Sample records for kicker magnet system

  1. In situ baking method for degassing of a kicker magnet in accelerator beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamiya, Junichiro, E-mail: kamiya.junichiro@jaea.go.jp; Ogiwara, Norio; Yanagibashi, Toru

    In this study, the authors propose a new in situ degassing method by which only kicker magnets in the accelerator beam line are baked out without raising the temperature of the vacuum chamber to prevent unwanted thermal expansion of the chamber. By simply installing the heater and thermal radiation shield plates between the kicker magnet and the chamber wall, most of the heat flux from the heater directs toward the kicker magnet. The result of the verification test showed that each part of the kicker magnet was heated to above the target temperature with a small rise in the vacuummore » chamber temperature. A graphite heater was selected in this application to bake-out the kicker magnet in the beam line to ensure reliability and easy maintainability of the heater. The vacuum characteristics of graphite were suitable for heater operation in the beam line. A preliminary heat-up test conducted in the accelerator beam line also showed that each part of the kicker magnet was successfully heated and that thermal expansion of the chamber was negligibly small.« less

  2. RHIC ABORT KICKER WITH REDUCED COUPLING IMPEDANCE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HAHN,H.; DAVINO,D.

    2002-06-02

    Kicker magnets typically represent the most important contributors to the transverse impedance budget of accelerators and storage rings. Methods of reducing the impedance value of the SNS extraction kicker presently under construction and, in view of a future performance upgrade, that of the RHIC abort kicker have been thoroughly studied at this laboratory. In this paper, the investigation of a potential improvement from using ferrite different from the BNL standard CMD5005 is reported. Permeability measurements of several ferrite types have been performed. Measurements on two kicker magnets using CMD5005 and C2050 suggest that the impedance of a magnet without externalmore » resistive damping, such as the RHIC abort kicker, would benefit.« less

  3. The Abort Kicker System for the PEP-II Storage Rings at SLAC.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delamare, Jeffrey E

    2003-06-20

    The PEP-II project has two storage rings. The HER (High Energy Ring) has up to 1.48 A of election beam at 9 GeV, and the LER (Low Energy Ring) has up to 2.14 A of positron beam at 3.1 GeV. To protect the HER and LER beam lines in the event of a ring component failure, each ring has an abort kicker system which directs the beam into a dump when a failure is detected. Due to the high current of the beams, the beam kick is tapered from 100% to 80% in 7.33 {micro}S (the beam transit time aroundmore » the ring). This taper distributes the energy evenly across the window which separates the ring from the beam dump such that the window is not damaged. The abort kicker trigger is synchronized with the ion clearing gap of the beam allowing for the kicker field to rise from 0-80% while there is no beam in the kicker magnet. Originally the kicker system was designed for a rise time of 370nS [1], but because the ion clearing gap was reduced in half, so was the rise time requirement for the kicker. This report discusses the design of the system interlocks, diagnostics, and modulator with the modifications necessary to accommodate an ion clearing gap of 185nS.« less

  4. New Fast Kicker Results from the Muon g-2 E-989 Experiment at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreckenberger, A. P.; Chapelain, A.; Mikhailichenko, A. A.

    We describe the installation, commissioning, and char-acterization of the injection kicker system for the E-989 experiment at Fermilab for a precision measurement of the muon anomalous magnetic moment. Control and monitoring systems have been implemented to acquire and record the waveforms of each kicker pulse, and measurements of various kicker system observables were recorded in the presence of the 1.45 T g-2 storage ring magnetic field. These monitoring systems are necessary to understand the systematic contribution to the measure-ment of the precession frequency. We examine the dependence of muon capture to kicker field predictions.

  5. Beam-based compensation of extracted-beam displacement caused by field ringing of pulsed kicker magnets in the 3 GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    NASA Astrophysics Data System (ADS)

    Harada, Hiroyuki; Saha, Pranab Kumar; Tamura, Fumihiko; Meigo, Shin-ichiro; Hotchi, Hideaki; Hayashi, Naoki; Kinsho, Michikazu; Hasegawa, Kazuo

    2017-09-01

    Commissioned in October 2007, the 3 GeV rapid cycling synchrotron (RCS) of the Japan Proton Accelerator Research Complex was designed for a high-intensity output beam power of 1 MW. The RCS extracts 3 GeV proton beams of two bunches by using eight pulsed kicker magnets and three DC septum magnets with 25 Hz repetition. These beams are delivered to a materials and life science experimental facility (MLF) and a 50 GeV main ring synchrotron (MR). However, the flat-top fields of the kicker magnets experience ringing that displaces the position of the extracted beam. This displacement is a major issue from the viewpoint of target integrity at the MLF and emittance growth at MR injection. To understand the flat-top uniformity of the total field of all the kickers, the uniformity was measured as the displacement of the extracted beams by using a shorter bunched beam and scanning the entire trigger timing of the kickers. The beam displacement of the first bunch exceeded the required range. Therefore, we performed beam-based measurements kicker by kicker to understand each field-ringing effect, and then we understood the characteristics (strength and temporal structure) of each ringing field. We managed to cancel out the ringing by using all the beam-based measurement data and optimizing each trigger timing. As a result, the field-ringing effect of the kickers was successfully compensated by optimizing the trigger timing of each kicker without hardware upgrades or improvements to the kicker system. By developing an automatic monitoring and correction system, we now have a higher stability of extracted beams during routine user operation. In this paper, we report our procedure for ringing compensation and present supporting experimental results.

  6. Control System for the LLNL Kicker Pulse Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J A; Anaya, R M; Cook, E G

    2002-06-18

    A solid-state high voltage pulse generator with multi-pulse burst capability, very fast rise and fall times, pulse width agility, and amplitude modulation capability for use with high speed electron beam kickers has been designed and tested at LLNL. A control system calculates a desired waveform to be applied to the kicker based on measured electron beam displacement then adjusts the pulse generators to provide the desired waveform. This paper presents the design of the control system and measure performance data from operation on the ETA-11 accelerator at LLNL.

  7. RHIC BEAM ABORT KICKER POWER SUPPLY SYSTEM COMMISSIONING EXPERIENCE AND REMAINING ISSUES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZHANG,W.; AHRENS,L.A.; MI,J.

    2001-06-18

    The RHIC Beam Abort Kicker Power Supply Systems commissioning experience and the remaining issues will be reported in this paper. The RHIC Blue Ring Beam Abort Kicker Power Supply System initial commissioning took place in June 1999. Its identical system in Yellow Ring was brought on line during Spring 2000. Each of the RHIC Beam Abort Kicker Power Supply Systems consists of five high voltage modulators and subsystems. These systems are critical devices for RHIC machine protection and environmental protection. They are required to be effective, reliable and operating with sufficient redundancy to safely abort the beam to its beammore » dump at the end of accumulation or at any time when they are commanded. To deflect 66 GeV ion beam to the beam absorbers, the RHIC Beam Abort Kicker Power Supply Systems were operated at 22 kV level. The RHIC 2000 commissioning run was very successful.« less

  8. Kicker field simulation and measurement for the muon g-2 experiment at FNAL

    NASA Astrophysics Data System (ADS)

    Chang, Seung Pyo; Kim, Young Im; Choi, Jihoon; Semertzidis, Yannis; muon g-2 experiment Collaboration

    2017-01-01

    In the Muon g-2 experiment, muon beam is injected to the storage ring in a slightly tilted orbit whose center is 77 mm away from the center of the ring. The kicker is needed to send the muon beam to the central orbit. The magnetic kicker is designed for the experiment and about 0.1 Tm field integral is needed. The peak current pulse is 4200 A to make this field integral. This strong kicker pulse could make unwanted eddy current occur. This eddy current could spoil the main magnetic field of the storage ring. This could be a critical threat to the precision of experiment. The kicker field simulation has done using OPERA to estimate the effects. Also the kicker field should be measured based on Faraday effect. The measurement has tested in the lab before install the experiment area. In this presentation, the simulation and measurement results will be discussed. This work was supported by IBS-R017-D1-2016-a00.

  9. SNS Extraction Fast Kicker System Development

    DTIC Science & Technology

    2003-06-01

    SNS EXTRACTION FAST KICKER SYSTEM DEVELOPMENT * W. Zhang ξ, J. Sandberg, R. Lambiase, Y.Y. Lee, R. Lockey, J. Mi, T. Nehring, C. Pai, N. Tsoupas...Oak Ridge, TN 37831 * SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for...the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and

  10. Design of an Inductive Adder for the FCC injection kicker pulse generator

    NASA Astrophysics Data System (ADS)

    Woog, D.; Barnes, M. J.; Ducimetière, L.; Holma, J.; Kramer, T.

    2017-07-01

    The injection system for a 100 TeV centre-of-mass collider is an important part of the Future Circular Collider (FCC) study. Due to issues with conventional kicker systems, such as self-triggering and long term availability of thyratrons and limitations of HV-cables, innovative design changes are planned for the FCC injection kicker pulse generator. An inductive adder (IA) based on semiconductor (SC) switches is a promising technology for kicker systems. Its modular design, and the possibility of an active ripple suppression are significant advantages. Since the IA is a complex device, with multiple components whose characteristics are important, a detailed design study and construction of a prototype is necessary. This paper summarizes the system requirements and constraints, and describes the main components and design challenges of the prototype IA. It outlines the results from simulations and measurements on different magnetic core materials as well as on SC switches. The paper concludes on the design choices and progress for the prototype to be built at CERN.

  11. Comparison of the Window-Frame RHIC-abort kicker with C-type Kicker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsoupas, N.; Hahn, H.; Meng, W.

    2014-08-26

    The high intensity proton bunches (~2.5x10 11 p/bunch ) circulating in RHIC increase the temperature of the ferrite-made RHIC-abort-kickers above the Curie point; as a result, the kickers cannot provide the required field to abort the beam at the beam dump. A team of experts in the CAD department worked on modifying the design of the window-frame RHIC-abort kicker to minimize the hysteresis losses responsible for the increase of the ferrite’s temperature. In this technical note we report some results from the study of two possible modifications of the window-frame RHIC-abort kicker, and we compare these results with those ofmore » a propose C-type RHIC-abort kicker. We also include an Appendix where we describe a method which may further reduce the hysteresis losses of the window-frame kicker.« less

  12. Design and test of the RHIC CMD10 abort kicker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, H.; Blaskiewicz, M.; Drees, A.

    2015-05-03

    In recent RHIC operational runs, planned and unplanned pre-fire triggered beam aborts have been observed that resulted in quenches of SC main ring magnets, indicating a weakened magnet kick strength due to beam-induced ferrite heating. An improvement program was initiated to reduce the longitudinal coupling impedance with changes to the ferrite material and the eddy-current strip geometry. Results of the impedance measurements and of magnet heating tests with CMD10 ferrite up to 190°C are reported. All 10 abort kickers in the tunnel have been modified and were provided with a cooling system for the RUN 15.

  13. Longitudinal and transverse feedback kickers for the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corlett, J.N.; Johnson, J.; Lambertson, G.

    We describe the development of electromagnetic kickers for coupled-bunch feedback systems at the ALS. Transverse kickers are of a stripline design with one kicker per plane, operating in the baseband, 10 kHz to 250 MHz. Longitudinal lockers are of a coaxial design with electrodes paired in series operating over the band 1.00 to 1.25 GHz. Operating-band measurements and parasitic impedance measurements are presented. Power levels from beam induced signals are presented. Fabrication techniques are discussed.

  14. Impedance measurements of the extraction kicker system for the rapid cycling synchrotron of China Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Huang, Liang-Sheng; Wang, Sheng; Liu, Yu-Dong; Li, Yong; Liu, Ren-Hong; Xiao, Ou-Zheng

    2016-04-01

    The fast extraction kicker system is one of the most important accelerator components and the main source of impedance in the Rapid Cycling Synchrotron of the China Spallation Neutron Source. It is necessary to understand the kicker impedance before its installation into the tunnel. Conventional and improved wire methods are employed in the impedance measurement. The experimental results for the kicker impedance are explained by comparison with simulation using CST PARTICLE STUDIO. The simulation and measurement results confirm that the window-frame ferrite geometry and the end plate are the important structures causing coupling impedance. It is proved in the measurements that the mismatching from the power form network to the kicker leads to a serious oscillation sideband of the longitudinal and vertical impedance and the oscillation can be reduced by ferrite absorbing material. Supported by National Natural Science Foundation of China (11175193, 11275221)

  15. Some Calculations for the RHIC Kicker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claus, J.

    1996-12-01

    The bunches that arrive from the AGS are put on to RHIC's median plane by a string of four injection kickers in each ring. There are four short kickers rather than one long one in order to keep the kicker filling time acceptable, filling time being defined as the amount of time needed for increasing the deflecting field in the kicker from zero to its nominal value. During the filling time process the energy stored in the deflecting field is moved from outside the kicker to its aperture; since energy can only be displaced with finite velocity the filling timemore » is non-zero for kickers of non-zero length, and tends to increase with increasing length. It is one of the more important parameters of the kicker because it sets a lower limit to the time interval between the last of the already circulating bunches and the newly injected one, and thus an upper limit to the total number of bunches that can be injected. RF gymnastics can be used to pack the bunches tighter than is indicated by this limit, but such gymnastics required radial aperture beyond what would be required otherwise, as well as time, and probably special hardware. Minimization of the kicker's stored energy requires minimization of its aperture, it presents therefore a major aperture restriction. Unless it is placed at a point where the dispersion is negligible its aperture would have to be increased in order to provide the radial space needed for the gymnastics. Both the amount of extra space needed and the rate of longitudinal displacement increase with the maximum deviation in energy of the bunch to be displaced from the nominal value, thus taking more time for the exercise reduces the aperture requirements. This time is measured in terms of synchrotron periods and is not small. It adds directly to the filling time of each ring and decreases therefore the time-average luminosity. Evidently the maximation of the time-average luminosity is a complex issue in which the kicker filling time is a major

  16. ADVANCEMENT OF THE RHIC BEAM ABORT KICKER SYSTEM.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZHANG,W.AHRENS,L.MI,J.OERTER,B.SANDBERG,J.WARBURTON,D.

    2003-05-12

    As one of the most critical system for RHIC operation, the beam abort kicker system has to be highly available, reliable, and stable for the entire operating range. Along with the RHIC commission and operation, consistent efforts have been spend to cope with immediate issues as well as inherited design issues. Major design changes have been implemented to achieve the higher operating voltage, longer high voltage hold-off time, fast retriggering and redundant triggering, and improved system protection, etc. Recent system test has demonstrated for the first time that both blue ring and yellow ring beam abort systems have achieved moremore » than 24 hours hold off time at desired operating voltage. In this paper, we report break down, thyratron reverse arcing, and to build a fast re-trigger system to reduce beam spreading in event of premature discharge.« less

  17. The design improvement of horizontal stripline kicker in TPS storage ring

    NASA Astrophysics Data System (ADS)

    Chou, P. J.; Chan, C. K.; Chang, C. C.; Hsu, K. T.; Hu, K. H.; Kuan, C. K.; Sheng, I. C.

    2017-07-01

    We plan to replace the existing horizontal stripline kicker of the transverse feedback system with an improved design. Large reflected power was observed at the downstream port of stripline kicker driven by the feedback amplifier. A rapid surge of vacuum pressure was observed when we tested the high current operation in TPS storage ring in April 2016. A burned feedthrough of the horizontal stripline kicker was discovered during a maintenance shutdown. The improved design is targeted to reduce the reflection of driving power from feedback system and to reduce beam induced RF heating. This major modification of the design is described. The results of RF simulation performed with the electromagnetic code GdfidL are reported as well.

  18. Measurement and simulation of the RHIC abort kicker longitudinal impedence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu,N.P.; Hahn,H.; Choi, E.

    2009-09-01

    In face of the new upgrades for RHIC the longitudinal impedance of the machine plays an important role in setting the threshold for instabilities and the efficacy of some systems. In this paper we describe the measurement of the longitudinal impedance of the abort kicker for RHIC as well as computer simulations of the structure. The impedance measurement was done by the S{sub 21} wire method covering the frequency range from 9 kHz to 2.5 GHz. We observed a sharp resonance peak around 10 MHz and a broader peak around 20 MHz in both, the real and imaginary part, ofmore » the Z/n. These two peaks account for a maximum imaginary longitudinal impedance of j15 {Omega}, a value an order of magnitude larger than the estimated value of j0.2 {Omega}, which indicates that the kicker is one of the main sources of longitudinal impedance in the machine. A computer model was constructed for simulations in the CST MWS program. Results for the magnet input and the also the beam impedance are compared to the measurements. A more detail study of the system properties and possible changes to reduce the coupling impedance are presented.« less

  19. Analysis of beam loss induced abort kicker instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang W.; Sandberg, J.; Ahrens, L.

    2012-05-20

    Through more than a decade of operation, we have noticed the phenomena of beam loss induced kicker instability in the RHIC beam abort systems. In this study, we analyze the short term beam loss before abort kicker pre-fire events and operation conditions before capacitor failures. Beam loss has caused capacitor failures and elevated radiation level concentrated at failed end of capacitor has been observed. We are interested in beam loss induced radiation and heat dissipation in large oil filled capacitors and beam triggered thyratron conduction. We hope the analysis result would lead to better protection of the abort systems andmore » improved stability of the RHIC operation.« less

  20. Design of barrier bucket kicker control system

    NASA Astrophysics Data System (ADS)

    Ni, Fa-Fu; Wang, Yan-Yu; Yin, Jun; Zhou, De-Tai; Shen, Guo-Dong; Zheng, Yang-De.; Zhang, Jian-Chuan; Yin, Jia; Bai, Xiao; Ma, Xiao-Li

    2018-05-01

    The Heavy-Ion Research Facility in Lanzhou (HIRFL) contains two synchrotrons: the main cooler storage ring (CSRm) and the experimental cooler storage ring (CSRe). Beams are extracted from CSRm, and injected into CSRe. To apply the Barrier Bucket (BB) method on the CSRe beam accumulation, a new BB technology based kicker control system was designed and implemented. The controller of the system is implemented using an Advanced Reduced Instruction Set Computer (RISC) Machine (ARM) chip and a field-programmable gate array (FPGA) chip. Within the architecture, ARM is responsible for data presetting and floating number arithmetic processing. The FPGA computes the RF phase point of the two rings and offers more accurate control of the time delay. An online preliminary experiment on HIRFL was also designed to verify the functionalities of the control system. The result shows that the reference trigger point of two different sinusoidal RF signals for an arbitrary phase point was acquired with a matched phase error below 1° (approximately 2.1 ns), and the step delay time better than 2 ns were realized.

  1. AN ENGINEERING SOLUTION TO THE RHIC BEAM ABORT KICKER UPGRADE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZHANG,W.ROSER,T.SANDBERG,J.TAN,Y.ET AL.

    2004-05-23

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is the world largest superconducting accelerator for nuclear energy research. Particle beams traveling in opposite directions in two accelerator rings, Blue and Yellow, collide at six interaction regions to create phenomena of the early universe. There are more than 1700 superconducting magnets and very sophisticate and delicate large detectors inside the RHIC tunnel. With high beam intensity and ultra high beam energy, an inadvertent loss of beam can result severe damage to the superconducting magnets and detectors. Beam abort kickers are used to remove beam safely from the ring. Themore » large inductive load, high current capability, short beam gap, and high reliability are the challenging issues of this system design. With high intensity and high momentum beam operation, it is desirable to have all high voltage modulators located outside of RHIC tunnel. However, to generate 22 kA output current per modulator with fast rise time, a conventional low impedance PFN and matched transmission cable design can push the operation voltage easily into 100 kV range. The large quantity of high voltage pulse transmission cables required by conventional design is another difficult issue. Therefore, the existing system has all ten high voltage modulators located inside RHIC tunnel. More than a hundred plastic packaged mineral oil filled high voltage capacitors raise serious concerns of fire and smoking threats. Other issues, such as kicker misfire, device availability in the future, and inaccessibility during operation, also demand an engineering solution for the future upgrade. In this paper, we investigate an unconventional approach to meet the technical challenges of RHIC beam abort system. The proposed design has all modulators outside of the RHIC tunnel. It will transmit output pulse through high voltage cables. The modulators will utilize solid-state switches, and operate at a maximum voltage

  2. Determination of Kicker Vacuum Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze, Martin E.

    This note examines the effect of elevated vacuum pressures in the kicker region of the DARHT 2nd Axis which can lead to changes in the beam tune due to the long pulse length. The kicker uses Rexolite as an insulator supporting the electrodes. Rexolite is hygroscopic resulting is a large outgassing rate and prolonged pump down times after exposure to atmospheric conditions. LAMDA [1] is used to simulate the effect of ionization of the residual gas resulting in partial space charge neutralization and changes to the tune between the beginning and end of the pulse. The effect of the ion-hosemore » instability is also examined. The purpose of this note is to establish/validate the required pressure in the downstream transport.« less

  3. PRELIMINARY TEST RESULTS OF A PROTOTYPE FAST KICKER FOR APS MBA UPGRADE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, C.-Y.; Morrison, L.; Sun, X.

    The APS multi-bend achromatic (MBA) upgrade storage ring plans to support two bunch fill patterns: a 48-bunch and a 324-bunch. A “swap out” injection scheme is required. In order to provide the required kick to injected beam, to minimize the beam loss and residual oscillation of injected beam, and to minimize the perturbation to stored beam during injection, the rise, fall, and flat-top parts of the kicker pulse must be within a 16.9-ns interval. Stripline-type kickers are chosen for both injection and extraction. We developed a prototype kicker that supports a ±15kV differential pulse voltage. We performed high voltage discharge,more » TDR measurement, high voltage pulse test and beam test of the kicker. We report the final design of the fast kicker and the test results.« less

  4. RF kicker cavity to increase control in common transport lines

    DOEpatents

    Douglas, David R.; Ament, Lucas J. P.

    2017-04-18

    A method of controlling e-beam transport where electron bunches with different characteristics travel through the same beam pipe. An RF kicker cavity is added at the beginning of the common transport pipe or at various locations along the common transport path to achieve independent control of different bunch types. RF energy is applied by the kicker cavity kicks some portion of the electron bunches, separating the bunches in phase space to allow independent control via optics, or separating bunches into different beam pipes. The RF kicker cavity is operated at a specific frequency to enable kicking of different types of bunches in different directions. The phase of the cavity is set such that the selected type of bunch passes through the cavity when the RF field is at a node, leaving that type of bunch unaffected. Beam optics may be added downstream of the kicker cavity to cause a further separation in phase space.

  5. First Performance Results of the PIP2IT MEBT 200 Ohm Kicker Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saewert, G.; Awida, M. H.; Chase, B. E.

    The PIP-II project is a program to upgrade the Fermilab accelerator complex. The PIP-II linac includes a 2.1 MeV Medium Energy Beam Transport (MEBT) section that incorporates a unique chopping system to perform arbitrary, bunch-by-bunch removal of 162.5 MHz structured beam. The MEBT chopping system will consist of two identical kickers working together and a beam absorber. One design of two having been proposed has been a 200 Ohm characteristic impedance traveling wave dual-helix kicker driven with custom designed high-speed switches. This paper reports on the first performance results of one prototype kicker built, installed and tested with beam at the PIP-II Injector Test (PIP2IT) facility. The helix deflector design details are discussed. The electrical performance of the high-speed switch driver operating at 500 V bias is presented. Tests performed were chopping beam at 81.25 MHz for microseconds as well as with a truly arbitrary pattern for 550more » $$\\mu$$s bursts having a 45 MHz average switching rate and repeating at 20 Hz.« less

  6. BEAM DYNAMICS ANALYSIS FOR THE ULTRA-FAST KICKER IN CIRCULAR COOLER RING OF JLEIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.

    An ultra-fast kicker system consisting of four quarter wavelength resonator based deflecting cavities was developed that simultaneously resonates at 10 subharmonic modes of the 476.3MHz bunch repetition frequency. Thus every 10th bunch in the bunch train will experience a transverse kick while all the other bunches are undisturbed. This fast kicker is being developed for the Energy Recovery Linac (ERL) based electron Circular Cooler Ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously MEIC). The electron bunches can be reused 10-30 turns thus the beam current in the ERL can be reduced to 1/10 - 1/30 (150mAmore » - 50mA) of the cooling bunch current (1.5A). In this paper, several methods to synthesize such a kicker waveform and the comparison made by the beam dynamics tracking in Elegant will be discussed.« less

  7. Investigation of an Ultrafast Harmonic Resonant RF Kicker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yulu

    An Energy Recovery Linac (ERL) based multi-turn electron Circulator Cooler Ring (CCR) is envisaged in the proposed Jefferson Lab Electron Ion Collider (JLEIC) to cool the ion bunches with high energy (55 MeV), high current (1.5 A), high repetition frequency (476.3 MHz), high quality magnetized electron bunches. A critical component in this scheme is a pair of ultrafast kickers for the exchange of electron bunches between the ERL and the CCR. The ultrafast kicker should operate with the rise and fall time in less than 2.1 ns, at the repetition rate of ~10s MHz, and should be able to runmore » continuously during the whole period of cooling. These -and-fall time being combined together, are well beyond the state-of-art of traditional pulsed power supplies and magnet kickers. To solve this technical challenge, an alternative method is to generate this high repetition rate, fast rise-and-fall time short pulse continuous waveform by summing several finite number of (co)sine waves at harmonic frequencies of the kicking repetition frequency, and these harmonic modes can be generated by the Quarter Wave Resonater (QWR) based multifrequency cavities. Assuming the recirculator factor is 10, 10 harmonic modes (from 47.63 MHz to 476.3 MHz) with proper amplitudes and phases, plus a DC offset are combined together, a continuous short pulse waveform with the rise-and-fall time in less than 2.1 ns, repetition rate of 47.63 MHz waveform can be generated. With the compact and matured technology of QWR cavities, the total cost of both hardware development and operation can be reduced to a modest level. Focuse on the technical scheme, three main topics will be discussed in this thesis: the synthetization of the kicking pulse, the design and optimization of the deflecting QWR multi-integer harmonic frequency resonator and the fabrication and bench measurements of a half scale copper prototype. In the kicking pulse synthetization part, we begin with the Fourier Series expansion of an

  8. Simulation and measurement of the electrostatic beam kicker in the low-energy undulator test line.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldschmidt, G. J.

    1998-10-27

    An electrostatic kicker has been constructed for use in the Low-Energy Undulator Test Line (LEUTL) at the Advanced Photon Source (APS). The function of the kicker is to limit the amount of beam current to be accelerated by the APS linac. Two electrodes within the kicker create an electric field that adjusts the trajectory of the beam. This paper will explore the static fields that are set up between the offset electrode plates and determine the reaction of the beam to this field. The kicker was numerically simulated using the electromagnetic solver package MAFIA [1].

  9. Equalizer design techniques for dispersive cables with application to the SPS wideband kicker

    NASA Astrophysics Data System (ADS)

    Platt, Jason; Hofle, Wolfgang; Pollock, Kristin; Fox, John

    2017-10-01

    A wide-band vertical instability feedback control system in development at CERN requires 1-1.5 GHz of bandwidth for the entire processing chain, from the beam pickups through the feedback signal digital processing to the back-end power amplifiers and kicker structures. Dispersive effects in cables, amplifiers, pickup and kicker elements can result in distortions in the time domain signal as it proceeds through the processing system, and deviations from linear phase response reduce the allowable bandwidth for the closed-loop feedback system. We have developed an equalizer analog circuit that compensates for these dispersive effects. Here we present a design technique for the construction of an analog equalizer that incorporates the effect of parasitic circuit elements in the equalizer to increase the fidelity of the implemented equalizer. Finally, we show results from the measurement of an assembled backend equalizer that corrects for dispersive elements in the cables over a bandwidth of 10-1000 MHz.

  10. Amplitude Control of Solid-State Modulators for Precision Fast Kicker Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J A; Anaya, R M; Caporaso, G C

    2002-11-15

    A solid-state modulator with very fast rise and fall times, pulse width agility, and multi-pulse burst and intra-pulse amplitude adjustment capability for use with high speed electron beam kickers has been designed and tested at LLNL. The modulator uses multiple solid-state modules stacked in an inductive-adder configuration. Amplitude adjustment is provided by controlling individual modules in the adder, and is used to compensate for transverse e-beam motion as well as the dynamic response and beam-induced steering effects associated with the kicker structure. A control algorithm calculates a voltage based on measured e-beam displacement and adjusts the modulator to regulate beammore » centroid position. This paper presents design details of amplitude control along with measured performance data from kicker operation on the ETA-II accelerator at LLNL.« less

  11. RHIC Abort Kicker Prefire Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Y.; Perlstein, S.

    2014-07-07

    In an attempt to discover any pattern to prefire events, abort prefire kicker data from 2007 to the present day have been recorded. With the 2014 operations concluding, this comprises 8 years of prefire data. Any activities that the Pulsed Power Group did to decrease prefire occurrences were recorded as well, but some information may be missing. The following information is a compilation of the research to date.

  12. Reducing the beam impedance of the kicker at the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    NASA Astrophysics Data System (ADS)

    Shobuda, Yoshihiro; Chin, Yong Ho; Hayashi, Naoki; Irie, Yoshiro; Takayanagi, Tomohiro; Togashi, Tomohito; Toyama, Takeshi; Yamamoto, Kazami; Yamamoto, Masanobu

    2018-06-01

    The present four-terminal kicker at the rapid cycling synchrotron (RCS) at the Japan Proton Accelerator Research Complex has the power-saving benefit that it allows beam extraction by doubling the excitation currents with two shorted ends. In this configuration, two terminals of the kicker are connected to the pulse-forming line while the other two are terminated in a short circuit. On the other hand, beam instabilities are excited in the RCS by the kicker beam impedances, which result from the short-circuit termination of the kicker. In this paper, we describe a scheme to reduce the beam impedance of the kicker using diodes (nonlinear devices), while retaining the benefit of the doubled kicker excitation currents. We employ a simulation technique to determine the beam impedance of the kicker, even when such nonlinear devices and long cables are included. The characteristic of beam impedance measured using the accelerated beams is well explained by that obtained from the simulation.

  13. GAS DISCHARGE SWITCH EVALUATION FOR RHIC BEAM ABORT KICKER APPLICATION.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZHANG,W.; SANDBERG,J.; SHELDRAKE,R.

    2002-06-30

    A gas discharge switch EEV HX3002 is being evaluated at Brookhaven National Laboratory as a possible candidate of RHIC Beam Abort Kicker modulator main switch. At higher beam energy and higher beam intensity, the switch stability becomes very crucial. The hollow anode thyratron used in the existing system is not rated for long reverse current conduction. The reverse voltage arcing caused thyratron hold-off voltage de-rating has been the main limitation of the system operation. To improve the system reliability, a new type of gas discharge switch has been suggested by Marconi Applied Technology for its reverse conducting capability.

  14. Ultrafast harmonic rf kicker design and beam dynamics analysis for an energy recovery linac based electron circulator cooler ring

    DOE PAGES

    Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.; ...

    2016-08-01

    An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less

  15. Ultrafast harmonic rf kicker design and beam dynamics analysis for an energy recovery linac based electron circulator cooler ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.

    An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less

  16. Evaluation of a knee-kicker bumper design for reducing knee morbidity among carpet layers.

    PubMed

    Huang, Wan-Fu; Wu, Chih-Fu

    2012-09-01

    Carpet layers have a high prevalence of occupational knee morbidity. One of the main causes is that they need to frequently 'kick' the bumper on the rear end of the knee kicker with one knee when laying a carpet. Considering the bumper's marked effects on kicking force transmission and safety, this study aims to improve the design of the knee-kicker bumper by reducing the risk factors. An improved pendulum-type impact-testing platform was designed as an evaluative apparatus, with the impulse and the coefficient of restitution serving as evaluative criteria. The newly developed bumper has improved firmness from drilled blind holes and an increase in effective forward force of 15%-138%, which implies lower operational demands and a lighter knee burden (i.e., less kicking energy results in the same work efficiency), and a softer contact surface that enhances operating comfort. The newly designed kicker was positively reviewed by subjects. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  17. Design and Testing of a Fast, 50 kV Solid-State Kicker Pulser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, E G; Hickman, B C; Lee, B S

    2002-06-24

    The ability to extract particle beam bunches from a ring accelerator in arbitrary order can greatly extend an accelerator's capabilities and applications. A prototype solid-state kicker pulser capable of generating asynchronous bursts of 50 kV pulses has been designed and tested into a 50{Omega} load. The pulser features fast rise and fall times and is capable of generating an arbitrary pattern of pulses with a maximum burst frequency exceeding 5 MHz If required, the pulse-width of each pulse in the burst is independently adjustable. This kicker modulator uses multiple solid-state modules stacked in an inductive-adder configuration where the energy ismore » switched into each section of the adder by a parallel array of MOSFETs. Test data, capabilities, and limitations of the prototype pulser are described.« less

  18. A Solid-State Modulator for High Speed Kickers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J A; Cook, E G; Chen, Y J

    2001-06-11

    An all solid-state modulator with multi-pulse burst capability, very fast rise and fall times, pulse width agility, and amplitude modulation capability for use with high-speed beam kickers has been designed and tested at LLNL. The modulator uses multiple solid-state modules stacked in an inductive-adder configuration. It provides a nominal 18kV pulse with {+-} 10% amplitude modulation on the order of several MHz, rise times on the order of 10nS, and can be configured for either positive or negative polarity. The presentation will include measured performance data.

  19. Harmonic Kicker RF Cavity for the Jefferson Lab Electron-Ion Collider EM Simulation, Modification, and Measurements

    NASA Astrophysics Data System (ADS)

    Overstreet, Sarah; Wang, Haipeng

    2017-09-01

    An important step in the conceptual design for the future Jefferson Lab Electron-Ion Collider (JLEIC) is the development of supporting technologies for the Energy Recovery Linac (ERL) Electron Cooling Facility. The Harmonic Radiofrequency (RF) kicker cavity is one such device that is responsible for switching electron bunches in and out of the Circulator Cooling Ring (CCR) from and to the ERL, which is a critical part of the ion cooling process. Last year, a half scale prototype of the JLEIC harmonic RF kicker model was designed with resonant frequencies to support the summation of 5 odd harmonics (95.26 MHz, 285.78 MHz, 476.30 MHz, 666.82 MHz, and 857.35 MHz); however, the asymmetry of the kicker cavity gives rise to multipole components of the electric field at the electron-beam axis of the cavity. Previous attempts to symmetrize the electric field of this asymmetrical RF cavity have been unsuccessful. The aim of this study is to modify the existing prototype for a uniform electric field across the beam pathway so that the electron bunches will experience nearly zero beam current loading. In addition to this, we have driven the unmodified cavity with the harmonic sum and used the wire stretching method for an analysis of the multipole electric field components.

  20. Development of the beam extraction synchronization system at the Fermilab Booster

    NASA Astrophysics Data System (ADS)

    Seiya, K.; Chaurize, S.; Drennan, C. C.; Pellico, W.; Sullivan, T.; Triplett, A. K.; Waller, A. M.

    2015-11-01

    The new beam extraction synchronization control system called "Magnetic Cogging" was developed at the Fermilab Booster and it replaces a system called "RF Cogging" as part of the Proton Improvement Plan (PIP).[1] The flux throughput goal for the PIP is 2.2×1017 protons per hour, which is double the present flux. The flux increase will be accomplished by doubling the number of beam cycles which, in turn, will double the beam loss in the Booster accelerator if nothing else is done. The Booster accelerates beam from 400 MeV to 8 GeV and extracts it to the Main Injector (MI) or Recycler Ring (RR). Cogging controls the beam extraction gap position which is created early in the Booster cycle and synchronizes the gap to the rising edge of the Booster extraction kicker and the MI/RR injection kicker. The RF Cogging system controls the gap position by changing only the radial position of the beam thus limiting the beam aperture and creating beam loss due to beam scraping. The Magnetic Cogging system controls the gap position with the magnetic field of the dipole correctors while the radial position feedback keeps the beam on a central orbit. Also with Magnetic Cogging the gap creation can occur earlier in the Booster cycle when the removed particles are at a lower energy. Thus Magnetic Cogging reduces the deposited energy of the lost particles (beam energy loss) and results in less beam loss activation. Energy loss was reduced by 40% by moving the gap creation energy from 700 MeV to 400 MeV when the Booster Cogging system was switched from RF Cogging to Magnetic Cogging in March 2015.

  1. Automated System Calibration and Verification of the Position Measurements for the Los Alamos Isotope Production Facility and the Switchyard Kicker Facilities

    NASA Astrophysics Data System (ADS)

    Barr, D.; Gilpatrick, J. D.; Martinez, D.; Shurter, R. B.

    2004-11-01

    The Los Alamos Neutron Science Center (LANSCE) facility at Los Alamos National Laboratory has constructed both an Isotope Production Facility (IPF) and a Switchyard Kicker (XDK) as additions to the H+ and H- accelerator. These additions contain eleven Beam Position Monitors (BPMs) that measure the beam's position throughout the transport. The analog electronics within each processing module determines the beam position using the log-ratio technique. For system reliability, calibrations compensate for various temperature drifts and other imperfections in the processing electronics components. Additionally, verifications are periodically implemented by a PC running a National Instruments LabVIEW virtual instrument (VI) to verify continued system and cable integrity. The VI communicates with the processor cards via a PCI/MXI-3 VXI-crate communication module. Previously, accelerator operators performed BPM system calibrations typically once per day while beam was explicitly turned off. One of this new measurement system's unique achievements is its automated calibration and verification capability. Taking advantage of the pulsed nature of the LANSCE-facility beams, the integrated electronics hardware and VI perform calibration and verification operations between beam pulses without interrupting production beam delivery. The design, construction, and performance results of the automated calibration and verification portion of this position measurement system will be the topic of this paper.

  2. Impact of the LHC beam abort kicker prefire on high luminosity insertion and CMS detector performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.I. Drozhdin, N.V. Mokhov and M. Huhtinen

    1999-04-13

    The effect of possible accidental beam loss in LHC on the IP5 insertion elements and CMS detector is studied via realistic Monte Carlo simulations. Such beam loss could be the consequence of an unsynchronized abort or in worst case an accidental prefire of one of the abort kicker modules. Simulations with the STRUCT code show that this beam losses would take place in the IP5 inner and outer triplets. MARS simulations of the hadronic and electro-magnetic cascades induced in such an event indicate severe heating of the inner triplet quadrupoles. In order to protect the IP5 elements, two methods aremore » proposed: a set of shadow collimators in the outer triplet and a prefired module compensation using a special module charged with an opposite voltage (antikicker). The remnants of the accidental beam loss entering the experimental hall have been used as input for FLUKA simulations in the CMS detector. It is shown that it is vital to take measures to reliably protect the expensive CMS tracker components.« less

  3. MEASURED TRANSVERSE COUPLING IMPEDANCE OF RHIC INJECTION AND ABORT KICKERS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HAHN,H.; DAVINO,D.

    2001-06-18

    Concerns regarding possible transverse instabilities in RHIC and the SNS pointed to the need for measurements of the transverse coupling impedance of ring components. The impedance of the RHIC injection and abort kicker was measured using the conventional method based on the S{sub 21} forward transmission coefficient. A commercial 450 {Omega} twin-wire Lecher line were used and the data was interpreted via the log-formula. All measurements, were performed in test stands fully representing operational conditions including pulsed power supplies and connecting cables. The measured values for the transverse coupling impedance in kick direction and perpendicular to it are comparable inmore » magnitude, but differ from Handbook predictions.« less

  4. A real time status monitor for transistor bank driver power limit resistor in boost injection kicker power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mi, J.; Tan, Y.; Zhang, W.

    2011-03-28

    For years suffering of Booster Injection Kicker transistor bank driver regulator troubleshooting, a new real time monitor system has been developed. A simple and floating circuit has been designed and tested. This circuit monitor system can monitor the driver regulator power limit resistor status in real time and warn machine operator if the power limit resistor changes values. This paper will mainly introduce the power supply and the new designed monitoring system. This real time resistor monitor circuit shows a useful method to monitor some critical parts in the booster pulse power supply. After two years accelerator operation, it showsmore » that this monitor works well. Previously, we spent a lot of time in booster machine trouble shooting. We will reinstall all 4 PCB into Euro Card Standard Chassis when the power supply system will be updated.« less

  5. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  6. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  7. Dump system concepts for the Future Circular Collider

    NASA Astrophysics Data System (ADS)

    Bartmann, W.; Atanasov, M.; Barnes, M. J.; Borburgh, J.; Burkart, F.; Goddard, B.; Kramer, T.; Lechner, A.; Ull, A. Sanz; Schmidt, R.; Stoel, L. S.; Ostojic, R.; Rodziewicz, J.; van Trappen, P.; Barna, D.

    2017-03-01

    The Future Circular Collider (FCC-hh) beam dump system must provide a safe and reliable extraction and dilution of the stored beam onto a dump absorber. Energy deposition studies show that damage limits of presently used absorber materials will already be reached for single bunches at 50 TeV. A fast field rise of the extraction kicker is required in order to sufficiently separate swept single bunches on the extraction protection absorbers in case of an asynchronous beam dump. In line with this demand is the proposal of a highly segmented extraction kicker system which allows for accepting a single kicker switch erratic and thus, significantly reduces the probability of an asynchronous beam dump. Superconducting septa are foreseen to limit the overall system length and power consumption. Two extraction system concepts are presented and evaluated regarding overall system length, energy deposition on absorbers, hardware requirements, radiation issues, and layout flexibility.

  8. A descriptive study of step alignment and foot positioning relative to the tee by professional rugby union goal-kickers.

    PubMed

    Cockcroft, John; Van Den Heever, Dawie

    2016-01-01

    This study describes foot positioning during the final two steps of the approach to the ball amongst professional rugby goal-kickers. A 3D optical motion capture system was used to test 15 goal-kickers performing 10 goal-kicks. The distance and direction of each step, as well as individual foot contact positions relative to the tee, were measured. The intra- and inter-subject variability was calculated as well as the correlation (Pearson) between the measurements and participant anthropometrics. Inter-subject variability for the final foot position was lowest (placed 0.03 ± 0.07 m behind and 0.33 ± 0.03 m lateral to the tee) and highest for the penultimate step distance (0.666 ± 0.149 m), performed at an angle of 36.1 ± 8.5° external to the final step. The final step length was 1.523 ± 0.124 m, executed at an external angle of 35.5 ± 7.4° to the target line. The intra-subject variability was very low; distances and angles for the 10 kicks varied per participant by 1.6-3.1 cm and 0.7-1.6°, respectively. The results show that even though the participants had variability in their run-up to the tee, final foot position next to the tee was very similar and consistent. Furthermore, the inter- and intra-subject variability could not be attributed to differences in anthropometry. These findings may be useful as normative reference data for coaching, although further work is required to understand the role of other factors such as approach speed and body alignment.

  9. Development of Cogging at the Fermilab Booster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiya, K.; Chaurize, S.; Drennan, C.

    2015-01-30

    The development of magnetic cogging is part of the Fermilab Booster upgrade within the Proton Improvement Plan (PIP). The Booster is going to send 2.25E17 protons/hour which is almost double the present flux, 1.4E17 protons/hour to the Main Injector (MI) and Recycler (RR). The extraction kicker gap has to synchronize to the MI and RR injection bucket in order to avoid a beam loss at the rising edge of the extraction and injection kickers. Magnetic cogging is able to control the revolution frequency and the position of the gap using the magnetic field from dipole correctors while radial position feedbackmore » keeps the beam at the central orbit. The new cogging is expected to reduce beam loss due to the orbit changes and reduce beam energy loss when the gap is created. The progress of the magnetic cogging system development is going to be discussed in this paper.« less

  10. POWER SUPPLY CONTROL AND MONITORING FOR THE SNS RING AND TRANSPORT SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LAMBIASE,R.; OERTER,B.; PENG,S.

    2001-06-28

    There are approximately 300 magnet power supplies in the SNS accumulator ring and transport lines. Control and monitoring of the these converters will be primarily accomplished with a new Power Supply Interface and Controller (PSI/PSC) system developed for the SNS project. This PSI/PSC system provides all analog and digital commands and status readbacks in one fiber isolated module. With a maximum rate of 10KHz, the PSI/PSC must be supplemented with higher speed systems for the wide bandwidth pulsed injection supplies, and the even wider bandwidth extraction kickers. This paper describes the implementation of this PSI/PSC system, which was developed throughmore » an industry/laboratory collaboration, and the supplementary equipment used to support the wider bandwidth pulsed supplies.« less

  11. Large gap magnetic suspension system

    NASA Technical Reports Server (NTRS)

    Abdelsalam, Moustafa K.; Eyssa, Y. M.

    1991-01-01

    The design of a large gap magnetic suspension system is discussed. Some of the topics covered include: the system configuration, permanent magnet material, levitation magnet system, superconducting magnets, resistive magnets, superconducting levitation coils, resistive levitation coils, levitation magnet system, and the nitrogen cooled magnet system.

  12. Minimization of betatron oscillations of electron beam injected into a time-varying lattice via extremum seeking

    DOE PAGES

    Scheinker, Alexander; Huang, Xiaobiao; Wu, Juhao

    2017-02-20

    Here, we report on a beam-based experiment performed at the SPEAR3 storage ring of the Stanford Synchrotron Radiation Lightsource at the SLAC National Accelerator Laboratory, in which a model-independent extremum-seeking optimization algorithm was utilized to minimize betatron oscillations in the presence of a time-varying kicker magnetic field, by automatically tuning the pulsewidth, voltage, and delay of two other kicker magnets, and the current of two skew quadrupole magnets, simultaneously, in order to optimize injection kick matching. Adaptive tuning was performed on eight parameters simultaneously. The scheme was able to continuously maintain the match of a five-magnet lattice while the fieldmore » strength of a kicker magnet was continuously varied at a rate much higher (±6% sinusoidal voltage change over 1.5 h) than typically experienced in operation. Lastly, the ability to quickly tune or compensate for time variation of coupled components, as demonstrated here, is very important for the more general, more difficult problem of global accelerator tuning to quickly switch between various experimental setups.« less

  13. Magnetic Coordinate Systems

    NASA Astrophysics Data System (ADS)

    Laundal, K. M.; Richmond, A. D.

    2017-03-01

    Geospace phenomena such as the aurora, plasma motion, ionospheric currents and associated magnetic field disturbances are highly organized by Earth's main magnetic field. This is due to the fact that the charged particles that comprise space plasma can move almost freely along magnetic field lines, but not across them. For this reason it is sensible to present such phenomena relative to Earth's magnetic field. A large variety of magnetic coordinate systems exist, designed for different purposes and regions, ranging from the magnetopause to the ionosphere. In this paper we review the most common magnetic coordinate systems and describe how they are defined, where they are used, and how to convert between them. The definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date. The most detailed coordinate systems take the full IGRF into account and define magnetic latitude and longitude such that they are constant along field lines. These coordinate systems, which are useful at ionospheric altitudes, are non-orthogonal. We show how to handle vectors and vector calculus in such coordinates, and discuss how systematic errors may appear if this is not done correctly.

  14. Active Tensor Magnetic Gradiometer System

    DTIC Science & Technology

    2007-11-01

    Modify Forward Computer Models .............................................................................................2 Modify TMGS Simulator...active magnetic gradient measurement system are based upon the existing tensor magnetic gradiometer system ( TMGS ) developed under project MM-1328...Magnetic Gradiometer System ( TMGS ) for UXO Detection, Imaging, and Discrimination.” The TMGS developed under MM-1328 was successfully tested at the

  15. MTL distributed magnet measurement system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nogiec, J.M.; Craker, P.A.; Garbarini, J.P.

    1993-04-01

    The Magnet Test Laboratory (MTL) at the Superconducting Super collider Laboratory will be required to precisely and reliably measure properties of magnets in a production environment. The extensive testing of the superconducting magnets comprises several types of measurements whose main purpose is to evaluate some basic parameters characterizing magnetic, mechanic and cryogenic properties of magnets. The measurement process will produce a significant amount of data which will be subjected to complex analysis. Such massive measurements require a careful design of both the hardware and software of computer systems, having in mind a reliable, maximally automated system. In order to fulfillmore » this requirement a dedicated Distributed Magnet Measurement System (DMMS) is being developed.« less

  16. Passive magnetic bearing system

    DOEpatents

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  17. THE LINAC LASER NOTCHER FOR THE FERMILAB BOOSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, David E,; Duel, Kevin; Gardner, Matthew

    2016-09-27

    In synchrotron machines, the beam extraction is accomplished by a combination of septa and kicker magnets which deflect the beam from an accelerator into another. Ideally the kicker field must rise/fall in between the beam bunches. However, in reality, an intentional beam-free time region (aka "notch") is created on the beam pulse to assure that the beam can be extracted with minimal losses. In the case of the Fermilab Booster, the notch is created in the ring near injection energy by the use of fast kickers which deposit the beam in a shielded collimation region within the accelerator tunnel. Withmore » increasing beam power it is desirable to create this notch at the lowest possible energy to minimize activation. The Fermilab Proton Improvement Plan (PIP) initiated an R&D project to build a laser system to create the notch within a linac beam pulse at 750 keV. This talk will describe the concept for the laser notcher and discuss our current status, commissioning results, and future plans.« less

  18. Field Mapping System for Solenoid Magnet

    NASA Astrophysics Data System (ADS)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  19. Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers

    DOEpatents

    Jiles, David C.

    1991-04-16

    A multiparameter magnetic inspection system for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material.

  20. Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers

    DOEpatents

    Jiles, D.C.

    1991-04-16

    A multiparameter magnetic inspection system is disclosed for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material. 1 figure.

  1. Construction of vacuum system for Tristan accumulation ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishimaru, H.; Horikoshi, G.; Kobayashi, M.

    1983-08-01

    An all aluminum-alloy vacuum system for the TRISTAN accumulation ring is now under construction. Aluminum and aluminum alloys are preferred materials for ultrahigh vacuum systems of large electron storage rings because of their good thermal conductivity, extremely low outgassing rate, and low residual radioactivity. Vacuum beam chambers for the dipole and quadrupole magnets are extruded using porthole dies. The aluminum alloy 6063-T6 provides superior performance in extrusion. For ultrahigh vacuum performance, a special extrusion technique is applied which, along with the outgassing procedure used, is described in detail. Aluminum alloy 3004 seamless elliptical bellows are inserted between the dipole andmore » quadrupole magnet chambers. These bellows are produced by the hydraulic forming of a seamless tube. The seamless bellows and the beam chambers are joined by fully automatic welding. The ceramic chambers for the kicker magnets, the fast bump magnets, and the slow beam intensity monitor are inserted in the aluminum alloy beam chambers. The ceramic chamber (98% alumina) and elliptical bellows are brazed with brazing sheets (4003-3003-4003) in a vacuum furnace. The brazing technique is described. The inner surface of the ceramic chamber is coated with a TiMo alloy by vacuum evaporation to permit a smooth flow of the RF wall current. Other suitable aluminum alloy components, including fittings, feedthroughs, gauges, optical windows, sputter ion pumps, turbomolecular pumps, and valves have been developed; their fabrication is described.« less

  2. Magnetic suspension and balance systems (MSBSs)

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Kilgore, Robert A.

    1987-01-01

    The problems of wind tunnel testing are outlined, with attention given to the problems caused by mechanical support systems, such as support interference, dynamic-testing restrictions, and low productivity. The basic principles of magnetic suspension are highlighted, along with the history of magnetic suspension and balance systems. Roll control, size limitations, high angle of attack, reliability, position sensing, and calibration are discussed among the problems and limitations of the existing magnetic suspension and balance systems. Examples of the existing systems are presented, and design studies for future systems are outlined. Problems specific to large-scale magnetic suspension and balance systems, such as high model loads, requirements for high-power electromagnets, high-capacity power supplies, highly sophisticated control systems and position sensors, and high costs are assessed.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, Sergey A.; Didenko, Alexander; Lebedev, Valeri

    We present a design of a stripline kicker for Integrable Optics Test Accelerator (IOTA). For its experimental program IOTA needs two full-aperture kickers, capable to create an arbitrary controllable kick in 2D. For that reason their strengths are variable in a wide range of amplitudes up to 16 mrad, and the pulse length 100 ns is less than a revolution period for electrons. In addition, the kicker should have a physical aperture of 40 mm for a proposed operation with proton beam, and an outer size of 70 mm to fit inside existing quadrupole magnets to save space in themore » ring. Computer simulations using CST Microwave Studio show high field uniformity and wave impedance close to 50 {\\Omega}.« less

  4. Modular transportable superconducting magnetic energy systems

    NASA Technical Reports Server (NTRS)

    Lieurance, Dennis; Kimball, Foster; Rix, Craig

    1995-01-01

    Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.

  5. Modular transportable superconducting magnetic Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieurance, D.; Kimball, F.; Rix, C.

    1994-12-31

    Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given applicationmore » should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.« less

  6. Modular transportable superconducting magnetic energy systems

    NASA Astrophysics Data System (ADS)

    Lieurance, Dennis; Kimball, Foster; Rix, Craig

    1995-04-01

    Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.

  7. LHC magnet quench protection system

    NASA Astrophysics Data System (ADS)

    Coull, L.; Hagedorn, D.; Remondino, V.; Rodriguez-Mateos, F.

    1994-07-01

    The quench protection system for the superconducting magnets of the CERN Large Hadron Collider (LHC) is described. The system is based on the so called 'cold diode' concept. In a group of series connected magnets if one magnet quenches then the magnetic energy of all the magnets will be dissipated in the quenched magnet so destroying it. This is avoided by by-passing the quenched magnet and then rapidly de-exciting the unquenched magnets. For the LHC machine it is foreseen to use silicon diodes situated inside the cryostat as by-pass elements - so called 'cold diodes'. The diodes are exposed to some 50 kGray of radiation during a 10 year operation life-time. The high energy density of the LHC magnets (500 kJ/m) coupled with the relatively slow propagation speed of a 'natural' quench (10 to 20 m/s) can lead to excessive heating of the zone where the quench started and to high internal voltages. It is therefore necessary to detect quickly the incipient quench and fire strip heaters which spread the quench out more quickly over a large volume of the magnet. After a quench the magnet chain must be de-excited rapidly to avoid spreading the quench to other magnets and over-heating the by-pass diode. This is done by switching high-power energy-dump resistors in series with the magnets. The LHC main ring magnet will be divided into 16 electrically separated units which has important advantages.

  8. Multiphase magnetic systems: Measurement and simulation

    NASA Astrophysics Data System (ADS)

    Cao, Yue; Ahmadzadeh, Mostafa; Xu, Ke; Dodrill, Brad; McCloy, John S.

    2018-01-01

    Multiphase magnetic systems are common in nature and are increasingly being recognized in technical applications. One characterization method which has shown great promise for determining separate and collective effects of multiphase magnetic systems is first order reversal curves (FORCs). Several examples are given of FORC patterns which provide distinguishing evidence of multiple phases. In parallel, a visualization method for understanding multiphase magnetic interaction is given, which allocates Preisach magnetic elements as an input "Preisach hysteron distribution pattern" to enable simulation of different "wasp-waisted" magnetic behaviors. These simulated systems allow reproduction of different major hysteresis loops and FORC patterns of real systems and parameterized theoretical systems. The experimental FORC measurements and FORC diagrams of four commercially obtained magnetic materials, particularly those sold as nanopowders, show that these materials are often not phase pure. They exhibit complex hysteresis behaviors that are not predictable based on relative phase fraction obtained by characterization methods such as diffraction. These multiphase materials, consisting of various fractions of BaFe12O19, ɛ-Fe2O3, and γ-Fe2O3, are discussed.

  9. Magnet hospital recognition in hospital systems over time.

    PubMed

    Lasater, Karen B; Richards, Michael R; Dandapani, Nikila B; Burns, Lawton R; McHugh, Matthew D

    2017-06-13

    Magnet hospitals are recognized for nursing excellence and high-value patient outcomes, yet little is known about which and when hospitals pursue Magnet recognition. Concurrently, hospital systems are becoming a more prominent feature of the U.S. health care landscape. The aim of the study was to examine Magnet adoption among hospital systems over time. Using American Hospital Association surveys (1998-2012), we characterized the proportion of Magnet hospitals belonging to systems. We used hospital level fixed-effects regressions to capture changes in a given system hospital's Magnet status over time in relation to a variety of conditions, including prior Magnet adoption by system affiliates and nonaffiliates in local and geographically distant markets and whether these relationships varied by degree of system centralization. The proportion of Magnet hospitals belonging to a system is increasing. Prior Magnet adoption by a hospital within the local market was associated with an increased likelihood of a given system hospital becoming Magnet, but the effect was larger if there was prior adoption by affiliates (7.4% higher likelihood) versus nonaffiliates (2.7% higher likelihood). Prior adoption by affiliates and nonaffiliates in geographically distant markets had a lesser effect. Hospitals belonging to centralized systems were more reactive to Magnet adoption of nonaffiliate hospitals as compared with those in decentralized systems. Hospital systems take an organizational perspective toward Magnet adoption, whereby more system affiliates achieve Magnet recognition over time. The findings are relevant to health care and nursing administrators and policymakers interested in the diffusion of an empirically supported organizational innovation associated with quality outcomes, particularly in a time of increasing hospital consolidation and system expansion. We identify factors associated with Magnet adoption across system hospitals and demonstrate the importance of

  10. OPERATIONAL EXPERIENCE WITH BEAM ABORT SYSTEM FOR SUPERCONDUCTING UNDULATOR QUENCH MITIGATION*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harkay, Katherine C.; Dooling, Jeffrey C.; Sajaev, Vadim

    A beam abort system has been implemented in the Advanced Photon Source storage ring. The abort system works in tandem with the existing machine protection system (MPS), and its purpose is to control the beam loss location and, thereby, minimize beam loss-induced quenches at the two superconducting undulators (SCUs). The abort system consists of a dedicated horizontal kicker designed to kick out all the bunches in a few turns after being triggered by MPS. The abort system concept was developed on the basis of single- and multi-particle tracking simulations using elegant and bench measurements of the kicker pulse. Performance ofmore » the abort system—kick amplitudes and loss distributions of all bunches—was analyzed using beam position monitor (BPM) turn histories, and agrees reasonably well with the model. Beam loss locations indicated by the BPMs are consistent with the fast fiber-optic beam loss monitor (BLM) diagnostics described elsewhere [1,2]. Operational experience with the abort system, various issues that were encountered, limitations of the system, and quench statistics are described.« less

  11. Magnetic Launch Assist System Demonstration

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie demonstrates the Magnetic Launch Assist system, previously referred to as the Magnetic Levitation (Maglev) system, for space launch using a 5 foot model of a reusable Bantam Class launch vehicle on a 50 foot track that provided 6-g acceleration and 6-g de-acceleration. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the takeoff, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  12. Analysis of RHIC beam dump pre-fires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, W.; Ahrens, L.; Fischer, W.

    2011-03-28

    It has been speculated that the beam may cause instability of the RHIC Beam Abort Kickers. In this study, we explore the available data of past beam operations, the device history of key modulator components, and the radiation patterns to examine the correlations. The RHIC beam abort kicker system was designed and built in the 90's. Over last decade, we have made many improvements to bring the RHIC beam abort kicker system to a stable operational state. However, the challenge continues. We present the analysis of the pre-fire, an unrequested discharge of kicker, issues which relates to the RHIC machinemore » safety and operational stability.« less

  13. Anharmonic Oscillations of a Spring-Magnet System inside a Magnetic Coil

    ERIC Educational Resources Information Center

    Ladera, Celso L.; Donoso, Guillermo

    2012-01-01

    We consider the nonlinear oscillations of a simple spring-magnet system that oscillates in the magnetic field of an inductive coil excited with a dc current. Using the relations for the interaction of a coil and a magnet we obtain the motion equation of the system. The relative strengths of the terms of this equation can be adjusted easily by…

  14. Development of a bunch-by-bunch longitudinal feedback system with a wide dynamic range for the HIGS facility

    NASA Astrophysics Data System (ADS)

    Wu, W. Z.; Kim, Y.; Li, J. Y.; Teytelman, D.; Busch, M.; Wang, P.; Swift, G.; Park, I. S.; Ko, I. S.; Wu, Y. K.

    2011-03-01

    Electron beam coupled-bunch instabilities can limit and degrade the performance of storage ring based light sources. A longitudinal feedback system has been developed for the Duke storage ring to suppress multi-bunch beam instabilities which prevent stable, high-current operation of the storage ring based free-electron lasers (FELs) and an FEL driven Compton gamma source, the high intensity gamma-ray source (HIGS) at Duke University. In this work, we report the development of a state-of-the-art second generation longitudinal feedback system which employs a field programmable gate array (FPGA) based processor, and a broadband, high shunt-impedance kicker cavity. With two inputs and two outputs, the kicker cavity was designed with a resonant frequency of 937 MHz, a bandwidth of 97 MHz, and a shunt impedance of 1530 Ω. We also developed an S-matrix based technique to fully characterize the performance of the kicker cavity in the cold test. This longitudinal feedback system has been commissioned and optimized to stabilize high-current electron beams with a wide range of electron beam energies (250 MeV to 1.15 GeV) and a number of electron beam bunch modes, including the single-bunch mode and all possible symmetric bunch modes. This feedback system has become a critical instrument to ensure stable, high-flux operation of HIGS to produce nearly monochromatic, highly polarized Compton gamma-ray beams.

  15. Multiple harmonic frequencies resonant cavity design and half-scale prototype measurements for a fast kicker

    DOE PAGES

    Huang, Yulu; Wang, Haipeng; Wang, Shaoheng; ...

    2016-12-09

    Quarter wavelength resonator (QWR) based deflecting cavities with the capability of supporting multiple odd-harmonic modes have been developed for an ultrafast periodic kicker system in the proposed Jefferson Lab Electron Ion Collider (JLEIC, formerly MEIC). Previous work on the kicking pulse synthesis and the transverse beam dynamics tracking simulations show that a flat-top kicking pulse can be generated with minimal emittance growth during injection and circulation of the cooling electron bunches. This flat-top kicking pulse can be obtained when a DC component and 10 harmonic modes with appropriate amplitude and phase are combined together. To support 10 such harmonic modes,more » four QWR cavities are used with 5, 3, 1, and 1 modes, respectively. In the multiple-mode cavities, several slightly tapered segments of the inner conductor are introduced to tune the higher order deflecting modes to be harmonic, and stub tuners are used to fine tune each frequency to compensate for potential errors. In this paper, we summarize the electromagnetic design of the five-mode cavity, including the geometry optimization to get high transverse shunt impedance, the frequency tuning and sensitivity analysis, and the single loop coupler design for coupling to all of the harmonic modes. In particular we report on the design and fabrication of a half-scale copper prototype of this proof-of-principle five-odd-mode cavity, as well as the rf bench measurements. Lastly, we demonstrate mode superposition in this cavity experimentally, which illustrates the kicking pulse generation concept.« less

  16. Magnetic Flux Density of Different Types of New Generation Magnetic Attachment Systems.

    PubMed

    Akin, Hakan

    2015-07-01

    The purpose of this study was to analyze the static magnetic flux density of different types of new generation laser-welded magnetic attachments in the single position and the attractive position and to determine the effect of different corrosive environments on magnetic flux density. Magnetic flux densities of four magnetic attachment systems (Hyper slim, Hicorex slim, Dyna, and Steco) were measured with a gaussmeter. Then magnetic attachment systems were immersed in two different media, namely 1% lactic acid solution (pH 2.3), and 0.9% NaCl solution (pH 7.3). Magnetic flux densities of the attachment systems were measured with a gaussmeter after immersion to compare with measurements before immersion (α = 0.05). The data were statistically evaluated with one-way ANOVA, paired-samples t-test, and post hoc Tukey-Kramer multiple comparisons tests (α = 0.05). The highest magnetic flux density was found in Dyna magnets for both single and attractive positions. In addition, after the magnets were in the corrosive environments for 2 weeks, they had a significant decrease in magnetic flux density (p < 0.05). No significant differences were found between corrosive environments (p > 0.05). The leakage flux of all the magnetic attachments did not exceed the WHO's guideline of 40 mT. The magnets exhibited a significant decrease in magnetic flux density after aging in corrosive environments including lactic acid and NaCl. © 2014 by the American College of Prosthodontists.

  17. Microfluidic Biosensing Systems Using Magnetic Nanoparticles

    PubMed Central

    Giouroudi, Ioanna; Keplinger, Franz

    2013-01-01

    In recent years, there has been rapidly growing interest in developing hand held, sensitive and cost-effective on-chip biosensing systems that directly translate the presence of certain bioanalytes (e.g., biomolecules, cells and viruses) into an electronic signal. The impressive and rapid progress in micro- and nanotechnology as well as in biotechnology enables the integration of a variety of analytical functions in a single chip. All necessary sample handling and analysis steps are then performed within the chip. Microfluidic systems for biomedical analysis usually consist of a set of units, which guarantees the manipulation, detection and recognition of bioanalytes in a reliable and flexible manner. Additionally, the use of magnetic fields for performing the aforementioned tasks has been steadily gaining interest. This is because magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the biosensing system. In combination with these applied magnetic fields, magnetic nanoparticles are utilized. Some of the merits of magnetic nanoparticles are the possibility of manipulating them inside microfluidic channels by utilizing high gradient magnetic fields, their detection by integrated magnetic microsensors, and their flexibility due to functionalization by means of surface modification and specific binding. Their multi-functionality is what makes them ideal candidates as the active component in miniaturized on-chip biosensing systems. In this review, focus will be given to the type of biosening systems that use microfluidics in combination with magnetoresistive sensors and detect the presence of bioanalyte tagged with magnetic nanoparticles. PMID:24022689

  18. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System

    PubMed Central

    Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul

    2017-01-01

    In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated. PMID:28327513

  19. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System.

    PubMed

    Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul

    2017-03-22

    In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated.

  20. Magnetic Launch Assist System-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This illustration is an artist's concept of a Magnetic Launch Assist System, formerly referred as the Magnetic Levitation (Maglev) system, for space launch. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist System technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, landing gear and the wing size, as well as the elimination of propellant weight resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  1. Advanced Active-Magnetic-Bearing Thrust-Measurement System

    NASA Technical Reports Server (NTRS)

    Imlach, Joseph; Kasarda, Mary; Blumber, Eric

    2008-01-01

    An advanced thrust-measurement system utilizes active magnetic bearings to both (1) levitate a floating frame in all six degrees of freedom and (2) measure the levitation forces between the floating frame and a grounded frame. This system was developed for original use in measuring the thrust exerted by a rocket engine mounted on the floating frame, but can just as well be used in other force-measurement applications. This system offers several advantages over prior thrust-measurement systems based on mechanical support by flexures and/or load cells: The system includes multiple active magnetic bearings for each degree of freedom, so that by selective use of one, some, or all of these bearings, it is possible to test a given article over a wide force range in the same fixture, eliminating the need to transfer the article to different test fixtures to obtain the benefit of full-scale accuracy of different force-measurement devices for different force ranges. Like other active magnetic bearings, the active magnetic bearings of this system include closed-loop control subsystems, through which the stiffness and damping characteristics of the magnetic bearings can be modified electronically. The design of the system minimizes or eliminates cross-axis force-measurement errors. The active magnetic bearings are configured to provide support against movement along all three orthogonal Cartesian axes, and such that the support along a given axis does not produce force along any other axis. Moreover, by eliminating the need for such mechanical connections as flexures used in prior thrust-measurement systems, magnetic levitation of the floating frame eliminates what would otherwise be major sources of cross-axis forces and the associated measurement errors. Overall, relative to prior mechanical-support thrust-measurement systems, this system offers greater versatility for adaptation to a variety of test conditions and requirements. The basic idea of most prior active-magnetic

  2. Integrated semiconductor-magnetic random access memory system

    NASA Technical Reports Server (NTRS)

    Katti, Romney R. (Inventor); Blaes, Brent R. (Inventor)

    2001-01-01

    The present disclosure describes a non-volatile magnetic random access memory (RAM) system having a semiconductor control circuit and a magnetic array element. The integrated magnetic RAM system uses CMOS control circuit to read and write data magnetoresistively. The system provides a fast access, non-volatile, radiation hard, high density RAM for high speed computing.

  3. Enhancement of beam pulse controllability for a single-pulse formation system of a cyclotron.

    PubMed

    Kurashima, Satoshi; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Taguchi, Mitsumasa; Fukuda, Mitsuhiro

    2015-07-01

    The single-pulse formation technique using a beam chopping system consisting of two types of high-voltage beam kickers was improved to enhance the quality and intensity of the single-pulse beam with a pulse interval over 1 μs at the Japan Atomic Energy Agency cyclotron facility. A contamination rate of neighboring beam bunches in the single-pulse beam was reduced to less than 0.1%. Long-term purification of the single pulse beam was guaranteed by the well-controlled magnetic field stabilization system for the cyclotron magnet. Reduction of the multi-turn extraction number for suppressing the neighboring beam bunch contamination was achieved by restriction of a beam phase width and precise optimization of a particle acceleration phase. In addition, the single-pulse beam intensity was increased by a factor of two or more by a combination of two types of beam bunchers using sinusoidal and saw-tooth voltage waveforms. Provision of the high quality intense single-pulse beam contributed to improve the accuracy of experiments for investigation of scintillation light time-profile and for neutron energy measurement by a time-of-flight method.

  4. Enhancement of beam pulse controllability for a single-pulse formation system of a cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurashima, Satoshi, E-mail: kurashima.satoshi@jaea.go.jp; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu

    The single-pulse formation technique using a beam chopping system consisting of two types of high-voltage beam kickers was improved to enhance the quality and intensity of the single-pulse beam with a pulse interval over 1 μs at the Japan Atomic Energy Agency cyclotron facility. A contamination rate of neighboring beam bunches in the single-pulse beam was reduced to less than 0.1%. Long-term purification of the single pulse beam was guaranteed by the well-controlled magnetic field stabilization system for the cyclotron magnet. Reduction of the multi-turn extraction number for suppressing the neighboring beam bunch contamination was achieved by restriction of amore » beam phase width and precise optimization of a particle acceleration phase. In addition, the single-pulse beam intensity was increased by a factor of two or more by a combination of two types of beam bunchers using sinusoidal and saw-tooth voltage waveforms. Provision of the high quality intense single-pulse beam contributed to improve the accuracy of experiments for investigation of scintillation light time-profile and for neutron energy measurement by a time-of-flight method.« less

  5. Magnetic-Field-Response Measurement-Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2006-01-01

    A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a

  6. Study of magnetization switching in coupled magnetic nanostructured systems

    NASA Astrophysics Data System (ADS)

    Radu, Cosmin

    A study of magnetization dynamics experiments in nanostructured materials using the rf susceptibility tunnel diode oscillator (TDO) method is presented along with a extensive theoretical analysis. An original, computer controlled experimental setup that measures the change in susceptibility with the variation in external magnetic field and sample temperature was constructed. The TDO-based experiment design and construction is explained in detail, showing all the elements of originality. This experimental technique has proven reliable for characterizing samples with uncoupled magnetic structure and various magnetic anisotropies like: CrO2, FeCo/IrMn and Co/SiO2 thin films. The TDO was subsequently used to explore the magnetization switching in coupled magnetic systems, like synthetic antiferromagnet (SAF) structures. Magnetoresistive random access memory (MRAM) is an important example of devices where the use of SAF structure is essential. To support the understanding of the SAF magnetic behavior, its configuration and application are reviewed and more details are provided in an appendix. Current problems in increasing the scalability and decreasing the error rate of MRAM devices are closely connected to the switching properties of the SAF structures. Several theoretical studies that were devoted to the understanding of the concepts of SAF critical curve are reviewed. As one can notice, there was no experimental determination of SAF critical curve, due to the difficulties in characterizing a magnetic coupled structure. Depending of the coupling strength between the two ferromagnetic layers, on the SAF critical curve one distinguishes several new features, inexistent in the case of uncoupled systems. Knowing the configuration of the SAF critical curve is of great importance in order to control its switching characteristics. For the first time a method of experimentally recording the critical curve for SAF is proposed in this work. In order to overcome technological

  7. Magnetic suspension and balance system study

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Eyssa, Y. M.; Mcintosh, G. E.; Abdelsalam, M. K.

    1984-01-01

    A compact design for a superconducting magnetic suspension and balance system is developed for a 8 ft. x 8 ft. transonic wind tunnel. The main features of the design are: a compact superconducting solenoid in the suspended airplane model; permanent magnet wings; one common liquid helium dewar for all superconducting coils; efficient new race track coils for roll torques; use of established 11 kA cryostable AC conductor; acceptable AC losses during 10 Hz control even with all steel structure; and a 560 liter/hour helium liquefier. Considerable design simplicity, reduced magnet weights, and reduced heat leak results from using one common dewar which eliminates most heavy steel structure between coils and the suspended model. Operational availability is thought to approach 100% for such magnet systems. The weight and cost of the magnet system is approximately one-third that of previous less compact designs.

  8. [A study of magnetic shielding design for a magnetic resonance imaging linac system].

    PubMed

    Zhang, Zheshun; Chen, Wenjing; Qiu, Yang; Zhu, Jianming

    2017-12-01

    One of the main technical challenges when integrating magnetic resonance imaging (MRI) systems with medical linear accelerator is the strong interference of fringe magnetic fields from the MRI system with the electron beams of linear accelerator, making the linear accelerator not to work properly. In order to minimize the interference of magnetic fields, a magnetic shielding cylinder with an open structure made of high permeability materials is designed. ANSYS Maxwell was used to simulate Helmholtz coil which generate uniform magnetic field instead of the fringe magnetic fields which affect accelerator gun. The parameters of shielding tube, such as permeability, radius, length, side thickness, bottom thickness and fringe magnetic fields strength are simulated, and the data is processed by MATLAB to compare the shielding performance. This article gives out a list of magnetic shielding effectiveness with different side thickness and bottom thickness under the optimal radius and length, which showes that this design can meet the shielding requirement for the MRI-linear accelerator system.

  9. Magnetization reversal modes in fourfold Co nano-wire systems

    NASA Astrophysics Data System (ADS)

    Blachowicz, T.; Ehrmann, A.

    2015-09-01

    Magnetic nano-wire systems are, as well as other patterned magnetic structures, of special interest for novel applications, such as magnetic storage media. In these systems, the coupling between neighbouring magnetic units is most important for the magnetization reversal process of the complete system, leading to a variety of magnetization reversal mechanisms. This article examines the influence of the magnetic material on hysteresis loop shape, coercive field, and magnetization reversal modes. While iron nano-wire systems exhibit flat or one-step hysteresis loops, systems consisting of cobalt nano-wires show hysteresis loops with several longitudinal steps and transverse peaks, correlated to a rich spectrum of magnetization reversal mechanisms. We show that changing the material parameters while the system geometry stays identical can lead to completely different hysteresis loops and reversal modes. Thus, especially for finding magnetic nano-systems which can be used as quaternary or even higher-order storage devices, it is rational to test several materials for the planned systems. Apparently, new materials may lead to novel and unexpected behaviour - and can thus result in novel functionalities.

  10. Dynamically stable magnetic suspension/bearing system

    DOEpatents

    Post, R.F.

    1996-02-27

    A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw`s Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements. 32 figs.

  11. Dynamically stable magnetic suspension/bearing system

    DOEpatents

    Post, Richard F.

    1996-01-01

    A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw's Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements.

  12. Theoretical validation for changing magnetic fields of systems of permanent magnets of drum separators

    NASA Astrophysics Data System (ADS)

    Lozovaya, S. Y.; Lozovoy, N. M.; Okunev, A. N.

    2018-03-01

    This article is devoted to the theoretical validation of the change in magnetic fields created by the permanent magnet systems of the drum separators. In the article, using the example of a magnetic separator for enrichment of highly magnetic ores, the method of analytical calculation of the magnetic fields of systems of permanent magnets based on the Biot-Savart-Laplace law, the equivalent solenoid method, and the superposition principle of fields is considered.

  13. Thermal liquid propulsion system using magnetic nanofluid

    NASA Astrophysics Data System (ADS)

    Dave, V. H.; Virpura, H. A.; Bhatnagar, S. P.

    2018-05-01

    In the present study, we have demonstrated the thermal liquid propulsion system using the idea of magnetocaloric energy generation system. Thermal sensitive magnetic nanofluid is used for this study. In presence of magnetic field and temperature gradient, the magnetic nanofluid loses its magnetization. Hot fluid replaced by the fluid which is at ambient temperature. Temperature profile of liquid propulsion was measured in a horizontal closed loop of glass assembly.

  14. Studies of beam injection with a compensated bump and uncompensated bump in a synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbar Fakhri, Ali; Prajapati, S. K.; Ghodke, A. D.

    2013-08-15

    Synchrotron radiation sources Indus-1 and Indus-2 have a synchrotron as the common injector. A three kicker compensated bump injection scheme was employed for beam injection into this synchrotron. The stored beam current in the synchrotron is higher, when all the three kickers are operated at the same current than when kickers are operated at currents required to generate compensated bump. Beam dynamics studies have been done to understand why this happens. Theoretical studies indicate that higher stored current in the later case is attributed to smaller residual oscillations of injected beam. These studies also reveal that if the angle ofmore » the injected beam during beam injection is kept varying, the performance could be further improved. This is experimentally confirmed by injecting the beam on rising part of the injection septum magnet current pulse.« less

  15. Evaluation of Stress Distribution in Magnetic Materials Using a Magnetic Imaging System

    NASA Astrophysics Data System (ADS)

    Lo, C. C. H.; Paulsen, J. A.; Jiles, D. C.

    2004-02-01

    The feasibility of detecting stress distribution in magnetic materials by magnetic hysteresis and Barkhausen effect measurements has been evaluated using a newly developed magnetic imaging system. The system measured hysteresis loops and Barkhausen effect signals with the use of a surface sensor that was scanned over the material. The data were converted into a two-dimensional image showing spatial variations of the magnetic properties from which mechanical conditions of the materials can be inferred. In this study a nickel plate machined into a shear-beam load cell configuration was used. By applying a stress along the neutral axis, various stress patterns such as shear stress and stress concentration could be produced in different regions of the sample. The scanned images of magnetic properties such as coercivity and rms value of Barkhausen effect signal exhibited patterns similar to the stress distribution calculated using finite element model (FEM), in particular in the regions where a high stress level and a high stress gradient existed. For direct comparison, images of magnetic properties were simulated based on the results of FEM stress calculation and experimental calibration of the magnetomechanical effect. The simulated images were found to closely resemble the scanned images, indicating the possibility of measuring stress distribution by mapping magnetic properties using the magnetic imaging system.

  16. Magnetic suspension and balance system advanced study

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Eyssa, Y. M.; Mcintosh, G. E.; Abdelsalam, M. K.

    1985-01-01

    An improved compact design for a superconducting magnetic suspension and balance system for an 8 ft. x 8 ft. transonic wind tunnel is developed. The original design of an MSBS in NASA Cr-3802 utilized 14 external superconductive coils and a superconductive solenoid in the airplane test model suspended in a wind tunnel. The improvements are in the following areas: test model solenoid options, dynamic force limits on the model, magnet cooling options, structure and cryogenic designs, power supply specifications, and cost and performance evaluations. The improvements are: MSBS cost reduction of 28%, weight; reduction of 43%, magnet system ampere-meter reduction of 38%, helium liquifier capacity reduction by 33%, magnet system stored energy reduction by 55%, AC loss to liquid helium reduced by 76%, system power supply reduced by 68%, test coil pole strength increased by 19%, wing magnetization increased by 40%, and control frequency limit increased by 200% from 10 Hz to 30 Hz. The improvements are due to: magnetic holmium coil forms in the test model, better rare earth permanent magnets in the wings, fiberglass-epoxy structure replacing stainless steel, better coil configuration, and new saddle roll coil design.

  17. Tribology of magnetic storage systems

    NASA Technical Reports Server (NTRS)

    Bhushan, Bharat

    1992-01-01

    The construction and the materials used in different magnetic storage devices are defined. The theories of friction and adhesion, interface temperatures, wear, and solid-liquid lubrication relevant to magnetic storage systems are presented. Experimental data are presented wherever possible to support the relevant theories advanced.

  18. Propulsion and stabilization system for magnetically levitated vehicles

    DOEpatents

    Coffey, Howard T.

    1993-06-29

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.

  19. The superconducting magnet for the Maglev transport system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Hiroshi

    1994-07-01

    Magnetically levitated vehicles (Maglev) using superconducting magnets have been under development in Japan for the past 23 years. The superconducting magnets for the Maglev system are used in a special environment compared to other applications. They have to work stably subject to both mechanical and electromagnetic disturbances. The brief history of the Maglev development in Japan, the planning of new test line, the superconducting magnet`s stability and the on board refrigeration system will be presented.

  20. Topology optimized permanent magnet systems

    NASA Astrophysics Data System (ADS)

    Bjørk, R.; Bahl, C. R. H.; Insinga, A. R.

    2017-09-01

    Topology optimization of permanent magnet systems consisting of permanent magnets, high permeability iron and air is presented. An implementation of topology optimization for magnetostatics is discussed and three examples are considered. The Halbach cylinder is topology optimized with iron and an increase of 15% in magnetic efficiency is shown. A topology optimized structure to concentrate a homogeneous field is shown to increase the magnitude of the field by 111%. Finally, a permanent magnet with alternating high and low field regions is topology optimized and a Λcool figure of merit of 0.472 is reached, which is an increase of 100% compared to a previous optimized design.

  1. Feasibility of low-cost magnetic rail designs by integrating ferrite magnets and NdFeB magnets for HTS Maglev systems

    NASA Astrophysics Data System (ADS)

    Sun, R. X.; Deng, Z. G.; Gou, Y. F.; Li, Y. J.; Zheng, J.; Wang, S. Y.; Wang, J. S.

    2015-09-01

    Permanent magnet guideway (PMG) is an indispensable part of high temperature superconducting (HTS) Maglev systems. Present PMGs are made of NdFeB magnets with excellent performance and cost much. As another permanent magnet material, the ferrite magnet is weak at magnetic energy product and coercive force, but inexpensive. So, it is a possible way to integrate the ferrite and NdFeB magnets for cutting down the cost of present PMGs. In the paper, the equivalent on magnetic field intensity between ferrite magnets and NdFeB magnets was evaluated by finite element simulation. According to the calculation results, the magnetic field of the PMG integrating ferrite magnets and NdFeB magnets can be increased remarkably comparing with the pure ferrite PMG. It indicates that low-cost PMG designs by integrating the two permanent magnet materials are feasible for the practical HTS Maglev system.

  2. Review of magnetic refrigeration system as alternative to conventional refrigeration system

    NASA Astrophysics Data System (ADS)

    Mezaal, N. A.; Osintsev, K. V.; Zhirgalova, T. B.

    2017-10-01

    The refrigeration system is one of the most important systems in industry. Developers are constantly seeking for how to avoid the damage to the environment. Magnetic refrigeration is an emerging, environment-friendly technology based on a magnetic solid that acts as a refrigerant by magneto-caloric effect (MCE). In the case of ferromagnetic materials, MCE warms as the magnetic moments of the atom are aligned by the application of a magnetic field. There are two types of magnetic phase changes that may occur at the Curie point: first order magnetic transition (FOMT) and second order magnetic transition (SOMT). The reference cycle for magnetic refrigeration is AMR (Active Magnetic Regenerative cycle), where the magnetic material matrix works both as a refrigerating medium and as a heat regenerating medium, while the fluid flowing in the porous matrix works as a heat transfer medium. Regeneration can be accomplished by blowing a heat transfer fluid in a reciprocating fashion through the regenerator made of magnetocaloric material that is alternately magnetized and demagnetized. Many magnetic refrigeration prototypes with different designs and software models have been built in different parts of the world. In this paper, the authors try to shed light on the magnetic refrigeration and show its effectiveness compared with conventional refrigeration methods.

  3. Magnetic Actuation of Biological Systems

    NASA Astrophysics Data System (ADS)

    Lauback, Stephanie D.

    Central to the advancement of many biomedical and nanotechnology capabilities is the capacity to precisely control the motion of micro and nanostructures. These applications range from single molecule experiments to cell isolation and separation, to drug delivery and nanomachine manipulation. This dissertation focuses on actuation of biological micro- and nano-entities through the use of weak external magnetic fields, superparamagnetic beads, and ferromagnetic thin films. The magnetic platform presents an excellent method for actuation of biological systems due to its ability to directly control the motion of an array of micro and nanostructures in real-time with calibrated picoNewton forces. The energy landscape of two ferromagnetic thin film patterns (disks and zigzag wires) is experimentally explored and compared to corresponding theoretical models to quantify the applied forces and trajectories of superparamagnetic beads due to the magnetic traps. A magnetic method to directly actuate DNA nanomachines in real-time with nanometer resolution and sub-second response times using micromagnetic control was implemented through the use of stiff DNA micro-levers which bridged the large length scale mismatch between the micro-actuator and the nanomachine. Compared to current alternative methods which are limited in the actuation speeds and the number of reconfiguration states of DNA constructs, this magnetic approach enables fast actuation (˜ milliseconds) and reconfigurable conformations achieved through a continuous range of finely tuned steps. The system was initially tested through actuation of the stiff arm tethered to the surface, and two prototype DNA nanomachines (rotor and hinge) were successfully actuated using the stiff mechanical lever. These results open new possibilities in the development of functional robotic systems at the molecular scale. In exploiting the use of DNA stiff levers, a new technique was also developed to investigate the emergence of the

  4. Final prototype of magnetically suspended flywheel energy storage system

    NASA Technical Reports Server (NTRS)

    Anand, D. K.; Kirk, J. A.; Zmood, R. B.; Pang, D.; Lashley, C.

    1991-01-01

    A prototype of a 500 Wh magnetically suspended flywheel energy storage system was designed, built, and tested. The authors present the work done and include the following: (1) a final design of the magnetic bearing, control system, and motor/generator, (2) construction of a prototype system consisting of the magnetic bearing stack, flywheel, motor, container, and display module, and (3) experimental results for the magnetic bearings, motor, and the entire system. The successful completion of the prototype system has achieved: (1) manufacture of tight tolerance bearings, (2) stability and spin above the first critical frequency, (3) use of inside sensors to eliminate runout problems, and (4) integration of the motor and magnetic bearings.

  5. Final prototype of magnetically suspended flywheel energy storage system

    NASA Astrophysics Data System (ADS)

    Anand, D. K.; Kirk, J. A.; Zmood, R. B.; Pang, D.; Lashley, C.

    A prototype of a 500 Wh magnetically suspended flywheel energy storage system was designed, built, and tested. The authors present the work done and include the following: (1) a final design of the magnetic bearing, control system, and motor/generator, (2) construction of a prototype system consisting of the magnetic bearing stack, flywheel, motor, container, and display module, and (3) experimental results for the magnetic bearings, motor, and the entire system. The successful completion of the prototype system has achieved: (1) manufacture of tight tolerance bearings, (2) stability and spin above the first critical frequency, (3) use of inside sensors to eliminate runout problems, and (4) integration of the motor and magnetic bearings.

  6. Magnetic Launch Assist System Demonstration Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  7. Improvements of vacuum system in J-PARC 3 GeV synchrotron

    NASA Astrophysics Data System (ADS)

    Kamiya, J.; Hikichi, Y.; Namekawa, Y.; Takeishi, K.; Yanagibashi, T.; Kinsho, M.; Yamamoto, K.; Sato, A.

    2017-07-01

    The RCS vacuum system has been upgraded since the completion of its construction towards the objectives of both better vacuum quality and higher reliability of the components. For the better vacuum quality, (1) pressure of the injection beam line was improved to prevent the H-beam from converting to H0; (2) leakage in the beam injection area due to the thermal expansion was eliminated by applying the adequate torque amount for the clamps; (3) new in-situ degassing method of the kicker magnet was developed. For the reliability increase of the components, (1) A considerable number of fluoroelastmer seal was exchanged to metal seal with the low spring constant bellows and the light clamps; (2) TMP controller for the long cable was developed to prevent the controller failure by the severe electrical noise; (3) A number of TMP were installed instead of ion pumps in the RF cavity section as an insurance for the case of pump trouble.

  8. Attractive and repulsive magnetic suspension systems overview

    NASA Technical Reports Server (NTRS)

    Cope, David B.; Fontana, Richard R.

    1992-01-01

    Magnetic suspension systems can be used in a wide variety of applications. The decision of whether to use an attractive or repulsive suspension system for a particular application is a fundamental one which must be made during the design process. As an aid to the designer, we compare and contrast attractive and repulsive magnetic suspension systems and indicate whether and under what conditions one or the other system is preferred.

  9. Towards a Decentralized Magnetic Indoor Positioning System

    PubMed Central

    Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg

    2015-01-01

    Decentralized magnetic indoor localization is a sophisticated method for processing sampled magnetic data directly on a mobile station (MS), thereby decreasing or even avoiding the need for communication with the base station. In contrast to central-oriented positioning systems, which transmit raw data to a base station, decentralized indoor localization pushes application-level knowledge into the MS. A decentralized position solution has thus a strong feasibility to increase energy efficiency and to prolong the lifetime of the MS. In this article, we present a complete architecture and an implementation for a decentralized positioning system. Furthermore, we introduce a technique for the synchronization of the observed magnetic field on the MS with the artificially-generated magnetic field from the coils. Based on real-time clocks (RTCs) and a preemptive operating system, this method allows a stand-alone control of the coils and a proper assignment of the measured magnetic fields on the MS. A stand-alone control and synchronization of the coils and the MS have an exceptional potential to implement a positioning system without the need for wired or wireless communication and enable a deployment of applications for rescue scenarios, like localization of miners or firefighters. PMID:26690145

  10. Towards a Decentralized Magnetic Indoor Positioning System.

    PubMed

    Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg

    2015-12-04

    Decentralized magnetic indoor localization is a sophisticated method for processing sampled magnetic data directly on a mobile station (MS), thereby decreasing or even avoiding the need for communication with the base station. In contrast to central-oriented positioning systems, which transmit raw data to a base station, decentralized indoor localization pushes application-level knowledge into the MS. A decentralized position solution has thus a strong feasibility to increase energy efficiency and to prolong the lifetime of the MS. In this article, we present a complete architecture and an implementation for a decentralized positioning system. Furthermore, we introduce a technique for the synchronization of the observed magnetic field on the MS with the artificially-generated magnetic field from the coils. Based on real-time clocks (RTCs) and a preemptive operating system, this method allows a stand-alone control of the coils and a proper assignment of the measured magnetic fields on the MS. A stand-alone control and synchronization of the coils and the MS have an exceptional potential to implement a positioning system without the need for wired or wireless communication and enable a deployment of applications for rescue scenarios, like localization of miners or firefighters.

  11. Design and Fabrication of a Magnetic System to Investigate Magnetized Dusty Plasmas

    NASA Astrophysics Data System (ADS)

    Bates, Evan M.; Romero-Talamas, Carlos A.

    2013-10-01

    The interest in researching the dynamics and equilibrium of magnetized dusty plasma crystallization has led to the design and fabrication of a novel experimental setup at UMBC. The proposed magnets will be an important subsystem of this setup, and will produce a uniform magnetic field of several tesla for a duration of several seconds. The magnets will be arranged in the Helmholtz configuration and will have a cooling system for temperature compensation of the coils, as well as the ability to adjust the orientation of the magnetic field with respect to gravity. Planned experiments include propagation of magnetized waves in dusty plasma crystals under various boundary conditions.

  12. Wide gap, permanent magnet biased magnetic bearing system

    NASA Technical Reports Server (NTRS)

    Boden, Karl

    1992-01-01

    The unique features and applications of the presented electrical permanent magnetic bearing system essentially result from three facts: (1) the only bearing rotor components are nonlaminated ferromagnetic steel collars or cylinders; (2) all radial and axial forces are transmitted via radial gaps; and (3) large radial bearing gaps can be provided with minimum electric power consumption. The large gaps allow for effective encapsulation and shielding of the rotors at elevated or low temperatures, corrosive or ultra clean atmosphere or vacuum or high pressure environment. Two significant applications are described: (1) a magnetically suspended x ray rotary anode was operated under high vacuum conditions at 100 KV anode potential, 600 C temperature at the rotor collars and speed 18000 rpm with 13 mm radial bearing gap; and (2) an improved Czochralski type crystal growth apparatus using the hot wall method for pulling GaAs single crystals of low dislocation density. Both crystal and crucible are carried and transported by magnetically suspended shafts inside a hermetically sealed housing at 800 C shaft and wall temperature. The radial magnetic bearing gap measures 24 mm.

  13. Designing magnetic systems for reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heitzenroeder, P.J.

    1991-01-01

    Designing magnetic system is an iterative process in which the requirements are set, a design is developed, materials and manufacturing processes are defined, interrelationships with the various elements of the system are established, engineering analyses are performed, and fault modes and effects are studied. Reliability requires that all elements of the design process, from the seemingly most straightforward such as utilities connection design and implementation, to the most sophisticated such as advanced finite element analyses, receives a balanced and appropriate level of attention. D.B. Montgomery's study of magnet failures has shown that the predominance of magnet failures tend not tomore » be in the most intensively engineered areas, but are associated with insulation, leads, ad unanticipated conditions. TFTR, JET, JT-60, and PBX are all major tokamaks which have suffered loss of reliability due to water leaks. Similarly the majority of causes of loss of magnet reliability at PPPL has not been in the sophisticated areas of the design but are due to difficulties associated with coolant connections, bus connections, and external structural connections. Looking towards the future, the major next-devices such as BPX and ITER are most costly and complex than any of their predecessors and are pressing the bounds of operating levels, materials, and fabrication. Emphasis on reliability is a must as the fusion program enters a phase where there are fewer, but very costly devices with the goal of reaching a reactor prototype stage in the next two or three decades. This paper reviews some of the magnet reliability issues which PPPL has faced over the years the lessons learned from them, and magnet design and fabrication practices which have been found to contribute to magnet reliability.« less

  14. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  15. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2005-01-01

    A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

  16. Force characteristic analysis of a magnetic gravity compensator with annular magnet array for magnetic levitation positioning system

    NASA Astrophysics Data System (ADS)

    Zhou, Yiheng; Kou, Baoquan; Liu, Peng; Zhang, He; Xing, Feng; Yang, Xiaobao

    2018-05-01

    Magnetic levitation positioning system (MLPS) is considered to be the state of the art in inspection and manufacturing systems in vacuum. In this paper, a magnetic gravity compensator with annular magnet array (AMA-MGC) for MLPS is proposed. Benefiting from the double-layer annular Halbach magnet array on the stator, the proposed AMA-MGC possesses the advantages of symmetrical force, high force density and small force fluctuation. Firstly, the basic structure and operation principle of the AMA-MGC are introduced. Secondly, the basic characteristics of the AMA-MGC such as magnetic field distribution, levitation force, parasitic force and parasitic torque are analyzed by the three-dimensional finite element analysis (3-D FEA). Thirdly, the influence of structural parameters on force density and force fluctuation is investigated, which is conductive to the design and optimization of the AMA-MGC. Finally, a prototype of the AMA-MGC is constructed, and the experiment shows good agreement with the 3-D FEA results.

  17. Quantized spin-momentum transfer in atom-sized magnetic systems

    NASA Astrophysics Data System (ADS)

    Loth, Sebastian

    2010-03-01

    Our ability to quickly access the vast amounts of information linked in the internet is owed to the miniaturization of magnetic data storage. In modern disk drives the tunnel magnetoresistance effect (TMR) serves as sensitive reading mechanism for the nanoscopic magnetic bits [1]. At its core lies the ability to control the flow of electrons with a material's magnetization. The inverse effect, spin transfer torque (STT), allows one to influence a magnetic layer by high current densities of spin-polarized electrons and carries high hopes for applications in non-volatile magnetic memory [2]. We show that equivalent processes are active in quantum spin systems. We use a scanning tunneling microscope (STM) operating at low temperature and high magnetic field to address individual magnetic structures and probe their spin excitations by inelastic electron tunneling [3]. As model system we investigate transition metal atoms adsorbed to a copper nitride layer grown on a Cu crystal. The magnetic atoms on the surface possess well-defined spin states [4]. Transfer of one magnetic atom to the STM tip's apex creates spin-polarization in the probe tip. The combination of functionalized tip and surface adsorbed atom resembles a TMR structure where the magnetic layers now consist of one magnetic atom each. Spin-polarized current emitted from the probe tip not only senses the magnetic orientation of the atomic spin system, it efficiently transfers spin angular momentum and pumps the quantum spin system between the different spin states. This enables further exploration of the microscopic mechanisms for spin-relaxation and stability of quantum spin systems. [4pt] [1] Zhu and Park, Mater. Today 9, 36 (2006).[0pt] [2] Huai, AAPPS Bulletin 18, 33 (2008).[0pt] [3] Heinrich et al., Science 306, 466 (2004).[0pt] [4] Hirjibehedin et al., Science 317, 1199 (2007).

  18. Passive magnetic shielding in MRI-Linac systems.

    PubMed

    Whelan, Brendan; Kolling, Stefan; Oborn, Brad M; Keall, Paul

    2018-03-26

    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.

  19. Passive magnetic shielding in MRI-Linac systems

    NASA Astrophysics Data System (ADS)

    Whelan, Brendan; Kolling, Stefan; Oborn, Brad M.; Keall, Paul

    2018-04-01

    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.

  20. Magnetically coupled system for mixing

    DOEpatents

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2015-09-22

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  1. Magnetically coupled system for mixing

    DOEpatents

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2014-04-01

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  2. Nanoparticles for magnetic biosensing systems

    NASA Astrophysics Data System (ADS)

    Kurlyandskaya, G. V.; Novoselova, Iu. P.; Schupletsova, V. V.; Andrade, R.; Dunec, N. A.; Litvinova, L. S.; Safronov, A. P.; Yurova, K. A.; Kulesh, N. A.; Dzyuman, A. N.; Khlusov, I. A.

    2017-06-01

    The further development of magnetic biosensors requires a better understanding of the interaction between living systems and magnetic nanoparticles (MNPs). We describe our experience of fabrication of stable ferrofluids (FF) using electrostatic or steric stabilization of iron oxide MNPs obtained by laser target evaporation. Controlled amounts of FF were used for in vitro experiments with human mesenchymal stem cells. Their morphofunctional responses in the Fe concentration range 2-1000 maximum tolerated dose revealed no cytotoxicity.

  3. Flightweight Electro-Magnet Systems

    NASA Technical Reports Server (NTRS)

    Goodrich, Roy G.; Litchford, Ron; Robertson, Tony; Schmidt, Dianne; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    NASA has a need for lightweight high performance magnets to be used in propulsion systems involving plasmas. We report the design, construction, and testing of a six inch diameter by twelve inch long solenoid using high purity aluminum wire operating at a temperature of 77 Kelvin (K) for the current carrying element. High purity aluminum is the material of choice because of three properties that make it optimal for magnetic construction. At 77 K high purity aluminum has one of the lowest resistivities at 77 K of any metal (p = 0.254 muOMEGA-cm), thus reducing the power requirements for creating magnetic fields. Aluminum is a low-density (2.6989 g/cc) material and the end product magnet will be of low total mass compared to similar designs involving copper or other elements. The magneto-resistance of aluminum saturates at low magnetic fields and does not increase indefinitely as is the case in copper. The magnet consists of four layers of closely wound wire and is approximately 150 mm in diameter by 300 mm long. A cylinder made from G - 10 was machined with a spiral groove to hold the high purity Al wire and the wire wound on it. Following the winding, each layer was potted in STYCAST high thermal conductivity epoxy to provide insulation between the turns of the coil and mechanical strength. The magneto-resistance of the coil has been measured at the National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL in externally applied fields to 10 tesla. Following these tests it was energized to the full 2 tesla field it can produce using the facilities of the NHMFL at the Los Alamos National Laboratory. The results of all of these tests will be presented.

  4. Magnetic Responsive Hydrogel Material Delivery System II

    DTIC Science & Technology

    2010-08-29

    phase. MNPs have found very useful applications in bioseparation, drug delivery system, hyperthermia for cancer therapy, and magnetic resonance...and the poly(N-isoproplyacrylamide) (poly(NIPAAm) shell in aqueous medium. Magnetic nanoparticles (MNPs) were coated with first oleic acid (OA) and...potentially important in target delivery of therapeutic agent in vivo, hyperthermic treatment of tumors, magnetic resonance imaging (MRI) as contrasting

  5. Digital control analysis and design of a field-sensed magnetic suspension system.

    PubMed

    Li, Jen-Hsing; Chiou, Juing-Shian

    2015-03-13

    Magnetic suspension systems are mechatronic systems and crucial in several engineering applications, such as the levitation of high-speed trains, frictionless bearings, and wind tunnels. Magnetic suspension systems are nonlinear and unstable systems; therefore, they are suitable educational benchmarks for testing various modeling and control methods. This paper presents the digital modeling and control of magnetic suspension systems. First, the magnetic suspension system is stabilized using a digital proportional-derivative controller. Subsequently, the digital model is identified using recursive algorithms. Finally, a digital mixed linear quadratic regulator (LQR)/H∞ control is adopted to stabilize the magnetic suspension system robustly. Simulation examples and a real-world example are provided to demonstrate the practicality of the study results. In this study, a digital magnetic suspension system model was developed and reviewed. In addition, equivalent state and output feedback controls for magnetic suspension systems were developed. Using this method, the controller design for magnetic suspension systems was simplified, which is the novel contribution of this study. In addition, this paper proposes a complete digital controller design procedure for magnetic suspension systems.

  6. Multi-Pulse Extraction from Los Alamos Proton Storage Ring for Radiographic Applications

    NASA Astrophysics Data System (ADS)

    Thiessen, Henry A.; Neri, Filippo; Rust, Kenneth R.; Redd, Dale B.

    1997-05-01

    For radiography of moving objects, two or more pulses with adjustable time spacing are required. The existing Proton Stotage Ring (PSR) extraction system is configured to extract the entire beam in a single turn. Two kickers and two kicker modulators fired at the same time perform the normal extraction function. By reconfiguring the two kickers and two modulators, it is possible to obtain two half-sized extraction kicks with adjustable time spacing. In this way, we have extracted two pulses with adjustable relative timing. The setup will be described and experimental results will be presented.

  7. Present Status of the KSTAR Superconducting Magnet System Development

    NASA Astrophysics Data System (ADS)

    Kim, Keeman; H, K. Park; K, R. Park; B, S. Lim; S, I. Lee; M, K. Kim; Y, Chu; W, H. Chung; S, H. Baek; J Y, Choi; H, Yonekawa; A, Chertovskikh; Y, B. Chang; J, S. Kim; C, S. Kim; D, J. Kim; N, H. Song; K, P. Kim; Y, J. Song; I, S. Woo; W, S. Han; D, K. Lee; Y, K. Oh; K, W. Cho; J, S. Park; G, S. Lee; H, J. Lee; T, K. Ko; S, J. Lee

    2004-10-01

    The mission of Korea Superconducting Tokamak Advanced Research (KSTAR) project is to develop an advanced steady-state superconducting tokamak for establishing a scientific and technological basis for an attractive fusion reactor. Because one of the KSTAR mission is to achieve a steady-state operation, the use of superconducting coils is an obvious choice for the magnet system. The KSTAR superconducting magnet system consists of 16 Toroidal Field (TF) coils and 14 Poloidal Field (PF) coils. Internally-cooled Cable-In-Conduit Conductors (CICC) are put into use in both the TF and PF coil systems. The TF coil system provides a field of 3.5 T at the plasma center and the PF coil system is able to provide a flux swing of 17 V-sec. The major achievement in KSTAR magnet-system development includes the development of CICC, the development of a full-size TF model coil, the development of a coil system for background magnetic-field generation, the construction of a large-scale superconducting magnet and CICC test facility. TF and PF coils are in the stage of fabrication to pave the way for the scheduled completion of KSTAR by the end of 2006.

  8. A compact permanent-magnet system for measuring magnetic circular dichroism in resonant inelastic soft X-ray scattering.

    PubMed

    Miyawaki, Jun; Suga, Shigemasa; Fujiwara, Hidenori; Niwa, Hideharu; Kiuchi, Hisao; Harada, Yoshihisa

    2017-03-01

    A compact and portable magnet system for measuring magnetic dichroism in resonant inelastic soft X-ray scattering (SX-RIXS) has been developed at the beamline BL07LSU in SPring-8. A magnetic circuit composed of Nd-Fe-B permanent magnets, which realised ∼0.25 T at the center of an 11 mm gap, was rotatable around the axis perpendicular to the X-ray scattering plane. Using the system, a SX-RIXS spectrum was obtained under the application of the magnetic field at an angle parallel, nearly 45° or perpendicular to the incident X-rays. A dedicated sample stage was also designed to be as compact as possible, making it possible to perform SX-RIXS measurements at arbitrary incident angles by rotating the sample stage in the gap between the magnetic poles. This system enables facile studies of magnetic dichroism in SX-RIXS for various experimental geometries of the sample and the magnetic field. A brief demonstration of the application is presented.

  9. Transverse-displacement stabilizer for passive magnetic bearing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Richard F

    The invention provides a way re-center a rotor's central longitudinal rotational axis with a desired system longitudinal axis. A pair of planar semicircular permanent magnets are pieced together to form a circle. The flux from each magnet is pointed in in opposite directions that are both parallel with the rotational axis. A stationary shorted circular winding the plane of which is perpendicular to the system longitudinal axis and the center of curvature of the circular winding is positioned on the system longitudinal axis. Upon rotation of the rotor, when a transverse displacement of the rotational axis occurs relative to themore » system longitudinal axis, the winding will experience a time-varying magnetic flux such that an alternating current that is proportional to the displacement will flow in the winding. Such time-varying magnetic flux will provide a force that will bring the rotor back to its centered position about the desired axis.« less

  10. Permanent-magnet-less synchronous reluctance system

    DOEpatents

    Hsu, John S

    2012-09-11

    A permanent magnet-less synchronous system includes a stator that generates a magnetic revolving field when sourced by an alternating current. An uncluttered rotor is disposed within the magnetic revolving field and spaced apart from the stator to form an air gap relative to an axis of rotation. The rotor includes a plurality of rotor pole stacks having an inner periphery biased by single polarity of a north-pole field and a south-pole field, respectively. The outer periphery of each of the rotor pole stacks are biased by an alternating polarity.

  11. Upward magnetic relaxation in self organizing Fe nanoparticle system

    NASA Astrophysics Data System (ADS)

    Pal, Satyendra Prakash; Sharma, Gyaneshwar; Sen, P.

    2018-04-01

    Study of the thermoremanent magnetic relaxation behavior of Fe nanoparticles and its nanocomposite with activated carbon has been systematically performed. Magnetic relaxation data shows the spontaneous collective periodic oscillations of the spins superimposed on the magnetic decay curves. At sufficiently high temperature, due to thermal noise induced ordering of the magnetic moment an inflexion with an increase in the absolute value of the magnetization takes place. Due to insufficient interaction on account of dilution in the case of nanocomposite, the spin - spin interaction which was responsible for magnetic ordering in the case of bare Fe nanoparticles, collective oscillations of the system do not sustain upto longer times in the case of carbon diluted system.

  12. The FONT5 Bunch-by-Bunch Position and Angle Feedback System at ATF2

    NASA Astrophysics Data System (ADS)

    Apsimon, R. J.; Bett, D. R.; Burrows, P. N.; Christian, G. B.; Constance, B.; Davis, M. R.; Gerbershagen, A.; Perry, C.; Resta-Lopez, J.

    The FONT5 upstream beam-based feedback system at ATF2 is designed to correct the position and angle jitter at the entrance to the ATF2 final-focus system, and also to demonstrate a prototype intra-train feedback system for the International Linear Collider interaction point. We discuss the hardware, from stripline BPMs to kickers, and RF and digital signal processing, as well as presenting results from the latest beam tests at ATF2.

  13. Chiral magnetic effect in condensed matter systems

    DOE PAGES

    Li, Qiang; Kharzeev, Dmitri E.

    2016-12-01

    The chiral magnetic effect is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions. In the quark-gluon plasma, the axial anomaly induces topological charge changing transition that results in the generation of electrical current along the magnetic field. In condensed matter systems, the chiral magnetic effect was first predicted in the gapless semiconductors with tow energy bands having pointlike degeneracies. In addition, thirty years later after this prediction, the chiral magnetic effect was finally observed in the 3Dmore » Dirac/Weyl semimetals.« less

  14. Passive magnetic bearing systems stabilizer/bearing utilizing time-averaging of a periodic magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Richard F.

    A high-stiffness stabilizer/bearings for passive magnetic bearing systems is provide where the key to its operation resides in the fact that when the frequency of variation of the repelling forces of the periodic magnet array is large compared to the reciprocal of the growth time of the unstable motion, the rotating system will feel only the time-averaged value of the force. When the time-averaged value of the force is radially repelling by the choice of the geometry of the periodic magnet array, the Earnshaw-related unstable hit motion that would occur at zero rotational speed is suppressed when the system ismore » rotating at operating speeds.« less

  15. Superconducting magnetic energy storage for asynchronous electrical systems

    DOEpatents

    Boenig, H.J.

    1984-05-16

    It is an object of the present invention to provide superconducting magnetic energy storage for a plurality of asynchronous electrical systems. It is a further object of the present invention to provide load leveling and stability improvement in a plurality of independent ac systems using a single superconducting magnetic energy storage coil.

  16. Fundamental study on the magnetic field control method using multiple HTS coils for Magnetic Drug Delivery System

    NASA Astrophysics Data System (ADS)

    Hirano, R.; Kim, S. B.; Nakagawa, T.; Tomisaka, Y.; Ueda, H.

    2017-07-01

    The magnetic drug delivery system (MDDS) is a key technology to reduce the side effects in the medical applications, and the magnetic force control is very important issue in MDDS. In this application, the strength of magnetic field and gradient required to MDDS devices are 54 mT and 5.5 T/m, respectively. We proposed the new magnetic force control system that consists of the multiple racetrack HTS magnets. We can control the magnetic field gradient along the longitudinal direction by the arrangement of the multiple racetrack HTS magnets and operating current of each magnet. When the racetrack HTS magnets were used, the critical current was reduced by the self-magnetic field. Therefore, the shape design of HTS magnet to reduce the magnet field into the surface of HTS tapes was required. Therefore, the electromagnetic analysis based on finite element method (FEM) was carried out to design and optimize the shape of multiple racetrack HTS magnet. We were able to suppress the reduction of critical current by placing the magnetic substance at upper and lower side of the HTS magnets. It was confirmed that obtained maximum values of magnetic field strength and field gradient were 33 mT and 0.18 T/m, respectively.

  17. Magnetic nanoparticle drug delivery systems for targeting tumor

    NASA Astrophysics Data System (ADS)

    Mody, Vicky V.; Cox, Arthur; Shah, Samit; Singh, Ajay; Bevins, Wesley; Parihar, Harish

    2014-04-01

    Tumor hypoxia, or low oxygen concentration, is a result of disordered vasculature that lead to distinctive hypoxic microenvironments not found in normal tissues. Many traditional anti-cancer agents are not able to penetrate into these hypoxic zones, whereas, conventional cancer therapies that work by blocking cell division are not effective to treat tumors within hypoxic zones. Under these circumstances the use of magnetic nanoparticles as a drug delivering agent system under the influence of external magnetic field has received much attention, based on their simplicity, ease of preparation, and ability to tailor their properties for specific biological applications. Hence in this review article we have reviewed current magnetic drug delivery systems, along with their application and clinical status in the field of magnetic drug delivery.

  18. Neural Network Control of a Magnetically Suspended Rotor System

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Brown, Gerald; Johnson, Dexter

    1997-01-01

    Abstract Magnetic bearings offer significant advantages because of their noncontact operation, which can reduce maintenance. Higher speeds, no friction, no lubrication, weight reduction, precise position control, and active damping make them far superior to conventional contact bearings. However, there are technical barriers that limit the application of this technology in industry. One of them is the need for a nonlinear controller that can overcome the system nonlinearity and uncertainty inherent in magnetic bearings. This paper discusses the use of a neural network as a nonlinear controller that circumvents system nonlinearity. A neural network controller was well trained and successfully demonstrated on a small magnetic bearing rig. This work demonstrated the feasibility of using a neural network to control nonlinear magnetic bearings and systems with unknown dynamics.

  19. Active tensor magnetic gradiometer system final report for Project MM–1514

    USGS Publications Warehouse

    Smith, David V.; Phillips, Jeffrey D.; Hutton, S. Raymond

    2014-01-01

    An interactive computer simulation program, based on physical models of system sensors, platform geometry, Earth environment, and spheroidal magnetically-permeable targets, was developed to generate synthetic magnetic field data from a conceptual tensor magnetic gradiometer system equipped with an active primary field generator. The system sensors emulate the prototype tensor magnetic gradiometer system (TMGS) developed under a separate contract for unexploded ordnance (UXO) detection and classification. Time-series data from different simulation scenarios were analyzed to recover physical dimensions of the target source. Helbig-Euler simulations were run with rectangular and rod-like source bodies to determine whether such a system could separate the induced component of the magnetization from the remanent component for each target. This report concludes with an engineering assessment of a practical system design.

  20. Effect of zero magnetic field on cardiovascular system and microcirculation

    NASA Astrophysics Data System (ADS)

    Gurfinkel, Yu. I.; At'kov, O. Yu.; Vasin, A. L.; Breus, T. K.; Sasonko, M. L.; Pishchalnikov, R. Yu.

    2016-02-01

    The effects of zero magnetic field conditions on cardiovascular system of healthy adults have been studied. In order to generate zero magnetic field, the facility for magnetic fields modeling ;ARFA; has been used. Parameters of the capillary blood flow, blood pressure, and the electrocardiogram (ECG) monitoring were measured during the study. All subjects were tested twice: in zero magnetic field and, for comparison, in sham condition. The obtained results during 60 minutes of zero magnetic field exposure demonstrate a clear effect on cardiovascular system and microcirculation. The results of our experiments can be used in studies of long-term stay in hypo-magnetic conditions during interplanetary missions.

  1. Timing Recovery Strategies in Magnetic Recording Systems

    NASA Astrophysics Data System (ADS)

    Kovintavewat, Piya

    At some point in a digital communications receiver, the received analog signal must be sampled. Good performance requires that these samples be taken at the right times. The process of synchronizing the sampler with the received analog waveform is known as timing recovery. Conventional timing recovery techniques perform well only when operating at high signal-to-noise ratio (SNR). Nonetheless, iterative error-control codes allow reliable communication at very low SNR, where conventional techniques fail. This paper provides a detailed review on the timing recovery strategies based on per-survivor processing (PSP) that are capable of working at low SNR. We also investigate their performance in magnetic recording systems because magnetic recording is a primary method of storage for a variety of applications, including desktop, mobile, and server systems. Results indicate that the timing recovery strategies based on PSP perform better than the conventional ones and are thus worth being employed in magnetic recording systems.

  2. Whole-head SQUID system in a superconducting magnetic shield.

    PubMed

    Ohta, H; Matsui, T; Uchikawa, Y

    2004-11-30

    We have constructed a mobile whole-head SQUID system in a superconducting magnetic shield - a cylinder of high Tc superconductor BSCCO of 65 cm in diameter and 160 cm in length. We compared the noise spectra of several SQUID sensors of SNS Josephson junctions in the superconducting magnetic shield with those of the same SQUID sensors in a magnetically shielded room of Permalloy. The SQUID sensors in the superconducting magnetic shield are more than 100 times more sensitive than those in a magnetically shielded room of Permalloy below 1 Hz. We tested the whole-head SQUID system in the superconducting magnetic shield observing somatosensory signals evoked by stimulating the median nerve in the right wrist of patients by current pulses. We present data of 64 and 128 traces versus the common time axis for comparison. Most sensory responses of human brains phase out near 250 ms. However monotonic rhythms still remain even at longer latencies than 250 ms. The nodes of these rhythm are very narrow even at these longer latencies just indicating low noise characteristics of the SQUID system at low-frequencies. The current dipoles at the secondary somatosensory area SII are evoked at longer latencies than 250 ms contributing to a higher-level brain function. The SQUID system in a superconducting magnetic shield will also have advantages when it is used as a DC MEG to study very slow activities and function of the brain.

  3. Open-Access, Low-Magnetic-Field MRI System for Lung Research

    NASA Technical Reports Server (NTRS)

    Mair, Ross W.; Rosen, Matthew S.; Tsai, Leo L.; Walsworth, Ronald L.; Hrovat, Mirko I.; Patz, Samuel; Ruset, Iullian C.; Hersman, F. William

    2009-01-01

    An open-access magnetic resonance imaging (MRI) system is being developed for use in research on orientational/gravitational effects on lung physiology and function. The open-access geometry enables study of human subjects in diverse orientations. This system operates at a magnetic flux density, considerably smaller than the flux densities of typical other MRI systems, that can be generated by resistive electromagnet coils (instead of the more-expensive superconducting coils of the other systems). The human subject inhales air containing He-3 or Xe-129 atoms, the nuclear spins of which have been polarized by use of a laser beam to obtain a magnetic resonance that enables high-resolution gas space imaging at the low applied magnetic field. The system includes a bi-planar, constant-current, four-coil electromagnet assembly and associated electronic circuitry to apply a static magnetic field of 6.5 mT throughout the lung volume; planar coils and associated circuitry to apply a pulsed magnetic-field-gradient for each spatial dimension; a single, detachable radio-frequency coil and associated circuitry for inducing and detecting MRI signals; a table for supporting a horizontal subject; and electromagnetic shielding surrounding the electromagnet coils.

  4. Failure Accommodation Tested in Magnetic Suspension Systems for Rotating Machinery

    NASA Technical Reports Server (NTRS)

    Provenza, Andy J.

    2000-01-01

    The NASA Glenn Research Center at Lewis Field and Texas A&M University are developing techniques for accommodating certain types of failures in magnetic suspension systems used in rotating machinery. In recent years, magnetic bearings have become a viable alternative to rolling element bearings for many applications. For example, industrial machinery such as machine tool spindles and turbomolecular pumps can today be bought off the shelf with magnetically supported rotating components. Nova Gas Transmission Ltd. has large gas compressors in Canada that have been running flawlessly for years on magnetic bearings. To help mature this technology and quiet concerns over the reliability of magnetic bearings, NASA researchers have been investigating ways of making the bearing system tolerant to faults. Since the potential benefits from an oil-free, actively controlled bearing system are so attractive, research that is focused on assuring system reliability and safety is justifiable. With support from the Fast Quiet Engine program, Glenn's Structural Mechanics and Dynamics Branch is working to demonstrate fault-tolerant magnetic suspension systems targeted for aerospace engine applications. The Flywheel Energy Storage Program is also helping to fund this research.

  5. Force Measurements in Magnetic Suspension and Balance System

    NASA Technical Reports Server (NTRS)

    Kuzin, Alexander; Shapovalov, George; Prohorov, Nikolay

    1996-01-01

    The description of an infrared telemetry system for measurement of drag forces in Magnetic Suspension and Balance Systems (MSBS) is presented. This system includes a drag force sensor, electronic pack and transmitter placed in the model which is of special construction, and receiver with a microprocessor-based measuring device, placed outside of the test section. Piezosensitive resonators as sensitive elements and non-magnetic steel as the material for the force sensor are used. The main features of the proposed system for load measurements are discussed and the main characteristics are presented.

  6. Naval applications of SC magnet systems

    NASA Astrophysics Data System (ADS)

    Gubser, D. U.

    The US Navy continues to develop advanced systems that utilize superconducting (SC) magnets. Recent impetus toward the “all” electric ship is accelerating the desire to produce “engineering” prototypes that can be field tested to ascertain the overall impact of these new technologies toward meeting Navy mission requirements. SC magnets for motors, energy storage, mine sweeping, and RF amplifiers are all being built and tested. This article provides a brief description of these projects.

  7. Magnetic Membrane System

    DOEpatents

    McElfresh, Michael W.; ; Lucas, Matthew S.

    2004-12-30

    The present invention provides a membrane with magnetic particles. In one embodiment the membrane is created by mixing particles in a non-magnetic base. The membrane may act as an actuator, a sensor, a pump, a valve, or other device. A magnet is operatively connected to the membrane. The magnet acts on and changes the shape of the membrane.

  8. Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong -Ok; Song, Kyung Mee; Choi, Yongseong

    In spintronic devices consisting of ferromagnetic/nonmagnetic systems, the ferromagnet-induced magnetic moment in the adjacent nonmagnetic material significantly influences the spin transport properties. In this study, such magnetic proximity effect in a Pd/Co/Pd trilayer system is investigated by x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity, which enables magnetic characterizations with element and depth resolution. We observe that the total Pd magnetic moments induced at the top Co/Pd interface are significantly larger than the Pd moments at the bottom Pd/Co interface, whereas transmission electron microscopy and reflectivity analysis indicate the two interfaces are nearly identical structurally. Furthermore, such asymmetry inmore » magnetic proximity effects could be important for understanding spin transport characteristics in ferromagnetic/nonmagnetic systems and its potential application to spin devices.« less

  9. Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system

    DOE PAGES

    Kim, Dong -Ok; Song, Kyung Mee; Choi, Yongseong; ...

    2016-05-06

    In spintronic devices consisting of ferromagnetic/nonmagnetic systems, the ferromagnet-induced magnetic moment in the adjacent nonmagnetic material significantly influences the spin transport properties. In this study, such magnetic proximity effect in a Pd/Co/Pd trilayer system is investigated by x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity, which enables magnetic characterizations with element and depth resolution. We observe that the total Pd magnetic moments induced at the top Co/Pd interface are significantly larger than the Pd moments at the bottom Pd/Co interface, whereas transmission electron microscopy and reflectivity analysis indicate the two interfaces are nearly identical structurally. Furthermore, such asymmetry inmore » magnetic proximity effects could be important for understanding spin transport characteristics in ferromagnetic/nonmagnetic systems and its potential application to spin devices.« less

  10. Magnetic suspension and balance system advanced study, 1989 design

    NASA Technical Reports Server (NTRS)

    Boom, Roger W.; Eyssa, Y. M.; Abdelsalam, Moustafa K.; Mcintosh, Glen E.

    1991-01-01

    The objectives are to experimentally confirm several advanced design concepts on the Magnetic Suspension and Balance Systems (MSBS). The advanced design concepts were identified as potential improvements by Madison Magnetics, Inc. (MMI) during 1984 and 1985 studies of an MSBS utilizing 14 external superconductive coils and a superconductive solenoid in an airplane test model suspended in a wind tunnel. This study confirmed several advanced design concepts on magnetic suspension and balance systems. The 1989 MSBS redesign is based on the results of these experiments. Savings of up to 30 percent in supporting magnet ampere meters and 50 percent in energy stored over the 1985 design were achieved.

  11. Accretion Flows in Magnetic White Dwarf Systems

    NASA Technical Reports Server (NTRS)

    Imamura, James N.

    2005-01-01

    We received Type A and B funding under the NASA Astrophysics Data Program for the analysis and interpretation of hard x-ray data obtained by the Rossi X-ray Timing Explorer and other NASA sponsored missions for Intermediate Polars (IPS) and Polars. For some targets, optical data was available. We reduced and analyzed the X-ray spectra and the X-ray and optical (obtained at the Cerro Tololo Inter-American Observatory) timing data using detailed shock models (which we constructed) to place constraints on the properties of the accreting white dwarfs, the high energy emission mechanisms of white dwarfs, and the large-scale accretion flows of Polars and IPS. IPS and Polars are white dwarf mass-transfer binaries, members of the larger class of cata,clysmic variables. They differ from the bulk of the cataclysmic variables in that they contain strongly magnetic white dwarfs; the white dwarfs in Polars have B, = 7 to 230 MG and those in IPS have B, less than 10 MG. The IPS and Polars are both examples of funneled accretion flows in strong magnetic field systems. The IPS are similar to x-ray pulsars in that accretion disks form in the systems which are disrupted by the strong stellar magnetic fields of the white dwarfs near the stellar surface from where the plasma is funneled to the surface of the white dwarf. The localized hot spots formed at the footpoints of the funnels coupled with the rotation of the white dwarf leads to coherent pulsed x-ray emission. The Polars offer an example of a different accretion topology; the magnetic field of the white dwarf controls the accretion flow from near the inner Lagrangian point of the system directly to the stellar surface. Accretion disks do not form. The strong magnetic coupling generally leads to synchronous orbital/rotational motion in the Polars. The physical system in this sense resembles the Io/Jupiter system. In both IPS and Polars, pulsed emission from the infrared to x-rays is produced as the funneled flows merge onto the

  12. A Two-Magnet System to Push Therapeutic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shapiro, Benjamin; Dormer, Kenneth; Rutel, Isaac B.

    2010-12-01

    Magnetic fields can be used to direct magnetically susceptible nanoparticles to disease locations: to infections, blood clots, or tumors. Any single magnet always attracts (pulls) ferro- or para-magnetic particles towards it. External magnets have been used to pull therapeutics into tumors near the skin in animals and human clinical trials. Implanting magnetic materials into patients (a feasible approach in some cases) has been envisioned as a means of reaching deeper targets. Yet there are a number of clinical needs, ranging from treatments of the inner ear, to antibiotic-resistant skin infections and cardiac arrhythmias, which would benefit from an ability to magnetically "inject", or push in, nanomedicines. We develop, analyze, and experimentally demonstrate a novel, simple, and effective arrangement of just two permanent magnets that can magnetically push particles. Such a system might treat diseases of the inner ear; diseases which intravenously injected or orally administered treatments cannot reach due to the blood-brain barrier.

  13. Mobile refrigeration system for precool and warm up of superconducting magnets

    NASA Astrophysics Data System (ADS)

    Gandla, S. K.; Longsworth, R. C.

    2017-12-01

    Conservation of helium has become more important in recent years due to global shortages in supply. Magnetic resonance imaging (MRI) superconducting magnets use approximately 20% of the world’s helium reserves in liquid form to cool down and maintain operating temperatures at 4 K. This paper describes a mobile cryogenic refrigeration system, which has been developed by Sumitomo (SHI) Cryogenics of America, Inc. to conserve helium by shipping MRI magnets warm and cooling them down or servicing them on site at a medical facility. The system can cool a typical magnet from room temperature to below 40K in less than a week. The system consists of four single stage Displex®-type Gifford-McMahon (GM) expanders in a cryostat with heat exchangers integrated on the cold ends that cool the helium gas, which is circulated in a closed-loop system through the magnet by a cryogenic fan. The system is configured with heaters on the heat exchangers to effectively warm up a magnet. The system includes a scroll vacuum pump, which is used to evacuate the helium circuit with or without the magnet and turbo pump to evacuate the cryostat. Vacuum-jacketed transfer lines connect the cryostat to the magnet. The system is designed with its own controller for continuous operation of precool, warm up and evacuation processes with automatic and manual controls. The cryostat, pumps and gas controls are mounted on a dewar cart. One compressor and the system controller are mounted on a compressor and control cart, and the other three compressors are mounted on separate carts.

  14. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Bryant, Robert G. (Inventor)

    2006-01-01

    Magnetic field response sensors designed as passive inductor-capacitor circuits produce magnetic field responses whose harmonic frequencies correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induction. A radio frequency antenna produces the time varying magnetic field used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for discerning changes in sensor s response kequency, resistance and amplitude is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminating the need to have a data acquisition channel dedicated to each sensor. The method does not require the sensors to be in proximity to any form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  15. Magnetic suspension and balance system advanced study, phase 2

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Abdelsalam, M. K.; Eyssa, Y. M.; Mcintosh, G. E.

    1990-01-01

    The design improvements for the system encompass 14 or 18 external superconductive coils mounted on a 8 x 8 foot wind tunnel, a superconductive model core magnet on a holmium mandrel to fit an F-16 model, model wings of permanent magnet material Nd2Fe14B, and fiber glass epoxy structure. The Magnetic Suspension and Balance System (MSBS) advanced design is confirmed by the successful construction and test of a full size superconductive model core solenoid with holmium mandrel. The solenoid is 75 cm long and 12.6 cm in diameter and produces 6.1 tesla for a hold time of 47 minutes. An integrated coil system design of a new compact configuration without specific coils for roll or pitch shows promise of simplicity; magnet reductions of 30 percent compared to the most recent 1985 design are possible.

  16. Nonlinear feedback model attitude control using CCD in magnetic suspension system

    NASA Technical Reports Server (NTRS)

    Lin, CHIN-E.; Hou, Ann-San

    1994-01-01

    A model attitude control system for a CCD camera magnetic suspension system is studied in this paper. In a recent work, a position and attitude sensing method was proposed. From this result, model position and attitude of a magnetic suspension system can be detected by generating digital outputs. Based on this achievement, a control system design using nonlinear feedback techniques for magnetic suspended model attitude control is proposed.

  17. NMR system and method having a permanent magnet providing a rotating magnetic field

    DOEpatents

    Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

    2009-05-19

    Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

  18. Design and simulation of permanent magnet synchronous motor control system

    NASA Astrophysics Data System (ADS)

    Li, Li; Liu, Yongqiu

    2018-06-01

    In recent years, with the development of power electronics, microelectronics, new motor control theory and rare earth permanent magnet materials, permanent magnet synchronous motors have been rapidly applied. Permanent magnet synchronous motors have the advantages of small size, low loss and high efficiency. Today, energy conservation and environmental protection are increasingly valued. It is very necessary to study them. Permanent magnet synchronous motor control system has a wide range of application prospects in the fields of electric vehicles, ships and other transportation. Using the simulation function of MATLAB/SIMULINK, a modular design structure was used to simulate the whole system model of speed loop adjustment, current PI modulation, SVPWM (Space Vector Pulse Width Module) wave generation and double closed loop. The results show that this control method has good robustness, and this method can improve the design efficiency and shorten the system design time. In this article, the analysis of the control principle of modern permanent magnet synchronous motor and the various processes of MATLAB simulation application will be analyzed in detail. The basic theory, basic method and application technology of the permanent magnet synchronous motor control system are systematically introduced.

  19. Optical position measurement for a Large Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Shelton, Kevin J.; Clemmons, James I.

    1991-01-01

    This paper describes the design of an optical position measurement system which is being built as part of the NASA Langley Large Gap Magnetic Suspension System (LGMSS). The LGMSS is a five degree-of-freedom, large-gap magnetic suspension system which is being built for Langley Research Center as part of the Advanced Controls Test Facility (ACTF). The LGMSS consists of a planar array of electromagnets which levitate and position a cylindrically shaped model containing a permanent magnet core. The optical position measurement system provides information on the location and orientation of the model to the LGMSS control system to stabilize levitation of the model.

  20. The LHC magnet system and its status of development

    NASA Technical Reports Server (NTRS)

    Bona, Maurizio; Perin, Romeo; Vlogaert, Jos

    1995-01-01

    CERN is preparing for the construction of a new high energy accelerator/collider, the Large Hadron Collider (LHC). This new facility will mainly consist of two superconducting magnetic beam channels, 27 km long, to be installed in the existing LEP tunnel. The magnetic system comprises about 1200 twin-aperture dipoles, 13.145 m long, with an operational field of 8.65 T, about 600 quadrupoles, 3 m long, and a very large number of other superconducting magnetic components. A general description of the system is given together with the main features of the design of the regular lattice magnets. The paper also describes the present state of the magnet R & D program. Results from short model work, as well as from full scale prototypes will be presented, including the recently tested 10 m long full-scale prototype dipole manufactured in industry.

  1. Computational Analysis of Enhanced Magnetic Bioseparation in Microfluidic Systems with Flow-Invasive Magnetic Elements

    PubMed Central

    Khashan, S. A.; Alazzam, A.; Furlani, E. P.

    2014-01-01

    A microfluidic design is proposed for realizing greatly enhanced separation of magnetically-labeled bioparticles using integrated soft-magnetic elements. The elements are fixed and intersect the carrier fluid (flow-invasive) with their length transverse to the flow. They are magnetized using a bias field to produce a particle capture force. Multiple stair-step elements are used to provide efficient capture throughout the entire flow channel. This is in contrast to conventional systems wherein the elements are integrated into the walls of the channel, which restricts efficient capture to limited regions of the channel due to the short range nature of the magnetic force. This severely limits the channel size and hence throughput. Flow-invasive elements overcome this limitation and enable microfluidic bioseparation systems with superior scalability. This enhanced functionality is quantified for the first time using a computational model that accounts for the dominant mechanisms of particle transport including fully-coupled particle-fluid momentum transfer. PMID:24931437

  2. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2007-01-01

    Magnetic field response sensors designed as passive inductor- capacit or circuits produce magnetic field responses whose harmonic frequenci es correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induc tion. A radio frequency antenna produces the time varying magnetic fi eld used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for disce rning changes in sensor's response frequency, resistance and amplitud e is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminat ing the need to have a data acquisition channel dedicated to each se nsor. The method does not require the sensors to be in proximity to a ny form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  3. Reactions of the nervous system to magnetic fields

    NASA Technical Reports Server (NTRS)

    Kholodov, Y. A.

    1974-01-01

    This magnetobiological survey considers sensory, nervous, stress and genetic effects of magnetic fields on man and animals. It is shown that the nervous system plays an important role in the reactions of the organism to magnetic fields; the final biological effect is a function of the strength of the magnetic fields, the gradient, direction of the lines of force, duration and location of the action, and the functional status of the organism.

  4. Spherical type integrable classical systems in a magnetic field

    NASA Astrophysics Data System (ADS)

    Marchesiello, A.; Šnobl, L.; Winternitz, P.

    2018-04-01

    We show that four classes of second order spherical type integrable classical systems in a magnetic field exist in the Euclidean space {E}3 , and construct the Hamiltonian and two second order integrals of motion in involution for each of them. For one of the classes the Hamiltonian depends on four arbitrary functions of one variable. This class contains the magnetic monopole as a special case. Two further classes have Hamiltonians depending on one arbitrary function of one variable and four or six constants, respectively. The magnetic field in these cases is radial. The remaining system corresponds to a constant magnetic field and the Hamiltonian depends on two constants. Questions of superintegrability—i.e. the existence of further integrals—are discussed.

  5. Remote monitoring system for the cryogenic system of superconducting magnets in the SuperKEKB interaction region

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Ohuchi, N.; Zong, Z.; Arimoto, Y.; Wang, X.; Yamaoka, H.; Kawai, M.; Kondou, Y.; Makida, Y.; Hirose, M.; Endou, T.; Iwasaki, M.; Nakamura, T.

    2017-12-01

    A remote monitoring system was developed based on the software infrastructure of the Experimental Physics and Industrial Control System (EPICS) for the cryogenic system of superconducting magnets in the interaction region of the SuperKEKB accelerator. The SuperKEKB has been constructed to conduct high-energy physics experiments at KEK. These superconducting magnets consist of three apparatuses, the Belle II detector solenoid, and QCSL and QCSR accelerator magnets. They are each contained in three cryostats cooled by dedicated helium cryogenic systems. The monitoring system was developed to read data of the EX-8000, which is an integrated instrumentation system to control all cryogenic components. The monitoring system uses the I/O control tools of EPICS software for TCP/IP, archiving techniques using a relational database, and easy human-computer interface. Using this monitoring system, it is possible to remotely monitor all real-time data of the superconducting magnets and cryogenic systems. It is also convenient to share data among multiple groups.

  6. Magnetic Field Experiment Data Analysis System

    NASA Technical Reports Server (NTRS)

    Holland, D. B.; Zanetti, L. J.; Suther, L. L.; Potemra, T. A.; Anderson, B. J.

    1995-01-01

    The Johns Hopkins University Applied Physics Laboratory (JHU/APL) Magnetic Field Experiment Data Analysis System (MFEDAS) has been developed to process and analyze satellite magnetic field experiment data from the TRIAD, MAGSAT, AMPTE/CCE, Viking, Polar BEAR, DMSP, HILAT, UARS, and Freja satellites. The MFEDAS provides extensive data management and analysis capabilities. The system is based on standard data structures and a standard user interface. The MFEDAS has two major elements: (1) a set of satellite unique telemetry processing programs for uniform and rapid conversion of the raw data to a standard format and (2) the program Magplot which has file handling, data analysis, and data display sections. This system is an example of software reuse, allowing new data sets and software extensions to be added in a cost effective and timely manner. Future additions to the system will include the addition of standard format file import routines, modification of the display routines to use a commercial graphics package based on X-Window protocols, and a generic utility for telemetry data access and conversion.

  7. Safety of implantable pacemakers and cardioverter defibrillators in the magnetic field of a novel remote magnetic navigation system.

    PubMed

    Jilek, Clemens; Tzeis, Stylianos; Reents, Tilko; Estner, Heidi-Luise; Fichtner, Stephanie; Ammar, Sonia; Wu, Jinjin; Hessling, Gabriele; Deisenhofer, Isabel; Kolb, Christof

    2010-10-01

    Electromagnetic interference with pacemaker and implantable cardioverter defibrillator (ICD) systems may cause temporary or permanent system malfunction of implanted devices. The aim of this study was to evaluate potential interference of a novel magnetic navigation system with implantable rhythm devices. A total of 121 devices (77 pacemakers, 44 ICDs) were exposed to an activated NIOBE II® Magnetic Navigation System (Stereotaxis, St. Louis, MO, USA) at the maximal magnetic field strength of 0.1 Tesla and evaluated in vitro with respect to changes in parameter settings of the device, changes of the battery status/detection of elective replacement indication, or alterations of data stored in the device. A total of 115 out of 121 (95%) devices were free of changes in parameter settings, battery status, and internally stored data after repeated exposition to the electromagnetic field of the remote magnetic navigation system. Interference with the magnetic navigation field was observed in 6 pacemakers, resulting in reprogramming to a power-on-reset mode with or without detection of the elective replacement indication in 5 devices and abnormal variance of battery status in one device. All pacemakers could be reprogrammed to the initial modes and the battery status proved to be normal some minutes after the pacemakers had been removed from the magnetic field. Interference of a remote magnetic navigation system (at maximal field strength) with pacemakers and ICDs not connected to leads with antitachycardic detection and therapies turned off is rare. Occurring functional abnormalities could be reprogrammed in our sample. An in vitro study will give information about interference of devices connected to leads. © 2010 Wiley Periodicals, Inc.

  8. Studies on the Magnetic Center of the Mu2e Solenoid System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopes, M. L.; Ambrosio, G.; Buehler, M.

    2014-01-01

    The definition of the magnetic center in the Mu2e solenoid system is not trivial given the S-shaped nature of the transport solenoid. Moreover, due to the fringe field of the larger bore adjacent magnets-production solenoid and the detector solenoid-the magnetic center does not coincide with the geometric center of the system. The reference magnetic center can be obtained by tracking a low-momentum charged particle through the whole system. This paper will discuss this method and will evaluate the deviations from the nominal magnetic center given the tolerances in the manufacturing and the alignment of the coils. Methods for the correctionmore » of the magnetic center will also be presented.« less

  9. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength.

    PubMed

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-02-21

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.

  10. Chitosan magnetic nanoparticles for drug delivery systems.

    PubMed

    Assa, Farnaz; Jafarizadeh-Malmiri, Hoda; Ajamein, Hossein; Vaghari, Hamideh; Anarjan, Navideh; Ahmadi, Omid; Berenjian, Aydin

    2017-06-01

    The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.

  11. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, M., E-mail: mike.schmidt@dreebit.com; Zschornack, G.; Kentsch, U.

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor ofmore » 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup.« less

  12. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions.

    PubMed

    Schmidt, M; Zschornack, G; Kentsch, U; Ritter, E

    2014-02-01

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup.

  13. Conversion of the magnetic field measured in three components on the magnetic sensor body's random coordinate system into three components on geographical coordinate system through quaternion rotation.

    NASA Astrophysics Data System (ADS)

    LIM, M.; PARK, Y.; Jung, H.; SHIN, Y.; Rim, H.; PARK, C.

    2017-12-01

    To measure all components of a physical property, for example the magnetic field, is more useful than to measure its magnitude only in interpretation and application thereafter. To convert the physical property measured in 3 components on a random coordinate system, for example on moving magnetic sensor body's coordinate system, into 3 components on a fixed coordinate system, for example on geographical coordinate system, by the rotations of coordinate system around Euler angles for example, we should have the attitude values of the sensor body in time series, which could be acquired by an INS-GNSS system of which the axes are installed coincident with those of the sensor body. But if we want to install some magnetic sensors in array at sea floor but without attitude acquisition facility of the magnetic sensors and to monitor the variation of magnetic fields in time, we should have also some way to estimate the relation between the geographical coordinate system and each sensor body's coordinate system by comparison of the vectors only measured on both coordinate systems on the assumption that the directions of the measured magnetic field on both coordinate systems are the same. For that estimation, we have at least 3 ways. The first one is to calculate 3 Euler angles phi, theta, psi from the equation Vgeograph = Rx(phi) Ry(theta) Rz(psi) Vrandom, where Vgeograph is the vector on geographical coordinate system etc. and Rx(phi) is the rotation matrix around the x axis by the angle phi etc. The second one is to calculate the difference of inclination and declination between the 2 vectors on spherical coordinate system. The third one, used by us for this study, is to calculate the angle of rotation along a great circle around the rotation axis, and the direction of the rotation axis. We installed no. 1 and no. 2 FVM-400 fluxgate magnetometers in array near Cheongyang Geomagnetic Observatory (IAGA code CYG) and acquired time series of magnetic fields for CYG and for

  14. A simple and low-cost permanent magnet system for NMR

    NASA Astrophysics Data System (ADS)

    Chonlathep, K.; Sakamoto, T.; Sugahara, K.; Kondo, Y.

    2017-02-01

    We have developed a simple, easy to build, and low-cost magnet system for NMR, of which homogeneity is about 4 ×10-4 at 57 mT, with a pair of two commercially available ferrite magnets. This homogeneity corresponds to about 90 Hz spectral resolution at 2.45 MHz of the hydrogen Larmor frequency. The material cost of this NMR magnet system is little more than 100. The components can be printed by a 3D printer.

  15. Magnetic control systems for large spacecraft with applications to space telescope

    NASA Technical Reports Server (NTRS)

    Dougherty, H.; Machnick, J.; Nakashima, A.; Henry, J.; Tompetrini, K.

    1981-01-01

    Magnetic control systems for large space vehicles offer the advantage of a simple, reliable, low cost augmentation to the primary control system. When used for momentum management, a magnetic torque source offers a long life and noncontaminant environment when compared to a mass expulsion torque source. These qualities make such systems suitable for employment with the Space Telescope, which is a long life, high performance vehicle with optics and scientific instruments which would be degraded by contamination due to mass expulsion products. The various applications of magnetic systems on the Space Telescope are considered. The future trend in magnetic control of large space vehicles lies in providing a known three axis reference for backup operations, such as recovery of the primary control mode.

  16. Pulsed field probe of real time magnetization dynamics in magnetic nanoparticle systems

    NASA Astrophysics Data System (ADS)

    Foulkes, T.; Syed, M.; Taplin, T.

    2015-05-01

    Magnetic nanoparticles (MNPs) are extensively used in biotechnology. These applications rely on magnetic properties that are a keen function of MNP size, distribution, and shape. Various magneto-optical techniques, including Faraday Rotation (FR), Cotton-Mouton Effect, etc., have been employed to characterize magnetic properties of MNPs. Generally, these measurements employ AC or DC fields. In this work, we describe the results from a FR setup that uses pulsed magnetic fields and an analysis technique that makes use of the entire pulse shape to investigate size distribution and shape anisotropy. The setup employs a light source, polarizing components, and a detector that are used to measure the rotation of light from a sample that is subjected to a pulsed magnetic field. This magnetic field "snapshot" is recorded alongside the intensity pulse of the sample's response. This side by side comparison yields useful information about the real time magnetization dynamics of the system being probed. The setup is highly flexible with variable control of pulse length and peak magnitude. Examining the raw data for the response of bare Fe3O4 and hybrid Au and Fe3O4 nanorods reveals interesting information about Brownian relaxation and the hydrodynamic size of these nanorods. This analysis exploits the self-referencing nature of this measurement to highlight the impact of an applied field on creating a field induced transparency for a longitudinal measurement. Possible sources for this behavior include shape anisotropy and field assisted aggregate formation.

  17. A motionless actuation system for magnetic shape memory devices

    NASA Astrophysics Data System (ADS)

    Armstrong, Andrew; Finn, Kevin; Hobza, Anthony; Lindquist, Paul; Rafla, Nader; Müllner, Peter

    2017-10-01

    Ni-Mn-Ga is a Magnetic Shape Memory (MSM) alloy that changes shape in response to a variable magnetic field. We can intentionally manipulate the shape of the material to function as an actuator, and the material can thus replace complicated small electromechanical systems. In previous work, a very simple and precise solid-state micropump was developed, but a mechanical rotation was required to translate the position of the magnetic field. This mechanical rotation defeats the purpose of the motionless solid-state device. Here we present a solid-state electromagnetic driver to linearly progress the position of the applied magnetic field and the associated shrinkage. The generated magnetic field was focused at either of two pole pieces, providing a mechanism for moving the localized shrinkage in the MSM element. We confirmed that our driver has sufficient strength to actuate the MSM element using optical microscopy. We validated the whole design by comparing results obtained with finite element analysis with the experimentally measured flux density. This drive system serves as a possible replacement to the mechanical rotation of the magnetic field by using a multi-pole electromagnet that sweeps the magnetic field across the MSM micropump element, solid-state switching the current to each pole piece in the multi-pole electromagnet.

  18. Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure

    NASA Astrophysics Data System (ADS)

    Jurčišinová, E.; Jurčišin, M.

    2017-11-01

    We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.

  19. Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure.

    PubMed

    Jurčišinová, E; Jurčišin, M

    2017-11-01

    We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.

  20. Higher-Order Systematic Effects in the Muon Beam-Spin Dynamics for Muon g-2

    NASA Astrophysics Data System (ADS)

    Crnkovic, Jason; Brown, Hugh; Krouppa, Brandon; Metodiev, Eric; Morse, William; Semertzidis, Yannis; Tishchenko, Vladimir

    2016-03-01

    The BNL Muon g-2 Experiment (E821) produced a precision measurement of the muon anomalous magnetic moment, where as the Fermilab Muon g-2 Experiment (E989) is an upgraded version of E821 that has a goal of producing a measurement with approximately 4 times more precision. Improving the precision requires a more detailed understanding of the experimental systematic effects, and so three higher-order systematic effects in the muon beam-spin dynamics have recently been found and estimated for E821. The beamline systematic effect originates from muon production in beamline spectrometers, as well as from muons traversing beamline bending magnets. The kicker systematic effect comes from a combination of the variation in time spent inside the muon storage ring across a muon bunch and the temporal structure of the storage ring kicker waveform. Finally, the detector systematic effect arises from a combination of the energy dependent muon equilibrium orbit in the storage ring, muon decay electron drift time, and decay electron detector acceptance effects. Brookhaven Natl Lab.

  1. Self-adjusting magnetic bearing systems

    DOEpatents

    Post, Richard F.

    1998-01-01

    A self-adjusting magnetic bearing automatically adjusts the parameters of an axially unstable magnetic bearing such that its force balance is maintained near the point of metastable equilibrium. Complete stabilization can be obtained with the application of weak restoring forces either from a mechanical bearing (running at near-zero load, thus with reduced wear) or from the action of residual eddy currents in a snubber bearing. In one embodiment, a torque is generated by the approach of a slotted pole to a conducting plate. The torque actuates an assembly which varies the position of a magnetic shunt to change the force exerted by the bearing. Another embodiment achieves axial stabilization by sensing vertical displacements in a suspended bearing element, and using this information in an electrical servo system. In a third embodiment, as a rotating eddy current exciter approaches a stationary bearing, it heats a thermostat which actuates an assembly to weaken the attractive force between the two bearing elements. An improved version of an electromechanical battery utilizing the designs of the various embodiments is described.

  2. Self-adjusting magnetic bearing systems

    DOEpatents

    Post, R.F.

    1998-07-21

    A self-adjusting magnetic bearing automatically adjusts the parameters of an axially unstable magnetic bearing such that its force balance is maintained near the point of metastable equilibrium. Complete stabilization can be obtained with the application of weak restoring forces either from a mechanical bearing (running at near-zero load, thus with reduced wear) or from the action of residual eddy currents in a snubber bearing. In one embodiment, a torque is generated by the approach of a slotted pole to a conducting plate. The torque actuates an assembly which varies the position of a magnetic shunt to change the force exerted by the bearing. Another embodiment achieves axial stabilization by sensing vertical displacements in a suspended bearing element, and using this information in an electrical servo system. In a third embodiment, as a rotating eddy current exciter approaches a stationary bearing, it heats a thermostat which actuates an assembly to weaken the attractive force between the two bearing elements. An improved version of an electromechanical battery utilizing the designs of the various embodiments is described. 7 figs.

  3. System and method for magnetic current density imaging at ultra low magnetic fields

    DOEpatents

    Espy, Michelle A.; George, John Stevens; Kraus, Robert Henry; Magnelind, Per; Matlashov, Andrei Nikolaevich; Tucker, Don; Turovets, Sergei; Volegov, Petr Lvovich

    2016-02-09

    Preferred systems can include an electrical impedance tomography apparatus electrically connectable to an object; an ultra low field magnetic resonance imaging apparatus including a plurality of field directions and disposable about the object; a controller connected to the ultra low field magnetic resonance imaging apparatus and configured to implement a sequencing of one or more ultra low magnetic fields substantially along one or more of the plurality of field directions; and a display connected to the controller, and wherein the controller is further configured to reconstruct a displayable image of an electrical current density in the object. Preferred methods, apparatuses, and computer program products are also disclosed.

  4. Development of magnetic bearing system for a new third-generation blood pump.

    PubMed

    Lee, Jung Joo; Ahn, Chi Bum; Choi, Jaesoon; Park, Jun Woo; Song, Seung-Joon; Sun, Kyung

    2011-11-01

    A magnetic bearing system is a crucial component in a third-generation blood pump, particularly when we consider aspects such as system durability and blood compatibility. Many factors such as efficiency, occupying volume, hemodynamic stability in the flow path, mechanical stability, and stiffness need to be considered for the use of a magnetic bearing system in a third-generation blood pump, and a number of studies have been conducted to develop novel magnetic bearing design for better handling of these factors. In this study, we developed and evaluated a new magnetic bearing system having a motor for a new third-generation blood pump. This magnetic bearing system consists of a magnetic levitation compartment and a brushless direct current (BLDC) motor compartment. The active-control degree of freedom is one; this control is used for controlling the levitation in the axial direction. The levitation in the radial direction has a passive magnetic levitation structure. In order to improve the system efficiency, we separated the magnetic circuit for axial levitation by using a magnetic circuit for motor drive. Each magnetic circuit in the bearing system was designed to have a minimum gap by placing mechanical parts, such as the impeller blades, outside the circuit. A custom-designed noncontact gap sensor was used for minimizing the system volume. We fabricated an experimental prototype of the proposed magnetic bearing system and evaluated its performance by a control system using the Matlab xPC Target system. The noncontact gap sensor was an eddy current gap sensor with an outer diameter of 2.38 mm, thickness of 0.88 mm, and resolution of 5 µm. The BLDC motor compartment was designed to have an outer diameter of 20 mm, length of 28.75 mm, and power of 4.5 W. It exhibited a torque of 8.6 mNm at 5000 rpm. The entire bearing system, including the motor and the sensor, had an outer diameter of 22 mm and a length of 97 mm. The prototype exhibited sufficient levitation

  5. A β-Ta system for current induced magnetic switching in the absence of external magnetic field

    NASA Astrophysics Data System (ADS)

    Chen, Wenzhe; Qian, Lijuan; Xiao, Gang

    2018-05-01

    Magnetic switching via Giant Spin Hall Effect (GSHE) has received great interest for its role in developing future spintronics logic or memory devices. In this work, a new material system (i.e. a transition metal sandwiched between two ferromagnetic layers) with interlayer exchange coupling is introduced to realize the deterministic field-free perpendicular magnetic switching. This system uses β-Ta, as the GSHE agent to generate a spin current and as the interlayer exchange coupling medium to generate an internal field. The critical switching current density at zero field is on the order of 106 A/cm2 due to the large spin Hall angle of β-Ta. The internal field, along with switching efficiency, depends strongly on the orthogonal magnetization states of two ferromagnetic coupling layers in this system.

  6. ATV magnetometer systems for efficient ground magnetic surveying

    USGS Publications Warehouse

    Athens, Noah D.; Glen, Jonathan M. G.; Morin, Robert L.; Klemperer, Simon L.

    2011-01-01

    Ground magnetic data contain information, not pre-sent in aeromagnetic data, which may be useful for precisely mapping near-surface faults and contacts, as well as constraining or aiding interpretation of other geophysical methods. However, collecting ground magnetic data on foot is labor-intensive and is therefore limited to small surveys. In this article, we present two newly developed all-terrain vehicle (ATV) magnetometer systems that significantly expand the survey area that is possible in a ground magnetic survey without greatly reducing the quality of data.

  7. Distributed magnetic field positioning system using code division multiple access

    NASA Technical Reports Server (NTRS)

    Prigge, Eric A. (Inventor)

    2003-01-01

    An apparatus and methods for a magnetic field positioning system use a fundamentally different, and advantageous, signal structure and multiple access method, known as Code Division Multiple Access (CDMA). This signal architecture, when combined with processing methods, leads to advantages over the existing technologies, especially when applied to a system with a large number of magnetic field generators (beacons). Beacons at known positions generate coded magnetic fields, and a magnetic sensor measures a sum field and decomposes it into component fields to determine the sensor position and orientation. The apparatus and methods can have a large `building-sized` coverage area. The system allows for numerous beacons to be distributed throughout an area at a number of different locations. A method to estimate position and attitude, with no prior knowledge, uses dipole fields produced by these beacons in different locations.

  8. Unraveling surface enabled magnetic phenomena in low dimensional systems

    NASA Astrophysics Data System (ADS)

    Baljozovic, Milos; Girovsky, Jan; Nowakowski, Jan; Ali, Md Ehesan; Rossmann, Harald; Nijs, Thomas; Aeby, Elise; Nowakowska, Sylwia; Siewert, Dorota; Srivastava, Gitika; WäCkerlin, Christian; Dreiser, Jan; Decurtins, Silvio; Liu, Shi-Xia; Oppeneer, Peter M.; Jung, Thomas A.; Ballav, Nirmalya

    Molecular spin systems with controllable interactions are of both fundamental and applied importance. These systems help us to better understand the fundamental origins of the interactions involved in low dimensional magnetic systems and to put them in the framework of existing models towards their further development. Following our first observation of exchange induced magnetic ordering in paramagnetic porphyrins adsorbed on ferromagnetic Co surface we showed that magnetic properties of such molecules can be controllably altered upon exposure to chemical and physical stimuli. In our most recent work it was shown that a synthetically programmed co-assembly of Fe and Mn phthalocyanines can also be realized on diamagnetic Au(111) surfaces where it induces long-range 2D ferrimagnetic order, at first glance in conflict with the Mermin-Wagner theory. Here we provide evidence for the first direct observation of such ordering from STM/STS and XMCD data and from DFT +U calculations demonstrating key role of the Au(111) surface states in mediating AFM RKKY coupling of the Kondo underscreened magnetic moments.

  9. Improvement of immunoassay detection system by using alternating current magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Kawabata, R.; Mizoguchi, T.; Kandori, A.

    2016-03-01

    A major goal with this research was to develop a low-cost and highly sensitive immunoassay detection system by using alternating current (AC) magnetic susceptibility. We fabricated an improved prototype of our previously developed immunoassay detection system and evaluated its performance. The prototype continuously moved sample containers by using a magnetically shielded brushless motor, which passes between two anisotropic magneto resistance (AMR) sensors. These sensors detected the magnetic signal in the direction where each sample container passed them. We used the differential signal obtained from each AMR sensor's output to improve the signal-to-noise ratio (SNR) of the magnetic signal measurement. Biotin-conjugated polymer beads with avidin-coated magnetic particles were prepared to examine the calibration curve, which represents the relation between AC magnetic susceptibility change and polymer-bead concentration. For the calibration curve measurement, we, respectively, measured the magnetic signal caused by the magnetic particles by using each AMR sensor installed near the upper or lower part in the lateral position of the passing sample containers. As a result, the SNR of the prototype was 4.5 times better than that of our previous system. Moreover, the data obtained from each AMR sensor installed near the upper part in the lateral position of the passing sample containers exhibited an accurate calibration curve that represented good correlation between AC magnetic susceptibility change and polymer-bead concentration. The conclusion drawn from these findings is that our improved immunoassay detection system will enable a low-cost and highly sensitive immunoassay.

  10. Improvement of immunoassay detection system by using alternating current magnetic susceptibility.

    PubMed

    Kawabata, R; Mizoguchi, T; Kandori, A

    2016-03-01

    A major goal with this research was to develop a low-cost and highly sensitive immunoassay detection system by using alternating current (AC) magnetic susceptibility. We fabricated an improved prototype of our previously developed immunoassay detection system and evaluated its performance. The prototype continuously moved sample containers by using a magnetically shielded brushless motor, which passes between two anisotropic magneto resistance (AMR) sensors. These sensors detected the magnetic signal in the direction where each sample container passed them. We used the differential signal obtained from each AMR sensor's output to improve the signal-to-noise ratio (SNR) of the magnetic signal measurement. Biotin-conjugated polymer beads with avidin-coated magnetic particles were prepared to examine the calibration curve, which represents the relation between AC magnetic susceptibility change and polymer-bead concentration. For the calibration curve measurement, we, respectively, measured the magnetic signal caused by the magnetic particles by using each AMR sensor installed near the upper or lower part in the lateral position of the passing sample containers. As a result, the SNR of the prototype was 4.5 times better than that of our previous system. Moreover, the data obtained from each AMR sensor installed near the upper part in the lateral position of the passing sample containers exhibited an accurate calibration curve that represented good correlation between AC magnetic susceptibility change and polymer-bead concentration. The conclusion drawn from these findings is that our improved immunoassay detection system will enable a low-cost and highly sensitive immunoassay.

  11. Amplification of large scale magnetic fields in a decaying MHD system

    NASA Astrophysics Data System (ADS)

    Park, Kiwan

    2017-10-01

    Dynamo theory explains the amplification of magnetic fields in the conducting fluids (plasmas) driven by the continuous external energy. It is known that the nonhelical continuous kinetic or magnetic energy amplifies the small scale magnetic field; and the helical energy, the instability, or the shear with rotation effect amplifies the large scale magnetic field. However, recently it was reported that the decaying magnetic energy independent of helicity or instability could generate the large scale magnetic field. This phenomenon may look somewhat contradictory to the conventional dynamo theory. But it gives us some clues to the fundamental mechanism of energy transfer in the magnetized conducting fluids. It also implies that an ephemeral astrophysical event emitting the magnetic and kinetic energy can be a direct cause of the large scale magnetic field observed in space. As of now the exact physical mechanism is not yet understood in spite of several numerical results. The plasma motion coupled with a nearly conserved vector potential in the magnetohydrodynamic (MHD) system may transfer magnetic energy to the large scale. Also the intrinsic property of the scaling invariant MHD equation may decide the direction of energy transfer. In this paper we present the simulation results of inversely transferred helical and nonhelical energy in a decaying MHD system. We introduce a field structure model based on the MHD equation to show that the transfer of magnetic energy is essentially bidirectional depending on the plasma motion and initial energy distribution. And then we derive α coefficient algebraically in line with the field structure model to explain how the large scale magnetic field is induced by the helical energy in the system regardless of an external forcing source. And for the algebraic analysis of nonhelical magnetic energy, we use the eddy damped quasinormalized Markovian approximation to show the inverse transfer of magnetic energy.

  12. Development of a temperature-variable magnetic resonance imaging system using a 1.0T yokeless permanent magnet.

    PubMed

    Terada, Y; Tamada, D; Kose, K

    2011-10-01

    A temperature variable magnetic resonance imaging (MRI) system has been developed using a 1.0 T permanent magnet. A permanent magnet, gradient coils, radiofrequency coil, and shim coil were installed in a temperature variable thermostatic bath. First, the variation in the magnetic field inhomogeneity with temperature was measured. The inhomogeneity has a specific spatial symmetry, which scales linearly with temperature, and a single-channel shim coil was designed to compensate for the inhomogeneity. The inhomogeneity was drastically reduced by shimming over a wide range of temperature from -5°C to 45°C. MR images of an okra pod acquired at different temperatures demonstrated the high potential of the system for visualizing thermally sensitive properties. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. A magnetic induction heating system with multi-cascaded coils and adjustable magnetic circuit for hyperthermia.

    PubMed

    Huang, Chi-Fang; Chao, Hsuan-Yi; Chang, Hsun-Hao; Lin, Xi-Zhang

    2016-01-01

    Based on the characteristics of cancer cells that cannot survive in an environment with temperature over 42 °C, a magnetic induction heating system for cancer treatment is developed in this work. First, the methods and analyses for designing the multi-cascaded coils magnetic induction hyperthermia system are proposed, such as internal impedance measurement of power generator, impedance matching of coils, and analysis of the system. Besides, characteristics of the system are simulated by a full-wave package for engineering optimization. Furthermore, by considering the safety factor of patients, a two-sectional needle is designed for hyperthermia. Finally, this system is employed to test the liver of swine in ex-vivo experiments, and through Hematoxylin and Eosin (H&E) stain and NADPH oxidase activity assay, the feasibility of this system is verified.

  14. A simple and low-cost permanent magnet system for NMR.

    PubMed

    Chonlathep, K; Sakamoto, T; Sugahara, K; Kondo, Y

    2017-02-01

    We have developed a simple, easy to build, and low-cost magnet system for NMR, of which homogeneity is about 4×10 -4 at 57mT, with a pair of two commercially available ferrite magnets. This homogeneity corresponds to about 90Hz spectral resolution at 2.45MHz of the hydrogen Larmor frequency. The material cost of this NMR magnet system is little more than $100. The components can be printed by a 3D printer. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Errors and optics study of a permanent magnet quadrupole system

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Maggiore, M.; Rifuggiato, D.; Cirrone, G. A. P.; Cuttone, G.; Giove, D.

    2015-05-01

    Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. Nowadays, energy and angular spread of the laser-driven beams are the main issues in application and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of permanent magnet quadrupoles (PMQs) is going to be realized by INFN [2] researchers, in collaboration with SIGMAPHI [3] company in France, to be used as a collection and pre-selection system for laser driven proton beams. The definition of well specified characteristics, both in terms of performances and field quality, of the magnetic lenses is crucial for the system realization, for an accurate study of the beam dynamics and the proper matching with a magnetic selection system already realized [6,7]. Hence, different series of simulations have been used for studying the PMQs harmonic contents and stating the mechanical and magnetic tolerances in order to have reasonable good beam quality downstream the system. In this paper is reported the method used for the analysis of the PMQs errors and its validation. Also a preliminary optics characterization is presented in which are compared the effects of an ideal PMQs system with a perturbed system on a monochromatic proton beams.

  16. Magnet/cryocooler integration for thermal stability in conduction-cooled systems

    NASA Astrophysics Data System (ADS)

    Chang, H.-M.; Kwon, K. B.

    2002-05-01

    The stability conditions that take into accounts the size of superconducting magnets and the refrigeration capacity of cryocoolers are investigated for the conduction-cooled systems without liquid cryogens. The worst scenario in the superconducting systems is that the heat generation in the resistive state exceeds the refrigeration, causing a rise in the temperature of the magnet winding and leading to burnout. It is shown by an analytical solution that in the continuously resistive state, the temperature may increase indefinitely or a stable steady state may be reached, depending upon the relative size of the magnet with respect to the refrigeration capacity of the cryocooler. The stability criteria include the temperature-dependent properties of the magnet materials and the refrigeration characteristics of the cryocooler. A useful graphical scheme is presented and the design of the stable magnet/cryocooler interface is demonstrated.

  17. Permanent magnet system to guide superparamagnetic particles

    NASA Astrophysics Data System (ADS)

    Baun, Olga; Blümler, Peter

    2017-10-01

    A new concept of using permanent magnet systems for guiding superparamagnetic nano-particles on arbitrary trajectories over a large volume is proposed. The basic idea is to use one magnet system which provides a strong, homogeneous, dipolar magnetic field to magnetize and orient the particles, and a second constantly graded, quadrupolar field, superimposed on the first, to generate a force on the oriented particles. In this configuration the motion of the particles is driven predominantly by the component of the gradient field which is parallel to the direction of the homogeneous field. As a result, particles are guided with constant force and in a single direction over the entire volume. The direction is simply adjusted by varying the angle between quadrupole and dipole. Since a single gradient is impossible due to Gauß' law, the other gradient component of the quadrupole determines the angular deviation of the force. However, the latter can be neglected if the homogeneous field is stronger than the local contribution of the quadrupole field. A possible realization of this idea is a coaxial arrangement of two Halbach cylinders. A dipole to evenly magnetize and orient the particles, and a quadrupole to generate the force. The local force was calculated analytically for this particular geometry and the directional limits were analyzed and discussed. A simple prototype was constructed to demonstrate the principle in two dimensions on several nano-particles of different size, which were moved along a rough square by manual adjustment of the force angle. The observed velocities of superparamagnetic particles in this prototype were always several orders of magnitude higher than the theoretically expected value. This discrepancy is attributed to the observed formation of long particle chains as a result of their polarization by the homogeneous field. The magnetic moment of such a chain is then the combination of that of its constituents, while its hydrodynamic radius

  18. System characterization of a magnetically suspended flywheel

    NASA Technical Reports Server (NTRS)

    Kirk, James A.; Anand, Dave K.; Plant, David P.

    1988-01-01

    The purpose of flywheel energy storage is to provide a means to save energy during times when the satellite is in sunlight, and then return the energy during the time when the satellite is in darkness. Typically, an energy storage device operates cyclically, where for satellites in Low Earth Orbit (LEO) the typical period is 60 minutes of sunlight followed by 30 minutes of darkness. If a lifetime of 17 years is required the energy storage system must be capable of sustaining approximately 100,000 cycles. The recent developments at the University of Maryland and how these progressions apply to a 500 Watt-hour magnetically suspended flywheel stack energy storage system are covered. The work includes hardware testing results from a stack flywheel energy storage system, improvements in the area of non-contacting displacement transducers, and performance enhancements of magnetic bearings. The experimental results show that a stack flywheel energy storage system is a feasible technology.

  19. Neural Network Control of a Magnetically Suspended Rotor System

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.

    1998-01-01

    Magnetic bearings offer significant advantages because they do not come into contact with other parts during operation, which can reduce maintenance. Higher speeds, no friction, no lubrication, weight reduction, precise position control, and active damping make them far superior to conventional contact bearings. However, there are technical barriers that limit the application of this technology in industry. One of them is the need for a nonlinear controller that can overcome the system nonlinearity and uncertainty inherent in magnetic bearings. At the NASA Lewis Research Center, a neural network was selected as a nonlinear controller because it generates a neural model without any detailed information regarding the internal working of the magnetic bearing system. It can be used even for systems that are too complex for an accurate system model to be derived. A feed-forward architecture with a back-propagation learning algorithm was selected because of its proven performance, accuracy, and relatively easy implementation.

  20. A 10 Kelvin 3 Tesla Magnet for Space Flight ADR Systems

    NASA Technical Reports Server (NTRS)

    Tuttle, Jim; Shirron, Peter; Canavan, Edgar; DiPirro, Michael; Riall, Sara; Pourrahimi, Shahin

    2003-01-01

    Many future space flight missions are expected to use adiabatic demagnetization refrigerators (ADRs) to reach detector operating temperatures well below one Kelvin. The goal is to operate each ADR with a mechanical cooler as its heat sink, thus avoiding the use of liquid cryogens. Although mechanical coolers are being developed to operate at temperatures of 6 Kelvin and below, there is a large efficiency cost associated with operating them at the bottom of their temperature range. For the multi-stage ADR system being developed at Goddard Space Flight Center, the goal is to operate with a 10 Kelvin mechanical cooler heat sink. With currently available paramagnetic materials, the highest temperature ADR stage in such a system will require a magnetic field of approximately three Tesla. Thus the goal is to develop a small, lightweight three Tesla superconducting magnet for operation at 10 Kelvin. It is important that this magnet have a low current/field ratio. Because traditional NbTi magnets do not operate safely above about six Kelvin, a magnet with a higher Tc is required. The primary focus has been on Nb3Sn magnets. Since standard Nb3Sn wire must be coated with thick insulation, wound on a magnet mandrel and then reacted, standard Nb,Sn magnets are quite heavy and require high currents Superconducting Systems developed a Nb3Sn wire which can be drawn down to small diameter, reacted, coated with thin insulation and then wound on a small diameter coil form. By using this smaller wire and operating closer to the wire s critical current, it should be possible to reduce the mass and operating current of 10 Kelvin magnets. Using this "react-then-wind" technology, Superconducting Systems has produced prototype 10 Kelvin magnets. This paper describes the development and testing of these magnets and discusses the outlook for including 10 Kelvin magnets on space-flight missions.

  1. Expanded Equations for Torque and Force on a Cylindrical Permanent Magnet Core in a Large-Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1997-01-01

    The expanded equations for torque and force on a cylindrical permanent magnet core in a large-gap magnetic suspension system are presented. The core is assumed to be uniformly magnetized, and equations are developed for two orientations of the magnetization vector. One orientation is parallel to the axis of symmetry, and the other is perpendicular to this axis. Fields and gradients produced by suspension system electromagnets are assumed to be calculated at a point in inertial space which coincides with the origin of the core axis system in its initial alignment. Fields at a given point in the core are defined by expanding the fields produced at the origin as a Taylor series. The assumption is made that the fields can be adequately defined by expansion up to second-order terms. Examination of the expanded equations for the case where the magnetization vector is perpendicular to the axis of symmetry reveals that some of the second-order gradient terms provide a method of generating torque about the axis of magnetization and therefore provide the ability to produce six-degree-of-freedom control.

  2. Active magnetic radiation shielding system analysis and key technologies.

    PubMed

    Washburn, S A; Blattnig, S R; Singleterry, R C; Westover, S C

    2015-01-01

    Many active magnetic shielding designs have been proposed in order to reduce the radiation exposure received by astronauts on long duration, deep space missions. While these designs are promising, they pose significant engineering challenges. This work presents a survey of the major systems required for such unconfined magnetic field design, allowing the identification of key technologies for future development. Basic mass calculations are developed for each system and are used to determine the resulting galactic cosmic radiation exposure for a generic solenoid design, using a range of magnetic field strength and thickness values, allowing some of the basic characteristics of such a design to be observed. This study focuses on a solenoid shaped, active magnetic shield design; however, many of the principles discussed are applicable regardless of the exact design configuration, particularly the key technologies cited. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.

  3. Monitoring long-term evolution of engineered barrier systems using magnets: Magnetic response.

    PubMed

    Rigonat, N; Isnard, O; Harley, S L; Butler, I B

    2018-01-05

    Remote and non-destructive monitoring of the stability and performance of Engineered Barrier Systems for Geological Disposal Facility of is gaining considerable importance in establishing the safety cases for Higher Activity Wastes disposal. This study offers an innovative use of mineral magnetism for monitoring groundwater saturation of the barrier. Four mixtures of permanent magnets (Nd-Fe-B, coated and uncoated; SmCo and AlNiCo) and bentonite were reacted for 4, 8 and 12 months with mildly-saline, high-pH leachates, representing the fluids saturating a time-evolved engineered barrier. Coupled hysteresis and thermomagnetic analyses demonstrate how Nd-Fe-B feature a time-dependent transition from square-like ferromagnetic to superparamagnetic loop via pot-bellied and wasp-waist loops, whereas SmCo and AlNiCo do not show so extensive corrosion-related variations of the intrinsic and extrinsic magnetic properties. This study allowed to identify magnetic materials suitable for shorter- (Nd-Fe-B) and longer-term (SmCo and AlNiCo) monitoring purposes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. A Real-Time Localization System for an Endoscopic Capsule Using Magnetic Sensors †

    PubMed Central

    Pham, Duc Minh; Aziz, Syed Mahfuzul

    2014-01-01

    Magnetic sensing technology offers an attractive alternative for in vivo tracking with much better performance than RF and ultrasound technologies. In this paper, an efficient in vivo magnetic tracking system is presented. The proposed system is intended to localize an endoscopic capsule which delivers biomarkers around specific locations of the gastrointestinal (GI) tract. For efficiently localizing a magnetic marker inside the capsule, a mathematical model has been developed for the magnetic field around a cylindrical magnet and used with a localization algorithm that provides minimum error and fast computation. The proposed tracking system has much reduced complexity compared to the ones reported in the literature to date. Laboratory tests and in vivo animal trials have demonstrated the suitability of the proposed system for tracking a magnetic marker with expected accuracy. PMID:25379813

  5. Superconducting magnetic control system for manipulation of particulate matter and magnetic probes in medical and industrial applications

    DOEpatents

    Cha, Yung Sheng; Hull, John R.; Askew, Thomas R.

    2006-07-11

    A system and method of controlling movement of magnetic material with at least first and second high temperature superconductors at spaced locations. A plurality of solenoids are associated with the superconductors to induce a persistent currents in preselected high temperature superconductors establishing a plurality of magnetic fields in response to pulsed currents introduced to one or more of the solenoids. Control mechanism in communication with said solenoids and/or said high temperature superconductors are used to demagnetize selected ones of the high temperature superconductors to reduce the magnetic fields substantially to zero. Magnetic material is moved between magnetic fields by establishing the presence thereof and thereafter reducing magnetic fields substantially to zero and establishing magnetic fields in other superconductors arranged in a predetermined configuration.

  6. Magnetic tracking for TomoTherapy systems: gradiometer based methods to filter eddy-current magnetic fields.

    PubMed

    McGary, John E; Xiong, Zubiao; Chen, Ji

    2013-07-01

    TomoTherapy systems lack real-time, tumor tracking. A possible solution is to use electromagnetic markers; however, eddy-current magnetic fields generated in response to a magnetic source can be comparable to the signal, thus degrading the localization accuracy. Therefore, the tracking system must be designed to account for the eddy fields created along the inner bore conducting surfaces. The aim of this work is to investigate localization accuracy using magnetic field gradients to determine feasibility toward TomoTherapy applications. Electromagnetic models are used to simulate magnetic fields created by a source and its simultaneous generation of eddy currents within a conducting cylinder. The source position is calculated using a least-squares fit of simulated sensor data using the dipole equation as the model equation. To account for field gradients across the sensor area (≈ 25 cm(2)), an iterative method is used to estimate the magnetic field at the sensor center. Spatial gradients are calculated with two arrays of uniaxial, paired sensors that form a gradiometer array, where the sensors are considered ideal. Experimental measurements of magnetic fields within the TomoTherapy bore are shown to be 1%-10% less than calculated with the electromagnetic model. Localization results using a 5 × 5 array of gradiometers are, in general, 2-4 times more accurate than a planar array of sensors, depending on the solenoid orientation and position. Simulation results show that the localization accuracy using a gradiometer array is within 1.3 mm over a distance of 20 cm from the array plane. In comparison, localization errors using single array are within 5 mm. The results indicate that the gradiometer method merits further studies and work due to the accuracy achieved with ideal sensors. Future studies should include realistic sensor models and extensive numerical studies to estimate the expected magnetic tracking accuracy within a TomoTherapy system before proceeding

  7. Neural control of magnetic suspension systems

    NASA Technical Reports Server (NTRS)

    Gray, W. Steven

    1993-01-01

    The purpose of this research program is to design, build and test (in cooperation with NASA personnel from the NASA Langley Research Center) neural controllers for two different small air-gap magnetic suspension systems. The general objective of the program is to study neural network architectures for the purpose of control in an experimental setting and to demonstrate the feasibility of the concept. The specific objectives of the research program are: (1) to demonstrate through simulation and experimentation the feasibility of using neural controllers to stabilize a nonlinear magnetic suspension system; (2) to investigate through simulation and experimentation the performance of neural controllers designs under various types of parametric and nonparametric uncertainty; (3) to investigate through simulation and experimentation various types of neural architectures for real-time control with respect to performance and complexity; and (4) to benchmark in an experimental setting the performance of neural controllers against other types of existing linear and nonlinear compensator designs. To date, the first one-dimensional, small air-gap magnetic suspension system has been built, tested and delivered to the NASA Langley Research Center. The device is currently being stabilized with a digital linear phase-lead controller. The neural controller hardware is under construction. Two different neural network paradigms are under consideration, one based on hidden layer feedforward networks trained via back propagation and one based on using Gaussian radial basis functions trained by analytical methods related to stability conditions. Some advanced nonlinear control algorithms using feedback linearization and sliding mode control are in simulation studies.

  8. Drug accumulation by means of noninvasive magnetic drug delivery system

    NASA Astrophysics Data System (ADS)

    Chuzawa, M.; Mishima, F.; Akiyama, Y.; Nishijima, S.

    2011-11-01

    The medication is one of the most general treatment methods, but drugs diffuse in the normal tissues other than the target part by the blood circulation. Therefore, side effect in the medication, particularly for a drug with strong effect such as anti-cancer drug, are a serious issue. Drug Delivery System (DDS) which accumulates the drug locally in the human body is one of the techniques to solve the side-effects. Magnetic Drug Delivery System (MDDS) is one of the active DDSs, which uses the magnetic force. The objective of this study is to accumulate the ferromagnetic drugs noninvasively in the deep part of the body by using MDDS. It is necessary to generate high magnetic field and magnetic gradient at the target part to reduce the side-effects to the tissues with no diseases. The biomimetic model was composed, which consists of multiple model organs connected with diverged blood vessel model. The arrangement of magnetic field was examined to accumulate ferromagnetic drug particles in the target model organ by using a superconducting bulk magnet which can generate high magnetic fields. The arrangement of magnet was designed to generate high and stable magnetic field at the target model organ. The accumulation experiment of ferromagnetic particles has been conducted. In this study, rotating HTS bulk magnet around the axis of blood vessels by centering on the target part was suggested, and the model experiment for magnet rotation was conducted. As a result, the accumulation of the ferromagnetic particles to the target model organ in the deep part was confirmed.

  9. Magnetic field simulation and shimming analysis of 3.0T superconducting MRI system

    NASA Astrophysics Data System (ADS)

    Yue, Z. K.; Liu, Z. Z.; Tang, G. S.; Zhang, X. C.; Duan, L. J.; Liu, W. C.

    2018-04-01

    3.0T superconducting magnetic resonance imaging (MRI) system has become the mainstream of modern clinical MRI system because of its high field intensity and high degree of uniformity and stability. It has broad prospects in scientific research and other fields. We analyze the principle of magnet designing in this paper. We also perform the magnetic field simulation and shimming analysis of the first 3.0T/850 superconducting MRI system in the world using the Ansoft Maxwell simulation software. We guide the production and optimization of the prototype based on the results of simulation analysis. Thus the magnetic field strength, magnetic field uniformity and magnetic field stability of the prototype is guided to achieve the expected target.

  10. Remote magnetic actuation using a clinical scale system

    PubMed Central

    Stehning, Christian; Gleich, Bernhard

    2018-01-01

    Remote magnetic manipulation is a powerful technique for controlling devices inside the human body. It enables actuation and locomotion of tethered and untethered objects without the need for a local power supply. In clinical applications, it is used for active steering of catheters in medical interventions such as cardiac ablation for arrhythmia treatment and for steering of camera pills in the gastro-intestinal tract for diagnostic video acquisition. For these applications, specialized clinical-scale field applicators have been developed, which are rather limited in terms of field strength and flexibility of field application. For a general-purpose field applicator, flexible field generation is required at high field strengths as well as high field gradients to enable the generation of both torques and forces on magnetic devices. To date, this requirement has only been met by small-scale experimental systems. We have built a highly versatile clinical-scale field applicator that enables the generation of strong magnetic fields as well as strong field gradients over a large workspace. We demonstrate the capabilities of this coil-based system by remote steering of magnetic drills through gel and tissue samples with high torques on well-defined curved trajectories. We also give initial proof that, when equipped with high frequency transmit-receive coils, the machine is capable of real-time magnetic particle imaging while retaining a clinical-scale bore size. Our findings open the door for image-guided radiation-free remote magnetic control of devices at the clinical scale, which may be useful in minimally invasive diagnostic and therapeutic medical interventions. PMID:29494647

  11. Engineering of the Magnetized Target Fusion Propulsion System

    NASA Technical Reports Server (NTRS)

    Statham, G.; White, S.; Adams, R. B.; Thio, Y. C. F.; Santarius, J.; Alexander, R.; Fincher, S.; Polsgrove, T.; Chapman, J.; Philips, A.

    2002-01-01

    Engineering details are presented for a magnetized target fusion (MTF) propulsion system designed to support crewed missions to the outer solar system. Structural, thermal and radiation-management design details are presented. Propellant storage and supply options are also discussed and a propulsion system mass estimate is given.

  12. Theoretical studies to elucidate the influence of magnetic dipolar interactions occurring in the magnetic nanoparticle systems, for biomedical applications

    NASA Astrophysics Data System (ADS)

    Osaci, M.; Cacciola, M.

    2016-02-01

    In recent years, the study of magnetic nanoparticles has been intensively developed not only for their fundamental theoretical interest, but also for their many technological applications, especially biomedical applications, ranging from contrast agents for magnetic resonance imaging to the deterioration of cancer cells via hyperthermia treatment. The theoretical and experimental research has shown until now that the magnetic dipolar interactions between nanoparticles can have a significant influence on the magnetic behaviour of the system. But, this influence is not well understood. It is clear that the magnetic dipolar interaction intensity is correlated with the nanoparticle concentration, volume fraction and magnetic moment orientations. In this paper, we try to understand the influence of magnetic dipolar interactions on the behaviour of magnetic nanoparticle systems, for biomedical applications. For the model, we considered spherical nanoparticles with uniaxial anisotropy and lognormal distribution of the sizes. The model involves a simulation stage of the spatial distribution and orientation of the nanoparticles and their easy axes of magnetic anisotropy, and an evaluation stage of the Néel relaxation time. To assess the Néel relaxation time, we are going to discretise and adapt, to the local magnetic field, the Coffey analytical solution for the equation Fokker-Planck describing the dynamics of magnetic moments of nanoparticles in oblique external magnetic field. There are three fundamental aspects of interest in our studies on the magnetic nanoparticles: their spatial & orientational distributions, concentrations and sizes.

  13. Collider and Detector Protection at Beam Accidents

    NASA Astrophysics Data System (ADS)

    Rakhno, I. L.; Mokhov, N. V.; Drozhdin, A. I.

    2003-12-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occured at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section.

  14. Regulation of autonomic nervous system in space and magnetic storms.

    PubMed

    Baevsky, R M; Petrov, V M; Chernikova, A G

    1998-01-01

    Variations in the earth's magnetic field and magnetic storms are known to be a risk factor for the development of cardiovascular disorders. The main "targets" for geomagnetic perturbations are the central nervous system and the neural regulation of vascular tone and heart rate variability. This paper presents the data about effect of geomagnetic fluctuations on human body in space. As a method for research the analysis of heart rate variability was used, which allows evaluating the state of the sympathetic and parasympathetic parts of the autonomic nervous system, vasomotor center and subcortical neural centers activity. Heart rate variability data were analyzed for 30 cosmonauts at the 2nd day of space flight on transport spaceship Soyuz (32nd orbit). There were formed three groups of cosmonauts: without magnetic storm (n=9), on a day with magnetic storm (n=12) and 1-2 days after magnetic storm (n=9). The present study was the first to demonstrate a specific impact of geomagnetic perturbations on the system of autonomic circulatory control in cosmonauts during space flight. The increasing of highest nervous centers activity was shown for group with magnetic storms, which was more significant on 1-2 days after magnetic storm. The use of discriminate analysis allowed to classify indicated three groups with 88% precision. Canonical variables are suggested to be used as criterions for evaluation of specific and non-specific components of cardiovascular reactions to geomagnetic perturbations. The applied aspect of the findings from the present study should be emphasized. They show, in particular, the need to supplement the medical monitoring of cosmonauts with predictions of probable geomagnetic perturbations in view of the prevention of unfavorable states appearances if the adverse reactions to geomagnetic perturbations are added to the tension experienced by regulatory systems during various stresses situations (such as work in the open space).

  15. Challenges and Plans for Injection and Beam Dump

    NASA Astrophysics Data System (ADS)

    Barnes, M.; Goddard, B.; Mertens, V.; Uythoven, J.

    The injection and beam dumping systems of the LHC will need to be upgraded to comply with the requirements of operation with the HL-LHC beams. The elements of the injection system concerned are the fixed and movable absorbers which protect the LHC in case of an injection kicker error and the injection kickers themselves. The beam dumping system elements under study are the absorbers which protect the aperture in case of an asynchronous beam dump and the beam absorber block. The operational limits of these elements and the new developments in the context of the HL-LHC project are described.

  16. Preparation of a Magnetically Switchable Bioelectrocatalytic System Employing Cross-Linked Enzyme Aggregates in Magnetic Mesocellular Carbon Foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jinwoo; Lee, Dohun; Oh, Eunkeu

    2005-11-18

    Nanostructured magnetic materials (NMMs)[1] have attracted much attention recently because of their broad biotechnological applications including support matrices for enzyme immobilization,[2] immunoassays,[3] drug delivery,[4] and biosensors.[ 5] Specifically, the easy separation and controlled placement of NMMs by means of an external magnetic field enables their application in the development of immobilized enzyme processes[2] and the construction of magnetically controllable bio-electrocatalytic systems.[5, 6] Herein, we demonstrate the use of immobilized enzymes in NMMs for magnetically switchable bio-electrocatalysis.

  17. Development of a compact 30 T magnetic field system for OMEGA

    NASA Astrophysics Data System (ADS)

    Fiksel, G.; Backhus, R.; McNally, P.; Viges, E.; Villalta, M.; Jacobs-Perkins, D.; Betti, R.

    2017-10-01

    Aiming at conducting studies of magnetized high-energy density plasmas in a high magnetic field, we are developing a compact system capable of creating a pulsed magnetic field of about 30T in a volume of several cubic centimeters. The system prototype will be tested at the University of Michigan and will be adopted afterwards for use at the OMEGA facility of the Laboratory for Laser Energetics (LLE) of the University of Rochester, NY. The system consists of a pulsed power supply situated outside of the Omega vacuum chamber and a magnetic coil inserted into the chamber with a diagnostic inserter. The power supply is based on a 50 μF/20kV storage capacitor and is capable of driving a pulse of current of up to 50kA through the coil. The power supply is connected with the coil via a low-inductive chain of power cables and a strip transmission line. The system electrical, magnetic, and thermal analysis will be presented along with the results of initial testing. This work is supported in part through a DOE-OFES award DE-SC0016258 and a University of Michigan research Grant U051442.

  18. Magnetic levitation systems for future aeronautics and space research and missions

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah M.; Mankins, John C.

    1996-01-01

    The objectives, advantages, and research needs for several applications of superconducting magnetic levitation to aerodynamics research, testing, and space-launch are discussed. Applications include very large-scale magnetic balance and suspension systems for high alpha testing, support interference-free testing of slender hypersonic propulsion/airframe integrated vehicles, and hypersonic maglev. Current practice and concepts are outlined as part of a unified effort in high magnetic fields R&D within NASA. Recent advances in the design and construction of the proposed ground-based Holloman test track (rocket sled) that uses magnetic levitation are presented. It is protected that ground speeds of up to Mach 8 to 11 at sea-level are possible with such a system. This capability may enable supersonic combustor tests as well as ramjet-to-scramjet transition simulation to be performed in clean air. Finally a novel space launch concept (Maglifter) which uses magnetic levitation and propulsion for a re-usable 'first stage' and rocket or air-breathing combined-cycle propulsion for its second stage is discussed in detail. Performance of this concept is compared with conventional advanced launch systems and a preliminary concept for a subscale system demonstration is presented.

  19. A portable magnetic induction measurement system (PIMS).

    PubMed

    Cordes, Axel; Foussier, Jérôme; Pollig, Daniel; Leonhardt, Steffen

    2012-02-22

    For contactless monitoring of ventilation and heart activity, magnetic induction measurements are applicable. As the technique is harmless for the human body, it is well suited for long-term monitoring solutions, e.g., bedside monitoring, monitoring of home care patients, and the monitoring of persons in critical occupations. For such settings, a two-channel portable magnetic induction system has been developed, which is small and light enough to be fitted in a chair or bed. Because demodulation, control, and filtering are implemented on a front-end digital signal processor, a PC is not required (except for visualization/data storage during research and development). The system can be connected to a local area network (LAN) or wireless network (WiFi), allowing to connect several devices to a large monitoring system, e.g., for a residential home for the elderly or a hospital with low-risk patients not requiring standard ECG monitoring. To visualize data streams, a Qt-based (Qt-framework by Nokia, Espoo, Finland) monitoring application has been developed, which runs on Netbook computers, laptops, or standard PCs. To induce and measure the magnetic fields, external coils and amplifiers are required. This article describes the system and presents results for monitoring respiration and heart activity in a (divan) bed and for respiration monitoring in a chair. Planar configurations and orthogonal coil setups were examined during the measurement procedures. The measurement data were streamed over a LAN to a monitoring PC running Matlab (The MathWorks Inc, Natick, MA, USA).

  20. The Use of Magnetic Orientation as a Pinning Modality for Investigation of Photon-Magnon Interactions in Magnetic Nanoparticle Systems.

    PubMed

    Cuong, Giap Van; Su, Luong Van; Tue, Nguyen Anh; Khanh, Hoang Quoc; Tuan, Nguyen Anh

    2018-06-01

    In this work, an experimental setup to study the dependence of a visible-light transmission through a magnetic granular film on the magnetic field direction was presented. The results measured the transmission (T) of the visible light, with the wavelengths λ were in the range from 560 to 695 nm, by the magnetic nanogranular films Cox-(Al2O3)100-x system, with Co compositions are x = 10 ÷ 45 at.%, as a function of the magnetic field direction were reported. These investigations were carried out under an external magnetic field of H = 400 Oe, which directs to the normal of the sample surface by an angle varied in the range of φ = 0° ÷ 45°, to magnetize the magnetization direction of all the Co particles following this direction. Consequently, the angle φ between the magnetization direction with the incident-light direction, which sets as the optical axis of the system and always keeps fixedly to the normal of the sample surface, is established. The experimental results showed the different dependencies of T on the angle φ, the magnetic field H, the Co composition x, and the wavelength λ. These dependencies attributed to a behavior that relates to so-called photon-magnon interaction.

  1. Comparison of digital controllers used in magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Kilgore, William A.

    1990-01-01

    Dynamic systems that were once controlled by analog circuits are now controlled by digital computers. Presented is a comparison of the digital controllers presently used with magnetic suspension and balance systems. The overall responses of the systems are compared using a computer simulation of the magnetic suspension and balance system and the digital controllers. The comparisons include responses to both simulated force and position inputs. A preferred digital controller is determined from the simulated responses.

  2. Wide Band Low Noise Love Wave Magnetic Field Sensor System.

    PubMed

    Kittmann, Anne; Durdaut, Phillip; Zabel, Sebastian; Reermann, Jens; Schmalz, Julius; Spetzler, Benjamin; Meyners, Dirk; Sun, Nian X; McCord, Jeffrey; Gerken, Martina; Schmidt, Gerhard; Höft, Michael; Knöchel, Reinhard; Faupel, Franz; Quandt, Eckhard

    2018-01-10

    We present a comprehensive study of a magnetic sensor system that benefits from a new technique to substantially increase the magnetoelastic coupling of surface acoustic waves (SAW). The device uses shear horizontal acoustic surface waves that are guided by a fused silica layer with an amorphous magnetostrictive FeCoSiB thin film on top. The velocity of these so-called Love waves follows the magnetoelastically-induced changes of the shear modulus according to the magnetic field present. The SAW sensor is operated in a delay line configuration at approximately 150 MHz and translates the magnetic field to a time delay and a related phase shift. The fundamentals of this sensor concept are motivated by magnetic and mechanical simulations. They are experimentally verified using customized low-noise readout electronics. With an extremely low magnetic noise level of ≈100 pT/[Formula: see text], a bandwidth of 50 kHz and a dynamic range of 120 dB, this magnetic field sensor system shows outstanding characteristics. A range of additional measures to further increase the sensitivity are investigated with simulations.

  3. Nonlinear Control of Large Disturbances in Magnetic Bearing Systems

    NASA Technical Reports Server (NTRS)

    Jiang, Yuhong; Zmood, R. B.

    1996-01-01

    In this paper, the nonlinear operation of magnetic bearing control methods is reviewed. For large disturbances, the effects of displacement constraints and power amplifier current and di/dt limits on bearing control system performance are analyzed. The operation of magnetic bearings exhibiting self-excited large scale oscillations have been studied both experimentally and by simulation. The simulation of the bearing system has been extended to include the effects of eddy currents in the actuators, so as to improve the accuracy of the simulation results. The results of these experiments and simulations are compared, and some useful conclusions are drawn for improving bearing system robustness.

  4. Site-specific magnetic anisotropies in R2Fe14B systems

    NASA Astrophysics Data System (ADS)

    Yoshioka, T.; Tsuchiura, H.

    2018-04-01

    The local magnetic anisotropy of R ions in R2Fe14B (R = Dy, Ho) systems is studied based on a microscopic effective spin model constructed from the information obtained by using first-principles calculations. By taking into account up to 6-th order crystal electric field parameters, the model satisfactory describes the observed magnetization curves and the temperature dependence of anisotropy constants. We found that at low temperatures, the noncollinear structure appears in the Ho2Fe14B system reflecting the local magnetic anisotropy.

  5. Development of closed loop roll control for magnetic balance systems

    NASA Technical Reports Server (NTRS)

    Covert, E. E.; Haldeman, C. W.; Ramohalli, G.; Way, P.

    1982-01-01

    This research was undertaken with the goal of demonstrating closed loop control of the roll degree of freedom on the NASA prototype magnetic suspension and balance system at the MIT Aerophysics Laboratory, thus, showing feasibility for a roll control system for any large magnetic balance system which might be built in the future. During the research under this grant, study was directed toward the several areas of torque generation, position sensing, model construction and control system design. These effects were then integrated to produce successful closed loop operation of the analogue roll control system. This experience indicated the desirability of microprocessor control for the angular degrees of freedom.

  6. Design and fabrication of a magnetic propulsion system for self-propelled capsule endoscope.

    PubMed

    Gao, Mingyuan; Hu, Chengzhi; Chen, Zhenzhi; Zhang, Honghai; Liu, Sheng

    2010-12-01

    This paper investigates design, modeling, simulation, and control issues related to self-propelled endoscopic capsule navigated inside the human body through external magnetic fields. A novel magnetic propulsion system is proposed and fabricated, which has great potential of being used in the field of noninvasive gastrointestinal endoscopy. Magnetic-analysis model is established and finite-element simulations as well as orthogonal design are performed for obtaining optimized mechanical and control parameters for generating appropriate external magnetic field. Simulated intestinal tract experiments are conducted, demonstrating controllable movement of the capsule under the developed magnetic propulsion system.

  7. Magnetic Thin Films for Perpendicular Magnetic Recording Systems

    NASA Astrophysics Data System (ADS)

    Sugiyama, Atsushi; Hachisu, Takuma; Osaka, Tetsuya

    In the advanced information society of today, information storage technology, which helps to store a mass of electronic data and offers high-speed random access to the data, is indispensable. Against this background, hard disk drives (HDD), which are magnetic recording devices, have gained in importance because of their advantages in capacity, speed, reliability, and production cost. These days, the uses of HDD extend not only to personal computers and network servers but also to consumer electronics products such as personal video recorders, portable music players, car navigation systems, video games, video cameras, and personal digital assistances.

  8. [Clinical study on the coronary artery interventions guided by the magnetic navigation system].

    PubMed

    Li, Chun-jian; Wang, Hui; Wang, Lian-sheng; Zhu, Tie-bing; Yang, Zhi-jian; Cao, Ke-jiang

    2010-03-01

    To investigate the efficacy and safety of the magnetic navigation system used in the real world percutaneous coronary artery intervention. All lesions detected by the coronary artery angiography in the magnetic-navigation catheter lab indicated for percutaneous coronary artery intervention (PCI) were included and treated under the guidance of the magnetic navigation system. The characteristics of the target lesion, process of the procedure, time and dosage of the X-ray exposure, and procedure-related complication were recorded and analyzed. One hundred and twenty one patients with 138 lesions were recruited and intervened by PCI during the period from April 2006 to June 2008. Thirty lesions were classified as type A, 50 as type B1, 36 as type B2, 22 as type C (including seven total occlusions). The average stenosis of the target lesions was (85.3 +/- 10.0)%, mean length was (21.1 +/- 10.0) mm. Under the guidance of the magnetic navigation system, 134 target lesions were passed by the magnetic guide-wires, the lesion passing ratio was 97.1%. The X-ray exposure time, X-ray dosage and the contrast volume used during the period of the wire placement were (55.9 +/- 35.4) seconds, (98.0 +/- 86.1) mGy/(490.0 +/- 422.2) microGym(2) and (8.0 +/- 5.4) ml, respectively. A total of 164 stents were implanted in the vessels where the target lesions were passed by the magnetic wires. There was no magnetic navigation system associated complication. Magnetic guide-wires failed to pass four target lesions, two of which were chronic total occlusions (CTOs), and the other two were calcified subtotal occlusions. It is feasible and safe to adopt the magnetic navigation system for the real-world coronary artery intervention. The magnetic guide-wire possesses a high lesion-passing ratio. The CTOs and calcified subtotal occlusions are not ideal lesions for use of the magnetic navigation system.

  9. Thermomagnetic recording and magnetic-optic playback system

    NASA Technical Reports Server (NTRS)

    Lewicki, G. W.; Guisinger, J. E. (Inventor)

    1971-01-01

    A magnetic recording and magneto-optic playback system is disclosed wherein thermomagnetic recording is employed. A transparent isotropic film is heated along a continuous path by a focused laser beam. As each successive area of the path is heated locally to the vicinity of its Curie point in the presence of an applied magnetic field, a magneto-optic density is established proportional to the magnetic field and fixed in place as the area cools once the laser beam moves on to an adjacent area. To play back the recorded data, the intensity of the laser beam is reduced to avoid reaching the vicinity of the Curie point of the film as it is scanned by the laser beam in the same manner as for recording. A Faraday effect analyzer and photo detector are employed as a transducer for producing an output signal.

  10. Identification of Curie temperature distributions in magnetic particulate systems

    NASA Astrophysics Data System (ADS)

    Waters, J.; Berger, A.; Kramer, D.; Fangohr, H.; Hovorka, O.

    2017-09-01

    This paper develops a methodology for extracting the Curie temperature distribution from magnetisation versus temperature measurements which are realizable by standard laboratory magnetometry. The method is integral in nature, robust against various sources of measurement noise, and can be adopted to a wide range of granular magnetic materials and magnetic particle systems. The validity and practicality of the method is demonstrated using large-scale Monte-Carlo simulations of an Ising-like model as a proof of concept, and general conclusions are drawn about its applicability to different classes of systems and experimental conditions.

  11. Development of a Split Bitter-type Magnet System for Dusty Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Bates, Evan; Romero-Talamas, Carlos A.; Birmingham, William J.; Rivera, William F.

    2014-10-01

    A 10 Tesla Bitter-type magnetic system is under development at the Dusty Plasma Laboratory of the University of Maryland, Baltimore County (UMBC). We present here an optimization technique that uses differential evolution to minimize the omhic heating produced by the coils, while constraining the magnetic field in the experimental volume. The code gives us the optimal dimensions for the coil system including: coil length, turn thickness, disks radii, resistance, and total current required for a constant magnetic field. Finite element parametric optimization is then used to establish the optimal design for water cooling holes. Placement of the cooling holes will also take into consideration the magnetic forces acting on the copper alloy disks to ensure the material strength is not compromised during operation. The proposed power and cooling water delivery subsystems for the coils are also presented. Upon completion and testing of the magnet system, planned experiments include the propagation of magnetized waves in dusty plasma crystals under various boundary conditions, and viscosity in rotational shear flow, among others.

  12. The Radio Frequency Fragment Separator for Rare Isotope Beams at the NSCL

    NASA Astrophysics Data System (ADS)

    Stoker, Joshua; Andreev, Vladimir; Bazin, Daniel; Becerril, Ana; Doleans, Marc; Gorelov, Dimitry; Glennon, Patrick; Grimm, Terry; Lawton, Don; Mantica, Paul; Marti, Felix; Ottarson, Jack; Schatz, Hendrik; Vincent, John; Wagner, Jim; Wu, Xiaoyu; Zeller, Al

    2006-10-01

    Secondary beams at the National Superconducting Cyclotron Laboratory (NSCL) are separated through a combined application of magnetic rigidity and energy loss filtering. Design and construction of a Radio Frequency Fragment Separator (RFFS) for further beam purification is underway. The RFFS will apply a time-varying electromagnetic field to induce transverse beam separation. This method relies on velocity differences of the beam species to selectivey apply separation to unwanted fragments. The technical design of the RFFS and the expected purification of exotic beams are shown in detail[1]. [1] Gorelev, D. et al., ``RF Kicker System for Secondary Beams at the NSCL'' Proc of Part Accel Conf 2005, Knoxville, TN

  13. Quantum control of topological defects in magnetic systems

    NASA Astrophysics Data System (ADS)

    Takei, So; Mohseni, Masoud

    2018-02-01

    Energy-efficient classical information processing and storage based on topological defects in magnetic systems have been studied over the past decade. In this work, we introduce a class of macroscopic quantum devices in which a quantum state is stored in a topological defect of a magnetic insulator. We propose noninvasive methods to coherently control and read out the quantum state using ac magnetic fields and magnetic force microscopy, respectively. This macroscopic quantum spintronic device realizes the magnetic analog of the three-level rf-SQUID qubit and is built fully out of electrical insulators with no mobile electrons, thus eliminating decoherence due to the coupling of the quantum variable to an electronic continuum and energy dissipation due to Joule heating. For a domain wall size of 10-100 nm and reasonable material parameters, we estimate qubit operating temperatures in the range of 0.1-1 K, a decoherence time of about 0.01-1 μ s , and the number of Rabi flops within the coherence time scale in the range of 102-104 .

  14. Correlation of simulation/finite element analysis to the separation of intrinsically magnetic spores and red blood cells using a microfluidic magnetic deposition system.

    PubMed

    Sun, Jianxin; Moore, Lee; Xue, Wei; Kim, James; Zborowski, Maciej; Chalmers, Jeffrey J

    2018-05-01

    Magnetic separation of cells has been, and continues to be, widely used in a variety of applications, ranging from healthcare diagnostics to detection of food contamination. Typically, these technologies require cells labeled with antibody magnetic particle conjugate and a high magnetic energy gradient created in the flow containing the labeled cells (i.e., a column packed with magnetically inducible material), or dense packing of magnetic particles next to the flow cell. Such designs, while creating high magnetic energy gradients, are not amenable to easy, highly detailed, mathematic characterization. Our laboratories have been characterizing and developing analysis and separation technology that can be used on intrinsically magnetic cells or spores which are typically orders of magnitude weaker than typically immunomagnetically labeled cells. One such separation system is magnetic deposition microscopy (MDM) which not only separates cells, but deposits them in specific locations on slides for further microscopic analysis. In this study, the MDM system has been further characterized, using finite element and computational fluid mechanics software, and separation performance predicted, using a model which combines: 1) the distribution of the intrinsic magnetophoretic mobility of the cells (spores); 2) the fluid flow within the separation device; and 3) accurate maps of the values of the magnetic field (max 2.27 T), and magnetic energy gradient (max of 4.41 T 2 /mm) within the system. Guided by this model, experimental studies indicated that greater than 95% of the intrinsically magnetic Bacillus spores can be separated with the MDM system. Further, this model allows analysis of cell trajectories which can assist in the design of higher throughput systems. © 2018 Wiley Periodicals, Inc.

  15. Power supply system for the superconducting outsert of the CHMFL hybrid magnet

    NASA Astrophysics Data System (ADS)

    Fang, Z.; Zhu, J.; Chen, W.; Jiang, D.; Huang, P.; Chen, Z.; Tan, Y.; Kuang, G.

    2017-12-01

    The construction of a new hybrid magnet, consisting of a 11 T superconducting outsert and a 34 T resistive insert magnet, has been finished at the Chinese High Magnetic Field Laboratory (CHMFL) in Hefei. With a room temperature bore of 800 mm in diameter, the hybrid magnet superconducting outsert is composed of four separate Nb3Sn-based Cable-in-Conduit Conductor (CICC) coils electrically connected in series and powered by a single power supply system. The power supply system for the superconducting outsert consists of a 16 kA DC power supply, a quench protection system, a pair of 16 kA High Temperature Superconducting (HTS) current leads, and two Low Temperature Superconducting bus-lines. The design and manufacturing of the power supply system have been completed at the CHMFL. This paper describes the design features of the power supply system as well as the current fabrication condition of its main components.

  16. Superconducting magnetic energy storage for asynchronous electrical systems

    DOEpatents

    Boenig, Heinrich J.

    1986-01-01

    A superconducting magnetic energy storage coil connected in parallel between converters of two or more ac power systems provides load leveling and stability improvement to any or all of the ac systems. Control is provided to direct the charging and independently the discharging of the superconducting coil to at least a selected one of the ac power systems.

  17. Vibration measurements and analyses for a magnet superconductor levitated system

    NASA Astrophysics Data System (ADS)

    Wen, Zheng; Liu, Yu; Yang, Wenjiang; Qiu, Ming

    2007-12-01

    Magnetic levitation technology, having the characteristics of low cost and high quality, has been considered a preferable option for the next generation of launcher systems. A world-wide research design on the conceptual level has been carried out on the highly reusable space transportation systems by applying magnetic levitation to the launch assistance. Recently, a research plan has been implemented in our laboratory by constructing a scale-model suspension system with high temperature superconductor (HTS henceforth) bulks over a 7 m Nd-Fe-B permanent-magnet (PM henceforth) track for the launch assistance. An experimental platform was built to investigate the dynamic responses of the PM-HTS interaction at different field-cooled positions. The critical frequencies and amplitudes which lead to the instability of levitation drift were investigated. The stiffness and the vibration damping were also discussed at the zero-field-cooled position.

  18. Realistic finite temperature simulations of magnetic systems using quantum statistics

    NASA Astrophysics Data System (ADS)

    Bergqvist, Lars; Bergman, Anders

    2018-01-01

    We have performed realistic atomistic simulations at finite temperatures using Monte Carlo and atomistic spin dynamics simulations incorporating quantum (Bose-Einstein) statistics. The description is much improved at low temperatures compared to classical (Boltzmann) statistics normally used in these kind of simulations, while at higher temperatures the classical statistics are recovered. This corrected low-temperature description is reflected in both magnetization and the magnetic specific heat, the latter allowing for improved modeling of the magnetic contribution to free energies. A central property in the method is the magnon density of states at finite temperatures, and we have compared several different implementations for obtaining it. The method has no restrictions regarding chemical and magnetic order of the considered materials. This is demonstrated by applying the method to elemental ferromagnetic systems, including Fe and Ni, as well as Fe-Co random alloys and the ferrimagnetic system GdFe3.

  19. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses nomore » ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.« less

  20. Phase Equilibria and Magnetic Phases in the Ce-Fe-Co-B System

    PubMed Central

    Wang, Tian; Kevorkov, Dmytro; Medraj, Mamoun

    2016-01-01

    Ce-Fe-Co-B is a promising system for permanent magnets. A high-throughput screening method combining diffusion couples, key alloys, Scanning Electron Microscope/Wavelength Dispersive X-ray Spectroscope (SEM/WDS), and Magnetic Force Microscope (MFM) is used in this research to understand the phase equilibria and to explore promising magnetic phases in this system. Three magnetic phases were detected and their homogeneity ranges were determined at 900 °C, which were presented by the formulae: Ce2Fe14−xCoxB (0 ≤ x ≤ 4.76), CeCo4−xFexB (0 ≤ x ≤ 3.18), and Ce3Co11−x FexB4 (0 ≤ x ≤ 6.66). The phase relations among the magnetic phases in this system have been studied. Ce2(Fe, Co)14B appears to have stronger magnetization than Ce(Co, Fe)4B and Ce3(Co, Fe)11B4 from MFM analysis when comparing the magnetic interactions of selected key alloys. Also, a non-magnetic CeCo12−xFexB6 (0 ≤ x ≤ 8.74) phase was detected in this system. A boron-rich solid solution with Ce13FexCoyB45 (32 ≤ x ≤ 39, 3 ≤ y ≤ 10) chemical composition was also observed. However, the crystal structure of this phase could not be found in the literature. Moreover, ternary solid solutions ε1 (Ce2Fe17−xCox (0 ≤ x ≤ 12.35)) and ε2 (Ce2Co17−xFex (0 ≤ x ≤ 3.57)) were found to form between Ce2Fe17 and Ce2Co17 in the Ce-Fe-Co ternary system at 900 °C. PMID:28772374

  1. High throughput system for magnetic manipulation of cells, polymers, and biomaterials

    PubMed Central

    Spero, Richard Chasen; Vicci, Leandra; Cribb, Jeremy; Bober, David; Swaminathan, Vinay; O’Brien, E. Timothy; Rogers, Stephen L.; Superfine, R.

    2008-01-01

    In the past decade, high throughput screening (HTS) has changed the way biochemical assays are performed, but manipulation and mechanical measurement of micro- and nanoscale systems have not benefited from this trend. Techniques using microbeads (particles ∼0.1–10 μm) show promise for enabling high throughput mechanical measurements of microscopic systems. We demonstrate instrumentation to magnetically drive microbeads in a biocompatible, multiwell magnetic force system. It is based on commercial HTS standards and is scalable to 96 wells. Cells can be cultured in this magnetic high throughput system (MHTS). The MHTS can apply independently controlled forces to 16 specimen wells. Force calibrations demonstrate forces in excess of 1 nN, predicted force saturation as a function of pole material, and powerlaw dependence of F∼r−2.7±0.1. We employ this system to measure the stiffness of SR2+ Drosophila cells. MHTS technology is a key step toward a high throughput screening system for micro- and nanoscale biophysical experiments. PMID:19044357

  2. Magnetic particle clutch controls servo system

    NASA Technical Reports Server (NTRS)

    Fow, P. B.

    1973-01-01

    Magnetic clutches provide alternative means of driving low-power rate or positioning servo systems. They may be used over wide variety of input speed ranges and weigh comparatively little. Power drain is good with overall motor/clutch efficiency greater than 50 percent, and gain of clutch is close to linear, following hysteresis curve of core and rotor material.

  3. Actively Controlled Magnetic Vibration-Isolation System

    NASA Technical Reports Server (NTRS)

    Grodsinky, Carlos M.; Logsdon, Kirk A.; Wbomski, Joseph F.; Brown, Gerald V.

    1993-01-01

    Prototype magnetic suspension system with active control isolates object from vibrations in all six degrees of freedom at frequencies as low as 0.01 Hz. Designed specifically to protect instruments aboard spacecraft by suppressing vibrations to microgravity levels; basic control approach used for such terrestrial uses as suppression of shocks and other vibrations in trucks and railroad cars.

  4. Protection of Hardware: Powering Systems (Power Converter, Normal Conducting, and Superconducting Magnets)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeffer, H.; Flora, B.; Wolff, D.

    2016-01-01

    Along with the protection of magnets and power converters, we have added a section on personnel protection because this is our highest priority in the design and operation of power systems. Thus, our topics are the protection of people, power converters, and magnet loads (protected from the powering equipment), including normal conducting magnets and superconducting magnets.

  5. Engineering of the Magnetized Target Fusion Propulsion System

    NASA Technical Reports Server (NTRS)

    Statham, G.; White, S.; Adams, R. B.; Thio, Y. C. F.; Santarius, J.; Alexander, R.; Chapman, J.; Fincher, S.; Philips, A.; Polsgrove, T.

    2003-01-01

    Engineering details are presented for a magnetized target fusion (MTF) propulsion system designed to support crewed missions to the outer solar system. Basic operation of an MTF propulsion system is introduced. Structural, thermal, radiation-management and electrical design details are presented. The propellant storage and supply system design is also presented. A propulsion system mass estimate and associated performance figures are given. The advantages of helium-3 as a fusion fuel for an advanced MTF system are discussed.

  6. Solenoid Magnet System for the Fermilab Mu2e Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamm, M. J.; Andreev, N.; Ambrosio, G.

    2011-12-14

    The Fermilab Mu2e experiment seeks to measure the rare process of direct muon to electron conversion in the field of a nucleus. Key to the design of the experiment is a system of three superconducting solenoids; a muon production solenoid (PS) which is a 1.8 m aperture axially graded solenoid with a peak field of 5 T used to focus secondary pions and muons from a production target located in the solenoid aperture; an 'S shaped' transport solenoid (TS) which selects and transports the subsequent muons towards a stopping target; a detector solenoid (DS) which is an axially graded solenoidmore » at the upstream end to focus transported muons to a stopping target, and a spectrometer solenoid at the downstream end to accurately measure the momentum of the outgoing conversion elections. The magnetic field requirements, the significant magnetic coupling between the solenoids, the curved muon transport geometry and the large beam induced energy deposition into the superconducting coils pose significant challenges to the magnetic, mechanical, and thermal design of this system. In this paper a conceptual design for the magnetic system which meets the Mu2e experiment requirements is presented.« less

  7. [A functional orthodontic magnetic appliance (FOMA) after Vardimon. 1. A three-dimensional analysis of the force system of the attractive magnets].

    PubMed

    Bourauel, C; Vardimon, A D; Drescher, D; Schmuth, G P

    1995-09-01

    The functional magnetic system (FMS) is a removable functional appliance which induces mandibular advance by means of mandibular and maxillary magnets in an attracting configuration. The maxillary and mandibular plates are each equipped with 2 cylindrically shaped cobalt-samarium magnets, 4 mm in diameter and 3 mm in height, which are welded into stainless steel housings. The force system of this magnetic configuration was analyzed using the orthodontic measurement and simulation system (OMSS). OMSS simulated the mandibular jaw movements by separating the installed magnets vertically, corresponding to a mouth opening of X = -10 mm, transversally (right excursion, +/left excursion, -) at Y = +/- 10 mm and sagittally (anterior displacement, +/posterior displacement, -) at Z = +/- 10 mm. The resulting 2D and 3D force/displacement diagrams elucidate the outstanding centripetal-spatial orientation characteristics of the functional magnetic appliance in reference to the full overlap brought about by the attraction of the mandibular magnet by the maxillary magnet. The maximum centripetal forces reached a value of approximately FY, max = 0.65 N for the vertical attracting force at full overlap of the mandibular and maxillary magnets (X = 0.55 mm, Y = Z = 0 mm), a value of FY, max = 0.65 N for the medial shearing force at a partial transversal overlap Z = 0, Y = +/- 2 mm and Y = +/- 6 mm), and for the sagittal shearing force a value of FZ, max = 1.2 N at a partial sagittal overlap of the magnets (Y = 0 mm, Z = +/- 2 mm).(ABSTRACT TRUNCATED AT 250 WORDS)

  8. [The role of magnetic stimulation in diagnosis of the peripheral nervous system].

    PubMed

    Dressler, D; Benecke, R; Meyer, B U; Conrad, B

    1988-12-01

    Magnetic stimulation has recently been introduced as a new method for stimulation of neuronal tissues. Up to now most investigators were emphasized the advantages of this method for the investigation of the central nervous system. With this paper we want to show that magnetic stimulation may also be useful for the examination of the peripheral nervous system. Both, magnetic and electrical stimulation, seem to employ the same stimulation mechanisms in the nervous tissue. The results obtained with both methods should therefore be comparable. By measuring EMG-latencies after electrical and magnetic stimulation (Fig. 1) the exact site of magnetic stimulation can be determined. Magnetic stimulation offers major advantages over electrical stimulation: 1) Magnetic stimulation is a painless method even when high stimulus intensities are used. 2) Magnetic stimulation can reach deep neuronal structures that are not easily accessible using electrical stimulation (Fig. 2, Fig. 3). 3) Using a wide range of stimulus intensities (Fig. 4, Fig. 5) magnetic stimulation provides a much better descrimination of different components of the compound muscle action potential than electrical stimulation. Magnetic stimulation seems to be a promising new method for the electrodiagnostic examination of pain- sensitive patients, especially when deep-lying peripheral nerves have to be investigated.

  9. Rotordynamic Modelling and Response Characteristics of an Active Magnetic Bearing Rotor System

    NASA Technical Reports Server (NTRS)

    Free, April M.; Flowers, George T.; Trent, Victor S.

    1996-01-01

    Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotordynamic model which describes the dynamic behavior of a flexible rotor system with magnetic bearings including auxiliary bearings. The model is based upon an experimental test facility. Some simulation studies are presented to illustrate the behavior of the model. In particular, the effects of introducing sideloading from the magnetic bearing when one coil fails is studied. These results are presented and discussed.

  10. Magnetic hysteresis in a lanthanide molecular magnet dimer system

    NASA Astrophysics Data System (ADS)

    Atkinson, James; Cebulka, Rebecca; Del Barco, Enrique; Roubeau, Olivier; Velasco, Veronica; Barrios, Leo; Aromi, Guillem

    Molecular magnets present a wonderful means for studying the dynamics of spin. Often synthesized as a crystal lattice of identical systems, ensemble measurements enable thorough detailing of the internal degrees of freedom. Here we present the results of characterization performed on a dimer system, CeTm(HL)2(H2L)NO3pyH2O (L = ligand, C45H31O15N3), consisting of two lanthanide spins (Cerium and Thulium) with expected local axial anisotropies tilted with respect to each other. Microwave EPR spectroscopy at low temperature reveals hysteresis in observed absorption features, with angle dependence studies indicating the presence of several ``easy axis'' orientations. We attempt to understand this system through modelling via a spin Hamiltonian, and to determine the strength and nature of the coupling between the lanthanide centers. This research was funded through NSF Grant # 24086159.

  11. Time-delay control of a magnetic levitated linear positioning system

    NASA Technical Reports Server (NTRS)

    Tarn, J. H.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    In this paper, a high accuracy linear positioning system with a linear force actuator and magnetic levitation is proposed. By locating a permanently magnetized rod inside a current-carrying solenoid, the axial force is achieved by the boundary effect of magnet poles and utilized to power the linear motion, while the force for levitation is governed by Ampere's Law supplied with the same solenoid. With the levitation in a radial direction, there is hardly any friction between the rod and the solenoid. The high speed motion can hence be achieved. Besides, the axial force acting on the rod is a smooth function of rod position, so the system can provide nanometer resolution linear positioning to the molecule size. Since the force-position relation is highly nonlinear, and the mathematical model is derived according to some assumptions, such as the equivalent solenoid of the permanently magnetized rod, so there exists unknown dynamics in practical application. Thus 'robustness' is an important issue in controller design. Meanwhile the load effect reacts directly on the servo system without transmission elements, so the capability of 'disturbance rejection; is also required. With the above consideration, a time-delay control scheme is chosen and applied. By comparing the input-output relation and the mathematical model, the time-delay controller calculates an estimation of unmodeled dynamics and disturbances and then composes the desired compensation into the system. Effectiveness of the linear positioning system and control scheme are illustrated with simulation results.

  12. Development of a Superconducting Magnet System for the ONR/General Atomics Homopolar Motor

    NASA Astrophysics Data System (ADS)

    Schaubel, K. M.; Langhorn, A. R.; Creedon, W. P.; Johanson, N. W.; Sheynin, S.; Thome, R. J.

    2006-04-01

    This paper describes the design, testing and operational experience of a superconducting magnet system presently in use on the Homopolar Motor Program. The homopolar motor is presently being tested at General Atomics in San Diego, California for the U.S Navy Office of Naval Research. The magnet system consists of two identical superconducting solenoid coils housed in two cryostats mounted integrally within the homopolar motor housing. The coils provide the static magnetic field required for motor operation and are wound using NbTi superconductor in a copper matrix. Each magnet is conduction cooled using a Gifford McMahon cryocooler. The coils are in close proximity to the iron motor housing requiring a cold to warm support structure with high stiffness and strength. The design of the coils, cold to warm support structure, cryogenic system, and the overall magnet system design will be described. The test results and operational experience will also be described.

  13. A Magnetic Suspension and Excitation System for Spin Vibration Testing of Turbomachinery Blades

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter; Brown, Gerald V.; Mehmed, Oral

    1998-01-01

    The Dynamic Spin Rig (DSR) is used to perform vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. A heteropolar radial active magnetic bearing was integrated into the DSR to provide non-contact magnetic suspension and mechanical excitation of the rotor to induce turbomachinery blade vibrations. The magnetic bearing replaces one of the two existing conventional radial ball bearings. Prior operation of the DSR used two voice-coil type linear electromagnetic shakers which provided axial excitation of the rotor. The new magnetic suspension and excitation system has provided enhanced testing capabilities. Tests were performed at high rotational speeds for longer duration and higher vibration amplitudes. Some characteristics of the system include magnetic bearing stiffness values up to 60,000 lb./in., closed loop control bandwidth around 500 Hz, and multi-directional radial excitation of the rotor. This paper reports on the implementation and operation of this system and presents some test results using this system.

  14. System and method for heating ferrite magnet motors for low temperatures

    DOEpatents

    Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang

    2017-07-04

    A system and method for heating ferrite permanent magnets in an electrical machine is disclosed. The permanent magnet machine includes a stator assembly and a rotor assembly, with a plurality of ferrite permanent magnets disposed within the stator assembly or the rotor assembly to generate a magnetic field that interacts with a stator magnetic field to produce a torque. A controller of the electrical machine is programmed to cause a primary field current to be applied to the stator windings to generate the stator magnetic field, so as to cause the rotor assembly to rotate relative to the stator assembly. The controller is further programmed to cause a secondary current to be applied to the stator windings to selectively generate a secondary magnetic field, the secondary magnetic field inducing eddy currents in at least one of the stator assembly and the rotor assembly to heat the ferrite permanent magnets.

  15. Design and implementation of magnetically maneuverable capsule endoscope system with direction reference for image navigation.

    PubMed

    Sun, Zhen-Jun; Ye, Bo; Sun, Yi; Zhang, Hong-Hai; Liu, Sheng

    2014-07-01

    This article describes a novel magnetically maneuverable capsule endoscope system with direction reference for image navigation. This direction reference was employed by utilizing a specific magnet configuration between a pair of external permanent magnets and a magnetic shell coated on the external capsule endoscope surface. A pair of customized Cartesian robots, each with only 4 degrees of freedom, was built to hold the external permanent magnets as their end-effectors. These robots, together with their external permanent magnets, were placed on two opposite sides of a "patient bed." Because of the optimized configuration based on magnetic analysis between the external permanent magnets and the magnetic shell, a simplified control strategy was proposed, and only two parameters, yaw step angle and moving step, were necessary for the employed robotic system. Step-by-step experiments demonstrated that the proposed system is capable of magnetically maneuvering the capsule endoscope while providing direction reference for image navigation. © IMechE 2014.

  16. 13th International Conference on Magnetically Levitated Systems and Linear Drives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    This report contains short papers on research being conducted throughout the world on magnetically levitated systems, mainly consisting of trains, and magnetic linear drives. These papers have been index separately elsewhere on the data base.

  17. Detection of buried magnetic objects by a SQUID gradiometer system

    NASA Astrophysics Data System (ADS)

    Meyer, Hans-Georg; Hartung, Konrad; Linzen, Sven; Schneider, Michael; Stolz, Ronny; Fried, Wolfgang; Hauspurg, Sebastian

    2009-05-01

    We present a magnetic detection system based on superconducting gradiometric sensors (SQUID gradiometers). The system provides a unique fast mapping of large areas with a high resolution of the magnetic field gradient as well as the local position. A main part of this work is the localization and classification of magnetic objects in the ground by automatic interpretation of geomagnetic field gradients, measured by the SQUID system. In accordance with specific features the field is decomposed into segments, which allow inferences to possible objects in the ground. The global consideration of object describing properties and their optimization using error minimization methods allows the reconstruction of superimposed features and detection of buried objects. The analysis system of measured geomagnetic fields works fully automatically. By a given surface of area-measured gradients the algorithm determines within numerical limits the absolute position of objects including depth with sub-pixel accuracy and allows an arbitrary position and attitude of sources. Several SQUID gradiometer data sets were used to show the applicability of the analysis algorithm.

  18. An electrostatically and a magnetically confined electron gun lens system

    NASA Technical Reports Server (NTRS)

    Bernius, Mark T.; Man, Kin F.; Chutjian, Ara

    1988-01-01

    Focal properties, electron trajectory calculations, and geometries are given for two electron 'gun' lens systems that have a variety of applications in, for example, electron-neutral and electron-ion scattering experiments. One nine-lens system utilizes only electrostatic confinement and is capable of focusing electrons onto a fixed target with extremely small divergence angles, over a range of final energies 1-790 eV. The second gun lens system is a simpler three-lens system suitable for use in a uniform, solenoidal magnetic field. While the focusing properties of such a magnetically confined lens systenm are simpler to deal with, the system does illustrate features of electron extraction and Brillouin flow that have not been suitably emphasized in the literature.

  19. Gas gap heat switch for a cryogen-free magnet system

    NASA Astrophysics Data System (ADS)

    Barreto, J.; Borges de Sousa, P.; Martins, D.; Kar, S.; Bonfait, G.; Catarino, I.

    2015-12-01

    Cryogen-free superconducting magnet systems (CFMS) have become popular over the last two decades for the simple reason that the use of liquid helium is rather cumbersome and that helium is a scarce resource. Some available CFMS use a mechanical cryocooler as the magnet's cold source. However, the variable temperature insert (VTI) for some existing CFMS are not strictly cryogen-free as they are still based on helium gas circulation through the sample space. We designed a prototype of a gas gap heat switch (GGHS) that allows a thermal management of a completely cryogen-free magnet system, with no helium losses. The idea relies on a parallel cooling path to a variable temperature insert (VTI) of a magnetic properties measurement system under development at Inter-University Accelerator Centre. A Gifford-McMahon cryocooler (1.5 W @ 4.2 K) would serve primarily as the cold source of the superconducting magnet, dedicating 1 W to this cooling, under quite conservative safety factors. The remaining cooling power (0.5 W) is to be diverted towards a VTI through a controlled GGHS that was designed and built with a 80 μm gap width. The built GGHS thermal performance was measured at 4 K, using helium as the exchange gas, and its conductance is compared both with a previously developed analytical model and a finite element method. Lessons learned lead to a new and more functional prototype yet to be reported.

  20. Biosynthesis of Thermoresponsive Magnetic Nanoparticles by Magnetosome Display System.

    PubMed

    Yoshino, Tomoko; Shimada, Takumi; Ito, Yasuhito; Honda, Toru; Maeda, Yoshiaki; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2018-05-16

    Thermoresponsive magnetic nanoparticles (MNPs) were synthesized using a magnetosome display system. An elastin-like polypeptide decamer of VPGVG (ELP 10 ), which is hydrophobic above the transition temperature ( T t ) and can form an insoluble aggregation, was immobilized on biogenic MNPs in the magnetotactic bacterium, Magnetospirillum magneticum AMB-1. It was suggested that hydrophobicity of the MNP surface increased at 60 °C compared with 20 °C by the immobilization of ELP 10 . Size distribution analysis indicated that the immobilization of ELP 10 onto MNPs induced the increased hydrophobicity with increasing temperatures up to 60 °C, promoting aggregation of the particles by hydrophobic and magnetic interactions. These results suggest that the acceleration of magnetic collection at 60 °C was caused by particle aggregation promoted by hydrophobic interaction between ELP-MNPs. Furthermore, the immobilization of ELP on MNPs gave a quick magnetic collection at 60 °C by external magnetic field. The thermoresponsive properties will further expand the utility of biotechnological applications of biogenic MNPs.

  1. Near-Seafloor Magnetic Exploration of Submarine Hydrothermal Systems in the Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Caratori Tontini, F.; de Ronde, C. E. J.; Tivey, M.; Kinsey, J. C.

    2014-12-01

    Magnetic data can provide important information about hydrothermal systems because hydrothermal alteration can drastically reduce the magnetization of the host volcanic rocks. Near-seafloor data (≤70 m altitude) are required to map hydrothermal systems in detail; Autonomous Underwater Vehicles (AUVs) are the ideal platform to provide this level of resolution. Here, we show the results of high-resolution magnetic surveys by the ABE and Sentry AUVs for selected submarine volcanoes of the Kermadec arc. 3-D magnetization models derived from the inversion of magnetic data, when combined with high resolution seafloor bathymetry derived from multibeam surveys, provide important constraints on the subseafloor geometry of hydrothermal upflow zones and the structural control on the development of seafloor hydrothermal vent sites as well as being a tool for the discovery of previously unknown hydrothermal sites. Significant differences exist between the magnetic expressions of hydrothermal sites at caldera volcanoes ("donut" pattern) and cones ("Swiss cheese" pattern), respectively. Subseafloor 3-D magnetization models also highlight structural differences between focused and diffuse vent sites.

  2. Photovoltaic-wind hybrid system for permanent magnet DC motor

    NASA Astrophysics Data System (ADS)

    Nasir, M. N. M.; Lada, M. Y.; Baharom, M. F.; Jaafar, H. I.; Ramani, A. N.; Sulaima, M. F.

    2015-05-01

    Hybrid system of Photovoltaic (PV) - Wind turbine (WT) generation has more advantages and reliable compared to PV or wind turbine system alone. The aim of this paper is to model and design hybrid system of PV-WT supplying 100W permanent-magnet dc motor. To achieve the objective, both of PV and WT are connected to converter in order to get the same source of DC supply. Then both sources were combined and straightly connected to 100W permanent magnet dc motor. All the works in this paper is only applied in circuit simulator by using Matlab Simulink. The output produced from each converter is expected to be suit to the motor specification. The output produced from each renewable energy system is as expected to be high as it can support the motor if one of them is breakdown

  3. Simplified Analytical Model of a Six-Degree-of-Freedom Large-Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1997-01-01

    A simplified analytical model of a six-degree-of-freedom large-gap magnetic suspension system is presented. The suspended element is a cylindrical permanent magnet that is magnetized in a direction which is perpendicular to its axis of symmetry. The actuators are air core electromagnets mounted in a planar array. The analytical model consists of an open-loop representation of the magnetic suspension system with electromagnet currents as inputs.

  4. Optical multichannel room temperature magnetic field imaging system for clinical application

    PubMed Central

    Lembke, G.; Erné, S. N.; Nowak, H.; Menhorn, B.; Pasquarelli, A.

    2014-01-01

    Optically pumped magnetometers (OPM) are a very promising alternative to the superconducting quantum interference devices (SQUIDs) used nowadays for Magnetic Field Imaging (MFI), a new method of diagnosis based on the measurement of the magnetic field of the human heart. We present a first measurement combining a multichannel OPM-sensor with an existing MFI-system resulting in a fully functional room temperature MFI-system. PMID:24688820

  5. Doxorubicin-modified magnetic nanoparticles as a drug delivery system for magnetic resonance imaging-monitoring magnet-enhancing tumor chemotherapy.

    PubMed

    Liang, Po-Chin; Chen, Yung-Chu; Chiang, Chi-Feng; Mo, Lein-Ray; Wei, Shwu-Yuan; Hsieh, Wen-Yuan; Lin, Win-Li

    2016-01-01

    In this study, we developed functionalized superparamagnetic iron oxide (SPIO) nanoparticles consisting of a magnetic Fe3O4 core and a shell of aqueous stable polyethylene glycol (PEG) conjugated with doxorubicin (Dox) (SPIO-PEG-D) for tumor magnetic resonance imaging (MRI) enhancement and chemotherapy. The size of SPIO nanoparticles was ~10 nm, which was visualized by transmission electron microscope. The hysteresis curve, generated with vibrating-sample magnetometer, showed that SPIO-PEG-D was superparamagnetic with an insignificant hysteresis. The transverse relaxivity (r 2) for SPIO-PEG-D was significantly higher than the longitudinal relaxivity (r 1) (r 2/r 1 >10). The half-life of Dox in blood circulation was prolonged by conjugating Dox on the surface of SPIO with PEG to reduce its degradation. The in vitro experiment showed that SPIO-PEG-D could cause DNA crosslink more serious, resulting in a lower DNA expression and a higher cell apoptosis for HT-29 cancer cells. The Prussian blue staining study showed that the tumors treated with SPIO-PEG-D under a magnetic field had a much higher intratumoral iron density than the tumors treated with SPIO-PEG-D alone. The in vivo MRI study showed that the T2-weighted signal enhancement was stronger for the group under a magnetic field, indicating that it had a better accumulation of SPIO-PEG-D in tumor tissues. In the anticancer efficiency study for SPIO-PEG-D, the results showed that there was a significantly smaller tumor size for the group with a magnetic field than the group without. The in vivo experiments also showed that this drug delivery system combined with a local magnetic field could reduce the side effects of cardiotoxicity and hepatotoxicity. The results showed that the developed SPIO-PEG-D nanoparticles own a great potential for MRI-monitoring magnet-enhancing tumor chemotherapy.

  6. Electrostatic stabilizer for a passive magnetic bearing system

    DOEpatents

    Post, Richard F.

    2015-11-24

    Electrostatic stabilizers are provided for passive bearing systems composed of annular magnets having a net positive stiffness against radial displacements and that have a negative stiffness for vertical displacements, resulting in a vertical instability. Further embodiments are shown of a radial electrostatic stabilizer geometry (using circuitry similar to that employed in the vertical stabilizer). This version is suitable for stabilizing radial (lateral) displacements of a rotor that is levitated by annular permanent magnets that are stable against vertical displacements but are unstable against radial displacements.

  7. Electrostatic stabilizer for a passive magnetic bearing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Richard F

    2016-10-11

    Electrostatic stabilizers are provided for passive bearing systems composed of annular magnets having a net positive stiffness against radial displacements and that have a negative stiffness for vertical displacements, resulting in a vertical instability. Further embodiments are shown of a radial electrostatic stabilizer geometry (using circuitry similar to that employed in the vertical stabilizer). This version is suitable for stabilizing radial (lateral) displacements of a rotor that is levitated by annular permanent magnets that are stable against vertical displacements but are unstable against radial displacements.

  8. System and method for heating ferrite magnet motors for low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang

    A system and method for heating ferrite permanent magnets in an electrical machine is disclosed. The permanent magnet machine includes a stator assembly and a rotor assembly, with a plurality of ferrite permanent magnets disposed within the stator assembly or the rotor assembly to generate a magnetic field that interacts with a stator magnetic field to produce a torque. A controller of the electrical machine is programmed to cause a primary field current to be applied to the stator windings to generate the stator magnetic field, so as to cause the rotor assembly to rotate relative to the stator assembly.more » The controller is further programmed to cause a secondary current to be applied to the stator windings to selectively generate a secondary magnetic field, the secondary magnetic field inducing eddy currents in at least one of the stator assembly and the rotor assembly to heat the ferrite permanent magnets.« less

  9. A System Scale Theory for Fast Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Knoll, D.; Chacon, L.; Lapenta, G.

    2005-12-01

    Magnetic reconnection is at the root of explosive phenomena such as solar flares, coronal mass ejections, plasmoid ejection from earth's magnetotail and major disruptions in magnetic fusion energy experiments. Plasmas in all the above mentioned cases are known to have negligible electric resistivity. This small resistivity can not explain the reconnection time scales observed in nature, when using the resistive MHD model. Recently much progress has been made considering the Hall MHD model. Hall physics has been shown to facility fast reconnection when the magnetic field shear scale length is in the order of the ion inertial length. However, in many systems of interest the initial scale lengths of the problem can not justify the use of Hall MHD. Thus a successful system scale theory must involve a current sheet thinning mechanism which brings the relevant scales down to the Hall scales. In this presentation we give examples of how naturally occurring hydrodynamic flows can provide such current sheet thinning [1,2,3] and where these occur in solar [4] and magnetosphere application [5]. We also discuss the primary obstacle for such flow to drive current sheet thinning, the build up of magnetic pressure, and how Hall MHD may overcome this obstacle. [1] Knoll and Brackbill, Phys. Plasmas, vol. 9, 2002 [2] Knoll and Chacon, PRL, vol. 88, 2002 [3] Knoll and Chacon, Phys. Plasmas, 2005 (submitted) [4] Lapenta and Knoll, ApJ, vol. 624, 2005 [5] Brackbill and Knoll, PRL, vol. 86, 2001

  10. Active magnetic damper in a power transmission system

    NASA Astrophysics Data System (ADS)

    Kozanecka, D.; Kozanecki, Z.; Łagodziński, J.

    2011-05-01

    In rotor dynamics, the bearing characteristics exerts a decisive influence on dynamics of the rotating shaft. The research and application experience have led to active magnetic bearings (AMBs), which allow for unique applications in rotating systems. The paper presents the investigations concerning optimization of the magnetic bearing construction. An active magnetic bearing operates as a radial, auxiliary damper, which cooperates with the long, flexible shaft line (aircraft industry applications) and modifies its dynamic properties. In the developed concept of AMBs for aviation purposes, a necessity of increasing its bearing load capacity and damping has occurred. The second important criterion is a weight reduction. This advanced problem leads to specific requirements on the design and materials for the AMB. To achieve these goals, some simulations have been performed. The experimental results are presented as well.

  11. Magnetic resonance imaging of the central nervous system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-02-26

    This report reviews the current applications of magnetic resonance imaging of the central nervous system. Since its introduction into the clinical environment in the early 1980's, this technology has had a major impact on the practice of neurology. It has proved to be superior to computed tomography for imaging many diseases of the brain and spine. In some instances it has clearly replaced computed tomography. It is likely that it will replace myelography for the assessment of cervicomedullary junction and spinal regions. The magnetic field strengths currently used appear to be entirely safe for clinical application in neurology except inmore » patients with cardiac pacemakers or vascular metallic clips. Some shortcomings of magnetic resonance imaging include its expense, the time required for scanning, and poor visualization of cortical bone.« less

  12. Scaling and Optimization of Magnetic Refrigeration for Commercial Building HVAC Systems Greater than 175 kW in Capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; West, David L; Mallow, Anne M

    Heating, ventilation, air-conditioning and refrigeration (HVACR) account for approximately one- third of building energy consumption. Magnetic refrigeration presents an opportunity for significant energy savings and emissions reduction for serving the building heating, cooling, and refrigeration loads. In this paper, we have examined the magnet and MCE material requirements for scaling magnetic refrigeration systems for commercial building cooling applications. Scaling relationships governing the resources required for magnetic refrigeration systems have been developed. As system refrigeration capacity increases, the use of superconducting magnet systems becomes more applicable, and a comparison is presented of system requirements for permanent and superconducting (SC) magnetization systems.more » Included in this analysis is an investigation of the ability of superconducting magnet based systems to overcome the parasitic power penalty of the cryocooler used to keep SC windings at cryogenic temperatures. Scaling relationships were used to develop the initial specification for a SC magnet-based active magnetic regeneration (AMR) system. An optimized superconducting magnet was designed to support this system. In this analysis, we show that the SC magnet system consisting of two 0.38 m3 regenerators is capable of producing 285 kW of cooling power with a T of 28 K. A system COP of 4.02 including cryocooler and fan losses which illustrates that an SC magnet-based system can operate with efficiency comparable to traditional systems and deliver large cooling powers of 285.4 kW (81.2 Tons).« less

  13. New measuring system for the distribution of a magnetic force by using an optical fiber

    NASA Astrophysics Data System (ADS)

    Ishigaki, H.; Oya, T.; Itoh, M.; Hida, A.; Iwata, K.

    1993-01-01

    A new measuring system using an optical fiber and a position sensing photodetector was developed to measure a three-dimensional distribution of a magnetic force. A steel ball attached to a cantilever made of an optical fiber generated force in a magnetic field. The displacement of the ball due to the force was detected by a position-sensing photodetector with the capability of detecting two-directional coordinates of the position. By scanning the sensing system in a magnetic field, we obtained distributions of two-directional component of the magnetic force vector. The component represents the gradient of a squared magnetic field. The usefulness of the system for measuring the magnetic field distribution in a narrow clearance and for evaluating superconducting machine components such as magnetic bearings was verified experimentally.

  14. A novel technique for tailoring frontal osteoplastic flaps using the ENT magnetic navigation system.

    PubMed

    Volpi, Luca; Pistochini, Andrea; Bignami, Maurizio; Meloni, Francesco; Turri Zanoni, Mario; Castelnuovo, Paolo

    2012-06-01

    The ENT magnetic navigation system is potentially useful and offers the most accurate technique for harvesting frontal osteoplastic flaps. It represents a valid tool in the wide range of instruments available to rhinologists. Precise delineation of the boundaries of the frontal sinus is a crucial step when harvesting a frontal osteoplastic flap. We present a novel technique using the ENT magnetic navigation system. Nineteen patients affected by different pathologies involving the frontal sinus underwent an osteoplastic flap procedure using the ENT magnetic navigation system between January 2009 and April 2011. The ENT magnetic navigation system was found to be a safe and accurate tool for delineating the frontal sinus boundaries. No intraoperative complications occurred during the osteoplastic procedures.

  15. Thermal protection performance of magnetohydrodynamic heat shield system based on multipolar magnetic field

    NASA Astrophysics Data System (ADS)

    Kai, Li; Jun, Liu; Weiqiang, Liu

    2017-07-01

    In order to cover the shortage of dipole magnetic field in the magnetohydrodynamic(MHD) heat shield system, physical model of a multipolar magnetic field with central and peripheral solenoids is constructed. By employing the governing equations of three dimensional thermochemical nonequilibrium flow with electromagnetic source terms based on the low magneto-Reynolds assumption, the flow control performance of the dipole and multipolar magnetic fields are numerically simulated. To make the results comparable, two groups of cases are designed by first assuming equal stagnation magnetic induction strength and secondly assuming equal ampere-turns. Results show that, the five-magnet system, whose central polar orientation is the same with the peripheral ones, have stronger work capability and better shock control and thermal protection performance. Moreover, the five-solenoid systems are the best when the ampere-turns of the central solenoid are twice and fourth of the peripheral ones under those two circumstances respectively. Compared with the dipole magnetic field, the stagnation non-catalytic heat fluxes are decreased by a factor of 47.5% and 34.0% respectively.

  16. Improved thermal isolation for superconducting magnet systems

    NASA Technical Reports Server (NTRS)

    Wiebe, E. R.

    1974-01-01

    Closed-cycle refrigerating system for superconductive magnet and maser is operated in vacuum environment. Each wire leading from external power source passes through cooling station which blocks heat conduction. In connection with these stations, switch with small incandescent light bulb, which generates heat, is used to stop superconduction.

  17. Low temperature superconductor and aligned high temperature superconductor magnetic dipole system and method for producing high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Ramesh; Scanlan, Ronald; Ghosh, Arup K.

    A dipole-magnet system and method for producing high-magnetic-fields, including an open-region located in a radially-central-region to allow particle-beam transport and other uses, low-temperature-superconducting-coils comprised of low-temperature-superconducting-wire located in radially-outward-regions to generate high magnetic-fields, high-temperature-superconducting-coils comprised of high-temperature-superconducting-tape located in radially-inward-regions to generate even higher magnetic-fields and to reduce erroneous fields, support-structures to support the coils against large Lorentz-forces, a liquid-helium-system to cool the coils, and electrical-contacts to allow electric-current into and out of the coils. The high-temperature-superconducting-tape may be comprised of bismuth-strontium-calcium-copper-oxide or rare-earth-metal, barium-copper-oxide (ReBCO) where the rare-earth-metal may be yttrium, samarium, neodymium, or gadolinium. Advantageously, alignment of themore » large-dimension of the rectangular-cross-section or curved-cross-section of the high-temperature-superconducting-tape with the high-magnetic-field minimizes unwanted erroneous magnetic fields. Alignment may be accomplished by proper positioning, tilting the high-temperature-superconducting-coils, forming the high-temperature-superconducting-coils into a curved-cross-section, placing nonconducting wedge-shaped-material between windings, placing nonconducting curved-and-wedge-shaped-material between windings, or by a combination of these techniques.« less

  18. High-Purity Aluminum Magnet Technology for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Goodrich, R. G.; Pullam, B.; Rickle, D.; Litchford, R. J.; Robertson, G. A.; Schmidt, D. D.; Cole, John (Technical Monitor)

    2001-01-01

    Basic research on advanced plasma-based propulsion systems is routinely focused on plasmadynamics, performance, and efficiency aspects while relegating the development of critical enabling technologies, such as flight-weight magnets, to follow-on development work. Unfortunately, the low technology readiness levels (TRLs) associated with critical enabling technologies tend to be perceived as an indicator of high technical risk, and this, in turn, hampers the acceptance of advanced system architectures for flight development. Consequently, there is growing recognition that applied research on the critical enabling technologies needs to be conducted hand in hand with basic research activities. The development of flight-weight magnet technology, for example, is one area of applied research having broad crosscutting applications to a number of advanced propulsion system architectures. Therefore, NASA Marshall Space Flight Center, Louisiana State University (LSU), and the National High Magnetic Field Laboratory (NHMFL) have initiated an applied research project aimed at advancing the TRL of flight-weight magnets. This Technical Publication reports on the group's initial effort to demonstrate the feasibility of cryogenic high-purity aluminum magnet technology and describes the design, construction, and testing of a 6-in-diameter by 12-in-long aluminum solenoid magnet. The coil was constructed in the machine shop of the Department of Physics and Astronomy at LSU and testing was conducted in NHMFL facilities at Florida State University and at Los Alamos National Laboratory. The solenoid magnet was first wound, reinforced, potted in high thermal conductivity epoxy, and bench tested in the LSU laboratories. A cryogenic container for operation at 77 K was also constructed and mated to the solenoid. The coil was then taken to NHMFL facilities in Tallahassee, FL. where its magnetoresistance was measured in a 77 K environment under steady magnetic fields as high as 10 T. In

  19. Tunable biasing magnetic field design of ferrite tuner for ICRF heating system in EAST

    NASA Astrophysics Data System (ADS)

    Manman, XU; Yuntao, SONG; Gen, CHEN; Yanping, ZHAO; Yuzhou, MAO; Guang, LIU; Zhen, PENG

    2017-11-01

    Ion cyclotron range of frequency (ICRF) heating has been used in tokamaks as one of the most successful auxiliary heating tools and has been adopted in the EAST. However, the antenna load will fluctuate with the change of plasma parameters in the ICRF heating process. To ensure the steady operation of the ICRF heating system in the EAST, fast ferrite tuner (FFT) has been carried out to achieve real-time impedance matching. For the requirements of the FFT impedance matching system, the magnet system of the ferrite tuner (FT) was designed by numerical simulations and experimental analysis, where the biasing magnetic circuit and alternating magnetic circuit were the key researched parts of the ferrite magnet. The integral design goal of the FT magnetic circuit is that DC bias magnetic field is 2000 Gs and alternating magnetic field is ±400 Gs. In the FTT, E-type magnetic circuit was adopted. Ferrite material is NdFeB with a thickness of 30 mm by setting the working point of NdFeB, and the ampere turn of excitation coil is 25 through the theoretical calculation and simulation analysis. The coil inductance to generate alternating magnetic field is about 7 mH. Eddy-current effect has been analyzed, while the magnetic field distribution has been measured by a Hall probe in the medium plane of the biasing magnet. Finally, the test results show the good performance of the biasing magnet satisfying the design and operating requirements of the FFT.

  20. Eddy Current Influences on the Dynamic Behaviour of Magnetic Suspension Systems

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Bloodgood, Dale V.

    1998-01-01

    This report will summarize some results from a multi-year research effort at NASA Langley Research Center aimed at the development of an improved capability for practical modelling of eddy current effects in magnetic suspension systems. Particular attention is paid to large-gap systems, although generic results applicable to both large-gap and small-gap systems are presented. It is shown that eddy currents can significantly affect the dynamic behavior of magnetic suspension systems, but that these effects can be amenable to modelling and measurement. Theoretical frameworks are presented, together with comparisons of computed and experimental data particularly related to the Large Angle Magnetic Suspension Test Fixture at NASA Langley Research Center, and the Annular Suspension and Pointing System at Old Dominion University. In both cases, practical computations are capable of providing reasonable estimates of important performance-related parameters. The most difficult case is seen to be that of eddy currents in highly permeable material, due to the low skin depths. Problems associated with specification of material properties and areas for future research are discussed.

  1. Exploration of Fermi-Pasta-Ulam Behavior in a Magnetic System

    NASA Astrophysics Data System (ADS)

    Lewis, Jeramy; Camley, Robert E.; Anderson, Nicholas R.

    2018-04-01

    We study nonlinear spin motion in one-dimensional magnetic chains. We find significant differences from the classic Fermi-Pasta-Ulam (FPU) problem examining nonlinear elastic motion in a chain. We find that FPU behavior, the transfer of energy among low order eigenmodes, does not occur in magnetic systems with only exchange and external fields, but does exist if a uniaxial anisotropy is also present. The FPU behavior may be altered or turned off through the magnitude and orientation of an external magnetic field. A realistic micromagnetic model shows such behavior could be measurable.

  2. A design approach for systems based on magnetic pulse compression.

    PubMed

    Kumar, D Durga Praveen; Mitra, S; Senthil, K; Sharma, D K; Rajan, Rehim N; Sharma, Archana; Nagesh, K V; Chakravarthy, D P

    2008-04-01

    A design approach giving the optimum number of stages in a magnetic pulse compression circuit and gain per stage is given. The limitation on the maximum gain per stage is discussed. The total system volume minimization is done by considering the energy storage capacitor volume and magnetic core volume at each stage. At the end of this paper, the design of a magnetic pulse compression based linear induction accelerator of 200 kV, 5 kA, and 100 ns with a repetition rate of 100 Hz is discussed with its experimental results.

  3. The oldest magnetic record in our solar system identified using nanometric imaging and numerical modeling.

    PubMed

    Shah, Jay; Williams, Wyn; Almeida, Trevor P; Nagy, Lesleis; Muxworthy, Adrian R; Kovács, András; Valdez-Grijalva, Miguel A; Fabian, Karl; Russell, Sara S; Genge, Matthew J; Dunin-Borkowski, Rafal E

    2018-03-21

    Recordings of magnetic fields, thought to be crucial to our solar system's rapid accretion, are potentially retained in unaltered nanometric low-Ni kamacite (~ metallic Fe) grains encased within dusty olivine crystals, found in the chondrules of unequilibrated chondrites. However, most of these kamacite grains are magnetically non-uniform, so their ability to retain four-billion-year-old magnetic recordings cannot be estimated by previous theories, which assume only uniform magnetization. Here, we demonstrate that non-uniformly magnetized nanometric kamacite grains are stable over solar system timescales and likely the primary carrier of remanence in dusty olivine. By performing in-situ temperature-dependent nanometric magnetic measurements using off-axis electron holography, we demonstrate the thermal stability of multi-vortex kamacite grains from the chondritic Bishunpur meteorite. Combined with numerical micromagnetic modeling, we determine the stability of the magnetization of these grains. Our study shows that dusty olivine kamacite grains are capable of retaining magnetic recordings from the accreting solar system.

  4. Manufacturing of a superconducting magnet system for 28 GHz electron cyclotron resonance ion source at KBSI.

    PubMed

    Lee, B S; Choi, S; Yoon, J H; Park, J Y; Won, M S

    2012-02-01

    A magnet system for a 28 GHz electron cyclotron resonance ion source is being developed by the Korea Basic Science Institute. The configuration of the magnet system consists of 3 solenoid coils for a mirror magnetic field and 6 racetrack coils for a hexapole magnetic field. They can generate axial magnetic fields of 3.6 T at the beam injection part and 2.2 T at the extraction part. A radial magnetic field of 2.1 T is achievable at the plasma chamber wall. A step type winding process was employed in fabricating the hexapole coil. The winding technique was confirmed through repeated cooling tests. Superconducting magnets and a cryostat system are currently being manufactured.

  5. Feedback control for manipulating magnetization in spin-exchange optical pumping system

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Li, Jun; Jiang, Min; Zhao, Nan; Peng, XinHua

    2018-08-01

    Control of magnetization plays an important role in the scientific and technological field of manipulating spin systems. In this work, we study the problem of manipulating nuclear magnetization in the spin-exchange optical pumping system, including accelerating the recovery of nuclear polarization and fixing it on a specific desired state. A real-time feedback control strategy is exploited here. We have also done some numerical simulations, with the results clearly demonstrating the effectiveness of our method, that the nuclear magnetization is able to be driven towards the equilibrium state at a much faster speed and also can be stabilized to a target state. We expect that our feedback control method can find applications in gyro experiments.

  6. Squid-based CW NMR system for measuring the magnetization of helium-3 films

    NASA Astrophysics Data System (ADS)

    White, Kevin Spencer

    This thesis describes the design and construction of a SQUID-based CW NMR system together with its application in a study of the two dimensional magnetism of 3He. 3He provides an exemplary system for the study of two-dimensional magnetism. Two-dimensional 3He films of varying coverages may be formed by plating 3He on relatively uniform two-dimensional substrates, such as GTA Grafoil and ZYX graphite substrates. At coverages above approximately 20 atoms/nm. 2 on these substrates, the second layer of 3He exhibits a strong ferromagnetic ordering tendency. The ferromagnetic ordering presents as a rapid onset of measured magnetization that becomes independent of the applied magnetic field as film temperatures approach 1 mK. Very low applied magnetic fields are used to probe the ferromagnetic ordering in order to minimize masking of the measured magnetization and to stay within the available bandwidth of the SQUID. Commensurate with the ferromagnetic ordering, the NMR linewidth increases dramatically at these coverages and temperatures. An increasing linewidth equates to a short decay time with respect to pulsed NMR probing of the two-dimensional 3He magnetization. The decay times at these coverages and temperatures become so short that they fall below the minimum recovery time necessary for a SQUID-based pulsed NMR system to recover from the relatively large tipping pulse and acquire meaningful data. To address this problem, we have designed a SQUID-based CW NMR system to leverage as much of an already-existing pulsed NMR system as possible but allow accurate measurement of the rapid onset of ferromagnetic ordering of the 3He films below the approximate 1 mK temperature limit of the pulsed NMR system.

  7. Hypervelocity impacts and magnetization of small bodies in the Solar System

    NASA Technical Reports Server (NTRS)

    Chen, Guangqing; Ahrens, Thomas J.; Hide, Raymond

    1995-01-01

    The observed magnetism of asteroids such as Gaspra and Ida (and other small bodies in the solar system including the Moon and meteorites) may have resulted from an impact-induced shock wave producing a thermodynamic state in which iron-nickel alloy, dispersed in a silicate matrix, is driven from the usual low-temperature, low-pressure, alpha, kaemacite, phase to the paramagnetic, epsilon (hcp), phase. The magnetization was acquired upon rarefaction and reentry into the ferromagnetic, alpha, structure. The degree of remagnetization depends on the strength of the ambient field, which may have been associated with a Solar-System-wide magnetic field. A transient field induced by the impact event itself may have resulted in a significant, or possibly, even a dominant contribution, as well. The scaling law of Housen et al. (Housen, K. R., R. M. Schmidt, and K. A. Holsapple 1991) for catastrophic asteroid impact disaggregation imposes a constraint on the degree to which small planetary bodies may be magnetized and yet survive fragmentation by the same event. Our modeling results show it is possible that Ida was magnetized when a large impact fractured a 125 +/- 22-km-radius protoasteroid to form the Koronis family. Similarly, we calculate that Gaspra could be a magnetized fragment of a 45 +/- 15 km-radius protoasteroid.

  8. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  9. Chiral magnetic effect in condensed matter systems

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Kharzeev, Dmitri E.

    2016-12-01

    The chiral magnetic effect (CME) is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum chiral anomaly [S. L. Adler. Axial-vector vertex in spinor electrodynamics. Physical Review, 177, 2426 (1969), J. S. Bell and R. Jackiw. A PCAC puzzle: π 0 γγin the σ-model. Il Nuovo Cimento A, 60, 47-61 (1969)] in systems possessing charged chiral fermions. In quark-gluon plasma containing nearly massless quarks, the chirality imbalance is sourced by the topological transitions. In condensed matter systems, the chiral quasiparticles emerge in gapless semiconductors with two energy bands having pointlike degeneracies opening the path to the study of chiral anomaly [H. B. Nielsen and M. Ninomiya. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Physics Letters B, 130, 389-396 (1983)]. Recently, these novel materials - so-called Dirac and Weyl semimetals have been discovered experimentally, are suitable for the investigation of the CME in condensed matter experiments. Here we report on the first experimental observation of the CME in a 3D Dirac semimetal ZrTe5 [Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla. Chiral magnetic effect in ZrTe5. Nature Physics (2016) doi:10.1038/nphys3648].

  10. Improved operation of magnetic bearings for flywheel energy storage system

    NASA Technical Reports Server (NTRS)

    Zmood, R. B.; Pang, D.; Anand, D. K.; Kirk, J. A.

    1990-01-01

    Analysis and operation of prototype 500-Wh flywheel at low speeds have shown that many factors affect the correct functioning of the magnetic bearings. An examination is made of a number of these, including magnetic bearing control system nonlinearities and displacement transducer positioning, and their effects upon the successful operation of the suspension system. It is observed that the bearing control system is extremely sensitive to actuator parameters such as coil inductance. As a consequence of the analysis of bearing relaxation oscillations, the bearing actuator design methodology which has previously been used, where coil parameter selection is based upon static considerations, has been revised. Displacement transducer sensors which overcome the collocation problem are discussed.

  11. Electric and Magnetic Manipulation of Biological Systems

    NASA Astrophysics Data System (ADS)

    Lee, H.; Hunt, T. P.; Liu, Y.; Ham, D.; Westervelt, R. M.

    2005-06-01

    New types of biological cell manipulation systems, a micropost matrix, a microelectromagnet matrix, and a microcoil array, were developed. The micropost matrix consists of post-shaped electrodes embedded in an insulating layer. With a separate ac voltage applied to each electrode, the micropost matrix generates dielectrophoretic force to trap and move individual biological cells. The microelectromagnet matrix consists of two arrays of straight wires aligned perpendicular to each other, that are covered with insulating layers. By independently controlling the current in each wire, the microelectromagnet matrix creates versatile magnetic fields to manipulate individual biological cells attached to magnetic beads. The microcoil array is a set of coils implemented in a foundry using a standard silicon fabrication technology. Current sources to the coils, and control circuits are integrated on a single chip, making the device self-contained. Versatile manipulation of biological cells was demonstrated using these devices by generating optimized electric or magnetic field patterns. A single yeast cell was trapped and positioned with microscopic resolution, and multiple yeast cells were trapped and independently moved along the separate paths for cell-sorting.

  12. Analytical models for coupling reliability in identical two-magnet systems during slow reversals

    NASA Astrophysics Data System (ADS)

    Kani, Nickvash; Naeemi, Azad

    2017-12-01

    This paper follows previous works which investigated the strength of dipolar coupling in two-magnet systems. While those works focused on qualitative analyses, this manuscript elucidates reversal through dipolar coupling culminating in analytical expressions for reversal reliability in identical two-magnet systems. The dipolar field generated by a mono-domain magnetic body can be represented by a tensor containing both longitudinal and perpendicular field components; this field changes orientation and magnitude based on the magnetization of neighboring nanomagnets. While the dipolar field does reduce to its longitudinal component at short time-scales, for slow magnetization reversals, the simple longitudinal field representation greatly underestimates the scope of parameters that ensure reliable coupling. For the first time, analytical models that map the geometric and material parameters required for reliable coupling in two-magnet systems are developed. It is shown that in biaxial nanomagnets, the x ̂ and y ̂ components of the dipolar field contribute to the coupling, while all three dimensions contribute to the coupling between a pair of uniaxial magnets. Additionally, the ratio of the longitudinal and perpendicular components of the dipolar field is also very important. If the perpendicular components in the dipolar tensor are too large, the nanomagnet pair may come to rest in an undesirable meta-stable state away from the free axis. The analytical models formulated in this manuscript map the minimum and maximum parameters for reliable coupling. Using these models, it is shown that there is a very small range of material parameters which can facilitate reliable coupling between perpendicular-magnetic-anisotropy nanomagnets; hence, in-plane nanomagnets are more suitable for coupled systems.

  13. Development of a vector-tensor system to measure the absolute magnetic flux density and its gradient in magnetically shielded rooms.

    PubMed

    Voigt, J; Knappe-Grüneberg, S; Gutkelch, D; Haueisen, J; Neuber, S; Schnabel, A; Burghoff, M

    2015-05-01

    Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.

  14. A Magnetic Tracking System based on Highly Sensitive Integrated Hall Sensors

    NASA Astrophysics Data System (ADS)

    Schlageter, Vincent; Drljaca, Predrag; Popovic, Radivoje S.; KuČERA, Pavel

    A tracking system with five degrees of freedom based on a 2D-array of 16 Hall sensors and a permanent magnet is presented in this paper. The sensitivity of the Hall sensors is increased by integrated micro- and external macro-flux-concentrators. Detection distance larger than 20cm (during one hour without calibration) is achieved using a magnet of 0.2cm3. This corresponds to a resolution of the sensors of 0.05µTrms. The position and orientation of the marker is displayed in real time at least 20 times per second. The sensing system is small enough to be hand-held and can be used in a normal environment. This presented tracking system has been successfully applied to follow a small swallowed magnet through the entire human digestive tube. This approach is extremely promising as a new non-invasive diagnostic technique in gastro-enterology.

  15. Study for a Design of Magnet System for the SPD Detector NICA LHEP JINR

    NASA Astrophysics Data System (ADS)

    Yudin, Ivan P.

    2016-02-01

    The choice of magnet system for the Spin Physics Detector of the NICA Collider of LHEP JINR is given. The inverse problem of magnetostatics is solved for a magnetic field of 0.5 tesla in the aperture a) ɸ 3 m x 5 m and b) ɸ 3 m x 6 m. We also discuss the design of the magnet with a field of 0.3 T. The paper presents the results obtained for the "warm" and SC versions of the magnetic system: currents (ampere-turns), the geometry (size) of the coil and the iron yoke, weight (on the whole and the individual elements), the magnet transportation and assembly.

  16. AC magnetic field measurement using a small flip coil system for rapid cycling AC magnets at the China Spallation Neutron Source (CSNS)

    NASA Astrophysics Data System (ADS)

    Zhou, Jianxin; Kang, Wen; Li, Shuai; Liu, Yudong; Liu, Yiqin; Xu, Shouyan; Guo, Xiaoling; Wu, Xi; Deng, Changdong; Li, Li; Wu, Yuwen; Wang, Sheng

    2018-02-01

    The China Spallation Neutron Source (CSNS) has two major accelerator systems, a linear accelerator and a rapid cycling synchrotron (RCS). The RCS accelerator is used to accumulate and accelerate protons from the energy of 80 MeV to the design energy of 1.6 GeV at the repetition rate of 25 Hz, and extract the high energy beam to the target. The main magnets of the RCS accelerator are excited by AC current with DC bias. The magnetic field quality is very important for the RCS accelerator operation, since it should guarantee and focus a circulating beam. In order to characterize the AC magnets, a small flip coil measurement system has been developed and one of each type of AC magnets has been studied. The measurement system and selected measurement results are presented in this paper.

  17. Dynamic modelling and response characteristics of a magnetic bearing rotor system including auxiliary bearings

    NASA Technical Reports Server (NTRS)

    Free, April M.; Flowers, George T.; Trent, Victor S.

    1993-01-01

    Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotor-dynamic model and assess the dynamic behavior of a magnetic bearing rotor system which includes the effects of auxiliary bearings. Of particular interest is the effects of introducing sideloading into such a system during failure of the magnetic bearing. A model is developed from an experimental test facility and a number of simulation studies are performed. These results are presented and discussed.

  18. Evaluation of the attractive force of different types of new-generation magnetic attachment systems.

    PubMed

    Akin, Hakan; Coskun, M Emre; Akin, E Gulsah; Ozdemir, A Kemal

    2011-03-01

    Rare earth magnets have been used in prosthodontics, but their tendency for corrosion in the oral cavity and insufficient attractive forces limit long-term clinical application. The purpose of this study was to evaluate the attractive force of different types of new-generation magnetic attachment systems. The attractive force of the neodymium-iron-boron (Nd-Fe-B) and samarium-cobalt (Sm-Co) magnetic attachment systems, including closed-field (Hilop and Hicorex) and open-field (Dyna and Steco) systems, was measured in a universal testing machine (n=5). The data were statistically evaluated with 1-way ANOVA and post hoc Tukey-Kramer multiple comparison test (α=.05). The closed-field systems exhibited greater (P<.001) attractive force than the open-field systems. Moreover, there was a statistically significant difference in attractive force between Nd-Fe-B and Sm-Co magnets (P<.001). The strongest attractive force was found with the Hilop system (9.2 N), and the lowest force was found with the Steco system (2.3 N). The new generation of Nd-Fe-B closed-field magnets, along with improved technology, provides sufficient denture retention for clinical application. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, X.; Yao, C.

    A prototype dual-blade stripline kicker for the APS multi-bend achromat (MBA) upgrade has been designed and developed. It was optimized with 3D CST Microwave Studio. The high voltage (HV) feedthrough and air-side connector were designed and optimized. Electromagnetic fields along the beam path, the deflecting angle, the high electric fields and their locations were calculated with 15kV differential pulse voltage applied to the kicker blades through the feedthroughs. Beam impedance and the power dissipation on different parts of the kicker and external loads were studied for a 48-bunch fill pattern. Our results show that the prototype kicker with its HVmore » feedthroughs meets the specified requirements. The results of TDR (time-domain reflectometer) test, high voltage pulse test and beam test of the prototype kicker assembly agreed with the simulations.« less

  20. Magnetic susceptibility well-logging unit with single power supply thermoregulation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeley, R. L.

    1985-11-05

    The magnetic susceptibility well-logging unit with single power supply thermoregulation system provides power from a single surface power supply over a well-logging cable to an integrated circuit voltage regulator system downhole. This voltage regulator system supplies regulated voltages to a temperature control system and also to a Maxwell bridge sensing unit which includes the solenoid of a magnetic susceptibility probe. The temperature control system is provided with power from the voltage regulator system and operates to permit one of several predetermined temperatures to be chosen, and then operates to maintain the solenoid of a magnetic susceptibility probe at this chosenmore » temperature. The temperature control system responds to a temperature sensor mounted upon the probe solenoid to cause resistance heaters concentrically spaced from the probe solenoid to maintain the chosen temperature. A second temperature sensor on the probe solenoid provides a temperature signal to a temperature transmitting unit, which initially converts the sensed temperature to a representative voltage. This voltage is then converted to a representative current signal which is transmitted by current telemetry over the well logging cable to a surface electronic unit which then reconverts the current signal to a voltage signal.« less

  1. Design and implementation of a magnetically suspended microrobotic pick-and-place system

    NASA Astrophysics Data System (ADS)

    Shameli, Ehsan; Craig, David G.; Khamesee, Mir Behrad

    2006-04-01

    Micromanipulation is an emerging technology in such diverse areas as precision engineering, microfabrication, and microsurgery. Each of these areas impose certain technological constraints and requirements in fabrication, actuation, and control. This paper performs a review on the latest technologies of microrobotic actuation techniques and suggests a suitable technique for the actuation of a magnetically levitated microrobot. The microrobot, suspended in an externally produced magnetic field, consists of a gripper attached to a series of permanent magnets and is capable of simple pick and place tasks. A number of electromagnets produce the external magnetic field and three laser sensors feedback the position of the levitated microrobot. Through finite element analysis, performance of the levitation system was investigated, and simulations and experiments were carried out to demonstrate the practical capabilities of the proposed system.

  2. The fast reciprocating magnetic probe system on the J-TEXT tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Fuming; Chen, Zhipeng, E-mail: zpchen@hust.edu.cn; Zhuang, Ge

    The fast reciprocating magnetic probe (FRMP) system is newly developed on the Joint Texas Experimental Tokamak (J-TEXT) to measure the local magnetic fluctuations at the plasma edge. The magnetic probe array in the FRMP consists of four 2-dimensional magnetic probes arranged at different radial locations to detect local poloidal and radial magnetic fields. These probes are protected by a graphite and boron nitride casing to improve the frequency response of each probe; they are mounted on the head of a movable rod, which is oriented along radial direction at the top of the torus. In the experiments, multiple core diagnosticsmore » show that the insertion of the FRMP has little impact on the equilibrium of the plasma. Local magnetic fluctuations inside the last closed flux surface are successfully measured by the FRMP.« less

  3. Magnetic Leviation System Design and Implementation for Wind Tunnel Application

    NASA Technical Reports Server (NTRS)

    Lin, Chin E.; Sheu, Yih-Ran; Jou, Hui-Long

    1996-01-01

    This paper presents recent work in magnetic suspension wind tunnel development in National Cheng Kung University. In this phase of research, a control-based study is emphasized to implement a robust control system into the experimental system under study. A ten-coil 10 cm x 10 cm magnetic suspension wind tunnel is built using a set of quadrant detectors for six degree of freedom control. To achieve the attitude control of suspended model with different attitudes, a spacial electromagnetic field simulation using OPERA 3D is studied. A successful test for six degree of freedom control is demonstrated in this paper.

  4. Thermomechanical assessment of the effects of a jaw-beam angle during beam impact on Large Hadron Collider collimators

    NASA Astrophysics Data System (ADS)

    Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Lari, L.; Rossi, A.; Mollicone, P.; Sammut, N.

    2015-02-01

    The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC). However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more) of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.

  5. Methods, systems and devices for detecting threatening objects and for classifying magnetic data

    DOEpatents

    Kotter, Dale K [Shelley, ID; Roybal, Lyle G [Idaho Falls, ID; Rohrbaugh, David T [Idaho Falls, ID; Spencer, David F [Idaho Falls, ID

    2012-01-24

    A method for detecting threatening objects in a security screening system. The method includes a step of classifying unique features of magnetic data as representing a threatening object. Another step includes acquiring magnetic data. Another step includes determining if the acquired magnetic data comprises a unique feature.

  6. Rats avoid high magnetic fields: dependence on an intact vestibular system

    PubMed Central

    Houpt, Thomas A.; Cassell, Jennifer A.; Riccardi, Christina; DenBleyker, Megan D.; Hood, Alison; Smith, James C.

    2009-01-01

    Summary HOUPT, T.A., J.A. CASSELL, C. RICCARDI, M.D. DENBLEYKER, A. HOOD, AND J.C. SMITH. Rats avoid high magnetic fields: dependence on an intact vestibular system. PHYSIOL BEHAV 00(0)000-000, 2006. High strength static magnetic fields are thought to be benign and largely undetectable by mammals. As magnetic resonance imaging (MRI) machines increase in strength, however, potential aversive effects may become clinically relevant. Here we report that rats find entry into a 14.1 T magnet aversive, and that they can detect and avoid entry into the magnet at a point where the magnetic field is 2 T or lower. Rats were trained to climb a ladder through the bore of a 14.1 T superconducting magnet. After their first climb into 14.1 T, most rats refused to re-enter the magnet or climb past the 2 T field line. This result was confirmed in a resistive magnet in which the magnetic field was varied from 1 to 14 T. Detection and avoidance required the vestibular apparatus of the inner ear, because labyrinthectomized rats readily traversed the magnet. The inner ear is a novel site for magnetic field transduction in mammals, but perturbation of the vestibular apparatus would be consistent with human reports of vertigo and nausea around high strength MRI machines. PMID:17585969

  7. Effects of dipolar interactions in magnetic nanoparticle systems

    NASA Astrophysics Data System (ADS)

    Ruta, Sergiu; Hovorka, Ondrej; Chantrell, Roy

    2014-03-01

    Understanding the effects of magnetostatic interactions in magnetic nanoparticle systems is of importance in magnetic recording, biomedical applications such as in hyperthermia cancer treatment, or for sensing approaches in biology and chemistry, for example. In this talk we discuss the macroscopic and microscopic effects of dipole-dipole interactions in three-dimensional assemblies of magnetic nanoparticles in various spatial arrangements, including the BCC, FCC, or randomized lattices. Our study is based on the kinetic Monte-Carlo modelling and concentrates on exploring the effect of the particle arrangement, distributions of particle volumes and anisotropy axes, and the role of thermal effects on the overall behaviour of hysteresis loops, ZFC/FC temperature scans and the magnetization decay data computed during the relaxation to equilibrium. In the case of the FCC lattice we find a counter-intuitive effect where increasing the interaction strength enhances/suppresses the hysteresis loop coercivity at high/low temperatures. The analysis of the domain pattern formation and pair correlation functions suggests for the observed behaviour to be a result of the phenomenon of frustration. We also discuss the possibility of observing the super-ferromagnetic phases on similar syste

  8. Prominence Bubbles and Plumes: Thermo-magnetic Buoyancy in Coronal Cavity Systems

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Hurlburt, N.

    2009-05-01

    The Hinode/Solar Optical Telescope continues to produce high spatial and temporal resolution images of solar prominences in both the Ca II 396.8 nm H-line and the H-alpha 656.3 nm line. Time series of these images show that many quiescent prominences produce large scale (50 Mm) dark "bubbles" that "inflate" into, and sometimes burst through, the prominence material. In addition, small-scale (2--5 Mm) dark plumes are seen rising into many quiescent prominences. We show typical examples of both phenomena and argue that they originate from the same mechanism: concentrated and heated magnetic flux that rises due to thermal and magnetic buoyancy to equilibrium heights in the prominence/coronal-cavity system. More generally, these bubbles and upflows offer a source of both magnetic flux and mass to the overlying coronal cavity, supporting B.C. Low's theory of CME initiation via steadily increasing magnetic buoyancy breaking through the overlying helmut streamer tension forces. Quiescent prominences are thus seen as the lowermost parts of the larger coronal cavity system, revealing through thermal effects both the cooled downflowing "drainage" from the cavity and the heated upflowing magnetic "plasmoids" supplying the cavity. We compare SOT movies to new 3D compressible MHD simulations that reproduce the dark turbulent plume dynamics to establish the magnetic and thermal character of these buoyancy-driven flows into the corona.

  9. Performance of magnetic field‐guided navigation system for interventional neurosurgical and cardiac procedures

    PubMed Central

    Chu, James C.H.; Hsi, Wen Chien; Hubbard, Lincoln; Zhang, Yunkai; Bernard, Damian; Reeder, Pamela; Lopes, Demetrius

    2005-01-01

    A hospital‐based magnetic guidance system (MGS) was installed to assist a physician in navigating catheters and guide wires during interventional cardiac and neurosurgical procedures. The objective of this study is to examine the performance of this magnetic field‐guided navigation system. Our results show that the system's radiological imaging components produce images with quality similar to that produced by other modern fluoroscopic devices. The system's magnetic navigation components also deflect the wire and catheter tips toward the intended direction. The physician, however, will have to oversteer the wire or catheter when defining the steering angle during the procedure. The MGS could be clinically useful in device navigation deflection and vessel access. PACS numbers: 07.55.Db, 07.85.‐m PMID:16143799

  10. A Magnetic Bumper-Tether System Using ZFC Y123

    NASA Technical Reports Server (NTRS)

    Weinstein, Roy; Parks, Drew; Sawh, Ravi-Persad; Obot, Victor; Liu, Jianxiong; Arndt, G. D.

    1996-01-01

    We consider the use of magnetic forces in a bumper system, to soften docking procedures. We investigate a system which exhibits no magnetic field except during the docking process, which, if desired, can automatically tether two craft together, and which provides lateral stability during docking. A system composed of zero field cooled Y(1.7)Ba2Cu3O(7-delta) (Y123) tiles and electromagnets is proposed. The Y123 high temperature superconductor (HTS) is mounted on one craft, and the electromagnet on the other. Results of small prototype laboratory experiments are reported. The electromagnet has, for convenience, been replaced by a permanent SmCo ferromagnet in these measurements. When the two craft approach, a mirror image of the ferromagnet is induced in the Y123, and a repulsive bumper force, F(sub B), results. F(sub B) is velocity dependent, and increases with v. For presently available HTS materials, bumper pressure of approx. 3.7 N/cm(exp 2) is achieved using SmCo. This extrapolates to approx. 18 N/cm(exp 2) for an electromagnet, or a force of up to 20 tons for a 1 m(exp 2) system. After reaching a minimum distance of approach, the two colliding craft begin to separate. However, the consequent change of SmCo magnetic field at the Y123 results in a reversal of current in the Y123 so that the Y123 is attractive to the SmCo. The attractive (tether) force, F(sub T), is a function of R = B(sub Fe)/B(sub t, max), where B(sub Fe) is the field at the surface of the ferromagnet, and B(sub t, max) is the maximum trapped field of the Y123, i.e., the trapped field in the so-called critical state. For R greater than or equal to 2, F(sub T) saturates at a value comparable to F(sub B). For a range of initial approach velocities the two craft are tethered following the bumper sequence. Most of the kinetic energy of the collision is first converted to magnetic field energy in the Y123, and then into heat via the creep mechanism. About 15% of the work done against magnetic forces

  11. Development of a vector-tensor system to measure the absolute magnetic flux density and its gradient in magnetically shielded rooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voigt, J.; Knappe-Grüneberg, S.; Gutkelch, D.

    2015-05-15

    Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23more » pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.« less

  12. Artificial Vector Calibration Method for Differencing Magnetic Gradient Tensor Systems

    PubMed Central

    Li, Zhining; Zhang, Yingtang; Yin, Gang

    2018-01-01

    The measurement error of the differencing (i.e., using two homogenous field sensors at a known baseline distance) magnetic gradient tensor system includes the biases, scale factors, nonorthogonality of the single magnetic sensor, and the misalignment error between the sensor arrays, all of which can severely affect the measurement accuracy. In this paper, we propose a low-cost artificial vector calibration method for the tensor system. Firstly, the error parameter linear equations are constructed based on the single-sensor’s system error model to obtain the artificial ideal vector output of the platform, with the total magnetic intensity (TMI) scalar as a reference by two nonlinear conversions, without any mathematical simplification. Secondly, the Levenberg–Marquardt algorithm is used to compute the integrated model of the 12 error parameters by nonlinear least-squares fitting method with the artificial vector output as a reference, and a total of 48 parameters of the system is estimated simultaneously. The calibrated system outputs along the reference platform-orthogonal coordinate system. The analysis results show that the artificial vector calibrated output can track the orientation fluctuations of TMI accurately, effectively avoiding the “overcalibration” problem. The accuracy of the error parameters’ estimation in the simulation is close to 100%. The experimental root-mean-square error (RMSE) of the TMI and tensor components is less than 3 nT and 20 nT/m, respectively, and the estimation of the parameters is highly robust. PMID:29373544

  13. Efficient and reliable characterization of the corticospinal system using transcranial magnetic stimulation.

    PubMed

    Kukke, Sahana N; Paine, Rainer W; Chao, Chi-Chao; de Campos, Ana C; Hallett, Mark

    2014-06-01

    The purpose of this study is to develop a method to reliably characterize multiple features of the corticospinal system in a more efficient manner than typically done in transcranial magnetic stimulation studies. Forty transcranial magnetic stimulation pulses of varying intensity were given over the first dorsal interosseous motor hot spot in 10 healthy adults. The first dorsal interosseous motor-evoked potential size was recorded during rest and activation to create recruitment curves. The Boltzmann sigmoidal function was fit to the data, and parameters relating to maximal motor-evoked potential size, curve slope, and stimulus intensity leading to half-maximal motor-evoked potential size were computed from the curve fit. Good to excellent test-retest reliability was found for all corticospinal parameters at rest and during activation with 40 transcranial magnetic stimulation pulses. Through the use of curve fitting, important features of the corticospinal system can be determined with fewer stimuli than typically used for the same information. Determining the recruitment curve provides a basis to understand the state of the corticospinal system and select subject-specific parameters for transcranial magnetic stimulation testing quickly and without unnecessary exposure to magnetic stimulation. This method can be useful in individuals who have difficulty in maintaining stillness, including children and patients with motor disorders.

  14. Instrumentation status of the low-b magnet systems at the Large Hadron Collider (LHC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darve, C.; /Fermilab; Balle, C.

    2011-05-01

    The low-{beta} magnet systems are located in the Large Hadron Collider (LHC) insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process allowing proton collisions at luminosity up to 10{sup 34}cm{sup -2}s{sup -1}. Those systems are a contribution of the US-LHC Accelerator project. The systems are mainly composed of the quadrupole magnets (triplets), the separation dipoles and their respective electrical feed-boxes (DFBX). The low-{beta} magnet systems operate in an environment of extreme radiation, high gradient magnetic field and high heat load to the cryogenic system due to the beam dynamic effect. Due tomore » the severe environment, the robustness of the diagnostics is primordial for the operation of the triplets. The hardware commissioning phase of the LHC was completed in February 2010. In the sake of a safer and more user-friendly operation, several consolidations and instrumentation modifications were implemented during this commissioning phase. This paper presents the instrumentation used to optimize the engineering process and operation of the final focusing/defocusing quadrupole magnets for the first years of operation.« less

  15. Optical position measurement for a large gap magnetic suspension system: Design and performance analysis

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Clemmons, James I., Jr.; Shelton, Kevin J.; Duncan, Walter C.

    1994-01-01

    An optical measurement system (OMS) has been designed and tested for a large gap magnetic suspension system (LGMSS). The LGMSS will be used to study control laws for magnetic suspension systems for vibration isolation and pointing applications. The LGMSS features six degrees of freedom and consists of a planar array of electromagnets that levitate and position a cylindrical element containing a permanent magnet core. The OMS provides information on the location and orientation of the element to the LGMSS control system to stabilize suspension. The hardware design of this optical sensing system and the tracking algorithms are presented. The results of analyses and experiments are presented that define the accuracy limits of the optical sensing system and that quantify the errors in position estimation.

  16. Experimental evaluation of a magnetic torquer rod using an innovative test system

    NASA Astrophysics Data System (ADS)

    Fakhari Mehrjardi, Mohamad; Mirshams, Mehran

    2010-03-01

    In today's world satellites have an immense and profound role in a country's financial, social and military development and having the technology of creation and launching satellites is a yard stick to a country's progress. Each satellite, like any other advanced machine is consisted of many subsystems in order to do its mission, among those, the attitude Control subsystem has the duty of stabilizing and orientation. Depending on the type of stabilization and control laws, different actuators like momentum wheels, reaction wheels, magnetic torquers and etcetera are used. Due to its smaller shape and weight, lower cost and minimal power consumption, the magnetic torquer is frequently used in low-earth orbit satellites. A magnetic torquer is consisted of a winding wire and a magnetic core that with the current of electricity passing through the winding wire, a magnetic dipole moment is produced. In reaction to the earth's magnetic field, this moment produces the required torque. Thus, having a broader understanding of the specification of the magnetic torquer before using it in the satellite is quite necessary. As a result, in this paper we try to show how to make such system in the laboratory. A magnetorquer is manufactured that the main idea is to estimate the magnetic dipole moment from the magnetic field measurement by this magnetic torquer. To achieve this, first we talk about the theories of creating such device and test system, then we will delve into the more technical aspects of designing such subsystem. In the end, from the output results, the performance curve of the magnetic torquer is produced and the linear areas and scale coefficients are determined. This paper presents test methodology, experimental setup and test results of manufacturing a torque rod with CK30 ferromagnetic alloy core.

  17. Experimental evaluation of a magnetic torquer rod using an innovative test system

    NASA Astrophysics Data System (ADS)

    Fakhari Mehrjardi, Mohamad; Mirshams, Mehran

    2009-12-01

    In today's world satellites have an immense and profound role in a country's financial, social and military development and having the technology of creation and launching satellites is a yard stick to a country's progress. Each satellite, like any other advanced machine is consisted of many subsystems in order to do its mission, among those, the attitude Control subsystem has the duty of stabilizing and orientation. Depending on the type of stabilization and control laws, different actuators like momentum wheels, reaction wheels, magnetic torquers and etcetera are used. Due to its smaller shape and weight, lower cost and minimal power consumption, the magnetic torquer is frequently used in low-earth orbit satellites. A magnetic torquer is consisted of a winding wire and a magnetic core that with the current of electricity passing through the winding wire, a magnetic dipole moment is produced. In reaction to the earth's magnetic field, this moment produces the required torque. Thus, having a broader understanding of the specification of the magnetic torquer before using it in the satellite is quite necessary. As a result, in this paper we try to show how to make such system in the laboratory. A magnetorquer is manufactured that the main idea is to estimate the magnetic dipole moment from the magnetic field measurement by this magnetic torquer. To achieve this, first we talk about the theories of creating such device and test system, then we will delve into the more technical aspects of designing such subsystem. In the end, from the output results, the performance curve of the magnetic torquer is produced and the linear areas and scale coefficients are determined. This paper presents test methodology, experimental setup and test results of manufacturing a torque rod with CK30 ferromagnetic alloy core.

  18. Dynamic modelling and response characteristics of a magnetic bearing rotor system with auxiliary bearings

    NASA Technical Reports Server (NTRS)

    Free, April M.; Flowers, George T.; Trent, Victor S.

    1995-01-01

    Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotordynamic model which describes the dynamic behavior of a flexible rotor system with magnetic bearings including auxiliary bearings. The model is based upon an experimental test facility. Some simulation studies are presented to illustrate the behavior of the model. In particular, the effects of introducing sideloading from the magnetic bearing when one coil fails is studied.

  19. Magnetic field exposure and behavioral monitoring system.

    PubMed

    Thomas, A W; Drost, D J; Prato, F S

    2001-09-01

    To maximize the availability and usefulness of a small magnetic field exposure laboratory, we designed a magnetic field exposure system that has been used to test human subjects, caged or confined animals, and cell cultures. The magnetic field exposure system consists of three orthogonal pairs of coils 2 m square x 1 m separation, 1.751 m x 0.875 m separation, and 1.5 m x 0.75 m separation. Each coil consisted of ten turns of insulated 8 gauge stranded copper conductor. Each of the pairs were driven by a constant-current amplifier via digital to analog (D/A) converter. A 9 pole zero-gain active Bessel low-pass filter (1 kHz corner frequency) before the amplifier input attenuated the expected high frequencies generated by the D/A conversion. The magnetic field was monitored with a 3D fluxgate magnetometer (0-3 kHz, +/- 1 mT) through an analog to digital converter. Behavioral monitoring utilized two monochrome video cameras (viewing the coil center vertically and horizontally), both of which could be video recorded and real-time digitally Moving Picture Experts Group (MPEG) encoded to CD-ROM. Human postural sway (standing balance) was monitored with a 3D forceplate mounted on the floor, connected to an analog to digital converter. Lighting was provided by 12 offset overhead dimmable fluorescent track lights and monitored using a digitally connected spectroradiometer. The dc resistance, inductance of each coil pair connected in series were 1.5 m coil (0.27 Omega, 1.2 mH), 1.75 m coil (0.32 Omega, 1.4 mH), and 2 m coil (0.38 Omega, 1.6 mH). The frequency response of the 1.5 m coil set was 500 Hz at +/- 463 microT, 1 kHz at +/- 232 microT, 150 micros rise time from -200 microT(pk) to + 200 microT(pk) (square wave) and is limited by the maximum voltage ( +/- 146 V) of the amplifier (Bessel filter bypassed). Copyright 2001 Wiley-Liss, Inc.

  20. Alpha Channeling in Open-System Magnetic Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisch, Nathaniel

    The Grant DE-SC0000736, Alpha Channeling in Open-System Magnetic Devices, is a continuation of the Grant DE-FG02-06ER54851, Alpha Channeling in Mirror Machines. In publications funded by DE-SC0000736, the grant DE-FG02-06ER54851 was actually credited. The key results obtained under Grant DE-SC0000736, Alpha Channeling in Open-System Magnetic Devices, appear in a series of publications. The earlier effort under DE-FG02- 06ER54851 was the subject of a previous Final Report. The theme of this later effort has been unusual confinement effects, or de-confinement effects, in open-field magnetic confinement devices. First, the possibilities in losing axisymmetry were explored. Then a number of issues in rotating plasmamore » were addressed. Most importantly, a spinoff application to plasma separations was recognized, which also resulted in a provisional patent application. (That provisional patent application, however, was not pursued further.) Alpha channeling entails injecting waves into magnetically confined plasma to release energy from one particular ion while ejecting that ion. The ejection of the ion is actually a concomitant effect in releasing energy from the ion to the wave. In rotating plasma, there is the opportunity to store the energy in a radial electric field rather than in waves. In other words, the ejected alpha particle loses its energy to the radial potential, which in turn produces plasma rotation. This is a very useful effect, since producing radial electric fields by other means are technologically more difficult. In fact, one can heat ions, and then eject them, to produce the desired radial field. In each case, there is a separation effect of different ions, which generalizes the original alpha-channeling concept of separating alpha ash from hydrogen. In a further generalization of the separation concept, a double-well filter represents a new way to produce high-throughput separations of ions, potentially useful for nuclear waste remediation.« less

  1. Magnetic navigation system for percutaneous coronary intervention

    PubMed Central

    Qi, Zhiyong; Wu, Bangwei; Luo, Xinping; Zhu, Jun; Shi, Haiming; Jin, Bo

    2016-01-01

    Abstract Background: Magnetic navigation system (MNS) allows calculation of the vessel coordinates in real space within the patient's chest for percutaneous coronary intervention (PCI). However, its impact on the procedural parameters and clinical outcomes is still a matter of debate. To derive a more precise estimation of the relationship, a meta-analysis was performed. Methods and Results: Studies exploring the advantages of MNS were identified in English-language articles by search of Medline, Web of Science, and Cochrane Library Databases (inception to October 2015). A standardized protocol was used to extract details on study design, region origin, demographic data, lesion type, and clinical outcomes. The main outcome measures were contrast consumption, procedural success rate, contrast used for wire crossing, procedure time to cross the lesions, and the fluoroscopy time fluoroscopy time. A total of 12 clinical trials involving 2174 patients were included for analysis (902 patients in the magnetic PCI group and 1272 in the conventional PCI group). Overall, contrast consumption was decreased by 40.45 mL (95% confidence interval [CI] −70.98 to −9.92, P = 0.009) in magnetic PCI group compared with control group. In addition, magnetic PCI was associated with significantly decreasing procedural time by 2.17 minutes (95% CI −3.91 to −0.44, P = 0.01) and the total fluoroscopy time was significantly decreased by 1.43 minutes (95% CI −2.29 to −0.57, P = 0.001) in magnetic PCI group. However, procedural success rate, contrast used for wire crossing, procedure time to cross the lesions, and the fluoroscopy time to cross the lesions demonstrated that no statistically difference was observed between 2 groups. Conclusion: The present meta-analysis indicated an improvement of overall contrast consumption, total procedural time, and fluoroscopy time in magnetic PCI group. However, no significant advantages were observed associated with procedural

  2. Digital control of wind tunnel magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Goodyer, Michael J.; Eskins, Jonathan; Parker, David; Halford, Robert J.

    1987-01-01

    Digital controllers are being developed for wind tunnel magnetic suspension and balance systems, which in turn permit wind tunnel testing of aircraft models free from support interference. Hardware and software features of two existing digital control systems are reviewed. Some aspects of model position sensing and system calibration are also discussed.

  3. Study of multi-level atomic systems with the application of magnetic field

    NASA Astrophysics Data System (ADS)

    Hu, Jianping; Roy, Subhankar; Ummal Momeen, M.

    2018-04-01

    The complexity of multiple energy levels associated with each atomic system determines the various processes related to light- matter interactions. It is necessary to understand the influence of different levels in a given atomic system. In this work we focus on multi- level atomic schemes with the application of magnetic field. We analyze the different EIT windows which appears in the presence of moderately high magnetic field (∼ 10 G) strength.

  4. Tokamak DEMO-FNS: Concept of magnet system and vacuum chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azizov, E. A., E-mail: Azizov-EA@nrcki.ru; Ananyev, S. S.; Belyakov, V. A.

    The level of knowledge accumulated to date in the physics and technologies of controlled thermonuclear fusion (CTF) makes it possible to begin designing fusion—fission hybrid systems that would involve a fusion neutron source (FNS) and which would admit employment for the production of fissile materials and for the transmutation of spent nuclear fuel. Modern Russian strategies for CTF development plan the construction to 2023 of tokamak-based demonstration hybrid FNS for implementing steady-state plasma burning, testing hybrid blankets, and evolving nuclear technologies. Work on designing the DEMO-FNS facility is still in its infancy. The Efremov Institute began designing its magnet systemmore » and vacuum chamber, while the Kurchatov Institute developed plasma-physics design aspects and determined basic parameters of the facility. The major radius of the plasma in the DEMO-FNS facility is R = 2.75 m, while its minor radius is a = 1 m; the plasma elongation is k{sub 95} = 2. The fusion power is P{sub FUS} = 40 MW. The toroidal magnetic field on the plasma-filament axis is B{sub t0} = 5 T. The plasma current is I{sub p} = 5 MA. The application of superconductors in the magnet system permits drastically reducing the power consumed by its magnets but requires arranging a thick radiation shield between the plasma and magnet system. The central solenoid, toroidal-field coils, and poloidal-field coils are manufactured from, respectively, Nb{sub 3}Sn, NbTi and Nb{sub 3}Sn, and NbTi. The vacuum chamber is a double-wall vessel. The space between the walls manufactured from 316L austenitic steel is filled with an iron—water radiation shield (70% of stainless steel and 30% of water).« less

  5. System identification of the Large-Angle Magnetic Suspension Test Facility (LAMSTF)

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang

    1993-01-01

    The Large-Angle Magnetic Suspension Test Facility (LAMSTF), a laboratory-scale research project to demonstrate the magnetic suspension of objects over wide ranges of attitudes, has been developed. This system represents a scaled model of a planned Large-Gap Magnetic Suspension System (LGMSS). The LAMSTF system consists of a planar array of five copper electromagnets which actively suspend a small cylindrical permanent magnet. The cylinder is a rigid body and can be controlled to move in five independent degrees of freedom. Five position variables are sensed indirectly by using infra-red light-emitting diodes and light-receiving phototransistors. The motion of the suspended cylinder is in general nonlinear and hence only the linear, time-invariant perturbed motion about an equilibrium state is considered. One of the main challenges in this project is the control of the suspended element over a wide range of orientations. An accurate dynamic model plans an essential role in controller design. The analytical model of the LAMSTF system includes highly unstable real poles (about 10 Hz) and low-frequency flexible modes (about 0.16 Hz). Projection filters are proposed to identify the state space model from closed-loop test data in time domain. A canonical transformation matrix is also derived to transform the identified state space model into the physical coordinate. The LAMSTF system is stabilized by using a linear quadratic regulator (LQR) feedback controller. The rate information is obtained by calculating the back difference of the sensed position signals. The reference inputs contain five uncorrelated random signals. This control input and the system reponse are recorded as input/output data to identify the system directly from the projection filters. The sampling time is 4 ms and the model is fairly accurate in predicting the step responses for different controllers while the analytical model has a deficiency in the pitch axis.

  6. Magnetic microfluidic system for isolation of single cells

    NASA Astrophysics Data System (ADS)

    Mitterboeck, Richard; Kokkinis, Georgios; Berris, Theocharis; Keplinger, Franz; Giouroudi, Ioanna

    2015-06-01

    This paper presents the design and realization of a compact, portable and cost effective microfluidic system for isolation and detection of rare circulating tumor cells (CTCs) in suspension. The innovative aspect of the proposed isolation method is that it utilizes superparamagnetic particles (SMPs) to label CTCs and then isolate those using microtraps with integrated current carrying microconductors. The magnetically labeled and trapped CTCs can then be detected by integrated magnetic microsensors e.g. giant magnetoresistive (GMR) or giant magnetoimpedance (GMI) sensors. The channel and trap dimensions are optimized to protect the cells from shear stress and achieve high trapping efficiency. These intact single CTCs can then be used for additional analysis, testing and patient specific drug screening. Being able to analyze the CTCs metastasis-driving capabilities on the single cell level is considered of great importance for developing patient specific therapies. Experiments showed that it is possible to capture single labeled cells in multiple microtraps and hold them there without permanent electric current and magnetic field.

  7. Advanced Docking System With Magnetic Initial Capture

    NASA Technical Reports Server (NTRS)

    Lewis, James L.; Carroll, Monty B.; Morales, Ray; Le, Thang

    2004-01-01

    An advanced docking system is undergoing development to enable softer, safer docking than was possible when using prior docking systems. This system is intended for original use in docking of visiting spacecraft and berthing the Crew Return Vehicle at the International Space Station (ISS). The system could also be adapted to a variety of other uses in outer space and on Earth, including mating submersible vehicles, assembling structures, and robotic berthing/handling of payloads and cargo. Heretofore, two large spacecraft have been docked by causing the spacecraft to approach each other at a speed sufficient to activate capture latches - a procedure that results in large docking loads and is made more difficult because of the speed. The basic design and mode of operation of the present advanced docking system would eliminate the need to rely on speed of approach to activate capture latches, thereby making it possible to reduce approach speed and thus docking loads substantially. The system would comprise an active subsystem on one spacecraft and a passive subsystem on another spacecraft with which the active subsystem will be docked. The passive subsystem would include an extensible ring containing magnetic striker plates and guide petals. The active subsystem would include mating guide petals and electromagnets containing limit switches and would be arranged to mate with the magnetic striker plates and guide petals of the passive assembly. The electromagnets would be carried on (but not rigidly attached to) a structural ring that would be instrumented with load sensors. The outputs of the sensors would be sent, along with position information, as feedback to an electronic control subsystem. The system would also include electromechanical actuators that would extend or retract the ring upon command by the control subsystem.

  8. Pulsed Magnetic Field System for Magnetized Target Experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Rhodes, M. A.; Solberg, J. M.; Logan, B. G.; Perkins, L. J.

    2014-10-01

    High-magnitude magnetic fields applied to inertially confined targets may improve fusion yield and enable basic science applications. We discuss the development of a pulsed magnetic field system for NIF with the goal of applying 10--70 T to various NIF targets. While the driver may be little more than a spark-gap switched capacitor, numerous complex challenges exist in fielding such a system on NIF. The coil surrounding the metallic hohlraum drives induced current in the hohlraum wall. Both the coil and hohlraum wall must survive ohmic heating and J × B forces for several microseconds. Pulsed power must couple to the coil in the NIF environment. The system must not cause late-time optics damage due to debris. There is very limited volume for the driver in a NIF Diagnostic Instrument Manipulator (DIM). We are modeling the coil and hohlraum MHD effects with the LLNL code, ALE3D. However, the simulations lack complete and accurate data for all the required thermo-physical material properties over the expected range of temperatures (below vaporization) and pressures. Therefore, substantial experimental development is planned in the coming year. We present coil and hohlraum simulations results, overall system design, and progress towards an operational prototype test-stand. LLNL is operated by LLNS, LLC, for the U.S. D.O.E., NNSA under Contract DE-AC52-07NA27344. This work was supported by LLNL LDRD 14-ER-028.

  9. Magnetic suspension system for an Annular Momentum Control Device (AMCD)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A technique to control a rim suspended in a magnetic field was developed. A complete system was developed, incorporating a support structure, magnetic actuators, a rim drive mechanism, an emergency fail-safe system, servo control system, and control electronics. Open loop and closed loop response of the system at zero speed and at 500 revolutions per minute (r/min) of the rim was obtained and analyzed. The rim was then dynamically balanced and a rim speed of 725 r/min was achieved. An analog simulation of the hardware was developed and tested with the actual control electronics connected to the analog computer. The system under development is stable at rim speeds below 700 r/min. Test results indicate that the rim under test is not rigid. The rim has a warp and a number of binding modes which prevented achievement of higher speeds. Further development efforts are required to achieve higher rim speeds.

  10. Magnetic-field-mediated coupling and control in hybrid atomic-nanomechanical systems

    NASA Astrophysics Data System (ADS)

    Tretiakov, A.; LeBlanc, L. J.

    2016-10-01

    Magnetically coupled hybrid quantum systems enable robust quantum state control through Landau-Zener transitions. Here, we show that an ultracold atomic sample magnetically coupled to a nanomechanical resonator can be used to cool the resonator's mechanical motion, to measure the mechanical temperature, and to enable entanglement of more than one of these mesoscopic objects. We calculate the expected coupling for both permanent-magnet and current-conducting nanostring resonators and describe how this hybridization is attainable using recently developed fabrication techniques, including SiN nanostrings and atom chips.

  11. A single-solenoid pulsed-magnet system for single-crystal scattering studies

    NASA Astrophysics Data System (ADS)

    Islam, Zahirul; Capatina, Dana; Ruff, Jacob P. C.; Das, Ritesh K.; Trakhtenberg, Emil; Nojiri, Hiroyuki; Narumi, Yasuo; Welp, Ulrich; Canfield, Paul C.

    2012-03-01

    We present a pulsed-magnet system that enables x-ray single-crystal diffraction in addition to powder and spectroscopic studies with the magnetic field applied on or close to the scattering plane. The apparatus consists of a single large-bore solenoid, cooled by liquid nitrogen. A second independent closed-cycle cryostat is used for cooling samples near liquid helium temperatures. Pulsed magnetic fields close to ˜30 T with a zero-to-peak-field rise time of ˜2.9 ms are generated by discharging a 40 kJ capacitor bank into the magnet coil. The unique characteristic of this instrument is the preservation of maximum scattering angle (˜23.6°) on the entrance and exit sides of the magnet bore by virtue of a novel double-funnel insert. This instrument will facilitate x-ray diffraction and spectroscopic studies that are impractical, if not impossible, to perform using split-pair and narrow-opening solenoid magnets. Furthermore, it offers a practical solution for preserving optical access in future higher-field pulsed magnets.

  12. Detection of ferromagnetic target based on mobile magnetic gradient tensor system

    NASA Astrophysics Data System (ADS)

    Gang, Y. I. N.; Yingtang, Zhang; Zhining, Li; Hongbo, Fan; Guoquan, Ren

    2016-03-01

    Attitude change of mobile magnetic gradient tensor system critically affects the precision of gradient measurements, thereby increasing ambiguity in target detection. This paper presents a rotational invariant-based method for locating and identifying ferromagnetic targets. Firstly, unit magnetic moment vector was derived based on the geometrical invariant, such that the intermediate eigenvector of the magnetic gradient tensor is perpendicular to the magnetic moment vector and the source-sensor displacement vector. Secondly, unit source-sensor displacement vector was derived based on the characteristic that the angle between magnetic moment vector and source-sensor displacement is a rotational invariant. By introducing a displacement vector between two measurement points, the magnetic moment vector and the source-sensor displacement vector were theoretically derived. To resolve the problem of measurement noises existing in the realistic detection applications, linear equations were formulated using invariants corresponding to several distinct measurement points and least square solution of magnetic moment vector and source-sensor displacement vector were obtained. Results of simulation and principal verification experiment showed the correctness of the analytical method, along with the practicability of the least square method.

  13. Direct measurement of the impulse in a magnetic thrust chamber system for laser fusion rocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeno, Akihiro; Yamamoto, Naoji; Nakashima, Hideki

    2011-08-15

    An experiment is conducted to measure an impulse for demonstrating a magnetic thrust chamber system for laser fusion rocket. The impulse is produced by the interaction between plasma and magnetic field. In the experiment, the system consists of plasma and neodymium permanent magnets. The plasma is created by a single-beam laser aiming at a polystyrene spherical target. The impulse is 1.5 to 2.2 {mu}Ns by means of a pendulum thrust stand, when the laser energy is 0.7 J. Without magnetic field, the measured impulse is found to be zero. These results indicate that the system for generating impulse is working.

  14. Design of permanent magnet synchronous motor speed control system based on SVPWM

    NASA Astrophysics Data System (ADS)

    Wu, Haibo

    2017-04-01

    The control system is designed to realize TMS320F28335 based on the permanent magnet synchronous motor speed control system, and put it to quoting all electric of injection molding machine. The system of the control method used SVPWM, through the sampling motor current and rotating transformer position information, realize speed, current double closed loop control. Through the TMS320F28335 hardware floating-point processing core, realize the application for permanent magnet synchronous motor in the floating point arithmetic, to replace the past fixed-point algorithm, and improve the efficiency of the code.

  15. Study on frequency characteristics of wireless power transmission system based on magnetic coupling resonance

    NASA Astrophysics Data System (ADS)

    Liang, L. H.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Cui, S.

    2017-11-01

    In order to study the frequency characteristics of the wireless energy transmission system based on the magnetic coupling resonance, a circuit model based on the magnetic coupling resonant wireless energy transmission system is established. The influence of the load on the frequency characteristics of the wireless power transmission system is analysed. The circuit coupling theory is used to derive the minimum load required to suppress frequency splitting. Simulation and experimental results verify that when the load size is lower than a certain value, the system will appear frequency splitting, increasing the load size can effectively suppress the frequency splitting phenomenon. The power regulation scheme of the wireless charging system based on magnetic coupling resonance is given. This study provides a theoretical basis for load selection and power regulation of wireless power transmission systems.

  16. A small scale remote cooling system for a superconducting cyclotron magnet

    NASA Astrophysics Data System (ADS)

    Haug, F.; Berkowitz Zamorra, D.; Michels, M.; Gomez Bosch, R.; Schmid, J.; Striebel, A.; Krueger, A.; Diez, M.; Jakob, M.; Keh, M.; Herberger, W.; Oesterle, D.

    2017-02-01

    Through a technology transfer program CERN is involved in the R&D of a compact superconducting cyclotron for future clinical radioisotope production, a project led by the Spanish research institute CIEMAT. For the remote cooling of the LTc superconducting magnet operating at 4.5 K, CERN has designed a small scale refrigeration system, the Cryogenic Supply System (CSS). This refrigeration system consists of a commercial two-stage 1.5 W @ 4.2 K GM cryocooler and a separate forced flow circuit. The forced flow circuit extracts the cooling power of the first and the second stage cold tips, respectively. Both units are installed in a common vacuum vessel and, at the final configuration, a low loss transfer line will provide the link to the magnet cryostat for the cooling of the thermal shield with helium at 40 K and the two superconducting coils with two-phase helium at 4.5 K. Currently the CSS is in the testing phase at CERN in stand-alone mode without the magnet and the transfer line. We have added a “validation unit” housed in the vacuum vessel of the CSS representing the thermo-hydraulic part of the cyclotron magnet. It is equipped with electrical heaters which allow the simulation of the thermal loads of the magnet cryostat. A cooling power of 1.4 W at 4.5 K and 25 W at the thermal shield temperature level has been measured. The data produced confirm the design principle of the CSS which could be validated.

  17. Development of superconducting high gradient magnetic separation system for highly viscous fluid for practical use

    NASA Astrophysics Data System (ADS)

    Hayashi, S.; Mishima, F.; Akiyama, Y.; Nishijima, S.

    2011-11-01

    In the industrial plants processing highly viscous fluid such as foods or industrial products, it is necessary to remove the metallic wear debris originating from pipe in manufacturing line which triggers quality loss. In this study, we developed a high gradient magnetic separation (HGMS) system which consists of superconducting magnet to remove the metallic wear debris. The magnetic separation experiment and the particle trajectory simulation were conducted with polyvinyl alcohol (PVA) as a model material (viscosity coefficient was 10 Pa s, which is 10,000 times higher than that in water). In order to develop a magnetic separation system for practical use, the particle trajectory simulation by using solenoidal superconducting magnet was conducted, and the possibility of the magnetic separation for removing ferromagnetic stainless steel (SUS) particles in highly viscous fluid of 10 Pa s was indicated. Based on the results, the number of filters to obtain required separation efficiency was examined to design the practical separation system.

  18. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, Donald M.; He, Jianliang; Johnson, Larry R.

    1994-01-01

    A propulsion and stabilization system comprising a series of FIG. 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the FIG. 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  19. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, D.M.; He, J.; Johnson, L.R.

    1994-01-04

    A propulsion and stabilization system are described comprising a series of coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance, and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension. 8 figures.

  20. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    DOEpatents

    Rote, D.M.; He, Jianliang; Johnson, L.R.

    1992-01-01

    This report discusses a propulsion and stabilization system comprising a series of figure 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the figure 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  1. Calibration of Helmholtz Coils for the characterization of MEMS magnetic sensor using fluxgate magnetometer with DAS1 magnetic range data acquisition system

    NASA Astrophysics Data System (ADS)

    Ahmad, Farooq; Dennis, John Ojur; Md Khir, Mohd Haris; Hamid, Nor Hisham

    2012-09-01

    This paper presents the calibration of Helmholtz coils for the characterization of MEMS Magnetic sensor using Fluxgate magnetometer with DAS1 Magnetic Range Data Acquisition System. The Helmholtz coils arrangement is often used to generate a uniform magnetic field in space. In the past, standard magnets were used to calibrate the Helmholtz coils. A method is presented here for calibrating these coils using a Fluxgate magnetometer and known current source, which is easier and results in greater accuracy.

  2. Magnetic Levitation Force Measurement System at Any Low Temperatures From 20 K To 300 K

    NASA Astrophysics Data System (ADS)

    Celik, Sukru; Guner, S. Baris; Coskun, Elvan

    2015-03-01

    Most of the magnetic levitation force measurements in previous studies were performed at liquid nitrogen temperatures. For the levitation force of MgB2 and iron based superconducting samples, magnetic levitation force measurement system is needed. In this study, magnetic levitation force measurement system was designed. In this system, beside vertical force versus vertical motion, lateral and vertical force versus lateral motion measurements, the vertical force versus temperature at the fixed distance between permanent magnet PM - superconducting sample SS and the vertical force versus time measurements were performed at any temperatures from 20 K to 300 K. Thanks to these measurements, the temperature dependence, time dependence, and the distance (magnetic field) and temperature dependences of SS can be investigated. On the other hand, the magnetic stiffness MS measurements can be performed in this system. Using the measurement of MS at different temperature in the range, MS dependence on temperature can be investigated. These measurements at any temperatures in the range help to the superconductivity properties to be characterized. This work was supported by TUBTAK-the Scientific and technological research council of Turkey under project of MFAG - 110T622. This system was applied to the Turkish patent institute with the Application Number of 2013/13638 on 22/11/2013.

  3. Magnetic resonance imaging in neuropsychiatric systemic lupus erythematosus: current state of the art and novel approaches.

    PubMed

    Postal, M; Lapa, A Tamires; Reis, F; Rittner, L; Appenzeller, S

    2017-04-01

    Systemic lupus erythematosus is a chronic, inflammatory, immune-mediated disease affecting 0.1% of the general population. Neuropsychiatric manifestations in systemic lupus erythematosus have been more frequently recognized and reported in recent years, occurring in up to 75% of patients during the disease course. Magnetic resonance imaging is known to be a useful tool for the detection of structural brain abnormalities in neuropsychiatric systemic lupus erythematosus patients because of the excellent soft-tissue contrast observed with MRI and the ability to acquire multiplanar images. In addition to conventional magnetic resonance imaging techniques to evaluate the presence of atrophy and white matter lesions, several different magnetic resonance imaging techniques have been used to identify microstructural or functional abnormalities. This review will highlight different magnetic resonance imaging techniques, including the advanced magnetic resonance imaging methods used to determine central nervous system involvement in systemic lupus erythematosus.

  4. Development of a new compact intraoperative magnetic resonance imaging system: concept and initial experience.

    PubMed

    Morita, Akio; Sameshima, Tetsuro; Sora, Shigeo; Kimura, Toshikazu; Nishimura, Kengo; Itoh, Hirotaka; Shibahashi, Keita; Shono, Naoyuki; Machida, Toru; Hara, Naoko; Mikami, Nozomi; Harihara, Yasushi; Kawate, Ryoichi; Ochiai, Chikayuki; Wang, Weimin; Oguro, Toshiki

    2014-06-01

    Magnetic resonance imaging (MRI) during surgery has been shown to improve surgical outcomes, but the current intraoperative MRI systems are too large to install in standard operating suites. Although 1 compact system is available, its imaging quality is not ideal. We developed a new compact intraoperative MRI system and evaluated its use for safety and efficacy. This new system has a magnetic gantry: a permanent magnet of 0.23 T and an interpolar distance of 32 cm. The gantry system weighs 2.8 tons and the 5-G line is within the circle of 2.6 m. We created a new field-of-view head coil and a canopy-style radiofrequency shield for this system. A clinical trial was initiated, and the system has been used in 44 patients. This system is significantly smaller than previous intraoperative MRI systems. High-quality T2 images could discriminate tumor from normal brain tissue and identify anatomic landmarks for accurate surgery. The average imaging time was 45.5 minutes, and no clinical complications or MRI system failures occurred. Floating organisms or particles were minimal (1/200 L maximum). This intraoperative, compact, low-magnetic-field MRI system can be installed in standard operating suites to provide relatively high-quality images without sacrificing safety. We believe that such a system facilitates the introduction of the intraoperative MRI.

  5. Effect of the magnetic dipole interaction on a spin-1 system

    NASA Astrophysics Data System (ADS)

    Hu, Fangqi; Jia, Wei; Zhao, Qing

    2018-05-01

    We consider a hybrid system composed of a spin-1 triplet coupled to a nuclear spin. We study the effect of the axisymmetric and the quadrupole term of the magnetic dipole interaction between the two electrons forming the triplet on the energy spectrum in a static magnetic field. The energy spectrum obtained by directly diagonalizing the Hamiltonian of the system shows that these two terms not only remove the special crossings that appear in the absence of the magnetic dipole interaction, but also produce new (avoided) crossings by lifting the relevant levels. Specially, the gaps between the avoided crossing levels increase with the strength of the quadrupole term. In order to accurately illustrate these effects, we present the results for the discriminant and von Neumann entropy of one electron interacting with the rest of the whole system. Finally, by numerically solving the time-dependent Schrödinger equations of the system, we discover that the polarization oscillation of electron and nuclear spin is in-phase and the total average longitudinal spin is not conserved at location of avoided crossing, but the two results are opposite beyond that.

  6. Development of non-destructive evaluation system using an HTS-SQUID gradiometer for magnetized materials

    NASA Astrophysics Data System (ADS)

    Kawano, J.; Tsukamoto, A.; Adachi, S.; Oshikubo, Y.; Hato, T.; Tanabe, K.; Okamura, T.

    We have developed a new eddy-current non-destructive evaluation (NDE) system using an HTS SQUID gradiometer with the aim of applying it to practical materials with magnetization. The new NDE system employs a LN2-cooled external Cu pickup coil and an HTS SQUID chip placed in a magnetic shield made of HTS material. The HTS SQUID chip consists of an HTS planar gradiometer manufactured by using a ramp-edge junction technology and a multi-turn HTS thin film input coil coupled with the flip-chip configuration. The first-order coaxial gradiometric Cu pickup coil with a diameter of 16 mm and the baseline of 5.6 mm was used in the present NDE experiments. By using this NDE system, we could observe defect-induced magnetic signals without an appreciable influence of magnetization up to 10 mT. We also examined the ability of detecting deep-lying defects and compared with the results obtained using our previous NDE system.

  7. Probing Gravitational Sensitivity in Biological Systems Using Magnetic Body Forces

    NASA Technical Reports Server (NTRS)

    Guevorkian, Karine; Wurzel, Sam; Mihalusova, Mariana; Valles, Jim

    2003-01-01

    At Brown University, we are developing the use of magnetic body forces as a means to simulate variable gravity body forces on biological systems. This tool promises new means to probe gravi-sensing and the gravi-response of biological systems. It also has the potential as a technique for screening future systems for space flight experiments.

  8. Zero Power Non-Contact Suspension System with Permanent Magnet Motion Feedback

    NASA Astrophysics Data System (ADS)

    Sun, Feng; Oka, Koichi

    This paper proposes a zero power control method for a permanent magnetic suspension system consisting mainly of a permanent magnet, an actuator, sensors, a suspended iron ball and a spring. A system using this zero power control method will consume quasi-zero power when the levitated object is suspended in an equilibrium state. To realize zero power control, a spring is installed in the magnetic suspension device to counterbalance the gravitational force on the actuator in the equilibrium position. In addition, an integral feedback loop in the controller affords zero actuator current when the device is in a balanced state. In this study, a model was set up for feasibility analysis, a prototype was manufactured for experimental confirmation, numerical simulations of zero power control with nonlinear attractive force were carried out based on the model, and experiments were completed to confirm the practicality of the prototype. The simulations and experiments were performed under varied conditions, such as without springs and without zero power control, with springs and without zero power control, with springs and with zero power control, using different springs and integral feedback gains. Some results are shown and analyzed in this paper. All results indicate that this zero power control method is feasible and effective for use in this suspension system with a permanent magnet motion feedback loop.

  9. Tradeoff between magnet volume and tuning capacitor in a free piston Stirling engine power generation system

    NASA Astrophysics Data System (ADS)

    Fu, Z. X.; Nasar, S. A.; Rosswurm, Mark

    This paper presents the criteria in selecting the size of the tuning capacitor, and the cost tradeoff between magnet volume and tuning capacitor in a free piston Stirling engine power generation system. The permissible range of capacitor size corresponding to different magnet volume, in order to prevent magnet demagnetization and stabilize the operation of the system, is determined. Within the permissible range suitable capacitor size may be selected to compensate the inductive load of the system to improve the overall power factor. If the capacitor size is not in the permissible range, there would exist a danger of losing magnet strength, or unstable operation of the engine that would destroy the engine due to unbounded amplitude of piston oscillations. The theory developed is then applied to a practical system, and the cost tradeoff between magnet volume and capacitor is studied.

  10. A Review of Dynamic Characteristics of Magnetically Levitated Vehicle Systems.

    DTIC Science & Technology

    1995-11-01

    The dynamic response of magnetically levitated ( maglev ) ground transportation systems has important consequences for safety and ride quality...smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the...other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which

  11. Magnetization of a quantum spin system induced by a linear polarized laser

    NASA Astrophysics Data System (ADS)

    Zvyagin, A. A.

    2015-08-01

    It is shown that a linear polarized laser can cause magnetization of a spin system with magnetic anisotropy, the distinguished axis of which is perpendicular to the polarization of the laser field. In the dynamical regime the magnetization oscillates around the nonzero value determined by the parameters of the system. Oscillations have the frequency of the laser field, modulated by the lower Rabi-like frequencies. In the steady-state regime, for a large time scale greater than the characteristic relaxation time, the Rabi-like oscillations are damped, and the magnetization oscillates with the frequency of the laser field around the value which is determined by the relaxation rate also. Analytic results are presented for the spin-1/2 chain. The most direct manifestation of such a behavior can be observed in spin-1/2 Ising chain materials if the linear polarization of the laser field is chosen to be perpendicular to the Ising axis.

  12. Comparison of Flux-Surface Aligned Curvilinear Coordinate Systems and Neoclassical Magnetic Field Predictions

    NASA Astrophysics Data System (ADS)

    Collart, T. G.; Stacey, W. M.

    2015-11-01

    Several methods are presented for extending the traditional analytic ``circular'' representation of flux-surface aligned curvilinear coordinate systems to more accurately describe equilibrium plasma geometry and magnetic fields in DIII-D. The formalism originally presented by Miller is extended to include different poloidal variations in the upper and lower hemispheres. A coordinate system based on separate Fourier expansions of major radius and vertical position greatly improves accuracy in edge plasma structure representation. Scale factors and basis vectors for a system formed by expanding the circular model minor radius can be represented using linear combinations of Fourier basis functions. A general method for coordinate system orthogonalization is presented and applied to all curvilinear models. A formalism for the magnetic field structure in these curvilinear models is presented, and the resulting magnetic field predictions are compared against calculations performed in a Cartesian system using an experimentally based EFIT prediction for the Grad-Shafranov equilibrium. Supported by: US DOE under DE-FG02-00ER54538.

  13. HPMSS(High Precision Magnetic Survey System) and InterRidge

    NASA Astrophysics Data System (ADS)

    Isezaki, N.; Sayanagi, K.

    2012-12-01

    From the beginning of 1990s to the beginning of 2000s, the Japanese group of IntreRidge conducted many cruises for three component magnetic survey using Shipboard Three Component Magnetometer (STCM) and Deep Towed Three Component Magnetometer (DTCM) in the world wide oceans. We have been developing HPMSS during this time with support of Dr.Tamaki(the late representative of InterRidge Japan) who understood the advantages of three component geomagnetic anomalies (TCGA). TCGA measured by STCM determines the direction of geomagnetic anomaly lineations precisely at every point where TCGA were observed, which playes the important role in magnetic anomaly lineation analysis. Even in the beginning of 2000s, almost all marine magnetic scientists believed that the total intensity anomly (TIA) is the better data than TCGA for analysis because the scalar magnetometers (e.g. proton precession magnetometer) have the better accuracy than any other magnetometers (e.g.flux gate magnetometer (FGM)). We employed the high accrate gyroscope (e.g.ring lase gyroscope (RLG)/optical fiber gyroscope (OFG)) to improve the accuracy of STCM/DTCM equipped with FGM. Moreover we employed accurate and precise FGM which was selected among the market. Finally we developed the new magnetic survey system with high precision usable as airborn, shipboard and dee-ptowed magnetometers which we call HPMSS(High Precision Magnetic Survey System). As an optional equipment, we use LAN to communicate between a data aquisiitin part and a data logging part, and GPS for a position fix. For the deep-towed survey, we use the acoustic position fix (super short base line method) and the acoustic communication to monitor the DTCM status. First we used HPMSS to obtain the magnetization structure of the volcanic island, Aogashima located 300km south of Tokyo using a hellcopter in 2006 and 2009. Next we used HPMSS installed in DTCM in 2010,2011 and 2012 using R/V Bosei-maru belonging to Tokai University. Also we used

  14. Mass determination with the magnetic levitation method—proposal for a new design of electromechanical system

    NASA Astrophysics Data System (ADS)

    Kajastie, H.; Riski, K.; Satrapinski, A.

    2009-06-01

    The method for realization of the kilogram using 'superconducting magnetic levitation' was re-evaluated at MIKES. The realization of the kilogram based on the traditional levitation method is limited by the imperfections of the superconducting materials and the indefinable dependence between supplied electrical energy and the gravitational potential energy of the superconducting mass. This indefiniteness is proportional to the applied magnetic field and is caused by increasing losses and trapped magnetic fluxes. A new design of an electromechanical system for the levitation method is proposed. In the proposed system the required magnetic field and the corresponding force are reduced, as the mass of the body (hanging from a mass comparator) is compensated by the reference weight on the mass comparator. The direction of the magnetic force can be upward (levitation force, when the body is over the coil) or downward (repulsive force, when the body is under the coil). The initial force to move the body from the coil is not needed and magnetic field sensitivity is increased, providing linearization of displacement versus applied current. This new construction allows a lower magnetic induction, reduces energy losses compared with previous designs of electromechanical system and reduces the corresponding systematic error.

  15. Research developing closed loop roll control for magnetic balance systems

    NASA Technical Reports Server (NTRS)

    Covert, E. E.; Haldeman, C. W.

    1981-01-01

    Computer inputs were interfaced to the magnetic balance outputs to provide computer position control and data acquisition. The use of parameter identification of a means of determining dynamic characteristics was investigated. The thyraton and motor generator power supplies for the pitch and yaw degrees of freedom were repaired. Topics covered include: choice of a method for handling dynamic system data; applications to the magnetic balance; the computer interface; and wind tunnel tests, results, and error analysis.

  16. Development of REBCO HTS Magnet of Magnetic Bearing for Large Capacity Flywheel Energy Storage System

    NASA Astrophysics Data System (ADS)

    Mukoyama, Shinichi; Matsuoka, Taro; Furukawa, Makoto; Nakao, Kengo; Nagashima, Ken; Ogata, Masafumi; Yamashita, Tomohisa; Hasegawa, Hitoshi; Yoshizawa, Kazuhiro; Arai, Yuuki; Miyazaki, Kazuki; Horiuchi, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    A flywheel energy storage system (FESS) is a promising electrical storage system that moderates fluctuation of electrical power from renewable energy sources. The FESS can charge and discharge the surplus electrical power repetitively with the rotating energy. Particularly, the FESS that utilizes a high temperature superconducting magnetic bearing (HTS bearing) is lower loss than conventional FESS that has mechanical bearing, and has property of longer life operation than secondary batteries. The HTS bearing consists of a HTS bulk and double-pancake coils used 2nd generation REBCO wires. In the development, the HTS double-pancake coils were fabricated and were provided for a levitation test to verify the possibility of the HTS bearing. We successfully confirmed the magnetic field was achieved to design value, and levitation force in the configuration of one YBCO bulk and five double pan-cake coils was obtained to a satisfactory force of 39.2 kN (4 tons).

  17. Dark field imaging system for size characterization of magnetic micromarkers

    NASA Astrophysics Data System (ADS)

    Malec, A.; Haiden, C.; Kokkinis, G.; Keplinger, F.; Giouroudi, I.

    2017-05-01

    In this paper we demonstrate a dark field video imaging system for the detection and size characterization of individual magnetic micromarkers suspended in liquid and the detection of pathogens utilizing magnetically labelled E.coli. The system follows dynamic processes and interactions of moving micro/nano objects close to or below the optical resolution limit, and is especially suitable for small sample volumes ( 10 μl). The developed detection method can be used to obtain clinical information about liquid contents when an additional biological protocol is provided, i.e., binding of microorganisms (e.g. E.coli) to specific magnetic markers. Some of the major advantages of our method are the increased sizing precision in the micro- and nano-range as well as the setup's simplicity making it a perfect candidate for miniaturized devices. Measurements can thus be carried out in a quick, inexpensive, and compact manner. A minor limitation is that the concentration range of micromarkers in a liquid sample needs to be adjusted in such a manner that the number of individual particles in the microscope's field of view is sufficient.

  18. A Field-Sweep/Field-Lock System for Superconducting Magnets-Application to High-Field EPR

    PubMed Central

    Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G.

    2007-01-01

    We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H-NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of ± 0.4 T and a resolution of up to 10-5 T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR. PMID:17027306

  19. A field-sweep/field-lock system for superconducting magnets--Application to high-field EPR.

    PubMed

    Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G

    2006-12-01

    We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of +/-0.4 T and a resolution of up to 10(-5) T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR.

  20. Public magnetic field exposure based on internal current density for electric low voltage systems.

    PubMed

    Keikko, Tommi; Seesvuori, Reino; Hyvönen, Martti; Valkealahti, Seppo

    2009-04-01

    A measurement concept utilizing a new magnetic field exposure metering system has been developed for indoor substations where voltage is transformed from a medium voltage of 10 or 20 kV to a low voltage of 400 V. The new metering system follows the guidelines published by the International Commission on Non-Ionizing Radiation Protection. It can be used to measure magnetic field values, total harmonic distortion of the magnetic field, magnetic field exposure ratios for public and workers, load current values, and total harmonic distortion of the load current. This paper demonstrates how exposure to non-sinusoidal magnetic fields and magnetic flux density exposure values can be compared directly with limit values for internal current densities in a human body. Further, we present how the magnetic field and magnetic field exposure behaves in the vicinity of magnetic field sources within the indoor substation and in the neighborhood. Measured magnetic fields around the substation components have been used to develop a measurement concept by which long-term measurements in the substations were performed. Long-term measurements revealed interesting and partly unexpected dependencies between the measured quantities, which have been further analyzed. The principle of this paper is to substitute a demanding exposure measurement with measurements of the basic quantities like the 50 Hz fundamental magnetic field component, which can be estimated based on the load currents for certain classes of substation lay-out.

  1. A permanent magnet system for Kibble balances

    NASA Astrophysics Data System (ADS)

    Li, Shisong; Bielsa, Franck; Stock, Michael; Kiss, Adrien; Fang, Hao

    2017-10-01

    The magnet is one of the fundamental elements in Kibble balances. The Kibble balance group at the Bureau International des Poids et Mesures (BIPM) proposed a permanent magnet with a radial field, which has been widely employed in other Kibble balance experiments. In this paper, we discuss a different method of operation for the BIPM-type magnet, i.e. only the lower half of the magnetic circuit is closed. The merit of such a magnet is its convenience for opening the air gap and adjusting the coil. A disadvantage is that it can yield a lower and sloped magnetic field profile with less shielding. In the approach described, high permeability yokes are used to flatten the magnetic profile, which has proven to be a novel and convenient approach for removing the nonuniformity of the magnetic profile due to magnet magnetization asymmetries. The performance of the half-closed BIPM magnet is evaluated using experimental measurements. The results show that the half-closed magnetic circuit retains most of the main features of the fully-closed magnet and is a good option for the early stages of Kibble balance operations. In addition, the profile change due to the coil current is predicted and experimentally verified with a bifilar coil. Related systematic effects are discussed for the Planck constant measurement.

  2. Magnetic Suspension and Balance Systems: A Selected, Annotated Bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle Marie H.; Kilgore, Robert A.; Boyden, Richmond P.

    1983-01-01

    This publication, containing 206 entries, supersedes an earlier bibliography, NASA TM-80225 (April 1980). Citations for 18 documents have been added in this updated version. Most of the additions report results of recent studies aimed at increasing the research capabilities of magnetic suspension and balance systems, e.g., increasing force and torque capability, increasing angle of attack capability, and increasing overall system reliability. Some of the additions address the problem of scaling from the relatively small size of existing systems to much larger sizes. The purpose of this bibliography is to provide an up-to-date list of publications that might be helpful to persons interested in magnetic suspension and balance systems for use in wind tunnels. The arrangement is generally chronological by date of publication. However, papers presented at conferences or meetings are placed under dates of presentation. The numbers assigned to many of the citations have been changed from those used in the previous bibliography. This has been done in order to allow outdated citations to be removed and some recently discovered older works to be included in their proper chronological order.

  3. Investigations on the magnetization behavior of magnetic composite particles

    NASA Astrophysics Data System (ADS)

    Eichholz, Christian; Knoll, Johannes; Lerche, Dietmar; Nirschl, Hermann

    2014-11-01

    In life sciences the application of surface functionalized magnetic composite particles is establishing in diagnostics and in downstream processing of modern biotechnology. These magnetic composite particles consist of non-magnetic material, e.g. polystyrene, which serves as a matrix for the second magnetic component, usually colloidal magnetite. Because of the multitude of magnetic cores these magnetic beads show a complex magnetization behavior which cannot be described with the available approaches for homogeneous magnetic material. Therefore, in this work a new model for the magnetization behavior of magnetic composite particles is developed. By introducing an effective magnetization and considering an overall demagnetization factor the deviation of the demagnetization of homogeneously magnetized particles is taken into account. Calculated and experimental results show a good agreement which allows for the verification of the adapted model of particle magnetization. Besides, a newly developed magnetic analyzing centrifuge is used for the characterization of magnetic composite particle systems. The experimental results, also used for the model verification, give both, information about the magnetic properties and the interaction behavior of particle systems. By adding further components to the particle solution, such as salts or proteins, industrial relevant systems can be reconstructed. The analyzing tool can be used to adapt industrial processes without time-consuming preliminary tests with large samples in the process equipments.

  4. Application of a high-energy-density permanent magnet material in underwater systems

    NASA Astrophysics Data System (ADS)

    Cho, C. P.; Egan, C.; Krol, W. P.

    1996-06-01

    This paper addresses the application of high-energy-density permanent magnet (PM) technology to (1) the brushless, axial-field PM motor and (2) the integrated electric motor/pump system for under-water applications. Finite-element analysis and lumped parameter magnetic circuit analysis were used to calculate motor parameters and performance characteristics and to conduct tradeoff studies. Compact, efficient, reliable, and quiet underwater systems are attainable with the development of high-energy-density PM material, power electronic devices, and power integrated-circuit technology.

  5. Microfluidic cell disruption system employing a magnetically actuated diaphragm.

    PubMed

    Huh, Yun Suk; Choi, Jong Hyun; Huh, Kyoung Ae Kim; Kim, Kyoung Ae; Park, Tae Jung; Hong, Yeon Ki; Kim, Do Hyun; Hong, Won Hi; Lee, Sang Yup

    2007-12-01

    A microfluidic cell lysis chip equipped with a micromixer and SPE unit was developed and used for quantitative analysis of intracellular proteins. This miniaturized sample preparation system can be employed for any purpose where cell disruption is needed to obtain intracellular constituents for the subsequent analysis. This system comprises a magnetically actuated micromixer to disrupt cells, a hydrophobic valve to manipulate the cell lysate, and a packed porous polymerized monolith chamber for SPE and filtering debris from the cell lysate. Using recombinant Escherichia coli expressing intracellular enhanced green fluorescent protein (EGFP) and lipase as model bacteria, we optimized the cell disruption condition with respect to the lysis buffer composition, mixing time, and the frequency of the diaphragm in the micromixer, which was magnetically actuated by an external magnetic stirrer in the micromixer chamber. The lysed sample prepared under the optimal condition was purified by the packed SPE in the microfluidic chip. At a frequency of 1.96 Hz, the final cell lysis efficiency and relative fluorescence intensity of EGFP after the cell disruption process were greater than 90 and 94%, respectively. Thus, this microfluidic cell disruption chip can be used for the efficient lysis of cells for further analysis of intracellular contents in many applications.

  6. A magnetic-resonance-imaging-compatible remote catheter navigation system.

    PubMed

    Tavallaei, Mohammad Ali; Thakur, Yogesh; Haider, Syed; Drangova, Maria

    2013-04-01

    A remote catheter navigation system compatible with magnetic resonance imaging (MRI) has been developed to facilitate MRI-guided catheterization procedures. The interventionalist's conventional motions (axial motion and rotation) on an input catheter - acting as the master - are measured by a pair of optical encoders, and a custom embedded system relays the motions to a pair of ultrasonic motors. The ultrasonic motors drive the patient catheter (slave) within the MRI scanner, replicating the motion of the input catheter. The performance of the remote catheter navigation system was evaluated in terms of accuracy and delay of motion replication outside and within the bore of the magnet. While inside the scanner bore, motion accuracy was characterized during the acquisition of frequently used imaging sequences, including real-time gradient echo. The effect of the catheter navigation system on image signal-to-noise ratio (SNR) was also evaluated. The results show that the master-slave system has a maximum time delay of 41 ± 21 ms in replicating motion; an absolute value error of 2 ± 2° was measured for radial catheter motion replication over 360° and 1.0 ± 0.8 mm in axial catheter motion replication over 100 mm of travel. The worst-case SNR drop was observed to be 2.5%.

  7. Cross Feedback Control of a Magnetic Bearing System: Controller Design Considering Gyroscopic Effects

    NASA Technical Reports Server (NTRS)

    Ahrens, Markus; Kucera, Ladislav

    1996-01-01

    For flywheel rotors or other rotors with significant ratios of moments of inertia, the influence of gyroscopic effects has to be considered. While conservative or damped systems remain stable even under gyroscopic effects, magnetically suspended rotors can be destabilized with increasing rotational speed. The influence of gyroscopic effects on the stability and behavior of a magnetic bearing system is analyzed. The analysis is carried out with a rigid body model for the rotor and a nonlinear model for the magnetic bearing and its amplifier. Cross feedback control can compensate gyroscopic effects. This compensation leads to better system performance and can avoid instability. Furthermore, the implementation of this compensation is simple. The main structure of a decentralized controller can still be used. It has only to be expanded by the cross feedback path.

  8. Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom.

    PubMed

    Keenan, Kathryn E; Ainslie, Maureen; Barker, Alex J; Boss, Michael A; Cecil, Kim M; Charles, Cecil; Chenevert, Thomas L; Clarke, Larry; Evelhoch, Jeffrey L; Finn, Paul; Gembris, Daniel; Gunter, Jeffrey L; Hill, Derek L G; Jack, Clifford R; Jackson, Edward F; Liu, Guoying; Russek, Stephen E; Sharma, Samir D; Steckner, Michael; Stupic, Karl F; Trzasko, Joshua D; Yuan, Chun; Zheng, Jie

    2018-01-01

    The MRI community is using quantitative mapping techniques to complement qualitative imaging. For quantitative imaging to reach its full potential, it is necessary to analyze measurements across systems and longitudinally. Clinical use of quantitative imaging can be facilitated through adoption and use of a standard system phantom, a calibration/standard reference object, to assess the performance of an MRI machine. The International Society of Magnetic Resonance in Medicine AdHoc Committee on Standards for Quantitative Magnetic Resonance was established in February 2007 to facilitate the expansion of MRI as a mainstream modality for multi-institutional measurements, including, among other things, multicenter trials. The goal of the Standards for Quantitative Magnetic Resonance committee was to provide a framework to ensure that quantitative measures derived from MR data are comparable over time, between subjects, between sites, and between vendors. This paper, written by members of the Standards for Quantitative Magnetic Resonance committee, reviews standardization attempts and then details the need, requirements, and implementation plan for a standard system phantom for quantitative MRI. In addition, application-specific phantoms and implementation of quantitative MRI are reviewed. Magn Reson Med 79:48-61, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Magnetic levitation system for moving objects

    DOEpatents

    Post, R.F.

    1998-03-03

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds. 7 figs.

  10. Magnetic levitation system for moving objects

    DOEpatents

    Post, Richard F.

    1998-01-01

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds.

  11. Progressive magnetic softening of ferromagnetic layers in multilayer ferromagnet-nonmagnet systems and the role of granularity

    NASA Astrophysics Data System (ADS)

    Sahu, Siddharth S.; Siva, Vantari; Pradhan, Paresh C.; Nayak, Maheswar; Senapati, Kartik; Sahoo, Pratap K.

    2017-06-01

    We report a study of the structural and magnetic behavior of the topmost magnetic layer in a ferromagnet-nonmagnet (Co-Au) multilayer system. Glancing angle X-ray diffraction measurements performed on a series of multilayers showed a gradual decrease in the grain size of the topmost magnetic layer with the increasing number of bilayers. Concurrently, the magnetic hardness and magneto-crystalline anisotropy of the top Co layer were found to decrease, as observed by magneto-optical Kerr effect measurements. This magnetic softening has been discussed in the light of Herzer's random anisotropy model. Micromagnetic simulations of the multilayer system also corroborated these observations.

  12. Magnetics and Power System Upgrades for the Pegasus-U Experiment

    NASA Astrophysics Data System (ADS)

    Preston, R. C.; Bongard, M. W.; Fonck, R. J.; Lewicki, B. T.

    2014-10-01

    To support the missions of developing local helicity injection startup and exploiting advanced tokamak physics studies at near unity aspect ratio, the proposed Pegasus-U will include expanded magnetic systems and associated power supplies. A new centerstack increases the toroidal field seven times to 1 T and the volt-seconds by a factor of six while maintaining operation at an aspect ratio of 1.2. The poloidal field magnet system is expanded to support improved shape control and robust double or single null divertor operation at the full plasma current of 0.3 MA. An integrated digital control system based on Field Programmable Gate Arrays (FPGAs) provides active feedback control of all magnet currents. Implementation of the FPGAs is achieved with modular noise reducing electronics. The digital feedback controllers replace the existing analog systems and switch multiplexing technology. This will reduce noise sensitivity and allow the operational Ohmic power supply voltage to increase from 2100 V to its maximum capacity of 2400 V. The feedback controller replacement also allows frequency control for ``freewheeling''--stopping the switching for a short interval and allowing the current to coast. The FPGAs assist in optimizing pulse length by having programmable switching events to minimize energy losses. They also allow for more efficient switching topologies that provide improved stored energy utilization, and support increasing the pulse length from 25 ms to 50-100 ms. Work supported by US DOE Grant DE-FG02-96ER54375.

  13. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system

    NASA Astrophysics Data System (ADS)

    Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia

    2014-04-01

    The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems.

  14. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system

    PubMed Central

    Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia

    2014-01-01

    The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems. PMID:24770490

  15. Magnet-Based System for Docking of Miniature Spacecraft

    NASA Technical Reports Server (NTRS)

    Howard, Nathan; Nguyen, Hai D.

    2007-01-01

    A prototype system for docking a miniature spacecraft with a larger spacecraft has been developed by engineers at the Johnson Space Center. Engineers working on Mini AERCam, a free-flying robotic camera, needed to find a way to successfully dock and undock their miniature spacecraft to refuel the propulsion and recharge the batteries. The subsystems developed (see figure) include (1) a docking port, designed for the larger spacecraft, which contains an electromagnet, a ball lock mechanism, and a service probe; and (2) a docking cluster, designed for the smaller spacecraft, which contains either a permanent magnet or an electromagnet. A typical docking operation begins with the docking spacecraft maneuvering into position near the docking port on the parent vehicle. The electromagnet( s) are then turned on, and, if necessary, the docking spacecraft is then maneuvered within the capture envelope of the docking port. The capture envelope for this system is approximated by a 5-in. (12.7-cm) cube centered on the front of the docking-port electromagnet and within an angular misalignment of <30 . Thereafter, the magnetic forces draw the smaller spacecraft toward the larger one and this brings the spacecraft into approximate alignment prior to contact. Mechanical alignment guides provide the final rotational alignment into one of 12 positions. Once the docking vehicle has been captured magnetically in the docking port, the ball-lock mechanism is activated, which locks the two spacecraft together. At this point the electromagnet( s) are turned off, and the service probe extended if recharge and refueling are to be performed. Additionally, during undocking, the polarity of one electromagnet can be reversed to provide a gentle push to separate the two spacecraft. This system is currently being incorporated into the design of Mini AERCam vehicle.

  16. Magnetically-induced solid-phase microextraction fiber actuation system for quantitative headspace and liquid sampling

    DOEpatents

    Harvey, Chris; Carter, Jerry; Chambers, David M.

    2017-05-23

    A magnetically-induced SPME fiber actuation system includes a SPME fiber holder and a SPME fiber holder actuator, for holding and magnetically actuating a SPME fiber assembly. The SPME fiber holder has a plunger with a magnetic material to which the SPME fiber assembly is connected, and the magnetic SPME fiber holder actuator has an elongated barrel with a loading chamber for receiving the SPME fiber assembly-connected SPME fiber holder, and an external magnet which induces axial motion of the magnetic material of the plunger to extend/retract the SPME fiber from/into the protective needle of the SPME fiber assembly.

  17. Magnetism of metallacrown single-molecule magnets: From a simplest model to realistic systems

    NASA Astrophysics Data System (ADS)

    Pavlyukh, Y.; Rentschler, E.; Elmers, H. J.; Hübner, W.; Lefkidis, G.

    2018-06-01

    Electronic and magnetic properties of molecular nanomagnets are determined by competing energy scales due to the crystal field splitting, the exchange interactions between transition metal atoms, and relativistic effects. We present a comprehensive theory embracing all these phenomena based on first-principles calculations. In order to achieve this goal, we start from the FeNi4 cluster as a paradigm. The system can be accurately described on the ab initio level yielding all expected electronic states in a range of multiplicities from 1 to 9, with a ferromagnetic ground state. By adding the spin-orbit coupling between them we obtain the zero-field splitting. This allows to introduce a spin Hamiltonian of a giant spin model, which operates on a smaller energy scale. We compare the computed parameters of this Hamiltonian with the experimental and theoretical magnetic anisotropy energies of the monolayer Ni/Cu(001). In line with them, we find that the anisotropy almost entirely originates from the second-order spin-orbit coupling, the spin-spin coupling constitutes only a small fraction. Finally, we include the ligand atoms in our consideration. This component has a decisive role for the stabilization of molecules in experimental synthesis and characterization, and also substantially complicates the theory by bringing the superexchange mechanisms into play. Since they are higher-order effects involving two hopping matrix elements, not every theory can describe them. Our generalization of the corresponding perturbation theory substantiates the use of complete active space methods for the description of superexchange. At the same time, our numerical results for the {CuFe4} system demonstrate that the Goodenough-Kanamori rules, which are often used to determine the sign of these exchange interactions, cannot deliver quantitative predictions due to the interplay of other mechanisms, e. g., involving multicenter Coulomb integrals. We conclude by comparing ab initio values

  18. Target and orbit feedback simulations of a muSR beam line at BNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacKay, W.; Blaskiewicz, M.; Fischer, W.

    Well-polarized positive surface muons are a tool to measure the magnetic properties of materials since the precession rate of the spin can be determined from the observation of the positron directions when the muons decay. For a dc beam an ideal µSR flux for surface µ + should be about 40 kHz/mm 2. In this report we show how this flux could be achieved in a beam line using the AGS complex at BNL for a source of protons. We also determined that an orbit feedback system with a pair of thin silicon position monitors and kickers would miss themore » desired flux by at least an order of magnitude, even with perfect time resolution and no multiple scattering.« less

  19. ABORT GAP CLEANING IN RHIC.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DREES,A.; AHRENS,L.; III FLILLER,R.

    2002-06-03

    During the RHIC Au-run in 2001 the 200 MHz storage cavity system was used for the first time. The rebucketing procedure caused significant beam debunching in addition to amplifying debunching due to other mechanisms. At the end of a four hour store, debunched beam could account for approximately 30%-40% of the total beam intensity. Some of it will be in the abort gap. In order to minimize the risk of magnet quenching due to uncontrolled beam losses at the time of a beam dump, a combination of a fast transverse kicker and copper collimators were used to clean the abortmore » gap. This report gives an overview of the gap cleaning procedure and the achieved performance.« less

  20. Absence of magnetic order in low-dimensional (RKKY) systems

    NASA Astrophysics Data System (ADS)

    Pedrocchi, Fabio; Leggett, Anthony; Loss, Daniel

    2012-02-01

    We extend the Mermin-Wagner theorem to a system of lattice spins which are spin-coupled to itinerant and interacting charge carriers. We use the Bogoliubov inequality to rigorously prove that neither (anti-) ferromagnetic nor helical long-range order is possible in one and two dimensions at any finite temperature. Our proof applies to a wide class of models including any form of electron-electron and single-electron interactions that are independent of spin. In the presence of Rashba or Dresselhaus spin-orbit interactions (SOI) magnetic order is not excluded and intimately connected to equilibrium spin currents. However, in the special case when Rashba and Dresselhaus SOIs are tuned to be equal, magnetic order is excluded again. This opens up a new possibility to control magnetism electrically. [4pt] References: D. Loss, F. L. Pedrocchi, and A. J. Leggett, Phys. Rev. Lett. 107, 107201 (2011).

  1. Magnetic resonance imaging of living systems by remote detection

    DOEpatents

    Wemmer, David; Pines, Alexander; Bouchard, Louis; Xu, Shoujun; Harel, Elad; Budker, Dmitry; Lowery, Thomas; Ledbetter, Micah

    2013-10-29

    A novel approach to magnetic resonance imaging is disclosed. Blood flowing through a living system is prepolarized, and then encoded. The polarization can be achieved using permanent or superconducting magnets. The polarization may be carried out upstream of the region to be encoded or at the place of encoding. In the case of an MRI of a brain, polarization of flowing blood can be effected by placing a magnet over a section of the body such as the heart upstream of the head. Alternatively, polarization and encoding can be effected at the same location. Detection occurs at a remote location, using a separate detection device such as an optical atomic magnetometer, or an inductive Faraday coil. The detector may be placed on the surface of the skin next to a blood vessel such as a jugular vein carrying blood away from the encoded region.

  2. Magnetic hyperthermia with hard-magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kashevsky, Bronislav E.; Kashevsky, Sergey B.; Korenkov, Victor S.; Istomin, Yuri P.; Terpinskaya, Tatyana I.; Ulashchik, Vladimir S.

    2015-04-01

    Recent clinical trials of magnetic hyperthermia have proved, and even hardened, the Ankinson-Brezovich restriction as upon magnetic field conditions applicable to any site of human body. Subject to this restriction, which is harshly violated in numerous laboratory and small animal studies, magnetic hyperthermia can relay on rather moderate heat source, so that optimization of the whole hyperthermia system remains, after all, the basic problem predetermining its clinical perspectives. We present short account of our complex (theoretical, laboratory and small animal) studies to demonstrate that such perspectives should be related with the hyperthermia system based on hard-magnetic (Stoner-Wohlfarth type) nanoparticles and strong low-frequency fields rather than with superparamagnetic (Brownian or Neél) nanoparticles and weak high-frequency fields. This conclusion is backed by an analytical evaluation of the maximum absorption rates possible under the field restriction in the ideal hard-magnetic (Stoner-Wohlarth) and the ideal superparamagnetic (single relaxation time) systems, by theoretical and experimental studies of the dynamic magnetic hysteresis in suspensions of movable hard-magnetic particles, by producing nanoparticles with adjusted coercivity and suspensions of such particles capable of effective energy absorption and intratumoral penetration, and finally, by successful treatment of a mice model tumor under field conditions acceptable for whole human body.

  3. Droplet-based gene expression analysis using a device with magnetic force-based-droplet-handling system.

    PubMed

    Okochi, Mina; Tsuchiya, Hiroyoshi; Kumazawa, Fumitaka; Shikida, Mitsuhiro; Honda, Hiroyuki

    2010-02-01

    A droplet-based cell lysis and reverse transcription-polymerase chain reaction (PCR) were performed on-chip employing magnetic force-based-droplet-handling system. The actuation with a magnet offers a simple system for droplet manipulation; it does not need mechanical fluidic systems such as pumps and valves for handling solutions. It can be used as a powerful tool for various biochemical applications by moving and coalescing sample droplets using magnetic beads immersed in mineral oil. The droplet containing magnetic beads and the cells were manipulated with the magnet located underneath the channel, and coalesced with a droplet of lysis buffer. Using K562 cells as the leukemia model, the cell lysis, cDNA synthesis, and amplification of WT1 gene that is known as the prognostic factor for acute leukemia were successfully performed from a single cell. Copyright (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. [Design of Adjustable Magnetic Field Generating Device in the Capsule Endoscope Tracking System].

    PubMed

    Ruan, Chao; Guo, Xudong; Yang, Fei

    2015-08-01

    The capsule endoscope swallowed from the mouth into the digestive system can capture the images of important gastrointestinal tract regions. It can compensate for the blind spot of traditional endoscopic techniques. It enables inspection of the digestive system without discomfort or need for sedation. However, currently available clinical capsule endoscope has some limitations such as the diagnostic information being not able to correspond to the orientation in the body, since the doctor is unable to control the capsule motion and orientation. To solve the problem, it is significant to track the position and orientation of the capsule in the human body. This study presents an AC excitation wireless tracking method in the capsule endoscope, and the sensor embedded in the capsule can measure the magnetic field generated by excitation coil. And then the position and orientation of the capsule can be obtained by solving a magnetic field inverse problem. Since the magnetic field decays with distance dramatically, the dynamic range of the received signal spans three orders of magnitude, we designed an adjustable alternating magnetic field generating device. The device can adjust the strength of the alternating magnetic field automatically through the feedback signal from the sensor. The prototype experiment showed that the adjustable magnetic field generating device was feasible. It could realize the automatic adjustment of the magnetic field strength successfully, and improve the tracking accuracy.

  5. Observation of anomalous Hall effect in a non-magnetic two-dimensional electron system

    PubMed Central

    Maryenko, D.; Mishchenko, A. S.; Bahramy, M. S.; Ernst, A.; Falson, J.; Kozuka, Y.; Tsukazaki, A.; Nagaosa, N.; Kawasaki, M.

    2017-01-01

    Anomalous Hall effect, a manifestation of Hall effect occurring in systems without time-reversal symmetry, has been mostly observed in ferromagnetically ordered materials. However, its realization in high-mobility two-dimensional electron system remains elusive, as the incorporation of magnetic moments deteriorates the device performance compared to non-doped structure. Here we observe systematic emergence of anomalous Hall effect in various MgZnO/ZnO heterostructures that exhibit quantum Hall effect. At low temperatures, our nominally non-magnetic heterostructures display an anomalous Hall effect response similar to that of a clean ferromagnetic metal, while keeping a large anomalous Hall effect angle θAHE≈20°. Such a behaviour is consistent with Giovannini–Kondo model in which the anomalous Hall effect arises from the skew scattering of electrons by localized paramagnetic centres. Our study unveils a new aspect of many-body interactions in two-dimensional electron systems and shows how the anomalous Hall effect can emerge in a non-magnetic system. PMID:28300133

  6. Automated paleomagnetic and rock magnetic data acquisition with an in-line horizontal "2G" system

    NASA Astrophysics Data System (ADS)

    Mullender, Tom A. T.; Frederichs, Thomas; Hilgenfeldt, Christian; de Groot, Lennart V.; Fabian, Karl; Dekkers, Mark J.

    2016-09-01

    Today's paleomagnetic and magnetic proxy studies involve processing of large sample collections while simultaneously demanding high quality data and high reproducibility. Here we describe a fully automated interface based on a commercial horizontal pass-through "2G" DC-SQUID magnetometer. This system is operational at the universities of Bremen (Germany) and Utrecht (Netherlands) since 1998 and 2006, respectively, while a system is currently being built at NGU Trondheim (Norway). The magnetometers are equipped with "in-line" alternating field (AF) demagnetization, a direct-current bias field coil along the coaxial AF demagnetization coil for the acquisition of anhysteretic remanent magnetization (ARM) and a long pulse-field coil for the acquisition of isothermal remanent magnetization (IRM). Samples are contained in dedicated low magnetization perspex holders that are manipulated by a pneumatic pick-and-place-unit. Upon desire samples can be measured in several positions considerably enhancing data quality in particular for magnetically weak samples. In the Bremen system, the peak of the IRM pulse fields is actively measured which reduces the discrepancy between the set field and the field that is actually applied. Techniques for quantifying and removing gyroremanent overprints and for measuring the viscosity of IRM further extend the range of applications of the system. Typically c. 300 paleomagnetic samples can be AF demagnetized per week (15 levels) in the three-position protocol. The versatility of the system is illustrated by several examples of paleomagnetic and rock magnetic data processing.

  7. Tunable system for production of mirror and cusp configurations using chassis of permanent magnets

    NASA Astrophysics Data System (ADS)

    Hyde, Alexander; Bushmelov, Maxim; Batishchev, Oleg

    2018-03-01

    Compact arrays of permanent magnets have shown promise as replacements for electromagnets in applications requiring magnetic cusps and mirrors. An adjustable system capable of suspending and translating a pair of light, nonmagnetic chassis carrying such sources of magnetic field has been designed and constructed. Using this device to align two cylindrical chassis, strong solenoid-like domains of field, as well as classic biconic cusp and magnetic mirror topologies, are generated. Employing a pair of ring-shaped chassis instead, the superposition of their naturally-emitted cusps is demonstrated to produce sextupolar and octupolar magnetic fields.

  8. Plasma-induced magnetic responses during nonlinear dynamics of magnetic islands due to resonant magnetic perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp

    Resonant magnetic perturbations (RMPs) produce magnetic islands in toroidal plasmas. Self-healing (annihilation) of RMP-induced magnetic islands has been observed in helical systems, where a possible mechanism of the self-healing is shielding of RMP penetration by plasma flows, which is well known in tokamaks. Thus, fundamental physics of RMP shielding is commonly investigated in both tokamaks and helical systems. In order to check this mechanism, detailed informations of magnetic island phases are necessary. In experiments, measurement of radial magnetic responses is relatively easy. In this study, based on a theoretical model of rotating magnetic islands, behavior of radial magnetic fields duringmore » the self-healing is investigated. It is confirmed that flips of radial magnetic fields are typically observed during the self-healing. Such behavior of radial magnetic responses is also observed in LHD experiments.« less

  9. Modification of electric and magnetic dipole emission in anisotropic plasmonic systems.

    PubMed

    Noginova, N; Hussain, R; Noginov, M A; Vella, J; Urbas, A

    2013-10-07

    In order to investigate the effects of plasmonic environments on spontaneous emission of magnetic and electric dipoles, we have studied luminescence of Eu³⁺ ions in close vicinity to gold nanostrip arrays. Significant changes in the emission kinetics, emission polarization, and radiation patterns have been observed in the wavelength range corresponding to the plasmonic resonance. The effect of the plasmonic resonance on the magnetic dipole transition ⁵D₀-->⁷F₁ is found to be very different from its effect on the electric dipole transitions. This makes Eu³⁺₋ containing complexes promising for mapping local distributions of magnetic and electric fields in metamaterials and plasmonic systems.

  10. Description of the Large Gap Magnetic Suspension System (LGMSS) ground-based experiment

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1991-01-01

    A description of the Large Gap Magnetic Suspension System (LGMSS) ground-based experiment is presented. The LGMSS provides five degrees of freedom control of a cylindrical suspended element which is levitated above a floor-mounted array of air core electromagnets. The uncontrolled degree of freedom is rotation about the long axis of the cylinder (roll). Levitation and control forces are produced on a permanent magnet core which is embedded in the cylinder. The cylinder also contains light emitting diodes (LEDs), assorted electrons, and a power supply. The LEDs provide active targets for an optical position measurement system which is being developed in-house at the Langley Research Center. The optical position measurement system will provide six degrees of freedom position information for the LGMSS control system.

  11. Neural network controller development for a magnetically suspended flywheel energy storage system

    NASA Technical Reports Server (NTRS)

    Fittro, Roger L.; Pang, Da-Chen; Anand, Davinder K.

    1994-01-01

    A neural network controller has been developed to accommodate disturbances and nonlinearities and improve the robustness of a magnetically suspended flywheel energy storage system. The controller is trained using the back propagation-through-time technique incorporated with a time-averaging scheme. The resulting nonlinear neural network controller improves system performance by adapting flywheel stiffness and damping based on operating speed. In addition, a hybrid multi-layered neural network controller is developed off-line which is capable of improving system performance even further. All of the research presented in this paper was implemented via a magnetic bearing computer simulation. However, careful attention was paid to developing a practical methodology which will make future application to the actual bearing system fairly straightforward.

  12. Plumbing the depths of Yellowstone's hydrothermal system from helicopter magnetic and electromagnetic data

    NASA Astrophysics Data System (ADS)

    Finn, C.; Bedrosian, P.; Holbrook, W. S.; Auken, E.; Lowenstern, J. B.; Hurwitz, S.; Sims, K. W. W.; Carr, B.; Dickey, K.

    2017-12-01

    Although Yellowstone's iconic hydrothermal systems and lava flows are well mapped at the surface, their groundwater flow systems and thickness are almost completely unknown. In order to track the geophysical signatures of geysers, hot springs, mud pots, steam vents, hydrothermal explosion craters and lava flows at depths to hundreds of meters, we collected helicopter electromagnetic and magnetic (HEM) data. The data cover significant portions of the caldera including a majority of the known thermal areas. HEM data constrain electrical resistivity which is sensitive to groundwater salinity and temperature, phase distribution (liquid-vapor), and clay formed during chemical alteration of rocks. The magnetic data are sensitive to variations in the magnetization of lava flows, faults and hydrothermal alteration. The combination of electromagnetic and magnetic data is ideal for mapping zones of cold fresh water, hot saline water, steam, clay, and altered and unaltered rock. Preliminary inversion of the HEM data indicates very low resistivity directly beneath the northern part of Yellowstone Lake, intersecting with the lake bottom in close correspondence with mapped vents, fractures and hydrothermal explosion craters and are also associated with magnetic lows. Coincident resistivity and magnetic lows unassociated with mapped alteration occur, for example, along the southeast edge of the Mallard Lake dome and along the northeastern edge of Sour Creek Dome, suggesting the presence of buried alteration. Low resistivities unassociated with magnetic lows may relate to hot and/or saline groundwater or thin (<50 m) layers of early lake sediments to which the magnetic data are insensitive. Resistivity and magnetic lows follow interpreted caldera boundaries in places, yet deviate in others. In the Norris-Mammoth Corridor, NNE-SSW trending linear resistivity and magnetic lows align with mapped faults. This pattern of coincident resistivity and magnetic lows may reflect fractures

  13. Cryogen-free superconducting magnet system for multifrequency electron paramagnetic resonance up to 12.1 T

    NASA Astrophysics Data System (ADS)

    Smirnov, Alex I.; Smirnova, Tatyana I.; MacArthur, Ryan L.; Good, Jeremy A.; Hall, Renny

    2006-03-01

    Multifrequency and high field/high frequency (HF) electron paramagnetic resonance (EPR) is a powerful spectroscopy for studying paramagnetic spin systems ranging from organic-free radicals to catalytic paramagnetic metal ion centers in metalloproteins. Typically, HF EPR experiments are carried out at resonant frequencies ν =95-300GHz and this requires magnetic fields of 3.4-10.7T for electronic spins with g ≈2.0. Such fields could be easily achieved with superconducting magnets, but, unlike NMR, these magnets cannot operate in a persistent mode in order to satisfy a wide range of resonant fields required by the experiment. Operating and maintaining conventional passively cooled superconducting magnets in EPR laboratories require frequent transfer of cryogens by trained personnel. Here we describe and characterize a versatile cryogen-free magnet system for HF EPR at magnetic fields up to 12.1T that is suitable for ramping the magnetic field over the entire range, precision scans around the target field, and/or holding the field at the target value. We also demonstrate that in a nonpersistent mode of operation the magnetic field can be stabilized to better than 0.3ppm/h over 15h period by employing a transducer-controlled power supply. Such stability is sufficient for many HF EPR experiments. An important feature of the system is that it is virtually maintenance-free because it is based on a cryogen-free technology and therefore does not require any liquid cryogens (liquid helium or nitrogen) for operation. We believe that actively cooled superconducting magnets are ideally suited for a wide range of HF EPR experiments including studies of spin-labeled nucleic acids and proteins, single-molecule magnets, and metalloproteins.

  14. Evaluation and Improvement of Eddy Current Position Sensors in Magnetically Suspended Flywheel Systems

    NASA Technical Reports Server (NTRS)

    Dever, Timothy P.; Palazzolo, Alan B.; Thomas, Erwin M., III; Jansen, Ralph H.; McLallin, Kerry (Technical Monitor); Soeder, James (Technical Monitor)

    2001-01-01

    Eddy current position sensor performance is evaluated for use in a high-speed flywheel development system. The flywheel utilizes a five axis active magnetic bearing system. The eddy current sensors are used for position feedback for the bearing controller. Measured characteristics include sensitivity to multiple target materials and susceptibility to noise from the magnetic bearings and from sensor-to-sensor crosstalk. Improvements in axial sensor configuration and techniques for noise reduction are described.

  15. Systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators

    DOEpatents

    Grisham, Larry R

    2013-12-17

    The present invention provides systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators. Advantageously, the systems and methods of the present invention improve the practically obtainable performance of these electrostatic accelerators by addressing, among other things, voltage holding problems and conditioning issues. The problems and issues are addressed by flowing electric currents along these accelerator electrodes to produce magnetic fields that envelope the accelerator electrodes and their support structures, so as to prevent very low energy electrons from leaving the surfaces of the accelerator electrodes and subsequently picking up energy from the surrounding electric field. In various applications, this magnetic insulation must only produce modest gains in voltage holding capability to represent a significant achievement.

  16. Deep brain transcranial magnetic stimulation using variable "Halo coil" system

    NASA Astrophysics Data System (ADS)

    Meng, Y.; Hadimani, R. L.; Crowther, L. J.; Xu, Z.; Qu, J.; Jiles, D. C.

    2015-05-01

    Transcranial Magnetic Stimulation has the potential to treat various neurological disorders non-invasively and safely. The "Halo coil" configuration can stimulate deeper regions of the brain with lower surface to deep-brain field ratio compared to other coil configurations. The existing "Halo coil" configuration is fixed and is limited in varying the site of stimulation in the brain. We have developed a new system based on the current "Halo coil" design along with a graphical user interface system that enables the larger coil to rotate along the transverse plane. The new system can also enable vertical movement of larger coil. Thus, this adjustable "Halo coil" configuration can stimulate different regions of the brain by adjusting the position and orientation of the larger coil on the head. We have calculated magnetic and electric fields inside a MRI-derived heterogeneous head model for various positions and orientations of the coil. We have also investigated the mechanical and thermal stability of the adjustable "Halo coil" configuration for various positions and orientations of the coil to ensure safe operation of the system.

  17. Self-organized magnetic particles to tune the mechanical behavior of a granular system

    NASA Astrophysics Data System (ADS)

    Cox, Meredith; Wang, Dong; Barés, Jonathan; Behringer, Robert P.

    2016-09-01

    Above a certain density a granular material jams. This property can be controlled by either tuning a global property, such as the packing fraction or by applying shear strain, or at the micro-scale by tuning grain shape, inter-particle friction or externally controlled organization. Here, we introduce a novel way to change a local granular property by adding a weak anisotropic magnetic interaction between particles. We measure the evolution of the pressure, P, and coordination number, Z, for a packing of 2D photo-elastic disks, subject to uniaxial compression. A fraction R m of the particles have embedded cuboidal magnets. The strength of the magnetic interactions between particles is too weak to have a strong direct effect on P or Z when the system is jammed. However, the magnetic interactions play an important role in the evolution of latent force networks when systems containing a large enough fraction of the particles with magnets are driven through unjammed to jammed states. In this case, a statistically stable network of magnetic chains self-organizes before jamming and overlaps with force chains once jamming occurs, strengthening the granular medium. This property opens a novel way to control mechanical properties of granular materials.

  18. Measuring the magnetic field of a trans-equatorial loop system using coronal seismology

    NASA Astrophysics Data System (ADS)

    Long, D. M.; Valori, G.; Pérez-Suárez, D.; Morton, R. J.; Vásquez, A. M.

    2017-07-01

    Context. EIT waves are freely-propagating global pulses in the low corona which are strongly associated with the initial evolution of coronal mass ejections (CMEs). They are thought to be large-amplitude, fast-mode magnetohydrodynamic waves initially driven by the rapid expansion of a CME in the low corona. Aims: An EIT wave was observed on 6 July 2012 to impact an adjacent trans-equatorial loop system which then exhibited a decaying oscillation as it returned to rest. Observations of the loop oscillations were used to estimate the magnetic field strength of the loop system by studying the decaying oscillation of the loop, measuring the propagation of ubiquitous transverse waves in the loop and extrapolating the magnetic field from observed magnetograms. Methods: Observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory (SDO/AIA) and the Coronal Multi-channel Polarimeter (CoMP) were used to study the event. An Empirical Mode Decomposition analysis was used to characterise the oscillation of the loop system in CoMP Doppler velocity and line width and in AIA intensity. Results: The loop system was shown to oscillate in the 2nd harmonic mode rather than at the fundamental frequency, with the seismological analysis returning an estimated magnetic field strength of ≈ 5.5 ± 1.5 G. This compares to the magnetic field strength estimates of ≈1-9 G and ≈3-9 G found using the measurements of transverse wave propagation and magnetic field extrapolation respectively. A movie associated to Figs. 1 and 2 is available at http://www.aanda.org

  19. Solid cryogen: a cooling system for future MgB2 MRI magnet

    PubMed Central

    Patel, Dipak; Hossain, Md Shahriar Al; Qiu, Wenbin; Jie, Hyunseock; Yamauchi, Yusuke; Maeda, Minoru; Tomsic, Mike; Choi, Seyong; Kim, Jung Ho

    2017-01-01

    An efficient cooling system and the superconducting magnet are essential components of magnetic resonance imaging (MRI) technology. Herein, we report a solid nitrogen (SN2) cooling system as a valuable cryogenic feature, which is targeted for easy usability and stable operation under unreliable power source conditions, in conjunction with a magnesium diboride (MgB2) superconducting magnet. The rationally designed MgB2/SN2 cooling system was first considered by conducting a finite element analysis simulation, and then a demonstrator coil was empirically tested under the same conditions. In the SN2 cooling system design, a wide temperature distribution on the SN2 chamber was observed due to the low thermal conductivity of the stainless steel components. To overcome this temperature distribution, a copper flange was introduced to enhance the temperature uniformity of the SN2 chamber. In the coil testing, an operating current as high as 200 A was applied at 28 K (below the critical current) without any operating or thermal issues. This work was performed to further the development of SN2 cooled MgB2 superconducting coils for MRI applications. PMID:28251984

  20. Solid cryogen: a cooling system for future MgB2 MRI magnet.

    PubMed

    Patel, Dipak; Hossain, Md Shahriar Al; Qiu, Wenbin; Jie, Hyunseock; Yamauchi, Yusuke; Maeda, Minoru; Tomsic, Mike; Choi, Seyong; Kim, Jung Ho

    2017-03-02

    An efficient cooling system and the superconducting magnet are essential components of magnetic resonance imaging (MRI) technology. Herein, we report a solid nitrogen (SN 2 ) cooling system as a valuable cryogenic feature, which is targeted for easy usability and stable operation under unreliable power source conditions, in conjunction with a magnesium diboride (MgB 2 ) superconducting magnet. The rationally designed MgB 2 /SN 2 cooling system was first considered by conducting a finite element analysis simulation, and then a demonstrator coil was empirically tested under the same conditions. In the SN 2 cooling system design, a wide temperature distribution on the SN 2 chamber was observed due to the low thermal conductivity of the stainless steel components. To overcome this temperature distribution, a copper flange was introduced to enhance the temperature uniformity of the SN 2 chamber. In the coil testing, an operating current as high as 200 A was applied at 28 K (below the critical current) without any operating or thermal issues. This work was performed to further the development of SN 2 cooled MgB 2 superconducting coils for MRI applications.

  1. Solid cryogen: a cooling system for future MgB2 MRI magnet

    NASA Astrophysics Data System (ADS)

    Patel, Dipak; Hossain, Md Shahriar Al; Qiu, Wenbin; Jie, Hyunseock; Yamauchi, Yusuke; Maeda, Minoru; Tomsic, Mike; Choi, Seyong; Kim, Jung Ho

    2017-03-01

    An efficient cooling system and the superconducting magnet are essential components of magnetic resonance imaging (MRI) technology. Herein, we report a solid nitrogen (SN2) cooling system as a valuable cryogenic feature, which is targeted for easy usability and stable operation under unreliable power source conditions, in conjunction with a magnesium diboride (MgB2) superconducting magnet. The rationally designed MgB2/SN2 cooling system was first considered by conducting a finite element analysis simulation, and then a demonstrator coil was empirically tested under the same conditions. In the SN2 cooling system design, a wide temperature distribution on the SN2 chamber was observed due to the low thermal conductivity of the stainless steel components. To overcome this temperature distribution, a copper flange was introduced to enhance the temperature uniformity of the SN2 chamber. In the coil testing, an operating current as high as 200 A was applied at 28 K (below the critical current) without any operating or thermal issues. This work was performed to further the development of SN2 cooled MgB2 superconducting coils for MRI applications.

  2. Magnetic field effect on the liquidus boundary of Bi-Mn binary system

    NASA Astrophysics Data System (ADS)

    Mitsui, Yoshifuru; Koyama, Keiichi; Oikawa, Katsunari; Watanabe, Kazuo

    2014-10-01

    The magnetic field effect (MFE) on liquidus boundary of Bi-Mn binary system was investigated by differential thermal analysis (DTA) and the computer coupling of phase diagram method (CALPHAD). The liquidus boundary for Bi-18at.%Mn and Bi-24at.%Mn rose clearly by the application of the magnetic fields. The MFE for liquidus boundary temperature Tliq changed from ΔTliq∝B2 to ΔTliq∝B because of the large increase of the peritectic temperature from BiMn and BiMn1.08 by the application of magnetic field.

  3. Design and investigations of the superconducting magnet system for the multipurpose superconducting electron cyclotron resonance ion source.

    PubMed

    Tinschert, K; Lang, R; Mäder, J; Rossbach, J; Spädtke, P; Komorowski, P; Meyer-Reumers, M; Krischel, D; Fischer, B; Ciavola, G; Gammino, S; Celona, L

    2012-02-01

    The production of intense beams of heavy ions with electron cyclotron resonance ion sources (ECRIS) is an important request at many accelerators. According to the ECR condition and considering semi-empirical scaling laws, it is essential to increase the microwave frequency together with the magnetic flux density of the ECRIS magnet system. A useful frequency of 28 GHz, therefore, requires magnetic flux densities above 2.2 T implying the use of superconducting magnets. A cooperation of European institutions initiated a project to build a multipurpose superconducting ECRIS (MS-ECRIS) in order to achieve an increase of the performances in the order of a factor of ten. After a first design of the superconducting magnet system for the MS-ECRIS, the respective cold testing of the built magnet system reveals a lack of mechanical performance due to the strong interaction of the magnetic field of the three solenoids with the sextupole field and the magnetization of the magnetic iron collar. Comprehensive structural analysis, magnetic field calculations, and calculations of the force pattern confirm thereafter these strong interactions, especially of the iron collar with the solenoidal fields. The investigations on the structural analysis as well as suggestions for a possible mechanical design solution are given.

  4. Non-equilibrium magnetic interactions in strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Secchi, A.; Brener, S.; Lichtenstein, A. I.; Katsnelson, M. I.

    2013-06-01

    We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We derive expressions for dynamical exchange parameters in terms of non-equilibrium electronic Green functions and self-energies, which can be computed, e.g., with the methods of time-dependent dynamical mean-field theory. Moreover, we find that a correct description of the system requires, in addition to exchange, a new kind of magnetic interaction, that we name twist exchange, which formally resembles Dzyaloshinskii-Moriya coupling, but is not due to spin-orbit, and is actually due to an effective three-spin interaction. Our theory allows the evaluation of the related time-dependent parameters as well.

  5. Supersolid-like magnetic states in a mixed honeycomb-triangular lattice system.

    NASA Astrophysics Data System (ADS)

    Garlea, Ovidiu

    Field-induced magnetic states that occur in layered triangular antiferromagnets have been of broad interest due to the emergence of new exotic phases, such as topologically ordered states and supersolids. Experimental realization of the supersolid states where spin components break simultaneously the translational and rotational symmetries remains scarce. In this context, the mixed vanadate -carbonate K2Mn3(VO4)2CO3 is a very promising system. This compound contains two types of two-dimensional layers alternately stacked along the crystallographic c-axis: one layer consists of a honeycomb web structure made of edge sharing MnO6 octahedra, while the other consists of MnO5 trigonal bipyramids linked by [CO3] triangles to form a triangular magnetic lattice. Magnetization and heat capacity measurements reveal a complex magnetic phase diagram that includes three phase transition associated with sequential long range magnetic ordering of the different sublattices. The lowest temperature state resembles a supersolid state that was predicted to occur in two-dimensional frustrated magnet with easy axis anisotropy. Such a supersolid phase is defined by a commensurate √3× √3 magnetic superlattice, where two thirds of the spins are canted away from the easy axis direction. Applied magnetic field destabilizes this ordered state and induces a cascade of new exotic magnetic ground states. The nature of these field-induced magnetic states is evaluated by using neutron scattering techniques. Work at the Oak Ridge National Laboratory was sponsored by the US Department of Energy, Office of Science, Basic Energy Sciences, Scientific User Facilities Division and Materials Sciences and Engineering Division.

  6. Magnetic induction system for two-stage gun projectile velocity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, R L; Konrad, C H

    1984-05-01

    A magnetic induction technique for measuring projectile velocities has been implemented on Sandia's two-stage light gas gun. The system has been designed to allow for projectile velocity measurements to an accuracy of approx. 0.2 percent. The velocity system has been successfully tested in a velocity range of 3.5 km/s to 6.5 km/s.

  7. Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications

    NASA Astrophysics Data System (ADS)

    Agiotis, L.; Theodorakos, I.; Samothrakitis, S.; Papazoglou, S.; Zergioti, I.; Raptis, Y. S.

    2016-03-01

    Magnetic nanoparticles (MNPs), such as superparamagnetic iron oxide nanoparticles (SPIONS), have attracted major interest, due to their small size and unique magnetic properties, for drug delivery applications. In this context, iron oxide nanoparticles of magnetite (Fe3O4) (150 nm magnetic core diameter), were used as drug carriers, aiming to form a magnetically controlled nano-platform. The navigation capabilities of the iron oxide nanoparticles in a microfluidic channel were investigated by simulating the magnetic field and the magnetic force applied on the magnetic nanoparticles inside a microfluidic chip. The simulations have been performed using finite element method (ANSY'S software). The optimum setup which intends to simulate the magnetic navigation of the nanoparticles, by the use of MRI-type fields, in the human circulatory system, consists of two parallel permanent magnets to produce a homogeneous magnetic field, in order to ensure the maximum magnetization of the magnetic nanoparticles, an electromagnet for the induction of the magnetic gradients and the creation of the magnetic force and a microfluidic setup so as to simulate the blood flow inside the human blood vessels. The magnetization of the superparamagnetic nanoparticles and the consequent magnetic torque developed by the two permanent magnets, together with the mutual interactions between the magnetized nanoparticles lead to the creation of rhabdoid aggregates in the direction of the homogeneous field. Additionally, the magnetic gradients introduced by the operation of the electromagnet are capable of directing the aggregates, as a whole, to the desired direction. By removing the magnetic fields, the aggregates are disrupted, due to the super paramagnetic nature of the nanoparticles, avoiding thus the formation of undesired thrombosis.

  8. GA-based fuzzy reinforcement learning for control of a magnetic bearing system.

    PubMed

    Lin, C T; Jou, C P

    2000-01-01

    This paper proposes a TD (temporal difference) and GA (genetic algorithm)-based reinforcement (TDGAR) learning method and applies it to the control of a real magnetic bearing system. The TDGAR learning scheme is a new hybrid GA, which integrates the TD prediction method and the GA to perform the reinforcement learning task. The TDGAR learning system is composed of two integrated feedforward networks. One neural network acts as a critic network to guide the learning of the other network (the action network) which determines the outputs (actions) of the TDGAR learning system. The action network can be a normal neural network or a neural fuzzy network. Using the TD prediction method, the critic network can predict the external reinforcement signal and provide a more informative internal reinforcement signal to the action network. The action network uses the GA to adapt itself according to the internal reinforcement signal. The key concept of the TDGAR learning scheme is to formulate the internal reinforcement signal as the fitness function for the GA such that the GA can evaluate the candidate solutions (chromosomes) regularly, even during periods without external feedback from the environment. This enables the GA to proceed to new generations regularly without waiting for the arrival of the external reinforcement signal. This can usually accelerate the GA learning since a reinforcement signal may only be available at a time long after a sequence of actions has occurred in the reinforcement learning problem. The proposed TDGAR learning system has been used to control an active magnetic bearing (AMB) system in practice. A systematic design procedure is developed to achieve successful integration of all the subsystems including magnetic suspension, mechanical structure, and controller training. The results show that the TDGAR learning scheme can successfully find a neural controller or a neural fuzzy controller for a self-designed magnetic bearing system.

  9. Compensation of orbit distortion due to quadrupole motion using feed-forward control at KEK ATF

    NASA Astrophysics Data System (ADS)

    Bett, D. R.; Charrondière, C.; Patecki, M.; Pfingstner, J.; Schulte, D.; Tomás, R.; Jeremie, A.; Kubo, K.; Kuroda, S.; Naito, T.; Okugi, T.; Tauchi, T.; Terunuma, N.; Burrows, P. N.; Christian, G. B.; Perry, C.

    2018-07-01

    The high luminosity requirement for a future linear collider sets a demanding limit on the beam quality at the Interaction Point (IP). One potential source of luminosity loss is the motion of the ground itself. The resulting misalignments of the quadrupole magnets cause distortions to the beam orbit and hence an increase in the beam emittance. This paper describes a technique for compensating this orbit distortion by using seismometers to monitor the misalignment of the quadrupole magnets in real-time. The first demonstration of the technique was achieved at the Accelerator Test Facility (ATF) at KEK in Japan. The feed-forward system consisted of a seismometer-based quadrupole motion monitoring system, an FPGA-based feed-forward processor and a stripline kicker plus associated electronics. Through the application of a kick calculated from the position of a single quadruple, the system was able to remove about 80% of the component of the beam jitter that was correlated to the motion of the quadrupole. As a significant fraction of the orbit jitter in the ATF final focus is due to sources other than quadrupole misalignment, this amounted to an approximately 15% reduction in the absolute beam jitter.

  10. Cardiovascular magnetic resonance in systemic hypertension

    PubMed Central

    2012-01-01

    Systemic hypertension is a highly prevalent potentially modifiable cardiovascular risk factor. Imaging plays an important role in the diagnosis of underlying causes for hypertension, in assessing cardiovascular complications of hypertension, and in understanding the pathophysiology of the disease process. Cardiovascular magnetic resonance (CMR) provides accurate and reproducible measures of ventricular volumes, mass, function and haemodynamics as well as uniquely allowing tissue characterization of diffuse and focal fibrosis. In addition, CMR is well suited for exclusion of common secondary causes for hypertension. We review the current and emerging clinical and research applications of CMR in hypertension. PMID:22559053

  11. The magnetic navigation system allows safety and high efficacy for ablation of arrhythmias

    PubMed Central

    Bauernfeind, Tamas; Akca, Ferdi; Schwagten, Bruno; de Groot, Natasja; Van Belle, Yves; Valk, Suzanne; Ujvari, Barbara; Jordaens, Luc; Szili-Torok, Tamas

    2011-01-01

    Aims We aimed to evaluate the safety and long-term efficacy of the magnetic navigation system (MNS) in a large number of patients. The MNS has the potential for improving safety and efficacy based on atraumatic catheter design and superior navigation capabilities. Methods and results In this study, 610 consecutive patients underwent ablation. Patients were divided into two age- and sex-matched groups. Ablations were performed either using MNS (group MNS, 292) or conventional manual ablation [group manual navigation (MAN), 318]. The following parameters were analysed: acute success rate, fluoroscopy time, procedure time, complications [major: pericardial tamponade, permanent atrioventricular (AV) block, major bleeding, and death; minor: minor bleeding and temporary AV block]. Recurrence rate was assessed during follow-up (15 ± 9.5 months). Subgroup analysis was performed for the following groups: atrial fibrillation, isthmus dependent and atypical atrial flutter, atrial tachycardia, AV nodal re-entrant tachycardia, circus movement tachycardia, and ventricular tachycardia (VT). Magnetic navigation system was associated with less major complications (0.34 vs. 3.2%, P = 0.01). The total numbers of complications were lower in group MNS (4.5 vs. 10%, P = 0.005). Magnetic navigation system was equally effective as MAN in acute success rate for overall groups (92 vs. 94%, P = ns). Magnetic navigation system was more successful for VTs (93 vs. 72%, P < 0.05). Less fluoroscopy was used in group MNS (30 ± 20 vs. 35 ± 25 min, P < 0.01). There were no differences in procedure times and recurrence rates for the overall groups (168 ± 67 vs. 159 ± 75 min, P = ns; 14 vs. 11%, P = ns; respectively). Conclusions Our data suggest that the use of MNS improves safety without compromising efficiency of ablations. Magnetic navigation system is more effective than manual ablation for VTs. PMID:21508006

  12. The magnetic navigation system allows safety and high efficacy for ablation of arrhythmias.

    PubMed

    Bauernfeind, Tamas; Akca, Ferdi; Schwagten, Bruno; de Groot, Natasja; Van Belle, Yves; Valk, Suzanne; Ujvari, Barbara; Jordaens, Luc; Szili-Torok, Tamas

    2011-07-01

    We aimed to evaluate the safety and long-term efficacy of the magnetic navigation system (MNS) in a large number of patients. The MNS has the potential for improving safety and efficacy based on atraumatic catheter design and superior navigation capabilities. In this study, 610 consecutive patients underwent ablation. Patients were divided into two age- and sex-matched groups. Ablations were performed either using MNS (group MNS, 292) or conventional manual ablation [group manual navigation (MAN), 318]. The following parameters were analysed: acute success rate, fluoroscopy time, procedure time, complications [major: pericardial tamponade, permanent atrioventricular (AV) block, major bleeding, and death; minor: minor bleeding and temporary AV block]. Recurrence rate was assessed during follow-up (15±9.5 months). Subgroup analysis was performed for the following groups: atrial fibrillation, isthmus dependent and atypical atrial flutter, atrial tachycardia, AV nodal re-entrant tachycardia, circus movement tachycardia, and ventricular tachycardia (VT). Magnetic navigation system was associated with less major complications (0.34 vs. 3.2%, P=0.01). The total numbers of complications were lower in group MNS (4.5 vs. 10%, P=0.005). Magnetic navigation system was equally effective as MAN in acute success rate for overall groups (92 vs. 94%, P=ns). Magnetic navigation system was more successful for VTs (93 vs. 72%, P<0.05). Less fluoroscopy was used in group MNS (30±20 vs. 35±25 min, P<0.01). There were no differences in procedure times and recurrence rates for the overall groups (168±67 vs. 159±75 min, P=ns; 14 vs. 11%, P=ns; respectively). Our data suggest that the use of MNS improves safety without compromising efficiency of ablations. Magnetic navigation system is more effective than manual ablation for VTs.

  13. Onset of a Propagating Self-Sustained Spin Reversal Front in a Magnetic System

    NASA Astrophysics Data System (ADS)

    Kent, Andrew D.

    2014-03-01

    The energy released in a magnetic material by reversing spins as they relax toward equilibrium can lead to a dynamical magnetic instability in which all the spins in a sample rapidly reverse in a run-away process known as magnetic deflagration. A well-defined front separating reversed and un-reversed spins develops that propagates at a constant speed. This process is akin to a chemical reaction in which a flammable substance ignites and the resulting exothermic reaction leads via thermal conduction to increases in the temperature of an adjacent unburned substance that ignites it. In a magnetic system the reaction is the reversal of spins that releases Zeeman energy and the magnetic anisotropy barrier is the reaction's activation energy. An interesting aspect of magnetic systems is that these key energies-the activation energy and the energy released-can be independently controlled by applied magnetic fields enabling systematic studies of these magnetic instabilities. We have studied the instability that leads to the ignition of magnetic deflagration in a thermally driven Mn12-Ac molecular magnet single crystal. Each Mn12-ac molecule is a uniaxial nanomagnet with spin 10 and energy barrier of 60 K. We use a longitudinal field (a field parallel to the easy axis) to set the energy released and a transverse field to control the activation energy. A heat pulse is applied to one end of the crystal to initiate the process. We study the crossover between slow magnetic relaxation and rapid, self-sustained magnetic deflagration as a function of these fields at low temperature (0.5 K). An array of Hall sensors adjacent to a single crystal is used to detect and measure the speed of the spin-reversal front. I will describe a simple model we developed based on a reaction-diffusion process that describes our experimental findings. I will also discuss prospects for observing spin-fronts driven by magnetic dipole interactions between molecules that can be sonic, i.e. travel near

  14. Magnetic behavior of Fe(Se,Te) systems: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Shi, Hongliang; Huang, Zhong-Bing; Tse, John S.; Lin, Hai-Qing

    2011-08-01

    The magnetic behaviors in Fe(Se,Te) systems have been investigated systematically using density functional calculations. At the experimental lattice parameters, the ground state is found to be in the double stripe magnetic phase for FeTe but in the single stripe magnetic phase for FeSe and FeSe0.5Te0.5, and there is no preference in the different easy axes of magnetization. Substitution of Se by Te enlarges the size of the Fermi surface in FeSe0.5Te0.5, resulting in a stronger nesting effect and thus enhancing the superconductivity. It is found that the double stripe order in FeTe1-xSex changes to the single stripe order when x > 0.18. Spiral calculations on FeSe0.5Te0.5 show that the lowest energy is at the commensurate point Q→= (0.5,0.5), accompanied by additional local minima at two incommensurate points near Q→= (0.5,0.5). This observation is consistent with the experimentally observed positions of low energy magnetic excitations. Geometry optimization calculations show that the tetragonal cell relaxes to orthorhombic and monoclinic cells for FeSe and FeTe, respectively, but remains unchanged for FeSe0.5Te0.5.

  15. Recent progress towards developing a high field, high-T(sub c) superconducting magnet for magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Derochemont, L. Pierre; Oakes, Carlton E.; Squillante, Michael R.; Duan, Hong-Min; Hermann, Allen M.; Andrews, Robert J.; Poeppel, Roger B.; Maroni, Victor A.; Carlberg, Ingrid A.; Kelliher, Warren C.

    1992-01-01

    This paper reviews superconducting magnets and high T(sub c) superconducting oxide ceramic materials technology to identify areas of fundamental impasse to the fabrication of components and devices that tap what are believed to be the true potential of these new materials. High T(sub c) ceramics pose problems in fundamentally different areas which need to be solved unlike low T(sub c) materials. The authors map out an experimental plan designed to research process technologies which, if suitably implemented, should allow these deficiencies to be solved. Finally, assessments are made of where and on what regimes magnetic system designers should focus their attention to advance the practical development of systems based on these new materials.

  16. Design of magnetic system to produce intense beam of polarized molecules of H2 and D2

    NASA Astrophysics Data System (ADS)

    Yurchenko, A. V.; Nikolenko, D. M.; Rachek, I. A.; Shestakov, Yu V.; Toporkov, D. K.; Zorin, A. V.

    2017-12-01

    A magnetic-separating system is designed to produce polarized molecular high-density beams of H2/D2. The distribution of the magnetic field inside the aperture of the multipole magnet was calculated using the Mermaid software package. The calculation showed that the characteristic value of the magnetic field is 40 kGs, the field gradient is about 60 kGs/cm. A numerical calculation of the trajectories of the motion of molecules with different spin projections in this magnetic system is performed. The article discusses the possibility of using the magnetic system designed for the creation of a high-intensity source of polarized molecules. The expected intensity of this source is calculated. The expected flux of molecules focused in the receiver tube is 3.5·1016 mol/s for the hydrogen molecule and 2.0·1015 mol/s for the deuterium molecule.

  17. Magnetophoretic velocimetry of manganese(II) in a single microdroplet in a flow system under a high gradient magnetic field generated with a superconducting magnet.

    PubMed

    Suwa, Masayori; Watarai, Hitoshi

    2002-10-01

    An experimental system for magnetophoretic velocimetry, which could determine the volume magnetic susceptibility of a single particle dispersed in a liquid phase from a magnetophoretic velocity, has been developed. A micrometer-sized high-gradient magnetic field could be generated in a capillary by a pair of iron pole pieces in a superconducting magnet (10 T). The magnetophoretic behavior of a single particle in a capillary flow system was investigated under the inhomogeneous magnetic field. From the magnetophoretic velocity of a polystyrene latex particle dispersed in a MnCl2 aqueous solution, the product of the magnetic flux density and the gradient, B(dB/dx), was determined as a function of the position along the capillary. The maximum value of B(dB/dx) was 4.7 x 10(4) T2 m(-1), which was approximately 100 times higher than that obtained by two Nd-Fe-B permanent magnets (0.4 T). Organic droplets extracting manganese(II) with 2-thenoyltrifluoroacetone and tri-n-octylphosphine oxide from MnCl2 solution were used as test samples. The difference of the volume magnetic susceptibility between the droplet and the medium could be determined from the magnetophoretic velocity. This method allowed us to continuously measure a volume magnetic susceptibility of 10-6 level for a picoliter droplet and to determine manganese(II) in the single droplet at the attomole level.

  18. Magnetic charge distribution and stray field landscape of asymmetric néel walls in a magnetically patterned exchange bias layer system

    NASA Astrophysics Data System (ADS)

    Zingsem, Norbert; Ahrend, Florian; Vock, Silvia; Gottlob, Daniel; Krug, Ingo; Doganay, Hatice; Holzinger, Dennis; Neu, Volker; Ehresmann, Arno

    2017-12-01

    The 3D stray field landscape above an exchange bias layer system with engineered domain walls has been fully characterized by quantitative magnetic force microscopy (qMFM) measurements. This method is based on a complete quantification of the MFM tip’s imaging properties and the subtraction of its contribution from the measured MFM data by deconvolution in Fourier space. The magnetically patterned Ir17Mn83/Co70Fe30-exchange-bias-multilayers have been designed to contain asymmetric head-to-head (hh)/tail-to-tail (tt) Néel walls between domains of different magnetic anisotropies for potential use in guided particle transport. In the current application, qMFM reveals the effective magnetic charge profile on the surface of the sample—with high spatial resolution and in an absolute quantitative manner. These data enable to calculate the magnetostatic potential and the full stray field landscape above the sample surface. It has been successfully tested against: (i) micromagnetic simulations of the magnetization structure of a comparable exchange-bias layer system, (ii) measurements of the magnetization profile across the domain boundary with x-ray photoemission electron microscopy, and (iii) direct stray field measurements obtained by scanning Hall probe microscopy at elevated scan heights. This approach results in a quantitative determination of the stray field landscape at close distances to the sample surface, which will be of importance for remote magnetic particle transport applications in lab-on-a-chip devices. Furthermore, the highly resolving and quantitative MFM approach reveals details of the domain transition across the artificially structured phase boundary, which have to be attributed to a continuous change in the materials parameters across this boundary, rather than an abrupt one.

  19. An LQR controller design approach for a Large Gap Magnetic Suspension System (LGMSS)

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.; Schaffner, Philip R.

    1990-01-01

    Two control approaches for a Large Gap Magnetic Suspension System (LGMSS) are investigated and numerical results are presented. The approaches are based on Linear Quadratic Regulator (LQR) control theory and include a nonzero set point regulator with constant disturbance input and an integral feedback regulator. The LGMSS provides five degree of freedom control of a cylindrical suspended element which is composed of permanent magnet material. The magnetic actuators are air core electromagnets mounted in a planar way.

  20. Condition for a Bounded System of Klein-Gordon Particles in Electric and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kisoglu, Hasan Fatih; Sogut, Kenan

    2018-07-01

    We investigate the motion of relativistic spinless particles in an external electromagnetic field that is considered to has a constant magnetic field and a time-dependent electric field. For such a system, we obtain analytical eigenfunctions through Asymptotic Iteration Method. We also obtain a condition of choosing the external magnetic field for which the system is bounded with usage of the method in perturbation theory.

  1. Characterization of magnetic flux density in passive sources used in magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Torres, J.; Hincapie, E.; Gilart, F.

    2018-03-01

    The spatial distribution of the magnetic flux density (B) was determined for the passive sources of magnetic field most used in magnetic stimulation of biological systems, toroidal dipole magnets and cylindrical dipole magnets, in order to find the spatial characteristics of the magnetic field within the volumes of interest for the treatment of biological systems. The perpendicular and parallel components of B regarding the polar surface of the magnets were measured, for which a FW Bell 5180 digital teslameter was used with longitudinal and transverse probes and a two-dimensional positioning system with millimeter scale. It was found that the magnets of this type, which are the most used, present a strong variation of the magnitude and direction of the magnetic flux density for spaces specified in millimeters, reason why the homogeneity of the magnetic field in the regions of interest was found to be relatively low, which makes them elements with a strong applicability for the stimulation of biological systems in which magnetic field gradients up to mT/mm are required in the case of cylindrical magnets, and up to tens of mT/mm in the case of toroidal magnets. Finally, it is concluded that a high percentage of experiments reported in the literature on magnetic treatment of biological systems may be presenting values of B in their doses with deviations of more than 100% of the real value, which raises an incongruence in the cause-effect proposed relation.

  2. Vertical repositioning accuracy of magnetic mounting systems on 4 articulator models.

    PubMed

    Lee, Wonsup; Kwon, Ho-Beom

    2018-03-01

    Research of the ability of a cast mounted on an articulator on maintaining the identical position of a cast mounted on an articulator after repeated repositioning is lacking, despite the possible effects this may have on the occlusion of a mounted cast. The purpose of this in vitro study was to verify and compare the vertical repositioning accuracy of 4 different, commercially available articulator magnetic mounting plate systems. Four articulators and their associated magnetic mounting plates were selected for the study. These were the Artex AR articulator (Amann Girrbach AG), the Denar Mark II articulator (Whip Mix Corp), the Kavo Protar Evo articulator (Kavo Dental GmbH), and the SAM3 articulator (SAM Präzisionstechnik GmbH). Three new magnetic mounting plates were prepared for each articulator system. The repositioning accuracy of each mounting plate was evaluated by comparing the standard deviation of the vertical distances measured between the mounting plate and a laser displacement sensor. The lower arm of the articulator was secured, and the vertical distance was measured by positioning the laser displacement sensor positioned vertically above the mounting plate. Once the vertical distance was measured, the mounting plate was detached from the articulator and reattached manually to prepare for the next measurement. This procedure was repeated 30 times for each of the 3 magnetic mounting plates. Data were analyzed by ANOVA for 2-stage nested design and the Levene test (α=.05). Significant differences were detected among articulator systems and between magnetic mounting plates of the same type. The standard deviations of the measurements made with the Artex AR articulator, Denar Mark II articulator, Kavo Protar Evo articulator, and SAM3 articulator were 0.0027, 0.0308, 0.0214, and 0.0215 mm, respectively. Thus, the repositioning accuracy could be ranked in the order as follows: Artex AR, Kavo Protar Evo, SAM3, and Denar Mark II. The position of the

  3. Nonlinear compensation techniques for magnetic suspension systems. Ph.D. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Trumper, David L.

    1991-01-01

    In aerospace applications, magnetic suspension systems may be required to operate over large variations in air-gap. Thus the nonlinearities inherent in most types of suspensions have a significant effect. Specifically, large variations in operating point may make it difficult to design a linear controller which gives satisfactory stability and performance over a large range of operating points. One way to address this problem is through the use of nonlinear compensation techniques such as feedback linearization. Nonlinear compensators have received limited attention in the magnetic suspension literature. In recent years, progress has been made in the theory of nonlinear control systems, and in the sub-area of feedback linearization. The idea is demonstrated of feedback linearization using a second order suspension system. In the context of the second order suspension, sampling rate issues in the implementation of feedback linearization are examined through simulation.

  4. Cooling system for superconducting magnet

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed

    1998-01-01

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir.

  5. Cooling system for superconducting magnet

    DOEpatents

    Gamble, B.B.; Sidi-Yekhlef, A.

    1998-12-15

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir. 3 figs.

  6. Design and testing of a magnetic suspension and damping system for a space telescope

    NASA Technical Reports Server (NTRS)

    Ockman, N. J.

    1972-01-01

    The basic equations of motion are derived for a two dimensional, three degree of freedom simulation of a space telescope coupled to a spacecraft by means of a magnetic suspension and isolation system. The system consists of paramagnetic or ferromagnetic discs confined to the magnetic field between two Helmholtz coils. Damping is introduced by varying the magnetic field in proportion to a velocity signal derived from the telescope. The equations of motion are nonlinear, similar in behavior to the one-dimensional Van der Pol equation. The computer simulation was verified by testing a 264-kilogram air bearing platform which simulates the telescope in a frictionless environment. The simulation demonstrated effective isolation capabilities for disturbance frequencies above resonance. Damping in the system improved the response near resonance and prevented the build-up of large oscillatory amplitudes.

  7. Magnetically coupled magnet-spring oscillators

    NASA Astrophysics Data System (ADS)

    Donoso, G.; Ladera, C. L.; Martín, P.

    2010-05-01

    A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of mechanical, and easily adjustable by the experimenter. The coupling of this new coupled oscillator system is determined by the currents that the magnets induce in two coils connected in series, one to each magnet. It is an interesting case of mechanical oscillators with field-driven coupling, instead of mechanical coupling. Moreover, it is both a coupled and a damped oscillating system that lends itself to a detailed study and presentation of many properties and phenomena of such a system of oscillators. A set of experiments that validates the theoretical model of the oscillators is presented and discussed.

  8. Consecutive magnetic phase diagram of UCoGe-URhGe-UIrGe system

    NASA Astrophysics Data System (ADS)

    Pospíšil, Jiří; Haga, Yoshinori; Miyake, Atsushi; Kambe, Shinsaku; Tateiwa, Naoyuki; Tokunaga, Yo; Honda, Fuminori; Nakamura, Ai; Homma, Yoshiya; Tokunaga, Masashi; Aoki, Dai; Yamamoto, Etsuji

    2018-05-01

    We prepared single crystals in UCo1-xRhxGe and UIr1-xRhxGe systems to establish a complex dU-U-T (dU-U is the shortest interatomic uranium distance and T is temperature) magnetic phase diagram. This recognized a characteristic maximum in magnetic susceptibility at temperature Tmax along the b axis as an important parameter. Three magnetically ordered regions can be distinguished within this scope; first a ferromagnetic region with Curie temperature

  9. Mechanism for the occurrence of paramagnetic planes within magnetically ordered cerium systems

    NASA Astrophysics Data System (ADS)

    Kioussis, Nicholas; Cooper, Bernard R.; Banerjea, Amitava

    1988-11-01

    Hybridization of moderately delocalized f electrons with band electrons gives rise to a highly anisotropic two-ion interaction. Previously it has been shown that such an interaction explains the experimentally observed unusual magnetic behavior of CeBi, yielding a phase transition from a higher-temperature type-I (↑↓) to a lower-temperature type-IA (↑↑↓↓) antiferromagnetic structure. If the hybridization-mediated interaction is the key to understanding the magnetic behavior of such moderately delocalized f-electron systems, we should expect to be able to understand on this basis the even more unusual magnetic behavior of CeSb. In CeSb, there is a sequence of magnetic structures in which the higher-temperature structures involve a periodic stacking of paramagnetic \\{001\\} planes alternating with magnetically ordered \\{001\\} planes of [001]-moment alignment. In this paper we show that such a coexistence of paramagnetic and magnetically ordered Ce3+ sites can be understood on the basis of the hybridization-mediated interionic interaction when there are cubic crystal-field (CF) interactions of comparable strength. The tendency to form paramagnetic planes is found to increase with increasing CF strength (Γ7 ground state); and the stability of the up-down paramagnetic plane arrangement at high temperatures is shown to arise from the reconciliation of the magnetic ordering with the CF interactions. We also find that for a certain range of parameters a different novel situation occurs, with a fully nonmagnetic (singlet) ground state for the Ce3+ ion. This singlet state is not Kondo-like, and occurs in such a way that the system would be expected to fluctuate between two differently polarized states, one of which is the singlet state.

  10. Dynamic analysis of a magnetic bearing system with flux control

    NASA Technical Reports Server (NTRS)

    Knight, Josiah; Walsh, Thomas; Virgin, Lawrence

    1994-01-01

    Using measured values of two-dimensional forces in a magnetic actuator, equations of motion for an active magnetic bearing are presented. The presence of geometric coupling between coordinate directions causes the equations of motion to be nonlinear. Two methods are used to examine the unbalance response of the system: simulation by direct integration in time; and determination of approximate steady state solutions by harmonic balance. For relatively large values of the derivative control coefficient, the system behaves in an essentially linear manner, but for lower values of this parameter, or for higher values of the coupling coefficient, the response shows a split of amplitudes in the two principal directions. This bifurcation is sensitive to initial conditions. The harmonic balance solution shows that the separation of amplitudes actually corresponds to a change in stability of multiple coexisting solutions.

  11. Non-contacting "snubber bearing" for passive magnetic bearing systems

    DOEpatents

    Post, Richard F

    2017-08-22

    A new non-contacting magnetic "snubber" bearing is provided for application to rotating systems such as vehicular electromechanical battery systems subject to frequent accelerations. The design is such that in the equilibrium position the drag force of the snubber is very small (milliwatts). However in a typical case, if the rotor is displaced by as little as 2 millimeters a large restoring force is generated without any physical contact between the stationary and rotating parts of the snubber bearing.

  12. Magnetic characterization of the stator core of a high-speed motor made of an ultrathin electrical steel sheet using the magnetic property evaluation system

    NASA Astrophysics Data System (ADS)

    Oka, Mohachiro; Enokizono, Masato; Mori, Yuji; Yamazaki, Kazumasa

    2018-04-01

    Recently, the application areas for electric motors have been expanding. For instance, electric motors are used in new technologies such as rovers, drones, cars, and robots. The motor used in such machinery should be small, high-powered, highly-efficient, and high-speed. In such motors, loss at high-speed rotation must be especially minimal. Eddy-current loss in the stator core is known to increase greatly during loss at high-speed rotation of the motor. To produce an efficient high-speed motor, we are developing a stator core for a motor using an ultrathin electrical steel sheet with only a small amount of eddy-current loss. Furthermore, the magnetic property evaluation for efficient, high-speed motor stator cores that use conventional commercial frequency is insufficient. Thus, we made a new high-speed magnetic property evaluation system to evaluate the magnetic properties of the efficient high-speed motor stator core. This system was composed of high-speed A/D converters, D/A converters, and a high-speed power amplifier. In experiments, the ultrathin electrical steel sheet dramatically suppressed iron loss and, in particular, eddy-current loss. In addition, a new high-speed magnetic property evaluation system accurately evaluated the magnetic properties of the efficient high-speed motor stator core.

  13. Theoretical investigation on the magnetization enhancement of Fe3O4-reduced graphene oxide nanoparticle system

    NASA Astrophysics Data System (ADS)

    Majidi, M. A.; Wicaksono, Y.; Fauzi, A. D.; Taufik, A.; Saleh, R.; Rusydi, A.

    2017-04-01

    We present a theoretical study on the enhancement of magnetization of Fe3O4 nanoparticle system upon addition of reduced graphene oxide (rGO). Experimental data have shown that the magnetization of Fe3O4-rGO nanoparticle system increases with increasing rGO content up to about 5 wt%, but decreases back as the rGO content increases further. We propose that the enhancement is due to spin-flipping of Fe ions at the tetrahedral sites assisted by oxygen vacancies at the Fe3O4 particle boundaries. These oxygen vacancies are induced by the presence of rGO flakes that adsorb oxygen atoms from Fe3O4 particles around them. To understand the enhancement of the magnetization, we construct a tight-binding based model Hamiltonian for the Fe3O4 nanoparticle system with the concentration of oxygen vacancies being controlled by the rGO content. We calculate the magnetization as a function of the applied magnetic field for various values of rGO wt%. We use the method of dynamical mean-field theory and perform the calculations for a room temperature. Our result for rGO wt% dependence of the saturated magnetization shows a very good agreement with the existing experimental data of the Fe3O4-rGO nanoparticle system. This result may confirm that our model already carries the most essential idea needed to explain the above phenomenon of magnetization enhancement.

  14. Development of magnetic separation system of magnetoliposomes

    NASA Astrophysics Data System (ADS)

    Nakao, R.; Matuo, Y.; Mishima, F.; Taguchi, T.; Maenosono, S.; Nishijima, S.

    2009-10-01

    The magnetic separation technology using sub-microsized ferromagnetic particle is indispensable in many areas of medical biosciences. For example, ferromagnetic particles (200-500 nm) are widely used for cell sorting in stem cell research with the use of cell surface-specific antigens. Nanosized ferromagnetic particles (10-20 nm) have been suggested as more suitable in drug delivery studies given their efficiency of tissue penetration, however, the magnetic separation method for them has not been established. One of the major reasons is that magnetic force acting on the object particles decreases drastically as a particle diameter becomes small. In this study, magnetic force acting on the targets was enhanced by the combination of superconducting magnet and the filter consisting of ferromagnetic particle. By doing so, we confirmed that Fe 3O 4 of 20 nm in diameter was trapped in the magnetic filter under an external magnetic field of 0.5 T. Fe 3O 4 encapsulated with phospholipid liposomes of 200 nm in diameter was also shown to be trapped as external magnetic field of 1.5 T, but not of 0.5 T. We also showed the result of particle trajectory calculation which emulated well the experimental data.

  15. A Digital Control Algorithm for Magnetic Suspension Systems

    NASA Technical Reports Server (NTRS)

    Britton, Thomas C.

    1996-01-01

    An ongoing program exists to investigate and develop magnetic suspension technologies and modelling techniques at NASA Langley Research Center. Presently, there is a laboratory-scale large air-gap suspension system capable of five degree-of-freedom (DOF) control that is operational and a six DOF system that is under development. Those systems levitate a cylindrical element containing a permanent magnet core above a planar array of electromagnets, which are used for levitation and control purposes. In order to evaluate various control approaches with those systems, the Generic Real-Time State-Space Controller (GRTSSC) software package was developed. That control software package allows the user to implement multiple control methods and allows for varied input/output commands. The development of the control algorithm is presented. The desired functionality of the software is discussed, including the ability to inject noise on sensor inputs and/or actuator outputs. Various limitations, common issues, and trade-offs are discussed including data format precision; the drawbacks of using either Direct Memory Access (DMA), interrupts, or program control techniques for data acquisition; and platform dependent concerns related to the portability of the software, such as memory addressing formats. Efforts to minimize overall controller loop-rate and a comparison of achievable controller sample rates are discussed. The implementation of a modular code structure is presented. The format for the controller input data file and the noise information file is presented. Controller input vector information is available for post-processing by mathematical analysis software such as MATLAB1.

  16. Majorana spin in magnetic atomic chain systems

    NASA Astrophysics Data System (ADS)

    Li, Jian; Jeon, Sangjun; Xie, Yonglong; Yazdani, Ali; Bernevig, B. Andrei

    2018-03-01

    In this paper, we establish that Majorana zero modes emerging from a topological band structure of a chain of magnetic atoms embedded in a superconductor can be distinguished from trivial localized zero energy states that may accidentally form in this system using spin-resolved measurements. To demonstrate this key Majorana diagnostics, we study the spin composition of magnetic impurity induced in-gap Shiba states in a superconductor using a hybrid model. By examining the spin and spectral densities in the context of the Bogoliubov-de Gennes (BdG) particle-hole symmetry, we derive a sum rule that relates the spin densities of localized Shiba states with those in the normal state without superconductivity. Extending our investigations to a ferromagnetic chain of magnetic impurities, we identify key features of the spin properties of the extended Shiba state bands, as well as those associated with a localized Majorana end mode when the effect of spin-orbit interaction is included. We then formulate a phenomenological theory for the measurement of the local spin densities with spin-polarized scanning tunneling microscopy (STM) techniques. By combining the calculated spin densities and the measurement theory, we show that spin-polarized STM measurements can reveal a sharp contrast in spin polarization between an accidental-zero-energy trivial Shiba state and a Majorana zero mode in a topological superconducting phase in atomic chains. We further confirm our results with numerical simulations that address generic parameter settings.

  17. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER) supplement. Magnet system special investigations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The results of magnet system special investigations listed below are summarized: 4 Tesla Magnet Alternate Design Study; 6 Tesla Magnet Manufacturability Study. The conceptual design for a 4 Tesla superconducting magnet system for use with an alternate (supersonic) ETF power train is described, and estimated schedule and cost are identified. The magnet design is scaled from the ETF 6 T Tesla design. Results of a manufacturability study and a revised schedule and cost estimate for the ETF 6 T magnet are reported. Both investigations are extensions of the conceptual design of a 6 T magnet system performed earlier as a part of the overall MED-ETF conceptual design described in Conceptual Design Engineering Report (CDER) Vol. V, System Design Description (SDD) 503 dated September, 1981, DOE/NASA/0224-1; NASA CR-165/52.

  18. Magnetic properties of spinels GeNi2-xCoxO4 systems: Green's function and high-temperature series expansions

    NASA Astrophysics Data System (ADS)

    El Grini, A.; Salmi, S.; Masrour, R.; Hamedoun, M.; Bouslykhane, K.; Marzouk, A.; Hourmatallah, A.; Benzakour, N.

    2018-06-01

    The Green's function theory and high-temperature series expansions technical have been developed for magnetic systems GeNi2-xCoxO4. We have applied the Green's function theory to evaluate thermal magnetization and magnetic susceptibility for different values of magnetic field and dilution x, considering all components of the magnetization when an external magnetic field is applied in (x,z)-plane. The second theory combined with the Padé approximants method for a randomly diluted Heisenberg magnet is used to deduce the magnetic phase diagram of GeNi2 - xCoxO4 systems. The critical exponents ? and ? associated with the magnetic susceptibility ? and the correlation length ξ, respectively, have been deduced. The theoretical results are compared with those given by magnetic measurements.

  19. Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems

    NASA Astrophysics Data System (ADS)

    Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani

    2018-05-01

    Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.

  20. Magnetic Ordering of Antiferromagnetic Trimer System 2b·3CuCl2·2H2O

    NASA Astrophysics Data System (ADS)

    Sanda, M.; Kubo, K.; Asano, T.; Morodomi, H.; Inagaki, Y.; Kawae, T.; Wang, J.; Matsuo, A.; Kindo, K.; Sato, T. J.

    2012-12-01

    In this paper, we present the magnetic properties of 2b·3CuCl2·2H2O (b = betaine, C5H11NO2). 2b·3CuCl2·2H2O is the first model substance for a two-dimensional S = 1/2 orthogonal antiferromagnetic trimer system. We have performed magnetic susceptibility, magnetization curve, and specific heat under extreme conditions: low temperatures and high magnetic fields in this system. The experimental results indicate that this substance is a magnetically S = 1/2 antiferromagnetic trimer system. The magnetization also shows one-third of the saturation value (MS ~ 3.2μB/f.u.) between 5 and 14T The specific heat in a zero field shows a sharp peak at 1.38K corresponding to a long-range magnetic ordering, TN. As the magnetic field increases, the TN shifts remarkably to a lower temperature and is suppressed. Above 5T, the specific heat has no anomaly down to 150mK In the plateau region with an energy gap, the magnetic ordering seems to be disappeared.

  1. Brushed permanent magnet DC MLC motor operation in an external magnetic field.

    PubMed

    Yun, J; St Aubin, J; Rathee, S; Fallone, B G

    2010-05-01

    Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450 +/- 10 G. The carriage motor tolerated up to 2000 +/- 10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600 +/- 10 G. The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance levels determined, some form of

  2. Quantized Chiral Magnetic Current from Reconnections of Magnetic Flux.

    PubMed

    Hirono, Yuji; Kharzeev, Dmitri E; Yin, Yi

    2016-10-21

    We introduce a new mechanism for the chiral magnetic effect that does not require an initial chirality imbalance. The chiral magnetic current is generated by reconnections of magnetic flux that change the magnetic helicity of the system. The resulting current is entirely determined by the change of magnetic helicity, and it is quantized.

  3. Cryogenic System for J-Parc Neutrino Superconducting Magnet Beam LINE—DESIGN, Construction and Performance Test

    NASA Astrophysics Data System (ADS)

    Makida, Y.; Ohhata, H.; Okamura, T.; Suzuki, S.; Araoka, O.; Ogitsu, T.; Kimura, N.; Nakamoto, T.; Sasaki, K.; Kaneda, S.; Takahashi, T.; Ito, A.; Nagami, M.; Kumaki, T.; Nakashima, T.

    2010-04-01

    A helium cryogenic plant has been constructed in the proton accelerator research complex, J-PARC, to cool a string of superconducting magnets in the neutrino beam line since 2005. It consists of a screw compressor with a capacity of 160 g/s at 1.4 MPa, a 1.5 kW refrigerator, a centrifugal SHE pump with a flow rate of 300 g/s and peripherals. After system integration, performance tests have been carried out. In a preliminary cooling test without magnets, the cryogenic system attained a cooling capacity of 522 W by circulating supercritical helium flow of 300 g/s at 0.4 MPa and at 4.5 K. Afterwards a full system test with the magnets was carried out. The magnets were successfully charged up to an ultimate current of 5000 A beyond a nominal current of 4400 A. This paper describes the plant design and the result of performance measurements.

  4. Design of a New Superconducting Magnet System for High Strength Minimum-B Fields for ECRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, D. Z.; Benitez, J. Y.; Hodgkinson, A.

    A novel Mixed Axial and Radial field System (MARS) seeks to enhance the B fields inside the plasma chamber within the limits of a given conductor, thereby making it possible to raise the operating fields for Electron Cyclotron Resonance Ion Sources (ECRISs). The MARS concept consists of a hexagonally shaped closed-loop coil and a set of auxiliary solenoids. The application of MARS will be combined with a hexagonal plasma chamber to maximize the use of the radial fields at the chamber inner surfaces. Calculations using Opera's TOSCA-3D solver have shown that MARS can potentially generate up to 50% higher fieldsmore » and use of only about one half of the same superconducting wire, as compared with existing magnet designs in ECRISs. A MARS magnet system built with Nb 3 Sn coils could generate a high strength minimum-B field of maxima of ≥ 10 T on axis and ~6 T radially in an ECRIS plasma chamber. Following successful development, the MARS magnet system will be the best magnet scheme for the next generation of ECRISs. This paper will present the MARS concept, magnet design, prototyping a copper closed-loop coil, and discussions.« less

  5. Design of a New Superconducting Magnet System for High Strength Minimum-B Fields for ECRIS

    DOE PAGES

    Xie, D. Z.; Benitez, J. Y.; Hodgkinson, A.; ...

    2016-06-01

    A novel Mixed Axial and Radial field System (MARS) seeks to enhance the B fields inside the plasma chamber within the limits of a given conductor, thereby making it possible to raise the operating fields for Electron Cyclotron Resonance Ion Sources (ECRISs). The MARS concept consists of a hexagonally shaped closed-loop coil and a set of auxiliary solenoids. The application of MARS will be combined with a hexagonal plasma chamber to maximize the use of the radial fields at the chamber inner surfaces. Calculations using Opera's TOSCA-3D solver have shown that MARS can potentially generate up to 50% higher fieldsmore » and use of only about one half of the same superconducting wire, as compared with existing magnet designs in ECRISs. A MARS magnet system built with Nb 3 Sn coils could generate a high strength minimum-B field of maxima of ≥ 10 T on axis and ~6 T radially in an ECRIS plasma chamber. Following successful development, the MARS magnet system will be the best magnet scheme for the next generation of ECRISs. This paper will present the MARS concept, magnet design, prototyping a copper closed-loop coil, and discussions.« less

  6. An augmented magnetic navigation system for Transcatheter Aortic Valve Implantation.

    PubMed

    Luo, Zhe; Cai, Junfeng; Nie, Yuanyuan; Wang, Guotai; Gu, Lixu

    2013-01-01

    This research proposes an augmented magnetic navigation system for Transcatheter Aortic Valve Implantation (TAVI) employing a magnetic tracking system (MTS) combined with a dynamic aortic model and intra-operative ultrasound (US) images. The dynamic 3D aortic model is constructed based on the preoperative 4D computed tomography (CT), which is animated according to the real time electrocardiograph (ECG) input of patient. And a preoperative planning is performed to determine the target position of the aortic valve prosthesis. The temporal alignment is performed to synchronize the ECG signals, intra-operative US image and tracking information. Afterwards, with the assistance of synchronized ECG signals, the contour of aortic root automatic extracted from short axis US image is registered to the dynamic aortic model by a feature based registration intra-operatively. Then the augmented MTS guides the interventionist to confidently position and deploy the aortic valve prosthesis to target. The system was validated by animal studies on three porcine subjects, the deployment and tilting errors of which are 3.17 ± 0.91 mm and 7.40 ± 2.89° respectively.

  7. A new method for distortion magnetic field compensation of a geomagnetic vector measurement system

    NASA Astrophysics Data System (ADS)

    Liu, Zhongyan; Pan, Mengchun; Tang, Ying; Zhang, Qi; Geng, Yunling; Wan, Chengbiao; Chen, Dixiang; Tian, Wugang

    2016-12-01

    The geomagnetic vector measurement system mainly consists of three-axis magnetometer and an INS (inertial navigation system), which have many ferromagnetic parts on them. The magnetometer is always distorted by ferromagnetic parts and other electric equipments such as INS and power circuit module within the system, which can lead to geomagnetic vector measurement error of thousands of nT. Thus, the geomagnetic vector measurement system has to be compensated in order to guarantee the measurement accuracy. In this paper, a new distortion magnetic field compensation method is proposed, in which a permanent magnet with different relative positions is used to change the ambient magnetic field to construct equations of the error model parameters, and the parameters can be accurately estimated by solving linear equations. In order to verify effectiveness of the proposed method, the experiment is conducted, and the results demonstrate that, after compensation, the components errors of measured geomagnetic field are reduced significantly. It demonstrates that the proposed method can effectively improve the accuracy of the geomagnetic vector measurement system.

  8. Nonlinear Dynamics of a Magnetically Driven Duffing-Type Spring-Magnet Oscillator in the Static Magnetic Field of a Coil

    ERIC Educational Resources Information Center

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the…

  9. Pattern formation in diffusive excitable systems under magnetic flow effects

    NASA Astrophysics Data System (ADS)

    Mvogo, Alain; Takembo, Clovis N.; Ekobena Fouda, H. P.; Kofané, Timoléon C.

    2017-07-01

    We study the spatiotemporal formation of patterns in a diffusive FitzHugh-Nagumo network where the effect of electromagnetic induction has been introduced in the standard mathematical model by using magnetic flux, and the modulation of magnetic flux on membrane potential is realized by using memristor coupling. We use the multi-scale expansion to show that the system equations can be reduced to a single differential-difference nonlinear equation. The linear stability analysis is performed and discussed with emphasis on the impact of magnetic flux. It is observed that the effect of memristor coupling importantly modifies the features of modulational instability. Our analytical results are supported by the numerical experiments, which reveal that the improved model can lead to nonlinear quasi-periodic spatiotemporal patterns with some features of synchronization. It is observed also the generation of pulses and rhythmics behaviors like breathing or swimming which are important in brain researches.

  10. Effects Of Hydrothermal Alteration On Magnetic Properties And Magnetic Signatures - Implications For Predictive Magnetic Exploration Models

    NASA Astrophysics Data System (ADS)

    Clark, D.

    2012-12-01

    Magnetics is the most widely used geophysical method in hard rock exploration and magnetic surveys are an integral part of exploration programs for many types of mineral deposit, including porphyry Cu, intrusive-related gold, volcanic-hosted epithermal Au, IOCG, VMS, and Ni sulfide deposits. However, the magnetic signatures of ore deposits and their associated mineralized systems are extremely variable and exploration that is based simply on searching for signatures that resemble those of known deposits and systems is rarely successful. Predictive magnetic exploration models are based upon well-established geological models, combined with magnetic property measurements and geological information from well-studied deposits, and guided by magnetic petrological understanding of the processes that create, destroy and modify magnetic minerals in rocks. These models are designed to guide exploration by predicting magnetic signatures that are appropriate to specific geological settings, taking into account factors such as tectonic province; protolith composition; post-formation tilting/faulting/ burial/ exhumation and partial erosion; and metamorphism. Patterns of zoned hydrothermal alteration are important indicators of potentially mineralized systems and, if properly interpreted, can provided vectors to ore. Magnetic signatures associated with these patterns at a range of scales can provide valuable information on prospectivity and can guide drilling, provided they are correctly interpreted in geological terms. This presentation reviews effects of the important types of hydrothermal alteration on magnetic properties within mineralized systems, with particular reference to porphyry copper and IOCG deposits. For example, an unmodified gold-rich porphyry copper system, emplaced into mafic-intermediate volcanic host rocks (such as Bajo de la Alumbrera, Argentina) exhibits an inner potassic zone that is strongly mineralized and magnetite-rich, which is surrounded by an outer

  11. Magnetic nanostructures.

    PubMed

    Bennemann, K

    2010-06-23

    Characteristic results of magnetism in small particles, thin films and tunnel junctions are presented. As a consequence of the reduced atomic coordination in small clusters and thin films the electronic states and density of states are modified. Thus, magnetic moments and magnetization are affected. Generally, in clusters and thin films magnetic anisotropy plays a special role. In tunnel junctions the interplay of magnetism, spin currents and superconductivity are of particular interest. In ring-like mesoscopic systems Aharonov-Bohm-induced currents are studied. Results are given for single transition metal clusters, cluster ensembles, thin films, mesoscopic structures and tunnel systems. © 2010 IOP Publishing Ltd

  12. Quantized Chiral Magnetic Current from Reconnections of Magnetic Flux

    DOE PAGES

    Hirono, Yuji; Kharzeev, Dmitri E.; Yin, Yi

    2016-10-20

    We introduce a new mechanism for the chiral magnetic e ect that does not require an initial chirality imbalance. The chiral magnetic current is generated by reconnections of magnetic ux that change the magnetic helicity of the system. The resulting current is entirely determined by the change of magnetic helicity, and it is quantized.

  13. Dynamical systems for modeling evolution of the magnetic field of the Sun, stars and planets

    NASA Astrophysics Data System (ADS)

    Popova, E.

    2016-12-01

    The magnetic activity of the Sun, stars and planets are connected with a dynamo process based on the combined action of the differential rotation and the alpha-effect. Application of this concept allows us to get different types of solutions which can describe the magnetic activity of celestial bodies. We investigated the dynamo model with the meridional circulation by the low-mode approach. This approach is based on an assumption that the magnetic field can be described by non-linear dynamical systems with a relatively small number of parameters. Such non-linear dynamical systems are based on the equations of dynamo models. With this method dynamical systems have been built for media which contains the meridional flow and thickness of the spherical shell where dynamo process operates. It was shown the possibility of coexistence of quiasi-biennial oscillations, 22-year cycle, and grand minima of magnetic activity which is consistent with the observational data for the solar activity. We obtained different regimes (oscillations, vacillations, dynamo-bursts) depending on a value of the dynamo-number, the meridional circulation, and thickness of the spherical shell. We discuss features of these regimes and compare them with the observed features of the magnetic fields of the Sun, stars and Earth. We built theoretical paleomagnetic time scale and butterfly-diagrams for the helicity and toroidal magnetic field for different regimes.

  14. Magnetic Levitation.

    ERIC Educational Resources Information Center

    Rossing, Thomas D.; Hull, John R.

    1991-01-01

    Discusses the principles of magnetic levitation presented in the physics classroom and applied to transportation systems. Topics discussed include three classroom demonstrations to illustrate magnetic levitation, the concept of eddy currents, lift and drag forces on a moving magnet, magnetic levitation vehicles, levitation with permanent magnets…

  15. Verification of Spin Magnetic Attitude Control System using air-bearing-based attitude control simulator

    NASA Astrophysics Data System (ADS)

    Ousaloo, H. S.; Nodeh, M. T.; Mehrabian, R.

    2016-09-01

    This paper accomplishes one goal and it was to verify and to validate a Spin Magnetic Attitude Control System (SMACS) program and to perform Hardware-In-the-Loop (HIL) air-bearing experiments. A study of a closed-loop magnetic spin controller is presented using only magnetic rods as actuators. The magnetic spin rate control approach is able to perform spin rate control and it is verified with an Attitude Control System (ACS) air-bearing MATLAB® SIMULINK® model and a hardware-embedded LABVIEW® algorithm that controls the spin rate of the test platform on a spherical air bearing table. The SIMULINK® model includes dynamic model of air-bearing, its disturbances, actuator emulation and the time delays caused by on-board calculations. The air-bearing simulator is employed to develop, improve, and carry out objective tests of magnetic torque rods and spin rate control algorithm in the experimental framework and to provide a more realistic demonstration of expected performance of attitude control as compared with software-based architectures. Six sets of two torque rods are used as actuators for the SMACS. It is implemented and simulated to fulfill mission requirement including spin the satellite up to 12 degs-1 around the z-axis. These techniques are documented for the full nonlinear equations of motion of the system and the performances of these techniques are compared in several simulations.

  16. Development of a magnetic system for the treatment of Helicobacter pylori infections

    NASA Astrophysics Data System (ADS)

    Silva, Érica L.; Carvalho, Juliana F.; Pontes, Thales R. F.; Oliveira, Elquio E.; Francelino, Bárbara L.; Medeiros, Aldo C.; do Egito, E. Sócrates T.; Araujo, José H.; Carriço, Artur S.

    2009-05-01

    We report a study to develop a magnetic system for local delivery of amoxicillin. Magnetite microparticles produced by coprecipitation were coated with a solution of amoxicillin and Eudragit ®S100 by spray drying. Scanning electron microscopy, optical microscopy, X-ray powder diffraction and vibrating sample magnetometry revealed that the particles were superparamagnetic, with an average diameter of 17.2 μm, and an initial susceptibility controllable by the magnetite content in the suspension feeding the sprayer. Our results suggest a possible way to treat Helicobacter pylori infections, using an oral drug delivery system, and open prospects to coat magnetic microparticles by spray drying for biomedical applications.

  17. Control of magnetic bearing systems via the Chebyshev polynomial-based unified model (CPBUM) neural network.

    PubMed

    Jeng, J T; Lee, T T

    2000-01-01

    A Chebyshev polynomial-based unified model (CPBUM) neural network is introduced and applied to control a magnetic bearing systems. First, we show that the CPBUM neural network not only has the same capability of universal approximator, but also has faster learning speed than conventional feedforward/recurrent neural network. It turns out that the CPBUM neural network is more suitable in the design of controller than the conventional feedforward/recurrent neural network. Second, we propose the inverse system method, based on the CPBUM neural networks, to control a magnetic bearing system. The proposed controller has two structures; namely, off-line and on-line learning structures. We derive a new learning algorithm for each proposed structure. The experimental results show that the proposed neural network architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  18. Development of low loss soft nano magnetic system for antenna miniaturization at ultra high frequency

    NASA Astrophysics Data System (ADS)

    Manhas, Anita; Daya, K. S.; Singh, M.

    2018-05-01

    Sol gel auto combustion processed nano magnetic system of Co2Z hexaferrite of composition Ba3-xSrxCo2InyFe24-yO41 (x=1.5 and y=0.1) was investigated for microwave antenna miniaturization in the frequency range 2 GHz to 3.43 GHz. The structural properties performed by XRD and TEM with SAED clearly indicate the formation of single phased Z-type hexagonal nanoferrite with high crystallization. The magnetic property was measured using VSM show a typical feature of magnetically soft material with low coercivity. Successfully obtained appreciable microwave properties using network analyzer, as the nano magnetic system Ba1.5Sr1.5Co2In0.1Fe23.90O41 attained best results were μ' = 5.4 and ɛ' = 4.6 at 2GHz with controlled magnetic and electric loss tangents close to zero i.e. 0.005 and 0.008, respectively. Microwave results are explained on the basis of relevant existing theories and models.

  19. The role of the non-magnetic material in spin pumping and magnetization dynamics in NiFe and CoFeB multilayer systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz-Calaforra, A., E-mail: ruiz@physik.uni-kl.de; Brächer, T.; Lauer, V.

    2015-04-28

    We present a study of the effective magnetization M{sub eff} and the effective damping parameter α{sub eff} by means of ferromagnetic resonance spectroscopy on the ferromagnetic (FM) materials Ni{sub 81}Fe{sub 19} (NiFe) and Co{sub 40}Fe{sub 40}B{sub 20} (CoFeB) in FM/Pt, FM/NM, and FM/NM/Pt systems with the non-magnetic (NM) materials Ru, Cr, Al, and MgO. Moreover, for NiFe layer systems, the influence of interface effects is studied by way of thickness dependent measurements of M{sub eff} and α{sub eff}. Additionally, spin pumping in NiFe/NM/Pt is investigated by means of inverse spin Hall effect (ISHE) measurements. We observe a large dependence ofmore » M{sub eff} and α{sub eff} of the NiFe films on the adjacent NM layer. While Cr and Al do not induce a large change in the magnetic properties, Ru, Pt, and MgO affect M{sub eff} and α{sub eff} in different degrees. In particular, NiFe/Ru and NiFe/Ru/Pt systems show a large perpendicular surface anisotropy and a significant enhancement of the damping. In contrast, the magnetic properties of CoFeB films do not have a large influence of the NM adjacent material and only CoFeB/Pt systems present an enhancement of α{sub eff}. However, this enhancement is much more pronounced in NiFe/Pt. By the introduction of the NM spacer material, this enhancement is reduced. Furthermore, a difference in symmetry between NiFe/NM/Pt and NiFe/NM systems in the output voltage signal from the ISHE measurements reveals the presence of spin pumping into the Pt layer in all-metallic NiFe/NM/Pt and NiFe/Pt systems.« less

  20. Development of sound measurement systems for auditory functional magnetic resonance imaging.

    PubMed

    Nam, Eui-Cheol; Kim, Sam Soo; Lee, Kang Uk; Kim, Sang Sik

    2008-06-01

    Auditory functional magnetic resonance imaging (fMRI) requires quantification of sound stimuli in the magnetic environment and adequate isolation of background noise. We report the development of two novel sound measurement systems that accurately measure the sound intensity inside the ear, which can simultaneously provide the similar or greater amount of scanner- noise protection than ear-muffs. First, we placed a 2.6 x 2.6-mm microphone in an insert phone that was connected to a headphone [microphone-integrated, foam-tipped insert-phone with a headphone (MIHP)]. This attenuated scanner noise by 37.8+/-4.6 dB, a level better than the reference amount obtained using earmuffs. The nonmetallic optical microphone was integrated with a headphone [optical microphone in a headphone (OMHP)] and it effectively detected the change of sound intensity caused by variable compression on the cushions of the headphone. Wearing the OMHP reduced the noise by 28.5+/-5.9 dB and did not affect echoplanar magnetic resonance images. We also performed an auditory fMRI study using the MIHP system and presented increase in the auditory cortical activation following 10-dB increment in the intensity of sound stimulation. These two newly developed sound measurement systems successfully achieved the accurate quantification of sound stimuli with maintaining the similar level of noise protection of wearing earmuffs in the auditory fMRI experiment.

  1. Development of the heat treatment system for the 40 T hybrid magnet superconducting outsert.

    PubMed

    Chen, W G; Chen, Z M; Chen, Z Y; Huang, P C; He, P; Zhu, J W

    2011-10-01

    The heat treatment of Nb(3)Sn coil with the glass fabric insulation is one of the key and critical processes for the outsert solenoids of the 40 T hybrid magnet, which could be wound with cable-in-conduit conductors using the insulation-wind-and-react technique. The manufacturing of the large vertical type vacuum/Ar atmosphere-protection heat treatment system has been completed and recently installed in the High Magnetic Filed Laboratory, Chinese Academy of Sciences. The heat treatment system composed mainly the furnace, the purging gas supply system, the control system, the gas impurities monitoring system, and so on. At present, the regulation and testing of the heat treatment system has been successfully finished, and all of technical parameters meet or exceed specifications.

  2. Development of the heat treatment system for the 40 T hybrid magnet superconducting outsert

    NASA Astrophysics Data System (ADS)

    Chen, W. G.; Chen, Z. M.; Chen, Z. Y.; Huang, P. C.; He, P.; Zhu, J. W.

    2011-10-01

    The heat treatment of Nb3Sn coil with the glass fabric insulation is one of the key and critical processes for the outsert solenoids of the 40 T hybrid magnet, which could be wound with cable-in-conduit conductors using the insulation-wind-and-react technique. The manufacturing of the large vertical type vacuum/Ar atmosphere-protection heat treatment system has been completed and recently installed in the High Magnetic Filed Laboratory, Chinese Academy of Sciences. The heat treatment system composed mainly the furnace, the purging gas supply system, the control system, the gas impurities monitoring system, and so on. At present, the regulation and testing of the heat treatment system has been successfully finished, and all of technical parameters meet or exceed specifications.

  3. The design of photoelectric signal processing system for a nuclear magnetic resonance gyroscope based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhang, Xian; Zhou, Binquan; Li, Hong; Zhao, Xinghua; Mu, Weiwei; Wu, Wenfeng

    2017-10-01

    Navigation technology is crucial to the national defense and military, which can realize the measurement of orientation, positioning, attitude and speed for moving object. Inertial navigation is not only autonomous, real-time, continuous, hidden, undisturbed but also no time-limited and environment-limited. The gyroscope is the core component of the inertial navigation system, whose precision and size are the bottleneck of the performance. However, nuclear magnetic resonance gyroscope is characteristic of the advantage of high precision and small size. Nuclear magnetic resonance gyroscope can meet the urgent needs of high-tech weapons and equipment development of new generation. This paper mainly designs a set of photoelectric signal processing system for nuclear magnetic resonance gyroscope based on FPGA, which process and control the information of detecting laser .The photoelectric signal with high frequency carrier is demodulated by in-phase and quadrature demodulation method. Finally, the processing system of photoelectric signal can compensate the residual magnetism of the shielding barrel and provide the information of nuclear magnetic resonance gyroscope angular velocity.

  4. Introduction to the magnet and vacuum systems of an electron storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, W.T.

    An accelerator or storage ring complex is a concerted interplay of various functional systems. For the convenience of discussion we can divide it into the following systems: injector, magnet, RF, vacuum, instrumentation and control. In addition, the conventional construction of the building and radiation safety consideration are also needed and finally the beam lines, detector, data acquisition and analysis set-ups for research programs. Dr. L. Teng has given a comprehensive review of the whole complex and the operation of such a facility. I concentrate on the description of magnet and vacuum systems. Only the general function of each system andmore » the basic design concepts will be introduced, no detailed engineering practice will be given which will be best done after a machine design is produced. For further understanding and references a table of bibliography is provided at the end of the paper.« less

  5. Universal control and measuring system for modern classic and amorphous magnetic materials single/on-line strip testers

    NASA Astrophysics Data System (ADS)

    Zemánek, Ivan; Havlíček, Václav

    2006-09-01

    A new universal control and measuring system for classic and amorphous soft magnetic materials single/on-line strip testing has been developed at the Czech Technical University in Prague. The measuring system allows to measure magnetization characteristic and specific power losses of different tested materials (strips) at AC magnetization of arbitrary magnetic flux density waveform at wide range of frequencies 20 Hz-20 kHz. The measuring system can be used for both single strip testing in laboratories and on-line strip testing during the production process. The measuring system is controlled by two-stage master-slave control system consisting of the external PC (master) completed by three special A/D measuring plug-in boards, and local executing control unit (slave) with one-chip microprocessor 8051, connected with PC by the RS232 serial line. The "user friendly" powerful control software implemented on the PC and the effective program code for the microprocessor give possibility for full automatic measurement with high measuring power and high measuring accuracy.

  6. Directed Magnetic Particle Transport above Artificial Magnetic Domains Due to Dynamic Magnetic Potential Energy Landscape Transformation.

    PubMed

    Holzinger, Dennis; Koch, Iris; Burgard, Stefan; Ehresmann, Arno

    2015-07-28

    An approach for a remotely controllable transport of magnetic micro- and/or nanoparticles above a topographically flat exchange-bias (EB) thin film system, magnetically patterned into parallel stripe domains, is presented where the particle manipulation is achieved by sub-mT external magnetic field pulses. Superparamagnetic core-shell particles are moved stepwise by the dynamic transformation of the particles' magnetic potential energy landscape due to the external magnetic field pulses without affecting the magnetic state of the thin film system. The magnetic particle velocity is adjustable in the range of 1-100 μm/s by the design of the substrate's magnetic field landscape (MFL), the particle-substrate distance, and the magnitude of the applied external magnetic field pulses. The agglomeration of magnetic particles is avoided by the intrinsic magnetostatic repulsion of particles due to the parallel alignment of the particles' magnetic moments perpendicular to the transport direction and parallel to the surface normal of the substrate during the particle motion. The transport mechanism is modeled by a quantitative theory based on the precise knowledge of the sample's MFL and the particle-substrate distance.

  7. Magnetic resonance imaging and spectroscopy of the murine cardiovascular system.

    PubMed

    Akki, Ashwin; Gupta, Ashish; Weiss, Robert G

    2013-03-01

    Magnetic resonance imaging (MRI) has emerged as a powerful and reliable tool to noninvasively study the cardiovascular system in clinical practice. Because transgenic mouse models have assumed a critical role in cardiovascular research, technological advances in MRI have been extended to mice over the last decade. These have provided critical insights into cardiac and vascular morphology, function, and physiology/pathophysiology in many murine models of heart disease. Furthermore, magnetic resonance spectroscopy (MRS) has allowed the nondestructive study of myocardial metabolism in both isolated hearts and in intact mice. This article reviews the current techniques and important pathophysiological insights from the application of MRI/MRS technology to murine models of cardiovascular disease.

  8. Hamiltonian dynamics of vortex and magnetic lines in hydrodynamic type systems

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E. A.; Ruban, V. P.

    2000-01-01

    Vortex line and magnetic line representations are introduced for a description of flows in ideal hydrodynamics and magnetohydrodynamics (MHD), respectively. For incompressible fluids, it is shown with the help of this transformation that the equations of motion for vorticity Ω and magnetic field follow from a variational principle. By means of this representation, it is possible to integrate the hydrodynamic type system with the Hamiltonian H=∫\\|Ω\\|dr and some other systems. It is also demonstrated that these representations allow one to remove from the noncanonical Poisson brackets, defined in the space of divergence-free vector fields, the degeneracy connected with the vorticity frozenness for the Euler equation and with magnetic field frozenness for ideal MHD. For MHD, a new Weber-type transformation is found. It is shown how this transformation can be obtained from the two-fluid model when electrons and ions can be considered as two independent fluids. The Weber-type transformation for ideal MHD gives the whole Lagrangian vector invariant. When this invariant is absent, this transformation coincides with the Clebsch representation analog introduced by V.E. Zakharov and E. A. Kuznetsov [Dokl. Ajad. Nauk 194, 1288 (1970) [Sov. Phys. Dokl. 15, 913 (1971)

  9. Study to Establish Ride Comfort Criteria for High Speed Magnetically Levitated Transportation Systems

    DOT National Transportation Integrated Search

    1994-06-01

    Advanced high speed fixed guideway transportation systems such as magnetic levitation systems have speed, acceleration, : and banking capabilities which present new guideway design issues. This increased performance results in new concerns : for pass...

  10. Oval gradient coils for an open magnetic resonance imaging system with a vertical magnetic field.

    PubMed

    Matsuzawa, Koki; Abe, Mitsushi; Kose, Katsumi; Terada, Yasuhiko

    2017-05-01

    Existing open magnetic resonance imaging (MRI) systems use biplanar gradient coils for the spatial encoding of signals. We propose using novel oval gradient coils for an open vertical-field MRI. We designed oval gradients for a 0.3T open MRI system and showed that such a system could outperform a traditional biplanar gradient system while maintaining adequate gradient homogeneity and subject accessibility. Such oval gradient coils would exhibit high efficiency, low inductance and resistance, and high switching capability. Although the designed oval Y and Z coils showed more heat dissipation and less cooling capability than biplanar coils with the same gap, they showed an efficient heat-dissipation path to the surrounding air, which would alleviate the heat problem. The performance of the designed oval-coil system was demonstrated experimentally by imaging a human hand. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Structural characterization of a magnetic granular system under a time-dependent magnetic field: Voronoi tessellation and multifractal analysis

    NASA Astrophysics Data System (ADS)

    Moctezuma, R. E.; Arauz-Lara, J. L.; Donado, F.

    2018-04-01

    The structure of a two-dimensional magnetic granular system was determined by multifractal and Voronoi polygon analysis for a wide range of particle concentrations. Randomizing of the particle motions are produced by applying to the system a time-dependent sinusoidal magnetic field directed along the vertical direction. Both repulsive and attractive short-range interactions between the particles are induced. A direct observation of such system shows qualitatively that, as particle concentration increases, the structure evolves from being liquid-like at low particle concentrations to solid-like at high concentrations. We observe the formation of clusters which are small and weakly bonded and short-lived at low concentrations. Above a threshold particle concentration, clusters grow larger and are more strongly attached. In the system, one can distinguish the mobile particles from the immobile particles belonging to clusters, they can be considered separately as two different phases, a fluid and a solid. We determined the information entropy of the system as a whole and separately from each phase as particle concentration increases. The distribution of the Voronoi polygon areas are well fitted by a two-parameter gamma distribution and we have found that the regularity factor shows a notable change when pieces of the solid phase start to form. The methods we use here show that they can use even when the system is heterogeneous and they provide information when changes start.

  12. Molten metal feed system controlled with a traveling magnetic field

    DOEpatents

    Praeg, Walter F.

    1991-01-01

    A continuous metal casting system in which the feed of molten metal is controlled by means of a linear induction motor capable of producing a magnetic traveling wave in a duct that connects a reservoir of molten metal to a caster. The linear induction motor produces a traveling magnetic wave in the duct in opposition to the pressure exerted by the head of molten metal in the reservoir so that p.sub.c =p.sub.g -p.sub.m where p.sub.c is the desired pressure in the caster, p.sub.g is the gravitational pressure in the duct exerted by the force of the head of molten metal in the reservoir, and p.sub.m is the electromagnetic pressure exerted by the force of the magnetic field traveling wave produced by the linear induction motor. The invention also includes feedback loops to the linear induction motor to control the casting pressure in response to measured characteristics of the metal being cast.

  13. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system.

    PubMed

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  14. Tracking of the magnet system geometry during Wendelstein 7-X construction to achieve the designed magnetic field

    NASA Astrophysics Data System (ADS)

    Andreeva, T.; Bräuer, T.; Bykov, V.; Egorov, K.; Endler, M.; Fellinger, J.; Kißlinger, J.; Köppen, M.; Schauer, F.

    2015-06-01

    Wendelstein 7-X, currently under commissioning at the Max-Planck-Institut für Plasmaphysik in Greifswald, Germany, is a modular advanced stellarator, combining the modular coil concept with optimized properties of the plasma. Most of the envisaged magnetic configurations of the machine are rather sensitive to symmetry breaking perturbations which are the consequence of unavoidable manufacturing and assembly tolerances. This overview describes the successive tracking of the Wendelstein 7-X magnet system geometry starting from the manufacturing of the winding packs up to the modelling of the influence of operation loads. The deviations found were used to calculate the resulting error fields and to compare them with the compensation capacity of the trim coils.

  15. Theory of anisotropic hybridization-broadened magnetic response in cerium and actinide systems

    NASA Astrophysics Data System (ADS)

    Hu, Gong-Jia; Cooper, Bernard R.

    1993-11-01

    Inelastic-neutron-scattering measurements on cerium and plutonium monopnictides, thought to have moderately delocalized f electrons, yield magnetic-excitation spectra with anisotropic dispersion; while reasonably sharp excitations have been observed only for USb and UTe among presumably more-delocalized uranium monopnictides and monochalcogenides. For UTe the broadening as well as the dispersion is quite anisotropic. We have now extended our previous theory for the magnetic behavior of hybridizing partially delocalized f-electron systems to include hybridization-induced relaxation effects in the magnetic response, and this work and results are reported in the present paper. Each partially delocalized f-electron ion is coupled by hybridization to the band sea; and this both leads to a hybridization-mediated anisotropic two-ion interaction giving magnetic ordering and also gives a damping mechanism, via the coupling to the band sea, for the excitations of the magnetically ordered lattice. This coupling also provides a strong renormalization of the magnetic-excitation energies obtained for the ionic lattice coupled by the two-ion interaction. To treat these effects on the magnetic response we have developed a formalism for calculating the dynamic susceptibility based on the projection-operator method developed by Mori and others. We have applied our model and theory to the behavior of CeSb, CeBi, PuSb, UP, UAs, and UTe; and excellent overall agreement with the wide range of unusual experimentally observed anisotropic magnetic-excitation behavior is obtained.

  16. Quantum Theory of Orbital Magnetization and Its Generalization to Interacting Systems

    NASA Astrophysics Data System (ADS)

    Shi, Junren; Vignale, G.; Xiao, Di; Niu, Qian

    2007-11-01

    Based on standard perturbation theory, we present a full quantum derivation of the formula for the orbital magnetization in periodic systems. The derivation is generally valid for insulators with or without a Chern number, for metals at zero or finite temperatures, and at weak as well as strong magnetic fields. The formula is shown to be valid in the presence of electron-electron interaction, provided the one-electron energies and wave functions are calculated self-consistently within the framework of the exact current and spin-density functional theory.

  17. Measuring the magnetic fields of Jupiter and the outer solar system

    NASA Technical Reports Server (NTRS)

    Smith, E. J.; Connor, B. V.; Foster, G. T., Jr.

    1975-01-01

    The vector helium magnetometer, one of the Pioneer-Jupiter experiments, has measured the magnetic field of Jupiter and the interplanetary magnetic field in the outer solar system. The comprehensive scientific objectives of the investigations are explained and are then translated into the major instrument requirements. The principles of operation of the magnetometer, which involve the optical pumping of metastable helium, are discussed and the Pioneer instrument is described. The in-flight performance of the magnetometer is discussed and principal scientific results obtained thus far by the Pioneer investigation are summarized.

  18. DC conductivity and magnetic properties of piezoelectric-piezomagnetic composite system

    NASA Astrophysics Data System (ADS)

    Hemeda, O. M.; Tawfik, A.; A-Al-Sharif; Amer, M. A.; Kamal, B. M.; El Refaay, D. E.; Bououdina, M.

    2012-11-01

    A series of composites (1-x) (Ni0.8Zn0.2Fe2O4)+x (BaTiO3), where x=0%, 20%, 40%, 60%, 80% and 100% BT content, have been prepared by the standard ceramic technique, then sintered at 1200 °C for 8 h. X-ray diffraction analysis shows that the prepared composites consist of two phases, ferrimagnetic and ferroelectric. DC electrical resistivity, thermoelectric power, charge carriers concentration and charge carrier mobility have been studied at different temperatures. It was found that the DC electrical conductivity increases with increasing BT content. The values of the thermoelectric power were positive and negative for the composites indicating that there are two conduction mechanisms, hopping and band conduction, respectively. Using the values of DC electrical conductivity and thermoelectric power, the values of charge carrier mobility and the charge carrier concentration were calculated. Magnetic measurements (hysteresis loop and magnetic permeability) show that the magnetization decreases by increasing BT content. M-H loop of pure Ni0.6 Zn0.4 Fe2O4 composite indicates that it is paramagnetic at room temperature and that the magnetization is diluted by increasing the BT content in the composite system. The value of magnetoelectric coefficient for the composites decreases by increasing BT content for all the compositions except for 40% BT content, which may be due to the low resistivity of magnetic phase compared with the BT phase that causes a leakage of induced charges on the piezoelectric phase. Since both ferroelectric and magnetic phases preserve their basic properties in the bulk composite, the present BT-NZF composite are potential candidates for applications as pollution sensors and electromagnetic waves.

  19. Implementation of a decoupled controller for a magnetic suspension system using electromagnets mounted in a planar array

    NASA Technical Reports Server (NTRS)

    Cox, D. E.; Groom, N. J.

    1994-01-01

    An implementation of a decoupled, single-input/single-output control approach for a large angle magnetic suspension test fixture is described. Numerical and experimental results are presented. The experimental system is a laboratory model large gap magnetic suspension system which provides five degree-of-freedom control of a cylindrical suspended element. The suspended element contains a core composed of permanent magnet material and is levitated above five electromagnets mounted in a planar array.

  20. Nonlinear dynamics of a magnetically driven Duffing-type spring-magnet oscillator in the static magnetic field of a coil

    NASA Astrophysics Data System (ADS)

    Donoso, Guillermo; Ladera, Celso L.

    2012-11-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the first, excited with an ac current, provides the oscillating magnetic driving force on the system. From the magnet-coil interactions, we obtain, analytically, the nonlinear motion equation of the system, found to be a forced and damped cubic Duffing oscillator moving in a quartic potential. The relative strengths of the coefficients of the motion equation can be easily set by varying the coils’ dc and ac currents. We demonstrate, theoretically and experimentally, the nonlinear behaviour of this oscillator, including its oscillation modes and nonlinear resonances, the fold-over effect, the hysteresis and amplitude jumps, and its chaotic behaviour. It is an oscillating system suitable for teaching an advanced experiment in nonlinear dynamics both at senior undergraduate and graduate levels.

  1. [Mechanical Shimming Method and Implementation for Permanent Magnet of MRI System].

    PubMed

    Xue, Tingqiang; Chen, Jinjun

    2015-03-01

    A mechanical shimming method and device for permanent magnet of MRI system has been developed to meet its stringent homogeneity requirement without time-consuming passive shimming on site, installation and adjustment efficiency has been increased.

  2. High performance magnetic bearing systems using high temperature superconductors

    DOEpatents

    Abboud, Robert G.

    1998-01-01

    A magnetic bearing apparatus and a method for providing at least one stabilizing force in a magnetic bearing structure with a superconducting magnetic assembly and a magnetic assembly, by providing a superconducting magnetic member in the superconducting magnetic assembly with a plurality of domains and arranging said superconducting magnetic member such that at least one domain has a domain C-axis vector alignment angularly disposed relative to a reference axis of the magnetic member in the magnetic assembly.

  3. Systems and methods for creation of conducting networks of magnetic particles through dynamic self-assembly process

    DOEpatents

    Snezhko, Oleksiy [Woodridge, IL; Aronson, Igor [Darien, IL; Kwok, Wai-Kwong [Downers Grove, IL

    2011-01-25

    Self-assembly of magnetic microparticles in AC magnetic fields. Excitation of the system by an AC magnetic field provides a variety of patterns that can be controlled by adjusting the frequency and the amplitude of the field. At low particle densities the low-frequency magnetic excitation favors cluster phase formation, while high frequency excitation favors chains and netlike structures. For denser configurations, an abrupt transition to the network phase was obtained.

  4. Micromagnetism in a planar system with a random magnetic anisotropy and two-dimensional magnetic correlations

    NASA Astrophysics Data System (ADS)

    Komogortsev, S. V.; Fel'k, V. A.; Iskhakov, R. S.; Shadrina, G. V.

    2017-08-01

    The hysteresis loops and the micromagnetic structure of a ferromagnetic nanolayer with a randomly oriented local easy magnetization axis and two-dimensional magnetization correlations are studied using a micromagnetic simulation. The properties and the micromagnetic structure of the nanolayer are determined by the competition between the anisotropy and exchange energies and by the dipole-dipole interaction energy. The magnetic microstructure can be described as an ensemble of stochastic magnetic domains and topological magnetization defects. Dipole-dipole interaction suppresses the formation of topological magnetization defects. The topological defects in the magnetic microstructure can cause a sharper change in the coercive force with the crystallite size than that predicted by the random magnetic anisotropy model.

  5. Polymerase chain reaction system using magnetic beads for analyzing a sample that includes nucleic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasarabadi, Shanavaz

    2011-01-11

    A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reactionmore » chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.« less

  6. Magnetic Diagenesis in the Gas Hydrate System

    NASA Astrophysics Data System (ADS)

    Enkin, R. J.; Hamilton, T. S.; Esteban, L.

    2009-05-01

    Natural gas hydrate is a methane-bearing form of ice which occurs in permafrost and continental slope settings. Geochemical processes associated with gas hydrate formation lead to the growth of iron sulphides which have a geophysically measurable magnetic signature. Detailed magnetic investigation and complementary petrological observations were undertaken on unconsolidated sediments from three gas hydrate (GH) settings: permafrost in fluvial-deltaic silts and sands in the Western Canadian Arctic (Japex et al. Mallik 5L-38 in 2002); diamictons and hemipelagics in the Cascadia accretionary wedge west of Vancouver Island (IODP Exp.311 in 2006); and marine sands and hemipelagics from the Bay of Bengal (NGHP Exp.01 in 2007). These magnetic measurements provide stratigraphic profiles which reveal fine scale variations in lithology, magnetic grain size, and paleo-pore fluid geochemistry. The highest magnetic susceptibility values are observed in strata which preserve high initial concentrations of detrital magnetite, such as glacial deposits. The lowest values of magnetic susceptibility are observed where iron has been reduced to paramagnetic pyrite, formed in settings with high methane and sulphate flux such as at methane vents. Enhanced values of magnetic susceptibility characterize the introduction of the ferrimagnetic iron sulphide minerals greigite and smythite. These magnetic minerals are mostly found immediately adjacent to the sedimentary horizons which host the gas hydrate and their textures and compositions indicate rapid disequilibrium crystallization. The observed diagenesis result from the unique physical and geochemical properties of the environment where gas hydrates form: methane is available to fuel microbiological activity and the freezing which accompanied GH crystallization quickly removed pure water, froze the sediments into an impermeable solid and expelled more concentrated brines into the adjacent less permeable strata to the point of inducing

  7. High performance magnetic bearing systems using high temperature superconductors

    DOEpatents

    Abboud, R.G.

    1998-05-05

    Disclosed are a magnetic bearing apparatus and a method for providing at least one stabilizing force in a magnetic bearing structure with a superconducting magnetic assembly and a magnetic assembly, by providing a superconducting magnetic member in the superconducting magnetic assembly with a plurality of domains and arranging said superconducting magnetic member such that at least one domain has a domain C-axis vector alignment angularly disposed relative to a reference axis of the magnetic member in the magnetic assembly. 7 figs.

  8. Some aspects of wind tunnel magnetic suspension systems with special application at large physical scales

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.

    1983-01-01

    Wind tunnel magnetic suspension and balance systems (MSBSs) have so far failed to find application at the large physical scales necessary for the majority of aerodynamic testing. Three areas of technology relevant to such application are investigated. Two variants of the Spanwise Magnet roll torque generation scheme are studied. Spanwise Permanent Magnets are shown to be practical and are experimentally demonstrated. Extensive computations of the performance of the Spanwise Iron Magnet scheme indicate powerful capability, limited principally be electromagnet technology. Aerodynamic testing at extreme attitudes is shown to be practical in relatively conventional MSBSs. Preliminary operation of the MSBS over a wide range of angles of attack is demonstrated. The impact of a requirement for highly reliable operation on the overall architecture of Large MSBSs is studied and it is concluded that system cost and complexity need not be seriously increased.

  9. Multipeak low-temperature behavior of specific heat capacity in frustrated magnetic systems: An exact theoretical analysis

    NASA Astrophysics Data System (ADS)

    Jurčišinová, E.; Jurčišin, M.

    2018-05-01

    We investigate in detail the process of formation of the multipeak low-temperature structure in the behavior of the specific heat capacity in frustrated magnetic systems in the framework of the exactly solvable antiferromagnetic spin-1 /2 Ising model with the multisite interaction in the presence of the external magnetic field on the kagome-like Husimi lattice. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. It is shown that the multipeak structure in the behavior of the specific heat capacity is related to the formation of the multilevel hierarchical ordering in the system of all ground states of the model. Direct relation between the maximal number of peaks in the specific heat capacity behavior and the number of independent interactions in studied frustrated magnetic system is identified. The mechanism of the formation of the multipeak structure in the specific heat capacity is described and studied in detail, and it is generalized to frustrated magnetic systems with arbitrary numbers of independent interactions.

  10. Three-dimensional magnetic bubble memory system

    NASA Technical Reports Server (NTRS)

    Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor)

    1994-01-01

    A compact memory uses magnetic bubble technology for providing data storage. A three-dimensional arrangement, in the form of stacks of magnetic bubble layers, is used to achieve high volumetric storage density. Output tracks are used within each layer to allow data to be accessed uniquely and unambiguously. Storage can be achieved using either current access or field access magnetic bubble technology. Optical sensing via the Faraday effect is used to detect data. Optical sensing facilitates the accessing of data from within the three-dimensional package and lends itself to parallel operation for supporting high data rates and vector and parallel processing.

  11. Magnetic storm effects in electric power systems and prediction needs

    NASA Technical Reports Server (NTRS)

    Albertson, V. D.; Kappenman, J. G.

    1979-01-01

    Geomagnetic field fluctuations produce spurious currents in electric power systems. These currents enter and exit through points remote from each other. The fundamental period of these currents is on the order of several minutes which is quasi-dc compared to the normal 60 Hz or 50 Hz power system frequency. Nearly all of the power systems problems caused by the geomagnetically induced currents result from the half-cycle saturation of power transformers due to simultaneous ac and dc excitation. The effects produced in power systems are presented, current research activity is discussed, and magnetic storm prediction needs of the power industry are listed.

  12. Origin of magnetic highs at ultramafic hosted hydrothermal systems: Insights from the Yokoniwa site of Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Fujii, Masakazu; Okino, Kyoko; Sato, Taichi; Sato, Hiroshi; Nakamura, Kentaro

    2016-05-01

    High-resolution vector magnetic measurements were performed on an inactive ultramafic-hosted hydrothermal vent field, called Yokoniwa Hydrothermal Field (YHF), using a deep-sea manned submersible Shinkai6500 and an autonomous underwater vehicle r2D4. The YHF has developed at a non-transform offset massif of the Central Indian Ridge. Dead chimneys were widely observed around the YHF along with a very weak venting of low-temperature fluids so that hydrothermal activity of the YHF was almost finished. The distribution of crustal magnetization from the magnetic anomaly revealed that the YHF is associated with enhanced magnetization, as seen at the ultramafic-hosted Rainbow and Ashadze-1 hydrothermal sites of the Mid-Atlantic Ridge. The results of rock magnetic analysis on seafloor rock samples (including basalt, dolerite, gabbro, serpentinized peridotite, and hydrothermal sulfide) showed that only highly serpentinized peridotite carries high magnetic susceptibility and that the natural remanent magnetization intensity can explain the high magnetization of Yokoniwa. These observations reflect abundant and strongly magnetized magnetite grains within the highly serpentinized peridotite. Comparisons with the Rainbow and Ashadze-1 suggest that in ultramafic-hosted hydrothermal systems, strongly magnetized magnetite and pyrrhotite form during the progression of hydrothermal alteration of peridotite. After the completion of serpentinization and production of hydrogen, pyrrhotites convert into pyrite or nonmagnetic iron sulfides, which considerably reduces their levels of magnetization. Our results revealed origins of the magnetic high and the development of subsurface chemical processes in ultramafic-hosted hydrothermal systems. Furthermore, the results highlight the use of near-seafloor magnetic field measurements as a powerful tool for detecting and characterizing seafloor hydrothermal systems.

  13. Magnetic measurements of the XLS magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, L.; Galayda, J.; Sylvester, C.

    1991-01-01

    The magnets designed and built for Phase 1 (200MeV) of the XLS (X-Ray Lithography Source) project have all been measured and characterized. In this paper, the measurement system designed and utilized for the Phase 1 180 degree dipole magnets is reviewed. Hall probe measurements of the two dipole magnets, with a field of 1.1 Tesla at 1200 amperes, are discussed and presented. Phase 2 (700MeV) of this project includes replacement of the two room temperature dipole magnets with superconducting dipoles (3.9Tesla). 3 figs., 1 tab.

  14. Aerospace applications of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-01-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  15. Aerospace applications of magnetic bearings

    NASA Astrophysics Data System (ADS)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-05-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  16. Design of a 3-D Magnetic Mapping System to Locate Reinforcing Steel in Concrete Pavements

    DOT National Transportation Integrated Search

    2017-12-01

    This report outlines the design, fabrication, and testing of a 3-D magnetic mapping system used to locate reinforcing steel in concrete pavements developed at Kansas State University (KSU) in 2006. The magnetic sensing functionality is based on the p...

  17. Development of a differentially balanced magnetic bearing and control system for use with a flywheel energy storage system

    NASA Technical Reports Server (NTRS)

    Higgins, Mark A.; Plant, David P.; Ries, Douglas M.; Kirk, James A.; Anand, Davinder K.

    1992-01-01

    The purpose of a magnetically suspended flywheel energy storage system for electric utility load leveling is to provide a means to store energy during times when energy is inexpensive to produce and then return it to the customer during times of peak power demand when generated energy is most expensive. The design of a 20 kWh flywheel energy storage system for electric utility load leveling applications involves the successful integration of a number of advanced technologies so as to minimize the size and cost of the system without affecting its efficiency and reliability. The flywheel energy storage system uses a carbon epoxy flywheel, two specially designed low loss magnetic bearings, a high efficiency motor generator, and a 60 cycle AC power converter all integrated through a microprocessor controller. The basic design is discussed of each of the components that is used in the energy storage design.

  18. Evolving Requirements for Magnetic Tape Data Storage Systems

    NASA Technical Reports Server (NTRS)

    Gniewek, John J.

    1996-01-01

    Magnetic tape data storage systems have evolved in an environment where the major applications have been back-up/restore, disaster recovery, and long term archive. Coincident with the rapidly improving price-performance of disk storage systems, the prime requirements for tape storage systems have remained: (1) low cost per MB, (2) a data rate balanced to the remaining system components. Little emphasis was given to configuring the technology components to optimize retrieval of the stored data. Emerging new applications such as network attached high speed memory (HSM), and digital libraries, place additional emphasis and requirements on the retrieval of the stored data. It is therefore desirable to consider the system to be defined both by STorage And Retrieval System (STARS) requirements. It is possible to provide comparative performance analysis of different STARS by incorporating parameters related to (1) device characteristics, and (2) application characteristics in combination with queuing theory analysis. Results of these analyses are presented here in the form of response time as a function of system configuration for two different types of devices and for a variety of applications.

  19. Avulsed Nasoenteric Bridle System Magnet as an Intranasal Foreign Body.

    PubMed

    Puricelli, Michael D; Newberry, Christopher Ian; Gov-Ari, Eliav

    2016-02-01

    Nasoenteric tubes provide short-term nutrition support to patients unable to take an adequate oral diet. Bridling systems may be used to secure tubes to guard against displacement. We present the first case of an avulsed magnet from a bridling system to raise awareness of this potential complication. The primary methods of securing a nasogastric tube are reviewed, and comparative assessment of the 3 main systems is presented. Diagnosis and management of nasal foreign bodies relevant to this case are reviewed and prevention/safety considerations discussed. © 2015 American Society for Parenteral and Enteral Nutrition.

  20. SU-E-T-590: Optimizing Magnetic Field Strengths with Matlab for An Ion-Optic System in Particle Therapy Consisting of Two Quadrupole Magnets for Subsequent Simulations with the Monte-Carlo Code FLUKA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, K; Weber, U; Simeonov, Y

    Purpose: Aim of this study was to optimize the magnetic field strengths of two quadrupole magnets in a particle therapy facility in order to obtain a beam quality suitable for spot beam scanning. Methods: The particle transport through an ion-optic system of a particle therapy facility consisting of the beam tube, two quadrupole magnets and a beam monitor system was calculated with the help of Matlab by using matrices that solve the equation of motion of a charged particle in a magnetic field and field-free region, respectively. The magnetic field strengths were optimized in order to obtain a circular andmore » thin beam spot at the iso-center of the therapy facility. These optimized field strengths were subsequently transferred to the Monte-Carlo code FLUKA and the transport of 80 MeV/u C12-ions through this ion-optic system was calculated by using a user-routine to implement magnetic fields. The fluence along the beam-axis and at the iso-center was evaluated. Results: The magnetic field strengths could be optimized by using Matlab and transferred to the Monte-Carlo code FLUKA. The implementation via a user-routine was successful. Analyzing the fluence-pattern along the beam-axis the characteristic focusing and de-focusing effects of the quadrupole magnets could be reproduced. Furthermore the beam spot at the iso-center was circular and significantly thinner compared to an unfocused beam. Conclusion: In this study a Matlab tool was developed to optimize magnetic field strengths for an ion-optic system consisting of two quadrupole magnets as part of a particle therapy facility. These magnetic field strengths could subsequently be transferred to and implemented in the Monte-Carlo code FLUKA to simulate the particle transport through this optimized ion-optic system.« less