ERIC Educational Resources Information Center
Verbickas, Sarah
2002-01-01
Introduces the Classroom Space project aimed at revitalizing science education at Key Stages 3 and 4 by using exciting examples from Space Science and Astronomy to illustrate key science concepts. (Author/YDS)
Students' Conceptions of the "Reality Status" of Electrons.
ERIC Educational Resources Information Center
Mashhadi, Azam; Woolnough, Brian
Science has many explanatory concepts that have been proposed to account for the observable features of things. Such explanatory concepts often have associated with them hidden or unseen "theoretical entities." The electron is a key concept in understanding phenomena described by science. The question arises, however, as to how students…
A Comparison of Key Concepts in Data Analytics and Data Science
ERIC Educational Resources Information Center
McMaster, Kirby; Rague, Brian; Wolthuis, Stuart L.; Sambasivam, Samuel
2018-01-01
This research study provides an examination of the relatively new fields of Data Analytics and Data Science. We compare word rates in Data Analytics and Data Science documents to determine which concepts are mentioned most often. The most frequent concept in both fields is "data." The word rate for "data" is more than twice the…
NASA Astrophysics Data System (ADS)
Zeyer, Albert; Bölsterli, Katrin; Brovelli, Dorothee; Odermatt, Freia
2012-03-01
Sex is considered to be one of the most significant factors influencing attitudes towards science. However, the so-called brain type approach from cognitive science suggests that the difference in motivation to learn science does not primarily differentiate the girls from the boys, but rather the so-called systemisers from the empathizers. The present study investigates this hypothesis by using structural equation modelling on a sex-stratified sample of 500 male and female students of secondary II level. The results show, that the motivation to learn science is directly influenced by the systemizing quotient SQ, but not by sex. The impact of sex on the motivation to learn science, measured by five key concepts, only works indirectly, namely through the influence of sex on the SQ. The empathizing quotient (EQ) has no impact on the motivation to learn science. The SQ explains between 13 and 23 percent of the variation of the five key constructs. In female students, the impact of the SQ is very similar for all key concepts. In male students, it is highest for self-efficacy and lowest for assessment anxiety. The motivation to learn science is significantly larger for male students in all involved SMQ key concepts, but the difference is small. The interpretation of these findings and conclusions for science teaching and further research are discussed.
ERIC Educational Resources Information Center
Mabrouk, Patricia Ann
2013-01-01
High school and undergraduate research students were surveyed over the 10-week period of their summer research programs to investigate their understanding of key concepts in science ethics and whether their understanding changed over the course of their summer research experiences. Most of the students appeared to understand the issues relevant to…
A Quantitative Methodology for Determining the Critical Benchmarks for Project 2061 Strand Maps
ERIC Educational Resources Information Center
Kuhn, G.
2008-01-01
The American Association for the Advancement of Science (AAAS) was tasked with identifying the key science concepts for science literacy in K-12 students in America (AAAS, 1990, 1993). The AAAS Atlas of Science Literacy (2001) has organized roughly half of these science concepts or benchmarks into fifty flow charts. Each flow chart or strand map…
ERIC Educational Resources Information Center
Wan, Zhi Hong; Wong, Siu Ling; Wei, Bing; Zhan, Ying
2013-01-01
Drawing from the phenomenographic perspective, an exploratory study investigated Chinese teacher educators' conceptions of teaching Nature of Science (NOS) to pre-service science teachers through semi-structured interviews. Five key dimensions emerged from the data. This paper focuses on the dimension, "NOS content to be taught to pre-service…
Exploring High School Students' Perceptions of Solar Energy and Solar Cells
ERIC Educational Resources Information Center
Kishore, Padmini; Kisiel, James
2013-01-01
Although studies examining student understanding of key concepts are common throughout the science education literature, few have examined science concepts linked to conservation or environmental issues such as global warming and alternative energy. How students make sense of these complex concepts has the potential to influence their role as…
ERIC Educational Resources Information Center
Ward, Robin E.; Wandersee, James
2000-01-01
Students must understand key concepts through reasoning, searching out related concepts, and making connections within multiple systems to learn science. The Roundhouse diagram was developed to be a concise, holistic, graphic representation of a science topic, process, or activity. Includes sample Roundhouse diagrams, a diagram checklist, and…
ERIC Educational Resources Information Center
Ding, Lin
2014-01-01
Discipline-based science concept assessments are powerful tools to measure learners' disciplinary core ideas. Among many such assessments, the Brief Electricity and Magnetism Assessment (BEMA) has been broadly used to gauge student conceptions of key electricity and magnetism (E&M) topics in college-level introductory physics courses.…
Modeling Evolution in the Classroom: The Case of Fukushima's Mutant Butterflies
ERIC Educational Resources Information Center
Lark, Amy; Richmond, Gail; Pennock, Robert T.
2014-01-01
New science standards and reform recommendations spanning grades K--16 focus on a limited set of key scientific concepts from each discipline that all students should know. They also emphasize the integration of these concepts with science practices so that students learn not only the "what" of science but also the "how" and…
Student conceptions of the nature of science
NASA Astrophysics Data System (ADS)
Talbot, Amanda L.
Research has shown that students from elementary school to college have major misconceptions about the nature of science. While an appropriate understanding of the nature of science has been an objective of science education for a century, researchers using a variety of instruments, continue to document students' inadequate conceptions of what science is and how it operates as an enterprise. Current research involves methods to improve student understanding of the nature of science. Students often misunderstand the creative, subjective, empirical, and tentative nature of science. They do not realize the relationship between laws and theories, nor do they understand that science does not follow a prescribed method. Many do not appreciate the influence culture, society, and politics; nor do they have an accurate understanding of the types of questions addressed by science. This study looks at student understanding of key nature of science (NOS) concepts in order to examine the impact of implementing activities intended to help students better understand the process of science and to see if discussion of key NOS concepts following those activities will result in greater gains in NOS understanding. One class received an "activities only" treatment, while the other participated in the same activities followed by explicit discussion of key NOS themes relating to the activity. The interventions were implemented for one school year in two high school anatomy and physiology courses composed of juniors and seniors. Student views of the nature of science were measured using the Views of the Nature of Science-Form C (VNOS-C). Students in both classes demonstrated significant gains in NOS understanding. However, contrary to current research, the addition of explicit discussion did not result in significantly greater gains in NOS understanding. This suggests that perhaps students in higher-level science classes can draw the correlations between NOS related activities and important aspects of "real" science. Or perhaps that a curriculum with a varied approach my expose students to more aspects of science thus improving their NOS understanding.
ERIC Educational Resources Information Center
Haug, Berit S.; Ødegaard, Marianne
2014-01-01
This qualitative video study explores how two elementary school teachers taught for conceptual understanding throughout different phases of science inquiry. The teachers implemented teaching materials with a focus on learning science key concepts through the development of word knowledge. A framework for word knowledge was applied to examine the…
Politicizing science: conceptions of politics in science and technology studies.
Brown, Mark B
2015-02-01
This essay examines five ideal-typical conceptions of politics in science and technology studies. Rather than evaluating these conceptions with reference to a single standard, the essay shows how different conceptions of politics serve distinct purposes: normative critique, two approaches to empirical description, and two views of democracy. I discuss each conception of politics with respect to how well it fulfills its apparent primary purpose, as well as its implications for the purpose of studying a key issue in contemporary democratic societies: the politicization of science. In this respect, the essay goes beyond classifying different conceptions of politics and also recommends the fifth conception as especially conducive to understanding and shaping the processes whereby science becomes a site or object of political activity. The essay also employs several analytical distinctions to help clarify the differences among conceptions of politics: between science as 'political' (adjective) and science as a site of 'politics' (noun), between spatial-conceptions and activity-conceptions of politics, between latent conflicts and actual conflicts, and between politics and power. The essay also makes the methodological argument that the politics of science and technology is best studied with concepts and methods that facilitate dialogue between actors and analysts. The main goal, however, is not to defend a particular view of politics, but to promote conversation on the conceptions of politics that animate research in social studies of science and technology.
ERIC Educational Resources Information Center
Develaki, Maria
2016-01-01
Models and modeling are core elements of scientific methods and consequently also are of key importance for the conception and teaching of scientific methodology. The epistemology of models and its transfer and adaption to nature of science education are not, however, simple themes. We present some conceptual units in which school science models…
Vague Concepts in the Educational Sciences: Implications for Researchers
ERIC Educational Resources Information Center
Blikstad-Balas, Marte
2014-01-01
This article argues that many key theoretical concepts and core areas of study in the educational sciences are couched in paradigmatically vague terms. The shared features of vague terms and two different readings of vagueness are discussed. "Practice", which is widely used both as a theoretical and an empirical term in the field of…
ERIC Educational Resources Information Center
Lahti, Richard Dennis, II.
2012-01-01
Knowledge of scientific models and their uses is a concept that has become a key benchmark in many of the science standards of the past 30 years, including the proposed Next Generation Science Standards. Knowledge of models is linked to other important nature of science concepts such as theory change which are also rising in prominence in newer…
ERIC Educational Resources Information Center
Vikström, Anna
2014-01-01
The concept of matter, especially its particulate nature, is acknowledged as being one of the key concept areas in learning science. Within the framework of learning studies and variation theory, and with results from science education research as a starting point, six lower secondary school science teachers tried to enhance students'…
Teaching Einsteinian Physics at Schools: Part 1, Models and Analogies for Relativity
ERIC Educational Resources Information Center
Kaur, Tejinder; Blair, David; Moschilla, John; Stannard, Warren; Zadnik, Marjan
2017-01-01
The Einstein-First project aims to change the paradigm of school science teaching through the introduction of modern Einsteinian concepts of space and time, gravity and quanta at an early age. These concepts are rarely taught to school students despite their central importance to modern science and technology. The key to implementing the…
Three- and Four-Year Olds Learn about Gears through Arts Incorporation
ERIC Educational Resources Information Center
Stoycheva, Dessy; Perkins, Leann
2016-01-01
This research paper explores art integration into a science lesson unit that follows the Next Generation Science Standards (K-PS2-1) and focuses on the effects on memory retention of key concepts along with levels of enjoyment. An experiment was conducted with children ages 3 and 4 teaching scientific concepts about gears while incorporating…
Identifying Opportunities for Vertical Integration of Biochemistry and Clinical Medicine.
Wendelberger, Karen J.; Burke, Rebecca; Haas, Arthur L.; Harenwattananon, Marisa; Simpson, Deborah
1998-01-01
Objectives: Retention of basic science knowledge, as judged by National Board of Medical Examiners' (NBME) data, suffers due to lack of apparent relevance and isolation of instruction from clinical application, especially in biochemistry. However, the literature reveals no systematic process for identifying key biochemical concepts and associated clinical conditions. This study systematically identified difficult biochemical concepts and their common clinical conditions as a critical step towards enhancing relevance and retention of biochemistry.Methods: A multi-step/ multiple stakeholder process was used to: (1) identify important biochemistry concepts; (2) determine students' perceptions of concept difficulty; (3) assess biochemistry faculty, student, and clinical teaching scholars' perceived relevance of identified concepts; and (4) identify associated common clinical conditions for relevant and difficult concepts. Surveys and a modified Delphi process were used to gather data, subsequently analyzed using SPSS for Windows.Results: Sixteen key biochemical concepts were identified. Second year medical students rated 14/16 concepts as extremely difficult while fourth year students rated nine concepts as moderately to extremely difficult. On average, each teaching scholar generated common clinical conditions for 6.2 of the 16 concepts, yielding a set of seven critical concepts and associated clinical conditions.Conclusions: Key stakeholders in the instructional process struggle to identify biochemistry concepts that are critical, difficult to learn and associated with common clinical conditions. However, through a systematic process beginning with identification of concepts and associated clinical conditions, relevance of basic science instruction can be enhanced.
NASA's Gravitational-Wave Mission Concept Study
NASA Technical Reports Server (NTRS)
Stebbins, Robin
2012-01-01
With the conclusion of the NASA/ESA partnership on the Laser interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consists of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance. Three mission concepts have been studied by Team-X, JPL's concurrent design facility, to refine the conceptual design, evaluate key performance parameters, assess risk and estimate cost and schedule. The status of the Study are reported.
ERIC Educational Resources Information Center
Zhou, Guangli; Zha, Qiang
2010-01-01
China's key science and technology universities are modelled on the French "Ecole Polytechnique". As such, they are utilitarian institutions, rooted in the concept of cultivating manpower for society's economic progress, and tending to ignore the development of the individual. As China's elite higher education system took in a rapidly…
Science, practice, and place [Chapter 2
Daniel R. Williams
2013-01-01
Place-oriented inquiry and practice are proposed as keys to overcoming the persistent gap between science and practice. This chapter begins by describing some of the reasons science fails to simplify conservation practice, highlighting the challenges associated with the social and ecological sciences of multi-scaled complexity. Place concepts help scientists and...
ERIC Educational Resources Information Center
Sakschewski, Mark; Eggert, Sabina; Schneider, Susanne; Bögeholz, Susanne
2014-01-01
The concept of energy is one key component of science education curricula worldwide. While it is still being taught in many science classrooms from a mainly conceptual knowledge perspective, the need to frame the concept of energy as a socioscientific issue and implement it in the context of citizenship education and education for sustainable…
ERIC Educational Resources Information Center
Mikulecky, Larry
Interactive computer programs, developed at Indiana University's Learning Skills Center, were designed to model effective strategies for reading biology and psychology textbooks. For each subject area, computer programs and textbook passages were used to instruct and model for students how to identify key concepts, compare and contrast concepts,…
ERIC Educational Resources Information Center
Taylor, Elizabeth; And Others
Students' understandings of the concepts of price control, oligopoly, and power before, during, and after taking a social science foundation course (D101) at Great Britain's Open University were investigated. Students were asked 10 questions on key concepts taught in the course. Three of the questions are addressed: (1) Why doesn't the…
NASA Astrophysics Data System (ADS)
Deng, Zongyi
2001-05-01
The distinction between key ideas in teaching a high school science and key ideas in the corresponding discipline of science has been largely ignored in scholarly discourse about what science teachers should teach and about what they should know. This article clarifies this distinction through exploring how and why key ideas in teaching high school physics differ from key ideas in the discipline of physics. Its theoretical underpinnings include Dewey's (1902/1990) distinction between the psychological and the logical and Harré's (1986) epistemology of science. It analyzes how and why the key ideas in teaching color, the speed of light, and light interference at the high school level differ from the key ideas at the disciplinary level. The thesis is that key ideas in teaching high school physics can differ from key ideas in the discipline in some significant ways, and that the differences manifest Dewey's distinction. As a result, the article challenges the assumption of equating key ideas in teaching a high school science with key ideas in the corresponding discipline of science, and the assumption that having a college degree in science is sufficient to teach high school science. Furthermore, the article expands the concept of pedagogical content knowledge by arguing that key ideas in teaching high school physics constitute an essential component.
ERIC Educational Resources Information Center
Wan, Zhi Hong; Wong, Siu Ling; Zhan, Ying
2013-01-01
Nature of science (NOS) is beginning to find its place in the science education in China. In a study which investigated Chinese science teacher educators' conceptions of teaching NOS to prospective science teachers through semi-structured interviews, five key dimensions emerged from the data. This paper focuses on the dimension, "NOS content…
The Nation's Report Card Science 2009 State Snapshot Report. DoDEA. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. DoDEA. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
ERIC Educational Resources Information Center
Akarsu, Bayram
2007-01-01
This study investigates relationships between understanding of nature of science and four key factors elementary science teachers possess, which are: (1) Their specializations in different science areas (Physics, chemistry, and biology), (2) Gender issues, (3) How long they have been teaching in elementary school environments, (4) Their…
The Nation's Report Card Science 2009 State Snapshot Report. New Hampshire. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. New Mexico. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. New Mexico. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Colorado. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Colorado. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter,…
The Nation's Report Card Science 2009 State Snapshot Report. Hawaii. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Wisconsin. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Ohio. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Florida. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Ohio. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Arizona. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Mississippi. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Alabama. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Michigan. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Arkansas. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Georgia. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Oklahoma. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. New Jersey. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Missouri. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Illinois. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Idaho. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. South Dakota. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Louisiana. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. New Jersey. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Maine. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Wisconsin. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Connecticut. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Montana. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Maryland. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Mississippi. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Maryland. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Tennessee. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Hawaii. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Wyoming. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Minnesota. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. New York. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Louisiana. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Illinois. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Indiana. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Oregon. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Connecticut. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Oregon. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Idaho. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Alabama. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Arizona. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. New York. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Iowa. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Delaware. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. West Virginia. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Florida. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter,…
The Nation's Report Card Science 2009 State Snapshot Report. North Dakota. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. California. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Rhode Island. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Minnesota. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. North Carolina. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Utah. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. North Dakota. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. California. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Kentucky. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Pennsylvania. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Oklahoma. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. South Carolina. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Maine. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Tennessee. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Rhode Island. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Texas. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Iowa. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Washington. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. New Hampshire. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Massachusetts. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Washington. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Arkansas. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Georgia. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Indiana. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Missouri. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. West Virginia. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Montana. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Nevada. Grade 8, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
The Nation's Report Card Science 2009 State Snapshot Report. Massachusetts. Grade 4, Public Schools
ERIC Educational Resources Information Center
National Center for Education Statistics, 2011
2011-01-01
Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…
ERIC Educational Resources Information Center
Gray, Kyle
2017-01-01
Preservice elementary teachers are often required to take an Earth Science content course as part of their teacher education program but typically enter the course with little knowledge of key Earth Science concepts and are uncertain in their ability to teach science. This study investigated whether completing an inquiry-based Earth Science course…
Learning from Science Text: Role of an Elaborate Analogy. Reading Research Report No. 71.
ERIC Educational Resources Information Center
Glynn, Shawn M.
A study examined the role that an elaborate analogy can play when high school students learn a concept from a leading science textbook. The elaborate analogy had graphic and text components that integrated and mapped key features from the analogy (a factory) to the target concept (an animal cell). The target features were parts of the cell and, by…
ERIC Educational Resources Information Center
Wan, Zhi Hong; Wong, Siu Ling; Yung, Benny Hin Wai
2011-01-01
Teaching nature of science (NOS) is beginning to take root in science education in China. This exploratory study interviewed 24 science teacher educators from economically developed parts of China about their conceptions of teaching NOS to prospective science teachers. Five key dimensions emerged from the data. This paper focuses on the dimension…
Key Concepts in Microbial Oceanography
NASA Astrophysics Data System (ADS)
Bruno, B. C.; Achilles, K.; Walker, G.; Weersing, K.; Team, A
2008-12-01
The Center for Microbial Oceanography: Research and Education (C-MORE) is a multi-institution Science and Technology Center, established by the National Science Foundation in 2006. C-MORE's research mission is to facilitate a more comprehensive understanding of the diverse assemblages of microorganisms in the sea, ranging from the genetic basis of marine microbial biogeochemistry including the metabolic regulation and environmental controls of gene expression, to the processes that underpin the fluxes of carbon, related bioelements, and energy in the marine environment. The C-MORE education and outreach program is focused on increasing scientific literacy in microbial oceanography among students, educators, and the general public. A first step toward this goal is defining the key concepts that constitute microbial oceanography. After lengthy discussions with scientists and educators, both within and outside C-MORE, we have arrived at six key concepts: 1) Marine microbes are very small and have been around for a long time; 2) Life on Earth could not exist without microbes; 3) Most marine microbes are beneficial; 4) Microbes are everywhere: they are extremely abundant and diverse; 5) Microbes significantly impact our global climate; and 6) There are new discoveries every day in the field of microbial oceanography. A C-MORE-produced brochure on these six key concepts will be distributed at the meeting. Advanced copies may be requested by email or downloaded from the C-MORE web site(http://cmore.soest.hawaii.edu/downloads/MO_key_concepts_hi-res.pdf). This brochure also includes information on career pathways in microbial oceanography, with the aim of broadening participation in the field. C-MORE is eager to work in partnership to incorporate these key concepts into other science literacy publications, particularly those involving ocean and climate literacy. We thank the following contributors and reviewers: P Chisholm, A Dolberry, and A Thompson (MIT); N Lawrence (Santa Cruz Boardwalk); R Foster, S Mansergh and P Moisander (UC Santa Cruz); A Culley, K Doggett, J Edmonds, A Eiler, A Fong, D Hayakawa, D Karl, P Kemp, B Li, N Puniwai, B Wai, and S Wilson (U Hawaii); J Becker and M Nieto-Cid (WHOI); M McCaffrey (CIRES).
Seventh Grade Interdisciplinary Packet (Science-Social Studies).
ERIC Educational Resources Information Center
Madison Public Schools, WI. Dept. of Curriculum Development.
GRADES OR AGES: Grade 7. SUBJECT MATTER: Science and Social Studies. ORGANIZATION AND PHYSICAL APPEARANCE: This guide presents a series of earth sciences units which would have interdisciplinary potential specifically in the area of social studies. Introductory material includes a rationale, evaluation procedures, 44 "key" environmental concepts,…
NASA Astrophysics Data System (ADS)
Hand, K. P.; Murray, A. E.; Garvin, J.; Horst, S.; Brinckerhoff, W.; Edgett, K.; Hoehler, T.; Russell, M.; Rhoden, A.; Yingst, R. A.; German, C.; Schmidt, B.; Paranicas, C.; Smith, D.; Willis, P.; Hayes, A.; Ehlmann, B.; Lunine, J.; Templeton, A.; Nealson, K.; Christner, B.; Cable, M.; Craft, K.; Pappalardo, R.; Hofmann, A.; Nordheim, T.; Phillips, C.
2018-06-01
The Europa Lander mission concept would address key questions regarding ice properties and surface activity, including characterizing any plume deposits, understanding local topography, searching for evidence of interactions with liquid water.
ERIC Educational Resources Information Center
Kepler, Lynne
Favorite science topics like seeds and plants, evaporation, light and shadow, and animal observation are the subjects of the eight windowsill science centers included in this book. Each of the science centers includes a discussion of the process skills that students will use, several hands-on activities, explanation of key concepts and vocabulary,…
ERIC Educational Resources Information Center
Zendler, Andreas; Klaudt, Dieter
2012-01-01
The significance of computer science for economics and society is undisputed. In particular, computer science is acknowledged to play a key role in schools (e.g., by opening multiple career paths). The provision of effective computer science education in schools is dependent on teachers who are able to properly represent the discipline and whose…
NASA Astrophysics Data System (ADS)
Cooray, Asantha; Origins Space Telescope Study Team
2018-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, our completed first mission concept and an introduction to the second concept that will be studied at the study center in 2018. This presentation will also summarize key science drivers and the key study milestones between 2018 and 2020.
Engage key social concepts for sustainability
C. C. Hicks; A. Levine; A. Agrawal; X. Basurto; S. J. Breslow; C. Carothers; Susan Charnley; S. Coulthard; N. Dolsak; J. Donatuto; C. Garcia-Quijano; M. B. Mascia; K. Norman; M. R. Poe; T. Satterfield; K. St. Martin; P. S. Levin
2016-01-01
With humans altering climate processes, biogeochemical cycles, and ecosystem functions (1), governments and societies confront the challenge of shaping a sustainable future for people and nature. Policies and practices to address these challenges must draw on social sciences, along with natural sciences and engineering (2). Although various social science approaches...
Making Sense of Natural Selection
ERIC Educational Resources Information Center
Passmore, Cynthia; Coleman, Elizabeth; Horton, Jennifer; Parker, Heather
2013-01-01
At its core, science is about making sense of the world around us. Therefore, science education should engage students in that sense-making process. Helping students make sense of disciplinary core ideas and crosscutting concepts by engaging in scientific practices is the key innovation of the "Next Generation Science Standards"…
ERIC Educational Resources Information Center
Green, David A.; Loertscher, Jennifer; Minderhout, Vicky; Lewis, Jennifer E.
2017-01-01
The process of identifying threshold concepts invites experts to reflect on their discipline in a new way with the ultimate goal of improving learning and teaching. During a workshop to identify threshold concepts in biochemistry, we asked a group of natural scientists to explore "signification," a threshold concept from the humanities,…
ERIC Educational Resources Information Center
Abate, Marie A.; Meyer-Stout, Paula J.; Stamatakis, Mary K.; Gannett, Peter M.; Dunsworth, Teresa S.; Nardi, Anne H.
2000-01-01
Describes development and evaluation of eight computerized problem-based learning (PBL) cases in medicinal chemistry and pharmaceutics concepts. Case versions either incorporated concept maps emphasizing key ideas or did not. Student performance on quizzes did not differ between the different case versions and was similar to that of students who…
Radio Science Concepts and Approaches for Jupiter Icy Moons Orbiter
NASA Technical Reports Server (NTRS)
Anderson, J. D.; Asmar, S. W.; Castillo, J. C.; Folkner, W. M.; Konopliv, A. S.; Marouf, E. A.; Rappaport, N. J.; Schubert, G.; Spilker, T. R.; Tyler, G. L.
2003-01-01
Radio Science experiments have been conducted on most deep space missions leading to numerous scientific discoveries. A set of concepts and approaches are proposed for the Jupiter Icy Moons Orbiter (JIMO) to apply Radio Science tools to investigate the interior structures of the Galilean Satellites and address key questions on their thermal and dynamical evolution. Measurements are identified that utilize the spacecraft's telecommunication system. Additional instruments can augment these measurements in order to leverage observational synergies. Experiments are also offered for the purpose of investigating the atmospheres and surfaces of the satellites.
ERIC Educational Resources Information Center
Hoffman, Martos; Barstow, Daniel
2007-01-01
The National Oceanic and Atmospheric Administration (NOAA) commissioned TERC to complete a review of science education standards for all 50 states. The study analyzed K-12 Earth science standards to determine how well each state addresses key Earth-science content, concepts and skills. This report reveals that few states have thoroughly integrated…
Inquiry into the Heart of a Comet
ERIC Educational Resources Information Center
Cobb, Whitney; Roundtree-Brown, Maura; McFadden, Lucy; Warner, Elizabeth
2011-01-01
Real science means wrangling with peers over real ideas. Wouldn't it be thrilling to emulate a real life model of science in action in classrooms? How? By starting with a great, hands-on activity modeling an object in space that introduces both key vocabulary and science concepts with visuals to support retention and learning; encouraging…
A Simulation for Teaching the Basic and Clinical Science of Fluid Therapy
ERIC Educational Resources Information Center
Rawson, Richard E.; Dispensa, Marilyn E.; Goldstein, Richard E.; Nicholson, Kimberley W.; Vidal, Noni Korf
2009-01-01
The course "Management of Fluid and Electrolyte Disorders" is an applied physiology course taught using lectures and paper-based cases. The course approaches fluid therapy from both basic science and clinical perspectives. While paper cases provide a basis for application of basic science concepts, they lack key components of genuine clinical…
"Phronesis": Children's Local Rural Knowledge of Science and Engineering
ERIC Educational Resources Information Center
Avery, Leanne M.; Kassam, Karim-Aly
2011-01-01
This study analyzes videotaped interviews and 407 photographs taken by 20 grade 5 and 6 students in rural New York State to document their science and engineering learning. Aristotle's concept of phronesis or practical wisdom frames the findings and their implications. Key findings indicate that: (1) All 20 children found examples of science and…
World views: Their nature and function in the biology classroom
NASA Astrophysics Data System (ADS)
Armstrong, Kerri Lynn
There has been sufficient research in the area of conceptual change that indicates that students' conceptions or alternative theories are much more resistant to change than was previously thought. The work of cultural anthropologists and, more recently science educators, points to the role of individual world views in the learning of science concepts. A world view is one's fundamental assumptions and presuppositions concerning perceptions of reality. The purpose of this ethnographic investigation was to shed light on the dynamic interaction of individual world views within the college biology classroom in relation to understanding key biological concepts in genetics, evolution and natural selection, and ecology and ecological relationships. The subjects for this study were 22 students enrolled in an introductory level non-majors biology class at the Community College of Philadelphia. Ten of these students participated in the interviews reported here. The outcomes of this investigation revealed that students do not view themselves as part of science or nature. The investigation also uncovered students' views of the self, nonself, relationship and causality that affect their learning and apprehension of key biological concepts. This investigation provides further demonstration of the influence of world views and the interplay of those views with the notion of scientific literacy.
NASA Astrophysics Data System (ADS)
Lee, Yeung Chung; Lee, Carole Kwan-Ping; Lam, Irene Chung-Man; Kwok, Ping Wai; So, Winnie Wing-Mui
2018-01-01
International studies of science education, such as the Trends in Mathematics and Science Study (TIMSS), have revealed considerable national disparities in students' achievements in science education. The results have prompted many nations to compare their science education systems and practices to those of others, to gain insights for improvement. Teacher training and professional development are key educational components that have not attracted as much attention as they deserve in international comparative studies. This study compares the conceptions and attitudes of pre-service elementary teachers (PSETs) in Hong Kong and the United States with respect to inquiry science learning and teaching at the beginning of the semester before the start of the science methods course. PSETs' conceptions and attitudes in the two countries were compared by means of a questionnaire with both Likert-type and open-ended questions. Quantitative data were analyzed using exploratory factor analysis and inferential statistics, while qualitative data were analyzed through the systematic categorization of PSETs' responses into broad themes and subthemes to reflect patterns in their conceptions of and attitudes toward inquiry science learning and teaching. The results revealed a complex interplay between PSETs' conceptions of and attitudes toward inquiry science learning and teaching. The results shed light on the effects of sociocultural contexts and have important implications for the design of science methods courses.
Modeling Exponential Population Growth
ERIC Educational Resources Information Center
McCormick, Bonnie
2009-01-01
The concept of population growth patterns is a key component of understanding evolution by natural selection and population dynamics in ecosystems. The National Science Education Standards (NSES) include standards related to population growth in sections on biological evolution, interdependence of organisms, and science in personal and social…
Austvoll-Dahlgren, Astrid; Nsangi, Allen; Semakula, Daniel
2016-12-29
People's ability to appraise claims about treatment effects is crucial for informed decision-making. Our objective was to systematically map this area of research in order to (a) provide an overview of interventions targeting key concepts that people need to understand to assess treatment claims and (b) to identify assessment tools used to evaluate people's understanding of these concepts. The findings of this review provide a starting point for decisions about which key concepts to address when developing new interventions, and which assessment tools should be considered. We conducted a systematic mapping review of interventions and assessment tools addressing key concepts important for people to be able to assess treatment claims. A systematic literature search was done by a reserach librarian in relevant databases. Judgement about inclusion of studies and data collection was done by at least two researchers. We included all quantitative study designs targeting one or more of the key concepts, and targeting patients, healthy members of the public, and health professionals. The studies were divided into four categories: risk communication and decision aids, evidence-based medicine and critical appraisal, understanding of controlled trials, and science education. Findings were summarised descriptively. We included 415 studies, of which the interventions and assessment tools we identified included only a handful of the key concepts. The most common key concepts in interventions were "Treatments usually have beneficial and harmful effects," "Treatment comparisons should be fair," "Compare like with like," and "Single studies can be misleading." A variety of assessment tools were identified, but only four assessment tools included 10 or more key concepts. There is great potential for developing learning and assessment tools targeting key concepts that people need to understand to assess claims about treatment effects. There is currently no instrument covering assessment of all these key concepts.
Nanomedicine concepts in the general medical curriculum: initiating a discussion
Sweeney, Aldrin E
2015-01-01
Various applications of nanoscale science to the field of medicine have resulted in the ongoing development of the subfield of nanomedicine. Within the past several years, there has been a concurrent proliferation of academic journals, textbooks, and other professional literature addressing fundamental basic science research and seminal clinical developments in nanomedicine. Additionally, there is now broad consensus among medical researchers and practitioners that along with personalized medicine and regenerative medicine, nanomedicine is likely to revolutionize our definitions of what constitutes human disease and its treatment. In light of these developments, incorporation of key nanomedicine concepts into the general medical curriculum ought to be considered. Here, I offer for consideration five key nanomedicine concepts, along with suggestions regarding the manner in which they might be incorporated effectively into the general medical curriculum. Related curricular issues and implications for medical education also are presented. PMID:26677322
Key Concept Mathematics and Management Science Models
ERIC Educational Resources Information Center
Macbeth, Thomas G.; Dery, George C.
1973-01-01
The presentation of topics in calculus and matrix algebra to second semester freshmen along with a treatment of exponential and power functions would permit them to cope with a significant portion of the mathematical concepts that comprise the essence of several disciplines in a business school curriculum. (Author)
Intentionality and Wisdom in Language, Information, and Technology
ERIC Educational Resources Information Center
Lin, Lin; Ross, Haj; O'Connor, Brian; Spector, J. Michael
2015-01-01
An interdisciplinary approach from linguistics, information sciences, learning sciences, and educational technology is used to explore the concept of information. Several key issues are highlighted, including: (1) learning language through meaning or probability; (2) the situational difference between message and meaning; (3) relationship between…
75 Easy Life Science Demonstrations. Teacher Book.
ERIC Educational Resources Information Center
Kardos, Thomas
This book is a collection of life science classroom demonstrations. Explanations that review key concepts are included. Topics are: stimulus and response; gravitropism; phototropism; living organisms; carbon dioxide; gases emitted by plants; greenhouse effect; stomata; transpiration; leaf skeletons; seed growth; water evaporation in plants; carbon…
Charles Darwin's Botanical Investigations
ERIC Educational Resources Information Center
Harley, Suzanne M.
2010-01-01
Charles Darwin's botanical studies provide a way to expose students to his work that followed the publication of "On the Origin of Species." We can use stories from his plant investigations to illustrate key concepts in the life sciences and model how questions are asked and answered in science.
ERIC Educational Resources Information Center
Gokpinar, Tuba; Reiss, Michael
2016-01-01
The literature in science education highlights the potentially significant role of outside-school factors such as parents, cultural contexts and role models in students' formation of science attitudes and aspirations, and their attainment in science classes. In this paper, building on and linking Bourdieu's key concepts of habitus, cultural and…
Joint IKI/ROSCOSMOS - NASA Science Definition Team and concept mission to Venus based on Venera-D
NASA Astrophysics Data System (ADS)
Zasova, L.; Senske, D.; Economou, T.; Eismont, N.; Esposito, L.; Gerasimov, M.; Gorinov, D.; Ignatiev, N.; Ivanov, M.; Jessup, K. Lea; Khatuntsev, I.; Korablev, O.; Kremic, T.; Limaye, S.; Lomakin, I.; Martynov, A.; Ocampo, A.; Vaisberg, O.; Burdanov, A.
2017-09-01
NASA and IKI/Roscosmos established in 2015 a Joint Science Definition Team (JSDT), a key task of which was to codify the synergy between the goals of Venera-D with those of NASA. In addition, the JSDT studied potential NASA provided mission augmentations (experiments /elements) that could to fill identified science gaps. The first report to NASA - IKI/Roscosmos was provided in January 2017. The baseline Venera-D concept includes two elements, and orbiter and a lander, with potential contributions consisting of an aerial platform/balloon, small long-lived surface stations or a sub-satellite.
Teaching Ecological Concepts with Mud Dauber Nests.
ERIC Educational Resources Information Center
Matthews, Robert W.; Matthews, Janice R.
1999-01-01
Contends that mud dauber nests--which are widely available, safe, inexpensive, and easy to use--offer a novel and highly motivating way to teach ecological concepts to life science students at many grade levels. Presents background information for teachers, details classroom-tested methods for nest dissection, provides keys to nest contents, and…
USDA-ARS?s Scientific Manuscript database
Biological diversity is a key concept in the life sciences and plays a fundamental role in many ecological and evolutionary processes. Although biodiversity is inherently a hierarchical concept covering different levels of organization (genes, population, species, ecological communities and ecosyst...
Turkish Student Science Teachers' Conceptions of Sustainable Development: A Phenomenography
ERIC Educational Resources Information Center
Kilinc, Ahmet; Aydin, Abdullah
2013-01-01
In creating a society whose citizens have sustainable lifestyles, education for sustainable development (ESD) plays a key role. However, the concept of sustainable development (SD) has developed independently from the input of educators; therefore, ESD presents current teachers with many challenges. At this point, understanding how stakeholders in…
NASA Astrophysics Data System (ADS)
Debari, S. M.; Bachmann, J.; Dougan, B.; Fackler-Adams, B.; Kratz, R.; Linneman, S.; Plake, T.; Smith, B.
2008-12-01
A new curriculum for an introductory geology course, Geology and Everyday Thinking (GET), incorporates the key research findings of How People Learn (NAS, 1999), and is based on the pedagogical approach of Physics and Everyday Thinking (PET; http://petproject.sdsu.edu/). These key findings have profound implications for developing teaching strategies that promote student learning. They suggest that for learning to occur: 1) students' preconceptions must be engaged, 2) students must be able to build their own conceptual framework, and 3) students must be given an opportunity to reflect on their learning (metacognition). Our curriculum has been carefully constructed into cycles that apply these key findings while exploring a key geologic concept. Each cycle engages students' 'Initial Ideas' about these concepts (and continuously revisits those Initial Ideas), sequentially builds upon concepts in a logical framework, and requires reflective writing. The curriculum employs questioning, small group work, and small and large class discussions. Students construct concepts by doing inquiry lab activities, but embedded group discussions that promote discourse and questioning among students is a crucial tool in the sense-making and solidification of those concepts. The questioning and discourse occur throughout each module so that students' preconceptions about a particular concept are brought out early on, and are revisited and challenged again as students construct their new understanding. Whiteboarding, or the process of sharing small-group ideas to a larger group, is the primary method of generating discussion. The instructor's role as facilitator and questioner is the cornerstone in this process. The primary audience for this course is future elementary teachers, who are required take a year-long science sequence. The year-long sequence includes physics (PET), geology (GET), and a correlative new curriculum in biology (BET). Class size is limited to 24 students, and the sequence is taught at a 4-year university as well as at four regional feeder community colleges. These courses model an inquiry-based teaching methodology that our pre-service teachers will use to teach science to their future students. Both quantitative and qualitative assessment data collected from our students show impressive gains both in attitudes about science and science content, especially compared to larger lecture-based introductory courses.
Threshold concepts as barriers to understanding climate science
NASA Astrophysics Data System (ADS)
Walton, P.
2013-12-01
Whilst the scientific case for current climate change is compelling, the consequences of climate change have largely failed to permeate through to individuals. This lack of public awareness of the science and the potential impacts could be considered a key obstacle to action. The possible reasons for such limited success centre on the issue that climate change is a complex subject, and that a wide ranging academic, political and social research literature on the science and wider implications of climate change has failed to communicate the key issues in an accessible way. These failures to adequately communicate both the science and the social science of climate change at a number of levels results in ';communication gaps' that act as fundamental barriers to both understanding and engagement with the issue. Meyer and Land (2003) suggest that learners can find certain ideas and concepts within a discipline difficult to understand and these act as a barrier to deeper understanding of a subject. To move beyond these threshold concepts, they suggest that the expert needs to support the learner through a range of learning experiences that allows the development of learning strategies particular to the individual. Meyer and Land's research into these threshold concepts has been situated within Economics, but has been suggested to be more widely applicable though there has been no attempt to either define or evaluate threshold concepts to climate change science. By identifying whether common threshold concepts exist specifically in climate science for cohorts of either formal or informal learners, scientists will be better able to support the public in understanding these concepts by changing how the knowledge is communicated to help overcome these barriers to learning. This paper reports on the findings of a study that examined the role of threshold concepts as barriers to understanding climate science in a UK University and considers its implications for wider scientific engagement with the public to develop climate literacy. The analysis of 3 successive cohorts of students' journals who followed the same degree module identified that threshold concepts do exist within the field, such as those related to: role of ocean circulation, use of proxy indicators, forcing factors and feedback mechanisms. Once identified, the study looked at possible strategies to overcome these barriers to support student climate literacy. It concluded that the use of threshold concepts could be problematic when trying to improve climate literacy, as each individual has their own concepts they find ';troublesome' that do not necessarily relate to others. For scientists this presents the difficulty of how to develop a strategy that supports the individual that is cost and time effective. However, the study identifies that eLearning can be used effectively to help people understand troublesome knowledge.
Soft Skills and the Science Curriculum
ERIC Educational Resources Information Center
Ediger, Marlow
2017-01-01
Care must be given to align curricular goal and instructional methods, materials, and assessments. Student effort, student interest in science and pupil perseverance are key factors that impact the learning process. Educators must be aware of the interactions among these critical concepts to assist students in attaining desired outcomes.
Life Sciences: Curriculum Resources and Activities for School Librarians and Teachers.
ERIC Educational Resources Information Center
Bain, Amy; Richer, Janet; Weckman, Janet
This book provides resources to teachers and librarians for creating thematic units on specific topics targeting grades K-8. Each topic includes key concepts, comprehensive teaching resources, teaching resources (nonfiction children's literature), reading selections (fiction children's literature), science activities, creative writing and art…
Earth Sciences: Curriculum Resources and Activities for School Librarians and Teachers.
ERIC Educational Resources Information Center
Bain, Amy; Richer, Janet; Weckman, Janet
This book provides resources to teachers and librarians for creating thematic units on specific topics targeting grades K-8. Each topic includes key concepts, comprehensive teaching resources, teaching resources (nonfiction children's literature), reading selections (fiction children's literature), science activities, creative writing and art…
Physical Sciences: Curriculum Resources and Activities for School Librarians and Teachers.
ERIC Educational Resources Information Center
Bain, Amy; Richer, Janet; Weckman, Janet
This book provides resources to teachers and librarians for creating thematic units on specific topics targeting grades K-8. Each topic includes key concepts, comprehensive teaching resources, teaching resources (nonfiction children's literature), reading selections (fiction children's literature), science activities, creative writing and art…
ERIC Educational Resources Information Center
Cummins, Sunday
2015-01-01
Although students do need hands-on experiences to master key skills in science, technology, and engineering, Cummins asserts, K-12 teachers should also help students understand key STEM concepts by reading, writing, and talking about the work of professional scientists and engineers. Cummins lists high-quality texts that help young people…
Europa Explorer Operational Scenarios Development
NASA Technical Reports Server (NTRS)
Lock, Robert E.; Pappalardo, Robert T.; Clark, Karla B.
2008-01-01
In 2007, NASA conducted four advanced mission concept studies for outer planets targets: Europa, Ganymede, Titan and Enceladus. The studies were conducted in close cooperation with the planetary science community. Of the four, the Europa Explorer Concept Study focused on refining mission options, science trades and implementation details for a potential flagship mission to Europa in the 2015 timeframe. A science definition team (SDT) was appointed by NASA to guide the study. A JPL-led engineering team worked closely with the science team to address 3 major focus areas: 1) credible cost estimates, 2) rationale and logical discussion of radiation risk and mitigation approaches, and 3) better definition and exploration of science operational scenario trade space. This paper will address the methods and results of the collaborative process used to develop Europa Explorer operations scenarios. Working in concert with the SDT, and in parallel with the SDT's development of a science value matrix, key mission capabilities and constraints were challenged by the science and engineering members of the team. Science goals were advanced and options were considered for observation scenarios. Data collection and return strategies were tested via simulation, and mission performance was estimated and balanced with flight and ground system resources and science priorities. The key to this successful collaboration was a concurrent development environment in which all stakeholders could rapidly assess the feasibility of strategies for their success in the full system context. Issues of science and instrument compatibility, system constraints, and mission opportunities were treated analytically and objectively leading to complementary strategies for observation and data return. Current plans are that this approach, as part of the system engineering process, will continue as the Europa Explorer Concept Study moves toward becoming a development project.
Application of the Reggio Emilia Approach to Early Childhood Science Curriculum.
ERIC Educational Resources Information Center
Stegelin, Dolores A.
2003-01-01
This article focuses on the relevance of the Reggio Emilia approach to early childhood education for science knowledge and content standards for the preK-12 student population. The article includes: (1) a summary of key concepts; (2) a description of the science curriculum standards for K-3 in the United States; and (3) an example of an in-depth…
Physical Oceanography: Project Earth Science. Material for Middle School Teachers in Earth Science.
ERIC Educational Resources Information Center
Ford, Brent A.; Smith, P. Sean
This book is one in a series of Earth science books and contains a collection of 18 hands-on activities/demonstrations developed for the middle/junior high school level. The activities are organized around three key concepts. First, students investigate the unique properties of water and how these properties shape the ocean and the global…
The fruits of a functional approach for psychological science.
Stewart, Ian
2016-02-01
The current paper introduces relational frame theory (RFT) as a functional contextual approach to complex human behaviour and examines how this theory has contributed to our understanding of several key phenomena in psychological science. I will first briefly outline the philosophical foundation of RFT and then examine its conceptual basis and core concepts. Thereafter, I provide an overview of the empirical findings and applications that RFT has stimulated in a number of key domains such as language development, linguistic generativity, rule-following, analogical reasoning, intelligence, theory of mind, psychopathology and implicit cognition. © 2015 International Union of Psychological Science.
Student-Accessible Science Texts: Elements of Design
ERIC Educational Resources Information Center
McTigue, Erin M.; Slough, Scott W.
2010-01-01
Within this article, we introduce our conception of text accessibility. First, we synthesize recent research on informational text quality and present key attributes proven to contribute to comprehension of science texts beyond the readability formula. These features include (a) the concreteness of text, (b) the voice of the author, (c) coherent…
Artful Teaching and Science Investigations: A Perfect Match
ERIC Educational Resources Information Center
McGee, Christy
2018-01-01
Tomlinson's explanation of Artful Teaching and her 2017 expansion of this concept The Five Key Elements of Differentiation provide the theoretical framework of this examination of the need for science investigations in elementary schools. The Artful Teaching framework uses an equilateral triangle with vertices labeled The Teacher, The Student, and…
Building Dynamic Conceptual Physics Understanding
ERIC Educational Resources Information Center
Trout, Charlotte; Sinex, Scott A.; Ragan, Susan
2011-01-01
Models are essential to the learning and doing of science, and systems thinking is key to appreciating many environmental issues. The National Science Education Standards include models and systems in their unifying concepts and processes standard, while the AAAS Benchmarks include them in their common themes chapter. Hyerle and Marzano argue for…
Rethinking Resources and Hybridity
ERIC Educational Resources Information Center
Gonsalves, Allison J.; Seiler, Gale; Salter, Dana E.
2011-01-01
This review explores Alfred Schademan's "What does playing cards have to do with science? A resource-rich view of African American young men" by examining how he uses two key concepts--hybridity and resources--to propose an approach to science education that counters enduring deficit notions associated with this population. Our response to…
Europa Explorer - An Exceptional Mission Using Existing Technology
NASA Technical Reports Server (NTRS)
Clark, Karla B.
2007-01-01
A mission to Europa has been identified as a high priority by the science community for several years. The difficulty of an orbital mission, primarily due to the propulsive requirements and Jupiter's trapped radiation, led to many studies which investigated various approaches to meeting the science goals. The Europa Orbiter Mission studied in the late 1990's only met the most fundamental science objectives. The science objectives have evolved with the discoveries from the Galileo mission. JPL studied one concept, Europa Explorer, for a Europa orbiting mission which could meet a much expanded set of science objectives. A study science group was formed to verify that the science objectives and goals were being adequately met by the resulting mission design concept. The Europa Explorer design emerged primarily from two key self-imposed constraints: 1) meet the full set of identified nonlander science objectives and 2) use only existing technology.
The path to an experiment in space (from concept to flight)
NASA Technical Reports Server (NTRS)
Salzman, Jack A.
1994-01-01
The following are discussed in this viewgraph presentation on developing flight experiments for NASA's Microgravity Science and Applications Program: time from flight PI selection to launch; key flight experiment phases and schedule drivers; microgravity experiment definition/development process; definition and engineering development phase; ground-based reduced gravity research facilities; project organization; responsibilities and duties of principle investigator/co-investigators, project scientist, and project manager; the science requirements document; flight development phase; experiment cost and schedule; and keys to experiment success.
Lower-Cost, Relocatable Lunar Polar Lander and Lunar Surface Sample Return Probes
NASA Technical Reports Server (NTRS)
Amato, G. Michael; Garvin, James B.; Burt, I. Joseph; Karpati, Gabe
2011-01-01
Key science and exploration objectives of lunar robotic precursor missions can be achieved with the Lunar Explorer (LEx) low-cost, robotic surface mission concept described herein. Selected elements of the LEx concept can also be used to create a lunar surface sample return mission that we have called Boomerang
ERIC Educational Resources Information Center
Lynch, Mary Jean; Zenchak, John
2011-01-01
How can a science concept be taught in a way that generates interest, gives students the opportunity to consider other possibilities, does not lock them into one way of doing or seeing things, and gives them some ownership of their learning? These authors searched high and low for the perfect activity to illustrate a key concept for their partner…
NASA Astrophysics Data System (ADS)
Ward, Robin Eichel
This research explored the effects of Roundhouse diagram construction and use on meaningful learning of science concepts in a 6th-grade science classroom. This investigation examined the transformation of students' science concepts as they became more proficient in constructing Roundhouse diagrams, what problems students encountered while constructing Roundhouse diagrams, and how choices of iconic images affected their progress in meaningfully learning science concepts as they constructed a series of Roundhouse diagrams. The process of constructing a Roundhouse diagram involved recognizing the learner's relevant existing concepts, evaluating the central concepts for a science lesson and breaking them down into their component parts, reconstructing the learner's conceptual framework by reducing the amount of detail efficiently, reviewing the reconstruction process, and linking each key concept to an iconic image. The researcher collected and analyzed qualitative and quantitative data to determine the effectiveness of the Roundhouse diagram. Data included field notes, observations, students' responses to Roundhouse diagram worksheets, students' perceptions from evaluation sheets, students' mastery of technique sheets, tapes and transcripts of students' interviews, student-constructed Roundhouse diagrams, and documentation of science grades both pre- and post-Roundhouse diagramming. This multiple case study focused on six students although the whole class was used for statistical purposes. Stratified purposeful sampling was used to facilitate comparisons as well as week-by-week comparisons of students' science grades and Roundhouse diagram scores to gain additional insight into the effectiveness of the Roundhouse diagramming method. Through participation in constructing a series of Roundhouse diagrams, middle school students gained a greater understanding of science concepts. Roundhouse diagram scores improved over time during the 10-week Roundhouse diagramming session. Students' science scores improved as they became more proficient in constructing the Roundhouse diagrams. The major problems associated with constructing Roundhouse diagrams were extracting the main ideas from the textbook, understanding science concepts in terms of whole/part relationships, paraphrasing sentences effectively, and sequencing events in an accurate order. A positive relationship existed for the case study group based on students' choices and drawings of iconic images and the meaningful learning of science concepts.
NASA Technical Reports Server (NTRS)
1982-01-01
The state-of-the-art of multispectral sensing is reviewed and recommendations for future research and development are proposed. specifically, two generic sensor concepts were discussed. One is the multispectral pushbroom sensor utilizing linear array technology which operates in six spectral bands including two in the SWIR region and incorporates capabilities for stereo and crosstrack pointing. The second concept is the imaging spectrometer (IS) which incorporates a dispersive element and area arrays to provide both spectral and spatial information simultaneously. Other key technology areas included very large scale integration and the computer aided design of these devices.
Titan exploration with advanced systems. A study of future mission concepts
NASA Technical Reports Server (NTRS)
1983-01-01
The requirements, capabilities, and programmatic issues associated with science-intensive mission concepts for the advanced exploration of Saturn's largest satellite are assessed. The key questions to be answered by a Titan exploratory mission are: (1) the atmospheric composition; (2) the atmospheric structure; (3) the nature of the surface; and (4) the nature of the interior of Titan. Five selected mission concepts are described in terms of their design requirements. Mission hardware concepts include balloons and/or blimps which will allow both atmospheric and surface observations for a long period of time. Key aspects of performance analysis are presented. Mission profiles and cost summaries are given. Candidate payloads are identified for imaging and nonimaging orbiters, a buoyant station, a haze probe, and a penetrator.
Schatzberg, Eric
2012-09-01
Before "applied science" and "technology" became keywords, the concept of art was central to discourse about material culture and its connections to natural knowledge. By the late nineteenth century, a new discourse of applied science had replaced the older discourse of art. This older discourse of art, especially as presented in Enlightenment encyclopedias, addressed the relationship between art and science in depth. But during the nineteenth century the concept of fine art gradually displaced the broader meanings of "art," thus undermining the utility of the term for discourse on the relationship between knowledge and practice. This narrowed meaning of "art" obscured key aspects of the industrial world. In effect, middle-class agents of industrialism, including "men of science," used the rhetoric of "applied science" and, later, "technology" to cement the exclusion of artisanal knowledge from the discourse of industrial modernity.
Key Concepts of Environmental Sustainability in Family and Consumer Sciences
ERIC Educational Resources Information Center
Thompson, Nancy E.; Harden, Amy J.; Clauss, Barbara; Fox, Wanda S.; Wild, Peggy
2012-01-01
It is the vision of the American Association of Family & Consumer Sciences to be "recognized as the driving force in bringing people together to improve the lives of individuals, families, and communities" (AAFCS, 2010). Because of this focus on individuals and families and its well-established presence in American schools, family and consumer…
Understanding Economic and Management Sciences Teachers' Conceptions of Sustainable Development
ERIC Educational Resources Information Center
America, Carina
2014-01-01
Sustainable development has become a key part of the global educational discourse. Education for sustainable development (ESD) specifically is pronounced as an imperative for different curricula and regarded as being critical for teacher education. This article is based on research that was conducted on economic and management sciences (EMS)…
SPECS: The Kilometer-baseline Far-IR Interferometer in NASA's Space Science Roadmap Presentation
NASA Technical Reports Server (NTRS)
Abel, Tom; Allen, Ron; Benford, Dominic; Blain, Andrew; Bombardelli, Claudio; Calzetti, Daniela; DiPirro, Michael J.; Ehrenfreund, Pascale; Evans, Neal; Fischer, Jackie
2004-01-01
A viewgraph presentation describing the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) mission is shown. The topics include: 1) Context: community planning and study status; 2) Science goals; 3) Mission requirements; 4) Mission concepts for SPIRIT and SPECS; and 5) Tethered formation flying, a key enabling technology.
Threshold Concepts as Focal Points for Supporting Student Learning
ERIC Educational Resources Information Center
Jordan, Katy; Tracy, Frances; Johnstone, Keith
2011-01-01
The Plant Sciences Pedagogy Project conducted research into undergraduate teaching and learning in the Department of Plant Sciences at the University of Cambridge and has translated the research findings into interventions to improve support for student learning. A key research objective for the project was to investigate how teachers within the…
Navigating Tensions between Conceptual and Metaconceptual Goals in the Use of Models
ERIC Educational Resources Information Center
Delgado, Cesar
2015-01-01
Science education involves learning about phenomena at three levels: concrete (facts and generalizations), conceptual (concepts and theories), and metaconceptual (epistemology) (Snir et al. in "J Sci Educ Technol" 2(2):373-388, 1993). Models are key components in science, can help build conceptual understanding, and may also build…
Making Physics Fun: Key Concepts, Classroom Activities, and Everyday Examples, Grades K-8
ERIC Educational Resources Information Center
Prigo, Robert
2007-01-01
Teaching physical science in the elementary and middle grades can be challenging for busy teachers faced with growing science demands and limited classroom resources. Robert Prigo provides fun and engaging activities using safe, available materials that educators can easily incorporate into lesson plans. Extensive examples, sample inquiry…
Xu, Linjia; Huang, Biaowen; Wu, Guosheng
2015-11-01
This study attempted to illuminate the cause and relation between government, scholars, disciplines, and societal aspects, presenting data from a content analysis of published research with the key word "science communication" (Symbol: see text) in the title or in the key words, including academic papers published in journals and dissertations from the China National Knowledge Infrastructure database. Of these, 572 articles were coded using categories that identified science topics, theory, authorship, and methods used in each study to examine the breadth and depth that Science Communication has achieved since its inception in China. This study explored the dominance of History and Philosophy of Science scholars rather than Communication scholars. We also explored how science communication research began from theories and concepts instead of science report analysis and the difficulties of the shift from public understanding of science to public engagement in China. © The Author(s) 2015.
Acculturation: state of the science in nursing.
Buscemi, Charles P
2011-01-01
With the onset of global migration, nurses are faced with dealing with cultures from around the world. Having an understanding of transcultural nursing concepts and translating them to practice will be key to nurses meeting the needs of an ever changing patient population. Acculturation is one example of how transcultural nursing concepts need to be better understood. The purpose of this paper is to describe the state of the science of acculturation in terms of the nursing discipline. It offers a historical review and evolution of acculturation, uses in nursing theory, and clinical implications.
NASA Astrophysics Data System (ADS)
Weeks, S. M.; Pope, A.
2011-12-01
Whilst the scientific case for current climate change is compelling, the consequences of climate change have largely failed to permeate through to individuals. This lack of public awareness of the science and the potential impacts could be considered a key obstacle to action. The possible reasons for such limited success centre on the issue that climate change is a complex subject, and that a wide ranging academic, political and social research literature on the science and wider implications of climate change has failed to communicate the key issues in an accessible way. These failures to adequately communicate both the science and the social science of climate change at a number of levels results in ';communication gaps' that act as fundamental barriers to both understanding and engagement with the issue. Meyer and Land (2003) suggest that learners can find certain ideas and concepts within a discipline difficult to understand and these act as a barrier to deeper understanding of a subject. To move beyond these threshold concepts, they suggest that the expert needs to support the learner through a range of learning experiences that allows the development of learning strategies particular to the individual. Meyer and Land's research into these threshold concepts has been situated within Economics, but has been suggested to be more widely applicable though there has been no attempt to either define or evaluate threshold concepts to climate change science. By identifying whether common threshold concepts exist specifically in climate science for cohorts of either formal or informal learners, scientists will be better able to support the public in understanding these concepts by changing how the knowledge is communicated to help overcome these barriers to learning. This paper reports on the findings of a study that examined the role of threshold concepts as barriers to understanding climate science in a UK University and considers its implications for wider scientific engagement with the public to develop climate literacy. The analysis of 3 successive cohorts of students' journals who followed the same degree module identified that threshold concepts do exist within the field, such as those related to: role of ocean circulation, use of proxy indicators, forcing factors and feedback mechanisms. Once identified, the study looked at possible strategies to overcome these barriers to support student climate literacy. It concluded that the use of threshold concepts could be problematic when trying to improve climate literacy, as each individual has their own concepts they find ';troublesome' that do not necessarily relate to others. For scientists this presents the difficulty of how to develop a strategy that supports the individual that is cost and time effective. However, the study identifies that eLearning can be used effectively to help people understand troublesome knowledge.
Scientists' conceptions of scientific inquiry: Revealing a private side of science
NASA Astrophysics Data System (ADS)
Reiff, Rebecca R.
Science educators, philosophers, and pre-service teachers have contributed to conceptualizing inquiry but missing from the inquiry forum is an in-depth research study concerning science faculty conceptions of scientific inquiry. The science education literature has tended to focus on certain aspects of doing, teaching, and understanding scientific inquiry without linking these concepts. As a result, conceptions of scientific inquiry have been disjointed and are seemingly unrelated. Furthermore, confusion surrounding the meaning of inquiry has been identified as a reason teachers are not using inquiry in instruction (Welch et al., 1981). Part of the confusion surrounding scientific inquiry is it has been defined differently depending on the context (Colburn, 2000; Lederman, 1998; Shymansky & Yore, 1980; Wilson & Koran, 1976). This lack of a common conception of scientific inquiry is the reason for the timely nature of this research. The result of scientific journeys is not to arrive at a stopping point or the final destination, but to refuel with questions to drive the pursuit of knowledge. A three-member research team conducted Interviews with science faculty members using a semi-structured interview protocol designed to probe the subject's conceptions of scientific inquiry. The participants represented a total of 52 science faculty members from nine science departments (anthropology, biology, chemistry, geology, geography, school of health, physical education and recreation (HPER), medical sciences, physics, and school of environmental science) at a large mid-western research university. The method of analysis used by the team was grounded theory (Strauss & Corbin, 1990; Glaser & Strauss, 1967), in which case the frequency of concepts, patterns, and themes were coded to categorize scientists' conceptions of scientific inquiry. The results from this study address the following components: understanding and doing scientific inquiry, attributes of scientists engaged in inquiry investigations, the relationship of scientific inquiry to the nature of science, whether the process of scientific inquiry follows the traditional scientific method, and the similarities and differences in conceptualizations of scientific inquiry across science disciplines. These findings represent a private side of science, which can be useful in characterizing key features of scientific inquiry to be incorporated into K--16 teaching practices.
Teaching Energy Concepts by Working on Themes of Cultural and Environmental Value
ERIC Educational Resources Information Center
Besson, Ugo; De Ambrosis, Anna
2014-01-01
Energy is a central topic in physics and a key concept for understanding the physical, biological and technological worlds. It is a complex topic with multiple connections with different areas of science and with social, environmental and philosophical issues. In this paper we discuss some aspects of the teaching and learning of the energy…
Evolution of the Concept of "Human Capital" in Economic Science
ERIC Educational Resources Information Center
Perepelkin, Vyacheslav A.; Perepelkina, Elena V.; Morozova, Elena S.
2016-01-01
The relevance of the researched problem is determined by transformation of the human capital into the key economic resource of development of the postindustrial society. The purpose of the article is to disclose the content of evolution of the human capital as a scientific concept and phenomenon of the economic life. The leading approach to the…
On Teaching Abstraction in Computer Science to Novices
ERIC Educational Resources Information Center
Armoni, Michal
2013-01-01
Abstraction is a key concept in CS, one of the most fundamental ideas underlying CS and its practice. However, teaching this soft concept to novices is a very difficult task, as discussed by many CSE experts. This paper discusses this issue, and suggests a general framework for teaching abstraction in CS to novices, a framework that would fit into…
Gender and Physics: a Theoretical Analysis
NASA Astrophysics Data System (ADS)
Rolin, Kristina
This article argues that the objections raised by Koertge (1998), Gross and Levitt (1994), and Weinberg (1996) against feminist scholarship on gender and physics are unwarranted. The objections are that feminist science studies perpetuate gender stereotypes, are irrelevant to the content of physics, or promote epistemic relativism. In the first part of this article I argue that the concept of gender, as it has been developed in feminist theory, is a key to understanding why the first objection is misguided. Instead of reinforcing gender stereotypes, feminist science studies scholars can formulate empirically testable hypotheses regarding local and contested beliefs about gender. In the second part of this article I argue that a social analysis of scientific knowledge is a key to understanding why the second and the third objections are misguided. The concept of gender is relevant for understanding the social practice of physics, and the social practice of physics can be of epistemic importance. Instead of advancing epistemic relativism, feminist science studies scholars can make important contributions to a subfield of philosophy called social epistemology.
Teachers' Understanding and Operationalisation of `Science Capital'
NASA Astrophysics Data System (ADS)
King, Heather; Nomikou, Effrosyni; Archer, Louise; Regan, Elaine
2015-12-01
Across the globe, governments, industry and educationalists are in agreement that more needs to be done to increase and broaden participation in post-16 science. Schools, as well as teachers, are seen as key in this effort. Previous research has found that engagement with science, inclination to study science and understanding of the value of science strongly relates to a student's science capital. This paper reports on findings from the pilot year of a one-year professional development (PD) programme designed to work with secondary-school teachers to build students' science capital. The PD programme introduced teachers to the nature and importance of science capital and thereafter supported them to develop ways of implementing science capital-building pedagogy in their practice. The data comprise interviews with the participating teachers (n = 10), observations of classroom practices and analyses of the teachers' accounts of their practice. Our findings suggest that teachers found the concept of science capital to be compelling and to resonate with their own intuitive understandings and experiences. However, the ways in which the concept was operationalised in terms of the implementation of pedagogical practices varied. The difficulties inherent in the operationalisation are examined and recommendations for future work with teachers around the concept of science capital are developed.
Enabling Communication and Navigation Technologies for Future Near Earth Science Missions
NASA Technical Reports Server (NTRS)
Israel, David J.; Heckler, Gregory; Menrad, Robert; Hudiburg, John; Boroson, Don; Robinson, Bryan; Cornwell, Donald
2016-01-01
In 2015, the Earth Regimes Network Evolution Study (ERNESt) proposed an architectural concept and technologies that evolve to enable space science and exploration missions out to the 2040 timeframe. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network with new technologies to provide a global communication and navigation network that provides communication and navigation services to a wide range of space users in the near Earth domain. The technologies included High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology. This paper describes the key technologies and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.
Seven propositions of the science of improvement: exploring foundations.
Perla, Rocco J; Provost, Lloyd P; Parry, Gareth J
2013-01-01
The phrase "Science of Improvement" or "Improvement Science" is commonly used today by a range of people and professions to mean different things, creating confusion to those trying to learn about improvement. In this article, we briefly define the concepts of improvement and science, and review the history of the consideration of "improvement" as a science. We trace key concepts and ideas in improvement to their philosophical and theoretical foundation with a focus on Deming's System of Profound Knowledge. We suggest that Deming's system has a firm association with many contemporary and historic philosophic and scientific debates and concepts. With reference to these debates and concepts, we identify 7 propositions that provide the scientific and philosophical foundation for the science of improvement. A standard view of the science of improvement does not presently exist that is grounded in the philosophical and theoretical basis of the field. The 7 propositions outlined here demonstrate the value of examining the underpinnings of improvement. This is needed to both advance the field and minimize confusion about what the phrase "science of improvement" represents. We argue that advanced scientists of improvement are those who like Deming and Shewhart can integrate ideas, concepts, and models between scientific disciplines for the purpose of developing more robust improvement models, tools, and techniques with a focus on application and problem solving in real world contexts. The epistemological foundations and theoretical basis of the science of improvement and its reasoning methods need to be critically examined to ensure its continued development and relevance. If improvement efforts and projects in health care are to be characterized under the canon of science, then health care professionals engaged in quality improvement work would benefit from a standard set of core principles, a standard lexicon, and an understanding of the evolution of the science of improvement.
Investigating Undergraduate Science Students’ Conceptions and Misconceptions of Ocean Acidification
Danielson, Kathryn I.; Tanner, Kimberly D.
2015-01-01
Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. PMID:26163563
The key factors affecting students' individual interest in school science lessons
NASA Astrophysics Data System (ADS)
Cheung, Derek
2018-01-01
Individual interest in school science lessons can be defined as a relatively stable and enduring personal emotion comprising affective and behavioural reactions to events in the regular science lessons at school. Little research has compared the importance of different factors affecting students' individual interest in school science lessons. The present study aimed to address this gap, using a mixed methods design. Qualitative interview data were collected from 60 Hong Kong junior secondary school students, who were asked to describe the nature of their interest in science lessons and the factors to which they attribute this. Teacher interviews, parent interviews, and classroom observations were conducted to triangulate student interview data. Five factors affecting students' individual interest in school science lessons were identified: situational influences in science lessons, individual interest in science, science self-concept, grade level, and gender. Quantitative data were then collected from 591 students using a questionnaire. Structural equation modelling was applied to test a hypothesised model, which provided an acceptable fit to the student data. The strongest factor affecting students' individual interest in school science lessons was science self-concept, followed by individual interest in science and situational influences in science lessons. Grade level and gender were found to be nonsignificant factors. These findings suggest that teachers should pay special attention to the association between academic self-concept and interest if they want to motivate students to learn science at school.
The science of human security: a response from political science.
Roberts, David
2008-01-01
The concept of human security has developed in significance in the last decade to the point that its meaning and validity is hotly contested in the field of international relations, security, and development studies. A key consideration relates to its ambiguity at best and its amorphousness at worst. Medical scholarship proposes approaches that may render more meaningful the concept. However, collaboration and co-operation between political scientists and medical practitioners offers even greater potential to this vital programme. The latter offer the technical and methodological skills and approaches lacking in political science, whilst the former develop political frameworks to shift the causal focus towards human, institutional and structural agency in mass avoidable global civilian mortality.
Using an Exploratory Internet Activity & Trivia Game to Teach Students about Biomes
ERIC Educational Resources Information Center
Richardson, Matthew L.
2009-01-01
Students in life science classes need an introduction to biomes, including an introduction to the concept, key biotic and abiotic features of biomes, and geographic locations of biomes. In this activity, students in seventh- and eighth-grade science classes used a directed exploratory Internet activity to learn about biomes. The author tested…
Teaching Science or Cultivating Values? Conservation NGOs and Environmental Education in Costa Rica
ERIC Educational Resources Information Center
Blum, Nicole
2009-01-01
A key ongoing debate in environmental education practice and its research relates to the content and goals of environmental education programmes. Specifically, there is a long history of debate between advocates of educational perspectives that emphasise the teaching of science concepts and those that seek to more actively link environmental and…
An Exercise to Demonstrate Soil Microbial Diversity in Introductory Environmental Science Classrooms
ERIC Educational Resources Information Center
Yarwood, Stephanie A.; Sulzman, Elizabeth W.
2008-01-01
High diversity of microorganisms in the soil matrix has been the focus of extensive research in the fields of soil biology and microbial ecology, and is a key concept that students in the environmental or biological sciences should understand. Two activities to demonstrate diversity and highlight the challenges faced in studying soil microbial…
Meteorology and Climate Inspire Secondary Science Students
ERIC Educational Resources Information Center
Charlton-Perez, Andrew; Dacre, Helen; Maskell, Kathy; Reynolds, Ross; South, Rachel; Wood, Curtis
2010-01-01
As part of its National Science and Engineering Week activities in 2009 and 2010, the University of Reading organised two open days for 60 local key stage 4 pupils. The theme of both open days was "How do we predict weather and climate?" Making use of the students' familiarity with weather and climate, several concepts of relevance to secondary…
ERIC Educational Resources Information Center
Wilkinson, Deborah; Stallard, Wayne
2017-01-01
Materials are all around us and the importance of supporting children to understand the vast array of different types of materials is recognised at all key stages in the science National Curriculum for England. Ensuring that children connect concepts taught in key stages 1 and 2 (ages 5-11) is the starting point in helping children to comprehend…
Spallation Neutron Source Second Target Station Integrated Systems Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ankner, John Francis; An, Ke; Blokland, Willem
The Spallation Neutron Source (SNS) was designed from the beginning to accommodate both an accelerator upgrade to increase the proton power and a second target station (STS). Four workshops were organized in 2013 and 2014 to identify key science areas and challenges where neutrons will play a vital role [1-4]. Participants concluded that the addition of STS to the existing ORNL neutron sources was needed to complement the strengths of High Flux Isotope Reactor (HFIR) and the SNS first target station (FTS). To address the capability gaps identified in the workshops, a study was undertaken to identify instrument concepts thatmore » could provide the required new science capabilities. The study outlined 22 instrument concepts and presented an initial science case for STS [5]. These instrument concepts formed the basis of a planning suite of instruments whose requirements determined an initial site layout and moderator selection. An STS Technical Design Report (TDR) documented the STS concept based on those choices [6]. Since issue of the TDR, the STS concept has significantly matured as described in this document.« less
Sport science integration: An evolutionary synthesis.
Balagué, N; Torrents, C; Hristovski, R; Kelso, J A S
2017-02-01
The aim of the paper is to point out one way of integrating the supposedly incommensurate disciplines investigated in sports science. General, common principles can be found among apparently unrelated disciplines when the focus is put on the dynamics of sports-related phenomena. Dynamical systems approaches that have recently changed research in biological and social sciences among others, offer key concepts to create a common pluricontextual language in sport science. This common language, far from being homogenising, offers key synthesis between diverse fields, respecting and enabling the theoretical and experimental pluralism. It forms a softly integrated sports science characterised by a basic dynamic explanatory backbone as well as context-dependent theoretical flexibility. After defining the dynamic integration in living systems, unable to be captured by structural static approaches, we show the commonalities between the diversity of processes existing on different levels and time scales in biological and social entities. We justify our interpretation by drawing on some recent scientific contributions that use the same general principles and concepts, and diverse methods and techniques of data analysis, to study different types of phenomena in diverse disciplines. We show how the introduction of the dynamic framework in sport science has started to blur the boundaries between physiology, biomechanics, psychology, phenomenology and sociology. The advantages and difficulties of sport science integration and its consequences in research are also discussed.
Unpacking action research and implementation science: Implications for nursing.
Casey, Mary; O' Leary, Denise; Coghlan, David
2018-05-01
The aim of this study was to unpack the key concepts of action research and implementation science thereby enabling appropriate use of these methods in nursing. A key issue in action research is not so much the methodology employed to gather data/evidence but who decides the research agenda and who benefits from it. Implementation science is a way to ensure that evidence is translated into practice. The question arises as to how action research and implementation may be understood in relation to one another in nursing. Discussion Paper DATA SOURCES: This discussion paper is based on our own experiences and offers an exploration of action research and implementation science with the aim of clarifying what each involves and what synergies, if any, exist between them. Using action research to secure the voice of patients in their own care is essential to delivering quality nursing care. Using implementation science frameworks to get research evidence into practice is effective. Familiarity with both these concepts may enable their improved use and have a positive impact on quality of care. There is a tension between action researchers and the protagonists of implementation science related to perceived "trade offs" between what constitutes "science" and the necessity of community participation. Nevertheless, the use of an implementation science framework in an action research approach can reduce the research practice time lag and action research provides sound theoretical and philosophical underpinnings that can be used by those in the implementation science field. © 2017 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Williams, Paul D.
2014-01-01
Politics courses embedded in business and commerce degree programs have soared in number in recent years. Yet how business students, often compulsorily enrolled in politics courses, learn key politics concepts is an under-researched area. The purpose of this article is to determine where the teaching and learning of political science and business…
ERIC Educational Resources Information Center
Lopez, Enrique; Kim, Jennifer; Nandagopal, Kiruthiga; Cardin, Nate; Shavelson, Richard J.; Penn, John H.
2011-01-01
Science, Technology, Engineering, and Mathematics (STEM) education has become a key focus in the U.S. government's public education agenda. Many STEM degrees require the successful completion of undergraduate introductory organic chemistry (O-Chem), which is notorious for its difficulty and high attrition rate. Concept Maps (CM) have been used as…
ERIC Educational Resources Information Center
Gkouskou, Eirini; Tunnicliffe, Sue Dale
2017-01-01
?he nature of scientific research goes beyond the learning of concepts and basic manipulation to the key factors of engaging students in identifying relevant evidence and reflecting on its interpretation. It is argued that young children have the ability to acquire viable, realistic concepts of the living world when involved in relevant activities…
ERIC Educational Resources Information Center
Kock, Zeger-Jan; Taconis, Ruurd; Bolhuis, Sanneke; Gravemeijer, Koeno
2013-01-01
Many students in secondary schools consider the sciences difficult and unattractive. This applies to physics in particular, a subject in which students attempt to learn and understand numerous theoretical concepts, often without much success. A case in point is the understanding of the concepts current, voltage and resistance in simple electric…
Human Mars Surface Science Operations
NASA Technical Reports Server (NTRS)
Bobskill, Marianne R.; Lupisella, Mark L.
2014-01-01
Human missions to the surface of Mars will have challenging science operations. This paper will explore some of those challenges, based on science operations considerations as part of more general operational concepts being developed by NASA's Human Spaceflight Architecture (HAT) Mars Destination Operations Team (DOT). The HAT Mars DOT has been developing comprehensive surface operations concepts with an initial emphasis on a multi-phased mission that includes a 500-day surface stay. This paper will address crew science activities, operational details and potential architectural and system implications in the areas of (a) traverse planning and execution, (b) sample acquisition and sample handling, (c) in-situ science analysis, and (d) planetary protection. Three cross-cutting themes will also be explored in this paper: (a) contamination control, (b) low-latency telerobotic science, and (c) crew autonomy. The present traverses under consideration are based on the report, Planning for the Scientific Exploration of Mars by Humans1, by the Mars Exploration Planning and Analysis Group (MEPAG) Human Exploration of Mars-Science Analysis Group (HEM-SAG). The traverses are ambitious and the role of science in those traverses is a key component that will be discussed in this paper. The process of obtaining, handling, and analyzing samples will be an important part of ensuring acceptable science return. Meeting planetary protection protocols will be a key challenge and this paper will explore operational strategies and system designs to meet the challenges of planetary protection, particularly with respect to the exploration of "special regions." A significant challenge for Mars surface science operations with crew is preserving science sample integrity in what will likely be an uncertain environment. Crewed mission surface assets -- such as habitats, spacesuits, and pressurized rovers -- could be a significant source of contamination due to venting, out-gassing and cleanliness levels associated with crew presence. Low-latency telerobotic science operations has the potential to address a number of contamination control and planetary protection issues and will be explored in this paper. Crew autonomy is another key cross-cutting challenge regarding Mars surface science operations, because the communications delay between earth and Mars could as high as 20 minutes one way, likely requiring the crew to perform many science tasks without direct timely intervention from ground support on earth. Striking the operational balance between crew autonomy and earth support will be a key challenge that this paper will address.
Best practices for learning video concept detectors from social media examples (Author’s Manuscript)
2014-05-23
Best practices for learning video concept detectors from social media examples Svetlana Kordumova & Xirong Li & Cees G. M. Snoek Received: 25...September 2013 /Revised: 3 April 2014 /Accepted: 25 April 2014 # Springer Science+Business Media New York 2014 Abstract Learning video concept detectors from...While the potential has been recognized by many, and progress on the topic has been impressive, we argue that key questions crucial to know how to learn
Proceedings of the Fourth International Conference on Mars Polar Science and Exploration
NASA Technical Reports Server (NTRS)
2006-01-01
Sessions in this conference include: Mars polar geology and glaciology; Mars and terrestrial radar investigations; Observations, nature, and evolution of the Martian seasonal polar caps; Mars' residual south polar cap; Climate change, ice core analysis, and the redistribution of volatiles on Mars; errestrial Mars analog environments; The Phoenix Scout mission and the nature of the near-polar environment; Moderated Discussion: Key Issues Regarding Phoenix Scout Mission and the nature of the near-polar environment; Panel Discussion: Key Issues in Mars Polar Science and Exploration; Mars Reconnaissance Orbiter investigations of the Martian polar regions and climate; Mars Polar Scout Mission concepts; and Panel Discussion: New perspectives on Mars polar science and exploration
Samuels, Sheldon W
2010-01-01
In the context of the history of science and the American labor movement, this comment in response to Joseph LaDou's in this issue briefly addresses impediments to Workers' Compensation reform: intellectual lapses in understanding the key concept of causation and political mistakes rooted in professional timidity. The result is the perpetuation of failures of government.
A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas
ERIC Educational Resources Information Center
National Academies Press, 2012
2012-01-01
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S.…
ERIC Educational Resources Information Center
Buxton, Cory A.; Carlone, Heidi B.; Carlone, David
2005-01-01
A key to improving urban science and mathematics education is to facilitate the mutual understanding of the participants involved and then look for strategies to bridge differences. Educators need new theoretical tools to do so. In this paper the argument is made that the concept of "boundary spanner" is such a tool. Boundary spanners…
Collaborative Robotic Instruction: A Graph Teaching Experience
ERIC Educational Resources Information Center
Mitnik, Ruben; Recabarren, Matias; Nussbaum, Miguel; Soto, Alvaro
2009-01-01
Graphing is a key skill in the study of Physics. Drawing and interpreting graphs play a key role in the understanding of science, while the lack of these has proved to be a handicap and a limiting factor in the learning of scientific concepts. It has been observed that despite the amount of previous graph-working experience, students of all ages…
Badica, Petre; Crisan, Adrian; Aldica, Gheorghe; Endo, Kazuhiro; Borodianska, Hanna; Togano, Kazumasa; Awaji, Satoshi; Watanabe, Kazuo; Sakka, Yoshio; Vasylkiv, Oleg
2011-02-01
Superconducting materials have contributed significantly to the development of modern materials science and engineering. Specific technological solutions for their synthesis and processing helped in understanding the principles and approaches to the design, fabrication and application of many other materials. In this review, we explore the bidirectional relationship between the general and particular synthesis concepts. The analysis is mostly based on our studies where some unconventional technologies were applied to different superconductors and some other materials. These technologies include spray-frozen freeze-drying, fast pyrolysis, field-assisted sintering (or spark plasma sintering), nanoblasting, processing in high magnetic fields, methods of control of supersaturation and migration during film growth, and mechanical treatments of composite wires. The analysis provides future research directions and some key elements to define the concept of 'beautiful' technology in materials science. It also reconfirms the key position and importance of superconductors in the development of new materials and unconventional synthesis approaches.
Aarons, Gregory A; Sommerfeld, David H; Chi, Benjamin H; Ezeanolue, Echezona E; Sturke, Rachel; Guay, Laura; Siberry, George K
2016-08-01
Although tremendous gains have been made to reduce mother-to-child HIV transmission (MTCT) globally, evidence-based practice implementation remains inconsistent in sub-Saharan Africa. We sought to identify the key domains for effective prevention of MTCT (PMTCT) implementation, using a participatory mixed-methods approach. Participants were members of the NIH-PEPFAR PMTCT Implementation Science Alliance (ISA), a platform of researchers, public-health practitioners, policymakers, and donors supported through NIH/PEPFAR. We used concept mapping to identify priority areas for PMTCT implementation science. Participants responded to the focus question: "In your experience, what factors have facilitated or hindered implementation of PMTCT interventions?" Responses were consolidated into discrete statements, grouped together based on similarity, and rated for importance, changeability, and extent to which ISA participation enhanced the capacity to influence/change the factor. Using multidimensional scaling and cluster analysis, we identified 12 key domains of PMTCT implementation. Two domains (Governmental Commitment and Data Measurement & Collection) were consistently ranked at or near the top for overall importance, perceived changeability, and enhanced ability to address through ISA participation. Through a stakeholder-based, participatory approach, we identified key domains for that should be considered for future PMTCT implementation research in sub-Saharan Africa.
ERIC Educational Resources Information Center
Kafai, Yasmin B.; Lee, Eunkyoung; Searle, Kristin; Fields, Deborah; Kaplan, Eliot; Lui, Debora
2014-01-01
In this article, we examine the use of electronic textiles (e-textiles) for introducing key computational concepts and practices while broadening perceptions about computing. The starting point of our work was the design and implementation of a curriculum module using the LilyPad Arduino in a pre-AP high school computer science class. To…
Bambra, C; Fox, D; Scott‐Samuel, A
2007-01-01
This glossary reflects a (re‐)emerging awareness within public health of the political dimension of health and health inequalities, and it also attempts to define some of the key concepts from the political science literature in a way that will be of use in future public health analyses. Examples from different domains (healthcare and population health) are provided to highlight how political concepts pervade health. PMID:17568046
Status of the Planet Formation Imager (PFI) concept
NASA Astrophysics Data System (ADS)
Ireland, Michael J.; Monnier, John D.; Kraus, Stefan; Isella, Andrea; Minardi, Stefano; Petrov, Romain; ten Brummelaar, Theo; Young, John; Vasisht, Gautam; Mozurkewich, David; Rinehart, Stephen; Michael, Ernest A.; van Belle, Gerard; Woillez, Julien
2016-08-01
The Planet Formation Imager (PFI) project aims to image the period of planet assembly directly, resolving structures as small as a giant planet's Hill sphere. These images will be required in order to determine the key mechanisms for planet formation at the time when processes of grain growth, protoplanet assembly, magnetic fields, disk/planet dynamical interactions and complex radiative transfer all interact - making some planetary systems habitable and others inhospitable. We will present the overall vision for the PFI concept, focusing on the key technologies and requirements that are needed to achieve the science goals. Based on these key requirements, we will define a cost envelope range for the design and highlight where the largest uncertainties lie at this conceptual stage.
Refining the aggregate exposure pathway.
Tan, Yu-Mei; Leonard, Jeremy A; Edwards, Stephen; Teeguarden, Justin; Egeghy, Peter
2018-03-01
Advancements in measurement technologies and modeling capabilities continue to result in an abundance of exposure information, adding to that currently in existence. However, fragmentation within the exposure science community acts as an obstacle for realizing the vision set forth in the National Research Council's report on Exposure Science in the 21 st century to consider exposures from source to dose, on multiple levels of integration, and to multiple stressors. The concept of an Aggregate Exposure Pathway (AEP) was proposed as a framework for organizing and integrating diverse exposure information that exists across numerous repositories and among multiple scientific fields. A workshop held in May 2016 followed introduction of the AEP concept, allowing members of the exposure science community to provide extensive evaluation and feedback regarding the framework's structure, key components, and applications. The current work briefly introduces topics discussed at the workshop and attempts to address key challenges involved in refining this framework. The resulting evolution in the AEP framework's features allows for facilitating acquisition, integration, organization, and transparent application and communication of exposure knowledge in a manner that is independent of its ultimate use, thereby enabling reuse of such information in many applications.
Interorganizational Development.
ERIC Educational Resources Information Center
Schermerhorn, John R., Jr.
1979-01-01
Interorganizational development is the application of social science knowledge to the creation of planned, systematic and mutually beneficial cooperative relationships between otherwise autonomous organizations. This paper introduces the concept as a means of focusing attention on key action and research issues associated with interorganizational…
ERIC Educational Resources Information Center
Adbo, Karina; Taber, Keith S.
2009-01-01
The results presented here derive from a longitudinal study of Swedish upper secondary science students' (16-19 years of age) developing understanding of key chemical concepts. The informants were 18 students from two different schools. The aim of the present study was to investigate the mental models of matter at the particulate level that…
NASA Technical Reports Server (NTRS)
Schwaller, Mathew R.; Schweiss, Robert J.
2007-01-01
The NPOESS Preparatory Project (NPP) Science Data Segment (SDS) provides a framework for the future of NASA s distributed Earth science data systems. The NPP SDS performs research and data product assessment while using a fully distributed architecture. The components of this architecture are organized around key environmental data disciplines: land, ocean, ozone, atmospheric sounding, and atmospheric composition. The SDS thus establishes a set of concepts and a working prototypes. This paper describes the framework used by the NPP Project as it enabled Measurement-Based Earth Science Data Systems for the assessment of NPP products.
Keller, Vera; Penman, Leigh T I
2015-03-01
Many historians have traced the accumulation of scientific archives via communication networks. Engines for communication in early modernity have included trade, the extrapolitical Republic of Letters, religious enthusiasm, and the centralization of large emerging information states. The communication between Samuel Hartlib, John Dury, Duke Friedrich III of Gottorf-Holstein, and his key agent in England, Frederick Clodius, points to a less obvious but no less important impetus--the international negotiations of smaller states. Smaller states shaped communication networks in an international (albeit politically and religiously slanted) direction. Their networks of negotiation contributed to the internationalization of emerging science through a political and religious concept of shared interest. While interest has been central to social studies of science, interest itself has not often been historicized within the history of science. This case study demonstrates the co-production of science and society by tracing how period concepts of interest made science international.
Built environment assessment: Multidisciplinary perspectives.
Glanz, Karen; Handy, Susan L; Henderson, Kathryn E; Slater, Sandy J; Davis, Erica L; Powell, Lisa M
2016-12-01
As obesity has become increasingly widespread, scientists seek better ways to assess and modify built and social environments to positively impact health. The applicable methods and concepts draw on multiple disciplines and require collaboration and cross-learning. This paper describes the results of an expert team׳s analysis of how key disciplinary perspectives contribute to environmental context-based assessment related to obesity, identifies gaps, and suggests opportunities to encourage effective advances in this arena. A team of experts representing diverse disciplines convened in 2013 to discuss the contributions of their respective disciplines to assessing built environments relevant to obesity prevention. The disciplines include urban planning, public health nutrition, exercise science, physical activity research, public health and epidemiology, behavioral and social sciences, and economics. Each expert identified key concepts and measures from their discipline, and applications to built environment assessment and action. A selective review of published literature and internet-based information was conducted in 2013 and 2014. The key points that are highlighted in this article were identified in 2014-2015 through discussion, debate and consensus-building among the team of experts. Results focus on the various disciplines׳ perspectives and tools, recommendations, progress and gaps. There has been significant progress in collaboration across key disciplines that contribute to studies of built environments and obesity, but important gaps remain. Using lessons from interprofessional education and team science, along with appreciation of and attention to other disciplines׳ contributions, can promote more effective cross-disciplinary collaboration in obesity prevention.
FIR/THz Space Interferometry: Science Opportunities, Mission Concepts, and Technical Challenges
NASA Technical Reports Server (NTRS)
Leisawitz, David
2007-01-01
Sensitive far-IR imaging and spectroscopic measurements of astronomical objects on sub-arcsecond angular scales are essential to our understanding of star and planet formation, the formation and evolution of galaxies, and to the detection and characterization of extrasolar planets. Cold single-aperture telescopes in space, such as the Spitzer Space Telescope and the Herschel Space Observatory, are very sensitive, but they lack the necessary angular resolution by two or more orders of magnitude. Far-IR space interferometers will address this need in the coming decades. Several mission concepts have already been studied, including in the US the Space Infrared Interferometric Telescope (SPIRIT) and the more ambitious Submillimeter Probe of the Evolution of Cosmic Structure (SPECS). This talk will describe science goals and summarize alternative concepts for future FIR/THz space interferometry missions. Small arrays of sensitive, fast, direct detectors are a key enabling technology for SPIRIT and SPECS. I will describe the technology requirements for far-IR interferometry, including the detector requirements, and their derivation from the mission science goals and instrument concepts.
Realtime Decision Making on EO-1 Using Onboard Science Analysis
NASA Technical Reports Server (NTRS)
Sherwood, Robert; Chien, Steve; Davies, Ashley; Mandl, Dan; Frye, Stu
2004-01-01
Recent autonomy experiments conducted on Earth Observing 1 (EO-1) using the Autonomous Sciencecraft Experiment (ASE) flight software has been used to classify key features in hyperspectral images captured by EO-1. Furthermore, analysis is performed by this software onboard EO-1 and then used to modify the operational plan without interaction from the ground. This paper will outline the overall operations concept and provide some details and examples of the onboard science processing, science analysis, and replanning.
Space Technology 5 - A Successful Micro-Satellite Constellation Mission
NASA Technical Reports Server (NTRS)
Carlisle, Candace; Webb, Evan H.
2007-01-01
The Space Technology 5 (ST5) constellation of three micro-satellites was launched March 22, 2006. During the three-month flight demonstration phase, the ST5 team validated key technologies that will make future low-cost micro-sat constellations possible, demonstrated operability concepts for future micro-sat science constellation missions, and demonstrated the utility of a micro-satellite constellation to perform research-quality science. The ST5 mission was successfully completed in June 2006, demonstrating high-quality science and technology validation results.
Teaching Einsteinian physics at schools: part 1, models and analogies for relativity
NASA Astrophysics Data System (ADS)
Kaur, Tejinder; Blair, David; Moschilla, John; Stannard, Warren; Zadnik, Marjan
2017-11-01
The Einstein-First project aims to change the paradigm of school science teaching through the introduction of modern Einsteinian concepts of space and time, gravity and quanta at an early age. These concepts are rarely taught to school students despite their central importance to modern science and technology. The key to implementing the Einstein-First curriculum is the development of appropriate models and analogies. This paper is the first part of a three-paper series. It presents the conceptual foundation of our approach, based on simple physical models and analogies, followed by a detailed description of the models and analogies used to teach concepts of general and special relativity. Two accompanying papers address the teaching of quantum physics (Part 2) and research outcomes (Part 3).
Understanding modern-day vaccines: what you need to know.
Vetter, Volker; Denizer, Gülhan; Friedland, Leonard R; Krishnan, Jyothsna; Shapiro, Marla
2018-03-01
Vaccines are considered to be one of the greatest public health achievements of the last century. Depending on the biology of the infection, the disease to be prevented, and the targeted population, a vaccine may require the induction of different adaptive immune mechanisms to be effective. Understanding the basic concepts of different vaccines is therefore crucial to understand their mode of action, benefits, risks, and their potential real-life impact on protection. This review aims to provide healthcare professionals with background information about the main vaccine designs and concepts of protection in a simplified way to improve their knowledge and understanding, and increase their confidence in the science of vaccination ( Supplementary Material ). KEY MESSAGE Different vaccine designs, each with different advantages and limitations, can be applied for protection against a particular disease. Vaccines may contain live-attenuated pathogens, inactivated pathogens, or only parts of pathogens and may also contain adjuvants to stimulate the immune responses. This review explains the mode of action, benefits, risks and real-life impact of vaccines by highlighting key vaccine concepts. An improved knowledge and understanding of the main vaccine designs and concepts of protection will help support the appropriate use and expectations of vaccines, increase confidence in the science of vaccination, and help reduce vaccine hesitancy.
Rowland, Susan L; Smith, Christopher A; Gillam, Elizabeth M A; Wright, Tony
2011-07-01
A strong, recent movement in tertiary education is the development of conceptual, or "big idea" teaching. The emphasis in course design is now on promoting key understandings, core competencies, and an understanding of connections between different fields. In biochemistry teaching, this radical shift from the content-based tradition is being driven by the "omics" information explosion; we can no longer teach all the information we have available. Biochemistry is a core, enabling discipline for much of modern scientific research, and biochemistry teaching is in urgent need of a method for delivery of conceptual frameworks. In this project, we aimed to define the key concepts in biochemistry. We find that the key concepts we defined map well onto the core science concepts recommended by the Vision and Change project. We developed a new method to present biochemistry through the lenses of these concepts. This new method challenged the way we thought about biochemistry as teachers. It also stimulated the majority of the students to think more deeply about biochemistry and to make links between biochemistry and material in other courses. This method is applicable to the full spectrum of content usually taught in biochemistry. Copyright © 2011 Wiley Periodicals, Inc.
Leisure and Pleasure: Science events in unusual locations
NASA Astrophysics Data System (ADS)
Bultitude, Karen; Margarida Sardo, Ana
2012-12-01
Building on concepts relating to informal science education, this work compares science-related activities which successfully engaged public audiences at three different 'generic' locations: a garden festival, a public park, and a music festival. The purpose was to identify what factors contribute to the perceived success of science communication activities occurring within leisure spaces. This article reports the results of 71 short (2-3 min) structured interviews with public participants at the events, and 18 structured observations sessions, demonstrating that the events were considered both novel and interesting by the participants. Audience members were found to perceive both educational and affective purposes from the events. Three key elements were identified as contributing to the success of the activities across the three 'generic venues': the informality of the surroundings, the involvement of 'real' scientists, and the opportunity to re-engage participants with scientific concepts outside formal education.
Validating concepts of mental disorder: precedents from the history of science.
Miller, Robert
2014-10-01
A fundamental issue in any branch of the natural sciences is validating the basic concepts for use in that branch. In psychiatry, this issue has not yet been resolved, and indeed, the proper nature of the problem has scarcely been recognised. As a result, psychiatry (or at least those parts of the discipline which aspire to scientific status) still cannot claim to be a part of scientific medicine, or to be incorporated within the common language of the natural sciences. While this creates difficulties within the discipline, and its standing in relation to other branches of medicine, it makes it an exciting place for "frontiersmen" (and women). This is one of the key growing points in the natural science tradition. In this essay, which moves from the early history of that tradition to today's debates in scientific psychiatry, I give my views about how these fundamental issues can move towards resolution.
NASA Astrophysics Data System (ADS)
Boudrias, M. A.; Cantzler, J.; Croom, S.; Huston, C.; Woods, M.
2015-12-01
Courses on sustainability can be taught from multiple perspectives with some focused on specific areas (environmental, socio-cultural, economic, ethics) and others taking a more integrated approach across areas of sustainability and academic disciplines. In conjunction with the Climate Change Education Program efforts to enhance climate change literacy with innovative approaches, resources and communication strategies developed by Climate Education Partners were used in two distinct ways to integrate climate change science and impacts into undergraduate and graduate level courses. At the graduate level, the first lecture in the MBA program in Sustainable Supply Chain Management is entirely dedicated to climate change science, local and global impacts and discussions about key messages to communicate to the business community. Basic science concepts are integrated with discussions about mitigation and adaptation focused on business leaders. The concepts learned are then applied to the semester-long business plan project for the students. At the undergraduate level, a new model of comprehensive integration across disciplines was implemented in Spring 2015 across three courses on Sustainability each with a specific lens: Natural Science, Sociology and Philosophy. All three courses used climate change as the 'big picture' framing concept and had similar learning objectives creating a framework where lens-specific topics, focusing on depth in a discipline, were balanced with integrated exercises across disciplines providing breadth and possibilities for integration. The comprehensive integration project was the creation of the climate action plan for the university with each team focused on key areas of action (water, energy, transportation, etc.) and each team built with at least one member from each class ensuring a natural science, sociological and philosophical perspective. The final project was presented orally to all three classes and an integrated paper included all three perspectives. The best projects are being compiled so they can be shared with the University of San Diego's planning committee.
Venus Atmospheric Maneuverable Platform (VAMP) - A Low Cost Venus Exploration Concept
NASA Astrophysics Data System (ADS)
Lee, G.; Polidan, R. S.; Ross, F.
2015-12-01
The Northrop Grumman Aerospace Systems and L-Garde team has been developing an innovative mission concept: a long-lived, maneuverable platform to explore the Venus upper atmosphere. This capability is an implementation of our Lifting Entry Atmospheric Flight (LEAF) system concept, and the Venus implementation is called the Venus Atmospheric Maneuverable Platform (VAMP). The VAMP concept utilizes an ultra-low ballistic coefficient (< 50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters without an aeroshell, and provides a long-lived (months to a year) maneuverable vehicle capable of carrying science instruments to explore the Venus upper atmosphere. In this presentation we provide an update on the air vehicle design and a low cost pathfinder mission concept that can be implemented in the near-term. The presentation also provides an overview of our plans for future trade studies, analyses, and prototyping to advance and refine the concept. We will discuss the air vehicle's entry concepts of operations (CONOPs) and atmospheric science operations. We will present a strawman concept of a VAMP pathfinder, including ballistic coefficient, planform area, percent buoyancy, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, and instruments accommodation. In this context, we will discuss the following key factors impacting the design and performance of VAMP: Entry into the Venus atmosphere, including descent profile, heating rate, total heat load, stagnation, and acreage temperatures Impact of maximum altitude on air vehicle design and entry heating Candidate thermal protection system (TPS) requirements We will discuss the interdependencies of the above factors and the manner in which the VAMP pathfinder concept's characteristics affect the CONOPs and the science objectives. We will show how the these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support Venus science goals. We will also discuss how the VAMP platform itself can facilitate some of these science measurements.
Clocks to Computers: A Machine-Based “Big Picture” of the History of Modern Science.
van Lunteren, Frans
2016-12-01
Over the last few decades there have been several calls for a “big picture” of the history of science. There is a general need for a concise overview of the rise of modern science, with a clear structure allowing for a rough division into periods. This essay proposes such a scheme, one that is both elementary and comprehensive. It focuses on four machines, which can be seen to have mediated between science and society during successive periods of time: the clock, the balance, the steam engine, and the computer. Following an extended developmental phase, each of these machines came to play a highly visible role in Western societies, both socially and economically. Each of these machines, moreover, was used as a powerful resource for the understanding of both inorganic and organic nature. More specifically, their metaphorical use helped to construe and refine some key concepts that would play a prominent role in such understanding. In each case the key concept would at some point be considered to represent the ultimate building block of reality. Finally, in a refined form, each of these machines would eventually make its entry in scientific research, thereby strengthening the ties between these machines and nature.
Information Architecture: Notes toward a New Curriculum.
ERIC Educational Resources Information Center
Latham, Don
2002-01-01
Considers the evolution of information architectures as a field of professional education. Topics include the need for an interdisciplinary approach; balancing practical skills with theoretical concepts; and key content areas, including information organization, graphic design, computer science, user and usability studies, and communication.…
Globalization of S&T: Key Challenges Facing DOD
2012-02-01
expertise at a very early stage in areas where new concepts are being proposed. Trusted agents should not have vested interests ( pro or con ) regarding...Scanning 14. Scenario Workshops 15. Science Fictioning 16. Simulation Gaming 17. Surveys 18. SWOT Analysis 19. Weak Signals
L'appropriation du domaine scientifique chez l'eleve togolais
NASA Astrophysics Data System (ADS)
Lalancette, Lucie
1998-12-01
Science and technology are essential to sustainable development. They must be endogenous in nature to reduce the dependency and vulnerability of developing countries. Hence we seek to determine how Togolese students appropriate the field of science. Science education should answer fundamental educational needs by aiming for autonomy and individualization, that is, the skills and attitudes necessary to the resolution of, problems (and thus necessary to creativity), the concept of which includes the production of new ideas and adaptation to change. This basic scientific culture allows citizens to understand socioeconomic and environmental imperatives related to science and technology. This study answers the following questions: (1) How is the appropriation of knowledge by Togolese students favored? (2) What are the representations acquired by Togolese students in the science classroom regarding key research concepts, namely education, culture, science, knowledge and development? The objective of this research is to partially describe the context of science learning in the first cycle of the Second Degree in Togo, a French-language developing country of Africa, and particularly to understand the influence of the sociocultural setting on pedagogy and development. We first present our conception of science teaching, followed by the construction of knowledge in context. This research permits clearer propositions in terms of plausible explanations for the observed relationships among the categories of data. Indeed, the framework of the transmission of knowledge considerably influences the appropriation of the field of science by Togolese students. Science is a mythical and mystical field, still perceived as the "white mans's thing", in spite of favorable attitudes developed by students concerning the application of science and technology in their environment. By way of the favored learning methods (which also represent those of the traditional environment) and curricula (which are exogenous in nature), students formally appropriate scientific knowledge without actually transferring that knowledge outside the school setting. For this study, the validity of the propositions is dependent upon the perceptions of the key research concepts by the subjects. That is why the propositions are supported by the analysis of the Togolese student's answers during interviews, as well as by lectures given by African essayists. This is an a priori exploratory research, characterized by a qualitative methodology. The research concentrates on preliminary description and comprehension. Specifically, the method is based on an interpretive approach, while also being reflexive in nature. Observation data were gathered through documentation, field observations, a group discussion and a questionnaire. The pertinence of this study's results lies in a better understanding of the construction of knowledge in context.
Scientific governance and the process for exposure scenario development in REACH.
Money, Chris D; Van Hemmen, Joop J; Vermeire, Theo G
2007-12-01
The primary process established by the European Commission to address the science needed to define key REACH concepts and to help rationally implement REACH's ambitions is enshrined in a series of activities known as the REACH Implementation Projects (RIPs). These are projects that aim to define the methodology that could be used, and present the basis for guidance on the actual principles and procedures that may be (are proposed to be) followed in the development of the required documentation that ensures the safe use of chemicals. In order to develop soundly based and equitable regulation, it is necessary that science governance using established and accepted scientific principles must take a leading role. The extent to which such governance is embraced will be determined by many factors, but notably the process adopted to enable scientific discussion to take place. This article addresses the issues of science as they have impacted on the exemplification of the Exposure Scenario concept under REACH. The current RIP activities have created a non-adversarial process in which the key stakeholders are able to discuss the key REACH challenges. But the RIP activities will be finalised before REACH comes into force. A suitable mechanism should perhaps now be identified to ensure that this positive spirit of scientific discussion and collaboration can continue to benefit REACH and those that it serves well into the future.
Helping teachers change science instruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consuegra, G.F.
1994-12-31
Scientists and science educators jointly believe that science is important to society. So strong are these beliefs that many educational and scientific organizations have issued reports and recommendations calling for systemic revisions to science education. Collectively these documents describe an enlightened view of science and science education. Such a view includes identifying key concepts, skills, and attitudes in science for the scientifically literate citizen, and describes effective instructional strategies, delineates characteristics of successful science programs for others to imitate and emulate, and lists resources for educators, scientists, and parents to use. The effects of these resources have been clearly visiblemore » over the past five years. Science process-based objectives provide infrastructure and promote modern and traditional science teachers` efforts to provide science programming that supports scientific literacy needed for the 21st century.« less
ERIC Educational Resources Information Center
Neuman, Susan B.; Koskinen, Patricia
1992-01-01
Analyzes whether comprehensible input via captioned television influences acquisition of science vocabulary and concepts using 129 bilingual seventh and eighth graders. Finds that comprehensible input is a key ingredient in language acquisition and reading development. (MG)
Simulation Studies of Satellite Laser CO2 Mission Concepts
NASA Technical Reports Server (NTRS)
Kawa, Stephan Randy; Mao, J.; Abshire, J. B.; Collatz, G. J.; Sun X.; Weaver, C. J.
2011-01-01
Results of mission simulation studies are presented for a laser-based atmospheric CO2 sounder. The simulations are based on real-time carbon cycle process modeling and data analysis. The mission concept corresponds to ASCENDS as recommended by the US National Academy of Sciences Decadal Survey. Compared to passive sensors, active (lidar) sensing of CO2 from space has several potentially significant advantages that hold promise to advance CO2 measurement capability in the next decade. Although the precision and accuracy requirements remain at unprecedented levels of stringency, analysis of possible instrument technology indicates that such sensors are more than feasible. Radiative transfer model calculations, an instrument model with representative errors, and a simple retrieval approach complete the cycle from "nature" run to "pseudodata" CO2. Several mission and instrument configuration options are examined, and the sensitivity to key design variables is shown. Examples are also shown of how the resulting pseudo-measurements might be used to address key carbon cycle science questions.
Climate change and health research: has it served rural communities?
Bell, Erica J
2013-01-01
If climate change is the 21st Century's biggest public health threat, research faces the major challenge of providing adequate evidence for vulnerable communities to adapt to the health effects of climate change. Available information about best practice in climate adaptation suggests it is inclusive of socio-economic disadvantage and local community factors such as access to health services. Since 1995, at least 19 164 papers have been published on climate change in the health sciences and social sciences. This body of literature has not yet been systematically examined for how well it serves rural communities. The ultimate aim of the study was to contribute to better understandings about what climate adaptation research has been done and is needed for rural communities. The two research questions were: 'What kinds of content define climate change research in disciplines that could potentially contribute to adaptation for health?' and 'How is content about rural and Aboriginal communities and best practice in adaptation related to this content?' A quantitative content analysis was performed using 'computational linguistics' Leximancer software. The analysis included 19 164 health and social sciences abstracts, batched by years, from 1 January 1995 to 31 July 2012. The relative frequency and co-occurrence of 52 concepts in these abstracts were mapped, as well as associations with positive or negative sentiment for selected concepts. Aboriginal' concepts tend to be relatively infrequent (3% and 5% overall likelihood of occurrence, respectively) and are more associated with socio-economic concepts in the social sciences than the health sciences. Multiple concepts in the health sciences literature are typically connected with 'disease' and ultimately 'science' storylines, with a 38% likelihood of paired co-occurrence of 'health' and 'disease' concepts alone. The social sciences appear more focused on the local and particular issues of community in climate change than the health sciences. 'Rural' and 'Aboriginal' concepts have increased by 1% across both discipline areas, since 2011 for the 'rural' concept and since 2004 for the 'Aboriginal' concept. 'Health' concepts in the health sciences and 'economic' concepts in the social sciences, as well as 'urban' concepts, are referred to more positively than either the 'rural' or 'Aboriginal' concepts. While care needs to be taken in interpreting the results of this study too negatively for rural and Aboriginal communities, they suggest that a disease focus dominates climate and health research typically unconnected to wider socio-economic and human system factors. This finding needs to be considered in light of the accumulating evidence of the importance of such contextual systemic factors in understanding climate and health effects and responses. The study adds some support to the view that a key priority is bringing the learnings of applied community-based researchers, from those in rural health to those in the social sciences, to climate research. There is a need to build confidence, including in the rural health sector which has arguably been slow to participate in programs of climate change research, that community-based research could make a difference to rural health in a climate-changing world.
Enhancing The Science Collection Capability Of Nasas Lunar Reconnaissance Orbiter (LRO)
2017-12-01
dog-leg maneuver. The optimal control concept can be used to automate maneuver design with bright object avoidance. 6.1 Introduction Attitude maneuver...plan can be executed and the science objectives satisfied, rapid slew maneuvers are developed using optimal control theory. A key challenge to the...rapid slew is meeting operational constraints, which are treated as path constraints in optimal control . It is shown that the slew time for a payload
Teaching and Learning Science Through Song: Exploring the experiences of students and teachers
NASA Astrophysics Data System (ADS)
Governor, Donna; Hall, Jori; Jackson, David
2013-12-01
This qualitative, multi-case study explored the use of science-content music for teaching and learning in six middle school science classrooms. The researcher sought to understand how teachers made use of content-rich songs for teaching science, how they impacted student engagement and learning, and what the experiences of these teachers and students suggested about using songs for middle school classroom science instruction. Data gathered included three teacher interviews, one classroom observation and a student focus-group discussion from each of six cases. The data from each unit of analysis were examined independently and then synthesized in a multi-case analysis, resulting in a number of merged findings, or assertions, about the experience. The results of this study indicated that teachers used content-rich music to enhance student understanding of concepts in science by developing content-based vocabulary, providing students with alternative examples and explanations of concepts, and as a sense-making experience to help build conceptual understanding. The use of science-content songs engaged students by providing both situational and personal interest, and provided a mnemonic device for remembering key concepts in science. The use of songs has relevance from a constructivist approach as they were used to help students build meaning; from a socio-cultural perspective in terms of student engagement; and from a cognitive viewpoint in that in these cases they helped students make connections in learning. The results of this research have implications for science teachers and the science education community in developing new instructional strategies for the middle school science classroom.
NASA Astrophysics Data System (ADS)
Wan, Zhi Hong; Wong, Siu Ling; Zhan, Ying
2013-05-01
Nature of science (NOS) is beginning to find its place in the science education in China. In a study which investigated Chinese science teacher educators' conceptions of teaching NOS to prospective science teachers through semi-structured interviews, five key dimensions emerged from the data. This paper focuses on the dimension, NOS content to be taught to prospective science teachers. Among a total of twenty NOS elements considered by the Chinese science teacher educators to be important ideas to be taught, five were suggested by no less than a half of the educators. They are (1) empirical basis of scientific investigation, (2) logics in scientific investigation, (3) general process of scientific investigation, (4) progressive nature of scientific knowledge, and (5) realist views of mind and natural world. This paper discusses the influence of Marxism, a special socio-cultural factor in China, on Chinese science teacher educators' conceptions of NOS content to be taught to prospective science teachers. We argue the importance of considering ideological traditions (mainly those in general philosophy and religion) when interpreting views of NOS or its content to be taught in different countries and regions and understanding students' conceptual ecology of learning NOS.
The complex patient: A concept clarification.
Manning, Eli; Gagnon, Marilou
2017-03-01
Over the last decade, the concept of the "complex patient" has not only been more widely used in multidisciplinary healthcare teams and across various healthcare disciplines, but it has also become more vacuous in meaning. The uptake of the concept of the "complex patient" spans across disciplines, such as medicine, nursing, and social work, with no consistent definition. We review the chronological evolution of this concept and its surrogate terms, namely "comorbidity," "multimorbidity," "polypathology," "dual diagnosis," and "multiple chronic conditions." Drawing on key principles of concept clarification, we highlight disciplinary usage in the literature published between 2005 and 2015 in health sciences, attending to overlaps and revealing nuances of the complex patient concept. Finally, we discuss the implications of this concept for practice, research, and theory. © 2017 John Wiley & Sons Australia, Ltd.
Exploring Elementary Students' Understanding of Energy and Climate Change
ERIC Educational Resources Information Center
Boylan, Colin
2008-01-01
As environmental changes become a significant societal issue, elementary science curricula need to develop students' understanding about the key concepts of energy and climate change. For teachers, developing quality learning experiences involves establishing what their students' prior understanding about energy and climate change are. A survey…
ERIC Educational Resources Information Center
Spicer, Sally
2012-01-01
Assessing children's learning is a key part of teaching. In all curriculum areas it is used for informing planning of future learning experiences and assessing pupil progress. Specifically in science, it identifies knowledge and understanding of scientific concepts, reasoning, and practical skill development. There are various ways to assess,…
Navigation - Project CAPE Teaching Module.
ERIC Educational Resources Information Center
Caldwell, Nadine; May, Charlaron
Ten lessons are included in this interdisciplinary unit on navigation, designed to supplement fifth and sixth grade social studies and science curricula. Each lesson includes: (1) lesson concepts; (2) competency goals; (3) objectives; (4) materials; (5) list of key vocabulary words; (6) background information; (7) teacher preparation; (8) list of…
NASA Astrophysics Data System (ADS)
Slutskin, R. L.
2001-12-01
Earth and Space Science may be the neglected child in the family of high school sciences. In this session, we examine the strategies that Anne Arundel County Public Schools and NASA Goddard Space Flight Center used to develop a dynamic and highly engaging program which follows the vision of the National Science Education Standards, is grounded in key concepts of NASA's Earth Science Directorate, and allows students to examine and apply the current research of NASA scientists. Find out why Earth/Space Systems Science seems to have usurped biology and has made students, principals, and teachers clamor for similar instructional practices in what is traditionally thought of as the "glamorous" course.
NASA Technical Reports Server (NTRS)
Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.
1986-01-01
Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.
Transforming care in nursing: a concept analysis.
Vázquez-Calatayud, Mónica; Oroviogoicoechea, Cristina; Saracibar, Maribel; Pumar-Méndez, María J
2017-04-01
Although the concept of 'Transforming care' is promising for improving health care, there is no consensus in the field as to its definition. The aim of this concept analysis is to develop a deeper understanding of the term 'Transforming care' within the nursing discipline, in order to facilitate its comprehension, implementation, and evaluation. We performed a comprehensive literature review on electronic databases such as Medline (PubMed), Cinahl (Ebsco), Cochrane Library, PsycINFO (Ovid), Web of Science, Wiley-Blackwell, ScienceDirect, and SpringerLink and used Walker and Avant's approach to analyse the concept. From the 20 studies selected for this analysis, 3 main attributes of 'Transforming care' were identified: patient-centredness, evidence-based change, and transformational leadership driven. We suggest an operational definition to facilitate the implementation of the concept in practice. Furthermore, we propose that implementation is guided by the following key ideas: (1) fostering a culture of continuous improvement; (2) encouraging bottom-up initiatives; (3) promoting patient-centred care; and (4) using transformational leadership. Lastly, the evaluation of 'Transforming care' initiatives should assess care processes and professionals' and patients' outcomes.
Identification and Addressing Reduction-Related Misconceptions
ERIC Educational Resources Information Center
Gal-Ezer, Judith; Trakhtenbrot, Mark
2016-01-01
Reduction is one of the key techniques used for problem-solving in computer science. In particular, in the theory of computation and complexity (TCC), mapping and polynomial reductions are used for analysis of decidability and computational complexity of problems, including the core concept of NP-completeness. Reduction is a highly abstract…
ERIC Educational Resources Information Center
Huss, Jeanine; Baker, Cheryl
2010-01-01
Agriculture can play a key role in fostering scientific literacy because it brings important plant and ecosystem concepts into the classroom. Plus, agriculture, like science, is not static and includes much trial and error, investigation, and innovation. With help from community experts at the U.S. Department of Agriculture-Agricultural Research…
A Guide to Behavioral Science Elementary Teacher Education Program.
ERIC Educational Resources Information Center
Houston, W. Robert
A key concept of the Michigan State University model is the clinical behavior style of the teachers it produces. Teachers are expected to approach teaching as clinical practice and to stylize a particular set of activities: describing, analyzing, hypothesizing; prescribing, treating, and observing consequences. Training in the clinical approach…
Assessing Knowledge Change in Computer Science
ERIC Educational Resources Information Center
Nash, Jane Gradwohl; Bravaco, Ralph J.; Simonson, Shai
2006-01-01
The purpose of this study was to assess structural knowledge change across a two-week workshop designed to provide high-school teachers with training in Java and Object Oriented Programming. Both before and after the workshop, teachers assigned relatedness ratings to pairs of key concepts regarding Java and Object Oriented Programming. Their…
Learning Processes in Man, Machine and Society
ERIC Educational Resources Information Center
Malita, Mircea
1977-01-01
Deciphering the learning mechanism which exists in man remains to be solved. This article examines the learning process with respect to association and cybernetics. It is recommended that research should focus on the transdisciplinary processes of learning which could become the next key concept in the science of man. (Author/MA)
Threshold Concepts in the Development of Problem-Solving Skills
ERIC Educational Resources Information Center
Wismath, Shelly; Orr, Doug; MacKay, Bruce
2015-01-01
Problem-solving skills are often identified as a key component of 21st century education. This study collected data from students enrolled in a university-level Liberal Education science course called "Problems and Puzzles," which introduced students to the theory and practice of problem solving via puzzles. Based on classroom…
A Critical Realist Orientation to Learner Needs
ERIC Educational Resources Information Center
Ayers, David F.
2011-01-01
The objective of this essay is to propose critical realism as a philosophical middle way between two sets of ontological, epistemological, and methodological assumptions regarding learner needs. Key concepts of critical realism, a tradition in the philosophy of science, are introduced and applied toward an analysis of learner needs, resulting in…
Exploring the use of concept chains to structure teacher trainees' understanding of science
NASA Astrophysics Data System (ADS)
Machin, Janet; Varleys, Janet; Loxley, Peter
2004-12-01
This paper reports on a paper and pencil concept-sorting strategy that enables trainee teachers to restructure their knowledge in any one domain of science. It is used as a self-study tool, mainly to enable them to break down and understand the progression of concepts beyond the level at which they have to teach. The strategy involves listing key ideas in an increasingly complex and inclusive fashion such that a 'chain' is developed where the initial statements are simple and the final ones more complex. Evaluation of the strategy with trainees over a five-year period revealed promising potential for the strategy as a self-study tool, as well as an audit tool, enabling tutors to more easily identify misconceptions. There was some evidence that trainees found the strategy useful in preparing themselves to teach in the classroom, possibly by enabling meaningful learning to take place according to the Ausubel-Novak-Gowin theory.
A concept analysis of befriending.
Balaam, Marie-Clare
2015-01-01
To report an analysis of the concept of befriending. Befriending is an intervention used in a range of nursing, health and social care settings to provide support for individuals who are socially isolated or lack social support. However, in many cases befriending and its impact remains poorly understood and under researched. Concept analysis provides clarification of the concept and basis for further research and development. Concept analysis. AMED, Psyc Articles, Psych Info, Medline, MedlinePlus, Social Science Index and CINHAL databases were searched for literature published between 1993-2013 using the search term Befriending. Walker and Avant's method of concept analysis was chosen. This combined with insights from Risjord's work produced a theoretical concept analysis which focused on the concept in peer reviewed academic literature. There are currently several ways the mechanisms of befriending and its effects on individuals and communities are understood. It is possible however to identify key attributes which define the concept and differentiate it from related concepts, such as peer support and mentoring. Key attributes are that it is an organised intervention, involving the creation of an emotionally connected friend-like relationship, where there is a negotiation of power. This concept analysis has clarified current understandings and uses of befriending. It provides the basis for widening the focus of research into the effectiveness and impact of befriending on those who are befriended, those who befriend and the communities where befriending takes place. © 2014 John Wiley & Sons Ltd.
Nanoscience and Nanotechnology Concepts for Enriching High School Curricula
NASA Astrophysics Data System (ADS)
Sanders, Charlotte; Marshall, Jill
2010-03-01
High school science teachers seeking to enhance student enthusiasm for science and to enrich their curricula with ``real world'' examples might be interested in drawing on nanoscience, which is currently a major branch of study in biology, chemistry, and physics---key high school curriculum areas---and is also a subject much reported upon by the news media. However, presenting nanoscience and nanotechnology in the classroom presents key challenges: the subject matter must be successfully integrated into the core curriculum so as to enhance the students' educational experience; it must support the aims of Texas Essential Knowledge and Skills for Science (TEKC), or equivalent systems in other states; it must be made accessible to students; and it must be presentable with the use of equipment or supplies that are neither too expensive nor too rare to be obtainable by school districts. These last two requirements are particularly difficult, because it is the nature of nanoscale research that complex fabrication processes and expensive characterization methods are typically required. This talk will discuss the authors' experience leading a teachers' workshop session in 2009 to address the issue of introducing nanoscience into the high school science classroom. The workshop is funded by the NSF through the UT-IGERT program, and brings together teachers from across Texas annually for discussion, curriculum-building, and training in concepts related to nanoscience and nanotechnology.
NASA Technical Reports Server (NTRS)
Green, Robert O.; Rogez, Francois; Green, Rob; Ungar, Steve; Knox, Robert; Asner, Greg; Muller-Karger, Frank; Bissett, Paul; Chekalyuk, Alex; Dierssen, Heidi;
2007-01-01
This slide presentation reviews the proposed Plant Physiology and Functional Types (PPFT) Mission. The National Academy of Sciences Decadal Survey, placed a critical priority on a Mission to observe distribution and changes in ecosystem functions. The PPFT satellite mission provides the essential measurements needed to assess drivers of change in biodiversity and ecosystem services that affect human welfare. The presentation reviews the science questions that the mission will be designed to answer, the science rationale, the science measurements, the mission concept, the planned instrumentation, the calibration method, and key signal to noise ratios and uniformity requirements.
Groffman, P.M.; Baron, Jill S.; Blett, T.; Gold, A.J.; Goodman, I.; Gunderson, L.H.; Levinson, B.M.; Palmer, Margaret A.; Paerl, H.W.; Peterson, G.D.; Poff, N.L.; Rejeski, D.W.; Reynolds, J.F.; Turner, M.G.; Weathers, K.C.; Wiens, J.
2006-01-01
An ecological threshold is the point at which there is an abrupt change in an ecosystem quality, property or phenomenon, or where small changes in an environmental driver produce large responses in the ecosystem. Analysis of thresholds is complicated by nonlinear dynamics and by multiple factor controls that operate at diverse spatial and temporal scales. These complexities have challenged the use and utility of threshold concepts in environmental management despite great concern about preventing dramatic state changes in valued ecosystems, the need for determining critical pollutant loads and the ubiquity of other threshold-based environmental problems. In this paper we define the scope of the thresholds concept in ecological science and discuss methods for identifying and investigating thresholds using a variety of examples from terrestrial and aquatic environments, at ecosystem, landscape and regional scales. We end with a discussion of key research needs in this area.
Origins Space Telescope Concept 2: Trades, Decisions, and Study Status
NASA Astrophysics Data System (ADS)
Leisawitz, David; DiPirro, Michael; Carter, Ruth; Origins Space Telescope Decadal Mission Concept Study Team
2018-01-01
The Origins Space Telescope (OST) will trace the history of our cosmic origins from the time dust and heavy elements began to alter the astrophysical processes that shaped galaxies and enabled planets to form, culminating at least once in the development of a life-bearing planet. But how did the universe evolve in response to its changing ingredients, and how common are planets that support life? The OST, an advancing concept for the Far-Infrared Surveyor mission described in the NASA Astrophysics roadmap, is being designed to answer these questions. As envisaged in the Roadmap, Enduring Quests/Daring Visions, OST will offer sensitivity and spectroscopic capabilities that vastly exceed those found in any preceding far-IR observatory. The spectral range of OST was extended down to 6 microns to allow measurements of key biomarkers in transiting exoplanet spectra. Thus, OST is a mid- and far-IR mission. OST Concept 2 will inform the Science and Technology Definition Team’s understanding of the “solution space,” enabling a recommendation to the 2020 Decadal Survey which, while not fully optimized, will be scientifically compelling, executable, and intended to maximize the science return per dollar. OST Concept 1, described in a companion paper, would satisfy virtually all of the STDT’s science objectives in under 5 years. Concept 2 is intentionally less ambitious than Concept 1, but it still includes a 4 K telescope, enabling exquisitely sensitive far-IR measurements. This paper will summarize the architecture options considered for OST Concept 2 and describe the factors that led to the chosen design concept. Lessons from the Concept 1 study influenced our choices. We report progress on the Concept 2 study to date.
Connelly, Elizabeth B.; Allen, Craig R.; Hatfield, Kirk; ...
2017-02-20
The National Academy of Sciences (NAS) definition of resilience is used here to organize common concepts and synthesize a set of key features of resilience that can be used across diverse application domains. The features in common include critical functions (services), thresholds, cross-scale (both space and time) interactions, and memory and adaptive management. We propose a framework for linking these features to the planning, absorbing, recovering, and adapting phases identified in the NAS definition. As a result, the proposed delineation of resilience can be important in understanding and communicating resilience concepts.
Connelly, Elizabeth B.; Allen, Craig R.; Hatfield, Kirk; Palma-Oliveira, José M.; Woods, David D.; Linkov, Igor
2017-01-01
The National Academy of Sciences (NAS) definition of resilience is used here to organize common concepts and synthesize a set of key features of resilience that can be used across diverse application domains. The features in common include critical functions (services), thresholds, cross-scale (both space and time) interactions, and memory and adaptive management. We propose a framework for linking these features to the planning, absorbing, recovering, and adapting phases identified in the NAS definition. The proposed delineation of resilience can be important in understanding and communicating resilience concepts.
The concept of nature in Islamic science teaching
NASA Astrophysics Data System (ADS)
Zarman, Wendi
2016-02-01
Science teaching is basically value laden activities. One of the values tells that science is not related to any religion. This secular value is reflected to science teaching in many places, including religious country like Indonesia. However, we argue that in Indonesia science teaching should not be secular as in the Western country since one of the basic aim of National Education according to the Indonesian constitution Undang-Undang Dasar 1945, is to inculcate faith and god-fearing to One God Almighty. As we know, Indonesia is a Moslem country and has many Islamic schools in it too. Thus, it is important to design a science teaching framework base on Islamic teaching to fulfill the basic aim of National Education This paper discusses concept of nature, the key term in science, based on Islamic view that may used as a framework to develop Islamic science teaching. In Islam, science has a strong relation to religion since nature reflects the existence of the Creator. This concept is derived from the analysis of several verses from Qur'an as the main source of Islamic teaching. There are several principle can be derived from this analysis. Firstly, visible world is not the only world, but there is also the unseen world. Secondly, the nature is not merely matter that doesn't have any sacred value, but it is the indication or symbol of God existence and His Nature. Thirdly, The Qur'an and the nature are both Books of Allah that contain messages of Him, so they are complementary to each other
Language of Science as a Bridge to Native American Educators and Students
NASA Astrophysics Data System (ADS)
Alexander, C. J.; Angrum, A.; Martin, M.; Ali, N.; Kingfisher, J.; Treuer, A.; Grant, G.; Ciotti, J.
2010-12-01
In the Western tradition, words and vocabulary encapsulate much of how knowledge enters the public discourse, and is passed from one generation to the next. Much of Native American knowledge is passed along in an oral tradition. Chants and ceremonies contain context and long-baseline data on the environment (geology, climate, and astronomy) that may even surpasses the lifespan of a single individual. For Native American students and researchers, the concept of ‘modern research and science education’ may be wrapped up into the conundrum of assimilation and loss of cultural identification and traditional way of life. That conundrum is also associated with the lack of language and vocabulary with which to discuss 'modern research.' Native Americans emphasize the need to know themselves and their own culture when teaching their students. Many Native American communities recognize that the retention of their language - and need to make the language relevant to the technological age we live in, represents one of their largest and most urgent challenges. One strategy for making science education relevant to Native American learners is identifying appropriate terms that cross the cultural divide. More than just words and vocabulary, the thought processes and word/concept relationships can be quite different in the native cultures. The U.S. Rosetta Project has worked to identify words associated with Western 'STEM' concepts in three Native American communities: Navajo, Hawaiian, and Ojibwe. The U.S. Rosetta Project is NASA’s contribution to the International Rosetta Mission. The Rosetta stone, inspiration for the mission’s name, is expected to provide the keys to the primordial solar system the way the original Rosetta Stone provided a key to ancient language. Steps taken so far include identification and presentation of online astronomy, geology, and physical science vocabulary terms in the native language, identification of teachers and classrooms - often in Native American charter schools - interested in working STEM concepts in the native language, and initiation of an essay contest to encourage use and cognitive understanding of the terms. One of our lesson's learned, is that finding people who are bi-lingual, who have an understanding of western science and traditional knowledge are key to making the cross-cultural connections work. STEM language elements in Navajo, Hawaiian, and Ojibwe can be found at the U.S. Rosetta website. Work at the Jet Propulsion Laboratory, California Institute of Technology, was supported by NASA. The Rosetta mission is a cooperative project of NASA and the European Space Agency.
Enabling Communication and Navigation Technologies for Future Near Earth Science Missions
NASA Technical Reports Server (NTRS)
Israel, David J.; Heckler, Greg; Menrad, Robert J.; Hudiburg, John J.; Boroson, Don M.; Robinson, Bryan S.; Cornwell, Donald M.
2016-01-01
In 2015, the Earth Regimes Network Evolution Study (ERNESt) Team proposed a fundamentally new architectural concept, with enabling technologies, that defines an evolutionary pathway out to the 2040 timeframe in which an increasing user community comprised of more diverse space science and exploration missions can be supported. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network through implementation of select technologies resulting in a global communication and navigation network that provides communication and navigation services to a wide range of space users in the Near Earth regime, defined as an Earth-centered sphere with radius of 2M Km. The enabling technologies include: High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology (PNT). This paper describes this new architecture, the key technologies that enable it and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.
Science and Pseudoscience in Medicine: Evidence-Based vs. Evidence-Biased Medicine.
Jakovljević, Miro; Ostojić, Ljerka
2016-12-01
The concept of evidence-based medicine (EBM), as the highest standard of health care, came into existence in 1990s to promote a systematic approach to helping clinicians in their practice to be guided by the best available scientific evidence. However, there has been an increasing number of warning reports that in modern research, misrepresented, false and unuseful findings may be the majority or even the vast majority of published research claims In spite of the huge scientific progress, pseudoscience and associated evidence biased medicine represent a serious threat to the concept of the EBM. Effective education in medicine, proper research motivation, sound systems and creative thinking and culture of scientific dialogue may significantly contribute to better science and evidence-based medicine. The seven key words of good science, research and publishing are: integrity, motivation, capacity, understanding, knowledge, experience, and creativity.
The Multi-Sector Sustainability Browser (MSSB): A Tool for ...
The MSSB is the first and only decision support tool containing information from scientific literature and technical reports that can be used to develop and implement sustainability initiatives. The MSSB is designed to assist individuals and communities in understanding the impacts that the four key dimensions of sustainability - Land Use, Buildings and Infrastructure, Transportation, and Materials Management - can have on human health, the economy, the built environment and natural environments. The MSSB has the following capabilities: a. Displays and describes linkages between the four major sustainability concepts (Land Use, Buildings and Infrastructure, Transportation, and Materials Management) and their subordinate concepts. b. Displays and lists literature sources and references (including weblinks where applicable) providing information about each major sustainability concept and its associated subordinate concepts. c. Displays and lists quantitative data related to each major sustainability concept and its associated subordinate concepts, with weblinks where applicable.The MSSB serves as a ‘visual database’, allowing users to: investigate one or more of the four key sustainability dimensions; explore available scientific literature references, and; assess potential impacts of sustainability activities. The MSSB reduces the amount of time and effort required to assess the state of sustainability science and engineering research pertaining
GOClonto: an ontological clustering approach for conceptualizing PubMed abstracts.
Zheng, Hai-Tao; Borchert, Charles; Kim, Hong-Gee
2010-02-01
Concurrent with progress in biomedical sciences, an overwhelming of textual knowledge is accumulating in the biomedical literature. PubMed is the most comprehensive database collecting and managing biomedical literature. To help researchers easily understand collections of PubMed abstracts, numerous clustering methods have been proposed to group similar abstracts based on their shared features. However, most of these methods do not explore the semantic relationships among groupings of documents, which could help better illuminate the groupings of PubMed abstracts. To address this issue, we proposed an ontological clustering method called GOClonto for conceptualizing PubMed abstracts. GOClonto uses latent semantic analysis (LSA) and gene ontology (GO) to identify key gene-related concepts and their relationships as well as allocate PubMed abstracts based on these key gene-related concepts. Based on two PubMed abstract collections, the experimental results show that GOClonto is able to identify key gene-related concepts and outperforms the STC (suffix tree clustering) algorithm, the Lingo algorithm, the Fuzzy Ants algorithm, and the clustering based TRS (tolerance rough set) algorithm. Moreover, the two ontologies generated by GOClonto show significant informative conceptual structures.
Jovian system science issues and implications for a Mariner Jupiter Orbiter mission
NASA Technical Reports Server (NTRS)
Beckman, J. C.; Miner, E. D.
1975-01-01
Science goals for missions to Jupiter in the early 1980's are reviewed and a case is made for the science community to play the key role in assigning relative priorities for these goals. A reference set of measurement requirements and their priorities is established and those high priority goals that are most demanding on spacecraft and mission design are used to develop a reference mission concept. An orbiter mission is required to satisfy a majority of the measurements, and a spacecraft data handling capability as least equivalent to the Mariner Jupiter/Saturn spacecraft is the major system design driver. This reference Mission Concept is called Mariner Jupiter Orbiter. The remaining measurement requirements are reviewed in light of the potential science return of this mission, and certain options are developed to augment this science return. Two attractive options fulfill high priority objectives not achieved by the reference Mariner Jupiter Orbiter mission alone: an atmospheric entry probe, released prior to orbit insertion; and a daughter satellite dedicated to particle and fields measurements, ejected into an independent orbit about Jupiter.
Complexity and health professions education: a basic glossary.
Mennin, Stewart
2010-08-01
The study of health professions education in the context of complexity science and complex adaptive systems involves different concepts and terminology that are likely to be unfamiliar to many health professions educators. A list of selected key terms and definitions from the literature of complexity science is provided to assist readers to navigate familiar territory from a different perspective. include agent, attractor, bifurcation, chaos, co-evolution, collective variable, complex adaptive systems, complexity science, deterministic systems, dynamical system, edge of chaos, emergence, equilibrium, far from equilibrium, fuzzy boundaries, linear system, non-linear system, random, self-organization and self-similarity.
Stone, Mark H; Stenner, A Jackson
2014-01-01
Several concepts from Georg Rasch's last papers are discussed. The key one is comparison because Rasch considered the method of comparison fundamental to science. From the role of comparison stems scientific inference made operational by a properly developed frame of reference producing specific objectivity. The exact specifications Rasch outlined for making comparisons are explicated from quotes, and the role of causality derived from making comparisons is also examined. Understanding causality has implications for what can and cannot be produced via Rasch measurement. His simple examples were instructive, but the implications are far reaching upon first establishing the key role of comparison.
Applying principles from safety science to improve child protection.
Cull, Michael J; Rzepnicki, Tina L; O'Day, Kathryn; Epstein, Richard A
2013-01-01
Child Protective Services Agencies (CPSAs) share many characteristics with other organizations operating in high-risk, high-profile industries. Over the past 50 years, industries as diverse as aviation, nuclear power, and healthcare have applied principles from safety science to improve practice. The current paper describes the rationale, characteristics, and challenges of applying concepts from the safety culture literature to CPSAs. Preliminary efforts to apply key principles aimed at improving child safety and well-being in two states are also presented.
NASA Astrophysics Data System (ADS)
Huffman, L. T.; Blythe, D.; Dahlman, L. E.; Fischbein, S.; Johnson, K.; Kontar, Y.; Rack, F. R.; Kulhanek, D. K.; Pennycook, J.; Reed, J.; Youngman, B.; Reeves, M.; Thomas, R.
2010-12-01
The challenges of communicating climate change science to non-technical audiences present a daunting task, but one that is recognized in the science community as urgent and essential. ANDRILL's (ANtarctic geological DRILLing) international network of scientists, engineers, technicians and educators work together to convey a deeper understanding of current geoscience research as well as the process of science to non-technical audiences. One roadblock for educators who recognize the need to teach climate change has been the lack of a comprehensive, integrated set of resources and activities that are related to the National Science Education Standards. Pieces of the climate change puzzle can be found in the excellent work of the groups of science and education professionals who wrote the Essential Principles of Ocean Sciences, Climate Literacy: The Essential Principles of Climate Science, Earth Science Literacy Principles: The Big Ideas and Supporting Concepts of Earth Science, and Essential Principals and Fundamental Concepts for Atmospheric Science Literacy, but teachers have precious little time to search out the climate change goals and objectives in those frameworks and then find the resources to teach them. Through NOAA funding, ANDRILL has created a new framework, The Environmental Literacy Framework with a Focus on Climate Change (ELF), drawing on the works of the aforementioned groups, and promoting an Earth Systems approach to teaching climate change through five units: Atmosphere, Biosphere, Geosphere, Hydrosphere/Cryosphere, and Energy as the driver of interactions within and between the “spheres.” Each key concept in the framework has a hands-on, inquiry activity and matching NOAA resources for teaching the objectives. In its present form, we present a ‘road map’ for teaching climate change and a set of resources intended to continue to evolve over time.
Density functional theory in materials science.
Neugebauer, Jörg; Hickel, Tilmann
2013-09-01
Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition-structure-property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form.
DOT National Transportation Integrated Search
2015-05-05
Key outcomes or other achievements - This project highlighted the importance of math and science concepts within three of the six STEM-related career clusters as defined by the Mississippi Department of Education: Agriculture, Food and Natural Resour...
Intermolecular Forces as a Key to Understanding the Environmental Fate of Organic Xenobiotics
ERIC Educational Resources Information Center
Casey, Ryan E.; Pittman, Faith A.
2005-01-01
A module that can be incorporated into chemistry or environmental science classes at the high school or undergraduate level is described. The module is divided into a series of segments, each of which incorporates several concepts and results in students making significant predictions about the behavior of organic xenobiotics.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-13
... collected on members of the general public, health professionals, faculty of academic institutions, students... peers on healthy living and pre-conception care. 5. Organizational Databases: Business contact... to work. 3. Organizational Databases: Name of organization and key contact person, business address...
Public Elementary and Secondary Education in the '80s.
ERIC Educational Resources Information Center
Broudy, H. S.
Privatism, vouchers, too many pressure groups, and a deemphasis of citizenship present the worst stumbling blocks to education. A five-point curriculum model includes: (1) the symbolics of information--the skills of language and computation; (2) the key concepts of a selected set of the physical sciences and mathematics; (3) developmental studies…
Fostering Critical Teacher Agency: The Impact of a Science Capital Pedagogical Approach
ERIC Educational Resources Information Center
King, Heather; Nomikou, Effrosyni
2018-01-01
Teacher agency is considered key in shaping teachers' professional identities and decision-making capabilities. We suggest that the concept of agency also constitutes a useful tool for evaluating the successful implementation of new teaching approaches. In this paper we discuss findings from a teacher professional development programme aimed at…
Marcus, Leanne; Plumeri, Julia; Baker, Gary M; Miller, Jon S
2013-06-01
A previously published classroom teaching method for helping students visualize and understand Michaelis-Menten kinetics (19) was used as an anticipatory set with high school and middle school science teachers in an Illinois Math and Science Partnership Program. As part of the activity, the teachers were asked to collect data by replicating the method and to analyze and report the data. All concluded that the rate data they had collected were hyperbolic. As part of a guided inquiry plan, teachers were then prompted to reexamine the method and evaluate its efficacy as a teaching strategy for developing specific kinetic concepts. After further data collection and analysis, the teachers discovered that their data trends were not, in fact, hyperbolic, which led to several teacher-developed revisions aimed at obtaining a true hyperbolic outcome. This article outlines the inquiry process that led to these revisions and illustrates their alignment with several key concepts, such as rapid equilibrium kinetics. Instructional decisions were necessary at several key points, and these are discussed.
Aune, Jeanine Elise; Evans, Lynn Lundy; Boury, Nancy
2018-01-01
The nature of science (NOS) is a foundational framework for understanding scientific ideas and concepts. This framework includes scientific methodology, the process of revising and interpreting data, and the ways in which science is a social endeavor. Nature of science literature treats science as a way of knowing that is based on observable phenomenon. While discipline-specific coursework teaches the factual information of science, it may fall short on teaching scientific literacy, a key component of which is understanding NOS. We have designed an English course that features nonfiction narratives describing the early days of epidemiology, hygiene awareness, and the current controversy surrounding vaccination. Using a validated assessment of student understanding of NOS, the Student Understanding of Science and Scientific Inquiry (SUSSI), we have determined that this science-themed English composition course was effective in teaching NOS. Student understanding of NOS increased between the beginning and the end of the course in eight of the nine parameters of NOS measured, with the greatest gains in understanding the role of revision and of creativity in science. Our data imply that the course helped students develop a slightly less naïve understanding of the nature of science and its importance in the development and dissemination of scientific ideas and concepts. PMID:29904539
Arguing from Nature: The role of `nature' in students' argumentations on a socio-scientific issue
NASA Astrophysics Data System (ADS)
Nielsen, Jan Alexis
2012-03-01
This paper explores how students invoked different conceptions of 'nature' in eight socio-scientific group discussions about human gene therapy. The paper illustrates and discusses how the students articulated nature and to what extent they elicited science factual content in the process. While the students in this study invoked nature at key places in a variety of dialectical contexts in the discussions, these invocations were often uncritical appeals and rarely involved science factual content. Even when an argument from nature was challenged, the author of that argument would often shift the sense of nature rather than elaborate upon the argumentation. It is argued that if students were properly introduced to the evaluative character of the term 'nature' it would not just be conducive to the quality of their argumentation, but also invite them to foreground science factual content at key places in their discussion.
Romanticism and Romantic Science: Their Contribution to Science Education
NASA Astrophysics Data System (ADS)
Hadzigeorgiou, Yannis; Schulz, Roland
2014-10-01
The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field has not been explored. Romanticism was not only an obvious historical period, but a particular state of mind with its own extraordinary emotional sensitivity towards nature. It is especially the latter which we hope to revisit and reclaim for science education. After discussing several key historical contributions, we describe nine characteristics of `Romantic Science' in order to focus on six ideas/possibilities that we believe hold much value for transforming current science education: (1) the emotional sensitivity toward nature, (2) the centrality of sense experience, (3) the importance of "holistic experience", (4) the importance of the notions of mystery and wonder, (5) the power of science to transform people's outlook on the natural world, and (6) the importance of the relationship between science and philosophy. It is argued that in view of a pragmatist/utilitarian conception of school science prevalent today the aforementioned ideas (especially the notion of wonder and the poetic/non-analytical mode of knowledge), can provide food for thought for both science teachers and researchers seeking to work out an aesthetic conception, one that complements current approaches such as inquiry science and conceptual change.
NASA Astrophysics Data System (ADS)
Wolery, Thomas J.; Jové Colón, Carlos F.
2017-09-01
Chemical thermodynamic data remain a keystone for geochemical modeling and reactive transport simulation as applied to an increasing number of applications in the earth sciences, as well as applications in other areas including metallurgy, material science, and industrial process design. The last century has seen the development of a large body of thermodynamic data and a number of major compilations. The past several decades have seen the development of thermodynamic databases in digital form designed to support computer calculations. However, problems with thermodynamic data appear to be persistent. One problem pertains to the use of inconsistent primary key reference data. Such data pertain to elemental reference forms and key, stoichiometrically simple chemical species including metal oxides, CO2, water, and aqueous species such as Na+ and Cl-. A consistent set of primary key data (standard Gibbs energies, standard enthalpies, and standard entropies for key chemical species) for 298.15 K and 1 bar pressure is essential. Thermochemical convention is to define the standard Gibbs energy and the standard enthalpy of an individual chemical species in terms of formation from reference forms of the constituent chemical elements. We propose a formal concept of "links" to the elemental reference forms. This concept involves a documented understanding of all reactions and calculations leading to values for a formation property (standard Gibbs energy or enthalpy). A valid link consists of two parts: (a) the path of reactions and corrections and (b) the associated data, which are key data. Such a link differs from a bare "key" or "reference" datum in that it requires additional information. Some or all of its associated data may also be key data. In evaluating a reported thermodynamic datum, one should identify the links to the chemical elements, a process which can be time-consuming and which may lead to a dead end (an incomplete link). The use of two or more inconsistent links to the same elemental reference form in a thermodynamic database will result in an inconsistency in the database. Thus, in constructing a database, it is important to establish a set of reliable links (generally resulting in a set of primary reference data) and then correct all data adopted subsequently for consistency with that set. Recommended values of key data have not been constant through history. We review some of this history through the lens of major compilations and other influential reports, and note a number of problem areas. Finally, we illustrate the concepts developed in this paper by applying them to some key species of geochemical interest, including liquid water; quartz and aqueous silica; and gibbsite, corundum, and the aqueous aluminum ion.
Preservice Teachers' Memories of Their Secondary Science Education Experiences
NASA Astrophysics Data System (ADS)
Hudson, Peter; Usak, Muhammet; Fančovičová, Jana; Erdoğan, Mehmet; Prokop, Pavol
2010-12-01
Understanding preservice teachers' memories of their education may aid towards articulating high-impact teaching practices. This study describes 246 preservice teachers' perceptions of their secondary science education experiences through a questionnaire and 28-item survey. ANOVA was statistically significant about participants' memories of science with 15 of the 28 survey items. Descriptive statistics through SPSS further showed that a teacher's enthusiastic nature (87%) and positive attitude towards science (87%) were regarded as highly memorable. In addition, explaining abstract concepts well (79%), and guiding the students' conceptual development with practical science activities (73%) may be considered as memorable secondary science teaching strategies. Implementing science lessons with one or more of these memorable science teaching practices may "make a difference" towards influencing high school students' positive long-term memories about science and their science education. Further research in other key learning areas may provide a clearer picture of high-impact teaching and a way to enhance pedagogical practices.
Reaching the Future Teachers in Your Classroom: New Directions in Pre-Service Education
NASA Astrophysics Data System (ADS)
Grier, Jennifer A.; Ruberg, L.
2006-09-01
We will present results and progress from initiatives seeking to improve the experiences of future teachers in college level science classes. A future teacher (pre-service teacher) is inspired to teach science based on personal experiences with college science classes. The most critical opportunity to make a real difference in science education in schools comes when the teachers themselves are first being educated. Given the difficulties in identifying future teachers and the wide variations in their needs, how can we best help future teachers in training? What critical thinking skills are most important for them to absorb from their exposure to science as undergraduates and graduate students? What teaching and learning experiences can we offer that will help science teachers in training confidently assess the relationship between evidence and explanations and then bring that understanding and experience effectively into their own classroom? Recent initiatives in pre-service education have identified several key strategies for improving teacher preparation at the post-secondary level: - Using a constructivist approach to teach physical science concepts and guided inquiry - Knowing common misconceptions about key scientific concepts that students bring to college-level science classrooms - Applying documented strategies for identifying and addressing student misconceptions; and - Knowing how to select and adapt curriculum materials based on common preconceptions held by students. The challenge of reaching these outcomes is complex and cannot be addressed with simple solutions. Teaching strategies that help prepare future teachers include modeling effective teaching of science, understanding the relationship between student/teacher misconceptions, designing and implementing evaluation and assessment, appropriate use of technology tools, and tapping into the existing community of learners to provide ongoing education opportunities and support as the pre-service teacher progresses. Several examples of student preconceptions and a description of the teaching strategies used to help address specific misconceptions will be provided.
STATE OF THE SCIENCE OF MATERNAL-INFANT BONDING: A PRINCIPLE-BASED CONCEPT ANALYSIS
Bicking Kinsey, Cara; Hupcey, Judith E.
2013-01-01
Objective To provide a principle-based analysis of the concept of maternal-infant bonding. Design Principle-based method of concept analysis for which the data set included 44 articles published in the last decade from Pubmed, CINAHL, and PyschINFO/PsychARTICLES. Setting Literature inclusion criteria were English language, articles published in the last decade, peer-reviewed journal articles and commentary on published work, and human populations. Measurement and Findings After brief review of the history of maternal-infant bonding, a principle-based concept analysis was completed to examine the state of the science with regard to this concept. The concept was critically examined according to the clarity of definition (epistemological principle), applicability of the concept (pragmatic principle), consistency in use and meaning (linguistic principle), and differentiation of the concept from related concepts (logical principle). Analysis of the concept revealed: (1) maternal-infant bonding describes maternal feelings and emotions towards her infant. Evidence that the concept encompasses behavioral or biological components was limited; (2) the concept is clearly operationalized in the affective domain; and (3) maternal-infant bonding is linguistically confused with attachment, although the boundaries between the concepts are clearly delineated. Key Conclusion Despite widespread use of the concept, maternal-infant bonding is at times superficially developed and subject to confusion with related concepts. Concept clarification is warranted. A theoretical definition of the concept of maternal-infant bonding was developed to aid in the clarification, but more research is necessary to further clarify and advance the concept. Implications for Practice Nurse midwives and other practitioners should use the theoretical definition of maternal-infant bonding as a preliminary guide to identification and understanding of the concept in clinical practice. PMID:23452661
Analysis of heliographic missions complementary to ISPM. [International Solar Polar Mission
NASA Technical Reports Server (NTRS)
Driver, J. M.
1984-01-01
Five concepts were formulated, analyzed, and compared for satisfying heliographic science mission objectives both with and without a concurrent International Solar Polar Mission (ISPM) Spacecraft. Key astrodynamic constraints and performance factors are known from literature for the Lagrange point mission and the sun-synchronous earth orbit mission, but are set forth in this paper for the three solar orbiting missions concepts considered. Any of these five missions should be doable at modest cost since no strong cost drivers were encountered in the analyses. The mission to be flown depends on mission capability to meet science measurement needs more than on strong economic factors. Each mission offers special advantages for particular measurement emphasis. Based on selected qualitative mission discriminators, an overall 'best mission' was selected and described in some detail.
Sociocultural dimensions of tuberculosis: an overview of key concepts.
Mason, P H; Degeling, C; Denholm, J
2015-10-01
Biomedical innovations are unlikely to provide effective and ethical tuberculosis (TB) control measures without complementary social science research. However, a strong interest in interdisciplinary work is often undermined by differences in language and concepts specific to each disciplinary approach. Accordingly, biological and social scientists need to learn how to communicate with each other. This article will outline key concepts relating to TB from medical anthropology and health sociology. Distilling these concepts in an introductory framework is intended to make this material accessible to researchers in laboratory, clinical and fieldwork settings, as well as to encourage more social scientists to engage with TB research among target groups critical for successful programmatic interventions. For pedagogical purposes, the relevant concepts are grouped into three categories: 1) structures and settings, which includes overarching themes such as syndemics, local biologies, medicalisation, structural violence and surveillance; 2) practices and processes, encompassing gender, stigma, taboo, and victim blaming; and 3) experience and enculturation, which includes illness narratives, biographical disruption and dynamic nominalism. By helping to navigate this literature, we hope to foster more cross-disciplinary conversations between qualitative and quantitative researchers. TB, a quintessential social disease, will be controlled more effectively using a multistranded research approach.
Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification.
Danielson, Kathryn I; Tanner, Kimberly D
2015-01-01
Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. © 2015 K. I. Danielson and K. D. Tanner. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Astronomy in the College Curriculum for Preservice Elementary Teachers
NASA Astrophysics Data System (ADS)
French, L. M.; MacCormack, A.; Winokur, J.
1997-05-01
Astronomy, astrophysics, and space science play a major role in courses being developed at Wheelock College. The majority of the students are preparing for careers as elementary and early childhood teachers; they will thus be among the first teachers of science a child meets. Wheelock's introductory course in astronomy is based around key topics in the new national science frameworks such as size and scale, our place in the Universe, and light and color. Astrophysics, an intermediate level course, provides a more quantitative survey for those with a background in physical science. An interdisciplinary sequence of two courses, "The Physical Universe" and "The Living World", introduces students to key concepts such as motion and energy. Applications are studied from all of the sciences, including crater formation and the conversion of light to chemical energy in photosynthesis. The interdisciplinary courses have been developed and taught by an astrophysicist, an ecologist, and an early childhood educator. This work has been done under the auspices of TEAMS-BC (Teacher Education Addressing Math and Science in Boston and Cambridge), a Collaborative for Excellence in Teacher Preparation involving Harvard University, MIT, the University of Massachusetts-Boston, Wheelock College, and the Boston and Cambridge Public School Systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolery, Thomas J.; Jove Colon, Carlos F.
Chemical thermodynamic data remain a keystone for geochemical modeling and reactive transport simulation as applied to an increasing number of applications in the earth sciences, as well as applications in other areas including metallurgy, material science, and industrial process design. The last century has seen the development of a large body of thermodynamic data and a number of major compilations. The past several decades have seen the development of thermodynamic databases in digital form designed to support computer calculations. However, problems with thermodynamic data appear to be persistent. One problem pertains to the use of inconsistent primary key reference data.more » Such data pertain to elemental reference forms and key, stoichiometrically simple chemical species including metal oxides, CO 2, water, and aqueous species such as Na + and Cl -. A consistent set of primary key data (standard Gibbs energies, standard enthalpies, and standard entropies for key chemical species) for 298.15K and 1 bar pressure is essential. Thermochemical convention is to define the standard Gibbs energy and the standard enthalpy of an individual chemical species in terms of formation from reference forms of the constituent chemical elements. We propose a formal concept of “links” to the elemental reference forms. This concept involves a documented understanding of all reactions and calculations leading to values for a formation property (standard Gibbs energy or enthalpy). A valid link consists of two parts: (a) the path of reactions and corrections and (b) the associated data, which are key data. Such a link differs from a bare “key” or “reference” datum in that it requires additional information. Some or all of its associated data may also be key data. In evaluating a reported thermodynamic datum, one should identify the links to the chemical elements, a process which can be time-consuming and which may lead to a dead end (an incomplete link). The use of two or more inconsistent links to the same elemental reference form in a thermodynamic database will result in an inconsistency in the database. Thus, in constructing a database, it is important to establish a set of reliable links (generally resulting in a set of primary reference data) and then correct all data adopted subsequently for consistency with that set. Recommended values of key data have not been constant through history. We review some of this history through the lens of major compilations and other influential reports, and note a number of problem areas. Finally, we illustrate the concepts developed in this paper by applying them to some key species of geochemical interest, including liquid water; quartz and aqueous silica; and gibbsite, corundum, and the aqueous aluminum ion.« less
Wolery, Thomas J.; Jove Colon, Carlos F.
2016-09-26
Chemical thermodynamic data remain a keystone for geochemical modeling and reactive transport simulation as applied to an increasing number of applications in the earth sciences, as well as applications in other areas including metallurgy, material science, and industrial process design. The last century has seen the development of a large body of thermodynamic data and a number of major compilations. The past several decades have seen the development of thermodynamic databases in digital form designed to support computer calculations. However, problems with thermodynamic data appear to be persistent. One problem pertains to the use of inconsistent primary key reference data.more » Such data pertain to elemental reference forms and key, stoichiometrically simple chemical species including metal oxides, CO 2, water, and aqueous species such as Na + and Cl -. A consistent set of primary key data (standard Gibbs energies, standard enthalpies, and standard entropies for key chemical species) for 298.15K and 1 bar pressure is essential. Thermochemical convention is to define the standard Gibbs energy and the standard enthalpy of an individual chemical species in terms of formation from reference forms of the constituent chemical elements. We propose a formal concept of “links” to the elemental reference forms. This concept involves a documented understanding of all reactions and calculations leading to values for a formation property (standard Gibbs energy or enthalpy). A valid link consists of two parts: (a) the path of reactions and corrections and (b) the associated data, which are key data. Such a link differs from a bare “key” or “reference” datum in that it requires additional information. Some or all of its associated data may also be key data. In evaluating a reported thermodynamic datum, one should identify the links to the chemical elements, a process which can be time-consuming and which may lead to a dead end (an incomplete link). The use of two or more inconsistent links to the same elemental reference form in a thermodynamic database will result in an inconsistency in the database. Thus, in constructing a database, it is important to establish a set of reliable links (generally resulting in a set of primary reference data) and then correct all data adopted subsequently for consistency with that set. Recommended values of key data have not been constant through history. We review some of this history through the lens of major compilations and other influential reports, and note a number of problem areas. Finally, we illustrate the concepts developed in this paper by applying them to some key species of geochemical interest, including liquid water; quartz and aqueous silica; and gibbsite, corundum, and the aqueous aluminum ion.« less
ERIC Educational Resources Information Center
Siegrist, Hannes
2006-01-01
The key element in comparative history is the problem of cultural and social differentiation and difference on the one hand, assimilation and similarity on the other. Comparative historical science relativizes local, national and regional conceptions of history and interpretations of self and other by systematically linking historical experiences,…
Teaching Teachers about Energy: Lessons from an Inquiry-Based Workshop for K-8 Teachers
ERIC Educational Resources Information Center
Tobin, R. G.; Crissman, Sally; Doubler, Sue; Gallagher, Hugh; Goldstein, Gary; Lacy, Sara; Rogers, C. B.; Schwartz, Judah; Wagoner, Paul
2012-01-01
We report results and impressions from a three-day inquiry-based workshop for K-8 teachers, aimed at improving their understanding of energy from a science and engineering perspective. Results suggest that the teachers made significant gains in understanding and appreciation of important energy concepts, but their comprehension of some key ideas…
Engagement with Online Self-Tests as a Predictor of Student Success
ERIC Educational Resources Information Center
Thomas, Judith A.; Wadsworth, Dan; Jin, Ying; Clarke, Jim; Page, Rachel; Thunders, Michelle
2017-01-01
Online self-testing as part of the online learning environment (OLE) provides practice questions on key concepts with immediate feedback--in a "no-risk" environment. OLE activity was analysed for 471 on-site and distance students enrolled in health science courses to determine total activity on the OLE and usage of online self-tests. The…
Social Inquiry: Instructional Manual to Accompany MARK.
ERIC Educational Resources Information Center
Lipman, Matthew; Sharp, Ann Margaret
This manual contains classroom exercises which can be used to supplement each chapter of the story "Mark," (ED 189 016) designed to help adolescents formulate a philosophy of values. The purpose of both "Mark" and "Social Inquiry" is to identify key social issues in the social sciences and expose students to the conflicting concepts at the heart…
Delving into Key Dimensions of ESD through Analyses of a Middle School Science Textbook
ERIC Educational Resources Information Center
Sahin, Elvan
2016-01-01
Uncertainties and debates regarding the term of sustainable development are still going on, and similarly, the notion of education for sustainable development (ESD) is open to debate. There has been an attempt to make the concept of ESD evident, which is quite challenging. Palmer (1998) stated the appropriateness of ESD within environmental…
The Development of Resources of Students in Adolescence as a Key Issue in Contemporary Education
ERIC Educational Resources Information Center
Gosk, Urszula; Kuracki, Kamil
2015-01-01
In the presented paper, the issue of recognition and building of resources in adolescent pupils was discussed, referring to salutogenic concept of A. Antonovsky and Conservation of Resources Theory of S. E. Hobfoll. Coming out from developmental pedagogy and positive orientation in social sciences, benefits of scientific and educational actions…
Aliens in the Classroom: Fantastical Creatures as Tools in Teaching Biology
ERIC Educational Resources Information Center
Cruz, Ronald Allan L.
2013-01-01
Creatures from science fiction and fantasy can be used to illustrate key concepts and principles in biology. This article describes a project for a university-level general zoology course wherein the students classify, down to at least the phylum level, "animals" from the Alien Species Wiki (2013). This is an online database of creatures from…
Communicating Our Science to Our Customers: Drug Discovery in Five Simple Experiments.
Pearson, Lesley-Anne; Foley, David William
2017-02-09
The complexities of modern drug discovery-an interdisciplinary process that often takes years and costs billions-can be extremely challenging to explain to a public audience. We present details of a 30 minute demonstrative lecture that uses well-known experiments to illustrate key concepts in drug discovery including synthesis, assay and metabolism.
ERIC Educational Resources Information Center
Rooks, Ronica N.; Ford, Cassandra
2013-01-01
This personal reflection describes our experiences with incorporating the scholarship of teaching and learning and problem-based techniques to facilitate undergraduate student learning and their professional development in the health sciences. We created a family health history assignment to discuss key concepts in our courses, such as health…
Knowing and Teaching Kinaesthetic Experience in Skateboarding: An Example of Sensory Emplacement
ERIC Educational Resources Information Center
Bäckström, Åsa
2014-01-01
The body has become a vital research object in several disciplines in recent years. Indeed, in the social sciences and humanities, a corporeal turn in which embodiment has become a key concept related to learning and socialisation is discussed. This cross-disciplinary paper addresses the epistemological question of how we know what we know and…
Decision modeling for fire incident analysis
Donald G. MacGregor; Armando González-Cabán
2009-01-01
This paper reports on methods for representing and modeling fire incidents based on concepts and models from the decision and risk sciences. A set of modeling techniques are used to characterize key fire management decision processes and provide a basis for incident analysis. The results of these methods can be used to provide insights into the structure of fire...
Key Concepts of Environmental Sustainability: Knowledge and Confidence Levels of FCS Teachers
ERIC Educational Resources Information Center
Harden, Amy J.; Friesen, Carol A.; Thompson, Nancy E.
2014-01-01
Family and consumer sciences (FCS) is a logical discipline to promote environmental sustainability within the family because it is recognized as helping people make informed decisions about the well-being of individuals and their relationships and resources to achieve optimal quality of life.The objective of this article was to measure the…
Risk Assessment as an Environmental Management Tool: Considerations for Freshwater Wetlands
A. Dennis Lemly
1997-01-01
This paper presents a foundation for improving the risk assessment process for freshwater wetlands. Integrating wetland science, i.e., use of an ecosystem-based approach, is the key concept. Each biotic and abiotic wetland component should be identified and its contribution to ecosystem functions and societal values determined when deciding whether a stressor poses an...
Advanced UVOIR Mirror Technology Development (AMTD) for Very Large Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Smith, W. Scott; Mosier, Gary; Abplanalp, Laura; Arnold, William
2014-01-01
ASTRO2010 Decadal stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies. AMTD is deliberately pursuing multiple design paths to provide the science community with op-tions to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements.
NASA Astrophysics Data System (ADS)
Ding, Lin
2014-02-01
Discipline-based science concept assessments are powerful tools to measure learners' disciplinary core ideas. Among many such assessments, the Brief Electricity and Magnetism Assessment (BEMA) has been broadly used to gauge student conceptions of key electricity and magnetism (E&M) topics in college-level introductory physics courses. Differing from typical concept inventories that focus only on one topic of a subject area, BEMA covers a broad range of topics in the electromagnetism domain. In spite of this fact, prior studies exclusively used a single aggregate score to represent individual students' overall understanding of E&M without explicating the construct of this assessment. Additionally, BEMA has been used to compare traditional physics courses with a reformed course entitled Matter and Interactions (M&I). While prior findings were in favor of M&I, no empirical evidence was sought to rule out possible differential functioning of BEMA that may have inadvertently advantaged M&I students. In this study, we used Rasch analysis to seek two missing pieces regarding the construct and differential functioning of BEMA. Results suggest that although BEMA items generally can function together to measure the same construct of application and analysis of E&M concepts, several items may need further revision. Additionally, items that demonstrate differential functioning for the two courses are detected. Issues such as item contextual features and student familiarity with question settings may underlie these findings. This study highlights often overlooked threats in science concept assessments and provides an exemplar for using evidence-based reasoning to make valid inferences and arguments.
Current Status of a NASA High-Altitude Balloon-Based Observatory for Planetary Science
NASA Technical Reports Server (NTRS)
Varga, Denise M.; Dischner, Zach
2015-01-01
Recent studies have shown that progress can be made on over 20% of the key questions called out in the current Planetary Science Decadal Survey by a high-altitude balloon-borne observatory. Therefore, NASA has been assessing concepts for a gondola-based observatory that would achieve the greatest possible science return in a low-risk and cost-effective manner. This paper addresses results from the 2014 Balloon Observation Platform for Planetary Science (BOPPS) mission, namely successes in the design and performance of the Fine Pointing System. The paper also addresses technical challenges facing the new Gondola for High Altitude Planetary Science (GHAPS) reusable platform, including thermal control for the Optical Telescope Assembly, power generation and management, and weight-saving considerations that the team will be assessing in 2015 and beyond.
Panarchy: theory and application
Allen, Craig R.; Angeler, David G.; Garmestani, Ahjond S.; Gunderson, Lance H.; Holling, Crawford S.
2014-01-01
The concept of panarchy provides a framework that characterizes complex systems of people and nature as dynamically organized and structured within and across scales of space and time. It has been more than a decade since the introduction of panarchy. Over this period, its invocation in peer-reviewed literature has been steadily increasing, but its use remains primarily descriptive and abstract. Here, we discuss the use of the concept in the literature to date, highlight where the concept may be useful, and discuss limitations to the broader applicability of panarchy theory for research in the ecological and social sciences. Finally, we forward a set of testable hypotheses to evaluate key propositions that follow from panarchy theory.
Complex adaptive systems: concept analysis.
Holden, Lela M
2005-12-01
The aim of this paper is to explicate the concept of complex adaptive systems through an analysis that provides a description, antecedents, consequences, and a model case from the nursing and health care literature. Life is more than atoms and molecules--it is patterns of organization. Complexity science is the latest generation of systems thinking that investigates patterns and has emerged from the exploration of the subatomic world and quantum physics. A key component of complexity science is the concept of complex adaptive systems, and active research is found in many disciplines--from biology to economics to health care. However, the research and literature related to these appealing topics have generated confusion. A thorough explication of complex adaptive systems is needed. A modified application of the methods recommended by Walker and Avant for concept analysis was used. A complex adaptive system is a collection of individual agents with freedom to act in ways that are not always totally predictable and whose actions are interconnected. Examples include a colony of termites, the financial market, and a surgical team. It is often referred to as chaos theory, but the two are not the same. Chaos theory is actually a subset of complexity science. Complexity science offers a powerful new approach--beyond merely looking at clinical processes and the skills of healthcare professionals. The use of complex adaptive systems as a framework is increasing for a wide range of scientific applications, including nursing and healthcare management research. When nursing and other healthcare managers focus on increasing connections, diversity, and interactions they increase information flow and promote creative adaptation referred to as self-organization. Complexity science builds on the rich tradition in nursing that views patients and nursing care from a systems perspective.
Exploring Mission Concepts with the JPL Innovation Foundry A-Team
NASA Technical Reports Server (NTRS)
Ziemer, John K.; Ervin, Joan; Lang, Jared
2013-01-01
The JPL Innovation Foundry has established a new approach for exploring, developing, and evaluating early concepts called the A-Team. The A-Team combines innovative collaborative methods with subject matter expertise and analysis tools to help mature mission concepts. Science, implementation, and programmatic elements are all considered during an A-Team study. Methods are grouped by Concept Maturity Level (CML), from 1 through 3, including idea generation and capture (CML 1), initial feasibility assessment (CML 2), and trade space exploration (CML 3). Methods used for each CML are presented, and the key team roles are described from two points of view: innovative methods and technical expertise. A-Team roles for providing innovative methods include the facilitator, study lead, and assistant study lead. A-Team roles for providing technical expertise include the architect, lead systems engineer, and integration engineer. In addition to these key roles, each A-Team study is uniquely staffed to match the study topic and scope including subject matter experts, scientists, technologists, flight and instrument systems engineers, and program managers as needed. Advanced analysis and collaborative engineering tools (e.g. cost, science traceability, mission design, knowledge capture, study and analysis support infrastructure) are also under development for use in A-Team studies and will be discussed briefly. The A-Team facilities provide a constructive environment for innovative ideas from all aspects of mission formulation to eliminate isolated studies and come together early in the development cycle when they can provide the biggest impact. This paper provides an overview of the A-Team, its study processes, roles, methods, tools and facilities.
Spruit, Martijn A; Singh, Sally J; Garvey, Chris; ZuWallack, Richard; Nici, Linda; Rochester, Carolyn; Hill, Kylie; Holland, Anne E; Lareau, Suzanne C; Man, William D-C; Pitta, Fabio; Sewell, Louise; Raskin, Jonathan; Bourbeau, Jean; Crouch, Rebecca; Franssen, Frits M E; Casaburi, Richard; Vercoulen, Jan H; Vogiatzis, Ioannis; Gosselink, Rik; Clini, Enrico M; Effing, Tanja W; Maltais, François; van der Palen, Job; Troosters, Thierry; Janssen, Daisy J A; Collins, Eileen; Garcia-Aymerich, Judith; Brooks, Dina; Fahy, Bonnie F; Puhan, Milo A; Hoogendoorn, Martine; Garrod, Rachel; Schols, Annemie M W J; Carlin, Brian; Benzo, Roberto; Meek, Paula; Morgan, Mike; Rutten-van Mölken, Maureen P M H; Ries, Andrew L; Make, Barry; Goldstein, Roger S; Dowson, Claire A; Brozek, Jan L; Donner, Claudio F; Wouters, Emiel F M
2013-10-15
Pulmonary rehabilitation is recognized as a core component of the management of individuals with chronic respiratory disease. Since the 2006 American Thoracic Society (ATS)/European Respiratory Society (ERS) Statement on Pulmonary Rehabilitation, there has been considerable growth in our knowledge of its efficacy and scope. The purpose of this Statement is to update the 2006 document, including a new definition of pulmonary rehabilitation and highlighting key concepts and major advances in the field. A multidisciplinary committee of experts representing the ATS Pulmonary Rehabilitation Assembly and the ERS Scientific Group 01.02, "Rehabilitation and Chronic Care," determined the overall scope of this update through group consensus. Focused literature reviews in key topic areas were conducted by committee members with relevant clinical and scientific expertise. The final content of this Statement was agreed on by all members. An updated definition of pulmonary rehabilitation is proposed. New data are presented on the science and application of pulmonary rehabilitation, including its effectiveness in acutely ill individuals with chronic obstructive pulmonary disease, and in individuals with other chronic respiratory diseases. The important role of pulmonary rehabilitation in chronic disease management is highlighted. In addition, the role of health behavior change in optimizing and maintaining benefits is discussed. The considerable growth in the science and application of pulmonary rehabilitation since 2006 adds further support for its efficacy in a wide range of individuals with chronic respiratory disease.
Reasons and resources for being explicit about the practices of science
NASA Astrophysics Data System (ADS)
Egger, A. E.
2015-12-01
The Next Generation Science Standards (NGSS) promote a fundamental shift in the way science is taught. The new focus is on three-dimensional learning, which brings science and engineering practices together with disciplinary core ideas and cross-cutting concepts. A key component is performance expectations rather than bullet lists of content that students should know. One of the stated goals is that "all students should have sufficient knowledge of science and engineering to engage in public discussions on related issues." While the NGSS were developed for K-12, college instructors benefit from familiarity with them in two critical ways: first, they provide a research-based and clearly articulated approach to three-dimensional learning that applies across the grade spectrum, and second, future K-12 teachers are sitting in their college-level science courses, and awareness of the skills those future teachers need can help direct course design. More specifically, while most college-level science courses make use of the science and engineering practices described in the NGSS, few offer explicit instruction in them or how they intertwine with disciplinary core ideas and cross-cutting concepts. Yet this explicit instruction is critical to building scientific literacy in future teachers—and all students. Many textbooks and laboratory courses limit a discussion of the process of science to one chapter or exercise, and expect students to be able to apply those concepts. In contrast, new resources from Visionlearning (http://www.visionlearning.com), InTeGrate (http://serc.carleton.edu/integrate), and other projects hosted at the Science Education Resource Center (http://serc.carleton.edu) were developed with explicit and pervasive integration of the nature and practices of science in mind. These freely available, classroom-tested and reviewed resources support instructors in introductory/general education courses as well as teacher preparation and more advanced courses.
Boundary Development in the Field of International Nutrition Science12
Centrone Stefani, Monique; Humphries, Debbie L.
2014-01-01
Using a sociological approach that elaborates on key observations of institutional entrepreneurs in international nutrition, this paper explores institutional boundaries and boundary work in international nutrition. Sociological concepts of “boundary making” and “situated knowledge” are applied to the boundaries between the nutrition sciences and lay nutrition knowledge in nutrition intervention. These concepts allow an analysis of how nutrition science creates boundaries between its field and other sciences and between nutrition as a science and other nutrition practices, providing additional perspective on current challenges in global food security and malnutrition. Analysis of boundary processes in international nutrition can also illuminate the development of “implementation” or “delivery science” in the field of international nutrition as it attempts to strengthen effectiveness of global efforts to reduce malnutrition. Although some risk taking in the academic world is rewarded, the analysis indicates that there are underlying processes that may inhibit full partnership with local people in the course of intervention work that builds scientific nutrition knowledge. As nutrition science becomes increasingly central to development, the boundaries that are reinforced by digging in heels over the implementation of programs with little local input or softened by inviting local stakeholders to publicly consider the problems in global nutrition together are important to consider in helping to create directions that favor viable solutions. PMID:24618761
Assessing gains in teacher knowledge and confidence in a long-duration climate literacy initiative
NASA Astrophysics Data System (ADS)
Haine, D. B.; Kendall, L.; Yelton, S.
2013-12-01
Climate Literacy: Integrating Modeling & Technology Experiences (CLIMATE) in NC Classrooms, an interdisciplinary, global climate change program for NC high school science teachers is administered by UNC Chapel Hill's Institute for the Environment (IE) with funding from NASA's Innovations in Climate Education (NICE) Program. Currently in its third year, this year-long program serves 24 teaching fellows annually and combines hands-on climate science investigations with experiential learning in fragile ecosystem environments to achieve the following program goals: increased teacher knowledge of climate change science and predicted impacts; increased teacher knowledge of modeling and technology resources, with an emphasis on those provided by NASA; and increased teacher confidence in using technology to address climate change education. A mixed-methods evaluation approach that includes external evaluation is providing quantitative and qualitative data about the extent to which program goals are being achieved. With regard to increases in teacher knowledge, teachers often self-report an increase in knowledge as a result of a program activity; this session will describe our strategies for assessing actual gains in teacher knowledge which include pre- and post-collaborative concept mapping and pre- and post-open response questionnaires. For each evaluation approach utilized, the process of analyzing these qualitative data will be discussed and results shared. For example, a collaborative concept mapping activity for assessment of learning as a result of the summer institute was utilized to assess gains in content knowledge. Working in small groups, teachers were asked to identify key vocabulary terms and show their relationship to one another via a concept map to answer these questions: What is global climate change? What is/are the: evidence? mechanisms? causes? consequences? Concept maps were constructed at the beginning (pre) and again at the end (post) of the Summer Institute. Concept map analysis revealed that post-maps included more key terms/concepts on average than pre-concept maps and that 6-9 NEW terms were present on post-maps; these NEW terms were directly related to science content addressed during the summer institute. In an effort to assess knowledge gained as a result of participating in an experiential weekend retreat, a pre- and post-open response questionnaire focused on the spruce-fir forest, an ecosystem prominently featured during programming, was administered. Post-learning assessments revealed learning gains for 100% of participants, all of whom were able to provide responses that referenced specific content covered during the retreat. To demonstrate increased teacher confidence in using technology to support climate science instruction, teachers are asked to develop and pilot a lesson that integrates at least one NASA resource. In collaboration with an external evaluator, a rubric was developed to evaluate submitted lessons in an effort to assess progress at achieving this program goal. The process of developing this rubric as well as the results from this analysis will be shared along with the challenges and insights that have been revealed from analyzing submitted lessons.
ERIC Educational Resources Information Center
Halkyard, Shannon
2012-01-01
Chemistry is a difficult subject to learn and teach for students in general. Additionally, female students are under-represented in chemistry and the physical sciences. Within chemistry, atomic and electronic structure is a key concept and several recommendations in the literature describe how this topic can be taught better. These recommendations…
ERIC Educational Resources Information Center
Rathburn, Sara L.; Weinberg, Andrea E.
2011-01-01
The GetWET Observatory was developed as part of an overall course redesign of the Introductory Geology Laboratory at Colorado State University to improve student learning of key surface and groundwater concepts for nonmajors in science, technology, engineering, and mathematics. Consisting of six groundwater monitoring wells, the GetWET Observatory…
ERIC Educational Resources Information Center
Petrucco, C.
2011-01-01
Building ontology in the domain of human sciences can be a difficult process because of the different meanings given to the same key concepts in these disciplines: in fact, shared meaning is an important element in knowledge construction between members of a community. In this paper, we propose a participatory social environment called…
ERIC Educational Resources Information Center
Hirschberg, Carlos B.
2016-01-01
This essay presents and discusses an eight-session seminar course designed to develop critical thinking skills in doctoral biochemistry students by exposing them to classical experiments in biochemistry. During each 2.5 session, different key topics of the discovery and development of biochemical concepts are discussed. Before each session,…
ERIC Educational Resources Information Center
Ellis, Robert A.; Taylor, Charlotte E.; Drury, Helen
2007-01-01
Students in a large undergraduate biology course were expected to write a scientific report as a key part of their course design. This study investigates the quality of learning arising from the writing experience and how it relates to the quality of students' preconceptions of learning through writing and their perceptions of their writing…
NASA Astrophysics Data System (ADS)
Wang, Jeremy Yi-Ming
This dissertation examines the thesis that implicit learning plays a role in learning about scientific phenomena, and subsequently, in conceptual change. Decades of research in learning science demonstrate that a primary challenge of science education is overcoming prior, naive knowledge of natural phenomena in order to gain scientific understanding. Until recently, a key assumption of this research has been that to develop scientific understanding, learners must abandon their prior scientific intuitions and replace them with scientific concepts. However, a growing body of research shows that scientific intuitions persist, even among science experts. This suggests that naive intuitions are suppressed, not supplanted, as learners gain scientific understanding. The current study examines two potential roles of implicit learning processes in the development of scientific knowledge. First, implicit learning is a source of cognitive structures that impede science learning. Second, tasks that engage implicit learning processes can be employed to activate and suppress prior intuitions, enhancing the likelihood that scientific concepts are adopted and applied. This second proposal is tested in two experiments that measure training-induced changes in intuitive and conceptual knowledge related to sinking and floating objects in water. In Experiment 1, an implicit learning task was developed to examine whether implicit learning can induce changes in performance on near and far transfer tasks. The results of this experiment provide evidence that implicit learning tasks activate and suppress scientific intuitions. Experiment 2 examined the effects of combining implicit learning with traditional, direct instruction to enhance explicit learning of science concepts. This experiment demonstrates that sequencing implicit learning task before and after direct instruction has different effects on intuitive and conceptual knowledge. Together, these results suggest a novel approach for enhancing learning for conceptual change in science education.
NASA Astrophysics Data System (ADS)
Minasian-Batmanian, Laura C.; Lingard, Jennifer; Prosser, Michael
2006-12-01
Many factors affect students’ learning approaches, including topic conceptions and prior study. This research, undertaken after a first-semester compulsory subject, explores students’ conceptions of biochemistry and how they approached their studies. Students (n=151) completed an open-ended survey analysed phenomenographically. Those with cohesive conceptions were found to be more likely to adopt deeper approaches to study than those with fragmented conceptions, a result unaffected by various demographic parameters. Compared with earlier research, a semester of study increased the percentage of students with a cohesive view, with no concomitant change in learning approaches, suggesting that cohesive conceptions are a necessary but not sufficient criterion for deep learning outcomes. Compared with results for a science major subject, more of the students with cohesive conceptions used surface approaches. This may reflect a regression to safe surface approaches when faced with an unfamiliar topic or high total workload driving a strategic approach to learning. It could also reflect a perception that this material is only a tool for later application. The present findings indicate the crucial importance, when university studies begin, of enabling students to build an overarching conception of the topic’s place in professional practice. This concept building should be applied across the entire curriculum to emphasize application and integration of material (key graduate attributes). Improved conceptions may provide crucial motivation for students to achieve deeper learning, especially in these foundation service subjects. These essential changes to the learning context may also better prepare students for increasing self-directed/life-long learning.
Matthews, Lynn T; Beyeza-Kashesya, Jolly; Cooke, Ian; Davies, Natasha; Heffron, Renee; Kaida, Angela; Kinuthia, John; Mmeje, Okeoma; Semprini, Augusto E; Weber, Shannon
2018-06-01
Safer conception interventions reduce HIV incidence while supporting the reproductive goals of people living with or affected by HIV. We developed a consensus statement to address demand, summarize science, identify information gaps, outline research and policy priorities, and advocate for safer conception services. This statement emerged from a process incorporating consultation from meetings, literature, and key stakeholders. Three co-authors developed an outline which was discussed and modified with co-authors, working group members, and additional clinical, policy, and community experts in safer conception, HIV, and fertility. Co-authors and working group members developed and approved the final manuscript. Consensus across themes of demand, safer conception strategies, and implementation were identified. There is demand for safer conception services. Access is limited by stigma towards PLWH having children and limits to provider knowledge. Efficacy, effectiveness, safety, and acceptability data support a range of safer conception strategies including ART, PrEP, limiting condomless sex to peak fertility, home insemination, male circumcision, STI treatment, couples-based HIV testing, semen processing, and fertility care. Lack of guidelines and training limit implementation. Key outstanding questions within each theme are identified. Consumer demand, scientific data, and global goals to reduce HIV incidence support safer conception service implementation. We recommend that providers offer services to HIV-affected men and women, and program administrators integrate safer conception care into HIV and reproductive health programs. Answers to outstanding questions will refine services but should not hinder steps to empower people to adopt safer conception strategies to meet reproductive goals.
The Cosmic Evolution Through UV Spectroscopy (CETUS) Probe Mission Concept
NASA Astrophysics Data System (ADS)
Danchi, William; Heap, Sara; Woodruff, Robert; Hull, Anthony; Kendrick, Stephen E.; Purves, Lloyd; McCandliss, Stephan; Kelly Dodson, Greg Mehle, James Burge, Martin Valente, Michael Rhee, Walter Smith, Michael Choi, Eric Stoneking
2018-01-01
CETUS is a mission concept for an all-UV telescope with 3 scientific instruments: a wide-field camera, a wide-field multi-object spectrograph, and a point-source high-resolution and medium resolution spectrograph. It is primarily intended to work with other survey telescopes in the 2020’s (e.g. E-ROSITA (X-ray), LSST, Subaru, WFIRST (optical-near-IR), SKA (radio) to solve major, outstanding problems in astrophysics. In this poster presentation, we give an overview of CETUS key science goals and a progress report on the CETUS mission and instrument design.
Black smokers and the Tree of Life
NASA Astrophysics Data System (ADS)
Linich, Michael
The molecular biology revolution has turned the classification of life on its head. Is Whittaker's five-kingdom scheme for the classification of living things no longer relevant to life science education? Coupled with this is the discovery that most microscopic life cannot yet be brought into culture. One of the key organisms making this knowledge possible is Methanococcus jannishi a microorganism found in black smokers. This workshop presents the development of the Universal Tree of Life in a historical context and then links together major concepts in the New South Wales senior science programs of Earth and Environmental Science and Biology by examining the biological and geological aspects of changes to black smokers over geological time.
NASA Astrophysics Data System (ADS)
Wang, Su; Liu, Xiufeng; Zhao, Yandong
2012-09-01
As the breadth and depth of economic reforms increase in China, growing attention is being paid to equalities in opportunities to learn science by students of various backgrounds. In early 2009, the Chinese Ministry of Education and Ministry of Science and Technology jointly sponsored a national survey of urban eighth-grade students' science literacy along with their family and school backgrounds. The present study focused on students' understanding of basic science concepts and principles (BSCP), a subset of science literacy. The sample analyzed included 3,031 students from 109 randomly selected classes/schools. Correlation analysis, one-way analysis of variance, and two-level linear regression were conducted. The results showed that having a refrigerator, internet, more books, parents purchasing books and magazines related to school work, higher father's education level, and parents' higher expectation of the education level of their child significantly predicted higher BSCP scores; having siblings at home, owning an apartment, and frequently contacting teachers about the child significantly predicted lower BSCP scores. At the school level, the results showed that being in the first-tier or key schools, having school libraries, science popularization galleries, computer labs, adequate equipment for teaching, special budget for teacher training, special budget for science equipment, and mutual trust between teachers and students significantly predicated higher BSCP scores; and having science and technology rooms, offering science and technology interest clubs, special budget for science curriculum development, and special budget for science social practice activities significantly predicted lower BSCP scores. The implications of the above findings are discussed.
Clinical caring science as a scientific discipline.
Rehnsfeldt, Arne; Arman, Maria; Lindström, Unni Å
2017-09-01
Clinical caring science will be described from a theory of science perspective. The aim of this theoretical article to give a comprehensive overview of clinical caring science as a human science-based discipline grounded in a theory of science argumentation. Clinical caring science seeks idiographic or specific variations of the ontology, concepts and theories, formulated by caring science. The rationale is the insight that the research questions do not change when they are addressed in different contexts. The academic subject contains a concept order with ethos concepts, core and basic concepts and practice concepts that unites systematic caring science with clinical caring science. In accordance with a hermeneutic tradition, the idea of the caring act is based on the degree to which the theory base is hermeneutically appropriated by the caregiver. The better the ethos, essential concepts and theories are understood, the better the caring act can be understood. In order to understand the concept order related to clinical caring science, an example is given from an ongoing project in a disaster context. The concept order is an appropriate way of making sense of the essence of clinical caring science. The idea of the concept order is that concepts on all levels need to be united with each other. A research project in clinical caring science can start anywhere on the concept order, either in ethos, core concepts, basic concepts, practice concepts or in concrete clinical phenomena, as long as no parts are locked out of the concept order as an entity. If, for example, research on patient participation as a phenomenon is not related to core and basic concepts, there is a risqué that the research becomes meaningless. © 2016 Nordic College of Caring Science.
The typology and development of attitude to primary science education
NASA Astrophysics Data System (ADS)
Gray, Adelaide
The introduction and development of science within the primary curriculum has been a challenge to teachers, parents and children and a highly politicised decision. Augmenting any difficulties are the images of science within popular culture and the traditions of scientific inquiry that have maintained the Western, male elitist hierarchy of the Vienna circle throughout the last millennium. The Royal Society's committee on the public understanding of science has recognised the difficulty in recruiting students to higher-level science study and embarked on a programme of sponsorship to address this. At the same time major governmental policy changes have provided a new 'market' model of education that has encouraged parental involvement in schools and enforced a new 'transparency' of evaluation on schools through league tables and Ofsted. Set against this backdrop, this research explores the development of attitudes to science and science education in the parent's of primary school aged children. It examines the perceptions of science and science education through the narrative of the parent's and their understanding of the interaction between different areas of science. The use of key events within narrative as a method of exploring attitude and conceptual development is novel to this research and through this exploration the concept of attitude itself is examined and criticised developing a new concept of attitude as process-based rather than static or crystallised. This reconceptualisation allows a more operational understanding of attitude that overcomes the difficulties of the traditional concept, which has only a limited theoretical basis on which to examine behaviour. The research generates a typology for views of science and the more operational compliment to this, stance to science. This framework allows a greater understanding of attitude formation, how science is perceived and how this perception is actualised. It is particularly interesting given the current interest in increasing parental involvement in the education of their children, as this may lead to a greater impact of parental attitude on children. This study argues that the affective component of attitude is of paramount important in the developing science experiences children and the narrative nature of knowledge transmission can illuminate how parents relate to their children's experiences at school.
Science for the sustainable use of ecosystem services
Bennett, Elena M.; Chaplin-Kramer, Rebecca
2016-01-01
Sustainability is a key challenge for humanity in the 21st century. Ecosystem services—the benefits that people derive from nature and natural capital—is a concept often used to help explain human reliance on nature and frame the decisions we make in terms of the ongoing value of nature to human wellbeing. Yet ecosystem service science has not always lived up to the promise of its potential. Despite advances in the scientific literature, ecosystem service science has not yet answered some of the most critical questions posed by decision-makers in the realm of sustainability. Here, we explore the history of ecosystem service science, discuss advances in conceptualization and measurement, and point toward further work needed to improve the use of ecosystem service in decisions about sustainable development. PMID:27853527
Path to a UV/Optical/IR Flagship: Review of ATLAST and Its Predecessors
NASA Technical Reports Server (NTRS)
Thronson, Harley; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Oegerle, William; Rioux, Norman; Stahl, H. Philip; Stapelfeldt, Karl
2016-01-01
Our recently completed study for the Advanced Technology Large-Aperture Space Telescope (ATLAST) was the culmination of three years of initially internally funded work that built upon earlier engineering designs, science objectives, and technology priorities. Beginning in the mid-1980s, multiple teams of astronomers, technologists, and engineers developed concepts for a large-aperture UV/optical/IR space observatory intended to follow the Hubble Space Telescope (HST). Here, we summarize since the first significant conferences on major post-HST ultraviolet, optical, and infrared (UVOIR) observatories the history of designs, scientific goals, key technology recommendations, and community workshops. Although the sophistication of science goals and the engineering designs both advanced over the past three decades, we note the remarkable constancy of major characteristics of large post-HST UVOIR concepts. As it has been a priority goal for NASA and science communities for a half-century, and has driven much of the technology priorities for major space observatories, we include the long history of concepts for searching for Earth-like worlds. We conclude with a capsule summary of our ATLAST reference designs developed by four partnering institutions over the past three years, which was initiated in 2013 to prepare for the 2020 National Academies' Decadal Survey.
A Pragmatic Path to Investigating Europa's Habitability
NASA Technical Reports Server (NTRS)
Pappalardo; Bengenal; Bar; Bills; Blankenship; Connerney; Kurth; McGrath; Moore; Prockter;
2011-01-01
Assessment of Europa's habitability, as an overarching science goal, will progress via a comprehensive investigation of Europa's subsurface ocean, chemical composition, and internal dynamical processes, The National Research Council's Planetary Decadal Survey placed an extremely high priority on Europa science but noted that the budget profile for the Jupiter Europa Orbiter (1EO) mission concept is incompatible with NASA's projected planetary science budget Thus, NASA enlisted a small Europa Science Definition Team (ESDT) to consider more pragmatic Europa mission options, In its preliminary findings (May, 2011), the ESDT embraces a science scope and instrument complement comparable to the science "floor" for JEO, but with a radically different mission implementation. The ESDT is studying a two-element mission architecture, in which two relatively low-cost spacecraft would fulfill the Europa science objectives, An envisioned Europa orbital element would carry only a very small geophysics payload, addressing those investigations that are best carried out from Europa orbit An envisioned separate multiple Europa flyby element (in orbit about Jupiter) would emphasize remote sensing, This mission architecture would provide for a subset of radiation-shielded instruments (all relatively low mass, power, and data rate) to be delivered into Europa orbit by a modest spacecraft, saving on propellant and other spacecraft resources, More resource-intensive remote sensing instruments would achieve their science objectives through a conservative multiple-flyby approach, that is better situated to handle larger masses and higher data volumes, and which aims to limit radiation exposure, Separation of the payload into two spacecraft elements, phased in time, would permit costs to be spread more uniformly over mUltiple years, avoiding an excessively high peak in the funding profile, Implementation of each spacecraft would be greatly simplified compared to previous Europa mission concepts, minimizing new development while achieving the key Europa science objectives. We will report on the status of this evolving concept, and will solicit community feedback, as we pursue an innovative and low-cost ways to explore Europa and investigate its habitability.
Enhancing Elementary Pre-service Teachers' Plant Processes Conceptions
NASA Astrophysics Data System (ADS)
Thompson, Stephen L.; Lotter, Christine; Fann, Xumei; Taylor, Laurie
2016-06-01
Researchers examined how an inquiry-based instructional treatment emphasizing interrelated plant processes influenced 210 elementary pre-service teachers' (PTs) conceptions of three plant processes, photosynthesis, cellular respiration, and transpiration, and the interrelated nature of these processes. The instructional treatment required PTs to predict the fate of a healthy plant in a sealed terrarium (Plant-in-a-Jar), justify their predictions, observe the plant over a 5-week period, and complete guided inquiry activities centered on one of the targeted plant processes each week. Data sources included PTs' pre- and post-predictions with accompanying justifications, course artifacts such as weekly terrarium observations and science journal entries, and group models of the interrelated plant processes occurring within the sealed terraria. A subset of 33 volunteer PTs also completed interviews the week the Plant-in-a-Jar scenario was introduced and approximately 4 months after the instructional intervention ended. Pre- and post-predictions from all PTs as well as interview responses from the subgroup of PTs, were coded into categories based on key plant processes emphasized in the Next Generation Science Standards. Study findings revealed that PTs developed more accurate conceptions of plant processes and their interrelated nature as a result of the instructional intervention. Primary patterns of change in PTs' plant process conceptions included development of more accurate conceptions of how water is used by plants, more accurate conceptions of photosynthesis features, and more accurate conceptions of photosynthesis and cellular respiration as transformative processes.
ERIC Educational Resources Information Center
Jiang, You Guo
2012-01-01
Ma Xiangbo was born in 1840 and became a pioneer of educational reform during the republican period. He was responsible for introducing the idea that science and humanities should be valued equally in liberal arts education, a concept that became key to the model of university education. Ma's view of education combined Western humanism and science…
Cosmic Chemistry: A Proactive Approach to Summer Science for High School Students
ERIC Educational Resources Information Center
Parsley, Danette; Ristvey, John
2014-01-01
Though school is out for the summer, ninth- and tenth-grade students at Union Intermediate High School are burning off energy playing a game of tag on the soccer field. But that is not all they are doing. They are also synthesizing and applying key chemistry concepts they have just learned related to the conditions of the early solar system. They…
ERIC Educational Resources Information Center
Cunningham, Kevin D.
2011-01-01
As demonstrated by their emphasis in the new, national, science education standards, learning progressions (LPs) have become a valuable means of informing teaching and learning. LPs serve this role by isolating the key components of central skills and understandings, and by describing how those abilities and concepts tend to develop over time…
ERIC Educational Resources Information Center
Bierema, Andrea M.-K.; Rudge, David W.
2014-01-01
One of the key aspects of natural selection is competition, yet the concept of competition is not necessarily emphasized in explanations of natural selection. Because of this, we developed an activity for our class that focuses on competition and provides an example of the effects of competition on natural selection. This hands-on activity models…
Astrobiology Outreach and the Nature of Science: The Role of Creativity
Oliver, Carol; Walter, Malcolm R.
2012-01-01
Abstract There is concern in many developed countries that school students are turning away from science. However, students may be choosing not to study science and dismissing the possibility of a scientific career because, in the junior secondary years, they gain a false view of science and the work of scientists. There is a disparity between science as it is portrayed at school and science as it is practiced. This paper describes a study to explore whether engaging in science through astrobiology outreach activities may improve students' understanding of the nature and processes of science, and how this may influence their interest in a career in science. The results suggest that the students attending these Mars research–related outreach activities are more interested in science than the average student but are lacking in understanding of aspects of the nature of science. A significant difference was detected between pre- and posttest understandings of some concepts of the nature of science. Key Words: Science education—School science—Creativity—Nature and processes of science—Attitudes—Astrobiology. Astrobiology 12, 1143–1153. PMID:23134090
Opportunities for Web-Based Indicators in Environmental Sciences
Malcevschi, Sergio; Marchini, Agnese; Savini, Dario; Facchinetti, Tullio
2012-01-01
This paper proposes a set of web-based indicators for quantifying and ranking the relevance of terms related to key-issues in Ecology and Sustainability Science. Search engines that operate in different contexts (e.g. global, social, scientific) are considered as web information carriers (WICs) and are able to analyse; (i) relevance on different levels: global web, individual/personal sphere, on-line news, and culture/science; (ii) time trends of relevance; (iii) relevance of keywords for environmental governance. For the purposes of this study, several indicators and specific indices (relational indices and dynamic indices) were applied to a test-set of 24 keywords. Outputs consistently show that traditional study topics in environmental sciences such as water and air have remained the most quantitatively relevant keywords, while interest in systemic issues (i.e. ecosystem and landscape) has grown over the last 20 years. Nowadays, the relevance of new concepts such as resilience and ecosystem services is increasing, but the actual ability of these concepts to influence environmental governance needs to be further studied and understood. The proposed approach, which is based on intuitive and easily replicable procedures, can support the decision-making processes related to environmental governance. PMID:22905118
Opportunities for web-based indicators in environmental sciences.
Malcevschi, Sergio; Marchini, Agnese; Savini, Dario; Facchinetti, Tullio
2012-01-01
This paper proposes a set of web-based indicators for quantifying and ranking the relevance of terms related to key-issues in Ecology and Sustainability Science. Search engines that operate in different contexts (e.g. global, social, scientific) are considered as web information carriers (WICs) and are able to analyse; (i) relevance on different levels: global web, individual/personal sphere, on-line news, and culture/science; (ii) time trends of relevance; (iii) relevance of keywords for environmental governance. For the purposes of this study, several indicators and specific indices (relational indices and dynamic indices) were applied to a test-set of 24 keywords. Outputs consistently show that traditional study topics in environmental sciences such as water and air have remained the most quantitatively relevant keywords, while interest in systemic issues (i.e. ecosystem and landscape) has grown over the last 20 years. Nowadays, the relevance of new concepts such as resilience and ecosystem services is increasing, but the actual ability of these concepts to influence environmental governance needs to be further studied and understood. The proposed approach, which is based on intuitive and easily replicable procedures, can support the decision-making processes related to environmental governance.
Binge Drinking: A Confused Concept and its Contemporary History
Berridge, Virginia; Herring, Rachel; Thom, Betsy
2009-01-01
Binge drinking is a matter of current social, political and media concern. It has a long-term, but also a recent, history. This paper discusses the contemporary history of the concept of binge drinking. In recent years there have been significant changes in how binge drinking is defined and conceptualised. Going on a ‘binge’ used to mean an extended period (days) of heavy drinking, while now it generally refers to a single drinking session leading to intoxication. We argue that the definitional change is related to the shifts in the focus of alcohol policy and alcohol science, in particular in the last two decades, and also in the role of the dominant interest groups. The paper is a case study in the relationship between science and policy. We explore key themes, raise questions and point to a possible agenda for future research.
NASA Technical Reports Server (NTRS)
Trauger, John T.
2005-01-01
Eclipse is a proposed NASA Discovery mission to perform a sensitive imaging survey of nearby planetary systems, including a survey for jovian-sized planets orbiting Sun-like stars to distances of 15 pc. We outline the science objectives of the Eclipse mission and review recent developments in the key enabling technologies. Eclipse is a space telescope concept for high-contrast visible-wavelength imaging and spectrophotometry. Its design incorporates a telescope with an unobscured aperture of 1.8 meters, a coronographic camera for suppression of diffracted light, and precise active wavefront correction for the suppression of scattered background light. For reference, Eclipse is designed to reduce the diffracted and scattered starlight between 0.33 and 1.5 arcseconds from the star by three orders of magnitude compared to any HST instrument. The Eclipse mission provides precursor science exploration and technology experience in support of NASA's Terrestrial Planet Finder (TPF) program.
On the added value of forensic science and grand innovation challenges for the forensic community.
van Asten, Arian C
2014-03-01
In this paper the insights and results are presented of a long term and ongoing improvement effort within the Netherlands Forensic Institute (NFI) to establish a valuable innovation programme. From the overall perspective of the role and use of forensic science in the criminal justice system, the concepts of Forensic Information Value Added (FIVA) and Forensic Information Value Efficiency (FIVE) are introduced. From these concepts the key factors determining the added value of forensic investigations are discussed; Evidential Value, Relevance, Quality, Speed and Cost. By unravelling the added value of forensic science and combining this with the future needs and scientific and technological developments, six forensic grand challenges are introduced: i) Molecular Photo-fitting; ii) chemical imaging, profiling and age estimation of finger marks; iii) Advancing Forensic Medicine; iv) Objective Forensic Evaluation; v) the Digital Forensic Service Centre and vi) Real time In-Situ Chemical Identification. Finally, models for forensic innovation are presented that could lead to major international breakthroughs on all these six themes within a five year time span. This could cause a step change in the added value of forensic science and would make forensic investigative methods even more valuable than they already are today. © 2013. Published by Elsevier Ireland Ltd on behalf of Forensic Science Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Tapilouw, M. C.; Firman, H.; Redjeki, S.; Chandra, D. T.
2018-05-01
To refresh natural environmental concepts in science, science teacher have to attend a teacher training. In teacher training, all participant can have a good sharing and discussion with other science teacher. This study is the first step of science teacher training program held by education foundation in Bandung and attended by 20 science teacher from 18 Junior High School. The major aim of this study is gathering science teacher’s idea of environmental concepts. The core of questions used in this study are basic competencies linked with environmental concepts, environmental concepts that difficult to explain, the action to overcome difficulties and references in teaching environmental concepts. There are four major findings in this study. First finding, most environmental concepts are taught in 7th grade. Second finding, most difficult environmental concepts are found in 7th grade. Third finding, there are five actions to overcome difficulties. Fourth finding, science teacher use at least four references in mastering environmental concepts. After all, teacher training can be a solution to reduce difficulties in teaching environmental concepts.
Evolutionary principles and their practical application
Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P
2011-01-01
Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology. PMID:25567966
Evolutionary principles and their practical application.
Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P
2011-03-01
Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.
Science teaching in science education
NASA Astrophysics Data System (ADS)
Callahan, Brendan E.; Dopico, Eduardo
2016-06-01
Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.
For good measure: Origins and prospects of exposure science (2007 Wesolowski Award Lecture).
Fenske, Richard A
2010-09-01
Measurement is the foundation of exposure science. Associations between illness and environmental agents have been observed for millennia, but the ability to quantify exposure and dose has been possible only in the last century. Improved means of measurement and refined concepts of who, what, when, where, and why to measure have been the seminal contributions of exposure science to the study of disease causation and prevention. This paper examines critical advancements in exposure assessment associated with workplace health and safety, and the groundbreaking work of the US Public Health Service. Many of the key concepts of modern exposure science have their origin in these early studies. Occupational hygiene scientists have conducted receptor-based exposure analyses for more than 80 years, evaluating indoor air, defining microenvironments, and developing personal sampling techniques. Biological monitoring of community populations including children, dermal exposure monitoring, duplicate diet studies, and multi-pathway, aggregate exposure assessments can be traced to early public health studies. As we look to the future, we see that new technologies and techniques are expanding the scope of exposure science dramatically. We need to ensure that the highest of scientific standards are maintained, make a greater effort to include occupational hygiene scientists, microbiologists, and behavioral scientists in the field, and promote new sources of training and research support. Exposure science has a critical role to play in the prevention strategy that is central to public health.
Physics in ``Polymers, Composites, and Sports Materials" an Interdisciplinary Course
NASA Astrophysics Data System (ADS)
Hagedorn, Eric; Suskavcevic, Milijana
2007-10-01
The undergraduate science course described uses the themes of polymers and composites, as used in sports materials, to teach some key concepts in introductory chemistry and physics. The course is geared towards students who are interested in science, but are still completing prerequisite mathematics courses required for science majors. Each class is built around a laboratory activity. Atoms, molecules and chemical reactions are taught in reference to making polyvinyl acetate (white glue) and polyvinyl alcohol (gel glue). These materials, combined with borax, form balls which are subsequently used in physics activities centered on free-fall and the coefficient of restitution. These activities allow the introduction of kinematics and dynamics. A free fall activity involving ice pellets, with and without embedded tissue paper, illustrates the properties of composites. The final series of activities uses balls, shoes, racquets and bats to further illustrate dynamics concepts (including friction, momentum and energy). The physical properties of these sports objects are discussed in terms of the materials of which they are made. The evaluation plan to determine the effectiveness of these activities and preliminary results are also presented.
Benefits from a geographers' perspective on human-water systems - the waterscape concept
NASA Astrophysics Data System (ADS)
Evers, Mariele; Höllermann, Britta; Almoradie, Adrian; Taft, Linda
2016-04-01
Recently a couple of theoretical foundations and concepts were developed such as hydro-sociology, hydro-economics and integrated water resources management in order to structure and process parameterizations of hydrological research and reflect human-water-interrelations. However, a remaining challenge in human-water-system research is that approaches like socio-hydrology still struggle to formalize hypotheses which are capable to capture the basic driving mechanisms of the dynamic human-water system beyond optimizing algorithms or the principle of optimality or entropy as the societal values and experiences may unfold diverging policy and society responses (cf. Troy et al. 2015). Another challenge that we see is the integration of physical and social sciences with regard to the different epistemologies and perspectives: positivist thinking common in natural sciences and engineering and constructivist conceptualisation common in the social sciences. Here, geographic research seeks to acknowledge multi-spatial perspectives of the different actors and entities and their integration into the physical system that needs mutual recognition of natural and social sciences concepts, theories and methods. We suggest for human-water system research a more geographic perspective, which we call waterscape concept. Water can be regarded as a key structuring element for landscape and its management and, hence, from our perspective, the dynamics in water resources and interrelation of actors and entities in its management also helps to better understand current landscape patterns, their developments and interrelations, respectively. By our definition, a waterscape includes sources and users of water, their interactions, feedbacks and external influencing factors. It is therefore not only the physical space but rather includes the arena of actors and entities interacting. Against this understanding, waterscapes are defined by reciprocal boundary conditions which allow integrating the knowledge of natural and social sciences by acknowledging their different epistemologies, concepts and methods at the same time, hereby, fostering a true integration of the disciplines. Space and time and feedback loops are the three key factors to understand human-water interactions. Especially, by recognizing the degree of feedback sensitive system parameters can be detected and allow for emerging a set of multiple framings and possible development paths. Therefore, the geographical perspective on the waterscape concept proposes a search apart from one solution or best practice as, in our assumption, there are no single best answers because the human dimension and their action and reaction are guided also beyond perceptions, preferences, benefits and costs. Our waterscape concept allows a multi-spatial and multi-disciplinary perspective on water and its projection into space by acknowledging multiple meanings, alternative framings and possible development paths, hence fostering an integrative perspective on human-water systems. It further provides a fruitful framework for transdisciplinary research approaches since it is open and supports societal co-production and reframing of knowledge and policies. Troy, T. J., Pavao-Zuckerman, M., and Evans, T. P.: Debates Perspectives on socio-hydrology: Socio-hydrologic modeling: Tradeoffs, hypothesis testing, and validation, Water Resour Res, 51, 4806-4814, 10.1002/2015WR017046, 2015
Jensen, Robin E; Blumling, Allison N
2018-04-01
Members of the lay public often draw from vernacular science knowledge-or metaphors, images, and terms related to technical science-to make normative assessments about behavior. Yet, little is known about vernacular science knowledge in terms of its forms and functions. In a national survey, US adults ( N = 688) were asked to identify an ideal age for first pregnancy, and to explain their decision. Participants drew from arguments related to hormonal processes, the language of risk, and the quality and quantity of "eggs" to navigate and identify an ideal timeline for first pregnancy. Their responses illustrated patterns of justification that involved the (a) employment of scientific concepts as heuristic cues for critical analysis, (b) conflation of details, and (c) synecdochal explication. These findings reveal some of the key ways in which vernacular science knowledge may shape the trajectory of lay argument in a range of contexts.
NASA Astrophysics Data System (ADS)
Milne, Catherine; Rubel, Laurie; Rodriguez, Alberto J.; Emdin, Christopher; Maulucci, Maria Rivera; Locke, Donyagay; Tan, Edna; Clairmont, Neil; Upadhyay, Bhaskar
2009-06-01
This metalogue addresses the ways Sreyashi Jhumki Basu mediated our practices in science education and life. We focus on Basu's uses of critical science agency, democratic science classrooms, and critical feminist ethnography to transform the possibilities for all participants in her research and educational practices. We also examine her use of cases and pedagogical strategies to support youth set practice goals based on conceptions of self and preferred learning trajectories. These strategies allow youth to develop power through the use of disciplinary knowledge and modes of inquiry to support their understanding of themselves as powerful, able to change their position in the world, and make the world more socially just. This (Key Contributors) article acknowledges a life cut short through disease, reflects our personal loss of a friend and colleague, and expresses determination to ensure that her contributions to science education are sustained and continued.
The Concept Currency of K-12 Science Textbooks Relative to Earth Science Concepts.
ERIC Educational Resources Information Center
Janke, Delmar Lester
This study was undertaken to determine the degree of agreement between science textbooks and scholars in earth science relative to earth science concepts to be included in the K-12 science curriculum. The study consisted of two phases: (1) the identification of a sample of earth science concepts rated by earth scientists as important for inclusion…
Lunar Team Report from a Planetary Design Workshop at ESTEC
NASA Astrophysics Data System (ADS)
Gray, A.; MacArthur, J.; Foing, B. H.
2014-04-01
On February 13, 2014, GeoVUsie, a student association for Earth science majors at Vrijie University (VU), Amsterdam, hosted a Planetary Sciences: Moon, Mars and More symposium. The symposium included a learning exercise the following day for a planetary design workshop at the European Space Research and Technology Centre (ESTEC) for 30 motivated students, the majority being from GeoVUsie with little previous experience of planetary science. Students were split into five teams and assigned pre-selected new science mission projects. A few scientific papers were given to use as reference just days before the workshop. Three hours were allocated to create a mission concept before presenting results to the other students and science advisors. The educational backgrounds varied from second year undergraduate students to masters' students from mostly local universities.The lunar team was told to design a mission to the lunar south pole, as this is a key destination agreed upon by the international lunar scientific community. This region has the potential to address many significant objectives for planetary science, as the South Pole-Aitken basin has preserved early solar system history and would help to understand impact events throughout the solar system as well as the origin and evolution of the Earth-Moon system, particularly if samples could be returned. This report shows the lunar team's mission concept and reasons for studying the origin of volatiles on the Moon as the primary science objective [1]. Amundsen crater was selected as the optimal landing site near the lunar south pole [2]. Other mission concepts such as RESOLVE [3], L-VRAP [4], ESA's lunar lander studies and Luna-27 were reviewed. A rover and drill were selected as being the most suitable architecture for the requirements of this mission. Recommendations for future student planetary design exercises were to continue events like this, ideally with more time, and also to invite a more diverse range of educational backgrounds, i.e., both engineering and science students/professionals.
NASA Astrophysics Data System (ADS)
Koc, Isil
The present study was conducted to investigate the extent to which preservice elementary teachers held alternative conceptions in fundamental elementary science concepts from earth/space science, life science, and physical science along with their self-efficacy beliefs about science teaching and to determine the relationship between these two issues. Eighty-six preservice elementary education majors enrolled in the four sections of the course titled "07E:162 Methods Elementary School Science" offered in the Science Education Center, College of Education, the University of Iowa during the 2005-2006 academic year participated in this study. Twelve preservice elementary teachers participated in follow-up interviews. Data were collected through the use of Alternative Conceptions in Science Instrument constructed by Schoon and Boone (1998), Science Teaching Efficacy Belief Instrument (STEBI-B) constructed by Enochs and Riggs (1990), a participant information form, and through utilization of interviews. The results from the alternative conception instrument indicated that the majority of preservice elementary teachers held a number of alternative conceptions with most being in the physical sciences followed by earth/space, and then life science. Various sources of alternative conceptions emerged during the interview sessions. Participants mainly cited science teachers, science textbooks, and previous science experiences as sources of their alternative conceptions. On the other hand, the analysis of the self-efficacy instrument and follow-up interviews revealed generally positive self-efficacy beliefs. Findings from the study also confirmed that science courses completed in high school and college do not seem to have influenced participants' number and types of alternative conceptions regarding earth/space science, life science, and physical science and self-efficacy beliefs about science teaching. The results also indicate that participants with the lowest number of alternative conceptions regarding earth/space science, physical science, and life science have a relatively high personal science teaching efficacy. Overall, the results of the study regarding self-efficacy beliefs propose that consideration be given to identification and modification of preservice elementary teachers' science alternative conceptions if they are expected to teach science effectively.
NASA Astrophysics Data System (ADS)
Adúriz-Bravo, Agustín; Izquierdo-Aymerich, Mercè
2009-09-01
In this paper we discuss the foundations and process of design of a research-informed instructional unit aimed for pre-service science teacher education. The unit covers some key ideas on the nature of science (around methodology, theory change, scientific inference and explanation, values, gender issues) anchoring them in a well-known episode from the history of science—the ‘discovery’ of radium by the Curies. Such episode is mainly examined as reconstructed in the 1997 French commercial film ‘Les Palmes de Monsieur Schutz’. Pre-service science teachers are required to solve three tasks, individually and in small groups; those tasks are respectively centred around: (1) the distinction between ‘discovering’ and ‘inventing’; (2) scientific modelling via abduction; and (3) the extended hagiographic treatment of the figure of Madame Curie. Plenary debates around the tasks aim at acquainting pre-service science teachers with some powerful concepts of twentieth century philosophy of science.
The Role of Integrated Knowledge Translation in Intervention Research.
Wathen, C Nadine; MacMillan, Harriet L
2018-04-01
There is widespread recognition across the full range of applied research disciplines, including health and social services, about the challenges of integrating scientifically derived research evidence into policy and/or practice decisions. These "disconnects" or "knowledge-practice gaps" between research production and use have spawned a new research field, most commonly known as either "implementation science" or "knowledge translation." The present paper will review key concepts in this area, with a particular focus on "integrated knowledge translation" (IKT)-which focuses on researcher-knowledge user partnership-in the area of mental health and prevention of violence against women and children using case examples from completed and ongoing work. A key distinction is made between the practice of KT (disseminating, communicating, etc.), and the science of KT, i.e., research regarding effective KT approaches. We conclude with a discussion of the relevance of IKT for mental health intervention research with children and adolescents.
Tissue engineering in endodontics.
Saber, Shehab El-Din M
2009-12-01
Tissue engineering is the science of design and manufacture of new tissues to replace impaired or damaged ones. The key ingredients for tissue engineering are stem cells, the morphogens or growth factors that regulate their differentiation, and a scaffold of extracellular matrix that constitutes the microenvironment for their growth. Recently, there has been increasing interest in applying the concept of tissue engineering to endodontics. The aim of this study was to review the body of knowledge related to dental pulp stem cells, the most common growth factors, and the scaffolds used to control their differentiation, and a clinical technique for the management of immature non-vital teeth based on this novel concept.
Assessment Strategies for Laboratory Reports
NASA Astrophysics Data System (ADS)
Nadji, Taoufik; Lach, Michael; Blanton, Patricia
2003-01-01
National and state science standards tell us that we should use inquiry approaches to help students develop understanding of key concepts. Physics education research groups have validated the effectiveness of this approach. It is then left to the teacher to provide the scaffolding on which to construct these concepts, the guidance necessary to complete the task, and the assessment strategies to evaluate the effectiveness of the approach. Most teachers will require students to write a report to communicate their efforts and understanding, and then are faced with the enormous task of grading the volumes generated in an efficient, consistent, and fair manner. Two teachers share with us some of the strategies they use.
Rusoja, Evan; Haynie, Deson; Sievers, Jessica; Mustafee, Navonil; Nelson, Fred; Reynolds, Martin; Sarriot, Eric; Swanson, Robert Chad; Williams, Bob
2018-01-30
As the Sustainable Development Goals are rolled out worldwide, development leaders will be looking to the experiences of the past to improve implementation in the future. Systems thinking and complexity science (ST/CS) propose that health and the health system are composed of dynamic actors constantly evolving in response to each other and their context. While offering practical guidance for steering the next development agenda, there is no consensus as to how these important ideas are discussed in relation to health. This systematic review sought to identify and describe some of the key terms, concepts, and methods in recent ST/CS literature. Using the search terms "systems thinkin * AND health OR complexity theor* AND health OR complex adaptive system* AND health," we identified 516 relevant full texts out of 3982 titles across the search period (2002-2015). The peak number of articles were published in 2014 (83) with journals specifically focused on medicine/healthcare (265) and particularly the Journal of Evaluation in Clinical Practice (37) representing the largest number by volume. Dynamic/dynamical systems (n = 332), emergence (n = 294), complex adaptive system(s) (n = 270), and interdependent/interconnected (n = 263) were the most common terms with systems dynamic modelling (58) and agent-based modelling (43) as the most common methods. The review offered several important conclusions. First, while there was no core ST/CS "canon," certain terms appeared frequently across the reviewed texts. Second, even as these ideas are gaining traction in academic and practitioner communities, most are concentrated in a few journals. Finally, articles on ST/CS remain largely theoretical illustrating the need for further study and practical application. Given the challenge posed by the next phase of development, gaining a better understanding of ST/CS ideas and their use may lead to improvements in the implementation and practice of the Sustainable Development Goals. Key messages Systems thinking and complexity science, theories that acknowledge the dynamic, connected, and context-dependent nature of health, are highly relevant to the post-millennium development goal era yet lack consensus on their use in relation to health Although heterogeneous, terms, and concepts like emergence, dynamic/dynamical Systems, nonlinear(ity), and interdependent/interconnected as well as methods like systems dynamic modelling and agent-based modelling that comprise systems thinking and complexity science in the health literature are shared across an increasing number of publications within medical/healthcare disciplines Planners, practitioners, and theorists that can better understand these key systems thinking and complexity science concepts will be better equipped to tackle the challenges of the upcoming development goals. © 2018 John Wiley & Sons, Ltd.
Why, from a Life Sciences Perspective, This Mission to Mars?
NASA Technical Reports Server (NTRS)
McKay, Christopher P.; DeVincenzi, Donald (Technical Monitor)
2002-01-01
Mars may have had water and life early in its history and this make it a key target for robotic and human exploration. Extensive human exploration of Mars will of necessity depend on life support systems that rely on agricultural plants. If current concept for recreating, a biosphere on Mars are implemented this would involve widespread use of plants, particularly species from Arctic and alpine environments.
XUV Frequency Comb Development for Precision Spectroscopy and Ultrafast Science
2015-07-28
first time and provide insight to the underlying 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a...TERMS. Key words or phrases identifying major concepts in the report. 16. SECURITY CLASSIFICATION. Enter security classification in accordance with... security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom
NASA Astrophysics Data System (ADS)
Zender, J.; Berghmans, D.; Bloomfield, D. S.; Cabanas Parada, C.; Dammasch, I.; De Groof, A.; D'Huys, E.; Dominique, M.; Gallagher, P.; Giordanengo, B.; Higgins, P. A.; Hochedez, J.-F.; Yalim, M. S.; Nicula, B.; Pylyser, E.; Sanchez-Duarte, L.; Schwehm, G.; Seaton, D. B.; Stanger, A.; Stegen, K.; Willems, S.
2013-08-01
The PROBA2 Science Centre (P2SC) is a small-scale science operations centre supporting the Sun observation instruments onboard PROBA2: the EUV imager Sun Watcher using APS detectors and image Processing (SWAP) and Large-Yield Radiometer (LYRA). PROBA2 is one of ESA's small, low-cost Projects for Onboard Autonomy (PROBA) and part of ESA's In-Orbit Technology Demonstration Programme. The P2SC is hosted at the Royal Observatory of Belgium, co-located with both Principal Investigator teams. The P2SC tasks cover science planning, instrument commanding, instrument monitoring, data processing, support of outreach activities, and distribution of science data products. PROBA missions aim for a high degree of autonomy at mission and system level, including the science operations centre. The autonomy and flexibility of the P2SC is reached by a set of web-based interfaces allowing the operators as well as the instrument teams to monitor quasi-continuously the status of the operations, allowing a quick reaction to solar events. In addition, several new concepts are implemented at instrument, spacecraft, and ground-segment levels allowing a high degree of flexibility in the operations of the instruments. This article explains the key concepts of the P2SC, emphasising the automation and the flexibility achieved in the commanding as well as the data-processing chain.
Equality as a central concept of nursing ethics: a systematic literature review.
Kangasniemi, Mari
2010-12-01
Equality is a central concept in the Western way of thinking and in health care. In ethics research within nursing science, equality is a key concept but the meaning of its contents is more or less presumptive. The purpose of this study was to define the concept of equality as a value of nursing ethics research. Data were collected through systematic literature review and analysed using deductive and inductive content analysis. Equality has been studied as a concept and in relation to ethical theories. In nursing ethics, research on equality on theoretical and functional level is presented. These levels consist of dimensions, i.e. themes, that equality is related to. The dimensions of the theoretical level are the equality of being, i.e. universal human value, and distributive equality, i.e. equal opportunities, circumstances and results. The dimensions of functional equality included themes such as critique of distributive equality, context, difference, power and care. Critique is aimed at incompatibility of theoretical level with practice. Context raises questions of each nursing situation in relation to equality. Variation within context is closely related to differences involving parties to nursing, and it is a starting point to questions of equality. Power is understood as comprising knowledge, skills and authority that create differences and questions of equality between nurses and patients and nurses and other professionals or students. Nursing as care always includes relationship between two or more persons and needs to be inspected from the point of view of equality. The concept of equality has been complex to achieve in practice. The dimensions of the levels of equality defined in this study provide an opportunity to reach a better understanding of equality in nursing ethics. There is still a great demand for more research on the concept of equality. © 2010 The Author. Scandinavian Journal of Caring Sciences © 2010 Nordic College of Caring Science.
Climate Science across the Liberal Arts Curriculum at Gustavus Adolphus College
NASA Astrophysics Data System (ADS)
Bartley, J. K.; Triplett, L.; Dontje, J.; Huber, T.; Koomen, M.; Jeremiason, J.; La Frenierre, J.; Niederriter, C.; Versluis, A.
2014-12-01
The human and social dimensions of climate change are addressed in courses in humanities, social sciences, and arts disciplines. However, faculty members in these disciplines are not climate science experts and thus may feel uncomfortable discussing the science that underpins our understanding of climate change. In addition, many students are interested in the connections between climate change and their program of study, but not all students take courses that address climate science as a principal goal. At Gustavus Adolphus College, the Climate Science Project aims to help non-geoscience faculty introduce climate science content in their courses in order to increase climate science literacy among students and inform discussions of the implications of climate change. We assembled an interdisciplinary team of faculty with climate science expertise to develop climate science modules for use in non-geoscience courses. Faculty from the social sciences, humanities, arts, education, and natural sciences attended workshops in which they developed plans to include climate science in their courses. Based on these workshops, members of the development team created short modules for use by participating faculty that introduce climate science concepts to a non-specialist audience. Each module was tested and modified prior to classroom implementation by a team of faculty and geoscience students. Faculty and student learning are assessed throughout the process, and participating faculty members are interviewed to improve the module development process. The Climate Science Project at Gustavus Adolphus College aims to increase climate science literacy in both faculty members and students by creating accessible climate science content and supporting non-specialist faculty in learning key climate science concepts. In this way, climate science becomes embedded in current course offerings, including non-science courses, reaching many more students than new courses or enhanced content in the geosciences can reach. In addition, this model can be adopted by institutions with limited geoscience course offerings to increase geoscience literacy among a broad cross-section of students.
A Biotic Game Design Project for Integrated Life Science and Engineering Education
Denisin, Aleksandra K.; Rensi, Stefano; Sanchez, Gabriel N.; Quake, Stephen R.; Riedel-Kruse, Ingmar H.
2015-01-01
Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games. PMID:25807212
A biotic game design project for integrated life science and engineering education.
Cira, Nate J; Chung, Alice M; Denisin, Aleksandra K; Rensi, Stefano; Sanchez, Gabriel N; Quake, Stephen R; Riedel-Kruse, Ingmar H
2015-03-01
Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.
Procedural Quantum Programming
NASA Astrophysics Data System (ADS)
Ömer, Bernhard
2002-09-01
While classical computing science has developed a variety of methods and programming languages around the concept of the universal computer, the typical description of quantum algorithms still uses a purely mathematical, non-constructive formalism which makes no difference between a hydrogen atom and a quantum computer. This paper investigates, how the concept of procedural programming languages, the most widely used classical formalism for describing and implementing algorithms, can be adopted to the field of quantum computing, and how non-classical features like the reversibility of unitary transformations, the non-observability of quantum states or the lack of copy and erase operations can be reflected semantically. It introduces the key concepts of procedural quantum programming (hybrid target architecture, operator hierarchy, quantum data types, memory management, etc.) and presents the experimental language QCL, which implements these principles.
A Conceptual Characterization of Online Videos Explaining Natural Selection
NASA Astrophysics Data System (ADS)
Bohlin, Gustav; Göransson, Andreas; Höst, Gunnar E.; Tibell, Lena A. E.
2017-11-01
Educational videos on the Internet comprise a vast and highly diverse source of information. Online search engines facilitate access to numerous videos claiming to explain natural selection, but little is known about the degree to which the video content match key evolutionary content identified as important in evolution education research. In this study, we therefore analyzed the content of 60 videos accessed through the Internet, using a criteria catalog with 38 operationalized variables derived from research literature. The variables were sorted into four categories: (a) key concepts (e.g. limited resources and inherited variation), (b) threshold concepts (abstract concepts with a transforming and integrative function), (c) misconceptions (e.g. that evolution is driven by need), and (d) organismal context (e.g. animal or plant). The results indicate that some concepts are frequently communicated, and certain taxa are commonly used to illustrate concepts, while others are seldom included. In addition, evolutionary phenomena at small temporal and spatial scales, such as subcellular processes, are rarely covered. Rather, the focus is on population-level events over time scales spanning years or longer. This is consistent with an observed lack of explanations regarding how randomly occurring mutations provide the basis for variation (and thus natural selection). The findings imply, among other things, that some components of natural selection warrant far more attention in biology teaching and science education research.
MODIS information, data and control system (MIDACS) operations concepts
NASA Technical Reports Server (NTRS)
Han, D.; Salomonson, V.; Ormsby, J.; Ardanuy, P.; Mckay, A.; Hoyt, D.; Jaffin, S.; Vallette, B.; Sharts, B.; Folta, D.
1988-01-01
The MODIS Information, Data, and Control System (MIDACS) Operations Concepts Document provides a basis for the mutual understanding between the users and the designers of the MIDACS, including the requirements, operating environment, external interfaces, and development plan. In defining the concepts and scope of the system, how the MIDACS will operate as an element of the Earth Observing System (EOS) within the EosDIS environment is described. This version follows an earlier release of a preliminary draft version. The individual operations concepts for planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, data archive and distribution, and user access do not yet fully represent the requirements of the data system needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams are not yet formed; however, it is possible to develop the operations concepts based on the present concept of EosDIS, the level 1 and level 2 Functional Requirements Documents, and through interviews and meetings with key members of the scientific community. The operations concepts were exercised through the application of representative scenarios.
NASA Astrophysics Data System (ADS)
Chandrasena, Wanasinghe Durayalage
This research comprises three inter-related synergistic studies. Study 1 aims to develop a psychometrically sound tool to measure secondary students' science self-concepts, motivation, and aspirations in biology, chemistry, earth and environmental methodology to explicate students' and teachers' views, practices, and personal experiences, to identify the barriers to undertaking science for secondary students and to provide rich insights into the relations of secondary students' science self-concepts and motivation with their aspirations and achievement. Study 3 will detect additional issues that may not necessarily be identifiable from the quantitative findings of Study 2. The psychometric properties of the newly developed instrument demonstrated that students' science self-concepts were domain specific, while science motivation and science aspirations were not. Students' self-concepts in general science, chemistry, and physics were stronger for males than females. Students' self-concepts in general science and biology became stronger for students in higher years of secondary schooling. Students' science motivation did not vary across gender and year levels. Though students' science aspirations did not vary across gender, they became stronger with age. In general, students' science self-concepts and science motivation were positively related to science aspirations and science achievement. Specifically, students' year level, biology self-concept, and physics self concept predicted their science and career aspirations. Biology self-concept predicted teacher ratings of students' achievement, and students' general science self-concepts predicted their achievement according to students' ratings. Students' year level and intrinsic motivation in science were predictors of their science aspirations, and intrinsic motivation was a greater significant predictor of students' achievement, according to student ratings. Based upon students' and teachers' perceptions, the identified barriers to promoting science in schools were: the difficulty of the subject matter, lack of student interest, the large amount of subject content, lack of perceived relevance of the subject matter to day-to-day life, ineffective teacher characteristics, lack of aspirations to pursue science as a career, inadequate teaching methods, lack of adequate teacher training, lack of proper policies to reward science teachers, and inadequate support for science from the media. Overall, the results from this study provide a greater understanding of the relations of secondary students' science self-concepts and motivation with aspirations and achievement in different science domains across gender and age levels. Hence, this research makes a valuable contribution to the literature by providing new insight. The findings will be useful for science educators in planning and developing science curriculum and policies with regard to student self-concepts and motivation. Equally, science teachers may find implications for classroom practices, for the planning and conducting of science lessons, for conveying scientific concepts and principles to students more effectively, and in considering the need to generate enthusiasm about the subject in young science students. Thus, the findings may offer the necessary strategies to assist in reducing the decline of students' enrolments in science through efficacious attention to student self-concepts and motivation. The newly developed instrument provides a new opportunity for future research to confidently interrogate the psychosocial issues central to science education and promotion. (Abstract shortened by ProQuest.).
Origins Space Telescope: Study Plan
NASA Astrophysics Data System (ADS)
Nayyeri, Hooshang; Cooray, Asantha; Origins Space Telescope Study Team
2018-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, the OST Study Team based at NASA Goddard Space Flight Center, study partners, and the advisory panel to the study. This presentation will also summarize recent activities, including the process used to reach a decision on the mission architecture, the identification of key science drivers, and the key study milestones between 2017 and 2020.
The genesis of craniofacial biology as a health science discipline.
Sperber, G H; Sperber, S M
2014-06-01
The craniofacial complex encapsulates the brain and contains the organs for key functions of the body, including sight, hearing and balance, smell, taste, respiration and mastication. All these systems are intimately integrated within the head. The combination of these diverse systems into a new field was dictated by the dental profession's desire for a research branch of basic science devoted and attuned to its specific needs. The traditional subjects of genetics, embryology, anatomy, physiology, biochemistry, dental materials, odontology, molecular biology and palaeoanthropology pertaining to dentistry have been drawn together by many newly emerging technologies. These new technologies include gene sequencing, CAT scanning, MRI imaging, laser scanning, image analysis, ultrasonography, spectroscopy and visualosonics. A vibrant unitary discipline of investigation, craniofacial biology, has emerged that builds on the original concept of 'oral biology' that began in the 1960s. This paper reviews some of the developments that have led to the genesis of craniofacial biology as a fully-fledged health science discipline of significance in the advancement of clinical dental practice. Some of the key figures and milestones in craniofacial biology are identified. © 2014 Australian Dental Association.
Origins Space Telescope: Study Plan
NASA Astrophysics Data System (ADS)
Cooray, Asantha R.; Origins Space Telescope Study Team
2017-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, the OST Study Team based at NASA Goddard Space Flight Center, study partners, and the advisory panel to the study. This presentation will also summarize recent activities, including the process used to reach a decision on the mission architecture, the identification of key science drivers, and the key study milestones between 2017 and 2020.
Shaping biomedical objects across history and philosophy:a conversation with Hans-Jörg Rheinberger.
García-Sancho, Miguel; González-Silva, Matiana; Jesús Santesmases, María; Rheinberger, Hans-Jörg
2014-01-01
Historical epistemology, according to the historian of science Hans-Jörg Rheinberger, is a space through which "to take experimental laboratory work into the realm of philosophy". This key concept, together with the crucial events and challenges of his career, were discussed in a public conversation which took place on the occasion of Rheinberger's retirement. By making sense of natural phenomena in the laboratory, the act of experimenting shapes the object; it is this shaping which became the core of Rheinberger's own research across biology and philosophy into history. For his intellectual agenda, a history of the life sciences so constructed became "epistemologically demanding".
Academic Self-Concept: Modeling and Measuring for Science
NASA Astrophysics Data System (ADS)
Hardy, Graham
2014-08-01
In this study, the author developed a model to describe academic self-concept (ASC) in science and validated an instrument for its measurement. Unlike previous models of science ASC, which envisage science as a homogenous single global construct, this model took a multidimensional view by conceiving science self-concept as possessing distinctive facets including conceptual and procedural elements. In the first part of the study, data were collected from 1,483 students attending eight secondary schools in England, through the use of a newly devised Secondary Self-Concept Science Instrument, and structural equation modeling was employed to test and validate a model. In the second part of the study, the data were analysed within the new self-concept framework to examine learners' ASC profiles across the domains of science, with particular attention paid to age- and gender-related differences. The study found that the proposed science self-concept model exhibited robust measures of fit and construct validity, which were shown to be invariant across gender and age subgroups. The self-concept profiles were heterogeneous in nature with the component relating to self-concept in physics, being surprisingly positive in comparison to other aspects of science. This outcome is in stark contrast to data reported elsewhere and raises important issues about the nature of young learners' self-conceptions about science. The paper concludes with an analysis of the potential utility of the self-concept measurement instrument as a pedagogical device for science educators and learners of science.
Attitudes of eighth-grade honors students toward the conceptual change methods of teaching science
NASA Astrophysics Data System (ADS)
Heide, Clifford Lee
1998-12-01
The study researched the attitude of eighth grade honors science students toward the steps of the conceptual change teaching method. The attitudes of 25 students in an honors 8th grade science class in the Greater Phoenix metropolitan area were assessed using a multi-method approach. A quantitative method (student survey) and a qualitative method (focus group) were triangulated for convergence. Since conceptual change is a relatively new reform teaching modality, the study assessed students' attitudes utilizing this method. Conceptual change teaching is characterized by connections between concepts and facts which are organized around key ideas. Knowledge connected through concepts is constantly revised and edited by students as they continue to learn and add new concepts. The results of this study produced evidence that the conceptual change method of teaching science and its six process steps have qualities that foster positive student attitude. The study demonstrated that students' attitudes toward science is positively influenced through the conceptual change teaching method by enabling students to: (1) choose problems and find solutions to those problems (student directed); (2) work together in large and small groups; (3) learn through student oral presentations; (4) perform hands-on laboratory experiences; (5) learn through conceptual understanding not memorization; (6) implement higher order learning skills to make connections from the lab to the real world. Teachers can use the information in the study to become aware of the positive and negative attitudes of students taught with the conceptual change method. Even if the conceptual change teaching strategy is not the modality utilized by an educator, the factors identified by this study that affect student attitude could be used to help a teacher design lesson plans that help foster positive student attitudes.
NASA Astrophysics Data System (ADS)
Sadler, Karen L.
2009-04-01
The purpose of this study was to quantitatively examine the impact of third-party support service providers on the quality of science information available to deaf students in regular science classrooms. Three different videotapes that were developed by NASA for high school science classrooms were selected for the study, allowing for different concepts and vocabulary to be examined. The focus was on the accuracy of translation as measured by the number of key science words included in the transcripts (captions) or videos (interpreted). Data were collected via transcripts completed by CART (computer assisted real-time captionists) or through videos of sign language interpreters. All participants were required to listen to and translate these NASA educational videos with no prior experience with this information so as not to influence their delivery. CART personnel using captions were found to be significantly more accurate in the delivery of science words as compared to the sign language interpreters in this study.
Mars for Earthlings: An Analog Approach to Mars in Undergraduate Education
Kahmann-Robinson, Julia
2014-01-01
Abstract Mars for Earthlings (MFE) is a terrestrial Earth analog pedagogical approach to teaching undergraduate geology, planetary science, and astrobiology. MFE utilizes Earth analogs to teach Mars planetary concepts, with a foundational backbone in Earth science principles. The field of planetary science is rapidly changing with new technologies and higher-resolution data sets. Thus, it is increasingly important to understand geological concepts and processes for interpreting Mars data. MFE curriculum is topically driven to facilitate easy integration of content into new or existing courses. The Earth-Mars systems approach explores planetary origins, Mars missions, rocks and minerals, active driving forces/tectonics, surface sculpting processes, astrobiology, future explorations, and hot topics in an inquiry-driven environment. Curriculum leverages heavily upon multimedia resources, software programs such as Google Mars and JMARS, as well as NASA mission data such as THEMIS, HiRISE, CRISM, and rover images. Two years of MFE class evaluation data suggest that science literacy and general interest in Mars geology and astrobiology topics increased after participation in the MFE curriculum. Students also used newly developed skills to create a Mars mission team presentation. The MFE curriculum, learning modules, and resources are available online at http://serc.carleton.edu/marsforearthlings/index.html. Key Words: Mars—Geology—Planetary science—Astrobiology—NASA education. Astrobiology 14, 42–49. PMID:24359289
Joyce, A; Green, C; Carey, G; Malbon, E
2017-01-23
The potential of systems science concepts to inform approaches for addressing complex public health problems, such as obesity prevention, has been attracting significant attention over the last decade. Despite its recent popularity, there are very few studies examining the application of systems science concepts, termed systems thinking, in practice and whether (if at all) it influences the implementation of health promotion in real world settings and in what ways. Healthy Together Victoria (HTV) was based on a systems thinking approach to address obesity prevention alongside other chronic health problems and was implemented across 14 local government areas. This paper examines the experience of practitioners from one of those intervention sites. In-depth interviews with eight practitioners revealed that there was a rigidity with which they had experienced previous health promotion jobs relative to the flexibility and fluidity of HTV. While the health promotion literature does not indicate that health promotion should be overly prescriptive, the experience of these practitioners suggests it is being applied as such in real world settings. Within HTV, asking people to work with 'systems thinking', without giving a prescription about what systems thinking is, enabled practitioners to be 'practice entrepreneurs' by choosing from a variety of systems thinking methods (mapping, reflection) to engage actively in their positions. This highlights the importance of understanding how key concepts, both traditional planning approaches and systems science concepts, are interpreted and then implemented in real world settings. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Carifio, James; Perla, Rocco J.
2009-01-01
This article presents a critical review and analysis of key studies that have been done in science education and other areas on the effects and effectiveness of using diagrams, graphs, photographs, illustrations, and concept maps as "adjunct visual aids" in the learning of scientific-technical content. It also summarizes and reviews those studies…
Cultural Interpretation of Ethnographic Evidence Relating to Astronomy
NASA Astrophysics Data System (ADS)
López, Alejandro Martín
In this chapter, on the basis that ethnoastronomy deals with social facts, we discuss key concepts that should be problematized in ethnoastronomical studies. We deal with the denaturalization of categories such as ethnicity, identity, territory, culture, body, cosmovision, and cosmology, using contemporary ideas about these issues in the social sciences. Our aim is to show the relevance of this methodological reflection to the construction and interpretation of ethnographic evidence related to astronomy.
Venus Atmospheric Maneuverable Platform (VAMP)
NASA Astrophysics Data System (ADS)
Griffin, K.; Sokol, D.; Lee, G.; Dailey, D.; Polidan, R.
2013-12-01
We have explored a possible new approach to Venus upper atmosphere exploration by applying recent Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters the Venus atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. In 2012 we initiated a feasibility study for a semi-buoyant maneuverable vehicle that could operate in the upper atmosphere of Venus. In this presentation we report results from the ongoing study and plans for future analyses and prototyping to advance and refine the concept. We will discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We will present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we will specifically focus upon four key factors impacting the design and performance of VAMP: 1. Feasibility of and options for the deployment of the vehicle in space 2. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight 3. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance (aerodynamics, power required vs. power available, propulsion, speed, percent buoyancy), performance sensitivity to payload weight 4. Science payload accommodation, constraints, and opportunities We will discuss interdependencies of the above factors and the manner in which the VAMP strawman's characteristics affect the CONOPs and the science objectives. We will show how the these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support VEXAG goals 2 and 3. We will also discuss how the VAMP platform itself can facilitate some of these science measurements.
kNOw Soil - kNOw Life: Integrating soil science across disciplines
NASA Astrophysics Data System (ADS)
Lindbo, D. L.; Kozlowski, D.; Robinson, C.; Chapman, S.
2014-12-01
Teaching primary and secondary school students (K-12) about science and art, although absolutely critical, can be difficult. Teachers have specific standards or subject matters that they are required to cover and often soils and soil science is not included in that list. We have struggled with ways to bring soil science information to the larger audience as the direct approach meets with resistance due to the time commitments to other standards. Our approach now is to use soils as a media or vehicle to teach key concepts in broad subject areas. We have developed several lesson plans in science, geography, math and art that focus on a concept but use soils to convey it. For example students make "mini" monoliths of a state soil. During this exercise students need to use skills in geography to find where their state soil occurs in their state and in the country. They need to understand colors in order to choose the correct colors to use to make their monolith. Finally, they must understand how scales work in order to make the monolith accurate in terms of horizon depths. Throughout the exercise discussion on my certain colors occur in the soil can be discussed. This discussion can lead to a qualitative understanding of chemistry and biology. This presentation will demonstrate this lesson and several others that have been developed and available through the Soil Science Society of America's K12 Education Committee and our International Year of Soil website.
NASA Astrophysics Data System (ADS)
Hermann, Ronald S.
2013-06-01
In the US, there may be few scientific concepts that students maintain preconceived ideas about as strongly and passionately as they do with regard to evolution. At the confluence of a multitude of social, religious, political, and scientific factors lies the biology teacher. This phenomenological study provides insight into the salient aspects of teaching evolution as viewed by public high school biology teachers. Transcribed interviews were coded, and data were sorted resulting in key themes regarding teachers' views of evolution education. These themes are presented against the backdrop of extant literature on the teaching and learning of evolution. Suggestions for science teacher educators are presented such that we can modify teacher preparation programs to better prepare science teachers to meet the challenges of teaching evolution.
Assessing Teachers' Comprehension of What Matters in Earth Science
NASA Astrophysics Data System (ADS)
Penuel, W. R.; Kreikemeier, P.; Venezky, D.; Blank, J. G.; Davatzes, A.; Davatzes, N.
2006-12-01
Curricular standards developed for individual U.S. States tell teachers what they should teach. Most sets of standards are too numerous to be taught in a single year, forcing teachers to make decisions about what to emphasize in their curriculum. Ideally, such decisions would be based on what matters most in Earth science, namely, the big ideas that anchor scientific inquiry in the field. A measure of teachers' ability to associate curriculum standards with fundamental concepts in Earth science would help K-12 program and curriculum developers to bridge gaps in teachers' knowledge in order to help teachers make better decisions about what is most important to teach and communicate big ideas to students. This paper presents preliminary results of an attempt to create and validate a measure of teachers' comprehension of what matters in three sub-disciplines of Earth science. This measure was created as part of an experimental study of teacher professional development in Earth science. It is a task that requires teachers to take their state's curriculum standards and identify which standards are necessary or supplemental to developing students' understanding of fundamental concepts in the target sub-disciplines. To develop the task, a team of assessment experts and educational researchers asked a panel of four Earth scientists to identify key concepts embedded within middle school standards for the state of Florida. The Earth science panel reached a consensus on which standards needed to be taught in order to develop understanding of those concepts; this was used as a basis for comparison with teacher responses. Preliminary analysis of the responses of 44 teachers who participated in a pilot validation study identified differences between teachers' and scientists' maps of standards to big ideas in the sub-disciplines. On average, teachers identified just under one-third of the connections seen by expert Earth scientists between the concepts and their state standards. Teachers with higher levels of agreement also had a higher percentage of standards identified that were "off-grade," meaning that they saw connections to standards that they were not themselves required to teach but that nonetheless were relevant to developing student understanding of a particular concept. This result is consistent with the premise that to make good decisions about what to teach, teachers need to be able to identify relevant standards from other grade levels that are connected to the big ideas of a discipline (Shulman, 1986, Educ. Res. 15:4-14).
The role of models/and analogies in science education: implications from research
NASA Astrophysics Data System (ADS)
Coll, Richard K.; France, Bev; Taylor, Ian
2005-02-01
Models and modelling are key tools for scientists, science teachers and science learners. In this paper we argue that classroom-based research evidence demonstrates that the use of models and analogies within the pedagogy of science education may provide a route for students to gain some understanding of the nature of science. A common theme to emerge from the literature reviewed here is that in order to successfully develop conceptual understandings in science, learners need to be able to reflect on and discuss their understandings of scientific concepts as they are developing them. Pedagogies that involve various types of modelling are most effective when students are able to construct and critique their own and scientists' models. Research also suggests that group work and peer discussion are important ways of enhancing students' cognitive and metacognitive thinking skills. Further we argue that an understanding of science models and the modelling process enables students to develop a metacognitive awareness of knowledge development within the science community, as well as providing the tools to reflect on their own scientific understanding.
High End Computing Technologies for Earth Science Applications: Trends, Challenges, and Innovations
NASA Technical Reports Server (NTRS)
Parks, John (Technical Monitor); Biswas, Rupak; Yan, Jerry C.; Brooks, Walter F.; Sterling, Thomas L.
2003-01-01
Earth science applications of the future will stress the capabilities of even the highest performance supercomputers in the areas of raw compute power, mass storage management, and software environments. These NASA mission critical problems demand usable multi-petaflops and exabyte-scale systems to fully realize their science goals. With an exciting vision of the technologies needed, NASA has established a comprehensive program of advanced research in computer architecture, software tools, and device technology to ensure that, in partnership with US industry, it can meet these demanding requirements with reliable, cost effective, and usable ultra-scale systems. NASA will exploit, explore, and influence emerging high end computing architectures and technologies to accelerate the next generation of engineering, operations, and discovery processes for NASA Enterprises. This article captures this vision and describes the concepts, accomplishments, and the potential payoff of the key thrusts that will help meet the computational challenges in Earth science applications.
Experiments with the low melting indium-bismuth alloy system
NASA Technical Reports Server (NTRS)
Krepski, Richard P.
1992-01-01
The following is a laboratory experiment designed to create an interest in and to further understanding of materials science. The primary audience for this material is the junior high school or middle school science student having no previous familiarity with the material, other than some knowledge of temperature and the concepts of atoms, elements, compounds, and chemical reactions. The objective of the experiment is to investigate the indium-bismuth alloy system. Near the eutectic composition, the liquidus is well below the boiling point of water, allowing simple, minimal hazard casting experiments. Such phenomena as metal oxidation, formation of intermetallic compound crystals, and an unusual volume increase during solidification could all be directly observed. A key concept for students to absorb is that properties of an alloy (melting point, mechanical behavior) may not correlate with simple interpolation of properties of the pure components. Discussion of other low melting metals and alloys leads to consideration of environmental and toxicity issues, as well as providing some historical context. Wetting behavior can also be explored.
Information in Our World: Conceptions of Information and Problems of Method in Information Science
ERIC Educational Resources Information Center
Ma, Lai
2012-01-01
Many concepts of information have been proposed and discussed in library and information science. These concepts of information can be broadly categorized as empirical and situational information. Unlike nomenclatures in many sciences, however, the concept of information in library and information science does not bear a generally accepted…
NASA Astrophysics Data System (ADS)
Veglio, E.; Graves, L. W.; Bank, C. G.
2014-12-01
We designed various computer-based applications and videos as educational resources for undergraduate courses at the University of Toronto in the Earth Science Department. These resources were developed in effort to enhance students' self-learning of key concepts as identified by educators at the department. The interactive learning modules and videos were created using the programs MATLAB and Adobe Creative Suite 5 (Photoshop and Premiere) and range from optical mineralogy (extinction and Becke line), petrology (equilibrium melting in 2-phase systems), crystallography (crystal systems), geophysics (gravity anomaly), and geologic history (evolution of Canada). These resources will be made available for students on internal course websites as well as through the University of Toronto Earth Science's website (www.es.utoronto.ca) where appropriate; the video platform YouTube.com may be used to reach a wide audience and promote the material. Usage of the material will be monitored and feedback will be collected over the next academic year in order to gage the use of these interactive learning tools and to assess if these computer-based applications and videos foster student engagement and active learning, and thus offer an enriched learning experience.
The Story So Far: How Embodied Cognition Advances Our Understanding of Meaning-Making
Galetzka, Cedric
2017-01-01
Meaning-making in the brain has become one of the most intensely discussed topics in cognitive science. Traditional theories on cognition that emphasize abstract symbol manipulations often face a dead end: The symbol grounding problem. The embodiment idea tries to overcome this barrier by assuming that the mind is grounded in sensorimotor experiences. A recent surge in behavioral and brain-imaging studies has therefore focused on the role of the motor cortex in language processing. Concrete, action-related words have received convincing evidence to rely on sensorimotor activation. Abstract concepts, however, still pose a distinct challenge for embodied theories on cognition. Fully embodied abstraction mechanisms were formulated but sensorimotor activation alone seems unlikely to close the explanatory gap. In this respect, the idea of integration areas, such as convergence zones or the ‘hub and spoke’ model, do not only appear like the most promising candidates to account for the discrepancies between concrete and abstract concepts but could also help to unite the field of cognitive science again. The current review identifies milestones in cognitive science research and recent achievements that highlight fundamental challenges, key questions and directions for future research. PMID:28824497
van Ommen, Gert-Jan B; Törnwall, Outi; Bréchot, Christian; Dagher, Georges; Galli, Joakim; Hveem, Kristian; Landegren, Ulf; Luchinat, Claudio; Metspalu, Andres; Nilsson, Cecilia; Solesvik, Ove V; Perola, Markus; Litton, Jan-Eric; Zatloukal, Kurt
2015-07-01
Biological resources (cells, tissues, bodily fluids or biomolecules) are considered essential raw material for the advancement of health-related biotechnology, for research and development in life sciences, and for ultimately improving human health. Stored in local biobanks, access to the human biological samples and related medical data for transnational research is often limited, in particular for the international life science industry. The recently established pan-European Biobanking and BioMolecular resources Research Infrastructure-European Research Infrastructure Consortium (BBMRI-ERIC) aims to improve accessibility and interoperability between academic and industrial parties to benefit personalized medicine, disease prevention to promote development of new diagnostics, devices and medicines. BBMRI-ERIC is developing the concept of Expert Centre as public-private partnerships in the precompetitive, not-for-profit field to provide a new structure to perform research projects that would face difficulties under currently established models of academic-industry collaboration. By definition, Expert Centres are key intermediaries between public and private sectors performing the analysis of biological samples under internationally standardized conditions. This paper presents the rationale behind the Expert Centres and illustrates the novel concept with model examples.
van Ommen, Gert-Jan B; Törnwall, Outi; Bréchot, Christian; Dagher, Georges; Galli, Joakim; Hveem, Kristian; Landegren, Ulf; Luchinat, Claudio; Metspalu, Andres; Nilsson, Cecilia; Solesvik, Ove V; Perola, Markus; Litton, Jan-Eric; Zatloukal, Kurt
2015-01-01
Biological resources (cells, tissues, bodily fluids or biomolecules) are considered essential raw material for the advancement of health-related biotechnology, for research and development in life sciences, and for ultimately improving human health. Stored in local biobanks, access to the human biological samples and related medical data for transnational research is often limited, in particular for the international life science industry. The recently established pan-European Biobanking and BioMolecular resources Research Infrastructure-European Research Infrastructure Consortium (BBMRI-ERIC) aims to improve accessibility and interoperability between academic and industrial parties to benefit personalized medicine, disease prevention to promote development of new diagnostics, devices and medicines. BBMRI-ERIC is developing the concept of Expert Centre as public–private partnerships in the precompetitive, not-for-profit field to provide a new structure to perform research projects that would face difficulties under currently established models of academic–industry collaboration. By definition, Expert Centres are key intermediaries between public and private sectors performing the analysis of biological samples under internationally standardized conditions. This paper presents the rationale behind the Expert Centres and illustrates the novel concept with model examples. PMID:25407005
Cary, Tawnya; Branchaw, Janet
2017-01-01
The Vision and Change in Undergraduate Biology Education: Call to Action report has inspired and supported a nationwide movement to restructure undergraduate biology curricula to address overarching disciplinary concepts and competencies. The report outlines the concepts and competencies generally but does not provide a detailed framework to guide the development of the learning outcomes, instructional materials, and assessment instruments needed to create a reformed biology curriculum. In this essay, we present a detailed Vision and Change core concept framework that articulates key components that transcend subdisciplines and scales for each overarching biological concept, the Conceptual Elements (CE) Framework. The CE Framework was developed using a grassroots approach of iterative revision and incorporates feedback from more than 60 biologists and undergraduate biology educators from across the United States. The final validation step resulted in strong national consensus, with greater than 92% of responders agreeing that each core concept list was ready for use by the biological sciences community, as determined by scientific accuracy and completeness. In addition, we describe in detail how educators and departments can use the CE Framework to guide and document reformation of individual courses as well as entire curricula. © 2017 T. Cary and J. Branchaw. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Postpartum sexual health: a principle-based concept analysis.
O'Malley, Deirdre; Higgins, Agnes; Smith, Valerie
2015-10-01
The aim of this study is to report an analysis of the concept of postpartum sexual health. Postpartum sexual health is a minimally understood concept, most often framed within physical/biological dimensions or as a 'checklist' task in postpartum information provision. This has the potential to leave women unprepared to manage transient or normative sexual health changes after childbirth. For meaningful discussions, clarity and understanding of postpartum sexual health is required. A principle-based method of concept analysis. The databases of PubMed, CINAHL, Maternity and Infant Care, PsychInfo, Web of Science, EMBASE, SCOPUS and Social Science Index were systematically searched, from their earliest dates, using a combination of key terms, including; 'sexual health', 'sexual function', 'dyspareunia', 'sexuality', 'sexual desire', 'sexual dysfunction', 'postnatal' and 'postpartum', resulting in a final included dataset of 91 studies. Using the principle-based approach, postpartum sexual health was analysed under the four philosophical principles of epistemological, pragmatic, linguistic and logical. Philosophically, postpartum sexual health is underdeveloped as a concept. A precise theoretical definition remains elusive and, presently, postpartum sexual health cannot be separated theoretically from sexuality and sexual function. Identified antecedents include an instrument free birth, an intact perineum and avoidance of episiotomy. Attributes include sexual arousal, desire, orgasm, sexual satisfaction and resumption of sexual intercourse. Outcomes are sexual satisfaction and a satisfying intimate relationship with one's partner. Postpartum sexual health is conceptually immature with limited applicability in current midwifery practice. © 2015 John Wiley & Sons Ltd.
A conceptual framework to support exposure science research ...
While knowledge of exposure is fundamental to assessing and mitigating risks, exposure information has been costly and difficult to generate. Driven by major scientific advances in analytical methods, biomonitoring, computational tools, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition that allows it to be more agile, predictive, and data- and knowledge-driven. A necessary element of this evolved paradigm is an organizational and predictive framework for exposure science that furthers the application of systems-based approaches. To enable such systems-based approaches, we proposed the Aggregate Exposure Pathway (AEP) concept to organize data and information emerging from an invigorated and expanding field of exposure science. The AEP framework is a layered structure that describes the elements of an exposure pathway, as well as the relationship between those elements. The basic building blocks of an AEP adopt the naming conventions used for Adverse Outcome Pathways (AOPs): Key Events (KEs) to describe the measurable, obligate steps through the AEP; and Key Event Relationships (KERs) describe the linkages between KEs. Importantly, the AEP offers an intuitive approach to organize exposure information from sources to internal site of action, setting the stage for predicting stressor concentrations at an internal target site. These predicted concentrations can help inform the r
NASA Astrophysics Data System (ADS)
Rachmawati, D.; Budiman, M. A.; Siburian, W. S. E.
2018-05-01
On the process of exchanging files, security is indispensable to avoid the theft of data. Cryptography is one of the sciences used to secure the data by way of encoding. Fast Data Encipherment Algorithm (FEAL) is a block cipher symmetric cryptographic algorithms. Therefore, the file which wants to protect is encrypted and decrypted using the algorithm FEAL. To optimize the security of the data, session key that is utilized in the algorithm FEAL encoded with the Goldwasser-Micali algorithm, which is an asymmetric cryptographic algorithm and using probabilistic concept. In the encryption process, the key was converted into binary form. The selection of values of x that randomly causes the results of the cipher key is different for each binary value. The concept of symmetry and asymmetry algorithm merger called Hybrid Cryptosystem. The use of the algorithm FEAL and Goldwasser-Micali can restore the message to its original form and the algorithm FEAL time required for encryption and decryption is directly proportional to the length of the message. However, on Goldwasser- Micali algorithm, the length of the message is not directly proportional to the time of encryption and decryption.
"A Scientist Has Many Things to Do:" EPO Strategies that Focus on the Processes of Science
NASA Astrophysics Data System (ADS)
Laursen, S. L.; Brickley, A. L.
2011-09-01
Scientists' effort in education and public outreach (EPO) is best invested in sharing their expertise on the nature and processes of science - the "understandings of science" that are emphasized in the National Science Education Standards, but that are difficult to teach and poorly supported by existing curricular materials. These understandings address the intellectual process of science - posing questions, gathering and interpreting evidence - and the social process of science as a human endeavor for building knowledge. We share several ways of incorporating concepts about the nature and processes of science into EP/O activities and making them focal points in their own right. Hands-on activities used at science festivals and in classrooms and professional development workshops illustrate key scientific thinking skills such as observing, classifying, making predictions, and drawing inferences. A more comprehensive approach is exemplified by Upward and Outward: Scientific Inquiry on the Tibetan Plateau, a 20-minute educational documentary film for school science classrooms and teacher professional development. The film portrays the intellectual and human processes of science through an inside view of a research project; classroom assessments offer evidence of its impact on students' ideas about these processes.
ERIC Educational Resources Information Center
Karaman, Ayhan
2016-01-01
Many countries all over the world have recently integrated nature of science (NOS) concepts into their science education standards. Providing professional support to teachers about NOS concepts is crucially important for successful implementation of the standards. For this purpose, a summer science camp was offered to elementary and science…
Conceptions, Self-Regulation, and Strategies of Learning Science among Chinese High School Students
ERIC Educational Resources Information Center
Li, Mang; Zheng, Chunping; Liang, Jyh-Chong; Zhang, Yun; Tsai, Chin-Chung
2018-01-01
This study explored the structural relationships among secondary school students' conceptions, self-regulation, and strategies of learning science in mainland China. Three questionnaires, namely conceptions of learning science (COLS), self-regulation of learning science (SROLS), and strategies of learning science (SLS) were developed for…
SunRISE Mission Concept Step 2 Study Status
NASA Astrophysics Data System (ADS)
Alibay, F.; Kasper, J. C.; Lazio, J.; Neilsen, T. L.
2017-12-01
We present an update on the Sun Radio Interferometer Space Experiment (SunRISE) mission concept, which was selected for a Step 2 study as part of the Small Explorer (SMEX) Mission of Opportunity (MoO) call. SunRISE is space-based sparse array, composed of six 6U CubeSats, designed to localize the radio emission associated with coronal mass ejections (CMEs) from the Sun. Radio emission from CMEs is a direct tracer of the particle acceleration in the inner heliosphere and potential magnetic connections from the lower solar corona to the larger heliosphere. Furthermore, CME radio emission is quite strong such that only a relatively small number of antennas is required, and a small mission would make a fundamental advancement. Indeed, the state-of-the-art for tracking CME radio emission is defined by single antennas (Wind/WAVES, Stereo/SWAVES) in which the tracking is accomplished by assuming a frequency-to-density mapping. This type of Heliophysics mission would be inherently cost prohibitive in a traditional spacecraft paradigm. However, the use of CubeSats, accompanied by the miniaturization of subsystem components, enables the development of this concept at lower cost than ever before. We present the most recent updates on this mission concept, starting from the concept's performance as compared to the required science and driving technical requirements. We then focus on the SunRISE mission concept of operations, which consists of six 6U CubeSats placed in a GEO graveyard orbit for 6 months to achieve the aforementioned science goals. The spacecraft fly in a passive formation, which allows them to form an interferometer while minimizing the impact on operations complexity. We also present details of the engineering design and the key trades being performed as part of the Step 2 concept study.
NASA Astrophysics Data System (ADS)
Tibell, Lena A. E.; Harms, Ute
2017-11-01
Modern evolutionary theory is both a central theory and an integrative framework of the life sciences. This is reflected in the common references to evolution in modern science education curricula and contexts. In fact, evolution is a core idea that is supposed to support biology learning by facilitating the organization of relevant knowledge. In addition, evolution can function as a pivotal link between concepts and highlight similarities in the complexity of biological concepts. However, empirical studies in many countries have for decades identified deficiencies in students' scientific understanding of evolution mainly focusing on natural selection. Clearly, there are major obstacles to learning natural selection, and we argue that to overcome them, it is essential to address explicitly the general abstract concepts that underlie the biological processes, e.g., randomness or probability. Hence, we propose a two-dimensional framework for analyzing and structuring teaching of natural selection. The first—purely biological—dimension embraces the three main principles variation, heredity, and selection structured in nine key concepts that form the core idea of natural selection. The second dimension encompasses four so-called thresholds, i.e., general abstract and/or non-perceptual concepts: randomness, probability, spatial scales, and temporal scales. We claim that both of these dimensions must be continuously considered, in tandem, when teaching evolution in order to allow development of a meaningful understanding of the process. Further, we suggest that making the thresholds tangible with the aid of appropriate kinds of visualizations will facilitate grasping of the threshold concepts, and thus, help learners to overcome the difficulties in understanding the central theory of life.
History of the Spitzer Mission
NASA Astrophysics Data System (ADS)
Rieke, George
2006-12-01
The Spitzer Telescope was launched more than 20 years after the original announcement of opportunity was released. During this long gestation period, the mission took a wide variety of forms and had to survive many political and managerial environments within NASA and in the US Government generally. Finally, approval to build the telescope was won at the height of the faster-better-cheaper era, but completing it extended beyond this phase. This poster shows the key steps in preserving the mission and why decision makers viewed it positively at critical points when it might have been killed. In the end, the scope of the mission was reduced by a factor of about five while still preserving much of its science capabilities. This reduction required a new way to streamline the science objectives by adopting a limited number of key programs and requiring that all features be justified in terms of those programs. This philosophy provided decision rules to carry out necessary descopes while preserving a coherent set of capabilities. In addition, the faster-better-cheaper guidelines requires use of a small launch vehicle, which was only possible by the invention of a new “warm launch” telescope concept, in which the telescope would cool primarily by radiation into space after launch. Both of these concepts are critical to the approach to future missions such as JWST. This work is partially supported by contract 1255094 from JPL/Caltech to the University of Arizona.
The Hands-On Optics Project: a demonstration of module 3-magnificent magnifications
NASA Astrophysics Data System (ADS)
Pompea, Stephen M.; Sparks, Robert T.; Walker, Constance E.
2014-07-01
The Hands-On Optics project offers an example of a set of instructional modules that foster active prolonged engagement. Developed by SPIE, OSA, and NOAO through funding from the U.S. National Science Foundation, the modules were originally designed for afterschool settings and museums. However, because they were based on national standards in mathematics, science, and technology, they were easily adapted for use in classrooms. The philosophy and implementation strategies of the six modules will be described as well as lessons learned in training educators. The modules were implementing with the help of optics industry professionals who served as expert volunteers to assist educators. A key element of the modules was that they were developed around an understanding of optics misconceptions and used culminating activities in each module as a form of authentic assessment. Thus student achievement could be measured by evaluating the actual product created by each student in applying key concepts, tools, and applications together at the end of each module. The program used a progression of disciplinary core concepts to build an integrated sequence and crosscutting ideas and practices to infuse the principles of the modern electro-optical field into the modules. Whenever possible, students were encouraged to experiment and to create, and to pursue inquiry-based approaches. The result was a program that had high appeal to regular as well as gifted students.
Science Rationale for the Io Volcano Observer (IVO) Mission Concept
NASA Astrophysics Data System (ADS)
McEwen, Alfred; Turtle, Elizabeth
2012-07-01
The Io Volcano Observer (IVO) mission can explore the rich array of interconnected orbital, geophysical, atmospheric, and plasma phenomena surrounding the most volcanically active world in the Solar System. Io is the only place in the Solar System (including Earth) where we can watch very large-scale silicate volcanic processes in action, and it provides unique insight into high-temperature and high effusion-rate volcanic processes that were important in the early histories of the terrestrial planets. Io is also the best target at which to study tidal heating, which greatly expands the habitable zones of planetary systems. Moreover, the coupled orbital-tidal evolution is key to understanding the thermal histories of Europa and Ganymede. Io is always inside the intense radiation belt of Jupiter, so a radiation-mitigation strategy has been developed. An inclined orbit that passes Io at high velocity (˜19 km/s) near its perijove point keeps the total ionizing dose to ˜10 krad (behind 2.5 mm or 100 mils Al) per encounter. Nevertheless, the dose rate is high near Io so some science instruments have special design considerations to minimize noise. The IVO spacecraft must be agile enough (rapid turning and settling) for high-stability targeted observations during close encounters. The inclined orbit provides nearly pole-to-pole flybys of Io, which enables some of the highest-priority Io science such as understanding the polar heat flow and electrical conductivity of Io's mantle (which may contain a magma ocean). Key science instruments include narrow- and wide-angle cameras, magnetometers, a thermal mapper, neutral mass spectrometers, and plasma ion analyzers. NASA's 2011 Decadal Survey for planetary science identified an Io mission similar to IVO as one of seven options for the next two New Frontiers mission opportunities. The Galileo (GLL) mission and payload were designed prior to the Voyager 1 flyby and discovery of Io's active volcanism, so they were not designed to meet key Io measurement requirements, and the failed high-gain antennae resulted in severely limited data return for a world that is highly variable in space, time, and wavelength. IVO will be designed specifically to address Io science as currently understood and will return, on every orbit, ˜100x the total Io data return of GLL over 8 years. The Jupiter Icy Moon Explorer (JUICE) mission concept from ESA could provide complementary monitoring but does not include close encounters with Io.
Campos, Fernando; Sola, Miguel; Santisteban-Espejo, Antonio; Ruyffelaert, Ariane; Campos-Sánchez, Antonio; Garzón, Ingrid; Carriel, Víctor; de Dios Luna-Del-Castillo, Juan; Martin-Piedra, Miguel Ángel; Alaminos, Miguel
2018-06-07
The students' conceptions of learning in postgraduate health science master studies are poorly understood. The aim of this study was to compare the factors influencing conceptions of learning in health sciences and non-health sciences students enrolled in postgraduate master programs in order to obtain information that may be useful for students and for future postgraduate programs. A modified version of the Learning Inventory Conception Questionnaire (COLI) was used to compare students' conception learning factors in 131 students at the beginning of their postgraduate studies in health sciences, experimental sciences, arts and humanities and social sciences. The present study demonstrates that a set of factors may influence conception of learning of health sciences postgraduate students, with learning as gaining information, remembering, using, and understanding information, awareness of duty and social commitment being the most relevant. For these students, learning as a personal change, a process not bound by time or place or even as acquisition of professional competences, are less relevant. According to our results, this profile is not affected by gender differences. Our results show that the overall conceptions of learning differ among students of health sciences and non-health sciences (experimental sciences, arts and humanities and social sciences) master postgraduate programs. These finding are potentially useful to foster the learning process of HS students, because if they are metacognitively aware of their own conception or learning, they will be much better equipped to self-regulate their learning behavior in a postgraduate master program in health sciences.
Constructing Concept Maps to Encourage Meaningful Learning in Science Classroom
ERIC Educational Resources Information Center
Akcay, Hakan
2017-01-01
The purpose of this activity is to demonstrate science teaching and assessing what is learned via using concept maps. Concept mapping is a technique for visually representing the structure of information. Concept mapping allows students to understand the relationships between concepts of science by creating a visual map of the connections. Concept…
Raff, Adam B.; Seiler, Theo G.; Apiou-Sbirlea, Gabriela
2017-01-01
The ‘Bridging medicine and biomedical technology’ special all-congress session took place for the first time at the OSA Biophotonics Congress: Optics in Life Sciences in 2017 (http://www.osa.org/enus/meetings/osa_meetings/optics_in_the_life_sciences/bridging_medicine_and_biomedical_technology_specia/). The purpose was to identify key challenges the biomedical scientists in academia have to overcome to translate their discoveries into clinical practice through robust collaborations with industry and discuss best practices to facilitate and accelerate the process. Our paper is intended to complement the session by providing a deeper insight into the concept behind the structure and the content we developed. PMID:29296473
Three Short Films about Water: Presenting Basic Concepts to Students and Stakeholders
NASA Astrophysics Data System (ADS)
Arrigo, J. S.; Hooper, R. P.; Michel, A.; Wilde, P.; Lilienfeld, L.
2011-12-01
Three short form (3 - 5 minute) movies were produced for CUAHSI, to convey basic concepts such as a hydrologic budget, stores and fluxes of water, and the flowpaths and residence time of water. The films were originally intended to be used by scientists to explain the concepts behind potential environmental observatories, but evolved into serving a broader purpose. The films combine still photos, satellite images, animation and video clips, and interviews with CUAHSI members explaining hydrologic concepts in simple, accessible terms. In producing these films, we have found the importance of engaging scientists in conversation first, to develop a script around key accessible concepts and relevant information. Film and communication professionals play a critical role in distilling the scientific explanation and concepts into accessible, engaging film material. The films have been widely distributed through CD and online to educators for use in courses. Additionally, they provide a way to engage stakeholders, particularly land owners, by conveying basic concepts that are necessary to understand the hydrologic and earth science foundation of many of today's political and environmental issues. The films can be viewed online at the CUAHSI website, which also contains links to other film related resources and programs.
NASA Astrophysics Data System (ADS)
Bishoff, Sandra Wells
The purpose of this study was to determine if using an intervention called Student Dictated Oral Review Stories (SDORS) had an effect on science vocabulary usage and content knowledge for ninety-three students in six first grade classrooms and the subgroup of economically disadvantaged students in a mid-sized north Texas school district. The five science units involved in the study were written incorporating the strand of physical science. Data from pre- and posttests from each unit and an end-of-study assessment were compiled and analyzed. This study also looked at integration of science with literacy through analysis of students' science journal writings. Journal writings were analyzed for vocabulary usage and non-fiction writing skills of capitalization and punctuation. Average sentence length was also analyzed for Units 1--5 of the treatment group. It was anticipated that the outcomes of this study would allow school districts and curriculum writers to determine how to best integrate key concepts and important vocabulary with literacy particularly in the area of science. Results from the study showed significant differences in the end-of-study assessment, vocabulary usage as evidenced in journal writings, and average sentence length. Although there was gain over time for every student in the study in vocabulary and content knowledge, these gains could not be attributed to the intervention. This study also hoped to establish whether students were using science vocabulary routinely in their discussions and their writings and were building and continually assessing their own schemas about scientific concepts through using Student Dictated Oral Review Stories.
NASA Technical Reports Server (NTRS)
Allen, J. S.; Tobola, K. W.; Lindstrom, M. L.
2003-01-01
Activities by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. The wealth of activities that highlight missions and research pertaining to the exploring the solar system allows educators to choose activities that fit a particular concept or theme within their curriculum. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. With these NASA developed activities students experience recent mission information about our solar system such as Mars geology and the search for life using Mars meteorites and robotic data. The Johnson Space Center ARES Education team has compiled a variety of NASA solar system activities to produce an annotated thematic outline useful to classroom educators and informal educators as they teach space science. An important aspect of the outline annotation is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. Within formal education at the primary level some of the activities are appropriately designed to excite interest and arouse curiosity. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered are appropriate for the upper levels of high school and early college in that they require students to use and analyze data.
Secondary Physical Science Teachers' Conceptions of Science Teaching in a Context of Change
NASA Astrophysics Data System (ADS)
Taylor, Dale L.; Booth, Shirley
2015-05-01
Pre-service teachers enter initial teacher education programmes with conceptions of teaching gleaned from their own schooling. These conceptions, which include teachers' beliefs, may be resistant to change, which is a challenge in contexts where teacher educators hope that teachers will teach in ways different from their own schooling. Conceptions of teaching found in different cultural and disciplinary contexts have contextual differences but have resonances with the results of research into teacher beliefs. Our sample of eight South African secondary physical science teachers was schooled in a system which encouraged knowledge transmission, but they were prepared in their initial teacher education for a learner-centred approach. After they had taught for a few years, we explored their conceptions of science teaching, using phenomenographic interviews. Four conceptions emerged inductively from the analysis: transferring science knowledge from mind to mind; transferring problematic science knowledge from mind to mind; creating space for learning science knowledge and creating space for learning problematic science knowledge. Internally these conceptions are constituted by three dimensions of variation: the nature of the science knowledge to be learnt, the role of the students and the role of the teacher. Media and practical work play different roles in the external horizon of these conceptions. These conceptions reflect the disciplinary context as well as the emphases of the sample's initial teacher education programme. This suggests that initial teacher education can significantly shape teachers' conceptions of teaching.
NASA Astrophysics Data System (ADS)
Zheng, Lanqin; Dong, Yan; Huang, Ronghuai; Chang, Chun-Yen; Bhagat, Kaushal Kumar
2018-01-01
The purpose of this study was to examine the relations between primary school students' conceptions of, approaches to, and self-efficacy in learning science in Mainland China. A total of 1049 primary school students from Mainland China participated in this study. Three instruments were adapted to measure students' conceptions of learning science, approaches to learning science, and self-efficacy. The exploratory factor analysis and confirmatory factor analysis were adopted to validate three instruments. The path analysis was employed to understand the relationships between conceptions of learning science, approaches to learning science, and self-efficacy. The findings indicated that students' lower level conceptions of learning science positively influenced their surface approaches in learning science. Higher level conceptions of learning science had a positive influence on deep approaches and a negative influence on surface approaches to learning science. Furthermore, self-efficacy was also a hierarchical construct and can be divided into the lower level and higher level. Only students' deep approaches to learning science had a positive influence on their lower and higher level of self-efficacy in learning science. The results were discussed in the context of the implications for teachers and future studies.
Academic Self-Concept: Modeling and Measuring for Science
ERIC Educational Resources Information Center
Hardy, Graham
2014-01-01
In this study, the author developed a model to describe academic self-concept (ASC) in science and validated an instrument for its measurement. Unlike previous models of science ASC, which envisage science as a homogenous single global construct, this model took a multidimensional view by conceiving science self-concept as possessing distinctive…
ERIC Educational Resources Information Center
Lee, Min-Hsien; Lin, Tzung-Jin; Tsai, Chin-Chung
2013-01-01
Classroom assessment is a critical aspect of teaching and learning. In this paper, Taiwanese high school students' conceptions of science assessment and the relationship between their conceptions of science assessment and of science learning were investigated. The study used both qualitative and quantitative methods. First, 60 students were…
ERIC Educational Resources Information Center
Subramaniam, Karthigeyan
2013-01-01
This study explores five minority preservice teachers' conceptions of teaching science and identifies the sources of their strategies for helping students learn science. Perspectives from the literature on conceptions of teaching science and on the role constructs used to describe and distinguish minority preservice teachers from their mainstream…
Conceptions of Teaching Science Held by Novice Teachers in an Alternative Certification Program
ERIC Educational Resources Information Center
Koballa, Thomas R.; Glynn, Shawn M.; Upson, Leslie
2005-01-01
Case studies to investigate the conceptions of teaching science held by three novice teachers participating in an alternative secondary science teacher certification program were conducted, along with the relationships between their conceptions of science teaching and their science teaching practice. Data used to build the cases included the…
The Recruitment of Shifting and Inhibition in On-line Science and Mathematics Tasks.
Vosniadou, Stella; Pnevmatikos, Dimitrios; Makris, Nikos; Lepenioti, Despina; Eikospentaki, Kalliopi; Chountala, Anna; Kyrianakis, Giorgos
2018-06-13
Prior research has investigated the recruitment of inhibition in the use of science/mathematics concepts in tasks that require the rejection of a conflicting, nonscientific initial concept. The present research examines if inhibition is the only EF skill recruited in such tasks and investigates whether shifting is also involved. It also investigates whether inhibition and/or shifting are recruited in tasks in which the use of science/mathematics concepts does not require the rejection of an initial concept, or which require only the use of initial concepts. One hundred and thirty-three third- and fifth-grade children participated in two inhibition and shifting tasks and two science and mathematics conceptual understanding and conceptual change (CU&C) tasks. All the tasks were on-line, and performance was measured in accuracy and RTs. The CU&C tasks involved the use of initial concepts and of science/mathematics concepts which required conceptual changes for their initial formation. Only in one of the tasks the use of the science/mathematics concepts required the concurrent rejection of an initial concept. The results confirmed that in this task inhibition was recruited and also showed that the speed of shifting was a significant predictor of performance. Shifting was a significant predictor of performance in all the tasks, regardless of whether they involved science/mathematics or initial concepts. It is argued that shifting is likely to be recruited in complex tasks that require multiple comparisons of stimuli and the entertainment of different perspectives. Inhibition seems to be a more selective cognitive skill likely to be recruited when the use of science/mathematics concepts requires the rejection of a conflicting initial concept. © 2018 Cognitive Science Society, Inc.
A Mission Concept for FUSE Operations in GFY09 and Beyond
NASA Astrophysics Data System (ADS)
Moos, H. W.; Sonneborn, G.; Blair, W. P.; Kruk, J. W.; FUSE Science Operations Team
2007-05-01
We are developing a new mission concept for the Far Ultraviolet Spectroscopic Explorer (FUSE) that would significantly reduce operating costs but would continue the availability of this unique resource into GFY09 and beyond. Launched in 1999, the FUSE satellite obtains R=20,000 spectra of astronomical sources in the far-ultraviolet (912 - 1187 A) wavelength range. The FUSE scientific instrument remains healthy and the satellite has made a remarkable recovery from attitude control problems in late 2004. We expect FUSE to remain a viable scientific tool for the foreseeable future. Current plans for FUSE operations extend through GFY2008 (Sept. 30, 2008). Key elements of this new mission concept include a) continued automation and streamlining of operations to reduce costs, and b) an emphasis on a small number of unique, high priority science programs, particularly those requiring integration times on key targets that are significantly longer than has been possible in the mission design to date. A prime example of the latter would be 100 - 400 ks integrations on selected quasars to provide much improved diagnostic power to study the intergalactic medium. Synergy with the scientific objectives of the Cosmic Origins Spectrograph (COS) program on HST, and the complementary nature of FUSE and COS data on the same sightlines, is but one major motivation for this operations model. In addition to programs emphasizing very long integrations, opportunities for other high priority targets would exist. We will describe some of the ongoing development toward such an operations model as well as the scientific drivers discussed to date. Community input on these and other science drivers for extended FUSE operations is encouraged. FUSE is operated for NASA by Johns Hopkins University under NASA contract NAS5-32985.
General Astrophysics with the HabEx Workhorse Camera
NASA Astrophysics Data System (ADS)
Stern, Daniel; Clarke, John; Gaudi, B. Scott; Kiessling, Alina; Krause, Oliver; Martin, Stefan; Scowen, Paul; Somerville, Rachel; HabEx STDT
2018-01-01
The Habitable Exoplanet Imaging Mission (HabEx) concept has been designed to enable an extensive suite of science, broadly put under the rubric of General Astrophysics, in addition to its exoplanet direct imaging science. General astrophysics directly addresses multiple NASA programmatic branches, and HabEx will enable investigations ranging from cosmology, to galaxy evolution, to stellar population studies, to exoplanet transit spectroscopy, to Solar System studies. This poster briefly describes one of the two primary HabEx General Astrophysics instruments, the HabEx Workhorse Camera (HWC). HWC will be a dual-detector UV-to-near-IR imager and multi-object grism spectrometer with a microshutter array and a moderate (3' x 3') field-of-view. We detail some of the key science we expect HWC to undertake, emphasizing unique capabilities enabled by a large-aperture, highly stable space-borne platform at these wavelengths.
Indigenous knowledge and science revisited
NASA Astrophysics Data System (ADS)
Aikenhead, Glen S.; Ogawa, Masakata
2007-07-01
This article provides a guided tour through three diverse cultural ways of understanding nature: an Indigenous way (with a focus on Indigenous nations in North America), a neo-indigenous way (a concept proposed to recognize many Asian nations' unique ways of knowing nature; in this case, Japan), and a Euro-American scientific way. An exploration of these three ways of knowing unfolds in a developmental way such that some key terms change to become more authentic terms that better represent each culture's collective, yet heterogeneous, worldview, metaphysics, epistemology, and values. For example, the three ways of understanding nature are eventually described as Indigenous ways of living in nature, a Japanese way of knowing seigyo-shizen, and Eurocentric sciences (plural). Characteristics of a postcolonial or anti-hegemonic discourse are suggested for science education, but some inherent difficulties with this discourse are also noted.
The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR)
NASA Astrophysics Data System (ADS)
Peterson, Bradley M.; Fischer, Debra; LUVOIR Science and Technology Definition Team
2017-01-01
LUVOIR is one of four potential large mission concepts for which the NASA Astrophysics Division has commissioned studies by Science and Technology Definition Teams (STDTs) drawn from the astronomical community. LUVOIR will have an 8 to16-m segmented primary mirror and operate at the Sun-Earth L2 point. It will be designed to support a broad range of astrophysics and exoplanet studies. The notional initial complement of instruments will include 1) a high-performance optical/NIR coronagraph with imaging and spectroscopic capability, 2) a UV imager and spectrograph with high spectral resolution and multi-object capability, 3) a high-definition wide-field optical/NIR camera, and 4) a multi-resolution optical/NIR spectrograph. LUVOIR will be designed for extreme stability to support unprecedented spatial resolution and coronagraphy. It is intended to be a long-lifetime facility that is both serviceable and upgradable. This is the first report by the LUVOIR STDT to the community on the top-level architectures we are studying, including preliminary capabilities of a mission with those parameters. The STDT seeks feedback from the astronomical community for key science investigations that can be undertaken with the notional instrument suite and to identify desirable capabilities that will enable additional key science.
The Importance of Experiential Learning
NASA Astrophysics Data System (ADS)
Stanford, Jennifer
2017-04-01
As student numbers increase year on year, the ability to provide experiential learning opportunities and individual formative feedback is decreasing. As an important mechanism for cementing understanding of key concept thresholds in physical Earth sciences, practical based learning is paramount, especially for students with diverse learning abilities. According to Steinaker & Bell's taxonomy, experiential learning and dissemination of information to peers is key for students to make the transition to being much deeper learners. Furthermore, practical based learning also provides opportunity for varied methods of assessment, which are otherwise more challenging to devise. I here present results from practical, experiential based learning within the context of Foundation Year teaching, which shows that predominantly, students found experiential learning to be both a positive and rewarding part of their curriculum. Key aspects of these findings are now being translated to the design of new curricula.
ERIC Educational Resources Information Center
Bahçivan, Eralp; Kapucu, Serkan
2014-01-01
The purposes of this study were to (1) adapt an instrument "The Conceptions of Learning Science (COLS) questionnaire" into Turkish, and (2) to determine Turkish science teacher candidates' COLS. Adapting the instrument four steps were followed. Firstly, COLS questionnaire was translated into Turkish. Secondly, COLS questionnaire was…
ERIC Educational Resources Information Center
Chiu, Yu-Li; Lin, Tzung-Jin; Tsai, Chin-Chung
2016-01-01
Background: The sophistication of students' conceptions of science learning has been found to be positively related to their approaches to and outcomes for science learning. Little research has been conducted to particularly investigate students' conceptions of science learning by laboratory. Purpose: The purpose of this research, consisting of…
ERIC Educational Resources Information Center
Atar, Hakan Yavuz; Gallard, Alejandro
2011-01-01
In addition to recommending inquiry as the primary approach to teaching science, developers of recent reform efforts in science education have also strongly suggested that teachers develop a sound understanding of the nature of science. Most studies on teachers' NOS conceptions and inquiry beliefs investigated these concepts of teachers' NOS…
NASA Astrophysics Data System (ADS)
Mayer, M.
2009-04-01
The recent education of engineers, using the example of satellite geodesy at the Geodetic Institute of the University Karlsruhe (Germany), is still suffering from time pressure as well as from heavy curriculum content loading. Within this education field, where the academic teachers have to fulfill high requests from the new generation of students as well as from industry and from research institutions respectively, advanced satellite geodetic knowledge has to be transferred effectively and sustainably. In order to enable the students to train newest aspects related to satellite geodesy as well as important key competences, e.g. capacity for independent and academic work, reflection and evaluation skills, presentation skills, an innovative teaching concept was developed, tested, and evaluated. This teaching concept makes use of very different teaching techniques like portfolio assignment, project work, input from experts, jig saw, advance and post organizer. The concept will be presented and discussed in detail.
Spink, John; Fortin, Neal D; Moyer, Douglas C; Miao, Hong; Wu, Yongning
2016-01-01
This paper addresses the role of governments, industry, academics, and non-governmental organizations in Food Fraud prevention. Before providing strategic concepts for governments and authorities, definitions of Food Fraud are reviewed and discussed. Next there is a review of Food Fraud activities by the Global Food Safety Initiative (GFSI), the Elliott Review in the United Kingdom, the European Commission resolution on Food Fraud, and the US Food Safety Modernization Act including the Preventative Controls Rule. Two key concepts for governments or a company are: (1) formally, and specifically, mention food fraud as a food issue and (2) create an enterprise-wide Food Fraud prevention plan. The research includes a case study of the implementation of the concepts by a state or provincial agency. This analysis provides a foundation to review the role of science and technology in detection, deterrence and then contributing to prevention.
Interactive Webmap-Based Science Planning for BepiColombo
NASA Astrophysics Data System (ADS)
McAuliffe, J.; Martinez, S.; Ortiz de Landaluce, I.; de la Fuente, S.
2015-10-01
For BepiColombo, ESA's Mission to Mercury, we will build a web-based, map-based interface to the Science Planning System. This interface will allow the mission's science teams to visually define targets for observations and interactively specify what operations will make up the given observation. This will be a radical departure from previous ESA mission planning methods. Such an interface will rely heavily on GIS technologies. This interface will provide footprint coverage of all existing archived data for Mercury, including a set of built-in basemaps. This will allow the science teams to analyse their planned observations and operational constraints with relevant contextual information from their own instrument, other BepiColombo instruments or from previous missions. The interface will allow users to import and export data in commonly used GIS formats, such that it can be visualised together with the latest planning information (e.g. import custom basemaps) or analysed in other GIS software. The interface will work with an object-oriented concept of an observation that will be a key characteristic of the overall BepiColombo scienceplanning concept. Observation templates or classes will be tracked right through the planning-executionprocessing- archiving cycle to the final archived science products. By using an interface that synthesises all relevant available information, the science teams will have a better understanding of the operational environment; it will enhance their ability to plan efficiently minimising or removing manual planning. Interactive 3D visualisation of the planned, scheduled and executed observations, simulation of the viewing conditions and interactive modification of the observation parameters are also being considered.
NSF-Sponsored Summit on the Future of Undergraduate Geoscience Education: outcomes
NASA Astrophysics Data System (ADS)
Mosher, S.
2014-12-01
The NSF-sponsored Summit on the Future of Undergraduate Geoscience Education made major progress toward developing a collective community vision for the geosciences. A broad spectrum of the geoscience education community, ~200 educators from research universities/four and two year colleges, focused on preparation of undergraduates for graduate school and future geoscience careers, pedagogy, use of technology, broadening participation/retention of underrepresented groups, and preparation of K-12 science teachers. Participants agreed that key concepts, competencies and skills learned throughout the curriculum were more important than specific courses. Concepts included understanding Earth as complex, dynamic system, deep time, evolution of life, natural resources, energy, hazards, hydrogeology, surface processes, Earth materials and structure, and climate change. Skills/competencies included ability to think spatially and temporally, reason inductively and deductively, make and use indirect observations, engage in complex open, coupled systems thinking, and work with uncertainty, non-uniqueness, and incompleteness, as well as critical thinking, problem solving, communication, and ability to think like a scientist and continue to learn. Successful ways of developing these include collaborative, integrative projects involving teams, interdisciplinary projects, fieldwork and research experiences, as well as flipped classrooms and integration and interactive use of technology, including visualization, simulation, modeling and analysis of real data. Wider adoption of proven, effective best practices is our communities' main pedagogical challenge, and we focused on identifying implementation barriers. Preparation of future teachers in introductory and general geoscience courses by incorporating Next Generation Science Standards and using other sciences/math to solve real world geoscience problems should help increase diversity and number of future geoscientists and geoscience literacy. We also identified key elements of successful programs that attract and retain underrepresented groups, including providing financial support, reaching out to students in their communities, involving community members, incorporating role models, and mentoring.
Evidence-based ergonomics: a model and conceptual structure proposal.
Silveira, Dierci Marcio
2012-01-01
In Human Factors and Ergonomics Science (HFES), it is difficult to identify what is the best approach to tackle the workplace and systems design problems which needs to be solved, and it has been also advocated as transdisciplinary and multidisciplinary the issue of "How to solve the human factors and ergonomics problems that are identified?". The proposition on this study is to combine the theoretical approach for Sustainability Science, the Taxonomy of the Human Factors and Ergonomics (HFE) discipline and the framework for Evidence-Based Medicine in an attempt to be applied in Human Factors and Ergonomics. Applications of ontologies are known in the field of medical research and computer science. By scrutinizing the key requirements for the HFES structuring of knowledge, it was designed a reference model, First, it was identified the important requirements for HFES Concept structuring, as regarded by Meister. Second, it was developed an evidence-based ergonomics framework as a reference model composed of six levels based on these requirements. Third, it was devised a mapping tool using linguistic resources to translate human work, systems environment and the complexities inherent to their hierarchical relationships to support future development at Level 2 of the reference model and for meeting the two major challenges for HFES, namely, identifying what problems should be addressed in HFE as an Autonomous Science itself and proposing solutions by integrating concepts and methods applied in HFES for those problems.
Liu, Mingxin; Hu, Weiping; Adey, Philip; Cheng, Li; Zhang, Xingli
2013-04-01
This study was designed to address the impacts of science performance, science self-concept, and creative tendency on the creative science problem-finding (CSPF) ability of a sample of Chinese middle-school students. Structural equation modeling was used to indicate that CSPF could be directly predicted by creative tendency and academic performance, and indirectly predicted by science self-concept. The findings strongly support the idea that curiosity, imagination, and domain-specific knowledge are important for CSPF, and science self-concept could be mediated by knowledge that affects CSPF. © 2012 The Institute of Psychology, Chinese Academy of Sciences and Blackwell Publishing Asia Pty Ltd.
NASA Astrophysics Data System (ADS)
Wasser, L. A.; Gram, W.; Goehring, L.
2014-12-01
"Big Data" are becoming increasingly common in many fields. The National Ecological Observatory Network (NEON) will be collecting data over the 30 years, using consistent, standardized methods across the United States. These freely available new data provide an opportunity for increased understanding of continental- and global scale processes such as changes in vegetation structure and condition, biodiversity and landuse. However, while "big data" are becoming more accessible and available, integrating big data into the university courses is challenging. New and potentially unfamiliar data types and associated processing methods, required to work with a growing diversity of available data, may warrant time and resources that present a barrier to classroom integration. Analysis of these big datasets may further present a challenge given large file sizes, and uncertainty regarding best methods to properly statistically summarize and analyze results. Finally, teaching resources, in the form of demonstrative illustrations, and other supporting media that might help teach key data concepts, take time to find and more time to develop. Available resources are often spread widely across multi-online spaces. This presentation will overview the development of NEON's collaborative University-focused online education portal. Portal content will include 1) videos and supporting graphics that explain key concepts related to NEON data products including collection methods, key metadata to consider and consideration of potential error and uncertainty surrounding data analysis; and 2) packaged "lab" activities that include supporting data to be used in an ecology, biology or earth science classroom. To facilitate broad use in classrooms, lab activities will take advantage of freely and commonly available processing tools, techniques and scripts. All NEON materials are being developed in collaboration with existing labs and organizations.
Enhancing the Communication of Climate Change Science
NASA Astrophysics Data System (ADS)
Somerville, R. C.; Hassol, S. J.
2011-12-01
Climate scientists have an important role to play in the critical task of informing the public, media and policymakers. Scientists can help in publicizing and illuminating climate science. However, this task requires combining climate science expertise with advanced communication skills. For example, it is entirely possible to convey scientific information accurately without using jargon or technical concepts unfamiliar to non-scientists. However, making this translation into everyday language is a job that few scientists have been trained to do. In this talk, we give examples from our recent experience working with scientists to enhance their ability to communicate well. Our work includes providing training, technical assistance, and communications tools to climate scientists and universities, government agencies, and research centers. Our experience ranges from preparing Congressional testimony to writing major climate science reports to appearing on television. We have also aided journalists in gathering reliable scientific information and identifying trustworthy experts. Additionally, we are involved in developing resources freely available online at climatecommunication.org. These include a feature on the links between climate change and extreme weather, a climate science primer, and graphics and video explaining key developments in climate change science.
Evaluation of Students' Energy Conception in Environmental Science
ERIC Educational Resources Information Center
Park, Mihwa; Johnson, Joseph A.
2016-01-01
While significant research has been conducted on students' conceptions of energy, alternative conceptions of energy have not been actively explored in the area of environmental science. The purpose of this study is to examine students' alternative conceptions in the environmental science discipline through the analysis of responses of first year…
NASA Astrophysics Data System (ADS)
Kwon, So Young
Using a quasi-experimental design, the researcher investigated the comparative effects of individually-generated and collaboratively-generated computer-based concept mapping on middle school science concept learning. Qualitative data were analyzed to explain quantitative findings. One hundred sixty-one students (74 boys and 87 girls) in eight, seventh grade science classes at a middle school in Southeast Texas completed the entire study. Using prior science performance scores to assure equivalence of student achievement across groups, the researcher assigned the teacher's classes to one of the three experimental groups. The independent variable, group, consisted of three levels: 40 students in a control group, 59 students trained to individually generate concept maps on computers, and 62 students trained to collaboratively generate concept maps on computers. The dependent variables were science concept learning as demonstrated by comprehension test scores, and quality of concept maps created by students in experimental groups as demonstrated by rubric scores. Students in the experimental groups received concept mapping training and used their newly acquired concept mapping skills to individually or collaboratively construct computer-based concept maps during study time. The control group, the individually-generated concept mapping group, and the collaboratively-generated concept mapping group had equivalent learning experiences for 50 minutes during five days, excepting that students in a control group worked independently without concept mapping activities, students in the individual group worked individually to construct concept maps, and students in the collaborative group worked collaboratively to construct concept maps during their study time. Both collaboratively and individually generated computer-based concept mapping had a positive effect on seventh grade middle school science concept learning but neither strategy was more effective than the other. However, the students who collaboratively generated concept maps created significantly higher quality concept maps than those who individually generated concept maps. The researcher concluded that the concept mapping software, Inspiration(TM), fostered construction of students' concept maps individually or collaboratively for science learning and helped students capture their evolving creative ideas and organize them for meaningful learning. Students in both the individual and the collaborative concept mapping groups had positive attitudes toward concept mapping using Inspiration(TM) software.
NASA Astrophysics Data System (ADS)
Sussman, A.
2015-12-01
The Pacific Islands Climate Education Partnership (PCEP) serves the U.S. Affiliated Pacific Island (USAPI) Region. The international entities served by PCEP are the state of Hawai'i (USA); three Freely Associated States (the Federated States of Micronesia, the Republic of the Marshall Islands, and the Republic of Palau), and three Territories (Guam, Commonwealth of Northern Mariana Islands, and American Samoa). Funded by NSF, the PCEP aims to educate the region's students and citizens in ways that exemplify modern science and indigenous environmental knowledge, address the urgency of climate change impacts, and focus on adaptation strategies that can increase resiliency with respect to climate change impacts. Unfortunately the vast majority of the science texts used in schools come from the US mainland and feature contexts that do not relate to the lives of Pacific island students. The curricular materials also tend to be older and to have very weak climate science content, especially with respect to tropical islands and climate change. In collaboration with public broadcast station WGBH, PCEP has developed three climate education interactives that sequentially provide an introduction to key climate change education concepts. The first in the series focuses on the global carbon cycle and connects increased atmospheric CO2 with rising global temperatures. The second analyzes Earth system energy flows to explain the key role of the increased greenhouse effect. The third focuses on four climate change impacts (higher temperatures, rising sea level, changes in precipitation, and ocean acidification), and adaptation strategies to increase resiliency of local ecosystems and human systems. While the interactives have a Pacific island visual and text perspective, they are broadly applicable for other education audiences. Learners can use the interactives to engage with the basic science concepts, and then apply the climate change impacts to their own contexts.
Plans for a Next Generation Space-Based Gravitational-Wave Observatory (NGO)
NASA Technical Reports Server (NTRS)
Livas, Jeffrey C.; Stebbins, Robin T.; Jennrich, Oliver
2012-01-01
The European Space Agency (ESA) is currently in the process of selecting a mission for the Cosmic Visions Program. A space-based gravitational wave observatory in the low-frequency band (0.0001 - 1 Hz) of the gravitational wave spectrum is one of the leading contenders. This low frequency band has a rich spectrum of astrophysical sources, and the LISA concept has been the key mission to cover this science for over twenty years. Tight budgets have recently forced ESA to consider a reformulation of the LISA mission concept that wi" allow the Cosmic Visions Program to proceed on schedule either with the US as a minority participant, or independently of the US altogether. We report on the status of these reformulation efforts.
Processing Motion: Using Code to Teach Newtonian Physics
NASA Astrophysics Data System (ADS)
Massey, M. Ryan
Prior to instruction, students often possess a common-sense view of motion, which is inconsistent with Newtonian physics. Effective physics lessons therefore involve conceptual change. To provide a theoretical explanation for concepts and how they change, the triangulation model brings together key attributes of prototypes, exemplars, theories, Bayesian learning, ontological categories, and the causal model theory. The triangulation model provides a theoretical rationale for why coding is a viable method for physics instruction. As an experiment, thirty-two adolescent students participated in summer coding academies to learn how to design Newtonian simulations. Conceptual and attitudinal data was collected using the Force Concept Inventory and the Colorado Learning Attitudes about Science Survey. Results suggest that coding is an effective means for teaching Newtonian physics.
Precision medicine for nurses: 101.
Lemoine, Colleen
2014-05-01
To introduce the key concepts and terms associated with precision medicine and support understanding of future developments in the field by providing an overview and history of precision medicine, related ethical considerations, and nursing implications. Current nursing, medical and basic science literature. Rapid progress in understanding the oncogenic drivers associated with cancer is leading to a shift toward precision medicine, where treatment is based on targeting specific genetic and epigenetic alterations associated with a particular cancer. Nurses will need to embrace the paradigm shift to precision medicine, expend the effort necessary to learn the essential terminology, concepts and principles, and work collaboratively with physician colleagues to best position our patients to maximize the potential that precision medicine can offer. Copyright © 2014 Elsevier Inc. All rights reserved.
Analysing the physics learning environment of visually impaired students in high schools
NASA Astrophysics Data System (ADS)
Toenders, Frank G. C.; de Putter-Smits, Lesley G. A.; Sanders, Wendy T. M.; den Brok, Perry
2017-07-01
Although visually impaired students attend regular high school, their enrolment in advanced science classes is dramatically low. In our research we evaluated the physics learning environment of a blind high school student in a regular Dutch high school. For visually impaired students to grasp physics concepts, time and additional materials to support the learning process are key. Time for teachers to develop teaching methods for such students is scarce. Suggestions for changes to the learning environment and of materials used are given.
Fundamentals and applications of electrochemistry
NASA Astrophysics Data System (ADS)
McEvoy, A. J.
2013-06-01
The Voltaic pile, invented here on Lake Como 200 years ago, was a crucial step in the development of electrical engineering. For the first time a controlled and reliable source of electric current was available. The science of electrochemistry developed rapidly and is now a key contributor, not just to energy technology but also, for example, to metallurgy and industrial processes. The basic concepts of electrochemistry are presented, with the practical examples of its application in fuel cells, and with the perspective of the history of the subject.
Single service point: it's all in the design.
Bradigan, Pamela S; Rodman, Ruey L
2008-01-01
"Design thinking" principles from a leading design firm, IDEO, were key elements in the planning process for a one-desk service model, the ASK Desk, at the John A. Prior Health Sciences Library. The library administration and staff employed the methodology to enhance customer experiences, meet technology challenges, and compete in a changing education environment. The most recent renovations demonstrate how the principles were applied. The concept of "continuous design thinking" is important in the library's daily operations to serve customers most effectively.
Exploring Prospective Teachers' Worldviews and Conceptions of Nature of Science
ERIC Educational Resources Information Center
Liu, Shiang-Yao; Lederman, Norman G.
2007-01-01
This study explores the relationship, if any, between an individual's culturally based worldviews and conceptions of nature of science. In addition, the implications of this relationship (or lack of relationship) for science teaching and learning are discussed. Participants were 54 Taiwanese prospective science teachers. Their conceptions of…
Waters, C Kenneth
2004-01-01
What should philosophers of science accomplish when they analyze scientific concepts and interpret scientific knowledge? What is concept analysis if it is not a description of the way scientists actually think? I investigate these questions by using Hans Reichenbach's account of the descriptive, critical, and advisory tasks of philosophy of science to examine Karola Stotz and Paul Griffiths' idea that poll-based methodologies can test philosophical analyses of scientific concepts. Using Reichenbach's account as a point of departure, I argue that philosophy of science should identify and clarify epistemic virtues and describe scientific knowledge in relation to these virtues. The role of concept analysis is to articulate scientific concepts in ways that help reveal epistemic virtues and limitations of particular sciences. This means an analysis of the gene concept(s) should help clarify the explanatory power and limitations of gene-based explanations, and should help account for the investigative utility and biases of gene-centered sciences. I argue that a philosophical analysis of gene concept(s) that helps achieve these critical aims should not be rejected on the basis of poll-based studies even if such studies could show that professional biologists don't actually use gene terminology in precise ways corresponding to the philosophical analysis.
An Emerging New Risk Analysis Science: Foundations and Implications.
Aven, Terje
2018-05-01
To solve real-life problems-such as those related to technology, health, security, or climate change-and make suitable decisions, risk is nearly always a main issue. Different types of sciences are often supporting the work, for example, statistics, natural sciences, and social sciences. Risk analysis approaches and methods are also commonly used, but risk analysis is not broadly accepted as a science in itself. A key problem is the lack of explanatory power and large uncertainties when assessing risk. This article presents an emerging new risk analysis science based on novel ideas and theories on risk analysis developed in recent years by the risk analysis community. It builds on a fundamental change in thinking, from the search for accurate predictions and risk estimates, to knowledge generation related to concepts, theories, frameworks, approaches, principles, methods, and models to understand, assess, characterize, communicate, and (in a broad sense) manage risk. Examples are used to illustrate the importance of this distinct/separate risk analysis science for solving risk problems, supporting science in general and other disciplines in particular. © 2017 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.
Connected Worlds: Connecting the public with complex environmental systems
NASA Astrophysics Data System (ADS)
Uzzo, S. M.; Chen, R. S.; Downs, R. R.
2016-12-01
Among the most important concepts in environmental science learning is the structure and dynamics of coupled human and natural systems (CHANS). But the fundamental epistemology for understanding CHANS requires systems thinking, interdisciplinarity, and complexity. Although the Next Generation Science Standards mandate connecting ideas across disciplines and systems, traditional approaches to education do not provide more than superficial understanding of this concept. Informal science learning institutions have a key role in bridging gaps between the reductive nature of classroom learning and contemporary data-driven science. The New York Hall of Science, in partnership with Design I/O and Columbia University's Center for International Earth Science Information Network, has developed an approach to immerse visitors in complex human nature interactions and provide opportunities for those of all ages to elicit and notice environmental consequences of their actions. Connected Worlds is a nearly 1,000 m2 immersive, playful environment in which students learn about complexity and interconnectedness in ecosystems and how ecosystems might respond to human intervention. It engages students through direct interactions with fanciful flora and fauna within and among six biomes: desert, rainforest, grassland, mountain valley, reservoir, and wetlands, which are interconnected through stocks and flows of water. Through gestures and the manipulation of a dynamic water system, Connected Worlds enables students, teachers, and parents to experience how the ecosystems of planet Earth are connected and to observe relationships between the behavior of Earth's inhabitants and our shared world. It is also a cyberlearning platform to study how visitors notice and scaffold their understanding of complex environmental processes and the responses of these processes to human intervention, to help inform the improvement of education practices in complex environmental science.
Spjuth, Ola; Karlsson, Andreas; Clements, Mark; Humphreys, Keith; Ivansson, Emma; Dowling, Jim; Eklund, Martin; Jauhiainen, Alexandra; Czene, Kamila; Grönberg, Henrik; Sparén, Pär; Wiklund, Fredrik; Cheddad, Abbas; Pálsdóttir, Þorgerður; Rantalainen, Mattias; Abrahamsson, Linda; Laure, Erwin; Litton, Jan-Eric; Palmgren, Juni
2017-09-01
We provide an e-Science perspective on the workflow from risk factor discovery and classification of disease to evaluation of personalized intervention programs. As case studies, we use personalized prostate and breast cancer screenings. We describe an e-Science initiative in Sweden, e-Science for Cancer Prevention and Control (eCPC), which supports biomarker discovery and offers decision support for personalized intervention strategies. The generic eCPC contribution is a workflow with 4 nodes applied iteratively, and the concept of e-Science signifies systematic use of tools from the mathematical, statistical, data, and computer sciences. The eCPC workflow is illustrated through 2 case studies. For prostate cancer, an in-house personalized screening tool, the Stockholm-3 model (S3M), is presented as an alternative to prostate-specific antigen testing alone. S3M is evaluated in a trial setting and plans for rollout in the population are discussed. For breast cancer, new biomarkers based on breast density and molecular profiles are developed and the US multicenter Women Informed to Screen Depending on Measures (WISDOM) trial is referred to for evaluation. While current eCPC data management uses a traditional data warehouse model, we discuss eCPC-developed features of a coherent data integration platform. E-Science tools are a key part of an evidence-based process for personalized medicine. This paper provides a structured workflow from data and models to evaluation of new personalized intervention strategies. The importance of multidisciplinary collaboration is emphasized. Importantly, the generic concepts of the suggested eCPC workflow are transferrable to other disease domains, although each disease will require tailored solutions. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Space Mission Concept Development Using Concept Maturity Levels
NASA Technical Reports Server (NTRS)
Wessen, Randii R.; Borden, Chester; Ziemer, John; Kwok, Johnny
2013-01-01
Over the past five years, pre-project formulation experts at the Jet Propulsion Laboratory (JPL) has developed and implemented a method for measuring and communicating the maturity of space mission concepts. Mission concept development teams use this method, and associated tools, prior to concepts entering their Formulation Phases (Phase A/B). The organizing structure is Concept Maturity Level (CML), which is a classification system for characterizing the various levels of a concept's maturity. The key strength of CMLs is the ability to evolve mission concepts guided by an incremental set of assessment needs. The CML definitions have been expanded into a matrix form to identify the breadth and depth of analysis needed for a concept to reach a specific level of maturity. This matrix enables improved assessment and communication by addressing the fundamental dimensions (e.g., science objectives, mission design, technical risk, project organization, cost, export compliance, etc.) associated with mission concept evolution. JPL's collaborative engineering, dedicated concept development, and proposal teams all use these and other CML-appropriate design tools to advance their mission concept designs. This paper focuses on mission concept's early Pre-Phase A represented by CMLs 1- 4. The scope was limited due to the fact that CMLs 5 and 6 are already well defined based on the requirements documented in specific Announcement of Opportunities (AO) and Concept Study Report (CSR) guidelines, respectively, for competitive missions; and by NASA's Procedural Requirements NPR 7120.5E document for Projects in their Formulation Phase.
Van Houdt, Sabine; Sermeus, Walter; Vanhaecht, Kris; De Lepeleire, Jan
2014-12-24
Strategies to improve care coordination between primary and hospital care do not always have the desired results. This is partly due to incomplete understanding of the key concepts of care coordination. An in-depth analysis of existing theoretical frameworks for the study of care coordination identified 14 interrelated key concepts. In another study, these 14 key concepts were further explored in patients' experiences. Additionally, "patient characteristics" was identified as a new key concept in patients' experiences and the previously identified key concept "quality of relationship" between healthcare professionals was extended to "quality of relationship" with the patient. Together, these 15 interrelated key concepts resulted in a new theoretical framework. The present study aimed at improving our understanding of the 15 previously identified key concepts and to explore potentially previous unidentified key concepts and the links between these by exploring how healthcare professionals experience care coordination. A qualitative design was used. Six focus groups were conducted including primary healthcare professionals involved in the care of patients who had breast cancer surgery at three hospitals in Belgium. Data were analyzed using constant comparative analysis. All 15 previously identified key concepts of care coordination were further explored in healthcare professionals' experiences. Links between these 15 concepts were identified, including 9 newly identified links. The concept "external factors" was linked with all 6 concepts relating to (inter)organizational mechanisms; "task characteristics", "structure", "knowledge and information technology", "administrative operational processes", "cultural factors" and "need for coordination". Five of these concepts related to 3 concepts of relational coordination; "roles", "quality of relationship" and "exchange of information". The concept of "task characteristics" was only linked with "roles" and "exchange of information". The concept "patient characteristics" related with the concepts "need for coordination" and "patient outcome". Outcome was influenced by "roles", "quality of relationship" and "exchange of information". External factors and the (inter)organizational mechanism should enhance "roles" and "quality of relationship" between healthcare professionals and with the patient as well as "exchange of information", and setting and sharing of common "goals" to improve care coordination and quality of care.
Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan
2016-08-01
To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic science concepts and these basic science concepts are expected to be used for the organization of the maps. These hypotheses are derived from studies about knowledge development of individuals. However, integrated curricula require a high degree of cooperation between clinicians and basic scientists. This study examined whether there are consistent variations regarding the articulation of integration when groups of experienced clinicians and basic scientists and groups of residents and basic scientists-in-training construct concept maps. Seven groups of three clinicians and basic scientists on experienced level and seven such groups on resident level constructed concept maps illuminating clinical problems. They were guided by instructions that focused them on articulation of integration. The concept maps were analysed by features that described integration. Descriptive statistics showed consistent variations between the two expertise levels. The concept maps of the resident groups exceeded those of the experienced groups in articulated integration. First, they used significantly more links between clinical and basic science concepts. Second, these links connected basic science concepts with a greater variety of clinical concepts than the experienced groups. Third, although residents did not use significantly more basic science concepts, they used them significantly more frequent to organize the clinical concepts. The conclusion was drawn that not all hypotheses could be confirmed and that the resident concept maps were more elaborate than expected. This article discusses the implications for the role that residents and basic scientists-in-training might play in the construction of preconstructed concept maps and the development of integrated curricula.
When science became Western: historiographical reflections.
Elshakry, Marwa
2010-03-01
While thinking about the notion of the "global" in the history of the history of science, this essay examines a related but equally basic concept: the idea of "Western science." Tracing its rise in the nineteenth century, it shows how it developed as much outside the Western world as within it. Ironically, while the idea itself was crucial for the disciplinary formation of the history of science, the global history behind this story has not been much attended to. Drawing on examples from nineteenth-century Egypt and China, the essay begins by looking at how international vectors of knowledge production (viz., missionaries and technocrats) created new global histories of science through the construction of novel genealogies and through a process of conceptual syncretism. Turning next to the work of early professional historians of science, it shows how Arabic and Chinese knowledge traditions were similarly reinterpreted in light of the modern sciences, now viewed as part of a diachronic and universalist teleology ending in "Western science." It concludes by arguing that examining the global emergence of the idea of Western science in this way highlights key questions pertaining to the relation of the history of science to knowledge traditions across the world and the continuing search for global histories of science.
Cary, Tawnya; Branchaw, Janet
2017-01-01
The Vision and Change in Undergraduate Biology Education: Call to Action report has inspired and supported a nationwide movement to restructure undergraduate biology curricula to address overarching disciplinary concepts and competencies. The report outlines the concepts and competencies generally but does not provide a detailed framework to guide the development of the learning outcomes, instructional materials, and assessment instruments needed to create a reformed biology curriculum. In this essay, we present a detailed Vision and Change core concept framework that articulates key components that transcend subdisciplines and scales for each overarching biological concept, the Conceptual Elements (CE) Framework. The CE Framework was developed using a grassroots approach of iterative revision and incorporates feedback from more than 60 biologists and undergraduate biology educators from across the United States. The final validation step resulted in strong national consensus, with greater than 92% of responders agreeing that each core concept list was ready for use by the biological sciences community, as determined by scientific accuracy and completeness. In addition, we describe in detail how educators and departments can use the CE Framework to guide and document reformation of individual courses as well as entire curricula. PMID:28450444
ERIC Educational Resources Information Center
Korur, Fikret
2015-01-01
Pre-service science teachers' conceptual understanding of astronomical concepts and their misconceptions in these concepts is crucial to study since they will teach these subjects in middle schools after becoming teachers. This study aimed to explore both seventh-grade students' and the science teachers' understanding of astronomical concepts and…
Playing with Science: An Investigation of Young Children's Science Conceptions and Misconceptions
ERIC Educational Resources Information Center
Smolleck, Lori; Hershberger, Vanessa
2011-01-01
The purpose of this research was to investigate the conceptions and misconceptions of young children (ages 3-8) related to science concepts, skills, and phenomena. These conceptions and misconceptions were investigated within the framework of the Pennsylvania Early Learning Standards for Pre-Kindergarten and the Pennsylvania Standards for…
NASA Astrophysics Data System (ADS)
Syafrina, R.; Rohman, I.; Yuliani, G.
2018-05-01
This study aims to analyze the concept characteristics of solubility and solubility products that will serve as the basis for the development of virtual laboratory and students' science process skills. Characteristics of the analyzed concepts include concept definitions, concept attributes, and types of concepts. The concept analysis method uses concept analysis according to Herron. The results of the concept analysis show that there are twelve chemical concepts that become the prerequisite concept before studying the solubility and solubility and five core concepts that students must understand in the solubility and Solubility product. As many as 58.3% of the definitions of the concepts contained in high school textbooks support students' science process skills, the rest of the definition of the concept is memorized. Concept attributes that meet three levels of chemical representation and can be poured into a virtual laboratory have a percentage of 66.6%. Type of concept, 83.3% is a concept based on principle; and 16.6% concepts that state the process. Meanwhile, the science process skills that can be developed based on concept analysis are the ability to observe, calculate, measure, predict, interpret, hypothesize, apply, classify, and inference.
Turkish Grade 10 Students' and Science Teachers' Conceptions of Nature of Science: A National Study
ERIC Educational Resources Information Center
Dogan, Nihal; Abd-El-Khalick, Fouad
2008-01-01
This study aimed to assess grade 10 Turkish students' and science teachers' conceptions of nature of science (NOS) and whether these conceptions were related to selected variables. These variables included participants' gender, geographical region, and the socioeconomic status (SES) of their city and region; teacher disciplinary background, years…
Aerospace-Related Life Science Concepts for Use in Life Science Classes Grades 7-12.
ERIC Educational Resources Information Center
Williams, Mary H.; Rademacher, Jean
The purpose of this guide is to provide the teacher of secondary school life science classes with resource materials for activities to familiarize students with recent discoveries in bioastronautics. Each section introduces a life science concept and a related aerospace concept, gives background information, suggested activities, and an annotated…
ERIC Educational Resources Information Center
Schwab, Patrick
2013-01-01
The National Research Council developed and published the "Framework for K-12 Science Education," a new set of concepts that many states were planning on adopting. Part of this new endeavor included a set of science and engineering crosscutting concepts to be incorporated into science materials and activities, a first in science…
NASA Astrophysics Data System (ADS)
Cuff, K.; Cannady, M.; Dorph, R.; Rodriguez, V. A.; Romero, V.
2016-12-01
The UC Berkeley East Bay Academy for Young Scientists (EBAYS) program provides youth from non-dominant communities in the East San Francisco Bay Area with unique opportunities to develop deeper understanding of environmental science content, as well as fundamental scientific practice skills. A key component of EBAYS programming is collaborative research projects that generate information useful in addressing critical environmental issues. This important component also provides opportunities for youth to present results of their investigations to other community members and to the scientific community at large. Inclusion of the environmental science research component is intended to help address the following program goals: A) increasing appreciation for the value of scientific practices as a tool for addressing important community-based issues; B) helping raise community awareness of important issues; C) sparking interest in other forms of community activism; D) increasing understanding of key science concepts; and E) generating valuable environmental quality data. In an effort to assess the degree to which EBAYS programming accomplishes these goals, as well as to evaluate its capacity to be effectively replicated on a broader scale, EBAYS staff has engaged in an investigation of associated learning and youth development outcomes. In this regard a research strategy has been developed that includes the use of assessment tools that will help foster a deeper understanding of the ways in which EBAYS programming increases the extent to which participants value the application of science, affects their overall occupational trajectory, and inspires them to consider careers in STEM.
[Historical Transition of Sexuality Education in Japan and Outline of Reproductive Health/Rights].
Nishioka, Emiko
2018-01-01
In this paper, we describe the historical transition of sexuality education in Japan and the direction of sexuality education taken by the Ministry of Education, Culture, Sports, Science and Technology (MEXT). Reproductive health/rights, a key concept in sex education, is also discussed. In Japanese society, discussion on sexuality has long been considered taboo. After the Second World War, sexuality education in Japan began as "purity education." From 1960 until the early 1970s, physical aspects such as genital organs, function, secondary sexual characteristics, and gender differences were emphasized. Comprehensive education as a human being, including physiological, psychological, and social aspects, began to be adopted in the late 1970s. In 2002, it was criticized that teaching genital terms at primary schools and teaching about sexual intercourse and contraceptive methods at junior high schools were "overdue guidance" and "extreme contents." Sexuality education in schools has become a problem and has stagnated for about 10 years. Currently, schools teach sexuality education that does not deviate from the MEXT course guidelines. The direction of MEXT regarding sexuality education should be examined from the basic position that sexual activity by children is inappropriate. Reproductive health/rights apply the concept of human rights to sexuality and reproduction. Reproductive health/rights are key concepts that support sex education and women's health.
A pragmatic conception of science: Implications for science teaching
NASA Astrophysics Data System (ADS)
Sessoms, Deidre Bates
In this dissertation, I examine various philosophical conceptions of the nature of science---its goals, methods and products---and link those views to how science is taught. While the review begins in the 1600s, the focus is primarily on logical positivism. The logical positivist view of science prevailed for much of the twentieth century and has greatly influenced how science is taught. The review section culminates with current conceptions of science from the fields of philosophy, sociology, feminist studies and radical studies of science. These various conceptions of the nature of science are linked to how science is currently taught, at the K--12 level and at the university. In particular, the logical positivist conception has influenced the teaching of science by emphasizing the products of science (factual knowledge and theories) over the processes of science (the social methods of knowledge production). As a result of viewing science as the logical positivists did, teachers primarily focus on science as unchanging factual knowledge, at the expense of examining the social and cultural aspects of scientific practices. I develop a pragmatic conception of the method of science as reflective thinking that we effectively use in our everyday lives. Linking that conception with the aims that John Dewey outlined for schools in a democratic society points the way towards certain goals and methods for teaching science. Therefore, I explore the type of science teaching that might result when viewing science as a pragmatic activity conducted in a democracy. Teaching of this sort would involve students in working together on shared problems that arise in the context of daily life. For science students at the university, this would include participating in and critiquing scientific research in active research laboratories. Implementing this view of science teaching might result in modifications in the practices and goals of science. Lastly, the experiences of a group of under-represented minority students who studied the sciences at the university are used to illustrate both the promises and the pitfalls of attempting to incorporate a pragmatic view of science into science teaching.
NASA Astrophysics Data System (ADS)
Dosanjh, Navdeep Kaur
2011-12-01
There is great concern over students' poor science achievement in the United States. Due to the lack of science achievement, students are not pursing science related careers resulting in an increase in outsourcing to other countries. Learning strategies such as concept mapping may ameliorate this situation by providing students with tools that encourage meaningful learning. The purpose of this quasi-experimental study was to measure the effects of three concept mapping learning strategies (concept identifying, proposition identifying, student generated) on urban middle school students' understanding of the circulatory system. Three intact classes of seventh-grade students were assigned to one of the three concept mapping strategies. The students were given a pretest on the circulatory system then learned and used their respective concept mapping strategies while learning about the circulatory system. At the conclusion of the study, students' science achievement was measured by performance on an achievement test and rubric scores of their respective concept identifying, proposition identifying, and student generated concept maps. The results of the study suggest that all three of the concept mapping strategies are effective in increasing students' science achievement. Additionally, the moderate significant correlations between the posttest and concept map scores of the current study established that concept maps are a useful measure of student knowledge. Lastly, the results of the current study also suggest that the concept identifying mapping strategy may be a useful scaffold in instructing students how to develop student generated concept maps.
Venus Atmospheric Maneuverable Platform (VAMP)
NASA Astrophysics Data System (ADS)
Shapiro Griffin, Kristen L.; Sokol, D.; Dailey, D.; Lee, G.; Polidan, R.
2013-10-01
We have explored a possible new approach to Venus upper atmosphere exploration by applying Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters the atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. In this presentation we report results from our ongoing study and plans for future analyses and prototyping. We discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we specifically focus upon four key factors impacting the design and performance of VAMP: 1. Feasibility of and options for the deployment of the vehicle in space 2. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight 3. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance (aerodynamics, power required vs. power available, propulsion, speed, percent buoyancy), performance sensitivity to payload weight 4. Science payload accommodation, constraints, and opportunities We discuss interdependencies of the above factors and the manner in which the VAMP strawman’s characteristics affect the CONOPs and the science objectives. We show how these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support VEXAG goals 2 and 3.
Concepts and Benefits of Lunar Core Drilling
NASA Technical Reports Server (NTRS)
McNamara, K. M.; Bogard, D. D.; Derkowski, B. J.; George, J. A.; Askew, R. S.; Lindsay, J. F.
2007-01-01
Understanding lunar material at depth is critical to nearly every aspect of NASA s Vision and Strategic Plan. As we consider sending human s back to the Moon for brief and extended periods, we will need to utilize lunar materials in construction, for resource extraction, and for radiation shielding and protection. In each case, we will be working with materials at some depth beneath the surface. Understanding the properties of that material is critical, thus the need for Lunar core drilling capability. Of course, the science benefit from returning core samples and operating down-hole autonomous experiments is a key element of Lunar missions as defined by NASA s Exploration Systems Architecture Study. Lunar missions will be targeted to answer specific questions concerning lunar science and re-sources.
The role of electronic health records in clinical reasoning.
Berndt, Markus; Fischer, Martin R
2018-05-16
Electronic health records (eHRs) play an increasingly important role in documentation and exchange of information in multi-and interdisciplinary patient care. Although eHRs are associated with mixed evidence in terms of effectiveness, they are undeniably the health record form of the future. This poses several learning opportunities and challenges for medical education. This review aims to connect the concept of eHRs to key competencies of physicians and elaborates current learning science perspectives on diagnostic and clinical reasoning based on a theoretical framework of scientific reasoning and argumentation. It concludes with an integrative vision of the use of eHRs, and the special role of the patient, for teaching and learning in medicine. © 2018 New York Academy of Sciences.
NASA Technical Reports Server (NTRS)
Schmerling, E. R.
1977-01-01
Spacelab was developed by the European Space Agency for the conduction of scientific and technological experiments in space. Spacelab can be taken into earth orbit by the Space Shuttle and returned to earth after a period of 1-3 weeks. The Spacelab modular system of pallets, pressurized modules, and racks can contain large payloads with high power and telemetry requirements. A working group has defined the 'Atmospheres, Magnetospheres, and Plasmas-in-Space' project. The project objectives include the absolute measurement of solar flux in a number of carefully selected bands at the same time at which atmospheric measurements are made. NASA is committed to the concept that the scientist is to play a key role in its scientific programs.
NASA Astrophysics Data System (ADS)
Bednyakova, Anastasia; Turitsyn, Sergei K.
2015-03-01
The key to generating stable optical pulses is mastery of nonlinear light dynamics in laser resonators. Modern techniques to control the buildup of laser pulses are based on nonlinear science and include classical solitons, dissipative solitons, parabolic pulses (similaritons) and various modifications and blending of these methods. Fiber lasers offer remarkable opportunities to apply one-dimensional nonlinear science models for the design and optimization of very practical laser systems. Here, we propose a new concept of a laser based on the adiabatic amplification of a soliton pulse in the cavity—the adiabatic soliton laser. The adiabatic change of the soliton parameters during evolution in the resonator relaxes the restriction on the pulse energy inherent in traditional soliton lasers. Theoretical analysis is confirmed by extensive numerical modeling.
Analyses in Support of the WFIRST Supernova Survey
NASA Astrophysics Data System (ADS)
Rubin, David; Aldering, Greg Scott; Charles, Baltay; Barbary, Kyle H.; Currie, Miles; Deustua, Susana E.; Fagrelius, Parker; Dosovitz Fox, Ori; Fruchter, Andrew S.; Law, David R.; Perlmutter, Saul; Pontoppidan, Klaus; Rabinowitz, David L.; Sako, Masao
2017-01-01
The Wide-Field Infrared Survey Telescope (WFIRST) is a future optical-NIR space telescope with science spanning astrophysics and cosmology. The combination of wide-field IR imaging and optical-NIR integral-field spectroscopy enables a SN cosmology experiment with excellent systematics control. The Science Definition Team (SDT) presented a first concept of such a survey with 2700 SNe to z=1.7. We make several key improvements to the SDT analysis, including a significantly improved exposure-time calculator, evaluations of host-galaxy background light, supernova typing simulations, all combined with spectrophotometric cosmology analysis built on a Bayesian hierarchal model. Our work will be useful for deriving accurate cosmological forecasts, optimizing the survey, and the evaluation of calibration, resolution, and stability requirements.
Exploring cognitive integration of basic science and its effect on diagnostic reasoning in novices.
Lisk, Kristina; Agur, Anne M R; Woods, Nicole N
2016-06-01
Integration of basic and clinical science knowledge is increasingly being recognized as important for practice in the health professions. The concept of 'cognitive integration' places emphasis on the value of basic science in providing critical connections to clinical signs and symptoms while accounting for the fact that clinicians may not spontaneously articulate their use of basic science knowledge in clinical reasoning. In this study we used a diagnostic justification test to explore the impact of integrated basic science instruction on novices' diagnostic reasoning process. Participants were allocated to an integrated basic science or clinical science training group. The integrated basic science group was taught the clinical features along with the underlying causal mechanisms of four musculoskeletal pathologies while the clinical science group was taught only the clinical features. Participants completed a diagnostic accuracy test immediately after initial learning, and one week later a diagnostic accuracy and justification test. The results showed that novices who learned the integrated causal mechanisms had superior diagnostic accuracy and better understanding of the relative importance of key clinical features. These findings further our understanding of cognitive integration by providing evidence of the specific changes in clinical reasoning when basic and clinical sciences are integrated during learning.
ERIC Educational Resources Information Center
Satilmis, Yilmaz; Yakup, Doganay; Selim, Guvercin; Aybarsha, Islam
2015-01-01
This study investigates three models of content-based instruction in teaching concepts and terms of natural sciences in order to increase the efficiency of teaching these kinds of concepts in realization and to prove that the content-based instruction is a teaching strategy that helps students understand concepts of natural sciences. Content-based…
Architectures Toward Reusable Science Data Systems
NASA Astrophysics Data System (ADS)
Moses, J. F.
2014-12-01
Science Data Systems (SDS) comprise an important class of data processing systems that support product generation from remote sensors and in-situ observations. These systems enable research into new science data products, replication of experiments and verification of results. NASA has been building ground systems for satellite data processing since the first Earth observing satellites launched and is continuing development of systems to support NASA science research, NOAA's weather satellites and USGS's Earth observing satellite operations. The basic data processing workflows and scenarios continue to be valid for remote sensor observations research as well as for the complex multi-instrument operational satellite data systems being built today. System functions such as ingest, product generation and distribution need to be configured and performed in a consistent and repeatable way with an emphasis on scalability. This paper will examine the key architectural elements of several NASA satellite data processing systems currently in operation and under development that make them suitable for scaling and reuse. Examples of architectural elements that have become attractive include virtual machine environments, standard data product formats, metadata content and file naming, workflow and job management frameworks, data acquisition, search, and distribution protocols. By highlighting key elements and implementation experience the goal is to recognize architectures that will outlast their original application and be readily adaptable for new applications. Concepts and principles are explored that lead to sound guidance for SDS developers and strategists.
Architectures Toward Reusable Science Data Systems
NASA Technical Reports Server (NTRS)
Moses, John
2015-01-01
Science Data Systems (SDS) comprise an important class of data processing systems that support product generation from remote sensors and in-situ observations. These systems enable research into new science data products, replication of experiments and verification of results. NASA has been building systems for satellite data processing since the first Earth observing satellites launched and is continuing development of systems to support NASA science research and NOAAs Earth observing satellite operations. The basic data processing workflows and scenarios continue to be valid for remote sensor observations research as well as for the complex multi-instrument operational satellite data systems being built today. System functions such as ingest, product generation and distribution need to be configured and performed in a consistent and repeatable way with an emphasis on scalability. This paper will examine the key architectural elements of several NASA satellite data processing systems currently in operation and under development that make them suitable for scaling and reuse. Examples of architectural elements that have become attractive include virtual machine environments, standard data product formats, metadata content and file naming, workflow and job management frameworks, data acquisition, search, and distribution protocols. By highlighting key elements and implementation experience we expect to find architectures that will outlast their original application and be readily adaptable for new applications. Concepts and principles are explored that lead to sound guidance for SDS developers and strategists.
Garvin-Doxas, Kathy; Klymkowsky, Michael; Elrod, Susan
2007-01-01
The meeting "Conceptual Assessment in the Biological Sciences" was held March 3-4, 2007, in Boulder, Colorado. Sponsored by the National Science Foundation and hosted by University of Colorado, Boulder's Biology Concept Inventory Team, the meeting drew together 21 participants from 13 institutions, all of whom had received National Science Foundation funding for biology education. Topics of interest included Introductory Biology, Genetics, Evolution, Ecology, and the Nature of Science. The goal of the meeting was to organize and leverage current efforts to develop concept inventories for each of these topics. These diagnostic tools are inspired by the success of the Force Concept Inventory, developed by the community of physics educators to identify student misconceptions about Newtonian mechanics. By working together, participants hope to lessen the risk that groups might develop competing rather than complementary inventories.
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2003-01-01
Traditional NASA missions, both near Earth and deep space, have been stovepipe in nature and point-to-point in architecture. Recently, NASA and others have conceptualized missions that required space-based networking. The notion of networks in space is a drastic shift in thinking and requires entirely new architectures, radio systems (antennas, modems, and media access), and possibly even new protocols. A full system engineering approach for some key mission architectures will occur that considers issues such as the science being performed, stationkeeping, antenna size, contact time, data rates, radio-link power requirements, media access techniques, and appropriate networking and transport protocols. This report highlights preliminary architecture concepts and key technologies that will be investigated.
van Bekkum, Jennifer E; Fergie, Gillian M; Hilton, Shona
2016-03-24
Public engagement (PE) has become a common feature of many liberal governmental agendas worldwide. Since the turn of this century there has been a succession of United Kingdom policy initiatives to encourage research funding agencies, universities and researchers to reconsider how they engage with citizens and communities. Although most funding agencies now explicitly promote PE within research, little empirical work has been carried out in this area. In this study, we explored why and how health and medical research funding agencies in the United Kingdom have interpreted and implemented their role to promote PE within research. Semi-structured interviews were carried out with 30 key informants from 10 agencies that fund health or medical research. Data were also gathered from agencies' websites and documentation. The analysis was based on the constant comparative method. Across agencies, we found that PE was being interpreted and operationalised in various different ways. The terminology used within funding agencies to describe PE seems to be flexibly applied. Disciplinary differences were evident both in the terminology used to describe PE and the drivers for PE highlighted by participants - with applied health science funders more aligned with participatory models of PE. Within the grant funding process PE was rarely systematically treated as a key component of research. In particular, PE was not routinely incorporated into the planning of funding calls. PE was more likely to be considered in the application and assessment phases, where it was largely appraised as a tool for enhancing science. Concerns were expressed regarding how to monitor and evaluate PE within research. This study suggests funding agencies working within specific areas of health and medicine can promote particular definitions of PE and aligned practices which determine the boundaries in which researchers working in these areas understand and practice PE. Our study also highlights how the research grant process works to privilege particular conceptions of PE and its purpose. Tensions are evident between some funders' core concepts of traditional science and PE, and they face challenges as they try to embed PE into long-standing systems that prioritise particular conceptions of 'scientific excellence' in research.
FutureTox III: Bridges for Translation | Science Inventory | US ...
The present document describes key discussion points and outcomes of a Society of Toxicology (SOT) Contemporary Concepts in Toxicology (CCT) Workshop, entitled FutureTox III1,2 that was held in Crystal City, Virginia, November 19-20, 2015. The workshop built on the many lessons learned from the first 10 years of TT21 and the first two workshops in the FutureTox series (for summary of FutureTox II see (Knudsen et al., 2015); for summary of FutureTox I see (Rowlands et al., 2014)). FutureTox III was attended in person and via webcast by more than 300 scientists from government research and regulatory agencies, research institutes, academia, and the chemical and pharmaceutical industries in Europe, Canada, and the United States. The meeting materials for FutureTox III, currently available to meeting registrants at http://www.toxicology.org/events/shm/cct/meetings.asp#upcoming-pnl-open, will be open to the public on November 29, 2016. At this workshop, participants reviewed and discussed the state of the science in toxicology and human risk and exposure assessment with a focus on moving TT21 science into the arena of regulatory decision-making. This manuscript describes the outcome of the FutureTox III 'contemporary concepts in toxicology' conference of the Society Toxicology, held November 2015 in Crystal City VA.
A social-ecological systems approach for environmental management.
Virapongse, Arika; Brooks, Samantha; Metcalf, Elizabeth Covelli; Zedalis, Morgan; Gosz, Jim; Kliskey, Andrew; Alessa, Lilian
2016-08-01
Urgent environmental issues are testing the limits of current management approaches and pushing demand for innovative approaches that integrate across traditional disciplinary boundaries. Practitioners, scholars, and policy-makers alike call for increased integration of natural and social sciences to develop new approaches that address the range of ecological and societal impacts of modern environmental issues. From a theoretical perspective, social-ecological systems (SES) science offers a compelling approach for improved environmental management through the application of transdisciplinary and resilience concepts. A framework for translating SES theory into practice, however, is lacking. In this paper, we define the key components of an SES-based environmental management approach. We offer recommendations for integrating an SES approach into existing environmental management practices. Results presented are useful for management professionals that seek to employ an SES environmental management approach and scholars aiming to advance the theoretical foundations of SES science for practical application. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Cooray, Asantha R.; Origins Space Telescope Study Team
2017-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. I will summarize the OST STDT, mission design and instruments, key science drivers, and the study plan over the next two years.
NASA Astrophysics Data System (ADS)
Debs, Talel A.
In addition to being a thorough and timely treatment of unity in science, Morrison's book is particularly noteworthy for the kind of inquiry it represents. In the context of current debates in the history and philosophy of science, Morrison has managed to chart a very persuasive middle path through potentially contentious extreme positions. Also, by taking an approach that is at once conceptual and historical, she has produced a book that truly addresses both the history and philosophy of modern science; it allows the reader to interact with key philosophical questions in addition to well researched and well documented historical accounts. These accounts, which function as case studies, are provided in Chapters 3-6. They are valuable both in-and-of themselves, and as examples which illustrate Morrison's main philosophical thesis.
Knowledge in motion: The cultural politics of modern science translations in Arabic.
Elshakry, Marwa S
2008-12-01
This essay looks at the problem of the global circulation of modem scientific knowledge by looking at science translations in modern Arabic. In the commercial centers of the late Ottoman Empire, emerging transnational networks lay behind the development of new communities of knowledge, many of which sought to break with old linguistic and literary norms to redefine the basis of their authority. Far from acting as neutral purveyors of "universal truths," scientific translations thus served as key instruments in this ongoing process of sociopolitical and epistemological transformation and mediation. Fierce debates over translators' linguistic strategies and choices involved deliberations over the character of language and the nature of "science" itself. They were also crucially shaped by such geopolitical factors as the rise of European imperialism and anticolonial nationalism in the region. The essay concludes by arguing for the need for greater attention to the local factors involved in the translation of scientific concepts across borders.
Career Profile: Flight Operations Engineer (Airborne Science) Robert Rivera
2015-05-14
Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Robert Rivera during the preparation and execution of the Global Hawk airborne missions under NASA's Science Mission Directorate.
The Analysis of Nine Process-Concepts in Elementary Science. Technical Report No. 428.
ERIC Educational Resources Information Center
Klausmeier, Herbert J.; And Others
Theory and research background regarding the teaching of concepts are presented. Procedures are given in detail on how a concept can be analyzed in order to aid in teaching and preparing instructional materials. Nine processes of science drawn from a published elementary science curriculum ("Science: A Process Approach") are treated as concepts…
ERIC Educational Resources Information Center
Vick, Raymond
The implications of space science terminology and concepts for elementary science teaching are explored. Twenty-two concepts were identified which elementary and junior high school teachers were invited to introduce in their teaching. Booklets explaining the concepts were distributed together with report forms for teacher feedback. The numbers of…
ERIC Educational Resources Information Center
Tretter, Thomas R.; Jones, M. Gail; Minogue, James
2006-01-01
The use of unifying themes that span the various branches of science is recommended to enhance curricular coherence in science instruction. Conceptions of spatial scale are one such unifying theme. This research explored the accuracy of spatial scale conceptions of science phenomena across a spectrum of 215 participants: fifth grade, seventh…
Evolving water science in the Anthropocene
NASA Astrophysics Data System (ADS)
Savenije, H. H. G.; Hoekstra, A. Y.; van der Zaag, P.
2013-06-01
This paper reviews the changing relation between man and water since the industrial revolution, the period that has been called the Anthropocene because of the unprecedented scale at which humans have altered the planet. We show how the rapidly changing reality urges us to continuously improve our understanding of the complex interactions between man and the water system. The paper starts with demonstrating that hydrology and the science of water resources management have played key roles in human and economic development throughout history; yet these roles have often been marginalised or obscured. Knowledge on hydrology and water resources engineering and management helped to transform the landscape, and thus also the very hydrology within catchments itself. It is only fairly recent that water experts have become self-conscious of such mechanisms, exemplified by several concepts that try to internalise them (integrated water resources management, eco-hydrology, socio-hydrology). We have reached a stage where a more systemic understanding of scale interdependencies can inform the sustainable governance of water systems, using new concepts like precipitationsheds, virtual water transfers, water footprint and water value flow.
NASA Astrophysics Data System (ADS)
Niebert, Kai; Gropengießer, Harald
2014-01-01
Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding climate change. In our study, we interviewed 35 secondary school students on their understanding of the greenhouse effect and analysed the conceptions of climate scientists as drawn from textbooks and research reports. We analysed all data by metaphor analysis and qualitative content analysis to gain insight into students' and scientists' resources for understanding. In our analysis, we found that students and scientists refer to the same schemata to understand the greenhouse effect. We categorised their conceptions into three different principles the conceptions are based on: warming by more input, warming by less output, and warming by a new equilibrium. By interrelating students' and scientists' conceptions, we identified the students' learning demand: First, our students were afforded with experiences regarding the interactions of electromagnetic radiation and CO2. Second, our students reflected about the experience-based schemata they use as source domains for metaphorical understanding of the greenhouse effect. By uncovering the-mostly unconscious-deployed schemata, we gave students access to their source domains. We implemented these teaching guidelines in interventions and evaluated them in teaching experiments to develop evidence-based and theory-guided learning activities on the greenhouse effect.
Case Study Teaching Method Improves Student Performance and Perceptions of Learning Gains†
Bonney, Kevin M.
2015-01-01
Following years of widespread use in business and medical education, the case study teaching method is becoming an increasingly common teaching strategy in science education. However, the current body of research provides limited evidence that the use of published case studies effectively promotes the fulfillment of specific learning objectives integral to many biology courses. This study tested the hypothesis that case studies are more effective than classroom discussions and textbook reading at promoting learning of key biological concepts, development of written and oral communication skills, and comprehension of the relevance of biological concepts to everyday life. This study also tested the hypothesis that case studies produced by the instructor of a course are more effective at promoting learning than those produced by unaffiliated instructors. Additionally, performance on quantitative learning assessments and student perceptions of learning gains were analyzed to determine whether reported perceptions of learning gains accurately reflect academic performance. The results reported here suggest that case studies, regardless of the source, are significantly more effective than other methods of content delivery at increasing performance on examination questions related to chemical bonds, osmosis and diffusion, mitosis and meiosis, and DNA structure and replication. This finding was positively correlated to increased student perceptions of learning gains associated with oral and written communication skills and the ability to recognize connections between biological concepts and other aspects of life. Based on these findings, case studies should be considered as a preferred method for teaching about a variety of concepts in science courses. PMID:25949753
Case study teaching method improves student performance and perceptions of learning gains.
Bonney, Kevin M
2015-05-01
Following years of widespread use in business and medical education, the case study teaching method is becoming an increasingly common teaching strategy in science education. However, the current body of research provides limited evidence that the use of published case studies effectively promotes the fulfillment of specific learning objectives integral to many biology courses. This study tested the hypothesis that case studies are more effective than classroom discussions and textbook reading at promoting learning of key biological concepts, development of written and oral communication skills, and comprehension of the relevance of biological concepts to everyday life. This study also tested the hypothesis that case studies produced by the instructor of a course are more effective at promoting learning than those produced by unaffiliated instructors. Additionally, performance on quantitative learning assessments and student perceptions of learning gains were analyzed to determine whether reported perceptions of learning gains accurately reflect academic performance. The results reported here suggest that case studies, regardless of the source, are significantly more effective than other methods of content delivery at increasing performance on examination questions related to chemical bonds, osmosis and diffusion, mitosis and meiosis, and DNA structure and replication. This finding was positively correlated to increased student perceptions of learning gains associated with oral and written communication skills and the ability to recognize connections between biological concepts and other aspects of life. Based on these findings, case studies should be considered as a preferred method for teaching about a variety of concepts in science courses.
Crossing the Threshold: Bringing Biological Variation to the Foreground.
Batzli, Janet M; Knight, Jennifer K; Hartley, Laurel M; Maskiewicz, April Cordero; Desy, Elizabeth A
2016-01-01
Threshold concepts have been referred to as "jewels in the curriculum": concepts that are key to competency in a discipline but not taught explicitly. In biology, researchers have proposed the idea of threshold concepts that include such topics as variation, randomness, uncertainty, and scale. In this essay, we explore how the notion of threshold concepts can be used alongside other frameworks meant to guide instructional and curricular decisions, and we examine the proposed threshold concept of variation and how it might influence students' understanding of core concepts in biology focused on genetics and evolution. Using dimensions of scientific inquiry, we outline a schema that may allow students to experience and apply the idea of variation in such a way that it transforms their future understanding and learning of genetics and evolution. We encourage others to consider the idea of threshold concepts alongside the Vision and Change core concepts to provide a lens for targeted instruction and as an integrative bridge between concepts and competencies. © 2016 J. M. Batzli et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
NASA Technical Reports Server (NTRS)
Fatig, Michael
1993-01-01
Flight operations and the preparation for it has become increasingly complex as mission complexities increase. Further, the mission model dictates that a significant increase in flight operations activities is upon us. Finally, there is a need for process improvement and economy in the operations arena. It is therefore time that we recognize flight operations as a complex process requiring a defined, structured, and life cycle approach vitally linked to space segment, ground segment, and science operations processes. With this recognition, an FOT Tool Kit consisting of six major components designed to provide tools to guide flight operations activities throughout the mission life cycle was developed. The major components of the FOT Tool Kit and the concepts behind the flight operations life cycle process as developed at NASA's GSFC for GSFC-based missions are addressed. The Tool Kit is therefore intended to increase productivity, quality, cost, and schedule performance of the flight operations tasks through the use of documented, structured methodologies; knowledge of past lessons learned and upcoming new technology; and through reuse and sharing of key products and special application programs made possible through the development of standardized key products and special program directories.
Teaching the Fundamentals of Cell Phones and Wireless Communications
NASA Astrophysics Data System (ADS)
Davids, Mark; Forrest, Rick; Pata, Don
2010-04-01
Wireless communications are ubiquitous. Students and teachers use iPhones®, BlackBerrys®, and other smart phones at home and at work. More than 275 million Americans had cell phones in June of 2009 and expanded access to broadband is predicted this year.2 Despite the plethora of users, most students and teachers do not understand "how they work." Over the past several years, three high school teachers have collaborated with engineers at Cingular, Motorola, and the University of Michigan to explore the underlying science and design a three-week, student-centered unit with a constructivist pedagogy consistent with the "Modeling in Physics" philosophy.3 This unique pilot program reinforces traditional physics topics including vibrations and waves, sound, light, electricity and magnetism, and also introduces key concepts in communications and information theory. This article will describe the motivation for our work, outline a few key concepts with the corresponding student activities, and provide a summary of the program that has been developed to engage and inspire the next generation of scientists, engineers, and citizens.
NASA Astrophysics Data System (ADS)
Gokpinar, Tuba; Reiss, Michael
2016-05-01
The literature in science education highlights the potentially significant role of outside-school factors such as parents, cultural contexts and role models in students' formation of science attitudes and aspirations, and their attainment in science classes. In this paper, building on and linking Bourdieu's key concepts of habitus, cultural and social capital, and field with Sen's capability approach, we develop a model of students' science-related capability development. Our model proposes that the role of outside-school factors is twofold, first, in providing an initial set of science-related resources (i.e. habitus, cultural and social capital), and then in conversion of these resources to science-related capabilities. The model also highlights the distinction between science-related functionings (outcomes achieved by individuals) and science-related capabilities (ability to achieve desired functionings), and argues that it is necessary to consider science-related capability development in evaluating the effectiveness of science education. We then test our theoretical model with an account of three Turkish immigrant students' science-related capabilities and the role of outside-school factors in forming and extending these capabilities. We use student and parent interviews, student questionnaires and in-class observations to provide an analysis of how outside-school factors influence these students' attitudes, aspirations and attainment in science.
Thinking Connections: Concept Maps for Life Science. Book B.
ERIC Educational Resources Information Center
Burggraf, Frederick
The concept maps contained in this book (for grades 7-12) span 35 topics in life science. Topics were chosen using the National Science Education Standards as a guide. The practice exercise in concept mapping is included to give students an idea of what the tasks ahead will be in content rich maps. Two levels of concept maps are included for each…
ERIC Educational Resources Information Center
Richard, Vincent; Bader, Barbara
2010-01-01
Current opinion holds that school science has not been producing the expected outcomes. Highlighted by a considerable body of research, one of the concerns is that young people still mobilize a naive conception of science. Consequently, we must pursue the reflection process concerning ways of renewing the school conception of science so as to…
Science Cafés: Engaging Scientists and Community through Health and Science Dialogue
Ahmed, Syed; Connors, Emily R.; Kissack, Anne; Franco, Zeno
2014-01-01
Abstract Engagement of the community through informal dialogue with researchers and physicians around health and science topics is an important avenue to build understanding and affect health and science literacy. Science Cafés are one model for this casual interchange; however the impact of this approach remains under researched. The Community Engagement Key Function of the Clinical and Translational Science Institute of Southeast Wisconsin hosted a series of Science Cafés in which topics were collaboratively decided upon by input from the community. Topics ranged from Personalized Medicine to Alzheimer's and Dementia to BioMedical Innovation. A systematic evaluation of the impact of Science Cafés on attendees' self‐confidence related to five health and scientific literacy concepts showed statistically significant increases across all items (Mean differences between mean retrospective pre‐scores and post‐scores, one tailed, paired samples t‐test, n = 141, p < .0001 for all items). The internal consistency of the five health and scientific literacy items was excellent (n = 126, α = 0.87). Thematic analysis of attendees' comments provides more nuance about positive experience and suggestions for possible improvements. The evaluation provides important evidence supporting the effectiveness of brief, casual dialogue as a way to increase the public's self‐rated confidence in health and science topics. PMID:24716626
Science cafés: engaging scientists and community through health and science dialogue.
Ahmed, Syed; DeFino, Mia C; Connors, Emily R; Kissack, Anne; Franco, Zeno
2014-06-01
Engagement of the community through informal dialogue with researchers and physicians around health and science topics is an important avenue to build understanding and affect health and science literacy. Science Cafés are one model for this casual interchange; however the impact of this approach remains under researched. The Community Engagement Key Function of the Clinical and Translational Science Institute of Southeast Wisconsin hosted a series of Science Cafés in which topics were collaboratively decided upon by input from the community. Topics ranged from Personalized Medicine to Alzheimer's and Dementia to BioMedical Innovation. A systematic evaluation of the impact of Science Cafés on attendees' self-confidence related to five health and scientific literacy concepts showed statistically significant increases across all items (Mean differences between mean retrospective pre-scores and post-scores, one tailed, paired samples t-test, n=141, p<.0001 for all items). The internal consistency of the five health and scientific literacy items was excellent (n=126, α=0.87). Thematic analysis of attendees' comments provides more nuance about positive experience and suggestions for possible improvements. The evaluation provides important evidence supporting the effectiveness of brief, casual dialogue as a way to increase the public's self-rated confidence in health and science topics. © 2014 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Koehler, Catherine M.; Faraclas, Elias; Giblin, David; Moss, David M.; Kazerounian, Kazem
2013-01-01
This study explores how engineering concepts are represented in secondary science standards across the nation by examining how engineering and technical concepts are infused into these frameworks. Secondary science standards from 49 states plus the District of Columbia were analyzed and ranked based on how many engineering concepts were found.…
ERIC Educational Resources Information Center
Liang, Jyh-Chong; Su, Yi-Ching; Tsai, Chin-Chung
2015-01-01
The aim of this study was to explore Taiwanese college students' conceptions of and approaches to learning computer science and then explore the relationships between the two. Two surveys, Conceptions of Learning Computer Science (COLCS) and Approaches to Learning Computer Science (ALCS), were administered to 421 college students majoring in…
ERIC Educational Resources Information Center
Kapici, Hasan Ozgur; Akcay, Hakan; Yager, Robert E.
2017-01-01
It is important for students to learn concepts and using them for solving problems and further learning. Within this respect, the purpose of this study is to investigate students' abilities to apply science concepts that they have learned from Science-Technology-Society based approach or textbook oriented instruction. Current study is based on…
The Solar Probe Plus Mission: Humanity's First Visit to Our Star
NASA Technical Reports Server (NTRS)
Fox, N. J.; Velli, M. C.; Bale, S. D.; Decker, R.; Driesman, A.; Howard, R. A.; Kasper, J. C.; Kinnison, J.; Kusterer, M.; Lario, D.;
2015-01-01
Solar Probe Plus (SPP) will be the first spacecraft to fly into the low solar corona. SPPs main science goal is to determine the structure and dynamics of the Suns coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Understanding these fundamental phenomena has been a top-priority science goal for over five decades, dating back to the 1958 Simpson Committee Report. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The mission design and the technology and engineering developments enable SPP to meet its science objectives to: (1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; (2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and (3) Explore mechanisms that accelerate and transport energetic particles. The SPP mission was confirmed in March 2014 and is under development as a part of NASAs Living with a Star (LWS) Program. SPP is scheduled for launch in mid-2018, and will perform 24 orbits over a 7-year nominal mission duration. Seven Venus gravity assists gradually reduce SPPs perihelion from 35 solar radii (RS) for the first orbit to less than 10 RS for the final three orbits. In this paper we present the science, mission concept and the baseline vehicle for SPP, and examine how the mission will address the key science questions.