Sample records for key residues implicated

  1. Bimodal voltage dependence of TRPA1: mutations of a key pore helix residue reveal strong intrinsic voltage-dependent inactivation.

    PubMed

    Wan, Xia; Lu, Yungang; Chen, Xueqin; Xiong, Jian; Zhou, Yuanda; Li, Ping; Xia, Bingqing; Li, Min; Zhu, Michael X; Gao, Zhaobing

    2014-07-01

    Transient receptor potential A1 (TRPA1) is implicated in somatosensory processing and pathological pain sensation. Although not strictly voltage-gated, ionic currents of TRPA1 typically rectify outwardly, indicating channel activation at depolarized membrane potentials. However, some reports also showed TRPA1 inactivation at high positive potentials, implicating voltage-dependent inactivation. Here we report a conserved leucine residue, L906, in the putative pore helix, which strongly impacts the voltage dependency of TRPA1. Mutation of the leucine to cysteine (L906C) converted the channel from outward to inward rectification independent of divalent cations and irrespective to stimulation by allyl isothiocyanate. The mutant, but not the wild-type channel, displayed exclusively voltage-dependent inactivation at positive potentials. The L906C mutation also exhibited reduced sensitivity to inhibition by TRPA1 blockers, HC030031 and ruthenium red. Further mutagenesis of the leucine to all natural amino acids individually revealed that most substitutions at L906 (15/19) resulted in inward rectification, with exceptions of three amino acids that dramatically reduced channel activity and one, methionine, which mimicked the wild-type channel. Our data are plausibly explained by a bimodal gating model involving both voltage-dependent activation and inactivation of TRPA1. We propose that the key pore helix residue, L906, plays an essential role in responding to the voltage-dependent gating.

  2. Technology for biomass feedstock production in southern forests and GHG implications

    Treesearch

    Bob Rummer; John Klepac; Jason Thompson

    2012-01-01

    Woody biomass production in the South can come from four distinct feedstocks - logging residues, thinnings, understory harvesting, or energywood plantations. A range of new technology has been developed to collect, process and transport biomass and a key element of technology development has been to reduce energy consumption. We examined three different woody feedstock...

  3. Effects of polymethylmethacrylate-transfer residues on the growth of organic semiconductor molecules on chemical vapor deposited graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kratzer, Markus, E-mail: markus.kratzer@unileoben.ac.at; Teichert, Christian; Bayer, Bernhard C.

    Scalably grown and transferred graphene is a highly promising material for organic electronic applications, but controlled interfacing of graphene thereby remains a key challenge. Here, we study the growth characteristics of the important organic semiconductor molecule para-hexaphenyl (6P) on chemical vapor deposited graphene that has been transferred with polymethylmethacrylate (PMMA) onto oxidized Si wafer supports. A particular focus is on the influence of PMMA residual contamination, which we systematically reduce by H{sub 2} annealing prior to 6P deposition. We find that 6P grows in a flat-lying needle-type morphology, surprisingly independent of the level of PMMA residue and of graphene defects.more » Wrinkles in the graphene typically act as preferential nucleation centers. Residual PMMA does however limit the length of the resulting 6P needles by restricting molecular diffusion/attachment. We discuss the implications for organic device fabrication, with particular regard to contamination and defect tolerance.« less

  4. Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments

    PubMed Central

    Miller, Ona K; Potter, Jane A; Vijayakrishnan, Swetha; Bhella, David; Naismith, James H; Elliott, Richard M

    2017-01-01

    Rift Valley fever phlebovirus (RVFV) is a clinically and economically important pathogen increasingly likely to cause widespread epidemics. RVFV virulence depends on the interferon antagonist non-structural protein (NSs), which remains poorly characterized. We identified a stable core domain of RVFV NSs (residues 83–248), and solved its crystal structure, a novel all-helical fold organized into highly ordered fibrils. A hallmark of RVFV pathology is NSs filament formation in infected cell nuclei. Recombinant virus encoding the NSs core domain induced intranuclear filaments, suggesting it contains all essential determinants for nuclear translocation and filament formation. Mutations of key crystal fibril interface residues in viruses encoding full-length NSs completely abrogated intranuclear filament formation in infected cells. We propose the fibrillar arrangement of the NSs core domain in crystals reveals the molecular basis of assembly of this key virulence factor in cell nuclei. Our findings have important implications for fundamental understanding of RVFV virulence. PMID:28915104

  5. Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments.

    PubMed

    Barski, Michal; Brennan, Benjamin; Miller, Ona K; Potter, Jane A; Vijayakrishnan, Swetha; Bhella, David; Naismith, James H; Elliott, Richard M; Schwarz-Linek, Ulrich

    2017-09-15

    Rift Valley fever phlebovirus (RVFV) is a clinically and economically important pathogen increasingly likely to cause widespread epidemics. RVFV virulence depends on the interferon antagonist non-structural protein (NSs), which remains poorly characterized. We identified a stable core domain of RVFV NSs (residues 83-248), and solved its crystal structure, a novel all-helical fold organized into highly ordered fibrils. A hallmark of RVFV pathology is NSs filament formation in infected cell nuclei. Recombinant virus encoding the NSs core domain induced intranuclear filaments, suggesting it contains all essential determinants for nuclear translocation and filament formation. Mutations of key crystal fibril interface residues in viruses encoding full-length NSs completely abrogated intranuclear filament formation in infected cells. We propose the fibrillar arrangement of the NSs core domain in crystals reveals the molecular basis of assembly of this key virulence factor in cell nuclei. Our findings have important implications for fundamental understanding of RVFV virulence.

  6. Receptor activity-modifying protein-dependent effects of mutations in the calcitonin receptor-like receptor: implications for adrenomedullin and calcitonin gene-related peptide pharmacology

    PubMed Central

    Watkins, H A; Walker, C S; Ly, K N; Bailey, R J; Barwell, J; Poyner, D R; Hay, D L

    2014-01-01

    Background and Purpose Receptor activity-modifying proteins (RAMPs) define the pharmacology of the calcitonin receptor-like receptor (CLR). The interactions of the different RAMPs with this class B GPCR yield high-affinity calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors. However, the mechanism for this is unclear. Experimental Approach Guided by receptor models, we mutated residues in the N-terminal helix of CLR, RAMP2 and RAMP3 hypothesized to be involved in peptide interactions. These were assayed for cAMP production with AM, AM2 and CGRP together with their cell surface expression. Binding studies were also conducted for selected mutants. Key Results An important domain for peptide interactions on CLR from I32 to I52 was defined. Although I41 was universally important for binding and receptor function, the role of other residues depended on both ligand and RAMP. Peptide binding to CLR/RAMP3 involved a more restricted range of residues than that to CLR/RAMP1 or CLR/RAMP2. E101 of RAMP2 had a major role in AM interactions, and F111/W84 of RAMP2/3 was important with each peptide. Conclusions and Implications RAMP-dependent effects of CLR mutations suggest that the different RAMPs control accessibility of peptides to binding residues situated on the CLR N-terminus. RAMP3 appears to alter the role of specific residues at the CLR-RAMP interface compared with RAMP1 and RAMP2. PMID:24199627

  7. Solid-phase partitioning of mercury in artisanal gold mine tailings from selected key areas in Mindanao, Philippines, and its implications for mercury detoxification.

    PubMed

    Opiso, Einstine M; Aseneiro, John Paul J; Banda, Marybeth Hope T; Tabelin, Carlito B

    2018-03-01

    The solid-phase partitioning of mercury could provide necessary data in the identification of remediation techniques in contaminated artisanal gold mine tailings. This study was conducted to determine the total mercury content of mine wastes and identify its solid-phase partitioning through selective sequential extraction coupled with cold vapour atomic absorption spectroscopy. Samples from mine tailings and the carbon-in-pulp (CIP) process were obtained from selected key areas in Mindanao, Philippines. The results showed that mercury use is still prevalent among small-scale gold miners in the Philippines. Tailings after ball mill-gravity concentration (W-BM and Li-BM samples) from Mt Diwata and Libona contained high levels of mercury amounting to 25.024 and 6.5 mg kg -1 , respectively. The most prevalent form of mercury in the mine tailings was elemental/amalgamated mercury, followed by water soluble, exchangeable, organic and strongly bound phases, respectively. In contrast, mercury content of carbon-in-pulp residues were significantly lower at only 0.3 and 0.06 mg kg -1 for P-CIP (Del Pilar) and W-CIP (Mt Diwata), respectively. The bulk of mercury in P-CIP samples was partitioned in residual fraction while in W-CIP samples, water soluble mercury predominated. Overall, this study has several important implications with regards to mercury detoxification of contaminated mine tailings from Mindanao, Philippines.

  8. Electrostatics effects on Ca(2+) binding and conformational changes in EF-hand domains: Functional implications for EF-hand proteins.

    PubMed

    Ababou, Abdessamad; Zaleska, Mariola

    2015-12-01

    Mutations of Gln41 and Lys75 with nonpolar residues in the N-terminal domain of calmodulin (N-Cam) revealed the importance of solvation energetics in conformational change of Ca(2+) sensor EF-hand domains. While in general these domains have polar residues at these corresponding positions yet the extent of their conformational response to Ca(2+) binding and their Ca(2+) binding affinity can be different from N-Cam. Consequently, here we address the charge state of the polar residues at these positions. The results show that the charge state of these polar residues can affect substantially the conformational change and the Ca(2+) binding affinity of our N-Cam variants. Since all the variants kept their conformational activity in the presence of Ca(2+) suggests that the differences observed among them mainly originate from the difference in their molecular dynamics. Hence we propose that the molecular dynamics of Ca(2+) sensor EF-hand domains is a key factor in the multifunctional aspect of EF-hand proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Comparison of screening-level and Monte Carlo approaches for wildlife food web exposure modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastorok, R.; Butcher, M.; LaTier, A.

    1995-12-31

    The implications of using quantitative uncertainty analysis (e.g., Monte Carlo) and site-specific tissue residue data for wildlife exposure modeling were examined with data on trace elements at the Clark Fork River Superfund Site. Exposure of white-tailed deer, red fox, and American kestrel was evaluated using three approaches. First, a screening-level exposure model was based on conservative estimates of exposure parameters, including estimates of dietary residues derived from bioconcentration factors (BCFs) and soil chemistry. A second model without Monte Carlo was based on site-specific data for tissue residues of trace elements (As, Cd, Cu, Pb, Zn) in key dietary species andmore » plausible assumptions for habitat spatial segmentation and other exposure parameters. Dietary species sampled included dominant grasses (tufted hairgrass and redtop), willows, alfalfa, barley, invertebrates (grasshoppers, spiders, and beetles), and deer mice. Third, the Monte Carlo analysis was based on the site-specific residue data and assumed or estimated distributions for exposure parameters. Substantial uncertainties are associated with several exposure parameters, especially BCFS, such that exposure and risk may be greatly overestimated in screening-level approaches. The results of the three approaches are compared with respect to realism, practicality, and data gaps. Collection of site-specific data on trace elements concentrations in plants and animals eaten by the target wildlife receptors is a cost-effective way to obtain realistic estimates of exposure. Implications of the results for exposure and risk estimates are discussed relative to use of wildlife exposure modeling and evaluation of remedial actions at Superfund sites.« less

  10. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition* | Office of Cancer Genomics

    Cancer.gov

    Acquired drug resistance prevents cancer therapies from achieving stable and complete responses. Emerging evidence implicates a key role for non-mutational drug resistance mechanisms underlying the survival of residual cancer 'persister' cells. The persister cell pool constitutes a reservoir from which drug-resistant tumours may emerge. Targeting persister cells therefore presents a therapeutic opportunity to impede tumour relapse. We previously found that cancer cells in a high mesenchymal therapy-resistant cell state are dependent on the lipid hydroperoxidase GPX4 for survival.

  11. Joint neutron crystallographic and NMR solution studies of Tyr residue ionization and hydrogen bonding: Implications for enzyme-mediated proton transfer

    DOE PAGES

    Michalczyk, Ryszard; Unkefer, Clifford J.; Bacik, John -Paul; ...

    2015-05-05

    Proton transfer is a fundamental mechanism at the core of many enzyme-catalyzed reactions. It is also exquisitely sensitive to a number of factors, including pH, electrostatics, proper active-site geometry, and chemistry. Carbonic anhydrase has evolved a fast and efficient way to conduct protons through a combination of hydrophilic amino acid side chains that coordinate a highly ordered H-bonded water network. This study uses a powerful approach, combining NMR solution studies with neutron protein crystallography, to determine the effect of pH and divalent cations on key residues involved in proton transfer in human carbonic anhydrase. Lastly, the results have broad implicationsmore » for our understanding of proton transfer and how subtle changes in ionization and H-bonding interactions can modulate enzyme catalysis.« less

  12. The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel.

    PubMed

    Minor, D L; Lin, Y F; Mobley, B C; Avelar, A; Jan, Y N; Jan, L Y; Berger, J M

    2000-09-01

    Kv voltage-gated potassium channels share a cytoplasmic assembly domain, T1. Recent mutagenesis of two T1 C-terminal loop residues implicates T1 in channel gating. However, structural alterations of these mutants leave open the question concerning direct involvement of T1 in gating. We find in mammalian Kv1.2 that gating depends critically on residues at complementary T1 surfaces in an unusually polar interface. An isosteric mutation in this interface causes surprisingly little structural alteration while stabilizing the closed channel and increasing the stability of T1 tetramers. Replacing T1 with a tetrameric coiled-coil destabilizes the closed channel. Together, these data suggest that structural changes involving the buried polar T1 surfaces play a key role in the conformational changes leading to channel opening.

  13. Ribosomal DNA transcription in the dorsal raphe nucleus is increased in residual but not in paranoid schizophrenia.

    PubMed

    Krzyżanowska, Marta; Steiner, Johann; Brisch, Ralf; Mawrin, Christian; Busse, Stefan; Braun, Katharina; Jankowski, Zbigniew; Bernstein, Hans-Gert; Bogerts, Bernhard; Gos, Tomasz

    2015-03-01

    The central serotonergic system is implicated in the pathogenesis of schizophrenia, where the imbalance between dopamine, serotonin and glutamate plays a key pathophysiological role. The dorsal raphe nucleus (DRN) is the main source of serotonergic innervation of forebrain limbic structures disturbed in schizophrenia patients. The study was carried out on paraffin-embedded brains from 17 (8 paranoid and 9 residual) schizophrenia patients and 28 matched controls without mental disorders. The transcriptional activity of ribosomal DNA (rDNA) in DRN neurons was evaluated by the AgNOR silver-staining method. An increased rDNA transcriptional activity was found in schizophrenia patients in the cumulative analysis of all DRN subnuclei (t test, P = 0.02). Further subgroup analysis revealed that it was an effect specific for residual schizophrenia versus paranoid schizophrenia or control groups (ANOVA, P = 0.002). This effect was confounded neither by suicide nor by antipsychotic medication. Our findings suggest that increased activity of rDNA in DRN neurons is a distinct phenomenon in schizophrenia, particularly in residual patients. An activation of the rDNA transcription in DRN neurons may represent a compensatory mechanism to overcome the previously described prefrontal serotonergic hypofunction in this diagnostic subgroup.

  14. Observed ground-motion variabilities and implication for source properties

    NASA Astrophysics Data System (ADS)

    Cotton, F.; Bora, S. S.; Bindi, D.; Specht, S.; Drouet, S.; Derras, B.; Pina-Valdes, J.

    2016-12-01

    One of the key challenges of seismology is to be able to calibrate and analyse the physical factors that control earthquake and ground-motion variabilities. Within the framework of empirical ground-motion prediction equation (GMPE) developments, ground-motions residuals (differences between recorded ground motions and the values predicted by a GMPE) are computed. The exponential growth of seismological near-field records and modern regression algorithms allow to decompose these residuals into between-event and a within-event residual components. The between-event term quantify all the residual effects of the source (e.g. stress-drops) which are not accounted by magnitude term as the only source parameter of the model. Between-event residuals provide a new and rather robust way to analyse the physical factors that control earthquake source properties and associated variabilities. We first will show the correlation between classical stress-drops and between-event residuals. We will also explain why between-event residuals may be a more robust way (compared to classical stress-drop analysis) to analyse earthquake source-properties. We will finally calibrate between-events variabilities using recent high-quality global accelerometric datasets (NGA-West 2, RESORCE) and datasets from recent earthquakes sequences (Aquila, Iquique, Kunamoto). The obtained between-events variabilities will be used to evaluate the variability of earthquake stress-drops but also the variability of source properties which cannot be explained by a classical Brune stress-drop variations. We will finally use the between-event residual analysis to discuss regional variations of source properties, differences between aftershocks and mainshocks and potential magnitude dependencies of source characteristics.

  15. Advanced Multimission Operations System (ATMO)

    NASA Technical Reports Server (NTRS)

    Mandrake, Lucas; Thompson, David R.

    2013-01-01

    The HiiHat toolbox developed for CAT/ENVI provides principal investigators direct, immediate, flexible, and seamless interaction with their instruments and data from any location. Offering segmentation and neutral region division, it facilitates the discovery of key endmembers and regions of interest larger than a single pixel. Crucial to the analysis of hyperspectral data from Mars or Earth is the removal of unwanted atmospheric signatures. For Mars and the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), residual atmospheric CO2 absorption is both directly problematic and indicative of processing errors with implications to the scientific utility of any particular image region. Estimating this residual error becomes key both in selecting regions of low distortion, and also to select mitigating methods, such as neutral region division. This innovation, the ATMO estimator, provides a simple, 0-1 normalized scalar that estimates this distortion (see figure). The metric is defined as the coefficient of determination of a quadratic fit in the region of distorting atmospheric absorption (approx 2 micron). This mimics the behavior of existing CRISM team mineralogical indices to estimate the presence of known, interesting mineral signatures. This facilitates the ATMO metric's assimilation into existing planetary geology workflows.

  16. Generalized rules for the optimization of elastic network models

    NASA Astrophysics Data System (ADS)

    Lezon, Timothy; Eyal, Eran; Bahar, Ivet

    2009-03-01

    Elastic network models (ENMs) are widely employed for approximating the coarse-grained equilibrium dynamics of proteins using only a few parameters. An area of current focus is improving the predictive accuracy of ENMs by fine-tuning their force constants to fit specific systems. Here we introduce a set of general rules for assigning ENM force constants to residue pairs. Using a novel method, we construct ENMs that optimally reproduce experimental residue covariances from NMR models of 68 proteins. We analyze the optimal interactions in terms of amino acid types, pair distances and local protein structures to identify key factors in determining the effective spring constants. When applied to several unrelated globular proteins, our method shows an improved correlation with experiment over a standard ENM. We discuss the physical interpretation of our findings as well as its implications in the fields of protein folding and dynamics.

  17. Tyrosine kinases in inflammatory dermatologic disease

    PubMed Central

    Paniagua, Ricardo T.; Fiorentino, David; Chung, Lorinda; Robinson, William H.

    2010-01-01

    Tyrosine kinases are enzymes that catalyze the phosphorylation of tyrosine residues on protein substrates. They are key components of signaling pathways that drive an array of cellular responses including proliferation, differentiation, migration, and survival. Specific tyrosine kinases have recently been identified as critical to the pathogenesis of several autoimmune and inflammatory diseases. Small-molecule inhibitors of tyrosine kinases are emerging as a novel class of therapy that may provide benefit in certain patient subsets. In this review, we highlight tyrosine kinase signaling implicated in inflammatory dermatologic diseases, evaluate strategies aimed at inhibiting these aberrant signaling pathways, and discuss prospects for future drug development. PMID:20584561

  18. Initial conditions of formation of starburst clusters: constraints from stellar dynamics

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran

    2017-03-01

    How starburst clusters form out of molecular clouds is still an open question. In this article, I highlight some of the key constraints in this regard, that one can get from the dynamical evolutionary properties of dense stellar systems. I particularly focus on secular expansion of massive star clusters and hierarchical merging of sub-clusters, and discuss their implications vis-á-vis the observed properties of young massive clusters. The analysis suggests that residual gas expulsion is necessary for shaping these clusters as we see them today, irrespective of their monolithic or hierarchical mode of formation.

  19. Identification of key residues for protein conformational transition using elastic network model.

    PubMed

    Su, Ji Guo; Xu, Xian Jin; Li, Chun Hua; Chen, Wei Zu; Wang, Cun Xin

    2011-11-07

    Proteins usually undergo conformational transitions between structurally disparate states to fulfill their functions. The large-scale allosteric conformational transitions are believed to involve some key residues that mediate the conformational movements between different regions of the protein. In the present work, a thermodynamic method based on the elastic network model is proposed to predict the key residues involved in protein conformational transitions. In our method, the key functional sites are identified as the residues whose perturbations largely influence the free energy difference between the protein states before and after transition. Two proteins, nucleotide binding domain of the heat shock protein 70 and human/rat DNA polymerase β, are used as case studies to identify the critical residues responsible for their open-closed conformational transitions. The results show that the functionally important residues mainly locate at the following regions for these two proteins: (1) the bridging point at the interface between the subdomains that control the opening and closure of the binding cleft; (2) the hinge region between different subdomains, which mediates the cooperative motions between the corresponding subdomains; and (3) the substrate binding sites. The similarity in the positions of the key residues for these two proteins may indicate a common mechanism in their conformational transitions.

  20. Identification of key binding site residues of MCT1 for AR-C155858 reveals the molecular basis of its isoform selectivity.

    PubMed

    Nancolas, Bethany; Sessions, Richard B; Halestrap, Andrew P

    2015-02-15

    The proton-linked monocarboxylate transporters (MCTs) are required for lactic acid transport into and out of all mammalian cells. Thus, they play an essential role in tumour cells that are usually highly glycolytic and are promising targets for anti-cancer drugs. AR-C155858 is a potent MCT1 inhibitor (Ki ~2 nM) that also inhibits MCT2 when associated with basigin but not MCT4. Previous work [Ovens, M.J. et al. (2010) Biochem. J. 425, 523-530] revealed that AR-C155858 binding to MCT1 occurs from the intracellular side and involves transmembrane helices (TMs) 7-10. In the present paper, we generate a molecular model of MCT4 based on our previous models of MCT1 and identify residues in the intracellular substrate-binding cavity that differ significantly between MCT4 and MCT1/MCT2 and so might account for differences in inhibitor binding. We tested their involvement using site-directed mutagenesis (SDM) of MCT1 to change residues individually or in combination with their MCT4 equivalent and determined inhibitor sensitivity following expression in Xenopus oocytes. Phe360 and Ser364 were identified as important for AR-C155858 binding with the F360Y/S364G mutant exhibiting >100-fold reduction in inhibitor sensitivity. To refine the binding site further, we used molecular dynamics (MD) simulations and additional SDM. This approach implicated six more residues whose involvement was confirmed by both transport studies and [3H]-AR-C155858 binding to oocyte membranes. Taken together, our data imply that Asn147, Arg306 and Ser364 are important for directing AR-C155858 to its final binding site which involves interaction of the inhibitor with Lys38, Asp302 and Phe360 (residues that also play key roles in the translocation cycle) and also Leu274 and Ser278.

  1. Identification of key binding site residues of MCT1 for AR-C155858 reveals the molecular basis of its isoform selectivity

    PubMed Central

    Nancolas, Bethany; Sessions, Richard B.; Halestrap, Andrew P.

    2014-01-01

    The proton-linked monocarboxylate transporters (MCTs) are required for lactic acid transport into and out of all mammalian cells. Thus, they play an essential role in tumour cells that are usually highly glycolytic and are promising targets for anti-cancer drugs. AR-C155858 is a potent MCT1 inhibitor (Ki ~2 nM) that also inhibits MCT2 when associated with basigin but not MCT4. Previous work [Ovens, M.J. et al. (2010) Biochem. J. 425, 523–530] revealed that AR-C155858 binding to MCT1 occurs from the intracellular side and involves transmembrane helices (TMs) 7–10. In the present paper, we generate a molecular model of MCT4 based on our previous models of MCT1 and identify residues in the intracellular substrate-binding cavity that differ significantly between MCT4 and MCT1/MCT2 and so might account for differences in inhibitor binding. We tested their involvement using site-directed mutagenesis (SDM) of MCT1 to change residues individually or in combination with their MCT4 equivalent and determined inhibitor sensitivity following expression in Xenopus oocytes. Phe360 and Ser364 were identified as important for AR-C155858 binding with the F360Y/S364G mutant exhibiting >100-fold reduction in inhibitor sensitivity. To refine the binding site further, we used molecular dynamics (MD) simulations and additional SDM. This approach implicated six more residues whose involvement was confirmed by both transport studies and [3H]-AR-C155858 binding to oocyte membranes. Taken together, our data imply that Asn147, Arg306 and Ser364 are important for directing AR-C155858 to its final binding site which involves interaction of the inhibitor with Lys38, Asp302 and Phe360 (residues that also play key roles in the translocation cycle) and also Leu274 and Ser278. PMID:25437897

  2. Identification of Key Residues for pH Dependent Activation of Violaxanthin De-Epoxidase from Arabidopsis thaliana

    PubMed Central

    Fufezan, Christian; Simionato, Diana; Morosinotto, Tomas

    2012-01-01

    Plants are often exposed to saturating light conditions, which can lead to oxidative stress. The carotenoid zeaxanthin, synthesized from violaxanthin by Violaxanthin De-Epoxidase (VDE) plays a major role in the protection from excess illumination. VDE activation is triggered by a pH reduction in the thylakoids lumen occurring under saturating light. In this work the mechanism of the VDE activation was investigated on a molecular level using multi conformer continuum electrostatic calculations, site directed mutagenesis and molecular dynamics. The pKa values of residues of the inactive VDE were determined to identify target residues that could be implicated in the activation. Five such target residues were investigated closer by site directed mutagenesis, whereas variants in four residues (D98, D117, H168 and D206) caused a reduction in enzymatic activity indicating a role in the activation of VDE while D86 mutants did not show any alteration. The analysis of the VDE sequence showed that the four putative activation residues are all conserved in plants but not in diatoms, explaining why VDE in these algae is already activated at higher pH. Molecular dynamics showed that the VDE structure was coherent at pH 7 with a low amount of water penetrating the hydrophobic barrel. Simulations carried out with the candidate residues locked into their protonated state showed instead an increased amount of water penetrating the barrel and the rupture of the H121–Y214 hydrogen bond at the end of the barrel, which is essential for VDE activation. These results suggest that VDE activation relies on a robust and redundant network, in which the four residues identified in this study play a major role. PMID:22558195

  3. Identification of key residues for pH dependent activation of violaxanthin de-epoxidase from Arabidopsis thaliana.

    PubMed

    Fufezan, Christian; Simionato, Diana; Morosinotto, Tomas

    2012-01-01

    Plants are often exposed to saturating light conditions, which can lead to oxidative stress. The carotenoid zeaxanthin, synthesized from violaxanthin by Violaxanthin De-Epoxidase (VDE) plays a major role in the protection from excess illumination. VDE activation is triggered by a pH reduction in the thylakoids lumen occurring under saturating light. In this work the mechanism of the VDE activation was investigated on a molecular level using multi conformer continuum electrostatic calculations, site directed mutagenesis and molecular dynamics. The pK(a) values of residues of the inactive VDE were determined to identify target residues that could be implicated in the activation. Five such target residues were investigated closer by site directed mutagenesis, whereas variants in four residues (D98, D117, H168 and D206) caused a reduction in enzymatic activity indicating a role in the activation of VDE while D86 mutants did not show any alteration. The analysis of the VDE sequence showed that the four putative activation residues are all conserved in plants but not in diatoms, explaining why VDE in these algae is already activated at higher pH. Molecular dynamics showed that the VDE structure was coherent at pH 7 with a low amount of water penetrating the hydrophobic barrel. Simulations carried out with the candidate residues locked into their protonated state showed instead an increased amount of water penetrating the barrel and the rupture of the H121-Y214 hydrogen bond at the end of the barrel, which is essential for VDE activation. These results suggest that VDE activation relies on a robust and redundant network, in which the four residues identified in this study play a major role.

  4. Mitogen-activated protein kinase phosphatase (MKP)-1 in immunology, physiology, and disease.

    PubMed

    Wancket, Lyn M; Frazier, W Joshua; Liu, Yusen

    2012-02-13

    Mitogen-activated protein kinases (MAPKs) are key regulators of cellular physiology and immune responses, and abnormalities in MAPKs are implicated in many diseases. MAPKs are activated by MAPK kinases through phosphorylation of the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr domain, where Xaa represents amino acid residues characteristic of distinct MAPK subfamilies. Since MAPKs play a crucial role in a variety of cellular processes, a delicate regulatory network has evolved to control their activities. Over the past two decades, a group of dual specificity MAPK phosphatases (MKPs) has been identified that deactivates MAPKs. Since MAPKs can enhance MKP activities, MKPs are considered as an important feedback control mechanism that limits the MAPK cascades. This review outlines the role of MKP-1, a prototypical MKP family member, in physiology and disease. We will first discuss the basic biochemistry and regulation of MKP-1. Next, we will present the current consensus on the immunological and physiological functions of MKP-1 in infectious, inflammatory, metabolic, and nervous system diseases as revealed by studies using animal models. We will also discuss the emerging evidence implicating MKP-1 in human disorders. Finally, we will conclude with a discussion of the potential for pharmacomodulation of MKP-1 expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance.

    PubMed

    Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K

    2017-02-01

    Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.

  6. The Crystal Structure of the Escherichia coli Autoinducer-2 Processing Protein LsrF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, Z.; Xavier, K; Miller, S

    2009-01-01

    Many bacteria produce and respond to the quorum sensing signal autoinducer-2 (AI-2). Escherichia coli and Salmonella typhimurium are among the species with the lsr operon, an operon containing AI-2 transport and processing genes that are up regulated in response to AI-2. One of the Lsr proteins, LsrF, has been implicated in processing the phosphorylated form of AI-2. Here, we present the structure of LsrF, unliganded and in complex with two phospho-AI-2 analogues, ribose-5-phosphate and ribulose-5-phosphate. The crystal structure shows that LsrF is a decamer of (??)8-barrels that exhibit a previously unseen N-terminal domain swap and have high structural homology withmore » aldolases that process phosphorylated sugars. Ligand binding sites and key catalytic residues are structurally conserved, strongly implicating LsrF as a class I aldolase.« less

  7. Identification and Characterization of a Secondary Sodium-Binding Site and the Main Selectivity Determinants in the Human Concentrative Nucleoside Transporter 3.

    PubMed

    Arimany-Nardi, C; Claudio-Montero, A; Viel-Oliva, A; Schmidtke, P; Estarellas, C; Barril, X; Bidon-Chanal, A; Pastor-Anglada, M

    2017-06-05

    The family of concentrative Na + /nucleoside cotransporters in humans is constituted by three subtypes, namely, hCNT1, hCNT2, and hCNT3. Besides their different nucleoside selectivity, hCNT1 and hCNT2 have a Na + /nucleoside stoichiometry of 1:1, while for hCNT3 it is 2:1. This distinct stoichiometry of subtype 3 might hint the existence of a secondary sodium-binding site that is not present in the other two subtypes, but to date their three-dimensional structures remain unknown and the residues implicated in Na + binding are unclear. In this work, we have identified and characterized the Na + binding sites of hCNT3 by combining molecular modeling and mutagenesis studies. A model of the transporter was obtained by homology modeling, and key residues of two sodium-binding sites were identified and verified with a mutagenesis strategy. The structural model explains the altered sodium-binding properties of the hCNT3C602R polymorphic variant and supports previously generated data identifying the determinant residues of nucleoside selectivity, paving the way to understand how drugs can target this plasma membrane transporter.

  8. Induced-fit Mechanism for Prolyl Endopeptidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Min; Chen, Changqing; Davies, David R.

    2010-11-15

    Prolyl peptidases cleave proteins at proline residues and are of importance for cancer, neurological function, and type II diabetes. Prolyl endopeptidase (PEP) cleaves neuropeptides and is a drug target for neuropsychiatric diseases such as post-traumatic stress disorder, depression, and schizophrenia. Previous structural analyses showing little differences between native and substrate-bound structures have suggested a lock-and-key catalytic mechanism. We now directly demonstrate from seven structures of Aeromonus punctata PEP that the mechanism is instead induced fit: the native enzyme exists in a conformationally flexible opened state with a large interdomain opening between the {beta}-propeller and {alpha}/{beta}-hydrolase domains; addition of substrate tomore » preformed native crystals induces a large scale conformational change into a closed state with induced-fit adjustments of the active site, and inhibition of this conformational change prevents substrate binding. Absolute sequence conservation among 28 orthologs of residues at the active site and critical residues at the interdomain interface indicates that this mechanism is conserved in all PEPs. This finding has immediate implications for the use of conformationally targeted drug design to improve specificity of inhibition against this family of proline-specific serine proteases.« less

  9. Cysteine-independent activation/inhibition of heme oxygenase-2

    PubMed Central

    Vukomanovic, Dragic; Rahman, Mona N.; Maines, Mahin D.; Ozolinš, Terence RS; Szarek, Walter A.; Jia, Zongchao; Nakatsu, Kanji

    2016-01-01

    Reactive thiols of cysteine (cys) residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2) isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2) and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD) and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282. PMID:27826418

  10. Cysteine-independent activation/inhibition of heme oxygenase-2.

    PubMed

    Vukomanovic, Dragic; Rahman, Mona N; Maines, Mahin D; Ozolinš, Terence Rs; Szarek, Walter A; Jia, Zongchao; Nakatsu, Kanji

    2016-03-01

    Reactive thiols of cysteine (cys) residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2) isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2) and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD) and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  11. Role of framework mutations and antibody flexibility in the evolution of broadly neutralizing antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovchinnikov, Victor; Louveau, Joy E.; Barton, John P.

    Eliciting antibodies that are cross reactive with surface proteins of diverse strains of highly mutable pathogens (e.g., HIV, influenza) could be key for developing effective universal vaccines. Mutations in the framework regions of such broadly neutralizing antibodies (bnAbs) have been reported to play a role in determining their properties. We used molecular dynamics simulations and models of affinity maturation to study specific bnAbs against HIV. Our results suggest that there are different classes of evolutionary lineages for the bnAbs. If germline B cells that initiate affinity maturation have high affinity for the conserved residues of the targeted epitope, framework mutationsmore » increase antibody rigidity as affinity maturation progresses to evolve bnAbs. If the germline B cells exhibit weak/moderate affinity for conserved residues, an initial increase in flexibility via framework mutations may be required for the evolution of bnAbs. Subsequent mutations that increase rigidity result in highly potent bnAbs. Implications of our results for immunogen design are discussed.« less

  12. Role of framework mutations and antibody flexibility in the evolution of broadly neutralizing antibodies

    DOE PAGES

    Ovchinnikov, Victor; Louveau, Joy E.; Barton, John P.; ...

    2018-02-14

    Eliciting antibodies that are cross reactive with surface proteins of diverse strains of highly mutable pathogens (e.g., HIV, influenza) could be key for developing effective universal vaccines. Mutations in the framework regions of such broadly neutralizing antibodies (bnAbs) have been reported to play a role in determining their properties. We used molecular dynamics simulations and models of affinity maturation to study specific bnAbs against HIV. Our results suggest that there are different classes of evolutionary lineages for the bnAbs. If germline B cells that initiate affinity maturation have high affinity for the conserved residues of the targeted epitope, framework mutationsmore » increase antibody rigidity as affinity maturation progresses to evolve bnAbs. If the germline B cells exhibit weak/moderate affinity for conserved residues, an initial increase in flexibility via framework mutations may be required for the evolution of bnAbs. Subsequent mutations that increase rigidity result in highly potent bnAbs. Implications of our results for immunogen design are discussed.« less

  13. Role of framework mutations and antibody flexibility in the evolution of broadly neutralizing antibodies

    PubMed Central

    2018-01-01

    Eliciting antibodies that are cross reactive with surface proteins of diverse strains of highly mutable pathogens (e.g., HIV, influenza) could be key for developing effective universal vaccines. Mutations in the framework regions of such broadly neutralizing antibodies (bnAbs) have been reported to play a role in determining their properties. We used molecular dynamics simulations and models of affinity maturation to study specific bnAbs against HIV. Our results suggest that there are different classes of evolutionary lineages for the bnAbs. If germline B cells that initiate affinity maturation have high affinity for the conserved residues of the targeted epitope, framework mutations increase antibody rigidity as affinity maturation progresses to evolve bnAbs. If the germline B cells exhibit weak/moderate affinity for conserved residues, an initial increase in flexibility via framework mutations may be required for the evolution of bnAbs. Subsequent mutations that increase rigidity result in highly potent bnAbs. Implications of our results for immunogen design are discussed. PMID:29442996

  14. Mechanism of action of the insecticides, lindane and fipronil, on glycine receptor chloride channels

    PubMed Central

    Islam, Robiul; Lynch, Joseph W

    2012-01-01

    BACKGROUND AND PURPOSE Docking studies predict that the insecticides, lindane and fipronil, block GABAA receptors by binding to 6′ pore-lining residues. However, this has never been tested at any Cys-loop receptor. The neurotoxic effects of these insecticides are also thought to be mediated by GABAA receptors, although a recent morphological study suggested glycine receptors mediated fipronil toxicity in zebrafish. Here we investigated whether human α1, α1β, α2 and α3 glycine receptors were sufficiently sensitive to block by either compound as to represent possible neurotoxicity targets. We also investigated the mechanisms by which lindane and fipronil inhibit α1 glycine receptors. EXPERIMENTAL APPROACH Glycine receptors were recombinantly expressed in HEK293 cells and insecticide effects were studied using patch-clamp electrophysiology. KEY RESULTS Both compounds completely inhibited all tested glycine receptor subtypes with IC50 values ranging from 0.2–2 µM, similar to their potencies at vertebrate GABAA receptors. Consistent with molecular docking predictions, both lindane and fipronil interacted with 6′ threonine residues via hydrophobic interactions and hydrogen bonds. In contrast with predictions, we found no evidence for lindane interacting at the 2′ level. We present evidence for fipronil binding in a non-blocking mode in the anaesthetic binding pocket, and for lindane as an excellent pharmacological tool for identifying the presence of β subunits in αβ heteromeric glycine receptors. CONCLUSIONS AND IMPLICATIONS This study implicates glycine receptors as novel vertebrate toxicity targets for fipronil and lindane. Furthermore, lindane interacted with pore-lining 6′ threonine residues, whereas fipronil may have both pore and non-pore binding sites. PMID:22035056

  15. Protein kinases: mechanisms and downstream targets in inflammation mediated obesity and insulin resistance

    PubMed Central

    Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K

    2016-01-01

    Obesity induced low-grade inflammation (metaflammation) impairs insulin receptor signaling (IRS). This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK), inhibitor of NF-kB kinase complex beta (IKKβ), AMP activated protein kinase (AMPK), protein kinase C (PKC), Rho associated coiled-coil containing protein kinase (ROCK) and RNA-activated protein kinase (PKR), etc. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor (IR) and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in Type II Diabetes Mellitus (T2-DM). Identifying the specific protein kinases involved in obesity induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity induced T2-DM. PMID:27868170

  16. Distribution of Penicillin G Residues in Culled Dairy Cow Muscles: Implications for Residue Monitoring

    USDA-ARS?s Scientific Manuscript database

    The U.S. Food and Drug Administration sets tolerances for veterinary drug residues in muscle, but does not specify which type of muscle should be analyzed. In order to determine if antibiotic residue levels are dependent on muscle type, 7 culled dairy cows were dosed with Penicillin G (Pen G) from ...

  17. Perspectives on the Meaning of Detectable Distribution System Residual and Implications for N. Fowleri Control

    EPA Science Inventory

    The objectives of this presentation are to: review history of distribution system chlorination regulations, raise awareness on the meaning of detectable residual as it relates to chloramines, and perhaps renew dialogue on the discussion of minimum disinfectant residuals.

  18. pH Modulates the Binding of EGR1 Transcription Factor to DNA

    PubMed Central

    Mikles, David C.; Bhat, Vikas; Schuchardt, Brett J.; Deegan, Brian J.; Seldeen, Kenneth L.; McDonald, Caleb B.; Farooq, Amjad

    2013-01-01

    EGR1 transcription factor orchestrates a plethora of signaling cascades involved in cellular homeostasis and its down-regulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with increasing pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as H382 by virtue of the fact that its substitution to non-ionizable residues abolishes pH-dependence of the binding of EGR1 to DNA. Notably, H382 inserts into the major groove of DNA and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, H382 is predominantly conserved across other members of EGR1 family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating protein-DNA interactions central to this family of transcription factors. Collectively, our findings uncover an unexpected but a key step in the molecular recognition of EGR1 family of transcription factors and suggest that they may act as sensors of pH within the intracellular environment. PMID:23718776

  19. Nitrogen dynamics post-harvest: the role of woody residues

    Treesearch

    Kathryn Piatek

    2007-01-01

    The role of woody residues in N dynamics in harvested forests has not been fully elucidated. Woody residues have been found to be an N sink, N source, and N neutral in different studies. To understand the implications of each of these scenarios, post-harvest N dynamics in high- and no- woody residue treatments were modeled for a Douglas-fir ecosystem. Nitrogen...

  20. Homing of mesenchymal stem cells: mechanistic or stochastic? Implications for targeted delivery in arthritis.

    PubMed

    Eseonu, Onyedikachi I; De Bari, Cosimo

    2015-02-01

    Mesenchymal stem cells (MSCs) are multipotent cells with the capacity to undergo chondrogenic differentiation. Systemically administered MSCs have been shown to preferentially accumulate at sites of tissue damage and inflammation, thus MSC-based therapy holds great promise for the treatment of inflammatory diseases such as RA. Modulation of MSC homing may allow targeted delivery of systemically administered MSCs to damaged articular cartilage, where they can suppress immune-mediated cartilage destruction and contribute to cartilage repair via a combination of chondrogenic differentiation and paracrine stimulation of intrinsic residual repair. To harness the potential of MSC homing, a thorough understanding of the mechanism is key. This review discusses current knowledge of the mechanism of MSC homing to injured/inflamed tissue and its implications for targeted MSC-based therapy in arthritis. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Identification of key amino acid residues responsible for internal and external pH sensitivity of Orai1/STIM1 channels.

    PubMed

    Tsujikawa, Hiroto; Yu, Albert S; Xie, Jia; Yue, Zhichao; Yang, Wenzhong; He, Yanlin; Yue, Lixia

    2015-11-18

    Changes of intracellular and extracellular pH are involved in a variety of physiological and pathological processes, in which regulation of the Ca(2+) release activated Ca(2+) channel (I CRAC) by pH has been implicated. Ca(2+) entry mediated by I CRAC has been shown to be regulated by acidic or alkaline pH. Whereas several amino acid residues have been shown to contribute to extracellular pH (pHo) sensitivity, the molecular mechanism for intracellular pH (pHi) sensitivity of Orai1/STIM1 is not fully understood. By investigating a series of mutations, we find that the previously identified residue E106 is responsible for pHo sensitivity when Ca(2+) is the charge carrier. Unexpectedly, we identify that the residue E190 is responsible for pHo sensitivity when Na(+) is the charge carrier. Furthermore, the intracellular mutant H155F markedly diminishes the response to acidic and alkaline pHi, suggesting that H155 is responsible for pHi sensitivity of Orai1/STIM1. Our results indicate that, whereas H155 is the intracellular pH sensor of Orai1/STIM1, the molecular mechanism of external pH sensitivity varies depending on the permeant cations. As changes of pH are involved in various physiological/pathological functions, Orai/STIM channels may be an important mediator for various physiological and pathological processes associated with acidosis and alkalinization.

  2. Glycosylation of Residue 141 of Subtype H7 Influenza A Hemagglutinin (HA) Affects HA-Pseudovirus Infectivity and Sensitivity to Site A Neutralizing Antibodies.

    PubMed

    Alvarado-Facundo, Esmeralda; Vassell, Russell; Schmeisser, Falko; Weir, Jerry P; Weiss, Carol D; Wang, Wei

    2016-01-01

    Human infections with H7 subtype influenza virus have been reported, including an H7N7 outbreak in Netherlands in 2003 and H7N9 infections in China in 2013. Previously, we reported murine monoclonal antibodies (mAbs) that recognize the antigenic site A of H7 hemagglutinin (HA). To better understand protective immunity of H7 vaccines and vaccine candidate selection, we used these mAbs to assess the antigenic relatedness among two H7 HA isolated from past human infections and determine residues that affect susceptibility to neutralization. We found that these mAbs neutralize pseudoviruses bearing HA of A/Shanghai/02/2013(H7N9), but not A/Netherlands/219/2003(H7N7). Glycosylation of the asparagine residue at position 141 (N141) (N133, H3 HA numbering) in the HA of A/Netherlands/219/2003 HA is responsible for this resistance, and it affects the infectivity of HA-pseudoviruses. The presence of threonine at position 143 (T135, H3 HA numbering) in the HA of A/Netherlands/219/2003, rather than an alanine found in the HA of A/Shanghai/02/2013(H7N9), accounts for these differences. These results demonstrate a key role for glycosylation of residue N141 in affecting H7 influenza HA-mediated entry and sensitivity to neutralizing antibodies, which have implications for candidate vaccine design.

  3. Critical Role of the HTLV-1 Capsid N-Terminal Domain for Gag-Gag Interactions and Virus Particle Assembly.

    PubMed

    Martin, Jessica L; Mendonça, Luiza; Marusinec, Rachel; Zuczek, Jennifer; Angert, Isaac; Blower, Ruth J; Mueller, Joachim D; Perilla, Juan R; Zhang, Wei; Mansky, Louis M

    2018-04-25

    The retroviral Gag protein is the main structural protein responsible for virus particle assembly and release. Like human immunodeficiency virus type 1 (HIV-1) Gag, human T-cell leukemia virus type 1 (HTLV-1) has a structurally conserved capsid (CA) domain, including a β-hairpin turn and a centralized coiled-coil-like structure of six α helices in the CA amino-terminal domain (NTD) as well as four α-helices in the CA carboxy-terminal domain (CTD). CA drives Gag oligomerization, which is critical for both immature Gag lattice formation and particle production. The HIV-1 CA CTD has previously been shown to be a primary determinant for CA-CA interactions, and while both the HTLV-1 CA NTD and CTD have been implicated in Gag-Gag interactions, our recent observations have implicated the HTLV-1 CA NTD as encoding key determinants that dictate particle morphology. Here, we have conducted alanine-scanning mutagenesis in the HTLV-1 CA NTD nucleotide-encoding sequences spanning the loop regions and amino acids at the beginning and ends of α-helices due to their structural dissimilarity from the HIV-1 CA NTD structure. We analyzed both Gag subcellular distribution and efficiency of particle production for these mutants. We discovered several important residues (i.e., M17, Q47/F48, and Y61). Modeling implicated that these residues reside at the dimer interface (i.e., M17 and Y61) or at the trimer interface (i.e., Q47/F48). Taken together, these observations highlight the critical role of the HTLV-1 CA NTD in Gag-Gag interactions and particle assembly, which is, to the best of our knowledge, in contrast to HIV-1 and other retroviruses. Importance Retrovirus particle assembly and release from infected cells is driven by the Gag structural protein. Gag-Gag interactions, which form an oligomeric lattice structure at a particle budding site, are essential to the biogenesis of an infectious virus particle. The capsid (CA) domain of Gag is generally thought to possess the key determinants for Gag-Gag interactions, and the present study has discovered several critical amino acid residues in the CA domain of human T-cell leukemia virus type 1 (HTLV-1) Gag, an important cancer-causing human retrovirus, which are distinct from that of human immunodeficiency virus type 1 (HIV-1) as well as other retroviruses studied to date. Altogether, our results provide important new insights into a poorly understood aspect of HTLV-1 replication, which significantly enhances our understanding of the molecular nature of Gag-Gag interaction determinants crucial for virus particle assembly. Copyright © 2018 American Society for Microbiology.

  4. Structural Basis for NADH/NAD+ Redox Sensing by a Rex Family Repressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, K.J.; Soares, A.; Strain-Damerell, C. M.

    2010-05-28

    Nicotinamide adenine dinucleotides have emerged as key signals of the cellular redox state. Yet the structural basis for allosteric gene regulation by the ratio of reduced NADH to oxidized NAD{sup +} is poorly understood. A key sensor among Gram-positive bacteria, Rex represses alternative respiratory gene expression until a limited oxygen supply elevates the intracellular NADH:NAD{sup +} ratio. Here we investigate the molecular mechanism for NADH/NAD{sup +} sensing among Rex family members by determining structures of Thermus aquaticus Rex bound to (1) NAD{sup +}, (2) DNA operator, and (3) without ligand. Comparison with the Rex/NADH complex reveals that NADH releases Rexmore » from the DNA site following a 40{sup o} closure between the dimeric subunits. Complementary site-directed mutagenesis experiments implicate highly conserved residues in NAD-responsive DNA-binding activity. These rare views of a redox sensor in action establish a means for slight differences in the nicotinamide charge, pucker, and orientation to signal the redox state of the cell.« less

  5. Crop residue is key for sustaining maximum food production and for conservation of our biosphere

    USDA-ARS?s Scientific Manuscript database

    Crop residue is key in our efforts to move towards agricultural sustainability. This paper provides a quick overview of some selected references and looks at some of the newest advances related to cover crops. Several authors have described in detail the benefits derived from improving soil quality ...

  6. Field Studies to Evaluate Potential Differences between Bt and non-Bt Corn Residue

    USDA-ARS?s Scientific Manuscript database

    Some reports suggest that the genetically-modified Bt corn residue may have higher lignin content and that the residue may be more resistant to decomposition. If true, then there are implications for both farming practices, e.g., tillage and planting, as well as global carbon budgets. We conducted ...

  7. Field Studies to Evaluate Potential Differences between Bt and non-Bt Corn Residue

    USDA-ARS?s Scientific Manuscript database

    Some reports suggest that the genetically-modified Bt corn residue may have higher lignin content and that the residue may be more resistant to decomposition. If true, then there are implications for both farming practices, e.g., tillage and planting, as well as global carbon budgets. We evaluated ...

  8. Dynamic features of carboxy cytoglobin distal mutants investigated by molecular dynamics simulations.

    PubMed

    Zhao, Cong; Du, Weihong

    2016-04-01

    Cytoglobin (Cgb) is a member of hemoprotein family with roles in NO metabolism, fibrosis, and tumourigenesis. Similar to other hemoproteins, Cgb structure and functions are markedly influenced by distal key residues. The sixth ligand His(81) (E7) is crucial to exogenous ligand binding, heme pocket conformation, and physiological roles of this protein. However, the effects of other key residues on heme pocket and protein biological functions are not well known. In this work, a molecular dynamics (MD) simulation study of two single mutants in CO-ligated Cgb (L46FCgbCO and L46VCgbCO) and two double mutants (L46FH81QCgbCO and L46VH81QCgbCO) was conducted to explore the effects of the key distal residues Leu(46)(B10) and His(81)(E7) on Cgb structure and functions. Results indicated that the distal mutation of B10 and E7 affected CgbCO dynamic properties on loop region fluctuation, internal cavity rearrangement, and heme motion. The distal conformation change was reflected by the distal key residues Gln(62) (CD3) and Arg(84)(E10). The hydrogen bond between heme propionates with CD3 or E10 residues were evidently influenced by B10/E7 mutation. Furthermore, heme pocket rearrangement was also observed based on the distal pocket volume and occurrence rate of inner cavities. The mutual effects of B10 and E7 residues on protein conformational rearrangement and other dynamic features were expressed in current MD studies of CgbCO and its distal mutants, suggesting their crucial role in heme pocket stabilization, ligand binding, and Cgb biological functions. The mutation of distal B10 and E7 residues affects the dynamic features of carboxy cytoglobin.

  9. Functions of key residues in the ligand-binding pocket of vitamin D receptor: Fragment molecular orbital interfragment interaction energy analysis

    NASA Astrophysics Data System (ADS)

    Yamagishi, Kenji; Yamamoto, Keiko; Yamada, Sachiko; Tokiwa, Hiroaki

    2006-03-01

    Fragment molecular orbital-interfragment interaction energy calculations of the vitamin D receptor (VDR)/1α,25-dihydroxyvitamin D 3 complex were utilized to assign functions of key residues of the VDR. Only one residue forms a significant interaction with the corresponding hydroxy group of the ligand, although two residues are located around each hydroxy group. The degradation of binding affinity for derivatives upon removal of a hydroxy group is closely related to the trend in the strength of the hydrogen bonds. Type II hereditary rickets due to an Arg274 point mutation is caused by the lack of the strongest hydrogen bond.

  10. Left Atrial Appendage Eccentricity and Irregularity Are Associated With Residual Leaks After Percutaneous Closure.

    PubMed

    Rajwani, Adil; Shirazi, Masoumeh G; Disney, Patrick J S; Wong, Dennis T L; Teo, Karen S L; Delacroix, Sinny; Chokka, Ramesh G; Young, Glenn D; Worthley, Stephen G

    2015-12-01

    Predictors of residual leak following percutaneous LAA closure were evaluated. Left atrial appendage (LAA) closure aims to exclude this structure from the circulation, typically using a circular occluder. A noncircular orifice is frequently encountered however, and fibrous remodeling of the LAA in atrial fibrillation may restrict orifice deformation. Noncircularity may thus be implicated in the occurrence of residual leak despite an appropriately oversized device. Pre-procedural multislice computerized tomography was used to quantify LAA orifice eccentricity and irregularity. Univariate predictors of residual leak were identified with respect to the orifice, device, and relevant clinical variables, with the nature of any correlations then further evaluated. Eccentricity and irregularity indexes of the orifice in 31 individuals were correlated with residual leak even where the device was appropriately oversized. An eccentricity index of 0.15 predicted a residual leak with 85% sensitivity and 59% specificity. An irregularity index of 0.05 predicted a significant residual leak ≥3 mm with 100% sensitivity and 86% specificity. Orifice size, device size, degree of device oversize, left atrial volume, and pulmonary artery pressure were not predictors of residual leak. Eccentricity and irregularity of the LAA orifice are implicated in residual leak after percutaneous closure even where there is appropriate device over-size. Irregularity index in particular is a novel predictor of residual leak, supporting a closer consideration of orifice morphology before closure. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  11. Identification of a key residue in Kv7.1 potassium channel essential for sensing external potassium ions.

    PubMed

    Wang, Wenying; Flores, Maria Cristina Perez; Sihn, Choong-Ryoul; Kim, Hyo Jeong; Zhang, Yinuo; Doyle, Karen J; Chiamvimonvat, Nipavan; Zhang, Xiao-Dong; Yamoah, Ebenezer N

    2015-03-01

    Kv7.1 voltage-gated K(+) (Kv) channels are present in the apical membranes of marginal cells of the stria vascularis of the inner ear, where they mediate K(+) efflux into the scala media (cochlear duct) of the cochlea. As such, they are exposed to the K(+)-rich (∼ 150 mM of external K(+) (K(+) e)) environment of the endolymph. Previous studies have shown that Kv7.1 currents are substantially suppressed by high K(+) e (independent of the effects of altering the electrochemical gradient). However, the molecular basis for this inhibition, which is believed to involve stabilization of an inactivated state, remains unclear. Using sequence alignment of S5-pore linkers of several Kv channels, we identified a key residue, E290, found in only a few Kv channels including Kv7.1. We used substituted cysteine accessibility methods and patch-clamp analysis to provide evidence that the ability of Kv7.1 to sense K(+) e depends on E290, and that the charge at this position is essential for Kv7.1's K(+) e sensitivity. We propose that Kv7.1 may use this feedback mechanism to maintain the magnitude of the endocochlear potential, which boosts the driving force to generate the receptor potential of hair cells. The implications of our findings transcend the auditory system; mutations at this position also result in long QT syndrome in the heart. © 2015 Wang et al.

  12. TRACE ELEMENT CHEMISTRY IN RESIDUAL-TREATED SOIL: KEY CONCEPTS AND METAL BIOAVAILABILITY

    EPA Science Inventory

    Trace element solubility and availability in land-applied residuals is governed by fundamental chemical reactions between metal constituents, soil, and residual components. Iron, aluminum, and manganese oxides; organic matter; and phosphates, carbonates, and sulfides are importan...

  13. Elucidation of Enzymatic Mechanism of Phenazine Biosynthetic Protein PhzF Using QM/MM and MD Simulations

    PubMed Central

    Liu, Fei; Zhao, Yi-Lei; Wang, Xiaolei; Hu, Hongbo; Peng, Huasong; Wang, Wei; Wang, Jing-Fang; Zhang, Xuehong

    2015-01-01

    The phenazine biosynthetic pathway is of considerable importance for the pharmaceutical industry. The pathway produces two products: phenazine-1,6-dicarboxylic acid and phenazine-1-carboxylic acid. PhzF is an isomerase that catalyzes trans-2,3-dihydro-3-hydroxyanthranilic acid isomerization and plays an essential role in the phenazine biosynthetic pathway. Although the PhzF crystal structure has been determined recently, an understanding of the detailed catalytic mechanism and the roles of key catalytic residues are still lacking. In this study, a computational strategy using a combination of molecular modeling, molecular dynamics simulations, and quantum mechanics/molecular mechanics simulations was used to elucidate these important issues. The Apo enzyme, enzyme–substrate complexes with negatively charged Glu45, enzyme–transition state analog inhibitor complexes with neutral Glu45, and enzyme–product complexes with negatively charged Glu45 structures were optimized and modeled using a 200 ns molecular dynamics simulation. Residues such as Gly73, His74, Asp208, Gly212, Ser213, and water, which play important roles in ligand binding and the isomerization reaction, were comprehensively investigated. Our results suggest that the Glu45 residue at the active site of PhzF acts as a general base/acid catalyst during proton transfer. This study provides new insights into the detailed catalytic mechanism of PhzF and the results have important implications for PhzF modification. PMID:26414009

  14. pH modulates the binding of early growth response protein 1 transcription factor to DNA.

    PubMed

    Mikles, David C; Bhat, Vikas; Schuchardt, Brett J; Deegan, Brian J; Seldeen, Kenneth L; McDonald, Caleb B; Farooq, Amjad

    2013-08-01

    The transcription factor early growth response protein (EGR)1 orchestrates a plethora of signaling cascades involved in cellular homeostasis, and its downregulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with an increase in pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as His382 by virtue of the fact that its replacement by nonionizable residues abolishes the pH dependence of the binding of EGR1 to DNA. Notably, His382 inserts into the major groove of DNA, and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, His382 is mainly conserved across other members of the EGR family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating the protein-DNA interactions that are central to this family of transcription factors. Collectively, our findings reveal an unexpected but a key step in the molecular recognition of the EGR family of transcription factors, and suggest that they may act as sensors of pH within the intracellular environment. © 2013 FEBS.

  15. Engineering diverse changes in beta-turn propensities in the N-terminal beta-hairpin of ubiquitin reveals significant effects on stability and kinetics but a robust folding transition state.

    PubMed

    Simpson, Emma R; Meldrum, Jill K; Searle, Mark S

    2006-04-04

    Using the N-terminal 17-residue beta-hairpin of ubiquitin as a "host" for mutational studies, we have investigated the influence of the beta-turn sequence on protein stability and folding kinetics by replacing the native G-bulged turn (TLTGK) with more flexible analogues (TG3K and TG5K) and a series of four-residue type I' beta-turn sequences, commonly found in beta-hairpins. Although a statistical analysis of type I' turns demonstrates residue preferences at specific sites, the frequency of occurrence appears to only broadly correlate with experimentally determined protein stabilities. The subsequent engineering of context-dependent non-native tertiary contacts involving turn residues is shown to produce large changes in stability. Relatively few point mutations have been described that probe secondary structure formation in ubiquitin in a manner that is independent of tertiary contacts. To this end, we have used the more rigorous rate-equilibrium free energy relationship (Leffler analysis), rather than the two-point phi value analysis, to show for a family of engineered beta-turn mutants that stability (range of approximately 20 kJ/mol) and folding kinetics (190-fold variation in refolding rate) are linearly correlated (alpha(f) = 0.74 +/- 0.08). The data are consistent with a transition state that is robust with regard to a wide range of statistically favored and disfavored beta-turn mutations and implicate a loosely assembled beta-hairpin as a key template in transition state stabilization with the beta-turn playing a central role.

  16. ARF6 and GASP-1 are post-endocytic sorting proteins selectively involved in the intracellular trafficking of dopamine D2 receptors mediated by GRK and PKC in transfected cells

    PubMed Central

    Cho, DI; Zheng, M; Min, C; Kwon, KJ; Shin, CY; Choi, HK; Kim, KM

    2013-01-01

    Background and Purpose GPCRs undergo both homologous and heterologous regulatory processes in which receptor phosphorylation plays a critical role. The protein kinases responsible for each pathway are well established; however, other molecular details that characterize each pathway remain unclear. In this study, the molecular mechanisms that determine the differences in the functional roles and intracellular trafficking between homologous and PKC-mediated heterologous internalization pathways for the dopamine D2 receptor were investigated. Experimental Approach All of the S/T residues located within the intracellular loops of D2 receptor were mutated, and the residues responsible for GRK- and PKC-mediated internalization were determined in HEK-293 cells and SH-SY5Y cells. The functional role of receptor internalization and the cellular components that determine the post-endocytic fate of internalized D2 receptors were investigated in the transfected cells. Key Results T134, T225/S228/S229 and S325 were involved in PKC-mediated D2 receptor desensitization. S229 and adjacent S/T residues mediated the PKC-dependent internalization of D2 receptors, which induced down-regulation and desensitization. S/T residues within the second intracellular loop and T225 were the major residues involved in GRK-mediated internalization of D2 receptors, which induced receptor resensitization. ARF6 mediated the recycling of D2 receptors internalized in response to agonist stimulation. In contrast, GASP-1 mediated the down-regulation of D2 receptors internalized in a PKC-dependent manner. Conclusions and Implications GRK- and PKC-mediated internalizations of D2 receptors occur through different intracellular trafficking pathways and mediate distinct functional roles. Distinct S/T residues within D2 receptors and different sorting proteins are involved in the dissimilar regulation of D2 receptors by GRK2 and PKC. PMID:23082996

  17. Tidal asymmetry and residual circulation over linear sandbanks and their implication on sediment transport: a process-oriented numerical study

    USGS Publications Warehouse

    Sanay, Rosario; Voulgaris, George; Warner, John C.

    2007-01-01

    A series of process-oriented numerical simulations is carried out in order to evaluate the relative role of locally generated residual flow and overtides on net sediment transport over linear sandbanks. The idealized bathymetry and forcing are similar to those present in the Norfolk Sandbanks, North Sea. The importance of bottom drag parameterization and bank orientation with respect to the ambient flow is examined in terms of residual flow and overtide generation, and subsequent sediment transport implications are discussed. The results show that although the magnitudes of residual flow and overtides are sensitive to bottom roughness parameterization and bank orientation, the magnitude of the generated residual flow is always larger than that of the locally generated overtides. Also, net sediment transport is always dominated by the nonlinear interaction of the residual flow and the semidiurnal tidal currents, although cross-bank sediment transport can occur even in the absence of a cross-shore residual flow. On the other hand, net sediment divergence/convergence increases as the bottom drag decreases and as bank orientation increases. The sediment erosion/deposition is not symmetric about the crest of the bank, suggesting that originally symmetric banks would have the tendency to become asymmetric.

  18. Antimicrobial drug residues in milk and meat: causes, concerns, prevalence, regulations, tests, and test performance.

    PubMed

    Mitchell, J M; Griffiths, M W; McEwen, S A; McNab, W B; Yee, A J

    1998-06-01

    This paper presents a historical review of antimicrobial use in food animals, the causes of residues in meat and milk, the types of residues found, their regulation in Canada, tests used for their detection, and test performance parameters, with an emphasis on immunoassay techniques. The development of residue detection methods began shortly after the introduction of antimicrobials to food animal production in the late 1940s. From initial technical concerns expressed by the dairy industry to the present public health and international trade implications, there has been an ongoing need for reliable, sensitive, and economical methods for the detection of antimicrobial residues in food animal products such as milk and meat. Initially there were microbial growth inhibition tests, followed by more sensitive and specific methods based on receptor binding, immunochemical, and chromatographic principle. An understanding of basic test performance parameters and their implications is essential when choosing an analytical strategy for residue testing. While each test format has its own attributes, none test will meet all the required analytical needs. Therefore the use of a tiered or integrated system employing assays designated for screening and confirmation is necessary to ensure that foods containing violative residues are not introduced into the food chain.

  19. An analytical model to predict and minimize the residual stress of laser cladding process

    NASA Astrophysics Data System (ADS)

    Tamanna, N.; Crouch, R.; Kabir, I. R.; Naher, S.

    2018-02-01

    Laser cladding is one of the advanced thermal techniques used to repair or modify the surface properties of high-value components such as tools, military and aerospace parts. Unfortunately, tensile residual stresses generate in the thermally treated area of this process. This work focuses on to investigate the key factors for the formation of tensile residual stress and how to minimize it in the clad when using dissimilar substrate and clad materials. To predict the tensile residual stress, a one-dimensional analytical model has been adopted. Four cladding materials (Al2O3, TiC, TiO2, ZrO2) on the H13 tool steel substrate and a range of preheating temperatures of the substrate, from 300 to 1200 K, have been investigated. Thermal strain and Young's modulus are found to be the key factors of formation of tensile residual stresses. Additionally, it is found that using a preheating temperature of the substrate immediately before laser cladding showed the reduction of residual stress.

  20. The PIT-trap-A "model-free" bootstrap procedure for inference about regression models with discrete, multivariate responses.

    PubMed

    Warton, David I; Thibaut, Loïc; Wang, Yi Alice

    2017-01-01

    Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)-common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of "model-free bootstrap", adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods.

  1. The PIT-trap—A “model-free” bootstrap procedure for inference about regression models with discrete, multivariate responses

    PubMed Central

    Thibaut, Loïc; Wang, Yi Alice

    2017-01-01

    Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)—common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of “model-free bootstrap”, adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods. PMID:28738071

  2. Disinfectant Residual: Representative Monitoring and Minimum Residual Implications

    EPA Science Inventory

    In this presentation we will: review history of distribution system chlorine monitoring siting, review State regulations and guidance, present a case study demonstrating a chlorine monitoring locations evaluation, and present an evaluation of Six–Year Review 3 (SYR3) disinfectant...

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caly, Leon; Kassouf, Vicki T.; Moseley, Gregory W.

    Nuclear import of the accessory protein Vpr is central to infection by human immunodeficiency virus (HIV). We previously identified the Vpr F72L mutation in a HIV-infected, long-term non-progressor, showing that it resulted in reduced Vpr nuclear accumulation and altered cytoplasmic localisation. Here we demonstrate for the first time that the effects of nuclear accumulation of the F72L mutation are due to impairment of microtubule-dependent-enhancement of Vpr nuclear import. We use high resolution imaging approaches including fluorescence recovery after photobleaching and other approaches to document interaction between Vpr and the dynein light chain protein, DYNLT1, and impaired interaction of the F72Lmore » mutant with DYNLT1. The results implicate MTs/DYNLT1 as drivers of Vpr nuclear import and HIV infection, with important therapeutic implications. - Highlights: • HIV-1 Vpr utilizes the microtubule network to traffic towards the nucleus. • Mechanism relies on interaction between Vpr and dynein light chain protein DYNLT1. • Long-term non-progressor derived mutation (F72L) impairs this interaction. • Key residues in the vicinity of F72 contribute to interaction with DYNLT1.« less

  4. Forest residues management guidelines for the Pacific Northwest.

    Treesearch

    John M. Pierovich; Edward H. Clarke; Stewart G. Pickford; Franklin R. Ward

    1975-01-01

    Forest residues often require treatment to meet land management objectives. Guideline statements for managing forest residues are presented to provide direction for achieving these objectives. The latest research information and the best knowledge of experts in various land management disciplines were used to formulate these statements. A unique keying system is...

  5. Anaerobic digestion of agricultural and other substrates--implications for greenhouse gas emissions.

    PubMed

    Pucker, J; Jungmeier, G; Siegl, S; Pötsch, E M

    2013-06-01

    The greenhouse gas (GHG) emissions, expressed in carbon dioxide equivalents (CO2-eq), of different Austrian biogas systems were analyzed and evaluated using life-cycle assessment (LCA) as part of a national project. Six commercial biogas plants were investigated and the analysis included the complete process chain: viz., the production and collection of substrates, the fermentation of the substrates in the biogas plant, the upgrading of biogas to biomethane (if applicable) and the use of the biogas or biomethane for heat and electricity or as transportation fuel. Furthermore, the LCA included the GHG emissions of construction, operation and dismantling of the major components involved in the process chain, as well as the use of by-products (e.g. fermentation residues used as fertilizers). All of the biogas systems reduced GHG emissions (in CO2-eq) compared with fossil reference systems. The potential for GHG reduction of the individual biogas systems varied between 60% and 100%. Type of feedstock and its reference use, agricultural practices, coverage of storage tanks for fermentation residues, methane leakage at the combined heat and power plant unit and the proportion of energy used as heat were identified as key factors influencing the GHG emissions of anaerobic digestion processes.

  6. Germline bias dictates cross-serotype reactivity in a common dengue-virus-specific CD8+ T cell response.

    PubMed

    Culshaw, Abigail; Ladell, Kristin; Gras, Stephanie; McLaren, James E; Miners, Kelly L; Farenc, Carine; van den Heuvel, Heleen; Gostick, Emma; Dejnirattisai, Wanwisa; Wangteeraprasert, Apirath; Duangchinda, Thaneeya; Chotiyarnwong, Pojchong; Limpitikul, Wannee; Vasanawathana, Sirijitt; Malasit, Prida; Dong, Tao; Rossjohn, Jamie; Mongkolsapaya, Juthathip; Price, David A; Screaton, Gavin R

    2017-11-01

    Adaptive immune responses protect against infection with dengue virus (DENV), yet cross-reactivity with distinct serotypes can precipitate life-threatening clinical disease. We found that clonotypes expressing the T cell antigen receptor (TCR) β-chain variable region 11 (TRBV11-2) were 'preferentially' activated and mobilized within immunodominant human-leukocyte-antigen-(HLA)-A*11:01-restricted CD8 + T cell populations specific for variants of the nonstructural protein epitope NS3 133 that characterize the serotypes DENV1, DENV3 and DENV4. In contrast, the NS3 133 -DENV2-specific repertoire was largely devoid of such TCRs. Structural analysis of a representative TRBV11-2 + TCR demonstrated that cross-serotype reactivity was governed by unique interplay between the variable antigenic determinant and germline-encoded residues in the second β-chain complementarity-determining region (CDR2β). Extensive mutagenesis studies of three distinct TRBV11-2 + TCRs further confirmed that antigen recognition was dependent on key contacts between the serotype-defined peptide and discrete residues in the CDR2β loop. Collectively, these data reveal an innate-like mode of epitope recognition with potential implications for the outcome of sequential exposure to heterologous DENVs.

  7. X-ray Crystallographic Analysis of [alpha]-Ketoheterocycle Inhibitors Bound to a Humanized Variant of Fatty Acid Amide Hydrolase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mileni, Mauro; Garfunkle, Joie; Ezzili, Cyrine

    2010-11-03

    Three cocrystal X-ray structures of the {alpha}-ketoheterocycle inhibitors 3-5 bound to a humanized variant of fatty acid amide hydrolase (FAAH) are disclosed and comparatively discussed alongside those of 1 (OL-135) and its isomer 2. These five X-ray structures systematically probe each of the three active site regions key to substrate or inhibitor binding: (1) the conformationally mobile acyl chain-binding pocket and membrane access channel responsible for fatty acid amide substrate and inhibitor acyl chain binding, (2) the atypical active site catalytic residues and surrounding oxyanion hole that covalently binds the core of the {alpha}-ketoheterocycle inhibitors captured as deprotonated hemiketals mimickingmore » the tetrahedral intermediate of the enzyme-catalyzed reaction, and (3) the cytosolic port and its uniquely important imbedded ordered water molecules and a newly identified anion binding site. The detailed analysis of their key active site interactions and their implications on the interpretation of the available structure-activity relationships are discussed providing important insights for future design.« less

  8. The reaction of monochloramine and hydroxylamine: implications for ammonia–oxidizing bacteria in chloraminated drinking water

    EPA Science Inventory

    Drinking water chloramine use may promote ammonia–oxidizing bacteria (AOB) growth because of naturally occurring ammonia, residual ammonia remaining from chloramine formation, and ammonia released from chloramine decay and demand. A rapid chloramine residual loss is often associa...

  9. Agonist-dependent consequences of proline to alanine substitution in the transmembrane helices of the calcitonin receptor

    PubMed Central

    Bailey, R J; Hay, D L

    2007-01-01

    Background and purpose: Transmembrane proline (P) residues in family A G protein-coupled receptors (GPCRs) form functionally important kinks in their helices. These residues are little studied in family B GPCRs but experiments with the VPAC1 receptor and calcitonin receptor-like receptor (CL) show parallels with family A receptors. We sought to determine the function of these residues in the insert negative form of the human calcitonin receptor, a close relative of CL. Experimental approach: Proline residues within the transmembrane domains of the calcitonin receptor (P246, P249, P280, P326, P336) were individually mutated to alanine (A) using site-directed mutagenesis. Receptors were transiently transfected into Cos-7 cells using polyethylenimine and salmon and human calcitonin-induced cAMP responses measured. Salmon and human calcitonin competition binding experiments were also performed and receptor cell-surface expression assessed by whole cell ELISA. Key results: P246A, P249A and P280A were wild-type in terms of human calcitonin-induced cAMP activation. P326A and P336A had reduced function (165 and 12-fold, respectively). In membranes, human calcitonin binding was not detectable for any mutant receptor but in whole cells, binding was detected for all mutants apart from P326A. Salmon calcitonin activated mutant and wild-type receptors equally, although Bmax values were reduced for all mutants apart from P326A. Conclusions and Implications: P326 and P336 are important for the function of human calcitonin receptors and are likely to be involved in generating receptor conformations appropriate for agonist binding and receptor activation. However, agonist-specific effects were observed , implying distinct conformations of the human calcitonin receptor. PMID:17486143

  10. The single transmembrane segment drives self-assembly of OutC and the formation of a functional type II secretion system in Erwinia chrysanthemi.

    PubMed

    Login, Frédéric H; Shevchik, Vladimir E

    2006-11-03

    Many pathogenic Gram-negative bacteria secrete toxins and lytic enzymes via a multiprotein complex called the type II secretion system. This system, named Out in Erwinia chrysanthemi, consists of 14 proteins integrated or associated with the two bacterial membranes. OutC, a key player in this process, is probably implicated in the recognition of secreted proteins and signal transduction. OutC possesses a short cytoplasmic sequence, a single transmembrane segment (TMS), and a large periplasmic region carrying a putative PDZ domain. A hydrodynamic study revealed that OutC forms stable dimers of an elongated shape, whereas the PDZ domain adopts a globular shape. Bacterial two-hybrid, cross-linking, and pulldown assays revealed that the self-association of OutC is driven by the TMS, whereas the periplasmic region is dispensable for self-association. Site-directed mutagenesis of the TMS revealed that cooperative interactions between three polar residues located at the same helical face provide adequate stability for OutC self-assembly. An interhelical H-bonding mediated by Gln(29) appears to be the main driving force, and two Arg residues located at the TMS boundaries are essential for the stabilization of OutC oligomers. Stepwise mutagenesis of these residues gradually diminished OutC functionality and self-association ability. The triple OutC mutant R15V/Q29L/R36A became monomeric and nonfunctional. Self-association and functionality of the triple mutant were partially restored by the introduction of a polar residue at an alternative position in the interhelical interface. Thus, the OutC TMS is more than just a membrane anchor; it drives the protein self-association that is essential for formation of a functional secretion system.

  11. Structural and functional analysis of a FeoB A143S G5 loop mutant explains the accelerated GDP release rate.

    PubMed

    Guilfoyle, Amy P; Deshpande, Chandrika N; Vincent, Kimberley; Pedroso, Marcelo M; Schenk, Gerhard; Maher, Megan J; Jormakka, Mika

    2014-05-01

    GTPases (G proteins) hydrolyze the conversion of GTP to GDP and free phosphate, comprising an integral part of prokaryotic and eukaryotic signaling, protein biosynthesis and cell division, as well as membrane transport processes. The G protein cycle is brought to a halt after GTP hydrolysis, and requires the release of GDP before a new cycle can be initiated. For eukaryotic heterotrimeric Gαβγ proteins, the interaction with a membrane-bound G protein-coupled receptor catalyzes the release of GDP from the Gα subunit. Structural and functional studies have implicated one of the nucleotide binding sequence motifs, the G5 motif, as playing an integral part in this release mechanism. Indeed, a Gαs G5 mutant (A366S) was shown to have an accelerated GDP release rate, mimicking a G protein-coupled receptor catalyzed release state. In the present study, we investigate the role of the equivalent residue in the G5 motif (residue A143) in the prokaryotic membrane protein FeoB from Streptococcus thermophilus, which includes an N-terminal soluble G protein domain. The structure of this domain has previously been determined in the apo and GDP-bound states and in the presence of a transition state analogue, revealing conformational changes in the G5 motif. The A143 residue was mutated to a serine and analyzed with respect to changes in GTPase activity, nucleotide release rate, GDP affinity and structural alterations. We conclude that the identity of the residue at this position in the G5 loop plays a key role in the nucleotide release rate by allowing the correct positioning and hydrogen bonding of the nucleotide base. © 2014 FEBS.

  12. Quality Matters: Extension of Clusters of Residues with Good Hydrophobic Contacts Stabilize (Hyper)Thermophilic Proteins

    PubMed Central

    2015-01-01

    Identifying determinant(s) of protein thermostability is key for rational and data-driven protein engineering. By analyzing more than 130 pairs of mesophilic/(hyper)thermophilic proteins, we identified the quality (residue-wise energy) of hydrophobic interactions as a key factor for protein thermostability. This distinguishes our study from previous ones that investigated predominantly structural determinants. Considering this key factor, we successfully discriminated between pairs of mesophilic/(hyper)thermophilic proteins (discrimination accuracy: ∼80%) and searched for structural weak spots in E. coli dihydrofolate reductase (classification accuracy: 70%). PMID:24437522

  13. Three key residues form a critical contact network in a protein folding transition state

    NASA Astrophysics Data System (ADS)

    Vendruscolo, Michele; Paci, Emanuele; Dobson, Christopher M.; Karplus, Martin

    2001-02-01

    Determining how a protein folds is a central problem in structural biology. The rate of folding of many proteins is determined by the transition state, so that a knowledge of its structure is essential for understanding the protein folding reaction. Here we use mutation measurements-which determine the role of individual residues in stabilizing the transition state-as restraints in a Monte Carlo sampling procedure to determine the ensemble of structures that make up the transition state. We apply this approach to the experimental data for the 98-residue protein acylphosphatase, and obtain a transition-state ensemble with the native-state topology and an average root-mean-square deviation of 6Å from the native structure. Although about 20 residues with small positional fluctuations form the structural core of this transition state, the native-like contact network of only three of these residues is sufficient to determine the overall fold of the protein. This result reveals how a nucleation mechanism involving a small number of key residues can lead to folding of a polypeptide chain to its unique native-state structure.

  14. Perspectives on the Meaning of Detectable Distribution System Residual and Implications for N. fowleri Control - proceedings

    EPA Science Inventory

    What is the true meaning of the federal minimum disinfectant residual requirement, “detectable”, especially as it relates to chloramines. Are “detectable” but trace concentrations of chloramines primarily measures of organic chloramines which have little disinfectant action. Th...

  15. Cocrystal structures of NC6.8 Fab identify key interactions for high potency sweetener recognition: implications for the design of synthetic sweeteners.

    PubMed

    Gokulan, Kuppan; Khare, Sangeeta; Ronning, Donald R; Linthicum, Scott D; Sacchettini, James C; Rupp, Bernhard

    2005-07-26

    The crystal structures of the murine monoclonal IgG2b(kappa) antibody NC6.8 Fab fragment complexed with high-potency sweetener compound SC45647 and nontasting high-affinity antagonist TES have been determined. The crystal structures show how sweetener potency is fine-tuned by multiple interactions between specific receptor residues and the functionally different groups of the sweeteners. Comparative analysis with the structure of NC6.8 complexed with the super-potency sweetener NC174 reveals that although the same residues in the antigen binding pocket of NC6.8 interact with the zwitterionic, trisubstituted guanidinium sweeteners as well as TES, specific differences exist and provide guidance for the design of new artificial sweeteners. In case of the nonsweetener TES, the interactions with the receptor are indirectly mediated through a hydrogen bonded water network, while the sweeteners bind with high affinity directly to the receptor. The presence of a hydrophobic group interacting with multiple receptor residues as a major determinant for sweet taste has been confirmed. The nature of the hydrophobic group is likely a discriminator for super- versus high-potency sweeteners, which can be exploited in the design of new, highly potent sweetener compounds. Overall similarities and partial conservation of interactions indicate that the NC6.8 Fab surrogate is representing crucial features of the T1R2 taste receptor VFTM binding site.

  16. Silver(I)-promoted conversion of thioamides to amidines: divergent synthesis of a key series of vancomycin aglycon residue 4 amidines that clarify binding behavior to model ligands.

    PubMed

    Okano, Akinori; James, Robert C; Pierce, Joshua G; Xie, Jian; Boger, Dale L

    2012-05-30

    Development of a general Ag(I)-promoted reaction for the conversion of thioamides to amidines is disclosed. This reaction was employed to prepare a key series of vancomycin aglycon residue 4 substituted amidines that were used to clarify their interaction with model ligands of peptidoglycan precursors and explore their resulting impact on antimicrobial properties.

  17. The Crystal Structure of a Cardiovirus RNA-Dependent RNA Polymerase Reveals an Unusual Conformation of the Polymerase Active Site

    PubMed Central

    Vives-Adrian, Laia; Lujan, Celia; Oliva, Baldo; van der Linden, Lonneke; Selisko, Barbara; Coutard, Bruno; Canard, Bruno; van Kuppeveld, Frank J. M.

    2014-01-01

    ABSTRACT Encephalomyocarditis virus (EMCV) is a member of the Cardiovirus genus within the large Picornaviridae family, which includes a number of important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for viral genome replication. In this study, we report the X-ray structures of two different crystal forms of the EMCV RdRp determined at 2.8- and 2.15-Å resolution. The in vitro elongation and VPg uridylylation activities of the purified enzyme have also been demonstrated. Although the overall structure of EMCV 3Dpol is shown to be similar to that of the known RdRps of other members of the Picornaviridae family, structural comparisons show a large reorganization of the active-site cavity in one of the crystal forms. The rearrangement affects mainly motif A, where the conserved residue Asp240, involved in ribonucleoside triphosphate (rNTP) selection, and its neighbor residue, Phe239, move about 10 Å from their expected positions within the ribose binding pocket toward the entrance of the rNTP tunnel. This altered conformation of motif A is stabilized by a cation-π interaction established between the aromatic ring of Phe239 and the side chain of Lys56 within the finger domain. Other contacts, involving Phe239 and different residues of motif F, are also observed. The movement of motif A is connected with important conformational changes in the finger region flanked by residues 54 to 63, harboring Lys56, and in the polymerase N terminus. The structures determined in this work provide essential information for studies on the cardiovirus RNA replication process and may have important implications for the development of new antivirals targeting the altered conformation of motif A. IMPORTANCE The Picornaviridae family is one of the largest virus families known, including many important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for picornavirus genome replication and a validated target for the development of antiviral therapies. Solving the X-ray structure of the first cardiovirus RdRp, EMCV 3Dpol, we captured an altered conformation of a conserved motif in the polymerase active site (motif A) containing the aspartic acid residue involved in rNTP selection and binding. This altered conformation of motif A, which interferes with the correct positioning of the rNTP substrate in the active site, is stabilized by a number of residues strictly conserved among picornaviruses. The rearrangements observed suggest that this motif A segment is a dynamic element that can be modulated by external effectors, either activating or inhibiting enzyme activity, and this type of modulation appears to be general to all picornaviruses. PMID:24600002

  18. The crystal structure of a cardiovirus RNA-dependent RNA polymerase reveals an unusual conformation of the polymerase active site.

    PubMed

    Vives-Adrian, Laia; Lujan, Celia; Oliva, Baldo; van der Linden, Lonneke; Selisko, Barbara; Coutard, Bruno; Canard, Bruno; van Kuppeveld, Frank J M; Ferrer-Orta, Cristina; Verdaguer, Núria

    2014-05-01

    Encephalomyocarditis virus (EMCV) is a member of the Cardiovirus genus within the large Picornaviridae family, which includes a number of important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for viral genome replication. In this study, we report the X-ray structures of two different crystal forms of the EMCV RdRp determined at 2.8- and 2.15-Å resolution. The in vitro elongation and VPg uridylylation activities of the purified enzyme have also been demonstrated. Although the overall structure of EMCV 3Dpol is shown to be similar to that of the known RdRps of other members of the Picornaviridae family, structural comparisons show a large reorganization of the active-site cavity in one of the crystal forms. The rearrangement affects mainly motif A, where the conserved residue Asp240, involved in ribonucleoside triphosphate (rNTP) selection, and its neighbor residue, Phe239, move about 10 Å from their expected positions within the ribose binding pocket toward the entrance of the rNTP tunnel. This altered conformation of motif A is stabilized by a cation-π interaction established between the aromatic ring of Phe239 and the side chain of Lys56 within the finger domain. Other contacts, involving Phe239 and different residues of motif F, are also observed. The movement of motif A is connected with important conformational changes in the finger region flanked by residues 54 to 63, harboring Lys56, and in the polymerase N terminus. The structures determined in this work provide essential information for studies on the cardiovirus RNA replication process and may have important implications for the development of new antivirals targeting the altered conformation of motif A. The Picornaviridae family is one of the largest virus families known, including many important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for picornavirus genome replication and a validated target for the development of antiviral therapies. Solving the X-ray structure of the first cardiovirus RdRp, EMCV 3Dpol, we captured an altered conformation of a conserved motif in the polymerase active site (motif A) containing the aspartic acid residue involved in rNTP selection and binding. This altered conformation of motif A, which interferes with the correct positioning of the rNTP substrate in the active site, is stabilized by a number of residues strictly conserved among picornaviruses. The rearrangements observed suggest that this motif A segment is a dynamic element that can be modulated by external effectors, either activating or inhibiting enzyme activity, and this type of modulation appears to be general to all picornaviruses.

  19. Impacts of corn residue grazing and baling on wind erosion potential in a semiarid environment

    USDA-ARS?s Scientific Manuscript database

    Implications of corn (Zea mays L.) residue grazing and baling on wind erosion in integrated crop-livestock systems are not well understood. We studied: 1) soil properties affecting wind erosion potential including dry aggregate-size distribution, geometric mean diameter (GMDA), geometric standard de...

  20. Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghattyvenkatakrishna, Pavan K; Uberbacher, Edward C

    2013-01-01

    The presence of an unusually large number of aromatic residues in the active site gorge of acetylcholinesterase has been a topic of great interest. Flexibility of these residues has been suspected to be a key player in controlling ligand traversal in the gorge. This raises the question of whether the over representation of aromatic residues in the gorge implies higher than normal flexibility of those residues. The current study suggests that it does not. Large changes in the hydrophobic cross sectional area due to dihedral oscillations are probably the reason behind their presence in the gorge.

  1. Anomaly Monitoring Method for Key Components of Satellite

    PubMed Central

    Fan, Linjun; Xiao, Weidong; Tang, Jun

    2014-01-01

    This paper presented a fault diagnosis method for key components of satellite, called Anomaly Monitoring Method (AMM), which is made up of state estimation based on Multivariate State Estimation Techniques (MSET) and anomaly detection based on Sequential Probability Ratio Test (SPRT). On the basis of analysis failure of lithium-ion batteries (LIBs), we divided the failure of LIBs into internal failure, external failure, and thermal runaway and selected electrolyte resistance (R e) and the charge transfer resistance (R ct) as the key parameters of state estimation. Then, through the actual in-orbit telemetry data of the key parameters of LIBs, we obtained the actual residual value (R X) and healthy residual value (R L) of LIBs based on the state estimation of MSET, and then, through the residual values (R X and R L) of LIBs, we detected the anomaly states based on the anomaly detection of SPRT. Lastly, we conducted an example of AMM for LIBs, and, according to the results of AMM, we validated the feasibility and effectiveness of AMM by comparing it with the results of threshold detective method (TDM). PMID:24587703

  2. Structure, Dynamics, and Interaction of Mycobacterium tuberculosis (Mtb) DprE1 and DprE2 Examined by Molecular Modeling, Simulation, and Electrostatic Studies

    PubMed Central

    Bhutani, Isha; Loharch, Saurabh; Gupta, Pawan; Madathil, Rethi; Parkesh, Raman

    2015-01-01

    The enzymes decaprenylphosphoryl-β-D-ribose oxidase (DprE1) and decaprenylphosphoryl-β-D-ribose-2-epimerase (DprE2) catalyze epimerization of decaprenylphosporyl ribose (DPR) todecaprenylphosporyl arabinose (DPA) and are critical for the survival of Mtb. Crystal structures of DprE1 so far reported display significant disordered regions and no structural information is known for DprE2. We used homology modeling, protein threading, molecular docking and dynamics studies to investigate the structural and dynamic features of Mtb DprE1 and DprE2 and DprE1-DprE2 complex. A three-dimensional model for DprE2 was generated using the threading approach coupled with ab initio modeling. A 50 ns simulation of DprE1 and DprE2 revealed the overall stability of the structures. Principal Component Analysis (PCA) demonstrated the convergence of sampling in both DprE1 and DprE2. In DprE1, residues in the 269–330 area showed considerable fluctuation in agreement with the regions of disorder observed in the reported crystal structures. In DprE2, large fluctuations were detected in residues 95–113, 146–157, and 197–226. The study combined docking and MD simulation studies to map and characterize the key residues involved in DprE1-DprE2 interaction. A 60 ns MD simulation for DprE1-DprE2 complex was also performed. Analysis of data revealed that the docked complex is stabilized by H-bonding, hydrophobic and ionic interactions. The key residues of DprE1 involved in DprE1-DprE2 interactions belong to the disordered region. We also examined the docked complex of DprE1-BTZ043 to investigate the binding pocket of DprE1 and its interactions with the inhibitor BTZ043. In summary, we hypothesize that DprE1-DprE2 interaction is crucial for the synthesis of DPA and DprE1-DprE2 complex may be a new therapeutic target amenable to pharmacological validation. The findings have important implications in tuberculosis (TB) drug discovery and will facilitate drug development efforts against TB. PMID:25789990

  3. Structure, dynamics, and interaction of Mycobacterium tuberculosis (Mtb) DprE1 and DprE2 examined by molecular modeling, simulation, and electrostatic studies.

    PubMed

    Bhutani, Isha; Loharch, Saurabh; Gupta, Pawan; Madathil, Rethi; Parkesh, Raman

    2015-01-01

    The enzymes decaprenylphosphoryl-β-D-ribose oxidase (DprE1) and decaprenylphosphoryl-β-D-ribose-2-epimerase (DprE2) catalyze epimerization of decaprenylphosporyl ribose (DPR) todecaprenylphosporyl arabinose (DPA) and are critical for the survival of Mtb. Crystal structures of DprE1 so far reported display significant disordered regions and no structural information is known for DprE2. We used homology modeling, protein threading, molecular docking and dynamics studies to investigate the structural and dynamic features of Mtb DprE1 and DprE2 and DprE1-DprE2 complex. A three-dimensional model for DprE2 was generated using the threading approach coupled with ab initio modeling. A 50 ns simulation of DprE1 and DprE2 revealed the overall stability of the structures. Principal Component Analysis (PCA) demonstrated the convergence of sampling in both DprE1 and DprE2. In DprE1, residues in the 269-330 area showed considerable fluctuation in agreement with the regions of disorder observed in the reported crystal structures. In DprE2, large fluctuations were detected in residues 95-113, 146-157, and 197-226. The study combined docking and MD simulation studies to map and characterize the key residues involved in DprE1-DprE2 interaction. A 60 ns MD simulation for DprE1-DprE2 complex was also performed. Analysis of data revealed that the docked complex is stabilized by H-bonding, hydrophobic and ionic interactions. The key residues of DprE1 involved in DprE1-DprE2 interactions belong to the disordered region. We also examined the docked complex of DprE1-BTZ043 to investigate the binding pocket of DprE1 and its interactions with the inhibitor BTZ043. In summary, we hypothesize that DprE1-DprE2 interaction is crucial for the synthesis of DPA and DprE1-DprE2 complex may be a new therapeutic target amenable to pharmacological validation. The findings have important implications in tuberculosis (TB) drug discovery and will facilitate drug development efforts against TB.

  4. Overexpression and correlation of HIF-2α, VEGFA and EphA2 in residual hepatocellular carcinoma following high-intensity focused ultrasound treatment: Implications for tumor recurrence and progression.

    PubMed

    Wu, Lun; Zhang, You-Shun; Ye, Meng-Liang; Shen, Feng; Liu, Wei; Hu, Hong-Sheng; Li, Sheng-Wei; Wu, Hong-Wei; Chen, Qin-Hua; Zhou, Wen-Bo

    2017-06-01

    Rapid growth of residual tumors can occur as a result of their recurrence and progression. The present study aimed to investigate the expression of hypoxia inducible factor-2 subunit α (HIF-2α), vascular endothelial growth factor A (VEGFA), erythropoietin-producing hepatocellular A2 (EphA2) and angiogenesis in residual hepatocellular carcinoma (HCC), following treatment with high-intensity focused ultrasound (HIFU) ablation, in order to investigate the association between protein expression and tumor recurrence and growth. Athymic BALB/c (nu/nu) mice were subcutaneously inoculated with the HCC cell line HepG2, in order to create xenograft tumors. Approximately 30 days post-inoculation, eight mice were treated with HIFU, whereas eight mice received no treatment and acted as the control group. Residual tumor tissues were obtained from the experimental groups after one month. Levels of HIF-2α, VEGFA, EphA2 and cluster of differentiation 31 (CD31) expression was measured by immunohistochemical staining. CD31-positive vascular endothelial cells were counted to calculate microvascular density (MVD), and western blot analysis was performed to determine levels of HIF-2α, VEGFA, and EphA2 protein. It was found that the expression levels of HIF-2α, VEGFA, EphA2, and MVD proteins in residual HCC tissues were significantly higher than in the control group tissues (P<0.05). Tumor MVD was strongly correlated with VEGFA (R=0.957, P<0.01) and EphA2 (R=0.993, P<0.01) protein expression levels. Furthermore, there was a significant positive correlation between HIF-2α and EphA2 expression (R=0.991, P<0.01). The correlation between VEGFA and EphA2 expression was also positive (R=0.985, P<0.01). These data suggest that overexpression of HIF-2α, VEGFA and EphA2 is related to angiogenesis in residual HCC following HIFU ablation, potentially via their association with key mediators of recurrence.

  5. TANK FARM CLOSURE - A NEW TWIST ON REGULATORY STRATEGIES FOR CLOSURE OF WASTE TANK RESIDUALS FOLLOWING NUREG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LEHMAN LL

    2008-01-23

    Waste from a number of single-shell tanks (SST) at the U.S. Department of Energy's (DOE) Hanford Site has been retrieved by CH2M HILL Hanford Group to fulfill the requirements of the 'Hanford Federal Facility Agreement and Consent Order (HFFACO) [1]. Laboratory analyses of the Hanford tank residual wastes have provided concentration data which will be used to determine waste classification and disposal options for tank residuals. The closure of tank farm facilities remains one of the most challenging activities faced by the DOE. This is due in part to the complicated regulatory structures that have developed. These regulatory structures aremore » different at each of the DOE sites, making it difficult to apply lessons learned from one site to the next. During the past two years with the passage of the Section 3116 of the 'Ronald Reagan Defense Authorization Act of 2005' (NDAA) [2] some standardization has emerged for Savannah River Site and the Idaho National Laboratory tank residuals. Recently, with the issuance of 'NRC Staff Guidance for Activities Related to US. Department of Energy Waste Determinations' (NUREG-1854) [3] more explicit options may be considered for Hanford tank residuals than are presently available under DOE Orders. NUREG-1854, issued in August 2007, contains several key pieces of information that if utilized by the DOE in the tank closure process, could simplify waste classification and streamline the NRC review process by providing information to the NRC in their preferred format. Other provisions of this NUREG allow different methods to be applied in determining when waste retrieval is complete by incorporating actual project costs and health risks into the calculation of 'technically and economically practical'. Additionally, the NUREG requires a strong understanding of the uncertainties of the analyses, which given the desire of some NRC/DOE staff may increase the likelihood of using probabilistic approaches to uncertainty analysis. The purpose of this paper is to discuss implications of NUREG-1854 and to examine the feasibility and potential benefits of applying these provisions to waste determinations and supporting documents such as future performance assessments for tank residuals.« less

  6. Full length amylin oligomer aggregation: insights from molecular dynamics simulations and implications for design of aggregation inhibitors.

    PubMed

    Berhanu, Workalemahu Mikre; Masunov, Artëm E

    2014-01-01

    Amyloid oligomers are considered to play essential roles in the pathogenesis of amyloid-related degenerative diseases including type 2 diabetes. Using an explicit solvent all atomic MD simulation, we explored the stability, conformational dynamics and association force of different single-layer models of the full-length wild-type and glycine mutants of amylin (pentamer) obtained from a recent high resolution fibril model. The RMSF profile shows enhanced flexibility in the disorder (Lys1-Cys7) and turn region (Ser19-Gly23), along with smallest fluctuation at the residues (Asn14-Phe15-Leu16-Val17-His18) of β1 region and (Ala25-Ile26-Leu27-Ser28-Ser29) of the β2 region. We obtained a significant difference in backbone RMSD between the wild-type and the mutants, indicating that mutations affected the stability of the peptide. The RMSD and RMSF profiles indicate the edge and loop residues are the primary contributors to the overall conformational changes. The degree of structural similarity between the oligomers in the simulation and the fibril conformation is proposed as the possible explanation for experimentally observed shortening of the nucleation lag phase of amylin with oligomer seeding. On the basis of structure-stability findings, the β1 and β2 portions are optimal target for further anti-amyloid drug design. The MM-PBSA binding energy calculation reveals the binding of amylin: amylin strands in single layer is dominated by contributions from van der Waals interactions. The non-polar solvation term is also found to be favorable. While the electrostatic interactions and polar solvation energy was found to be favorable for the interaction for the larger aggregate and unfavorable for the smaller aggregates. A per-residue decomposition of the binding free energy has been performed to identify the residues contributing most to the self-association free energy. Residues found in the β-sheet regions were found to be key residue making the largest favorable contributions to the single-layer association. The result from our simulation could be used in rational design of new amylinomimetic agent, amylin aggregation inhibitors and amylin-specific biomarkers.

  7. Gain-of-function mutations in beet DODA2 identify key residues for betalain pigment evolution.

    PubMed

    Bean, Alexander; Sunnadeniya, Rasika; Akhavan, Neda; Campbell, Annabelle; Brown, Matthew; Lloyd, Alan

    2018-05-13

    The key enzymatic step in betalain biosynthesis involves conversion of l-3,4-dihydroxyphenylalanine (l-DOPA) to betalamic acid. One class of enzymes capable of this is 3,4-dihydroxyphenylalanine 4,5-dioxygenase (DODA). In betalain-producing species, multiple paralogs of this gene are maintained. This study demonstrates which paralogs function in the betalain pathway and determines the residue changes required to evolve a betalain-nonfunctional DODA into a betalain-functional DODA. Functionalities of two pairs of DODAs were tested by expression in beets, Arabidopsis and yeast, and gene silencing was performed by virus-induced gene silencing. Site-directed mutagenesis identified amino acid residues essential for betalamic acid production. Beta vulgaris and Mirabilis jalapa both possess a DODA1 lineage that functions in the betalain pathway and at least one other lineage, DODA2, that does not. Site-directed mutagenesis resulted in betalain biosynthesis by a previously nonfunctional DODA, revealing key residues required for evolution of the betalain pathway. Divergent functionality of DODA paralogs, one clade involved in betalain biosynthesis but others not, is present in various Caryophyllales species. A minimum of seven amino acid residue changes conferred betalain enzymatic activity to a betalain-nonfunctional DODA paralog, providing insight into the evolution of the betalain pigment pathway in plants. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  8. Selective inactivation of glutaredoxin by sporidesmin and other epidithiopiperazinediones.

    PubMed

    Srinivasan, Usha; Bala, Aveenash; Jao, Shu-chuan; Starke, David W; Jordan, T William; Mieyal, John J

    2006-07-25

    Glutaredoxin (thioltransferase) is a thiol-disulfide oxidoreductase that displays efficient and specific catalysis of protein-SSG deglutathionylation and is thereby implicated in homeostatic regulation of the thiol-disulfide status of cellular proteins. Sporidesmin is an epidithiopiperazine-2,5-dione (ETP) fungal toxin that disrupts cellular functions likely via oxidative alteration of cysteine residues on key proteins. In the current study sporidesmin inactivated human glutaredoxin in a time- and concentration-dependent manner. Under comparable conditions other thiol-disulfide oxidoreductase enzymes, glutathione reductase, thioredoxin, and thioredoxin reductase, were unaffected by sporidesmin. Inactivation of glutaredoxin required the reduced (dithiol) form of the enzyme, the oxidized (intramolecular disulfide) form of sporidesmin, and molecular oxygen. The inactivated glutaredoxin could be reactivated by dithiothreitol only in the presence of urea, followed by removal of the denaturant, indicating that inactivation of the enzyme involves a conformationally inaccessible disulfide bond(s). Various cysteine-to-serine mutants of glutaredoxin were resistant to inactivation by sporidesmin, suggesting that the inactivation reaction specifically involves at least two of the five cysteine residues in human glutaredoxin. The relative ability of various epidithiopiperazine-2,5-diones to inactivate glutaredoxin indicated that at least one phenyl substituent was required in addition to the epidithiodioxopiperazine moiety for inhibitory activity. Mass spectrometry of the modified protein is consistent with formation of intermolecular disulfides, containing one adducted toxin per glutaredoxin but with elimination of two sulfur atoms from the detected product. We suggest that the initial reaction is between the toxin sulfurs and cysteine 22 in the glutaredoxin active site. This study implicates selective modification of sulfhydryls of target proteins in some of the cytotoxic effects of the ETP fungal toxins and their synthetic analogues.

  9. Mapping of the local environmental changes in proteins by cysteine scanning

    PubMed Central

    Yamazaki, Yoichi; Nagata, Tomoko; Terakita, Akihisa; Kandori, Hideki; Shichida, Yoshinori; Imamoto, Yasushi

    2014-01-01

    Protein conformational changes, which regulate the activity of proteins, are induced by the alternation of intramolecular interactions. Therefore, the detection of the local environmental changes around the key amino acid residues is essential to understand the activation mechanisms of functional proteins. Here we developed the methods to scan the local environmental changes using the vibrational band of cysteine S-H group. We validated the sensitivity of this method using bathorhodopsin, a photoproduct of rhodopsin trapped at liquid nitrogen temperature, which undergoes little conformational changes from the dark state as shown by the X-ray crystallography. The cysteine residues were individually introduced into 15 positions of Helix III, which contains several key amino acid residues for the light-induced conformational changes of rhodopsin. The shifts of S-H stretching modes of these cysteine residues and native cysteine residues upon the formation of bathorhodopsin were measured by Fourier transform infrared spectroscopy. While most of cysteine residues demonstrated no shift of S-H stretching mode, cysteine residues introduced at positions 117, 118, and 122, which are in the vicinity of the chromophore, demonstrated the significant changes. The current results are consistent with the crystal structure of bathorhodopsin, implying that the cysteine scanning is sensitive enough to detect the tiny conformational changes. PMID:27493492

  10. Revealing Hidden Conformational Space of LOV Protein VIVID Through Rigid Residue Scan Simulations

    NASA Astrophysics Data System (ADS)

    Zhou, Hongyu; Zoltowski, Brian D.; Tao, Peng

    2017-04-01

    VIVID(VVD) protein is a Light-Oxygen-Voltage(LOV) domain in circadian clock system. Upon blue light activation, a covalent bond is formed between VVD residue Cys108 and its cofactor flavin adenine dinucleotide(FAD), and prompts VVD switching from Dark state to Light state with significant conformational deviation. However, the mechanism of this local environment initiated global protein conformational change remains elusive. We employed a recently developed computational approach, rigid residue scan(RRS), to systematically probe the impact of the internal degrees of freedom in each amino acid residue of VVD on its overall dynamics by applying rigid body constraint on each residue in molecular dynamics simulations. Key residues were identified with distinctive impacts on Dark and Light states, respectively. All the simulations display wide range of distribution on a two-dimensional(2D) plot upon structural root-mean-square deviations(RMSD) from either Dark or Light state. Clustering analysis of the 2D RMSD distribution leads to 15 representative structures with drastically different conformation of N-terminus, which is also a key difference between Dark and Light states of VVD. Further principle component analyses(PCA) of RRS simulations agree with the observation of distinctive impact from individual residues on Dark and Light states.

  11. Revealing Hidden Conformational Space of LOV Protein VIVID Through Rigid Residue Scan Simulations

    PubMed Central

    Zhou, Hongyu; Zoltowski, Brian D.; Tao, Peng

    2017-01-01

    VIVID(VVD) protein is a Light-Oxygen-Voltage(LOV) domain in circadian clock system. Upon blue light activation, a covalent bond is formed between VVD residue Cys108 and its cofactor flavin adenine dinucleotide(FAD), and prompts VVD switching from Dark state to Light state with significant conformational deviation. However, the mechanism of this local environment initiated global protein conformational change remains elusive. We employed a recently developed computational approach, rigid residue scan(RRS), to systematically probe the impact of the internal degrees of freedom in each amino acid residue of VVD on its overall dynamics by applying rigid body constraint on each residue in molecular dynamics simulations. Key residues were identified with distinctive impacts on Dark and Light states, respectively. All the simulations display wide range of distribution on a two-dimensional(2D) plot upon structural root-mean-square deviations(RMSD) from either Dark or Light state. Clustering analysis of the 2D RMSD distribution leads to 15 representative structures with drastically different conformation of N-terminus, which is also a key difference between Dark and Light states of VVD. Further principle component analyses(PCA) of RRS simulations agree with the observation of distinctive impact from individual residues on Dark and Light states. PMID:28425502

  12. Photoaffinity Labeling of Ras Converting Enzyme using Peptide Substrates that Incorporate Benzoylphenylalanine (Bpa) Residues: Improved Labeling and Structural Implications

    PubMed Central

    Kyro, Kelly; Manandhar, Surya P.; Mullen, Daniel; Schmidt, Walter K.; Distefano, Mark D.

    2012-01-01

    Rce1p catalyzes the proteolytic trimming of C-terminal tripeptides from isoprenylated proteins containing CAAX-box sequences. Because Rce1p processing is a necessary component in the Ras pathway of oncogenic signal transduction, Rce1p holds promise as a potential target for therapeutic intervention. However, its mechanism of proteolysis and active site have yet to be defined. Here, we describe synthetic peptide analogues that mimic the natural lipidated Rce1p substrate and incorporate photolabile groups for photoaffinity-labeling applications. These photoactive peptides are designed to crosslink to residues in or near the Rce1p active site. By incorporating the photoactive group via p-benzoyl-L-phenylalanine (Bpa) residues directly into the peptide substrate sequence, the labeling efficiency was substantially increased relative to a previously-synthesized compound. Incorporation of biotin on the N-terminus of the peptides permitted photolabeled Rce1p to be isolated via streptavidin affinity capture. Our findings further suggest that residues outside the CAAX-box sequence are in contact with Rce1p, which has implications for future inhibitor design. PMID:22079863

  13. Ovine Reference Materials and Assays for Prion Genetic Testing

    USDA-ARS?s Scientific Manuscript database

    Codon variants implicated in scrapie susceptibility or disease progression include those at amino acid positions 112, 136, 141, 154, and 171. Nine single nucleotide polymorphisms (SNPs) determine which residues are encoded by the five implicated codons and accurately scoring these SNPs is essential...

  14. Protonation states of histidine and other key residues in deoxy normal human adult hemoglobin by neutron protein crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalevsky, Andrey, E-mail: ayk@lanl.gov; Chatake, Toshiyuki; Shibayama, Naoya

    2010-11-01

    Using neutron diffraction analysis, the protonation states of 35 of 38 histidine residues were determined for the deoxy form of normal human adult hemoglobin. Distal and buried histidines may contribute to the increased affinity of the deoxy state for hydrogen ions and its decreased affinity for oxygen compared with the oxygenated form. The protonation states of the histidine residues key to the function of deoxy (T-state) human hemoglobin have been investigated using neutron protein crystallography. These residues can reversibly bind protons, thereby regulating the oxygen affinity of hemoglobin. By examining the OMIT F{sub o} − F{sub c} and 2F{sub o}more » − F{sub c} neutron scattering maps, the protonation states of 35 of the 38 His residues were directly determined. The remaining three residues were found to be disordered. Surprisingly, seven pairs of His residues from equivalent α or β chains, αHis20, αHis50, αHis58, αHis89, βHis63, βHis143 and βHis146, have different protonation states. The protonation of distal His residues in the α{sub 1}β{sub 1} heterodimer and the protonation of αHis103 in both subunits demonstrates that these residues may participate in buffering hydrogen ions and may influence the oxygen binding. The observed protonation states of His residues are compared with their ΔpK{sub a} between the deoxy and oxy states. Examination of inter-subunit interfaces provided evidence for interactions that are essential for the stability of the deoxy tertiary structure.« less

  15. Biomimetic synthesis of struvite with biogenic morphology and implication for pathological biomineralization

    NASA Astrophysics Data System (ADS)

    Li, Han; Yao, Qi-Zhi; Wang, Yu-Ying; Li, Yi-Liang; Zhou, Gen-Tao

    2015-01-01

    Recent studies have found that certain urinary proteins can efficiently inhibit stone formation. These discoveries are significant for developing effective therapies for stone disease, but the inhibition mechanism of crystallization remains elusive. In the present study, polyaspartic acid (PASP) was employed as a model peptide to investigate the effect of urinary proteins on the crystallization and morphological evolution of struvite. The results demonstrate that selective adsorption/binding of PASP onto the {010} and {101} faces of struvite crystals results in arrowhead-shaped morphology, which further evolves into X-shaped and unusual tabular structures with time. Noticeably, these morphologies are reminiscent of biogenic struvite morphology. Concentration-dependent experiments show that PASP can inhibit struvite growth and the inhibitory capacity increases with increasing PASP concentration, whereas aspartic acid monomers do not show a significant effect. Considering that PASP is a structural and functional analogue of the subdomains of aspartic acid-rich proteins, our results reveal that aspartic acid-rich proteins play a key role in regulating biogenic struvite morphology, and aspartic acid residues contribute to the inhibitory capacity of urinary proteins. The potential implications of PASP for developing therapeutic agents for urinary stone disease is also discussed.

  16. Biomimetic synthesis of struvite with biogenic morphology and implication for pathological biomineralization.

    PubMed

    Li, Han; Yao, Qi-Zhi; Wang, Yu-Ying; Li, Yi-Liang; Zhou, Gen-Tao

    2015-01-16

    Recent studies have found that certain urinary proteins can efficiently inhibit stone formation. These discoveries are significant for developing effective therapies for stone disease, but the inhibition mechanism of crystallization remains elusive. In the present study, polyaspartic acid (PASP) was employed as a model peptide to investigate the effect of urinary proteins on the crystallization and morphological evolution of struvite. The results demonstrate that selective adsorption/binding of PASP onto the {010} and {101} faces of struvite crystals results in arrowhead-shaped morphology, which further evolves into X-shaped and unusual tabular structures with time. Noticeably, these morphologies are reminiscent of biogenic struvite morphology. Concentration-dependent experiments show that PASP can inhibit struvite growth and the inhibitory capacity increases with increasing PASP concentration, whereas aspartic acid monomers do not show a significant effect. Considering that PASP is a structural and functional analogue of the subdomains of aspartic acid-rich proteins, our results reveal that aspartic acid-rich proteins play a key role in regulating biogenic struvite morphology, and aspartic acid residues contribute to the inhibitory capacity of urinary proteins. The potential implications of PASP for developing therapeutic agents for urinary stone disease is also discussed.

  17. Regional medicine use in the Rhine basin and its implication on water quality

    NASA Astrophysics Data System (ADS)

    Hut, R.; Van De Giesen, N.; de Jong, S.

    2011-12-01

    Do Germans use more painkillers than the French? An analysis is presented relating medicine residue in the river Rhine to the amount of people living in its watershed. An extensive measuring campaign was carried out, sampling river Rhine at 42 locations from its source to the start of its delta (Dutch-German border). The samples were analyzed for 40 common pharmaceuticals. Using discharge data, digital elevation models and demographic data from Eurostat, the relation between total load of drug residue and population is analyzed. Results show regional differences in drug use as well as implications for (downstream) use of river water for drinking purposes.

  18. Residual stress evaluation of components produced via direct metal laser sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemerling, Brandon; Lippold, John C.; Fancher, Christopher M.

    Direct metal laser sintering is an additive manufacturing process which is capable of fabricating three-dimensional components using a laser energy source and metal powder particles. Despite the numerous benefits offered by this technology, the process maturity is low with respect to traditional subtractive manufacturing methods. Relationships between key processing parameters and final part properties are generally lacking and require further development. In this study, residual stresses were evaluated as a function of key process variables. The variables evaluated included laser scan strategy and build plate preheat temperature. Residual stresses were measured experimentally via neutron diffraction and computationally via finite elementmore » analysis. Good agreement was shown between the experimental and computational results. Results showed variations in the residual stress profile as a function of laser scan strategy. Compressive stresses were dominant along the build height (z) direction, and tensile stresses were dominant in the x and y directions. Build plate preheating was shown to be an effective method for alleviating residual stress due to the reduction in thermal gradient.« less

  19. Residual stress evaluation of components produced via direct metal laser sintering

    DOE PAGES

    Kemerling, Brandon; Lippold, John C.; Fancher, Christopher M.; ...

    2018-03-22

    Direct metal laser sintering is an additive manufacturing process which is capable of fabricating three-dimensional components using a laser energy source and metal powder particles. Despite the numerous benefits offered by this technology, the process maturity is low with respect to traditional subtractive manufacturing methods. Relationships between key processing parameters and final part properties are generally lacking and require further development. In this study, residual stresses were evaluated as a function of key process variables. The variables evaluated included laser scan strategy and build plate preheat temperature. Residual stresses were measured experimentally via neutron diffraction and computationally via finite elementmore » analysis. Good agreement was shown between the experimental and computational results. Results showed variations in the residual stress profile as a function of laser scan strategy. Compressive stresses were dominant along the build height (z) direction, and tensile stresses were dominant in the x and y directions. Build plate preheating was shown to be an effective method for alleviating residual stress due to the reduction in thermal gradient.« less

  20. Crystal structure of the human cytosolic sialidase Neu2. Evidence for the dynamic nature of substrate recognition.

    PubMed

    Chavas, Leonard M G; Tringali, Cristina; Fusi, Paola; Venerando, Bruno; Tettamanti, Guido; Kato, Ryuichi; Monti, Eugenio; Wakatsuki, Soichi

    2005-01-07

    Gangliosides play key roles in cell differentiation, cell-cell interactions, and transmembrane signaling. Sialidases hydrolyze sialic acids to produce asialo compounds, which is the first step of degradation processes of glycoproteins and gangliosides. Sialidase involvement has been implicated in some lysosomal storage disorders such as sialidosis and galactosialidosis. Neu2 is a recently identified human cytosolic sialidase. Here we report the first high resolution x-ray structures of mammalian sialidase, human Neu2, in its apo form and in complex with an inhibitor, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA). The structure shows the canonical six-blade beta-propeller observed in viral and bacterial sialidases with its active site in a shallow crevice. In the complex structure, the inhibitor lies in the catalytic crevice surrounded by ten amino acids. In particular, the arginine triad, conserved among sialidases, aids in the proper positioning of the carboxylate group of DANA within the active site region. The tyrosine residue, Tyr(334), conserved among mammalian and bacterial sialidases as well as in viral neuraminidases, facilitates the enzymatic reaction by stabilizing a putative carbonium ion in the transition state. The loops containing Glu(111) and the catalytic aspartate Asp(46) are disordered in the apo form but upon binding of DANA become ordered to adopt two short alpha-helices to cover the inhibitor, illustrating the dynamic nature of substrate recognition. The N-acetyl and glycerol moieties of DANA are recognized by Neu2 residues not shared by bacterial sialidases and viral neuraminidases, which can be regarded as a key structural difference for potential drug design against bacteria, influenza, and other viruses.

  1. Kainate receptor pore‐forming and auxiliary subunits regulate channel block by a novel mechanism

    PubMed Central

    Brown, Patricia M. G. E.; Aurousseau, Mark R. P.; Musgaard, Maria; Biggin, Philip C.

    2016-01-01

    Key points Kainate receptor heteromerization and auxiliary subunits, Neto1 and Neto2, attenuate polyamine ion‐channel block by facilitating blocker permeation.Relief of polyamine block in GluK2/GluK5 heteromers results from a key proline residue that produces architectural changes in the channel pore α‐helical region.Auxiliary subunits exert an additive effect to heteromerization, and thus relief of polyamine block is due to a different mechanism.Our findings have broad implications for work on polyamine block of other cation‐selective ion channels. Abstract Channel block and permeation by cytoplasmic polyamines is a common feature of many cation‐selective ion channels. Although the channel block mechanism has been studied extensively, polyamine permeation has been considered less significant as it occurs at extreme positive membrane potentials. Here, we show that kainate receptor (KAR) heteromerization and association with auxiliary proteins, Neto1 and Neto2, attenuate polyamine block by enhancing blocker permeation. Consequently, polyamine permeation and unblock occur at more negative and physiologically relevant membrane potentials. In GluK2/GluK5 heteromers, enhanced permeation is due to a single proline residue in GluK5 that alters the dynamics of the α‐helical region of the selectivity filter. The effect of auxiliary proteins is additive, and therefore the structural basis of polyamine permeation and unblock is through a different mechanism. As native receptors are thought to assemble as heteromers in complex with auxiliary proteins, our data identify an unappreciated impact of polyamine permeation in shaping the signalling properties of neuronal KARs and point to a structural mechanism that may be shared amongst other cation‐selective ion channels. PMID:26682513

  2. Identification of key residues involved in adrenomedullin binding to the AM1 receptor

    PubMed Central

    Watkins, HA; Au, M; Bobby, R; Archbold, JK; Abdul-Manan, N; Moore, JM; Middleditch, MJ; Williams, GM; Brimble, MA; Dingley, AJ; Hay, DL

    2013-01-01

    Background and Purpose Adrenomedullin (AM) is a peptide hormone whose receptors are members of the class B GPCR family. They comprise a heteromer between the GPCR, the calcitonin receptor-like receptor and one of the receptor activity-modifying proteins 1–3. AM plays a significant role in angiogenesis and its antagonist fragment AM22–52 can inhibit blood vessel and tumour growth. The mechanism by which AM interacts with its receptors is unknown. Experimental Approach We determined the AM22–52 binding epitope for the AM1 receptor extracellular domain using biophysical techniques, heteronuclear magnetic resonance spectroscopy and alanine scanning. Key Results Chemical shift perturbation experiments located the main binding epitope for AM22–52 at the AM1 receptor to the C-terminal 8 amino acids. Isothermal titration calorimetry of AM22–52 alanine-substituted peptides indicated that Y52, G51 and I47 are essential for AM1 receptor binding and that K46 and P49 and R44 have a smaller role to play. Characterization of these peptides at the full-length AM receptors was assessed in Cos7 cells by cAMP assay. This confirmed the essential role of Y52, G51 and I47 in binding to the AM1 receptor, with their substitution resulting in ≥100-fold reduction in antagonist potency compared with AM22–52. R44A, K46A, S48A and P49A AM22–52 decreased antagonist potency by approximately 10-fold. Conclusions and Implications This study localizes the main binding epitope of AM22–52 to its C-terminal amino acids and distinguishes essential residues involved in this binding. This will inform the development of improved AM receptor antagonists. PMID:23351143

  3. A computational analysis of SARS cysteine proteinase-octapeptide substrate interaction: implication for structure and active site binding mechanism

    PubMed Central

    Phakthanakanok, Krongsakda; Ratanakhanokchai, Khanok; Kyu, Khin Lay; Sompornpisut, Pornthep; Watts, Aaron; Pinitglang, Surapong

    2009-01-01

    Background SARS coronavirus main proteinase (SARS CoVMpro) is an important enzyme for the replication of Severe Acute Respiratory Syndrome virus. The active site region of SARS CoVMpro is divided into 8 subsites. Understanding the binding mode of SARS CoVMpro with a specific substrate is useful and contributes to structural-based drug design. The purpose of this research is to investigate the binding mode between the SARS CoVMpro and two octapeptides, especially in the region of the S3 subsite, through a molecular docking and molecular dynamics (MD) simulation approach. Results The one turn α-helix chain (residues 47–54) of the SARS CoVMpro was directly involved in the induced-fit model of the enzyme-substrate complex. The S3 subsite of the enzyme had a negatively charged region due to the presence of Glu47. During MD simulations, Glu47 of the enzyme was shown to play a key role in electrostatic bonding with the P3Lys of the octapeptide. Conclusion MD simulations were carried out on the SARS CoVMpro-octapeptide complex. The hypothesis proposed that Glu47 of SARS CoVMpro is an important residue in the S3 subsite and is involved in binding with P3Lys of the octapeptide. PMID:19208150

  4. Peptide selection by class I molecules of the major histocompatibility complex.

    PubMed

    Elliott, T; Smith, M; Driscoll, P; McMichael, A

    1993-12-01

    Class I molecules of the major histocompatibility complex (MHC) bind peptides derived from cytoplasmic proteins. Comparison of over 100 such peptides reveals the importance of the carboxy-terminal residue in selective binding. Recent evidence implicates the proteases and transporters of the processing pathway in providing peptides with the correct residues at the carboxyl terminus.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, Karen; Li, Yue; Mukhopadhyay, Shreya

    Beclin 1 (BECN1) is a key regulator of autophagy, a critical catabolic homeostasis pathway that involves sequestration of selected cytoplasmic components by multilayered vesicles called autophagosomes, followed by lysosomal fusion and degradation. BECN1 is a core component of class III phosphatidylinositol-3-kinase complexes responsible for autophagosome nucleation. Without heterologous binding partners, BECN1 forms an antiparallel homodimer via its coiled-coil domain (CCD). However, the last 16 CCD residues, composing an “overlap helix” (OH), have been crystallized in two mutually exclusive states: either as part of the CCD or packed against the C-terminal β-α repeated, autophagy-specific domain (BARAD). Here, using CD spectroscopy, isothermalmore » titration calorimetry, and small-angle X-ray scattering, we show that in the homodimeric state, the OH transitions between these two different packing states, with the predominant state comprising the OH packed against the BARAD, contrary to expectations based on known BECN1 interactions with heterologous partners. We confirmed this observation by comparing the impact of mutating four residues that mediate packing of the OH against both the CCD and BARAD on structure and stability of the CCD, the OH+BARAD, and the two-domain CCD–BARAD. Last, we used cellular assays to demonstrate that mutation of these OH-interface residues abrogates starvation-induced up-regulation of autophagy but does not affect basal autophagy. In summary, we have identified a BECN1 helical region that transitions between packing as part of either one of two conserved domains (i.e. the CCD or the BARAD). Our findings have important implications for the relative stability of autophagy-inactive and autophagy-active BECN1 complexes.« less

  6. Biophysical Analysis of the Binding of WW Domains of YAP2 Transcriptional Regulator to PPXY Motifs within WBP1 and WBP2 Adaptors

    PubMed Central

    McDonald, Caleb B.; McIntosh, Samantha K. N.; Mikles, David C.; Bhat, Vikas; Deegan, Brian J.; Seldeen, Kenneth L.; Saeed, Ali M.; Buffa, Laura; Sudol, Marius; Nawaz, Zafar; Farooq, Amjad

    2011-01-01

    YAP2 transcriptional regulator mediates a plethora of cellular functions, including the newly discovered Hippo tumor suppressor pathway, by virtue of its ability to recognize WBP1 and WBP2 signaling adaptors among a wide variety of other ligands. Herein, using isothermal titration calorimery (ITC) and circular dichroism (CD) in combination with molecular modeling (MM) and molecular dynamics (MD), we provide evidence that the WW1 and WW2 domains of YAP2 recognize various PPXY motifs within WBP1 and WBP2 in a highly promiscuous and subtle manner. Thus, although both WW domains strictly require the integrity of the consensus PPXY sequence, non-consensus residues within and flanking this motif are not critical for high-affinity binding, implying that they most likely play a role in stabilizing the polyproline type II (PPII) helical conformation of the PPXY ligands. Of particular interest is the observation that both WW domains bind to a PPXYXG motif with highest affinity, implicating a preference for a non-bulky and flexible glycine one-residue C-terminal to the consensus tyrosine. Importantly, a large set of residues within both WW domains and the PPXY motifs appear to undergo rapid fluctuations on a nanosecond time scale, arguing that WW-ligand interactions are highly dynamic and that such conformational entropy may be an integral part of the reversible and temporal nature of cellular signaling cascades. Collectively, our study sheds light on the molecular determinants of a key WW-ligand interaction pertinent to cellular functions in health and disease. PMID:21981024

  7. Biophysical analysis of binding of WW domains of the YAP2 transcriptional regulator to PPXY motifs within WBP1 and WBP2 adaptors.

    PubMed

    McDonald, Caleb B; McIntosh, Samantha K N; Mikles, David C; Bhat, Vikas; Deegan, Brian J; Seldeen, Kenneth L; Saeed, Ali M; Buffa, Laura; Sudol, Marius; Nawaz, Zafar; Farooq, Amjad

    2011-11-08

    The YAP2 transcriptional regulator mediates a plethora of cellular functions, including the newly discovered Hippo tumor suppressor pathway, by virtue of its ability to recognize WBP1 and WBP2 signaling adaptors among a wide variety of other ligands. Herein, using isothermal titration calorimery and circular dichroism in combination with molecular modeling and molecular dynamics, we provide evidence that the WW1 and WW2 domains of YAP2 recognize various PPXY motifs within WBP1 and WBP2 in a highly promiscuous and subtle manner. Thus, although both WW domains strictly require the integrity of the consensus PPXY sequence, nonconsensus residues within and flanking this motif are not critical for high-affinity binding, implying that they most likely play a role in stabilizing the polyproline type II helical conformation of the PPXY ligands. Of particular interest is the observation that both WW domains bind to a PPXYXG motif with highest affinity, implicating a preference for a nonbulky and flexible glycine one residue to the C-terminal side of the consensus tyrosine. Importantly, a large set of residues within both WW domains and the PPXY motifs appear to undergo rapid fluctuations on a nanosecond time scale, suggesting that WW-ligand interactions are highly dynamic and that such conformational entropy may be an integral part of the reversible and temporal nature of cellular signaling cascades. Collectively, our study sheds light on the molecular determinants of a key WW-ligand interaction pertinent to cellular functions in health and disease.

  8. The effect of volatility on percutaneous absorption.

    PubMed

    Rouse, Nicole C; Maibach, Howard I

    2016-01-01

    Topically applied chemicals may volatilize, or evaporate, from skin leaving behind a chemical residue with new percutaneous absorptive capabilities. Understanding volatilization of topical medications, such as sunscreens, fragrances, insect repellants, cosmetics and other commonly applied topicals may have implications for their safety and efficacy. A systematic review of English language articles from 1979 to 2014 was performed using key search terms. Articles were evaluated to assess the relationship between volatility and percutaneous absorption. A total of 12 articles were selected and reviewed. Key findings were that absorption is enhanced when coupled with a volatile substance, occlusion prevents evaporation and increases absorption, high ventilation increases volatilization and reduces absorption, and pH of skin has an affect on a chemical's volatility. The articles also brought to light that different methods may have an affect on volatility: different body regions; in vivo vs. in vitro; human vs. Data suggest that volatility is crucial for determining safety and efficacy of cutaneous exposures and therapies. Few articles have been documented reporting evaporation in the context of percutaneous absorption, and of those published, great variability exists in methods. Further investigation of volatility is needed to properly evaluate its role in percutaneous absorption.

  9. Shielding and activation calculations around the reactor core for the MYRRHA ADS design

    NASA Astrophysics Data System (ADS)

    Ferrari, Anna; Mueller, Stefan; Konheiser, J.; Castelliti, D.; Sarotto, M.; Stankovskiy, A.

    2017-09-01

    In the frame of the FP7 European project MAXSIMA, an extensive simulation study has been done to assess the main shielding problems in view of the construction of the MYRRHA accelerator-driven system at SCK·CEN in Mol (Belgium). An innovative method based on the combined use of the two state-of-the-art Monte Carlo codes MCNPX and FLUKA has been used, with the goal to characterize complex, realistic neutron fields around the core barrel, to be used as source terms in detailed analyses of the radiation fields due to the system in operation, and of the coupled residual radiation. The main results of the shielding analysis are presented, as well as the construction of an activation database of all the key structural materials. The results evidenced a powerful way to analyse the shielding and activation problems, with direct and clear implications on the design solutions.

  10. Discovery of AG-120 (Ivosidenib): A First-in-Class Mutant IDH1 Inhibitor for the Treatment of IDH1 Mutant Cancers.

    PubMed

    Popovici-Muller, Janeta; Lemieux, René M; Artin, Erin; Saunders, Jeffrey O; Salituro, Francesco G; Travins, Jeremy; Cianchetta, Giovanni; Cai, Zhenwei; Zhou, Ding; Cui, Dawei; Chen, Ping; Straley, Kimberly; Tobin, Erica; Wang, Fang; David, Muriel D; Penard-Lacronique, Virginie; Quivoron, Cyril; Saada, Véronique; de Botton, Stéphane; Gross, Stefan; Dang, Lenny; Yang, Hua; Utley, Luke; Chen, Yue; Kim, Hyeryun; Jin, Shengfang; Gu, Zhiwei; Yao, Gui; Luo, Zhiyong; Lv, Xiaobing; Fang, Cheng; Yan, Liping; Olaharski, Andrew; Silverman, Lee; Biller, Scott; Su, Shin-San M; Yen, Katharine

    2018-04-12

    Somatic point mutations at a key arginine residue (R132) within the active site of the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) confer a novel gain of function in cancer cells, resulting in the production of d-2-hydroxyglutarate (2-HG), an oncometabolite. Elevated 2-HG levels are implicated in epigenetic alterations and impaired cellular differentiation. IDH1 mutations have been described in an array of hematologic malignancies and solid tumors. Here, we report the discovery of AG-120 (ivosidenib), an inhibitor of the IDH1 mutant enzyme that exhibits profound 2-HG lowering in tumor models and the ability to effect differentiation of primary patient AML samples ex vivo. Preliminary data from phase 1 clinical trials enrolling patients with cancers harboring an IDH1 mutation indicate that AG-120 has an acceptable safety profile and clinical activity.

  11. Discovery of AG-120 (Ivosidenib): A First-in-Class Mutant IDH1 Inhibitor for the Treatment of IDH1 Mutant Cancers

    PubMed Central

    2018-01-01

    Somatic point mutations at a key arginine residue (R132) within the active site of the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) confer a novel gain of function in cancer cells, resulting in the production of d-2-hydroxyglutarate (2-HG), an oncometabolite. Elevated 2-HG levels are implicated in epigenetic alterations and impaired cellular differentiation. IDH1 mutations have been described in an array of hematologic malignancies and solid tumors. Here, we report the discovery of AG-120 (ivosidenib), an inhibitor of the IDH1 mutant enzyme that exhibits profound 2-HG lowering in tumor models and the ability to effect differentiation of primary patient AML samples ex vivo. Preliminary data from phase 1 clinical trials enrolling patients with cancers harboring an IDH1 mutation indicate that AG-120 has an acceptable safety profile and clinical activity. PMID:29670690

  12. Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution.

    PubMed

    Shivange, Amol V; Roccatano, Danilo; Schwaneberg, Ulrich

    2016-01-01

    Bacterial phytases have attracted industrial interest as animal feed supplement due to their high activity and sufficient thermostability (required for feed pelleting). We devised an approach named KeySIDE,  an iterative Key-residues interrogation of the wild type with Substitutions Identified in Directed Evolution for improving Yersinia mollaretii phytase (Ymphytase) thermostability by combining key beneficial substitutions and elucidating their individual roles. Directed evolution yielded in a discovery of nine positions in Ymphytase and combined iteratively to identify key positions. The "best" combination (M6: T77K, Q154H, G187S, and K289Q) resulted in significantly improved thermal resistance; the residual activity improved from 35 % (wild type) to 89 % (M6) at 58 °C and 20-min incubation. Melting temperature increased by 3 °C in M6 without a loss of specific activity. Molecular dynamics simulation studies revealed reduced flexibility in the loops located next to helices (B, F, and K) which possess substitutions (Helix-B: T77K, Helix-F: G187S, and Helix-K: K289E/Q). Reduced flexibility in the loops might be caused by strengthened hydrogen bonding network (e.g., G187S and K289E/K289Q) and a salt bridge (T77K). Our results demonstrate a promising approach to design phytases in food research, and we hope that the KeySIDE might become an attractive approach for understanding of structure-function relationships of enzymes.

  13. Localization of key amino acid residues in the dominant conformational epitopes on thyroid peroxidase recognized by mouse monoclonal antibodies.

    PubMed

    Godlewska, Marlena; Czarnocka, Barbara; Gora, Monika

    2012-09-01

    Autoantibodies to thyroid peroxidase (TPO), the major target autoantigen in autoimmune thyroid diseases, recognize conformational epitopes limited to two immunodominant regions (IDRs) termed IDR-A and -B. The apparent restricted heterogeneity of TPO autoantibodies was discovered using TPO-specific mouse monoclonal antibodies (mAbs) and later confirmed by human recombinant Fabs. In earlier studies we identified key amino acids crucial for the interaction of human autoantibodies with TPO. Here we show the critical residues that participate in binding of five mAbs to the conformational epitopes on the TPO surface. Using ELISA we tested the reactivity of single and multiple TPO mutants expressed in CHO cells with a panel of mAbs specifically recognizing IDR-A (mAb 2 and 9) and IDR-B (mAb 15, 18, 64). We show that antibodies recognizing very similar regions on the TPO surface may interact with different sets of residues. We found that residues K713 and E716 contribute to the interaction between mAb 2 and TPO. The epitope for mAb 9 is critically dependent on residues R646 and E716. Moreover, we demonstrate that amino acids E604 and D630 are part of the functional epitope for mAb 15, and amino acids D624 and K627 for mAb 18. Finally, residues E604, D620, D624, K627, and D630 constitute the epitope for mAb 64. This is the first detailed study identifying the key resides for binding of mAbs 2, 9, 15, 18, and 64. Better understanding of those antibodies' specificity will be helpful in elucidating the properties of TPO as an antigen in autoimmune disorders.

  14. Free Energy Landscape - Settlements of Key Residues.

    NASA Astrophysics Data System (ADS)

    Aroutiounian, Svetlana

    2007-03-01

    FEL perspective in studies of protein folding transitions reflects notion that since there are ˜10^N conformations to scan in search of lowest free energy state, random search is beyond biological timescale. Protein folding must follow certain fel pathways and folding kinetics of evolutionary selected proteins dominates kinetic traps. Good model for functional robustness of natural proteins - coarse-grained model protein is not very accurate but affords bringing simulations closer to biological realm; Go-like potential secures the fel funnel shape; biochemical contacts signify the funnel bottleneck. Boltzmann-weighted ensemble of protein conformations and histogram method are used to obtain from MC sampling of protein conformational space the approximate probability distribution. The fel is F(rmsd) = -1/βLn[Hist(rmsd)], β=kBT and rmsd is root-mean-square-deviation from native conformation. The sperm whale myoglobin has rich dynamic behavior, is small and large - on computational scale, has a symmetry in architecture and unusual sextet of residue pairs. Main idea: there is a mathematical relation between protein fel and a key residues set providing stability to folding transition. Is the set evolutionary conserved also for functional reasons? Hypothesis: primary sequence determines the key residues positions conserved as stabilizers and the fel is the battlefield for the folding stability. Preliminary results: primary sequence - not the architecture, is the rule settler, indeed.

  15. A Review of the Tissue Residue Approach for Organic and Organometallic Compounds in Aquatic Organisms

    EPA Science Inventory

    This paper reviews the tissue residue approach (TRA) for toxicity assessment as it applies to organic chemicals and some organometallic compounds (tin, mercury, and lead). Specific emphasis was placed on evaluating key factors that influence interpretation of critical body resid...

  16. Granular activated carbon to remove agrichemicals from water

    USDA-ARS?s Scientific Manuscript database

    Many growers capture and reuse irrigation water in ponds or flood irrigation tanks. Agrichemical residues can potentially build up over time and affect future crops irrigated with residue-laden water. One key chemical of concern is paclobutrazol, which is very persistent, with a half-life of around ...

  17. The Higher Education Qualifications Framework: A Review of Its Implications for Curricula

    ERIC Educational Resources Information Center

    van Koller, J. F.

    2010-01-01

    This article reports on the findings of a research project which aimed at determining what the key implications of the Higher Education Qualifications Framework would be for the curricula of Universities of Technology. The key problems which were investigated were the seeming lack of understanding of the exact implications of the Higher Education…

  18. Characterization and Evolutionary Implications of the Triad Asp-Xxx-Glu in Group II Phosphopantetheinyl Transferases

    PubMed Central

    Wang, Yue-Yue; Li, Yu-Dong; Liu, Jian-Bo; Ran, Xin-Xin; Guo, Yuan-Yang; Ren, Ni-Ni; Chen, Xin; Jiang, Hui; Li, Yong-Quan

    2014-01-01

    Phosphopantetheinyl transferases (PPTases), which play an essential role in both primary and secondary metabolism, are magnesium binding enzymes. In this study, we characterized the magnesium binding residues of all known group II PPTases by biochemical and evolutionary analysis. Our results suggested that group II PPTases could be classified into two subgroups, two-magnesium-binding-residue-PPTases containing the triad Asp-Xxx-Glu and three-magnesium-binding-residue-PPTases containing the triad Asp-Glu-Glu. Mutations of two three-magnesium-binding-residue-PPTases and one two-magnesium-binding-residue-PPTase indicate that the first and the third residues in the triads are essential to activities; the second residues in the triads are non-essential. Although variations of the second residues in the triad Asp-Xxx-Glu exist throughout the whole phylogenetic tree, the second residues are conserved in animals, plants, algae, and most prokaryotes, respectively. Evolutionary analysis suggests that: the animal group II PPTases may originate from one common ancestor; the plant two-magnesium-binding-residue-PPTases may originate from one common ancestor; the plant three-magnesium-binding-residue-PPTases may derive from horizontal gene transfer from prokaryotes. PMID:25036863

  19. Characterization and evolutionary implications of the triad Asp-Xxx-Glu in group II phosphopantetheinyl transferases.

    PubMed

    Wang, Yue-Yue; Li, Yu-Dong; Liu, Jian-Bo; Ran, Xin-Xin; Guo, Yuan-Yang; Ren, Ni-Ni; Chen, Xin; Jiang, Hui; Li, Yong-Quan

    2014-01-01

    Phosphopantetheinyl transferases (PPTases), which play an essential role in both primary and secondary metabolism, are magnesium binding enzymes. In this study, we characterized the magnesium binding residues of all known group II PPTases by biochemical and evolutionary analysis. Our results suggested that group II PPTases could be classified into two subgroups, two-magnesium-binding-residue-PPTases containing the triad Asp-Xxx-Glu and three-magnesium-binding-residue-PPTases containing the triad Asp-Glu-Glu. Mutations of two three-magnesium-binding-residue-PPTases and one two-magnesium-binding-residue-PPTase indicate that the first and the third residues in the triads are essential to activities; the second residues in the triads are non-essential. Although variations of the second residues in the triad Asp-Xxx-Glu exist throughout the whole phylogenetic tree, the second residues are conserved in animals, plants, algae, and most prokaryotes, respectively. Evolutionary analysis suggests that: the animal group II PPTases may originate from one common ancestor; the plant two-magnesium-binding-residue-PPTases may originate from one common ancestor; the plant three-magnesium-binding-residue-PPTases may derive from horizontal gene transfer from prokaryotes.

  20. Characterizations of Some Fuzzy Prefilters (Filters) in EQ-Algebras

    PubMed Central

    Xin, Xiao Long; Yang, Yong Wei

    2014-01-01

    We introduce and study some types of fuzzy prefilters (filters) in EQ-algebras. First, we present several characterizations of fuzzy positive implicative prefilters (filters), fuzzy implicative prefilters (filters), and fuzzy fantastic prefilters (filters). Next, using their characterizations, we mainly consider the relationships among these special fuzzy filters. Particularly, we find some conditions under which a fuzzy implicative prefilter (filter) is equivalent to a fuzzy positive implicative prefilter (filter). As applications, we obtain some new results about classical filters in EQ-algebras and some related results about fuzzy filters in residuated lattices. PMID:24892096

  1. LC-MS/MS suggests that hole hopping in cytochrome c peroxidase protects its heme from oxidative modification by excess H2O2 † †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc03125k Click here for additional data file.

    PubMed Central

    Kathiresan, Meena

    2017-01-01

    We recently reported that cytochrome c peroxidase (Ccp1) functions as a H2O2 sensor protein when H2O2 levels rise in respiring yeast. The availability of its reducing substrate, ferrocytochrome c (CycII), determines whether Ccp1 acts as a H2O2 sensor or peroxidase. For H2O2 to serve as a signal it must modify its receptor so we employed high-performance LC-MS/MS to investigate in detail the oxidation of Ccp1 by 1, 5 and 10 M eq. of H2O2 in the absence of CycII to prevent peroxidase activity. We observe strictly heme-mediated oxidation, implicating sequential cycles of binding and reduction of H2O2 at Ccp1's heme. This results in the incorporation of ∼20 oxygen atoms predominantly at methionine and tryptophan residues. Extensive intramolecular dityrosine crosslinking involving neighboring residues was uncovered by LC-MS/MS sequencing of the crosslinked peptides. The proximal heme ligand, H175, is converted to oxo-histidine, which labilizes the heme but irreversible heme oxidation is avoided by hole hopping to the polypeptide until oxidation of the catalytic distal H52 in Ccp1 treated with 10 M eq. of H2O2 shuts down heterolytic cleavage of H2O2 at the heme. Mapping of the 24 oxidized residues in Ccp1 reveals that hole hopping from the heme is directed to three polypeptide zones rich in redox-active residues. This unprecedented analysis unveils the remarkable capacity of a polypeptide to direct hole hopping away from its active site, consistent with heme labilization being a key outcome of Ccp1-mediated H2O2 signaling. LC-MS/MS identification of the oxidized residues also exposes the bias of electron paramagnetic resonance (EPR) detection toward transient radicals with low O2 reactivity. PMID:28451256

  2. Identification of key neoculin residues responsible for the binding and activation of the sweet taste receptor

    PubMed Central

    Koizumi, Taichi; Terada, Tohru; Nakajima, Ken-ichiro; Kojima, Masaki; Koshiba, Seizo; Matsumura, Yoshitaka; Kaneda, Kohei; Asakura, Tomiko; Shimizu-Ibuka, Akiko; Abe, Keiko; Misaka, Takumi

    2015-01-01

    Neoculin (NCL) is a heterodimeric protein isolated from the edible fruit of Curculigo latifolia. It exerts a taste-modifying activity by converting sourness to sweetness. We previously demonstrated that NCL changes its action on the human sweet receptor hT1R2-hT1R3 from antagonism to agonism as the pH changes from neutral to acidic values, and that the histidine residues of NCL molecule play critical roles in this pH-dependent functional change. Here, we comprehensively screened key amino acid residues of NCL using nuclear magnetic resonance (NMR) spectroscopy and alanine scanning mutagenesis. We found that the mutations of Arg48, Tyr65, Val72 and Phe94 of NCL basic subunit increased or decreased both the antagonist and agonist activities. The mutations had only a slight effect on the pH-dependent functional change. These residues should determine the affinity of NCL for the receptor regardless of pH. Their locations were separated from the histidine residues responsible for the pH-dependent functional change in the tertiary structure. From these results, we concluded that NCL interacts with hT1R2-hT1R3 through a pH-independent affinity interface including the four residues and a pH-dependent activation interface including the histidine residues. Thus, the receptor activation is induced by local structural changes in the pH-dependent interface. PMID:26263392

  3. Identification of Key Amino Acid Residues Modulating Intracellular and In vitro Microcin E492 Amyloid Formation

    PubMed Central

    Aguilera, Paulina; Marcoleta, Andrés; Lobos-Ruiz, Pablo; Arranz, Rocío; Valpuesta, José M.; Monasterio, Octavio; Lagos, Rosalba

    2016-01-01

    Microcin E492 (MccE492) is a pore-forming bacteriocin produced and exported by Klebsiella pneumoniae RYC492. Besides its antibacterial activity, excreted MccE492 can form amyloid fibrils in vivo as well as in vitro. It has been proposed that bacterial amyloids can be functional playing a biological role, and in the particular case of MccE492 it would control the antibacterial activity. MccE492 amyloid fibril’s morphology and formation kinetics in vitro have been well-characterized, however, it is not known which amino acid residues determine its amyloidogenic propensity, nor if it forms intracellular amyloid inclusions as has been reported for other bacterial amyloids. In this work we found the conditions in which MccE492 forms intracellular amyloids in Escherichia coli cells, that were visualized as round-shaped inclusion bodies recognized by two amyloidophilic probes, 2-4′-methylaminophenyl benzothiazole and thioflavin-S. We used this property to perform a flow cytometry-based assay to evaluate the aggregation propensity of MccE492 mutants, that were designed using an in silico prediction of putative aggregation hotspots. We established that the predicted amino acid residues 54–63, effectively act as a pro-amyloidogenic stretch. As in the case of other amyloidogenic proteins, this region presented two gatekeeper residues (P57 and P59), which disfavor both intracellular and in vitro MccE492 amyloid formation, preventing an uncontrolled aggregation. Mutants in each of these gatekeeper residues showed faster in vitro aggregation and bactericidal inactivation kinetics, and the two mutants were accumulated as dense amyloid inclusions in more than 80% of E. coli cells expressing these variants. In contrast, the MccE492 mutant lacking residues 54–63 showed a significantly lower intracellular aggregation propensity and slower in vitro polymerization kinetics. Electron microscopy analysis of the amyloids formed in vitro by these mutants revealed that, although with different efficiency, all formed fibrils morphologically similar to wild-type MccE492. The physiological implication of MccE492 intracellular amyloid formation is probably similar to the inactivation process observed for extracellular amyloids, and could be used as a mean of sequestering potentially toxic species inside the cell when this bacteriocin is produced in large amounts. PMID:26858708

  4. Chain Collapse of an Amyloidogenic Intrinsically Disordered Protein

    PubMed Central

    Jain, Neha; Bhattacharya, Mily; Mukhopadhyay, Samrat

    2011-01-01

    Natively unfolded or intrinsically disordered proteins (IDPs) are under intense scrutiny due to their involvement in both normal biological functions and abnormal protein misfolding disorders. Polypeptide chain collapse of amyloidogenic IDPs is believed to play a key role in protein misfolding, oligomerization, and aggregation leading to amyloid fibril formation, which is implicated in a number of human diseases. In this work, we used bovine κ-casein, which serves as an archetypal model protein for amyloidogenic IDPs. Using a variety of biophysical tools involving both prediction and spectroscopic techniques, we first established that monomeric κ-casein adopts a collapsed premolten-globule-like conformational ensemble under physiological conditions. Our time-resolved fluorescence and light-scattering data indicate a change in the mean hydrodynamic radius from ∼4.6 nm to ∼1.9 nm upon chain collapse. We then took the advantage of two cysteines separated by 77 amino-acid residues and covalently labeled them using thiol-reactive pyrene maleimide. This dual-labeled protein demonstrated a strong excimer formation upon renaturation from urea- and acid-denatured states under both equilibrium and kinetic conditions, providing compelling evidence of polypeptide chain collapse under physiological conditions. The implication of the IDP chain collapse in protein aggregation and amyloid formation is also discussed. PMID:21961598

  5. Phosphorylation of MAP65-1 by Arabidopsis Aurora Kinases Is Required for Efficient Cell Cycle Progression1[OPEN

    PubMed Central

    Weimer, Annika K.; Stoppin-Mellet, Virginie; Kosetsu, Ken; Cedeño, Cesyen; Jaquinod, Michel; Njo, Maria; De Milde, Liesbeth; Tompa, Peter; Inzé, Dirk; Beeckman, Tom; Vantard, Marylin

    2017-01-01

    Aurora kinases are key effectors of mitosis. Plant Auroras are functionally divided into two clades. The alpha Auroras (Aurora1 and Aurora2) associate with the spindle and the cell plate and are implicated in controlling formative divisions throughout plant development. The beta Aurora (Aurora3) localizes to centromeres and likely functions in chromosome separation. In contrast to the wealth of data available on the role of Aurora in other kingdoms, knowledge on their function in plants is merely emerging. This is exemplified by the fact that only histone H3 and the plant homolog of TPX2 have been identified as Aurora substrates in plants. Here we provide biochemical, genetic, and cell biological evidence that the microtubule-bundling protein MAP65-1—a member of the MAP65/Ase1/PRC1 protein family, implicated in central spindle formation and cytokinesis in animals, yeasts, and plants—is a genuine substrate of alpha Aurora kinases. MAP65-1 interacts with Aurora1 in vivo and is phosphorylated on two residues at its unfolded tail domain. Its overexpression and down-regulation antagonistically affect the alpha Aurora double mutant phenotypes. Phospho-mutant analysis shows that Aurora contributes to the microtubule bundling capacity of MAP65-1 in concert with other mitotic kinases. PMID:27879390

  6. Conformational changes induced by a single amino acid substitution in the trans-membrane domain of Vpu: implications for HIV-1 susceptibility to channel blocking drugs.

    PubMed

    Park, Sang Ho; Opella, Stanley J

    2007-10-01

    The channel-forming trans-membrane domain of Vpu (Vpu TM) from HIV-1 is known to enhance virion release from the infected cells and is a potential target for ion-channel blockers. The substitution of alanine at position 18 by a histidine (A18H) has been shown to render HIV-1 infections susceptible to rimantadine, a channel blocker of M2 protein from the influenza virus. In order to describe the influence of the mutation on the structure and rimantadine susceptibility of Vpu, we determined the structure of A18H Vpu TM, and compared it to those of wild-type Vpu TM and M2 TM. Both isotropic and orientationally dependent NMR frequencies of the backbone amide resonance of His18 were perturbed by rimantadine, and those of Ile15 and Trp22 were also affected, suggesting that His18 is the key residue for rimantadine binding and that residues located on the same face of the TM helix are also involved. A18H Vpu TM has an ideal, straight alpha-helix spanning residues 6-27 with an average tilt angle of 41 degrees in C14 phospholipid bicelles, indicating that the tilt angle is increased by 11 degrees compared to that of wild-type Vpu TM. The longer helix formed by the A18H mutation has a larger tilt angle to compensate for the hydrophobic mismatch with the length of the phospholipids in the bilayer. These results demonstrate that the local change of the primary structure plays an important role in secondary and tertiary structures of Vpu TM in lipid bilayers and affects its ability to interact with channel blockers.

  7. Crystallographic and Molecular Dynamics Analysis of Loop Motions Unmasking the Peptidoglycan-Binding Site in Stator Protein MotB of Flagellar Motor

    PubMed Central

    Nahar, Musammat F.; Buckle, Ashley M.; Roujeinikova, Anna

    2011-01-01

    Background The C-terminal domain of MotB (MotB-C) shows high sequence similarity to outer membrane protein A and related peptidoglycan (PG)-binding proteins. It is believed to anchor the power-generating MotA/MotB stator unit of the bacterial flagellar motor to the peptidoglycan layer of the cell wall. We previously reported the first crystal structure of this domain and made a puzzling observation that all conserved residues that are thought to be essential for PG recognition are buried and inaccessible in the crystal structure. In this study, we tested a hypothesis that peptidoglycan binding is preceded by, or accompanied by, some structural reorganization that exposes the key conserved residues. Methodology/Principal Findings We determined the structure of a new crystalline form (Form B) of Helicobacter pylori MotB-C. Comparisons with the existing Form A revealed conformational variations in the petal-like loops around the carbohydrate binding site near one end of the β-sheet. These variations are thought to reflect natural flexibility at this site required for insertion into the peptidoglycan mesh. In order to understand the nature of this flexibility we have performed molecular dynamics simulations of the MotB-C dimer. The results are consistent with the crystallographic data and provide evidence that the three loops move in a concerted fashion, exposing conserved MotB residues that have previously been implicated in binding of the peptide moiety of peptidoglycan. Conclusion/Significance Our structural analysis provides a new insight into the mechanism by which MotB inserts into the peptidoglycan mesh, thus anchoring the power-generating complex to the cell wall. PMID:21533052

  8. Dominant negative mutant of ionotropic glutamate receptor subunit GluR3: implications for the role of a cysteine residue for its channel activity and pharmacological properties.

    PubMed Central

    Watase, K; Sekiguchi, M; Matsui, T A; Tagawa, Y; Wada, K

    1997-01-01

    We reported that a 33-amino-acid deletion (from tyrosine-715 to glycine-747) in a putative extracellular loop of GluR3 produced a mutant that exhibited dominant negative effects upon the functional expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors [Sekiguchi et al. (1994) J. Biol. Chem. 269, 14559-14565]. In this study, we searched for a key residue in the dominant negative effects to explore the mechanism and examined the role of the residue in the function of the AMPA receptor. We prepared 20 GluR3 mutants with amino acid substitutions within the 33-amino-acid-region, and dominant negative effects were tested electrophysiologically in Xenopus oocytes co-expressing the mutant and normal subunits. Among the mutants, only a GluR3 mutant in which an original cysteine (Cys)-722 was replaced by alanine exhibited a dominant negative effect comparable with that of the original mutant in which the entire 33-amino-acid segment is deleted. The co-expression of the Cys-722 mutant did not inhibit the translation of normal subunits in oocytes. The Cys-722 mutant formed a functional homomeric receptor with significantly higher affinity for glutamate or kainate than a homomeric GluR3 receptor. The Cys-722 mutation greatly enhanced the sensitivity of GluR3 for aniracetam, which alters kinetic properties of AMPA receptors. The kainate-induced currents in oocytes expressing the Cys-722 mutant alone showed strong inward rectification. These results suggest that the Cys-722 in GluR3 is important for dominant negative effects and plays a crucial role in the determination of pharmacological properties in AMPA receptor function. PMID:9065754

  9. R516Q mutation in Melanoma differentiation-associated protein 5 (MDA5) and its pathogenic role towards rare Singleton-Merten syndrome; a signature associated molecular dynamics study.

    PubMed

    Raghuraman, P; Sudandiradoss, C

    2018-02-20

    Singleton-Merten syndrome, a critical and rare multifactorial disorder that is closely linked to R516Q mutation in MDA5 protein associated with an enhanced interferon response in the affected individual. In the present study, we provide conclusive key evidence on R516Q mutation and their connectivity towards sequence-structural basis dysfunction of MDA5 protein. Among the various mutations, we found R516Q is the most pathogenic mutation based on mutational signature Q-A-[RE]-G-R-[GA]-R-A-[ED]-[DE]-S-[ST]-Y-[TSAV]-L-V designed from our work. Further, we derived a distant ortholog for this mutational signature from which we identified 343 intra-residue interactions that fall communally in the position required to maintain the structural and functional integration of protein architecture. This identification served us to understand the critical role of hot spots in residual aggregation that holds a native form of folding conformation in the functional region. In addition, the long-range molecular dynamics simulation demarcated the residual dependencies of conformational transition in distinct regions ( L29 360-370 α18 , α19 380-410 L31 , α21 430-480 L33-α22-L35 and α24 510-520 L38 ) occurring upon R516Q mutation. Together, our results emphasise that the dislocation of functional hot spots Pro229, Arg414, Val498, Met510, Ala513, Gly515 and Arg516 in MDA5 protein which is important for interior structural packing and fold arrangements. In a nutshell, our findings are perfectly conceded with other experimental reports and will have potential implications in immune therapeutical advancement for rare singleton-merten syndrome.

  10. Allostery in a disordered protein: Oxidative modifications to α-Synuclein act distally to regulate membrane binding

    PubMed Central

    Sevcsik, Eva; Trexler, Adam J.; Dunn, Joanna M.; Rhoades, Elizabeth

    2011-01-01

    Both oxidative stress and aggregation of the protein α-synuclein (aS) have been implicated as key factors in the etiology of Parkinson’s disease. Specifically, oxidative modifications to aS disrupt its binding to lipid membranes, an interaction considered critical to its native function. Here we seek to provide a mechanistic explanation for this phenomenon by investigating the effects of oxidative nitration of tyrosine residues on the structure of aS and its interaction with lipid membranes. Membrane binding is mediated by the first ~95 residues of aS. We find that nitration of the single tyrosine (Y39) in this domain disrupts binding due to electrostatic repulsion. Moreover, we observe that nitration of the three tyrosines (Y125/133/136) in the C-terminal domain is equally effective in perturbing binding, an intriguing result given that the C-terminus is not thought to interact directly with membranes. Our investigations show that tyrosine nitration results in a change of the conformational states populated by aS in solution, with the most prominent changes occurring in the C-terminal region. These results lead us to suggest that nitration of Y125/133/136 reduces the membrane binding affinity of aS through allosteric coupling by altering the ensemble of conformational states and depopulating those capable of membrane binding. While allostery is a well-established concept for structured proteins, it has only recently been discussed in the context of disordered proteins. We propose that allosteric regulation through modification of specific residues in, or ligand binding to, the C-terminus may even be a general mechanism for modulating aS function. PMID:21491910

  11. Field evaluations of residual pesticide applications and misting system on militarily relevant materials against medically important mosquitoes in Thailand

    USDA-ARS?s Scientific Manuscript database

    A key strategy to reduce insect-borne disease is to reduce contact between disease vectors and hosts. In the current study, residual pesticide application and misting system were applied on militarily relevant materials and evaluated against medically important mosquitoes. Field evaluations were car...

  12. A mind map for managing minimal residual disease in acute myeloid leukemia.

    PubMed

    Benton, Christopher B; Ravandi, Farhad

    2017-11-01

    Advances in detecting traces of leukemia that were previously unidentifiable have increasingly led to the incorporation of information about residual disease into clinical decision making for patients with leukemia in both the postinduction and consolidation settings. This review discusses current concepts related to minimal residual disease (MRD), which is defined as submicroscopic disease detected during morphologic complete remission. The focus is on acute myeloid leukemia (AML). Basic methods for detecting MRD include flow cytometry, reverse transcription-polymerase chain reaction, and mutation analysis. Several studies using these assays have demonstrated prognostic implications based on MRD-positive vs MRD-negative status. As our understanding of the biological factors responsible for MRD in AML evolves, residual disease should be evaluated in the context of other prognostic markers. Current therapeutic options for managing MRD in AML are limited, and the clinical implications of a positive MRD test result can be significant. Regarding individual patients, an evidence-based approach must be applied while the institution- and assay-specific differences that currently exist are considered. Challenges associated with MRD assessment, such as the limited standardization of available assays and the paucity of effective agents to eradicate MRD, will need to be overcome before physicians who treat leukemia can use MRD as a tool for clinical management.

  13. Analyzing key constraints to biogas production from crop residues and manure in the EU—A spatially explicit model

    PubMed Central

    Persson, U. Martin

    2017-01-01

    This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates’ biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures’ carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops), or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent). PMID:28141827

  14. Analyzing key constraints to biogas production from crop residues and manure in the EU-A spatially explicit model.

    PubMed

    Einarsson, Rasmus; Persson, U Martin

    2017-01-01

    This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates' biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures' carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops), or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent).

  15. Chlorinated Cyanurates: Method Interferences and Application Implications

    EPA Science Inventory

    Experiments were conducted to investigate method interferences, residual stability, regulated DBP formation, and a water chemistry model associated with the use of Dichlor & Trichlor in drinking water.

  16. Key role of amino acid residues in the dimerization and catalytic activation of the autolysin LytA, an important virulence factor in Streptococcus pneumoniae.

    PubMed

    Romero, Patricia; López, Rubens; García, Ernesto

    2007-06-15

    LytA, the main autolysin of Streptococcus pneumoniae, was the first member of the bacterial N-acetylmuramoyl-l-alanine amidase (NAM-amidase) family of proteins to be well characterized. This autolysin degrades the peptidoglycan bonds of pneumococcal cell walls after anchoring to the choline residues of the cell wall teichoic acids via its choline-binding module (ChBM). The latter is composed of seven repeats (ChBRs) of approximately 20 amino acid residues. The translation product of the lytA gene is the low-activity E-form of LytA (a monomer), which can be "converted" (activated) in vitro by choline into the fully active C-form at low temperature. The C-form is a homodimer with a boomerang-like shape. To study the structural requirements for the monomer-to-dimer modification and to clarify whether "conversion" is synonymous with dimerization, the biochemical consequences of replacing four key amino acid residues of ChBR6 and ChBR7 (the repeats involved in dimer formation) were determined. The results obtained with a collection of 21 mutated NAM-amidases indicate that Ile-315 is a key amino acid residue in both LytA activity and folding. Amino acids with a marginal position in the solenoid structure of the ChBM were of minor influence in dimer stability; neither the size, polarity, nor aromatic nature of the replacement amino acids affected LytA activity. In contrast, truncated proteins were drastically impaired in their activity and conversion capacity. The results indicate that dimerization and conversion are different processes, but they do not answer the questions of whether conversion can only be achieved after a dimer formation step.

  17. Key interactions by conserved polar amino acids located at the transmembrane helical boundaries in Class B GPCRs modulate activation, effector specificity and biased signalling in the glucagon-like peptide-1 receptor.

    PubMed

    Wootten, Denise; Reynolds, Christopher A; Smith, Kevin J; Mobarec, Juan C; Furness, Sebastian G B; Miller, Laurence J; Christopoulos, Arthur; Sexton, Patrick M

    2016-10-15

    Class B GPCRs can activate multiple signalling effectors with the potential to exhibit biased agonism in response to ligand stimulation. Previously, we highlighted key TM domain polar amino acids that were crucial for the function of the GLP-1 receptor, a key therapeutic target for diabetes and obesity. Using a combination of mutagenesis, pharmacological characterisation, mathematical and computational molecular modelling, this study identifies additional highly conserved polar residues located towards the TM helical boundaries of Class B GPCRs that are important for GLP-1 receptor stability and/or controlling signalling specificity and biased agonism. This includes (i) three positively charged residues (R3.30 227 , K4.64 288 , R5.40 310 ) located at the extracellular boundaries of TMs 3, 4 and 5 that are predicted in molecular models to stabilise extracellular loop 2, a crucial domain for ligand affinity and receptor activation; (ii) a predicted hydrogen bond network between residues located in TMs 2 (R2.46 176 ), 6 (R6.37 348 ) and 7 (N7.61 406 and E7.63 408 ) at the cytoplasmic face of the receptor that is important for stabilising the inactive receptor and directing signalling specificity, (iii) residues at the bottom of TM 5 (R5.56 326 ) and TM6 (K6.35 346 and K6.40 351 ) that are crucial for receptor activation and downstream signalling; (iv) residues predicted to be involved in stabilisation of TM4 (N2.52 182 and Y3.52 250 ) that also influence cell signalling. Collectively, this work expands our understanding of peptide-mediated signalling by the GLP-1 receptor. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Exposure assessment of chemical hazards in pork meat, liver, and kidney, and health impact implication in Hung Yen and Nghe An provinces, Vietnam.

    PubMed

    Tuyet-Hanh, Tran Thi; Sinh, Dang Xuan; Phuc, Pham Duc; Ngan, Tran Thi; Van Tuat, Chu; Grace, Delia; Unger, Fred; Nguyen-Viet, Hung

    2017-02-01

    This study assesses the risk of exposure to hazardous chemical residues in pork meat, liver, and kidney collected at wet markets in Nghe An and Hung Yen provinces and discusses health impact implication. 514 pig feed, kidney, liver, and pork samples were pooled and qualitatively and quantitatively analyzed for tetracyclines, fluoroquinolones, sulphonamide, chloramphenicol, β-agonists, and heavy metals. We compare the results with current regulations on chemical residues and discuss health implications. Legal antibiotics were found in feed. Tetracycline and fluoroquinolones were not present in pork, but 11% samples were positive with sulfamethazine above maximum residue limits (MRL); 11% of packaged feed and 4% of pork pooled samples were positive for chloramphenicol, a banned substance; two feed, two liver, and one pork samples were positive for β-agonists but did not exceed current MRL; 28% of pooled samples had lead, but all were below MRL; and all samples were negative for cadmium and arsenic. Thus, the health risks due to chemical hazards in pork in Hung Yen and Nghe An seemed not as serious as what were recently communicated to the public on the mass media. There is potential exposure to sulphonamide, chloramphenicol, and β-agonists from pork. Risk communication needs to focus on banned chemicals, while informing the public about the minimal risks associated with heavy metals.

  19. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes - A review.

    PubMed

    Christou, Anastasis; Agüera, Ana; Bayona, Josep Maria; Cytryn, Eddie; Fotopoulos, Vasileios; Lambropoulou, Dimitra; Manaia, Célia M; Michael, Costas; Revitt, Mike; Schröder, Peter; Fatta-Kassinos, Despo

    2017-10-15

    The use of reclaimed wastewater (RWW) for the irrigation of crops may result in the continuous exposure of the agricultural environment to antibiotics, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In recent years, certain evidence indicate that antibiotics and resistance genes may become disseminated in agricultural soils as a result of the amendment with manure and biosolids and irrigation with RWW. Antibiotic residues and other contaminants may undergo sorption/desorption and transformation processes (both biotic and abiotic), and have the potential to affect the soil microbiota. Antibiotics found in the soil pore water (bioavailable fraction) as a result of RWW irrigation may be taken up by crop plants, bioaccumulate within plant tissues and subsequently enter the food webs; potentially resulting in detrimental public health implications. It can be also hypothesized that ARGs can spread among soil and plant-associated bacteria, a fact that may have serious human health implications. The majority of studies dealing with these environmental and social challenges related with the use of RWW for irrigation were conducted under laboratory or using, somehow, controlled conditions. This critical review discusses the state of the art on the fate of antibiotics, ARB and ARGs in agricultural environment where RWW is applied for irrigation. The implications associated with the uptake of antibiotics by plants (uptake mechanisms) and the potential risks to public health are highlighted. Additionally, knowledge gaps as well as challenges and opportunities are addressed, with the aim of boosting future research towards an enhanced understanding of the fate and implications of these contaminants of emerging concern in the agricultural environment. These are key issues in a world where the increasing water scarcity and the continuous appeal of circular economy demand answers for a long-term safe use of RWW for irrigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Agricultural residue availability in the United States.

    PubMed

    Haq, Zia; Easterly, James L

    2006-01-01

    The National Energy Modeling System (NEMS) is used by the Energy Information Administration (EIA) to forecast US energy production, consumption, and price trends for a 25-yr-time horizon. Biomass is one of the technologies within NEMS, which plays a key role in several scenarios. An endogenously determined biomass supply schedule is used to derive the price-quantity relationship of biomass. There are four components to the NEMS biomass supply schedule including: agricultural residues, energy crops, forestry residues, and urban wood waste/mill residues. The EIA's Annual Energy Outlook 2005 includes updated estimates of the agricultural residue portion of the biomass supply schedule. The changes from previous agricultural residue supply estimates include: revised assumptions concerning corn stover and wheat straw residue availabilities, inclusion of non-corn and non-wheat agricultural residues (such as barley, rice straw, and sugarcane bagasse), and the implementation of assumptions concerning increases in no-till farming. This article will discuss the impact of these changes on the supply schedule.

  1. γδ T cell receptors recognize the non-classical major histocompatibility complex (MHC) molecule T22 via conserved anchor residues in a MHC peptide-like fashion.

    PubMed

    Sandstrom, Andrew; Scharf, Louise; McRae, Gabrielle; Hawk, Andrew J; Meredith, Stephen C; Adams, Erin J

    2012-02-17

    The molecular mechanisms by which γδ T cells recognize ligand remain a mystery. The non-classical MHC molecule T22 represents the best characterized ligand for murine γδ T cells, with a motif (W … EGYEL) present in the γδ T cell receptor complementary-determining region 3δ (CDR3δ) loop mediating γδ T cell recognition of this molecule. Produced through V(D)J recombination, this loop is quite diverse, with different numbers and chemical types of amino acids between Trp and EGYEL, which have unknown functional consequences for T22 recognition. We have investigated the biophysical and structural effects of CDR3δ loop diversity, revealing a range of affinities for T22 but a common thermodynamic pattern. Mutagenesis of these CDR3δ loops defines the key anchor residues involved in T22 recognition as W … EGYEL, similar to those found for the G8 CDR3δ loop, and demonstrates that spacer residues modulate but are not required for T22 recognition. Comparison of the location of these residues in the T22 interface reveals a striking similarity to peptide anchor residues in classically presented MHC peptides, with the key Trp residue of the CDR3δ motif completing the deficient peptide-binding groove of T22. This suggests that γδ T cell recognition of T22 utilizes the conserved ligand-presenting nature of the MHC fold.

  2. Focal adhesion kinase (FAK) perspectives in mechanobiology: implications for cell behaviour.

    PubMed

    Tomakidi, Pascal; Schulz, Simon; Proksch, Susanne; Weber, Wilfried; Steinberg, Thorsten

    2014-09-01

    Mechanobiology is a scientific interface discipline emerging from engineering and biology. With regard to tissue-regenerative cell-based strategies, mechanobiological concepts, including biomechanics as a target for cell and human mesenchymal stem cell behaviour, are on the march. Based on the periodontium as a paradigm, this mini-review discusses the key role of focal-adhesion kinase (FAK) in mechanobiology, since it is involved in mediating the transformation of environmental biomechanical signals into cell behavioural responses via mechanotransducing signalling cascades. These processes enable cells to adjust quickly to environmental cues, whereas adjustment itself relies on the specific intramolecular phosphorylation of FAK tyrosine residues and the multiple interactions of FAK with distinct partners. Furthermore, interaction-triggered mechanotransducing pathways govern the dynamics of focal adhesion sites and cell behaviour. Facets of behaviour not only include cell spreading and motility, but also proliferation, differentiation and apoptosis. In translational terms, identified and characterized biomechanical parameters can be incorporated into innovative concepts of cell- and tissue-tailored clinically applied biomaterials controlling cell behaviour as desired.

  3. Torque generation mechanism of ATP synthase

    NASA Astrophysics Data System (ADS)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  4. Reordering of Nuclear Quantum States in Rare Isotopes

    NASA Astrophysics Data System (ADS)

    Flanagan, Kieran

    2010-02-01

    A key question in modern nuclear physics relates to the ordering of quantum states, and whether the predictions made by the shell model hold true far from stability. Recent innovations in technology and techniques at radioactive beam facilities have allowed access to rare isotopes previously inaccessible to experimentalists. Measurements that have been performed in several regions of the nuclear chart have yielded surprising and dramatic changes in nuclear structure, where level ordering is quite different than expected from previous theoretical descriptions. In order to reconcile the difference between experiment and theory, new shell-model interactions have been proposed, which include the role of the tensor force as part of the monopole term from the expansion of the residual proton-neutron interaction. This has motivated a series of laser spectroscopy experiments that have studied the neutron-rich copper and gallium isotopes at the ISOLDE facility. This work has deduced without nuclear-model dependence the spin, moments and charge radii. The results of this work and their implications for nuclear structure near ^78Ni will be discussed. )

  5. The roles of O-linked β-N-acetylglucosamine in cardiovascular physiology and disease

    PubMed Central

    2012-01-01

    More than 1,000 proteins of the nucleus, cytoplasm, and mitochondria are dynamically modified by O-linked β-N-acetylglucosamine (O-GlcNAc), an essential post-translational modification of metazoans. O-GlcNAc, which modifies Ser/Thr residues, is thought to regulate protein function in a manner analogous to protein phosphorylation and, on a subset of proteins, appears to have a reciprocal relationship with phosphorylation. Like phosphorylation, O-GlcNAc levels change dynamically in response to numerous signals including hyperglycemia and cellular injury. Recent data suggests that O-GlcNAc appears to be a key regulator of the cellular stress response, the augmentation of which is protective in models of acute vascular injury, trauma hemorrhage, and ischemia-reperfusion injury. In contrast to these studies, O-GlcNAc has also been implicated in the development of hypertension and type II diabetes, leading to vascular and cardiac dysfunction. Here we summarize the current understanding of the roles of O-GlcNAc in the heart and vasculature. PMID:22287582

  6. An analytical method on the surface residual stress for the cutting tool orientation

    NASA Astrophysics Data System (ADS)

    Li, Yueen; Zhao, Jun; Wang, Wei

    2010-03-01

    The residual stress is measured by choosing 8 kinds orientations on cutting the H13 dies steel on the HSM in the experiment of this paper. The measured data shows on that the residual stress exists periodicity for the different rake angle (β) and side rake angle (θ) parameters, further study find that the cutting tool orientations have closed relationship with the residual stresses, and for the original of the machined residual stress on the surface from the cutting force and the axial force, it can be gained the simply model of tool-workpiece force, using the model it can be deduced the residual stress model, which is feasible to calculate the size of residual stress. And for almost all the measured residual stresses are compressed stress, the compressed stress size and the direction could be confirmed by the input data for the H13 on HSM. As the result, the residual stress model is the key for optimization of rake angle (β) and side rake angle (θ) in theory, using the theory the more cutting mechanism can be expressed.

  7. An Overview on Recent Progress in Electrochemical Biosensors for Antimicrobial Drug Residues in Animal-Derived Food

    PubMed Central

    Majdinasab, Marjan; Yaqub, Mustansara; Rahim, Abdur; Catanante, Gaelle; Hayat, Akhtar; Marty, Jean Louis

    2017-01-01

    Anti-microbial drugs are widely employed for the treatment and cure of diseases in animals, promotion of animal growth, and feed efficiency. However, the scientific literature has indicated the possible presence of antimicrobial drug residues in animal-derived food, making it one of the key public concerns for food safety. Therefore, it is highly desirable to design fast and accurate methodologies to monitor antimicrobial drug residues in animal-derived food. Legislation is in place in many countries to ensure antimicrobial drug residue quantities are less than the maximum residue limits (MRL) defined on the basis of food safety. In this context, the recent years have witnessed a special interest in the field of electrochemical biosensors for food safety, based on their unique analytical features. This review article is focused on the recent progress in the domain of electrochemical biosensors to monitor antimicrobial drug residues in animal-derived food. PMID:28837093

  8. Molecular basis of cannabinoid CB1 receptor coupling to the G protein heterotrimer Gαiβγ: identification of key CB1 contacts with the C-terminal helix α5 of Gαi.

    PubMed

    Shim, Joong-Youn; Ahn, Kwang H; Kendall, Debra A

    2013-11-08

    The cannabinoid (CB1) receptor is a member of the rhodopsin-like G protein-coupled receptor superfamily. The human CB1 receptor, which is among the most expressed receptors in the brain, has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. Different classes of CB1 agonists evoke signaling pathways through the activation of specific subtypes of G proteins. The molecular basis of CB1 receptor coupling to its cognate G protein is unknown. As a first step toward understanding CB1 receptor-mediated G protein signaling, we have constructed a ternary complex structural model of the CB1 receptor and Gi heterotrimer (CB1-Gi), guided by the x-ray structure of β2-adrenergic receptor (β2AR) in complex with Gs (β2AR-Gs), through 824-ns duration molecular dynamics simulations in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer environment. We identified a group of residues at the juxtamembrane regions of the intracellular loops 2 and 3 (IC2 and IC3) of the CB1 receptor, including Ile-218(3.54), Tyr-224(IC2), Asp-338(6.30), Arg-340(6.32), Leu-341(6.33), and Thr-344(6.36), as potential key contacts with the extreme C-terminal helix α5 of Gαi. Ala mutations of these residues at the receptor-Gi interface resulted in little G protein coupling activity, consistent with the present model of the CB1-Gi complex, which suggests tight interactions between CB1 and the extreme C-terminal helix α5 of Gαi. The model also suggests that unique conformational changes in the extreme C-terminal helix α5 of Gα play a crucial role in the receptor-mediated G protein activation.

  9. Functional Versatility of AGY Serine Codons in Immunoglobulin Variable Region Genes

    PubMed Central

    Detanico, Thiago; Phillips, Matthew; Wysocki, Lawrence J.

    2016-01-01

    In systemic autoimmunity, autoantibodies directed against nuclear antigens (Ags) often arise by somatic hypermutation (SHM) that converts AGT and AGC (AGY) Ser codons into Arg codons. This can occur by three different single-base changes. Curiously, AGY Ser codons are far more abundant in complementarity-determining regions (CDRs) of IgV-region genes than expected for random codon use or from species-specific codon frequency data. CDR AGY codons are also more abundant than TCN Ser codons. We show that these trends hold even in cartilaginous fishes. Because AGC is a preferred target for SHM by activation-induced cytidine deaminase, we asked whether the AGY abundance was solely due to a selection pressure to conserve high mutability in CDRs regardless of codon context but found that this was not the case. Instead, AGY triplets were selectively enriched in the Ser codon reading frame. Motivated by reports implicating a functional role for poly/autoreactive specificities in antiviral antibodies, we also analyzed mutations at AGY in antibodies directed against a number of different viruses and found that mutations producing Arg codons in antiviral antibodies were indeed frequent. Unexpectedly, however, we also found that AGY codons mutated often to encode nearly all of the amino acids that are reported to provide the most frequent contacts with Ag. In many cases, mutations producing codons for these alternative amino acids in antiviral antibodies were more frequent than those producing Arg codons. Mutations producing each of these key amino acids required only single-base changes in AGY. AGY is the only codon group in which two-thirds of random mutations generate codons for these key residues. Finally, by directly analyzing X-ray structures of immune complexes from the RCSB protein database, we found that Ag-contact residues generated via SHM occurred more often at AGY than at any other codon group. Thus, preservation of AGY codons in antibody genes appears to have been driven by their exceptional functional versatility, despite potential autoreactive consequences. PMID:27920779

  10. Role of C-terminal residues in oligomerization and stability of lambda CII: implications for lysis-lysogeny decision of the phage.

    PubMed

    Datta, Ajit Bikram; Roy, Siddhartha; Parrack, Pradeep

    2005-01-14

    A crucial element in the lysis-lysogeny decision of the temperate coliphage lambda is the phage protein CII, which has several interesting properties. It promotes lysogeny through activation of three phage promoters p(E), p(I) and p(aQ), recognizing a direct repeat sequence TTGCN6TTGC at each. The three-dimensional structure of CII, a homo-tetramer of 97 residue subunits, is unknown. It is an unstable protein in vivo, being rapidly degraded by the host protease HflB (FtsH). This instability is essential for the function of CII in the lysis-lysogeny switch. From NMR and limited proteolysis we show that about 15 C-terminal residues of CII are highly flexible, and may act as a target for proteolysis in vivo. From in vitro transcription, isothermal calorimetry and gel chromatography of CII (1-97) and its truncated fragments CIIA (4-81/82) and CIIB (4-69), we find that residues 70-81/82 are essential for (a) tetramer formation, (b) operator binding and (c) transcription activation. Presumably, tetramerization is necessary for the latter functions. Based on these results, we propose a model for CII structure, in which protein-protein contacts for dimer and tetramer formation are different. The implications of tetrameric organization, essential for CII activity, on the recognition of the direct repeat sequence is discussed.

  11. Disruption of key NADH-binding pocket residues of the Mycobacterium tuberculosis InhA affects DD-CoA binding ability.

    PubMed

    Shaw, Daniel J; Robb, Kirsty; Vetter, Beatrice V; Tong, Madeline; Molle, Virginie; Hunt, Neil T; Hoskisson, Paul A

    2017-07-05

    Tuberculosis (TB) is a global health problem that affects over 10 million people. There is an urgent need to develop novel antimicrobial therapies to combat TB. To achieve this, a thorough understanding of key validated drug targets is required. The enoyl reductase InhA, responsible for synthesis of essential mycolic acids in the mycobacterial cell wall, is the target for the frontline anti-TB drug isoniazid. To better understand the activity of this protein a series of mutants, targeted to the NADH co-factor binding pocket were created. Residues P193 and W222 comprise a series of hydrophobic residues surrounding the cofactor binding site and mutation of both residues negatively affect InhA function. Construction of an M155A mutant of InhA results in increased affinity for NADH and DD-CoA turnover but with a reduction in V max for DD-CoA, impairing overall activity. This suggests that NADH-binding geometry of InhA likely permits long-range interactions between residues in the NADH-binding pocket to facilitate substrate turnover in the DD-CoA binding region of the protein. Understanding the precise details of substrate binding and turnover in InhA and how this may affect protein-protein interactions may facilitate the development of improved inhibitors enabling the development of novel anti-TB drugs.

  12. Dynamical network of residue–residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation

    PubMed Central

    Doshi, Urmi; Holliday, Michael J.; Eisenmesser, Elan Z.; Hamelberg, Donald

    2016-01-01

    Detailed understanding of how conformational dynamics orchestrates function in allosteric regulation of recognition and catalysis remains ambiguous. Here, we simulate CypA using multiple-microsecond-long atomistic molecular dynamics in explicit solvent and carry out NMR experiments. We analyze a large amount of time-dependent multidimensional data with a coarse-grained approach and map key dynamical features within individual macrostates by defining dynamics in terms of residue–residue contacts. The effects of substrate binding are observed to be largely sensed at a location over 15 Å from the active site, implying its importance in allostery. Using NMR experiments, we confirm that a dynamic cluster of residues in this distal region is directly coupled to the active site. Furthermore, the dynamical network of interresidue contacts is found to be coupled and temporally dispersed, ranging over 4 to 5 orders of magnitude. Finally, using network centrality measures we demonstrate the changes in the communication network, connectivity, and influence of CypA residues upon substrate binding, mutation, and during catalysis. We identify key residues that potentially act as a bottleneck in the communication flow through the distinct regions in CypA and, therefore, as targets for future mutational studies. Mapping these dynamical features and the coupling of dynamics to function has crucial ramifications in understanding allosteric regulation in enzymes and proteins, in general. PMID:27071107

  13. Residue pattern of polycyclic aromatic hydrocarbons during green tea manufacturing and their transfer rates during tea brewing.

    PubMed

    Gao, Guanwei; Chen, Hongping; Liu, Pingxiang; Hao, Zhenxia; Ma, Guicen; Chai, Yunfeng; Wang, Chen; Lu, Chengyin

    2017-06-01

    Residues of polycyclic aromatic hydrocarbons (PAHs) in green tea and tea infusion were determined using gas chromatography-tandem mass spectrometry to study their dissipation pattern during green tea processing and infusion. Concentration and evaporation of PAHs during tea processing were the key factors affecting PAH residue content in product intermediates and in green tea. PAH residues in tea leaves increased by 2.4-3.1 times during the manufacture of green tea using the electric heating model. After correction to dry weight, PAH residue concentrations decreased by 33.5-48.4% during green tea processing because of PAH evaporation. Moreover, spreading and drying reduced PAH concentrations. The transfer rates of PAH residues from green tea to infusion varied from 4.6% to 7.2%, and PAH leaching was higher in the first infusion than in the second infusion. These results are useful for assessing exposure to PAHs from green tea and in formulating controls for the maximum residue level of PAHs in green tea.

  14. Modelling the ecological consequences of whole tree harvest for bioenergy production

    NASA Astrophysics Data System (ADS)

    Skår, Silje; Lange, Holger; Sogn, Trine

    2013-04-01

    There is an increasing demand for energy from biomass as a substitute to fossil fuels worldwide, and the Norwegian government plans to double the production of bioenergy to 9% of the national energy production or to 28 TWh per year by 2020. A large part of this increase may come from forests, which have a great potential with respect to biomass supply as forest growth increasingly has exceeded harvest in the last decades. One feasible option is the utilization of forest residues (needles, twigs and branches) in addition to stems, known as Whole Tree Harvest (WTH). As opposed to WTH, the residues are traditionally left in the forest with Conventional Timber Harvesting (CH). However, the residues contain a large share of the treés nutrients, indicating that WTH may possibly alter the supply of nutrients and organic matter to the soil and the forest ecosystem. This may potentially lead to reduced tree growth. Other implications can be nutrient imbalance, loss of carbon from the soil and changes in species composition and diversity. This study aims to identify key factors and appropriate strategies for ecologically sustainable WTH in Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) forest stands in Norway. We focus on identifying key factors driving soil organic matter, nutrients, biomass, biodiversity etc. Simulations of the effect on the carbon and nitrogen budget with the two harvesting methods will also be conducted. Data from field trials and long-term manipulation experiments are used to obtain a first overview of key variables. The relationships between the variables are hitherto unknown, but it is by no means obvious that they could be assumed as linear; thus, an ordinary multiple linear regression approach is expected to be insufficient. Here we apply two advanced and highly flexible modelling frameworks which hardly have been used in the context of tree growth, nutrient balances and biomass removal so far: Generalized Additive Models (GAMs) and Random Forests. Results obtained for GAMs so far show that there are differences between WTH and CH in two directions: both the significance of drivers and the shape of the response functions differ. GAMs turn out to be a flexible and powerful alternative to multivariate linear regression. The restriction to linear relationships seems to be unjustified in the present case. We use Random Forests as a highly efficient classifier which gives reliable estimates for the importance of each driver variable in determining the diameter growth for the two different harvesting treatments. Based on the final results of these two modelling approaches, the study contributes to find appropriate strategies and suitable regions (in Norway) where WTH may be sustainable performed.

  15. Distantly related lipocalins share two conserved clusters of hydrophobic residues: use in homology modeling

    PubMed Central

    Adam, Benoit; Charloteaux, Benoit; Beaufays, Jerome; Vanhamme, Luc; Godfroid, Edmond; Brasseur, Robert; Lins, Laurence

    2008-01-01

    Background Lipocalins are widely distributed in nature and are found in bacteria, plants, arthropoda and vertebra. In hematophagous arthropods, they are implicated in the successful accomplishment of the blood meal, interfering with platelet aggregation, blood coagulation and inflammation and in the transmission of disease parasites such as Trypanosoma cruzi and Borrelia burgdorferi. The pairwise sequence identity is low among this family, often below 30%, despite a well conserved tertiary structure. Under the 30% identity threshold, alignment methods do not correctly assign and align proteins. The only safe way to assign a sequence to that family is by experimental determination. However, these procedures are long and costly and cannot always be applied. A way to circumvent the experimental approach is sequence and structure analyze. To further help in that task, the residues implicated in the stabilisation of the lipocalin fold were determined. This was done by analyzing the conserved interactions for ten lipocalins having a maximum pairwise identity of 28% and various functions. Results It was determined that two hydrophobic clusters of residues are conserved by analysing the ten lipocalin structures and sequences. One cluster is internal to the barrel, involving all strands and the 310 helix. The other is external, involving four strands and the helix lying parallel to the barrel surface. These clusters are also present in RaHBP2, a unusual "outlier" lipocalin from tick Rhipicephalus appendiculatus. This information was used to assess assignment of LIR2 a protein from Ixodes ricinus and to build a 3D model that helps to predict function. FTIR data support the lipocalin fold for this protein. Conclusion By sequence and structural analyzes, two conserved clusters of hydrophobic residues in interactions have been identified in lipocalins. Since the residues implicated are not conserved for function, they should provide the minimal subset necessary to confer the lipocalin fold. This information has been used to assign LIR2 to lipocalins and to investigate its structure/function relationship. This study could be applied to other protein families with low pairwise similarity, such as the structurally related fatty acid binding proteins or avidins. PMID:18190694

  16. Molecular modeling of cytochrome P450 3A4

    NASA Astrophysics Data System (ADS)

    Szklarz, Grazyna D.; Halpert, James R.

    1997-05-01

    The three-dimensional structure of human cytochrome P450 3A4 was modeled based on crystallographic coordinates of four bacterial P450s: P450 BM-3, P450cam, P450terp, and P450eryF. The P450 3A4 sequence was aligned to those of the known proteins using a structure-based alignment of P450 BM-3, P450cam, P450terp, and P450eryF. The coordinates of the model were then calculated using a consensus strategy, and the final structure was optimized in the presence of water. The P450 3A4 model resembles P450 BM-3 the most, but the B' helix is similar to that of P450eryF, which leads to an enlarged active site when compared with P450 BM-3, P450cam, and P450terp. The 3A4 residues equivalent to known substrate contact residues of the bacterial proteins and key residues of rat P450 2B1 are located in the active site or the substrate access channel. Docking of progesterone into the P450 3A4 model demonstrated that the substrate bound in a 6β-orientation can interact with a number of active site residues, such as 114, 119, 301, 304, 305, 309, 370, 373, and 479, through hydrophobic interactions. The active site of the enzyme can also accommodate erythromycin, which, in addition to the residues listed for progesterone, also contacts residues 101, 104, 105, 214, 215, 217, 218, 374, and 478. The majority of 3A4 residues which interact with progesterone and/or erythromycin possess their equivalents in key residues of P450 2B enzymes, except for residues 297, 480 and 482, which do not contact either substrate in P450 3A4. The results from docking of progesterone and erythromycin into the enzyme model make it possible to pinpoint residues which may be important for 3A4 function and to target them for site-directed mutagenesis.

  17. Human Aquaporin 4 Gating Dynamics under Perpendicularly-Oriented Electric-Field Impulses: A Molecular Dynamics Study

    PubMed Central

    Marracino, Paolo; Liberti, Micaela; Trapani, Erika; Burnham, Christian J.; Avena, Massimiliano; Garate, José-Antonio; Apollonio, Francesca; English, Niall J.

    2016-01-01

    Human aquaporin 4 has been studied using molecular dynamics (MD) simulations in the absence and presence of pulses of external static electric fields. The pulses were 10 ns in duration and 0.012–0.065 V/Å in intensity acting along both directions perpendicular to the pores. Water permeability and the dipolar response of all residues of interest (including the selectivity filter) within the pores have been studied. Results showed decreased levels of water osmotic permeability within aquaporin channels during orthogonally-oriented field impulses, although care must be taken with regard to statistical certainty. This can be explained observing enhanced “dipolar flipping” of certain key residues, especially serine 211, histidine 201, arginine 216, histidine 95 and cysteine 178. These residues are placed at the extracellular end of the pore (serine 211, histidine 201, and arginine 216) and at the cytoplasm end (histidine 95 and cysteine 178), with the key role in gating mechanism, hence influencing water permeability. PMID:27428954

  18. Novel Yeast-based Strategy Unveils Antagonist Binding Regions on the Nuclear Xenobiotic Receptor PXR*

    PubMed Central

    Li, Hao; Redinbo, Matthew R.; Venkatesh, Madhukumar; Ekins, Sean; Chaudhry, Anik; Bloch, Nicolin; Negassa, Abdissa; Mukherjee, Paromita; Kalpana, Ganjam; Mani, Sridhar

    2013-01-01

    The pregnane X receptor (PXR) is a master regulator of xenobiotic metabolism, and its activity is critical toward understanding the pathophysiology of several diseases, including inflammation, cancer, and steatosis. Previous studies have demonstrated that ketoconazole binds to ligand-activated PXR and antagonizes receptor control of gene expression. Structure-function as well as computational docking analysis suggested a putative binding region containing critical charge clamp residues Gln-272, and Phe-264 on the AF-2 surface of PXR. To define the antagonist binding surface(s) of PXR, we developed a novel assay to identify key amino acid residues on PXR based on a yeast two-hybrid screen that examined mutant forms of PXR. This screen identified multiple “gain-of-function” mutants that were “resistant” to the PXR antagonist effects of ketoconazole. We then compared our screen results identifying key PXR residues to those predicted by computational methods. Of 15 potential or putative binding residues based on docking, we identified three residues in the yeast screen that were then systematically verified to functionally interact with ketoconazole using mammalian assays. Among the residues confirmed by our study was Ser-208, which is on the opposite side of the protein from the AF-2 region critical for receptor regulation. The identification of new locations for antagonist binding on the surface or buried in PXR indicates novel aspects to the mechanism of receptor antagonism. These results significantly expand our understanding of antagonist binding sites on the surface of PXR and suggest new avenues to regulate this receptor for clinical applications. PMID:23525103

  19. Key aromatic/hydrophobic amino acids controlling a cross-amyloid peptide interaction versus amyloid self-assembly.

    PubMed

    Bakou, Maria; Hille, Kathleen; Kracklauer, Michael; Spanopoulou, Anna; Frost, Christina V; Malideli, Eleni; Yan, Li-Mei; Caporale, Andrea; Zacharias, Martin; Kapurniotu, Aphrodite

    2017-09-01

    The interaction of the intrinsically disordered polypeptide islet amyloid polypeptide (IAPP), which is associated with type 2 diabetes (T2D), with the Alzheimer's disease amyloid-β (Aβ) peptide modulates their self-assembly into amyloid fibrils and may link the pathogeneses of these two cell-degenerative diseases. However, the molecular determinants of this interaction remain elusive. Using a systematic alanine scan approach, fluorescence spectroscopy, and other biophysical methods, including heterocomplex pulldown assays, far-UV CD spectroscopy, the thioflavin T binding assay, transmission EM, and molecular dynamics simulations, here we identified single aromatic/hydrophobic residues within the amyloid core IAPP region as hot spots or key residues of its cross-interaction with Aβ40(42) peptide. Importantly, we also find that none of these residues in isolation plays a key role in IAPP self-assembly, whereas simultaneous substitution of four aromatic/hydrophobic residues with Ala dramatically impairs both IAPP self-assembly and hetero-assembly with Aβ40(42). Furthermore, our experiments yielded several novel IAPP analogs, whose sequences are highly similar to that of IAPP but have distinct amyloid self- or cross-interaction potentials. The identified similarities and major differences controlling IAPP cross-peptide interaction with Aβ40(42) versus its amyloid self-assembly offer a molecular basis for understanding the underlying mechanisms. We propose that these insights will aid in designing intervention strategies and novel IAPP analogs for the management of type 2 diabetes, Alzheimer's disease, or other diseases related to IAPP dysfunction or cross-amyloid interactions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Methylation of Arsenic by Recombinant Human Wild-Type Arsenic (+3 Oxidation State) Methyltransferase and its Methionine 287 Threonine (M287T) Polymorph

    EPA Science Inventory

    ABSTRACT Arsenic (+3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the pathway for methylation of arsenicals. A common polymorphism in the AS3MT gene that replaces a threonyl residue in position 287 with a methionyl residue (AS3MT/M287T) occurs at a frequency...

  1. [Residues of tetracycline and quinolones in wild fish living around a salmon aquaculture center in Chile].

    PubMed

    Fortt Z, Antonia; Cabello C, Felipe; Buschmann R, Alejandro

    2007-02-01

    The presence of residues of tetracycline, quinolones and antiparasitic drugs was investigated in wild fish captured around salmon aquaculture pens in Cochamó, Region X, Chile. Residues of both antibiotics were found in the meta [corrected] of two species of wild fish that are consumed by humans, robalo (Elginops maclovinus) and cabrilla (Sebastes capensis) [corrected] These findings suggest that the antibiotic usage in salmon aquaculture in Chile has nvironmental implications that may affect human and animal health. More studies are needed in Chile to determine the relevance of these findings for human and animal health and the environment to regulate this use of antibiotics.

  2. Factor VIII Interacts with the Endocytic Receptor Low-density Lipoprotein Receptor-related Protein 1 via an Extended Surface Comprising "Hot-Spot" Lysine Residues.

    PubMed

    van den Biggelaar, Maartje; Madsen, Jesper J; Faber, Johan H; Zuurveld, Marleen G; van der Zwaan, Carmen; Olsen, Ole H; Stennicke, Henning R; Mertens, Koen; Meijer, Alexander B

    2015-07-03

    Lysine residues are implicated in driving the ligand binding to the LDL receptor family. However, it has remained unclear how specificity is regulated. Using coagulation factor VIII as a model ligand, we now study the contribution of individual lysine residues in the interaction with the largest member of the LDL receptor family, low-density lipoprotein receptor-related protein (LRP1). Using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and SPR interaction analysis on a library of lysine replacement variants as two independent approaches, we demonstrate that the interaction between factor VIII (FVIII) and LRP1 occurs over an extended surface containing multiple lysine residues. None of the individual lysine residues account completely for LRP1 binding, suggesting an additive binding model. Together with structural docking studies, our data suggest that FVIII interacts with LRP1 via an extended surface of multiple lysine residues that starts at the bottom of the C1 domain and winds around the FVIII molecule. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. BmP02 Atypically Delays Kv4.2 Inactivation: Implication for a Unique Interaction between Scorpion Toxin and Potassium Channel

    PubMed Central

    Wu, Bin; Zhu, Yan; Shi, Jian; Tao, Jie; Ji, Yonghua

    2016-01-01

    BmP02, a short-chain peptide with 28 residues from the venom of Chinese scorpion Buthus martensi Karsch, has been reported to inhibit the transient outward potassium currents (Ito) in rat ventricular muscle cells. However, it remains unclear whether BmP02 modulates the Kv4.2 channel, one of the main contributors to Ito. The present study investigated the effects of BmP02 on Kv4.2 kinetics and its underlying molecular mechanism. The electrophysiological recordings showed that the inactivation of Kv4.2 expressed in HEK293T cells was significantly delayed by BmP02 in a dose-response manner with EC50 of ~850 nM while the peak current, activation and voltage-dependent inactivation of Kv4.2 were not affected. Meanwhile, the recovery from inactivation of Kv4.2 was accelerated and the deactivation was slowed after the application of BmP02. The site-directed mutagenesis combined with computational modelling identified that K347 and K353, located in the turret motif of the Kv4.2, and E4/E5, D20/D21 in BmP02 are key residues to interact with BmP02 through electrostatic force. These findings not only reveal a novel interaction between Kv4.2 channel and its peptidyl modulator, but also provide valuable information for design of highly-selective Kv4.2 modulators. PMID:27690098

  4. Gut microbial degradation of organophosphate insecticides-induces glucose intolerance via gluconeogenesis.

    PubMed

    Velmurugan, Ganesan; Ramprasath, Tharmarajan; Swaminathan, Krishnan; Mithieux, Gilles; Rajendhran, Jeyaprakash; Dhivakar, Mani; Parthasarathy, Ayothi; Babu, D D Venkatesh; Thumburaj, Leishman John; Freddy, Allen J; Dinakaran, Vasudevan; Puhari, Shanavas Syed Mohamed; Rekha, Balakrishnan; Christy, Yacob Jenifer; Anusha, Sivakumar; Divya, Ganesan; Suganya, Kannan; Meganathan, Boominathan; Kalyanaraman, Narayanan; Vasudevan, Varadaraj; Kamaraj, Raju; Karthik, Maruthan; Jeyakumar, Balakrishnan; Abhishek, Albert; Paul, Eldho; Pushpanathan, Muthuirulan; Rajmohan, Rajamani Koushick; Velayutham, Kumaravel; Lyon, Alexander R; Ramasamy, Subbiah

    2017-01-24

    Organophosphates are the most frequently and largely applied insecticide in the world due to their biodegradable nature. Gut microbes were shown to degrade organophosphates and cause intestinal dysfunction. The diabetogenic nature of organophosphates was recently reported but the underlying molecular mechanism is unclear. We aimed to understand the role of gut microbiota in organophosphate-induced hyperglycemia and to unravel the molecular mechanism behind this process. Here we demonstrate a high prevalence of diabetes among people directly exposed to organophosphates in rural India (n = 3080). Correlation and linear regression analysis reveal a strong association between plasma organophosphate residues and HbA1c but no association with acetylcholine esterase was noticed. Chronic treatment of mice with organophosphate for 180 days confirms the induction of glucose intolerance with no significant change in acetylcholine esterase. Further fecal transplantation and culture transplantation experiments confirm the involvement of gut microbiota in organophosphate-induced glucose intolerance. Intestinal metatranscriptomic and host metabolomic analyses reveal that gut microbial organophosphate degradation produces short chain fatty acids like acetic acid, which induces gluconeogenesis and thereby accounts for glucose intolerance. Plasma organophosphate residues are positively correlated with fecal esterase activity and acetate level of human diabetes. Collectively, our results implicate gluconeogenesis as the key mechanism behind organophosphate-induced hyperglycemia, mediated by the organophosphate-degrading potential of gut microbiota. This study reveals the gut microbiome-mediated diabetogenic nature of organophosphates and hence that the usage of these insecticides should be reconsidered.

  5. Impact of calcium on N1 influenza neuraminidase dynamics and binding free energy.

    PubMed

    Lawrenz, Morgan; Wereszczynski, Jeff; Amaro, Rommie; Walker, Ross; Roitberg, Adrian; McCammon, J Andrew

    2010-08-15

    The highly pathogenic influenza strains H5N1 and H1N1 are currently treated with inhibitors of the viral surface protein neuraminidase (N1). Crystal structures of N1 indicate a conserved, high affinity calcium binding site located near the active site. The specific role of this calcium in the enzyme mechanism is unknown, though it has been shown to be important for enzymatic activity and thermostability. We report molecular dynamics (MD) simulations of calcium-bound and calcium-free N1 complexes with the inhibitor oseltamivir (marketed as the drug Tamiflu), independently using both the AMBER FF99SB and GROMOS96 force fields, to give structural insight into calcium stabilization of key framework residues. Y347, which demonstrates similar sampling patterns in the simulations of both force fields, is implicated as an important N1 residue that can "clamp" the ligand into a favorable binding pose. Free energy perturbation and thermodynamic integration calculations, using two different force fields, support the importance of Y347 and indicate a +3 to +5 kcal/mol change in the binding free energy of oseltamivir in the absence of calcium. With the important role of structure-based drug design for neuraminidase inhibitors and the growing literature on emerging strains and subtypes, inclusion of this calcium for active site stability is particularly crucial for computational efforts such as homology modeling, virtual screening, and free energy methods. 2010 Wiley-Liss, Inc.

  6. Sequence composition and environment effects on residue fluctuations in protein structures

    NASA Astrophysics Data System (ADS)

    Ruvinsky, Anatoly M.; Vakser, Ilya A.

    2010-10-01

    Structure fluctuations in proteins affect a broad range of cell phenomena, including stability of proteins and their fragments, allosteric transitions, and energy transfer. This study presents a statistical-thermodynamic analysis of relationship between the sequence composition and the distribution of residue fluctuations in protein-protein complexes. A one-node-per-residue elastic network model accounting for the nonhomogeneous protein mass distribution and the interatomic interactions through the renormalized inter-residue potential is developed. Two factors, a protein mass distribution and a residue environment, were found to determine the scale of residue fluctuations. Surface residues undergo larger fluctuations than core residues in agreement with experimental observations. Ranking residues over the normalized scale of fluctuations yields a distinct classification of amino acids into three groups: (i) highly fluctuating-Gly, Ala, Ser, Pro, and Asp, (ii) moderately fluctuating-Thr, Asn, Gln, Lys, Glu, Arg, Val, and Cys, and (iii) weakly fluctuating-Ile, Leu, Met, Phe, Tyr, Trp, and His. The structural instability in proteins possibly relates to the high content of the highly fluctuating residues and a deficiency of the weakly fluctuating residues in irregular secondary structure elements (loops), chameleon sequences, and disordered proteins. Strong correlation between residue fluctuations and the sequence composition of protein loops supports this hypothesis. Comparing fluctuations of binding site residues (interface residues) with other surface residues shows that, on average, the interface is more rigid than the rest of the protein surface and Gly, Ala, Ser, Cys, Leu, and Trp have a propensity to form more stable docking patches on the interface. The findings have broad implications for understanding mechanisms of protein association and stability of protein structures.

  7. Finite element modeling to determine thermal residual strain distribution of bonded composite repairs for structural health monitoring design

    NASA Astrophysics Data System (ADS)

    Baker, Wayne; Jones, Rhys; Davis, Claire; Galea, Stephen C.

    2002-11-01

    The economic implication of fleet upgrades, particularly in Australia with military aircraft such as the F-111 and F/A-18, has led to an increasing reliance on composite repair technology to address fatigue and corrosion-affected aircraft components. The increasing use of such repairs has led to a research effort to develop various in-situ health monitoring systems that may be incorporated with a repair. This paper reports on the development of a theoretical methodology that uses finite element analysis (FEA) to model the strain profiles which optical sensors, on or within the patch, will be exposed to under various operational scenarios, including load and disbond. Numerical techniques are then used to predict the fibre Bragg grating (FBG) reflections which occur with these strain profiles. The quality of these reflection are a key consideration when designing FBG based structural health monitoring (SHM) systems. This information can be used to optimise the location of both surface mounted, and embedded sensors, and determine feasibility of SHM system design. Research was conducted into the thermal residual strain (TRS) within the patch. A finite element study revealed the presence of significant thermal residual strain gradients along the surface of the tapered region of the patch. As Bragg gratings are particularly sensitive to strain gradients, (producing a result similar to a chirped grating) the strain gradient on the composite at potential sensor locations both under load, and in the event of disbond was considered. A sufficiently high gradient leads to an altered Bragg reflection. These spurious reflections need to be considered, and theoretically obtained reflections can provide information to allow for load scenarios where the Bragg shift is not a smooth, well defined peak. It can also be shown that embedded fibres offer a higher average thermal residual strain reading, while being subject to a much lower strain gradient. This particularly favors the optical disbond detection system that is being developed. While certification concerns exist with embedding sensors in repairs, this study shows that embedded optical fibre sensors may provide for a health monitoring system with enhanced reliability and sensitivity.

  8. Side-chain conformation of the M2 transmembrane peptide proton channel of influenza a virus from 19F solid-state NMR.

    PubMed

    Luo, Wenbin; Mani, Rajeswari; Hong, Mei

    2007-09-13

    The M2 transmembrane peptide (M2TMP) of the influenza A virus forms a tetrameric helical bundle that acts as a proton-selective channel important in the viral life cycle. The side-chain conformation of the peptide is largely unknown and is important for elucidating the proton-conducting mechanism and the channel stability. Using a 19F spin diffusion NMR technique called CODEX, we have measured the oligomeric states and interhelical side chain-side chain 19F-19F distances at several residues using singly fluorinated M2TMP bound to DMPC bilayers. 19F CODEX data at a key residue of the proton channel, Trp41, confirm the tetrameric state of the peptide and yield a nearest-neighbor interhelical distance of approximately 11 A under both neutral and acidic pH. Since the helix orientation is precisely known from previous 15N NMR experiments and the backbone channel diameter has a narrow allowed range, this 19F distance constrains the Trp41 side-chain conformation to t90 (chi1 approximately 180 degrees , chi2 approximately 90 degrees ). This Trp41 rotamer, combined with a previously measured 15N-13C distance between His37 and Trp411, suggests that the His37 rotamer is t-160. The implication of the proposed (His37, Trp41) rotamers to the gating mechanism of the M2 proton channel is discussed. Binding of the antiviral drug amantadine to the peptide does not affect the F-F distance at Trp41. Interhelical 19F-19F distances are also measured at residues 27 and 38, each mutated to 4-19F-Phe. For V27F-M2TMP, the 19F-19F distances suggest a mixture of dimers and tetramers, whereas the L38F-M2TMP data indicate two tetramers of different sizes, suggesting side chain conformational heterogeneity at this lipid-facing residue. This work shows that 19F spin diffusion NMR is a valuable tool for determining long-range intermolecular distances that shed light on the mechanism of action and conformational heterogeneity of membrane protein oligomers.

  9. The Role of Soil Biological Function in Regulating Agroecosystem Services and Sustainability in the Quesungual Agroforestry System

    NASA Astrophysics Data System (ADS)

    Fonte, S.; Pauli, N.; Rousseau, L.; SIX, J. W. U. A.; Barrios, E.

    2014-12-01

    The Quesungual agroforestry system from western Honduras has been increasingly promoted as a promising alternative to traditional slash-and-burn agriculture in tropical dry forest regions of the Americas. Improved residue management and the lack of burning in this system can greatly impact soil biological functioning and a number of key soil-based ecosystem services, yet our understanding of these processes has not been thoroughly integrated to understand system functionality as a whole that can guide improved management. To address this gap, we present a synthesis of various field studies conducted in Central America aimed at: 1) quantifying the influence of the Quesungual agroforestry practices on soil macrofauna abundance and diversity, and 2) understanding how these organisms influence key soil-based ecosystem services that ultimately drive the success of this system. A first set of studies examined the impact of agroecosystem management on soil macrofauna populations, soil fertility and key soil processes. Results suggest that residue inputs (derived from tree biomass pruning), a lack of burning, and high tree densities, lead to conditions that support abundant, diverse soil macrofauna communities under agroforestry, with soil organic carbon content comparable to adjacent forest. Additionally, there is great potential in working with farmers to develop refined soil quality indicators for improved land management. A second line of research explored interactions between residue management and earthworms in the regulation of soil-based ecosystem services. Earthworms are the most prominent ecosystem engineers in these soils. We found that earthworms are key drivers of soil structure maintenance and the stabilization of soil organic matter within soil aggregates, and also had notable impacts on soil nutrient dynamics. However, the impact of earthworms appears to depend on residue management practices, thus indicating the need for an integrated approach for management of soil biological function and ecosystem services in the Quesungual agroforestry system.

  10. Solid-state NMR Study Reveals Collagen I Structural Modifications of Amino Acid Side Chains upon Fibrillogenesis*

    PubMed Central

    De Sa Peixoto, Paulo; Laurent, Guillaume; Azaïs, Thierry; Mosser, Gervaise

    2013-01-01

    In vivo, collagen I, the major structural protein in human body, is found assembled into fibrils. In the present work, we study a high concentrated collagen sample in its soluble, fibrillar, and denatured states using one and two dimensional {1H}-13C solid-state NMR spectroscopy. We interpret 13C chemical shift variations in terms of dihedral angle conformation changes. Our data show that fibrillogenesis increases the side chain and backbone structural complexity. Nevertheless, only three to five rotameric equilibria are found for each amino acid residue, indicating a relatively low structural heterogeneity of collagen upon fibrillogenesis. Using side chain statistical data, we calculate equilibrium constants for a great number of amino acid residues. Moreover, based on a 13C quantitative spectrum, we estimate the percentage of residues implicated in each equilibrium. Our data indicate that fibril formation greatly affects hydroxyproline and proline prolyl pucker ring conformation. Finally, we discuss the implication of these structural data and propose a model in which the attractive force of fibrillogenesis comes from a structural reorganization of 10 to 15% of the amino acids. These results allow us to further understand the self-assembling process and fibrillar structure of collagen. PMID:23341452

  11. Loss of conformational entropy in protein folding calculated using realistic ensembles and its implications for NMR-based calculations

    PubMed Central

    Baxa, Michael C.; Haddadian, Esmael J.; Jumper, John M.; Freed, Karl F.; Sosnick, Tobin R.

    2014-01-01

    The loss of conformational entropy is a major contribution in the thermodynamics of protein folding. However, accurate determination of the quantity has proven challenging. We calculate this loss using molecular dynamic simulations of both the native protein and a realistic denatured state ensemble. For ubiquitin, the total change in entropy is TΔSTotal = 1.4 kcal⋅mol−1 per residue at 300 K with only 20% from the loss of side-chain entropy. Our analysis exhibits mixed agreement with prior studies because of the use of more accurate ensembles and contributions from correlated motions. Buried side chains lose only a factor of 1.4 in the number of conformations available per rotamer upon folding (ΩU/ΩN). The entropy loss for helical and sheet residues differs due to the smaller motions of helical residues (TΔShelix−sheet = 0.5 kcal⋅mol−1), a property not fully reflected in the amide N-H and carbonyl C=O bond NMR order parameters. The results have implications for the thermodynamics of folding and binding, including estimates of solvent ordering and microscopic entropies obtained from NMR. PMID:25313044

  12. Distinctive receptor binding properties of the surface glycoprotein of a natural feline leukemia virus isolate with unusual disease spectrum.

    PubMed

    Bolin, Lisa L; Chandhasin, Chandtip; Lobelle-Rich, Patricia A; Albritton, Lorraine M; Levy, Laura S

    2011-05-13

    Feline leukemia virus (FeLV)-945, a member of the FeLV-A subgroup, was previously isolated from a cohort of naturally infected cats. An unusual multicentric lymphoma of non-T-cell origin was observed in natural and experimental infection with FeLV-945. Previous studies implicated the FeLV-945 surface glycoprotein (SU) as a determinant of disease outcome by an as yet unknown mechanism. The present studies demonstrate that FeLV-945 SU confers distinctive properties of binding to the cell surface receptor. Virions bearing the FeLV-945 Env protein were observed to bind the cell surface receptor with significantly increased efficiency, as was soluble FeLV-945 SU protein, as compared to the corresponding virions or soluble protein from a prototype FeLV-A isolate. SU proteins cloned from other cohort isolates exhibited increased binding efficiency comparable to or greater than FeLV-945 SU. Mutational analysis implicated a domain containing variable region B (VRB) to be the major determinant of increased receptor binding, and identified a single residue, valine 186, to be responsible for the effect. The FeLV-945 SU protein binds its cell surface receptor, feTHTR1, with significantly greater efficiency than does that of prototype FeLV-A (FeLV-A/61E) when present on the surface of virus particles or in soluble form, demonstrating a 2-fold difference in the relative dissociation constant. The results implicate a single residue, valine 186, as the major determinant of increased binding affinity. Computational modeling suggests a molecular mechanism by which residue 186 interacts with the receptor-binding domain through residue glutamine 110 to effect increased binding affinity. Through its increased receptor binding affinity, FeLV-945 SU might function in pathogenesis by increasing the rate of virus entry and spread in vivo, or by facilitating entry into a novel target cell with a low receptor density.

  13. Toxicological Implications and Inflammatory Response in Human Lymphocytes Challenged with Oxytetracycline

    PubMed Central

    Di Cerbo, A.; Palatucci, A. T.; Rubino, V.; Centenaro, S.; Giovazzino, A.; Fraccaroli, E.; Cortese, L.; Ruggiero, G.; Guidetti, G.; Canello, S.

    2015-01-01

    ABSTRACT Antibiotics are widely used in zoo technical and veterinary practices as feed supplementation to ensure wellness of farmed animals and livestock. Several evidences have been suggesting both the toxic role for tetracyclines, particularly for oxytetracycline (OTC). This potential toxicity appears of great relevance for human nutrition and for domestic animals. This study aimed to extend the evaluation of such toxicity. The biologic impact of the drug was assessed by evaluating the proinflammatory effect of OTC and their bone residues on cytokine secretion by in vitro human peripheral blood lymphocytes. Our results showed that both OTC and OTC‐bone residues significantly induced the T lymphocyte and non‐T cell secretion of interferon (IFN)‐γ, as cytokine involved in inflammatory responses in humans as well as in animals. These results may suggest a possible implication for new potential human and animal health risks depending on the entry of tetracyclines in the food‐processing chain. PMID:26537863

  14. Regional medicine use in the Rhine basin and its implication on water quality

    NASA Astrophysics Data System (ADS)

    Hut, R. W.; Houtman, C. J.; van de Giesen, N. C.; de Jong, S. A. P.

    2012-04-01

    Do Germans use more painkillers than the French? Pharmaceuticals used in our Western society form an important group of contaminants found in the river Rhine. As this river is the drinking water source for millions of Europeans, methods to investigate relations between drug use and their penetration in the watercycle are of great importance. An analysis is presented relating medicine residue in the river Rhine to the number of people living in its watershed. An extensive measuring campaign was carried out, sampling river Rhine at 42 locations from its source to the start of its delta (Dutch-German border). The samples were analyzed for 40 common pharmaceuticals. Using discharge data, digital elevation models and demographic data from Eurostat, the relation between total load of drug residue and population was analyzed. Results show regional differences in drug use as well as implications for (down)stream water quality concerning contamination with pharmaceuticals.

  15. Crystal structure of the TRIM25 B30.2 (PRYSPRY) domain: a key component of antiviral signalling.

    PubMed

    D'Cruz, Akshay A; Kershaw, Nadia J; Chiang, Jessica J; Wang, May K; Nicola, Nicos A; Babon, Jeffrey J; Gack, Michaela U; Nicholson, Sandra E

    2013-12-01

    TRIM (tripartite motif) proteins primarily function as ubiquitin E3 ligases that regulate the innate immune response to infection. TRIM25 [also known as Efp (oestrogen-responsive finger protein)] has been implicated in the regulation of oestrogen receptor α signalling and in the regulation of innate immune signalling via RIG-I (retinoic acid-inducible gene-I). RIG-I senses cytosolic viral RNA and is subsequently ubiquitinated by TRIM25 at its N-terminal CARDs (caspase recruitment domains), leading to type I interferon production. The interaction with RIG-I is dependent on the TRIM25 B30.2 domain, a protein-interaction domain composed of the PRY and SPRY tandem sequence motifs. In the present study we describe the 1.8 Å crystal structure of the TRIM25 B30.2 domain, which exhibits a typical B30.2/SPRY domain fold comprising two N-terminal α-helices, thirteen β-strands arranged into two β-sheets and loop regions of varying lengths. A comparison with other B30.2/SPRY structures and an analysis of the loop regions identified a putative binding pocket, which is likely to be involved in binding target proteins. This was supported by mutagenesis and functional analyses, which identified two key residues (Asp(488) and Trp(621)) in the TRIM25 B30.2 domain as being critical for binding to the RIG-I CARDs.

  16. Crystal structure of the TRIM25 B30.2 (PRYSPRY) domain: a key component of antiviral signalling

    PubMed Central

    D'Cruz, Akshay A.; Kershaw, Nadia J.; Chiang, Jessica J.; Wang, May K.; Nicola, Nicos A.; Babon, Jeffrey J.; Gack, Michaela U.; Nicholson, Sandra E.

    2014-01-01

    TRIM (tripartite motif) proteins primarily function as ubiquitin E3 ligases that regulate the innate immune response to infection. TRIM25 [also known as Efp (oestrogen-responsive finger protein)] has been implicated in the regulation of oestrogen receptor α signalling and in the regulation of innate immune signalling via RIG-I (retinoic acid-inducible gene-I). RIG-I senses cytosolic viral RNA and is subsequently ubiquitinated by TRIM25 at its N-terminal CARDs (caspase recruitment domains), leading to type I interferon production. The interaction with RIG-I is dependent on the TRIM25 B30.2 domain, a protein-interaction domain composed of the PRY and SPRY tandem sequence motifs. In the present study we describe the 1.8 Å crystal structure of the TRIM25 B30.2 domain, which exhibits a typical B30.2/SPRY domain fold comprising two N-terminal α-helices, thirteen β-strands arranged into two β-sheets and loop regions of varying lengths. A comparison with other B30.2/SPRY structures and an analysis of the loop regions identified a putative binding pocket, which is likely to be involved in binding target proteins. This was supported by mutagenesis and functional analyses, which identified two key residues (Asp488 and Trp621) in the TRIM25 B30.2 domain as being critical for binding to the RIG-I CARDs. PMID:24015671

  17. Evapotranspiration and favorable growing degree-days are key to tree height growth and ecosystem functioning: Meta-analyses of Pacific Northwest historical data.

    PubMed

    Liu, Yang; El-Kassaby, Yousry A

    2018-05-29

    While temperature and precipitation comprise important ecological filtering for native ranges of forest trees and are predisposing factors underlying forest ecosystem dynamics, the extent and severity of drought raises reasonable concerns for carbon storage and species diversity. Based on historical data from common garden experiments across the Pacific Northwest region, we developed non-linear niche models for height-growth trajectories of conifer trees at the sapling stage using annual or seasonal climatic variables. The correlations between virtual tree height for each locality and ecosystem functions were respectively assessed. Best-fitted models were composed of two distinct components: evapotranspiration and the degree-days disparity for temperature regimes between 5 °C and 18 °C (effective temperature sum and growth temperature, respectively). Tree height prediction for adaptive generalists (e.g., Pinus monticola, Thuja plicata) had smaller residuals than for specialists (e.g., Pinus contorta, Pseudotsuga menziesii), albeit a potential confounding factor - tree age. Discernably, there were linearly positive patterns between tree height growth and ecosystem functions (productivity, biomass and species diversity). Additionally, there was a minor effect of tree diversity on height growth in coniferous forests. This study uncovers the implication of key ecological filtering and increases our integrated understanding of how environmental cues affect tree stand growth, species dominance and ecosystem functions.

  18. Anion induced conformational preference of Cα NN motif residues in functional proteins.

    PubMed

    Patra, Piya; Ghosh, Mahua; Banerjee, Raja; Chakrabarti, Jaydeb

    2017-12-01

    Among different ligand binding motifs, anion binding C α NN motif consisting of peptide backbone atoms of three consecutive residues are observed to be important for recognition of free anions, like sulphate or biphosphate and participate in different key functions. Here we study the interaction of sulphate and biphosphate with C α NN motif present in different proteins. Instead of total protein, a peptide fragment has been studied keeping C α NN motif flanked in between other residues. We use classical force field based molecular dynamics simulations to understand the stability of this motif. Our data indicate fluctuations in conformational preferences of the motif residues in absence of the anion. The anion gives stability to one of these conformations. However, the anion induced conformational preferences are highly sequence dependent and specific to the type of anion. In particular, the polar residues are more favourable compared to the other residues for recognising the anion. © 2017 Wiley Periodicals, Inc.

  19. Fibrillar dimer formation of islet amyloid polypeptides

    DOE PAGES

    Chiu, Chi -cheng; de Pablo, Juan J.

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimentalmore » and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.« less

  20. Fibrillar dimer formation of islet amyloid polypeptides

    NASA Astrophysics Data System (ADS)

    Chiu, Chi-cheng; de Pablo, Juan J.

    2015-09-01

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 - 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 - 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  1. Prediction of interface residue based on the features of residue interaction network.

    PubMed

    Jiao, Xiong; Ranganathan, Shoba

    2017-11-07

    Protein-protein interaction plays a crucial role in the cellular biological processes. Interface prediction can improve our understanding of the molecular mechanisms of the related processes and functions. In this work, we propose a classification method to recognize the interface residue based on the features of a weighted residue interaction network. The random forest algorithm is used for the prediction and 16 network parameters and the B-factor are acting as the element of the input feature vector. Compared with other similar work, the method is feasible and effective. The relative importance of these features also be analyzed to identify the key feature for the prediction. Some biological meaning of the important feature is explained. The results of this work can be used for the related work about the structure-function relationship analysis via a residue interaction network model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Proposal for management and alkalinity transformation of bauxite residue in China.

    PubMed

    Xue, Shengguo; Kong, Xiangfeng; Zhu, Feng; Hartley, William; Li, Xiaofei; Li, Yiwei

    2016-07-01

    Bauxite residue is a hazardous solid waste produced during the production of alumina. Its high alkalinity is a potential threat to the environment which may disrupt the surrounding ecological balance of its disposal areas. China is one of the major global producers of alumina and bauxite residue, but differences in alkalinity and associated chemistry exist between residues from China and those from other countries. A detailed understanding of the chemistry of bauxite residue remains the key to improving its management, both in terms of minimizing environmental impacts and reducing its alkaline properties. The nature of bauxite residue and the chemistry required for its transformation are still poorly understood. This review focuses on various transformation processes generated from the Bayer process, sintering process, and combined Bayer-sintering process in China. Problems associated with transformation mechanisms, technical methods, and relative merits of these technologies are reviewed, while current knowledge gaps and research priorities are recommended. Future research should focus on transformation chemistry and its associated mechanisms and for the development of a clear and economic process to reduce alkalinity and soda in bauxite residue.

  3. ROSICS: CHEMISTRY AND PROTEOMICS OF CYSTEINE MODIFICATIONS IN REDOX BIOLOGY

    PubMed Central

    Kim, Hee-Jung; Ha, Sura; Lee, Hee Yoon; Lee, Kong-Joo

    2015-01-01

    Post-translational modifications (PTMs) occurring in proteins determine their functions and regulations. Proteomic tools are available to identify PTMs and have proved invaluable to expanding the inventory of these tools of nature that hold the keys to biological processes. Cysteine (Cys), the least abundant (1–2%) of amino acid residues, are unique in that they play key roles in maintaining stability of protein structure, participating in active sites of enzymes, regulating protein function and binding to metals, among others. Cys residues are major targets of reactive oxygen species (ROS), which are important mediators and modulators of various biological processes. It is therefore necessary to identify the Cys-containing ROS target proteins, as well as the sites and species of their PTMs. Cutting edge proteomic tools which have helped identify the PTMs at reactive Cys residues, have also revealed that Cys residues are modified in numerous ways. These modifications include formation of disulfide, thiosulfinate and thiosulfonate, oxidation to sulfenic, sulfinic, sulfonic acids and thiosulfonic acid, transformation to dehydroalanine (DHA) and serine, palmitoylation and farnesylation, formation of chemical adducts with glutathione, 4-hydroxynonenal and 15-deoxy PGJ2, and various other chemicals. We present here, a review of relevant ROS biology, possible chemical reactions of Cys residues and details of the proteomic strategies employed for rapid, efficient and sensitive identification of diverse and novel PTMs involving reactive Cys residues of redox-sensitive proteins. We propose a new name, “ROSics,” for the science which describes the principles of mode of action of ROS at molecular levels. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc. Rapid Commun. Mass Spec Rev 34:184–208, 2015. PMID:24916017

  4. Functional elements on SIRPalpha IgV domain mediate cell surface binding to CD47.

    PubMed

    Liu, Yuan; Tong, Qiao; Zhou, Yubin; Lee, Hsiau-Wei; Yang, Jenny J; Bühring, Hans-Jörg; Chen, Yi-Tien; Ha, Binh; Chen, Celia X-J; Yang, Yang; Zen, Ke

    2007-01-19

    SIRPalpha and SIRPbeta1, the two major isoforms of the signal regulatory protein (SIRP) family, are co-expressed in human leukocytes but mediate distinct extracellular binding interactions and divergent cell signaling responses. Previous studies have demonstrated that binding of SIRPalpha with CD47, another important cell surface molecule, through the extracellular IgV domain regulates important leukocyte functions including macrophage recognition, leukocyte adhesion and transmigration. Although SIRPbeta1 shares highly homologous extracellular IgV structure with SIRPalpha, it does not bind to CD47. Here, we defined key amino acid residues exclusively expressing in the IgV domain of SIRPalpha, but not SIRPbeta1, which determine the extracellular binding interaction of SIRPalpha to CD47. These key residues include Gln67, a small hydrophobic amino acid (Ala or Val) at the 57th position and Met102. We found that Gln67 and Ala/Val57 are critical. Mutation of either of these residues abates SIRPalpha directly binding to CD47. Functional cell adhesion and leukocyte transmigration assays further demonstrated central roles of Gln67 and Ala/Val57 in SIRPalpha extracellular binding mediated cell interactions and cell migration. Another SIRPalpha-specific residue, Met102, appears to assist SIRPalpha IgV binding through Gln67 and Ala/Val57. An essential role of these amino acid residues in SIRPalpha binding to CD47 was further confirmed by introducing these residues into the SIRPbeta1 IgV domain, which dramatically converts SIRPbeta1 into a CD47-binding molecule. Our results thus revealed the molecular basis by which SIRPalpha binds to CD47 and shed new light into the structural mechanisms of SIRP isoform mediated distinctive extracellular interactions and cellular responses.

  5. Residue frequencies and pairing preferences at protein-protein interfaces.

    PubMed

    Glaser, F; Steinberg, D M; Vakser, I A; Ben-Tal, N

    2001-05-01

    We used a nonredundant set of 621 protein-protein interfaces of known high-resolution structure to derive residue composition and residue-residue contact preferences. The residue composition at the interfaces, in entire proteins and in whole genomes correlates well, indicating the statistical strength of the data set. Differences between amino acid distributions were observed for interfaces with buried surface area of less than 1,000 A(2) versus interfaces with area of more than 5,000 A(2). Hydrophobic residues were abundant in large interfaces while polar residues were more abundant in small interfaces. The largest residue-residue preferences at the interface were recorded for interactions between pairs of large hydrophobic residues, such as Trp and Leu, and the smallest preferences for pairs of small residues, such as Gly and Ala. On average, contacts between pairs of hydrophobic and polar residues were unfavorable, and the charged residues tended to pair subject to charge complementarity, in agreement with previous reports. A bootstrap procedure, lacking from previous studies, was used for error estimation. It showed that the statistical errors in the set of pairing preferences are generally small; the average standard error is approximately 0.2, i.e., about 8% of the average value of the pairwise index (2.9). However, for a few pairs (e.g., Ser-Ser and Glu-Asp) the standard error is larger in magnitude than the pairing index, which makes it impossible to tell whether contact formation is favorable or unfavorable. The results are interpreted using physicochemical factors and their implications for the energetics of complex formation and for protein docking are discussed. Proteins 2001;43:89-102. Copyright 2001 Wiley-Liss, Inc.

  6. An immunogen containing four tandem 10E8 epitope repeats with exposed key residues induces antibodies that neutralize HIV-1 and activates an ADCC reporter gene

    PubMed Central

    Sun, Zhiwu; Zhu, Yun; Wang, Qian; Ye, Ling; Dai, Yanyan; Su, Shan; Yu, Fei; Ying, Tianlei; Yang, Chinglai; Jiang, Shibo; Lu, Lu

    2016-01-01

    After three decades of intensive research efforts, an effective vaccine against HIV-1 remains to be developed. Several broadly neutralizing antibodies to HIV-1, such as 10E8, recognize the membrane proximal external region (MPER) of the HIV-1 gp41 protein. Thus, the MPER is considered to be a very important target for vaccine design. However, the MPER segment has very weak immunogenicity and tends to insert its epitope residues into the cell membrane, thereby avoiding antibody binding. To address this complication in vaccine development, we herein designed a peptide, designated 10E8-4P, containing four copies of the 10E8 epitope as an immunogen. As predicted by structural simulation, 10E8-4P exhibits a well-arranged tandem helical conformation, with the key residues in the 10E8 epitope oriented at different angles, thus suggesting that some of these key residues may be exposed outside of the lipid membrane. Compared with a peptide containing a single 10E8 epitope (10E8-1P), 10E8-4P not only exhibited better antigenicity but also elicited neutralizing antibody response against HIV-1 pseudoviruses, whereas 10E8-1P could not induce detectable neutralizing antibody response. Importantly, antibodies elicited by 10E8-4P also possessed a strong ability to activate an antibody-dependent cell-mediated cytotoxicity (ADCC) reporter gene, thus suggesting that they may have ADCC activity. Therefore, this strategy shows promise for further optimization and application in future HIV-1 vaccine design. PMID:27329850

  7. Arginine 26 and aspartic acid 69 of the regulatory subunit are key residues of subunits interaction of acetohydroxyacid synthase isozyme III from E. coli.

    PubMed

    Zhao, Yuefang; Wen, Xin; Niu, Congwei; Xi, Zhen

    2012-11-05

    Acetohydroxyacid synthase (AHAS), which catalyzes the first step in the biosynthesis of branched-chain amino acids, is composed of catalytic and regulatory subunits. The enzyme exhibits full activity only when the regulatory subunit (RSU) binds to the catalytic subunit (CSU). However, the crystal structure of the holoenzyme has not been reported yet, and the molecular interaction between the CSU and RSU is also unknown. Herein, we introduced a global-surface, site-directed labeling scanning method to determine the potential interaction region of the RSU. This approach relies on the insertion of a bulky fluorescent probe at the designated site on the surface of the RSU to cause a dramatic change in holoenzyme activity by perturbing subunit interaction. Then, the key amino acid residues in the potential interaction regions were identified by site-directed mutagenesis. Compared to the wild-type, the single-point mutants R26A and D69A showed 54 and 64 % activity, respectively, whereas the double mutant (R26A+D69A) gave 14 %, thus suggesting that residues Arg26 and Asp69 are the key residues of subunit interaction with cooperative action. Additionally, the results of GST pull-down assays and pH-dependence experiments suggested that polar interaction is the main force for subunits interaction. A plausible protein-protein interaction model of the holoenzyme of Escherichia coli AHAS III is proposed, based on the mutagenesis and protein docking studies. The protocol established here should be useful for the identification of the molecular interactions between proteins. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Comparison of transhumeral socket designs utilizing patient assessment and in vivo skeletal and socket motion tracking: a case study.

    PubMed

    Resnik, Linda; Patel, Tarpit; Cooney, Shane G; Crisco, Joseph J; Fantini, Christopher

    2016-01-01

    This case study compares the impact of two prosthetic socket designs, a "traditional" transhumeral (TH) socket design and a Compression Released Stabilized (CRS) socket. A CRS socket was compared to the existing socket of two persons with transhumeral amputation. Comparisons included assessments of patient comfort and satisfaction with fit, as well as dynamic kinematic assessment using a novel high-speed, high-resolution, bi-plane video radiography system (XROMM, for X-ray Reconstruction of Moving Morphology). Subjects were more satisfied with the comfort of the traditional sockets, although they had positive impressions about aspects of the fit and style of the CRS socket, and thought that it provided better control. Dynamic kinematic assessment revealed that the CRS socket provided better control of the residual limb within the socket, and had less slippage as compared to a traditional TH socket design. The TH CRS socket provided better control of the residual limb within the socket, and had less slippage. However, participants were less satisfied with the comfort and overall utility of the CRS socket, and stated that additional fitting visits/modifications to the CRS socket were needed. It is possible that satisfaction with the CRS socket may have improved with prosthetic adjustment and more acclimation time. Implications for Rehabilitation A comfortable, good fitting prosthetic socket is the key factor in determining how long (or if) an upper limb amputee can tolerate wearing a prosthesis. This case series was a comparison of two socket designs, a 'traditional' socket design and a Compression Released Stabilized (CRS) socket design in persons with transhumeral amputation. The CRS socket provided better control of the residual limb within the socket, and had less slippage. However, its tightness made it more difficult to don. Both subjects were less satisfied with the comfort and overall utility of the CRS socket. However, satisfaction might have been improved with additional fitting visits and more acclimation time.

  9. Conjugated fatty acid synthesis: residues 111 and 115 influence product partitioning of Momordica charantia conjugase.

    PubMed

    Rawat, Richa; Yu, Xiao-Hong; Sweet, Marie; Shanklin, John

    2012-05-11

    Conjugated linolenic acids (CLNs), 18:3 Δ(9,11,13), lack the methylene groups found between the double bonds of linolenic acid (18:3 Δ(9,12,15)). CLNs are produced by conjugase enzymes that are homologs of the oleate desaturases FAD2. The goal of this study was to map the domain(s) within the Momordica charantia conjugase (FADX) responsible for CLN formation. To achieve this, a series of Momordica FADX-Arabidopsis FAD2 chimeras were expressed in the Arabidopsis fad3fae1 mutant, and the transformed seeds were analyzed for the accumulation of CLN. These experiments identified helix 2 and the first histidine box as a determinant of conjugase product partitioning into punicic acid (18:3 Δ(9cis,11trans,13cis)) or α-eleostearic acid (18:3 Δ(9cis,11trans,13trans)). This was confirmed by analysis of a FADX mutant containing six substitutions in which the sequence of helix 2 and first histidine box was converted to that of FAD2. Each of the six FAD2 substitutions was individually converted back to the FADX equivalent identifying residues 111 and 115, adjacent to the first histidine box, as key determinants of conjugase product partitioning. Additionally, expression of FADX G111V and FADX G111V/D115E resulted in an approximate doubling of eleostearic acid accumulation to 20.4% and 21.2%, respectively, compared with 9.9% upon expression of the native Momordica FADX. Like the Momordica conjugase, FADX G111V and FADX D115E produced predominantly α-eleostearic acid and little punicic acid, but the FADX G111V/D115E double mutant produced approximately equal amounts of α-eleostearic acid and its isomer, punicic acid, implicating an interactive effect of residues 111 and 115 in punicic acid formation.

  10. Characterization of a Cross-Linked Protein–Nucleic Acid Substrate Radical in the Reaction Catalyzed by RlmN

    PubMed Central

    2015-01-01

    RlmN and Cfr are methyltransferases/methylsynthases that belong to the radical S-adenosylmethionine superfamily of enzymes. RlmN catalyzes C2 methylation of adenosine 2503 (A2503) of 23S rRNA, while Cfr catalyzes C8 methylation of the exact same nucleotide, and will subsequently catalyze C2 methylation if the site is unmethylated. A key feature of the unusual mechanisms of catalysis proposed for these enzymes is the attack of a methylene radical, derived from a methylcysteine residue, onto the carbon center undergoing methylation to generate a paramagnetic protein–nucleic acid cross-linked species. This species has been thoroughly characterized during Cfr-dependent C8 methylation, but does not accumulate to detectible levels in RlmN-dependent C2 methylation. Herein, we show that inactive C118S/A variants of RlmN accumulate a substrate-derived paramagnetic species. Characterization of this species by electron paramagnetic resonance spectroscopy in concert with strategic isotopic labeling shows that the radical is delocalized throughout the adenine ring of A2503, although predominant spin density is on N1 and N3. Moreover, 13C hyperfine interactions between the radical and the methylene carbon of the formerly [methyl-13C]Cys355 residue show that the radical species exists in a covalent cross-link between the protein and the nucleic acid substrate. X-ray structures of RlmN C118A show that, in the presence of SAM, the substitution does not alter the active site structure compared to that of the wild-type enzyme. Together, these findings have new mechanistic implications for the role(s) of C118 and its counterpart in Cfr (C105) in catalysis, and suggest involvement of the residue in resolution of the cross-linked species via a radical mediated process. PMID:24806349

  11. The TDP-43 N-terminal domain structure at high resolution.

    PubMed

    Mompeán, Miguel; Romano, Valentina; Pantoja-Uceda, David; Stuani, Cristiana; Baralle, Francisco E; Buratti, Emanuele; Laurents, Douglas V

    2016-04-01

    Transactive response DNA-binding protein 43 kDa (TDP-43) is an RNA transporting and processing protein whose aberrant aggregates are implicated in neurodegenerative diseases. The C-terminal domain of this protein plays a key role in mediating this process. However, the N-terminal domain (residues 1-77) is needed to effectively recruit TDP-43 monomers into this aggregate. In the present study, we report, for the first time, the essentially complete (1) H, (15) N and (13) C NMR assignments and the structure of the N-terminal domain determined on the basis of 26 hydrogen-bond, 60 torsion angle and 1058 unambiguous NOE structural restraints. The structure consists of an α-helix and six β-strands. Two β-strands form a β-hairpin not seen in the ubiquitin fold. All Pro residues are in the trans conformer and the two Cys are reduced and distantly separated on the surface of the protein. The domain has a well defined hydrophobic core composed of F35, Y43, W68, Y73 and 17 aliphatic side chains. The fold is topologically similar to the reported structure of axin 1. The protein is stable and no denatured species are observed at pH 4 and 25 °C. At 4 kcal·mol(-1) , the conformational stability of the domain, as measured by hydrogen/deuterium exchange, is comparable to ubiquitin (6 kcal·mol(-1) ). The β-strands, α-helix, and three of four turns are generally rigid, although the loop formed by residues 47-53 is mobile, as determined by model-free analysis of the (15) N{(1) H}NOE, as well as the translational and transversal relaxation rates. Structural data have been deposited in the Protein Data Bank under accession code: 2n4p. The NMR assignments have been deposited in the BMRB database under access code: 25675. © 2016 Federation of European Biochemical Societies.

  12. Characterization of a Cross-Linked Protein-Nucleic Acid Substrate Radical in the Reaction Catalyzed by RlmN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silakov, Alexey; Grove, Tyler L.; Radle, Matthew I.

    2014-08-14

    RlmN and Cfr are methyltransferases/methylsynthases that belong to the radical S-adenosylmethionine superfamily of enzymes. RlmN catalyzes C2 methylation of adenosine 2503 (A2503) of 23S rRNA, while Cfr catalyzes C8 methylation of the exact same nucleotide, and will subsequently catalyze C2 methylation if the site is unmethylated. A key feature of the unusual mechanisms of catalysis proposed for these enzymes is the attack of a methylene radical, derived from a methylcysteine residue, onto the carbon center undergoing methylation to generate a paramagnetic protein–nucleic acid cross-linked species. This species has been thoroughly characterized during Cfr-dependent C8 methylation, but does not accumulate tomore » detectible levels in RlmN-dependent C2 methylation. Herein, we show that inactive C118S/A variants of RlmN accumulate a substrate-derived paramagnetic species. Characterization of this species by electron paramagnetic resonance spectroscopy in concert with strategic isotopic labeling shows that the radical is delocalized throughout the adenine ring of A2503, although predominant spin density is on N1 and N3. Moreover, 13C hyperfine interactions between the radical and the methylene carbon of the formerly [methyl- 13C]Cys355 residue show that the radical species exists in a covalent cross-link between the protein and the nucleic acid substrate. X-ray structures of RlmN C118A show that, in the presence of SAM, the substitution does not alter the active site structure compared to that of the wild-type enzyme. Together, these findings have new mechanistic implications for the role(s) of C118 and its counterpart in Cfr (C105) in catalysis, and suggest involvement of the residue in resolution of the cross-linked species via a radical mediated process« less

  13. Structure of the Escherichia coli O157:H7 heme oxygenase ChuS in complex with heme and enzymatic inactivation by mutation of the heme coordinating residue His-193

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suits,M.; Jaffer, N.; Jia, Z.

    2006-01-01

    Heme oxygenases catalyze the oxidation of heme to biliverdin, CO, and free iron. For pathogenic microorganisms, heme uptake and degradation are critical mechanisms for iron acquisition that enable multiplication and survival within hosts they invade. Here we report the first crystal structure of the pathogenic Escherichia coli O157:H7 heme oxygenase ChuS in complex with heme at 1.45 {angstrom} resolution. When compared with other heme oxygenases, ChuS has a unique fold, including structural repeats and a {beta}-sheet core. Not surprisingly, the mode of heme coordination by ChuS is also distinct, whereby heme is largely stabilized by residues from the C-terminal domain,more » assisted by a distant arginine from the N-terminal domain. Upon heme binding, there is no large conformational change beyond the fine tuning of a key histidine (His-193) residue. Most intriguingly, in contrast to other heme oxygenases, the propionic side chains of heme are orientated toward the protein core, exposing the {alpha}-meso carbon position where O{sub 2} is added during heme degradation. This unique orientation may facilitate presentation to an electron donor, explaining the significantly reduced concentration of ascorbic acid needed for the reaction. Based on the ChuS-heme structure, we converted the histidine residue responsible for axial coordination of the heme group to an asparagine residue (H193N), as well as converting a second histidine to an alanine residue (H73A) for comparison purposes. We employed spectral analysis and CO measurement by gas chromatography to analyze catalysis by ChuS, H193N, and H73A, demonstrating that His-193 is the key residue for the heme-degrading activity of ChuS.« less

  14. Identification of a key structural element for protein folding within beta-hairpin turns.

    PubMed

    Kim, Jaewon; Brych, Stephen R; Lee, Jihun; Logan, Timothy M; Blaber, Michael

    2003-05-09

    Specific residues in a polypeptide may be key contributors to the stability and foldability of the unique native structure. Identification and prediction of such residues is, therefore, an important area of investigation in solving the protein folding problem. Atypical main-chain conformations can help identify strains within a folded protein, and by inference, positions where unique amino acids may have a naturally high frequency of occurrence due to favorable contributions to stability and folding. Non-Gly residues located near the left-handed alpha-helical region (L-alpha) of the Ramachandran plot are a potential indicator of structural strain. Although many investigators have studied mutations at such positions, no consistent energetic or kinetic contributions to stability or folding have been elucidated. Here we report a study of the effects of Gly, Ala and Asn substitutions found within the L-alpha region at a characteristic position in defined beta-hairpin turns within human acidic fibroblast growth factor, and demonstrate consistent effects upon stability and folding kinetics. The thermodynamic and kinetic data are compared to available data for similar mutations in other proteins, with excellent agreement. The results have identified that Gly at the i+3 position within a subset of beta-hairpin turns is a key contributor towards increasing the rate of folding to the native state of the polypeptide while leaving the rate of unfolding largely unchanged.

  15. Antibodies Targeting EMT

    DTIC Science & Technology

    2017-10-01

    impact substrate usage in AKRs . The blue residues are variable positions between AKR1C1-4. These residues are near the active site and may play a ...with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS...and diagnostic biomarkers. We have developed a new technique allowing for discovery of new antibodies that disrupt a key process in cancer progression

  16. Prediction of active sites of enzymes by maximum relevance minimum redundancy (mRMR) feature selection.

    PubMed

    Gao, Yu-Fei; Li, Bi-Qing; Cai, Yu-Dong; Feng, Kai-Yan; Li, Zhan-Dong; Jiang, Yang

    2013-01-27

    Identification of catalytic residues plays a key role in understanding how enzymes work. Although numerous computational methods have been developed to predict catalytic residues and active sites, the prediction accuracy remains relatively low with high false positives. In this work, we developed a novel predictor based on the Random Forest algorithm (RF) aided by the maximum relevance minimum redundancy (mRMR) method and incremental feature selection (IFS). We incorporated features of physicochemical/biochemical properties, sequence conservation, residual disorder, secondary structure and solvent accessibility to predict active sites of enzymes and achieved an overall accuracy of 0.885687 and MCC of 0.689226 on an independent test dataset. Feature analysis showed that every category of the features except disorder contributed to the identification of active sites. It was also shown via the site-specific feature analysis that the features derived from the active site itself contributed most to the active site determination. Our prediction method may become a useful tool for identifying the active sites and the key features identified by the paper may provide valuable insights into the mechanism of catalysis.

  17. Behavioural sensitivity of a key Southern Ocean species (Antarctic krill, Euphausia superba) to p,p'-DDE exposure.

    PubMed

    Poulsen, Anita H; Kawaguchi, So; King, Catherine K; King, Robert A; Bengtson Nash, Susan M

    2012-01-01

    Persistent organic pollutants (POPs) have been frequently measured throughout the Southern Ocean food web for which little information is available to assess the potential risks of POP exposure. The current study evaluated the toxicological sensitivity of a key Southern Ocean species, Antarctic krill, to aqueous exposure of p,p'-dichlorodiphenyl dichloroethylene (p,p'-DDE). Behavioural endpoints were used as indicators of sublethal toxicity. Immediate behavioural responses (partial immobility and tail flicking) most likely reflect neurotoxicity, while the p,p'-DDE body residue causing a median level of sublethal toxicity in Antarctic krill following 96h exposure (IEC50(sublethal toxicity)=3.9±0.21mmol/kg lipid weight) is comparable to those known to cause sublethal narcosis in temperate aquatic species. Critical body residues (CBRs) were more reproducible across tests than effective seawater concentrations. These findings support the concept of the CBR approach, that effective tissue residues are comparable across species and geographical ranges despite differences in environmental factors. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. The complete amino acid sequence of human erythrocyte diphosphoglycerate mutase.

    PubMed Central

    Haggarty, N W; Dunbar, B; Fothergill, L A

    1983-01-01

    The complete amino acid sequence of human erythrocyte diphosphoglycerate mutase, comprising 239 residues, was determined. The sequence was deduced from the four cyanogen bromide fragments, and from the peptides derived from these fragments after digestion with a number of proteolytic enzymes. Comparison of this sequence with that of the yeast glycolytic enzyme, phosphoglycerate mutase, shows that these enzymes are 47% identical. Most, but not all, of the residues implicated as being important for the activity of the glycolytic mutase are conserved in the erythrocyte diphosphoglycerate mutase. PMID:6313356

  19. FpvA-mediated ferric pyoverdine uptake in Pseudomonas aeruginosa: identification of aromatic residues in FpvA implicated in ferric pyoverdine binding and transport.

    PubMed

    Shen, Jiang-Sheng; Geoffroy, Valérie; Neshat, Shadi; Jia, Zongchao; Meldrum, Allison; Meyer, Jean-Marie; Poole, Keith

    2005-12-01

    A number of aromatic residues were seen to cluster in the upper portion of the three-dimensional structure of the FpvA ferric pyoverdine receptor of Pseudomonas aeruginosa, reminiscent of the aromatic binding pocket for ferrichrome in the FhuA receptor of Escherichia coli. Alanine substitutions in three of these, W362, W391, and F795, markedly compromised ferric pyoverdine binding and transport, consistent with a role of FpvA in ferric pyoverdine recognition.

  20. Oxidation of a critical methionine modulates DNA binding of the Drosophila melanogaster high mobility group protein, HMG-D.

    PubMed

    Dow, L K; Changela, A; Hefner, H E; Churchill, M E

    1997-09-15

    HMG-D is a major high mobility group chromosomal protein present during early embryogenesis in Drosophila melanogaster. During overexpression and purification of HMG-D from E. coli, a key DNA binding residue, methionine 13, undergoes oxidation to methionine sulfoxide. Oxidation of this critical residue decreases the affinity of HMG-D for DNA by three-fold, altering the structure of the HMG-D-DNA complex without affecting the structure of the free protein. This work shows that minor modification of DNA intercalating residues may be used to fine tune the DNA binding affinity of HMG domain proteins.

  1. Hydrazinolysis of heparin and other glycosaminoglycans.

    PubMed Central

    Shaklee, P N; Conrad, H E

    1984-01-01

    Heparin, carboxy-group-reduced heparin, several sulphated monosaccharides and disaccharides formed from heparin, and a tetrasaccharide prepared from chondroitin sulphate were treated at 100 degrees C with hydrazine containing 1% hydrazine sulphate for periods sufficient to cause complete N-deacetylation of the N-acetylhexosamine residues. Under these hydrazinolysis conditions both the N-sulphate and the O-sulphate substituents on these compounds were completely stable. However, the uronic acid residues were converted into their hydrazide derivatives at rates that depended on the uronic acid structures. Unsubstituted L-iduronic acid residues reacted much more slowly than did unsubstituted D-glucuronic acid or 2-O-sulphated L-iduronic acid residues. The chemical modification of the carboxy groups resulted in a low rate of C-5 epimerization of the uronic acid residues. The hydrazinolysis reaction also caused a partial depolymerization of heparin but not of carboxy-group-reduced heparin. Treatment of the hydrazinolysis products with HNO2 at either pH 4 or pH 1.5 or with HIO3 converted the uronic acid hydrazides back into uronic acid residues. The use of the hydrazinolysis reaction in studies of the structures of uronic acid-containing polymers and the implications of the uronic acid hydrazide formation are discussed. PMID:6421280

  2. On the deterministic and stochastic use of hydrologic models

    USGS Publications Warehouse

    Farmer, William H.; Vogel, Richard M.

    2016-01-01

    Environmental simulation models, such as precipitation-runoff watershed models, are increasingly used in a deterministic manner for environmental and water resources design, planning, and management. In operational hydrology, simulated responses are now routinely used to plan, design, and manage a very wide class of water resource systems. However, all such models are calibrated to existing data sets and retain some residual error. This residual, typically unknown in practice, is often ignored, implicitly trusting simulated responses as if they are deterministic quantities. In general, ignoring the residuals will result in simulated responses with distributional properties that do not mimic those of the observed responses. This discrepancy has major implications for the operational use of environmental simulation models as is shown here. Both a simple linear model and a distributed-parameter precipitation-runoff model are used to document the expected bias in the distributional properties of simulated responses when the residuals are ignored. The systematic reintroduction of residuals into simulated responses in a manner that produces stochastic output is shown to improve the distributional properties of the simulated responses. Every effort should be made to understand the distributional behavior of simulation residuals and to use environmental simulation models in a stochastic manner.

  3. The interaction of fatigue cracks with a residual stress field using thermoelastic stress analysis and synchrotron X-ray diffraction experiments

    PubMed Central

    Amjad, Khurram; Asquith, David; Sebastian, Christopher M.; Wang, Wei-Chung

    2017-01-01

    This article presents an experimental study on the fatigue behaviour of cracks emanating from cold-expanded holes utilizing thermoelastic stress analysis (TSA) and synchrotron X-ray diffraction (SXRD) techniques with the aim of resolving the long-standing ambiguity in the literature regarding potential relaxation, or modification, of beneficial compressive residual stresses as a result of fatigue crack propagation. The crack growth rates are found to be substantially lower as the crack tip moved through the residual stress zone induced by cold expansion. The TSA results demonstrated that the crack tip plastic zones were reduced in size by the presence of the residual compressive stresses induced by cold expansion. The crack tip plastic zones were found to be insignificant in size in comparison to the residual stress zone resulting from cold expansion, which implied that they were unlikely to have had a notable impact on the surrounding residual stresses induced by cold expansion. The residual stress distributions measured along the direction of crack growth, using SXRD, showed no signs of any significant stress relaxation or redistribution, which validates the conclusions drawn from the TSA data. Fractographic analysis qualitatively confirmed the influence on crack initiation of the residual stresses induced by the cold expansion. It was found that the application of single compressive overload caused a relaxation, or reduction in the residual stresses, which has wider implications for improving the fatigue life. PMID:29291095

  4. Social and behavior change communication in the fight against malaria in Mozambique

    PubMed Central

    Arroz, Jorge Alexandre Harrison

    2017-01-01

    ABSTRACT Long-lasting insecticide-treated nets and/or indoor residual spraying, associated with case management, are key interventions in the control of malaria in Africa. The objective of this study is to comment on the role of social and behavior change communication as a potential key intervention in the control of malaria in Mozambique. PMID:28355338

  5. Investigating a method for reducing residual switch costs in cued task switching.

    PubMed

    Schneider, Darryl W

    2016-07-01

    Residual switch costs in cued task switching are performance decrements that occur despite a long cue-target interval (CTI) to prepare for a task switch. Verbruggen, Liefooghe, Vandierendonck, and Demanet (Journal of Experimental Psychology: Learning, Memory, and Cognition, 33; 342-356, 2007) showed that briefly presenting the cue during the CTI and leaving it absent after target onset yielded smaller residual switch costs than those obtained when the cue was available for the full CTI and remained present after target onset. The potential effects of cue availability during the CTI (full or partial) and cue status after target onset (present or absent) on residual switch costs were investigated in the present study. In Experiments 1 and 2, cue status was manipulated while holding cue availability constant. In Experiments 3 and 4, cue status and cue availability were manipulated factorially. Residual switch costs were obtained, but they were not modulated consistently by cue status or cue availability across experiments. In Experiment 5, a direct replication of one of Verbruggen and colleagues' experiments yielded divergent results. Implications for understanding task switching are discussed.

  6. Engineering of a target site-specific recombinase by a combined evolution- and structure-guided approach

    PubMed Central

    Abi-Ghanem, Josephine; Chusainow, Janet; Karimova, Madina; Spiegel, Christopher; Hofmann-Sieber, Helga; Hauber, Joachim; Buchholz, Frank; Pisabarro, M. Teresa

    2013-01-01

    Site-specific recombinases (SSRs) can perform DNA rearrangements, including deletions, inversions and translocations when their naive target sequences are placed strategically into the genome of an organism. Hence, in order to employ SSRs in heterologous hosts, their target sites have to be introduced into the genome of an organism before the enzyme can be practically employed. Engineered SSRs hold great promise for biotechnology and advanced biomedical applications, as they promise to extend the usefulness of SSRs to allow efficient and specific recombination of pre-existing, natural genomic sequences. However, the generation of enzymes with desired properties remains challenging. Here, we use substrate-linked directed evolution in combination with molecular modeling to rationally engineer an efficient and specific recombinase (sTre) that readily and specifically recombines a sequence present in the HIV-1 genome. We elucidate the role of key residues implicated in the molecular recognition mechanism and we present a rationale for sTre’s enhanced specificity. Combining evolutionary and rational approaches should help in accelerating the generation of enzymes with desired properties for use in biotechnology and biomedicine. PMID:23275541

  7. Actin filaments-A target for redox regulation.

    PubMed

    Wilson, Carlos; Terman, Jonathan R; González-Billault, Christian; Ahmed, Giasuddin

    2016-10-01

    Actin and its ability to polymerize into dynamic filaments is critical for the form and function of cells throughout the body. While multiple proteins have been characterized as affecting actin dynamics through noncovalent means, actin and its protein regulators are also susceptible to covalent modifications of their amino acid residues. In this regard, oxidation-reduction (Redox) intermediates have emerged as key modulators of the actin cytoskeleton with multiple different effects on cellular form and function. Here, we review work implicating Redox intermediates in post-translationally altering actin and discuss what is known regarding how these alterations affect the properties of actin. We also focus on two of the best characterized enzymatic sources of these Redox intermediates-the NADPH oxidase NOX and the flavoprotein monooxygenase MICAL-and detail how they have both been identified as altering actin, but share little similarity and employ different means to regulate actin dynamics. Finally, we discuss the role of these enzymes and redox signaling in regulating the actin cytoskeleton in vivo and highlight their importance for neuronal form and function in health and disease. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Type II protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in Arabidopsis thaliana.

    PubMed

    Hong, Sunghyun; Song, Hae-Ryong; Lutz, Kerry; Kerstetter, Randall A; Michael, Todd P; McClung, C Robertson

    2010-12-07

    Posttranslational modification is an important element in circadian clock function from cyanobacteria through plants and mammals. For example, a number of key clock components are phosphorylated and thereby marked for subsequent ubiquitination and degradation. Through forward genetic analysis we demonstrate that protein arginine methyltransferase 5 (PRMT5; At4g31120) is a critical determinant of circadian period in Arabidopsis. PRMT5 is coregulated with a set of 1,253 genes that shows alterations in phase of expression in response to entrainment to thermocycles versus photocycles in constant temperature. PRMT5 encodes a type II protein arginine methyltransferase that catalyzes the symmetric dimethylation of arginine residues (Rsme2). Rsme2 modification has been observed in many taxa, and targets include histones, components of the transcription complex, and components of the spliceosome. Neither arginine methylation nor PRMT5 has been implicated previously in circadian clock function, but the period lengthening associated with mutational disruption of prmt5 indicates that Rsme2 is a decoration important for the Arabidopsis clock and possibly for clocks in general.

  9. Structural and functional characterisation of ferret interleukin-2.

    PubMed

    Ren, Bin; McKinstry, William J; Pham, Tam; Newman, Janet; Layton, Daniel S; Bean, Andrew G; Chen, Zhenjun; Laurie, Karen L; Borg, Kathryn; Barr, Ian G; Adams, Timothy E

    2016-02-01

    While the ferret is a valuable animal model for a number of human viral infections, such as influenza, Hendra and Nipah, evaluating the cellular immune response following infection has been hampered by the lack of a number of species-specific immunological reagents. Interleukin 2 (IL-2) is one such key cytokine. Ferret recombinant IL-2 incorporating a C-terminal histidine tag was expressed and purified and the three-dimensional structure solved and refined at 1.89 Å by X-ray crystallography, which represents the highest resolution and first non-human IL-2 structure. While ferret IL-2 displays the classic cytokine fold of the four-helix bundle structure, conformational flexibility was observed at the second helix and its neighbouring region in the bundle, which may result in the disruption of the spatial arrangement of residues involved in receptor binding interactions, implicating subtle differences between ferret and human IL-2 when initiating biological functions. Ferret recombinant IL-2 stimulated the proliferation of ferret lymph node cells and induced the expression of mRNA for IFN-γ and Granzyme A. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  10. Transient oligomerization of the SARS-CoV N protein--implication for virus ribonucleoprotein packaging.

    PubMed

    Chang, Chung-ke; Chen, Chia-Min Michael; Chiang, Ming-hui; Hsu, Yen-lan; Huang, Tai-huang

    2013-01-01

    The nucleocapsid (N) phosphoprotein of the severe acute respiratory syndrome coronavirus (SARS-CoV) packages the viral genome into a helical ribonucleocapsid and plays a fundamental role during viral self-assembly. The N protein consists of two structural domains interspersed between intrinsically disordered regions and dimerizes through the C-terminal structural domain (CTD). A key activity of the protein is the ability to oligomerize during capsid formation by utilizing the dimer as a building block, but the structural and mechanistic bases of this activity are not well understood. By disulfide trapping technique we measured the amount of transient oligomers of N protein mutants with strategically located cysteine residues and showed that CTD acts as a primary transient oligomerization domain in solution. The data is consistent with the helical oligomer packing model of N protein observed in crystal. A systematic study of the oligomerization behavior revealed that altering the intermolecular electrostatic repulsion through changes in solution salt concentration or phosphorylation-mimicking mutations affects oligomerization propensity. We propose a biophysical mechanism where electrostatic repulsion acts as a switch to regulate N protein oligomerization.

  11. Actin filaments – a target for redox regulation

    PubMed Central

    Wilson, Carlos; Terman, Jonathan R.; González-Billault, Christian; Ahmed, Giasuddin

    2016-01-01

    Actin and its ability to polymerize into dynamic filaments is critical for the form and function of cells throughout the body. While multiple proteins have been characterized as affecting actin dynamics through non-covalent means, actin and its protein regulators are also susceptible to covalent modifications of their amino acid residues. In this regard, oxidation-reduction (Redox) intermediates have emerged as key modulators of the actin cytoskeleton with multiple different effects on cellular form and function. Here, we review work implicating Redox intermediates in post-translationally altering actin and discuss what is known regarding how these alterations affect the properties of actin. We also focus on two of the best characterized enzymatic sources of these Redox intermediates – the NADPH oxidase NOX and the flavoprotein monooxygenase MICAL – and detail how they have both been identified as altering actin, but share little similarity and employ different means to regulate actin dynamics. Finally, we discuss the role of these enzymes and redox signaling in regulating the actin cytoskeleton in vivo and highlight their importance for neuronal form and function in health and disease. PMID:27309342

  12. Novel structural and regulatory features of rhoptry secretory kinases in Toxoplasma gondii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Wei; Wernimont, Amy; Tang, Keliang

    2009-09-29

    Serine/threonine kinases secreted from rhoptry organelles constitute important virulence factors of Toxoplasma gondii. Rhoptry kinases are highly divergent and their structures and regulatory mechanism are hitherto unknown. Here, we report the X-ray crystal structures of two related pseudokinases named ROP2 and ROP8, which differ primarily in their substrate-binding site. ROP kinases contain a typical bilobate kinase fold and a novel N-terminal extension that both stabilizes the N-lobe and provides a unique means of regulation. Although ROP2 and ROP8 were catalytically inactive, they provided a template for homology modelling of the active kinase ROP18, a major virulence determinant of T. gondii.more » Autophosphorylation of key residues in the N-terminal extension resulted in ROP18 activation, which in turn phosphorylated ROP2 and ROP8. Mutagenesis and mass spectrometry experiments revealed that ROP18 was maximally activated when this phosphorylated N-terminus relieved autoinhibition resulting from extension of aliphatic side chains into the ATP-binding pocket. This novel means of regulation governs ROP kinases implicated in parasite virulence.« less

  13. Crystal Structure of Streptococcus pyogenes Cas1 and Its Interaction with Csn2 in the Type II CRISPR-Cas System.

    PubMed

    Ka, Donghyun; Lee, Hasup; Jung, Yi-Deun; Kim, Kyunggon; Seok, Chaok; Suh, Nayoung; Bae, Euiyoung

    2016-01-05

    CRISPRs and Cas proteins constitute an RNA-guided microbial immune system against invading nucleic acids. Cas1 is a universal Cas protein found in all three types of CRISPR-Cas systems, and its role is implicated in new spacer acquisition during CRISPR-mediated adaptive immunity. Here, we report the crystal structure of Streptococcus pyogenes Cas1 (SpCas1) in a type II CRISPR-Cas system and characterize its interaction with S. pyogenes Csn2 (SpCsn2). The SpCas1 structure reveals a unique conformational state distinct from type I Cas1 structures, resulting in a more extensive dimerization interface, a more globular overall structure, and a disruption of potential metal-binding sites for catalysis. We demonstrate that SpCas1 directly interacts with SpCsn2, and identify the binding interface and key residues for Cas complex formation. These results provide structural information for a type II Cas1 protein, and lay a foundation for studying multiprotein Cas complexes functioning in type II CRISPR-Cas systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Type II protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in Arabidopsis thaliana

    PubMed Central

    Hong, Sunghyun; Lutz, Kerry; Kerstetter, Randall A.; Michael, Todd P.; McClung, C. Robertson

    2010-01-01

    Posttranslational modification is an important element in circadian clock function from cyanobacteria through plants and mammals. For example, a number of key clock components are phosphorylated and thereby marked for subsequent ubiquitination and degradation. Through forward genetic analysis we demonstrate that protein arginine methyltransferase 5 (PRMT5; At4g31120) is a critical determinant of circadian period in Arabidopsis. PRMT5 is coregulated with a set of 1,253 genes that shows alterations in phase of expression in response to entrainment to thermocycles versus photocycles in constant temperature. PRMT5 encodes a type II protein arginine methyltransferase that catalyzes the symmetric dimethylation of arginine residues (Rsme2). Rsme2 modification has been observed in many taxa, and targets include histones, components of the transcription complex, and components of the spliceosome. Neither arginine methylation nor PRMT5 has been implicated previously in circadian clock function, but the period lengthening associated with mutational disruption of prmt5 indicates that Rsme2 is a decoration important for the Arabidopsis clock and possibly for clocks in general. PMID:21097700

  15. How Large Should the QM Region Be in QM/MM Calculations? The Case of Catechol O -Methyltransferase

    DOE PAGES

    Kulik, Heather J.; Zhang, Jianyu; Klinman, Judith P.; ...

    2016-10-05

    Hybrid quantum mechanical–molecular mechanical (QM/MM) simulations are widely used in studies of enzymatic catalysis. Until recently, it has been cost prohibitive to determine the asymptotic limit of key energetic and structural properties with respect to increasingly large QM regions. Here, leveraging recent advances in electronic structure efficiency and accuracy, we investigate catalytic properties in catechol O-methyltransferase, a prototypical methyltransferase critical to human health. Using QM regions ranging in size from reactants-only (64 atoms) to nearly one-third of the entire protein (940 atoms), we show that properties such as the activation energy approach within chemical accuracy of the large-QM asymptotic limitsmore » rather slowly, requiring approximately 500–600 atoms if the QM residues are chosen simply by distance from the substrate. This slow approach to asymptotic limit is due to charge transfer from protein residues to the reacting substrates. Our large QM/MM calculations enable identification of charge separation for fragments in the transition state as a key component of enzymatic methyl transfer rate enhancement. We introduce charge shift analysis that reveals the minimum number of protein residues (approximately 11–16 residues or 200–300 atoms for COMT) needed for quantitative agreement with large-QM simulations. The identified residues are not those that would be typically selected using criteria such as chemical intuition or proximity. These results provide a recipe for a more careful determination of QM region sizes in future QM/MM studies of enzymes.« less

  16. Molecular Modeling of the Structural and Dynamical Changes in Calcium Channel TRPV5 Induced by the African-Specific A563T Variation.

    PubMed

    Wang, Lingyun; Holmes, Ross P; Peng, Ji-Bin

    2016-03-01

    Transient receptor potential cation channels, vanilloid subfamily, member 5 (TRPV5) plays a key role in active Ca(2+) reabsorption in the kidney. Variations in TRPV5 occur at high frequency in African populations and may contribute to their higher efficiency of Ca(2+) reabsorption. One of the African specific variations, A563T, exhibits increased Ca(2+) transport ability. However, it is unclear how this variation influences the channel pore. On the basis of the structure of TRPV1, a TRPV5 model was generated to simulate the structural and dynamical changes induced by the A563T variation. On the basis of this model, amino acid residue 563 interacts with V540, which is one residue away from the key residue, D542, involved in Ca(2+) selectivity and Mg(2+) blockade. The A563T variation increases secondary structure stability and reduces dynamical motion of D542. In addition, the A563T variation alters the electrostatic potential of the outer surface of the pore. Differences in contact between selective filter residues and residue 563 and in electrostatic potential between the two TRPV5 variants were also observed in another model derived from an alternative alignment in the selective filters between TRPV5 and TRPV1. These findings indicate that the A563T variation induces structural, dynamical, and electrostatic changes in the TRPV5 pore, providing structural insight into the functional alterations associated with the A563T variation.

  17. U.S. commercial space policies - Implications for developing countries

    NASA Technical Reports Server (NTRS)

    Gillam, Isaac T., IV; Stone, Barbara A.

    1987-01-01

    Recent U.S. policy developments on the commercial use of space are summarized and their international implications are considered. Attention is given to successful applications of technology developed in space, including an implantable cancer medication system, an implantable defibrillator, an ultrasonic residual stress monitor, and aquaculture treatment techniques. NASA projects involving bioengineering and rehabilitation applications are summarized, and plans to investigate high-temperature superconductors in space are addressed. Recent agreements entred into by NASA for space commercial studies are reviewed.

  18. O-GlcNAcylation affects β-catenin and E-cadherin expression, cell motility and tumorigenicity of colorectal cancer.

    PubMed

    Harosh-Davidovich, Shani Ben; Khalaila, Isam

    2018-03-01

    O-GlcNAcylation, the addition of β-N-acetylglucosamine (O-GlcNAc) moiety to Ser/Thr residues, is a sensor of the cell metabolic state. Cancer diseases such as colon, lung and breast cancer, possess deregulated O-GlcNAcylation. Studies during the last decade revealed that O-GlcNAcylation is implicated in cancer tumorigenesis and proliferation. The Wnt/β-catenin signaling pathway and cadherin-mediated adhesion are also implicated in epithelial-mesenchymal transition (EMT), a key cellular process in invasion and cancer metastasis. Often, deregulation of the Wnt pathway is caused by altered phosphorylation of its components. Specifically, phosphorylation of Ser or Thr residues of β-catenin affects its location and interaction with E-cadherin, thus facilitating cell-cell adhesion. Consistent with previous studies, the current study indicates that β-catenin is O-GlcNAcylated. To test the effect of O-GlcNAcylation on cell motility and how O-GlcNAcylation might affect β-catenin and E-cadherin functions, the enzyme machinery of O-GlcNAcylation was modulated either with chemical inhibitors or by gene silencing. When O-GlcNAcase (OGA) was inhibited, a global elevation of protein O-GlcNAcylation and increase in the expression of E-cadherin and β-catenin were noted. Concomitantly with enhanced O-GlcNAcylation, β-catenin transcriptional activity were elevated. Additionally, fibroblast cell motility was enhanced. Stable silenced cell lines with adenoviral OGA or adenoviral O-GlcNAc transferase (OGT) were established. Consistent with the results obtained by OGA chemical inhibition by TMG, OGT-silencing led to a significant reduction in β-catenin level. In vivo, murine orthotropic colorectal cancer model indicates that elevated O-GlcNAcylation leads to increased mortality rate, tumor and metastasis development. However, reduction in O-GlcNAcylation promoted survival that could be attributed to attenuated tumor and metastasis development. The results described herein provide circumstantial clues that O-GlcNAcylation deregulates β-catenin and E-cadherin expression and activity in fibroblast cell lines and this might influence EMT and cell motility, which may further influence tumor development and metastasis. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Comparison is key.

    PubMed

    Stone, Mark H; Stenner, A Jackson

    2014-01-01

    Several concepts from Georg Rasch's last papers are discussed. The key one is comparison because Rasch considered the method of comparison fundamental to science. From the role of comparison stems scientific inference made operational by a properly developed frame of reference producing specific objectivity. The exact specifications Rasch outlined for making comparisons are explicated from quotes, and the role of causality derived from making comparisons is also examined. Understanding causality has implications for what can and cannot be produced via Rasch measurement. His simple examples were instructive, but the implications are far reaching upon first establishing the key role of comparison.

  20. Hydrophobic Residues near the Bilin Chromophore-Binding Pocket Modulate Spectral Tuning of Insert-Cys Subfamily Cyanobacteriochromes

    PubMed Central

    Cho, Sung Mi; Jeoung, Sae Chae; Song, Ji-Young; Song, Ji-Joon; Park, Youn-Il

    2017-01-01

    Cyanobacteriochromes (CBCRs) are a subfamily of phytochrome photoreceptors found exclusively in photosynthetic cyanobacteria. Four CBCRs containing a second Cys in the insert region (insert-Cys) have been identified from the nonheterocystous cyanobacterium Microcoleus B353 (Mbr3854g4 and Mbl3738g2) and the nitrogen fixing, heterocystous cyanobacterium Nostoc punctiforme (NpF2164g3 and NpR1597g2). These insert-Cys CBCRs can sense light in the near-UV to orange range, but key residues responsible for tuning their colour sensitivity have not been reported. In the present study, near-UV/Green (UG) photosensors Mbr3854g4 (UG1) and Mbl3738g2 (UG2) were chosen for further spectroscopic analysis of their spectral sensitivity and tuning. Consistent with most dual-Cys CBCRs, both UGs formed a second thioether linkage to the phycocyanobilin (PCB) chromophore via the insert-Cys. This bond is subject to breakage and relinkage during forward and reverse photoconversions. Variations in residues equivalent to Phe that are in close contact with the PCB chromophore D-ring in canonical red/green CBCRs are responsible for tuning the light absorption peaks of both dark and photoproducts. This is the first time these key residues that govern light absorption in insert-Cys family CBCRs have been identified and characterised. PMID:28094296

  1. Protease Inhibitors from Marine Venomous Animals and Their Counterparts in Terrestrial Venomous Animals

    PubMed Central

    Mourão, Caroline B.F.; Schwartz, Elisabeth F.

    2013-01-01

    The Kunitz-type protease inhibitors are the best-characterized family of serine protease inhibitors, probably due to their abundance in several organisms. These inhibitors consist of a chain of ~60 amino acid residues stabilized by three disulfide bridges, and was first observed in the bovine pancreatic trypsin inhibitor (BPTI)-like protease inhibitors, which strongly inhibit trypsin and chymotrypsin. In this review we present the protease inhibitors (PIs) described to date from marine venomous animals, such as from sea anemone extracts and Conus venom, as well as their counterparts in terrestrial venomous animals, such as snakes, scorpions, spiders, Anurans, and Hymenopterans. More emphasis was given to the Kunitz-type inhibitors, once they are found in all these organisms. Their biological sources, specificity against different proteases, and other molecular blanks (being also K+ channel blockers) are presented, followed by their molecular diversity. Whereas sea anemone, snakes and other venomous animals present mainly Kunitz-type inhibitors, PIs from Anurans present the major variety in structure length and number of Cys residues, with at least six distinguishable classes. A representative alignment of PIs from these venomous animals shows that, despite eventual differences in Cys assignment, the key-residues for the protease inhibitory activity in all of them occupy similar positions in primary sequence. The key-residues for the K+ channel blocking activity was also compared. PMID:23771044

  2. A computational study to identify the key residues of peroxisome proliferator-activated receptor gamma in the interactions with its antagonists.

    PubMed

    Sharifi, Tayebeh; Ghayeb, Yousef

    2018-05-01

    Peroxisome proliferator-activated receptors (PPARs) compose a family of nuclear receptors, PPARα, PPARβ, and PPARγ, which mediate the effects of lipidic ligands at the transcriptional level. Among these, the PPARγ has been known to regulate adipocyte differentiation, fatty acid storage and glucose metabolism, and is a target of antidiabetic drugs. In this work, the interactions between PPARγ and its six known antagonists were investigated using computational methods such as molecular docking, molecular dynamics (MD) simulations, and the hybrid quantum mechanics/molecular mechanics (QM/MM). The binding energies evaluated by molecular docking varied between -22.59 and -35.15 kJ mol - 1 . In addition, MD simulations were performed to investigate the binding modes and PPARγ conformational changes upon binding of antagonists. Analysis of the root-mean-square fluctuations (RMSF) of backbone atoms shows that H3 of PPARγ has a higher mobility in the absence of antagonists and moderate conformational changes were observed. The interaction energies between antagonists and each PPARγ residue involved in the interactions were studied by QM/MM calculations. These calculations reveal that antagonists with different structures show different interaction energies with the same residue of PPARγ. Therefore, it can be concluded that the key residues vary depending on the structure of the ligand, which binds to PPARγ.

  3. Molecular Dynamics Simulations of the Human Glucose Transporter GLUT1

    PubMed Central

    Park, Min-Sun

    2015-01-01

    Glucose transporters (GLUTs) provide a pathway for glucose transport across membranes. Human GLUTs are implicated in devastating diseases such as heart disease, hyper- and hypo-glycemia, type 2 diabetes and caner. The human GLUT1 has been recently crystalized in the inward-facing open conformation. However, there is no other structural information for other conformations. The X-ray structures of E. coli Xylose permease (XylE), a glucose transporter homolog, are available in multiple conformations with and without the substrates D-xylose and D-glucose. XylE has high sequence homology to human GLUT1 and key residues in the sugar-binding pocket are conserved. Here we construct a homology model for human GLUT1 based on the available XylE crystal structure in the partially occluded outward-facing conformation. A long unbiased all atom molecular dynamics simulation starting from the model can capture a new fully opened outward-facing conformation. Our investigation of molecular interactions at the interface between the transmembrane (TM) domains and the intracellular helices (ICH) domain in the outward- and inward-facing conformation supports that the ICH domain likely stabilizes the outward-facing conformation in GLUT1. Furthermore, inducing a conformational transition, our simulations manifest a global asymmetric rocker switch motion and detailed molecular interactions between the substrate and residues through the water-filled selective pore along a pathway from the extracellular to the intracellular side. The results presented here are consistent with previously published biochemical, mutagenesis and functional studies. Together, this study shed light on the structure and functional relationships of GLUT1 in multiple conformational states. PMID:25919356

  4. Keratinocyte secretion of cyclophilin B via the constitutive pathway is regulated through its cyclosporin-binding site.

    PubMed

    Fearon, Paula; Lonsdale-Eccles, Ann A; Ross, O Kehinde; Todd, Carole; Sinha, Aparna; Allain, Fabrice; Reynolds, Nick J

    2011-05-01

    Cyclophilin B (CypB) is an endoplasmic reticulum (ER)-resident member of the cyclophilin family of proteins that bind cyclosporin A (CsA). We report that as in other cell types, CypB trafficked from the ER and was secreted by keratinocytes into the media in response to CsA. Concentrations as low as 1 pM of CsA induced secretion of CypB. Using brefeldin A, we showed that CypB is secreted from keratinocytes via the constitutive secretory pathway. We defined that substitution of tryptophan residue 128 in the CsA-binding site of CypB with alanine resulted in dissociation of CypB(W128A)-green fluorescent protein (GFP) from the ER. Photobleaching studies revealed a significant reduction in the diffusible mobility of CypB(W128A)-GFP compared with CypB(WT)-GFP, consistent with redistribution of CypB(W128A)-GFP into secretory vesicles disconnected from the ER/Golgi network. Furthermore, CsA significantly decreased the mobility of CypB(WT)-GFP but not CypB(W128A)-GFP. These studies demonstrate that therapeutically relevant concentrations of CsA regulate secretion of CypB by keratinocytes, and that a key residue within the CsA-binding site of CypB controls retention of CypB within the ER and regulates entry into the secretory pathway. As keratinocytes express CypB receptors (CD147) and CypB exhibits chemotactic properties, these data have implications for the therapeutic effects of CsA in inflammatory skin disease.

  5. Keratinocyte Secretion of Cyclophilin B via the Constitutive Pathway Is Regulated through Its Cyclosporin-Binding Site

    PubMed Central

    Fearon, Paula; Lonsdale-Eccles, Ann A; Ross, O Kehinde; Todd, Carole; Sinha, Aparna; Allain, Fabrice; Reynolds, Nick J

    2011-01-01

    Cyclophilin B (CypB) is an endoplasmic reticulum (ER)-resident member of the cyclophilin family of proteins that bind cyclosporin A (CsA). We report that as in other cell types, CypB trafficked from the ER and was secreted by keratinocytes into the media in response to CsA. Concentrations as low as 1 p of CsA induced secretion of CypB. Using brefeldin A, we showed that CypB is secreted from keratinocytes via the constitutive secretory pathway. We defined that substitution of tryptophan residue 128 in the CsA-binding site of CypB with alanine resulted in dissociation of CypBW128A-green fluorescent protein (GFP) from the ER. Photobleaching studies revealed a significant reduction in the diffusible mobility of CypBW128A-GFP compared with CypBWT-GFP, consistent with redistribution of CypBW128A-GFP into secretory vesicles disconnected from the ER/Golgi network. Furthermore, CsA significantly decreased the mobility of CypBWT-GFP but not CypBW128A-GFP. These studies demonstrate that therapeutically relevant concentrations of CsA regulate secretion of CypB by keratinocytes, and that a key residue within the CsA-binding site of CypB controls retention of CypB within the ER and regulates entry into the secretory pathway. As keratinocytes express CypB receptors (CD147) and CypB exhibits chemotactic properties, these data have implications for the therapeutic effects of CsA in inflammatory skin disease. PMID:21270823

  6. The role of charge and multiple faces of the CD8 alpha/alpha homodimer in binding to major histocompatibility complex class I molecules: support for a bivalent model.

    PubMed

    Giblin, P A; Leahy, D J; Mennone, J; Kavathas, P B

    1994-03-01

    The CD8 dimer interacts with the alpha 3 domain of major histocompatibility complex class I molecules through two immunoglobulin variable-like domains. In this study a crystal structure-informed mutational analysis has been performed to identify amino acids in the CD8 alpha/alpha homodimer that are likely to be involved in binding to class I. Several key residues are situated on the top face of the dimer within loops analogous to the complementarity-determining regions (CDRs) of immunoglobulin. In addition, other important amino acids are located in the A and B beta-strands on the sides of the dimer. The potential involvement of amino acids on both the top and the side faces of the molecule is consistent with a bivalent model for the interaction between a single CD8 alpha/alpha homodimer and two class I molecules and may have important implications for signal transduction in class I-expressing cells. This study also demonstrates a role for the positive surface potential of CD8 in class I binding and complements previous work demonstrating the importance of a negatively charged loop on the alpha 3 domain of class I for CD8 alpha/alpha-class I interaction. We propose a model whereby residues located on the CDR-like loops of the CD8 homodimer interact with the alpha 3 domain of MHC class I while amino acids on the side of the molecule containing the A and B beta-strands contact the alpha 2 domain of class I.

  7. Crystal Structure of LAAO from Calloselasma rhodostoma with L-Phenylalanine Substrate: Insights into Structure and Mechanism

    PubMed Central

    Moustafa, Ibrahim M.; Foster, Scott; Lyubimov, Artem Y.; Vrielink, Alice

    2007-01-01

    L-amino acid oxidase (LAAO) is a dimeric glycosylated flavoenzyme, a major constituent of the snake-venom from Calloselasma rhodostoma. The enzyme exhibits apoptosis-inducing effects as well as antibacterial and anti-HIV activities. The structure of LAAO with its substrate (L-phenylalanine) has been refined to a resolution of 1.8 Å. The complex structure reveals the substrate bound to the reduced flavin (FADred). Alternate conformations for the key residues: His223 and Arg322 are evident, suggesting a dynamic active site. Furthermore conformational changes are also apparent for the isoalloxazine ring; the three ring system exhibits more bending around the N5—N10 axis compared to the oxidized flavin. The implications of the observed dynamics on the mechanism of catalysis are discussed. Inspection of buried surfaces in the enzyme reveals a Y shaped channel system extending from the external surface of the protein to the active site. One portion of this channel may serve as the entry path for O2 during the oxidative half reaction. The second region, separated from the proposed O2 channel by the N-terminus (residues 8 – 16) of the protein, may play a role in H2O2 release. Interestingly, the later portion of the channel would direct the H2O2 product to the exterior surface of the protein, near to the glycan moiety, thought to anchor the enzyme to the host cell. This channel location may explain the ability of the enzyme to localize H2O2 to the targeted cell inducing the apoptotic effect. PMID:17046020

  8. Upper and lower bounds of ground-motion variabilities: implication for source properties

    NASA Astrophysics Data System (ADS)

    Cotton, Fabrice; Reddy-Kotha, Sreeram; Bora, Sanjay; Bindi, Dino

    2017-04-01

    One of the key challenges of seismology is to be able to analyse the physical factors that control earthquakes and ground-motion variabilities. Such analysis is particularly important to calibrate physics-based simulations and seismic hazard estimations at high frequencies. Within the framework of the development of ground-motion prediction equation (GMPE) developments, ground-motions residuals (differences between recorded ground motions and the values predicted by a GMPE) are computed. The exponential growth of seismological near-source records and modern GMPE analysis technics allow to partition these residuals into between- and a within-event components. In particular, the between-event term quantifies all those repeatable source effects (e.g. related to stress-drop or kappa-source variability) which have not been accounted by the magnitude-dependent term of the model. In this presentation, we first discuss the between-event variabilities computed both in the Fourier and Response Spectra domains, using recent high-quality global accelerometric datasets (e.g. NGA-west2, Resorce, Kiknet). These analysis lead to the assessment of upper bounds for the ground-motion variability. Then, we compare these upper bounds with lower bounds estimated by analysing seismic sequences which occurred on specific fault systems (e.g., located in Central Italy or in Japan). We show that the lower bounds of between-event variabilities are surprisingly large which indicates a large variability of earthquake dynamic properties even within the same fault system. Finally, these upper and lower bounds of ground-shaking variability are discussed in term of variability of earthquake physical properties (e.g., stress-drop and kappa_source).

  9. Very Few Substitutions in a Germ Line Antibody Are Required To Initiate Significant Domain Exchange ▿

    PubMed Central

    Huber, Michael; Le, Khoa M.; Doores, Katie J.; Fulton, Zara; Stanfield, Robyn L.; Wilson, Ian A.; Burton, Dennis R.

    2010-01-01

    2G12 is a broadly neutralizing anti-HIV-1 monoclonal human IgG1 antibody reactive with a high-mannose glycan cluster on the surface of glycoprotein gp120. A key feature of this very highly mutated antibody is domain exchange of the heavy-chain variable region (VH) with the VH of the adjacent Fab of the same immunoglobulin, which assembles a multivalent binding interface composed of two primary binding sites in close proximity. A non-germ line-encoded proline in the elbow between VH and CH1 and an extensive network of hydrophobic interactions in the VH/VH′ interface have been proposed to be crucial for domain exchange. To investigate the origins of domain exchange, a germ line version of 2G12 that behaves as a conventional antibody was engineered. Substitution of 5 to 7 residues for those of the wild type produced a significant fraction of domain-exchanged molecules, with no evidence of equilibrium between domain-exchanged and conventional forms. Two substitutions not previously implicated, AH14 and EH75, are the most crucial for domain exchange, together with IH19 at the VH/VH′ interface and PH113 in the elbow region. Structural modeling gave clues as to why these residues are essential for domain exchange. The demonstration that domain exchange can be initiated by a small number of substitutions in a germ line antibody suggests that the evolution of a domain-exchanged antibody response in vivo may be more readily achieved than considered to date. PMID:20702640

  10. Is increased residual shank length a competitive advantage for elite transtibial amputee long jumpers?

    PubMed

    Nolan, Lee; Patritti, Benjamin L; Stana, Laura; Tweedy, Sean M

    2011-07-01

    The purpose of this study was to evaluate the extent to which residual shank length affects long jump performance of elite athletes with a unilateral transtibial amputation. Sixteen elite, male, long jumpers with a transtibial amputation were videoed while competing in major championships (World Championships 1998, 2002 and Paralympic Games, 2004). The approach, take-off, and landing of each athlete's best jump was digitized to determine residual and intact shank lengths, jump distance, and horizontal and vertical velocity of center of mass at touchdown. Residual shank length ranged from 15 cm to 38 cm. There were weak, nonsignificant relationships between residual shank length and (a) distance jumped (r = 0.30), (b) horizontal velocity (r = 0.31), and vertical velocity (r = 0.05). Based on these results, residual shank length is not an important determinant of long jump performance, and it is therefore appropriate that all long jumpers with transtibial amputation compete in the same class. The relationship between residual shank length and key performance variables was stronger among athletes that jumped off their prosthetic leg (N = 5), and although this result must be interpreted cautiously, it indicates the need for further research.

  11. Identification of amino acid residues responsible for differences in substrate specificity and inhibitor sensitivity between two human liver dihydrodiol dehydrogenase isoenzymes by site-directed mutagenesis.

    PubMed Central

    Matsuura, K; Deyashiki, Y; Sato, K; Ishida, N; Miwa, G; Hara, A

    1997-01-01

    Human liver dihydrodiol dehydrogenase isoenzymes (DD1 and DD2), in which only seven amino acid residues are substituted, differ remarkably in specificity for steroidal substrates and inhibitor sensitivity: DD1 shows 20alpha-hydroxysteroid dehydrogenase activity and sensitivity to 1,10-phenanthroline, whereas DD2 oxidizes 3alpha-hydroxysteroids and is highly inhibited by bile acids. In the present study we performed site-directed mutagenesis of the seven residues (Thr-38, Arg-47, Leu-54, Cys-87, Val-151, Arg-170 and Gln-172) of DD1 to the corresponding residues (Val, His, Val, Ser, Met, His and Leu respectively) of DD2. Of the seven mutations, only the replacement of Leu-54 with Val produced an enzyme that had almost the same properties as DD2. No significant changes were observed in the other mutant enzymes. An additional site-directed mutagenesis of Tyr-55 of DD1 to Phe yielded an inactive protein, suggesting the catalytically important role of this residue. Thus a residue at a position before the catalytic Tyr residue might play a key role in determining the orientation of the substrates and inhibitors. PMID:9173902

  12. Pesticide mortality of young white-faced ibis in Texas

    USGS Publications Warehouse

    Flickinger, Edward L.; Meeker, D.L.

    1972-01-01

    The combination of the symptoms observed in sick and dying birds and the high brain residues in the three birds collected dying, as well as in two of the four collected dead, implicate dieldrin as at least one of the causes of mortality of young ibis at the Lavaca Bay colony. Mercury residues in the kidneys of all four dead young, including those with low brain residues of dieldrin, suggest that birds were exposed to mercury in rice fields and that mercury may also have contributed to the mortality. Since adult ibis normally feed their young on invertebrates collected in rice fields treated with aldrin and Ceresan L, the use of these rice pesticides appears to be a serious hazard to this species, and probably to other wild birds with similar habits.

  13. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    DOE PAGES

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; ...

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulatingmore » internal strain fields in BMGs for the purpose of ductility enhancement.« less

  14. Survival-mediated capture and fusion cross sections for heavy-element synthesis

    NASA Astrophysics Data System (ADS)

    Yao, L.; Loveland, W.

    2018-01-01

    The cross section for producing a heavy evaporation residue σEVR in a fusion reaction can be written as a product of three nonseparable factors, i.e., the capture cross section, the fusion probability PCN, and the survival probability Wsur. Each of these factors is dependent on the spin. However, one must remember that the Wsur term is zero or very small for higher spin values, thus effectively limiting the capture and fusion terms. For a series of ˜287 reactions leading to heavy evaporation residues with ZCN≤110 , we point out the implications of this fact for capture cross sections for heavy element formation reactions. From a comparison of calculated and measured evaporation residue cross sections we deduce values of the fusion probability PCN for some of these reactions.

  15. The structure of S . lividans acetoacetyl-CoA synthetase shows a novel interaction between the C-terminal extension and the N-terminal domain

    DOE PAGES

    Mitchell, Carter A.; Tucker, Alex C.; Escalante-Semerena, Jorge C.; ...

    2014-12-09

    The adenosine monoposphate-forming acyl-CoA synthetase enzymes catalyze a two-step reaction that involves the initial formation of an acyl adenylate that reacts in a second partial reaction to form a thioester between the acyl substrate and CoA. These enzymes utilize a Domain Alternation catalytic mechanism, whereby a ~110 residue C-terminal domain rotates by 140° to form distinct catalytic conformations for the two partial reactions. In this paper, the structure of an acetoacetyl-CoA synthetase (AacS) is presented that illustrates a novel aspect of this C-terminal domain. Specifically, several acetyl- and acetoacetyl-CoA synthetases contain a 30-residue extension on the C-terminus compared to othermore » members of this family. Finally, whereas residues from this extension are disordered in prior structures, the AacS structure shows that residues from this extension may interact with key catalytic residues from the N-terminal domain.« less

  16. Development and validation of a fast static headspace GC method for determination of residual solvents in permethrin.

    PubMed

    Tian, Jingzhi; Rustum, Abu

    2016-09-05

    A fast static headspace gas chromatography (HS-GC) method was developed to separate all residual solvents present in commercial active pharmaceutical ingredient (API) batches of permethrin. A total of six residual solvents namely 2-methylpentane, 3-methylpentane, methylcyclopentane, n-hexane, cyclohexane and toluene were found in typical commercial batches of permethrin; and three of them are not in the list of ICH solvents. All six residual solvents were baseline separated in five minutes by the new method presented in this paper. The method was successfully validated as per International Conference on Harmonisation (ICH) guidelines. Evaluation of this method was conducted to separate 26 commonly used solvents in the manufacturing of various APIs, key intermediates of APIs and pharmaceutical excipients. The results of the evaluation demonstrated that this method can also be used as a general method to determine residual solvents in various APIs, intermediates and excipients that are used in pharmaceutical products. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Implication of changing loading conditions on structural health monitoring utilising guided waves

    NASA Astrophysics Data System (ADS)

    Mohabuth, Munawwar; Kotousov, Andrei; Ng, Ching-Tai; Rose, L. R. Francis

    2018-02-01

    Structural health monitoring systems based on guided waves typically utilise a network of embedded or permanently attached sensors, allowing for the continuous detection of damage remote from a sensor location. The presence of damage is often diagnosed by analysing the residual signals from the structure after subtracting damage-free reference data. However, variations in environmental and operational conditions such as temperature, humidity, applied or thermally-induced stresses affect the measured residuals. A previously developed acoustoelastic formulation is here extended and employed as the basis for a simplified analytical model to estimate the effect of applied or thermally-induced stresses on the propagation characteristics of the fundamental Lamb wave modes. It is noted that there are special combinations of frequency, biaxial stress ratio and direction of wave propagation for which there is no change in the phase velocity of the fundamental anti-symmetric mode. The implication of these results in devising effective strategies to mitigate the effect of stress induced variations in guided-wave damage diagnostics is briefly discussed.

  18. Toxicological Implications and Inflammatory Response in Human Lymphocytes Challenged with Oxytetracycline.

    PubMed

    Di Cerbo, A; Palatucci, A T; Rubino, V; Centenaro, S; Giovazzino, A; Fraccaroli, E; Cortese, L; Ruggiero, G; Guidetti, G; Canello, S; Terrazzano, G

    2016-04-01

    Antibiotics are widely used in zoo technical and veterinary practices as feed supplementation to ensure wellness of farmed animals and livestock. Several evidences have been suggesting both the toxic role for tetracyclines, particularly for oxytetracycline (OTC). This potential toxicity appears of great relevance for human nutrition and for domestic animals. This study aimed to extend the evaluation of such toxicity. The biologic impact of the drug was assessed by evaluating the proinflammatory effect of OTC and their bone residues on cytokine secretion by in vitro human peripheral blood lymphocytes. Our results showed that both OTC and OTC-bone residues significantly induced the T lymphocyte and non-T cell secretion of interferon (IFN)-γ, as cytokine involved in inflammatory responses in humans as well as in animals. These results may suggest a possible implication for new potential human and animal health risks depending on the entry of tetracyclines in the food-processing chain. © 2015 The Authors Journal of Biochemical and Molecular Toxicology Published Wiley Periodicals, Inc.

  19. Agricultural policies and biomass fuels

    NASA Astrophysics Data System (ADS)

    Flaim, S.; Hertzmark, D.

    The potentials for biomass energy derived from agricultural products are examined. The production of energy feedstocks from grains is discussed for the example of ethanol production from grain, with consideration given to the beverage process and the wet milling process for obtaining fuel ethanol from grains and sugars, the nonfeedstock costs and energy requirements for ethanol production, the potential net energy gain from ethanol fermentation, the effect of ethanol fuel production on supplies of protein, oils and feed and of ethanol coproducts, net ethanol costs, and alternatives to corn as an ethanol feedstock. Biomass fuel production from crop residues is then considered; the constraints of soil fertility on crop residue removal for energy production are reviewed, residue yields with conventional practices and with reduced tillage are determined, technologies for the direct conversion of cellulose to ethanol and methanol are described, and potential markets for the products of these processes are identified. Implications for agricultural policy of ethanol production from grain and fuel and chemical production from crop residues are also discussed.

  20. A Tale of Two Recent Spills—Comparison of 2014 Galveston Bay and 2010 Deepwater Horizon Oil Spill Residues

    PubMed Central

    Yin, Fang; Hayworth, Joel S.; Clement, T. Prabhakar

    2015-01-01

    Managing oil spill residues washing onto sandy beaches is a common worldwide environmental problem. In this study, we have analyzed the first-arrival oil spill residues collected from two Gulf of Mexico (GOM) beach systems following two recent oil spills: the 2014 Galveston Bay (GB) oil spill, and the 2010 Deepwater Horizon (DWH) oil spill. This is the first study to provide field observations and chemical characterization data for the 2014 GB oil spill. Here we compare the physical and chemical characteristics of GB oil spill samples with DWH oil spill samples and present their similarities and differences. Our field observations indicate that both oil spills had similar shoreline deposition patterns; however, their physical and chemical characteristics differed considerably. We highlight these differences, discuss their implications, and interpret GB data in light of lessons learned from previously published DWH oil spill studies. These analyses are further used to assess the long-term fate of GB oil spill residues and their potential environmental impacts. PMID:25714100

  1. A tale of two recent spills--comparison of 2014 Galveston Bay and 2010 Deepwater Horizon oil spill residues.

    PubMed

    Yin, Fang; Hayworth, Joel S; Clement, T Prabhakar

    2015-01-01

    Managing oil spill residues washing onto sandy beaches is a common worldwide environmental problem. In this study, we have analyzed the first-arrival oil spill residues collected from two Gulf of Mexico (GOM) beach systems following two recent oil spills: the 2014 Galveston Bay (GB) oil spill, and the 2010 Deepwater Horizon (DWH) oil spill. This is the first study to provide field observations and chemical characterization data for the 2014 GB oil spill. Here we compare the physical and chemical characteristics of GB oil spill samples with DWH oil spill samples and present their similarities and differences. Our field observations indicate that both oil spills had similar shoreline deposition patterns; however, their physical and chemical characteristics differed considerably. We highlight these differences, discuss their implications, and interpret GB data in light of lessons learned from previously published DWH oil spill studies. These analyses are further used to assess the long-term fate of GB oil spill residues and their potential environmental impacts.

  2. Coevolving residues of (beta/alpha)(8)-barrel proteins play roles in stabilizing active site architecture and coordinating protein dynamics.

    PubMed

    Shen, Hongbo; Xu, Feng; Hu, Hairong; Wang, Feifei; Wu, Qi; Huang, Qiang; Wang, Honghai

    2008-12-01

    Indole-3-glycerol phosphate synthase (IGPS) is a representative of (beta/alpha)(8)-barrel proteins-the most common enzyme fold in nature. To better understand how the constituent amino-acids work together to define the structure and to facilitate the function, we investigated the evolutionary and dynamical coupling of IGPS residues by combining statistical coupling analysis (SCA) and molecular dynamics (MD) simulations. The coevolving residues identified by the SCA were found to form a network which encloses the active site completely. The MD simulations showed that these coevolving residues are involved in the correlated and anti-correlated motions. The correlated residues are within van der Waals contact and appear to maintain the active site architecture; the anti-correlated residues are mainly distributed on opposite sides of the catalytic cavity and coordinate the motions likely required for the substrate entry and product release. Our findings might have broad implications for proteins with the highly conserved (betaalpha)(8)-barrel in assessing the roles of amino-acids that are moderately conserved and not directly involved in the active site of the (beta/alpha)(8)-barrel. The results of this study could also provide useful information for further exploring the specific residue motions for the catalysis and protein design based on the (beta/alpha)(8)-barrel scaffold.

  3. Prediction of the interaction site on the surface of an isolated protein structure by analysis of side chain energy scores.

    PubMed

    Liang, Shide; Zhang, Jian; Zhang, Shicui; Guo, Huarong

    2004-11-15

    We show that residues at the interfaces of protein-protein complexes have higher side-chain energy than other surface residues. Eight different sets of protein complexes were analyzed. For each protein pair, the complex structure was used to identify the interface residues in the unbound monomer structures. Side-chain energy was calculated for each surface residue in the unbound monomer using our previously developed scoring function.1 The mean energy was calculated for the interface residues and the other surface residues. In 15 of the 16 monomers, the mean energy of the interface residues was higher than that of other surface residues. By decomposing the scoring function, we found that the energy term of the buried surface area of non-hydrogen-bonded hydrophilic atoms is the most important factor contributing to the high energy of the interface regions. In spite of lacking hydrophilic residues, the interface regions were found to be rich in buried non-hydrogen-bonded hydrophilic atoms. Although the calculation results could be affected by the inaccuracy of the scoring function, patch analysis of side-chain energy on the surface of an isolated protein may be helpful in identifying the possible protein-protein interface. A patch was defined as 20 residues surrounding the central residue on the protein surface, and patch energy was calculated as the mean value of the side-chain energy of all residues in the patch. In 12 of the studied monomers, the patch with the highest energy overlaps with the observed interface. The results are more remarkable when only three residues with the highest energy in a patch are averaged to derive the patch energy. All three highest-energy residues of the top energy patch belong to interfacial residues in four of the eight small protomers. We also found that the residue with the highest energy score on the surface of a small protomer is very possibly the key interaction residue. (c) 2004 Wiley-Liss, Inc.

  4. A stochastic approach to uncertainty quantification in residual moveout analysis

    NASA Astrophysics Data System (ADS)

    Johng-Ay, T.; Landa, E.; Dossou-Gbété, S.; Bordes, L.

    2015-06-01

    Oil and gas exploration and production relies usually on the interpretation of a single seismic image, which is obtained from observed data. However, the statistical nature of seismic data and the various approximations and assumptions are sources of uncertainties which may corrupt the evaluation of parameters. The quantification of these uncertainties is a major issue which supposes to help in decisions that have important social and commercial implications. The residual moveout analysis, which is an important step in seismic data processing is usually performed by a deterministic approach. In this paper we discuss a Bayesian approach to the uncertainty analysis.

  5. Morphological and immunological criteria of minimal residual disease detection in children with B-cell precursors acute lymphoblastic leukemia

    NASA Astrophysics Data System (ADS)

    Beznos, O. A.; Grivtsova, L. Yu; Popa, A. V.; Shervashidze, M. A.; Serebtyakova, I. N.; Tupitsyn, N. N.; Selchuk, V. U.; Grebennikova, O. P.; Titova, G. V.

    2018-01-01

    One of the key factors of prognosis and risk stratification in patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is minimal residual disease (MRD). Identification of MRD on the day 15th is one of the most significant in prognosis of the disease. We compared data of a morphological and flow cytometry results of assessment of a bone marrow (BM) at the day 15th of induction chemotherapy in children with BCP-ALL.

  6. A discontinuous Poisson-Boltzmann equation with interfacial jump: homogenisation and residual error estimate.

    PubMed

    Fellner, Klemens; Kovtunenko, Victor A

    2016-01-01

    A nonlinear Poisson-Boltzmann equation with inhomogeneous Robin type boundary conditions at the interface between two materials is investigated. The model describes the electrostatic potential generated by a vector of ion concentrations in a periodic multiphase medium with dilute solid particles. The key issue stems from interfacial jumps, which necessitate discontinuous solutions to the problem. Based on variational techniques, we derive the homogenisation of the discontinuous problem and establish a rigorous residual error estimate up to the first-order correction.

  7. Interactive Videodisc Technology and Its Implications for Education.

    ERIC Educational Resources Information Center

    Gindele, John F.; Gindele, Joseph G.

    Arguing that videodisc technology has major implications for the storage and retrieval of information and that it may meet learners' needs in ways never before possible, this paper highlights key points regarding the history and development of videodisc technology, explores its implications for education, and addresses current and future uses of…

  8. Dosimetric Implications of Residual Tracking Errors During Robotic SBRT of Liver Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Mark; Tuen Mun Hospital, Hong Kong; Grehn, Melanie

    Purpose: Although the metric precision of robotic stereotactic body radiation therapy in the presence of breathing motion is widely known, we investigated the dosimetric implications of breathing phase–related residual tracking errors. Methods and Materials: In 24 patients (28 liver metastases) treated with the CyberKnife, we recorded the residual correlation, prediction, and rotational tracking errors from 90 fractions and binned them into 10 breathing phases. The average breathing phase errors were used to shift and rotate the clinical tumor volume (CTV) and planning target volume (PTV) for each phase to calculate a pseudo 4-dimensional error dose distribution for comparison with themore » original planned dose distribution. Results: The median systematic directional correlation, prediction, and absolute aggregate rotation errors were 0.3 mm (range, 0.1-1.3 mm), 0.01 mm (range, 0.00-0.05 mm), and 1.5° (range, 0.4°-2.7°), respectively. Dosimetrically, 44%, 81%, and 92% of all voxels differed by less than 1%, 3%, and 5% of the planned local dose, respectively. The median coverage reduction for the PTV was 1.1% (range in coverage difference, −7.8% to +0.8%), significantly depending on correlation (P=.026) and rotational (P=.005) error. With a 3-mm PTV margin, the median coverage change for the CTV was 0.0% (range, −1.0% to +5.4%), not significantly depending on any investigated parameter. In 42% of patients, the 3-mm margin did not fully compensate for the residual tracking errors, resulting in a CTV coverage reduction of 0.1% to 1.0%. Conclusions: For liver tumors treated with robotic stereotactic body radiation therapy, a safety margin of 3 mm is not always sufficient to cover all residual tracking errors. Dosimetrically, this translates into only small CTV coverage reductions.« less

  9. Probabilistic measurement of non-physical constructs during early childhood: Epistemological implications for advancing psychosocial science

    NASA Astrophysics Data System (ADS)

    Bezruczko, N.; Fatani, S. S.

    2010-07-01

    Social researchers commonly compute ordinal raw scores and ratings to quantify human aptitudes, attitudes, and abilities but without a clear understanding of their limitations for scientific knowledge. In this research, common ordinal measures were compared to higher order linear (equal interval) scale measures to clarify implications for objectivity, precision, ontological coherence, and meaningfulness. Raw score gains, residualized raw gains, and linear gains calculated with a Rasch model were compared between Time 1 and Time 2 for observations from two early childhood learning assessments. Comparisons show major inconsistencies between ratings and linear gains. When gain distribution was dense, relatively compact, and initial status near item mid-range, linear measures and ratings were indistinguishable. When Time 1 status was distributed more broadly and magnitude of change variable, ratings were unrelated to linear gain, which emphasizes problematic implications of ordinal measures. Surprisingly, residualized gain scores did not significantly improve ordinal measurement of change. In general, raw scores and ratings may be meaningful in specific samples to establish order and high/low rank, but raw score differences suffer from non-uniform units. Even meaningfulness of sample comparisons, as well as derived proportions and percentages, are seriously affected by rank order distortions and should be avoided.

  10. Thermal decomposition of nano-enabled thermoplastics: Possible environmental health and safety implications

    PubMed Central

    Sotiriou, Georgios A.; Singh, Dilpreet; Zhang, Fang; Chalbot, Marie-Cecile G.; Spielman-Sun, Eleanor; Hoering, Lutz; Kavouras, Ilias G.; Lowry, Gregory V.; Wohlleben, Wendel; Demokritou, Philip

    2015-01-01

    Nano-enabled products (NEPs) are currently part of our life prompting for detailed investigation of potential nano-release across their life-cycle. Particularly interesting is their end-of-life thermal decomposition scenario. Here, we examine the thermal decomposition of a widely used NEP, namely thermoplastic nanocomposites, and assess the properties of the byproducts (released aerosol and residual ash) and possible environmental health and safety implications. We focus on establishing a fundamental understanding on the effect of thermal decomposition parameters, such as polymer matrix, nanofiller properties, decomposition temperature, on the properties of byproducts using a recently-developed lab-based experimental integrated platform. Our results indicate that thermoplastic polymer matrix strongly influences size and morphology of released aerosol, while there was minimal but detectable nano-release, especially when inorganic nanofillers were used. The chemical composition of the released aerosol was found not to be strongly influenced by the presence of nanofiller at least for the low, industry-relevant loadings assessed here. Furthermore, the morphology and composition of residual ash was found to be strongly influenced by the presence of nanofiller. The findings presented here on thermal decomposition/incineration of NEPs raise important questions and concerns regarding the potential fate and transport of released engineered nanomaterials in environmental media and potential environmental health and safety implications. PMID:26642449

  11. Design of N-acyl homoserine lactonase with high substrate specificity by a rational approach.

    PubMed

    Kyeong, Hyun-Ho; Kim, Jin-Hyun; Kim, Hak-Sung

    2015-06-01

    N-Acyl homoserine lactone (AHL) is a major quorum-sensing signaling molecule in many bacterial species. Quorum-quenching (QQ) enzymes, which degrade such signaling molecules, have attracted much attention as an approach to controlling and preventing bacterial virulence and pathogenesis. However, naturally occurring QQ enzymes show a broad substrate spectrum, raising the concern of unintentionally attenuating beneficial effects by symbiotic bacteria. Here we report the rational design of acyl homoserine lactonase with high substrate specificity. Through docking analysis, we identified three key residues which play a key role in the substrate preference of the enzyme. The key residues were changed in a way that increases hydrophobic contact with a substrate having a short acyl chain (C4-AHL) while generating steric clashes with that containing a long acyl chain (C12-AHL). The resulting mutants exhibited a significantly shifted preference toward a substrate with a short acyl chain. Molecular dynamics simulations suggested that the mutations affect the behavior of a flexible loop, allowing tighter binding of a substrate with a short acyl chain.

  12. The independent influences of age and education on functional brain networks and cognition in healthy older adults.

    PubMed

    Perry, Alistair; Wen, Wei; Kochan, Nicole A; Thalamuthu, Anbupalam; Sachdev, Perminder S; Breakspear, Michael

    2017-10-01

    Healthy aging is accompanied by a constellation of changes in cognitive processes and alterations in functional brain networks. The relationships between brain networks and cognition during aging in later life are moderated by demographic and environmental factors, such as prior education, in a poorly understood manner. Using multivariate analyses, we identified three latent patterns (or modes) linking resting-state functional connectivity to demographic and cognitive measures in 101 cognitively normal elders. The first mode (P = 0.00043) captures an opposing association between age and core cognitive processes such as attention and processing speed on functional connectivity patterns. The functional subnetwork expressed by this mode links bilateral sensorimotor and visual regions through key areas such as the parietal operculum. A strong, independent association between years of education and functional connectivity loads onto a second mode (P = 0.012), characterized by the involvement of key hub regions. A third mode (P = 0.041) captures weak, residual brain-behavior relations. Our findings suggest that circuits supporting lower level cognitive processes are most sensitive to the influence of age in healthy older adults. Education, and to a lesser extent, executive functions, load independently onto functional networks-suggesting that the moderating effect of education acts upon networks distinct from those vulnerable with aging. This has important implications in understanding the contribution of education to cognitive reserve during healthy aging. Hum Brain Mapp 38:5094-5114, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Consensus on context-specific strategies for reducing the stigma of human immunodeficiency virus/acquired immunodeficiency syndrome in Zambézia Province, Mozambique.

    PubMed

    Mukolo, Abraham; Torres, Isabel; Bechtel, Ruth M; Sidat, Mohsin; Vergara, Alfredo E

    2013-01-01

    Stigma has been implicated in poor outcomes of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) care. Reducing stigma is important for HIV prevention and long-term treatment success. Although stigma reduction interventions are conducted in Mozambique, little is known about the current nature of stigma and the efficacy and effectiveness of stigma reduction initiatives. We describe action research to generate consensus on critical characteristics of HIV stigma and anti-stigma interventions in Zambézia Province, Mozambique. Qualitative data gathering methods, including in-depth key-informant interviews, community interviews and consensus group sessions, were utilized. Delphi methods and the strategic options development analysis technique were used to synthesize qualitative data. Key findings are that stigma enacted by the general public might be declining in tandem with the HIV/AIDS epidemic in Mozambique, but there is likely excessive residual fear of HIV disease and community attitudes that sustain high levels of perceived stigma. HIV-positive women accessing maternal and child health services appear to shoulder a disproportionate burden of stigma. Unintentional biases among healthcare providers are currently the critical frontier of stigmatization, but there are few interventions designed to address them. Culturally sensitive psychotherapies are needed to address psychological distress associated with internalized stigma and these interventions should complement current supports for voluntary counseling and testing. While advantageous for defining stakeholder priorities for stigma reduction efforts, confirmatory quantitative studies of these consensus positions are needed before the launch of specific interventions.

  14. Inhibitory Effect on In Vitro LDL Oxidation and HMG Co-A Reductase Activity of the Liquid-Liquid Partitioned Fractions of Hericium erinaceus (Bull.) Persoon (Lion's Mane Mushroom)

    PubMed Central

    Aminudin, Norhaniza

    2014-01-01

    Oxidation of low-density lipoprotein (LDL) has been strongly suggested as the key factor in the pathogenesis of atherosclerosis. Mushrooms have been implicated in having preventive effects against chronic diseases due especially to their antioxidant properties. In this study, in vitro inhibitory effect of Hericium erinaceus on LDL oxidation and the activity of the cholesterol biosynthetic key enzyme, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG Co-A) reductase, was evaluated using five liquid-liquid solvent fractions consisting of methanol : dichloromethane (M : DCM), hexane (HEX), dichloromethane (DCM), ethyl acetate (EA), and aqueous residue (AQ). The hexane fraction showed the highest inhibition of oxidation of human LDL as reflected by the increased lag time (100 mins) for the formation of conjugated diene (CD) at 1 µg/mL and decreased production (68.28%, IC50 0.73 mg/mL) of thiobarbituric acid reactive substances (TBARS) at 1 mg/mL. It also mostly inhibited (59.91%) the activity of the HMG Co-A reductase at 10 mg/mL. The GC-MS profiling of the hexane fraction identified the presence of myconutrients: inter alia, ergosterol and linoleic acid. Thus, hexane fraction of Hericium erinaceus was found to be the most potent in vitro inhibitor of both LDL oxidation and HMG Co-A reductase activity having therapeutic potential for the prevention of oxidative stress-mediated vascular diseases. PMID:24959591

  15. Inhibitory effect on in vitro LDL oxidation and HMG Co-A reductase activity of the liquid-liquid partitioned fractions of Hericium erinaceus (Bull.) Persoon (lion's mane mushroom).

    PubMed

    Rahman, Mohammad Azizur; Abdullah, Noorlidah; Aminudin, Norhaniza

    2014-01-01

    Oxidation of low-density lipoprotein (LDL) has been strongly suggested as the key factor in the pathogenesis of atherosclerosis. Mushrooms have been implicated in having preventive effects against chronic diseases due especially to their antioxidant properties. In this study, in vitro inhibitory effect of Hericium erinaceus on LDL oxidation and the activity of the cholesterol biosynthetic key enzyme, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG Co-A) reductase, was evaluated using five liquid-liquid solvent fractions consisting of methanol : dichloromethane (M : DCM), hexane (HEX), dichloromethane (DCM), ethyl acetate (EA), and aqueous residue (AQ). The hexane fraction showed the highest inhibition of oxidation of human LDL as reflected by the increased lag time (100 mins) for the formation of conjugated diene (CD) at 1 µg/mL and decreased production (68.28%, IC50 0.73 mg/mL) of thiobarbituric acid reactive substances (TBARS) at 1 mg/mL. It also mostly inhibited (59.91%) the activity of the HMG Co-A reductase at 10 mg/mL. The GC-MS profiling of the hexane fraction identified the presence of myconutrients: inter alia, ergosterol and linoleic acid. Thus, hexane fraction of Hericium erinaceus was found to be the most potent in vitro inhibitor of both LDL oxidation and HMG Co-A reductase activity having therapeutic potential for the prevention of oxidative stress-mediated vascular diseases.

  16. Threshold conditions for integrated pest management models with pesticides that have residual effects.

    PubMed

    Tang, Sanyi; Liang, Juhua; Tan, Yuanshun; Cheke, Robert A

    2013-01-01

    Impulsive differential equations (hybrid dynamical systems) can provide a natural description of pulse-like actions such as when a pesticide kills a pest instantly. However, pesticides may have long-term residual effects, with some remaining active against pests for several weeks, months or years. Therefore, a more realistic method for modelling chemical control in such cases is to use continuous or piecewise-continuous periodic functions which affect growth rates. How to evaluate the effects of the duration of the pesticide residual effectiveness on successful pest control is key to the implementation of integrated pest management (IPM) in practice. To address these questions in detail, we have modelled IPM including residual effects of pesticides in terms of fixed pulse-type actions. The stability threshold conditions for pest eradication are given. Moreover, effects of the killing efficiency rate and the decay rate of the pesticide on the pest and on its natural enemies, the duration of residual effectiveness, the number of pesticide applications and the number of natural enemy releases on the threshold conditions are investigated with regard to the extent of depression or resurgence resulting from pulses of pesticide applications and predator releases. Latin Hypercube Sampling/Partial Rank Correlation uncertainty and sensitivity analysis techniques are employed to investigate the key control parameters which are most significantly related to threshold values. The findings combined with Volterra's principle confirm that when the pesticide has a strong effect on the natural enemies, repeated use of the same pesticide can result in target pest resurgence. The results also indicate that there exists an optimal number of pesticide applications which can suppress the pest most effectively, and this may help in the design of an optimal control strategy.

  17. Functional Elements on SIRPα IgV domain Mediate Cell Surface Binding to CD47

    PubMed Central

    Liu, Yuan; Tong, Qiao; Zhou, Yubin; Lee, Hsiau-Wei; Yang, Jenny J.; Bühring, Hans-Jörg; Chen, Yi-Tien; Ha, Binh; Chen, Celia X-J.; Zen, Ke

    2007-01-01

    Summary SIRPα and SIRPβ1, the two major isoforms of the signal regulatory protein (SIRP) family, are co-expressed in human leukocytes but mediate distinct extracellular binding interactions and divergent cell signaling responses. Previous studies have demonstrated that binding of SIRPα with CD47, another important cell surface molecule, through the extracellular IgV domain regulates important leukocyte functions including macrophage recognition, leukocyte adhesion and transmigration. Although SIRPβ1 shares highly homologous extracellular IgV structure with SIRPα, it does not bind to CD47. In this study, we defined key amino acid residues exclusively expressing in the IgV domain of SIRPα, but not SIRPβ1, which determine the extracellular binding interaction of SIRPα to CD47. These key residues include Gln67, a small hydrophobic amino acid (Ala or Val) at the 57th position and Met102. We found that Gln67 and Ala/Val57 are critical. Mutation of either of these residues abates SIRPα directly binding to CD47. Functional cell adhesion and leukocyte transmigration assays further demonstrated central roles of Gln67 and Ala/Val57 in SIRPα extracellular binding mediated cell interactions and cell migration. Another SIRPα-specific residue, Met102, appears to assist SIRPα IgV binding through Gln67 and Ala/Val57. An essential role of these amino acids in SIRPα binding to CD47 was further confirmed by introducing these residues into the SIRPβ1 IgV domain, which dramatically converts SIRPβ1 into a CD47-binding molecule. Our results thus revealed the molecular basis by which SIRPα selectively binds to CD47 and shed new light into the structural mechanisms of SIRP isoform mediated distinctive extracellular interactions and cellular responses. PMID:17070842

  18. A conserved degron containing an amphipathic helix regulates the cholesterol-mediated turnover of human squalene monooxygenase, a rate-limiting enzyme in cholesterol synthesis.

    PubMed

    Chua, Ngee Kiat; Howe, Vicky; Jatana, Nidhi; Thukral, Lipi; Brown, Andrew J

    2017-12-08

    Cholesterol biosynthesis in the endoplasmic reticulum (ER) is tightly controlled by multiple mechanisms to regulate cellular cholesterol levels. Squalene monooxygenase (SM) is the second rate-limiting enzyme in cholesterol biosynthesis and is regulated both transcriptionally and post-translationally. SM undergoes cholesterol-dependent proteasomal degradation when cholesterol is in excess. The first 100 amino acids of SM (designated SM N100) are necessary for this degradative process and represent the shortest cholesterol-regulated degron identified to date. However, the fundamental intrinsic characteristics of this degron remain unknown. In this study, we performed a series of deletions, point mutations, and domain swaps to identify a 12-residue region (residues Gln-62-Leu-73), required for SM cholesterol-mediated turnover. Molecular dynamics and circular dichroism revealed an amphipathic helix within this 12-residue region. Moreover, 70% of the variation in cholesterol regulation was dependent on the hydrophobicity of this region. Of note, the earliest known Doa10 yeast degron, Deg1, also contains an amphipathic helix and exhibits 42% amino acid similarity with SM N100. Mutating SM residues Phe-35/Ser-37/Leu-65/Ile-69 into alanine, based on the key residues in Deg1, blunted SM cholesterol-mediated turnover. Taken together, our results support a model whereby the amphipathic helix in SM N100 attaches reversibly to the ER membrane depending on cholesterol levels; with excess, the helix is ejected and unravels, exposing a hydrophobic patch, which then serves as a degradation signal. Our findings shed new light on the regulation of a key cholesterol synthesis enzyme, highlighting the conservation of critical degron features from yeast to humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Investigating the Impact of Asp181 Point Mutations on Interactions between PTP1B and Phosphotyrosine Substrate

    NASA Astrophysics Data System (ADS)

    Liu, Mengyuan; Wang, Lushan; Sun, Xun; Zhao, Xian

    2014-05-01

    Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and leptin signaling, which suggests that it is an attractive therapeutic target in type II diabetes and obesity. The aim of this research is to explore residues which interact with phosphotyrosine substrate can be affected by D181 point mutations and lead to increased substrate binding. To achieve this goal, molecular dynamics simulations were performed on wild type (WT) and two mutated PTP1B/substrate complexes. The cross-correlation and principal component analyses show that point mutations can affect the motions of some residues in the active site of PTP1B. Moreover, the hydrogen bond and energy decomposition analyses indicate that apart from residue 181, point mutations have influence on the interactions of substrate with several residues in the active site of PTP1B.

  20. Residual stress in thick low-pressure chemical-vapor deposited polycrystalline SiC coatings on Si substrates

    NASA Astrophysics Data System (ADS)

    Choi, D.; Shinavski, R. J.; Steffier, W. S.; Spearing, S. M.

    2005-04-01

    Residual stress in thick coatings of polycrystalline chemical-vapor deposited SiC on Si substrates is a key variable that must be controlled if SiC is to be used in microelectromechanical systems. Studies have been conducted to characterize the residual stress level as a function of deposition temperature, Si wafer and SiC coating thickness, and the ratios of methyltrichlorosilane to hydrogen and hydrogen chloride. Wafer curvature was used to monitor residual stress in combination with a laminated plate analysis. Compressive intrinsic (growth) stresses were measured with magnitudes in the range of 200-300MPa; however, these can be balanced with the tensile stress due to the thermal-expansion mismatch to leave near-zero stress at room temperature. The magnitude of the compressive intrinsic stress is consistent with previously reported values of surface stress in combination with the competition between grain-boundary energy and elastic strain energy.

  1. The shaping-lathe headrig-- key to utilization of hardwoods growing on southern pine sites

    Treesearch

    P. Koch

    1974-01-01

    For every cubic foot of pine on southern pine sites, there is about 0.8 cubic foot of hardwood. The shaping-lathe headrig, now in the final stages of commercialization, is a key to utilizing these small mixed hardwoods for pallets and industrial lumber. Lathe residues in the form of flakes can be the raw material for a new major industry manufacturing exterior...

  2. Preferential apelin-13 production by the proprotein convertase PCSK3 is implicated in obesity☆

    PubMed Central

    Shin, Kyungsoo; Pandey, Aditya; Liu, Xiang-Qin; Anini, Younes; Rainey, Jan K.

    2013-01-01

    The peptide hormone apelin is translated as a 77-residue preproprotein, truncated to the 55-residue proapelin and, subsequently, to 13–36-residue bioactive isoforms named apelin-13 to -36. Proapelin is hypothesized to be cleaved to apelin-36 and then to the shorter isoforms. However, neither the mechanism of proapelin processing nor the endoproteases involved have been determined. We show direct cleavage of proapelin to apelin-13 by proprotein convertase subtilisin/kexin 3 (PCSK3, or furin) in vitro, with no production of longer isoforms. Conversely, neither PCSK1 nor PCSK7 has appreciable proapelin cleavage activity. Furthermore, we show that both proapelin and PCSK3 transcript expression levels are increased in adipose tissue with obesity and during adipogenesis, suggesting that PCSK3 is responsible for proapelin processing in adipose tissue. PMID:24251091

  3. Human Food Safety Implications of Variation in Food Animal Drug Metabolism

    PubMed Central

    Lin, Zhoumeng; Vahl, Christopher I.; Riviere, Jim E.

    2016-01-01

    Violative drug residues in animal-derived foods are a global food safety concern. The use of a fixed main metabolite to parent drug (M/D) ratio determined in healthy animals to establish drug tolerances and withdrawal times in diseased animals results in frequent residue violations in food-producing animals. We created a general physiologically based pharmacokinetic model for representative drugs (ceftiofur, enrofloxacin, flunixin, and sulfamethazine) in cattle and swine based on extensive published literature. Simulation results showed that the M/D ratio was not a fixed value, but a time-dependent range. Disease changed M/D ratios substantially and extended withdrawal times; these effects exhibited drug- and species-specificity. These results challenge the interpretation of violative residues based on the use of the M/D ratio to establish tolerances for metabolized drugs. PMID:27302389

  4. Determinants of the Differential Antizyme-Binding Affinity of Ornithine Decarboxylase

    PubMed Central

    Liu, Yen-Chin; Hsu, Den-Hua; Huang, Chi-Liang; Liu, Yi-Liang; Liu, Guang-Yaw; Hung, Hui-Chih

    2011-01-01

    Ornithine decarboxylase (ODC) is a ubiquitous enzyme that is conserved in all species from bacteria to humans. Mammalian ODC is degraded by the proteasome in a ubiquitin-independent manner by direct binding to the antizyme (AZ). In contrast, Trypanosoma brucei ODC has a low binding affinity toward AZ. In this study, we identified key amino acid residues that govern the differential AZ binding affinity of human and Trypanosoma brucei ODC. Multiple sequence alignments of the ODC putative AZ-binding site highlights several key amino acid residues that are different between the human and Trypanosoma brucei ODC protein sequences, including residue 119, 124,125, 129, 136, 137 and 140 (the numbers is for human ODC). We generated a septuple human ODC mutant protein where these seven bases were mutated to match the Trypanosoma brucei ODC protein sequence. The septuple mutant protein was much less sensitive to AZ inhibition compared to the WT protein, suggesting that these amino acid residues play a role in human ODC-AZ binding. Additional experiments with sextuple mutants suggest that residue 137 plays a direct role in AZ binding, and residues 119 and 140 play secondary roles in AZ binding. The dissociation constants were also calculated to quantify the affinity of the ODC-AZ binding interaction. The K d value for the wild type ODC protein-AZ heterodimer ([ODC_WT]-AZ) is approximately 0.22 μM, while the K d value for the septuple mutant-AZ heterodimer ([ODC_7M]-AZ) is approximately 12.4 μM. The greater than 50-fold increase in [ODC_7M]-AZ binding affinity shows that the ODC-7M enzyme has a much lower binding affinity toward AZ. For the mutant proteins ODC_7M(-Q119H) and ODC_7M(-V137D), the K d was 1.4 and 1.2 μM, respectively. These affinities are 6-fold higher than the WT_ODC K d, which suggests that residues 119 and 137 play a role in AZ binding. PMID:22073206

  5. Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery

    PubMed Central

    Liu, Jin

    2016-01-01

    Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2) in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier’s principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery. PMID:27115535

  6. Solution structure of CXCL5--a novel chemokine and adipokine implicated in inflammation and obesity.

    PubMed

    Sepuru, Krishna Mohan; Poluri, Krishna Mohan; Rajarathnam, Krishna

    2014-01-01

    The chemokine CXCL5 is selectively expressed in highly specialized cells such as epithelial type II cells in the lung and white adipose tissue macrophages in muscle, where it mediates diverse functions from combating microbial infections by regulating neutrophil trafficking to promoting obesity by inhibiting insulin signaling. Currently very little is known regarding the structural basis of how CXCL5 mediates its novel functions. Towards this missing knowledge, we have solved the solution structure of the CXCL5 dimer by NMR spectroscopy. CXCL5 is a member of a subset of seven CXCR2-activating chemokines (CAC) that are characterized by the highly conserved ELR motif in the N-terminal tail. The structure shows that CXCL5 adopts the typical chemokine fold, but also reveals several distinct differences in the 30 s loop and N-terminal residues; not surprisingly, crosstalk between N-terminal and 30 s loop residues have been implicated as a major determinant of receptor activity. CAC function also involves binding to highly sulfated glycosaminoglycans (GAG), and the CXCL5 structure reveals a distinct distribution of positively charged residues, suggesting that differences in GAG interactions also influence function. The availability of the structure should now facilitate the design of experiments to better understand the molecular basis of various CXCL5 functions, and also serve as a template for the design of inhibitors for use in a clinical setting.

  7. Reactive oxygen species inactivate neuronal nicotinic acetylcholine receptors through a highly conserved cysteine near the intracellular mouth of the channel: implications for diseases that involve oxidative stress

    PubMed Central

    Krishnaswamy, Arjun; Cooper, Ellis

    2012-01-01

    Abstract An intriguing feature of several nicotinic acetylcholine receptors (nAChRs) on neurons is that their subunits contain a highly conserved cysteine residue located near the intracellular mouth of the receptor pore. The work summarized in this review indicates that α3β4-containing and α4β2-containing neuronal nAChRs, and possibly other subtypes, are inactivated by elevations in intracellular reactive oxygen species (ROS). This review discusses a model for the molecular mechanisms that underlie this inactivation. In addition, we explore the implications of this mechanism in the context of complications that arise from diabetes. We review the evidence that diabetes elevates cytosolic ROS in sympathetic neurons and inactivates postsynaptic α3β4-containing nAChRs shortly after the onset of diabetes, leading to a depression of synaptic transmission in sympathetic ganglia, an impairment of sympathetic reflexes. These effects of ROS on nAChR function are due to the highly conserved Cys residues in the receptors: replacing the cysteine residues in α3 allow ganglionic transmission and sympathetic reflexes to function normally in diabetes. This example from diabetes suggests that other diseases involving oxidative stress, such as Parkinson's disease, could lead to the inactivation of nAChRs on neurons and disrupt cholinergic nicotinic signalling. PMID:21969449

  8. Potential Implication of Residual Viremia in Patients on Effective Antiretroviral Therapy

    PubMed Central

    2015-01-01

    Abstract The current antiretroviral therapy (ART) has suppressed viremia to below the limit of detection of clinical viral load assays; however, it cannot eliminate viremia completely in the body even after prolonged treatment. Plasma HIV-1 loads persist at extremely low levels below the clinical detection limit. This low-level viremia (termed “residual viremia”) cannot be abolished in most patients, even after the addition of a new class of drug, i.e., viral integrase inhibitor, to the combined antiretroviral regimens. Neither the cellular source nor the clinical significance of this residual viremia in patients on ART remains fully clear at present. Since residual plasma viruses generally do not evolve with time in the presence of effective ART, one prediction is that these viruses are persistently released at low levels from one or more stable but yet unknown HIV-1 reservoirs in the body during therapy. This review attempts to emphasize the source of residual viremia as another important reservoir (namely, “active reservoir”) distinct from the well-known latent HIV-1 reservoir in the body, and why its elimination should be a priority in the effort for HIV-1 eradication. PMID:25428885

  9. Residual stress analysis of welded joints by the variational eigenstrain approach

    NASA Astrophysics Data System (ADS)

    Korsunsky, Alexander M.; Regino, Gabriel; Nowell, David

    2005-04-01

    We present the formulation for finding the distribution of eigenstrains, i.e. the sources of residual stress, from a set of measurements of residual elastic strain (e.g. by diffraction), or residual stress, or stress redistribution, or distortion. The variational formulation employed seeks to achieve the best agreement between the model prediction and some measured parameters in the sense of a minimum of a functional given by a sum over the entire set of measurements. The advantage of this approach lies in its flexibility: different sets of measurements and information about different components of the stress-strain state can be incorporated. We demonstrate the power of the technique by analysing experimental data for welds in thin sheet of a nickel superalloy aerospace material. Very good agreement can be achieved between the prediction and the measurement results without the necessity of using iterative solution. In practice complete characterisation of residual stress states is often very difficult, due to limitations of facility access, measurement time or specimen dimensions. Implications of the new technique for experimental analysis are all the more significant, since it allows the reconstruction of the entire stress state from incomplete sets of data.

  10. Joint neutron crystallographic and NMR solution studies of Tyr residue ionization and hydrogen bonding: Implications for enzyme-mediated proton transfer

    PubMed Central

    Michalczyk, Ryszard; Unkefer, Clifford J.; Bacik, John-Paul; Schrader, Tobias E.; Ostermann, Andreas; Kovalevsky, Andrey Y.; McKenna, Robert; Fisher, Suzanne Zoë

    2015-01-01

    Human carbonic anhydrase II (HCA II) uses a Zn-bound OH−/H2O mechanism to catalyze the reversible hydration of CO2. This catalysis also involves a separate proton transfer step, mediated by an ordered solvent network coordinated by hydrophilic residues. One of these residues, Tyr7, was previously shown to be deprotonated in the neutron crystal structure at pH 10. This observation indicated that Tyr7 has a perturbed pKa compared with free tyrosine. To further probe the pKa of this residue, NMR spectroscopic measurements of [13C]Tyr-labeled holo HCA II (with active-site Zn present) were preformed to titrate all Tyr residues between pH 5.4–11.0. In addition, neutron studies of apo HCA II (with Zn removed from the active site) at pH 7.5 and holo HCA II at pH 6 were conducted. This detailed interrogation of tyrosines in HCA II by NMR and neutron crystallography revealed a significantly lowered pKa of Tyr7 and how pH and Tyr proximity to Zn affect hydrogen-bonding interactions. PMID:25902526

  11. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.

    PubMed

    Wahba, Haytham M; Lecoq, Lauriane; Stevenson, Michael; Mansour, Ahmed; Cappadocia, Laurent; Lafrance-Vanasse, Julien; Wilkinson, Kevin J; Sygusch, Jurgen; Wilcox, Dean E; Omichinski, James G

    2016-02-23

    In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL.

  12. Characterisation of the epitope for a herpes simplex virus glycoprotein B-specific monoclonal antibody with high protective capacity.

    PubMed

    Däumer, Martin P; Schneider, Beate; Giesen, Doris M; Aziz, Sheriff; Kaiser, Rolf; Kupfer, Bernd; Schneweis, Karl E; Schneider-Mergener, Jens; Reineke, Ulrich; Matz, Bertfried; Eis-Hübinger, Anna M

    2011-05-01

    Monoclonal antibody (MAb) 2c, specific for glycoprotein B of herpes simplex virus (HSV), had been shown to mediate clearance of infection from the mucous membranes of mice, thereby completely inhibiting mucocutaneous inflammation and lethality, even in mice depleted of both CD4(+) and CD8(+) cells. Additionally, ganglionic infection was highly restricted. In vitro, MAb 2c exhibits a potent complement-independent neutralising activity against HSV type 1 and 2, completely inhibits the viral cell-to-cell spread as well as the syncytium formation induced by syncytial HSV strains (Eis-Hübinger et al. in Intervirology 32:351-360, 1991; Eis-Hübinger et al. in J Gen Virol 74:379-385, 1993). Here, we describe the mapping of the epitope for MAb 2c. The antibody was found to recognise a discontinuous epitope comprised of the HSV type 1 glycoprotein B residues 299 to 305 and one or more additional discontinuous regions that can be mimicked by the sequence FEDF. Identification of the epitope was confirmed by loss of antibody binding to mutated glycoprotein B with replacement of the epitopic key residues, expressed in COS-1 cells. Similarly, MAb 2c was not able to neutralise HSV mutants with altered key residues, and MAb 2c was ineffective in mice inoculated with such mutants. Interestingly, identification and fine-mapping of the discontinuous epitope was not achieved by binding studies with truncated glycoprotein B variants expressed in COS cells but by peptide scanning with synthetic overlapping peptides and peptide key motif analysis. Reactivity of MAb 2c was immensely increased towards a peptide composed of the glycoprotein B residues 299 to 305, a glycine linker, and a C-terminal FEDF motif. If it could be demonstrated that antibodies of the specificity and bioactivity of MAb 2c can be induced by the epitope or a peptide mimicking the epitope, strategies for active immunisation might be conceivable.

  13. MutSα's Multi-Domain Allosteric Response to Three DNA Damage Types Revealed by Machine Learning

    NASA Astrophysics Data System (ADS)

    Melvin, Ryan L.; Thompson, William G.; Godwin, Ryan C.; Gmeiner, William H.; Salsbury, Freddie R.

    2017-03-01

    MutSalpha is a key component in the mismatch repair (MMR) pathway. This protein is responsible for initiating the signaling pathways for DNA repair or cell death. Herein we investigate this heterodimer’s post-recognition, post-binding response to three types of DNA damage involving cytotoxic, anti-cancer agents - carboplatin, cisplatin, and FdU. Through a combination of supervised and unsupervised machine learning techniques along with more traditional structural and kinetic analysis applied to all-atom molecular dynamics (MD) calculations, we predict that MutSalpha has a distinct response to each of the three damage types. Via a binary classification tree (a supervised machine learning technique), we identify key hydrogen bond motifs unique to each type of damage and suggest residues for experimental mutation studies. Through a combination of a recently developed clustering (unsupervised learning) algorithm, RMSF calculations, PCA, and correlated motions we predict that each type of damage causes MutS↵to explore a specific region of conformation space. Detailed analysis suggests a short range effect for carboplatin - primarily altering the structures and kinetics of residues within 10 angstroms of the damaged DNA - and distinct longer-range effects for cisplatin and FdU. In our simulations, we also observe that a key phenylalanine residue - known to stack with a mismatched or unmatched bases in MMR - stacks with the base complementary to the damaged base in 88.61% of MD frames containing carboplatinated DNA. Similarly, this Phe71 stacks with the base complementary to damage in 91.73% of frames with cisplatinated DNA. This residue, however, stacks with the damaged base itself in 62.18% of trajectory frames with FdU-substituted DNA and has no stacking interaction at all in 30.72% of these frames. Each drug investigated here induces a unique perturbation in the MutS↵complex, indicating the possibility of a distinct signaling event and specific repair or death pathway (or set of pathways) for a given type of damage.

  14. Serotype-Specific Structural Differences in the Protease-Cofactor Complexes of the Dengue Virus Family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandramouli, Sumana; Joseph, Jeremiah S.; Daudenarde, Sophie

    With an estimated 40% of the world population at risk, dengue poses a significant threat to human health, especially in tropical and subtropical regions. Preventative and curative efforts, such as vaccine development and drug discovery, face additional challenges due to the occurrence of four antigenically distinct serotypes of the causative dengue virus (DEN1 to -4). Complex immune responses resulting from repeat assaults by the different serotypes necessitate simultaneous targeting of all forms of the virus. One of the promising targets for drug development is the highly conserved two-component viral protease NS2B-NS3, which plays an essential role in viral replication bymore » processing the viral precursor polyprotein into functional proteins. In this paper, we report the 2.1-{angstrom} crystal structure of the DEN1 NS2B hydrophilic core (residues 49 to 95) in complex with the NS3 protease domain (residues 1 to 186) carrying an internal deletion in the N terminus (residues 11 to 20). While the overall folds within the protease core are similar to those of DEN2 and DEN4 proteases, the conformation of the cofactor NS2B is dramatically different from those of other flaviviral apoprotease structures. The differences are especially apparent within its C-terminal region, implicated in substrate binding. The structure reveals for the first time serotype-specific structural elements in the dengue virus family, with the reported alternate conformation resulting from a unique metal-binding site within the DEN1 sequence. We also report the identification of a 10-residue stretch within NS3pro that separates the substrate-binding function from the catalytic turnover rate of the enzyme. Implications for broad-spectrum drug discovery are discussed.« less

  15. Teacher Strategies for Effective Intervention with Students Presenting Social, Emotional and Behavioural Difficulties: Implications for Policy and Practice

    ERIC Educational Resources Information Center

    Cooper, Paul

    2011-01-01

    In this paper some key practice and policy implications emerging from a review of literature on effective teacher strategies for social, emotional and behavioural difficulties are set out. Particular attention is given to implications in relation to the development of teachers' skills.

  16. NEW ENVIRONMENTAL PUBLIC HEALTH INDICATOR LINKING ORGANOCHLORINE COMPOUNDS AND TYPE 2 DIABETES

    EPA Science Inventory

    The project will develop an environmental public health indicator (EPHI) by linking soil residues of organochlorine (OC) insecticides and metabolites/degradates, OC compound levels in people and a disease with which they are implicated, type 2 diabetes (T2D). The proposed E...

  17. ECOTOXICOLOGICAL IMPLICATIONS OF AQUATIC DISPOSAL OF COAL COMBUSTION RESIDUES IN THE UNITED STATES: A REVIEW. (R827581)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. Molecular aspects of aromatic C additions to soils: Implications of biochar quality for ecosystem functionality

    EPA Science Inventory

    Solid residues of incomplete combustion (biochar or char) are continuously being added to soils due to natural vegetation fires in many ecosystems. However, new strategies for carbon sequestration in soils are likely to include the active addition of biochar to soils. Since bioc...

  19. Release of Phosphorous Impurity from TiO2 Anatase and Rutile Nanoparticles in Aquatic Environments and Its Implications

    EPA Science Inventory

    Phosphorus-bearing materials as an additive have been popularly used in nanomaterial synthesis and the residual phosphorus within the nanoparticles (NPs) can be of an environmental concern. For instance, phosphorus within pristine commercial TiO2 NPs greatly influences the surfac...

  20. Manpower Theory and Policy and the Residual Occupational Elasticity of Substitution.

    ERIC Educational Resources Information Center

    Rostker, Bernard Daniel

    By developing the short-run policy implications of a structurally disaggregated labor market, this study attempts to show that fiscal and manpower policies are complementary means to achieve full employment. Using a constant elasticity of substitution production function, the study demonstrates mathematically that the smaller the residual…

  1. A structural insight into the inhibitory mechanism of an orally active PI3K/mTOR dual inhibitor, PKI-179 using computational approaches.

    PubMed

    Mohd Rehan

    2015-11-01

    The PI3K/AKT/mTOR signaling pathway has been identified as an important target for cancer therapy. Attempts are increasingly made to design the inhibitors against the key proteins of this pathway for anti-cancer therapy. The PI3K/mTOR dual inhibitors have proved more effective than the inhibitors against only single protein targets. Recently discovered PKI-179, an orally effective compound, is one such dual inhibitor targeting both PI3K and mTOR. This anti-cancer compound is efficacious both in vitro and in vivo. However, the binding mechanisms and the molecular interactions of PKI-179 with PI3K and mTOR are not yet available. The current study investigated the exact binding mode and the molecular interactions of PKI-179 with PI3Kγ and mTOR using molecular docking and (un)binding simulation analyses. The study identified PKI-179 interacting residues of both the proteins and their importance in binding was ranked by the loss in accessible surface area, number of molecular interactions of the residue, and consistent appearance of the residue in (un)binding simulation analysis. The key residues involved in binding of PKI-179 were Ala-805 in PI3Kγ and Ile-2163 in mTOR as they have lost maximum accessible surface area due to binding. In addition, the residues which played a role in binding of the drug but were away from the catalytic site were also identified using (un)binding simulation analyses. Finally, comparison of the interacting residues in the respective catalytic sites was done for the difference in the binding of the drug to the two proteins. Thus, the pairs of the residues falling at the similar location with respect to the docked drug were identified. The striking similarity in the interacting residues of the catalytic site explains the concomitant inhibition of both proteins by a number of inhibitors. In conclusion, the docking and (un)binding simulation analyses of dual inhibitor PKI-179 with PI3K and mTOR will provide a suitable multi-target model for studying drug-protein interactions and thus help in designing the novel drugs with higher potency. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Hot-spot residues at the E9/Im9 interface help binding via different mechanisms.

    PubMed

    Wong, Sergio E; Baron, Riccardo; McCammon, J Andrew

    2008-11-01

    Protein-protein association involves many interface interactions, but they do not contribute equally. Ala scanning experiments reveal that only a few mutations significantly lower binding affinity. These key residues, which appear to drive protein-protein association, are called hot-spot residues. Molecular dynamics simulations of the Colicin E9/Im9 complex show Im9 Glu41 and Im9 Ser50, both hot-spots, bind via different mechanisms. The results suggest that Im9 Ser50 restricts Glu41 in a conformation auspicious for salt-bridge formation across the interface. This type of model may be helpful in engineering hot-spot clusters at protein-protein interfaces and, consequently, the design of specificity.

  3. Pesticide Residue Monitoring on South African Fresh Produce Exported over a 6-Year Period.

    PubMed

    Mutengwe, M T; Chidamba, L; Korsten, L

    2016-10-01

    Six years of pesticide residue data from fresh produce destined for the export market were analyzed for the period 2009 to 2014. A total of 37,838 fruit (99.27%) and vegetable (0.73%) data sets analyzed for the presence of 73 pesticides were compared. Pesticides were detected on 56.46% of samples, of which 0.78% had multiple residues. Noncompliances detected were because of the use of unregistered pesticides (0.73%), values that exceeded established maximum residue levels (MRLs) (0.32%), or the combination of values that exceeded MRLs and the use of unregistered pesticide residues (0.003%). The most commonly detected pesticides that exceeded established MRLs were imazalil (37.71%), prochloraz (28.69%), and iprodione (5.74%). The unregistered pesticide most often found on grapes and avocados was also imazalil (62.23%) and, on nectarines and avocados, diphenylamine (11.15%). Exceedances of MRL values were mostly associated with oranges (43.44%), avocados (27.87%), grapefruits (7.38%), and lemons (6.56%). Residual pesticide monitoring on fruits and vegetables is a key tool to ensure conformity with regulatory requirements and compliance with good agricultural practices and the trade requirements set by the importing country.

  4. A General Method for Predicting Amino Acid Residues Experiencing Hydrogen Exchange

    PubMed Central

    Wang, Boshen; Perez-Rathke, Alan; Li, Renhao; Liang, Jie

    2018-01-01

    Information on protein hydrogen exchange can help delineate key regions involved in protein-protein interactions and provides important insight towards determining functional roles of genetic variants and their possible mechanisms in disease processes. Previous studies have shown that the degree of hydrogen exchange is affected by hydrogen bond formations, solvent accessibility, proximity to other residues, and experimental conditions. However, a general predictive method for identifying residues capable of hydrogen exchange transferable to a broad set of proteins is lacking. We have developed a machine learning method based on random forest that can predict whether a residue experiences hydrogen exchange. Using data from the Start2Fold database, which contains information on 13,306 residues (3,790 of which experience hydrogen exchange and 9,516 which do not exchange), our method achieves good performance. Specifically, we achieve an overall out-of-bag (OOB) error, an unbiased estimate of the test set error, of 20.3 percent. Using a randomly selected test data set consisting of 500 residues experiencing hydrogen exchange and 500 which do not, our method achieves an accuracy of 0.79, a recall of 0.74, a precision of 0.82, and an F1 score of 0.78.

  5. Comparative immunoexpression of ICAM-1, TGF-β1 and ki-67 in periapical and residual cysts

    PubMed Central

    Armada, Luciana; dos Santos, Teresa-Cristina; Pires, Fabio-Ramoa

    2017-01-01

    Background This study compared the immunohistochemical expression of ki-67, transforming growth factor beta 1 (TGF-β1) and intercellular adhesion molecule-1 (ICAM-1) in inflammatory periapical cysts and residual cysts. Material and Methods The study sample was composed by 25 periapical cysts and 25 residual cysts and immunohistochemical reactions were carried out using antibodies directed against ICAM-1, TGF-β1 and ki-67. Clinical, radiological, gross, histological and immunohistochemical data were tabulated for descriptive and comparative analysis using the SPSS software and differences were considered statistically significant when p<0.05%. Results There were no differences between the expression of ICAM-1 (p=0.239) and TGF-β1 (p=0.258) when comparing both groups. Ki-67 labeling index was higher in residual cysts compared to periapical cysts (p=0.017). Conclusions Results from the present study suggest that some specific inflammatory stimuli on residual cysts would modulate their mechanisms of etiopathogenesis, growing and repair. Key words:Periapical cyst, radicular cyst, residual cyst, transforming growth factor beta 1 (TGF-β1), intercellular adhesion molecule 1 (ICAM-1), ki-67. PMID:27918735

  6. Maintenance treatment for GERD: residual symptoms are associated with psychological distress.

    PubMed

    van der Velden, A W; de Wit, N J; Quartero, A O; Grobbee, D E; Numans, M E

    2008-01-01

    The aim of this study was to explore determinants of residual reflux symptoms among patients with gastroesophageal reflux disease (GERD) despite maintenance treatment with acid suppressive medication (ASM). Primary care GERD patients on chronic ASM were classified as symptom-free (55%) or symptomatic (45%) according to the impact of their residual reflux symptoms (QolRad). They were compared with respect to lifestyle (BMI, alcohol, smoking, physical exercise), compliance (daily ASM dosage), disease history, psychological factors (SCL-90) and quality of life (SF-36). None of the investigated lifestyle factors, nor dosage and disease history were related to residual symptoms. However, symptomatic patients differed from patients with relief on all psychological and quality of life dimensions. In a multiple logistic regression model somatization, hostility, mental health, body pain, as well as gender were independently associated with residual symptoms; the derived ROC curve had an AUC of 0.78. The majority of GERD patients is symptom-free on chronic ASM; they display a healthy psychological state and high quality of life. Residual symptoms however, are associated with psychological distress and lower quality of life. Recognition of this subgroup might hold the key to improving long-term management of gastroesophageal reflux. Copyright 2008 S. Karger AG, Basel.

  7. Multiple Functions of Aromatic-Carbohydrate Interactions in a Processive Cellulase Examined with Molecular Simulation*

    PubMed Central

    Payne, Christina M.; Bomble, Yannick J.; Taylor, Courtney B.; McCabe, Clare; Himmel, Michael E.; Crowley, Michael F.; Beckham, Gregg T.

    2011-01-01

    Proteins employ aromatic residues for carbohydrate binding in a wide range of biological functions. Glycoside hydrolases, which are ubiquitous in nature, typically exhibit tunnels, clefts, or pockets lined with aromatic residues for processing carbohydrates. Mutation of these aromatic residues often results in significant activity differences on insoluble and soluble substrates. However, the thermodynamic basis and molecular level role of these aromatic residues remain unknown. Here, we calculate the relative ligand binding free energy by mutating tryptophans in the Trichoderma reesei family 6 cellulase (Cel6A) to alanine. Removal of aromatic residues near the catalytic site has little impact on the ligand binding free energy, suggesting that aromatic residues immediately upstream of the active site are not directly involved in binding, but play a role in the glucopyranose ring distortion necessary for catalysis. Removal of aromatic residues at the entrance and exit of the Cel6A tunnel, however, dramatically impacts the binding affinity, suggesting that these residues play a role in chain acquisition and product stabilization, respectively. The roles suggested from differences in binding affinity are confirmed by molecular dynamics and normal mode analysis. Surprisingly, our results illustrate that aromatic-carbohydrate interactions vary dramatically depending on the position in the enzyme tunnel. As aromatic-carbohydrate interactions are present in all carbohydrate-active enzymes, these results have implications for understanding protein structure-function relationships in carbohydrate metabolism and recognition, carbon turnover in nature, and protein engineering strategies for biomass utilization. Generally, these results suggest that nature employs aromatic-carbohydrate interactions with a wide range of binding affinities for diverse functions. PMID:21965672

  8. In vivo wound healing and in vitro antioxidant activities of Bletilla striata phenolic extracts.

    PubMed

    Song, Yi; Zeng, Rui; Hu, Lingli; Maffucci, Katherine G; Ren, Xiaodong; Qu, Yan

    2017-09-01

    Bletilla striata has attracted extensive research interest due to the potential uses for its extracts to treat skin burns and inflammatory disorders in a clinical setting. My current research focuses on Bletilla striata polysaccharides (BSP), and often ignores the residues that remain after polysaccharide extraction. It also remains unclear whether the residues have medical value related its traditional clinic function. During this work, we firstly identified the contents of the post-extraction residue by UPLC-Q-Exactive Orbitrap-MS and evaluated its in vivo wound healing and in vitro antioxidant activity. The wound healing activity of the ointment containing residue was assessed for 15days the scald model was used in mice, followed by histopathology and histomorphological analysis. The in vitro antioxidant effect of Bletilla residue was researched using DPPH, ABTS, Hydroxyl radical scavenging, superoxideanion radical scavenging, and reducing power assays. AUPLC-Q-Exactive Orbitrap-MS analysis identified 6 phenolic compounds: protocatechuic acid, p-hydroxybenzoic acid, caffeic acid, p-hydroxybenzaldehyde, 3-Hydroxycinnamic acid, and ferulic acid. Animals treated with "mixed ointment" experienced inflammatory infiltration, which was lower than that of other groups. Both "BSPG ointment" and "Bletilla phenolic ointment" demonstrated superior tissue repair compared to the control. This study was the first to confirm that the residual liquid after polysaccharide extraction has excellent antioxidant and wound healing activities. In addition to Bletilla striata polysaccharides, the residual liquid can improve skin regeneration after burns and reduce inflammatory marker levels. These results have implications that the residual liquid has potential wound healing medicinal value. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Conversion of human choriogonadotropin into a follitropin by protein engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, R.K.; Dean-Emig, D.M.; Moyle, W.R.

    1991-02-01

    Human reproduction is dependent upon the action of follicle-stimulating hormone (hFSH), luteinizing hormone (hLH), and chorionic gonadotropin (hCG). While the {alpha} subunits of these heterodimeric proteins can be interchanged without effect on receptor-binding specificity, their {beta} subunits differ and direct hormone binding to either LH/CG or FSH receptors. Previous studies employing chemical modifications of the hormones, monoclonal antibodies, or synthetic peptides have implicated hCG {beta}-subunit residues between Cys-38 and Cys-57 and corresponding regions of hLH{beta} and hFSH{beta} in receptor recognition and activation. Since the {beta} subunits of hCG or hLH and hFSH exhibit very little sequence similarity in this region,more » the authors postulated that these residues might contribute to hormone specificity. To test this hypothesis the authors constructed chimeric hCG/hFSH {beta} subunits, coexpressed them with the human {alpha} subunit, and examined their ability to interact with LH and FSH receptors and hormone-specific monoclonal antibodies. Surprisingly, substitution of hFSH{beta} residues 33-52 for hCG{beta} residues 39-58 had no effect on receptor binding or stimulation. However, substitution of hFSH{beta} residues 88-108 in place of the carboxyl terminus of hCG{beta} (residues 94-145) resulted in a hormone analog identical to hFSH in its ability to bind and stimulate FSH receptors. The altered binding specificity displayed by this analog is not attributable solely to the replacement of hCG{beta} residues 108-145 or substitution of residues in the determinant loop located between hCD{beta} residues 93 and 100.« less

  10. Importance of Residue 13 and the C-Terminus for the Structure and Activity of the Antimicrobial Peptide Aurein 2.2

    PubMed Central

    Cheng, John T.J.; Hale, John D.; Kindrachuk, Jason; Jessen, Havard; Elliott, Melissa; Hancock, Robert E.W.; Straus, Suzana K.

    2010-01-01

    Previous studies on aurein 2.2 and 2.3 in DMPC/DMPG and POPC/POPG membranes have shown that bilayer thickness and phosphatidylglycerol content have a significant impact on the interaction of these peptides with membrane bilayers. Further examination with the DiSC35 assay has indicated that aurein 2.2 induces greater membrane leakage than aurein 2.3 in Staphylococcus aureus C622. The only difference between these peptides is a Leu to Ile mutation at residue 13. To better understand the importance of this residue, the structure and activity of the L13A, L13F, and L13V mutants were investigated. In addition, we investigated a number of peptides with truncations at the C-terminus to determine whether the C-terminus, which contains residue 13, is crucial for antimicrobial activity. Solution circular dichroism results demonstrated that the L13F mutation and the truncation of the C-terminus by six residues resulted in decreased helical content, whereas the L13A or L13V mutation and the truncation of the C-terminus by three residues showed little to no effect on the structure. Oriented circular dichroism results demonstrated that only an extensive C-terminal truncation reduced the ability of the peptide to insert into lipid bilayers. 31P NMR spectroscopy showed that all peptides disorder the headgroups. The implications of these results in terms of antimicrobial activity and the ability of these peptides to induce leakage in S. aureus are discussed. The results suggest that the presence of the 13th residue in aurein 2.2 is important for structure and activity, but the exact nature of residue 13 is less important as long as it is a hydrophobic residue. PMID:21044590

  11. Switch loop flexibility affects substrate transport of the AcrB efflux pump

    DOE PAGES

    Muller, Reinke T.; Travers, Timothy; Cha, Hi-jea; ...

    2017-10-05

    The functionally important switch-loop of the trimeric multidrug transporter AcrB separates the access and deep drug binding pockets in every protomer. This loop, comprising 11 amino acid residues, has been shown to be crucial for substrate transport, as drugs have to travel past the loop to reach the deep binding pocket and from there are transported outside the cell via the connected AcrA and TolC channels. It contains four symmetrically arranged glycine residues suggesting that flexibility is a key feature for pump activity. Upon combinatorial substitution of these glycine residues to proline, functional and structural asymmetry was observed. Proline substitutionsmore » on the PC1 proximal side completely abolished transport and reduced backbone flexibility of the switch loop, which adopted a conformation restricting the pathway towards the deep binding pocket. Here, two phenylalanine residues located adjacent to the substitution sensitive glycine residues play a role in blocking the pathway upon rigidification of the loop, since the removal of the phenyl rings from the rigid loop restores drug transport activity.« less

  12. Switch loop flexibility affects substrate transport of the AcrB efflux pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Reinke T.; Travers, Timothy; Cha, Hi-jea

    The functionally important switch-loop of the trimeric multidrug transporter AcrB separates the access and deep drug binding pockets in every protomer. This loop, comprising 11 amino acid residues, has been shown to be crucial for substrate transport, as drugs have to travel past the loop to reach the deep binding pocket and from there are transported outside the cell via the connected AcrA and TolC channels. It contains four symmetrically arranged glycine residues suggesting that flexibility is a key feature for pump activity. Upon combinatorial substitution of these glycine residues to proline, functional and structural asymmetry was observed. Proline substitutionsmore » on the PC1 proximal side completely abolished transport and reduced backbone flexibility of the switch loop, which adopted a conformation restricting the pathway towards the deep binding pocket. Here, two phenylalanine residues located adjacent to the substitution sensitive glycine residues play a role in blocking the pathway upon rigidification of the loop, since the removal of the phenyl rings from the rigid loop restores drug transport activity.« less

  13. Super-resolution reconstruction of MR image with a novel residual learning network algorithm

    NASA Astrophysics Data System (ADS)

    Shi, Jun; Liu, Qingping; Wang, Chaofeng; Zhang, Qi; Ying, Shihui; Xu, Haoyu

    2018-04-01

    Spatial resolution is one of the key parameters of magnetic resonance imaging (MRI). The image super-resolution (SR) technique offers an alternative approach to improve the spatial resolution of MRI due to its simplicity. Convolutional neural networks (CNN)-based SR algorithms have achieved state-of-the-art performance, in which the global residual learning (GRL) strategy is now commonly used due to its effectiveness for learning image details for SR. However, the partial loss of image details usually happens in a very deep network due to the degradation problem. In this work, we propose a novel residual learning-based SR algorithm for MRI, which combines both multi-scale GRL and shallow network block-based local residual learning (LRL). The proposed LRL module works effectively in capturing high-frequency details by learning local residuals. One simulated MRI dataset and two real MRI datasets have been used to evaluate our algorithm. The experimental results show that the proposed SR algorithm achieves superior performance to all of the other compared CNN-based SR algorithms in this work.

  14. Switching Cyclic Nucleotide-Selective Activation of Cyclic Adenosine Monophosphate-Dependent Protein Kinase Holoenzyme Reveals Distinct Roles of Tandem Cyclic Nucleotide-Binding Domains.

    PubMed

    He, Daniel; Lorenz, Robin; Kim, Choel; Herberg, Friedrich W; Lim, Chinten James

    2017-12-15

    The cyclic adenosine monophosphate (cAMP)- and cyclic guanosine monophosphate (cGMP)-dependent protein kinases (PKA and PKG) are key effectors of cyclic nucleotide signaling. Both share structural features that include tandem cyclic nucleotide-binding (CNB) domains, CNB-A and CNB-B, yet their functions are separated through preferential activation by either cAMP or cGMP. Based on structural studies and modeling, key CNB contact residues have been identified for both kinases. In this study, we explored the requirements for conversion of PKA activation from cAMP-dependent to cGMP-dependent. The consequences of the residue substitutions T192R/A212T within CNB-A or G316R/A336T within CNB-B of PKA-RIα on cyclic nucleotide binding and holoenzyme activation were assessed in vitro using purified recombinant proteins, and ex vivo using RIα-deficient mouse embryonic fibroblasts genetically reconstituted with wild-type or mutant PKA-RIα. In vitro, a loss of binding and activation selectivity was observed when residues in either one of the CNB domains were mutated, while mutations in both CNB domains resulted in a complete switch of selectivity from cAMP to cGMP. The switch in selectivity was also recapitulated ex vivo, confirming their functional roles in cells. Our results highlight the importance of key cyclic nucleotide contacts within each CNB domain and suggest that these domains may have evolved from an ancestral gene product to yield two distinct cyclic nucleotide-dependent protein kinases.

  15. pH and Organic Carbon Dose Rates Control Microbially Driven Bioremediation Efficacy in Alkaline Bauxite Residue.

    PubMed

    Santini, Talitha C; Malcolm, Laura I; Tyson, Gene W; Warren, Lesley A

    2016-10-18

    Bioremediation of alkaline tailings, based on fermentative microbial metabolisms, is a novel strategy for achieving rapid pH neutralization and thus improving environmental outcomes associated with mining and refining activities. Laboratory-scale bioreactors containing bauxite residue (an alkaline, saline tailings material generated as a byproduct of alumina refining), to which a diverse microbial inoculum was added, were used in this study to identify key factors (pH, salinity, organic carbon supply) controlling the rates and extent of microbially driven pH neutralization (bioremediation) in alkaline tailings. Initial tailings pH and organic carbon dose rates both significantly affected bioremediation extent and efficiency with lower minimum pHs and higher extents of pH neutralization occurring under low initial pH or high organic carbon conditions. Rates of pH neutralization (up to 0.13 mM H + produced per day with pH decreasing from 9.5 to ≤6.5 in three days) were significantly higher in low initial pH treatments. Representatives of the Bacillaceae and Enterobacteriaceae, which contain many known facultative anaerobes and fermenters, were identified as key contributors to 2,3-butanediol and/or mixed acid fermentation as the major mechanism(s) of pH neutralization. Initial pH and salinity significantly influenced microbial community successional trajectories, and microbial community structure was significantly related to markers of fermentation activity. This study provides the first experimental demonstration of bioremediation in bauxite residue, identifying pH and organic carbon dose rates as key controls on bioremediation efficacy, and will enable future development of bioreactor technologies at full field scale.

  16. [Evolution of the concept of residues in the products of animals raised with the use of antibiotics].

    PubMed

    Wal, J M

    1979-01-01

    The concept of residues of antibiotics used as feed additives or veterinary drugs in food producing animals is analysed, and implications on human public health are discussed. The examples of Tylosin and Penicillin are developed to illustrate the both notions of "high risk residue" and "toxicodisponibility" of residues. The "high risk residue" may be an active metabolite different by its chemical structure and by its pharmacological properties from the original drug administered. Slight modifications of the molecule, as the rupture of the beta lactam ring of the Penicillin, occuring in vivo, lead to a metabolite, e.g. penicilloyl group, that has lost all antibiotic activity but possesses allergenic potential. Toxicity of the residue, compared with that of the original drug, can then be modified or increased. On the other hand, such an active metabolite having a definite chemical structure, even if different from the original compound, can be present in the organism, either free or bound to serum or tissues proteins. Moreover, it is shown here, that in the case of a covalent binding of the drug or its metabolite (e.g. penicilloyl group) to serum albumin, the residues are mostly masked inside the tertiary structure of the albumin molecule, and are not accessible to antibodies. These different forms have then an effect upon the biodisponibility, the "toxicodisponibility", of the residues for the human consumer of animal products where they are present. These forms are only accessible with more and more specific and sensitive analytical methods which relates also the qualitative and quantitative notions of residue to the technological degree used for investigation, determination and identification. As to cooking techniques, they can lead to a thermodegradation of the residue or, on the opposite, to an unmasking of the residue present as a protein conjugate, e.g. penicilloyl-protein conjugate in milk.

  17. Properties and Residual Stresses in Angle-Ply Polymer Matrix Composites

    DTIC Science & Technology

    1982-03-01

    AMMRC TR 82-12 PROPERTIES AND RES l DUAL STRESSES IN ANGLE-PLY POLYMER MATR l X COMPOSITES March 1982 ABDEL A. FAHMY,, HARVEY A. WEST, and MARK...m D.e. Enl.r.d) PROPERTIES AND RESIDUAL STRESSES I N ANGLE-PLY F i n a l Report POLYMER MATRIX COMPOSITES REPORTDOCUMENTATlON PAGE I 7. AUTHOR...SUPPLEMENTARV NOTES L 19. KEY WORDS (Comclrm. m r.r.r. wd. 11 ner..sw and idenllfy by blocb nmb-r) Composites Thermal expansion Epoxy l a m i n a t e s

  18. Characterization of Residual Stress in Microelectromechanical Systems (MEMS) Devices Using Raman Spectroscopy

    DTIC Science & Technology

    2002-04-01

    residual and induced stress curves . A key to modelling MEMS structures, especially micromirrors , is to 2-23 (a) 0V (b) 10V (c) 20V (d) 40V (e) 50V (f...outlined in Figure 4.20. A line marker is used to extract the FEM data as displayed across the micromirror flexure. The MEMCAD FEM stress curve for the... curved as observed by the number of fringe lines displayed on the micromirror surface. The maximum peak deformation for this series of micromirrors is

  19. Identification of molecular descriptors for design of novel Isoalloxazine derivatives as potential Acetylcholinesterase inhibitors against Alzheimer's disease.

    PubMed

    Gurung, Arun Bahadur; Aguan, Kripamoy; Mitra, Sivaprasad; Bhattacharjee, Atanu

    2017-06-01

    In Alzheimer's disease (AD), the level of Acetylcholine (ACh) neurotransmitter is reduced. Since Acetylcholinesterase (AChE) cleaves ACh, inhibitors of AChE are very much sought after for AD treatment. The side effects of current inhibitors necessitate development of newer AChE inhibitors. Isoalloxazine derivatives have proved to be promising (AChE) inhibitors. However, their structure-activity relationship studies have not been reported till date. In the present work, various quantitative structure-activity relationship (QSAR) building methods such as multiple linear regression (MLR), partial least squares ,and principal component regression were employed to derive 3D-QSAR models using steric and electrostatic field descriptors. Statistically significant model was obtained using MLR coupled with stepwise selection method having r 2  = .9405, cross validated r 2 (q 2 ) = .6683, and a high predictability (pred_r 2  = .6206 and standard error, pred_r 2 se = .2491). Steric and electrostatic contribution plot revealed three electrostatic fields E_496, E_386 and E_577 and one steric field S_60 contributing towards biological activity. A ligand-based 3D-pharmacophore model was generated consisting of eight pharmacophore features. Isoalloxazine derivatives were docked against human AChE, which revealed critical residues implicated in hydrogen bonds as well as hydrophobic interactions. The binding modes of docked complexes (AChE_IA1 and AChE_IA14) were validated by molecular dynamics simulation which showed their stable trajectories in terms of root mean square deviation and molecular mechanics/Poisson-Boltzmann surface area binding free energy analysis revealed key residues contributing significantly to overall binding energy. The present study may be useful in the design of more potent Isoalloxazine derivatives as AChE inhibitors.

  20. A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee1[W][OA

    PubMed Central

    Lallemand, Laura A.; Zubieta, Chloe; Lee, Soon Goo; Wang, Yechun; Acajjaoui, Samira; Timmins, Joanna; McSweeney, Sean; Jez, Joseph M.; McCarthy, James G.; McCarthy, Andrew A.

    2012-01-01

    Chlorogenic acids (CGAs) are a group of phenolic secondary metabolites produced by certain plant species and an important component of coffee (Coffea spp.). The CGAs have been implicated in biotic and abiotic stress responses, while the related shikimate esters are key intermediates for lignin biosynthesis. Here, two hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyl transferases (HCT/HQT) from coffee were biochemically characterized. We show, to our knowledge for the first time, that in vitro, HCT is capable of synthesizing the 3,5-O-dicaffeoylquinic acid diester, a major constituent of the immature coffee grain. In order to further understand the substrate specificity and catalytic mechanism of the HCT/HQT, we performed structural and mutagenesis studies of HCT. The three-dimensional structure of a native HCT and a proteolytically stable lysine mutant enabled the identification of important residues involved in substrate specificity and catalysis. Site-directed mutagenesis confirmed the role of residues leucine-400 and phenylalanine-402 in substrate specificity and of histidine-153 and the valine-31 to proline-37 loop in catalysis. In addition, the histidine-154-asparagine mutant was observed to produce 4-fold more dichlorogenic acids compared with the native protein. These data provide, to our knowledge, the first structural characterization of a HCT and, in conjunction with the biochemical and mutagenesis studies presented here, delineate the underlying molecular-level determinants for substrate specificity and catalysis. This work has potential applications in fine-tuning the levels of shikimate and quinate esters (CGAs including dichlorogenic acids) in different plant species in order to generate reduced or elevated levels of the desired target compounds. PMID:22822210

  1. Targeting natural compounds against HER2 kinase domain as potential anticancer drugs applying pharmacophore based molecular modelling approaches.

    PubMed

    Rampogu, Shailima; Son, Minky; Baek, Ayoung; Park, Chanin; Rana, Rabia Mukthar; Zeb, Amir; Parameswaran, Saravanan; Lee, Keun Woo

    2018-04-20

    Human epidermal growth factor receptors are implicated in several types of cancers characterized by aberrant signal transduction. This family comprises of EGFR (ErbB1), HER2 (ErbB2, HER2/neu), HER3 (ErbB3), and HER4 (ErbB4). Amongst them, HER2 is associated with breast cancer and is one of the most valuable targets in addressing the breast cancer incidences. For the current investigation, we have performed 3D-QSAR based pharmacophore search for the identification of potential inhibitors against the kinase domain of HER2 protein. Correspondingly, a pharmacophore model, Hypo1, with four features was generated and was validated employing Fischer's randomization, test set method and the decoy test method. The validated pharmacophore was allowed to screen the colossal natural compounds database (UNPD). Subsequently, the identified 33 compounds were docked into the proteins active site along with the reference after subjecting them to ADMET and Lipinski's Rule of Five (RoF) employing the CDOCKER implemented on the Discovery Studio. The compounds that have displayed higher dock scores than the reference compound were scrutinized for interactions with the key residues and were escalated to MD simulations. Additionally, molecular dynamics simulations performed by GROMACS have rendered stable root mean square deviation values, radius of gyration and potential energy values. Eventually, based upon the molecular dock score, interactions between the ligands and the active site residues and the stable MD results, the number of Hits was culled to two identifying Hit1 and Hit2 has potential leads against HER2 breast cancers. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Conjugated Fatty Acid Synthesis

    PubMed Central

    Rawat, Richa; Yu, Xiao-Hong; Sweet, Marie; Shanklin, John

    2012-01-01

    Conjugated linolenic acids (CLNs), 18:3 Δ9,11,13, lack the methylene groups found between the double bonds of linolenic acid (18:3 Δ9,12,15). CLNs are produced by conjugase enzymes that are homologs of the oleate desaturases FAD2. The goal of this study was to map the domain(s) within the Momordica charantia conjugase (FADX) responsible for CLN formation. To achieve this, a series of Momordica FADX-Arabidopsis FAD2 chimeras were expressed in the Arabidopsis fad3fae1 mutant, and the transformed seeds were analyzed for the accumulation of CLN. These experiments identified helix 2 and the first histidine box as a determinant of conjugase product partitioning into punicic acid (18:3 Δ9cis,11trans,13cis) or α-eleostearic acid (18:3 Δ9cis,11trans,13trans). This was confirmed by analysis of a FADX mutant containing six substitutions in which the sequence of helix 2 and first histidine box was converted to that of FAD2. Each of the six FAD2 substitutions was individually converted back to the FADX equivalent identifying residues 111 and 115, adjacent to the first histidine box, as key determinants of conjugase product partitioning. Additionally, expression of FADX G111V and FADX G111V/D115E resulted in an approximate doubling of eleostearic acid accumulation to 20.4% and 21.2%, respectively, compared with 9.9% upon expression of the native Momordica FADX. Like the Momordica conjugase, FADX G111V and FADX D115E produced predominantly α-eleostearic acid and little punicic acid, but the FADX G111V/D115E double mutant produced approximately equal amounts of α-eleostearic acid and its isomer, punicic acid, implicating an interactive effect of residues 111 and 115 in punicic acid formation. PMID:22451660

  3. Crystal Structures of Human Choline Kinase Isoforms in Complex with Hemicholinium-3 Single Amino Acid near the Active Site Influences Inhibitor Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Bum Soo; Allali-Hassani, Abdellah; Tempel, Wolfram

    2010-07-06

    Human choline kinase (ChoK) catalyzes the first reaction in phosphatidylcholine biosynthesis and exists as ChoK{alpha} ({alpha}1 and {alpha}2) and ChoK{beta} isoforms. Recent studies suggest that ChoK is implicated in tumorigenesis and emerging as an attractive target for anticancer chemotherapy. To extend our understanding of the molecular mechanism of ChoK inhibition, we have determined the high resolution x-ray structures of the ChoK{alpha}1 and ChoK{beta} isoforms in complex with hemicholinium-3 (HC-3), a known inhibitor of ChoK. In both structures, HC-3 bound at the conserved hydrophobic groove on the C-terminal lobe. One of the HC-3 oxazinium rings complexed with ChoK{alpha}1 occupied the choline-bindingmore » pocket, providing a structural explanation for its inhibitory action. Interestingly, the HC-3 molecule co-crystallized with ChoK{beta} was phosphorylated in the choline binding site. This phosphorylation, albeit occurring at a very slow rate, was confirmed experimentally by mass spectroscopy and radioactive assays. Detailed kinetic studies revealed that HC-3 is a much more potent inhibitor for ChoK{alpha} isoforms ({alpha}1 and {alpha}2) compared with ChoK{beta}. Mutational studies based on the structures of both inhibitor-bound ChoK complexes demonstrated that Leu-401 of ChoK{alpha}2 (equivalent to Leu-419 of ChoK{alpha}1), or the corresponding residue Phe-352 of ChoK{beta}, which is one of the hydrophobic residues neighboring the active site, influences the plasticity of the HC-3-binding groove, thereby playing a key role in HC-3 sensitivity and phosphorylation.« less

  4. Human health implications of organic food and organic agriculture: a comprehensive review.

    PubMed

    Mie, Axel; Andersen, Helle Raun; Gunnarsson, Stefan; Kahl, Johannes; Kesse-Guyot, Emmanuelle; Rembiałkowska, Ewa; Quaglio, Gianluca; Grandjean, Philippe

    2017-10-27

    This review summarises existing evidence on the impact of organic food on human health. It compares organic vs. conventional food production with respect to parameters important to human health and discusses the potential impact of organic management practices with an emphasis on EU conditions. Organic food consumption may reduce the risk of allergic disease and of overweight and obesity, but the evidence is not conclusive due to likely residual confounding, as consumers of organic food tend to have healthier lifestyles overall. However, animal experiments suggest that identically composed feed from organic or conventional production impacts in different ways on growth and development. In organic agriculture, the use of pesticides is restricted, while residues in conventional fruits and vegetables constitute the main source of human pesticide exposures. Epidemiological studies have reported adverse effects of certain pesticides on children's cognitive development at current levels of exposure, but these data have so far not been applied in formal risk assessments of individual pesticides. Differences in the composition between organic and conventional crops are limited, such as a modestly higher content of phenolic compounds in organic fruit and vegetables, and likely also a lower content of cadmium in organic cereal crops. Organic dairy products, and perhaps also meats, have a higher content of omega-3 fatty acids compared to conventional products. However, these differences are likely of marginal nutritional significance. Of greater concern is the prevalent use of antibiotics in conventional animal production as a key driver of antibiotic resistance in society; antibiotic use is less intensive in organic production. Overall, this review emphasises several documented and likely human health benefits associated with organic food production, and application of such production methods is likely to be beneficial within conventional agriculture, e.g., in integrated pest management.

  5. Determination of the binding mode for the cyclopentapeptide CXCR4 antagonist FC131 using a dual approach of ligand modifications and receptor mutagenesis

    PubMed Central

    Thiele, S; Mungalpara, J; Steen, A; Rosenkilde, M M; Våbenø, J

    2014-01-01

    Background and Purpose The cyclopentapeptide FC131 (cyclo(-L-Arg1-L-Arg2-L-2-Nal3-Gly4-D-Tyr5-)) is an antagonist at the CXC chemokine receptor CXCR4, which plays a role in human immunodeficiency virus infection, cancer and stem cell recruitment. Binding modes for FC131 in CXCR4 have previously been suggested based on molecular docking guided by structure–activity relationship (SAR) data; however, none of these have been verified by in vitro experiments. Experimental Approach Heterologous 125I-12G5-competition binding and functional assays (inhibition of CXCL12-mediated activation) of FC131 and three analogues were performed on wild-type CXCR4 and 25 receptor mutants. Computational modelling was used to rationalize the experimental data. Key Results The Arg2 and 2-Nal3 side chains of FC131 interact with residues in TM-3 (His113, Asp171) and TM-5 (hydrophobic pocket) respectively. Arg1 forms charge-charge interactions with Asp187 in ECL-2, while D-Tyr5 points to the extracellular side of CXCR4. Furthermore, the backbone of FC131 interacts with the chemokine receptor-conserved Glu288 via two water molecules. Intriguingly, Tyr116 and Glu288 form a H-bond in CXCR4 crystal structures and mutation of either residue to Ala abolishes CXCR4 activity. Conclusions and Implications Ligand modification, receptor mutagenesis and computational modelling approaches were used to identify the binding mode of FC131 in CXCR4, which was in agreement with binding modes suggested from previous SAR studies. Furthermore, insights into the mechanism for CXCR4 activation by CXCL12 were gained. The combined findings will facilitate future design of novel CXCR4 antagonists. PMID:25039237

  6. Deinococcus radiodurans RNA ligase exemplifies a novel ligase clade with a distinctive N-terminal module that is important for 5'-PO4 nick sealing and ligase adenylylation but dispensable for phosphodiester formation at an adenylylated nick.

    PubMed

    Raymond, Amy; Shuman, Stewart

    2007-01-01

    Deinococcus radiodurans RNA ligase (DraRnl) is a template-directed ligase that seals nicked duplexes in which the 3'-OH strand is RNA. DraRnl is a 342 amino acid polypeptide composed of a C-terminal adenylyltransferase domain fused to a distinctive 126 amino acid N-terminal module (a putative OB-fold). An alanine scan of the C domain identified 9 amino acids essential for nick ligation, which are located within nucleotidyltransferase motifs I, Ia, III, IIIa, IV and V. Seven mutants were dysfunctional by virtue of defects in ligase adenylylation: T163A, H167A, G168A, K186A, E230A, F281A and E305A. Four of these were also defective in phosphodiester formation at a preadenylylated nick: G168A, E230A, F281A and E305A. Two nick sealing-defective mutants were active in ligase adenylylation and sealing a preadenylylated nick, thereby implicating Ser185 and Lys326 in transfer of AMP from the enzyme to the nick 5'-PO(4). Whereas deletion of the N-terminal domain suppressed overall nick ligation and ligase adenylylation, it did not compromise sealing at a preadenylylated nick. Mutational analysis of 15 residues of the N domain identified Lys26, Gln31 and Arg79 as key constituents. Structure-activity relationships at the essential residues were determined via conservative substitutions. We propose that DraRnl typifies a new clade of polynucleotide ligases. DraRnl homologs are detected in several eukaryal proteomes.

  7. Deinococcus radiodurans RNA ligase exemplifies a novel ligase clade with a distinctive N-terminal module that is important for 5′-PO4 nick sealing and ligase adenylylation but dispensable for phosphodiester formation at an adenylylated nick

    PubMed Central

    Raymond, Amy; Shuman, Stewart

    2007-01-01

    Deinococcus radiodurans RNA ligase (DraRnl) is a template-directed ligase that seals nicked duplexes in which the 3′-OH strand is RNA. DraRnl is a 342 amino acid polypeptide composed of a C-terminal adenylyltransferase domain fused to a distinctive 126 amino acid N-terminal module (a putative OB-fold). An alanine scan of the C domain identified 9 amino acids essential for nick ligation, which are located within nucleotidyltransferase motifs I, Ia, III, IIIa, IV and V. Seven mutants were dysfunctional by virtue of defects in ligase adenylylation: T163A, H167A, G168A, K186A, E230A, F281A and E305A. Four of these were also defective in phosphodiester formation at a preadenylylated nick: G168A, E230A, F281A and E305A. Two nick sealing-defective mutants were active in ligase adenylylation and sealing a preadenylylated nick, thereby implicating Ser185 and Lys326 in transfer of AMP from the enzyme to the nick 5′-PO4. Whereas deletion of the N-terminal domain suppressed overall nick ligation and ligase adenylylation, it did not compromise sealing at a preadenylylated nick. Mutational analysis of 15 residues of the N domain identified Lys26, Gln31 and Arg79 as key constituents. Structure–activity relationships at the essential residues were determined via conservative substitutions. We propose that DraRnl typifies a new clade of polynucleotide ligases. DraRnl homologs are detected in several eukaryal proteomes. PMID:17204483

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Alistair K.; Sridharan, Sudharsan; Kremer, Laurent

    Mycolic acids are the dominant feature of the Mycobacterium tuberculosis cell wall. These {alpha}-alkyl, {beta}-hydroxy fatty acids are formed by the condensation of two fatty acids, a long meromycolic acid and a shorter C{sub 24}-C{sub 26} fatty acid. The component fatty acids are produced via a combination of type I and II fatty acid synthases (FAS) with FAS-I products being elongated by FAS-II toward meromycolic acids. The {beta}-ketoacyl-acyl carrier protein (ACP) synthase III encoded by mtfabH (mtFabH) links FAS-I and FAS-II, catalyzing the condensation of FAS-I-derived acyl-CoAs with malonyl-acyl carrier protein (ACP). The acyl-CoA chain length specificity of mtFabH wasmore » assessed in vitro; the enzyme extended longer, physiologically relevant acyl-CoA primers when paired with AcpM, its natural partner, than with Escherichia coli ACP. The ability of the enzyme to use E. coli ACP suggests that a similar mode of binding is likely with both ACPs, yet it is clear that unique factors inherent to AcpM modulate the substrate specificity of mtFabH. Mutation of proposed key mtFabH residues was used to define their catalytic roles. Substitution of supposed acyl-CoA binding residues reduced transacylation, with double substitutions totally abrogating activity. Mutation of Arg{sup 46} revealed its more critical role in malonyl-AcpM decarboxylation than in the acyl-CoA binding role. Interestingly, this effect was suppressed intragenically by Arg{sup 161} {yields} Ala substitution. Our structural studies suggested that His{sup 258}, previously implicated in malonyl-ACP decarboxylation, also acts as an anchor point for a network of water molecules that we propose promotes deprotonation and transacylation of Cys{sup 122}.« less

  9. Observational Data Analysis and Numerical Model Assessment of the Seafloor Interaction and Mobility of Sand and Weathered Oil Agglomerates (Surface Residual Balls) in the Surf Zone

    NASA Astrophysics Data System (ADS)

    Dalyander, S.; Long, J.; Plant, N. G.; Penko, A.; Calantoni, J.; Thompson, D.; Mclaughlin, M. K.

    2014-12-01

    When weathered oil is transported ashore, such as during the Deepwater Horizon oil spill, it can mix with suspended sediment in the surf zone to create heavier-than-water sand and oil agglomerates in the form of mats several centimeters thick and tens of meters long. Broken off pieces of these mats and smaller agglomerates formed in situ (called Surface Residual Balls, SRBs) can cause beach re-oiling months to years after the initial spill. The physical dynamics of these SRBs in the nearshore, where they are larger (cm-scale) and less dense than natural sediment, are poorly understood. In the current study, SRB mobility and seafloor interaction is investigated through a combination of laboratory and field experiments with pseudo-SRBs developed to be physically stable proxies for genuine agglomerates. Formulations for mobility prediction based on comparing estimated shear stress to the critical Shields and modified Shields parameters developed for mixed sediment beds are assessed against observations. Processes such as burial, exhumation, and interaction with bedforms (e.g., migrating ripples) are also explored. The observations suggest that incipient motion estimates based on a modified Shields parameter have some skill in predicting SRB movement, but that other forcing mechanisms such as pressure gradients may be important under some conditions. Additionally, burial and exhumation due to the relatively high mobility of sand grains are confirmed as key processes controlling SRB dynamics in the surf zone. This work has broad implications for understanding surf zone sediment transport at the short timescale associated with mobilizing sand grains and SRBs as well as at the longer timescales associated with net transport patterns, sediment budgets, and bed elevation changes.

  10. Hydrogenase activity in the foodborne pathogen Campylobacter jejuni depends upon a novel ABC-type nickel transporter (NikZYXWV) and is SlyD-independent.

    PubMed

    Howlett, Robert M; Hughes, Bethan M; Hitchcock, Andrew; Kelly, David J

    2012-06-01

    Campylobacter jejuni is a human pathogen of worldwide significance. It is commensal in the gut of many birds and mammals, where hydrogen is a readily available electron donor. The bacterium possesses a single membrane-bound, periplasmic-facing NiFe uptake hydrogenase that depends on the acquisition of environmental nickel for activity. The periplasmic binding protein Cj1584 (NikZ) of the ATP binding cassette (ABC) transporter encoded by the cj1584c-cj1580c (nikZYXWV) operon in C. jejuni strain NCTC 11168 was found to be nickel-repressed and to bind free nickel ions with a submicromolar K(d) value, as measured by fluorescence spectroscopy. Unlike the Escherichia coli NikA protein, NikZ did not bind EDTA-chelated nickel and lacks key conserved residues implicated in metallophore interaction. A C. jejuni cj1584c null mutant strain showed an approximately 22-fold decrease in intracellular nickel content compared with the wild-type strain and a decreased rate of uptake of (63)NiCl(2). The inhibition of residual nickel uptake at higher nickel concentrations in this mutant by hexa-ammine cobalt (III) chloride or magnesium ions suggests that low-affinity uptake occurs partly through the CorA magnesium transporter. Hydrogenase activity was completely abolished in the cj1584c mutant after growth in unsupplemented media, but was fully restored after growth with 0.5 mM nickel chloride. Mutation of the putative metallochaperone gene slyD (cj0115) had no effect on either intracellular nickel accumulation or hydrogenase activity. Our data reveal a strict dependence of hydrogenase activity in C. jejuni on high-affinity nickel uptake through an ABC transporter that has distinct properties compared with the E. coli Nik system.

  11. Discerning the catalytic mechanism of Staphylococcus aureus sortase A with QM/MM free energy calculations.

    PubMed

    Shrestha, Pooja; Wereszczynski, Jeff

    2016-06-01

    Sortases are key virulence factors in Gram-positive bacteria. These enzymes embed surface proteins in the cell wall through a transpeptidation reaction that involves recognizing a penta-peptide "sorting signal" in a target protein, cleaving it, and covalently attaching it to a second substrate that is later inserted into the cell wall. Although well studied, several aspects of the mechanism by which sortases perform these functions remains unclear. In particular, experiments have revealed two potential sorting signal binding motifs: a "Threonine-Out" (Thr-Out) structure in which the catalytically critical threonine residues protrudes into solution, and a "Threonine-In" (Thr-In) configuration in which this residue inserts into the binding site. To determine which of these is the biologically relevant state, we have performed a series of conventional and hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations of the Staphylococcus aureus sortase A (SrtA) enzyme bound to a sorting signal substrate. Through the use of multi-dimensional metadynamics, our simulations were able to both map the acylation mechanism of SrtA in the Thr-In and Thr-Out states, as well as determine the free energy minima and barriers along these reactions. Results indicate that in both states the catalytic mechanisms are similar, however the free energy barriers are lower in the Thr-In configuration, suggesting that Thr-In is the catalytically relevant state. This has important implications for advancing our understanding of the mechanisms of sortase enzymes, as well we for future structure based drug design efforts aimed at inhibiting sortase function in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Conserved Residues Lys57 and Lys401 of Protein Disulfide Isomerase Maintain an Active Site Conformation for Optimal Activity: Implications for Post-Translational Regulation

    PubMed Central

    Caba, Cody; Ali Khan, Hyder; Auld, Janeen; Ushioda, Ryo; Araki, Kazutaka; Nagata, Kazuhiro; Mutus, Bulent

    2018-01-01

    Despite its study since the 1960's, very little is known about the post-translational regulation of the multiple catalytic activities performed by protein disulfide isomerase (PDI), the primary protein folding catalyst of the cell. This work identifies a functional role for the highly conserved CxxC-flanking residues Lys57 and Lys401 of human PDI in vitro. Mutagenesis studies have revealed these residues as modulating the oxidoreductase activity of PDI in a pH-dependent manner. Non-conservative amino acid substitutions resulted in enzyme variants upwards of 7-fold less efficient. This attenuated activity was found to translate into a 2-fold reduction of the rate of electron shuttling between PDI and the intraluminal endoplasmic reticulum oxidase, ERO1α, suggesting a functional significance to oxidative protein folding. In light of this, the possibility of lysine acetylation at residues Lys57 and Lys401 was assessed by in vitro treatment using acetylsalicylic acid (aspirin). A total of 28 acetyllysine residues were identified, including acLys57 and acLys401. The kinetic behavior of the acetylated protein form nearly mimicked that obtained with a K57/401Q double substitution variant providing an indication that acetylation of the active site-flanking lysine residues can act to reversibly modulate PDI activity. PMID:29541639

  13. Structural and sequence features of two residue turns in beta-hairpins.

    PubMed

    Madan, Bharat; Seo, Sung Yong; Lee, Sun-Gu

    2014-09-01

    Beta-turns in beta-hairpins have been implicated as important sites in protein folding. In particular, two residue β-turns, the most abundant connecting elements in beta-hairpins, have been a major target for engineering protein stability and folding. In this study, we attempted to investigate and update the structural and sequence properties of two residue turns in beta-hairpins with a large data set. For this, 3977 beta-turns were extracted from 2394 nonhomologous protein chains and analyzed. First, the distribution, dihedral angles and twists of two residue turn types were determined, and compared with previous data. The trend of turn type occurrence and most structural features of the turn types were similar to previous results, but for the first time Type II turns in beta-hairpins were identified. Second, sequence motifs for the turn types were devised based on amino acid positional potentials of two-residue turns, and their distributions were examined. From this study, we could identify code-like sequence motifs for the two residue beta-turn types. Finally, structural and sequence properties of beta-strands in the beta-hairpins were analyzed, which revealed that the beta-strands showed no specific sequence and structural patterns for turn types. The analytical results in this study are expected to be a reference in the engineering or design of beta-hairpin turn structures and sequences. © 2014 Wiley Periodicals, Inc.

  14. Converting S-limonene synthase to pinene or phellandrene synthases reveals the plasticity of the active site.

    PubMed

    Xu, Jinkun; Ai, Ying; Wang, Jianhui; Xu, Jingwei; Zhang, Yongkang; Yang, Dong

    2017-05-01

    S-limonene synthase is a model monoterpene synthase that cyclizes geranyl pyrophosphate (GPP) to form S-limonene. It is a relatively specific enzyme as the majority of its products are composed of limonene. In this study, we converted it to pinene or phellandrene synthases after introducing N345A/L423A/S454A or N345I mutations. Further studies on N345 suggest the polarity of this residue plays a critical role in limonene production by stabilizing the terpinyl cation intermediate. If it is mutated to a non-polar residue, further cyclization or hydride shifts occurs so the carbocation migrates towards the pyrophosphate, leading to the production of pinene or phellandrene. On the other hand, mutant enzymes that still possess a polar residue at this position produce limonene as the major product. N345 is not the only polar residue that may stabilize the terpinyl cation because it is not strictly conserved among limonene synthases across species and there are also several other polar residues in this area. These residues could form a "polar pocket" that may collectively play this stabilizing role. Our study provides important insights into the catalytic mechanism of limonene synthases. Furthermore, it also has wider implications on the evolution of terpene synthases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Human blindsight is mediated by an intact geniculo-extrastriate pathway

    PubMed Central

    Ajina, Sara; Pestilli, Franco; Rokem, Ariel; Kennard, Christopher; Bridge, Holly

    2015-01-01

    Although damage to the primary visual cortex (V1) causes hemianopia, many patients retain some residual vision; known as blindsight. We show that blindsight may be facilitated by an intact white-matter pathway between the lateral geniculate nucleus and motion area hMT+. Visual psychophysics, diffusion-weighted magnetic resonance imaging and fibre tractography were applied in 17 patients with V1 damage acquired during adulthood and 9 age-matched controls. Individuals with V1 damage were subdivided into blindsight positive (preserved residual vision) and negative (no residual vision) according to psychophysical performance. All blindsight positive individuals showed intact geniculo-hMT+ pathways, while this pathway was significantly impaired or not measurable in blindsight negative individuals. Two white matter pathways previously implicated in blindsight: (i) superior colliculus to hMT+ and (ii) between hMT+ in each hemisphere were not consistently present in blindsight positive cases. Understanding the visual pathways crucial for residual vision may direct future rehabilitation strategies for hemianopia patients. DOI: http://dx.doi.org/10.7554/eLife.08935.001 PMID:26485034

  16. Summary: The natural history and immunobiology of Chlamydia trachomatis genital infection and implications for Chlamydia control.

    PubMed

    Gottlieb, Sami L; Martin, David H; Xu, Fujie; Byrne, Gerald I; Brunham, Robert C

    2010-06-15

    In 2008, the US Centers for Disease Control and Prevention held the Chlamydia Immunology and Control Expert Advisory Meeting to foster a dialogue among basic scientists, clinical researchers, and epidemiologists studying genital Chlamydia trachomatis infection. The objectives of the meeting were to determine key questions related to C. trachomatis natural history and immunobiology, with implications for control programs;to review existing data on these key questions; and to delineate research needs to address remaining gaps in knowledge. The 9 articles in this supplement to The Journal of Infectious Diseases describe salient findings presented at the 2008 meeting, and this commentary summarizes and synthesizes these articles and discusses implications for chlamydia control efforts and future research priorities.

  17. Transition in Education: Policy Making and the Key Educational Policy Areas in the Central-European and Baltic Countries.

    ERIC Educational Resources Information Center

    Rado, Peter

    This report examines transition in educational systems and identifies key policy areas in Central-Eastern European countries. It summarizes policy implications of the transition process within the educational context of these countries. Chapter 1, "Transition and Education," outlines key characteristics of the transition process and…

  18. Unique Auditory Language-Learning Needs of Hearing-Impaired Children: Implications for Intervention.

    ERIC Educational Resources Information Center

    Johnson, Barbara Ann; Paterson, Marietta M.

    Twenty-seven hearing-impaired young adults with hearing potentially usable for language comprehension and a history of speech language therapy participated in this study of training in using residual hearing for the purpose of learning spoken language. Evaluation of their recalled therapy experiences indicated that listening to spoken language did…

  19. S-nitrosylation mediates nitric oxide -auxin crosstalk in auxin signaling and polar auxin transport

    USDA-ARS?s Scientific Manuscript database

    Nitric oxide (NO) and auxin phytohormone cross talk has been implicated in plant development and growth. Addition and removal of NO moieties to cysteine residues of proteins, is termed S-nitrosylation and de-nitrosylation, respectively and functions as an on/off switch of protein activity. This dyna...

  20. Gain-of-Function Alleles in Caenorhabditis elegans Nuclear Hormone Receptor nhr-49 Are Functionally Distinct

    PubMed Central

    Lee, Kayoung; Goh, Grace Ying Shyen; Wong, Marcus Andrew; Klassen, Tara Leah

    2016-01-01

    Nuclear hormone receptors (NHRs) are transcription factors that regulate numerous physiological and developmental processes and represent important drug targets. NHR-49, an ortholog of Hepatocyte Nuclear Factor 4 (HNF4), has emerged as a key regulator of lipid metabolism and life span in the nematode worm Caenorhabditis elegans. However, many aspects of NHR-49 function remain poorly understood, including whether and how it regulates individual sets of target genes and whether its activity is modulated by a ligand. A recent study identified three gain-of-function (gof) missense mutations in nhr-49 (nhr-49(et7), nhr-49(et8), and nhr-49(et13), respectively). These substitutions all affect the ligand-binding domain (LBD), which is critical for ligand binding and protein interactions. Thus, these alleles provide an opportunity to test how three specific residues contribute to NHR-49 dependent gene regulation. We used computational and molecular methods to delineate how these mutations alter NHR-49 activity. We find that despite originating from a screen favoring the activation of specific NHR-49 targets, all three gof alleles cause broad upregulation of NHR-49 regulated genes. Interestingly, nhr-49(et7) and nhr-49(et8) exclusively affect nhr-49 dependent activation, whereas the nhr-49(et13) surprisingly affects both nhr-49 mediated activation and repression, implicating the affected residue as dually important. We also observed phenotypic non-equivalence of these alleles, as they unexpectedly caused a long, short, and normal life span, respectively. Mechanistically, the gof substitutions altered neither protein interactions with the repressive partner NHR-66 and the coactivator MDT-15 nor the subcellular localization or expression of NHR-49. However, in silico structural modeling revealed that NHR-49 likely interacts with small molecule ligands and that the missense mutations might alter ligand binding, providing a possible explanation for increased NHR-49 activity. In sum, our findings indicate that the three nhr-49 gof alleles are non-equivalent, and highlight the conserved V411 residue affected by et13 as critical for gene activation and repression alike. PMID:27618178

  1. Closing in on singlet scalar dark matter: LUX, invisible Higgs decays and gamma-ray lines

    DOE PAGES

    Feng, Lei; Profumo, Stefano; Ubaldi, Lorenzo

    2015-03-10

    Here, we study the implications of the Higgs discovery and of recent results from dark matter searches on real singlet scalar dark matter. The phenomenology of the model is defined by only two parameters, the singlet scalar mass m S and the quartic coupling a 2 between the SU(2) Higgs and the singlet scalar. We concentrate on the window 5 < m S /GeV < 300. The most dramatic impact on the viable parameter space of the model comes from direct dark matter searches with LUX, and, for very low masses in the few GeV range, from constraints from themore » invisible decay width of the Higgs. In the resonant region the best constraints come from gamma-ray line searches. We show that they leave only a small region of viable parameter space, for dark matter masses within a few percent of half the mass of the Higgs. We demonstrate that direct and indirect dark matter searches (especially the search for monochromatic gamma-ray lines) will play a key role in closing the residual parameter space in the near future.« less

  2. Identification, expression and function of apolipoprotein E in annual fish Nothobranchius guentheri: implication for an aging marker.

    PubMed

    Wang, Xia; Shang, Xiaomei; Luan, Jing; Zhang, Shicui

    2014-06-01

    Apolipoprotein E (apoE) is a lipid-associated protein present in both plasma and in central nervous system. Variation in apoE gene has been reported to be associated with longevity in humans as well as with aged diseases such as atherosclerosis, Alzheimer's disease, and Parkinson's disease. However, information regarding the function and structure-activity relationship of apoE in lower vertebrates is rather limited. In this study we show that the apoE gene from the annual fish Nothobranchius guentheri, NapoE, encodes a protein of 262 amino acids, which shares common structural features characteristic of mammalian apoE. We also show that like human apoE, recombinant NapoE is able to inhibit LDL oxidation, and it is the N-terminal domain of NapoE with lysine or arginine residues that plays a key role in inhibition of LDL oxidation. NapoE is predominantly expressed in the liver of N. guentheri, consistent with that in mammalian species. More importantly, we demonstrate an age-dependent down-regulation of NapoE gene, rendering it a suitable biomarker of aging. This lays a foundation for further study of the role of apoE in the aging process of fish.

  3. Fundamental metallurgical aspects of axial splitting in zircaloy cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, H. M.

    Fundamental metallurgical aspects of axial splitting in irradiated Zircaloy cladding have been investigated by microstructural characterization and analytical modeling, with emphasis on application of the results to understand high-burnup fuel failure under RIA situations. Optical microscopy, SEM, and TEM were conducted on BWR and PWR fuel cladding tubes that were irradiated to fluence levels of 3.3 x 10{sup 21} n cm{sup {minus}2} to 5.9 x 10{sup 21} n cm{sup {minus}2} (E > 1 MeV) and tested in hot cell at 292--325 C in Ar. The morphology, distribution, and habit planes of macroscopic and microscopic hydrides in as-irradiated and posttest claddingmore » were determined by stereo-TEM. The type and magnitude of the residual stress produced in association with oxide-layer growth and dense hydride precipitation, and several synergistic factors that strongly influence axial-splitting behavior were analyzed. The results of the microstructural characterization and stress analyses were then correlated with axial-splitting behavior of high-burnup PWR cladding reported for simulated-RIA conditions. The effects of key test procedures and their implications for the interpretation of RIA test results are discussed.« less

  4. Comparative Biology of Decellularized Lung Matrix: Implications of Species Mismatch in Regenerative Medicine

    PubMed Central

    Balestrini, Jenna L.; Gard, Ashley L.; Gerhold, Kristin A.; Wilcox, Elise C.; Liu, Angela; Schwan, Jonas; Le, Andrew V.; Baevova, Pavlina; Dimitrievska, Sashka; Zhao, Liping; Sundaram, Sumati; Sun, Huanxing; Rittié, Laure; Dyal, Rachel; Broekelmann, Tom J.; Mecham, Robert P.; Schwartz, Martin A.; Niklason, Laura E.; White, Eric S.

    2016-01-01

    Lung engineering is a promising technology, relying on re-seeding of either human or xenographic decellularized matrices with patient-derived pulmonary cells. Little is known about the species-specificity of decellularization in various models of lung regeneration, or if species dependent cell-matrix interactions exist within these systems. Therefore decellularized scaffolds were produced from rat, pig, primate and human lungs, and assessed by measuring residual DNA, mechanical properties, and key matrix proteins (collagen, elastin, glycosaminoglycans). To study intrinsic matrix biologic cues, human endothelial cells were seeded onto acellular slices and analyzed for markers of cell health and inflammation. Despite similar levels of collagen after decellularization, human and primate lungs were stiffer, contained more elastin, and retained fewer glycosaminoglycans than pig or rat lung scaffolds. Human endothelial cells seeded onto human and primate lung tissue demonstrated less expression of vascular cell adhesion molecule and activation of nuclear factor-κB compared to those seeded onto rodent or porcine tissue. Adhesion of endothelial cells was markedly enhanced on human and primate tissues. Our work suggests that species-dependent biologic cues intrinsic to lung extracellular matrix could have profound effects on attempts at lung regeneration. PMID:27344365

  5. Dual Roles for DNA Polymerase Theta in Alternative End-Joining Repair of Double-Strand Breaks in Drosophila

    PubMed Central

    McVey, Mitch

    2010-01-01

    DNA double-strand breaks are repaired by multiple mechanisms that are roughly grouped into the categories of homology-directed repair and non-homologous end joining. End-joining repair can be further classified as either classical non-homologous end joining, which requires DNA ligase 4, or “alternative” end joining, which does not. Alternative end joining has been associated with genomic deletions and translocations, but its molecular mechanism(s) are largely uncharacterized. Here, we report that Drosophila melanogaster DNA polymerase theta (pol theta), encoded by the mus308 gene and previously implicated in DNA interstrand crosslink repair, plays a crucial role in DNA ligase 4-independent alternative end joining. In the absence of pol theta, end joining is impaired and residual repair often creates large deletions flanking the break site. Analysis of break repair junctions from flies with mus308 separation-of-function alleles suggests that pol theta promotes the use of long microhomologies during alternative end joining and increases the likelihood of complex insertion events. Our results establish pol theta as a key protein in alternative end joining in Drosophila and suggest a potential mechanistic link between alternative end joining and interstrand crosslink repair. PMID:20617203

  6. Implications of SPION and NBT nanoparticles upon in-vitro and in-situ biodegradation of LDPE film.

    PubMed

    Kapri, Anil; Zaidi, M G H; Goel, Reeta

    2010-06-01

    Comparative influence of two nanoparticles viz. superparamagnetic iron oxide nanoparticles (SPION) and nanobarium titanate (NBT) was studied upon the in-vitro and in-situ low-density polyethylene (LDPE) biodegradation efficiency of a potential polymer-degrading microbial consortium. Supplementation of 0.01% concentration (w/v) of the nanoparticles in minimal broth significantly increased the bacterial growth, along with early onset of the exponential phase. Under in-vitro conditions, lambda-max shifts were quicker with nanoparticles and Fourier transform infrared spectroscopy (FTIR) illustrated significant changes in CH/CH2 vibrations, along with introduction of hydroxyl residues in the polymer backbone. Further, simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) reported multiple-step decomposition of LDPE degraded in the presence of nanoparticles. These findings were supported by scanning electron micrographs (SEM) which revealed greater dissolution of film surface in the presence of nanoparticles. Furthermore, progressive degradation of the film was greatly enhanced when it was incubated under soil conditions for 3 months with the nanoparticles. The study highlights the significance of bacteria-nanoparticle interactions which can dramatically influence key metabolic processes like biodegradation. The authors also propose the exploration of nanoparticles to influence various other microbial processes for commercial viabilities.

  7. Immunoglobulin G1 Fc domain motions: implications for Fc engineering

    PubMed Central

    Frank, Martin; Walker, Ross C.; Lanzilotta, William N.; Prestegard, James H.; Barb, Adam W.

    2014-01-01

    The fragment crystallizable (Fc) region links the key pathogen identification and destruction properties of immunoglobulin G(IgG). Pathogen opsonization positions Fcs to activate pro-inflammatory Fcγ receptors (FcγRs) on immune cells. The cellular response and committal to a damaging, though protective, immune response is tightly controlled at multiple levels. Control mechanisms are diverse and in many cases unclear, but one frequently suggested contribution originates in Fcγ receptor affinity being modulated through shifts in Fc conformational sampling. Here we report a previously unseen IgG1 Fc conformation. This observation motivated an extensive molecular dynamics (MD) investigation of polypeptide and glycan motions that revealed greater amplitude of motion for the N-terminal Cγ2 domains and N-glycan than previously observed. Residues in the Cγ2/Cγ3 interface and disulphide-bonded hinge were identified as influencing the Cγ2 motion. Our results are consistent with a model of Fc that is structurally dynamic. Conformational states that are competent to bind immune-stimulating FcγRs interconverted with Fc conformations distinct from those observed in FcγR complexes, which may represent a transient, nonbinding population. PMID:24522230

  8. Structure and Mechanism of ArnA: Conformational Change Implies Ordered Dehydrogenase Mechanism in Key Enzyme for Polymyxin Resistance

    PubMed Central

    Gatzeva-Topalova, Petia Z.; May, Andrew P.; Sousa, Marcelo C.

    2010-01-01

    Summary The modification of lipid A with 4-amino-4-deoxy-L-arabinose (Ara4N) allows gram-negative bacteria to resist the antimicrobial activity of cationic antimicrobial peptides and antibiotics such as polymyxin. ArnA is the first enzyme specific to the lipid A-Ara4N pathway. It contains two functionally and physically separable domains: a dehydrogenase domain (ArnA_DH) catalyzing the NAD+-dependent oxidative decarboxylation of UDP-Glucuronic acid (UDP-GlcA), and a transformylase domain that formylates UDP-Ara4N. Here, we describe the crystal structure of the full-length bifunctional ArnA with UDP-GlcA and ATP bound to the dehydrogenase domain. Binding of UDP-GlcA triggers a 17 Å conformational change in ArnA_DH that opens the NAD+ binding site while trapping UDP-GlcA. We propose an ordered mechanism of substrate binding and product release. Mutation of residues R619 and S433 demonstrates their importance in catalysis and suggests that R619 functions as a general acid in catalysis. The proposed mechanism for ArnA_DH has important implications for the design of selective inhibitors. PMID:15939024

  9. The evolutionarily conserved transcription factor PRDM12 controls sensory neuron development and pain perception.

    PubMed

    Nagy, Vanja; Cole, Tiffany; Van Campenhout, Claude; Khoung, Thang M; Leung, Calvin; Vermeiren, Simon; Novatchkova, Maria; Wenzel, Daniel; Cikes, Domagoj; Polyansky, Anton A; Kozieradzki, Ivona; Meixner, Arabella; Bellefroid, Eric J; Neely, G Gregory; Penninger, Josef M

    2015-01-01

    PR homology domain-containing member 12 (PRDM12) belongs to a family of conserved transcription factors implicated in cell fate decisions. Here we show that PRDM12 is a key regulator of sensory neuronal specification in Xenopus. Modeling of human PRDM12 mutations that cause hereditary sensory and autonomic neuropathy (HSAN) revealed remarkable conservation of the mutated residues in evolution. Expression of wild-type human PRDM12 in Xenopus induced the expression of sensory neuronal markers, which was reduced using various human PRDM12 mutants. In Drosophila, we identified Hamlet as the functional PRDM12 homolog that controls nociceptive behavior in sensory neurons. Furthermore, expression analysis of human patient fibroblasts with PRDM12 mutations uncovered possible downstream target genes. Knockdown of several of these target genes including thyrotropin-releasing hormone degrading enzyme (TRHDE) in Drosophila sensory neurons resulted in altered cellular morphology and impaired nociception. These data show that PRDM12 and its functional fly homolog Hamlet are evolutionary conserved master regulators of sensory neuronal specification and play a critical role in pain perception. Our data also uncover novel pathways in multiple species that regulate evolutionary conserved nociception.

  10. Glycogen synthase kinase-3 inhibition by 3-anilino-4-phenylmaleimides: insights from 3D-QSAR and docking.

    PubMed

    Prasanna, Sivaprakasam; Daga, Pankaj R; Xie, Aihua; Doerksen, Robert J

    2009-02-01

    Glycogen synthase kinase-3, a serine/threonine kinase, has been implicated in a wide variety of pathological conditions such as diabetes, Alzheimer's disease, stroke, bipolar disorder, malaria and cancer. Herein we report 3D-QSAR analyses using CoMFA and CoMSIA and molecular docking studies on 3-anilino-4-phenylmaleimides as GSK-3alpha inhibitors, in order to better understand the mechanism of action and structure-activity relationship of these compounds. Comparison of the active site residues of GSK-3alpha and GSK-3beta isoforms shows that all the key amino acids involved in polar interactions with the maleimides for the beta isoform are the same in the alpha isoform, except that Asp133 in the beta isoform is replaced by Glu196 in the alpha isoform. We prepared a homology model for GSK-3alpha, and showed that the change from Asp to Glu should not affect maleimide binding significantly. Docking studies revealed the binding poses of three subclasses of these ligands, namely anilino, N-methylanilino and indoline derivatives, within the active site of the beta isoform, and helped to explain the difference in their inhibitory activity.

  11. Learning to teach upper primary school algebra: changes to teachers' mathematical knowledge for teaching functional thinking

    NASA Astrophysics Data System (ADS)

    Wilkie, Karina J.

    2016-06-01

    A key aspect of learning algebra in the middle years of schooling is exploring the functional relationship between two variables: noticing and generalising the relationship, and expressing it mathematically. This article describes research on the professional learning of upper primary school teachers for developing their students' functional thinking through pattern generalisation. This aspect of algebra learning has been explicitly brought to the attention of upper primary teachers in the recently introduced Australian curriculum. Ten practising teachers participated over 1 year in a design-based research project involving a sequence of geometric pattern generalisation lessons with their classes. Initial and final survey responses and teachers' interactions in regular meetings and lessons were analysed from cognitive and situated perspectives on professional learning, using a theoretical model for the different types of knowledge needed for teaching mathematics. The teachers demonstrated an increase in certain aspects of their mathematical knowledge for teaching algebra as well as some residual issues. Implications for the professional learning of practising and pre-service teachers to develop their mathematics knowledge for teaching functional thinking, and challenges with operationalising knowledge categories for field-based research are presented.

  12. Allosteric binding sites in Rab11 for potential drug candidates

    PubMed Central

    2018-01-01

    Rab11 is an important protein subfamily in the RabGTPase family. These proteins physiologically function as key regulators of intracellular membrane trafficking processes. Pathologically, Rab11 proteins are implicated in many diseases including cancers, neurodegenerative diseases and type 2 diabetes. Although they are medically important, no previous study has found Rab11 allosteric binding sites where potential drug candidates can bind to. In this study, by employing multiple clustering approaches integrating principal component analysis, independent component analysis and locally linear embedding, we performed structural analyses of Rab11 and identified eight representative structures. Using these representatives to perform binding site mapping and virtual screening, we identified two novel binding sites in Rab11 and small molecules that can preferentially bind to different conformations of these sites with high affinities. After identifying the binding sites and the residue interaction networks in the representatives, we computationally showed that these binding sites may allosterically regulate Rab11, as these sites communicate with switch 2 region that binds to GTP/GDP. These two allosteric binding sites in Rab11 are also similar to two allosteric pockets in Ras that we discovered previously. PMID:29874286

  13. Probing specific molecular processes and intermediates by time-resolved Fourier transform infrared spectroscopy: application to the bacteriorhodopsin photocycle.

    PubMed

    Lórenz-Fonfría, Víctor A; Kandori, Hideki; Padrós, Esteve

    2011-06-23

    We present a general approach for probing the kinetics of specific molecular processes in proteins by time-resolved Fourier transform infrared (IR) spectroscopy. Using bacteriorhodopsin (bR) as a model we demonstrate that by appropriately monitoring some selected IR bands it is possible obtaining the kinetics of the most important events occurring in the photocycle, namely changes in the chromophore and the protein backbone conformation, and changes in the protonation state of the key residues implicated in the proton transfers. Besides confirming widely accepted views of the bR photocycle, our analysis also sheds light into some disputed issues: the degree of retinal torsion in the L intermediate to respect the ground state; the possibility of a proton transfer from Asp85 to Asp212; the relationship between the protonation/deprotonation of Asp85 and the proton release complex; and the timing of the protein backbone dynamics. By providing a direct way to estimate the kinetics of photocycle intermediates the present approach opens new prospects for a robust quantitative kinetic analysis of the bR photocycle, which could also benefit the study of other proteins involved in photosynthesis, in phototaxis, or in respiratory chains.

  14. High-speed atomic force microscopy reveals structural dynamics of amyloid β1–42 aggregates

    PubMed Central

    Watanabe-Nakayama, Takahiro; Ono, Kenjiro; Itami, Masahiro; Takahashi, Ryoichi; Teplow, David B.; Yamada, Masahito

    2016-01-01

    Aggregation of amyloidogenic proteins into insoluble amyloid fibrils is implicated in various neurodegenerative diseases. This process involves protein assembly into oligomeric intermediates and fibrils with highly polymorphic molecular structures. These structural differences may be responsible for different disease presentations. For this reason, elucidation of the structural features and assembly kinetics of amyloidogenic proteins has been an area of intense study. We report here the results of high-speed atomic force microscopy (HS-AFM) studies of fibril formation and elongation by the 42-residue form of the amyloid β-protein (Aβ1–42), a key pathogenetic agent of Alzheimer's disease. Our data demonstrate two different growth modes of Aβ1–42, one producing straight fibrils and the other producing spiral fibrils. Each mode depends on initial fibril nucleus structure, but switching from one growth mode to another was occasionally observed, suggesting that fibril end structure fluctuated between the two growth modes. This switching phenomenon was affected by buffer salt composition. Our findings indicate that polymorphism in fibril structure can occur after fibril nucleation and is affected by relatively modest changes in environmental conditions. PMID:27162352

  15. Glycogen synthase kinase-3 inhibition by 3-anilino-4-phenylmaleimides: insights from 3D-QSAR and docking

    NASA Astrophysics Data System (ADS)

    Prasanna, Sivaprakasam; Daga, Pankaj R.; Xie, Aihua; Doerksen, Robert J.

    2009-02-01

    Glycogen synthase kinase-3, a serine/threonine kinase, has been implicated in a wide variety of pathological conditions such as diabetes, Alzheimer's disease, stroke, bipolar disorder, malaria and cancer. Herein we report 3D-QSAR analyses using CoMFA and CoMSIA and molecular docking studies on 3-anilino-4-phenylmaleimides as GSK-3α inhibitors, in order to better understand the mechanism of action and structure-activity relationship of these compounds. Comparison of the active site residues of GSK-3α and GSK-3β isoforms shows that all the key amino acids involved in polar interactions with the maleimides for the β isoform are the same in the α isoform, except that Asp133 in the β isoform is replaced by Glu196 in the α isoform. We prepared a homology model for GSK-3α, and showed that the change from Asp to Glu should not affect maleimide binding significantly. Docking studies revealed the binding poses of three subclasses of these ligands, namely anilino, N-methylanilino and indoline derivatives, within the active site of the β isoform, and helped to explain the difference in their inhibitory activity.

  16. Directed evolution of human T cell receptor CDR2 residues by phage display dramatically enhances affinity for cognate peptide-MHC without increasing apparent cross-reactivity

    PubMed Central

    Dunn, Steven M.; Rizkallah, Pierre J.; Baston, Emma; Mahon, Tara; Cameron, Brian; Moysey, Ruth; Gao, Feng; Sami, Malkit; Boulter, Jonathan; Li, Yi; Jakobsen, Bent K.

    2006-01-01

    The mammalian α/β T cell receptor (TCR) repertoire plays a pivotal role in adaptive immunity by recognizing short, processed, peptide antigens bound in the context of a highly diverse family of cell-surface major histocompatibility complexes (pMHCs). Despite the extensive TCR–MHC interaction surface, peptide-independent cross-reactivity of native TCRs is generally avoided through cell-mediated selection of molecules with low inherent affinity for MHC. Here we show that, contrary to expectations, the germ line-encoded complementarity determining regions (CDRs) of human TCRs, namely the CDR2s, which appear to contact only the MHC surface and not the bound peptide, can be engineered to yield soluble low nanomolar affinity ligands that retain a surprisingly high degree of specificity for the cognate pMHC target. Structural investigation of one such CDR2 mutant implicates shape complementarity of the mutant CDR2 contact interfaces as being a key determinant of the increased affinity. Our results suggest that manipulation of germ line CDR2 loops may provide a useful route to the production of high-affinity TCRs with therapeutic and diagnostic potential. PMID:16600963

  17. Dynamics of the Methanogenic Archaeal Community during Plant Residue Decomposition in an Anoxic Rice Field Soil ▿

    PubMed Central

    Peng, Jingjing; Lü, Zhe; Rui, Junpeng; Lu, Yahai

    2008-01-01

    Incorporation of plant residues strongly enhances the methane production and emission from flooded rice fields. Temperature and residue type are important factors that regulate residue decomposition and CH4 production. However, the response of the methanogenic archaeal community to these factors in rice field soil is not well understood. In the present experiment, the structure of the archaeal community was determined during the decomposition of rice root and straw residues in anoxic rice field soil incubated at three temperatures (15°C, 30°C, and 45°C). More CH4 was produced in the straw treatment than root treatment. Increasing the temperature from 15°C to 45°C enhanced CH4 production. Terminal restriction fragment length polymorphism analyses in combination with cloning and sequencing of 16S rRNA genes showed that Methanosarcinaceae developed early in the incubations, whereas Methanosaetaceae became more abundant in the later stages. Methanosarcinaceae and Methanosaetaceae seemed to be better adapted at 15°C and 30°C, respectively, while the thermophilic Methanobacteriales and rice cluster I methanogens were significantly enhanced at 45°C. Straw residues promoted the growth of Methanosarcinaceae, whereas the root residues favored Methanosaetaceae. In conclusion, our study revealed a highly dynamic structure of the methanogenic archaeal community during plant residue decomposition. The in situ concentration of acetate (and possibly of H2) seems to be the key factor that regulates the shift of methanogenic community. PMID:18344350

  18. Crystal structure of isoflavone reductase from alfalfa (Medicago sativa L.).

    PubMed

    Wang, Xiaoqiang; He, Xianzhi; Lin, Jianqiao; Shao, Hui; Chang, Zhenzhan; Dixon, Richard A

    2006-05-19

    Isoflavonoids play important roles in plant defense and exhibit a range of mammalian health-promoting activities. Isoflavone reductase (IFR) specifically recognizes isoflavones and catalyzes a stereospecific NADPH-dependent reduction to (3R)-isoflavanone. The crystal structure of Medicago sativa IFR with deletion of residues 39-47 has been determined at 1.6A resolution. Structural analysis, molecular modeling and docking, and comparison with the structures of other NADPH-dependent enzymes, defined the putative binding sites for co-factor and substrate and potential key residues for enzyme activity and substrate specificity. Further mutagenesis has confirmed the role of Lys144 as a catalytic residue. This study provides a structural basis for understanding the enzymatic mechanism and substrate specificity of IFRs as well as the functions of IFR-like proteins.

  19. Glutamine 89 is a key residue in the allosteric modulation of human serine racemase activity by ATP.

    PubMed

    Canosa, Andrea V; Faggiano, Serena; Marchetti, Marialaura; Armao, Stefano; Bettati, Stefano; Bruno, Stefano; Percudani, Riccardo; Campanini, Barbara; Mozzarelli, Andrea

    2018-06-13

    Serine racemase (SR) catalyses two reactions: the reversible racemisation of L-serine and the irreversible dehydration of L- and D-serine to pyruvate and ammonia. SRs are evolutionarily related to serine dehydratases (SDH) and degradative threonine deaminases (TdcB). Most SRs and TdcBs - but not SDHs - are regulated by nucleotides. SR binds ATP cooperatively and the nucleotide allosterically stimulates the serine dehydratase activity of the enzyme. A H-bond network comprising five residues (T52, N86, Q89, E283 and N316) and water molecules connects the active site with the ATP-binding site. Conservation analysis points to Q89 as a key residue for the allosteric communication, since its mutation to either Met or Ala is linked to the loss of control of activity by nucleotides. We verified this hypothesis by introducing the Q89M and Q89A point mutations in the human SR sequence. The allosteric communication between the active site and the allosteric site in both mutants is almost completely abolished. Indeed, the stimulation of the dehydratase activity by ATP is severely diminished and the binding of the nucleotide is no more cooperative. Ancestral state reconstruction suggests that the allosteric control by nucleotides established early in SR evolution and has been maintained in most eukaryotic lineages.

  20. Capsule implosion optimization during the indirect-drive National Ignition Campaign

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; Edwards, J.; Haan, S. W.; Robey, H. F.; Milovich, J.; Spears, B. K.; Weber, S. V.; Clark, D. S.; Lindl, J. D.; MacGowan, B. J.; Moses, E. I.; Atherton, J.; Amendt, P. A.; Boehly, T. R.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Frenje, J. A.; Glenzer, S. H.; Hamza, A.; Hammel, B. A.; Hicks, D. G.; Hoffman, N.; Izumi, N.; Jones, O. S.; Kilkenny, J. D.; Kirkwood, R. K.; Kline, J. L.; Kyrala, G. A.; Marinak, M. M.; Meezan, N.; Meyerhofer, D. D.; Michel, P.; Munro, D. H.; Olson, R. E.; Nikroo, A.; Regan, S. P.; Suter, L. J.; Thomas, C. A.; Wilson, D. C.

    2011-05-01

    Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analytic models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown to meet the required sensitivity and accuracy. A roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget. Finally, we show how the tuning precision will be improved after a number of shots and iterations to meet an acceptable level of residual uncertainty.

  1. Exposure to coal combustion residues during metamorphosis elevates corticosterone content and adversely affects oral morphology, growth, and development in Rana sphenocephala

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, J.D.; Peterson, V.A.; Mendonca, M.T.

    Coal combustion residues (CCRs) are documented to negatively impact oral morphology, growth, and development in larval amphibians. It is currently unclear what physiological mechanisms may mediate these effects. Corticosterone, a glucocorticoid hormone, is a likely mediator because when administered exogenously it, like CCRs, also negatively influences oral morphology, growth, and development in larval amphibians. In an attempt to identify if corticosterone mediates these effects, we raised larval Southern Leopard Frogs, Rana sphenocephala, on either sand or CCR substrate and documented effects of sediment type on whole body corticosterone, oral morphology, and time to and mass at key metamorphic stages. Coalmore » combustion residue treated tadpoles contained significantly more corticosterone than controls throughout metamorphosis. However, significantly more oral abnormalities occurred early in metamorphosis when differences in corticosterone levels between treatments were minimal. Overall, CCR-treated tadpoles took significantly more time to transition between key stages and gained less mass between stages than controls, but these differences between treatments decreased during later stages when corticosterone differences between treatments were greatest. Our results suggest endogenous increase in corticosterone content and its influence on oral morphology, growth and development is more complex than previously thought.« less

  2. Genomic and physical analysis of Rnr1-containing autophagosomes during environmental stress

    NASA Astrophysics Data System (ADS)

    Danon, Tamir

    The Ribonucleotide Reductase Complex (RNR), a tetramer composed of 2 large (Rnr1-Rnr1 or Rnr1-Rnr3) and 2 small (Rnr2-Rnr4) subunits, is a key regulatory node in cell growth because it controls the rate-limiting step in the synthesis of DNA. Using Green Fluorescent tagged proteins and high content imaging we show that only Rnr1-GFP will form 700-800 nm2 foci under normal growth conditions, with the number of foci increasing in response to environmental stress. Rnr1-GFP foci formation is dependent on functional autophagy pathway and we hypothesized that a key lysine residue only found in Rnr1 (K853) is used together with the post-translational modification acetylation to regulate Rnr1 targeting into the autophagosome. Using the genetically engineered mutants Rnr1-K853A-GFP and Rnr1-K853Q-GFP, which mimic constitutive de-acetylation and constitutive acetylation, respectively, we show that K853 is a key residue in Rnr1 for regulating foci size, basal levels and stress-induced numbers. Further, data from phenotypic studies support the idea that K853 is a key regulatory point for both the DNA damage and nutrient stress responses. Autophagy pathways are disrupted during cancer development and our mechanistic information provides insights into its control of the therapeutically important DNA damage response.

  3. Molecular modeling and structural analysis of nAChR variants uncovers the mechanism of resistance to snake toxins.

    PubMed

    Gunasekaran, D; Sridhar, J; Suryanarayanan, V; Manimaran, N C; Singh, Sanjeev Kumar

    2017-06-01

    Nicotinic acetylcholine receptors (nAChRs) are neuromuscular proteins responsible for muscle contraction upon binding with chemical stimulant acetylcholine (ACh). The α-neurotoxins of snake mimic the structure of ACh and attacks nAChRs, which block the flow of ACh and leads to numbness and paralysis. The toxin-binding site of alpha subunit in the nAChRs is highly conserved throughout chordate lineages with few exceptions in resistance organisms. In this study, we have analyzed the sequence and structures of toxin-binding/resistant nAChRs and their interaction stability with toxins through molecular docking and molecular dynamics simulation (MDS). We have reported the potential glycosylation residues within the toxin-binding cleft adding sugar moieties through N-linked glycosylation in resistant organisms. Residue variations at key positions alter the secondary structure of binding cleft, which might interfere with toxin binding and it could be one of the possible explanations for the resistance to snake venoms. Analysis of nAChR-α-neurotoxin complexes has confirmed the key interacting residues. In addition, drastic variation in the binding stability of Mongoose nAChR-α-Bungarotoxin (α-BTX) and human nAChR-α-BTX complexes were found at specific phase of MDS. Our findings suggest that specific mutations in the binding site of toxin are potentially preventing the formation of stable complex of receptor-toxin, which might lead to mechanism of resistance. This in silico study on the binding cleft of nAChR and the findings of interacting residues will assist in designing potential inhibitors as therapeutic targets.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrila, J.; Gabelli, S; Bacha, U

    Coronaviruses are responsible for a significant proportion of annual respiratory and enteric infections in humans and other mammals. The most prominent of these viruses is the severe acute respiratory syndrome coronavirus (SARS-CoV) which causes acute respiratory and gastrointestinal infection in humans. The coronavirus main protease, 3CL{sup pro}, is a key target for broad-spectrum antiviral development because of its critical role in viral maturation and high degree of structural conservation among coronaviruses. Dimerization is an indispensable requirement for the function of SARS 3CL{sup pro} and is regulated through mechanisms involving both direct and long-range interactions in the enzyme. While many ofmore » the binding interactions at the dimerization interface have been extensively studied, those that are important for long-range control are not well-understood. Characterization of these dimerization mechanisms is important for the structure-based design of new treatments targeting coronavirus-based infections. Here we report that Asn28, a residue 11 {angstrom} from the closest residue in the opposing monomer, is essential for the enzymatic activity and dimerization of SARS 3CLpro. Mutation of this residue to alanine almost completely inactivates the enzyme and results in a 19.2-fold decrease in the dimerization K{sub d}. The crystallographic structure of the N28A mutant determined at 2.35 {angstrom} resolution reveals the critical role of Asn28 in maintaining the structural integrity of the active site and in orienting key residues involved in binding at the dimer interface and substrate catalysis. These findings provide deeper insight into complex mechanisms regulating the activity and dimerization of SARS 3CL{sup pro}.« less

  5. Agricultural practices and residual corn during spring crane and waterfowl migration in Nebraska

    USGS Publications Warehouse

    Sherfy, M.H.; Anteau, M.J.; Bishop, A.A.

    2011-01-01

    Nebraska's Central Platte River Valley (CPRV) is a major spring-staging area for migratory birds. Over 6 million ducks, geese, and sandhill cranes (Grus canadensis) stage there en route to tundra, boreal forest, and prairie breeding habitats, storing nutrients for migration and reproduction by consuming primarily corn remaining in fields after harvest (hereafter residual corn). In springs 2005-2007, we measured residual corn density in randomly selected harvested cornfields during early (n=188) and late migration (n=143) periods. We estimated the mean density of residual corn for the CPRV and examined the influence of agricultural practices (post-harvest field management) and migration period on residual corn density. During the early migration period, residual corn density was greater in idle harvested fields than any other treatments of fields (42%, 48%, 53%, and 92% more than grazed, grazed and mulched, mulched, and tilled fields, respectively). Depletion of residual corn from early to late migration did not differ among post-harvest treatments but was greatest during the year when overall corn density was lowest (2006). Geometric mean early-migration residual corn density for the CPRV in 2005-2007 (42.4 kg/ha; 95% CI=35.2-51.5 kg/ha) was markedly lower than previously published estimates, indicating that there has been a decrease in abundance of residual corn available to waterfowl during spring staging. Increases in harvest efficiency have been implicated as a cause for decreasing corn densities since the 1970s. However, our data show that post-harvest management of cornfields also can substantially influence the density of residual corn remaining in fields during spring migration. Thus, managers may be able to influence abundance of high-energy foods for spring-staging migratory birds in the CPRV through programs that influence post-harvest management of cornfields. ?? 2011 The Wildlife Society.

  6. Abusive use of antibiotics in poultry farming in Cameroon and the public health implications.

    PubMed

    Guetiya Wadoum, R E; Zambou, N F; Anyangwe, F F; Njimou, J R; Coman, M M; Verdenelli, M C; Cecchini, C; Silvi, S; Orpianesi, C; Cresci, A; Colizzi, V

    2016-08-01

    The types and methods of use of antibiotics in poultry farms in Cameroon, residual levels and potential microbial resistance were determined. A questionnaire-based survey identified the different antibiotics used and high-performance liquid chromatography (HPLC) was used to determine residual levels of antibiotics. Pathogens were isolated, identified by use of commercial API kits and minimum inhibition concentration (MIC) was determined. Oxytetracyclin, tylocip and TCN (oxytetracycline, chloramphenicol and neomycin) were the most frequently used antibiotics. Antibiotics screened by HPLC were chloramphenicol, tetracycline and vancomycin. All of them except vancomycin were detected, and the concentration of these antibiotics was higher than the maximum residual limits (MRL) set by regulatory authorities. No residues of various antibiotics were found in egg albumen or yolk. The concentration of tetracycline was significantly higher in liver (150 ± 30 µg/g) than in other tissues. Foodborne pathogens, including Salmonella spp., Staphylococcus spp., Listeria spp., Clostridium spp. and Escherichia spp., were identified. Most of the pathogens were resistant to these various antibiotics tested. These findings imply the need for better management of antibiotic use to control sources of food contamination and reduce health risks associated with the presence of residues and the development of resistant pathogens by further legislation and enforcement of regulations on food hygiene and use of antibiotics.

  7. On the Split Personality of Penultimate Proline

    PubMed Central

    Glover, Matthew S.; Shi, Liuqing; Fuller, Daniel R.; Arnold, Randy J.; Radivojac, Predrag; Clemmer, David E.

    2014-01-01

    The influence of the position of the amino acid proline in polypeptide sequences is examined by a combination of ion mobility spectrometry-mass spectrometry (IMS-MS), amino acid substitutions, and molecular modeling. The results suggest that when proline exists as the second residue from the N-terminus (i.e., penultimate proline), two families of conformers are formed. We demonstrate the existence of these families by a study of a series of truncated and mutated peptides derived from the 11-residue peptide Ser1-Pro2-Glu3-Leu4-Pro5-Ser6-Pro7-Gln8-Ala9-Glu10-Lys11. We find that every peptide from this sequence with a penultimate proline residue has multiple conformations. Substitution of Ala for Pro residues indicates that multiple conformers arise from the cis- trans isomerization of Xaa1–Pro2 peptide bonds as Xaa–Ala peptide bonds are unlikely to adopt the cis isomer, and examination of spectra from a library of 58 peptides indicates that ~80% of sequences show this effect. A simple mechanism suggesting that the barrier between the cis-and trans-proline forms is lowered because of low steric impedance is proposed. This observation may have interesting biological implications as well, and we note that a number of biologically active peptides have penultimate proline residues. PMID:25503299

  8. Nonlinear parallel momentum transport in strong electrostatic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lu, E-mail: luwang@hust.edu.cn; Wen, Tiliang; Diamond, P. H.

    2015-05-15

    Most existing theoretical studies of momentum transport focus on calculating the Reynolds stress based on quasilinear theory, without considering the nonlinear momentum flux-〈v{sup ~}{sub r}n{sup ~}u{sup ~}{sub ∥}〉. However, a recent experiment on TORPEX found that the nonlinear toroidal momentum flux induced by blobs makes a significant contribution as compared to the Reynolds stress [Labit et al., Phys. Plasmas 18, 032308 (2011)]. In this work, the nonlinear parallel momentum flux in strong electrostatic turbulence is calculated by using a three dimensional Hasegawa-Mima equation, which is relevant for tokamak edge turbulence. It is shown that the nonlinear diffusivity is smaller thanmore » the quasilinear diffusivity from Reynolds stress. However, the leading order nonlinear residual stress can be comparable to the quasilinear residual stress, and so may be important to intrinsic rotation in tokamak edge plasmas. A key difference from the quasilinear residual stress is that parallel fluctuation spectrum asymmetry is not required for nonlinear residual stress.« less

  9. Structural Basis for the Effective Myostatin Inhibition of the Mouse Myostatin Prodomain-Derived Minimum Peptide.

    PubMed

    Asari, Tomo; Takayama, Kentaro; Nakamura, Akari; Shimada, Takahiro; Taguchi, Akihiro; Hayashi, Yoshio

    2017-01-12

    Myostatin inhibition is one of the promising strategies for treating muscle atrophic disorders, including muscular dystrophy. It is well-known that the myostatin prodomain derived from the myostatin precursor acts as an inhibitor of mature myostatin. In our previous study, myostatin inhibitory minimum peptide 1 (WRQNTRYSRIEAIKIQILSKLRL-amide) was discovered from the mouse myostatin prodomain. In the present study, alanine scanning of 1 demonstrated that the key amino acid residues for the effective inhibitory activity are rodent-specific Tyr and C-terminal aliphatic residues, in addition to N-terminal Trp residue. Subsequently, we designed five Pro-substituted peptides and examined the relationship between secondary structure and inhibitory activity. As a result, we found that Pro-substitutions of Ala or Gln residues around the center of 1 significantly decreased both α-helicity and inhibitory activity. These results suggested that an α-helical structure possessing hydrophobic faces formed around the C-terminus is important for inhibitory activity.

  10. Identification of residues critical for proton-coupled glutathione translocation in the yeast glutathione transporter, Hgt1p.

    PubMed

    Zulkifli, Mohammad; Bachhawat, Anand Kumar

    2017-05-16

    The proton gradient acts as the driving force for the transport of many metabolites across fungal and plant plasma membranes. Identifying the mechanism of proton relay is critical for understanding the mechanism of transport mediated by these transporters. We investigated two strategies for identifying residues critical for proton-dependent substrate transport in the yeast glutathione transporter, Hgt1p, a member of the poorly understood oligopeptide transporter family of transporters. In the first strategy, we tried to identify the pH-independent mutants that could grow at higher pH when dependant on glutathione transport. Screening a library of 269 alanine mutants of the transmembrane domains (TMDs) along with a random mutagenesis strategy yielded two residues (E135K on the cusp of TMD2 and N710S on TMD12) that permitted growth on glutathione at pH 8.0. Further analysis revealed that these residues were not involved in proton symport even though they conferred better transport at a higher pH. The second strategy involved a knowledge-driven approach, targeting 31 potential residues based on charge, conservation and location. Mutation of these residues followed by functional and biochemical characterization revealed E177A, Y193A, D335A, Y374A, H445A and R554A as being defective in proton transport. Further analysis enabled possible roles of these residues to be assigned in proton relay. The implications of these findings in relation to Hgt1p and the suitability of these strategic approaches for identifying such residues are discussed. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  11. Study of the surface-enhanced Raman spectroscopy of residual impurities in hydroxylamine-reduced silver colloid and the effects of anions on the colloid activity.

    PubMed

    Dong, Xiao; Gu, Huaimin; Liu, Fangfang

    2012-03-01

    The paper investigated the residual ions in hydroxylamine-reduced silver colloid (HRSC) and the relationship between the condition of HRSC and the enhanced mechanisms of this colloid. We also detected the SERS of MB and studied the effects of anions on the Raman signal. In the case of HRSC, the bands of residual ions diminish while the bands of Ag-anions increase gradually with increasing the concentrations of Cl(-) and NO(3)(-). It means the affinity of residual ions on the silver surface is weaker than that of Cl(-) and NO(3)(-) and the residual ions are replaced gradually by the added Cl(-) or NO(3)(-). The Raman signal of residual ions can be detected by treatment with anions that do not bind strongly to the silver surface, such as SO(4)(2-). The most intense band of Ag-anions bonds can be also observed when adding weakly binding anions to the colloid. However, the anions which make up the Ag-anions bonds are residual Cl(-) and the effect of weakly binding anions is only to aggregate the silver particles. Residual Cl(-) can be replaced by I(-) which has the highest affinity. From the detection of methylene blue (MB), the effects of anions on the enhancement of Raman signal are discussed in detail, and these findings could make the conditions suitable for detecting analytes in high efficiency. This study will have a profound implication to SERS users about their interpretation of SERS spectra when obtaining these anomalous bands. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Identification of residues of CXCR4 critical for human immunodeficiency virus coreceptor and chemokine receptor activities.

    PubMed

    Brelot, A; Heveker, N; Montes, M; Alizon, M

    2000-08-04

    CXCR4 is a G-coupled receptor for the stromal cell-derived factor (SDF-1) chemokine, and a CD4-associated human immunodeficiency virus type 1 (HIV-1) coreceptor. These functions were studied in a panel of CXCR4 mutants bearing deletions in the NH(2)-terminal extracellular domain (NT) or substitutions in the NT, the extracellular loops (ECL), or the transmembrane domains (TMs). The coreceptor activity of CXCR4 was markedly impaired by mutations of two Tyr residues in NT (Y7A/Y12A) or at a single Asp residue in ECL2 (D193A), ECL3 (D262A), or TMII (D97N). These acidic residues could engage electrostatical interactions with basic residues of the HIV-1 envelope protein gp120, known to contribute to the selectivity for CXCR4. The ability of CXCR4 mutants to bind SDF-1 and mediate cell signal was consistent with the two-site model of chemokine-receptor interaction. Site I involved in SDF-1 binding but not signaling was located in NT with particular importance of Glu(14) and/or Glu(15) and Tyr(21). Residues required for both SDF-1 binding and signaling, and thus probably part of site II, were identified in ECL2 (Asp(187)), TMII (Asp(97)), and TMVII (Glu(288)). The first residues () of NT also seem required for SDF-1 binding and signaling. A deletion in the third intracellular loop abolished signaling, probably by disrupting the coupling with G proteins. The identification of CXCR4 residues involved in the interaction with both SDF-1 and HIV-1 may account for the signaling activity of gp120 and has implications for the development of antiviral compounds.

  13. Deposition and residues of azoxystrobin and imidacloprid on greenhouse lettuce with implications for human consumption.

    PubMed

    Itoiz, Eva Sevigné; Fantke, Peter; Juraske, Ronnie; Kounina, Anna; Vallejo, Assumpció Antón

    2012-11-01

    Lettuce greenhouse experiments were carried out from March to June 2011 in order to analyze how pesticides behave from the time of application until their intake via human consumption taking into account the primary distribution of pesticides, field dissipation, and post-harvest processing. In addition, experimental conditions were used to evaluate a new dynamic plant uptake model comparing its results with the experimentally derived residues. One application of imidacloprid and two of azoxystrobin were conducted. For evaluating primary pesticide distribution, two approaches based on leaf area index and vegetation cover were used and results were compared with those obtained from a tracer test. High influence of lettuce density, growth stage and type of sprayer was observed in primary distribution showing that low densities or early growth stages implied high losses of pesticides on soil. Washed and unwashed samples of lettuce were taken and analyzed from application to harvest to evaluate removal of pesticides by food processing. Results show that residues found on the Spanish preharvest interval days were in all cases below officially set maximum residue limits, although it was observed that time between application and harvest is as important for residues as application amounts. An overall reduction of 40-60% of pesticides residues was obtained from washing lettuce. Experimentally derived residues were compared with modeled residues and deviate from 1.2 to 1.4 for imidacloprid and azoxystrobin, respectively, presenting good model predictions. Resulting human intake fractions range from 0.045 kg(intake) kg(applied)(-1) for imidacloprid to 0.14 kg(intake) kg(applied)(-1) for azoxystrobin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Microbial analysis of in situ biofilm formation in drinking water distribution systems: implications for monitoring and control of drinking water quality.

    PubMed

    Douterelo, Isabel; Jackson, M; Solomon, C; Boxall, J

    2016-04-01

    Biofilm formation in drinking water distribution systems (DWDS) is influenced by the source water, the supply infrastructure and the operation of the system. A holistic approach was used to advance knowledge on the development of mixed species biofilms in situ, by using biofilm sampling devices installed in chlorinated networks. Key physico-chemical parameters and conventional microbial indicators for drinking water quality were analysed. Biofilm coverage on pipes was evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The microbial community structure, bacteria and fungi, of water and biofilms was assessed using pyrosequencing. Conventional wisdom leads to an expectation for less microbial diversity in groundwater supplied systems. However, the analysis of bulk water showed higher microbial diversity in groundwater site samples compared with the surface water site. Conversely, higher diversity and richness were detected in biofilms from the surface water site. The average biofilm coverage was similar among sites. Disinfection residual and other key variables were similar between the two sites, other than nitrates, alkalinity and the hydraulic conditions which were extremely low at the groundwater site. Thus, the unexpected result of an exceptionally low diversity with few dominant genera (Pseudomonas and Basidiobolus) in groundwater biofilm samples, despite the more diverse community in the bulk water, is attributed to the low-flow hydraulic conditions. This finding evidences that the local environmental conditions are shaping biofilm formation, composition and amount, and hence managing these is critical for the best operation of DWDS to safeguard water quality.

  15. Consensus on context-specific strategies for reducing the stigma of human immunodeficiency virus/acquired immunodeficiency syndrome in Zambézia Province, Mozambique

    PubMed Central

    Mukolo, Abraham; Torres, Isabel; Bechtel, Ruth M.; Sidat, Mohsin; Vergara, Alfredo E.

    2014-01-01

    Stigma has been implicated in poor outcomes of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) care. Reducing stigma is important for HIV prevention and long-term treatment success. Although stigma reduction interventions are conducted in Mozambique, little is known about the current nature of stigma and the efficacy and effectiveness of stigma reduction initiatives. We describe action research to generate consensus on critical characteristics of HIV stigma and anti-stigma interventions in Zambézia Province, Mozambique. Qualitative data gathering methods, including indepth key-informant interviews, community interviews and consensus group sessions, were utilized. Delphi methods and the strategic options development analysis technique were used to synthesize qualitative data. Key findings are that stigma enacted by the general public might be declining in tandem with the HIV/AIDS epidemic in Mozambique, but there is likely excessive residual fear of HIV disease and community attitudes that sustain high levels of perceived stigma. HIV-positive women accessing maternal and child health services appear to shoulder a disproportionate burden of stigma. Unintentional biases among healthcare providers are currently the critical frontier of stigmatization, but there are few interventions designed to address them. Culturally sensitive psychotherapies are needed to address psychological distress associated with internalized stigma and these interventions should complement current supports for voluntary counseling and testing. While advantageous for defining stakeholder priorities for stigma reduction efforts, confirmatory quantitative studies of these consensus positions are needed before the launch of specific interventions. PMID:24527744

  16. Molecular dynamics simulation of the Escherichia coli NikR protein: equilibrium conformational fluctuations reveal interdomain allosteric communication pathways.

    PubMed

    Bradley, Michael J; Chivers, Peter T; Baker, Nathan A

    2008-05-16

    Escherichia coli NikR is a homotetrameric Ni(2+)- and DNA-binding protein that functions as a transcriptional repressor of the NikABCDE nickel permease. The protein is composed of two distinct domains. The N-terminal 50 amino acids of each chain forms part of the dimeric ribbon-helix-helix (RHH) domains, a well-studied DNA-binding fold. The 83-residue C-terminal nickel-binding domain forms an ACT (aspartokinase, chorismate mutase, and TyrA) fold and contains the tetrameric interface. In this study, we have utilized an equilibrium molecular dynamics simulation in order to explore the conformational dynamics of the NikR tetramer and determine important residue interactions within and between the RHH and ACT domains to gain insight into the effects of Ni(2+) on DNA-binding activity. The molecular simulation data were analyzed using two different correlation measures based on fluctuations in atomic position and noncovalent contacts together with a clustering algorithm to define groups of residues with similar correlation patterns for both types of correlation measure. Based on these analyses, we have defined a series of residue interrelationships that describe an allosteric communication pathway between the Ni(2+)- and DNA-binding sites, which are separated by 40 A. Several of the residues identified by our analyses have been previously shown experimentally to be important for NikR function. An additional subset of the identified residues structurally connects the experimentally implicated residues and may help coordinate the allosteric communication between the ACT and RHH domains.

  17. The role of charged surface residues in the binding ability of small hubs in protein-protein interaction networks

    PubMed Central

    Patil, Ashwini; Nakamura, Haruki

    2007-01-01

    Hubs are highly connected proteins in a protein-protein interaction network. Previous work has implicated disordered domains and high surface charge as the properties significant in the ability of hubs to bind multiple proteins. While conformational flexibility of disordered domains plays an important role in the binding ability of large hubs, high surface charge is the dominant property in small hubs. In this study, we further investigate the role of the high surface charge in the binding ability of small hubs in the absence of disordered domains. Using multipole expansion, we find that the charges are highly distributed over the hub surfaces. Residue enrichment studies show that the charged residues in hubs are more prevalent on the exposed surface, with the exception of Arg, which is predominantly found at the interface, as compared to non-hubs. This suggests that the charged residues act primarily from the exposed surface rather than the interface to affect the binding ability of small hubs. They do this through (i) enhanced intra-molecular electrostatic interactions to lower the desolvation penalty, (ii) indirect long – range intermolecular interactions with charged residues on the partner proteins for better complementarity and electrostatic steering, and (iii) increased solubility for enhanced diffusion-controlled rate of binding. Along with Arg, we also find a high prevalence of polar residues Tyr, Gln and His and the hydrophobic residue Met at the interfaces of hubs, all of which have the ability to form multiple types of interactions, indicating that the interfaces of hubs are optimized to participate in multiple interactions. PMID:27857564

  18. Molecular dynamics simulation of the Escherichia coli NikR protein: Equilibrium conformational fluctuations reveal inter-domain allosteric communication pathways

    PubMed Central

    Bradley, Michael J.; Chivers, Peter T.; Baker, Nathan A.

    2008-01-01

    Summary E. coliNikR is a homotetrameric Ni2+- and DNA-binding protein that functions as a transcriptional repressor of the NikABCDE nickel permease. The protein is composed of 2 distinct domains. The N-terminal fifty amino acids of each chain forms part of the dimeric ribbon-helix-helix (RHH) domains, a well-studied DNA-binding fold. The eighty-three residue C-terminal nickel-binding domain forms an ACT-fold and contains the tetrameric interface. In this study, we have utilized an equilibrium molecular dynamics (MD) simulation in order to explore the conformational dynamics of the NikR tetramer and determine important residue interactions within and between the RHH and ACT domains to gain insight into the effects of Ni on DNA-binding activity. The molecular simulation data was analyzed using two different correlation measures based on fluctuations in atomic position and non-covalent contacts, together with a clustering algorithm to define groups of residues with similar correlation patterns for both types of correlation measure. Based on these analyses, we have defined a series of residue interrelationships that describe an allosteric communication pathway between the Ni2+ and DNA binding sites, which are separated by 40 Å. Several of the residues identified by our analyses have been previously shown experimentally to be important for NikR function. An additional subset of the identified residues structurally connects the experimentally implicated residues and may help coordinate the allosteric communication between the ACT and RHH domains. PMID:18433769

  19. Residual Inhibition Functions Overlap Tinnitus Spectra and the Region of Auditory Threshold Shift

    PubMed Central

    Moffat, Graeme; Baumann, Michael; Ward, Lawrence M.

    2008-01-01

    Animals exposed to noise trauma show augmented synchronous neural activity in tonotopically reorganized primary auditory cortex consequent on hearing loss. Diminished intracortical inhibition in the reorganized region appears to enable synchronous network activity that develops when deafferented neurons begin to respond to input via their lateral connections. In humans with tinnitus accompanied by hearing loss, this process may generate a phantom sound that is perceived in accordance with the location of the affected neurons in the cortical place map. The neural synchrony hypothesis predicts that tinnitus spectra, and heretofore unmeasured “residual inhibition functions” that relate residual tinnitus suppression to the center frequency of masking sounds, should cover the region of hearing loss in the audiogram. We confirmed these predictions in two independent cohorts totaling 90 tinnitus subjects, using computer-based tools designed to assess the psychoacoustic properties of tinnitus. Tinnitus spectra and residual inhibition functions for depth and duration increased with the amount of threshold shift over the region of hearing impairment. Residual inhibition depth was shallower when the masking sounds that were used to induce residual inhibition showed decreased correspondence with the frequency spectrum and bandwidth of the tinnitus. These findings suggest that tinnitus and its suppression in residual inhibition depend on processes that span the region of hearing impairment and not on mechanisms that enhance cortical representations for sound frequencies at the audiometric edge. Hearing thresholds measured in age-matched control subjects without tinnitus implicated hearing loss as a factor in tinnitus, although elevated thresholds alone were not sufficient to cause tinnitus. PMID:18712566

  20. The role of charged surface residues in the binding ability of small hubs in protein-protein interaction networks.

    PubMed

    Patil, Ashwini; Nakamura, Haruki

    2007-01-01

    Hubs are highly connected proteins in a protein-protein interaction network. Previous work has implicated disordered domains and high surface charge as the properties significant in the ability of hubs to bind multiple proteins. While conformational flexibility of disordered domains plays an important role in the binding ability of large hubs, high surface charge is the dominant property in small hubs. In this study, we further investigate the role of the high surface charge in the binding ability of small hubs in the absence of disordered domains. Using multipole expansion, we find that the charges are highly distributed over the hub surfaces. Residue enrichment studies show that the charged residues in hubs are more prevalent on the exposed surface, with the exception of Arg, which is predominantly found at the interface, as compared to non-hubs. This suggests that the charged residues act primarily from the exposed surface rather than the interface to affect the binding ability of small hubs. They do this through (i) enhanced intra-molecular electrostatic interactions to lower the desolvation penalty, (ii) indirect long - range intermolecular interactions with charged residues on the partner proteins for better complementarity and electrostatic steering, and (iii) increased solubility for enhanced diffusion-controlled rate of binding. Along with Arg, we also find a high prevalence of polar residues Tyr, Gln and His and the hydrophobic residue Met at the interfaces of hubs, all of which have the ability to form multiple types of interactions, indicating that the interfaces of hubs are optimized to participate in multiple interactions.

  1. Lemna minor tolerance to metal-working fluid residues: implications for rhizoremediation.

    PubMed

    Grijalbo, L; Becerril, J M; Barrutia, O; Gutierrez-Mañero, J; Lucas Garcia, J A

    2016-07-01

    For the first time in the literature, duckweed (Lemna minor) tolerance (alone or in combination with a consortium of bacteria) to spent metal-working fluid (MWF) was assessed, together with its capacity to reduce the chemical oxygen demand (COD) of this residue. In a preliminary study, L. minor response to pre-treated MWF residue (ptMWF) and vacuum-distilled MWF water (MWFw) was tested. Plants were able to grow in both residues at different COD levels tested (up to 2300 mg·l(-1) ), showing few toxicity symptoms (mainly growth inhibition). Plant response to MWFw was more regular and dose responsive than when exposed to ptMWF. Moreover, COD reduction was less significant in ptMWF. Thus, based on these preliminary results, a second study was conducted using MWFw to test the effectiveness of inoculation with a bacterial consortium isolated from a membrane bioreactor fed with the same residue. After 5 days of exposure, COD in solutions containing inoculated plants was significantly lower than in non-inoculated ones. Moreover, inoculation reduced β+γ-tocopherol levels in MWFw-exposed plants, suggesting pollutant imposed stress was reduced. We therefore conclude from that L. minor is highly tolerant to spent MWF residues and that this species can be very useful, together with the appropriate bacterial consortium, in reducing COD of this residue under local legislation limits and thus minimise its potential environmental impact. Interestingly, the lipophilic antioxidant tocopherol (especially the sum of β+γ isomers) proved to be an effective plant biomarker of pollution. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Imaging residue transfer into egg yolks.

    PubMed

    Donoghue, D J; Myers, K

    2000-12-01

    Prediction models for residue transfer into eggs are being developed. Recent results indicate that the developing egg yolk serves as an important storage depot for chemical residues. The current study was conducted to visualize incorporation and potential compartmentalization of drug residues in developing egg yolks. To this end, the drug magnevist was injected into hens to evaluate drug transfer into either early- or late-developing yolks. High-resolution magnetic resonance images (MRI) of drug residues in eggs were acquired using a 1.5 T Siemens Magnetom clinical scanner. A 10-cm circular surface coil was used for receiving the magnetic resonance signal. The eggs were positioned inside the coil cavity for an improved signal to noise ratio (SNR). Gradient-echo images were used to locate the centers of the eggs and to prescribe the position of the high-resolution image slab. The images were recorded using an inversion time (T1) weighted magnetization-prepared, rapid acquisition, gradient-recalled-echo (MPRAGE) pulse sequence. The sequence parameters used were as follows: repetition time (TR) equals 12 ms, echo time (TE) equals 5 ms, field of view (FOV) equals 200, TI = 10 ms, 1.25-mm slice thickness, and a matrix of 200 x 256. Following dosing, images of drug residues in eggs indicate that drugs can be incorporated and compartmentalized into ring structures within individual developing egg yolks. These results have significant human food safety implications because even after only a single dose, sequestered drug residues may be stored and later released to contaminate eggs for days to weeks after dosing.

  3. Structural Analysis of Alkaline β-Mannanase from Alkaliphilic Bacillus sp. N16-5: Implications for Adaptation to Alkaline Conditions

    PubMed Central

    Zhao, Yueju; Zhang, Yunhua; Cao, Yang; Qi, Jianxun; Mao, Liangwei; Xue, Yanfen; Gao, Feng; Peng, Hao; Wang, Xiaowei; Gao, George F.; Ma, Yanhe

    2011-01-01

    Significant progress has been made in isolating novel alkaline β-mannanases, however, there is a paucity of information concerning the structural basis for alkaline tolerance displayed by these β-mannanases. We report the catalytic domain structure of an industrially important β-mannanase from the alkaliphilic Bacillus sp. N16-5 (BSP165 MAN) at a resolution of 1.6 Å. This enzyme, classified into subfamily 8 in glycosyl hydrolase family 5 (GH5), has a pH optimum of enzymatic activity at pH 9.5 and folds into a classic (β/α)8-barrel. In order to gain insight into molecular features for alkaline adaptation, we compared BSP165 MAN with previously reported GH5 β-mannanases. It was revealed that BSP165 MAN and other subfamily 8 β-mannanases have significantly increased hydrophobic and Arg residues content and decreased polar residues, comparing to β-mannanases of subfamily 7 or 10 in GH5 which display optimum activities at lower pH. Further, extensive structural comparisons show alkaline β-mannanases possess a set of distinctive features. Position and length of some helices, strands and loops of the TIM barrel structures are changed, which contributes, to a certain degree, to the distinctly different shaped (β/α)8-barrels, thus affecting the catalytic environment of these enzymes. The number of negatively charged residues is increased on the molecular surface, and fewer polar residues are exposed to the solvent. Two amino acid substitutions in the vicinity of the acid/base catalyst were proposed to be possibly responsible for the variation in pH optimum of these homologous enzymes in subfamily 8 of GH5, identified by sequence homology analysis and pK a calculations of the active site residues. Mutational analysis has proved that Gln91 and Glu226 are important for BSP165 MAN to function at high pH. These findings are proposed to be possible factors implicated in the alkaline adaptation of GH5 β-mannanases and will help to further understanding of alkaline adaptation mechanism. PMID:21436878

  4. Vibrational Spectroscopy of Cation and Anion Channelrhodopsins

    NASA Astrophysics Data System (ADS)

    Yi, Adrian S.

    Optogenetics is a technique to control and monitor cell activity with light by expression of specific microbial rhodopsins. Cation channelrhodopsins (CCRs) and anion channelrhodopsins (ACRs) have been demonstrated to activate and silence cell activity, respectively. In this dissertation, the molecular mechanisms of two channelrhodopsins are studied: a CCR from Chlamydomonas augustae (CaChR1) and an ACR from Guillardia theta (GtACR1). The recently discovered GtACR1is especially interesting, as it achieves neural silencing with 1/1000th of the light intensity compared to previous microbial rhodopsin silencing ion pumps. Static and time-resolved resonance Raman, FTIR difference, and UV-visible spectroscopies were utilized in addition to various biochemical and genetic techniques to explore the molecular mechanisms of these channelrhodopsins. In CaChR1, Glu169 and Asp299 residues are located nearby the Schiff base (SB) similar to the homologous residues Asp85 and Asp212, which exist in an ionized state in unphotolyzed bacteriorhodopsin (BR) and play a key role in proton pumping. We observe significant changes in the protonation states of the SB, Glu169, and Asp299 of CaChR1 leading up to the open-channel P2 state, where all three groups exist in a charge neutral state. This unusual charge neutrality along with the position of these groups in the CaChR1 ion channel suggests that charge neutrality plays an important role in cation gating and selectivity in these low efficiency CCRs. Significant differences exist in the photocycle and protonation/hydrogen bonding states of key residues inGtACR1compared to BR and CaChR1. Resonance Raman studies reveal that in the unphotolyzed state of GtACR1, residues Glu68, Ser97 (BR Asp85 homolog), and Asp234 (BR Asp212 homolog) located near the SB exist in charge neutral states. Furthermore, upon K formation, these residues do not change their protonation states. At room temperature, a slow decay of the red-shifted K intermediate is observed, which exists in equilibrium with the L intermediate. At 80 K, a lower thermal barrier for K → L transition is observed compared to BR and CaChR1. This effect may be due to substitution of a Met residue at position 105 for the highly conserved Leu or Ile residue.

  5. Sustainable hybrid photocatalysts: titania immobilized on carbon materials derived from renewable and biodegradable resources

    EPA Science Inventory

    This review comprises the preparation, properties and heterogeneous photocatalytic applications of TiO2 immobilized on carbon materials derived from earth-abundant, renewable and biodegradable agricultural residues and sea food waste resources. The overview provides key scientifi...

  6. Potential exposure to human prescription pharmaceutical residues from wastewater

    EPA Science Inventory

    Pharmaceuticals in the environment (PiE) pose a complicated problem, involving multiple dissimilar compounds, multiple routes of potential exposure, and a range of potentially affected organisms that span the tree of life. Key uncertainties include not knowing which of the thous...

  7. Respiratory syncytial virus nonstructural proteins decrease levels of multiple members of the cellular interferon pathways.

    PubMed

    Swedan, Samer; Musiyenko, Alla; Barik, Sailen

    2009-10-01

    Viruses of the Paramyxoviridae family, such as the respiratory syncytial virus (RSV), suppress cellular innate immunity represented by type I interferon (IFN) for optimal growth in their hosts. The two unique nonstructural (NS) proteins, NS1 and NS2, of RSV suppress IFN synthesis, as well as IFN function, but their exact targets are still uncharacterized. Here, we investigate if either or both of the NS proteins affect the steady-state levels of key members of the IFN pathway. We found that both NS1 and NS2 decreased the levels of TRAF3, a strategic integrator of multiple IFN-inducing signals, although NS1 was more efficient. Only NS1 reduced IKKepsilon, a key protein kinase that specifically phosphorylates and activates IFN regulatory factor 3. Loss of the TRAF3 and IKKepsilon proteins appeared to involve a nonproteasomal mechanism. Interestingly, NS2 modestly increased IKKepsilon levels. In the IFN response pathway, NS2 decreased the levels of STAT2, the essential transcription factor for IFN-inducible antiviral genes. Preliminary mapping revealed that the C-terminal 10 residues of NS1 were essential for reducing IKKepsilon levels and the C-terminal 10 residues of NS2 were essential for increasing and reducing IKKepsilon and STAT2, respectively. In contrast, deletion of up to 20 residues of the C termini of NS1 and NS2 did not diminish their TRAF3-reducing activity. Coimmunoprecipitation studies revealed that NS1 and NS2 form a heterodimer. Clearly, the NS proteins of RSV, working individually and together, regulate key signaling molecules of both the IFN activation and response pathways.

  8. Detecting unexpected variables in the MMPI 2 Social Introversion scale.

    PubMed

    Chang, C H; Wright, B D

    2001-01-01

    The standard scoring structure of the revised Minnesota Multiphasic Personality Inventory (MMPI-2) Social Introversion (Si) scale was reexamined with Rasch Measurement. The 69-item Si scale split into two distinct dimensions when their standardized residuals were factor analyzed. Items keyed "true" to Si defined one dimension and items keyed "false" defined another. Relationships between Lexile values (an index of reading difficulty and comprehension) and item difficulties were also explored. The article shows how to use Rasch Measurement to understand and improve personality assessment.

  9. Overstory removal and residue treatments affect soil surface, air, and soil temperature: implications for seedling survival

    Treesearch

    Roger D. Hungerford; Ronald E. Babbitt

    1987-01-01

    Potentially lethal ground surface temperatures were measured at three locations in the Northern Rocky Mountains but occurred more frequently under treatments with greater overstory removal. Observed maximum and minimum temperatures of exposed surfaces are directly related to the thermal properties of the surface materials. Survival of planted seedlings was consistent...

  10. Physical Vapor Transport of Lead Telluride

    NASA Technical Reports Server (NTRS)

    Palosz, W.

    1997-01-01

    Mass transport properties of physical vapor transport of PbTe are investigated. Thermochemical analysis of the system and its implications for the growth conditions are discussed. The effect of the material preparation and pre-processing on the stoichiometry and residual gas pressure and composition, and on related mass flux is shown. A procedure leading to high mass transport rates is presented.

  11. Predicting current serviceability and residual service life of plywood roof sheathing using kinetics-based models

    Treesearch

    J.E. Winandy; P.K. Lebow; J.F. Murphy

    2002-01-01

    Research programs throughout North America are increasingly focusing on understanding and defining the salient issues of wood durability and maintaining and extending the serviceability of existing wood structures. This report presents the findings and implications of a 10-year research program, carried out at the USDA Forest Service, Forest Products Laboratory, to...

  12. Neutron structure of human carbonic anhydrase II: a hydrogen-bonded water network "switch" is observed between pH 7.8 and 10.0.

    PubMed

    Fisher, Zoë; Kovalevsky, Andrey Y; Mustyakimov, Marat; Silverman, David N; McKenna, Robert; Langan, Paul

    2011-11-08

    The neutron structure of wild-type human carbonic anhydrase II at pH 7.8 has been determined to 2.0 Å resolution. Detailed analysis and comparison to the previously determined structure at pH 10.0 show important differences in the protonation of key catalytic residues in the active site as well as a rearrangement of the H-bonded water network. For the first time, a completed H-bonded network stretching from the Zn-bound solvent to the proton shuttling residue, His64, has been directly observed.

  13. Identification of key residues for the binding of glucagon to the N-terminal domain of its receptor: an alanine scan and modeling study.

    PubMed

    Prévost, M; Vertongen, P; Waelbroeck, M

    2012-10-01

    Glucagon plays an essential role in the glycemia maintenance during fasting, but also aggravates hyperglycemia in diabetic patients. A series of analogues of glucagon were synthesized replacing each amino acid of the C-terminal region (residues 15-29) with alanine. The residues affecting the binding to the glucagon receptor are found to be located on one face of the glucagon helix. Several 3-dimensional models of the N-terminal domain of the glucagon receptor in complex with its ligand peptide were built and used to analyze the peptide-receptor interface in terms of the nature of the peptide residues and the interactions they form with the receptor. The models suggest that glucagon keeps its native helical structure upon binding, and that a large part of the interface formed with the receptor is hydrophobic. We find that in the C-terminal region, F22, V23, M27, and D15 are the most important residues for peptide binding. They bury a large portion of their solvent accessible surface area and make numerous interactions with the receptor mainly of the hydrophobic type. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Flipped Phenyl Ring Orientations of Dopamine Binding with Human and Drosophila Dopamine Transporters: Remarkable Role of Three Nonconserved Residues.

    PubMed

    Yuan, Yaxia; Zhu, Jun; Zhan, Chang-Guo

    2018-03-09

    Molecular modeling and molecular dynamics simulations were performed in the present study to examine the modes of dopamine binding with human and Drosophila dopamine transporters (hDAT and dDAT). The computational data revealed flipped binding orientations of dopamine in hDAT and dDAT due to the major differences in three key residues (S149, G153, and A423 of hDAT vs A117, D121, and S422 of dDAT) in the binding pocket. These three residues dictate the binding orientation of dopamine in the binding pocket, as the aromatic ring of dopamine tends to take an orientation with both the para- and meta-hydroxyl groups being close to polar residues and away from nonpolar residues of the protein. The flipped binding orientations of dopamine in hDAT and dDAT clearly demonstrate a generally valuable insight concerning how the species difference could drastically affect the protein-ligand binding modes, demonstrating that the species difference, which is a factor rarely considered in early drug design stage, must be accounted for throughout the ligand/drug design and discovery processes in general.

  15. Improve the prediction of RNA-binding residues using structural neighbours.

    PubMed

    Li, Quan; Cao, Zanxia; Liu, Haiyan

    2010-03-01

    The interactions between RNA-binding proteins (RBPs) with RNA play key roles in managing some of the cell's basic functions. The identification and prediction of RNA binding sites is important for understanding the RNA-binding mechanism. Computational approaches are being developed to predict RNA-binding residues based on the sequence- or structure-derived features. To achieve higher prediction accuracy, improvements on current prediction methods are necessary. We identified that the structural neighbors of RNA-binding and non-RNA-binding residues have different amino acid compositions. Combining this structure-derived feature with evolutionary (PSSM) and other structural information (secondary structure and solvent accessibility) significantly improves the predictions over existing methods. Using a multiple linear regression approach and 6-fold cross validation, our best model can achieve an overall correct rate of 87.8% and MCC of 0.47, with a specificity of 93.4%, correctly predict 52.4% of the RNA-binding residues for a dataset containing 107 non-homologous RNA-binding proteins. Compared with existing methods, including the amino acid compositions of structure neighbors lead to clearly improvement. A web server was developed for predicting RNA binding residues in a protein sequence (or structure),which is available at http://mcgill.3322.org/RNA/.

  16. Examining the critical roles of human CB2 receptor residues Valine 3.32 (113) and Leucine 5.41 (192) in ligand recognition and downstream signaling activities.

    PubMed

    Alqarni, Mohammed; Myint, Kyaw Zeyar; Tong, Qin; Yang, Peng; Bartlow, Patrick; Wang, Lirong; Feng, Rentian; Xie, Xiang-Qun

    2014-09-26

    We performed molecular modeling and docking to predict a putative binding pocket and associated ligand-receptor interactions for human cannabinoid receptor 2 (CB2). Our data showed that two hydrophobic residues came in close contact with three structurally distinct CB2 ligands: CP-55,940, SR144528 and XIE95-26. Site-directed mutagenesis experiments and subsequent functional assays implicated the roles of Valine residue at position 3.32 (V113) and Leucine residue at position 5.41 (L192) in the ligand binding function and downstream signaling activities of the CB2 receptor. Four different point mutations were introduced to the wild type CB2 receptor: V113E, V113L, L192S and L192A. Our results showed that mutation of Val113 with a Glutamic acid and Leu192 with a Serine led to the complete loss of CB2 ligand binding as well as downstream signaling activities. Substitution of these residues with those that have similar hydrophobic side chains such as Leucine (V113L) and Alanine (L192A), however, allowed CB2 to retain both its ligand binding and signaling functions. Our modeling results validated by competition binding and site-directed mutagenesis experiments suggest that residues V113 and L192 play important roles in ligand binding and downstream signaling transduction of the CB2 receptor. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. CCR2 and CCR5 receptor-binding properties of herpesvirus-8 vMIP-II based on sequence analysis and its solution structure.

    PubMed

    Shao, W; Fernandez, E; Sachpatzidis, A; Wilken, J; Thompson, D A; Schweitzer, B I; Lolis, E

    2001-05-01

    Human herpesvirus-8 (HHV-8) is the infectious agent responsible for Kaposi's sarcoma and encodes a protein, macrophage inflammatory protein-II (vMIP-II), which shows sequence similarity to the human CC chemokines. vMIP-II has broad receptor specificity that crosses chemokine receptor subfamilies, and inhibits HIV-1 viral entry mediated by numerous chemokine receptors. In this study, the solution structure of chemically synthesized vMIP-II was determined by nuclear magnetic resonance. The protein is a monomer and possesses the chemokine fold consisting of a flexible N-terminus, three antiparallel beta strands, and a C-terminal alpha helix. Except for the N-terminal residues (residues 1-13) and the last two C-terminal residues (residues 73-74), the structure of vMIP-II is well-defined, exhibiting average rmsd of 0.35 and 0.90 A for the backbone heavy atoms and all heavy atoms of residues 14-72, respectively. Taking into account the sequence differences between the various CC chemokines and comparing their three-dimensional structures allows us to implicate residues that influence the quaternary structure and receptor binding and activation of these proteins in solution. The analysis of the sequence and three-dimensional structure of vMIP-II indicates the presence of epitopes involved in binding two receptors CCR2 and CCR5. We propose that vMIP-II was initially specific for CCR5 and acquired receptor-binding properties to CCR2 and other chemokine receptors.

  18. A conserved glutamine plays a central role in LOV domain signal transmission and duration

    PubMed Central

    Nash, Abigail I.; Ko, Wen-Huang; Harper, Shannon M.; Gardner, Kevin H.

    2009-01-01

    Light is a key stimulus for plant biological functions, several of which are controlled by light-activated kinases known as phototropins, a group of kinases that contain two light-sensing domains (LOV, Light-Oxygen-Voltage domains) and a C-terminal serine/threonine kinase domain. The second sensory domain, LOV2, plays a key role in regulating kinase enzymatic activity via the photochemical formation of a covalent adduct between a LOV2 cysteine residue and an internally-bound flavin mononucleotide (FMN) chromophore. Subsequent conformational changes in LOV2 lead to the unfolding of a peripheral Jα helix, and ultimately, phototropin kinase activation. To date, the mechanism coupling bond formation and helix dissociation has remained unclear. Previous studies found that a conserved glutamine residue (Q513 in the Avena sativa phototropin 1 LOV2 (AsLOV2) domain) switches its hydrogen-bonding pattern with FMN upon light stimulation. Located in the immediate vicinity of the FMN binding site, this Gln residue is provided by the Iβ strand that interacts with the Jα helix, suggesting a route for signal propagation from the core of the LOV domain to its peripheral Jα helix. To test whether Q513 plays a key role in tuning the photochemical and transduction properties of AsLOV2, we designed two point mutations, Q513L and Q513N, and monitored the effects on the chromophore and protein using a combination of UV-visible absorbance and circular dichroism spectroscopy, limited proteolysis, and solution NMR. The results show that these mutations significantly dampen the changes between the dark and lit state AsLOV2 structures, leaving the protein in a pseudo-dark state (Q513L) or a pseudo-lit state (Q513N) conformation. Further, both mutations changed the photochemical properties of this receptor, particularly the lifetime of the photoexcited signaling states. Together, these data establish that this residue plays a central role in both spectral tuning and signal propagation from the core of the LOV domain through the Iβ strand to the peripheral Jα helix. PMID:19063612

  19. Structural Basis for Substrate Recognition by the Ankyrin Repeat Domain of Human DHHC17 Palmitoyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verardi, Raffaello; Kim, Jin-Sik; Ghirlando, Rodolfo

    DHHC enzymes catalyze palmitoylation, a major post-translational modification that regulates a number of key cellular processes. There are up to 24 DHHCs in mammals and hundreds of substrate proteins that get palmitoylated. However, how DHHC enzymes engage with their substrates is still poorly understood. There is currently no structural information about the interaction between any DHHC enzyme and protein substrates. In this study we have investigated the structural and thermodynamic bases of interaction between the ankyrin repeat domain of human DHHC17 (ANK17) and Snap25b. We solved a high-resolution crystal structure of the complex between ANK17 and a peptide fragment ofmore » Snap25b. Through structure-guided mutagenesis, we discovered key residues in DHHC17 that are critically important for interaction with Snap25b. We further extended our finding by showing that the same residues are also crucial for the interaction of DHHC17 with Huntingtin, one of its most physiologically relevant substrates.« less

  20. Structural and functional characterization of the Mycobacterium tuberculosis uridine monophosphate kinase: insights into the allosteric regulation.

    PubMed

    Labesse, Gilles; Benkali, Khaled; Salard-Arnaud, Isabelle; Gilles, Anne-Marie; Munier-Lehmann, Hélène

    2011-04-01

    Nucleoside Monophosphate Kinases (NMPKs) family are key enzymes in nucleotide metabolism. Bacterial UMPKs depart from the main superfamily of NMPKs. Having no eukaryotic counterparts they represent attractive therapeutic targets. They are regulated by GTP and UTP, while showing different mechanisms in Gram(+), Gram(-) and archaeal bacteria. In this work, we have characterized the mycobacterial UMPK (UMPKmt) combining enzymatic and structural investigations with site-directed mutagenesis. UMPKmt exhibits cooperativity toward ATP and an allosteric regulation by GTP and UTP. The crystal structure of the complex of UMPKmt with GTP solved at 2.5 Å, was merely identical to the modelled apo-form, in agreement with SAXS experiments. Only a small stretch of residues was affected upon nucleotide binding, pointing out the role of macromolecular dynamics rather than major structural changes in the allosteric regulation of bacterial UMPKs. We further probe allosteric regulation by site-directed mutagenesis. In particular, a key residue involved in the allosteric regulation of this enzyme was identified.

  1. A Hydrogen-Bonded Polar Network in the Core of the Glucagon-Like Peptide-1 Receptor Is a Fulcrum for Biased Agonism: Lessons from Class B Crystal Structures.

    PubMed

    Wootten, Denise; Reynolds, Christopher A; Koole, Cassandra; Smith, Kevin J; Mobarec, Juan C; Simms, John; Quon, Tezz; Coudrat, Thomas; Furness, Sebastian G B; Miller, Laurence J; Christopoulos, Arthur; Sexton, Patrick M

    2016-03-01

    The glucagon-like peptide 1 (GLP-1) receptor is a class B G protein-coupled receptor (GPCR) that is a key target for treatments for type II diabetes and obesity. This receptor, like other class B GPCRs, displays biased agonism, though the physiologic significance of this is yet to be elucidated. Previous work has implicated R2.60(190), N3.43(240), Q7.49(394), and H6.52(363) as key residues involved in peptide-mediated biased agonism, with R2.60(190), N3.43(240), and Q7.49(394) predicted to form a polar interaction network. In this study, we used novel insight gained from recent crystal structures of the transmembrane domains of the glucagon and corticotropin releasing factor 1 (CRF1) receptors to develop improved models of the GLP-1 receptor that predict additional key molecular interactions with these amino acids. We have introduced E6.53(364)A, N3.43(240)Q, Q7.49(394)N, and N3.43(240)Q/Q7.49(394)N mutations to probe the role of predicted H-bonding and charge-charge interactions in driving cAMP, calcium, or extracellular signal-regulated kinase (ERK) signaling. A polar interaction between E6.53(364) and R2.60(190) was predicted to be important for GLP-1- and exendin-4-, but not oxyntomodulin-mediated cAMP formation and also ERK1/2 phosphorylation. In contrast, Q7.49(394), but not R2.60(190)/E6.53(364) was critical for calcium mobilization for all three peptides. Mutation of N3.43(240) and Q7.49(394) had differential effects on individual peptides, providing evidence for molecular differences in activation transition. Collectively, this work expands our understanding of peptide-mediated signaling from the GLP-1 receptor and the key role that the central polar network plays in these events. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Microbial community changes with decaying chloramine residuals in a lab-scale system.

    PubMed

    Bal Krishna, K C; Sathasivan, Arumugam; Ginige, Maneesha P

    2013-09-01

    When chloramine is used as a disinfectant, managing an acceptable "residual" throughout the water distribution systems particularly once nitrification has set in is challenging. Managing chloramine decay prior to the onset of nitrification through effective control strategies is important and to-date the strategies developed around nitrification has been ineffective. This study aimed at developing a more holistic knowledge on how decaying chloramine and nitrification metabolites impact microbial communities in chloraminated systems. Five lab-scale reactors (connected in series) were operated to simulate a full-scale chloraminated distribution system. Culture independent techniques (cloning and qPCR) were used to characterise and quantify the mixed microbial communities in reactors maintaining a residual of high to low (2.18-0.03 mg/L). The study for the first time associates chloramine residuals and nitrification metabolites to different microbial communities. Bacterial classes Solibacteres, Nitrospira, Sphingobacteria and Betaproteobacteria dominated at low chloramine residuals whereas Actinobacteria and Gammaproteobacteria dominated at higher chloramine residuals. Prior to the onset of nitrification bacterial genera Pseudomonas, Methylobacterium and Sphingomonas were found to be dominant and Sphingomonas in particular increased with the onset of nitrification. Nitrosomonas urea, oligotropha, and two other novel ammonia-oxidizing bacteria were detected once the chloramine residuals had dropped below 0.65 mg/L. Additionally nitrification alone failed to explain chloramine decay rates observed in these reactors. The finding of this study is expected to re-direct the focus from nitrifiers to heterotrophic bacteria, which the authors believe could hold the key towards developing a control strategy that would enable better management of chloramine residuals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Free-Suspension Residual Flexibility Testing of Space Station Pathfinder: Comparison to Fixed-Base Results

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.

    1998-01-01

    Application of the free-suspension residual flexibility modal test method to the International Space Station Pathfinder structure is described. The Pathfinder, a large structure of the general size and weight of Space Station module elements, was also tested in a large fixed-base fixture to simulate Shuttle Orbiter payload constraints. After correlation of the Pathfinder finite element model to residual flexibility test data, the model was coupled to a fixture model, and constrained modes and frequencies were compared to fixed-base test. modes. The residual flexibility model compared very favorably to results of the fixed-base test. This is the first known direct comparison of free-suspension residual flexibility and fixed-base test results for a large structure. The model correlation approach used by the author for residual flexibility data is presented. Frequency response functions (FRF) for the regions of the structure that interface with the environment (a test fixture or another structure) are shown to be the primary tools for model correlation that distinguish or characterize the residual flexibility approach. A number of critical issues related to use of the structure interface FRF for correlating the model are then identified and discussed, including (1) the requirement of prominent stiffness lines, (2) overcoming problems with measurement noise which makes the antiresonances or minima in the functions difficult to identify, and (3) the use of interface stiffness and lumped mass perturbations to bring the analytical responses into agreement with test data. It is shown that good comparison of analytical-to-experimental FRF is the key to obtaining good agreement of the residual flexibility values.

  4. Heterodimer Binding Scaffolds Recognition via the Analysis of Kinetically Hot Residues.

    PubMed

    Perišić, Ognjen

    2018-03-16

    Physical interactions between proteins are often difficult to decipher. The aim of this paper is to present an algorithm that is designed to recognize binding patches and supporting structural scaffolds of interacting heterodimer proteins using the Gaussian Network Model (GNM). The recognition is based on the (self) adjustable identification of kinetically hot residues and their connection to possible binding scaffolds. The kinetically hot residues are residues with the lowest entropy, i.e., the highest contribution to the weighted sum of the fastest modes per chain extracted via GNM. The algorithm adjusts the number of fast modes in the GNM's weighted sum calculation using the ratio of predicted and expected numbers of target residues (contact and the neighboring first-layer residues). This approach produces very good results when applied to dimers with high protein sequence length ratios. The protocol's ability to recognize near native decoys was compared to the ability of the residue-level statistical potential of Lu and Skolnick using the Sternberg and Vakser decoy dimers sets. The statistical potential produced better overall results, but in a number of cases its predicting ability was comparable, or even inferior, to the prediction ability of the adjustable GNM approach. The results presented in this paper suggest that in heterodimers at least one protein has interacting scaffold determined by the immovable, kinetically hot residues. In many cases, interacting proteins (especially if being of noticeably different sizes) either behave as a rigid lock and key or, presumably, exhibit the opposite dynamic behavior. While the binding surface of one protein is rigid and stable, its partner's interacting scaffold is more flexible and adaptable.

  5. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Feedforward Ballistic Contractions and Implications for Direct Neural Control of Powered Lower Limb Prostheses.

    PubMed

    Huang, Stephanie; Huang, He

    2018-04-01

    Discrete, rapid (i.e., ballistic like) muscle activation patterns have been observed in ankle muscles (i.e., plantar flexors and dorsiflexors) of able-bodied individuals during voluntary posture control. This observation motivated us to investigate whether transtibial amputees are capable of generating such a ballistic-like activation pattern accurately using their residual ankle muscles in order to assess whether the volitional postural control of a powered ankle prosthesis using proportional myoelectric control via residual muscles could be feasible. In this paper, we asked ten transtibial amputees to generate ballistic-like activation patterns using their residual lateral gastrocnemius and residual tibialis anterior to control a computer cursor via proportional myoelectric control to hit targets positioned at 20% and 40% of maximum voluntary contraction of the corresponding residual muscle. During practice conditions, we asked amputees to hit a single target repeatedly. During testing conditions, we asked amputees to hit a random sequence of targets. We compared movement time to target and end-point accuracy. We also examined motor recruitment synchronization via time-frequency representations of residual muscle activation. The result showed that median end-point error ranged from -0.6% to 1% maximum voluntary contraction across subjects during practice, which was significantly lower compared to testing ( ). Average movement time for all amputees was 242 ms during practice and 272 ms during testing. Motor recruitment synchronization varied across subjects, and amputees with the highest synchronization achieved the fastest movement times. End-point accuracy was independent of movement time. Results suggest that it is feasible for transtibial amputees to generate ballistic control signals using their residual muscles. Future work on volitional control of powered power ankle prostheses might consider anticipatory postural control based on ballistic-like residual muscle activation patterns and direct continuous proportional myoelectric control.

  6. Exposure to Polychlorinated Biphenyls (PCBs): Implications for School Psychologists

    ERIC Educational Resources Information Center

    Cook-Cottone, Catherine

    2004-01-01

    Pediatric exposure to polychlorinated biphynels (PCBs) is a national health concern with significant implications for school psychologists. According to the healthcare collaboration model, the school psychologist plays a key role in the provision of services to children affected by environmental teratogens. To effectively function as healthcare…

  7. ARSENIC UPTAKE PROCESSES IN REDUCING ENVIRONMENTS: IMPLICATIONS FOR ACTIVE REMEDIATION AND NATURAL ATTENUATION

    EPA Science Inventory

    Reductive dissolution of iron oxyhydr(oxides) and release of adsorbed or coprecipitated arsenic is often implicated as a key process that controls the mobility and bioavailability of arsenic in anoxic environments. Yet a complete assessment of arsenic transport and fate requires...

  8. Institutional Image: The Concept and Implications for Administrative Action.

    ERIC Educational Resources Information Center

    Renihan, Frederick I; Renihan, Patrick J.

    1989-01-01

    Explores institutional image as a key to providing a philosophy and a logical foundation for school improvement efforts. Identifies two image dimensions (cosmetic and pastoral) and classifies five school types (synergistic, candy store, disaffected, monastic, and survivor), and discusses implications for administrative action. Includes three…

  9. ASD Closure in Structural Heart Disease.

    PubMed

    Wiktor, Dominik M; Carroll, John D

    2018-04-17

    While the safety and efficacy of percutaneous ASD closure has been established, new data have recently emerged regarding the negative impact of residual iatrogenic ASD (iASD) following left heart structural interventions. Additionally, new devices with potential advantages have recently been studied. We will review here the potential indications for closure of iASD along with new generation closure devices and potential late complications requiring long-term follow-up. With the expansion of left-heart structural interventions and large-bore transseptal access, there has been growing experience gained with management of residual iASD. Some recently published reports have implicated residual iASD after these procedures as a potential source of diminished clinical outcomes and mortality. Additionally, recent trials investigating new generation closure devices as well as expanding knowledge regarding late complications of percutaneous ASD closure have been published. While percutaneous ASD closure is no longer a novel approach to managing septal defects, there are several contemporary issues related to residual iASD following large-bore transseptal access and new generation devices which serve as an impetus for this review. Ongoing attention to potential late complications and decreasing their incidence with ongoing study is clearly needed.

  10. Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation.

    PubMed

    Gingerich, Daniel B; Mauter, Meagan S

    2015-07-21

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJ(th) of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.

  11. Chemical differentiation on one-plate planets: Predictions and geologic observations for Venus

    NASA Technical Reports Server (NTRS)

    Head, James W., III; Parmentier, E. M.; Hess, P. C.

    1992-01-01

    Recent studies have examined the partial melting of planetary interiors on one-plate planets and the implications for the formation and evolution of basaltic crust and the complementary residual mantle layer. In contrast to the Earth, where the crust and residual layer move laterally and are returned to the interior following subduction, one-plate planets such as Venus are characterized by vertical accretion of the crust and residual layer. The residual mantle layer is depleted and compositionally buoyant, being less dense than undepleted mantle due to its reduced Fe/Mg and dense Al-bearing minerals; its melting temperature is also increased. As the crust and depleted mantle layer grow vertically during the thermal evolution of the planet, several stages develop. As a step in the investigation and testing of these theoretical treatments of crustal development on Venus, we investigate the predictions deriving from two of these stages (a stable thick crust and depleted layer, and a thick unstable depleted layer) and compare these to geologic and geophysical observations, speculating on how these might be interpreted in the context of the vertical crustal accretion models. In each case, we conclude with an outline of further tests and observations of these models.

  12. Activated carbon for the removal of pharmaceutical residues from treated wastewater.

    PubMed

    Ek, Mats; Baresel, Christian; Magnér, Jörgen; Bergström, Rune; Harding, Mila

    2014-01-01

    Pharmaceutical residues, which pass naturally through the human body into sewage, are in many cases virtually unaffected by conventional wastewater treatment. Accumulated in the environment, however, they can significantly impact aquatic life. The present study indicates that many pharmaceutical residues found in wastewater can be removed with activated carbon in a cost-efficient system that delivers higher resource utilisation and security than other carbon systems. The experiment revealed a substantial separation of the analysed compounds, notwithstanding their relatively high solubility in water and dissimilar chemical structures. This implies that beds of activated carbon may be a competitive alternative to treatment with ozone. The effluent water used for the tests, performed over 20 months, originated from Stockholm's largest sewage treatment plant. Passing through a number of different filters with activated carbon removed 90-98% of the pharmaceutical residues from the water. This paper describes pilot-scale tests performed by IVL and the implications for an actual treatment plant that has to treat up to several thousand litres of wastewater per second. In addition, the advantages, disadvantages and costs of the method are discussed. This includes, for example, the clogging of carbon filters and the associated hydraulic capacity limits of the activated carbon.

  13. Conformation of receptor-bound visual arrestin.

    PubMed

    Kim, Miyeon; Vishnivetskiy, Sergey A; Van Eps, Ned; Alexander, Nathan S; Cleghorn, Whitney M; Zhan, Xuanzhi; Hanson, Susan M; Morizumi, Takefumi; Ernst, Oliver P; Meiler, Jens; Gurevich, Vsevolod V; Hubbell, Wayne L

    2012-11-06

    Arrestin-1 (visual arrestin) binds to light-activated phosphorylated rhodopsin (P-Rh*) to terminate G-protein signaling. To map conformational changes upon binding to the receptor, pairs of spin labels were introduced in arrestin-1 and double electron-electron resonance was used to monitor interspin distance changes upon P-Rh* binding. The results indicate that the relative position of the N and C domains remains largely unchanged, contrary to expectations of a "clam-shell" model. A loop implicated in P-Rh* binding that connects β-strands V and VI (the "finger loop," residues 67-79) moves toward the expected location of P-Rh* in the complex, but does not assume a fully extended conformation. A striking and unexpected movement of a loop containing residue 139 away from the adjacent finger loop is observed, which appears to facilitate P-Rh* binding. This change is accompanied by smaller movements of distal loops containing residues 157 and 344 at the tips of the N and C domains, which correspond to "plastic" regions of arrestin-1 that have distinct conformations in monomers of the crystal tetramer. Remarkably, the loops containing residues 139, 157, and 344 appear to have high flexibility in both free arrestin-1 and the P-Rh*complex.

  14. Mammalian Protein Arginine Methyltransferase 7 (PRMT7) Specifically Targets RXR Sites in Lysine- and Arginine-rich Regions*

    PubMed Central

    Feng, You; Maity, Ranjan; Whitelegge, Julian P.; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T.; Bedford, Mark T.; Masson, Jean-Yves; Clarke, Steven G.

    2013-01-01

    The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7. PMID:24247247

  15. Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions.

    PubMed

    Feng, You; Maity, Ranjan; Whitelegge, Julian P; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T; Bedford, Mark T; Masson, Jean-Yves; Clarke, Steven G

    2013-12-27

    The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7.

  16. Undetectable Transcription of cap in a Clinical AAV Vector: Implications for Preformed Capsid in Immune Responses

    PubMed Central

    Hauck, Bernd; Murphy, Samuel L; Smith, Peter H; Qu, Guang; Liu, Xingge; Zelenaia, Olga; Mingozzi, Federico; Sommer, Jürg M; High, Katherine A; Wright, J. Fraser

    2008-01-01

    In a gene therapy clinical trial for hemophilia B, adeno-associated virus 2 (AAV2) capsid–specific CD8+ T cells were previously implicated in the elimination of vector-transduced hepatocytes, resulting in loss of human factor IX (hFIX) transgene expression. To test the hypothesis that expression of AAV2 cap DNA impurities in the AAV2-hFIX vector was the source of epitopes presented on transduced cells, transcription of cap was assessed by quantitative reverse transcription–PCR (Q-RT-PCR) following transduction of target cells with the vector used in the clinical trial. Transcriptional profiling was also performed for residual AmpR, and adenovirus E2A and E4. Although trace amounts of DNA impurities were present in the clinical vector, transcription of these sequences was not detected after transduction of human hepatocytes, nor in mice administered a dose 26-fold above the highest dose administered in the clinical study. Two methods used to minimize encapsidated DNA impurities in the clinical vector were: (i) a vector (cis) production plasmid with a backbone exceeding the packaging limit of AAV; and (ii) a vector purification step that achieved separation of the vector from vector-related impurities (e.g., empty capsids). In conclusion, residual cap expression was undetectable following transduction with AAV2-hFIX clinical vectors. Preformed capsid protein is implicated as the source of epitopes recognized by CD8+ T cells that eliminated vector-transduced cells in the clinical study. PMID:18941440

  17. Using a Mobile Device "App" and Proximal Remote Sensing Technologies to Assess Soil Cover Fractions on Agricultural Fields.

    PubMed

    Laamrani, Ahmed; Pardo Lara, Renato; Berg, Aaron A; Branson, Dave; Joosse, Pamela

    2018-02-27

    Quantifying the amount of crop residue left in the field after harvest is a key issue for sustainability. Conventional assessment approaches (e.g., line-transect) are labor intensive, time-consuming and costly. Many proximal remote sensing devices and systems have been developed for agricultural applications such as cover crop and residue mapping. For instance, current mobile devices (smartphones & tablets) are usually equipped with digital cameras and global positioning systems and use applications (apps) for in-field data collection and analysis. In this study, we assess the feasibility and strength of a mobile device app developed to estimate crop residue cover. The performance of this novel technique (from here on referred to as "app" method) was compared against two point counting approaches: an established digital photograph-grid method and a new automated residue counting script developed in MATLAB at the University of Guelph. Both photograph-grid and script methods were used to count residue under 100 grid points. Residue percent cover was estimated using the app, script and photograph-grid methods on 54 vertical digital photographs (images of the ground taken from above at a height of 1.5 m) collected from eighteen fields (9 corn and 9 soybean, 3 samples each) located in southern Ontario. Results showed that residue estimates from the app method were in good agreement with those obtained from both photograph-grid and script methods (R² = 0.86 and 0.84, respectively). This study has found that the app underestimates the residue coverage by -6.3% and -10.8% when compared to the photograph-grid and script methods, respectively. With regards to residue type, soybean has a slightly lower bias than corn (i.e., -5.3% vs. -7.4%). For photos with residue <30%, the app derived residue measurements are within ±5% difference (bias) of both photograph-grid- and script-derived residue measurements. These methods could therefore be used to track the recommended minimum soil residue cover of 30%, implemented to reduce farmland topsoil and nutrient losses that impact water quality. Overall, the app method was found to be a good alternative to the point counting methods, which are more time-consuming.

  18. Aggregation of γ-crystallins associated with human cataracts via domain swapping at the C-terminal β-strands

    PubMed Central

    Das, Payel; King, Jonathan A.; Zhou, Ruhong

    2011-01-01

    The prevalent eye disease age-onset cataract is associated with aggregation of human γD-crystallins, one of the longest-lived proteins. Identification of the γ-crystallin precursors to aggregates is crucial for developing strategies to prevent and reverse cataract. Our microseconds of atomistic molecular dynamics simulations uncover the molecular structure of the experimentally detected aggregation-prone folding intermediate species of monomeric native γD-crystallin with a largely folded C-terminal domain and a mostly unfolded N-terminal domain. About 30 residues including a, b, and c strands from the Greek Key motif 4 of the C-terminal domain experience strong solvent exposure of hydrophobic residues as well as partial unstructuring upon N-terminal domain unfolding. Those strands comprise the domain–domain interface crucial for unusually high stability of γD-crystallin. We further simulate the intermolecular linkage of these monomeric aggregation precursors, which reveals domain-swapped dimeric structures. In the simulated dimeric structures, the N-terminal domain of one monomer is frequently found in contact with residues 135–164 encompassing the a, b, and c strands of the Greek Key motif 4 of the second molecule. The present results suggest that γD-crystallin may polymerize through successive domain swapping of those three C-terminal β-strands leading to age-onset cataract, as an evolutionary cost of its very high stability. Alanine substitutions of the hydrophobic residues in those aggregation-prone β-strands, such as L145 and M147, hinder domain swapping as a pathway toward dimerization. These findings thus provide critical molecular insights onto the initial stages of age-onset cataract, which is important for understanding protein aggregation diseases. PMID:21670251

  19. Construction and characterization of 3A-epitope-tagged foot-and-mouth disease virus.

    PubMed

    Ma, Xueqing; Li, Pinghua; Sun, Pu; Bai, Xingwen; Bao, Huifang; Lu, Zengjun; Fu, Yuanfang; Cao, Yimei; Li, Dong; Chen, Yingli; Qiao, Zilin; Liu, Zaixin

    2015-04-01

    Nonstructural protein 3A of foot-and-mouth disease virus (FMDV) is a partially conserved protein of 153 amino acids (aa) in most FMDVs examined to date. Specific deletion in the FMDV 3A protein has been associated with the inability of FMDV to grow in primary bovine cells and cause disease in cattle. However, the aa residues playing key roles in these processes are poorly understood. In this study, we constructed epitope-tagged FMDVs containing an 8 aa FLAG epitope, a 9 aa haemagglutinin (HA) epitope, and a 10 aa c-Myc epitope to substitute residues 94-101, 93-101, and 93-102 of 3A protein, respectively, using a recently developed O/SEA/Mya-98 FMDV infectious cDNA clone. Immunofluorescence assay (IFA), Western blot and sequence analysis showed that the epitope-tagged viruses stably maintained and expressed the foreign epitopes even after 10 serial passages in BHK-21 cells. The epitope-tagged viruses displayed growth properties and plaque phenotypes similar to those of the parental virus in BHK-21 cells. However, the epitope-tagged viruses exhibited lower growth rates and smaller plaque size phenotypes than those of the parental virus in primary fetal bovine kidney (FBK) cells, but similar growth properties and plaque phenotypes to those of the recombinant viruses harboring 93-102 deletion in 3A. These results demonstrate that the decreased ability of FMDV to replicate in primary bovine cells was not associated with the length of 3A, and the genetic determinant thought to play key role in decreased ability to replicate in primary bovine cells could be reduced from 93-102 residues to 8 aa residues at positions 94-101 in 3A protein. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Aspartate 102 in the Heme Domain of Soluble Guanylyl Cyclase Has a Key Role in NO Activation

    PubMed Central

    Baskaran, Padmamalini; Heckler, Erin J.; van den Akker, Focco; Beuve, Annie

    2012-01-01

    Nitric oxide (NO) is involved in the physiology and pathophysiology of the cardiovascular and neuronal systems via activation of soluble guanylyl cyclase (sGC), a heme-containing heterodimer. Recent structural studies have allowed a better understanding of the residues that dictate the affinity and binding of NO to the heme and the resulting breakage of the bond between the heme iron and histidine 105 (H105) of the β subunit of sGC. Still, it is unknown how the breakage of the iron–His bond translates into NO-dependent increased catalysis. Structural studies on homologous H-NOX domains in various states pointed to a role for movement of the H105 containing αF helix. Our modeling of the heme-binding domain highlighted conserved residues in the vicinity of H105 that could potentially regulate the extent to which the αF helix shifts and/or propagate the activation signal once the covalent bond with H105 has been broken. These include a direct interaction of αF helix residue D102 with the backbone nitrogen of F120. Mutational analysis of this region points to an essential role of the interactions in the vicinity of H105 for heme stability and identifies aspartate 102 (D102) as having a key role in NO activation following breakage of the iron–His bond. PMID:21491881

  1. Capsule implosion optimization during the indirect-drive National Ignition Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landen, O. L.; Edwards, J.; Haan, S. W.

    2011-05-15

    Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analyticmore » models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown to meet the required sensitivity and accuracy. A roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget. Finally, we show how the tuning precision will be improved after a number of shots and iterations to meet an acceptable level of residual uncertainty.« less

  2. Identification of hydrophobic amino acids required for lipid activation of C. elegans CTP:phosphocholine cytidylyltransferase.

    PubMed

    Braker, Jay D; Hodel, Kevin J; Mullins, David R; Friesen, Jon A

    2009-12-01

    CTP:phosphocholine cytidylyltransferase (CCT), critical for phosphatidylcholine biosynthesis, is activated by translocation to the membrane surface. The lipid activation region of Caenorhabditis elegans CCT is between residues 246 and 266 of the 347 amino acid polypeptide, a region proposed to form an amphipathic alpha helix. When leucine 246, tryptophan 249, isoleucine 256, isoleucine 257, or phenylalanine 260, on the hydrophobic face of the helix, were changed individually to serine low activity was observed in the absence of lipid vesicles, similar to wild-type CCT, while lipid stimulated activity was reduced compared to wild-type CCT. Mutational analysis of phenylalanine 260 implicated this residue as a contributor to auto-inhibition of CCT while mutation of L246, W249, I256, and I257 simultaneously to serine resulted in significantly higher activity in the absence of lipid vesicles and an enzyme that was not lipid activated. These results support a concerted mechanism of lipid activation that requires multiple residues on the hydrophobic face of the putative amphipathic alpha helix.

  3. Effect of a pH Gradient on the Protonation States of Cytochrome c Oxidase: A Continuum Electrostatics Study.

    PubMed

    Magalhães, Pedro R; Oliveira, A Sofia F; Campos, Sara R R; Soares, Cláudio M; Baptista, António M

    2017-02-27

    Cytochrome c oxidase (CcO) couples the reduction of dioxygen to water with transmembrane proton pumping, which leads to the generation of an electrochemical gradient. In this study we analyze how one of the components of the electrochemical gradient, the difference in pH across the membrane, or ΔpH, influences the protonation states of residues in CcO. We modified our continuum electrostatics/Monte Carlo (CE/MC) method in order to include the ΔpH and applied it to the study of CcO, in what is, to our best knowledge, the first CE/MC study of CcO in the presence of a pH gradient. The inclusion of a transmembrane pH gradient allows for the identification of residues whose titration behavior depends on the pH on both sides of the membrane. Among the several residues with unusual titration profiles, three are well-known key residues in the proton transfer process of CcO: E286 I , Y288 I , and K362 I . All three residues have been previously identified as being critical for the catalytic or proton pumping functions of CcO. Our results suggest that when the pH gradient increases, these residues may be part of a regulatory mechanism to stem the proton flow.

  4. Key factors regulating protein carbonylation by α,β unsaturated carbonyls: A structural study based on a retrospective meta-analysis.

    PubMed

    Vistoli, Giulio; Mantovani, Chiara; Gervasoni, Silvia; Pedretti, Alessandro; Aldini, Giancarlo

    2017-11-01

    Protein carbonylation represents one of the most important oxidative-based modifications involving nucleophilic amino acids and affecting protein folding and function. Protein carbonylation is induced by electrophilic carbonyl species and is an highly selective process since few nucleophilic residues are carbonylated within each protein. While considering the great interest for protein carbonylation, few studies investigated the factors which render a nucleophilic residue susceptible to carbonylation. Hence, the present study is aimed to delve into the factors which modulate the reactivity of cysteine, histidine and lysine residues towards α,β unsaturated carbonyls by a retrospective analysis of the available studies which identified the adducted residues for proteins, the structure of which was resolved. Such an analysis involved different parameters including exposure, nucleophilicity, surrounding residues and capacity to attract carbonyl species (as derived by docking simulations). The obtained results allowed a meaningful clustering of the analyzed proteins suggesting that on average carbonylation selectivity increases with protein size. The comparison between adducted and unreactive residues revealed differences in all monitored parameters which are markedly more pronounced for cysteines compared to lysines and histidines. Overall, these results suggest that cysteine's carbonylation is a finely (and reasonably purposely) modulated process, while the carbonylation of lysines and histidines seems to be a fairly random event in which limited differences influence their reactivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Cathepsin H Functions as an Aminopeptidase in Secretory Vesicles for Production of Enkephalin and Galanin Peptide Neurotransmitters

    PubMed Central

    Lu, W. Douglas; Funkelstein, Lydiane; Toneff, Thomas; Reinheckel, Thomas; Peters, Christoph; Hook, Vivian

    2012-01-01

    Peptide neurotransmitters function as key intercellular signaling molecules in the nervous system. These peptides are generated in secretory vesicles from proneuropeptides by proteolytic processing at dibasic residues, followed by removal of N- and/or C-terminal basic residues to form active peptides. Enkephalin biosynthesis from proenkephalin utilizes the cysteine protease cathepsin L and the subtilisin-like prohormone convertase 2 (PC2). Cathepsin L generates peptide intermediates with N-terminal basic residue extensions, which must be removed by an aminopeptidase. In this study, we identified cathepsin H as an aminopeptidase in secretory vesicles that produces (Met)enkephalin (ME) by sequential removal of basic residues from KR-ME and KK-ME, supported by in vivo knockout of the cathepsin H gene. Localization of cathepsin H in secretory vesicles was demonstrated by immunoelectron microscopy and confocal immunofluorescence microscopy. Purified human cathepsin H sequentially removes N-terminal basic residues to generate ME, with peptide products characterized by nano-LC-MS/MS tandem mass spectrometry. Cathepsin H shows highest activities for cleaving N-terminal basic residues (Arg and Lys) among amino acid fluorogenic substrates. Notably, knockout of the cathepsin H gene results in reduction of ME in mouse brain. Cathepsin H deficient mice also show a substantial decrease in galanin peptide neurotransmitter levels in brain. These results illustrate a role for cathepsin H as an aminopeptidase for enkephalin and galanin peptide neurotransmitter production. PMID:22582844

  6. Hydrogen Assisted Cracking in Pearlitic Steel Rods: The Role of Residual Stresses Generated by Fatigue Precracking

    PubMed Central

    Toribio, Jesús; Aguado, Leticia; Lorenzo, Miguel; Kharin, Viktor

    2017-01-01

    Stress corrosion cracking (SCC) of metals is an issue of major concern in engineering since this phenomenon causes many catastrophic failures of structural components in aggressive environments. SCC is even more harmful under cathodic conditions promoting the phenomenon known as hydrogen assisted cracking (HAC), hydrogen assisted fracture (HAF) or hydrogen embrittlement (HE). A common way to assess the susceptibility of a given material to HAC, HAF or HE is to subject a cracked rod to a constant extension rate tension (CERT) test until it fractures in this harsh environment. This paper analyzes the influence of a residual stress field generated by fatigue precracking on the sample’s posterior susceptibility to HAC. To achieve this goal, numerical simulations were carried out of hydrogen diffusion assisted by the stress field. Firstly, a mechanical simulation of the fatigue precracking was developed for revealing the residual stress field after diverse cyclic loading scenarios and posterior stress field evolution during CERT loading. Afterwards, a simulation of hydrogen diffusion assisted by stress was carried out considering the residual stresses after fatigue and the superposed rising stresses caused by CERT loading. Results reveal the key role of the residual stress field after fatigue precracking in the HAC phenomena in cracked steel rods as well as the beneficial effect of compressive residual stress. PMID:28772845

  7. Two residues in the basic region of the yeast transcription factor Yap8 are crucial for its DNA-binding specificity.

    PubMed

    Amaral, Catarina; Pimentel, Catarina; Matos, Rute G; Arraiano, Cecília M; Matzapetakis, Manolis; Rodrigues-Pousada, Claudina

    2013-01-01

    In Saccharomyces cerevisiae, the transcription factor Yap8 is a key determinant in arsenic stress response. Contrary to Yap1, another basic region-leucine zipper (bZIP) yeast regulator, Yap8 has a very restricted DNA-binding specificity and only orchestrates the expression of ACR2 and ACR3 genes. In the DNA-binding basic region, Yap8 has three distinct amino acids residues, Leu26, Ser29 and Asn31, at sites of highly conserved positions in the other Yap family of transcriptional regulators and Pap1 of Schizosaccharomyces pombe. To evaluate whether these residues are relevant to Yap8 specificity, we first built a homology model of the complex Yap8bZIP-DNA based on Pap1-DNA crystal structure. Several Yap8 mutants were then generated in order to confirm the contribution of the residues predicted to interact with DNA. Using bioinformatics analysis together with in vivo and in vitro approaches, we have identified several conserved residues critical for Yap8-DNA binding. Moreover, our data suggest that Leu26 is required for Yap8 binding to DNA and that this residue together with Asn31, hinder Yap1 response element recognition by Yap8, thus narrowing its DNA-binding specificity. Furthermore our results point to a role of these two amino acids in the stability of the Yap8-DNA complex.

  8. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R.

    PubMed

    Shields, R L; Namenuk, A K; Hong, K; Meng, Y G; Rae, J; Briggs, J; Xie, D; Lai, J; Stadlen, A; Li, B; Fox, J A; Presta, L G

    2001-03-02

    Immunoglobulin G (IgG) Fc receptors play a critical role in linking IgG antibody-mediated immune responses with cellular effector functions. A high resolution map of the binding site on human IgG1 for human Fc gamma RI, Fc gamma RIIA, Fc gamma RIIB, Fc gamma RIIIA, and FcRn receptors has been determined. A common set of IgG1 residues is involved in binding to all Fc gamma R; Fc gamma RII and Fc gamma RIII also utilize residues outside this common set. In addition to residues which, when altered, abrogated binding to one or more of the receptors, several residues were found that improved binding only to specific receptors or simultaneously improved binding to one type of receptor and reduced binding to another type. Select IgG1 variants with improved binding to Fc gamma RIIIA exhibited up to 100% enhancement in antibody-dependent cell cytotoxicity using human effector cells; these variants included changes at residues not found at the binding interface in the IgG/Fc gamma RIIIA co-crystal structure (Sondermann, P., Huber, R., Oosthuizen, V., and Jacob, U. (2000) Nature 406, 267-273). These engineered antibodies may have important implications for improving antibody therapeutic efficacy.

  9. Chloride transporting capability of Calu-3 epithelia following persistent knockdown of the cystic fibrosis transmembrane conductance regulator, CFTR

    PubMed Central

    MacVinish, L J; Cope, G; Ropenga, A; Cuthbert, A W

    2007-01-01

    Background and purpose: Calu-3 cells are derived from serous cells of human lung submucosal glands, a prime target for therapy in cystic fibrosis (CF). Calu-3 cells can be cultured to form epithelia capable of transepithelial transport of chloride. A CF Calu-3 cell is not available. Experimental approach: A retroviral vector was used to cause persistent down regulation of CFTR using siRNA methodology, in Calu-3 cells. A Calu-3 cell line with CFTR content less than 5% of the original line has been established. Epithelia grown using the modified cells have been used in comparative studies of transporting capability. Key results: All aspects of cAMP activated chloride secretion were attenuated in the epithelia with reduced CFTR content. However transporting capability was reduced less than the CFTR content. From studies with the CFTR channel inhibitor, GlyH-101, it was concluded that wild type Calu-3 cells have a reserve of CFTR channels not located in the membrane, but available for replacement, while in the modified Calu-3 cell line there was little or no reserve. Lubiprostone, a putative ClC-2 activator, increased transepithelial chloride secretion in both modified and wild type Calu-3 epithelia. Modified Calu-3 epithelia with the residual CFTR currents blocked with GlyH-101 responded equally well to lubiprostone as those without the blocking agent. Conclusions and implications: It appears that lubiprostone is capable of stimulating a non-CFTR dependent transepithelial chloride secretion in Calu-3 monolayers, with obvious implications for CF therapy. Cell lines, however, do not always reflect the behaviour of the native tissue with integrity. PMID:17339840

  10. Crystal Structures of Trypanosoma cruzi UDP-Galactopyranose Mutase Implicate Flexibility of the Histidine Loop in Enzyme Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle

    2012-11-01

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitormore » design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3 {angstrom} movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45% identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10-50, primarily by decreasing k{sub cat}. Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens.« less

  11. Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system

    PubMed Central

    Laczy, Boglarka; Hill, Bradford G.; Wang, Kai; Paterson, Andrew J.; White, C. Roger; Xing, Dongqi; Chen, Yiu-Fai; Darley-Usmar, Victor; Oparil, Suzanne; Chatham, John C.

    2009-01-01

    The posttranslational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide β-N-acetylglucosamine (O-GlcNAc) is a highly dynamic and ubiquitous protein modification. Protein O-GlcNAcylation is rapidly emerging as a key regulator of critical biological processes including nuclear transport, translation and transcription, signal transduction, cytoskeletal reorganization, proteasomal degradation, and apoptosis. Increased levels of O-GlcNAc have been implicated as a pathogenic contributor to glucose toxicity and insulin resistance, which are both major hallmarks of diabetes mellitus and diabetes-related cardiovascular complications. Conversely, there is a growing body of data demonstrating that the acute activation of O-GlcNAc levels is an endogenous stress response designed to enhance cell survival. Reports on the effect of altered O-GlcNAc levels on the heart and cardiovascular system have been growing rapidly over the past few years and have implicated a role for O-GlcNAc in contributing to the adverse effects of diabetes on cardiovascular function as well as mediating the response to ischemic injury. Here, we summarize our present understanding of protein O-GlcNAcylation and its effect on the regulation of cardiovascular function. We examine the pathways regulating protein O-GlcNAcylation and discuss, in more detail, our understanding of the role of O-GlcNAc in both mediating the adverse effects of diabetes as well as its role in mediating cellular protective mechanisms in the cardiovascular system. In addition, we also explore the parallels between O-GlcNAc signaling and redox signaling, as an alternative paradigm for understanding the role of O-GlcNAcylation in regulating cell function. PMID:19028792

  12. Crystal Structures of Trypanosoma cruzi UDP-Galactopyranose Mutase Implicate Flexibility of the Histidine Loop in Enzyme Activation

    PubMed Central

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Sobrado, Pablo; Tanner, John J.

    2012-01-01

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitor design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3-Å movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45 % identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10–50, primarily by decreasing kcat. Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens. PMID:22646091

  13. Crystal structures of Trypanosoma cruzi UDP-galactopyranose mutase implicate flexibility of the histidine loop in enzyme activation.

    PubMed

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Sobrado, Pablo; Tanner, John J

    2012-06-19

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitor design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3 Å movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45% identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10-50, primarily by decreasing k(cat). Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens.

  14. Effects of Drawing on Alpha Activity: A Quantitative EEG Study with Implications for Art Therapy

    ERIC Educational Resources Information Center

    Belkofer, Christopher M.; Van Hecke, Amy Vaughan; Konopka, Lukasz M.

    2014-01-01

    Little empirical evidence exists as to how materials used in art therapy affect the brain and its neurobiological functioning. This pre/post within-groups study utilized the quantitative electroencephalogram (qEEG) to measure residual effects in the brain after 20 minutes of drawing. EEG recordings were conducted before and after participants (N =…

  15. Landscape effects on structure and species composition of tabonuco forests in Puerto Rico: implications for conservation

    Treesearch

    Migdalia Alvarez Ruiz; Ariel E. Lugo

    2012-01-01

    We studied the structure and species composition of nine residual forest stands of Dacryodes excelsa (tabonuco), a dominant vegetation type in the moist and wet lower montane forests of the Caribbean. The stands were scattered over three different landscapes with different degrees of anthropogenic disturbance: forested, shade coffee, and tobacco. We compared our...

  16. Thermal degradation of fire-retardant -treated wood : predicting residual service life

    Treesearch

    Jerrold E. Winandy

    2001-01-01

    This paper presents a review of more than 10 years of research on the effects of fire-retardant treatments on wood properties and the potential of these treatments for in-service degradation when exposed to elevated temperatures. It presents an in-depth discussion of the findings and implications of a major wood engineering research program to assess the current...

  17. Transcriptome and secretome analyses of the wood decay fungus Wolfiporia cocos support alternative mechanisms of lignocellulose conversion

    Treesearch

    Jill Gaskell; Robert A. Blanchette; Philip E. Stewart; Sandra Splinter BonDurant; Marie Adams; Grzegorz Sabat; Philip Kersten; Daniel Cullen

    2016-01-01

    Certain wood decay basidiomycetes, collectively referred to as brown rot fungi, rapidly depolymerize cellulose while leaving behind the bulk of cell wall lignin as a modified residue. The mechanism(s) employed is unclear, but considerable evidence implicates the involvement of diffusible oxidants generated via Fenton-like chemistry. Toward a better understanding of...

  18. Residual effects of fertilization history increase nitrous oxide emissions from zero-N controls:Implications for estimating fertilizer-induced emission factors

    USDA-ARS?s Scientific Manuscript database

    Agricultural N fertilization is the dominant driver of increasing atmospheric nitrous oxide (N2O) concentrations over the past half century, yet there is considerable uncertainty in estimates of N2O emissions from agriculture. Such estimates are typically based on the amount of N applied and a ferti...

  19. Harvest residue removal and soil compaction impact forest productivity and recovery: Potential implications for bioenergy harvests

    Treesearch

    Miranda T. Curzon; Anthony W. D' Amato; Brian J. Palik

    2014-01-01

    Understanding the effects of management on forest structure and function is increasingly important in light of projected increases in both natural and anthropogenic disturbance severity and frequency with global environmental change. We examined potential impacts of the procurement of forest-derived bioenergy, a change in land use that has been suggested as a climate...

  20. Alternative dimerization interfaces in the glucocorticoid receptor-α ligand binding domain.

    PubMed

    Bianchetti, Laurent; Wassmer, Bianca; Defosset, Audrey; Smertina, Anna; Tiberti, Marion L; Stote, Roland H; Dejaegere, Annick

    2018-04-30

    Nuclear hormone receptors (NRs) constitute a large family of multi-domain ligand-activated transcription factors. Dimerization is essential for their regulation, and both DNA binding domain (DBD) and ligand binding domain (LBD) are implicated in dimerization. Intriguingly, the glucocorticoid receptor-α (GRα) presents a DBD dimeric architecture similar to that of the homologous estrogen receptor-α (ERα), but an atypical dimeric architecture for the LBD. The physiological relevance of the proposed GRα LBD dimer is a subject of debate. We analyzed all GRα LBD homodimers observed in crystals using an energetic analysis based on the PISA and on the MM/PBSA methods and a sequence conservation analysis, using the ERα LBD dimer as a reference point. Several dimeric assemblies were observed for GRα LBD. The assembly generally taken to be physiologically relevant showed weak binding free energy and no significant residue conservation at the contact interface, while an alternative homodimer mediated by both helix 9 and C-terminal residues showed significant binding free energy and residue conservation. However, none of the GRα LBD assemblies found in crystals are as stable or conserved as the canonical ERα LBD dimer. GRα C-terminal sequence (F-domain) forms a steric obstacle to the canonical dimer assembly in all available structures. Our analysis calls for a re-examination of the currently accepted GRα homodimer structure and experimental investigations of the alternative architectures. This work questions the validity of the currently accepted architecture. This has implications for interpreting physiological data and for therapeutic design pertaining to glucocorticoid research. Copyright © 2018. Published by Elsevier B.V.

  1. Contributions of F-BAR and SH2 Domains of Fes Protein Tyrosine Kinase for Coupling to the FcɛRI Pathway in Mast Cells▿ †

    PubMed Central

    McPherson, Victor A.; Everingham, Stephanie; Karisch, Robert; Smith, Julie A.; Udell, Christian M.; Zheng, Jimin; Jia, Zongchao; Craig, Andrew W. B.

    2009-01-01

    This study investigates the roles of Fer-CIP4 homology (FCH)-Bin/amphiphysin/Rvs (F-BAR) and SH2 domains of Fes protein tyrosine kinase in regulating its activation and signaling downstream of the high-affinity immunoglobulin G (IgE) receptor (FcɛRI) in mast cells. Homology modeling of the Fes F-BAR domain revealed conservation of some basic residues implicated in phosphoinositide binding (R113/K114). The Fes F-BAR can bind phosphoinositides and induce tubulation of liposomes in vitro. Mutation of R113/K114 to uncharged residues (RK/QQ) caused a significant reduction in phosphoinositide binding in vitro and a more diffuse cytoplasmic localization in transfected COS-7 cells. RBL-2H3 mast cells expressing full-length Fes carrying the RK/QQ mutation show defects in FcɛRI-induced Fes tyrosine phosphorylation and degranulation compared to cells expressing wild-type Fes. This correlated with reduced localization to Lyn kinase-containing membrane fractions for the RK/QQ mutant compared to wild-type Fes in mast cells. The Fes SH2 domain also contributes to Fes signaling in mast cells, via interactions with the phosphorylated FcɛRI β chain and the actin regulatory protein HS1. We show that Fes phosphorylates C-terminal tyrosine residues in HS1 implicated in actin stabilization. Thus, coordinated actions of the F-BAR and SH2 domains of Fes allow for coupling to FcɛRI signaling and potential regulation the actin reorganization in mast cells. PMID:19001085

  2. Contributions of F-BAR and SH2 domains of Fes protein tyrosine kinase for coupling to the FcepsilonRI pathway in mast cells.

    PubMed

    McPherson, Victor A; Everingham, Stephanie; Karisch, Robert; Smith, Julie A; Udell, Christian M; Zheng, Jimin; Jia, Zongchao; Craig, Andrew W B

    2009-01-01

    This study investigates the roles of Fer-CIP4 homology (FCH)-Bin/amphiphysin/Rvs (F-BAR) and SH2 domains of Fes protein tyrosine kinase in regulating its activation and signaling downstream of the high-affinity immunoglobulin G (IgE) receptor (FcepsilonRI) in mast cells. Homology modeling of the Fes F-BAR domain revealed conservation of some basic residues implicated in phosphoinositide binding (R113/K114). The Fes F-BAR can bind phosphoinositides and induce tubulation of liposomes in vitro. Mutation of R113/K114 to uncharged residues (RK/QQ) caused a significant reduction in phosphoinositide binding in vitro and a more diffuse cytoplasmic localization in transfected COS-7 cells. RBL-2H3 mast cells expressing full-length Fes carrying the RK/QQ mutation show defects in FcepsilonRI-induced Fes tyrosine phosphorylation and degranulation compared to cells expressing wild-type Fes. This correlated with reduced localization to Lyn kinase-containing membrane fractions for the RK/QQ mutant compared to wild-type Fes in mast cells. The Fes SH2 domain also contributes to Fes signaling in mast cells, via interactions with the phosphorylated FcepsilonRI beta chain and the actin regulatory protein HS1. We show that Fes phosphorylates C-terminal tyrosine residues in HS1 implicated in actin stabilization. Thus, coordinated actions of the F-BAR and SH2 domains of Fes allow for coupling to FcepsilonRI signaling and potential regulation the actin reorganization in mast cells.

  3. The Psychology of Writing Development--And Its Implications for Assessment

    ERIC Educational Resources Information Center

    Camp, Heather

    2012-01-01

    This article reviews key developmental theories that have been adopted by writing development researchers over the last fifty years. It describes how researchers have translated these theories into definitions of writing development capable of influencing curricular design and interpretations of student writing and explores the implications for…

  4. Tiered Pricing: Implications for Library Collections

    ERIC Educational Resources Information Center

    Hahn, Karla

    2005-01-01

    In recent years an increasing number of publishers have adopted tiered pricing of journals. The design and implications of tiered-pricing models, however, are poorly understood. Tiered pricing can be modeled using several variables. A survey of current tiered-pricing models documents the range of key variables used. A sensitivity analysis…

  5. Veterinary Homeopathy: The Implications of Its History for Unorthodox Veterinary Concepts and Veterinary Medical Education.

    ERIC Educational Resources Information Center

    Coulter, Dwight B.

    1979-01-01

    The history of veterinary homeopathy, its future and implications are discussed. The need for investigation into the validity of both allopathic and homeopathic claims is stressed and it is suggested that maintenance of quality is the key factor in any approach. (BH)

  6. Interactions between the PDZ domains of Bazooka (Par-3) and phosphatidic acid: in vitro characterization and role in epithelial development.

    PubMed

    Yu, Cao Guo; Harris, Tony J C

    2012-09-01

    Bazooka (Par-3) is a conserved polarity regulator that organizes molecular networks in a wide range of cell types. In epithelia, it functions as a plasma membrane landmark to organize the apical domain. Bazooka is a scaffold protein that interacts with proteins through its three PDZ (postsynaptic density 95, discs large, zonula occludens-1) domains and other regions. In addition, Bazooka has been shown to interact with phosphoinositides. Here we show that the Bazooka PDZ domains interact with the negatively charged phospholipid phosphatidic acid immobilized on solid substrates or in liposomes. The interaction requires multiple PDZ domains, and conserved patches of positively charged amino acid residues appear to mediate the interaction. Increasing or decreasing levels of diacylglycerol kinase or phospholipase D-enzymes that produce phosphatidic acid-reveal a role for phosphatidic acid in Bazooka embryonic epithelial activity but not its localization. Mutating residues implicated in phosphatidic acid binding revealed a possible role in Bazooka localization and function. These data implicate a closer connection between Bazooka and membrane lipids than previously recognized. Bazooka polarity landmarks may be conglomerates of proteins and plasma membrane lipids that modify each other's activities for an integrated effect on cell polarity.

  7. The structure of a protein primer-polymerase complex in the initiation of genome replication.

    PubMed

    Ferrer-Orta, Cristina; Arias, Armando; Agudo, Rubén; Pérez-Luque, Rosa; Escarmís, Cristina; Domingo, Esteban; Verdaguer, Nuria

    2006-02-22

    Picornavirus RNA replication is initiated by the covalent attachment of a UMP molecule to the hydroxyl group of a tyrosine in the terminal protein VPg. This reaction is carried out by the viral RNA-dependent RNA polymerase (3D). Here, we report the X-ray structure of two complexes between foot-and-mouth disease virus 3D, VPg1, the substrate UTP and divalent cations, in the absence and in the presence of an oligoadenylate of 10 residues. In both complexes, VPg fits the RNA binding cleft of the polymerase and projects the key residue Tyr3 into the active site of 3D. This is achieved by multiple interactions with residues of motif F and helix alpha8 of the fingers domain and helix alpha13 of the thumb domain of the polymerase. The complex obtained in the presence of the oligoadenylate showed the product of the VPg uridylylation (VPg-UMP). Two metal ions and the catalytic aspartic acids of the polymerase active site, together with the basic residues of motif F, have been identified as participating in the priming reaction.

  8. Uneven-aged silviculture, southern style

    Treesearch

    James M. Guldin; James B. Baker

    1998-01-01

    Data spanning 60 years on uneven-aged loblolly-shortleaf pine stands in Arkansas show that two regulation methods have been successful in regulating stand development. Key attributes of these methods are that regulation is more important than balance, residual basal area drives stand development, and regeneration is the first indicator of sustainability. Marking uneven...

  9. An integrated spectroscopic and wet chemical approach to investigate grass litter decomposition chemistry

    USDA-ARS?s Scientific Manuscript database

    Litter decomposition is a key process for soil organic matter formation and terrestrial biogeochemistry. Yet we still lack complete understanding of the chemical transformations which occur in the litter residue as it decomposes. A number of methods such as bulk nutrient concentrations, chemical fra...

  10. Savannah River Site Robotics

    ScienceCinema

    None

    2018-04-16

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  11. Savannah River Site Robotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  12. Outstanding effects on antithrombin activity of modified TBA diastereomers containing an optically pure acyclic nucleotide analogue.

    PubMed

    Scuotto, M; Persico, M; Bucci, M; Vellecco, V; Borbone, N; Morelli, E; Oliviero, G; Novellino, E; Piccialli, G; Cirino, G; Varra, M; Fattorusso, C; Mayol, L

    2014-07-28

    Herein, we report optically pure modified acyclic nucleosides as ideal probes for aptamer modification. These new monomers offer unique advantages in exploring the role played in thrombin inhibition by a single residue modification at key positions of the TBA structure.

  13. Farming strategies to feed people, facilitate essential soil services, and fuel the economy

    USDA-ARS?s Scientific Manuscript database

    Perennial cellulosic biomass and food crop residues are important on-farm resources, which have become potential valuable sources of income as a harvestable commodity contributing to biofuel production demands. Inputs of carbon embedded in above-ground plant biomass are a key biological energy sourc...

  14. Particulate inhalation in rats causes concentration-dependent electrocardiographic, autonomic, and cardiac microRNA expression changes

    EPA Science Inventory

    Recently, investigators in key epidemiologic studies have demonstrated associations between fine particulate matter (PM)-associated metals and increased hospital admissions (Ni and V; Bell et al. 2009) and cardiovascular mortality (Ni and Fe; Ostro et a1. 2007). Residual oil fly ...

  15. Industrial wood productivity in the United States, 1900-1998

    Treesearch

    Peter J. Ince

    2000-01-01

    The productivity of U.S. wood and paper product output in terms of wood input is computed and displayed in graphs. Background tables provide supporting data. The productivity trend parallels trends in the recovered paper utilization rate. Recycling and wood residue use are key factors in productivity gains.

  16. Quantum-mechanical analysis of amino acid residues function in the proton transport during F0F1-ATP synthase catalytic cycle

    NASA Astrophysics Data System (ADS)

    Ivontsin, L. A.; Mashkovtseva, E. V.; Nartsissov, Ya R.

    2017-11-01

    Implications of quantum-mechanical approach to the description of proton transport in biological systems are a tempting subject for an overlapping of fundamental physics and biology. The model of proton transport through the integrated membrane enzyme FoF1-ATP synthase responsible for ATP synthesis was developed. The estimation of the mathematical expectation of the proton transfer time through the half-channel was performed. Observed set of proton pathways through the inlet half-channel showed the nanosecond timescale highly dependable of some amino acid residues. There were proposed two types of crucial amino acids: critically localized (His245) and being a part of energy conserving system (Asp119).

  17. Methylated bases in mycoplasmal DNA.

    PubMed Central

    Razin, A; Razin, S

    1980-01-01

    The DNAs of four Mycoplasma and one Acholeplasma species were found to contain methylated bases. All of the five species contained 6-methyladenine (m6Ade), the methylated base characteristic of prokaryotic DNA. The extent of methylation of adenine residues in the mycoplasmal DNA ranged from 0.2% in Mycoplasma capricolum to about 2% in Mycoplasma arginini and Mycoplasma hyorhinis with intermediate methylation values for Mycoplasma orale and Acholeplasma laidlawii DNAs. About 5.8% of the cytosine residues in M. hyorhinis DNA were methylated also. Analysis of cell culture DNA for the presence of m6Ade as a means for detection of contamination by mycoplasmas, and the phylogenetic implications of the finding of methylated bases in mycoplasmal DNAs are discussed. PMID:7433124

  18. Anaerobic degradation of inedible crop residues produced in a Controlled Ecological Life Support System

    NASA Technical Reports Server (NTRS)

    Schwingel, W. R.; Sager, J. C.

    1996-01-01

    An anaerobic reactor seeded with organisms from an anaerobic lagoon was used to study the degradation of inedible crop residues from potato and wheat crops grown in a closed environment. Conversion of this biomass into other products was also evaluated. Degradation of wheat volatile solids was about 25% where that of potato was about 50%. The main product of the anaerobic fermentation of both crops was acetic acid with smaller quantities of propionate and butyrate produced. Nitrate, known to be high in concentration in inedible potato and wheat biomass grown hydroponically, was converted to ammonia in the anaerobic reactor. Both volatile fatty acid and ammonia production may have implications in a crop production system.

  19. Blindsight and Unconscious Vision: What They Teach Us about the Human Visual System

    PubMed Central

    Ajina, Sara; Bridge, Holly

    2017-01-01

    Damage to the primary visual cortex removes the major input from the eyes to the brain, causing significant visual loss as patients are unable to perceive the side of the world contralateral to the damage. Some patients, however, retain the ability to detect visual information within this blind region; this is known as blindsight. By studying the visual pathways that underlie this residual vision in patients, we can uncover additional aspects of the human visual system that likely contribute to normal visual function but cannot be revealed under physiological conditions. In this review, we discuss the residual abilities and neural activity that have been described in blindsight and the implications of these findings for understanding the intact system. PMID:27777337

  20. Elastase-like Activity Is Dominant to Chymotrypsin-like Activity in 20S Proteasome's β5 Catalytic Subunit.

    PubMed

    Bensinger, Dennis; Neumann, Theresa; Scholz, Christoph; Voss, Constantin; Knorr, Sabine; Kuckelkorn, Ulrike; Hamacher, Kay; Kloetzel, Peter-Michael; Schmidt, Boris

    2016-07-15

    The ubiquitin/proteasome system is the major protein degradation pathway in eukaryotes with several key catalytic cores. Targeting the β5 subunit with small-molecule inhibitors is an established therapeutic strategy for hematologic cancers. Herein, we report a mouse-trap-like conformational change that influences molecular recognition depending on the substitution pattern of a bound ligand. Variation of the size of P1 residues from the highly β5-selective proteasome inhibitor BSc2118 allows for discrimination between inhibitory strength and substrate conversion. We found that increasing molecular size strengthens inhibition, whereas decreasing P1 size accelerates substrate conversion. Evaluation of substrate hydrolysis after silencing of β5 activity reveals significant residual activity for large residues exclusively. Thus, classification of the β5 subunit as chymotrypsin-like and the use of the standard tyrosine-containing substrate should be reconsidered.

  1. Global profiling of lysine reactivity and ligandability in the human proteome

    NASA Astrophysics Data System (ADS)

    Hacker, Stephan M.; Backus, Keriann M.; Lazear, Michael R.; Forli, Stefano; Correia, Bruno E.; Cravatt, Benjamin F.

    2017-12-01

    Nucleophilic amino acids make important contributions to protein function, including performing key roles in catalysis and serving as sites for post-translational modification. Electrophilic groups that target amino-acid nucleophiles have been used to create covalent ligands and drugs, but have, so far, been mainly limited to cysteine and serine. Here, we report a chemical proteomic platform for the global and quantitative analysis of lysine residues in native biological systems. We have quantified, in total, more than 9,000 lysines in human cell proteomes and have identified several hundred residues with heightened reactivity that are enriched at protein functional sites and can frequently be targeted by electrophilic small molecules. We have also discovered lysine-reactive fragment electrophiles that inhibit enzymes by active site and allosteric mechanisms, as well as disrupt protein-protein interactions in transcriptional regulatory complexes, emphasizing the broad potential and diverse functional consequences of liganding lysine residues throughout the human proteome.

  2. Global profiling of lysine reactivity and ligandability in the human proteome.

    PubMed

    Hacker, Stephan M; Backus, Keriann M; Lazear, Michael R; Forli, Stefano; Correia, Bruno E; Cravatt, Benjamin F

    2017-12-01

    Nucleophilic amino acids make important contributions to protein function, including performing key roles in catalysis and serving as sites for post-translational modification. Electrophilic groups that target amino-acid nucleophiles have been used to create covalent ligands and drugs, but have, so far, been mainly limited to cysteine and serine. Here, we report a chemical proteomic platform for the global and quantitative analysis of lysine residues in native biological systems. We have quantified, in total, more than 9,000 lysines in human cell proteomes and have identified several hundred residues with heightened reactivity that are enriched at protein functional sites and can frequently be targeted by electrophilic small molecules. We have also discovered lysine-reactive fragment electrophiles that inhibit enzymes by active site and allosteric mechanisms, as well as disrupt protein-protein interactions in transcriptional regulatory complexes, emphasizing the broad potential and diverse functional consequences of liganding lysine residues throughout the human proteome.

  3. Bioavailability of xenobiotics in the soil environment.

    PubMed

    Katayama, Arata; Bhula, Raj; Burns, G Richard; Carazo, Elizabeth; Felsot, Allan; Hamilton, Denis; Harris, Caroline; Kim, Yong-Hwa; Kleter, Gijs; Koedel, Werner; Linders, Jan; Peijnenburg, J G M Willie; Sabljic, Aleksandar; Stephenson, R Gerald; Racke, D Kenneth; Rubin, Baruch; Tanaka, Keiji; Unsworth, John; Wauchope, R Donald

    2010-01-01

    It is often presumed that all chemicals in soil are available to microorganisms, plant roots, and soil fauna via dermal exposure. Subsequent bioaccumulation through the food chain may then result in exposure to higher organisms. Using the presumption of total availability, national governments reduce environmental threshold levels of regulated chemicals by increasing guideline safety margins. However, evidence shows that chemical residues in the soil environment are not always bioavailable. Hence, actual chemical exposure levels of biota are much less than concentrations present in soil would suggest. Because "bioavailability" conveys meaning that combines implications of chemical sol persistency, efficacy, and toxicity, insights on the magnitude of a chemicals soil bioavailability is valuable. however, soil bioavailability of chemicals is a complex topic, and is affected by chemical properties, soil properties, species exposed, climate, and interaction processes. In this review, the state-of-art scientific basis for bioavailability is addressed. Key points covered include: definition, factors affecting bioavailability, equations governing key transport and distributive kinetics, and primary methods for estimating bioavailability. Primary transport mechanisms in living organisms, critical to an understanding of bioavailability, also presage the review. Transport of lipophilic chemicals occurs mainly by passive diffusion for all microorganisms, plants, and soil fauna. Therefore, the distribution of a chemical between organisms and soil (bioavailable proportion) follows partition equilibrium theory. However, a chemical's bioavailability does not always follow partition equilibrium theory because of other interactions with soil, such as soil sorption, hysteretic desorption, effects of surfactants in pore water, formation of "bound residue", etc. Bioassays for estimating chemical bioavailability have been introduced with several targeted endpoints: microbial degradation, uptake by higher plants and soil fauna, and toxicity to organisms. However, there bioassays are often time consuming and laborious. Thus, mild extraction methods have been employed to estimate bioavailability of chemicals. Mild methods include sequential extraction using alcohols, hexane/water, supercritical fluids (carbon dioxide), aqueous hydroxypropyl-beta-cyclodextrin extraction, polymeric TENAX beads extraction, and poly(dimethylsiloxane)-coated solid-phase microextraction. It should be noted that mild extraction methods may predict bioavailability at the moment when measurements are carried out, but not the changes in bioavailability that may occur over time. Simulation models are needed to estimate better bioavailability as a function of exposure time. In the past, models have progressed significantly by addressing each group of organisms separately: microbial degradation, plant uptake via evapotranspiration processes, and uptake of soil fauna in their habitat. This approach has been used primarily because of wide differences in the physiology and behaviors of such disparate organisms. However, improvement of models is badly needed, Particularly to describe uptake processes by plant and animals that impinge on bioavailability. Although models are required to describe all important factors that may affect chemical bioavailability to individual organisms over time (e.g., sorption/desorption to soil/sediment, volatilization, dissolution, aging, "bound residue" formation, biodegradation, etc.), these models should be simplified, when possible, to limit the number of parameters to the practical minimum. Although significant scientific progress has been made in understanding the complexities in specific methodologies dedicated to determining bioavailability, no method has yet emerged to characterized bioavailability across a wide range of chemicals, organisms, and soils/sediments. The primary aim in studying bioavailability is to define options for addressing bioremediation or environmental toxicity (risk assessment), and that is unlikely to change. Because of its importance in estimating research is needed to more comprehensively address the key environmental issue of "bioavailability of chemicals in soil/sediment."

  4. Heterodimer Binding Scaffolds Recognition via the Analysis of Kinetically Hot Residues

    PubMed Central

    Perišić, Ognjen

    2018-01-01

    Physical interactions between proteins are often difficult to decipher. The aim of this paper is to present an algorithm that is designed to recognize binding patches and supporting structural scaffolds of interacting heterodimer proteins using the Gaussian Network Model (GNM). The recognition is based on the (self) adjustable identification of kinetically hot residues and their connection to possible binding scaffolds. The kinetically hot residues are residues with the lowest entropy, i.e., the highest contribution to the weighted sum of the fastest modes per chain extracted via GNM. The algorithm adjusts the number of fast modes in the GNM’s weighted sum calculation using the ratio of predicted and expected numbers of target residues (contact and the neighboring first-layer residues). This approach produces very good results when applied to dimers with high protein sequence length ratios. The protocol’s ability to recognize near native decoys was compared to the ability of the residue-level statistical potential of Lu and Skolnick using the Sternberg and Vakser decoy dimers sets. The statistical potential produced better overall results, but in a number of cases its predicting ability was comparable, or even inferior, to the prediction ability of the adjustable GNM approach. The results presented in this paper suggest that in heterodimers at least one protein has interacting scaffold determined by the immovable, kinetically hot residues. In many cases, interacting proteins (especially if being of noticeably different sizes) either behave as a rigid lock and key or, presumably, exhibit the opposite dynamic behavior. While the binding surface of one protein is rigid and stable, its partner’s interacting scaffold is more flexible and adaptable. PMID:29547506

  5. Selective Loss of Cysteine Residues and Disulphide Bonds in a Potato Proteinase Inhibitor II Family

    PubMed Central

    Li, Xiu-Qing; Zhang, Tieling; Donnelly, Danielle

    2011-01-01

    Disulphide bonds between cysteine residues in proteins play a key role in protein folding, stability, and function. Loss of a disulphide bond is often associated with functional differentiation of the protein. The evolution of disulphide bonds is still actively debated; analysis of naturally occurring variants can promote understanding of the protein evolutionary process. One of the disulphide bond-containing protein families is the potato proteinase inhibitor II (PI-II, or Pin2, for short) superfamily, which is found in most solanaceous plants and participates in plant development, stress response, and defence. Each PI-II domain contains eight cysteine residues (8C), and two similar PI-II domains form a functional protein that has eight disulphide bonds and two non-identical reaction centres. It is still unclear which patterns and processes affect cysteine residue loss in PI-II. Through cDNA sequencing and data mining, we found six natural variants missing cysteine residues involved in one or two disulphide bonds at the first reaction centre. We named these variants Pi7C and Pi6C for the proteins missing one or two pairs of cysteine residues, respectively. This PI-II-7C/6C family was found exclusively in potato. The missing cysteine residues were in bonding pairs but distant from one another at the nucleotide/protein sequence level. The non-synonymous/synonymous substitution (Ka/Ks) ratio analysis suggested a positive evolutionary gene selection for Pi6C and various Pi7C. The selective deletion of the first reaction centre cysteine residues that are structure-level-paired but sequence-level-distant in PI-II illustrates the flexibility of PI-II domains and suggests the functionality of their transient gene versions during evolution. PMID:21494600

  6. The role of aromatic phenylalanine residues in binding carotenoid to light-harvesting model and wild-type complexes.

    PubMed

    García-Martín, A; Pazur, A; Wilhelm, B; Silber, M; Robert, B; Braun, P

    2008-09-26

    The mode of carotenoid (Crt) binding to polypeptide and specifying its function is as yet largely unknown. Statistical analysis of major photosystems I and II suggests that aromatic residues make up a significant part of the Crt binding pockets. Phenylalanine residues ensure approximately 25%--at some carbon atoms even up to 40%--of the total contacts with Crts. By use of an alanine-leucine model transmembrane helix that replaces the native helix of the bacterial light-harvesting complex 2 (LH2) alpha-subunit, we study the effects of polypeptide residues on cofactor binding in a model sequence context. Here, it is shown that phenylalanine residues located in the close vicinity of the Crts' polyene backbone significantly contribute to the binding of the Crt to the model protein. The replacement of a phenylalanine with leucine in the model helix results in significant reduction in the complexes' Crt content. This effect is strongly enhanced by the removal of a second phenylalanine in close vicinity to the Crt, i.e., of the wild-type (WT) beta-subunit. Remarkably, the mutation of only two phenylalanine residues in the LH2 WT sequence, alpha-Phe at position -12 and beta-Phe at -8, results in the loss of nearly 50% of functional Crt. Resonance Raman spectra indicate that the Crt conformation is fundamentally altered by the absence of the phenylalanines' aromatic side chains, suggesting that they lock the Crt into a precise, well-defined configuration. Thus, binding and specific functionalisation of Crt in the model and WT light-harvesting complex is reliant on the aromatic residue phenylalanine. The use of the light-harvesting complex as a model system thus substantiates the notion that the aromatic residue phenylalanine is a key factor for the binding of Crt to transmembrane proteins.

  7. A Measure of the Promiscuity of Proteins and Characteristics of Residues in the Vicinity of the Catalytic Site That Regulate Promiscuity

    PubMed Central

    Chakraborty, Sandeep; Rao, Basuthkar J.

    2012-01-01

    Promiscuity, the basis for the evolution of new functions through ‘tinkering’ of residues in the vicinity of the catalytic site, is yet to be quantitatively defined. We present a computational method Promiscuity Indices Estimator (PROMISE) - based on signatures derived from the spatial and electrostatic properties of the catalytic residues, to estimate the promiscuity (PromIndex) of proteins with known active site residues and 3D structure. PromIndex reflects the number of different active site signatures that have congruent matches in close proximity of its native catalytic site, the quality of the matches and difference in the enzymatic activity. Promiscuity in proteins is observed to follow a lognormal distribution (μ = 0.28, σ = 1.1 reduced chi-square = 3.0E-5). The PROMISE predicted promiscuous functions in any protein can serve as the starting point for directed evolution experiments. PROMISE ranks carboxypeptidase A and ribonuclease A amongst the more promiscuous proteins. We have also investigated the properties of the residues in the vicinity of the catalytic site that regulates its promiscuity. Linear regression establishes a weak correlation (R2∼0.1) between certain properties of the residues (charge, polar, etc) in the neighborhood of the catalytic residues and PromIndex. A stronger relationship states that most proteins with high promiscuity have high percentages of charged and polar residues within a radius of 3 Å of the catalytic site, which is validated using one-tailed hypothesis tests (P-values∼0.05). Since it is known that these characteristics are key factors in catalysis, their relationship with the promiscuity index cross validates the methodology of PROMISE. PMID:22359655

  8. The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana

    PubMed Central

    Busse-Wicher, Marta; Gomes, Thiago C F; Tryfona, Theodora; Nikolovski, Nino; Stott, Katherine; Grantham, Nicholas J; Bolam, David N; Skaf, Munir S; Dupree, Paul

    2014-01-01

    The interaction between xylan and cellulose microfibrils is important for secondary cell wall properties in vascular plants; however, the molecular arrangement of xylan in the cell wall and the nature of the molecular bonding between the polysaccharides are unknown. In dicots, the xylan backbone of β-(1,4)-linked xylosyl residues is decorated by occasional glucuronic acid, and approximately one-half of the xylosyl residues are O-acetylated at C-2 or C-3. We recently proposed that the even, periodic spacing of GlcA residues in the major domain of dicot xylan might allow the xylan backbone to fold as a twofold helical screw to facilitate alignment along, and stable interaction with, cellulose fibrils; however, such an interaction might be adversely impacted by random acetylation of the xylan backbone. Here, we investigated the arrangement of acetyl residues in Arabidopsis xylan using mass spectrometry and NMR. Alternate xylosyl residues along the backbone are acetylated. Using molecular dynamics simulation, we found that a twofold helical screw conformation of xylan is stable in interactions with both hydrophilic and hydrophobic cellulose faces. Tight docking of xylan on the hydrophilic faces is feasible only for xylan decorated on alternate residues and folded as a twofold helical screw. The findings suggest an explanation for the importance of acetylation for xylan–cellulose interactions, and also have implications for our understanding of cell wall molecular architecture and properties, and biological degradation by pathogens and fungi. They will also impact strategies to improve lignocellulose processing for biorefining and bioenergy. PMID:24889696

  9. Finite element analysis of chip formation usingale method

    NASA Astrophysics Data System (ADS)

    Jayaprakash, V.

    2017-05-01

    In recent times, many studies made in FEM on plain isotropic metal plate formulation. The stress analysis plays the significant role in the stability of structural safety and system. The stress and distortion estimation is very helpful for designing and manufacturing product well. Usually the residual stress and plastic strain determine the fatigue life of structure, it also plays the significant role in designing and choosing material. When the load magnitude increases the crack starts to form, decreasing the work load and the residual stress reduces the damage of the metal. The manufacturing process is a key parameter in process and forming the part of any system. However, machining operation involves complex thing like hot development, material property and other estimates based on transition of the plastic strain and residual stress. The reduction of residual stress plays the complexity role in the finite element study. This paper deals with the manufacturing process with less residual stress and strain. The results shows that, by applying the ALE method in machining we can reduce the load on the work piece hence the life type of the work piece can be increased. We also investigate the cutting tool wear and there efficiency since it is a essential machine member in fabrication technology. ABAQUS platform used to solve the machining operation

  10. Acidic Residues Control the Dimerization of the N-terminal Domain of Black Widow Spiders’ Major Ampullate Spidroin 1

    NASA Astrophysics Data System (ADS)

    Bauer, Joschka; Schaal, Daniel; Eisoldt, Lukas; Schweimer, Kristian; Schwarzinger, Stephan; Scheibel, Thomas

    2016-09-01

    Dragline silk is the most prominent amongst spider silks and comprises two types of major ampullate spidroins (MaSp) differing in their proline content. In the natural spinning process, the conversion of soluble MaSp into a tough fiber is, amongst other factors, triggered by dimerization and conformational switching of their helical amino-terminal domains (NRN). Both processes are induced by protonation of acidic residues upon acidification along the spinning duct. Here, the structure and monomer-dimer-equilibrium of the domain NRN1 of Latrodectus hesperus MaSp1 and variants thereof have been investigated, and the key residues for both could be identified. Changes in ionic composition and strength within the spinning duct enable electrostatic interactions between the acidic and basic pole of two monomers which prearrange into an antiparallel dimer. Upon naturally occurring acidification this dimer is stabilized by protonation of residue E114. A conformational change is independently triggered by protonation of clustered acidic residues (D39, E76, E81). Such step-by-step mechanism allows a controlled spidroin assembly in a pH- and salt sensitive manner, preventing premature aggregation of spider silk proteins in the gland and at the same time ensuring fast and efficient dimer formation and stabilization on demand in the spinning duct.

  11. A Conserved Asparagine in a P-type Proton Pump Is Required for Efficient Gating of Protons*

    PubMed Central

    Ekberg, Kira; Wielandt, Alex G.; Buch-Pedersen, Morten J.; Palmgren, Michael G.

    2013-01-01

    The minimal proton pumping machinery of the Arabidopsis thaliana P-type plasma membrane H+-ATPase isoform 2 (AHA2) consists of an aspartate residue serving as key proton donor/acceptor (Asp-684) and an arginine residue controlling the pKa of the aspartate. However, other important aspects of the proton transport mechanism such as gating, and the ability to occlude protons, are still unclear. An asparagine residue (Asn-106) in transmembrane segment 2 of AHA2 is conserved in all P-type plasma membrane H+-ATPases. In the crystal structure of the plant plasma membrane H+-ATPase, this residue is located in the putative ligand entrance pathway, in close proximity to the central proton donor/acceptor Asp-684. Substitution of Asn-106 resulted in mutant enzymes with significantly reduced ability to transport protons against a membrane potential. Sensitivity toward orthovanadate was increased when Asn-106 was substituted with an aspartate residue, but decreased in mutants with alanine, lysine, glutamine, or threonine replacement of Asn-106. The apparent proton affinity was decreased for all mutants, most likely due to a perturbation of the local environment of Asp-684. Altogether, our results demonstrate that Asn-106 is important for closure of the proton entrance pathway prior to proton translocation across the membrane. PMID:23420846

  12. A conserved asparagine in a P-type proton pump is required for efficient gating of protons.

    PubMed

    Ekberg, Kira; Wielandt, Alex G; Buch-Pedersen, Morten J; Palmgren, Michael G

    2013-04-05

    The minimal proton pumping machinery of the Arabidopsis thaliana P-type plasma membrane H(+)-ATPase isoform 2 (AHA2) consists of an aspartate residue serving as key proton donor/acceptor (Asp-684) and an arginine residue controlling the pKa of the aspartate. However, other important aspects of the proton transport mechanism such as gating, and the ability to occlude protons, are still unclear. An asparagine residue (Asn-106) in transmembrane segment 2 of AHA2 is conserved in all P-type plasma membrane H(+)-ATPases. In the crystal structure of the plant plasma membrane H(+)-ATPase, this residue is located in the putative ligand entrance pathway, in close proximity to the central proton donor/acceptor Asp-684. Substitution of Asn-106 resulted in mutant enzymes with significantly reduced ability to transport protons against a membrane potential. Sensitivity toward orthovanadate was increased when Asn-106 was substituted with an aspartate residue, but decreased in mutants with alanine, lysine, glutamine, or threonine replacement of Asn-106. The apparent proton affinity was decreased for all mutants, most likely due to a perturbation of the local environment of Asp-684. Altogether, our results demonstrate that Asn-106 is important for closure of the proton entrance pathway prior to proton translocation across the membrane.

  13. A histidine residue of the influenza virus hemagglutinin controls the pH dependence of the conformational change mediating membrane fusion.

    PubMed

    Mair, Caroline M; Meyer, Tim; Schneider, Katjana; Huang, Qiang; Veit, Michael; Herrmann, Andreas

    2014-11-01

    The conformational change of the influenza virus hemagglutinin (HA) protein mediating the fusion between the virus envelope and the endosomal membrane was hypothesized to be induced by protonation of specific histidine residues since their pKas match the pHs of late endosomes (pK(a) of ∼ 6.0). However, such critical key histidine residues remain to be identified. We investigated the highly conserved His184 at the HA1-HA1 interface and His110 at the HA1-HA2 interface of highly pathogenic H5N1 HA as potential pH sensors. By replacing both histidines with different amino acids and analyzing the effect of these mutations on conformational change and fusion, we found that His184, but not His110, plays an essential role in the pH dependence of the conformational change of HA. Computational modeling of the protonated His184 revealed that His184 is central in a conserved interaction network possibly regulating the pH dependence of conformational change via its pKa. As the propensity of histidine to get protonated largely depends on its local environment, mutation of residues in the vicinity of histidine may affect its pK(a). The HA of highly pathogenic H5N1 viruses carries a Glu-to-Arg mutation at position 216 close to His184. By mutation of residue 216 in the highly pathogenic as well as the low pathogenic H5 HA, we observed a significant influence on the pH dependence of conformational change and fusion. These results are in support of a pK(a)-modulating effect of neighboring residues. The main pathogenic determinant of influenza viruses, the hemagglutinin (HA) protein, triggers a key step of the infection process: the fusion of the virus envelope with the endosomal membrane releasing the viral genome. Whereas essential aspects of the fusion-inducing mechanism of HA at low pH are well understood, the molecular trigger of the pH-dependent conformational change inducing fusion has been unclear. We provide evidence that His184 regulates the pH dependence of the HA conformational change via its pK(a). Mutations of neighboring residues which may affect the pK(a) of His184 could play an important role in virus adaptation to a specific host. We suggest that mutation of neighboring residue 216, which is present in all highly pathogenic phenotypes of H5N1 influenza virus strains, contributed to the adaptation of these viruses to the human host via its effect on the pKa of His184. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Analysis of Epitopes on Dengue Virus Envelope Protein Recognized by Monoclonal Antibodies and Polyclonal Human Sera by a High Throughput Assay

    PubMed Central

    Lin, Hong-En; Tsai, Wen-Yang; Liu, I-Ju; Li, Pi-Chun; Liao, Mei-Ying; Tsai, Jih-Jin; Wu, Yi-Chieh; Lai, Chih-Yun; Lu, Chih-Hsuan; Huang, Jyh-Hsiung; Chang, Gwong-Jen; Wu, Han-Chung; Wang, Wei-Kung

    2012-01-01

    Background The envelope (E) protein of dengue virus (DENV) is the major target of neutralizing antibodies and vaccine development. While previous studies on domain III or domain I/II alone have reported several epitopes of monoclonal antibodies (mAbs) against DENV E protein, the possibility of interdomain epitopes and the relationship between epitopes and neutralizing potency remain largely unexplored. Methodology/Principal Findings We developed a dot blot assay by using 67 alanine mutants of predicted surface-exposed E residues as a systematic approach to identify epitopes recognized by mAbs and polyclonal sera, and confirmed our findings using a capture-ELISA assay. Of the 12 mouse mAbs tested, three recognized a novel epitope involving residues (Q211, D215, P217) at the central interface of domain II, and three recognized residues at both domain III and the lateral ridge of domain II, suggesting a more frequent presence of interdomain epitopes than previously appreciated. Compared with mAbs generated by traditional protocols, the potent neutralizing mAbs generated by a new protocol recognized multiple residues in A strand or residues in C strand/CC′ loop of DENV2 and DENV1, and multiple residues in BC loop and residues in DE loop, EF loop/F strand or G strand of DENV1. The predominant epitopes of anti-E antibodies in polyclonal sera were found to include both fusion loop and non-fusion residues in the same or adjacent monomer. Conclusions/Significance Our analyses have implications for epitope-specific diagnostics and epitope-based dengue vaccines. This high throughput method has tremendous application for mapping both intra and interdomain epitopes recognized by human mAbs and polyclonal sera, which would further our understanding of humoral immune responses to DENV at the epitope level. PMID:22235356

  15. Residual Prostate Cancer in Patients Treated With Endocrine Therapy With or Without Radical Radiotherapy: A Side Study of the SPCG-7 Randomized Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solberg, Arne, E-mail: arne.solberg@stolav.n; Haugen, Olav A.; Department of Pathology and Medical Genetics, St. Olav's Hospital, Trondheim University Hospital, Trondheim

    2011-05-01

    Purpose: The Scandinavian Prostate Cancer Group-7 randomized trial demonstrated a survival benefit of combined endocrine therapy and external-beam radiotherapy over endocrine therapy alone in patients with high-risk prostate cancer. In a subset of the study population, the incidence and clinical implications of residual prostate cancer in posttreatment prostate biopsy specimens was evaluated. Methods and Materials: Biopsy specimens were obtained from 120 of 875 men in the Scandinavian Prostate Cancer Group-7 study. Results: Biopsies were performed at median of 45 months follow-up. In 63 patients receiving endocrine treatment only and 57 patients receiving combined treatment, residual cancer was found in 66%more » (n = 41) and 22% (n = 12), respectively (p < 0.0001). The vast majority of residual tumors were poorly differentiated (Gleason score {>=}8). Endocrine therapy alone was predictive of residual prostate cancer: odds ratio 7.49 (3.18-17.7), p < 0.0001. In patients with positive vs. negative biopsy the incidences of clinical events were as follows: biochemical recurrence 74% vs. 27% (p < 0.0001), local progression 26% vs. 4.7% (p = 0.002), distant recurrence 17% vs. 9.4% (p = 0.27), clinical recurrence 36% vs. 13% (p = 0.006), cancer-specific death 19% vs. 9.7% (p = 0.025). In multivariable analysis, biochemical recurrence was significantly associated with residual cancer: hazard ratio 2.69 (1.45-4.99), p = 0.002, and endocrine therapy alone hazard ratio 3.45 (1.80-6.62), p < 0.0001. Conclusions: Radiotherapy combined with hormones improved local tumor control in comparison with endocrine therapy alone. Residual prostate cancer was significantly associated with serum prostate-specific antigen recurrence, local tumor progression, clinical recurrence, and cancer-specific death in univariable analysis. Residual cancer was predictive of prostate-specific antigen recurrence in multivariable analysis.« less

  16. Networks of high mutual information define the structural proximity of catalytic sites: implications for catalytic residue identification.

    PubMed

    Marino Buslje, Cristina; Teppa, Elin; Di Doménico, Tomas; Delfino, José María; Nielsen, Morten

    2010-11-04

    Identification of catalytic residues (CR) is essential for the characterization of enzyme function. CR are, in general, conserved and located in the functional site of a protein in order to attain their function. However, many non-catalytic residues are highly conserved and not all CR are conserved throughout a given protein family making identification of CR a challenging task. Here, we put forward the hypothesis that CR carry a particular signature defined by networks of close proximity residues with high mutual information (MI), and that this signature can be applied to distinguish functional from other non-functional conserved residues. Using a data set of 434 Pfam families included in the catalytic site atlas (CSA) database, we tested this hypothesis and demonstrated that MI can complement amino acid conservation scores to detect CR. The Kullback-Leibler (KL) conservation measurement was shown to significantly outperform both the Shannon entropy and maximal frequency measurements. Residues in the proximity of catalytic sites were shown to be rich in shared MI. A structural proximity MI average score (termed pMI) was demonstrated to be a strong predictor for CR, thus confirming the proposed hypothesis. A structural proximity conservation average score (termed pC) was also calculated and demonstrated to carry distinct information from pMI. A catalytic likeliness score (Cls), combining the KL, pC and pMI measures, was shown to lead to significantly improved prediction accuracy. At a specificity of 0.90, the Cls method was found to have a sensitivity of 0.816. In summary, we demonstrate that networks of residues with high MI provide a distinct signature on CR and propose that such a signature should be present in other classes of functional residues where the requirement to maintain a particular function places limitations on the diversification of the structural environment along the course of evolution.

  17. Perturbation-response scanning reveals ligand entry-exit mechanisms of ferric binding protein.

    PubMed

    Atilgan, Canan; Atilgan, Ali Rana

    2009-10-01

    We study apo and holo forms of the bacterial ferric binding protein (FBP) which exhibits the so-called ferric transport dilemma: it uptakes iron from the host with remarkable affinity, yet releases it with ease in the cytoplasm for subsequent use. The observations fit the "conformational selection" model whereby the existence of a weakly populated, higher energy conformation that is stabilized in the presence of the ligand is proposed. We introduce a new tool that we term perturbation-response scanning (PRS) for the analysis of remote control strategies utilized. The approach relies on the systematic use of computational perturbation/response techniques based on linear response theory, by sequentially applying directed forces on single-residues along the chain and recording the resulting relative changes in the residue coordinates. We further obtain closed-form expressions for the magnitude and the directionality of the response. Using PRS, we study the ligand release mechanisms of FBP and support the findings by molecular dynamics simulations. We find that the residue-by-residue displacements between the apo and the holo forms, as determined from the X-ray structures, are faithfully reproduced by perturbations applied on the majority of the residues of the apo form. However, once the stabilizing ligand (Fe) is integrated to the system in holo FBP, perturbing only a few select residues successfully reproduces the experimental displacements. Thus, iron uptake by FBP is a favored process in the fluctuating environment of the protein, whereas iron release is controlled by mechanisms including chelation and allostery. The directional analysis that we implement in the PRS methodology implicates the latter mechanism by leading to a few distant, charged, and exposed loop residues. Upon perturbing these, irrespective of the direction of the operating forces, we find that the cap residues involved in iron release are made to operate coherently, facilitating release of the ion.

  18. Thermal treatment of stabilized air pollution control residues in a waste incinerator pilot plant. Part 2: Leaching characteristics of bottom ashes.

    PubMed

    Baun, Dorthe L; Christensen, Thomas H; Bergfeldt, Brita; Vehlow, Jürgen; Mogensen, Erhardt P B

    2004-02-01

    With the perspective of generating only one solid residue from waste incineration, co-feeding of municipal solid waste and air pollution control residues stabilized by the Ferrox process was investigated in the TAMARA pilot plant incinerator as described in Bergfeldt et al. (Waste Management Research, 22, 49-57, 2004). This paper reports on leaching from the combined bottom ashes. Batch leaching test, pH-static leaching tests, availability tests and column leaching tests were used to characterize the leaching properties. The leaching properties are key information in the context of reuse in construction or in landfilling of the combined residue. In general, the combined bottom ashes had leaching characteristics similar to the reference bottom ash, which contained no APC residue. However, As and Pb showed slightly elevated leaching from the combined bottom ashes, while Cr showed less leaching. The investigated combined bottom ashes had contents of metals comparable to what is expected at steady state after continuous co-feeding of APC residues. Only Cd and Pb were partly volatilized (30-40%) during the incineration process and thus the combined bottom ashes had lower contents of Cd and Pb than expected at steady state. Furthermore, a major loss of Hg was, not surprisingly, seen and co-feeding of Ferrox-products together with municipal solid waste will require dedicated removal of Hg in the flue gas to prevent a build up of Hg in the system. In spite of this, a combined single solid residue from waste incineration seems to be a significant environmental improvement to current technology.

  19. Can pleiotropic effects of eicosapentaenoic acid (EPA) impact residual cardiovascular risk?

    PubMed

    Nelson, John R; True, Wayne S; Le, Viet; Mason, R Preston

    2017-11-01

    Residual cardiovascular (CV) risk persists even in statin-treated patients with optimized low-density lipoprotein cholesterol (LDL-C) levels. Other pathways beyond cholesterol contribute to CV risk and the key to reducing residual risk may be addressing non-cholesterol risk factors through pleiotropic mechanisms. The purpose of this review is to examine the literature relating to the potential role of the omega-3 fatty acid eicosapentaenoic acid (EPA) in reducing residual CV risk. The literature shows that EPA can robustly lower plasma triglyceride (TG) levels without raising LDL-C levels and documents EPA to have a broad range of beneficial effects on the atherosclerotic pathway, including those on lipids, lipoproteins, inflammation, oxidation, phospholipid membranes, and the atherosclerotic plaque itself. Clinical imaging studies have consistently demonstrated that EPA decreases plaque vulnerability and prevents plaque progression. The evidence therefore points to a potential role for EPA to reduce residual CV risk. A large randomized study of statin-treated Japanese patients demonstrated that EPA ethyl ester reduced major coronary events by 19% (P = 0.011). However, while there has been significant benefit demonstrated in this and another Japanese CV outcomes study, the question as to whether EPA can play a role in reducing residual CV risk remains to be addressed in broader populations. The large, global, ongoing, randomized, placebo-controlled REDUCE-IT study of high-risk statin-treated patients with persistent hypertriglyceridemia is currently underway to investigate the potential of icosapent ethyl (high-purity prescription EPA ethyl ester) as an add-on therapy to reduce residual CV risk.

  20. Advancing environmental toxicology through chemical dosimetry: External exposures versus tissue residues

    USGS Publications Warehouse

    McCarty, L.S.; Landrum, P.F.; Luoma, S.N.; Meador, J.P.; Merten, A.A.; Shephard, B.K.; van Wezelzz, A.P.

    2011-01-01

    The tissue residue dose concept has been used, although in a limited manner, in environmental toxicology for more than 100 y. This review outlines the history of this approach and the technical background for organic chemicals and metals. Although the toxicity of both can be explained in tissue residue terms, the relationship between external exposure concentration, body and/or tissues dose surrogates, and the effective internal dose at the sites of toxic action tends to be more complex for metals. Various issues and current limitations related to research and regulatory applications are also examined. It is clear that the tissue residue approach (TRA) should be an integral component in future efforts to enhance the generation, understanding, and utility of toxicity testing data, both in the laboratory and in the field. To accomplish these goals, several key areas need to be addressed: 1) development of a risk-based interpretive framework linking toxicology and ecology at multiple levels of biological organization and incorporating organism-based dose metrics; 2) a broadly applicable, generally accepted classification scheme for modes/mechanisms of toxic action with explicit consideration of residue information to improve both single chemical and mixture toxicity data interpretation and regulatory risk assessment; 3) toxicity testing protocols updated to ensure collection of adequate residue information, along with toxicokinetics and toxicodynamics information, based on explicitly defined toxicological models accompanied by toxicological model validation; 4) continued development of residueeffect databases is needed ensure their ongoing utility; and 5) regulatory guidance incorporating residue-based testing and interpretation approaches, essential in various jurisdictions. ??:2010 SETAC.

  1. Perceptions on TRIST: Implications for INSET.

    ERIC Educational Resources Information Center

    Saunders, Murray

    1987-01-01

    The article explores strategic responses of key participants to the design and implementation of inservice education related to a technical and vocational education initiative developed in England and Wales. Data collected from interviews with the participants are used to discuss their aims, their roles as key informants, and methodological stance…

  2. The Key Technologies. Some Implications for Education and Training. An Occasional Paper.

    ERIC Educational Resources Information Center

    Mansell, Jack; And Others

    National competitiveness depends in large part on the practical application of technologies. Educational planners must, therefore, identify key (newly emerging) topics in science and engineering that are likely to have a major evolutionary effect on industry and incorporate these areas into existing vocational and technical curricula. Because…

  3. Optimizing prognosis-related key miRNA-target interactions responsible for cancer metastasis.

    PubMed

    Zhao, Hongying; Yuan, Huating; Hu, Jing; Xu, Chaohan; Liao, Gaoming; Yin, Wenkang; Xu, Liwen; Wang, Li; Zhang, Xinxin; Shi, Aiai; Li, Jing; Xiao, Yun

    2017-12-12

    Increasing evidence suggests that the abnormality of microRNAs (miRNAs) and their downstream targets is frequently implicated in the pathogenesis of human cancers, however, the clinical benefit of causal miRNA-target interactions has been seldom studied. Here, we proposed a computational method to optimize prognosis-related key miRNA-target interactions by combining transcriptome and clinical data from thousands of TCGA tumors across 16 cancer types. We obtained a total of 1,956 prognosis-related key miRNA-target interactions between 112 miRNAs and 1,443 their targets. Interestingly, these key target genes are specifically involved in tumor progression-related functions, such as 'cell adhesion' and 'cell migration'. Furthermore, they are most significantly correlated with 'tissue invasion and metastasis', a hallmark of metastasis, in ten distinct types of cancer through the hallmark analysis. These results implicated that the prognosis-related key miRNA-target interactions were highly associated with cancer metastasis. Finally, we observed that the combination of these key miRNA-target interactions allowed to distinguish patients with good prognosis from those with poor prognosis both in most TCGA cancer types and independent validation sets, highlighting their roles in cancer metastasis. We provided a user-friendly database named miRNATarget (freely available at http://biocc.hrbmu.edu.cn/miRNATar/), which provides an overview of the prognosis-related key miRNA-target interactions across 16 cancer types.

  4. Teacher Job Dissatisfaction: Implications for Teacher Sustainability and Social Transformation

    ERIC Educational Resources Information Center

    Okeke, Chinedu I.; Mtyuda, Pamela N.

    2017-01-01

    Teachers play a key role in the social transformation agenda. This agentic position of the teacher implicates an agenda for sustainability programmes that position them for this complex responsibility. A qualitative case study research design was employed to obtain the perspectives of teachers on job dissatisfaction. The researchers followed a…

  5. A Confucian Perspective of Self-Cultivation in Learning: Its Implications for Self-Directed Learning

    ERIC Educational Resources Information Center

    Tan, Charlene

    2017-01-01

    This article explores a Confucian perspective of self-cultivation in learning and its implications for self-directed learning. Focussing on two key Confucian texts, "Xueji" (Record of Learning) and "Xunzi," this essay expounds the purpose, content, process and essence of self-cultivation in learning. From a Confucian viewpoint,…

  6. Ancient Athenian Democratic Knowledge and Citizenship: Connectivity and Intercultural Implications

    ERIC Educational Resources Information Center

    Gundara, Jagdish S.

    2011-01-01

    This paper explores the implications that ancient Athens had for modern representative democracies and the links that can be made to the philosophical principles that form the essence of intercultural education. Such an exploration shows that modern democratic societies have ignored many key aspects of the important legacy left to us by these…

  7. Fine-mapping classical HLA variation associated with durable host control of HIV-1 infection in African Americans.

    PubMed

    McLaren, Paul J; Ripke, Stephan; Pelak, Kimberly; Weintrob, Amy C; Patsopoulos, Nikolaos A; Jia, Xiaoming; Erlich, Rachel L; Lennon, Niall J; Kadie, Carl M; Heckerman, David; Gupta, Namrata; Haas, David W; Deeks, Steven G; Pereyra, Florencia; Walker, Bruce D; de Bakker, Paul I W

    2012-10-01

    A small proportion of human immunodeficiency virus-1 (HIV-1) infected individuals, termed HIV-1 controllers, suppress viral replication to very low levels in the absence of therapy. Genetic investigations of this phenotype have strongly implicated variation in the class I major histocompatibility complex (MHC) region as key to HIV-1 control. We collected sequence-based classical class I HLA genotypes at 4-digit resolution in HIV-1-infected African American controllers and progressors (n = 1107), and tested them for association with host control using genome-wide single nucleotide polymorphism data to account for population structure. Several classical alleles at HLA-B were associated with host control, including B*57:03 [odds ratio (OR) = 5.1; P= 3.4 × 10(-18)] and B*81:01 (OR = 4.8; P= 1.3 × 10(-9)). Analysis of variable amino acid positions demonstrates that HLA-B position 97 is the most significant association with host control in African Americans (omnibus P = 1.2 × 10(-21)) and explains the signal of several HLA-B alleles, including B*57:03. Within HLA-B, we also identified independent effects at position 116 (omnibus P= 2.8 × 10(-15)) in the canonical F pocket, position 63 in the B pocket (P= 1.5 × 10(-3)) and the non-pocket position 245 (P= 8.8 × 10(-10)), which is thought to influence CD8-binding kinetics. Adjusting for these HLA-B effects, there is evidence for residual association in the MHC region. These results underscore the key role of HLA-B in affecting HIV-1 replication, likely through the molecular interaction between HLA-B and viral peptides presented by infected cells, and suggest that sites outside the peptide-binding pocket also influence HIV-1 control.

  8. AMP-activated kinase in human spermatozoa: identification, intracellular localization, and key function in the regulation of sperm motility.

    PubMed

    Calle-Guisado, Violeta; de Llera, Ana Hurtado; Martin-Hidalgo, David; Mijares, Jose; Gil, Maria C; Alvarez, Ignacio S; Bragado, Maria J; Garcia-Marin, Luis J

    2017-01-01

    AMP-activated kinase (AMPK), a protein that regulates energy balance and metabolism, has recently been identified in boar spermatozoa where regulates key functional sperm processes essential for fertilization. This work's aims are AMPK identification, intracellular localization, and their role in human spermatozoa function. Semen was obtained from healthy human donors. Sperm AMPK and phospho-Thr172-AMPK were analyzed by Western blotting and indirect immunofluorescence. High- and low-quality sperm populations were separated by a 40%-80% density gradient. Human spermatozoa motility was evaluated by an Integrated Semen Analysis System (ISAS) in the presence or absence of the AMPK inhibitor compound C (CC). AMPK is localized along the human spermatozoa, at the entire acrosome, midpiece and tail with variable intensity, whereas its active form, phospho-Thr172-AMPK, shows a prominent staining at the acrosome and sperm tail with a weaker staining in the midpiece and the postacrosomal region. Interestingly, spermatozoa bearing an excess residual cytoplasm show strong AMPK staining in this subcellular compartment. Both AMPK and phospho-Thr172-AMPK human spermatozoa contents exhibit important individual variations. Moreover, active AMPK is predominant in the high motility sperm population, where shows a stronger intensity compared with the low motility sperm population. Inhibition of AMPK activity in human spermatozoa by CC treatment leads to a significant reduction in any sperm motility parameter analyzed: percent of motile sperm, sperm velocities, progressivity, and other motility coefficients. This work identifies and points out AMPK as a new molecular mechanism involved in human spermatozoa motility. Further AMPK implications in the clinical efficiency of assisted reproduction and in other reproductive areas need to be studied.

  9. The USP1-UAF1 complex interacts with RAD51AP1 to promote homologous recombination repair.

    PubMed

    Cukras, Scott; Lee, Euiho; Palumbo, Emily; Benavidez, Pamela; Moldovan, George-Lucian; Kee, Younghoon

    2016-10-01

    USP1 deubiquitinating enzyme and its stoichiometric binding partner UAF1 play an essential role in promoting DNA homologous recombination (HR) repair in response to various types of DNA damaging agents. Deubiquitination of FANCD2 may be attributed to the key role of USP1-UAF1 complex in regulating HR repair, however whether USP1-UAF1 promotes HR repair independently of FANCD2 deubiquitination is not known. Here we show evidence that the USP1-UAF1 complex has a FANCD2-independent function in promoting HR repair. Proteomic search of UAF1-interacting proteins revealed that UAF1 associates with RAD51AP1, a RAD51-interacting protein implicated in HR repair. We show that UAF1 mediates the interaction between USP1 and RAD51AP1, and that depletion of USP1 or UAF1 led to a decreased stability of RAD51AP1. Protein interaction mapping analysis identified some key residues within RAD51AP1 required for interacting with the USP1-UAF1 complex. Cells expressing the UAF1 interaction-deficient mutant of RAD51AP1 show increased chromosomal aberrations in response to Mitomycin C treatment. Moreover, similar to the RAD51AP1 depleted cells, the cells expressing UAF1-interaction deficient RAD51AP1 display persistent RAD51 foci following DNA damage exposure, indicating that these factors regulate a later step during the HR repair. These data altogether suggest that the USP1-UAF1 complex promotes HR repair via multiple mechanisms: through FANCD2 deubiquitination, as well as by interacting with RAD51AP1.

  10. The USP1-UAF1 complex interacts with RAD51AP1 to promote homologous recombination repair

    PubMed Central

    Cukras, Scott; Lee, Euiho; Palumbo, Emily; Benavidez, Pamela; Moldovan, George-Lucian; Kee, Younghoon

    2016-01-01

    ABSTRACT USP1 deubiquitinating enzyme and its stoichiometric binding partner UAF1 play an essential role in promoting DNA homologous recombination (HR) repair in response to various types of DNA damaging agents. Deubiquitination of FANCD2 may be attributed to the key role of USP1-UAF1 complex in regulating HR repair, however whether USP1-UAF1 promotes HR repair independently of FANCD2 deubiquitination is not known. Here we show evidence that the USP1-UAF1 complex has a FANCD2-independent function in promoting HR repair. Proteomic search of UAF1-interacting proteins revealed that UAF1 associates with RAD51AP1, a RAD51-interacting protein implicated in HR repair. We show that UAF1 mediates the interaction between USP1 and RAD51AP1, and that depletion of USP1 or UAF1 led to a decreased stability of RAD51AP1. Protein interaction mapping analysis identified some key residues within RAD51AP1 required for interacting with the USP1-UAF1 complex. Cells expressing the UAF1 interaction-deficient mutant of RAD51AP1 show increased chromosomal aberrations in response to Mitomycin C treatment. Moreover, similar to the RAD51AP1 depleted cells, the cells expressing UAF1-interaction deficient RAD51AP1 display persistent RAD51 foci following DNA damage exposure, indicating that these factors regulate a later step during the HR repair. These data altogether suggest that the USP1-UAF1 complex promotes HR repair via multiple mechanisms: through FANCD2 deubiquitination, as well as by interacting with RAD51AP1. PMID:27463890

  11. AMP-activated kinase in human spermatozoa: identification, intracellular localization, and key function in the regulation of sperm motility

    PubMed Central

    Calle-Guisado, Violeta; de Llera, Ana Hurtado; Martin-Hidalgo, David; Mijares, Jose; Gil, Maria C; Alvarez, Ignacio S; Bragado, Maria J; Garcia-Marin, Luis J

    2017-01-01

    AMP-activated kinase (AMPK), a protein that regulates energy balance and metabolism, has recently been identified in boar spermatozoa where regulates key functional sperm processes essential for fertilization. This work's aims are AMPK identification, intracellular localization, and their role in human spermatozoa function. Semen was obtained from healthy human donors. Sperm AMPK and phospho-Thr172-AMPK were analyzed by Western blotting and indirect immunofluorescence. High- and low-quality sperm populations were separated by a 40%–80% density gradient. Human spermatozoa motility was evaluated by an Integrated Semen Analysis System (ISAS) in the presence or absence of the AMPK inhibitor compound C (CC). AMPK is localized along the human spermatozoa, at the entire acrosome, midpiece and tail with variable intensity, whereas its active form, phospho-Thr172-AMPK, shows a prominent staining at the acrosome and sperm tail with a weaker staining in the midpiece and the postacrosomal region. Interestingly, spermatozoa bearing an excess residual cytoplasm show strong AMPK staining in this subcellular compartment. Both AMPK and phospho-Thr172-AMPK human spermatozoa contents exhibit important individual variations. Moreover, active AMPK is predominant in the high motility sperm population, where shows a stronger intensity compared with the low motility sperm population. Inhibition of AMPK activity in human spermatozoa by CC treatment leads to a significant reduction in any sperm motility parameter analyzed: percent of motile sperm, sperm velocities, progressivity, and other motility coefficients. This work identifies and points out AMPK as a new molecular mechanism involved in human spermatozoa motility. Further AMPK implications in the clinical efficiency of assisted reproduction and in other reproductive areas need to be studied. PMID:27678462

  12. The fibrate gemfibrozil is a NO- and haem-independent activator of soluble guanylyl cyclase: in vitro studies

    PubMed Central

    Sharina, I G; Sobolevsky, M; Papakyriakou, A; Rukoyatkina, N; Spyroulias, G A; Gambaryan, S; Martin, E

    2015-01-01

    Background and Purpose Fibrates are a class of drugs widely used to treat dyslipidaemias. They regulate lipid metabolism and act as PPARα agonists. Clinical trials demonstrate that besides changes in lipid profiles, fibrates decrease the incidence of cardiovascular events, with gemfibrozil exhibiting the most pronounced benefit. This study aims to characterize the effect of gemfibrozil on the activity and function of soluble guanylyl cyclase (sGC), the key mediator of NO signalling. Experimental Approach High-throughput screening of a drug library identified gemfibrozil as a direct sGC activator. Activation of sGC is unique to gemfibrozil and is not shared by other fibrates. Key Results Gemfibrozil activated purified sGC, induced endothelium-independent relaxation of aortic rings and inhibited platelet aggregation. Gemfibrozil-dependent activation was absent when the sGC haem domain was deleted, but was significantly enhanced when sGC haem was lacking or oxidized. Oxidation of sGC haem enhanced the vasoactive and anti-platelet effects of gemfibrozil. Gemfibrozil competed with the haem-independent sGC activators ataciguat and cinaciguat. Computational modelling predicted that gemfibrozil occupies the space of the haem group and interacts with residues crucial for haem stabilization. This is consistent with structure-activity data which revealed an absolute requirement for gemfibrozil's carboxyl group. Conclusions and Implications These data suggest that in addition to altered lipid and lipoprotein state, the cardiovascular preventive benefits of gemfibrozil may derive from direct activation and protection of sGC function. A sGC-directed action may explain the more pronounced cardiovascular benefit of gemfibrozil observed over other fibrates and some of the described side effects of gemfibrozil. PMID:25536881

  13. A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor

    PubMed Central

    Kaji, Mark D; Kwaka, Ariel; Callanan, Micah K; Nusrat, Humza; Desaulniers, Jean-Paul; Forrester, Sean G

    2015-01-01

    Background and Purpose Cys-loop GABA receptors represent important targets for human chemotherapeutics and insecticides and are potential targets for novel anthelmintics (nematicides). However, compared with insect and mammalian receptors, little is known regarding the pharmacological characteristics of nematode Cys-loop GABA receptors. Here we have investigated the agonist binding site of the Cys-loop GABA receptor UNC-49 (Hco-UNC-49) from the parasitic nematode Haemonchus contortus. Experimental Approach We used two-electrode voltage-clamp electrophysiology to measure channel activation by classical GABA receptor agonists on Hco-UNC-49 expressed in Xenopus laevis oocytes, along with site-directed mutagenesis and in silico homology modelling. Key Results The sulphonated molecules P4S and taurine had no effect on Hco-UNC-49. Other classical Cys-loop GABAA receptor agonists tested on the Hco-UNC-49B/C heteromeric channel had a rank order efficacy of GABA > trans-4-aminocrotonic acid > isoguvacine > imidazole-4-acetic acid (IMA) > (R)-(−)-4-amino-3-hydroxybutyric acid [R(−)-GABOB] > (S)-(+)-4-amino-3-hydroxybutyric acid [S(+)-GABOB] > guanidinoacetic acid > isonipecotic acid > 5-aminovaleric acid (DAVA) (partial agonist) > β-alanine (partial agonist). In silico ligand docking revealed some variation in binding between agonists. Mutagenesis of a key serine residue in binding loop C to threonine had minimal effects on GABA and IMA but significantly increased the maximal response to DAVA and decreased twofold the EC50 for R(−)- and S(+)-GABOB. Conclusions and Implications The pharmacological profile of Hco-UNC-49 differed from that of vertebrate Cys-loop GABA receptors and insect resistance to dieldrin receptors, suggesting differences in the agonist binding pocket. These findings could be exploited to develop new drugs that specifically target GABA receptors of parasitic nematodes. PMID:25850584

  14. The involvement of dityrosine crosslinking in α-synuclein assembly and deposition in Lewy Bodies in Parkinson’s disease

    PubMed Central

    Al-Hilaly, Youssra K.; Biasetti, Luca; Blakeman, Ben J. F.; Pollack, Saskia J.; Zibaee, Shahin; Abdul-Sada, Alaa; Thorpe, Julian R.; Xue, Wei-Feng; Serpell, Louise C.

    2016-01-01

    Parkinson’s disease (PD) is characterized by intracellular, insoluble Lewy bodies composed of highly stable α-synuclein (α-syn) amyloid fibrils. α-synuclein is an intrinsically disordered protein that has the capacity to assemble to form β-sheet rich fibrils. Oxidiative stress and metal rich environments have been implicated in triggering assembly. Here, we have explored the composition of Lewy bodies in post-mortem tissue using electron microscopy and immunogold labeling and revealed dityrosine crosslinks in Lewy bodies in brain tissue from PD patients. In vitro, we show that dityrosine cross-links in α-syn are formed by covalent ortho-ortho coupling of two tyrosine residues under conditions of oxidative stress by fluorescence and confirmed using mass-spectrometry. A covalently cross-linked dimer isolated by SDS-PAGE and mass analysis showed that dityrosine dimer was formed via the coupling of Y39-Y39 to give a homo dimer peptide that may play a key role in formation of oligomeric and seeds for fibril formation. Atomic force microscopy analysis reveals that the covalent dityrosine contributes to the stabilization of α-syn assemblies. Thus, the presence of oxidative stress induced dityrosine could play an important role in assembly and toxicity of α-syn in PD. PMID:27982082

  15. Characterization of NO-Induced Nitrosative Status in Human Placenta from Pregnant Women with Gestational Diabetes Mellitus.

    PubMed

    Visiedo, Francisco; Santos-Rosendo, Celeste; Mateos-Bernal, Rosa M; Gil-Sánchez, M Del Mar; Bugatto, Fernando; Aguilar-Diosdado, Manuel; Segundo, Carmen; López-Tinoco, Cristina

    2017-01-01

    Dysregulation of NO production is implicated in pregnancy-related diseases, including gestational diabetes mellitus (GDM). The role of NO and its placental targets in GDM pregnancies has yet to be determined. S-Nitrosylation is the NO-derived posttranslational protein modification that can modulate biological functions by forming NO-derived complexes with longer half-life, termed S-nitrosothiol (SNO). Our aim was to examine the presence of endogenous S-nitrosylated proteins in cysteine residues in relation to antioxidant defense, apoptosis, and cellular signal transduction in placental tissue from control ( n = 8) and GDM ( n = 8) pregnancies. S-Nitrosylation was measured using the biotin-switch assay, while the expression and protein activity were assessed by immunoblotting and colorimetric methods, respectively. Results indicated that catalase and peroxiredoxin nitrosylation levels were greater in GDM placentas, and that was accompanied by reduced catalase activity. S-Nitrosylation of ERK1/2 and AKT was increased in GDM placentas, and their activities were inhibited. Activities of caspase-3 and caspase-9 were increased, with the latter also showing diminished nitrosylation levels. These findings suggest that S-nitrosylation is a little-known, but critical, mechanism by which NO directly modulates key placental proteins in women with GDM and, as a consequence, maternal and fetal anomalies during pregnancy can occur.

  16. The chemistry side of AOP: implications for toxicity ...

    EPA Pesticide Factsheets

    An adverse outcome pathway (AOP) is a structured representation of the biological events that lead to adverse impacts following a molecular initiating event caused by chemical interaction with a macromolecule. AOPs have been proposed to facilitate toxicity extrapolation across species through understanding of species similarity in the sequence of molecular, cellular, organ and organismal level responses. However, AOPs are non-specific regarding the identity of the chemical initiators, and the range of structures for which an AOP is considered applicable has generally been poorly defined. Applicability domain has been widely understood in the field of QSAR as the response and chemical structure space in which the model makes predictions with a given reliability, and has been traditionally applied to define the similarity of query molecules within the training set. Three dimensional (3D) receptor modeling offers an approach to better define the applicability domain for selected AOPs through determination of the chemical space of the molecular initiating event. Universal 3D-QSAR models were developed for acetylcholinesterase inhibitors and estrogen receptor agonists and antagonists using a combination of fingerprint, molecular docking and structure-based pharmacophore approaches. The models were based on the critical molecular interactions within each receptor ligand binding domain, and included the key amino acid residues responsible for high binding affinity. T

  17. KLK14 interactions with HAI-1 and HAI-2 serine protease inhibitors: A molecular dynamics and relative free-energy calculations study.

    PubMed

    Solís-Calero, Christian; Carvalho, Hernandes F

    2017-11-01

    Kallikrein 14 (KLK14) is a serine protease linked to several pathologies including prostate cancer and positively correlates with Gleason score. Though KLK14 functioning in cancer is poorly understood, it has been implicated in HGF/Met signaling, given that KLK14 proteolytically inhibits HGF activator-inhibitor 1 (HAI-1), which strongly inhibits pro-HGF activators, thereby contributing to tumor progression. In this work, KLK14 binding to either hepatocyte growth factor activator inhibitor type-1 (HAI-1) or type-2 (HAI-2) was essayed using homology modeling, molecular dynamic simulations and free-energy calculations through MM/PBSA and MM/GBSA. KLK14 was successfully modeled. Calculated free energies suggested higher binding affinity for the KLK14/HAI-1 interaction than for KLK14/HAI-2. This difference in binding affinity is largely explained by the higher stability of the hydrogen-bond networks in KLK14/HAI-1 along the simulation trajectory. A key arginine residue in both HAI-1 and HAI-2 is responsible for their interaction with the S1 pocket in KLK14. Additionally, MM/GBSA free-energy decomposition postulates that KLK14 Asp174 and Trp196 are hotspots for binding HAI-1 and HAI-2. © 2017 International Federation for Cell Biology.

  18. A phosphoinositide-binding cluster in cavin1 acts as a molecular sensor for cavin1 degradation

    PubMed Central

    Tillu, Vikas A.; Kovtun, Oleksiy; McMahon, Kerrie-Ann; Collins, Brett M.; Parton, Robert G.

    2015-01-01

    Caveolae are abundant surface organelles implicated in a range of cellular processes. Two classes of proteins work together to generate caveolae: integral membrane proteins termed caveolins and cytoplasmic coat proteins called cavins. Caveolae respond to membrane stress by releasing cavins into the cytosol. A crucial aspect of this model is tight regulation of cytosolic pools of cavin under resting conditions. We now show that a recently identified region of cavin1 that can bind phosphoinositide (PI) lipids is also a major site of ubiquitylation. Ubiquitylation of lysines within this site leads to rapid proteasomal degradation. In cells that lack caveolins and caveolae, cavin1 is cytosolic and rapidly degraded as compared with cells in which cavin1 is associated with caveolae. Membrane stretching causes caveolar disassembly, release of cavin complexes into the cytosol, and increased proteasomal degradation of wild-type cavin1 but not mutant cavin1 lacking the major ubiquitylation site. Release of cavin1 from caveolae thus leads to exposure of key lysine residues in the PI-binding region, acting as a trigger for cavin1 ubiquitylation and down-regulation. This mutually exclusive PI-binding/ubiquitylation mechanism may help maintain low levels of cytosolic cavin1 in resting cells, a prerequisite for cavins acting as signaling modules following release from caveolae. PMID:26269585

  19. NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of homocysteine-induced endoplasmic reticulum protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, Tomoji, E-mail: t-maeda@nichiyaku.ac.jp; Tanabe-Fujimura, Chiaki; Fujita, Yu

    2016-05-13

    Homocysteine-induced endoplasmic reticulum (ER) protein (Herp) is an ER stress-inducible key regulatory component of ER-associated degradation (ERAD) that has been implicated in insulin hypersecretion in diabetic mouse models. Herp expression is tightly regulated. Additionally, Herp is a highly labile protein and interacts with various proteins, which are characteristic features of ubiquitinated protein. Previously, we reported that ubiquitination is not required for Herp degradation. In addition, we found that the lysine residues of Herp (which are ubiquitinated by E3 ubiquitin ligase) are not sufficient for regulation of Herp degradation. In this study, we found that NAD(P)H quinone oxidoreductase 1 (NQO1)-mediated targetingmore » of Herp to the proteasome was involved in Herp degradation. In addition, we found that Herp protein levels were markedly elevated in synoviolin-null cells. The E3 ubiquitin ligase synoviolin is a central component of ERAD and is involved in the degradation of nuclear factor E2-related factor-2 (Nrf2), which regulates cellular reactive oxygen species. Additionally, NQO1 is a target of Nrf2. Thus, our findings indicated that NQO1 could stabilize Herp protein expression via indirect regulation of synoviolin. -- Highlights: •Herp interacts with NQO1. •NQO1 regulates Herp degradation.« less

  20. Structure of N-acetyl-[beta]-D-glucosaminidase (GcnA) from the Endocarditis Pathogen Streptococcus gordonii and its Complex with the Mechanism-based Inhibitor NAG-thiazoline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langley, David B.; Harty, Derek W.S.; Jacques, Nicholas A.

    2008-09-17

    The crystal structure of GcnA, an N-acetyl-{beta}-D-glucosaminidase from Streptococcus gordonii, was solved by multiple wavelength anomalous dispersion phasing using crystals of selenomethionine-substituted protein. GcnA is a homodimer with subunits each comprised of three domains. The structure of the C-terminal {alpha}-helical domain has not been observed previously and forms a large dimerization interface. The fold of the N-terminal domain is observed in all structurally related glycosidases although its function is unknown. The central domain has a canonical ({beta}/{alpha}){sub 8} TIM-barrel fold which harbours the active site. The primary sequence and structure of this central domain identifies the enzyme as a familymore » 20 glycosidase. Key residues implicated in catalysis have different conformations in two different crystal forms, which probably represent active and inactive conformations of the enzyme. The catalytic mechanism for this class of glycoside hydrolase, where the substrate rather than the enzyme provides the cleavage-inducing nucleophile, has been confirmed by the structure of GcnA complexed with a putative reaction intermediate analogue, N-acetyl-{beta}-D-glucosamine-thiazoline. The catalytic mechanism is discussed in light of these and other family 20 structures.« less

  1. The ebola virus interferon antagonist VP24 directly binds STAT1 and has a novel, pyramidal fold.

    PubMed

    Zhang, Adrianna P P; Bornholdt, Zachary A; Liu, Tong; Abelson, Dafna M; Lee, David E; Li, Sheng; Woods, Virgil L; Saphire, Erica Ollmann

    2012-02-01

    Ebolaviruses cause hemorrhagic fever with up to 90% lethality and in fatal cases, are characterized by early suppression of the host innate immune system. One of the proteins likely responsible for this effect is VP24. VP24 is known to antagonize interferon signaling by binding host karyopherin α proteins, thereby preventing them from transporting the tyrosine-phosphorylated transcription factor STAT1 to the nucleus. Here, we report that VP24 binds STAT1 directly, suggesting that VP24 can suppress at least two distinct branches of the interferon pathway. Here, we also report the first crystal structures of VP24, derived from different species of ebolavirus that are pathogenic (Sudan) and nonpathogenic to humans (Reston). These structures reveal that VP24 has a novel, pyramidal fold. A site on a particular face of the pyramid exhibits reduced solvent exchange when in complex with STAT1. This site is above two highly conserved pockets in VP24 that contain key residues previously implicated in virulence. These crystal structures and accompanying biochemical analysis map differences between pathogenic and nonpathogenic viruses, offer templates for drug design, and provide the three-dimensional framework necessary for biological dissection of the many functions of VP24 in the virus life cycle.

  2. The Histone Demethylase Jhdm1a Regulates Hepatic Gluconeogenesis

    PubMed Central

    Zou, Tie; Yao, Annie Y.; Cooper, Marcus P.; Boyartchuk, Victor; Wang, Yong-Xu

    2012-01-01

    Hepatic gluconeogenesis is required for maintaining blood glucose homeostasis; yet, in diabetes mellitus, this process is unrestrained and is a major contributor to fasting hyperglycemia. To date, the impacts of chromatin modifying enzymes and chromatin landscape on gluconeogenesis are poorly understood. Through catalyzing the removal of methyl groups from specific lysine residues in the histone tail, histone demethylases modulate chromatin structure and, hence, gene expression. Here we perform an RNA interference screen against the known histone demethylases and identify a histone H3 lysine 36 (H3K36) demethylase, Jhdm1a, as a key negative regulator of gluconeogenic gene expression. In vivo, silencing of Jhdm1a promotes liver glucose synthesis, while its exogenous expression reduces blood glucose level. Importantly, the regulation of gluconeogenesis by Jhdm1a requires its demethylation activity. Mechanistically, we find that Jhdm1a regulates the expression of a major gluconeogenic regulator, C/EBPα. This is achieved, at least in part, by its USF1-dependent association with the C/EBPα promoter and its subsequent demethylation of dimethylated H3K36 on the C/EBPα locus. Our work provides compelling evidence that links histone demethylation to transcriptional regulation of gluconeogenesis and has important implications for the treatment of diabetes. PMID:22719268

  3. Small molecule inhibitors of mesotrypsin from a structure-based docking screen

    DOE PAGES

    Kayode, Olumide; Huang, Zunnan; Soares, Alexei S.; ...

    2017-05-02

    PRSS3/mesotrypsin is an atypical isoform of trypsin, the upregulation of which has been implicated in promoting tumor progression. To date there are no mesotrypsin-selective pharmacological inhibitors which could serve as tools for deciphering the pathological role of this enzyme, and could potentially form the basis for novel therapeutic strategies targeting mesotrypsin. A virtual screen of the Natural Product Database (NPD) and Food and Drug Administration (FDA) approved Drug Database was conducted by high-throughput molecular docking utilizing crystal structures of mesotrypsin. Twelve high-scoring compounds were selected for testing based on lowest free energy docking scores, interaction with key mesotrypsin active sitemore » residues, and commercial availability. Diminazene (C1D22956468), along with two similar compounds presenting the bis-benzamidine substructure, was validated as a competitive inhibitor of mesotrypsin and other human trypsin isoforms. Diminazene is the most potent small molecule inhibitor of mesotrypsin reported to date with an inhibitory constant (K i) of 3.6±0.3 pM. Diminazene was subsequently co-crystalized with mesotrypsin and the crystal structure was solved and refined to 1.25 Å resolution. This high resolution crystal structure can now offer a foundation for structure-guided efforts to develop novel and potentially more selective mesotrypsin inhibitors based on similar molecular substructures.« less

  4. Small molecule inhibitors of mesotrypsin from a structure-based docking screen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayode, Olumide; Huang, Zunnan; Soares, Alexei S.

    PRSS3/mesotrypsin is an atypical isoform of trypsin, the upregulation of which has been implicated in promoting tumor progression. To date there are no mesotrypsin-selective pharmacological inhibitors which could serve as tools for deciphering the pathological role of this enzyme, and could potentially form the basis for novel therapeutic strategies targeting mesotrypsin. A virtual screen of the Natural Product Database (NPD) and Food and Drug Administration (FDA) approved Drug Database was conducted by high-throughput molecular docking utilizing crystal structures of mesotrypsin. Twelve high-scoring compounds were selected for testing based on lowest free energy docking scores, interaction with key mesotrypsin active sitemore » residues, and commercial availability. Diminazene (C1D22956468), along with two similar compounds presenting the bis-benzamidine substructure, was validated as a competitive inhibitor of mesotrypsin and other human trypsin isoforms. Diminazene is the most potent small molecule inhibitor of mesotrypsin reported to date with an inhibitory constant (K i) of 3.6±0.3 pM. Diminazene was subsequently co-crystalized with mesotrypsin and the crystal structure was solved and refined to 1.25 Å resolution. This high resolution crystal structure can now offer a foundation for structure-guided efforts to develop novel and potentially more selective mesotrypsin inhibitors based on similar molecular substructures.« less

  5. Bioconversion of Sugarcane Biomass into Ethanol: An Overview about Composition, Pretreatment Methods, Detoxification of Hydrolysates, Enzymatic Saccharification, and Ethanol Fermentation

    PubMed Central

    Canilha, Larissa; Chandel, Anuj Kumar; Suzane dos Santos Milessi, Thais; Antunes, Felipe Antônio Fernandes; Luiz da Costa Freitas, Wagner; das Graças Almeida Felipe, Maria; da Silva, Silvio Silvério

    2012-01-01

    Depleted supplies of fossil fuel, regular price hikes of gasoline, and environmental damage have necessitated the search for economic and eco-benign alternative of gasoline. Ethanol is produced from food/feed-based substrates (grains, sugars, and molasses), and its application as an energy source does not seem fit for long term due to the increasing fuel, food, feed, and other needs. These concerns have enforced to explore the alternative means of cost competitive and sustainable supply of biofuel. Sugarcane residues, sugarcane bagasse (SB), and straw (SS) could be the ideal feedstock for the second-generation (2G) ethanol production. These raw materials are rich in carbohydrates and renewable and do not compete with food/feed demands. However, the efficient bioconversion of SB/SS (efficient pretreatment technology, depolymerization of cellulose, and fermentation of released sugars) remains challenging to commercialize the cellulosic ethanol. Among the technological challenges, robust pretreatment and development of efficient bioconversion process (implicating suitable ethanol producing strains converting pentose and hexose sugars) have a key role to play. This paper aims to review the compositional profile of SB and SS, pretreatment methods of cane biomass, detoxification methods for the purification of hydrolysates, enzymatic hydrolysis, and the fermentation of released sugars for ethanol production. PMID:23251086

  6. Lethal Effects of Lambda-Cyhalothrin and Demand® CS on Asian Longhorned Beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae): Implications for Population Suppression, Tree Protection, Eradication and Containment

    USDA-ARS?s Scientific Manuscript database

    We evaluated the 24h contact toxicity of lambda-cyhalothrin for adult Asian longhorned beetle, Anoplophora glabripennis Motschulsky, using topical application. Results showed that beetles are sensitive to lambda-cyhalothrin: the LD50 and LD90 were 0.13639 and 0.78461µg/beetle, respectively. Residual...

  7. Carbon emissions associated with the procurement and utilization of forest harvest residues for energy, northern Minnesota, USA

    Treesearch

    Grant M. Domke; Dennis R. Becker; Anthony W. D' Amato; Alan R. Ek; Christopher W. Woodall

    2012-01-01

    Interest in the use of forest-derived biomass for energy has prompted comparisons to fossil fuels and led to controversy over the atmospheric consequences of its utilization. Much of the debate has centered on the carbon storage implications of utilizing whole trees for energy and the time frame necessary to offset the carbon emissions associated with fixed-life...

  8. The Impact of Racial Identity and Consciousness Development of African American Male Academic Achievement: Implications for Counseling

    ERIC Educational Resources Information Center

    Whiteside, Dora

    2007-01-01

    The purpose of this study was to examine the effect of racial identity/consciousness development on the academic achievement of African American male college freshmen. In the late 1900s Black identity models were developed to help African Americans grasp hold of who they were, as they lived in the residues of the peculiar institution of slavery.…

  9. The Plantation Conversion Demonstration at the Crossett Experimental Forest--Implications For Converting Stands From Even-Aged to Uneven-Aged Structure

    Treesearch

    James M. Guldin; Robert M. Farrar

    2002-01-01

    In the absence of replicated studies, we used a case study demonstration to illustrate converting a 26-year-old even-aged loblolly pine (Pinus taeda L.) plantation to uneven-aged structure. Unreplicated treatments included maintaining even-aged structure through low thinning (thinning from below) to a residual basal area of 80 square feet per acre,...

  10. The role of vision processing in prosthetic vision.

    PubMed

    Barnes, Nick; He, Xuming; McCarthy, Chris; Horne, Lachlan; Kim, Junae; Scott, Adele; Lieby, Paulette

    2012-01-01

    Prosthetic vision provides vision which is reduced in resolution and dynamic range compared to normal human vision. This comes about both due to residual damage to the visual system from the condition that caused vision loss, and due to limitations of current technology. However, even with limitations, prosthetic vision may still be able to support functional performance which is sufficient for tasks which are key to restoring independent living and quality of life. Here vision processing can play a key role, ensuring that information which is critical to the performance of key tasks is available within the capability of the available prosthetic vision. In this paper, we frame vision processing for prosthetic vision, highlight some key areas which present problems in terms of quality of life, and present examples where vision processing can help achieve better outcomes.

  11. Executive summary: Climate change in the northwest: Implications for our landscapes, waters, and communities

    USGS Publications Warehouse

    Dalton, Meghan M.; Bethel, Jeffrey; Capalbo, Susan M.; Cuhaciyan, J.E.; Eigenbrode, Sanford D.; Glick, Patty; Houston, Laurie L.; Littell, Jeremy S.; Lynn, Kathy; Mote, Philip W.; Raymondi, Rick R.; Reeder, W. Spencer; Shafer, Sarah L.; Snover, Amy K.

    2013-01-01

    Climate Change in the Northwest: Implications for Our Landscapes, Waters, and Communities is aimed at assessing the state of knowledge about key climate impacts and consequences to various sectors and communities in the northwest United States. It draws on a wealth of peer-reviewed literature, earlier state-level assessment reports conducted for Washington (2009) and Oregon (2010), as well as a risk-framing workshop. As an assessment, it aims to be representative (though not exhaustive) of the key climate change issues as reflected in the growing body of Northwest climate change science, impacts, and adaptation literature now available. This report will serve as an updated resource for scientists, stakeholders, decision makers, students, and community members interested in understanding and preparing for climate change impacts on Oregon, Washington, and Idaho. This more detailed, foundational report is intended to support the key findings presented in the Northwest chapter of the Third National Climate Assessment.

  12. A combined coarse-grained and all-atom simulation of TRPV1 channel gating and heat activation

    PubMed Central

    Qin, Feng

    2015-01-01

    The transient receptor potential (TRP) channels act as key sensors of various chemical and physical stimuli in eukaryotic cells. Despite years of study, the molecular mechanisms of TRP channel activation remain unclear. To elucidate the structural, dynamic, and energetic basis of gating in TRPV1 (a founding member of the TRPV subfamily), we performed coarse-grained modeling and all-atom molecular dynamics (MD) simulation based on the recently solved high resolution structures of the open and closed form of TRPV1. Our coarse-grained normal mode analysis captures two key modes of collective motions involved in the TRPV1 gating transition, featuring a quaternary twist motion of the transmembrane domains (TMDs) relative to the intracellular domains (ICDs). Our transition pathway modeling predicts a sequence of structural movements that propagate from the ICDs to the TMDs via key interface domains (including the membrane proximal domain and the C-terminal domain), leading to sequential opening of the selectivity filter followed by the lower gate in the channel pore (confirmed by modeling conformational changes induced by the activation of ICDs). The above findings of coarse-grained modeling are robust to perturbation by lipids. Finally, our MD simulation of the ICD identifies key residues that contribute differently to the nonpolar energy of the open and closed state, and these residues are predicted to control the temperature sensitivity of TRPV1 gating. These computational predictions offer new insights to the mechanism for heat activation of TRPV1 gating, and will guide our future electrophysiology and mutagenesis studies. PMID:25918362

  13. Identification of key residues modulating the stereoselectivity of nitrile hydratase toward rac-mandelonitrile by semi-rational engineering.

    PubMed

    Cheng, Zhongyi; Peplowski, Lukasz; Cui, Wenjing; Xia, Yuanyuan; Liu, Zhongmei; Zhang, Jialei; Kobayashi, Michihiko; Zhou, Zhemin

    2018-03-01

    Optically pure compounds are important in the synthesis of fine chemicals. Using directed evolution of enzymes to obtain biocatalysts that can selectively produce high-value chiral chemicals is often time-, money-, and resource-intensive; traditional semi-rational designs based on structural data and docking experiments are still limited due to the lack of accurate selection of hot-spot residues. In this study, through ligand-protein collision counts based on steered molecular dynamics simulation, we accurately identified four residues related to improving nitrile hydratase stereoselectivity toward rac-mandelonitrile (MAN). All the four selected residues had numerous collisions with rac-MAN. Five mutants significantly shifting stereoselectivity towards (S)-MAN were obtained from site-saturation mutagenesis, one of them, at position βPhe37, exhibiting efficient production of (S)-MAN with 96.8% ee p , was isolated and further analyzed. The increased pulling force observed during SMD simulation was found to be in good coincidence with the formation of hydrogen bonds between (R)-MAN and residue βHis37. (R)-MAN had to break these barriers to enter the active site of nitrile hydratase and S selectivity was thus improved. The results indicated that combining steered molecular dynamics simulation with a traditional semi-rational design significantly reduced the select range of hot-spot residues for the evolution of NHase stereoselectivity, which could serve as an alternative for the modulation of enzyme stereoselectivity. © 2017 Wiley Periodicals, Inc.

  14. Structural insights from a novel invertebrate triosephosphate isomerase from Litopenaeus vannamei

    PubMed Central

    Lopez-Zavala, Alonso A.; Carrasco-Miranda, Jesus S.; Ramirez-Aguirre, Claudia D.; López-Hidalgo, Marisol; Benitez-Cardoza, Claudia G.; Ochoa-Leyva, Adrian; Cardona-Felix, Cesar S.; Diaz-Quezada, Corina; Rudiño-Piñera, Enrique; Sotelo-Mundo, Rogerio R.; Brieba, Luis G.

    2016-01-01

    Triosephosphate isomerase (TIM; EC 5.3.1.1) is a key enzyme involved in glycolysis and gluconeogenesis. Glycolysis is one of the most regulated metabolic pathways, however little is known about the structural mechanisms for its regulation in non-model organisms, like crustaceans. To understand the structure and function of this enzyme in invertebrates, we obtained the crystal structure of triosephosphate isomerase from the marine Pacific whiteleg shrimp (Litopenaeus vannamei, LvTIM) in complex with its inhibitor 2-phosphogyceric acid (2-PG) at 1.7 Å resolution. LvTIM assembles as a homodimer with residues 166-176 covering the active site and residue Glu166 interacting with the inhibitor. We found that LvTIM is the least stable TIM characterized to date, with the lowest range of melting temperatures, and with the lowest activation enthalpy associated with the thermal unfolding process reported. In TIMs dimer stabilization is maintained by an interaction of loop 3 by a set of hydrophobic contacts between subunits. Within these contacts, the side chain of a hydrophobic residue of one subunit fits into a cavity created by a set of hydrophobic residues in the neighboring subunit, via a "ball and socket" interaction. LvTIM presents a Cys47 at the "ball" inter-subunit contact indicating that the character of this residue is responsible for the decrease in dimer stability. Mutational studies show that this residue plays a role in dimer stability but is not a solely determinant for dimer formation. PMID:27614148

  15. Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes

    Treesearch

    Phil Kersten; Dan Cullen

    2014-01-01

    Extracellular peroxide generation, a key component of oxidative lignocellulose degradation, has been attributed to various enzymes including the copper radical oxidases. Encoded by a family of structurally related sequences, the genes are widely distributed among wood decay fungi including three recently completed polypore genomes. In all cases, core catalytic residues...

  16. Wood fuel potential from harvested areas in the eastern United States.

    Treesearch

    Eugene M. Carpenter

    1980-01-01

    Estimates amount of wood fiber that could be available for fuel from forest residues on harvested areas in the eastern United States. Includes a key to resource data published by the USDA Forest Service and factors for estimating amounts of cull, bark, tops, and limbs from inventory and product output tabulations.

  17. Conceptual Study of Rotary-Wing Microrobotics

    DTIC Science & Technology

    2008-03-27

    tensile residual stress, respectively [78-80]. ......... 48  Table 8: Wing-T design parameters compared to Tsuzuki’s recommendations. ....... 73...Table 13: Summary of key parameters for a feasible rotary-wing MEMS robot design...Direct Methanol Fuel Cell DOF Degrees of Freedom DRIE Deep Reactive Ion Etch FEA Finite Element Analysis FEM Finite Element Modeling FOM Figure

  18. Nanostructural Characterization of Modified Homogalacturonan with Pectin Methylesterase from Jelly Fig (Ficus awkeotsang Makino) Achenes and Modeling of Enzyme Mode of Action

    USDA-ARS?s Scientific Manuscript database

    1. Justification: Pectin is a major hydrocolloid used in various food, cosmetics, and medicine pharmaceutical products. The relative amount of unmethylesterified galacturonic acid (GalA)residues and their distribution are key determinants of pectin functionality. Pectin methylesterase (PME) modifies...

  19. Hanford Tanks 241-C-203 and 241-C-204: Residual Waste Contaminant Release Model and Supporting Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.

    This report describes the development of release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. Key results from this work are (1) future releases from the tanks of the primary contaminants of concern (99Tc and 238U) can be represented by relatively simple solubility relationships between infiltrating water and solid phases containing the contaminants; and (2) high percentages of technetium-99 in the sludges (20 wt% in C-203 and 75more » wt% in C-204) are not readily water leachable, and, in fact, are very recalcitrant. This is similar to results found in related studies of sludges from Tank AY-102. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for the U.S. Department of Energy.« less

  20. Insights into substrate binding and catalysis in bacterial type I dehydroquinase.

    PubMed

    Maneiro, María; Peón, Antonio; Lence, Emilio; Otero, José M; Van Raaij, Mark J; Thompson, Paul; Hawkins, Alastair R; González-Bello, Concepción

    2014-09-15

    Structural, biochemical and computational studies to study substrate binding and the role of the conserved residues of the DHQ1 (type I dehydroquinase) enzyme active site are reported in the present paper. The crystal structure of DHQ1 from Salmonella typhi in complex with (2R)-2-methyl-3-dehydroquinic acid, a substrate analogue, was solved at 1.5 Å. The present study reveals a previously unknown key role for conserved Glu46, Phe145 and Met205 and Gln236, Pro234 and Ala233 residues, with the latter three being located in the flexible substrate-covering loop. Gln236 was shown to be responsible for the folding of this loop and for the dramatic reduction of its flexibility, which triggers active site closure. Glu46 was found to be key in bringing the substrate close to the lysine/histidine catalytic pocket to initiate catalysis. The present study could be useful in the rational design of inhibitors of this challenging and recognized target for the development of novel herbicides and antimicrobial agents.

Top