are then used for synthesizing object images with realistic shading effects under arbitrary illumination conditions.
Emittance preservation during bunch compression with a magnetized beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stratakis, Diktys
2015-09-02
The deleterious effects of coherent synchrotron radiation (CSR) on the phase-space and energy spread of high-energy beams in accelerator light sources can significantly constrain the machine design and performance. In this paper, we present a simple method to preserve the beam emittance by means of using magnetized beams that exhibit a large aspect ratio on their transverse dimensions. The concept is based on combining a finite solenoid field where the beam is generated together with a special optics adapter. Numerical simulations of this new type of beam source show that the induced phase-space density growth can be notably suppressed tomore » less than 1% for any bunch charge. This work elucidates the key parameters that are needed for emittance preservation, such as the required field and aspect ratio for a given bunch charge.« less
Magnetic Anisotropy by Rashba Spin-Orbit Coupling in Antiferromagnetic Thin Films
NASA Astrophysics Data System (ADS)
Ieda, Jun'ichi; Barnes, Stewart E.; Maekawa, Sadamichi
2018-05-01
Magnetic anisotropy in an antiferromagnet (AFM) with inversion symmetry breaking (ISB) is investigated. The magnetic anisotropy energy (MAE) resulting from the Rashba spin-orbit and s-d type exchange interactions is determined for two different models of AFMs. The global ISB model, representing the effect of a surface, an interface, or a gating electric field, results in an easy-plane magnetic anisotropy. In contrast, for a local ISB model, i.e., for a noncentrosymmetric AFM, perpendicular magnetic anisotropy (PMA) arises. Both results differ from the ferromagnetic case, in which the result for PMA depends on the band structure and dimensionality. These MAE contributions play a key role in determining the direction of the Néel order parameter in antiferromagnetic nanostructures, and reflect the possibility of electrical-field control of the Néel vector.
NASA Technical Reports Server (NTRS)
Demerdash, Nabeel A. O.; Wang, Ren-Hong
1988-01-01
The main purpose of this project is the development of computer-aided models for purposes of studying the effects of various design changes on the parameters and performance characteristics of the modified Lundell class of alternators (MLA) as components of a solar dynamic power system supplying electric energy needs in the forthcoming space station. Key to this modeling effort is the computation of magnetic field distribution in MLAs. Since the nature of the magnetic field is three-dimensional, the first step in the investigation was to apply the finite element method to discretize volume, using the tetrahedron as the basic 3-D element. Details of the stator 3-D finite element grid are given. A preliminary look at the early stage of a 3-D rotor grid is presented.
Ageostrophic winds in the severe strom environment
NASA Technical Reports Server (NTRS)
Moore, J. T.
1982-01-01
The period from 1200 GMT 10 April to 0000 GMT 11 April 1979, during which time several major tornadoes and severe thunderstorms, including the Wichita Falls tornado occurred was studied. A time adjusted, isentropic data set was used to analyze key parameters. Fourth order centered finite differences were used to compute the isallobaric, inertial advective, tendency, inertial advective geostrophic and ageostrophic winds. Explicit isentropic trajectories were computed through the isentropic, inviscid equations of motion using a 15 minute time step. Ageostrophic, geostrophic and total vertical motion fields were computed to judge the relative importance of ageostrophy in enhancing the vertical motion field. It is found that ageostrophy is symptomatic of those mass adjustments which take place during upper level jet streak propagation and can, in a favorable environment, act to increase and release potential instability over meso alpha time periods.
Jin, Yamei; Yang, Na; Tong, Qunyi; Jin, Zhengyu; Xu, Xueming
2016-11-01
To promote NaOH pretreatment of corn stalk (CS), a continuous processing system uniting magnetic field and millimeter-scaled channel flow was established. First, four comparative pretreatments were conducted: (I) CS was pretreated with NaOH under traditional agitation; (II) CS was pretreated with NaOH in a flowing state inside the millimeter-scaled channel; (III) CS was pretreated with NaOH in a flowing state and under a static magnetic field; or (IV) CS was pretreated with NaOH in a flowing state and under a rotating magnetic field. By comparison, the highest pentose (121.22mg/g dry CS) and hexose (287.04mg/g dry CS) yields were obtained in the shortest pretreatment time with Pretreatment IV (8h). Accordingly, the key parameters of Pretreatment IV were optimized as 6.71Hz frequency, 0.50L/min flow rate, and 1.02% NaOH concentration. Under these conditions, 439.24mg sugars were released by 1g dry CS during pretreatment and enzymatic hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Self-organized phenomena of pedestrian counterflow through a wide bottleneck in a channel
NASA Astrophysics Data System (ADS)
Dong, Li-Yun; Lan, Dong-Kai; Li, Xiang
2016-09-01
The pedestrian counterflow through a bottleneck in a channel shows a variety of flow patterns due to self-organization. In order to reveal the underlying mechanism, a cellular automaton model was proposed by incorporating the floor field and the view field which reflects the global information of the studied area and local interactions with others. The presented model can well reproduce typical collective behaviors, such as lane formation. Numerical simulations were performed in the case of a wide bottleneck and typical flow patterns at different density ranges were identified as rarefied flow, laminar flow, interrupted bidirectional flow, oscillatory flow, intermittent flow, and choked flow. The effects of several parameters, such as the size of view field and the width of opening, on the bottleneck flow are also analyzed in detail. The view field plays a vital role in reproducing self-organized phenomena of pedestrian. Numerical results showed that the presented model can capture key characteristics of bottleneck flows. Project supported by the National Basic Research Program of China (Grant No. 2012CB725404) and the National Natural Science Foundation of China (Grant Nos. 11172164 and 11572184).
Obtaining Thickness-Limited Electrospray Deposition for 3D Coating.
Lei, Lin; Kovacevich, Dylan A; Nitzsche, Michael P; Ryu, Jihyun; Al-Marzoki, Kutaiba; Rodriguez, Gabriela; Klein, Lisa C; Jitianu, Andrei; Singer, Jonathan P
2018-04-04
Electrospray processing utilizes the balance of electrostatic forces and surface tension within a charged spray to produce charged microdroplets with a narrow dispersion in size. In electrospray deposition, each droplet carries a small quantity of suspended material to a target substrate. Past electrospray deposition results fall into two major categories: (1) continuous spray of films onto conducting substrates and (2) spray of isolated droplets onto insulating substrates. A crossover regime, or a self-limited spray, has only been limitedly observed in the spray of insulating materials onto conductive substrates. In such sprays, a limiting thickness emerges, where the accumulation of charge repels further spray. In this study, we examined the parametric spray of several glassy polymers to both categorize past electrospray deposition results and uncover the critical parameters for thickness-limited sprays. The key parameters for determining the limiting thickness were (1) field strength and (2) spray temperature, related to (i) the necessary repulsive field and (ii) the ability for the deposited materials to swell in the carrier solvent vapor and redistribute charge. These control mechanisms can be applied to the uniform or controllably-varied microscale coating of complex three-dimensional objects.
PRESEE: An MDL/MML Algorithm to Time-Series Stream Segmenting
Jiang, Yexi; Tang, Mingjie; Yuan, Changan; Tang, Changjie
2013-01-01
Time-series stream is one of the most common data types in data mining field. It is prevalent in fields such as stock market, ecology, and medical care. Segmentation is a key step to accelerate the processing speed of time-series stream mining. Previous algorithms for segmenting mainly focused on the issue of ameliorating precision instead of paying much attention to the efficiency. Moreover, the performance of these algorithms depends heavily on parameters, which are hard for the users to set. In this paper, we propose PRESEE (parameter-free, real-time, and scalable time-series stream segmenting algorithm), which greatly improves the efficiency of time-series stream segmenting. PRESEE is based on both MDL (minimum description length) and MML (minimum message length) methods, which could segment the data automatically. To evaluate the performance of PRESEE, we conduct several experiments on time-series streams of different types and compare it with the state-of-art algorithm. The empirical results show that PRESEE is very efficient for real-time stream datasets by improving segmenting speed nearly ten times. The novelty of this algorithm is further demonstrated by the application of PRESEE in segmenting real-time stream datasets from ChinaFLUX sensor networks data stream. PMID:23956693
PRESEE: an MDL/MML algorithm to time-series stream segmenting.
Xu, Kaikuo; Jiang, Yexi; Tang, Mingjie; Yuan, Changan; Tang, Changjie
2013-01-01
Time-series stream is one of the most common data types in data mining field. It is prevalent in fields such as stock market, ecology, and medical care. Segmentation is a key step to accelerate the processing speed of time-series stream mining. Previous algorithms for segmenting mainly focused on the issue of ameliorating precision instead of paying much attention to the efficiency. Moreover, the performance of these algorithms depends heavily on parameters, which are hard for the users to set. In this paper, we propose PRESEE (parameter-free, real-time, and scalable time-series stream segmenting algorithm), which greatly improves the efficiency of time-series stream segmenting. PRESEE is based on both MDL (minimum description length) and MML (minimum message length) methods, which could segment the data automatically. To evaluate the performance of PRESEE, we conduct several experiments on time-series streams of different types and compare it with the state-of-art algorithm. The empirical results show that PRESEE is very efficient for real-time stream datasets by improving segmenting speed nearly ten times. The novelty of this algorithm is further demonstrated by the application of PRESEE in segmenting real-time stream datasets from ChinaFLUX sensor networks data stream.
Liu, Yuefeng; Luo, Jingjie; Shin, Yooleemi; Moldovan, Simona; Ersen, Ovidiu; Hébraud, Anne; Schlatter, Guy; Pham-Huu, Cuong; Meny, Christian
2016-01-01
Assemblies of nanoparticles are studied in many research fields from physics to medicine. However, as it is often difficult to produce mono-dispersed particles, investigating the key parameters enhancing their efficiency is blurred by wide size distributions. Indeed, near-field methods analyse a part of the sample that might not be representative of the full size distribution and macroscopic methods give average information including all particle sizes. Here, we introduce temperature differential ferromagnetic nuclear resonance spectra that allow sampling the crystallographic structure, the chemical composition and the chemical order of non-interacting ferromagnetic nanoparticles for specific size ranges within their size distribution. The method is applied to cobalt nanoparticles for catalysis and allows extracting the size effect from the crystallographic structure effect on their catalytic activity. It also allows sampling of the chemical composition and chemical order within the size distribution of alloyed nanoparticles and can thus be useful in many research fields. PMID:27156575
Practical automated glass selection and the design of apochromats with large field of view.
Siew, Ronian
2016-11-10
This paper presents an automated approach to the selection of optical glasses for the design of an apochromatic lens with large field of view, based on a design originally provided by Yang et al. [Appl. Opt.55, 5977 (2016)APOPAI0003-693510.1364/AO.55.005977]. Following from this reference's preliminary optimized structure, it is shown that the effort of glass selection is significantly reduced by using the global optimization feature in the Zemax optical design program. The glass selection process is very fast, complete within minutes, and the key lies in automating the substitution of glasses found from the global search without the need to simultaneously optimize any other lens parameter during the glass search. The result is an alternate optimized version of the lens from the above reference possessing zero axial secondary color within the visible spectrum and a large field of view. Supplementary material is provided in the form of Zemax and text files, before and after final optimization.
Real Spin Glasses Relax Slowly in the Shade of Hierarchical Trees
NASA Astrophysics Data System (ADS)
Vincent, E.; Hammann, J.; Ocio, M.
2009-06-01
The Parisi solution of the mean-field spin glass has been widely accepted and celebrated. Its marginal stability in 3d and its complexity however raised the question of its relevance to real spin glasses. This paper gives a short overview of the important experimental results which could be understood within the mean-field solution. The existence of a true phase transition and the particular behaviour of the susceptibility below the freezing temperature, predicted by the theory, are clearly confirmed by the experimental results. The behaviour of the complex order parameter and of the Fluctuation Dissipation ratio are in good agreement with results of spontaneous noise measurements. The very particular ultrametric symmetry, the key feature of the theory, provided us with a simple description of the rejuvenation and memory effects observed in experiment. Finally, going a step beyond mean-field, the paper shortly discusses new analyses in terms of correlated domains characterized by their length scales, as well as new experiments on superspin glasses which compare well with recent theoretical simulations.
Polar Magnetic Field Experiment
NASA Technical Reports Server (NTRS)
Russell, C. T.
1999-01-01
This grant covers the initial data reduction and analysis of the magnetic field measurements of the Polar spacecraft. At this writing data for the first three years of the mission have been processed and deposited in the key parameter database. These data are also available in a variety of time resolutions and coordinate systems via a webserver at UCLA that provides both plots and digital data. The flight software has twice been reprogrammed: once to remove a glitch in the data where there were rare collisions between commands in the central processing unit and once to provide burst mode data at 100 samples per second on a regular basis. The instrument continues to function as described in the instrument paper (1.1 in the bibliography attached below). The early observations were compared with observations on the same field lines at lower altitude. The polar magnetic measurements also proved to be most useful for testing the accuracy of MHD models. WE also made important contributions to study of waves and turbulence.
First-principles simulation for strong and ultra-short laser pulse propagation in dielectrics
NASA Astrophysics Data System (ADS)
Yabana, K.
2016-05-01
We develop a computational approach for interaction between strong laser pulse and dielectrics based on time-dependent density functional theory (TDDFT). In this approach, a key ingredient is a solver to simulate electron dynamics in a unit cell of solids under a time-varying electric field that is a time-dependent extension of the static band calculation. This calculation can be regarded as a constitutive relation, providing macroscopic electric current for a given electric field applied to the medium. Combining the solver with Maxwell equations for electromagnetic fields of the laser pulse, we describe propagation of laser pulses in dielectrics without any empirical parameters. An important output from the coupled Maxwell+TDDFT simulation is the energy transfer from the laser pulse to electrons in the medium. We have found an abrupt increase of the energy transfer at certain laser intensity close to damage threshold. We also estimate damage threshold by comparing the transferred energy with melting and cohesive energies. It shows reasonable agreement with measurements.
NASA Astrophysics Data System (ADS)
Romeo, Stefania; Sannino, Anna; Scarfì, Maria Rosaria; Massa, Rita; D'Angelo, Raffaele; Zeni, Olga
2016-01-01
The last decades have seen increased interest toward possible adverse effects arising from exposure to intense static magnetic fields. This concern is mainly due to the wider and wider applications of such fields in industry and clinical practice; among them, Magnetic Resonance Imaging (MRI) facilities are the main sources of exposure to static magnetic fields for both general public (patients) and workers. In recent investigations, exposures to static magnetic fields have been demonstrated to elicit, in different cell models, both permanent and transient modifications in cellular endpoints critical for the carcinogenesis process. The World Health Organization has therefore recommended in vitro investigations as important research need, to be carried out under strictly controlled exposure conditions. Here we report on the absence of effects on cell viability, reactive oxygen species levels and DNA integrity in MRC-5 human foetal lung fibroblasts exposed to 370 mT magnetic induction level, under different exposure regimens. Exposures have been performed by using an experimental apparatus designed and realized for operating with the static magnetic field generated by permanent magnets, and confined in a magnetic circuit, to allow cell cultures exposure in absence of confounding factors like heating or electric field components.
Xu, Xiaojie; Liu, Ming; Zhang, Zhanbin; Jia, Yueling
2014-01-01
Remote field eddy current is an effective non-destructive testing method for ferromagnetic tubular structures. In view of conventional sensors' disadvantages such as low signal-to-noise ratio and poor sensitivity to axial cracks, a novel high sensitivity sensor based on orthogonal magnetic field excitation is proposed. Firstly, through a three-dimensional finite element simulation, the remote field effect under orthogonal magnetic field excitation is determined, and an appropriate configuration which can generate an orthogonal magnetic field for a tubular structure is developed. Secondly, optimized selection of key parameters such as frequency, exciting currents and shielding modes is analyzed in detail, and different types of pick-up coils, including a new self-differential mode pick-up coil, are designed and analyzed. Lastly, the proposed sensor is verified experimentally by various types of defects manufactured on a section of a ferromagnetic tube. Experimental results show that the proposed novel sensor can largely improve the sensitivity of defect detection, especially for axial crack whose depth is less than 40% wall thickness, which are very difficult to detect and identify by conventional sensors. Another noteworthy advantage of the proposed sensor is that it has almost equal sensitivity to various types of defects, when a self-differential mode pick-up coil is adopted. PMID:25615738
Romeo, Stefania; Sannino, Anna; Scarfì, Maria Rosaria; Massa, Rita; d’Angelo, Raffaele; Zeni, Olga
2016-01-01
The last decades have seen increased interest toward possible adverse effects arising from exposure to intense static magnetic fields. This concern is mainly due to the wider and wider applications of such fields in industry and clinical practice; among them, Magnetic Resonance Imaging (MRI) facilities are the main sources of exposure to static magnetic fields for both general public (patients) and workers. In recent investigations, exposures to static magnetic fields have been demonstrated to elicit, in different cell models, both permanent and transient modifications in cellular endpoints critical for the carcinogenesis process. The World Health Organization has therefore recommended in vitro investigations as important research need, to be carried out under strictly controlled exposure conditions. Here we report on the absence of effects on cell viability, reactive oxygen species levels and DNA integrity in MRC-5 human foetal lung fibroblasts exposed to 370 mT magnetic induction level, under different exposure regimens. Exposures have been performed by using an experimental apparatus designed and realized for operating with the static magnetic field generated by permanent magnets, and confined in a magnetic circuit, to allow cell cultures exposure in absence of confounding factors like heating or electric field components. PMID:26762783
The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert.
Li, Bonan; Wang, Lixin; Kaseke, Kudzai F; Li, Lin; Seely, Mary K
2016-01-01
Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months' continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert.
The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert
Li, Bonan; Wang, Lixin; Kaseke, Kudzai F.; Li, Lin; Seely, Mary K.
2016-01-01
Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months’ continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert. PMID:27764203
Knotts, Thomas A.
2017-01-01
Molecular simulation has the ability to predict various physical properties that are difficult to obtain experimentally. For example, we implement molecular simulation to predict the critical constants (i.e., critical temperature, critical density, critical pressure, and critical compressibility factor) for large n-alkanes that thermally decompose experimentally (as large as C48). Historically, molecular simulation has been viewed as a tool that is limited to providing qualitative insight. One key reason for this perceived weakness in molecular simulation is the difficulty to quantify the uncertainty in the results. This is because molecular simulations have many sources of uncertainty that propagate and are difficult to quantify. We investigate one of the most important sources of uncertainty, namely, the intermolecular force field parameters. Specifically, we quantify the uncertainty in the Lennard-Jones (LJ) 12-6 parameters for the CH4, CH3, and CH2 united-atom interaction sites. We then demonstrate how the uncertainties in the parameters lead to uncertainties in the saturated liquid density and critical constant values obtained from Gibbs Ensemble Monte Carlo simulation. Our results suggest that the uncertainties attributed to the LJ 12-6 parameters are small enough that quantitatively useful estimates of the saturated liquid density and the critical constants can be obtained from molecular simulation. PMID:28527455
Diurnal variations in blood gases and metabolites for draught Zebu and Simmental oxen.
Zanzinger, J; Hoffmann, I; Becker, K
1994-01-01
In previous articles it has been shown that blood parameters may be useful to assess physical fitness in draught cattle. The aim of the present study was to detect possible variations in baseline values for the key metabolites: lactate and free fatty acids (FFA), and for blood gases in samples drawn from a catheterized jugular vein. Sampling took place immediately after venipuncture at intervals of 3 min for 1 hr in Simmental oxen (N = 6) and during a period of 24 hr at intervals of 60 min for Zebu (N = 4) and Simmental (N = 6) oxen. After puncture of the vein, plasma FFA and oxygen (pvO2) were elevated for approximately 15 min. All parameters returned to baseline values within 1 hr of the catheter being inserted. Twenty-four-hour mean baseline values for all measured parameters were significantly different (P < or = 0.001) between Zebu and Simmental. All parameters elicited diurnal variations which were mainly related to feed intake. The magnitude of these variations is comparable to the responses to light draught work. It is concluded that a strict standardization of blood sampling, at least in respect of time after feeding, is required for a reliable interpretation of endurance-indicating blood parameters measured under field conditions.
Zhou, Kesong; Ma, Wenyou; Attard, Bonnie; Zhang, Panpan; Kuang, Tongchun
2018-01-01
Abstract Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing. PMID:29707073
Tan, Chaolin; Zhou, Kesong; Ma, Wenyou; Attard, Bonnie; Zhang, Panpan; Kuang, Tongchun
2018-01-01
Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm 3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV 0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing.
NASA Astrophysics Data System (ADS)
Bennett, Katrina E.; Urrego Blanco, Jorge R.; Jonko, Alexandra; Bohn, Theodore J.; Atchley, Adam L.; Urban, Nathan M.; Middleton, Richard S.
2018-01-01
The Colorado River Basin is a fundamentally important river for society, ecology, and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent, and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model. We combine global sensitivity analysis with a space-filling Latin Hypercube Sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach. We find that snow-dominated regions are much more sensitive to uncertainties in VIC parameters. Although baseflow and runoff changes respond to parameters used in previous sensitivity studies, we discover new key parameter sensitivities. For instance, changes in runoff and evapotranspiration are sensitive to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI) in the VIC model. It is critical for improved modeling to narrow uncertainty in these parameters through improved observations and field studies. This is important because LAI and albedo are anticipated to change under future climate and narrowing uncertainty is paramount to advance our application of models such as VIC for water resource management.
The on-orbit calibration of geometric parameters of the Tian-Hui 1 (TH-1) satellite
NASA Astrophysics Data System (ADS)
Wang, Jianrong; Wang, Renxiang; Hu, Xin; Su, Zhongbo
2017-02-01
The on-orbit calibration of geometric parameters is a key step in improving the location accuracy of satellite images without using Ground Control Points (GCPs). Most methods of on-orbit calibration are based on the self-calibration using additional parameters. When using additional parameters, different number of additional parameters may lead to different results. The triangulation bundle adjustment is another way to calibrate the geometric parameters of camera, which can describe the changes in each geometric parameter. When triangulation bundle adjustment method is applied to calibrate geometric parameters, a prerequisite is that the strip model can avoid systematic deformation caused by the rate of attitude changes. Concerning the stereo camera, the influence of the intersection angle should be considered during calibration. The Equivalent Frame Photo (EFP) bundle adjustment based on the Line-Matrix CCD (LMCCD) image can solve the systematic distortion of the strip model, and obtain high accuracy location without using GCPs. In this paper, the triangulation bundle adjustment is used to calibrate the geometric parameters of TH-1 satellite cameras based on LMCCD image. During the bundle adjustment, the three-line array cameras are reconstructed by adopting the principle of inverse triangulation. Finally, the geometric accuracy is validated before and after on-orbit calibration using 5 testing fields. After on-orbit calibration, the 3D geometric accuracy is improved to 11.8 m from 170 m. The results show that the location accuracy of TH-1 without using GCPs is significantly improved using the on-orbit calibration of the geometric parameters.
Denitrification in Agricultural Soils: Integrated control and Modelling at various scales (DASIM)
NASA Astrophysics Data System (ADS)
Müller, Christoph; Well, Reinhard; Böttcher, Jürgen; Butterbach-Bahl, Klaus; Dannenmann, Michael; Deppe, Marianna; Dittert, Klaus; Dörsch, Peter; Horn, Marcus; Ippisch, Olaf; Mikutta, Robert; Senbayram, Mehmet; Vogel, Hans-Jörg; Wrage-Mönnig, Nicole; Müller, Carsten
2016-04-01
The new research unit DASIM brings together the expertise of 11 working groups to study the process of denitrification at unprecedented spatial and temporal resolution. Based on state-of-the art analytical techniques our aim is to develop improved denitrification models ranging from the microscale to the field/plot scale. Denitrification, the process of nitrate reduction allowing microbes to sustain respiration under anaerobic conditions, is the key process returning reactive nitrogen as N2to the atmosphere. Actively denitrifying communities in soil show distinct regulatory phenotypes (DRP) with characteristic controls on the single reaction steps and end-products. It is unresolved whether DRPs are anchored in the taxonomic composition of denitrifier communities and how environmental conditions shape them. Despite being intensively studied for more than 100 years, denitrification rates and emissions of its gaseous products can still not be satisfactorily predicted. While the impact of single environmental parameters is well understood, the complexity of the process itself with its intricate cellular regulation in response to highly variable factors in the soil matrix prevents robust prediction of gaseous emissions. Key parameters in soil are pO2, organic matter content and quality, pH and the microbial community structure, which in turn are affected by the soil structure, chemistry and soil-plant interactions. In the DASIM research unit, we aim at the quantitative prediction of denitrification rates as a function of microscale soil structure, organic matter quality, DRPs and atmospheric boundary conditions via a combination of state-of-the-art experimental and analytical tools (X-ray μCT, 15N tracing, NanoSIMS, microsensors, advanced flux detection, NMR spectroscopy, and molecular methods including next generation sequencing of functional gene transcripts). We actively seek collaboration with researchers working in the field of denitrification.
Decreasing Kd uncertainties through the application of thermodynamic sorption models.
Domènech, Cristina; García, David; Pękala, Marek
2015-09-15
Radionuclide retardation processes during transport are expected to play an important role in the safety assessment of subsurface disposal facilities for radioactive waste. The linear distribution coefficient (Kd) is often used to represent radionuclide retention, because analytical solutions to the classic advection-diffusion-retardation equation under simple boundary conditions are readily obtainable, and because numerical implementation of this approach is relatively straightforward. For these reasons, the Kd approach lends itself to probabilistic calculations required by Performance Assessment (PA) calculations. However, it is widely recognised that Kd values derived from laboratory experiments generally have a narrow field of validity, and that the uncertainty of the Kd outside this field increases significantly. Mechanistic multicomponent geochemical simulators can be used to calculate Kd values under a wide range of conditions. This approach is powerful and flexible, but requires expert knowledge on the part of the user. The work presented in this paper aims to develop a simplified approach of estimating Kd values whose level of accuracy would be comparable with those obtained by fully-fledged geochemical simulators. The proposed approach consists of deriving simplified algebraic expressions by combining relevant mass action equations. This approach was applied to three distinct geochemical systems involving surface complexation and ion-exchange processes. Within bounds imposed by model simplifications, the presented approach allows radionuclide Kd values to be estimated as a function of key system-controlling parameters, such as the pH and mineralogy. This approach could be used by PA professionals to assess the impact of key geochemical parameters on the variability of radionuclide Kd values. Moreover, the presented approach could be relatively easily implemented in existing codes to represent the influence of temporal and spatial changes in geochemistry on Kd values. Copyright © 2015 Elsevier B.V. All rights reserved.
Palm, Sara; Momeni, Shima; Lundberg, Stina; Nylander, Ingrid; Roman, Erika
2014-01-01
Certain personality types and behavioral traits display high correlations to drug use and an increased level of dopamine in the reward system is a common denominator of all drugs of abuse. Dopamine response to drugs has been suggested to correlate with some of these personality types and to be a key factor influencing the predisposition to addiction. This study investigated if behavioral traits can be related to potassium- and amphetamine-induced dopamine response in the dorsal striatum, an area hypothesized to be involved in the shift from drug use to addiction. The open field and multivariate concentric square field™ tests were used to assess individual behavior in male Wistar rats. Chronoamperometric recordings were then made to study the potassium- and amphetamine-induced dopamine response in vivo. A classification based on risk-taking behavior in the open field was used for further comparisons. Risk-taking behavior was correlated between the behavioral tests and high risk takers displayed a more pronounced response to the dopamine uptake blocking effects of amphetamine. Behavioral parameters from both tests could also predict potassium- and amphetamine-induced dopamine responses showing a correlation between neurochemistry and behavior in risk-assessment and risk-taking parameters. In conclusion, the high risk-taking rats showed a more pronounced reduction of dopamine uptake in the dorsal striatum after amphetamine indicating that this area may contribute to the sensitivity of these animals to psychostimulants and proneness to addiction. Further, inherent dopamine activity was related to risk-assessment behavior, which may be of importance for decision-making and inhibitory control, key components in addiction. PMID:25076877
Scoping and sensitivity analyses for the Demonstration Tokamak Hybrid Reactor (DTHR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sink, D.A.; Gibson, G.
1979-03-01
The results of an extensive set of parametric studies are presented which provide analytical data of the effects of various tokamak parameters on the performance and cost of the DTHR (Demonstration Tokamak Hybrid Reactor). The studies were centered on a point design which is described in detail. Variations in the device size, neutron wall loading, and plasma aspect ratio are presented, and the effects on direct hardware costs, fissile fuel production (breeding), fusion power production, electrical power consumption, and thermal power production are shown graphically. The studies considered both ignition and beam-driven operations of DTHR and yielded results based onmore » two empirical scaling laws presently used in reactor studies. Sensitivity studies were also made for variations in the following key parameters: the plasma elongation, the minor radius, the TF coil peak field, the neutral beam injection power, and the Z/sub eff/ of the plasma.« less
Isoplanatic patch of the human eye for arbitrary wavelengths
NASA Astrophysics Data System (ADS)
Han, Guoqing; Cao, Zhaoliang; Mu, Quanquan; Wang, Yukun; Li, Dayu; Wang, Shaoxin; Xu, Zihao; Wu, Daosheng; Hu, Lifa; Xuan, Li
2018-03-01
The isoplanatic patch of the human eye is a key parameter for the adaptive optics system (AOS) designed for retinal imaging. The field of view (FOV) usually sets to the same size as the isoplanatic patch to obtain high resolution images. However, it has only been measured at a specific wavelength. Here we investigate the wavelength dependence of this important parameter. An optical setup is initially designed and established in a laboratory to measure the isoplanatic patch at various wavelengths (655 nm, 730 nm and 808 nm). We established the Navarro wide-angle eye model in Zemax software to further validate our results, which suggested high consistency between the two. The isoplanatic patch as a function of wavelength was obtained within the range of visible to near-infrared, which can be expressed as: θ=0.0028 λ - 0 . 74. This work is beneficial for the AOS design for retinal imaging.
Manipulating multiple order parameters via oxygen vacancies: The case of E u0.5B a0.5Ti O3 -δ
NASA Astrophysics Data System (ADS)
Li, Weiwei; He, Qian; Wang, Le; Zeng, Huizhong; Bowlan, John; Ling, Langsheng; Yarotski, Dmitry A.; Zhang, Wenrui; Zhao, Run; Dai, Jiahong; Gu, Junxing; Shen, Shipeng; Guo, Haizhong; Pi, Li; Wang, Haiyan; Wang, Yongqiang; Velasco-Davalos, Ivan A.; Wu, Yangjiang; Hu, Zhijun; Chen, Bin; Li, Run-Wei; Sun, Young; Jin, Kuijuan; Zhang, Yuheng; Chen, Hou-Tong; Ju, Sheng; Ruediger, Andreas; Shi, Daning; Borisevich, Albina Y.; Yang, Hao
2017-09-01
Controlling functionalities, such as magnetism or ferroelectricity, by means of oxygen vacancies (VO) is a key issue for the future development of transition-metal oxides. Progress in this field is currently addressed through VO variations and their impact on mainly one order parameter. Here we reveal a mechanism for tuning both magnetism and ferroelectricity simultaneously by using VO. Combining experimental and density-functional theory studies of E u0.5B a0.5Ti O3 -δ , we demonstrate that oxygen vacancies create T i3 +3 d1 defect states, mediating the ferromagnetic coupling between the localized Eu 4 f7 spins, and increase an off-center displacement of Ti ions, enhancing the ferroelectric Curie temperature. The dual function of Ti sites also promises a magnetoelectric coupling in the E u0.5B a0.5Ti O3 -δ .
Precision Viticulture from Multitemporal, Multispectral Very High Resolution Satellite Data
NASA Astrophysics Data System (ADS)
Kandylakis, Z.; Karantzalos, K.
2016-06-01
In order to exploit efficiently very high resolution satellite multispectral data for precision agriculture applications, validated methodologies should be established which link the observed reflectance spectra with certain crop/plant/fruit biophysical and biochemical quality parameters. To this end, based on concurrent satellite and field campaigns during the veraison period, satellite and in-situ data were collected, along with several grape samples, at specific locations during the harvesting period. These data were collected for a period of three years in two viticultural areas in Northern Greece. After the required data pre-processing, canopy reflectance observations, through the combination of several vegetation indices were correlated with the quantitative results from the grape/must analysis of grape sampling. Results appear quite promising, indicating that certain key quality parameters (like brix levels, total phenolic content, brix to total acidity, anthocyanin levels) which describe the oenological potential, phenolic composition and chromatic characteristics can be efficiently estimated from the satellite data.
NASA Astrophysics Data System (ADS)
Kandel, Mikhail E.; Kouzehgarani, Ghazal N.; Ngyuen, Tan H.; Gillette, Martha U.; Popescu, Gabriel
2017-02-01
Although the contrast generated in transmitted light microscopy is due to the elastic scattering of light, multiple scattering scrambles the image and reduces overall visibility. To image both thin and thick samples, we turn to gradient light interference microscopy (GLIM) to simultaneously measure morphological parameters such as cell mass, volume, and surfaces as they change through time. Because GLIM combines multiple intensity images corresponding to controlled phase offsets between laterally sheared beams, incoherent contributions from multiple scattering are implicitly cancelled during the phase reconstruction procedure. As the interfering beams traverse near identical paths, they remain comparable in power and interfere with optimal contrast. This key property lets us obtain tomographic parameters from wide field z-scans after simple numerical processing. Here we show our results on reconstructing tomograms of bovine embryos, characterizing the time-lapse growth of HeLa cells in 3D, and preliminary results on imaging much larger specimen such as brain slices.
Universal feature in optical control of a p -wave Feshbach resonance
NASA Astrophysics Data System (ADS)
Peng, Peng; Zhang, Ren; Huang, Lianghui; Li, Donghao; Meng, Zengming; Wang, Pengjun; Zhai, Hui; Zhang, Peng; Zhang, Jing
2018-01-01
We report the experimental results on the optical control of a p -wave Feshbach resonance by utilizing a laser-driven bound-to-bound transition to shift the energy of a closed-channel molecule state. The magnetic field location for the p -wave resonance as a function of laser detuning can be captured by a simple formula with essentially one parameter, which describes how sensitively the resonance depends on the laser detuning. The key result of this work is to demonstrate, both experimentally and theoretically, that the ratio between this parameter for the m =0 component of the resonance and that for the m =±1 component, to a large extent, is universal. We also show that this optical control can create intriguing situations where interesting few- and many-body physics can occur, such as a p -wave resonance overlapping with an s -wave resonance or the three components of a p -wave resonance being degenerate.
NASA Astrophysics Data System (ADS)
Marchionda, Elisabetta; Deschamps, Rémy; Nader, Fadi H.; Ceriani, Andrea; Di Giulio, Andrea; Lawrence, David; Morad, Daniel J.
2017-04-01
The stratigraphic record of a carbonate system is the result of the interplay of several local and global factors that control the physical and the biological responses within a basin. Conceptual models cannot be detailed enough to take into account all the processes that control the deposition of sediments. The evaluation of the key controlling parameters on the sedimentation can be investigated with the use of stratigraphic forward models, that permit dynamic and quantitative simulations of the sedimentary basin infill. This work focuses on an onshore Abu Dhabi field (UAE) and it aims to provide a complete picture of the stratigraphic evolution of Upper Jurassic Arab Formation (Fm.). In this study, we started with the definition of the field-scale conceptual depositional model of the Formation, resulting from facies and well log analysis based on five wells. The Arab Fm. could be defined as a shallow marine carbonate ramp, that ranges from outer ramp deposits to supratidal/evaporitic facies association (from bottom to top). With the reconstruction of the sequence stratigraphic pattern and several paleofacies maps, it was possible to suggest multiple directions of progradations at local scale. Then, a 3D forward modelling tool has been used to i) identify and quantify the controlling parameters on geometries and facies distribution of the Arab Fm.; ii) predict the stratigraphic architecture of the Arab Fm.; and iii) integrate and validate the conceptual model. Numerous constraints were set during the different simulations and sensitivity analyses were performed testing the carbonate production, eustatic oscillations and transport parameters. To verify the geological consistency the 3D forward modelling has been calibrated with the available control points (five wells) in terms of thickness and facies distribution.
Forward Bay Cover Separation Modeling and Testing for the Orion Multi-Purpose Crew Vehicle
NASA Technical Reports Server (NTRS)
Ali, Yasmin; Chuhta, Jesse D.; Hughes, Michael P.; Radke, Tara S.
2015-01-01
Spacecraft multi-body separation events during atmospheric descent require complex testing and analysis to validate the flight separation dynamics models used to verify no re-contact. The NASA Orion Multi-Purpose Crew Vehicle (MPCV) architecture includes a highly-integrated Forward Bay Cover (FBC) jettison assembly design that combines parachutes and piston thrusters to separate the FBC from the Crew Module (CM) and avoid re-contact. A multi-disciplinary team across numerous organizations examined key model parameters and risk areas to develop a robust but affordable test campaign in order to validate and verify the FBC separation event for Exploration Flight Test-1 (EFT-1). The FBC jettison simulation model is highly complex, consisting of dozens of parameters varied simultaneously, with numerous multi-parameter interactions (coupling and feedback) among the various model elements, and encompassing distinct near-field, mid-field, and far-field regimes. The test campaign was composed of component-level testing (for example gas-piston thrusters and parachute mortars), ground FBC jettison tests, and FBC jettison air-drop tests that were accomplished by a highly multi-disciplinary team. Three ground jettison tests isolated the testing of mechanisms and structures to anchor the simulation models excluding aerodynamic effects. Subsequently, two air-drop tests added aerodynamic and parachute elements, and served as integrated system demonstrations, which had been preliminarily explored during the Orion Pad Abort-1 (PA-1) flight test in May 2010. Both ground and drop tests provided extensive data to validate analytical models and to verify the FBC jettison event for EFT-1. Additional testing will be required to support human certification of this separation event, for which NASA and Lockheed Martin are applying knowledge from Apollo and EFT-1 testing and modeling to develop a robust human-rated FBC separation event.
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Shreya; de, Sunil Kumar
2014-05-01
In the present paper an attempt has been made to propose RS-GIS based method for erosion vulnerability zonation for the entire river based on simple techniques that requires very less field investigation. This method consist of 8 parameters, such as, rainfall erosivity, lithological factor, bank slope, meander index, river gradient, soil erosivity, vegetation cover and anthropogenic impact. Meteorological data, GSI maps, LISS III (30m resolution), SRTM DEM (56m resolution) and Google Images have been used to determine rainfall erosivity, lithological factor, bank slope, meander index, river gradient, vegetation cover and anthropogenic impact; Soil map of the NBSSLP, India has been used for assessing Soil Erosivity index. By integrating the individual values of those six parameters (the 1st two parameters are remained constant for this particular study area) a bank erosion vulnerability zonation map of the River Haora, Tripura, India (23°37' - 23°53'N and 91°15'-91°37'E) has been prepared. The values have been compared with the existing BEHI-NBS method of 60 spots and also with field data of 30 cross sections (covering the 60 spots) taken along 51 km stretch of the river in Indian Territory and found that the estimated values are matching with the existing method as well as with field data. The whole stretch has been divided into 5 hazard zones, i.e. Very High, High, Moderate, Low and Very Low Hazard Zones and they are covering 5.66 km, 16.81 km, 40.82km, 29.67 km and 9.04 km respectively. KEY WORDS: Bank erosion, Bank Erosion Hazard Index (BEHI), Near Bank Stress (NBS), Erosivity, Bank Erosion Vulnerability Zonation.
NASA Technical Reports Server (NTRS)
Starr, David
2000-01-01
The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multi-Angle Imaging Spectroradiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS) and Measurements of Pollution in the Troposphere (MOPITT). In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS) AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2 though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra mission will be described with emphasis on derived geophysical parameters of most relevance to the atmospheric radiation community.
NASA Technical Reports Server (NTRS)
Starr, David
1999-01-01
The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include ASTER, CERES, MISR, MODIS and MOPITT. In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS), AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2, though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra mission will be described with emphasis on derived geophysical parameters of most relevance to the atmospheric radiation community. Detailed information about the EOS Terra validation Program can be found on the EOS Validation program homepage i/e.: http://ospso.gsfc.nasa.gov/validation/valpage.html).
Design and simulation of 532nm Rayleigh-Mie Doppler wind Lidar system
NASA Astrophysics Data System (ADS)
Peng, Zhuang; Xie, Chenbo; Wang, Bangxin; Shen, Fahua; Tan, Min; Li, Lu; Zhang, Zhanye
2018-02-01
Wind is one of the most significant parameter in weather forecast and the research of climate.It is essential for the weather forecast seasonally to yearly ,atmospheric dynamics,study of thermodynamics and go into the water, chemistry and aerosol which are have to do with global climate statusto measure three-dimensional troposphericwind field accurately.Structure of the doppler wind lidar system which based on Fabry-Perot etalon is introduced detailedly. In this section,the key parameters of the triple Fabry-Perot etalon are optimized and this is the key point.The results of optimizing etalon are as follows:the FSR is 8GHz,the FWHM is1GHz,3.48 GHz is the separation distance between two edge channels,and the separation distance between locking channel and the left edge channel is 1.16 GHz. In this condition,the sensitivity of wind velocity of Mie scattering and Rayleigh scattering is both 0.70%/(m/s) when the temperature is 255K in the height of 5Km and there is no wind. The simulation to this system states that in+/-50m/s radial wind speed range, the wind speed bias induced by Mie signal is less than 0.15m/s from 5 to 50km altitude.
Electrobioremediation of oil spills.
Daghio, Matteo; Aulenta, Federico; Vaiopoulou, Eleni; Franzetti, Andrea; Arends, Jan B A; Sherry, Angela; Suárez-Suárez, Ana; Head, Ian M; Bestetti, Giuseppina; Rabaey, Korneel
2017-05-01
Annually, thousands of oil spills occur across the globe. As a result, petroleum substances and petrochemical compounds are widespread contaminants causing concern due to their toxicity and recalcitrance. Many remediation strategies have been developed using both physicochemical and biological approaches. Biological strategies are most benign, aiming to enhance microbial metabolic activities by supplying limiting inorganic nutrients, electron acceptors or donors, thus stimulating oxidation or reduction of contaminants. A key issue is controlling the supply of electron donors/acceptors. Bioelectrochemical systems (BES) have emerged, in which an electrical current serves as either electron donor or acceptor for oil spill bioremediation. BES are highly controllable and can possibly also serve as biosensors for real time monitoring of the degradation process. Despite being promising, multiple aspects need to be considered to make BES suitable for field applications including system design, electrode materials, operational parameters, mode of action and radius of influence. The microbiological processes, involved in bioelectrochemical contaminant degradation, are currently not fully understood, particularly in relation to electron transfer mechanisms. Especially in sulfate rich environments, the sulfur cycle appears pivotal during hydrocarbon oxidation. This review provides a comprehensive analysis of the research on bioelectrochemical remediation of oil spills and of the key parameters involved in the process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Equilibrium features and eruptive instabilities in laboratory magnetic flux rope plasmas
NASA Astrophysics Data System (ADS)
Myers, Clayton E; Yamada, Masaaki; Belova, Elena V; Ji, Hantao; Yoo, Jongsoo; Fox, William
2014-06-01
One avenue for connecting laboratory and solar plasma studies is to carry out laboratory plasma experiments that serve as a well-diagnosed model for specific solar phenomena. In this paper, we present the latest results from one such laboratory experiment that is designed to address ideal instabilities that drive flux rope eruptions in the solar corona. The experiment, which utilizes the existing Magnetic Reconnection Experiment (MRX) at Princeton Plasma Physics Laboratory, generates a quasi-statically driven line-tied magnetic flux rope in a solar-relevant potential field arcade. The parameters of the potential field arcade (e.g., its magnitude, orientation, and vertical profile) are systematically scanned in order to study their influence on the evolution and possible eruption of the line-tied flux rope. Each flux rope discharge is diagnosed using a combination of fast visible light cameras and an in situ 2D magnetic probe array that measures all three components of the magnetic field over a large cross-section of the plasma. In this paper, we present the first results obtained from this new 2D magnetic probe array. With regard to the flux rope equilibrium, non-potential features such as the formation of a characteristic sigmoid shape and the generation of core toroidal field within the flux rope are studied in detail. With regard to instabilities, the onset and evolution of two key eruptive instabilities—the kink and torus instabilities—are quantitatively assessed as a function of the potential field arcade parameters and the amount of magnetic energy stored in the flux rope.This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).
Characterization of Magma-Driven Hydrothermal Systems at Oceanic Spreading Centers
NASA Astrophysics Data System (ADS)
Farough, A.; Lowell, R. P.; Corrigan, R.
2012-12-01
Fluid circulation in high-temperature hydrothermal systems involves complex water-rock chemical reactions and phase separation. Numerical modeling of reactive transport in multi-component, multiphase systems is required to obtain a full understanding of the characteristics and evolution of hydrothermal vent systems. We use a single-pass parameterized model of high-temperature hydrothermal circulation at oceanic spreading centers constrained by observational parameters such as vent temperature, heat output, and vent field area, together with surface area and depth of the sub-axial magma chamber, to deduce fundamental hydrothermal parameters such as mass flow rate, bulk permeability, conductive boundary layer thickness at the base of the system, magma replenishment rate, and residence time in the discharge zone. All of these key subsurface characteristics are known for fewer than 10 sites out of 300 known hydrothermal systems. The principal limitations of this approach stem from the uncertainty in heat output and vent field area. For systems where data are available on partitioning of heat and chemical output between focused and diffuse flow, we determined the fraction of high-temperature vent fluid incorporated into diffuse flow using a two-limb single pass model. For EPR 9°50` N and ASHES, the diffuse flow temperatures calculated assuming conservative mixing are nearly equal to the observed temperatures indicating that approximately 80%-90% of the hydrothermal heat output occurs as high-temperature flow derived from magmatic heat even though most of the heat output appears as low-temperature diffuse discharge. For the Main Endeavour Field and Lucky Strike, diffuse flow fluids show significant conductive cooling and heating respectively. Finally, we calculate the transport of various geochemical constituents in focused and diffuse flow at the vent field scale and compare the results with estimates of geochemical transports from the Rainbow hydrothermal field where diffuse flow is absent.
Loizeau, Vincent; Ciffroy, Philippe; Roustan, Yelva; Musson-Genon, Luc
2014-09-15
Semi-volatile organic compounds (SVOCs) are subject to Long-Range Atmospheric Transport because of transport-deposition-reemission successive processes. Several experimental data available in the literature suggest that soil is a non-negligible contributor of SVOCs to atmosphere. Then coupling soil and atmosphere in integrated coupled models and simulating reemission processes can be essential for estimating atmospheric concentration of several pollutants. However, the sources of uncertainty and variability are multiple (soil properties, meteorological conditions, chemical-specific parameters) and can significantly influence the determination of reemissions. In order to identify the key parameters in reemission modeling and their effect on global modeling uncertainty, we conducted a sensitivity analysis targeted on the 'reemission' output variable. Different parameters were tested, including soil properties, partition coefficients and meteorological conditions. We performed EFAST sensitivity analysis for four chemicals (benzo-a-pyrene, hexachlorobenzene, PCB-28 and lindane) and different spatial scenari (regional and continental scales). Partition coefficients between air, solid and water phases are influent, depending on the precision of data and global behavior of the chemical. Reemissions showed a lower variability to soil parameters (soil organic matter and water contents at field capacity and wilting point). A mapping of these parameters at a regional scale is sufficient to correctly estimate reemissions when compared to other sources of uncertainty. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bai, Yu; Jiang, Yue-Hua; Zhang, Yan; Zhao, Hao-Jie
2017-10-01
This paper investigates the MHD flow and heat transfer of the incompressible generalized Burgers’ fluid due to a periodic oscillating plate with the effects of the second order slip and periodic heating plate. The momentum equation is formulated with multi-term fractional derivatives, and by means of viscous dissipation, the fractional derivative is considered in the energy equation. A finite difference scheme is established based on the G1-algorithm, whose convergence is confirmed by the comparison with the analytical solution in an example. Meanwhile the numerical solutions of velocity, temperature and shear stress are obtained. The effects of involved parameters on velocity and temperature fields are presented graphically and analyzed in detail. Increasing the fractional derivative parameter α, the velocity and temperature have a decreasing trend, while the influences of fractional derivative parameter β on the velocity and temperature behave conversely. Increasing the absolute value of the first order slip parameter and the second order slip parameter both cause a decrease of velocity. Furthermore, with the decreasing of the magnetic parameter, the shear stress decreases. Supported by the National Natural Science Foundations of China under Grant Nos. 21576023, 51406008, the National Key Research Program of China under Grant Nos. 2016YFC0700601, 2016YFC0700603 and the BUCEA Post Graduate Innovation Project (PG2017032)
NASA Astrophysics Data System (ADS)
Shui, Qiong
This thesis is focusing on a study of junction effect transistors (JFETs) in compact pulsed power applications. Pulsed power usually requires switches with high hold-off voltage, high current, low forward voltage drop, and fast switching speed. 4H-SiC, with a bandgap of 3.26 eV (The bandgap of Si is 1.12eV) and other physical and electrical superior properties, has gained much attention in high power, high temperature and high frequency applications. One topic of this thesis is to evaluate if 4H-SiC JFETs have a potential to replace gas phase switches to make pulsed power system compact and portable. Some other pulsed power applications require cathodes of providing stable, uniform, high electron-beam current. So the other topic of this research is to evaluate if Si JFET-controlled carbon nanotube field emitter cold cathode will provide the necessary e-beam source. In the topic of "4H-SiC JFETs", it focuses on the design and simulation of a novel 4H-SiC normally-off VJFET with high breakdown voltage using the 2-D simulator ATLAS. To ensure realistic simulations, we utilized reasonable physical models and the established parameters as the input into these models. The influence of key design parameters were investigated which would extend pulsed power limitations. After optimizing the key design parameters, with a 50-mum drift region, the predicted breakdown voltage for the VJFET is above 8kV at a leakage current of 1x10-5A/cm2 . The specific on-state resistance is 35 mO·cm 2 at VGS = 2.7 V, and the switching speed is several ns. The simulation results suggest that the 4H-SiC VJFET is a potential candidate for improving switching performance in repetitive pulsed power applications. To evaluate the 4H-SiC VJFETs in pulsed power circuits, we extracted some circuit model parameters from the simulated I-V curves. Those parameters are necessary for circuit simulation program such as SPICE. This method could be used as a test bench without fabricating the devices to minimize the unnecessary cost. As an extended research of 4H-SiC devices, Metal-Insulator-SiC (MIS) structures were utilized to evaluate the high dielectric constant materials---TiO 2 and Al2O3, as possible gate dielectrics for SiC devices. TiO2 and Al2O3 were chosen because of their high dielectric constants and bandgap energies as well as the acceptance of Ti and Al in most modern CMOS fabrication facilities. MIS devices were fabricated and both their I-V and C-V characteristics were measured and discussed. Our research showed that Al2O3 deposited by e-beam evaporation could be considered as a promising material among the gate insulators for high power SiC devices. In the topic of "Si JFET-controlled carbon nanotube field emitter cathode arrays", stability, controllability and lifetime are the main issues waiting to be addressed before field emitters find their wide applications. The ideas of connecting Si or metal field emitters with external MOSFETs or built-in active devices were attempted by other researchers, and those devices showed effectiveness in controlling and stabilizing the emission current. We presented the design, simulation, and the fabrication of Si JFETs monolithically integrated with CNTs field emitters. The Si JFET was designed to control and improve the emission of carbon nanotube field emitter arrays. Its electrical characteristics were simulated by the device simulator ATLAS. The fabrication process was developed to be compatible with the last step of growing multiwalled carbon nanotubes at 700°C. Carbon nanotubes field emitters were grown by PECVD (Plasma Enhanced Chemical Vapor Deposition). Preliminary field emission tests were conducted with 50 x 50 emitter arrays, with a resultant emission current of 3 muA (˜40 mA/cm2) at an extraction gate voltage of 50 V and an anode voltage of 300 V. Experimental data shows the linear relationship between ln(I/V2) and l/V consistent with Fowler-Nordheim electron tunneling. Some challenging issues were also discussed.
DESORPTION OF PYRETHROIDS FROM SUSPENDED SOLIDS
Fojut, Tessa L.; Young, Thomas M.
2014-01-01
Pyrethroid insecticides have been widely detected in sediments at concentrations that can cause toxicity to aquatic organisms. Desorption rates play an important role in determining the bioavailability of hydrophobic organic compounds, such as pyrethroids, because these compounds are more likely to be sorbed to solids in the environment and times to reach sorptive equilibrium can be long. In this study, sequential Tenax desorption experiments were performed with three sorbents, three aging times, and four pyrethroids. A biphasic rate model was fit to the desorption data with r2 > 0.99 and the rapid and slow compartment desorption rate constants and compartment fractions are reported. Suspended solids from irrigation runoff water collected from a field that had been sprayed with permethrin one day prior were used in the experiments to compare desorption rates for field-applied pyrethroids to those for laboratory-spiked materials. Suspended solids were used in desorption experiments because suspended solids can be a key source of hydrophobic compounds to surface waters. The rapid desorption rate parameters of field-applied permethrin were not statistically different than those of laboratory spiked permethrin, indicating that the desorption of the spiked pyrethroids is comparable to those added and aged in the field. Sorbent characteristics had the greatest effect on desorption rate parameters; as organic carbon content of the solids increased, the rapid desorption fractions and rapid desorption rate constants both decreased. The desorption rate constant of the slow compartment for sediment containing permethrin aged for 28 d was significantly different from those aged 1 d and 7 d, while desorption in the rapid and slow compartments did not differ between these treatments. PMID:21538493
All-Atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model
Savelyev, Alexey; MacKerell, Alexander D.
2014-01-01
Presented is a first generation atomistic force field for DNA in which electronic polarization is modeled based on the classical Drude oscillator formalism. The DNA model is based on parameters for small molecules representative of nucleic acids, including alkanes, ethers, dimethylphosphate, and the nucleic acid bases and empirical adjustment of key dihedral parameters associated with the phosphodiester backbone, glycosidic linkages and sugar moiety of DNA. Our optimization strategy is based on achieving a compromise between satisfying the properties of the underlying model compounds in the gas phase targeting QM data and reproducing a number of experimental properties of DNA duplexes in the condensed phase. The resulting Drude force field yields stable DNA duplexes on the 100 ns time scale and satisfactorily reproduces (1) the equilibrium between A and B forms of DNA and (2) transitions between the BI and BII sub-states of B form DNA. Consistency with the gas phase QM data for the model compounds is significantly better for the Drude model as compared to the CHARMM36 additive force field, which is suggested to be due to the improved response of the model to changes in the environment associated with the explicit inclusion of polarizability. Analysis of dipole moments associated with the nucleic acid bases shows the Drude model to have significantly larger values than those present in CHARMM36, with the dipoles of individual bases undergoing significant variations during the MD simulations. Additionally, the dipole moment of water was observed to be perturbed in the grooves of DNA. PMID:24752978
Evaluation of Rgb-Based Vegetation Indices from Uav Imagery to Estimate Forage Yield in Grassland
NASA Astrophysics Data System (ADS)
Lussem, U.; Bolten, A.; Gnyp, M. L.; Jasper, J.; Bareth, G.
2018-04-01
Monitoring forage yield throughout the growing season is of key importance to support management decisions on grasslands/pastures. Especially on intensely managed grasslands, where nitrogen fertilizer and/or manure are applied regularly, precision agriculture applications are beneficial to support sustainable, site-specific management decisions on fertilizer treatment, grazing management and yield forecasting to mitigate potential negative impacts. To support these management decisions, timely and accurate information is needed on plant parameters (e.g. forage yield) with a high spatial and temporal resolution. However, in highly heterogeneous plant communities such as grasslands, assessing their in-field variability non-destructively to determine e.g. adequate fertilizer application still remains challenging. Especially biomass/yield estimation, as an important parameter in assessing grassland quality and quantity, is rather laborious. Forage yield (dry or fresh matter) is mostly measured manually with rising plate meters (RPM) or ultrasonic sensors (handheld or mounted on vehicles). Thus the in-field variability cannot be assessed for the entire field or only with potential disturbances. Using unmanned aerial vehicles (UAV) equipped with consumer grade RGB cameras in-field variability can be assessed by computing RGB-based vegetation indices. In this contribution we want to test and evaluate the robustness of RGB-based vegetation indices to estimate dry matter forage yield on a recently established experimental grassland site in Germany. Furthermore, the RGB-based VIs are compared to indices computed from the Yara N-Sensor. The results show a good correlation of forage yield with RGB-based VIs such as the NGRDI with R2 values of 0.62.
Suppression of diamagnetism by neutrals pressure in partially ionized, high-beta plasma
NASA Astrophysics Data System (ADS)
Shinohara, Shunjiro; Kuwahara, Daisuke; Yano, Kazuki; Fruchtman, Amnon
2016-12-01
Suppression of diamagnetism in a partially ionized plasma with high beta was experimentally investigated by the use of Langmuir and Hall sensor probes, focusing on a neutrals pressure effect. The plasma beta, which is the ratio of plasma to vacuum magnetic pressures, varied from ˜1% to >100% while the magnetic field varied from ˜120 G to ˜1 G. Here, a uniform magnetized argon plasma was operated mostly in an inductive mode, using a helicon plasma source of the Large Helicon Plasma Device [S. Shinohara et al., Phys. Plasmas 16, 057104 (2009)] with a diameter of 738 mm and an axial length of 4860 mm. Electron density varied from 5 × 1015 m-3 to <3 × 1018 m-3, while an argon fill pressure was varied from ˜0.02 Pa to 0.75 Pa as well as the magnetic field mentioned above, with the fixed radio frequency (rf) and power of 7 MHz and ˜3.5 kW, respectively. The observed magnetic field reduction rate, a decrease of the magnetic field divided by the vacuum one, was up to 18%. However, in a certain parameter regime, where the product of ion and electron Hall terms is a key parameter, the measured diamagnetic effect was smaller than that expected by the plasma beta. This suppressed diamagnetism is explained by the neutrals pressure replacing magnetic pressure in balancing plasma pressure. Diamagnetism is weakened if neutrals pressure is comparable to the plasma pressure and if the coupling of plasma and neutrals pressures by ion-neutral collisions is strong enough.
Martel, D; Guerra, A; Turek, P; Weiss, J; Vileno, B
2016-04-01
In the field of solar fuel cells, the development of efficient photo-converting semiconductors remains a major challenge. A rational analysis of experimental photocatalytic results obtained with material in colloïdal suspensions is needed to access fundamental knowledge required to improve the design and properties of new materials. In this study, a simple system electron donor/nano-TiO2 is considered and examined via spin scavenging electron paramagnetic resonance as well as a panel of analytical techniques (composition, optical spectroscopy and dynamic light scattering) for selected type of nano-TiO2. Independent variables (pH, electron donor concentration and TiO2 amount) have been varied and interdependent variables (aggregate size, aggregate surface vs. volume and acid/base groups distribution) are discussed. This work shows that reliable understanding involves thoughtful combination of interdependent parameters, whereas the specific surface area seems not a pertinent parameter. The conclusion emphasizes the difficulty to identify the key features of the mechanisms governing photocatalytic properties in nano-TiO2. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Haeffelin, Martial
2016-04-01
Radiation fog formation is largely influenced by the chemical composition, size and number concentration of cloud condensation nuclei and by heating/cooling and drying/moistening processes in a shallow mixing layer near the surface. Once a fog water layer is formed, its development and dissipation become predominantly controlled by radiative cooling/heating, turbulent mixing, sedimentation and deposition. Key processes occur in the atmospheric surface layer, directly in contact with the soil and vegetation, and throughout the atmospheric column. Recent publications provide detailed descriptions of these processes for idealized cases using very high-resolution models and proper representation of microphysical processes. Studying these processes in real fog situations require atmospheric profiling capabilities to monitor the temporal evolution of key parameters at several heights (surface, inside the fog, fog top, free troposphere). This could be done with in-situ sensors flown on tethered balloons or drones, during dedicated intensive field campaigns. In addition Backscatter Lidars, Doppler Lidars, Microwave Radiometers and Cloud Doppler Radars can provide more continuous, yet precise monitoring of key parameters throughout the fog life cycle. The presentation will describe how Backscatter Lidars can be used to study the height and kinetics of aerosol activation into fog droplets. Next we will show the potential of Cloud Doppler Radar measurements to characterize the temporal evolution of droplet size, liquid water content, sedimentation and deposition. Contributions from Doppler Lidars and Microwave Radiometers will be discussed. This presentation will conclude on the potential to use Lidar and Radar remote sensing measurements to support operational fog nowcasting.
[Exploring novel hyperspectral band and key index for leaf nitrogen accumulation in wheat].
Yao, Xia; Zhu, Yan; Feng, Wei; Tian, Yong-Chao; Cao, Wei-Xing
2009-08-01
The objectives of the present study were to explore new sensitive spectral bands and ratio spectral indices based on precise analysis of ground-based hyperspectral information, and then develop regression model for estimating leaf N accumulation per unit soil area (LNA) in winter wheat (Triticum aestivum L.). Three field experiments were conducted with different N rates and cultivar types in three consecutive growing seasons, and time-course measurements were taken on canopy hyperspectral reflectance and LNA tinder the various treatments. By adopting the method of reduced precise sampling, the detailed ratio spectral indices (RSI) within the range of 350-2 500 nm were constructed, and the quantitative relationships between LNA (gN m(-2)) and RSI (i, j) were analyzed. It was found that several key spectral bands and spectral indices were suitable for estimating LNA in wheat, and the spectral parameter RSI (990, 720) was the most reliable indicator for LNA in wheat. The regression model based on the best RSI was formulated as y = 5.095x - 6.040, with R2 of 0.814. From testing of the derived equations with independent experiment data, the model on RSI (990, 720) had R2 of 0.847 and RRMSE of 24.7%. Thus, it is concluded that the present hyperspectral parameter of RSI (990, 720) and derived regression model can be reliably used for estimating LNA in winter wheat. These results provide the feasible key bands and technical basis for developing the portable instrument of monitoring wheat nitrogen status and for extracting useful spectral information from remote sensing images.
Robust guaranteed-cost adaptive quantum phase estimation
NASA Astrophysics Data System (ADS)
Roy, Shibdas; Berry, Dominic W.; Petersen, Ian R.; Huntington, Elanor H.
2017-05-01
Quantum parameter estimation plays a key role in many fields like quantum computation, communication, and metrology. Optimal estimation allows one to achieve the most precise parameter estimates, but requires accurate knowledge of the model. Any inevitable uncertainty in the model parameters may heavily degrade the quality of the estimate. It is therefore desired to make the estimation process robust to such uncertainties. Robust estimation was previously studied for a varying phase, where the goal was to estimate the phase at some time in the past, using the measurement results from both before and after that time within a fixed time interval up to current time. Here, we consider a robust guaranteed-cost filter yielding robust estimates of a varying phase in real time, where the current phase is estimated using only past measurements. Our filter minimizes the largest (worst-case) variance in the allowable range of the uncertain model parameter(s) and this determines its guaranteed cost. It outperforms in the worst case the optimal Kalman filter designed for the model with no uncertainty, which corresponds to the center of the possible range of the uncertain parameter(s). Moreover, unlike the Kalman filter, our filter in the worst case always performs better than the best achievable variance for heterodyne measurements, which we consider as the tolerable threshold for our system. Furthermore, we consider effective quantum efficiency and effective noise power, and show that our filter provides the best results by these measures in the worst case.
Accurate segmentation of lung fields on chest radiographs using deep convolutional networks
NASA Astrophysics Data System (ADS)
Arbabshirani, Mohammad R.; Dallal, Ahmed H.; Agarwal, Chirag; Patel, Aalpan; Moore, Gregory
2017-02-01
Accurate segmentation of lung fields on chest radiographs is the primary step for computer-aided detection of various conditions such as lung cancer and tuberculosis. The size, shape and texture of lung fields are key parameters for chest X-ray (CXR) based lung disease diagnosis in which the lung field segmentation is a significant primary step. Although many methods have been proposed for this problem, lung field segmentation remains as a challenge. In recent years, deep learning has shown state of the art performance in many visual tasks such as object detection, image classification and semantic image segmentation. In this study, we propose a deep convolutional neural network (CNN) framework for segmentation of lung fields. The algorithm was developed and tested on 167 clinical posterior-anterior (PA) CXR images collected retrospectively from picture archiving and communication system (PACS) of Geisinger Health System. The proposed multi-scale network is composed of five convolutional and two fully connected layers. The framework achieved IOU (intersection over union) of 0.96 on the testing dataset as compared to manual segmentation. The suggested framework outperforms state of the art registration-based segmentation by a significant margin. To our knowledge, this is the first deep learning based study of lung field segmentation on CXR images developed on a heterogeneous clinical dataset. The results suggest that convolutional neural networks could be employed reliably for lung field segmentation.
In situ statistical observations of EMIC waves by Arase satellite
NASA Astrophysics Data System (ADS)
Nomura, R.; Matsuoka, A.; Teramoto, M.; Nose, M.; Yoshizumi, M.; Fujimoto, A.; Shinohara, M.; Tanaka, Y.
2017-12-01
We present in situ statistical survey of electromagnetic ion cyclotron (EMIC) waves observed by Arase satellite from 3 March to 16 July 2017. We identified 64 events using the fluxgate magnetometer (MGF) on the satellite. The EMIC wave is the key phenomena to understand the loss dynamics of MeV-energy electrons in the radiation belt. We will show the radial and latitudinal dependence of the wave occurance rate and the wave parameters (frequency band, coherence, polarization, and ellipticity). Especially the EMIC waves observed at localized weak background magnetic field will be discussed for the wave excitation mechanism in the deep inner magnetosphere.
Modeling spatially localized photonic nanojets from phase diffraction gratings
NASA Astrophysics Data System (ADS)
Geints, Yu. E.; Zemlyanov, A. A.
2016-04-01
We investigated numerically the specific spatially localized intense optical structure, a photonic nanojet (PNJ), formed in the near-field scattering of optical radiation at phase diffraction gratings. The finite-difference time-domain technique was employed to study the PNJ key parameters (length, width, focal distance, and intensity) produced by diffraction gratings with the saw-tooth, rectangle, and hemispheric line profiles. Our analysis showed that each type of diffraction gratings produces a photonic jet with unique characteristics. Based on the numerical calculations, we demonstrate that the PNJ could be manipulated in a wide range through the variation of period, duty cycle, and shape of diffraction grating rulings.
Brunoni, Andre Russowsky; Nitsche, Michael A.; Bolognini, Nadia; Bikson, Marom; Wagner, Tim; Merabet, Lotfi; Edwards, Dylan J.; Valero-Cabre, Antoni; Rotenberg, Alexander; Pascual-Leone, Alvaro; Ferrucci, Roberta; Priori, Alberto; Boggio, Paulo; Fregni, Felipe
2011-01-01
Background Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low-intensity, direct current to cortical areas facilitating or inhibiting spontaneous neuronal activity. In the past ten years, tDCS physiological mechanisms of action have been intensively investigated giving support for the investigation of its applications in clinical neuropsychiatry and rehabilitation. However, new methodological, ethical, and regulatory issues emerge when translating the findings of preclinical and phase I studies into phase II and III clinical studies. The aim of this comprehensive review is to discuss the key challenges of this process and possible methods to address them. Methods We convened a workgroup of researchers in the field to review, discuss and provide updates and key challenges of neuromodulation use for clinical research. Main Findings/Discussion We reviewed several basic and clinical studies in the field and identified potential limitations, taking into account the particularities of the technique. We review and discuss the findings into four topics: (i) mechanisms of action of tDCS, parameters of use and computer-based human brain modeling investigating electric current fields and magnitude induced by tDCS; (ii) methodological aspects related to the clinical research of tDCS as divided according to study phase (i.e., preclinical, phase I, phase II and phase III studies); (iii) ethical and regulatory concerns; (iv) future directions regarding novel approaches, novel devices, and future studies involving tDCS. Finally, we propose some alternative methods to facilitate clinical research on tDCS. PMID:22037126
NASA Astrophysics Data System (ADS)
Gutierrez, K. Y.; Fernald, A.; Ochoa, C. G.; Guldan, S. J.
2013-12-01
KEY WORDS - Hydrology, Water budget, Deep percolation, Surface water-Groundwater interactions. With the recent projections for water scarcity, water balances have become an indispensable water management tool. In irrigated floodplains, deep percolation from irrigation can represent one of the main aquifer recharge sources. A better understanding of surface water and groundwater interactions in irrigated valleys is needed for properly assessing the water balances in these systems and estimating potential aquifer recharge. We conducted a study to quantify the parameters and calculate the water budgets in three flood irrigated hay fields with relatively low, intermediate and, high water availability in northern New Mexico. We monitored different hydrologic parameters including total amount of water applied, change in soil moisture, drainage below the effective root zone, and shallow water level fluctuations in response to irrigation. Evapotranspiration was calculated from weather station data collected in-situ using the Samani-Hargreaves. Previous studies in the region have estimated deep percolation as a residual parameter of the water balance equation. In this study, we used both, the water balance method and actual measurements of deep percolation using passive lysimeters. Preliminary analyses for the three fields show a relatively rapid movement of water through the upper 50 cm of the vadose zone and a quick response of the shallow aquifer under flood irrigation. Further results from this study will provide a better understanding of surface water-groundwater interactions in flood irrigated valleys in northern New Mexico.
Influence of lithofacies and diagensis on Norwegian North Sea chalk reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brasher, J.E.; Vagle, K.R.
1996-05-01
The depositional mechanism of chalk is a key influence in the chalk`s ultimate reservoir quality. Classically, the depositional mechanism is interpreted from core descriptions. Where core data are lacking, dipmeter and borehole imagery logs have proven useful in making lithofacies assessments. Criteria for recognition of three chalk categories are established. Category III chalks correspond to those chalks that have been deposited by gravity flows or slumping and tend to have the best reservoir parameters. Category I chalks are most often affiliated with pelagic deposition and tend to have the poorest reservoir parameters. Category II chalks are intermediate between I andmore » III. Anomalously high primary porosities have been maintained in Norwegian North Sea chalks where the effects of mechanical and chemical compaction have been limited. The diagenetic pathway of a chalk reflects changes brought about by mechanical and chemical compaction. Five factors most heavily influence the diagenetic pathway: (1) burial depth, (2) chalk type, (3) overpressuring, (4) presence of hydrocarbons, and (5) original grain size. Assessments of the sedimentological model, diagenetic pathway, and resultant reservoir quality are provided in case studies of Edda, Tor, and Eldfisk fields. Because the distribution of chalk is largely independent of existing structures, most fields have a component of stratigraphic/diagenetic trapping. Each case study shows unique examples of how petrophysical and reservoir engineering data can be incorporated in assessments of chalk type and the diagenetic pathway and how they may affect reservoir parameters and productivity.« less
Su, Judith
2017-01-01
Sensitive and rapid label-free biological and chemical sensors are needed for a wide variety of applications including early disease diagnosis and prognosis, the monitoring of food and water quality, as well as the detection of bacteria and viruses for public health concerns and chemical threat sensing. Whispering gallery mode optical resonator based sensing is a rapidly developing field due to the high sensitivity and speed of these devices as well as their label-free nature. Here, we describe the history of whispering gallery mode optical resonator sensors, the principles behind detection, the latest developments in the fields of biological and chemical sensing, current challenges toward widespread adoption of these devices, and an outlook for the future. In addition, we evaluate the performance capabilities of these sensors across three key parameters: sensitivity, selectivity, and speed. PMID:28282881
Information driving force and its application in agent-based modeling
NASA Astrophysics Data System (ADS)
Chen, Ting-Ting; Zheng, Bo; Li, Yan; Jiang, Xiong-Fei
2018-04-01
Exploring the scientific impact of online big-data has attracted much attention of researchers from different fields in recent years. Complex financial systems are typical open systems profoundly influenced by the external information. Based on the large-scale data in the public media and stock markets, we first define an information driving force, and analyze how it affects the complex financial system. The information driving force is observed to be asymmetric in the bull and bear market states. As an application, we then propose an agent-based model driven by the information driving force. Especially, all the key parameters are determined from the empirical analysis rather than from statistical fitting of the simulation results. With our model, both the stationary properties and non-stationary dynamic behaviors are simulated. Considering the mean-field effect of the external information, we also propose a few-body model to simulate the financial market in the laboratory.
NASA Astrophysics Data System (ADS)
Kovalevsky, Louis; Langley, Robin S.; Caro, Stephane
2016-05-01
Due to the high cost of experimental EMI measurements significant attention has been focused on numerical simulation. Classical methods such as Method of Moment or Finite Difference Time Domain are not well suited for this type of problem, as they require a fine discretisation of space and failed to take into account uncertainties. In this paper, the authors show that the Statistical Energy Analysis is well suited for this type of application. The SEA is a statistical approach employed to solve high frequency problems of electromagnetically reverberant cavities at a reduced computational cost. The key aspects of this approach are (i) to consider an ensemble of system that share the same gross parameter, and (ii) to avoid solving Maxwell's equations inside the cavity, using the power balance principle. The output is an estimate of the field magnitude distribution in each cavity. The method is applied on a typical aircraft structure.
Analysis and characterization of graphene-on-substrate devices
NASA Astrophysics Data System (ADS)
Berdebes, Dionisis
The purpose of this MS Thesis is the analysis and characterization of graphene on substrate structures prepared at the Birck Nanotechnology Center-Purdue University/IBM Watson Research Center-N.Y., and characterized under low-field transport conditions. First, a literature survey is conducted, both in theoretical and experimental work on graphene transport phenomena, and the open issues are reported. Next, the theory of low-field transport in graphene is reviewed within a Landauer framework. Experimental results of back-gated graphene-on-substrate devices, prepared by the Appenzeller group, are then presented, followed by an extraction of an energy/temperature dependent backscattering mean free path as the main characterization parameter. A key conclusion is the critical role of contacts in two-probe measurements. In this framework, a non-self-consistent Non Equilibrium Green's Function method is employed for the calculation of the odd and even metal-graphene ballistic interfacial resistance. A good agreement with the relevant experimental work is observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bettoni, Dario; Nusser, Adi; Blas, Diego
We develop the framework for testing Lorentz invariance in the dark matter sector using galactic dynamics. We consider a Lorentz violating (LV) vector field acting on the dark matter component of a satellite galaxy orbiting in a host halo. We introduce a numerical model for the dynamics of satellites in a galactic halo and for a galaxy in a rich cluster to explore observational consequences of such an LV field. The orbital motion of a satellite excites a time dependent LV force which greatly affects its internal dynamics. Our analysis points out key observational signatures which serve as probes ofmore » LV forces. These include modifications to the line of sight velocity dispersion, mass profiles and shapes of satellites. With future data and a more detailed modeling these signatures can be exploited to constrain a new region of the parameter space describing the LV in the dark matter sector.« less
The ambivalent effect of lattice structure on a spatial game
NASA Astrophysics Data System (ADS)
Zhang, Hui; Gao, Meng; Li, Zizhen; Maa, Zhihui; Wang, Hailong
2011-06-01
The evolution of cooperation is studied in lattice-structured populations, in which each individual who adopts one of the following strategies ‘always defect' (ALLD), ‘tit-for-tat' (TFT), and ‘always cooperate' (ALLC) plays the repeated Prisoner's Dilemma game with its neighbors according to an asynchronous update rule. Computer simulations are applied to analyse the dynamics depending on major parameters. Mathematical analyses based on invasion probability analysis, mean-field approximation, as well as pair approximation are also used. We find that the lattice structure promotes the evolution of cooperation compared with a non-spatial population, this is also confirmed by invasion probability analysis in one dimension. Meanwhile, it also inhibits the evolution of cooperation due to the advantage of being spiteful, which indicates the key role of specific life-history assumptions. Mean-field approximation fails to predict the outcome of computer simulations. Pair approximation is accurate in two dimensions but fails in one dimension.
Graphene Dirac point tuned by ferroelectric polarization field
NASA Astrophysics Data System (ADS)
Wang, Xudong; Chen, Yan; Wu, Guangjian; Wang, Jianlu; Tian, Bobo; Sun, Shuo; Shen, Hong; Lin, Tie; Hu, Weida; Kang, Tingting; Tang, Minghua; Xiao, Yongguang; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao
2018-04-01
Graphene has received numerous attention for future nanoelectronics and optoelectronics. The Dirac point is a key parameter of graphene that provides information about its carrier properties. There are lots of methods to tune the Dirac point of graphene, such as chemical doping, impurities, defects, and disorder. In this study, we report a different approach to tune the Dirac point of graphene using a ferroelectric polarization field. The Dirac point can be adjusted to near the ferroelectric coercive voltage regardless its original position. We have ensured this phenomenon by temperature-dependent experiments, and analyzed its mechanism with the theory of impurity correlation in graphene. Additionally, with the modulation of ferroelectric polymer, the current on/off ratio and mobility of graphene transistor both have been improved. This work provides an effective method to tune the Dirac point of graphene, which can be readily used to configure functional devices such as p-n junctions and inverters.
Accidental Turbulent Discharge Rate Estimation from Videos
NASA Astrophysics Data System (ADS)
Ibarra, Eric; Shaffer, Franklin; Savaş, Ömer
2015-11-01
A technique to estimate the volumetric discharge rate in accidental oil releases using high speed video streams is described. The essence of the method is similar to PIV processing, however the cross correlation is carried out on the visible features of the efflux, which are usually turbulent, opaque and immiscible. The key step in the process is to perform a pixelwise time filtering on the video stream, in which the parameters are commensurate with the scales of the large eddies. The velocity field extracted from the shell of visible features is then used to construct an approximate velocity profile within the discharge. The technique has been tested on laboratory experiments using both water and oil jets at Re ~105 . The technique is accurate to 20%, which is sufficient for initial responders to deploy adequate resources for containment. The software package requires minimal user input and is intended for deployment on an ROV in the field. Supported by DOI via NETL.
NASA Astrophysics Data System (ADS)
Song, K.; Song, H. P.; Gao, C. F.
2018-03-01
It is well known that the key factor determining the performance of thermoelectric materials is the figure of merit, which depends on the thermal conductivity (TC), electrical conductivity, and Seebeck coefficient (SC). The electric current must be zero when measuring the TC and SC to avoid the occurrence of measurement errors. In this study, the complex-variable method is used to analyze the thermoelectric field near an elliptic inhomogeneity in an open circuit, and the field distributions are obtained in closed form. Our analysis shows that an electric current inevitably exists in both the matrix and the inhomogeneity even though the circuit is open. This unexpected electric current seriously affects the accuracy with which the TC and SC are measured. These measurement errors, both overall and local, are analyzed in detail. In addition, an error correction method is proposed based on the analytical results.
NASA Astrophysics Data System (ADS)
Ames, D. P.; Osorio-Murillo, C.; Over, M. W.; Rubin, Y.
2012-12-01
The Method of Anchored Distributions (MAD) is an inverse modeling technique that is well-suited for estimation of spatially varying parameter fields using limited observations and Bayesian methods. This presentation will discuss the design, development, and testing of a free software implementation of the MAD technique using the open source DotSpatial geographic information system (GIS) framework, R statistical software, and the MODFLOW groundwater model. This new tool, dubbed MAD-GIS, is built using a modular architecture that supports the integration of external analytical tools and models for key computational processes including a forward model (e.g. MODFLOW, HYDRUS) and geostatistical analysis (e.g. R, GSLIB). The GIS-based graphical user interface provides a relatively simple way for new users of the technique to prepare the spatial domain, to identify observation and anchor points, to perform the MAD analysis using a selected forward model, and to view results. MAD-GIS uses the Managed Extensibility Framework (MEF) provided by the Microsoft .NET programming platform to support integration of different modeling and analytical tools at run-time through a custom "driver." Each driver establishes a connection with external programs through a programming interface, which provides the elements for communicating with core MAD software. This presentation gives an example of adapting the MODFLOW to serve as the external forward model in MAD-GIS for inferring the distribution functions of key MODFLOW parameters. Additional drivers for other models are being developed and it is expected that the open source nature of the project will engender the development of additional model drivers by 3rd party scientists.
Observing the ExoEarth: Simulating the Retrieval of Exoplanet Parameters Using DSCOVR
NASA Astrophysics Data System (ADS)
Kane, S.; Cowan, N. B.; Domagal-Goldman, S. D.; Herman, J. R.; Robinson, T.; Stine, A.
2017-12-01
The field of exoplanets has rapidly expanded from detection to include exoplanet characterization. This has been enabled by developments such as the detection of terrestrial-sized planets and the use of transit spectroscopy to study exoplanet atmospheres. Studies of rocky planets are leading towards the direct imaging of exoplanets and the development of techniques to extract their intrinsic properties. The importance of properties such as rotation, albedo, and obliquity are significant since they inform planet formation theories and are key input parameters for Global Circulation Models used to determine surface conditions, including habitability. Thus, a complete characterization of exoplanets for understanding habitable climates requires the ability to measure these key planetary parameters. The retrieval of planetary rotation rates, albedos, and obliquities from highly undersampled imaging data can be honed using satellites designed to study the Earth's atmosphere. In this talk I will describe how the Deep Space Climate Observatory (DSCOVR) provides a unique opportunity to test such retrieval methods using data for the sunlit hemisphere of the Earth. Our methods use the high-resolution DSCOVR-EPIC images to simulate the Earth as an exoplanet, by deconvolving the images to match a variety of expected exoplanet mission requirements, and by comparing EPIC data with the cavity radiometer data from DSCOVR-NISTAR that views the Earth as a single pixel. Through this methodology, we are creating a grid of retrieval states as a function of image resolution, observing cadence, passband, etc. Our modeling of the DSCOVR data will provide an effective baseline from which to develop tools that can be applied to a variety of exoplanet imaging data.
An Image Encryption Algorithm Utilizing Julia Sets and Hilbert Curves
Sun, Yuanyuan; Chen, Lina; Xu, Rudan; Kong, Ruiqing
2014-01-01
Image encryption is an important and effective technique to protect image security. In this paper, a novel image encryption algorithm combining Julia sets and Hilbert curves is proposed. The algorithm utilizes Julia sets’ parameters to generate a random sequence as the initial keys and gets the final encryption keys by scrambling the initial keys through the Hilbert curve. The final cipher image is obtained by modulo arithmetic and diffuse operation. In this method, it needs only a few parameters for the key generation, which greatly reduces the storage space. Moreover, because of the Julia sets’ properties, such as infiniteness and chaotic characteristics, the keys have high sensitivity even to a tiny perturbation. The experimental results indicate that the algorithm has large key space, good statistical property, high sensitivity for the keys, and effective resistance to the chosen-plaintext attack. PMID:24404181
Lang, Jun
2012-01-30
In this paper, we propose a novel secure image sharing scheme based on Shamir's three-pass protocol and the multiple-parameter fractional Fourier transform (MPFRFT), which can safely exchange information with no advance distribution of either secret keys or public keys between users. The image is encrypted directly by the MPFRFT spectrum without the use of phase keys, and information can be shared by transmitting the encrypted image (or message) three times between users. Numerical simulation results are given to verify the performance of the proposed algorithm.
2016-06-09
C O R P O R A T I O N Research Report Air Force Officer Accession Planning Addressing Key Gaps in Meeting Career Field Academic Degree Requirements...various Air Force missions in particular career fields. Key to this goal for nonrated officers is establishing and enforcing academic degree...35 Developing Accession Targets by Academic Degree Type
Low-field MRI can be more sensitive than high-field MRI
NASA Astrophysics Data System (ADS)
Coffey, Aaron M.; Truong, Milton L.; Chekmenev, Eduard Y.
2013-12-01
MRI signal-to-noise ratio (SNR) is the key factor for image quality. Conventionally, SNR is proportional to nuclear spin polarization, which scales linearly with magnetic field strength. Yet ever-stronger magnets present numerous technical and financial limitations. Low-field MRI can mitigate these constraints with equivalent SNR from non-equilibrium ‘hyperpolarization' schemes, which increase polarization by orders of magnitude independently of the magnetic field. Here, theory and experimental validation demonstrate that combination of field independent polarization (e.g. hyperpolarization) with frequency optimized MRI detection coils (i.e. multi-turn coils using the maximum allowed conductor length) results in low-field MRI sensitivity approaching and even rivaling that of high-field MRI. Four read-out frequencies were tested using samples with identical numbers of 1H and 13C spins. Experimental SNRs at 0.0475 T were ∼40% of those obtained at 4.7 T. Conservatively, theoretical SNRs at 0.0475 T 1.13-fold higher than those at 4.7 T were possible despite an ∼100-fold lower detection frequency, indicating feasibility of high-sensitivity MRI without technically challenging, expensive high-field magnets. The data at 4.7 T and 0.0475 T was obtained from different spectrometers with different RF probes. The SNR comparison between the two field strengths accounted for many differences in parameters such as system noise figures and variations in the probe detection coils including Q factors and coil diameters.
NASA Astrophysics Data System (ADS)
Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian
2018-02-01
This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy statistics. We then review the excursion-set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.
Optimum design of bridges with superelastic-friction base isolators against near-field earthquakes
NASA Astrophysics Data System (ADS)
Ozbulut, Osman E.; Hurlebaus, Stefan
2010-04-01
The seismic response of a multi-span continuous bridge isolated with novel superelastic-friction base isolator (S-FBI) is investigated under near-field earthquakes. The isolation system consists of a flat steel-Teflon sliding bearing and a superelastic NiTi shape memory alloy (SMA) device. Sliding bearings limit the maximum seismic forces transmitted to the superstructure to a certain value that is a function of friction coefficient of sliding interface. Superelastic SMA device provides restoring capability to the isolation system together with additional damping characteristics. The key design parameters of an S-FBI system are the natural period of the isolated, yielding displacement of SMA device, and the friction coefficient of the sliding bearings. The goal of this study is to obtain optimal values for each design parameter by performing sensitivity analyses of the isolated bridge. First, a three-span continuous bridge is modeled as a two-degrees-of-freedom with S-FBI system. A neuro-fuzzy model is used to capture rate-dependent nonlinear behavior of SMA device. A time-dependent method which employs wavelets to adjust accelerograms to match a target response spectrum with minimum changes on the other characteristics of ground motions is used to generate ground motions used in the simulations. Then, a set of nonlinear time history analyses of the isolated bridge is performed. The variation of the peak response quantities of the isolated bridge is shown as a function of design parameters. Also, the influence of temperature variations on the effectiveness of S-FBI system is evaluated. The results show that the optimum design of the isolated bridge with S-FBI system can be achieved by a judicious specification of design parameters.
NASA Astrophysics Data System (ADS)
Chirra, Prathyush; Leo, Patrick; Yim, Michael; Bloch, B. Nicolas; Rastinehad, Ardeshir R.; Purysko, Andrei; Rosen, Mark; Madabhushi, Anant; Viswanath, Satish
2018-02-01
The recent advent of radiomics has enabled the development of prognostic and predictive tools which use routine imaging, but a key question that still remains is how reproducible these features may be across multiple sites and scanners. This is especially relevant in the context of MRI data, where signal intensity values lack tissue specific, quantitative meaning, as well as being dependent on acquisition parameters (magnetic field strength, image resolution, type of receiver coil). In this paper we present the first empirical study of the reproducibility of 5 different radiomic feature families in a multi-site setting; specifically, for characterizing prostate MRI appearance. Our cohort comprised 147 patient T2w MRI datasets from 4 different sites, all of which were first pre-processed to correct acquisition-related for artifacts such as bias field, differing voxel resolutions, as well as intensity drift (non-standardness). 406 3D voxel wise radiomic features were extracted and evaluated in a cross-site setting to determine how reproducible they were within a relatively homogeneous non-tumor tissue region; using 2 different measures of reproducibility: Multivariate Coefficient of Variation and Instability Score. Our results demonstrated that Haralick features were most reproducible between all 4 sites. By comparison, Laws features were among the least reproducible between sites, as well as performing highly variably across their entire parameter space. Similarly, the Gabor feature family demonstrated good cross-site reproducibility, but for certain parameter combinations alone. These trends indicate that despite extensive pre-processing, only a subset of radiomic features and associated parameters may be reproducible enough for use within radiomics-based machine learning classifier schemes.
NASA Astrophysics Data System (ADS)
You, Y.; Wang, S.; Yang, Q.; Shen, M.; Chen, G.
2017-12-01
Alpine river water environment on the Plateau (such as Tibetan Plateau, China) is a key indicator for water security and environmental security in China. Due to the complex terrain and various surface eco-environment, it is a very difficult to monitor the water environment over the complex land surface of the plateau. The increasing availability of remote sensing techniques with appropriate spatiotemporal resolutions, broad coverage and low costs allows for effective monitoring river water environment on the Plateau, particularly in remote and inaccessible areas where are lack of in situ observations. In this study, we propose a remote sense-based monitoring model by using multi-platform remote sensing data for monitoring alpine river environment. In this study some parameterization methodologies based on satellite remote sensing data and field observations have been proposed for monitoring the water environmental parameters (including chlorophyll-a concentration (Chl-a), water turbidity (WT) or water clarity (SD), total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC)) over the china's southwest highland rivers, such as the Brahmaputra. First, because most sensors do not collect multiple observations of a target in a single pass, data from multiple orbits or acquisition times may be used, and varying atmospheric and irradiance effects must be reconciled. So based on various types of satellite data, at first we developed the techniques of multi-sensor data correction, atmospheric correction. Second, we also built the inversion spectral database derived from long-term remote sensing data and field sampling data. Then we have studied and developed a high-precision inversion model over the southwest highland river backed by inversion spectral database through using the techniques of multi-sensor remote sensing information optimization and collaboration. Third, take the middle reaches of the Brahmaputra river as the study area, we validated the key water environmental parameters and further improved the inversion model. The results indicate that our proposed water environment inversion model can be a good inversion for alpine water environmental parameters, and can improve the monitoring and warning ability for the alpine river water environment in the future.
Estimation of Key Parameters of the Coupled Energy and Water Model by Assimilating Land Surface Data
NASA Astrophysics Data System (ADS)
Abdolghafoorian, A.; Farhadi, L.
2017-12-01
Accurate estimation of land surface heat and moisture fluxes, as well as root zone soil moisture, is crucial in various hydrological, meteorological, and agricultural applications. Field measurements of these fluxes are costly and cannot be readily scaled to large areas relevant to weather and climate studies. Therefore, there is a need for techniques to make quantitative estimates of heat and moisture fluxes using land surface state observations that are widely available from remote sensing across a range of scale. In this work, we applies the variational data assimilation approach to estimate land surface fluxes and soil moisture profile from the implicit information contained Land Surface Temperature (LST) and Soil Moisture (SM) (hereafter the VDA model). The VDA model is focused on the estimation of three key parameters: 1- neutral bulk heat transfer coefficient (CHN), 2- evaporative fraction from soil and canopy (EF), and 3- saturated hydraulic conductivity (Ksat). CHN and EF regulate the partitioning of available energy between sensible and latent heat fluxes. Ksat is one of the main parameters used in determining infiltration, runoff, groundwater recharge, and in simulating hydrological processes. In this study, a system of coupled parsimonious energy and water model will constrain the estimation of three unknown parameters in the VDA model. The profile of SM (LST) at multiple depths is estimated using moisture diffusion (heat diffusion) equation. In this study, the uncertainties of retrieved unknown parameters and fluxes are estimated from the inverse of Hesian matrix of cost function which is computed using the Lagrangian methodology. Analysis of uncertainty provides valuable information about the accuracy of estimated parameters and their correlation and guide the formulation of a well-posed estimation problem. The results of proposed algorithm are validated with a series of experiments using a synthetic data set generated by the simultaneous heat and water (SHAW) model. In addition, the feasibility of extending this algorithm to use remote sensing observations that have low temporal resolution is examined by assimilating the limited number of land surface moisture and temperature observations.
From LCAs to simplified models: a generic methodology applied to wind power electricity.
Padey, Pierryves; Girard, Robin; le Boulch, Denis; Blanc, Isabelle
2013-02-05
This study presents a generic methodology to produce simplified models able to provide a comprehensive life cycle impact assessment of energy pathways. The methodology relies on the application of global sensitivity analysis to identify key parameters explaining the impact variability of systems over their life cycle. Simplified models are built upon the identification of such key parameters. The methodology is applied to one energy pathway: onshore wind turbines of medium size considering a large sample of possible configurations representative of European conditions. Among several technological, geographical, and methodological parameters, we identified the turbine load factor and the wind turbine lifetime as the most influent parameters. Greenhouse Gas (GHG) performances have been plotted as a function of these key parameters identified. Using these curves, GHG performances of a specific wind turbine can be estimated, thus avoiding the undertaking of an extensive Life Cycle Assessment (LCA). This methodology should be useful for decisions makers, providing them a robust but simple support tool for assessing the environmental performance of energy systems.
Field keys to predators of the balsam woolly aphid in North Carolina
Gene D. Amman
1970-01-01
These keys will be useful for field identification of immature insect, adult mite, and slug predators of the balsam woolly aphid. The keys include, in addition to native predators, the larvae of three species introduced to North Carolina.
NASA Astrophysics Data System (ADS)
Tiotsop, M.; Fotue, A. J.; Fotsin, H. B.; Fai, L. C.
2017-08-01
Bound polaron in RbCl delta quantum dot under electric field and Coulombic impurity were considered. The ground and first excited state energy were derived by employing Pekar variational and unitary transformation methods. Applying Fermi golden rule, the expression of temperature and polaron lifetime were derived. The decoherence was studied trough the Tsallis entropy. Results shows that decreasing (or increasing) the lifetime increases (or decreases) the temperature and delta parameter (electric field strength and hydrogenic impurity). This suggests that to accelerate quantum transition in nanostructure, temperature and delta have to be enhanced. The improvement of electric field and coulomb parameter, increases the lifetime of the delta quantum dot qubit. Energy spectrum of polaron increases with increase in temperature, electric field strength, Coulomb parameter, delta parameter, and polaronic radius. The control of the delta quantum dot energies can be done via the electric field, coulomb impurity, and delta parameter. Results also show that the non-extensive entropy is an oscillatory function of time. With the enhancement of delta parameter, non-extensive parameter, Coulombic parameter, and electric field strength, the entropy has a sinusoidal increase behavior with time. With the study of decoherence through the Tsallis entropy, it may be advised that to have a quantum system with efficient transmission of information, the non-extensive and delta parameters need to be significant. The study of the probability density showed an increase from the boundary to the center of the dot where it has its maximum value and oscillates with period T0 = ℏ / ΔE with the tunneling of the delta parameter, electric field strength, and Coulombic parameter. The results may be very helpful in the transmission of information in nanostructures and control of decoherence
Relaxation models for single helical reversed field pinch plasmas
NASA Astrophysics Data System (ADS)
Paccagnella, Roberto
2016-09-01
In this paper, a relaxation theory for plasmas where a single dominant mode is present [Bhattacharjee et al., Phys. Rev. Lett. 45, 347 (1980)], is revisited. The solutions of a related eigenvalue problem are numerically calculated and discussed. Although these solutions can reproduce well, the magnetic fields measured in experiments, there is no way within the theory to determine the dominant mode, whose pitch is a free parameter in the model. To find the preferred helical perturbation, a procedure is proposed that minimizes the "distance" of the relaxed state from a state which is constructed as a two region generalization of the Taylor's relaxation model [Taylor, Phys. Rev. Lett. 33, 1139 (1974); Rev. Mod. Phys. 58, 751 (1986)] and that allows current discontinuities. It is found that this comparison is able to predict the observed scaling with the aspect ratio and reversal parameter for the dominant mode in the Single Helical states. The aspect ratio scaling alone is discussed in a previous paper [Paccagnella, Nucl. Fusion 56, 046010 (2016)] in terms of the efficient response of a toroidal shell to specific modes (leaving a sign undetermined), showing that the ideal wall boundary condition, a key ingredient in relaxation theories, is particularly well matched for them. Therefore, the present paper altogether [Paccagnella, Nucl. Fusion 56, 046010 (2016)] can give a new and satisfactory explanation of some robust and reproducible experimental facts observed in the Single Helical Reversed Field Pinch plasmas and never explained before.
Key parameters design of an aerial target detection system on a space-based platform
NASA Astrophysics Data System (ADS)
Zhu, Hanlu; Li, Yejin; Hu, Tingliang; Rao, Peng
2018-02-01
To ensure flight safety of an aerial aircraft and avoid recurrence of aircraft collisions, a method of multi-information fusion is proposed to design the key parameter to realize aircraft target detection on a space-based platform. The key parameters of a detection wave band and spatial resolution using the target-background absolute contrast, target-background relative contrast, and signal-to-clutter ratio were determined. This study also presented the signal-to-interference ratio for analyzing system performance. Key parameters are obtained through the simulation of a specific aircraft. And the simulation results show that the boundary ground sampling distance is 30 and 35 m in the mid- wavelength infrared (MWIR) and long-wavelength infrared (LWIR) bands for most aircraft detection, and the most reasonable detection wavebands is 3.4 to 4.2 μm and 4.35 to 4.5 μm in the MWIR bands, and 9.2 to 9.8 μm in the LWIR bands. We also found that the direction of detection has a great impact on the detection efficiency, especially in MWIR bands.
Novel image encryption algorithm based on multiple-parameter discrete fractional random transform
NASA Astrophysics Data System (ADS)
Zhou, Nanrun; Dong, Taiji; Wu, Jianhua
2010-08-01
A new method of digital image encryption is presented by utilizing a new multiple-parameter discrete fractional random transform. Image encryption and decryption are performed based on the index additivity and multiple parameters of the multiple-parameter fractional random transform. The plaintext and ciphertext are respectively in the spatial domain and in the fractional domain determined by the encryption keys. The proposed algorithm can resist statistic analyses effectively. The computer simulation results show that the proposed encryption algorithm is sensitive to the multiple keys, and that it has considerable robustness, noise immunity and security.
Various Ambiguities in Re-constructing Laser Pulse Parameters
NASA Technical Reports Server (NTRS)
Roychoudhuri, Chandrasekhar; Prasa, Narasimha
2006-01-01
We think that mode lock laser pulses are generated by the summation process that take place between the monochromatic EM filed frequencies as if they interact with each other as shown in equation 1. In reality, the pulse generation is a collaborative interaction process between EM fields and various material medium. When we carry out the actual mode lock analysis, we do take into account of interpaly between all the temporal dynamics of the cavity gain medium, cavity round trip time and the response time of the intra cavity element (saturable absorber, Kerr medium, etc.). that really enforces the locking of the phase of the cavity spontaneous emissions. On a conceptual level, this simplistic representation of the mode locking by Eq.1 ignores all these critical physical processes. When we try to analyze a pulsed field, again we start by representing it very much like this equation, even though we can only detect the square modulus of this complex field and loose a lot of phase related information to the detectors quantum whims and their time constants. The key parameters for a light pulse are as follows. Foremost is the (i) carrier frequency, which cannot be described or imagined without its state of undulation expressed as its (ii) phase. Next is our imagined time finite (iii) carrier envelope that provides the temporal boundary of the field amplitude strength of the undulating E-field. The final parameter is the (iv) state of polarization or the unique plane along which the strength of the E-field gradient undulates. None of these filed characteristics are made self-evident to us by the fields themselves. We do not see light. Light does not see light. Light beams pass through each other without altering each others energy distribution unless there are interacting material molecules (dipoles) within the physical volume of superposition of the beams. In contrast, we can sense the material particles. Material particles sense each other and they cannot pass through each other without interacting with (scattering from) each other. Thus the interpretation of the superposition phenomenon of multiple fields on detectors should not be lumped under the mysterious "wave-particle duality" philosophy. The phenomenon of superposition can be understood better when we focus on the actual process experienced by the detecting dipoles when allowed by QM rules, they respond to and sum all the induced stimulations due to all the superposed fields followed by the proportionate energy absorption giving rise to the fringes we observe. We will present various experimental results to illustrate our arguments. Our position is that such detector behavior driven interpretations rather than the generally implied field-field interaction driven explanations, will help us better understand the ultimate nature of light and hence invent better and newer devices and instruments.
Technical Note: Approximate Bayesian parameterization of a complex tropical forest model
NASA Astrophysics Data System (ADS)
Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.
2013-08-01
Inverse parameter estimation of process-based models is a long-standing problem in ecology and evolution. A key problem of inverse parameter estimation is to define a metric that quantifies how well model predictions fit to the data. Such a metric can be expressed by general cost or objective functions, but statistical inversion approaches are based on a particular metric, the probability of observing the data given the model, known as the likelihood. Deriving likelihoods for dynamic models requires making assumptions about the probability for observations to deviate from mean model predictions. For technical reasons, these assumptions are usually derived without explicit consideration of the processes in the simulation. Only in recent years have new methods become available that allow generating likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional MCMC, performs well in retrieving known parameter values from virtual field data generated by the forest model. We analyze the results of the parameter estimation, examine the sensitivity towards the choice and aggregation of model outputs and observed data (summary statistics), and show results from using this method to fit the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss differences of this approach to Approximate Bayesian Computing (ABC), another commonly used method to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation, can successfully be applied to process-based models of high complexity. The methodology is particularly suited to heterogeneous and complex data structures and can easily be adjusted to other model types, including most stochastic population and individual-based models. Our study therefore provides a blueprint for a fairly general approach to parameter estimation of stochastic process-based models in ecology and evolution.
Tong, Xuming; Chen, Jinghang; Miao, Hongyu; Li, Tingting; Zhang, Le
2015-01-01
Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the complicated immune system in detail. To overcome these problems, we developed an integrated ABM regression model (IABMR). It can combine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune system with various phenotypes and types of cells as well as using the input and output of ABM to build up the Loess regression for key parameter estimation. Next, we employed the greedy algorithm to estimate the key parameters of the ABM with respect to the same experimental data set and used ABM to describe a 3D immune system similar to previous studies that employed the DE model. These results indicate that IABMR not only has the potential to simulate the immune system at various scales, phenotypes and cell types, but can also accurately infer the key parameters like DE model. Therefore, this study innovatively developed a complex system development mechanism that could simulate the complicated immune system in detail like ABM and validate the reliability and efficiency of model like DE by fitting the experimental data. PMID:26535589
NASA Astrophysics Data System (ADS)
Ma, X.; Mahecha, M. D.; Migliavacca, M.; Luo, Y.; Urban, M.; Bohn, F. J.; Huth, A.; Reichstein, M.
2017-12-01
A key challenge for monitoring biodiversity change is the lack of consistent measures of biodiversity across space and time. This challenge may be addressed by exploring the potentials provided by novel remote sensing observations. By continuously observing broad-scale patterns of vegetation and land surface parameters, remote sensing can complement the restricted coverage afforded by field measurements. Here we develop methods to infer spatial patterns of biodiversity at ecosystem level from ESA's next-generation Sentinel sensors (Sentinel-1: C-band radar & Sentinel-2: multispectral). Both satellites offer very high spatial (10 m) and temporal resolutions (5 days) measurements with global coverage. We propose and test several ecosystem biodiversity proxies, including landscape spectral diversity, phenological diversity, and canopy structural diversity. These diversity proxies are highly related to some key aspects of essential biodiversity variables (EBVs) as defined by GEO-BON, such as habitat structure, community composition, ecosystem function and structure. We verify spaceborne retrievals of these biodiversity proxies with in situ measurements from drone (spectral diversity), phenocam (phenological diversity), and airborne LiDAR (canopy structural diversity) over multiple flux tower sites within the Mediterranean region. We further compare our remote sensing retrievals of biodiversity proxies against several biodiversity indices as derived from field measurements (incl. ⍺-/β- diversity and Shannon-index) to explore the limitations and potentials of extending the RS proxies to a greater spatial extent. We expect the new concept as to maximize the potential of remote sensing information might help to monitor key aspects of EBVs on a global scale.
Advances toward field application of 3D hydraulic tomography
NASA Astrophysics Data System (ADS)
Cardiff, M. A.; Barrash, W.; Kitanidis, P. K.
2011-12-01
Hydraulic tomography (HT) is a technique that shows great potential for aquifer characterization and one that holds the promise of producing 3D hydraulic property distributions, given suitable equipment. First suggested over 15 years ago, HT assimilates distributed aquifer pressure (head) response data collected during a series of multiple pumping tests to produce estimates of aquifer property variability. Unlike traditional curve-matching analyses, which assume homogeneity or "effective" parameters within the radius of influence of a hydrologic test, HT analysis relies on numerical models with detailed heterogeneity in order to invert for the highly resolved 3D parameter distribution that jointly fits all data. Several numerical and laboratory investigations of characterization using HT have shown that property distributions can be accurately estimated between observation locations when experiments are correctly designed - a property not always shared by other, simpler 1D characterization approaches such as partially-penetrating slug tests. HT may represent one of the best methods available for obtaining detailed 3D aquifer property descriptions, especially in deep or "hard" aquifer materials, where direct-push methods may not be feasible. However, to date HT has not yet been widely adopted at contaminated field sites. We believe that current perceived impediments to HT adoption center around four key issues: 1) A paucity in the scientific literature of proven, cross-validated 3D field applications 2) A lack of guidelines and best practices for performing field 3D HT experiments; 3) Practical difficulty and time commitment associated with the installation of a large number of high-accuracy sampling locations, and the running of a large number of pumping tests; and 4) Computational difficulty associated with solving large-scale inverse problems for parameter identification. In this talk, we present current results in 3D HT research that addresses these four issues, and thus bring HT closer to field practice. Topics to be discussed include: -Improving field efficiency through design and implementation of new modular, easily-installed equipment for 3D HT. -Validating field-scale 3D HT through application and cross-validation at the Boise Hydrogeophysical Research Site. -Developing guidelines for HT implementation based on field experience, numerical modeling, and a comprehensive literature review of the past 15 years of HT research. -Application of novel, fast numerical methods for large-scale HT data analysis. The results presented will focus on the application of 3D HT, but in general we also hope to provide insights on aquifer characterization that stimulate thought on the issue of continually updating aquifer characteristics estimates while recognizing uncertainties and providing guidance for future data collection.
Improved routing strategy based on gravitational field theory
NASA Astrophysics Data System (ADS)
Song, Hai-Quan; Guo, Jin
2015-10-01
Routing and path selection are crucial for many communication and logistic applications. We study the interaction between nodes and packets and establish a simple model for describing the attraction of the node to the packet in transmission process by using the gravitational field theory, considering the real and potential congestion of the nodes. On the basis of this model, we propose a gravitational field routing strategy that considers the attractions of all of the nodes on the travel path to the packet. In order to illustrate the efficiency of proposed routing algorithm, we introduce the order parameter to measure the throughput of the network by the critical value of phase transition from a free flow phase to a congested phase, and study the distribution of betweenness centrality and traffic jam. Simulations show that, compared with the shortest path routing strategy, the gravitational field routing strategy considerably enhances the throughput of the network and balances the traffic load, and nearly all of the nodes are used efficiently. Project supported by the Technology and Development Research Project of China Railway Corporation (Grant No. 2012X007-D) and the Key Program of Technology and Development Research Foundation of China Railway Corporation (Grant No. 2012X003-A).
NASA Astrophysics Data System (ADS)
Blöcker, T.; Hofmann, K.-H.; Przygodda, F.; Weigelt, G.
We present computer simulations of interferometric imaging with the VLT interferometer and the AMBER instrument. These simulations include both the astrophysical modelling of a stellar object by radiative transfer calculations and the simulation of light propagation from the object to the detector (through atmosphere, telescopes, and the AMBER instrument), simulation of photon noise and detector read-out noise, and finally data processing of the interferograms. The results show the dependence of the visibility error bars on the following observational parameters: different seeing during the observation of object and reference star (Fried parameters r0,object and r0,ref. ranging between 0.9 m and 1.2 m), different residual tip-tilt error (δtt,object and δtt,ref. ranging between 0.1% and 20% of the Airy disk diameter), and object brightness (Kobject=3.5 mag to 13 mag, Kref.=3.5 mag). Exemplarily, we focus on stars in late stages of stellar evolution and study one of its key objects, the dusty supergiant IRC +10 420 that is rapidly evolving on human timescales. We show computer simulations of VLT interferometry of IRC +10 420 with two ATs (wide-field mode, i.e. without fiber optics spatial filters) and discuss whether the visibility accuracy is sufficient to distinguish between different theoretical model predictions.
Daoudi, Jordan; Betelu, Stephanie; Tzedakis, Theodore; Bertrand, Johan; Ignatiadis, Ioannis
2017-01-01
We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl− selective electrodes, one Ag2S/Ag-based reference or S2− selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors. PMID:28608820
Daoudi, Jordan; Betelu, Stephanie; Tzedakis, Theodore; Bertrand, Johan; Ignatiadis, Ioannis
2017-06-13
We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl - selective electrodes, one Ag₂S/Ag-based reference or S 2- selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors.
NASA Technical Reports Server (NTRS)
Sullivan, Sylvia C.; Betancourt, Ricardo Morales; Barahona, Donifan; Nenes, Athanasios
2016-01-01
Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are done with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.
[A Terahertz Spectral Database Based on Browser/Server Technique].
Zhang, Zhuo-yong; Song, Yue
2015-09-01
With the solution of key scientific and technical problems and development of instrumentation, the application of terahertz technology in various fields has been paid more and more attention. Owing to the unique characteristic advantages, terahertz technology has been showing a broad future in the fields of fast, non-damaging detections, as well as many other fields. Terahertz technology combined with other complementary methods can be used to cope with many difficult practical problems which could not be solved before. One of the critical points for further development of practical terahertz detection methods depends on a good and reliable terahertz spectral database. We developed a BS (browser/server) -based terahertz spectral database recently. We designed the main structure and main functions to fulfill practical requirements. The terahertz spectral database now includes more than 240 items, and the spectral information was collected based on three sources: (1) collection and citation from some other abroad terahertz spectral databases; (2) collected from published literatures; and (3) spectral data measured in our laboratory. The present paper introduced the basic structure and fundament functions of the terahertz spectral database developed in our laboratory. One of the key functions of this THz database is calculation of optical parameters. Some optical parameters including absorption coefficient, refractive index, etc. can be calculated based on the input THz time domain spectra. The other main functions and searching methods of the browser/server-based terahertz spectral database have been discussed. The database search system can provide users convenient functions including user registration, inquiry, displaying spectral figures and molecular structures, spectral matching, etc. The THz database system provides an on-line searching function for registered users. Registered users can compare the input THz spectrum with the spectra of database, according to the obtained correlation coefficient one can perform the searching task very fast and conveniently. Our terahertz spectral database can be accessed at http://www.teralibrary.com. The proposed terahertz spectral database is based on spectral information so far, and will be improved in the future. We hope this terahertz spectral database can provide users powerful, convenient, and high efficient functions, and could promote the broader applications of terahertz technology.
a R-Shiny Based Phenology Analysis System and Case Study Using Digital Camera Dataset
NASA Astrophysics Data System (ADS)
Zhou, Y. K.
2018-05-01
Accurate extracting of the vegetation phenology information play an important role in exploring the effects of climate changes on vegetation. Repeated photos from digital camera is a useful and huge data source in phonological analysis. Data processing and mining on phenological data is still a big challenge. There is no single tool or a universal solution for big data processing and visualization in the field of phenology extraction. In this paper, we proposed a R-shiny based web application for vegetation phenological parameters extraction and analysis. Its main functions include phenological site distribution visualization, ROI (Region of Interest) selection, vegetation index calculation and visualization, data filtering, growth trajectory fitting, phenology parameters extraction, etc. the long-term observation photography data from Freemanwood site in 2013 is processed by this system as an example. The results show that: (1) this system is capable of analyzing large data using a distributed framework; (2) The combination of multiple parameter extraction and growth curve fitting methods could effectively extract the key phenology parameters. Moreover, there are discrepancies between different combination methods in unique study areas. Vegetation with single-growth peak is suitable for using the double logistic module to fit the growth trajectory, while vegetation with multi-growth peaks should better use spline method.
Hyper-Spectral Image Analysis With Partially Latent Regression and Spatial Markov Dependencies
NASA Astrophysics Data System (ADS)
Deleforge, Antoine; Forbes, Florence; Ba, Sileye; Horaud, Radu
2015-09-01
Hyper-spectral data can be analyzed to recover physical properties at large planetary scales. This involves resolving inverse problems which can be addressed within machine learning, with the advantage that, once a relationship between physical parameters and spectra has been established in a data-driven fashion, the learned relationship can be used to estimate physical parameters for new hyper-spectral observations. Within this framework, we propose a spatially-constrained and partially-latent regression method which maps high-dimensional inputs (hyper-spectral images) onto low-dimensional responses (physical parameters such as the local chemical composition of the soil). The proposed regression model comprises two key features. Firstly, it combines a Gaussian mixture of locally-linear mappings (GLLiM) with a partially-latent response model. While the former makes high-dimensional regression tractable, the latter enables to deal with physical parameters that cannot be observed or, more generally, with data contaminated by experimental artifacts that cannot be explained with noise models. Secondly, spatial constraints are introduced in the model through a Markov random field (MRF) prior which provides a spatial structure to the Gaussian-mixture hidden variables. Experiments conducted on a database composed of remotely sensed observations collected from the Mars planet by the Mars Express orbiter demonstrate the effectiveness of the proposed model.
NASA Astrophysics Data System (ADS)
Snow, Michael G.; Bajaj, Anil K.
2015-08-01
This work presents an uncertainty quantification (UQ) analysis of a comprehensive model for an electrostatically actuated microelectromechanical system (MEMS) switch. The goal is to elucidate the effects of parameter variations on certain key performance characteristics of the switch. A sufficiently detailed model of the electrostatically actuated switch in the basic configuration of a clamped-clamped beam is developed. This multi-physics model accounts for various physical effects, including the electrostatic fringing field, finite length of electrodes, squeeze film damping, and contact between the beam and the dielectric layer. The performance characteristics of immediate interest are the static and dynamic pull-in voltages for the switch. Numerical approaches for evaluating these characteristics are developed and described. Using Latin Hypercube Sampling and other sampling methods, the model is evaluated to find these performance characteristics when variability in the model's geometric and physical parameters is specified. Response surfaces of these results are constructed via a Multivariate Adaptive Regression Splines (MARS) technique. Using a Direct Simulation Monte Carlo (DSMC) technique on these response surfaces gives smooth probability density functions (PDFs) of the outputs characteristics when input probability characteristics are specified. The relative variation in the two pull-in voltages due to each of the input parameters is used to determine the critical parameters.
[Key content and formulation of national Chinese materia medica resources survey at county level].
Lu, Jian-Wei; Zhang, Xiao-Bo; Li, Hai-Tao; Guo, Lan-Ping; Zhao, Run-Huai; Zhang, Ben-Gang; Sun, Li-Ying; Huang, Lu-Qi
2013-08-01
According to National Census for Water, National Population Census, National Land and Resources Survey, and work experience of experimental measures for national Chinese materia medica resources(CMMR) survey,the national CMMR survey at the county level is the key point of whole survey, that includes organization and management, field survey, sorting data three key links. Organization and management works of national CMMR survey needs to finish four key contents, there are definite goals and tasks, practicable crew, preparation directory, and security assurance. Field survey works of the national CMMR survey needs to finish five key contents, there are preparation works for field survey, the choice of the key survey area (samples), fill in the questionnaire, video data collection, specimen and other physical collection. Sorting data works of the national CMMR survey needs to finish tree key contents, there are data, specimen and census results.
Respiratory gating and multifield technique radiotherapy for esophageal cancer.
Ohta, Atsushi; Kaidu, Motoki; Tanabe, Satoshi; Utsunomiya, Satoru; Sasamoto, Ryuta; Maruyama, Katsuya; Tanaka, Kensuke; Saito, Hirotake; Nakano, Toshimichi; Shioi, Miki; Takahashi, Haruna; Kushima, Naotaka; Abe, Eisuke; Aoyama, Hidefumi
2017-03-01
To investigate the effects of a respiratory gating and multifield technique on the dose-volume histogram (DVH) in radiotherapy for esophageal cancer. Twenty patients who underwent four-dimensional computed tomography for esophageal cancer were included. We retrospectively created the four treatment plans for each patient, with or without the respiratory gating and multifield technique: No gating-2-field, No gating-4-field, Gating-2-field, and Gating-4-field plans. We compared the DVH parameters of the lung and heart in the No gating-2-field plan with the other three plans. In the comparison of the parameters in the No gating-2-field plan, there are significant differences in the Lung V 5Gy , V 20Gy , mean dose with all three plans and the Heart V 25Gy -V 40Gy with Gating-2-field plan, V 35Gy , V 40Gy , mean dose with No Gating-4-field plan and V 30Gy -V 40Gy , and mean dose with Gating-4-field plan. The lung parameters were smaller in the Gating-2-field plan and larger in the No gating-4-field and Gating-4-field plans. The heart parameters were all larger in the No gating-2-field plan. The lung parameters were reduced by the respiratory gating technique and increased by the multifield technique. The heart parameters were reduced by both techniques. It is important to select the optimal technique according to the risk of complications.
All-Atom Internal Coordinate Mechanics (ICM) Force Field for Hexopyranoses and Glycoproteins.
Arnautova, Yelena A; Abagyan, Ruben; Totrov, Maxim
2015-05-12
We present an extension of the all-atom internal-coordinate force field, ICMFF, that allows for simulation of heterogeneous systems including hexopyranose saccharides and glycan chains in addition to proteins. A library of standard glycan geometries containing α- and β-anomers of the most common hexapyranoses, i.e., d-galactose, d-glucose, d-mannose, d-xylose, l-fucose, N -acetylglucosamine, N -acetylgalactosamine, sialic, and glucuronic acids, is created based on the analysis of the saccharide structures reported in the Cambridge Structural Database. The new force field parameters include molecular electrostatic potential-derived partial atomic charges and the torsional parameters derived from quantum mechanical data for a collection of minimal molecular fragments and related molecules. The ϕ/ψ torsional parameters for different types of glycosidic linkages are developed using model compounds containing the key atoms in the full carbohydrates, i.e., glycosidic-linked tetrahydropyran-cyclohexane dimers. Target data for parameter optimization include two-dimensional energy surfaces corresponding to the ϕ/ψ glycosidic dihedral angles in the disaccharide analogues, as determined by quantum mechanical MP2/6-31G** single-point energies on HF/6-31G** optimized structures. To achieve better agreement with the observed geometries of glycosidic linkages, the bond angles at the O-linkage atoms are added to the internal variable set and the corresponding bond bending energy term is parametrized using quantum mechanical data. The resulting force field is validated on glycan chains of 1-12 residues from a set of high-resolution X-ray glycoprotein structures based on heavy atom root-mean-square deviations of the lowest-energy glycan conformations generated by the biased probability Monte Carlo (BPMC) molecular mechanics simulations from the native structures. The appropriate BPMC distributions for monosaccharide-monosaccharide and protein-glycan linkages are derived from the extensive analysis of conformational properties of glycoprotein structures reported in the Protein Data Bank. Use of the BPMC search leads to significant improvements in sampling efficiency for glycan simulations. Moreover, good agreement with the X-ray glycoprotein structures is achieved for all glycan chain lengths. Thus, average/median RMSDs are 0.81/0.68 Å for one-residue glycans and 1.32/1.47 Å for three-residue glycans. RMSD from the native structure for the lowest-energy conformation of the 12-residue glycan chain (PDB ID 3og2) is 1.53 Å. Additionally, results obtained for free short oligosaccharides using the new force field are in line with the available experimental data, i.e., the most populated conformations in solution are predicted to be the lowest energy ones. The newly developed parameters allow for the accurate modeling of linear and branched hexopyranose glycosides in heterogeneous systems.
Bugnicourt, Elodie; Kehoe, Timothy; Latorre, Marcos; Serrano, Cristina; Philippe, Séverine; Schmid, Markus
2016-08-19
Nanostructured materials have emerged as a key research field in order to confer materials with unique or enhanced properties. The performance of nanocomposites depends on a number of parameters, but the suitable dispersion of nanoparticles remains the key in order to obtain the full nanocomposites' potential in terms of, e.g., flame retardance, mechanical, barrier, thermal properties, etc. Likewise, the performance of nanocoatings to obtain, for example, tailored surface affinity with selected liquids (e.g., for self-cleaning ability or anti-fog properties), protective effects against flame propagation, ultra violet (UV) radiation or gas permeation, is highly dependent on the nanocoating's thickness and homogeneity. In terms of recent advances in the monitoring of nanocomposites and nanocoatings, this review discusses commonly-used offline characterization approaches, as well as promising inline systems. All in all, having good control over both the dispersion and thickness of these materials would help with reaching optimal and consistent properties to allow nanocomposites to extend their use.
Recent Prospects in the Inline Monitoring of Nanocomposites and Nanocoatings by Optical Technologies
Bugnicourt, Elodie; Kehoe, Timothy; Latorre, Marcos; Serrano, Cristina; Philippe, Séverine; Schmid, Markus
2016-01-01
Nanostructured materials have emerged as a key research field in order to confer materials with unique or enhanced properties. The performance of nanocomposites depends on a number of parameters, but the suitable dispersion of nanoparticles remains the key in order to obtain the full nanocomposites’ potential in terms of, e.g., flame retardance, mechanical, barrier, thermal properties, etc. Likewise, the performance of nanocoatings to obtain, for example, tailored surface affinity with selected liquids (e.g., for self-cleaning ability or anti-fog properties), protective effects against flame propagation, ultra violet (UV) radiation or gas permeation, is highly dependent on the nanocoating’s thickness and homogeneity. In terms of recent advances in the monitoring of nanocomposites and nanocoatings, this review discusses commonly-used offline characterization approaches, as well as promising inline systems. All in all, having good control over both the dispersion and thickness of these materials would help with reaching optimal and consistent properties to allow nanocomposites to extend their use. PMID:28335278
CO{sub 2} Laser Ablation Propulsion Area Scaling With Polyoxymethylene Propellant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinko, John E.; Ichihashi, Katsuhiro; Ogita, Naoya
The topic of area scaling is of great importance in the laser propulsion field, including applications to removal of space debris and to selection of size ranges for laser propulsion craft in air or vacuum conditions. To address this issue experimentally, a CO{sub 2} laser operating at up to 10 J was used to irradiate targets. Experiments were conducted in air and vacuum conditions over a range of areas from about 0.05-5 cm{sup 2} to ablate flat polyoxymethylene targets at several fluences. Theoretical effects affecting area scaling, such as rarefaction waves, thermal diffusion, and diffraction, are discussed in terms ofmore » the experimental results. Surface profilometry was used to characterize the ablation samples. A CFD model is used to facilitate analysis, and key results are compared between experimental and model considerations. The dependence of key laser propulsion parameters, including the momentum coupling coefficient and specific impulse, are calculated based on experimental data, and results are compared to existing literature data.« less
Schmidt, Kerstin; Schmidtke, Jörg; Mast, Yvonne; Waldvogel, Eva; Wohlleben, Wolfgang; Klemke, Friederike; Lockau, Wolfgang; Hausmann, Tina; Hühns, Maja; Broer, Inge
2017-08-01
Potatoes are a promising system for industrial production of the biopolymer cyanophycin as a second compound in addition to starch. To assess the efficiency in the field, we analysed the stability of the system, specifically its sensitivity to environmental factors. Field and greenhouse trials with transgenic potatoes (two independent events) were carried out for three years. The influence of environmental factors was measured and target compounds in the transgenic plants (cyanophycin, amino acids) were analysed for differences to control plants. Furthermore, non-target parameters (starch content, number, weight and size of tubers) were analysed for equivalence with control plants. The huge amount of data received was handled using modern statistical approaches to model the correlation between influencing environmental factors (year of cultivation, nitrogen fertilization, origin of plants, greenhouse or field cultivation) and key components (starch, amino acids, cyanophycin) and agronomic characteristics. General linear models were used for modelling, and standard effect sizes were applied to compare conventional and genetically modified plants. Altogether, the field trials prove that significant cyanophycin production is possible without reduction of starch content. Non-target compound composition seems to be equivalent under varying environmental conditions. Additionally, a quick test to measure cyanophycin content gives similar results compared to the extensive enzymatic test. This work facilitates the commercial cultivation of cyanophycin potatoes.
NASA Astrophysics Data System (ADS)
Chee, Kuan W. A.; Hu, Yuning
2018-07-01
There has always been an inexorable interest in the solar industry in boosting the photovoltaic conversion efficiency. This paper presents a theoretical and numerical simulation study of the effects of key design parameters on the photoelectric performance of single junction (InGaP- or GaAs-based) and dual junction (InGaP/GaAs) inorganic solar cells. The influence of base layer thickness, base doping concentration, junction temperature, back surface field layer composition and thickness, and tunnel junction material, were correlated with open circuit voltage, short-circuit current, fill factor and power conversion efficiency performance. The InGaP/GaAs dual junction solar cell was optimized with the tunnel junction and back surface field designs, yielding a short-circuit current density of 20.71 mAcm-2 , open-circuit voltage of 2.44 V and fill factor of 88.6%, and guaranteeing an optimal power conversion efficiency of at least 32.4% under 1 sun AM0 illumination even without an anti-reflective coating.
An ab-initio coupled mode theory for near field radiative thermal transfer.
Chalabi, Hamidreza; Hasman, Erez; Brongersma, Mark L
2014-12-01
We investigate the thermal transfer between finite-thickness planar slabs which support surface phonon polariton modes (SPhPs). The thickness-dependent dispersion of SPhPs in such layered materials provides a unique opportunity to manipulate and enhance the near field thermal transfer. The key accomplishment of this paper is the development of an ab-initio coupled mode theory that accurately describes all of its thermal transfer properties. We illustrate how the coupled mode parameters can be obtained in a direct fashion from the dispersion relation of the relevant modes of the system. This is illustrated for the specific case of a semi-infinite SiC substrate placed in close proximity to a thin slab of SiC. This is a system that exhibits rich physics in terms of its thermal transfer properties, despite the seemingly simple geometry. This includes a universal scaling behavior of the thermal conductance with the slab thickness and spacing. The work highlights and further increases the value of coupled mode theories in rapidly calculating and intuitively understanding near-field transfer.
Terahertz magneto-optical properties of bi- and tri-layer graphene
NASA Astrophysics Data System (ADS)
Mei, Hongying; Xu, Wen; Wang, Chao; Yuan, Haifeng; Zhang, Chao; Ding, Lan; Zhang, Jin; Deng, Chao; Wang, Yifan; Peeters, Francois M.
2018-05-01
Magneto-optical (MO) properties of bi- and tri-layer graphene are investigated utilizing terahertz time-domain spectroscopy (THz TDS) in the presence of a strong magnetic field at room-temperature. In the Faraday configuration and applying optical polarization measurements, we measure the real and imaginary parts of the longitudinal and transverse MO conductivities of different graphene samples. The obtained experimental data fits very well with the classical MO Drude formula. Thus, we are able to obtain the key sample and material parameters of bi- and tri-layer graphene, such as the electron effective mass, the electronic relaxation time and the electron density. It is found that in high magnetic fields the electronic relaxation time τ for bi- and tri-layer graphene increases with magnetic field B roughly in a form τ∼ B2 . Most importantly, we obtain the electron effective mass for bi- and tri-layer graphene at room-temperature under non-resonant conditions. This work shows how the advanced THz MO techniques can be applied for the investigation into fundamental physics properties of atomically thin 2D electronic systems.
Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved.
Brassard, Patrick; Godbout, Stéphane; Raghavan, Vijaya
2016-10-01
Biochar, a solid porous material obtained from the carbonization of biomass under low or no oxygen conditions, has been proposed as a climate change mitigation tool because it is expected to sequester carbon (C) for centuries and to reduce greenhouse gas (GHG) emissions from soils. This review aimed to identify key biochar properties and production parameters that have an effect on these specific applications of the biochar. Moreover, mechanisms involved in interactions between biochar and soils were highlighted. Following a compilation and comparison of the characteristics of 76 biochars from 40 research studies, biochars with a lower N content, and consequently a higher C/N ratio (>30), were found to be more suitable for mitigation of N2O emissions from soils. Moreover, biochars produced at a higher pyrolysis temperature, and with O/C ratio <0.2, H/Corg ratio <0.4 and volatile matter below 80% may have high C sequestration potential. Based on these observations, biochar production and application to the field can be used as a tool to mitigate climate change. However, it is important to determine the pyrolysis conditions and feedstock needed to produce a biochar with the desired properties for a specific application. More research studies are needed to identify the exact mechanisms involved following biochar amendment to soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Experimental Design for the LATOR Mission
NASA Technical Reports Server (NTRS)
Turyshev, Slava G.; Shao, Michael; Nordtvedt, Kenneth, Jr.
2004-01-01
This paper discusses experimental design for the Laser Astrometric Test Of Relativity (LATOR) mission. LATOR is designed to reach unprecedented accuracy of 1 part in 10(exp 8) in measuring the curvature of the solar gravitational field as given by the value of the key Eddington post-Newtonian parameter gamma. This mission will demonstrate the accuracy needed to measure effects of the next post-Newtonian order (near infinity G2) of light deflection resulting from gravity s intrinsic non-linearity. LATOR will provide the first precise measurement of the solar quadrupole moment parameter, J(sub 2), and will improve determination of a variety of relativistic effects including Lense-Thirring precession. The mission will benefit from the recent progress in the optical communication technologies the immediate and natural step above the standard radio-metric techniques. The key element of LATOR is a geometric redundancy provided by the laser ranging and long-baseline optical interferometry. We discuss the mission and optical designs, as well as the expected performance of this proposed mission. LATOR will lead to very robust advances in the tests of Fundamental physics: this mission could discover a violation or extension of general relativity, or reveal the presence of an additional long range interaction in the physical law. There are no analogs to the LATOR experiment; it is unique and is a natural culmination of solar system gravity experiments.
Space-weather Parameters for 1,000 Active Regions Observed by SDO/HMI
NASA Astrophysics Data System (ADS)
Bobra, M.; Liu, Y.; Hoeksema, J. T.; Sun, X.
2013-12-01
We present statistical studies of several space-weather parameters, derived from observations of the photospheric vector magnetic field by the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory, for a thousand active regions. Each active region has been observed every twelve minutes during the entirety of its disk passage. Some of these parameters, such as energy density and shear angle, indicate the deviation of the photospheric magnetic field from that of a potential field. Other parameters include flux, helicity, field gradients, polarity inversion line properties, and measures of complexity. We show that some of these parameters are useful for event prediction.
Human body motion capture from multi-image video sequences
NASA Astrophysics Data System (ADS)
D'Apuzzo, Nicola
2003-01-01
In this paper is presented a method to capture the motion of the human body from multi image video sequences without using markers. The process is composed of five steps: acquisition of video sequences, calibration of the system, surface measurement of the human body for each frame, 3-D surface tracking and tracking of key points. The image acquisition system is currently composed of three synchronized progressive scan CCD cameras and a frame grabber which acquires a sequence of triplet images. Self calibration methods are applied to gain exterior orientation of the cameras, the parameters of internal orientation and the parameters modeling the lens distortion. From the video sequences, two kinds of 3-D information are extracted: a three-dimensional surface measurement of the visible parts of the body for each triplet and 3-D trajectories of points on the body. The approach for surface measurement is based on multi-image matching, using the adaptive least squares method. A full automatic matching process determines a dense set of corresponding points in the triplets. The 3-D coordinates of the matched points are then computed by forward ray intersection using the orientation and calibration data of the cameras. The tracking process is also based on least squares matching techniques. Its basic idea is to track triplets of corresponding points in the three images through the sequence and compute their 3-D trajectories. The spatial correspondences between the three images at the same time and the temporal correspondences between subsequent frames are determined with a least squares matching algorithm. The results of the tracking process are the coordinates of a point in the three images through the sequence, thus the 3-D trajectory is determined by computing the 3-D coordinates of the point at each time step by forward ray intersection. Velocities and accelerations are also computed. The advantage of this tracking process is twofold: it can track natural points, without using markers; and it can track local surfaces on the human body. In the last case, the tracking process is applied to all the points matched in the region of interest. The result can be seen as a vector field of trajectories (position, velocity and acceleration). The last step of the process is the definition of selected key points of the human body. A key point is a 3-D region defined in the vector field of trajectories, whose size can vary and whose position is defined by its center of gravity. The key points are tracked in a simple way: the position at the next time step is established by the mean value of the displacement of all the trajectories inside its region. The tracked key points lead to a final result comparable to the conventional motion capture systems: 3-D trajectories of key points which can be afterwards analyzed and used for animation or medical purposes.
Nagasaki, Masao; Yamaguchi, Rui; Yoshida, Ryo; Imoto, Seiya; Doi, Atsushi; Tamada, Yoshinori; Matsuno, Hiroshi; Miyano, Satoru; Higuchi, Tomoyuki
2006-01-01
We propose an automatic construction method of the hybrid functional Petri net as a simulation model of biological pathways. The problems we consider are how we choose the values of parameters and how we set the network structure. Usually, we tune these unknown factors empirically so that the simulation results are consistent with biological knowledge. Obviously, this approach has the limitation in the size of network of interest. To extend the capability of the simulation model, we propose the use of data assimilation approach that was originally established in the field of geophysical simulation science. We provide genomic data assimilation framework that establishes a link between our simulation model and observed data like microarray gene expression data by using a nonlinear state space model. A key idea of our genomic data assimilation is that the unknown parameters in simulation model are converted as the parameter of the state space model and the estimates are obtained as the maximum a posteriori estimators. In the parameter estimation process, the simulation model is used to generate the system model in the state space model. Such a formulation enables us to handle both the model construction and the parameter tuning within a framework of the Bayesian statistical inferences. In particular, the Bayesian approach provides us a way of controlling overfitting during the parameter estimations that is essential for constructing a reliable biological pathway. We demonstrate the effectiveness of our approach using synthetic data. As a result, parameter estimation using genomic data assimilation works very well and the network structure is suitably selected.
Enhanced modulation rates via field modulation in spin torque nano-oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purbawati, A.; Garcia-Sanchez, F.; Buda-Prejbeanu, L. D.
Spin Transfer Nano-Oscillators (STNOs) are promising candidates for telecommunications applications due to their frequency tuning capabilities via either a dc current or an applied field. This frequency tuning is of interest for Frequency Shift Keying concepts to be used in wireless communication schemes or in read head applications. For these technological applications, one important parameter is the characterization of the maximum achievable rate at which an STNO can respond to a modulating signal, such as current or field. Previous studies of in-plane magnetized STNOs on frequency modulation via an rf current revealed that the maximum achievable rate is limited bymore » the amplitude relaxation rate Γ{sub p}, which gives the time scale over which amplitude fluctuations are damped out. This might be a limitation for applications. Here, we demonstrate via numerical simulation that application of an additional rf field is an alternative way for modulation of the in-plane magnetized STNO configuration, which has the advantage that frequency modulation is not limited by the amplitude relaxation rate, so that higher modulation rates above GHz are achievable. This occurs when the modulating rf field is oriented along the easy axis (longitudinal rf field). Tilting the direction of the modulating rf field in-plane and perpendicularly with respect to the easy axis (transverse rf field), the modulation is again limited by the amplitude relaxation rate similar to the response observed in current modulation.« less
Reusable Launch Vehicle Tank/Intertank Sizing Trade Study
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Myers, David E.; Martin, Carl J.
2000-01-01
A tank and intertank sizing tool that includes effects of major design drivers, and which allows parametric studies to be performed, has been developed and calibrated against independent representative results. Although additional design features, such as bulkheads and field joints, are not currently included in the process, the improved level of fidelity has allowed parametric studies to be performed which have resulted in understanding of key tank and intertank design drivers, design sensitivities, and definition of preferred design spaces. The sizing results demonstrated that there were many interactions between the configuration parameters of internal/external payload, vehicle fineness ratio (half body angle), fuel arrangement (LOX-forward/LOX-aft), number of tanks, and tank shape/arrangement (number of lobes).
Role of external torque in the formation of ion thermal internal transport barriers
NASA Astrophysics Data System (ADS)
Jhang, Hogun; Kim, S. S.; Diamond, P. H.
2012-04-01
We present an analytic study of the impact of external torque on the formation of ion internal transport barriers (ITBs). A simple analytic relation representing the effect of low external torque on transport bifurcations is derived based on a two field transport model of pressure and toroidal momentum density. It is found that the application of an external torque can either facilitate or hamper bifurcation in heat flux driven plasmas depending on its sign relative to the direction of intrinsic torque. The ratio between radially integrated momentum (i.e., external torque) density to power input is shown to be a key macroscopic control parameter governing the characteristics of bifurcation.
Threat to life and risk-taking behaviors: a review of empirical findings and explanatory models.
Ben-Zur, Hasida; Zeidner, Moshe
2009-05-01
This article reviews the literature focusing on the relationship between perceived threat to life and risk-taking behaviors. The review of empirical data, garnered from field studies and controlled experiments, suggests that personal threat to life results in elevated risk-taking behavior. To account for these findings, this review proposes a number of theoretical explanations. These frameworks are grounded in divergent conceptual models: coping with stress, emotion regulation, replenishing of lost resources through self-enhancement, modifications of key parameters of cognitive processing of risky outcomes, and neurocognitive mechanisms. The review concludes with a number of methodological considerations, as well as directions for future work in this promising area of research.
Itinerant Microwave Photon Detector
NASA Astrophysics Data System (ADS)
Royer, Baptiste; Grimsmo, Arne L.; Choquette-Poitevin, Alexandre; Blais, Alexandre
2018-05-01
The realization of a high-efficiency microwave single photon detector is a long-standing problem in the field of microwave quantum optics. Here, we propose a quantum nondemolition, high-efficiency photon detector that can readily be implemented in present state-of-the-art circuit quantum electrodynamics. This scheme works in a continuous fashion, gaining information about the photon arrival time as well as about its presence. The key insight that allows us to circumvent the usual limitations imposed by measurement backaction is the use of long-lived dark states in a small ensemble of inhomogeneous artificial atoms to increase the interaction time between the photon and the measurement device. Using realistic system parameters, we show that large detection fidelities are possible.
[Research advances in water quality monitoring technology based on UV-Vis spectrum analysis].
Wei, Kang-Lin; Wen, Zhi-yu; Wu, Xin; Zhang, Zhong-Wei; Zeng, Tian-Ling
2011-04-01
The application of spectral analysis to water quality monitoring is an important developing trend in the field of modern environment monitoring technology. The principle and characteristic of water quality monitoring technology based on UV-Vis spectrum analysis are briefly reviewed. And the research status and advances are introduced from two aspects, on-line monitoring and in-situ monitoring. Moreover, the existent key technical problems are put forward. Finally, the technology trends of multi-parameter water quality monitoring microsystem and microsystem networks based on microspectrometer are prospected, which has certain reference value for the research and development of environmental monitoring technology and modern scientific instrument in the authors' country.
What is strange about high-temperature superconductivity in cuprates?
NASA Astrophysics Data System (ADS)
Božović, I.; He, X.; Wu, J.; Bollinger, A. T.
2017-10-01
Cuprate superconductors exhibit many features, but the ultimate question is why the critical temperature (Tc) is so high. The fundamental dichotomy is between the weak-pairing, Bardeen-Cooper-Schrieffer (BCS) scenario, and Bose-Einstein condensation (BEC) of strongly-bound pairs. While for underdoped cuprates it is hotly debated which of these pictures is appropriate, it is commonly believed that on the overdoped side strongly-correlated fermion physics evolves smoothly into the conventional BCS behavior. Here, we test this dogma by studying the dependence of key superconducting parameters on doping, temperature, and external fields, in thousands of cuprate samples. The findings do not conform to BCS predictions anywhere in the phase diagram.
Modeling spatially localized photonic nanojets from phase diffraction gratings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geints, Yu. E., E-mail: ygeints@iao.ru; Tomsk State University, 36, Lenina Avenue, Tomsk 634050; Zemlyanov, A. A.
2016-04-21
We investigated numerically the specific spatially localized intense optical structure, a photonic nanojet (PNJ), formed in the near-field scattering of optical radiation at phase diffraction gratings. The finite-difference time-domain technique was employed to study the PNJ key parameters (length, width, focal distance, and intensity) produced by diffraction gratings with the saw-tooth, rectangle, and hemispheric line profiles. Our analysis showed that each type of diffraction gratings produces a photonic jet with unique characteristics. Based on the numerical calculations, we demonstrate that the PNJ could be manipulated in a wide range through the variation of period, duty cycle, and shape of diffractionmore » grating rulings.« less
NASA Astrophysics Data System (ADS)
Murcia, H.; Németh, K.; Moufti, M. R.; Lindsay, J. M.; El-Masry, N.; Cronin, S. J.; Qaddah, A.; Smith, I. E. M.
2014-04-01
A "lava morphotype" refers to the recognizable and distinctive characteristics of the surface morphology of a lava flow after solidification, used in a similar way to a sedimentary facies. This classification method is explored on an example volcanic field in the Kingdom of Saudi Arabia, where copious lava outpourings may represent an important transition between monogenetic and flood basalt fields. Here, young and well-preserved mafic lava fields display a wide range of surface morphologies. We focussed on four post-4500 yrs. BP lava flow fields in northern Harrat Rahat (<10 Ma) and propose a framework for describing systematic changes in morphotypes down-flow. The morphotypes give insight into intrinsic and extrinsic parameters of emplacement, rheology and dominant flow behavior, as well as the occurrence and character of other lava structures. The Harrat Rahat lava flow fields studied extend up to 23 km from the source, and vary between 1-2 m and 12 m in thickness. Areas of the lava flow fields are between ˜32 and ˜61 km2, with individual flow field volumes estimated between ˜0.085 and ˜0.29 km3. They exhibit Shelly-, Slabby-, and Rubbly-pahoehoe, Platy-, Cauliflower-, and Rubbly-a'a, and Blocky morphotypes. Morphotypes reflect the intrinsic parameters of: composition, temperature, crystallinity and volatile-content/vesicularity; along with external influences, such as: emission mechanism, effusion rate, topography and slope control of flow velocity. One morphotype can transition to another in individual flow-units or lobes and they may dominate zones. Not all morphotypes were found in a single lava flow field. Pahoehoe morphotypes are related to the simple mechanical disaggregation of the crust, whereas a'a morphotypes are related to the transitional emergence and subsequent transitional disappearance of clinker. Blocky morphotypes result from fracturing and auto-brecciation. A'a morphotypes (i.e. platy-, cauliflower-, rubbly-a'a) dominate the lava flow field surfaces in northern Harrat Rahat, which suggests that core-dominated flows were predominant during flow movement. Lava structures are well-developed and well-preserved and some may be related to some morphotypes. Down-flow changes exhibit key illustrative and easy recognizable features in the lava flow fields and might provide insights into real-time monitoring of future flows in this region.
Rice growth monitoring using simulated compact polarimetric C band SAR
NASA Astrophysics Data System (ADS)
Yang, Zhi; Li, Kun; Liu, Long; Shao, Yun; Brisco, Brian; Li, Weiguo
2014-12-01
In this study, a set of nine compact polarimetric (CP) images were simulated from polarimetric RADARSAT-2 data acquired over a test site containing two types of rice field in Jiangsu province, China. The types of rice field in the test site were (1) transplanted hybrid rice fields, and (2) direct-sown japonica rice fields. Both types have different yields and phenological stages. As a first step, the two types of rice field were distinguished with 94% and 86% accuracy respectively through analyzing CP synthetic aperture radar (SAR) observations and their behavior in terms of scattering mechanisms during the rice growth season. The focus was then on phenology retrieval for each type of rice field. A decision tree (DT) algorithm was built to fulfill the precise retrieval of rice phenological stages, in which seven phenological stages were discriminated. The key criterion for each phenological stage was composed of 1-4 CP parameters, some of which were first used for rice phenology retrieval and found to be very sensitive to rice phenological changes. The retrieval results were verified at parcel level for a set of 12 stands of rice and up to nine observation dates per stand. This gave an accuracy of 88-95%. Throughout the phenology retrieval process, only simulated CP data were used, without any auxiliary data. These results demonstrate the potential of CP SAR for rice growth monitoring applications.
Kinematic Optimization of Robot Trajectories for Thermal Spray Coating Application
NASA Astrophysics Data System (ADS)
Deng, Sihao; Liang, Hong; Cai, Zhenhua; Liao, Hanlin; Montavon, Ghislain
2014-12-01
Industrial robots are widely used in the field of thermal spray nowadays. Due to their characteristics of high-accuracy and programmable flexibility, spraying on complex geometrical workpieces can be realized in the equipped spray room. However, in some cases, the robots cannot guarantee the process parameters defined by the robot movement, such as the scanning trajectory, spray angle, relative speed between the torch and the substrate, etc., which have distinct influences on heat and mass transfer during the generation of any thermally sprayed coatings. In this study, an investigation on the robot kinematics was proposed to find the rules of motion in a common case. The results showed that the motion behavior of each axis of robot permits to identify the motion problems in the trajectory. This approach allows to optimize the robot trajectory generation in a limited working envelop. It also minimizes the influence of robot performance to achieve a more constant relative scanning speed which is represented as a key parameter in thermal spraying.
Nanotechnology Infrared Optics for Astronomy Missions
NASA Technical Reports Server (NTRS)
Frogel, Jay (Technical Monitor); Smith, Howard A.
2004-01-01
We have used the "MicroStripes" code (Flomerics, Inc.) to perform full-, near- and far-field diffraction modeling of metal mesh performance on substrates. Our Miles Code software, which approximates the full calculation in a quick, gui-based window, is useful as an iterative device by adjusting the input parameters (index of refraction, thickness, etc.) to provide agreement with the full calculation. However, despite the somewhat extravagant claims by the MicroStripes manufacturer, this code is also not perfect because numerous free parameters must be set. Key among these, as identified in our earlier papers and proposal documents, is the high frequency (i.e., far IR) character of the real and imaginary parts of the index of refraction of the metal mesh, the high frequency character of the real and imaginary parts of the index of refraction of the substrate, and the character of the interface between the mesh and the substrate material, and in particular the suppression (or possible enhancement) of surface effects at the interface.
Analysis of airborne MAIS imaging spectrometric data for mineral exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jinnian; Zheng Lanfen; Tong Qingxi
1996-11-01
The high spectral resolution imaging spectrometric system made quantitative analysis and mapping of surface composition possible. The key issue will be the quantitative approach for analysis of surface parameters for imaging spectrometer data. This paper describes the methods and the stages of quantitative analysis. (1) Extracting surface reflectance from imaging spectrometer image. Lab. and inflight field measurements are conducted for calibration of imaging spectrometer data, and the atmospheric correction has also been used to obtain ground reflectance by using empirical line method and radiation transfer modeling. (2) Determining quantitative relationship between absorption band parameters from the imaging spectrometer data andmore » chemical composition of minerals. (3) Spectral comparison between the spectra of spectral library and the spectra derived from the imagery. The wavelet analysis-based spectrum-matching techniques for quantitative analysis of imaging spectrometer data has beer, developed. Airborne MAIS imaging spectrometer data were used for analysis and the analysis results have been applied to the mineral and petroleum exploration in Tarim Basin area china. 8 refs., 8 figs.« less
A Novel Strain-Based Method to Estimate Tire Conditions Using Fuzzy Logic for Intelligent Tires.
Garcia-Pozuelo, Daniel; Olatunbosun, Oluremi; Yunta, Jorge; Yang, Xiaoguang; Diaz, Vicente
2017-02-10
The so-called intelligent tires are one of the most promising research fields for automotive engineers. These tires are equipped with sensors which provide information about vehicle dynamics. Up to now, the commercial intelligent tires only provide information about inflation pressure and their contribution to stability control systems is currently very limited. Nowadays one of the major problems for intelligent tire development is how to embed feasible and low cost sensors to obtain reliable information such as inflation pressure, vertical load or rolling speed. These parameters provide key information for vehicle dynamics characterization. In this paper, we propose a novel algorithm based on fuzzy logic to estimate the mentioned parameters by means of a single strain-based system. Experimental tests have been carried out in order to prove the suitability and durability of the proposed on-board strain sensor system, as well as its low cost advantages, and the accuracy of the obtained estimations by means of fuzzy logic.
NASA Astrophysics Data System (ADS)
Wisniewski, H.; Gourdain, P.-A.
2017-10-01
APOLLO is an online, Linux based plasma calculator. Users can input variables that correspond to their specific plasma, such as ion and electron densities, temperatures, and external magnetic fields. The system is based on a webserver where a FastCGI protocol computes key plasma parameters including frequencies, lengths, velocities, and dimensionless numbers. FastCGI was chosen to overcome security problems caused by JAVA-based plugins. The FastCGI also speeds up calculations over PHP based systems. APOLLO is built upon the WT library, which turns any web browser into a versatile, fast graphic user interface. All values with units are expressed in SI units except temperature, which is in electron-volts. SI units were chosen over cgs units because of the gradual shift to using SI units within the plasma community. APOLLO is intended to be a fast calculator that also provides the user with the proper equations used to calculate the plasma parameters. This system is intended to be used by undergraduates taking plasma courses as well as graduate students and researchers who need a quick reference calculation.
Pc3 activity at low geomagnetic latitudes - A comparison with solar wind observations
NASA Technical Reports Server (NTRS)
Villante, U.; Lepidi, S.; Vellante, M.; Lazarus, A. J.; Lepping, R. P.
1992-01-01
On an hourly time-scale the different roles of the solar wind and interplanetary magnetic field (IMF) parameters on ground micropulsation activity can be better investigated than at longer time-scales. A long-term comparison between ground measurements made at L'Aquila and IMP 8 observations confirms the solar wind speed as the key parameter for the onset of pulsations even at low latitudes, although additional control of the energy transfer from the interplanetary medium to the earth's magnetosphere is clearly exerted by the cone angle. Above about 20 mHz the frequency of pulsations is confirmed to be closely related to the IMF magnitude while, in agreement with model predictions, the IMF magnitude is related to the amplitude of the local fundamental resonant mode. We provide an interesting example in which high resolution measurements simultaneously obtained in the foreshock region and on the ground show that external transversal fluctuations do not penetrate deep into the low latitude magnetosphere.
A Novel Strain-Based Method to Estimate Tire Conditions Using Fuzzy Logic for Intelligent Tires
Garcia-Pozuelo, Daniel; Olatunbosun, Oluremi; Yunta, Jorge; Yang, Xiaoguang; Diaz, Vicente
2017-01-01
The so-called intelligent tires are one of the most promising research fields for automotive engineers. These tires are equipped with sensors which provide information about vehicle dynamics. Up to now, the commercial intelligent tires only provide information about inflation pressure and their contribution to stability control systems is currently very limited. Nowadays one of the major problems for intelligent tire development is how to embed feasible and low cost sensors to obtain reliable information such as inflation pressure, vertical load or rolling speed. These parameters provide key information for vehicle dynamics characterization. In this paper, we propose a novel algorithm based on fuzzy logic to estimate the mentioned parameters by means of a single strain-based system. Experimental tests have been carried out in order to prove the suitability and durability of the proposed on-board strain sensor system, as well as its low cost advantages, and the accuracy of the obtained estimations by means of fuzzy logic. PMID:28208631
Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turick, C; Berry, C.
Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in thismore » field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial activity on concrete surfaces are discussed.« less
Improved assessment of gross and net primary productivity of Canada's landmass
NASA Astrophysics Data System (ADS)
Gonsamo, Alemu; Chen, Jing M.; Price, David T.; Kurz, Werner A.; Liu, Jane; Boisvenue, Céline; Hember, Robbie A.; Wu, Chaoyang; Chang, Kuo-Hsien
2013-12-01
assess Canada's gross primary productivity (GPP) and net primary productivity (NPP) using boreal ecosystem productivity simulator (BEPS) at 250 m spatial resolution with improved input parameter and driver fields and phenology and nutrient release parameterization schemes. BEPS is a process-based two-leaf enzyme kinetic terrestrial ecosystem model designed to simulate energy, water, and carbon (C) fluxes using spatial data sets of meteorology, remotely sensed land surface variables, soil properties, and photosynthesis and respiration rate parameters. Two improved key land surface variables, leaf area index (LAI) and land cover type, are derived at 250 m from Moderate Resolution Imaging Spectroradiometer sensor. For diagnostic error assessment, we use nine forest flux tower sites where all measured C flux, meteorology, and ancillary data sets are available. The errors due to input drivers and parameters are then independently corrected for Canada-wide GPP and NPP simulations. The optimized LAI use, for example, reduced the absolute bias in GPP from 20.7% to 1.1% for hourly BEPS simulations. Following the error diagnostics and corrections, daily GPP and NPP are simulated over Canada at 250 m spatial resolution, the highest resolution simulation yet for the country or any other comparable region. Total NPP (GPP) for Canada's land area was 1.27 (2.68) Pg C for 2008, with forests contributing 1.02 (2.2) Pg C. The annual comparisons between measured and simulated GPP show that the mean differences are not statistically significant (p > 0.05, paired t test). The main BEPS simulation error sources are from the driver fields.
Comparative Model Evaluation Studies of Biogenic Trace Gas Fluxes in Tropical Forests
NASA Technical Reports Server (NTRS)
Potter, C. S.; Peterson, David L. (Technical Monitor)
1997-01-01
Simulation modeling can play a number of important roles in large-scale ecosystem studies, including synthesis of patterns and changes in carbon and nutrient cycling dynamics, scaling up to regional estimates, and formulation of testable hypotheses for process studies. Recent comparative studies have shown that ecosystem models of soil trace gas exchange with the atmosphere are evolving into several distinct simulation approaches. Different levels of detail exist among process models in the treatment of physical controls on ecosystem nutrient fluxes and organic substrate transformations leading to gas emissions. These differences are is in part from distinct objectives of scaling and extrapolation. Parameter requirements for initialization scalings, boundary conditions, and time-series driven therefore vary among ecosystem simulation models, such that the design of field experiments for integration with modeling should consider a consolidated series of measurements that will satisfy most of the various model requirements. For example, variables that provide information on soil moisture holding capacity, moisture retention characteristics, potential evapotranspiration and drainage rates, and rooting depth appear to be of the first order in model evaluation trials for tropical moist forest ecosystems. The amount and nutrient content of labile organic matter in the soil, based on accurate plant production estimates, are also key parameters that determine emission model response. Based on comparative model results, it is possible to construct a preliminary evaluation matrix along categories of key diagnostic parameters and temporal domains. Nevertheless, as large-scale studied are planned, it is notable that few existing models age designed to simulate transient states of ecosystem change, a feature which will be essential for assessment of anthropogenic disturbance on regional gas budgets, and effects of long-term climate variability on biosphere-atmosphere exchange.
Frequency pulling in a low-voltage medium-power gyrotron
NASA Astrophysics Data System (ADS)
Luo, Li; Du, Chao-Hai; Huang, Ming-Guang; Liu, Pu-Kun
2018-04-01
Many recent biomedical applications use medium-power frequency-tunable terahertz (THz) sources, such as sensitivity-enhanced nuclear magnetic resonance, THz imaging, and biomedical treatment. As a promising candidate, a low-voltage gyrotron can generate watt-level, continuous THz-wave radiation. In particular, the frequency-pulling effect in a gyrotron, namely, the effect of the electron beam parameters on the oscillation frequency, can be used to tune the operating frequency. Most previous investigations used complicated and time-consuming gyrotron nonlinear theory to study the influence of many beam parameters on the interaction performance. While gyrotron linear theory investigation demonstrates the advantages of rapidly and clearly revealing the physical influence of individual key beam parameters on the overall system performance, this paper demonstrates systematically the use of gyrotron linear theory to study the frequency-pulling effect in a low-voltage gyrotron with either a Gaussian or a sinusoidal axial-field profile. Furthermore, simulations of a gyrotron operating in the first axial mode are carried out in the framework of nonlinear theory as a contrast. Close agreement is achieved between the two theories. Besides, some interesting results are obtained. In a low-current sinusoidal-profile cavity, the ranges of frequency variation for different axial modes are isolated from each other, and the frequency tuning bandwidth for each axial mode increases by increasing either the beam voltage or pitch factor. Lowering the voltage, the total tuning ranges are squeezed and become concentrated. However, the isolated frequency regions of each axial mode cannot be linked up unless the beam current is increased, meaning that higher current operation is the key to achieving a wider and continuous tuning frequency range. The results presented in this paper can provide a reference for designing a broadband low-voltage gyrotron.
El Toro Library Solar Heating and Cooling Demonstration Project. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report is divided into a number of essentially independent sections, each of which covers a specific topic. The sections, and the topics covered, are as follows. Section 1 provides a brief summary description of the solar energy heating and cooling system including the key final design parameters. Section 2 contains a copy of the final Acceptance Test Report. Section 3 consists of a reduced set of final updated as-built mechanical, electrical, control and instrumentations drawings of the solar energy heating and cooling system. Section 4 provides a summary of system maintenance requirements, in the form of a maintenance schedulemore » which lists necessary maintenance tasks to be performed at monthly, quarterly, semi-annual, and annual intervals. Section 5 contains a series of photographs of the final solar energy system installation, including the collector field and the mechanical equipment room. Section 6 provides a concise summary of system operation and performance for the period of December 1981 through June 1982, as measured, computed and reported by Vitro Laboratories Division of Automation Industries, Inc., for the DOE National Solar Data Network. Section 7 provides a summary of key as-built design parameters, compared with the corresponding original design concept parameters. Section 8 provides a description of a series of significant problems encountered during construction, start-up and check-out of the solar energy heating and cooling system, together with the method employed to solve the problem at the time and/or recommendations for avoiding the problem in the future design of similar systems. Appendices A through H contain the installation, operation and maintenance submittals of the various manufacturers on the major items of equipment in the system. Reference CAPE-2823.« less
Site Characterization at a Tidal Energy Site in the East River, NY (usa)
NASA Astrophysics Data System (ADS)
Gunawan, B.; Neary, V. S.; Colby, J.
2012-12-01
A comprehensive tidal energy site characterization is performed using ADV measurements of instantaneous horizontal current magnitude and direction at the planned hub centerline of a tidal turbine over a two month period, and contributes to the growing data base of tidal energy site hydrodynamic conditions. The temporal variation, mean current statistics, and turbulence of the key tidal hydrodynamic parameters are examined in detail, and compared to estimates from two tidal energy sites in Puget Sound. Tidal hydrodynamic conditions, including mean annual current (at hub height), the speed of extreme gusts (instantaneous horizontal currents acting normal to the rotor plane), and turbulence intensity (as proposed here, relative to a mean current of 2 m s-1) can vary greatly among tidal energy sites. Comparison of hydrodynamic conditions measured in the East River tidal straight in New York City with those reported for two tidal energy sites in Puget Sound indicate differences of mean annual current speeds, difference in the instantaneous current speeds of extreme gusts, and differences in turbulence intensities. Significant differences in these parameters among the tidal energy sites, and with the tidal resource assessment map, highlight the importance of conducting site resource characterization with ADV measurements at the machine scale. As with the wind industry, which adopted an International Electrotechnical Commission (IEC) wind class standard to aid in the selection of wind turbines for a particular site, it is recommended that the tidal energy industry adopt an appropriate standard for tidal current classes. Such a standard requires a comprehensive field campaign at multiple tidal energy sites that can identify the key hydrodynamic parameters for tidal current site classification, select a list of tidal energy sites that exhibit the range of hydrodynamic conditions that will be encountered, and adopt consistent measurement practices (standards) for site classification.
Numerical Simulation Of Cratering Effects In Adobe
2013-07-01
DEVELOPMENT OF MATERIAL PARAMETERS .........................................................7 PROBLEM SETUP...37 PARAMETER ADJUSTMENTS ......................................................................................38 GLOSSARY...dependent yield surface with the Geological Yield Surface (GEO) modeled in CTH using well characterized adobe. By identifying key parameters that
A Flexile and High Precision Calibration Method for Binocular Structured Light Scanning System
Yuan, Jianying; Wang, Qiong; Li, Bailin
2014-01-01
3D (three-dimensional) structured light scanning system is widely used in the field of reverse engineering, quality inspection, and so forth. Camera calibration is the key for scanning precision. Currently, 2D (two-dimensional) or 3D fine processed calibration reference object is usually applied for high calibration precision, which is difficult to operate and the cost is high. In this paper, a novel calibration method is proposed with a scale bar and some artificial coded targets placed randomly in the measuring volume. The principle of the proposed method is based on hierarchical self-calibration and bundle adjustment. We get initial intrinsic parameters from images. Initial extrinsic parameters in projective space are estimated with the method of factorization and then upgraded to Euclidean space with orthogonality of rotation matrix and rank 3 of the absolute quadric as constraint. Last, all camera parameters are refined through bundle adjustment. Real experiments show that the proposed method is robust, and has the same precision level as the result using delicate artificial reference object, but the hardware cost is very low compared with the current calibration method used in 3D structured light scanning system. PMID:25202736
NASA Astrophysics Data System (ADS)
Protsenko, Elizaveta; Yakubov, Shamil; Lessin, Gennady; Yakushev, Evgeniy; Sokołowski, Adam
2017-04-01
A one-dimensional fully-coupled benthic pelagic biogeochemical model BROM (Bottom RedOx Model) was used for simulations of seasonal variability of biogeochemical parameters in the upper sediment, Bottom Boundary Layer and the water column in the Gdansk Deep of the Baltic Sea. This model represents key biogeochemical processes of transformation of C, N, P, Si, O, S, Mn, Fe and the processes of vertical transport in the water column and the sediments. The hydrophysical block of BROM was forced by the output calculated with model GETM (General Estuarine Transport Model). In this study we focused on parameters of carbonate system at Baltic Sea, and mainly on their distributions near the sea-water interface. For validating of BROM we used field data (concentrations of main nutrients at water column and porewater of upper sediment) from the Gulf of Gdansk. The model allowed us to simulate the baseline ranges of seasonal variability of pH, Alkalinity, TIC and calcite/aragonite saturation as well as vertical fluxes of carbon in a region potentially selected for the CCS storage. This work was supported by project EEA CO2MARINE and STEMM-CCS.
Study on warning radius of diffuse reflection laser warning based on fish-eye lens
NASA Astrophysics Data System (ADS)
Chen, Bolin; Zhang, Weian
2013-09-01
The diffuse reflection type of omni-directional laser warning based on fish-eye lens is becoming more and more important. As one of the key parameters of warning system, the warning radius should be put into investigation emphatically. The paper firstly theoretically analyzes the energy detected by single pixel of FPA detector in the system under complicated environment. Then the least energy detectable by each single pixel of the system is computed in terms of detector sensitivity, system noise, and minimum SNR. Subsequently, by comparison between the energy detected by single pixel and the least detectable energy, the warning radius is deduced from Torrance-Sparrow five-parameter semiempirical statistic model. Finally, a field experiment was developed to validate the computational results. It has been found that the warning radius has a close relationship with BRDF parameters of the irradiated target, propagation distance, angle of incidence, and detector sensitivity, etc. Furthermore, an important fact is shown that the experimental values of warning radius are always less than that of theoretical ones, due to such factors as the optical aberration of fish-eye lens, the transmissivity of narrowband filter, and the packing ratio of detector.
NASA Astrophysics Data System (ADS)
Vu, Tuan V.; Papavassiliou, Dimitrios V.
2018-05-01
In order to investigate the interfacial region between oil and water with the presence of surfactants using coarse-grained computations, both the interaction between different components of the system and the number of surfactant molecules present at the interface play an important role. However, in many prior studies, the amount of surfactants used was chosen rather arbitrarily. In this work, a systematic approach to develop coarse-grained models for anionic surfactants (such as sodium dodecyl sulfate) and nonionic surfactants (such as octaethylene glycol monododecyl ether) in oil-water interfaces is presented. The key is to place the theoretically calculated number of surfactant molecules on the interface at the critical micelle concentration. Based on this approach, the molecular description of surfactants and the effects of various interaction parameters on the interfacial tension are investigated. The results indicate that the interfacial tension is affected mostly by the head-water and tail-oil interaction. Even though the procedure presented herein is used with dissipative particle dynamics models, it can be applied for other coarse-grained methods to obtain the appropriate set of parameters (or force fields) to describe the surfactant behavior on the oil-water interface.
Uncertainty Quantification and Assessment of CO2 Leakage in Groundwater Aquifers
NASA Astrophysics Data System (ADS)
Carroll, S.; Mansoor, K.; Sun, Y.; Jones, E.
2011-12-01
Complexity of subsurface aquifers and the geochemical reactions that control drinking water compositions complicate our ability to estimate the impact of leaking CO2 on groundwater quality. We combined lithologic field data from the High Plains Aquifer, numerical simulations, and uncertainty quantification analysis to assess the role of aquifer heterogeneity and physical transport on the extent of CO2 impacted plume over a 100-year period. The High Plains aquifer is a major aquifer over much of the central United States where CO2 may be sequestered in depleted oil and gas reservoirs or deep saline formations. Input parameters considered included, aquifer heterogeneity, permeability, porosity, regional groundwater flow, CO2 and TDS leakage rates over time, and the number of leakage source points. Sensitivity analysis suggest that variations in sand and clay permeability, correlation lengths, van Genuchten parameters, and CO2 leakage rate have the greatest impact on impacted volume or maximum distance from the leak source. A key finding is that relative sensitivity of the parameters changes over the 100-year period. Reduced order models developed from regression of the numerical simulations show that volume of the CO2-impacted aquifer increases over time with 2 order of magnitude variance.
NASA Astrophysics Data System (ADS)
Zhu, Jian-Rong; Li, Jian; Zhang, Chun-Mei; Wang, Qin
2017-10-01
The decoy-state method has been widely used in commercial quantum key distribution (QKD) systems. In view of the practical decoy-state QKD with both source errors and statistical fluctuations, we propose a universal model of full parameter optimization in biased decoy-state QKD with phase-randomized sources. Besides, we adopt this model to carry out simulations of two widely used sources: weak coherent source (WCS) and heralded single-photon source (HSPS). Results show that full parameter optimization can significantly improve not only the secure transmission distance but also the final key generation rate. And when taking source errors and statistical fluctuations into account, the performance of decoy-state QKD using HSPS suffered less than that of decoy-state QKD using WCS.
Maintenance-free operation of WDM quantum key distribution system through a field fiber over 30 days
NASA Astrophysics Data System (ADS)
Yoshino, Ken-ichiro; Ochi, Takao; Fujiwara, Mikio; Sasaki, Masahide; Tajima, Akio
2013-12-01
Maintenance-free wavelength-division-multiplexing quantum key distribution for 30 days was achieved through a 22-km field fiber. Using polarization-independent interferometers and stabilization techniques, we attained a quantum bit error rate as low as 1.70% and a key rate as high as 229.8 kbps, making the record of total secure key of 595.6 Gbits accumulated over an uninterrupted operation period.
Secure and Efficient Signature Scheme Based on NTRU for Mobile Payment
NASA Astrophysics Data System (ADS)
Xia, Yunhao; You, Lirong; Sun, Zhe; Sun, Zhixin
2017-10-01
Mobile payment becomes more and more popular, however the traditional public-key encryption algorithm has higher requirements for hardware which is not suitable for mobile terminals of limited computing resources. In addition, these public-key encryption algorithms do not have the ability of anti-quantum computing. This paper researches public-key encryption algorithm NTRU for quantum computation through analyzing the influence of parameter q and k on the probability of generating reasonable signature value. Two methods are proposed to improve the probability of generating reasonable signature value. Firstly, increase the value of parameter q. Secondly, add the authentication condition that meet the reasonable signature requirements during the signature phase. Experimental results show that the proposed signature scheme can realize the zero leakage of the private key information of the signature value, and increase the probability of generating the reasonable signature value. It also improve rate of the signature, and avoid the invalid signature propagation in the network, but the scheme for parameter selection has certain restrictions.
Gariano, John; Neifeld, Mark; Djordjevic, Ivan
2017-01-20
Here, we present the engineering trade studies of a free-space optical communication system operating over a 30 km maritime channel for the months of January and July. The system under study follows the BB84 protocol with the following assumptions: a weak coherent source is used, Eve is performing the intercept resend attack and photon number splitting attack, prior knowledge of Eve's location is known, and Eve is allowed to know a small percentage of the final key. In this system, we examine the effect of changing several parameters in the following areas: the implementation of the BB84 protocol over the public channel, the technology in the receiver, and our assumptions about Eve. For each parameter, we examine how different values impact the secure key rate for a constant brightness. Additionally, we will optimize the brightness of the source for each parameter to study the improvement in the secure key rate.
Dynamic interactions between hypersonic vehicle aerodynamics and propulsion system performance
NASA Technical Reports Server (NTRS)
Flandro, G. A.; Roach, R. L.; Buschek, H.
1992-01-01
Described here is the development of a flexible simulation model for scramjet hypersonic propulsion systems. The primary goal is determination of sensitivity of the thrust vector and other system parameters to angle of attack changes of the vehicle. Such information is crucial in design and analysis of control system performance for hypersonic vehicles. The code is also intended to be a key element in carrying out dynamic interaction studies involving the influence of vehicle vibrations on propulsion system/control system coupling and flight stability. Simple models are employed to represent the various processes comprising the propulsion system. A method of characteristics (MOC) approach is used to solve the forebody and external nozzle flow fields. This results in a very fast computational algorithm capable of carrying out the vast number of simulation computations needed in guidance, stability, and control studies. The three-dimensional fore- and aft body (nozzle) geometry is characterized by the centerline profiles as represented by a series of coordinate points and body cross-section curvature. The engine module geometry is represented by an adjustable vertical grid to accommodate variations of the field parameters throughout the inlet and combustor. The scramjet inlet is modeled as a two-dimensional supersonic flow containing adjustable sidewall wedges and multiple fuel injection struts. The inlet geometry including the sidewall wedge angles, the number of injection struts, their sweepback relative to the vehicle reference line, and strut cross-section are user selectable. Combustion is currently represented by a Rayleigh line calculation including corrections for variable gas properties; improved models are being developed for this important element of the propulsion flow field. The program generates (1) variation of thrust magnitude and direction with angle of attack, (2) pitching moment and line of action of the thrust vector, (3) pressure and temperature distributions throughout the system, and (4) performance parameters such as thrust coefficient, specific impulse, mass flow rates, and equivalence ratio. Preliminary results are in good agreement with available performance data for systems resembling the NASP vehicle configuration.
Abramyan, Tigran M.; Snyder, James A.; Yancey, Jeremy A.; Thyparambil, Aby A.; Wei, Yang; Stuart, Steven J.; Latour, Robert A.
2015-01-01
Interfacial force field (IFF) parameters for use with the CHARMM force field have been developed for interactions between peptides and high-density polyethylene (HDPE). Parameterization of the IFF was performed to achieve agreement between experimental and calculated adsorption free energies of small TGTG–X–GTGT host–guest peptides (T = threonine, G = glycine, and X = variable amino-acid residue) on HDPE, with ±0.5 kcal/mol agreement. This IFF parameter set consists of tuned nonbonded parameters (i.e., partial charges and Lennard–Jones parameters) for use with an in-house-modified CHARMM molecular dynamic program that enables the use of an independent set of force field parameters to control molecular behavior at a solid–liquid interface. The R correlation coefficient between the simulated and experimental peptide adsorption free energies increased from 0.00 for the standard CHARMM force field parameters to 0.88 for the tuned IFF parameters. Subsequent studies are planned to apply the tuned IFF parameter set for the simulation of protein adsorption behavior on an HDPE surface for comparison with experimental values of adsorbed protein orientation and conformation. PMID:25818122
A method of evaluating quantitative magnetospheric field models by an angular parameter alpha
NASA Technical Reports Server (NTRS)
Sugiura, M.; Poros, D. J.
1979-01-01
The paper introduces an angular parameter, termed alpha, which represents the angular difference between the observed, or model, field and the internal model field. The study discusses why this parameter is chosen and demonstrates its usefulness by applying it to both observations and models. In certain areas alpha is more sensitive than delta-B (the difference between the magnitude of the observed magnetic field and that of the earth's internal field calculated from a spherical harmonic expansion) in expressing magnetospheric field distortions. It is recommended to use both alpha and delta-B in comparing models with observations.
James, Kevin R; Dowling, David R
2008-09-01
In underwater acoustics, the accuracy of computational field predictions is commonly limited by uncertainty in environmental parameters. An approximate technique for determining the probability density function (PDF) of computed field amplitude, A, from known environmental uncertainties is presented here. The technique can be applied to several, N, uncertain parameters simultaneously, requires N+1 field calculations, and can be used with any acoustic field model. The technique implicitly assumes independent input parameters and is based on finding the optimum spatial shift between field calculations completed at two different values of each uncertain parameter. This shift information is used to convert uncertain-environmental-parameter distributions into PDF(A). The technique's accuracy is good when the shifted fields match well. Its accuracy is evaluated in range-independent underwater sound channels via an L(1) error-norm defined between approximate and numerically converged results for PDF(A). In 50-m- and 100-m-deep sound channels with 0.5% uncertainty in depth (N=1) at frequencies between 100 and 800 Hz, and for ranges from 1 to 8 km, 95% of the approximate field-amplitude distributions generated L(1) values less than 0.52 using only two field calculations. Obtaining comparable accuracy from traditional methods requires of order 10 field calculations and up to 10(N) when N>1.
NASA Astrophysics Data System (ADS)
LaForce, T.; Ennis-King, J.; Boreham, C.; Serno, S.; Cook, P. J.; Freifeld, B. M.; Gilfillan, S.; Jarrett, A.; Johnson, G.; Myers, M.; Paterson, L.
2015-12-01
Residual trapping efficiency is a critical parameter in the design of secure subsurface CO2 storage. Residual saturation is also a key parameter in oil and gas production when a field is under consideration for enhanced oil recovery. Tracers are an important tool that can be used to estimate saturation in field tests. A series of measurements of CO2 saturation in an aquifer were undertaken as part of the Otway stage 2B extension field project in Dec. 2014. These tests were a repeat of similar tests in the same well in 2011 with improvements to the data collection and handling method. Two single-well tracer tests using noble gas tracers were conducted. In the first test krypton and xenon are injected into the water-saturated formation to establish dispersivity of the tracers in single-phase flow. Near-residual CO2 saturation is then established near the well. In the second test krypton and xenon are injected with CO2-saturated water to measure the final CO2 saturation. The recovery rate of the tracers is similar to predicted rates using recently published partitioning coefficients. Due to technical difficulties, there was mobile CO2 in the reservoir throughout the second tracer test in 2014. As a consequence, it is necessary to use a variation of the previous simulation procedure to interpret the second tracer test. One-dimensional, radial simulations are used to estimate average saturation of CO2 near the well. Estimates of final average CO2 saturation are computed using two relative permeability models, thermal and isothermal simulations, and three sets of coefficients for the partitioning of the tracers between phases. Four of the partitioning coefficients used were not previously available in the literature. The noble gas tracer field test and analysis of the 2011 and 2014 data both give an average CO2 saturation that is consistent with other field measurements. This study has demonstrated the repeatability of the methodology for noble gas tracer tests in the field.
a Study of High Transition Temperature Superconductors: Mercury-Copper Oxide Systems
NASA Astrophysics Data System (ADS)
Kirven, Paul Douglas
1995-01-01
The Hg-based copper-oxides viz., HgBa _2Ca_{n-1}Cu_ nO _{2n+2+delta}, were discovered in 1993. A system consisting of many different, but related, compounds can be synthesized by including or substituting one or more elements in the original compound (e.g. Hg _{1-x}Pb_ x). In this thesis, the superconducting and normal state properties of several of these compounds were investigated. In the normal state electrical resistivity rho(T) is a linear function of temperature (T) and the magnetic susceptibility, X(T), is weakly paramagnetic. Many were observed to superconduct at very high temperatures. At 5 K up to 80% perfect diamagnetic X(T) was measured. The onset transition temperature (T_ c), where a specimen starts to superconduct, is observed to be as high as 135 K. Although T_ c is about 10 K higher than that of any previously known material, in many respects the properties of this new system are similar to that of other type II superconductors. Flux flow behavior and the nature of these type II superconductors was investigated via SQUID measurements and high field longitudinal magneto-resistance R(T,H) as a function of field and temperature. The study of flux motion allows one to observe Anderson-Kim type logarithimic flux creep at low temperature and field (T < 80K and B < 2T) and giant -flux flow at high temperature and field (80 < T < 130; B < 17T). Key parameters were determined. Some of which include reversibility temperature T*(H), critical field Hc, and pinning potential, Uo. Normal state properties which were also measured include the following: Curie constant, Curie-Weiss temperature (15-25 K), temperature independent susceptibility, and Sommerfeld constant (10-25 mJ/mol.Cu K^2). The values of these parameters of the Hg-based superconductors were compared to those of other superconductors. The results of this investigation are expected to yield a better understanding of this newest family of high temperature superconductors.
Astrobiology and the Possibility of Life on Earth and Elsewhere…
NASA Astrophysics Data System (ADS)
Cottin, Hervé; Kotler, Julia Michelle; Bartik, Kristin; Cleaves, H. James; Cockell, Charles S.; de Vera, Jean-Pierre P.; Ehrenfreund, Pascale; Leuko, Stefan; Ten Kate, Inge Loes; Martins, Zita; Pascal, Robert; Quinn, Richard; Rettberg, Petra; Westall, Frances
2017-07-01
Astrobiology is an interdisciplinary scientific field not only focused on the search of extraterrestrial life, but also on deciphering the key environmental parameters that have enabled the emergence of life on Earth. Understanding these physical and chemical parameters is fundamental knowledge necessary not only for discovering life or signs of life on other planets, but also for understanding our own terrestrial environment. Therefore, astrobiology pushes us to combine different perspectives such as the conditions on the primitive Earth, the physicochemical limits of life, exploration of habitable environments in the Solar System, and the search for signatures of life in exoplanets. Chemists, biologists, geologists, planetologists and astrophysicists are contributing extensively to this interdisciplinary research field. From 2011 to 2014, the European Space Agency (ESA) had the initiative to gather a Topical Team of interdisciplinary scientists focused on astrobiology to review the profound transformations in the field that have occurred since the beginning of the new century. The present paper is an interdisciplinary review of current research in astrobiology, covering the major advances and main outlooks in the field. The following subjects will be reviewed and most recent discoveries will be highlighted: the new understanding of planetary system formation including the specificity of the Earth among the diversity of planets, the origin of water on Earth and its unique combined properties among solvents for the emergence of life, the idea that the Earth could have been habitable during the Hadean Era, the inventory of endogenous and exogenous sources of organic matter and new concepts about how chemistry could evolve towards biological molecules and biological systems. In addition, many new findings show the remarkable potential life has for adaptation and survival in extreme environments. All those results from different fields of science are guiding our perspectives and strategies to look for life in other Solar System objects as well as beyond, in extrasolar worlds.
Sensitivity-based virtual fields for the non-linear virtual fields method
NASA Astrophysics Data System (ADS)
Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice
2017-09-01
The virtual fields method is an approach to inversely identify material parameters using full-field deformation data. In this manuscript, a new set of automatically-defined virtual fields for non-linear constitutive models has been proposed. These new sensitivity-based virtual fields reduce the influence of noise on the parameter identification. The sensitivity-based virtual fields were applied to a numerical example involving small strain plasticity; however, the general formulation derived for these virtual fields is applicable to any non-linear constitutive model. To quantify the improvement offered by these new virtual fields, they were compared with stiffness-based and manually defined virtual fields. The proposed sensitivity-based virtual fields were consistently able to identify plastic model parameters and outperform the stiffness-based and manually defined virtual fields when the data was corrupted by noise.
NASA Astrophysics Data System (ADS)
McGovern, J. A.; Phillips, D. R.; Grießhammer, H. W.
2013-01-01
We analyse the proton Compton-scattering differential cross section for photon energies up to 325 MeV using Chiral Effective Field Theory (χEFT) and extract new values for the electric and magnetic polarisabilities of the proton. Our approach builds in the key physics in two different regimes: photon energies ω ≲ m π ("low energy"), and the higher energies where the Δ(1232) resonance plays a key role. The Compton amplitude is complete at N4LO, {O}( {e^2 δ ^4 } ), in the low-energy region, and at NLO, {O}( {e^2 δ ^0 } ), in the resonance region. Throughout, the Delta-pole graphs are dressed with π N loops and γN Δ vertex corrections. A statistically consistent database of proton Compton experiments is used to constrain the free parameters in our amplitude: the M1 γN Δ transition strength b 1 (which is fixed in the resonance region) and the polarisabilities α E1 and β M1 (which are fixed from data below 170 MeV). In order to obtain a reasonable fit, we find it necessary to add the spin polarisability γ M1 M1 as a free parameter, even though it is, strictly speaking, predicted in χEFT at the order to which we work. We show that the fit is consistent with the Baldin sum rule, and then use that sum rule to constrain α E1 + β M1. In this way we obtain α E1 = [10.65 ± 0.35(stat) ± 0.2(Baldin) ± 0.3(theory)] × 10-4 fm3 and β M1 = [3.15 ∓ 0.35(state) ± 0.2(Baldin) ∓ 0.3()theory] × 10-4 fm3, with χ2 = 113.2 for 135 degrees of freedom. A detailed rationale for the theoretical uncertainties assigned to this result is provided.
Leaf-IT: An Android application for measuring leaf area.
Schrader, Julian; Pillar, Giso; Kreft, Holger
2017-11-01
The use of plant functional traits has become increasingly popular in ecological studies because plant functional traits help to understand key ecological processes in plant species and communities. This also includes changes in diversity, inter- and intraspecific interactions, and relationships of species at different spatiotemporal scales. Leaf traits are among the most important traits as they describe key dimensions of a plant's life history strategy. Further, leaf area is a key parameter with relevance for other traits such as specific leaf area, which in turn correlates with leaf chemical composition, photosynthetic rate, leaf longevity, and carbon investment. Measuring leaf area usually involves the use of scanners and commercial software and can be difficult under field conditions. We present Leaf-IT, a new smartphone application for measuring leaf area and other trait-related areas. Leaf-IT is free, designed for scientific purposes, and runs on Android 4 or higher. We tested the precision and accuracy using objects with standardized area and compared the area measurements of real leaves with the well-established, commercial software WinFOLIA using the Altman-Bland method. Area measurements of standardized objects show that Leaf-IT measures area with high accuracy and precision. Area measurements with Leaf-IT of real leaves are comparable to those of WinFOLIA. Leaf-IT is an easy-to-use application running on a wide range of smartphones. That increases the portability and use of Leaf-IT and makes it possible to measure leaf area under field conditions typical for remote locations. Its high accuracy and precision are similar to WinFOLIA. Currently, its main limitation is margin detection of damaged leaves or complex leaf morphologies.
Field demonstration of a continuous-variable quantum key distribution network.
Huang, Duan; Huang, Peng; Li, Huasheng; Wang, Tao; Zhou, Yingming; Zeng, Guihua
2016-08-01
We report on what we believe is the first field implementation of a continuous-variable quantum key distribution (CV-QKD) network with point-to-point configuration. Four QKD nodes are deployed on standard communication infrastructures connected with commercial telecom optical fiber. Reliable key exchange is achieved in the wavelength-division-multiplexing CV-QKD network. The impact of a complex and volatile field environment on the excess noise is investigated, since excess noise controlling and reduction is arguably the major issue pertaining to distance and the secure key rate. We confirm the applicability and verify the maturity of the CV-QKD network in a metropolitan area, thus paving the way for a next-generation global secure communication network.
Ahn, In-Young; Guillaumot, Charlène; Danis, Bruno
2017-01-01
Antarctic marine organisms are adapted to an extreme environment, characterized by a very low but stable temperature and a strong seasonality in food availability arousing from variations in day length. Ocean organisms are particularly vulnerable to global climate change with some regions being impacted by temperature increase and changes in primary production. Climate change also affects the biotic components of marine ecosystems and has an impact on the distribution and seasonal physiology of Antarctic marine organisms. Knowledge on the impact of climate change in key species is highly important because their performance affects ecosystem functioning. To predict the effects of climate change on marine ecosystems, a holistic understanding of the life history and physiology of Antarctic key species is urgently needed. DEB (Dynamic Energy Budget) theory captures the metabolic processes of an organism through its entire life cycle as a function of temperature and food availability. The DEB model is a tool that can be used to model lifetime feeding, growth, reproduction, and their responses to changes in biotic and abiotic conditions. In this study, we estimate the DEB model parameters for the bivalve Laternula elliptica using literature-extracted and field data. The DEB model we present here aims at better understanding the biology of L. elliptica and its levels of adaptation to its habitat with a special focus on food seasonality. The model parameters describe a metabolism specifically adapted to low temperatures, with a low maintenance cost and a high capacity to uptake and mobilise energy, providing this organism with a level of energetic performance matching that of related species from temperate regions. It was also found that L. elliptica has a large energy reserve that allows enduring long periods of starvation. Additionally, we applied DEB parameters to time-series data on biological traits (organism condition, gonad growth) to describe the effect of a varying environment in food and temperature on the organism condition and energy use. The DEB model developed here for L. elliptica allowed us to improve benchmark knowledge on the ecophysiology of this key species, providing new insights in the role of food availability and temperature on its life cycle and reproduction strategy. PMID:28850607
Agüera, Antonio; Ahn, In-Young; Guillaumot, Charlène; Danis, Bruno
2017-01-01
Antarctic marine organisms are adapted to an extreme environment, characterized by a very low but stable temperature and a strong seasonality in food availability arousing from variations in day length. Ocean organisms are particularly vulnerable to global climate change with some regions being impacted by temperature increase and changes in primary production. Climate change also affects the biotic components of marine ecosystems and has an impact on the distribution and seasonal physiology of Antarctic marine organisms. Knowledge on the impact of climate change in key species is highly important because their performance affects ecosystem functioning. To predict the effects of climate change on marine ecosystems, a holistic understanding of the life history and physiology of Antarctic key species is urgently needed. DEB (Dynamic Energy Budget) theory captures the metabolic processes of an organism through its entire life cycle as a function of temperature and food availability. The DEB model is a tool that can be used to model lifetime feeding, growth, reproduction, and their responses to changes in biotic and abiotic conditions. In this study, we estimate the DEB model parameters for the bivalve Laternula elliptica using literature-extracted and field data. The DEB model we present here aims at better understanding the biology of L. elliptica and its levels of adaptation to its habitat with a special focus on food seasonality. The model parameters describe a metabolism specifically adapted to low temperatures, with a low maintenance cost and a high capacity to uptake and mobilise energy, providing this organism with a level of energetic performance matching that of related species from temperate regions. It was also found that L. elliptica has a large energy reserve that allows enduring long periods of starvation. Additionally, we applied DEB parameters to time-series data on biological traits (organism condition, gonad growth) to describe the effect of a varying environment in food and temperature on the organism condition and energy use. The DEB model developed here for L. elliptica allowed us to improve benchmark knowledge on the ecophysiology of this key species, providing new insights in the role of food availability and temperature on its life cycle and reproduction strategy.
NASA Astrophysics Data System (ADS)
Chen, Shuo; Lin, Xiaoqian; Zhu, Caigang; Liu, Quan
2014-12-01
Key tissue parameters, e.g., total hemoglobin concentration and tissue oxygenation, are important biomarkers in clinical diagnosis for various diseases. Although point measurement techniques based on diffuse reflectance spectroscopy can accurately recover these tissue parameters, they are not suitable for the examination of a large tissue region due to slow data acquisition. The previous imaging studies have shown that hemoglobin concentration and oxygenation can be estimated from color measurements with the assumption of known scattering properties, which is impractical in clinical applications. To overcome this limitation and speed-up image processing, we propose a method of sequential weighted Wiener estimation (WE) to quickly extract key tissue parameters, including total hemoglobin concentration (CtHb), hemoglobin oxygenation (StO2), scatterer density (α), and scattering power (β), from wide-band color measurements. This method takes advantage of the fact that each parameter is sensitive to the color measurements in a different way and attempts to maximize the contribution of those color measurements likely to generate correct results in WE. The method was evaluated on skin phantoms with varying CtHb, StO2, and scattering properties. The results demonstrate excellent agreement between the estimated tissue parameters and the corresponding reference values. Compared with traditional WE, the sequential weighted WE shows significant improvement in the estimation accuracy. This method could be used to monitor tissue parameters in an imaging setup in real time.
Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.
2016-01-01
The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements
NASA Technical Reports Server (NTRS)
Jansen, Ralph; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.
2015-01-01
The purpose of this presentation is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.
2015-01-01
The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
Transverse fields to tune an Ising-nematic quantum phase transition
NASA Astrophysics Data System (ADS)
Maharaj, Akash V.; Rosenberg, Elliott W.; Hristov, Alexander T.; Berg, Erez; Fernandes, Rafael M.; Fisher, Ian R.; Kivelson, Steven A.
2017-12-01
The paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated with spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.
Wang, Yuxin; Lai, Adelene; Latino, Diogo; Fenner, Kathrin; Helbling, Damian E
2018-06-14
Aerobic biodegradation half-lives (half-lives) are key parameters used to evaluate pesticide persistence in soil. However, half-life estimates for individual pesticides often span several orders of magnitude, reflecting the impact that various environmental or experimental parameters have on half-lives in soil. In this work, we collected literature-reported half-lives for eleven pesticides along with associated metadata describing the environmental or experimental conditions under which they were derived. We then developed a multivariable framework to discover relationships between the half-lives and associated metadata. We first compared data for the herbicide atrazine collected from 95 laboratory and 65 field studies. We discovered that atrazine application history and soil texture were the parameters that have the largest influence on the observed half-lives in both types of studies. We then extended the analysis to include ten additional pesticides with data collected exclusively from laboratory studies. We found that, when data were available, pesticide application history and biomass concentrations were always positively associated with half-lives. The relevance of other parameters varied among the pesticides, but in some cases the variability could be explained by the physicochemical properties of the pesticides. For example, we found that the relative significance of the organic carbon content of soil for determining half-lives depends on the relative solubility of the pesticide. Altogether, our analyses highlight the reciprocal influence of both environmental parameters and intrinsic physicochemical properties for determining half-lives in soil. Copyright © 2018 Elsevier Ltd. All rights reserved.
A statistical survey of heat input parameters into the cusp thermosphere
NASA Astrophysics Data System (ADS)
Moen, J. I.; Skjaeveland, A.; Carlson, H. C.
2017-12-01
Based on three winters of observational data, we present those ionosphere parameters deemed most critical to realistic space weather ionosphere and thermosphere representation and prediction, in regions impacted by variability in the cusp. The CHAMP spacecraft revealed large variability in cusp thermosphere densities, measuring frequent satellite drag enhancements, up to doublings. The community recognizes a clear need for more realistic representation of plasma flows and electron densities near the cusp. Existing average-value models produce order of magnitude errors in these parameters, resulting in large under estimations of predicted drag. We fill this knowledge gap with statistics-based specification of these key parameters over their range of observed values. The EISCAT Svalbard Radar (ESR) tracks plasma flow Vi , electron density Ne, and electron, ion temperatures Te, Ti , with consecutive 2-3 minute windshield-wipe scans of 1000x500 km areas. This allows mapping the maximum Ti of a large area within or near the cusp with high temporal resolution. In magnetic field-aligned mode the radar can measure high-resolution profiles of these plasma parameters. By deriving statistics for Ne and Ti , we enable derivation of thermosphere heating deposition under background and frictional-drag-dominated magnetic reconnection conditions. We separate our Ne and Ti profiles into quiescent and enhanced states, which are not closely correlated due to the spatial structure of the reconnection foot point. Use of our data-based parameter inputs can make order of magnitude corrections to input data driving thermosphere models, enabling removal of previous two fold drag errors.
A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates.
Johnson, Ian; Wang, Sebo Michelle; Silken, Christine; Liu, Huinan
2016-05-01
Nanocomposite coatings offer multiple functions simultaneously to improve the interfacial properties of magnesium (Mg) alloys for skeletal implant applications, e.g., controlling the degradation rate of Mg substrates, improving bone cell functions, and providing drug delivery capability. However, the effective service time of nanocomposite coatings may be limited due to their early delamination from the Mg-based substrates. Therefore, the objective of this study was to address the delamination issue of nanocomposite coatings, improve the coating properties for reducing the degradation of Mg-based substrates, and thus improve their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The surface conditions of the substrates, polymer component type of the nanocomposite coatings, and post-deposition processing are the key parameters that contribute to the efficacy of the nanocomposite coatings in regulating substrate degradation and bone cell responses. Specifically, the effects of metallic surface versus alkaline heat-treated hydroxide surface of the substrates on coating quality were investigated. For the nanocomposite coatings, nanophase hydroxyapatite (nHA) was dispersed in three types of biodegradable polymers, i.e., poly(lactic-co-glycolic acid) (PLGA), poly(l-lactic acid) (PLLA), or poly(caprolactone) (PCL) to determine which polymer component could provide integrated properties for slowest Mg degradation. The nanocomposite coatings with or without post-deposition processing, i.e., melting, annealing, were compared to determine which processing route improved the properties of the nanocomposite coatings most significantly. The results showed that optimizing the coating processes addressed the delamination issue. The melted then annealed nHA/PCL coating on the metallic Mg substrates showed the slowest degradation and the best coating adhesion, among all the combinations of conditions studied; and, it improved the adhesion density of BMSCs. This study elucidated the key parameters for optimizing nanocomposite coatings on Mg-based substrates for skeletal implant applications, and provided rational design guidelines for the nanocomposite coatings on Mg alloys for potential clinical translation of biodegradable Mg-based implants. This manuscript describes the systemic optimization of nanocomposite coatings to control the degradation and bioactivity of magnesium for skeletal implant applications. The key parameters influencing the integrity and functions of the nanocomposite coatings on magnesium were identified, guidelines for the optimization of the coatings were established, and the benefits of coating optimization were demonstrated through reduced magnesium degradation and increased bone marrow derived mesenchymal stem cell (BMSC) adhesion in vitro. The guidelines developed in this manuscript are valuable for the biometal field to improve the design of bioresorbable implants and devices, which will advance the clinical translation of magnesium-based implants. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Enhanced light absorption by mixed source black and brown carbon particles in UK winter
Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; Brooks, William A.; Onasch, Timothy B.; Jayne, John T.; Worsnop, Douglas R.; China, Swarup; Sharma, Noopur; Mazzoleni, Claudio; Xu, Lu; Ng, Nga L.; Liu, Dantong; Allan, James D.; Lee, James D.; Fleming, Zoë L.; Mohr, Claudia; Zotter, Peter; Szidat, Sönke; Prévôt, André S. H.
2015-01-01
Black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC's light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ∼1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC's warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. We conclude that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models. PMID:26419204
NASA Technical Reports Server (NTRS)
Kanai, T.; Kramer, M.; McAuley, A. J.; Nowack, S.; Pinck, D. S.; Ramirez, G.; Stewart, I.; Tohme, H.; Tong, L.
1995-01-01
This paper describes results from several wireless field trials in New Jersey, California, and Colorado, conducted jointly by researchers at Bellcore, JPL, and US West over the course of 1993 and 1994. During these trials, applications communicated over multiple wireless networks including satellite, low power PCS, high power cellular, packet data, and the wireline Public Switched Telecommunications Network (PSTN). Key goals included 1) designing data applications and an API suited to mobile users, 2) investigating internetworking issues, 3) characterizing wireless networks under various field conditions, and 4) comparing the performance of different protocol mechanisms over the diverse networks and applications. We describe experimental results for different protocol mechanisms and parameters, such as acknowledgment schemes and packet sizes. We show the need for powerful error control mechanisms such as selective acknowledgements and combining data from multiple transmissions. We highlight the possibility of a common protocol for all wireless networks, from micro-cellular PCS to satellite networks.
Huang, Yongjun; Flores, Jaime Gonzalo Flor; Cai, Ziqiang; Yu, Mingbin; Kwong, Dim-Lee; Wen, Guangjun; Churchill, Layne; Wong, Chee Wei
2017-06-29
For the sensitive high-resolution force- and field-sensing applications, the large-mass microelectromechanical system (MEMS) and optomechanical cavity have been proposed to realize the sub-aN/Hz 1/2 resolution levels. In view of the optomechanical cavity-based force- and field-sensors, the optomechanical coupling is the key parameter for achieving high sensitivity and resolution. Here we demonstrate a chip-scale optomechanical cavity with large mass which operates at ≈77.7 kHz fundamental mode and intrinsically exhibiting large optomechanical coupling of 44 GHz/nm or more, for both optical resonance modes. The mechanical stiffening range of ≈58 kHz and a more than 100 th -order harmonics are obtained, with which the free-running frequency instability is lower than 10 -6 at 100 ms integration time. Such results can be applied to further improve the sensing performance of the optomechanical inspired chip-scale sensors.
Homogenized boundary conditions and resonance effects in Faraday cages
Hewitt, I. J.
2016-01-01
We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called ‘Faraday cage effect’). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells. PMID:27279775
Upper critical field reaches 90 tesla near the Mott transition in fulleride superconductors
Kasahara, Y.; Takeuchi, Y.; Zadik, R. H.; ...
2017-02-17
Controlled access to the border of the Mott insulating state by variation of control parameters offers exotic electronic states such as anomalous and possibly high-transition-temperature (T c) superconductivity. The alkali-doped fullerides show a transition from a Mott insulator to a superconductor for the first time in three-dimensional materials, but the impact of dimensionality and electron correlation on superconducting properties has remained unclear. Here we show that, near the Mott insulating phase, the upper critical field H c2 of the fulleride superconductors reaches values as high as ~90 T—the highest among cubic crystals. This is accompanied by a crossover from weak-more » to strong-coupling superconductivity and appears upon entering the metallic state with the dynamical Jahn–Teller effect as the Mott transition is approached. Lastly, these results suggest that the cooperative interplay between molecular electronic structure and strong electron correlations plays a key role in realizing robust superconductivity with high-T c and high-H c2.« less
Upper critical field reaches 90 tesla near the Mott transition in fulleride superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasahara, Y.; Takeuchi, Y.; Zadik, R. H.
Controlled access to the border of the Mott insulating state by variation of control parameters offers exotic electronic states such as anomalous and possibly high-transition-temperature (T c) superconductivity. The alkali-doped fullerides show a transition from a Mott insulator to a superconductor for the first time in three-dimensional materials, but the impact of dimensionality and electron correlation on superconducting properties has remained unclear. Here we show that, near the Mott insulating phase, the upper critical field H c2 of the fulleride superconductors reaches values as high as ~90 T—the highest among cubic crystals. This is accompanied by a crossover from weak-more » to strong-coupling superconductivity and appears upon entering the metallic state with the dynamical Jahn–Teller effect as the Mott transition is approached. Lastly, these results suggest that the cooperative interplay between molecular electronic structure and strong electron correlations plays a key role in realizing robust superconductivity with high-T c and high-H c2.« less
Lin, Tao; Sun, Huijun; Chen, Zhong; You, Rongyi; Zhong, Jianhui
2007-12-01
Diffusion weighting in MRI is commonly achieved with the pulsed-gradient spin-echo (PGSE) method. When combined with spin-warping image formation, this method often results in ghosts due to the sample's macroscopic motion. It has been shown experimentally (Kennedy and Zhong, MRM 2004;52:1-6) that these motion artifacts can be effectively eliminated by the distant dipolar field (DDF) method, which relies on the refocusing of spatially modulated transverse magnetization by the DDF within the sample itself. In this report, diffusion-weighted images (DWIs) using both DDF and PGSE methods in the presence of macroscopic sample motion were simulated. Numerical simulation results quantify the dependence of signals in DWI on several key motion parameters and demonstrate that the DDF DWIs are much less sensitive to macroscopic sample motion than the traditional PGSE DWIs. The results also show that the dipolar correlation distance (d(c)) can alter contrast in DDF DWIs. The simulated results are in good agreement with the experimental results reported previously.
Conformational ensembles of RNA oligonucleotides from integrating NMR and molecular simulations.
Bottaro, Sandro; Bussi, Giovanni; Kennedy, Scott D; Turner, Douglas H; Lindorff-Larsen, Kresten
2018-05-01
RNA molecules are key players in numerous cellular processes and are characterized by a complex relationship between structure, dynamics, and function. Despite their apparent simplicity, RNA oligonucleotides are very flexible molecules, and understanding their internal dynamics is particularly challenging using experimental data alone. We show how to reconstruct the conformational ensemble of four RNA tetranucleotides by combining atomistic molecular dynamics simulations with nuclear magnetic resonance spectroscopy data. The goal is achieved by reweighting simulations using a maximum entropy/Bayesian approach. In this way, we overcome problems of current simulation methods, as well as in interpreting ensemble- and time-averaged experimental data. We determine the populations of different conformational states by considering several nuclear magnetic resonance parameters and point toward properties that are not captured by state-of-the-art molecular force fields. Although our approach is applied on a set of model systems, it is fully general and may be used to study the conformational dynamics of flexible biomolecules and to detect inaccuracies in molecular dynamics force fields.
Nijenhuis, Ivonne; Stollberg, Reiner; Lechner, Ute
2018-04-01
The megasite Bitterfeld-Wolfen is highly contaminated as a result of accidents and because of dumping of wastes from local chemical industries in the last century. A variety of contaminants including chlorinated ethenes and benzenes, hexachlorohexanes and chlorinated dioxins can still be found in the groundwater and (river) sediments. Investigations of the in situ microbial transformation of organohalides have been performed only over the last two decades at this megasite. In this review, we summarise the research on the activity of anaerobic dehalogenating bacteria at the field site in Bitterfeld-Wolfen, focusing on chlorinated ethenes, monochlorobenzene and chlorinated dioxins. Various methods and concepts were applied including ex situ cultivation and isolation, and in situ analysis of hydrochemical parameters, compound-specific stable isotope analysis of contaminants, 13C-tracer studies and molecular markers. Overall, biotransformation of organohalides is ongoing at the field site and Dehalococcoides mccartyi species play an important role in the detoxification process in the Bitterfeld-Wolfen region.
NASA Astrophysics Data System (ADS)
Wu, Xiangyang; Tan, Yunfei; Fang, Zhen; Jiang, Donghui; Chen, Zhiyou; Chen, Wenge; Kuang, Guangli
2017-10-01
A large cable-in-conduit-conductor (CICC) test facility has been designed and fabricated at the High Magnetic Field Laboratory of the Chinese Academy of Sciences (CHMFL) in order to meet the test requirement of the conductors which are applied to the future fusion reactor. The critical component of the test facility is an 80 kA superconducting transformer which consists of a multi-turn primary coil and a minor-turn secondary coil. As the current source of the conductor samples, the electromagnetic performance of the superconducting transformer determines the stability and safety of the test facility. In this paper, the key factors and parameters, which have much impact on the performance of the transformer, are analyzed in detail. The conceptual design and optimizing principles of the transformer are discussed. An Electromagnetic-Circuit coupled model built in ANSYS Multiphysics is successfully used to investigate the electromagnetic characterization of the transformer under the dynamic operation condition.
Chiavazzo, Eliodoro; Isaia, Marco; Mammola, Stefano; Lepore, Emiliano; Ventola, Luigi; Asinari, Pietro; Pugno, Nicola Maria
2015-01-01
The choice of a suitable area to spiders where to lay eggs is promoted in terms of Darwinian fitness. Despite its importance, the underlying factors behind this key decision are generally poorly understood. Here, we designed a multidisciplinary study based both on in-field data and laboratory experiments focusing on the European cave spider Meta menardi (Araneae, Tetragnathidae) and aiming at understanding the selective forces driving the female in the choice of the depositional area. Our in-field data analysis demonstrated a major role of air velocity and distance from the cave entrance within a particular cave in driving the female choice. This has been interpreted using a model based on the Entropy Generation Minimization - EGM - method, without invoking best fit parameters and thanks to independent lab experiments, thus demonstrating that the female chooses the depositional area according to minimal level of thermo-fluid-dynamic irreversibility. This methodology may pave the way to a novel approach in understanding evolutionary strategies for other living organisms. PMID:25556697
Three fundamental devices in one: a reconfigurable multifunctional device in two-dimensional WSe2
NASA Astrophysics Data System (ADS)
Dhakras, Prathamesh; Agnihotri, Pratik; Lee, Ji Ung
2017-06-01
The three pillars of semiconductor device technologies are (1) the p-n diode, (2) the metal-oxide-semiconductor field-effect transistor and (3) the bipolar junction transistor. They have enabled the unprecedented growth in the field of information technology that we see today. Until recently, the technological revolution for better, faster and more efficient devices has been governed by scaling down the device dimensions following Moore’s Law. With the slowing of Moore’s law, there is a need for alternative materials and computing technologies that can continue the advancement in functionality. Here, we describe a single, dynamically reconfigurable device that implements these three fundamental device functions. The device uses buried gates to achieve n- and p-channels and fits into a larger effort to develop devices with enhanced functionalities, including logic functions, over device scaling. As they are all surface conducting devices, we use one material parameter, the interface trap density of states, to describe the key figure-of-merit of each device.
NASA Astrophysics Data System (ADS)
Liu, Li-Wei; Gengzang, Duo-Jie; An, Xiu-Jia; Wang, Pei-Yu
2018-03-01
We propose a novel technique of generating multiple optomechanically induced transparency (OMIT) of a weak probe field in hybrid optomechanical system. This system consists of a cigar-shaped Bose–Einstein condensate (BEC), trapped inside each high finesse Fabry-Pérot cavity. In the resolved sideband regime, the analytic solutions of the absorption and the dispersion spectrum are given. The tunneling strength of the two resonators and the coupling parameters of the each BEC in combination with the cavity field have the appearance of three distinct OMIT windows in the absorption spectrum. Furthermore, whether there is BEC in each cavity is a key factor in the number of OMIT windows determination. The technique presented may have potential applications in quantum engineering and quantum information networks. Project supported by the National Natural Science Foundation of China (Grant Nos. 11564034, 11105062, and 21663026) and the Scientific Research Funds of College of Electrical Engineering, Northwest University, China (Grant No. xbmuyjrc201115).
Enhanced light absorption by mixed source black and brown carbon particles in UK winter
Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; ...
2015-09-30
We report that black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ~1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combinationmore » of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. In conclusion, we find that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.« less
Homogenized boundary conditions and resonance effects in Faraday cages
NASA Astrophysics Data System (ADS)
Hewett, D. P.; Hewitt, I. J.
2016-05-01
We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called `Faraday cage effect'). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells.
Homogenized boundary conditions and resonance effects in Faraday cages.
Hewett, D P; Hewitt, I J
2016-05-01
We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called 'Faraday cage effect'). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells.
Operational durability of a giant ER valve for Braille display
NASA Astrophysics Data System (ADS)
Luning, Xu; Han, Li; Yufei, Li; Shen, Rong; Kunquan, Lu
2017-05-01
The compact configuration of giant ER (electrorheological) valves provides the possibility of realizing a full-page Braille display. The operational durability of ER valves is a key issue in fulfilling a Braille display. A giant ER valve was used to investigate the variations in pressure drops and critical pressure drops of the valves over a long period under some typical operational parameters. The results indicate that neither the pressure drops nor critical pressure drops of giant ER valves show apparent deterioration over a long period. Without ER fluid exchange, a blockage appears in the channel of the valve because the ER structures induced by an external electric field cannot be broken by the Brownian motion of hydraulic oil molecules when the external electric field is removed. Forcing ER fluid flow is an effective and necessary method to keep the channel of the valve unblocked. Thus the operational durability of the valve using giant ER fluids is able to meet the demands of Braille display.
Simulation of Graphene Field-Effect Transistor Biosensors for Bacterial Detection.
Wu, Guangfu; Meyyappan, Meyya; Lai, King Wai Chiu
2018-05-25
Foodborne illness is correlated with the existence of infectious pathogens such as bacteria in food and drinking water. Probe-modified graphene field effect transistors (G-FETs) have been shown to be suitable for Escherichia coli ( E. coli ) detection. Here, the G-FETs for bacterial detection are modeled and simulated with COMSOL Multiphysics to understand the operation of the biosensors. The motion of E. coli cells in electrolyte and the surface charge of graphene induced by E. coli are systematically investigated. The comparison between the simulation and experimental data proves the sensing probe size to be a key parameter affecting the surface charge of graphene induced by bacteria. Finally, the relationship among the change in source-drain current (∆ I ds ), graphene-bacteria distance and bacterial concentration is established. The shorter graphene-bacteria distance and higher bacterial concentration give rise to better sensing performance (larger ∆ I ds ) of the G-FETs biosensors. The simulation here could serve as a guideline for the design and optimization of G-FET biosensors for various applications.
Development of a 15 T Nb 3Sn accelerator dipole demonstrator at Fermilab
Novitski, I.; Andreev, N.; Barzi, E.; ...
2016-06-01
Here, a 100 TeV scale Hadron Collider (HC) with a nominal operation field of at least 15 T is being considered for the post-LHC era, which requires using the Nb 3Sn technology. Practical demonstration of this field level in an accelerator-quality magnet and substantial reduction of the magnet costs are the key conditions for realization of such a machine. FNAL has started the development of a 15 T Nb 3Sn dipole demonstrator for a 100 TeV scale HC. The magnet design is based on 4-layer shell type coils, graded between the inner and outer layers to maximize the performance andmore » reduce the cost. The experience gained during the Nb 3Sn magnet R&D is applied to different aspects of the magnet design. This paper describes the magnetic and structural designs and parameters of the 15 T Nb 3Sn dipole and the steps towards the demonstration model fabrication.« less
125Mbps ultra-wideband system evaluation for cortical implant devices.
Luo, Yi; Winstead, Chris; Chiang, Patrick
2012-01-01
This paper evaluates the performance of a 125Mbps Impulse Ratio Ultra-Wideband (IR-UWB) system for cortical implant devices by using low-Q inductive coil link operating in the near-field domain. We examine design tradeoffs between transmitted signal amplitude, reliability, noise and clock jitter. The IR-UWB system is modeled using measured parameters from a reported UWB transceiver implemented in 90nm-CMOS technology. Non-optimized inductive coupling coils with low-Q value for near-field data transmission are modeled in order to build a full channel from the transmitter (Tx) to the receiver (Rx). On-off keying (OOK) modulation is used together with a low-complexity convolutional error correcting code. The simulation results show that even though the low-Q coils decrease the amplitude of the received pulses, the UWB system can still achieve acceptable performance when error correction is used. These results predict that UWB is a good candidate for delivering high data rates in cortical implant devices.
Allowing for Slow Evolution of Background Plasma in the 3D FDTD Plasma, Sheath, and Antenna Model
NASA Astrophysics Data System (ADS)
Smithe, David; Jenkins, Thomas; King, Jake
2015-11-01
We are working to include a slow-time evolution capability for what has previously been the static background plasma parameters, in the 3D finite-difference time-domain (FDTD) plasma and sheath model used to model ICRF antennas in fusion plasmas. A key aspect of this is SOL-density time-evolution driven by ponderomotive rarefaction from the strong fields in the vicinity of the antenna. We demonstrate and benchmark a Scalar Ponderomotive Potential method, based on local field amplitudes, which is included in the 3D simulation. And present a more advanced Tensor Ponderomotive Potential approach, which we hope to employ in the future, which should improve the physical fidelity in the highly anisotropic environment of the SOL. Finally, we demonstrate and benchmark slow time (non-linear) evolution of the RF sheath, and include realistic collisional effects from the neutral gas. Support from US DOE Grants DE-FC02-08ER54953, DE-FG02-09ER55006.
Image-Guided Surgery using Invisible Near-Infrared Light: Fundamentals of Clinical Translation
Gioux, Sylvain; Choi, Hak Soo; Frangioni, John V.
2011-01-01
The field of biomedical optics has matured rapidly over the last decade and is poised to make a significant impact on patient care. In particular, wide-field (typically > 5 cm), planar, near-infrared (NIR) fluorescence imaging has the potential to revolutionize human surgery by providing real-time image guidance to surgeons for tissue that needs to be resected, such as tumors, and tissue that needs to be avoided, such as blood vessels and nerves. However, to become a clinical reality, optimized imaging systems and NIR fluorescent contrast agents will be needed. In this review, we introduce the principles of NIR fluorescence imaging, analyze existing NIR fluorescence imaging systems, and discuss the key parameters that guide contrast agent development. We also introduce the complexities surrounding clinical translation using our experience with the Fluorescence-Assisted Resection and Exploration (FLARE™) imaging system as an example. Finally, we introduce state-of-the-art optical imaging techniques that might someday improve image-guided surgery even further. PMID:20868625
Knapp, B; Frantal, S; Cibena, M; Schreiner, W; Bauer, P
2011-08-01
Molecular dynamics is a commonly used technique in computational biology. One key issue of each molecular dynamics simulation is: When does this simulation reach equilibrium state? A widely used way to determine this is the visual and intuitive inspection of root mean square deviation (RMSD) plots of the simulation. Although this technique has been criticized several times, it is still often used. Therefore, we present a study proving that this method is not reliable at all. We conducted a survey with participants from the field in which we illustrated different RMSD plots to scientists in the field of molecular dynamics. These plots were randomized and repeated, using a statistical model and different variants of the plots. We show that there is no mutual consent about the point of equilibrium. The decisions are severely biased by different parameters. Therefore, we conclude that scientists should not discuss the equilibration of a molecular dynamics simulation on the basis of a RMSD plot.
Management of physical health in patients with schizophrenia: practical recommendations.
Heald, A; Montejo, A L; Millar, H; De Hert, M; McCrae, J; Correll, C U
2010-06-01
Improved physical health care is a pressing need for patients with schizophrenia. It can be achieved by means of a multidisciplinary team led by the psychiatrist. Key priorities should include: selection of antipsychotic therapy with a low risk of weight gain and metabolic adverse effects; routine assessment, recording and longitudinal tracking of key physical health parameters, ideally by electronic spreadsheets; and intervention to control CVD risk following the same principles as for the general population. A few simple tools to assess and record key physical parameters, combined with lifestyle intervention and pharmacological treatment as indicated, could significantly improve physical outcomes. Effective implementation of strategies to optimise physical health parameters in patients with severe enduring mental illness requires engagement and communication between psychiatrists and primary care in most health settings. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
Channel-parameter estimation for satellite-to-submarine continuous-variable quantum key distribution
NASA Astrophysics Data System (ADS)
Guo, Ying; Xie, Cailang; Huang, Peng; Li, Jiawei; Zhang, Ling; Huang, Duan; Zeng, Guihua
2018-05-01
This paper deals with a channel-parameter estimation for continuous-variable quantum key distribution (CV-QKD) over a satellite-to-submarine link. In particular, we focus on the channel transmittances and the excess noise which are affected by atmospheric turbulence, surface roughness, zenith angle of the satellite, wind speed, submarine depth, etc. The estimation method is based on proposed algorithms and is applied to low-Earth orbits using the Monte Carlo approach. For light at 550 nm with a repetition frequency of 1 MHz, the effects of the estimated parameters on the performance of the CV-QKD system are assessed by a simulation by comparing the secret key bit rate in the daytime and at night. Our results show the feasibility of satellite-to-submarine CV-QKD, providing an unconditionally secure approach to achieve global networks for underwater communications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maharaj, Akash V.; Rosenberg, Elliott W.; Hristov, Alexander T.
Here, the paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated withmore » spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.« less
Maharaj, Akash V.; Rosenberg, Elliott W.; Hristov, Alexander T.; ...
2017-12-05
Here, the paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated withmore » spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.« less
Fast Simulation of the Impact Parameter Calculation of Electrons through Pair Production
NASA Astrophysics Data System (ADS)
Bang, Hyesun; Kweon, MinJung; Huh, Kyoung Bum; Pachmayer, Yvonne
2018-05-01
A fast simulation method is introduced that reduces tremendously the time required for the impact parameter calculation, a key observable in physics analyses of high energy physics experiments and detector optimisation studies. The impact parameter of electrons produced through pair production was calculated considering key related processes using the Bethe-Heitler formula, the Tsai formula and a simple geometric model. The calculations were performed at various conditions and the results were compared with those from full GEANT4 simulations. The computation time using this fast simulation method is 104 times shorter than that of the full GEANT4 simulation.
Parameter as a Switch Between Dynamical States of a Network in Population Decoding.
Yu, Jiali; Mao, Hua; Yi, Zhang
2017-04-01
Population coding is a method to represent stimuli using the collective activities of a number of neurons. Nevertheless, it is difficult to extract information from these population codes with the noise inherent in neuronal responses. Moreover, it is a challenge to identify the right parameter of the decoding model, which plays a key role for convergence. To address the problem, a population decoding model is proposed for parameter selection. Our method successfully identified the key conditions for a nonzero continuous attractor. Both the theoretical analysis and the application studies demonstrate the correctness and effectiveness of this strategy.
NASA Astrophysics Data System (ADS)
Farzamian, Mohammad; Monteiro Santos, Fernando A.; Khalil, Mohamed A.
2017-12-01
The coupled hydrogeophysical approach has proved to be a valuable tool for improving the use of geoelectrical data for hydrological model parameterization. In the coupled approach, hydrological parameters are directly inferred from geoelectrical measurements in a forward manner to eliminate the uncertainty connected to the independent inversion of electrical resistivity data. Several numerical studies have been conducted to demonstrate the advantages of a coupled approach; however, only a few attempts have been made to apply the coupled approach to actual field data. In this study, we developed a 1D coupled hydrogeophysical code to estimate the van Genuchten-Mualem model parameters, K s, n, θ r and α, from time-lapse vertical electrical sounding data collected during a constant inflow infiltration experiment. van Genuchten-Mualem parameters were sampled using the Latin hypercube sampling method to provide a full coverage of the range of each parameter from their distributions. By applying the coupled approach, vertical electrical sounding data were coupled to hydrological models inferred from van Genuchten-Mualem parameter samples to investigate the feasibility of constraining the hydrological model. The key approaches taken in the study are to (1) integrate electrical resistivity and hydrological data and avoiding data inversion, (2) estimate the total water mass recovery of electrical resistivity data and consider it in van Genuchten-Mualem parameters evaluation and (3) correct the influence of subsurface temperature fluctuations during the infiltration experiment on electrical resistivity data. The results of the study revealed that the coupled hydrogeophysical approach can improve the value of geophysical measurements in hydrological model parameterization. However, the approach cannot overcome the technical limitations of the geoelectrical method associated with resolution and of water mass recovery.
Controlling Ethylene for Extended Preservation of Fresh Fruits and Vegetables
2008-12-01
into a process simulation to determine the effects of key design parameters on the overall performance of the system. Integrating process simulation...High Decay [Asian Pears High High Decay [ Avocados High High Decay lBananas Moderate ~igh Decay Cantaloupe High Moderate Decay Cherimoya Very High High...ozonolysis. Process simulation was subsequently used to understand the effect of key system parameters on EEU performance. Using this modeling work
Hints of hybridizing Majorana fermions in a nanowire coupled to superconducting leads
NASA Astrophysics Data System (ADS)
Finck, A. D. K.; van Harlingen, D. J.; Mohseni, P. K.; Jung, K.; Li, X.
2013-03-01
It has been proposed that a nanowire with strong spin-orbit coupling that is contacted with a conventional superconductor and subjected to a large magnetic field can be driven through a topological phase transition. In this regime, the two ends of the nanowire together host a pair of quasi-particles known as Majorana fermions (MFs). A key feature of MFs is that they are pinned to zero energy when the topological nanowire is long enough such that the wave functions of the two MFs do not overlap significantly, resulting in a zero bias anomaly (ZBA). It has been recently predicted that changes in external parameters can vary the wave function overlap and cause the MFs to hybridize in an oscillatory fashion. This would lead to a non-monotonic splitting or broadening of the ZBA and help distinguish MF transport signatures from a Kondo effect. Here, we present transport studies of an InAs nanowire contacted with niobium nitride leads in high magnetic fields. We observe a number of robust ZBAs that can persist for a wide range of back gate bias and magnetic field strength. Under certain conditions, we find that the height and width of the ZBA can oscillate with back gate bias or magnetic field. This work was supported by Microsoft Project Q.
NASA Astrophysics Data System (ADS)
Li, Xishuang; Liu, Baohua; Liu, Lejun; Zheng, Jiewen; Zhou, Songwang; Zhou, Qingjie
2017-12-01
The Liwan (Lw) gas field located in the northern slope of the South China Sea (SCS) is extremely complex for its sea-floor topograghy, which is a huge challenge for the safety of subsea facilities. It is economically impractical to obtain parameters for risk assessment of slope stability through a large amount of sampling over the whole field. The linkage between soil shear strength and seabed peak amplitude derived from 2D/3D seismic data is helpful for understanding the regional slope-instability risk. In this paper, the relationships among seabed peak, acoustic impedance and shear strength of shallow soil in the study area were discussed based on statistical analysis results. We obtained a similar relationship to that obtained in other deep-water areas. There is a positive correlation between seabed peak amplitude and acoustic impedance and an exponential relationship between acoustic impedance and shear strength of sediment. The acoustic impedance is the key factor linking the seismic amplitude and shear strength. Infinite slope stability analysis results indicate the areas have a high potential of shallow landslide on slopes exceeding 15° when the thickness of loose sediments exceeds 8 m in the Lw gas field. Our prediction shows that they are mainly located in the heads and walls of submarine canyons.
NASA Astrophysics Data System (ADS)
Gilson, Erik; Caspary, Kyle; Ebrahimi, Fatima; Goodman, Jeremy; Ji, Hantao; Nuñez, Tahiri; Wei, Xing
2016-10-01
The liquid metal magnetorotational instability experiment at PPPL is designed to search for the MRI in a controlled laboratory setup. MRI is thought to be the primary mechanism behind turbulence in accretion disks, leading to an enhanced effective viscosity that can explain observed fast accretion rates. The apparatus has several key differences from an accretion disk. The top and bottom surfaces of the vessel exert stresses on the surfaces of the working fluid. There are no surface stresses on an accretion disk, but rather a free-surface. To interpret experimental results, the Spectral Finite Element Maxwell and Navier Stokes (SFEMaNS) code (Guermond et al., 2009) has been used to simulate experiments in the MRI apparatus and study MRI onset in the presence of residual flows induced by the boundaries. These Ekman flows lead to the generation of radial magnetic fields that can obfuscate the MRI signal. Simulation results are presented that show the full spatial distribution of the velocity field and the magnetic field over a range of experimental operating parameters, including both above and below the expected MRI threshold. Both the residual flow and the radial magnetic field at the location of the diagnostics are computed for comparisons with experimental results. This research is supported by DOE, NSF, and NASA.
Seismic verification of nuclear plant equipment anchorage, Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czarnecki, R M
1991-06-01
Guidelines have been developed to evaluate the seismic adequacy of the anchorage of various classes of electrical and mechanical equipment in nuclear power plants covered by NRC Unresolved Safety Issue A-46. The guidelines consist of anchorage strength capacities as a function of key equipment and installation parameters. The strength criteria for expansion anchor bolts were developed by collecting and analyzing a large quantity of test data. The strength criteria for Cast-in-Place bolts and welds to embedded steel plates and channels were taken from existing nuclear-industry design guidelines. For anchorage used in low strength concrete and in concrete with cracks, appropriatemore » strength reduction factors were developed. Reduction factors for parameters such as edge distance, spacing and embedment depth are also included. Based on the anchorage capacity and equipment configuration, inspection checklists for field verification of anchorage adequacy were developed, and provisions for outliners that can be used to further investigate anchorages that cannot be verified in the field were prepared. The screening tables are based on an analysis of the anchorage forces developed by common equipment types and on strength criteria to quantify the holding power of anchor bolts and welds. A computer code EBAC was developed for the evaluation of the adequacy of the equipment anchorage. Guidelines to evaluate anchorage adequacy for vertical and horizontal tanks and horizontal heat exchangers were also developed.« less
NASA Astrophysics Data System (ADS)
Xu, Huifang; Dai, Yuehua
2017-02-01
A two-dimensional analytical model of double-gate (DG) tunneling field-effect transistors (TFETs) with interface trapped charges is proposed in this paper. The influence of the channel mobile charges on the potential profile is also taken into account in order to improve the accuracy of the models. On the basis of potential profile, the electric field is derived and the expression for the drain current is obtained by integrating the BTBT generation rate. The model can be used to study the impact of interface trapped charges on the surface potential, the shortest tunneling length, the drain current and the threshold voltage for varying interface trapped charge densities, length of damaged region as well as the structural parameters of the DG TFET and can also be utilized to design the charge trapped memory devices based on TFET. The biggest advantage of this model is that it is more accurate, and in its expression there are no fitting parameters with small calculating amount. Very good agreements for both the potential, drain current and threshold voltage are observed between the model calculations and the simulated results. Project supported by the National Natural Science Foundation of China (No. 61376106), the University Natural Science Research Key Project of Anhui Province (No. KJ2016A169), and the Introduced Talents Project of Anhui Science and Technology University.
Sullivan, Sylvia C.; Morales Betancourt, Ricardo; Barahona, Donifan; ...
2016-03-03
Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, N i, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of N i to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand N i variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, andmore » simulations are done with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of N i sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. In conclusion, N i sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.« less
Spectral Indices to Monitor Nitrogen-Driven Carbon Uptake in Field Corn
NASA Technical Reports Server (NTRS)
Corp, Lawrence A.; Middleton, Elizabeth M.; Campbell, Peya E.; Huemmrich, K. Fred; Daughtry, Craig S. T.; Russ, Andrew; Cheng, Yen-Ben
2010-01-01
Climate change is heavily impacted by changing vegetation cover and productivity with large scale monitoring of vegetation only possible with remote sensing techniques. The goal of this effort was to evaluate existing reflectance (R) spectroscopic methods for determining vegetation parameters related to photosynthetic function and carbon (C) dynamics in plants. Since nitrogen (N) is a key constituent of photosynthetic pigments and C fixing enzymes, biological C sequestration is regulated in part by N availability. Spectral R information was obtained from field corn grown at four N application rates (0, 70, 140, 280 kg N/ha). A hierarchy of spectral observations were obtained: leaf and canopy with a spectral radiometer; aircraft with the AISA sensor; and satellite with EO-1 Hyperion. A number of spectral R indices were calculated from these hyperspectral observations and compared to geo-located biophysical measures of plant growth and physiological condition. Top performing indices included the R derivative index D730/D705 and the normalized difference of R750 vs. R705 (ND705), both of which differentiated three of the four N fertilization rates at multiple observation levels and yielded high correlations to these carbon parameters: light use efficiency (LUE); C:N ratio; and crop grain yield. These results advocate the use of hyperspectral sensors for remotely monitoring carbon cycle dynamics in managed terrestrial ecosystems.
Ba, Kamarel; Thiaw, Modou; Lazar, Najih; Sarr, Alassane; Brochier, Timothée; Ndiaye, Ismaïla; Faye, Alioune; Sadio, Oumar; Panfili, Jacques; Thiaw, Omar Thiom; Brehmer, Patrice
2016-01-01
The stock of the Senegalese flat sardinella, Sardinella maderensis, is highly exploited in Senegal, West Africa. Its growth and reproduction parameters are key biological indicators for improving fisheries management. This study reviewed these parameters using landing data from small-scale fisheries in Senegal and literature information dated back more than 25 years. Age was estimated using length-frequency data to calculate growth parameters and assess the growth performance index. With global climate change there has been an increase in the average sea surface temperature along the Senegalese coast but the length-weight parameters, sex ratio, size at first sexual maturity, period of reproduction and condition factor of S. maderensis have not changed significantly. The above parameters of S. maderensis have hardly changed, despite high exploitation and fluctuations in environmental conditions that affect the early development phases of small pelagic fish in West Africa. This lack of plasticity of the species regarding of the biological parameters studied should be considered when planning relevant fishery management plans.
NASA Astrophysics Data System (ADS)
Zhang, Xiao-bo; Wang, Zhi-xue; Li, Jian-xin; Ma, Jian-hui; Li, Yang; Li, Yan-qiang
In order to facilitate Bluetooth function realization and information can be effectively tracked in the process of production, the vehicle Bluetooth hands-free devices need to download such key parameters as Bluetooth address, CVC license and base plate numbers, etc. Therefore, it is the aim to search simple and effective methods to download parameters for each vehicle Bluetooth hands-free device, and to control and record the use of parameters. In this paper, by means of Bluetooth Serial Peripheral Interface programmer device, the parallel port is switched to SPI. The first step is to download parameters is simulating SPI with the parallel port. To perform SPI function, operating the parallel port in accordance with the SPI timing. The next step is to achieve SPI data transceiver functions according to the programming parameters of options. Utilizing the new method, downloading parameters is fast and accurate. It fully meets vehicle Bluetooth hands-free devices production requirements. In the production line, it has played a large role.
Prognostics of Power Electronics, Methods and Validation Experiments
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan S.; Celaya, Jose R.; Biswas, Gautam; Goebel, Kai
2012-01-01
Abstract Failure of electronic devices is a concern for future electric aircrafts that will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. As a result, investigation of precursors to failure in electronics and prediction of remaining life of electronic components is of key importance. DC-DC power converters are power electronics systems employed typically as sourcing elements for avionics equipment. Current research efforts in prognostics for these power systems focuses on the identification of failure mechanisms and the development of accelerated aging methodologies and systems to accelerate the aging process of test devices, while continuously measuring key electrical and thermal parameters. Preliminary model-based prognostics algorithms have been developed making use of empirical degradation models and physics-inspired degradation model with focus on key components like electrolytic capacitors and power MOSFETs (metal-oxide-semiconductor-field-effect-transistor). This paper presents current results on the development of validation methods for prognostics algorithms of power electrolytic capacitors. Particularly, in the use of accelerated aging systems for algorithm validation. Validation of prognostics algorithms present difficulties in practice due to the lack of run-to-failure experiments in deployed systems. By using accelerated experiments, we circumvent this problem in order to define initial validation activities.
The dynamics of copper intercalated molybdenum ditelluride
NASA Astrophysics Data System (ADS)
Onofrio, Nicolas; Guzman, David; Strachan, Alejandro
2016-11-01
Layered transition metal dichalcogenides are emerging as key materials in nanoelectronics and energy applications. Predictive models to understand their growth, thermomechanical properties, and interaction with metals are needed in order to accelerate their incorporation into commercial products. Interatomic potentials enable large-scale atomistic simulations connecting first principle methods and devices. We present a ReaxFF reactive force field to describe molybdenum ditelluride and its interactions with copper. We optimized the force field parameters to describe the energetics, atomic charges, and mechanical properties of (i) layered MoTe2, Mo, and Cu in various phases, (ii) the intercalation of Cu atoms and small clusters within the van der Waals gap of MoTe2, and (iii) bond dissociation curves. The training set consists of an extensive set of first principles calculations computed using density functional theory (DFT). We validate the force field via the prediction of the adhesion of a single layer MoTe2 on a Cu(111) surface and find good agreement with DFT results not used in the training set. We characterized the mobility of the Cu ions intercalated into MoTe2 under the presence of an external electric field via finite temperature molecular dynamics simulations. The results show a significant increase in drift velocity for electric fields of approximately 0.4 V/Å and that mobility increases with Cu ion concentration.
Influence of Weak External Magnetic Field on Amorphous and Nanocrystalline Fe-based Alloys
NASA Astrophysics Data System (ADS)
Degmová, J.; Sitek, J.
2010-07-01
Nanoperm, Hitperm and Finamet amorphous and nanocrystalline alloys were measured by Mössbauer spectrometry in a weak external magnetic field of 0.5 T. It was shown that the most sensitive parameters of Mössbauer spectra are the intensities of the 2nd and the 5th lines. Rather small changes were observed also in the case of internal magnetic field values. The spectrum of nanocrystalline Nanoperm showed the increase in A23 parameter (ratio of line intensities) from 2.4 to 3.7 and decrease of internal magnetic field from 20 to 19 T for amorphous subspectrum under the influence of magnetic field. Spectrum of nanocrystalline Finemet shown decrease in A23 parameter from 3.5 to 2.6 almost without a change in the internal magnetic field value. In the case of amorphous Nanoperm and Finemet samples, the changes are almost negligible. Hitperm alloy showed the highest sensitivity to the weak magnetic field, when the A23 parameter increased from 0.4 to 2.5 in the external magnetic fields. The A23 parameter of crystalline subspectrum increased from 2.7 to 3.8 and the value of internal magnetic field corresponding to amorphous subspectrum increased from 22 to 24 T. The behavior of nanocrystalline alloys under weak external magnetic field was analyzed within the three-level relaxation model of magnetic dynamics in an assembly of single-domain particles.
Determination of nuclear quadrupolar parameters using singularities in field-swept NMR patterns.
Ichijo, Naoki; Takeda, Kazuyuki; Yamada, Kazuhiko; Takegoshi, K
2016-10-07
We propose a simple data-analysis scheme to determine the coupling constant and the asymmetry parameter of nuclear quadrupolar interactions in field-swept nuclear magnetic resonance (NMR) for static powder samples. This approach correlates the quadrupolar parameters to the positions of the singularities, which can readily be found out as sharp peaks in the field-swept pattern. Moreover, the parameters can be determined without quantitative acquisition and elaborate calculation of the overall profile of the pattern. Since both experimental and computational efforts are significantly reduced, the approach presented in this work will enhance the power of the field-swept NMR for yet unexplored quadrupolar nuclei. We demonstrate this approach in 33 S in α-S 8 and 35 Cl in chloranil. The accuracy of the obtained quadrupolar parameters is also discussed.
NASA Technical Reports Server (NTRS)
Subramanyam, Guru; VanKeuls, Fred W.; Miranda, Felix A.; Canedy, Chadwick L.; Aggarwal, Sanjeev; Venkatesan, Thirumalai; Ramesh, Ramamoorthy
2000-01-01
The correlation of electric field and critical design parameters such as the insertion loss, frequency ability return loss, and bandwidth of conductor/ferroelectric/dielectric microstrip tunable K-band microwave filters is discussed in this work. This work is based primarily on barium strontium titanate (BSTO) ferroelectric thin film based tunable microstrip filters for room temperature applications. Two new parameters which we believe will simplify the evaluation of ferroelectric thin films for tunable microwave filters, are defined. The first of these, called the sensitivity parameter, is defined as the incremental change in center frequency with incremental change in maximum applied electric field (EPEAK) in the filter. The other, the loss parameter, is defined as the incremental or decremental change in insertion loss of the filter with incremental change in maximum applied electric field. At room temperature, the Au/BSTO/LAO microstrip filters exhibited a sensitivity parameter value between 15 and 5 MHz/cm/kV. The loss parameter varied for different bias configurations used for electrically tuning the filter. The loss parameter varied from 0.05 to 0.01 dB/cm/kV at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hölzl, Christoph; Horinek, Dominik, E-mail: dominik.horinek@ur.de; Kibies, Patrick
Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures – while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatmentmore » of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute’s response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.« less
Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M
2016-04-14
Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.
NASA Astrophysics Data System (ADS)
Morandage, Shehan; Schnepf, Andrea; Vanderborght, Jan; Javaux, Mathieu; Leitner, Daniel; Laloy, Eric; Vereecken, Harry
2017-04-01
Root traits are increasingly important in breading of new crop varieties. E.g., longer and fewer lateral roots are suggested to improve drought resistance of wheat. Thus, detailed root architectural parameters are important. However, classical field sampling of roots only provides more aggregated information such as root length density (coring), root counts per area (trenches) or root arrival curves at certain depths (rhizotubes). We investigate the possibility of obtaining the information about root system architecture of plants using field based classical root sampling schemes, based on sensitivity analysis and inverse parameter estimation. This methodology was developed based on a virtual experiment where a root architectural model was used to simulate root system development in a field, parameterized for winter wheat. This information provided the ground truth which is normally unknown in a real field experiment. The three sampling schemes coring, trenching, and rhizotubes where virtually applied to and aggregated information computed. Morris OAT global sensitivity analysis method was then performed to determine the most sensitive parameters of root architecture model for the three different sampling methods. The estimated means and the standard deviation of elementary effects of a total number of 37 parameters were evaluated. Upper and lower bounds of the parameters were obtained based on literature and published data of winter wheat root architectural parameters. Root length density profiles of coring, arrival curve characteristics observed in rhizotubes, and root counts in grids of trench profile method were evaluated statistically to investigate the influence of each parameter using five different error functions. Number of branches, insertion angle inter-nodal distance, and elongation rates are the most sensitive parameters and the parameter sensitivity varies slightly with the depth. Most parameters and their interaction with the other parameters show highly nonlinear effect to the model output. The most sensitive parameters will be subject to inverse estimation from the virtual field sampling data using DREAMzs algorithm. The estimated parameters can then be compared with the ground truth in order to determine the suitability of the sampling schemes to identify specific traits or parameters of the root growth model.
Du, Liuliu; Batterman, Stuart; Godwin, Christopher; Chin, Jo-Yu; Parker, Edith; Breen, Michael; Brakefield, Wilma; Robins, Thomas; Lewis, Toby
2012-12-12
Air change rates (ACRs) and interzonal flows are key determinants of indoor air quality (IAQ) and building energy use. This paper characterizes ACRs and interzonal flows in 126 houses, and evaluates effects of these parameters on IAQ. ACRs measured using weeklong tracer measurements in several seasons averaged 0.73 ± 0.76 h(-1) (median = 0.57 h(-1), n = 263) in the general living area, and much higher, 1.66 ± 1.50 h(-1) (median = 1.23 h(-1), n = 253) in bedrooms. Living area ACRs were highest in winter and lowest in spring; bedroom ACRs were highest in summer and lowest in spring. Bedrooms received an average of 55 ± 18% of air from elsewhere in the house; the living area received only 26 ± 20% from the bedroom. Interzonal flows did not depend on season, indoor smoking or the presence of air conditioners. A two-zone IAQ model calibrated for the field study showed large differences in pollutant levels between the living area and bedroom, and the key parameters affecting IAQ were emission rates, emission source locations, air filter use, ACRs, interzonal flows, outdoor concentrations, and PM penetration factors. The single-zone models that are commonly used for residences have substantial limitations and may inadequately represent pollutant concentrations and exposures in bedrooms and potentially other environments other where people spend a substantial fraction of time.
Du, Liuliu; Batterman, Stuart; Godwin, Christopher; Chin, Jo-Yu; Parker, Edith; Breen, Michael; Brakefield, Wilma; Robins, Thomas; Lewis, Toby
2012-01-01
Air change rates (ACRs) and interzonal flows are key determinants of indoor air quality (IAQ) and building energy use. This paper characterizes ACRs and interzonal flows in 126 houses, and evaluates effects of these parameters on IAQ. ACRs measured using weeklong tracer measurements in several seasons averaged 0.73 ± 0.76 h−1 (median = 0.57 h−1, n = 263) in the general living area, and much higher, 1.66 ± 1.50 h−1 (median = 1.23 h−1, n = 253) in bedrooms. Living area ACRs were highest in winter and lowest in spring; bedroom ACRs were highest in summer and lowest in spring. Bedrooms received an average of 55 ± 18% of air from elsewhere in the house; the living area received only 26 ± 20% from the bedroom. Interzonal flows did not depend on season, indoor smoking or the presence of air conditioners. A two-zone IAQ model calibrated for the field study showed large differences in pollutant levels between the living area and bedroom, and the key parameters affecting IAQ were emission rates, emission source locations, air filter use, ACRs, interzonal flows, outdoor concentrations, and PM penetration factors. The single-zone models that are commonly used for residences have substantial limitations and may inadequately represent pollutant concentrations and exposures in bedrooms and potentially other environments other where people spend a substantial fraction of time. PMID:23235286
NASA Astrophysics Data System (ADS)
Kuklin, A. I.; Rogachev, A. V.; Soloviov, D. V.; Ivankov, O. I.; Kovalev, Yu S.; Utrobin, P. K.; Kutuzov, S. A.; Soloviev, A. G.; Rulev, M. I.; Gordeliy, V. I.
2017-05-01
Abstract.The work is a review of neutronographic investigations of supramolecular structures on upgraded small-angle spectrometer YuMO. Here, key parameters of small-angle spectrometers are considered. It is shown that two-detector system is the basis of YuMO upgrade. It allows to widen the dynamic q-range twice. In result, the available q-range is widened and dynamic q-range and data collection rate are doubled. The detailed description of YuMO spectrometer is given.The short review of experimental researches made on the spectrometer in the polymers field, biology, material science and physical chemistry is given. The current investigations also have a methodological aspect. It is shown that upgraded spectrometer provides advanced world level of research of supramolecular structures.
Buoyancy-driven instabilities around miscible A+B→C reaction fronts: a general classification.
Trevelyan, P M J; Almarcha, C; De Wit, A
2015-02-01
Upon contact between miscible solutions of reactants A and B along a horizontal interface in the gravity field, various buoyancy-driven instabilities can develop when an A+B→C reaction takes place and the density varies with the concentrations of the various chemicals. To classify the possible convective instability scenarios, we analyze the spatial dependence of the large time asymptotic density profiles as a function of the key parameters of the problem, which are the ratios of diffusion coefficients and of solutal expansion coefficients of species A, B, and C. We find that 62 different density profiles can develop in the reactive problem, whereas only 6 of them can be obtained in the nonreactive one.
WiseView: Visualizing motion and variability of faint WISE sources
NASA Astrophysics Data System (ADS)
Caselden, Dan; Westin, Paul, III; Meisner, Aaron; Kuchner, Marc; Colin, Guillaume
2018-06-01
WiseView renders image blinks of Wide-field Infrared Survey Explorer (WISE) coadds spanning a multi-year time baseline in a browser. The software allows for easy visual identification of motion and variability for sources far beyond the single-frame detection limit, a key threshold not surmounted by many studies. WiseView transparently gathers small image cutouts drawn from many terabytes of unWISE coadds, facilitating access to this large and unique dataset. Users need only input the coordinates of interest and can interactively tune parameters including the image stretch, colormap and blink rate. WiseView was developed in the context of the Backyard Worlds: Planet 9 citizen science project, and has enabled hundreds of brown dwarf candidate discoveries by citizen scientists and professional astronomers.
Microbial pigments as natural color sources: current trends and future perspectives.
Tuli, Hardeep S; Chaudhary, Prachi; Beniwal, Vikas; Sharma, Anil K
2015-08-01
Synthetic colors have been widely used in various industries including food, textile, cosmetic and pharmaceuticals. However toxicity problems caused by synthetic pigments have triggered intense research in natural colors and dyes. Among the natural Sources, pigment producing microorganisms hold a promising potential to meet present day challenges. Furthermore natural colors not only improve the marketability of the product but also add extra features like anti oxidant, anti cancer properties etc. In this review, we present various sources of microbial pigments and to explore their biological and clinical properties like antimicrobial, antioxidant, anticancer and anti inflammatory. The study also emphasizes upon key parameters to improve the bioactivity and production of microbial pigments for their commercial use in pharmacological and medical fields.
Robot Towed Shortwave Infrared Camera for Specific Surface Area Retrieval of Surface Snow
NASA Astrophysics Data System (ADS)
Elliott, J.; Lines, A.; Ray, L.; Albert, M. R.
2017-12-01
Optical grain size and specific surface area are key parameters for measuring the atmospheric interactions of snow, as well as tracking metamorphosis and allowing for the ground truthing of remote sensing data. We describe a device using a shortwave infrared camera with changeable optical bandpass filters (centered at 1300 nm and 1550 nm) that can be used to quickly measure the average SSA over an area of 0.25 m^2. The device and method are compared with calculations made from measurements taken with a field spectral radiometer. The instrument is designed to be towed by a small autonomous ground vehicle, and therefore rides above the snow surface on ultra high molecular weight polyethylene (UHMW) skis.
Electromagnetic Compatibility Assessment of CCD Detector Acquisition Chains not Synchronized
NASA Astrophysics Data System (ADS)
Nicoletto, M.; Boschetti, D.; Ciancetta, E.; Maiorano, E.; Stagnaro, L.
2016-05-01
Euclid is a space observatory managed by the European Space Agency; it is the second medium class mission (see Figure 1) in the frame of Cosmic Vision 2015-2025 program.In the frame of this project, the electromagnetic interference between two different and not synchronized Charge Coupled Device (CCD) (see Figure 2) acquisition chains has been evaluated. The key parameter used for this assessment is the electromagnetic noise induced on each other. Taking into account the specificity of the issue, radiation coupling at relative low frequency and in near field conditions, classical approach based on simulations and testing on qualification model cannot be directly applied. Based on that, it has been decided to investigate the issue by test in an incremental way.
Parametric Investigation of Liquid Jets in Low Gravity
NASA Technical Reports Server (NTRS)
Chato, David J.
2005-01-01
An axisymmetric phase field model is developed and used to model surface tension forces on liquid jets in microgravity. The previous work in this area is reviewed and a baseline drop tower experiment selected for model comparison. This paper uses the model to parametrically investigate the influence of key parameters on the geysers formed by jets in microgravity. Investigation of the contact angle showed the expected trend of increasing contact angle increasing geyser height. Investigation of the tank radius showed some interesting effects and demonstrated the zone of free surface deformation is quite large. Variation of the surface tension with a laminar jet showed clearly the evolution of free surface shape with Weber number. It predicted a breakthrough Weber number of 1.
Parameters of Technological Growth
ERIC Educational Resources Information Center
Starr, Chauncey; Rudman, Richard
1973-01-01
Examines the factors involved in technological growth and identifies the key parameters as societal resources and societal expectations. Concludes that quality of life can only be maintained by reducing population growth, since this parameter is the product of material levels, overcrowding, food, and pollution. (JR)
A fortran program for Monte Carlo simulation of oil-field discovery sequences
Bohling, Geoffrey C.; Davis, J.C.
1993-01-01
We have developed a program for performing Monte Carlo simulation of oil-field discovery histories. A synthetic parent population of fields is generated as a finite sample from a distribution of specified form. The discovery sequence then is simulated by sampling without replacement from this parent population in accordance with a probabilistic discovery process model. The program computes a chi-squared deviation between synthetic and actual discovery sequences as a function of the parameters of the discovery process model, the number of fields in the parent population, and the distributional parameters of the parent population. The program employs the three-parameter log gamma model for the distribution of field sizes and employs a two-parameter discovery process model, allowing the simulation of a wide range of scenarios. ?? 1993.
NASA Astrophysics Data System (ADS)
Monnet, Jean-Matthieu; Bourrier, Franck; Milenkovic, Milutin
2017-04-01
Advances in numerical simulation and analysis of real-size field experiments have supported the development of process-based rockfall simulation models. Availability of high resolution remote sensing data and high-performance computing now make it possible to implement them for operational applications, e.g. risk zoning and protection structure design. One key parameter regarding rock propagation is the surface roughness, sometimes defined as the variation in height perpendicular to the slope (Pfeiffer and Bowen, 1989). Roughness-related input parameters for rockfall models are usually determined by experts on the field. In the RockyFor3D model (Dorren, 2015), three values related to the distribution of obstacles (deposited rocks, stumps, fallen trees,... as seen from the incoming rock) relatively to the average slope are estimated. The use of high resolution digital terrain models (DTMs) questions both the scale usually adopted by experts for roughness assessment and the relevance of modeling hypotheses regarding the rock / ground interaction. Indeed, experts interpret the surrounding terrain as obstacles or ground depending on the overall visibility and on the nature of objects. Digital models represent the terrain with a certain amount of smoothing, depending on the sensor capacities. Besides, the rock rebound on the ground is modeled by changes in the velocities of the gravity center of the block due to impact. Thus, the use of a DTM with resolution smaller than the block size might have little relevance while increasing computational burden. The objective of this work is to investigate the issue of scale relevance with simulations based on RockyFor3D in order to derive guidelines for roughness estimation by field experts. First a sensitivity analysis is performed to identify the combinations of parameters (slope, soil roughness parameter, rock size) where the roughness values have a critical effect on rock propagation on a regular hillside. Second, a more complex hillside is simulated by combining three components: a) a global trend (planar surface), b) local systematic components (sine waves), c) random roughness (Gaussian, zero-mean noise). The parameters for simulating these components are estimated for three typical scenarios of rockfall terrains: soft soil, fine scree and coarse scree, based on expert knowledge and available airborne and terrestrial laser scanning data. For each scenario, the reference terrain is created and used to compute input data for RockyFor3D simulations at different scales, i.e. DTMs with resolutions from 0.5 m to 20 m and associated roughness parameters. Subsequent analysis mainly focuses on the sensitivity of simulations both in terms of run-out envelope and kinetic energy distribution. Guidelines drawn from the results are expected to help experts handle the scale issue while integrating remote sensing data and field measurements of roughness in rockfall simulations.
Development of guidelines for the surveillance of invasive mosquitoes in Europe
2013-01-01
Background The recent notifications of autochthonous cases of dengue and chikungunya in Europe prove that the region is vulnerable to these diseases in areas where known mosquito vectors (Aedes albopictus and Aedes aegypti) are present. Strengthening surveillance of these species as well as other invasive container-breeding aedine mosquito species such as Aedes atropalpus, Aedes japonicus, Aedes koreicus and Aedes triseriatus is therefore required. In order to support and harmonize surveillance activities in Europe, the European Centre for Disease Prevention and Control (ECDC) launched the production of ‘Guidelines for the surveillance of invasive mosquitoes in Europe’. This article describes these guidelines in the context of the key issues surrounding invasive mosquitoes surveillance in Europe. Methods Based on an open call for tender, ECDC granted a pan-European expert team to write the guidelines draft. It content is founded on published and grey literature, contractor’s expert knowledge, as well as appropriate field missions. Entomologists, public health experts and end users from 17 EU/EEA and neighbouring countries contributed to a reviewing and validation process. The final version of the guidelines was edited by ECDC (Additional file 1). Results The guidelines describe all procedures to be applied for the surveillance of invasive mosquito species. The first part addresses strategic issues and options to be taken by the stakeholders for the decision-making process, according to the aim and scope of surveillance, its organisation and management. As the strategy to be developed needs to be adapted to the local situation, three likely scenarios are proposed. The second part addresses all operational issues and suggests options for the activities to be implemented, i.e. key procedures for field surveillance of invasive mosquito species, methods of identification of these mosquitoes, key and optional procedures for field collection of population parameters, pathogen screening, and environmental parameters. In addition, methods for data management and analysis are recommended, as well as strategies for data dissemination and mapping. Finally, the third part provides information and support for cost estimates of the planned programmes and for the evaluation of the applied surveillance process. Conclusion The ‘Guidelines for the surveillance of invasive mosquitoes in Europe’ aim at supporting the implementation of tailored surveillance of invasive mosquito species of public health importance. They are intended to provide support to professionals involved in mosquito surveillance or control, decision/policy makers, stakeholders in public health and non-experts in mosquito surveillance. Surveillance also aims to support control of mosquito-borne diseases, including integrated vector control, and the guidelines are therefore part of a tool set for managing mosquito-borne disease risk in Europe. PMID:23866915
NASA Technical Reports Server (NTRS)
Lipatov, A. S.; Farrell, W. M.; Cooper, J. F.; Sittler, E. C., Jr.; Hartle, R. E.
2015-01-01
The interactions between the solar wind and Moon-sized objects are determined by a set of the solar wind parameters and plasma environment of the space objects. The orientation of upstream magnetic field is one of the key factors which determines the formation and structure of bow shock wave/Mach cone or Alfven wing near the obstacle. The study of effects of the direction of the upstream magnetic field on lunar-like plasma environment is the main subject of our investigation in this paper. Photoionization, electron-impact ionization and charge exchange are included in our hybrid model. The computational model includes the self-consistent dynamics of the light (hydrogen (+), helium (+)) and heavy (sodium (+)) pickup ions. The lunar interior is considered as a weakly conducting body. Our previous 2013 lunar work, as reported in this journal, found formation of a triple structure of the Mach cone near the Moon in the case of perpendicular upstream magnetic field. Further advances in modeling now reveal the presence of strong wave activity in the upstream solar wind and plasma wake in the cases of quasiparallel and parallel upstream magnetic fields. However, little wave activity is found for the opposite case with a perpendicular upstream magnetic field. The modeling does not show a formation of the Mach cone in the case of theta(Sub B,U) approximately equal to 0 degrees.