Sample records for kidney damage caused

  1. Methimazole-induced hypothyroidism causes cellular damage in the spleen, heart, liver, lung and kidney.

    PubMed

    Cano-Europa, Edgar; Blas-Valdivia, Vanessa; Franco-Colin, Margarita; Gallardo-Casas, Carlos Angel; Ortiz-Butrón, Rocio

    2011-01-01

    It is known that a hypothyroidism-induced hypometabolic state protects against oxidative damage caused by toxins. However, some workers demonstrated that antithyroid drug-induced hypothyroidism can cause cellular damage. Our objective was to determine if methimazole (an antithyroid drug) or hypothyroidism causes cellular damage in the liver, kidney, lung, spleen and heart. Twenty-five male Wistar rats were divided into 5 groups: euthyroid, false thyroidectomy, thyroidectomy-induced hypothyroidism, methimazole-induced hypothyroidism (60 mg/kg), and treatment with methimazole (60 mg/kg) and a T₄ injection (20 μg/kg/d sc). At the end of the treatments (4 weeks for the pharmacological groups and 8 weeks for the surgical groups), the animals were anesthetized with sodium pentobarbital and they were transcardially perfused with 10% formaldehyde. The spleen, heart, liver, lung and kidney were removed and were processed for embedding in paraffin wax. Coronal sections were stained with hematoxylin-eosin. At the end of treatment, animals with both the methimazole- and thyroidectomy-induced hypothyroidism had a significant reduction of serum concentration of thyroid hormones. Only methimazole-induced hypothyroidism causes cellular damage in the kidney, lung, liver, heart, kidney and spleen. In addition, animals treated with methimazole and T₄ showed cellular damage in the lung, spleen and renal medulla with lesser damage in the liver, renal cortex and heart. The thyroidectomy only altered the lung structure. The alterations were prevented by T₄ completely in the heart and partially in the kidney cortex. These results indicate that tissue damage found in hypothyroidism is caused by methimazole. Copyright © 2009 Elsevier GmbH. All rights reserved.

  2. Cutaneous exposure to lewisite causes acute kidney injury by invoking DNA damage and autophagic response.

    PubMed

    Srivastava, Ritesh K; Traylor, Amie M; Li, Changzhao; Feng, Wenguang; Guo, Lingling; Antony, Veena B; Schoeb, Trenton R; Agarwal, Anupam; Athar, Mohammad

    2018-06-01

    Lewisite (2-chlorovinyldichloroarsine) is an organic arsenical chemical warfare agent that was developed and weaponized during World Wars I/II. Stockpiles of lewisite still exist in many parts of the world and pose potential environmental and human health threat. Exposure to lewisite and similar chemicals causes intense cutaneous inflammatory response. However, morbidity and mortality in the exposed population is not only the result of cutaneous damage but is also a result of systemic injury. Here, we provide data delineating the pathogenesis of acute kidney injury (AKI) following cutaneous exposure to lewisite and its analog phenylarsine oxide (PAO) in a murine model. Both agents caused renal tubular injury, characterized by loss of brush border in proximal tubules and tubular cell apoptosis accompanied by increases in serum creatinine, neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1. Interestingly, lewisite exposure enhanced production of reactive oxygen species (ROS) in the kidney and resulted in the activation of autophagic and DNA damage response (DDR) signaling pathways with increased expression of beclin-1, autophagy-related gene 7, and LC-3A/B-II and increased phosphorylation of γ-H 2 A.X and checkpoint kinase 1/2, respectively. Terminal deoxyribonucleotide-transferase-mediated dUTP nick-end labeling-positive cells were detected in renal tubules along with enhanced proapoptotic BAX/cleaved caspase-3 and reduced antiapoptotic BCL 2 . Scavenging ROS by cutaneous postexposure application of the antioxidant N-acetyl-l-cysteine reduced lewisite-induced autophagy and DNA damage. In summary, we provide evidence that topical exposure to lewisite causes AKI. The molecular mechanism underlying these changes involves ROS-dependent activation of autophagy and DDR pathway associated with the induction of apoptosis.

  3. Varied dose exposures to ultrafine particles in the motorcycle smoke cause kidney cell damages in male mice.

    PubMed

    Wardoyo, Arinto Y P; Juswono, Unggul P; Noor, Johan A E

    2018-01-01

    Ultrafine particles (UFPs) are one of motorcycle exhaust emissions which can penetrate the lung alveoli and deposit in the kidney. This study was aimed to investigate mice kidney cell physical damage (deformation) due to motorcycle exhaust emission exposures. The motorcycle exhaust emissions were sucked from the muffler with the rate of 33 cm 3 /s and passed through an ultrafine particle filter system before introduced into the mice exposure chamber. The dose concentration of the exhaust emissions was varied by setting the injected time of the 20s, 40s, 60s, 80s, and 100s. The mice were exposed to the smoke in the chamber for 100 s twice a day. The impact of the ultrafine particles on the kidney was observed by identifying the histological image of the kidney cell deformation using a microscope. The exposure was conducted for 10 days. The kidney observations were carried out on day 11. The results showed that there was a significant linear correlation between the total concentration of ultrafine particles deposited in the kidneys and the physical damage percentages. The increased concentrations of ultrafine particles caused larger cell deformation to the kidneys.

  4. Spectroscopic photoacoustics for assessing ischemic kidney damage

    NASA Astrophysics Data System (ADS)

    Berndl, Elizabeth S. L.; He, Xiaolin; Yuen, Darren A.; Kolios, Michael C.

    2018-02-01

    Ischemic reperfusion injuries (IRIs) are caused by return of blood to a tissue or organ after a period without oxygen or nutrients. Damage in the microvasculature causes an inflammatory response and heterogeneous scarring, which is associated with an increase in collagen in the extracellular matrix. Although most often associated with heart attacks and strokes, IRI also occurs when blood reperfuses a transplanted organ. Currently, monitoring for IRI is limited to biopsies, which are invasive and sample a limited area. In this work, we explored photoacoustic (PA) biomarkers of scarring. IRI events were induced in mice (n=2) by clamping the left renal artery, then re-establishing flow. At 53 days post-surgery, kidneys were saline perfused and cut in half laterally. One half was immediately imaged with a VevoX system (Fujifilm-VisualSonics, Toronto) in two near infrared ranges - 680 to 970 nm (NIR), and 1200 to 1350 nm (NIR II). The other half was decellularized and then imaged at NIR and NIR II. Regions of interest were manually identified and analyzed for each kidney. For both cellularized and decellularized samples, the PA signal ratio based on irradiation wavelengths of 715:930 nm was higher in damaged kidneys than for undamaged kidneys (p < 0.0001 for both). Damaged kidneys had ROIs with spectra indicating the presence of collagen in the NIR II range, while healthy kidneys did not. Collagen rich spectra were more apparent in decellularized kidneys, suggesting that in the cellularized samples, other components may be contributing to the signal. PA imaging using spectral ratios associated with collagen signatures may provide a non-invasive tool to determine areas of tissue damage due to IRIs.

  5. Damages Learning and Memory in Alzheimer's Disease Rats with Kidney-Yang Deficiency

    PubMed Central

    Qi, Dongmei; Qiao, Yongfa; Zhang, Xin; Yu, Huijuan; Cheng, Bin; Qiao, Haifa

    2012-01-01

    Previous studies demonstrated that Alzheimer's disease was considered as the consequence produced by deficiency of Kidney essence. However, the mechanism underlying the symptoms also remains elusive. Here we report that spatial learning and memory, escape, and swimming capacities were damaged significantly in Kidney-yang deficiency rats. Indeed, both hippocampal Aβ 40 and 42 increases in Kidney-yang deficiency contribute to the learning and memory impairments. Specifically, damage of synaptic plasticity is involved in the learning and memory impairment of Kidney-yang deficiency rats. We determined that the learning and memory damage in Kidney-yang deficiency due to synaptic plasticity impairment and increases of Aβ 40 and 42 was not caused via NMDA receptor internalization induced by Aβ increase. β-Adrenergic receptor agonist can rescue the impaired long-term potential (LTP) in Kidney-yang rats. Taken together, our results suggest that spatial learning and memory inhibited in Kidney-yang deficiency might be induced by Aβ increase and the decrease of β 2 receptor function in glia. PMID:22645624

  6. Estrogens and progression of diabetic kidney damage.

    PubMed

    Doublier, Sophie; Lupia, Enrico; Catanuto, Paola; Elliot, Sharon J

    2011-01-01

    It is generally accepted that estrogens affect and modulate the development and progression of chronic kidney diseases (CKD) not related to diabetes. Clinical studies have indeed demonstrated that the severity and rate of progression of renal damage tends to be greater among men, compared with women. Experimental studies also support the notion that female sex is protective and male sex permissive, for the development of CKD in non-diabetics, through the opposing actions of estrogens and testosterone. However, when we consider diabetes-induced kidney damage, in the setting of either type 1 or type 2 diabetes, the contribution of gender to the progression of renal disease is somewhat uncertain. Previous studies on the effects of estrogens in the pathogenesis of progressive kidney damage have primarily focused on mesangial cells. More recently, data on the effects of estrogens on podocytes, the cell type whose role may include initiation of progressive diabetic renal disease, became available. The aim of this review will be to summarize the main clinical and experimental data on the effects of estrogens on the progression of diabetes-induced kidney injury. In particular, we will highlight the possible biological effects of estrogens on podocytes, especially considering those critical for the pathogenesis of diabetic kidney damage.

  7. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury

    PubMed Central

    Maejima, Ikuko; Takahashi, Atsushi; Omori, Hiroko; Kimura, Tomonori; Takabatake, Yoshitsugu; Saitoh, Tatsuya; Yamamoto, Akitsugu; Hamasaki, Maho; Noda, Takeshi; Isaka, Yoshitaka; Yoshimori, Tamotsu

    2013-01-01

    Diverse causes, including pathogenic invasion or the uptake of mineral crystals such as silica and monosodium urate (MSU), threaten cells with lysosomal rupture, which can lead to oxidative stress, inflammation, and apoptosis or necrosis. Here, we demonstrate that lysosomes are selectively sequestered by autophagy, when damaged by MSU, silica, or the lysosomotropic reagent L-Leucyl-L-leucine methyl ester (LLOMe). Autophagic machinery is recruited only on damaged lysosomes, which are then engulfed by autophagosomes. In an autophagy-dependent manner, low pH and degradation capacity of damaged lysosomes are recovered. Under conditions of lysosomal damage, loss of autophagy causes inhibition of lysosomal biogenesis in vitro and deterioration of acute kidney injury in vivo. Thus, we propose that sequestration of damaged lysosomes by autophagy is indispensable for cellular and tissue homeostasis. PMID:23921551

  8. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury.

    PubMed

    Maejima, Ikuko; Takahashi, Atsushi; Omori, Hiroko; Kimura, Tomonori; Takabatake, Yoshitsugu; Saitoh, Tatsuya; Yamamoto, Akitsugu; Hamasaki, Maho; Noda, Takeshi; Isaka, Yoshitaka; Yoshimori, Tamotsu

    2013-08-28

    Diverse causes, including pathogenic invasion or the uptake of mineral crystals such as silica and monosodium urate (MSU), threaten cells with lysosomal rupture, which can lead to oxidative stress, inflammation, and apoptosis or necrosis. Here, we demonstrate that lysosomes are selectively sequestered by autophagy, when damaged by MSU, silica, or the lysosomotropic reagent L-Leucyl-L-leucine methyl ester (LLOMe). Autophagic machinery is recruited only on damaged lysosomes, which are then engulfed by autophagosomes. In an autophagy-dependent manner, low pH and degradation capacity of damaged lysosomes are recovered. Under conditions of lysosomal damage, loss of autophagy causes inhibition of lysosomal biogenesis in vitro and deterioration of acute kidney injury in vivo. Thus, we propose that sequestration of damaged lysosomes by autophagy is indispensable for cellular and tissue homeostasis.

  9. Pre-Treatment with Curcumin Ameliorates Cisplatin-Induced Kidney Damage by Suppressing Kidney Inflammation and Apoptosis in Rats.

    PubMed

    Soetikno, Vivian; Sari, Shinta Dewi Permata; Ul Maknun, Lulu; Sumbung, Nielda Kezia; Rahmi, Deliana Nur Ihsani; Pandhita, Bashar Adi Wahyu; Louisa, Melva; Estuningtyas, Ari

    2018-06-26

    In addition to oxidative stress, inflammation and apoptosis have an important role in the pathogenesis of cisplatin-induced kidney damage. This study aimed to investigate the molecular mechanisms of protective effects of curcumin against cisplatin-induced kidney inflammation and apoptosis in rats. Eighteen rats were equally divided into three groups; normal (0.5% CMC-Na), cisplatin (CDPP) (7 mg/kg i.p.), and cisplatin+curcumin (CMN100) groups. Curcumin was given at a dose of 100 mg/kg orally for nine days, starts one week before giving a single dose of cisplatin. Kidney and plasma were taken for analysis. Cisplatin challenged rats demonstrated kidney injury as shown by reduced creatinine clearance, increased of plasma BUN, plasma creatinine, and kidney MDA, decreased of kidney GSH levels, and kidney histopathology alterations. Also, cisplatin increased ERK1/2 phosphorylation and NF-κB expression, which subsequently increased mRNA expression of TNF-α, IL-6, KIM-1, NGAL, and Bax/Bcl-2 ratio as well as decreased mRNA expression of IL-10 in kidney tissues. Pre-treatment with curcumin significantly ameliorated inflammation and apoptosis induced by cisplatin. In addition, curcumin downregulated Ctr1 and OCT2 drug transporters as compared to cisplatin group. Histopathological examination furthers confirmed the kidney damage protection effect of curcumin. These data indicate that curcumin has nephroprotective properties against cisplatin-induced kidney damage in rats and this effect is associated with its anti-inflammatory and anti-apoptosis profiles, in addition to its antioxidant. Hence, curcumin may be useful for preventing kidney damage against cisplatin administration. © Georg Thieme Verlag KG Stuttgart · New York.

  10. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin.

    Arsenic causes cancer in human skin, urinary bladder, lung, liver and kidney and is a significant world-wide public health problem. Although the metabolism of inorganic arsenic is ...

  11. Haloperidol-loaded lipid-core polymeric nanocapsules reduce DNA damage in blood and oxidative stress in liver and kidneys of rats

    NASA Astrophysics Data System (ADS)

    Roversi, Katiane; Benvegnú, Dalila M.; Roversi, Karine; Trevizol, Fabíola; Vey, Luciana T.; Elias, Fabiana; Fracasso, Rafael; Motta, Mariana H.; Ribeiro, Roseane F.; dos S. Hausen, Bruna; Moresco, Rafael N.; Garcia, Solange C.; da Silva, Cristiane B.; Burger, Marilise E.

    2015-04-01

    Haloperidol (HP) nanoencapsulation improves therapeutic efficacy, prolongs the drug action time, and reduces its motor side effects. However, in a view of HP toxicity in organs like liver and kidneys in addition to the lack of knowledge regarding the toxicity of polymeric nanocapsules, our aim was to verify the influence of HP-nanoformulation on toxicity and oxidative stress markers in the liver and kidneys of rats, also observing the damage caused in the blood. For such, 28 adult male Wistar rats were designated in four experimental groups ( n = 7) and treated with vehicle (C group), free haloperidol suspension (FH group), blank nanocapsules suspension (B-Nc group), and haloperidol-loaded lipid-core nanocapsules suspension (H-Nc group). The nanocapsules formulation presented the size of approximately 250 nm. All suspensions were administered to the animals (0.5 mg/kg/day-i.p.) for a period of 28 days. Our results showed that FH caused damage in the liver, evidenced by increased lipid peroxidation, plasma levels of aspartate aminotransferase, and alanine aminotransferase, as well as decreased cellular integrity and vitamin C levels. In kidneys, FH treatment caused damage to a lesser extent, observed by decreased activity of δ-aminolevulinate dehydratase (ALA-D) and levels of VIT C. In addition, FH treatment was also related to a higher DNA damage index in blood. On the other hand, animals treated with H-Nc and B-Nc did not show damage in liver, kidneys, and DNA. Our study indicates that the nanoencapsulation of haloperidol was able to prevent the sub-chronic toxicity commonly observed in liver, kidneys, and DNA, thus reflecting a pharmacological superiority in relation to free drug.

  12. Acute kidney failure

    MedlinePlus

    Kidney failure; Renal failure; Renal failure - acute; ARF; Kidney injury - acute ... There are many possible causes of kidney damage. They include: ... cholesterol (cholesterol emboli) Decreased blood flow due to very ...

  13. Sulphonylurea drugs reduce hypoxic damage in the isolated perfused rat kidney.

    PubMed

    Engbersen, R; Moons, M M; Wouterse, A C; Dijkman, H B; Kramers, C; Smits, P; Russel, F G

    2000-08-01

    Sulphonylurea drugs have been shown to protect against hypoxic damage in isolated proximal tubules of the kidney. In the present study we investigated whether these drugs can protect against hypoxic damage in a whole kidney preparation. Tolbutamide (200 microM) and glibenclamide (10 microM) were applied to the isolated perfused rat kidney prior to changing the gassing from oxygen to nitrogen for 30 min. Hypoxic perfusions resulted in an increased fractional excretion of glucose (FE % glucose 14.3+/-1.5 for hypoxic perfusions vs 4.9+/-1.6 for normoxic perfusions, mean +/- s.e. mean, P<0.05), which could be completely restored by 200 microM tolbutamide (5.7+/-0.4 for tolbutamide vs 14.3+/-1.5 for untreated hypoxic kidneys, P<0.01). Furthermore, tolbutamide reduced the total amount of LDH excreted in the urine (220+/-100 mU for tolbutamide vs. 1220+/-160 mU for untreated hypoxic kidneys, P<0.01). Comparable results were obtained with glibenclamide (10 microM). In agreement with the effect on functional parameters, ultrastructural analysis of proximal tubules showed increased brush border preservation in tolbutamide treated kidneys compared to untreated hypoxic kidneys. We conclude that glibenclamide and tolbutamide are both able to reduce hypoxic damage to proximal tubules in the isolated perfused rat kidney when applied in the appropriate concentrations.

  14. A case of acute kidney injury caused by granulomatous interstitial nephritis associated with sarcoidosis.

    PubMed

    Horino, Taro; Matsumoto, Tatsuki; Inoue, Kosuke; Ichii, Osamu; Terada, Yoshio

    2018-05-01

    Sarcoidosis affects multiple organs including lung, heart and kidney. Sarcoidosis causes hypercalcemia, hypergammaglobulinemia, and rarely, granulomatous interstitial nephritis, resulting in renal stromal damage. Granulomatous interstitial nephritis is characterized as interstitial nephritis with noncaseating epithelioid granulomas. Diagnosing granulomatous interstitial nephritis before patient's death is challenging; hence, only few cases proven by renal biopsy have been reported till date. We present a case of acute kidney injury caused by granulomatous interstitial nephritis as a renal manifestation of sarcoidosis proven by renal biopsy, which can be confirmed by 18 F-fluorodeoxyglucose positron emission tomography/computed tomography. Glucocorticoid therapy was helpful for improving and maintaining her renal function over a 6-year period.

  15. Sulphonylurea drugs reduce hypoxic damage in the isolated perfused rat kidney

    PubMed Central

    Engbersen, Richard; Moons, Miek M; Wouterse, Alfons C; Dijkman, Henry B; Kramers, Cees; Smits, Paul; Russel, Frans G M

    2000-01-01

    Sulphonylurea drugs have been shown to protect against hypoxic damage in isolated proximal tubules of the kidney. In the present study we investigated whether these drugs can protect against hypoxic damage in a whole kidney preparation. Tolbutamide (200 μM) and glibenclamide (10 μM) were applied to the isolated perfused rat kidney prior to changing the gassing from oxygen to nitrogen for 30 min. Hypoxic perfusions resulted in an increased fractional excretion of glucose (FE % glucose 14.3±1.5 for hypoxic perfusions vs 4.9±1.6 for normoxic perfusions, mean±s.e.mean, P<0.05), which could be completely restored by 200 μM tolbutamide (5.7±0.4 for tolbutamide vs 14.3±1.5 for untreated hypoxic kidneys, P<0.01). Furthermore, tolbutamide reduced the total amount of LDH excreted in the urine (220±100 mU for tolbutamide vs 1220±160 mU for untreated hypoxic kidneys, P<0.01). Comparable results were obtained with glibenclamide (10 μM). In agreement with the effect on functional parameters, ultrastructural analysis of proximal tubules showed increased brush border preservation in tolbutamide treated kidneys compared to untreated hypoxic kidneys. We conclude that glibenclamide and tolbutamide are both able to reduce hypoxic damage to proximal tubules in the isolated perfused rat kidney when applied in the appropriate concentrations. PMID:10928974

  16. Hereditary Causes of Kidney Stones and Chronic Kidney Disease

    PubMed Central

    Edvardsson, Vidar O.; Goldfarb, David S.; Lieske, John C.; Beara-Lasic, Lada; Anglani, Franca; Milliner, Dawn S.; Palsson, Runolfur

    2013-01-01

    Adenine phosphoribosyltransferase (APRT) deficiency, cystinuria, Dent disease, familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) and primary hyperoxaluria (PH) are rare but important causes of severe kidney stone disease and/or chronic kidney disease in children. Recurrent kidney stone disease and nephrocalcinosis, particularly in pre-pubertal children, should alert the physician to the possibility of an inborn error of metabolism as the underlying cause. Unfortunately, the lack of recognition and knowledge of the five disorders has frequently resulted in an unacceptable delay in diagnosis and treatment, sometimes with grave consequences. A high index of suspicion coupled with early diagnosis may reduce or even prevent the serious long-term complications of these diseases. In this paper, we review the epidemiology, clinical features, diagnosis, treatment and outcome of patients with APRT deficiency, cystinuria, Dent disease, FHHNC and PH with emphasis on childhood manifestations. PMID:23334384

  17. Photoacoustic imaging for assessing ischemic kidney damage in vivo

    NASA Astrophysics Data System (ADS)

    Berndl, Elizabeth S. L.; He, Xiaolin; Yuen, Darren A.; Kolios, Michael C.

    2018-02-01

    Ischemic reperfusion injuries (IRIs) occur after blood returns to a tissue or organ after a period without oxygen or nutrients, which causes an inflammatory response leading to heterogeneous scarring of the nearby tissue and vasculature. This is associated with long-term decreases blood flow, and necrosis. Although most commonly associated with heart attacks and strokes, IRIs are also a side effect of organ transplants, when the organ is reperfused in the recipient's body after being transported from the donor to the transplant hospital. Currently, the optimal method of monitoring for IRI is limited to biopsies, which are invasive and poorly monitor the spatial heterogeneity of the damage. To non-invasively identify changes in kidneys, the left renal artery in mice (n=3) was clamped for 45 minutes to create an IRI event. Both kidneys of each animal were monitored using photoacoustics (PA) with the VevoLAZR system (Fujifilm-VisualSonics, Toronto) three, four and eight weeks after surgery. IRI-treated kidneys show increased picosirius red staining, indicative of collagen (0.601 vs 0.042, p < 0.0001), decreased size as assessed by cross-sectional area (7.8 mm2 vs 35.9 mm2 , p < 0.0001), and decreased oxygen saturation (sO2; 62% vs 77%, p = 0.02). Analysis of the photoacoustic data shows that a two-point metric, the 715:930 nm ratio of the whole kidney (1.05 vs 0.57, p = 0.049) and the optical spectral slope (OSS) (0.8 * 10-3 vs 3.0 * 10-3, p = 0.013) are both able to differentiate between IRI-treated and healthy kidneys. These data suggest that photoacoustics can be used as a non-invasive method to observe in vivo changes in the kidney due to IRI.

  18. Basal damage and oxidative DNA damage in children with chronic kidney disease measured by use of the comet assay.

    PubMed

    Aykanat, Banu; Demircigil, Gonca Cakmak; Fidan, Kibriya; Buyan, Necla; Gulleroglu, Kaan; Baskin, Esra; Bayrakci, Umut Selda; Sepici, Aylin; Buyukkaragoz, Bahar; Karakayali, Hamdi; Haberal, Mehmet; Burgaz, Sema

    2011-10-09

    One consequence of chronic kidney disease (CKD) is an elevated risk for cancer. There is sufficient evidence to conclude that there is an increased incidence of at least some cancers in kidney-dialysis patients. Cancer risk after kidney transplantation has mainly been attributed to immunosuppressive therapy. There are no data evaluating DNA damage in children with CKD, in dialysis patients, or following kidney transplantation. In this study, the comet assay and the enzyme-modified comet assay - with the use of endonuclease III (Endo III) and formamidopyrimidine glycosylase (FPG) enzymes - were conducted to investigate the basal damage and the oxidative DNA damage as a result of treatment in peripheral blood lymphocytes of children. Children at various stages of treatment for kidney disease, including pre-dialysis patients (PreD) (n=17), regular hemodialysis patients (HD) (n=15), and those that received kidney transplants (Tx) (n=17), comprised the study group. They were compared with age- and gender-matched healthy children (n=20) as a control group. Our results show that the %DNA intensity, a measure of basal damage, was significantly increased in children with CKD (mean ± SD) (5.22 ± 1.57) and also in each of the PreD, HD, and Tx groups [(4.92 ± 1.23), (4.91 ± 1.35), and (5.79 ± 1.94), respectively, vs the healthy children (2.74 ± 2.91) (p<0.001). Significant increases in oxidative DNA damage were only found in the FPG-sensitive sites for the PreD and Tx groups, compared with control and HD groups (p<0.05), suggesting that basal DNA damage was more evident for the PreD, HD, and Tx groups. The findings of the present study indicate a critical need for further research on genomic damage with different endpoints and also for preventive measures and improvements in treatment of pediatric patients, in order to improve their life expectancy. 2011 Elsevier B.V. All rights reserved.

  19. Sodium fluoride induces apoptosis in the kidney of rats through caspase-mediated pathways and DNA damage.

    PubMed

    Song, Guo Hua; Gao, Ji Ping; Wang, Chun Fang; Chen, Chao Yang; Yan, Xiao Yan; Guo, Min; Wang, Yu; Huang, Fu Bing

    2014-09-01

    Long-term excessive sodium fluoride (NaF) intake can cause many bone diseases and nonskeletal fluorosis. The kidneys are the primary organs involved in the excretion and retention of NaF. The objective of the present study was to determine the effects of NaF treatment on renal cell apoptosis, DNA damage, and the protein expression levels of cytosolic cytochrome C (Cyt C) and cleaved caspases 9, 8, and 3 in vivo. Male Sprague-Dawley rats were divided randomly into four groups (control, low fluoride, medium fluoride, and high fluoride) and administered 0, 50, 100, and 200 mg/L of NaF, respectively, via drinking water for 120 days. Histopathological changes in the kidneys were visualized using hematoxylin and eosin staining. Renal cell apoptosis was examined using flow cytometry, and renal cell DNA damage was detected using the comet assay. Cytosolic Cyt C and cleaved caspases 9, 8, and 3 protein expression levels were visualized using immunohistochemistry and Western blotting. The results showed that NaF treatment increased apoptosis and DNA damage. In addition, NaF treatment increased the protein expression levels of cytosolic Cyt C and cleaved caspases 9, 8, and 3. These results indicated that NaF induces apoptosis in the kidney of rats through caspase-mediated pathway, and DNA damage may be involved in this process.

  20. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles.

    PubMed

    Weinberg, Kerstin; Ortiz, Michael

    2009-08-01

    In shock-wave lithotripsy--a medical procedure to fragment kidney stones--the patient is subjected to hypersonic waves focused at the kidney stone. Although this procedure is widely applied, the physics behind this medical treatment, in particular the question of how the injuries to the surrounding kidney tissue arise, is still under investigation. To contribute to the solution of this problem, two- and three-dimensional numerical simulations of a human kidney under shock-wave loading are presented. For this purpose a constitutive model of the bio-mechanical system kidney is introduced, which is able to map large visco-elastic deformations and, in particular, material damage. The specific phenomena of cavitation induced oscillating bubbles is modeled here as an evolution of spherical pores within the soft kidney tissue. By means of large scale finite element simulations, we study the shock-wave propagation into the kidney tissue, adapt unknown material parameters and analyze the resulting stress states. The simulations predict localized damage in the human kidney in the same regions as observed in animal experiments. Furthermore, the numerical results suggest that in first instance the pressure amplitude of the shock wave impulse (and not so much its exact time-pressure profile) is responsible for damaging the kidney tissue.

  1. Altered paracellular cation permeability due to a rare CLDN10B variant causes anhidrosis and kidney damage.

    PubMed

    Klar, Joakim; Piontek, Jörg; Milatz, Susanne; Tariq, Muhammad; Jameel, Muhammad; Breiderhoff, Tilman; Schuster, Jens; Fatima, Ambrin; Asif, Maria; Sher, Muhammad; Mäbert, Katrin; Fromm, Anja; Baig, Shahid M; Günzel, Dorothee; Dahl, Niklas

    2017-07-01

    Claudins constitute the major component of tight junctions and regulate paracellular permeability of epithelia. Claudin-10 occurs in two major isoforms that form paracellular channels with ion selectivity. We report on two families segregating an autosomal recessive disorder characterized by generalized anhidrosis, severe heat intolerance and mild kidney failure. All affected individuals carry a rare homozygous missense mutation c.144C>G, p.(N48K) specific for the claudin-10b isoform. Immunostaining of sweat glands from patients suggested that the disease is associated with reduced levels of claudin-10b in the plasma membranes and in canaliculi of the secretory portion. Expression of claudin-10b N48K in a 3D cell model of sweat secretion indicated perturbed paracellular Na+ transport. Analysis of paracellular permeability revealed that claudin-10b N48K maintained cation over anion selectivity but with a reduced general ion conductance. Furthermore, freeze fracture electron microscopy showed that claudin-10b N48K was associated with impaired tight junction strand formation and altered cis-oligomer formation. These data suggest that claudin-10b N48K causes anhidrosis and our findings are consistent with a combined effect from perturbed TJ function and increased degradation of claudin-10b N48K in the sweat glands. Furthermore, affected individuals present with Mg2+ retention, secondary hyperparathyroidism and mild kidney failure that suggest a disturbed reabsorption of cations in the kidneys. These renal-derived features recapitulate several phenotypic aspects detected in mice with kidney specific loss of both claudin-10 isoforms. Our study adds to the spectrum of phenotypes caused by tight junction proteins and demonstrates a pivotal role for claudin-10b in maintaining paracellular Na+ permeability for sweat production and kidney function.

  2. DNA damage response in nephrotoxic and ischemic kidney injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Mingjuan; Tang, Chengyuan

    DNA damage activates specific cell signaling cascades for DNA repair, cell cycle arrest, senescence, and/or cell death. Recent studies have demonstrated DNA damage response (DDR) in experimental models of acute kidney injury (AKI). In cisplatin-induced AKI or nephrotoxicity, the DDR pathway of ATR/Chk2/p53 is activated and contributes to renal tubular cell apoptosis. In ischemic AKI, DDR seems more complex and involves at least the ataxia telangiectasia mutated (ATM), a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, and p53; however, while ATM may promote DNA repair, p53 may trigger cell death. Targeting DDR for kidney protection in AKI therefore reliesmore » on a thorough elucidation of the DDR pathways in various forms of AKI.« less

  3. MitoQ blunts mitochondrial and renal damage during cold preservation of porcine kidneys.

    PubMed

    Parajuli, Nirmala; Campbell, Lia H; Marine, Akira; Brockbank, Kelvin G M; Macmillan-Crow, Lee Ann

    2012-01-01

    Cold preservation has greatly facilitated the use of cadaveric kidneys for transplantation but damage occurs during the preservation episode. It is well established that oxidant production increases during cold renal preservation and mitochondria are a key target for injury. Our laboratory has demonstrated that cold storage of renal cells and rat kidneys leads to increased mitochondrial superoxide levels and mitochondrial electron transport chain damage, and that addition of Mitoquinone (MitoQ) to the preservation solutions blunted this injury. In order to better translate animal studies, the inclusion of large animal models is necessary to develop safe preclinical protocols. Therefore, we tested the hypothesis that addition of MitoQ to cold storage solution preserves mitochondrial function by decreasing oxidative stress, leading to less renal tubular damage during cold preservation of porcine kidneys employing a standard criteria donor model. Results showed that cold storage significantly induced oxidative stress (nitrotyrosine), renal tubular damage, and cell death. Using High Resolution Respirometry and fresh porcine kidney biopsies to assess mitochondrial function we showed that MitoQ significantly improved complex II/III respiration of the electron transport chain following 24 hours of cold storage. In addition, MitoQ blunted oxidative stress, renal tubular damage, and cell death after 48 hours. These results suggested that MitoQ decreased oxidative stress, tubular damage and cell death by improving mitochondrial function during cold storage. Therefore this compound should be considered as an integral part of organ preservation solution prior to transplantation.

  4. MitoQ Blunts Mitochondrial and Renal Damage during Cold Preservation of Porcine Kidneys

    PubMed Central

    Parajuli, Nirmala; Campbell, Lia H.; Marine, Akira; Brockbank, Kelvin G. M.; MacMillan-Crow, Lee Ann

    2012-01-01

    Cold preservation has greatly facilitated the use of cadaveric kidneys for transplantation but damage occurs during the preservation episode. It is well established that oxidant production increases during cold renal preservation and mitochondria are a key target for injury. Our laboratory has demonstrated that cold storage of renal cells and rat kidneys leads to increased mitochondrial superoxide levels and mitochondrial electron transport chain damage, and that addition of Mitoquinone (MitoQ) to the preservation solutions blunted this injury. In order to better translate animal studies, the inclusion of large animal models is necessary to develop safe preclinical protocols. Therefore, we tested the hypothesis that addition of MitoQ to cold storage solution preserves mitochondrial function by decreasing oxidative stress, leading to less renal tubular damage during cold preservation of porcine kidneys employing a standard criteria donor model. Results showed that cold storage significantly induced oxidative stress (nitrotyrosine), renal tubular damage, and cell death. Using High Resolution Respirometry and fresh porcine kidney biopsies to assess mitochondrial function we showed that MitoQ significantly improved complex II/III respiration of the electron transport chain following 24 hours of cold storage. In addition, MitoQ blunted oxidative stress, renal tubular damage, and cell death after 48 hours. These results suggested that MitoQ decreased oxidative stress, tubular damage and cell death by improving mitochondrial function during cold storage. Therefore this compound should be considered as an integral part of organ preservation solution prior to transplantation. PMID:23139796

  5. Effects of Zinc Supplementation on DNA Damage in Rats with Experimental Kidney Deficiency.

    PubMed

    Yegin, Sevim Çiftçi; Dede, Semiha; Mis, Leyla; Yur, Fatmagül

    2017-04-01

    This study was carried out to determine the effect of zinc on oxidative DNA damage in rats with experimental acute and chronic kidney deficiency. Six groups of five Wistar-Albino rats each were assigned as controls (C), acute kidney deficiency (AKD), zinc-supplemented (+Zn), acute kidney deficiency, zinc-supplemented (AKD + Zn), chronic kidney deficiency (CKD) and zinc-supplemented chronic kidney deficiency (CKD + Zn). The levels of 8-Oxo-2'-deoxyguanosine (8-OHdG) were determined, being the lowest in the CKD group (p < 0.05), higher in the C group than those of rats with CKD but lower than that of all the other groups (p < 0.05). There were no significant differences between the controls and the CKD + Zn group, or between the AKD and the +Zn groups. Among all groups, the highest 8-OHdG level was found in the AKD + Zn group (p < 0.05). DNA damage was greater in acute renal failure than in rats with chronic renal failure. The DNA damage in the zinc group was significantly higher than in the controls.

  6. Quantification of vascular damage in acute kidney injury with fluorine magnetic resonance imaging and spectroscopy.

    PubMed

    Moore, Jeremy K; Chen, Junjie; Pan, Hua; Gaut, Joseph P; Jain, Sanjay; Wickline, Samuel A

    2018-06-01

    To design a fluorine MRI/MR spectroscopy approach to quantify renal vascular damage after ischemia-reperfusion injury, and the therapeutic response to antithrombin nanoparticles (NPs) to protect kidney function. A total of 53 rats underwent 45 min of bilateral renal artery occlusion and were treated at reperfusion with either plain perfluorocarbon NPs or NPs functionalized with a direct thrombin inhibitor (PPACK:phenyalanine-proline-arginine-chloromethylketone). Three hours after reperfusion, kidneys underwent ex vivo fluorine MRI/MR spectroscopy at 4.7 T to quantify the extent and volume of trapped NPs, as an index of vascular damage and ischemia-reperfusion injury. Microscopic evaluation of structural damage and NP trapping in non-reperfused renal segments was performed. Serum creatinine was quantified serially over 7 days. The damaged renal cortico-medullary junction trapped a significant volume of NPs (P = 0.04), which correlated linearly (r = 0.64) with the severity of kidney injury 3 h after reperfusion. Despite global large vessel reperfusion, non-reperfusion in medullary peritubular capillaries was confirmed by MRI and microscopy, indicative of continuing hypoxia due to vascular compromise. Treatment of animals with PPACK NPs after acute kidney injury did not accelerate kidney functional recovery. Quantification of ischemia-reperfusion injury after acute kidney injury with fluorine MRI/MR spectroscopy of perfluorocarbon NPs objectively depicts the extent and severity of vascular injury and its linear relationship to renal dysfunction. The lack of kidney function improvement after early posttreatment thrombin inhibition confirms the rapid onset of ischemia-reperfusion injury as a consequence of vascular damage and non-reperfusion. The prolongation of medullary ischemia renders cortico-medullary tubular structures susceptible to continued necrosis despite restoration of large vessel flow, which suggests limitations to acute interventions after

  7. Azilsartan improves glycemic status and reduces kidney damage in zucker diabetic fatty rats.

    PubMed

    Hye Khan, Md Abdul; Neckář, Jan; Haines, Jasmine; Imig, John D

    2014-08-01

    Azilsartan medoxomil (AZL-M), an angiotensin II receptor blocker, demonstrates antihypertensive and organ protective effects in hypertension. We investigated the efficacy of AZL-M to ameliorate metabolic syndrome and kidney damage associated with type 2 diabetes using Zucker diabetic fatty (ZDF) rats. ZDF rats were treated with vehicle or AZL-M for 8 weeks. Zucker diabetic lean (ZDL) rats were used as controls. Urine and plasma samples were collected for biochemical analysis, and kidney tissues were used for histopathological and immunohistopathological examination at the end of the 8-week protocol. ZDF rats were diabetic with hyperglycemia and impaired glucose tolerance, and AZL-M ameliorated the diabetic phenotype. ZDF rats were hypertensive compared with ZDL rats (181±6 vs. 129±7mm Hg), and AZL-M decreased blood pressure in ZDF rats (116±7mm Hg). In ZDF rats, there was marked renal damage with elevated proteinuria, albuminuria, nephrinuria, 2-4-fold higher tubular cast formation, and glomerular injury compared with ZDL rats. AZL-M treatment reduced renal damage in ZDF rats. ZDF rats demonstrated renal inflammation and oxidative stress with elevated urinary monocyte chemoattractant protein 1 excretion, renal infiltration of macrophages, and elevated kidney malondialdehyde levels. AZL-M reduced oxidative stress and inflammation in ZDF rats. Overall, we demonstrate that AZL-M attenuates kidney damage in type 2 diabetes. We further demonstrate that anti-inflammatory and antioxidative activities of AZL-M contribute to its kidney protective action. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Thalidomide Ameliorates Inflammation and Vascular Injury but Aggravates Tubular Damage in the Irradiated Mouse Kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scharpfenecker, Marion, E-mail: m.scharpfenecker@nki.nl; Floot, Ben; Russell, Nicola S.

    Purpose: The late side effects of kidney irradiation include vascular damage and fibrosis, which are promoted by an irradiation-induced inflammatory response. We therefore treated kidney-irradiated mice with the anti-inflammatory and angiogenesis-modulating drug thalidomide in an attempt to prevent the development of late normal tissue damage and radiation nephropathy in the mouse kidney. Methods and Materials: Kidneys of C57Bl/6 mice were irradiated with a single dose of 14 Gy. Starting from week 16 after irradiation, the mice were fed with thalidomide-containing chow (100 mg/kg body weight/day). Gene expression and kidney histology were analyzed at 40 weeks and blood samples at 10, 20, 30, andmore » 40 weeks after irradiation. Results: Thalidomide improved the vascular structure and vessel perfusion after irradiation, associated with a normalization of pericyte coverage. The drug also reduced infiltration of inflammatory cells but could not suppress the development of fibrosis. Irradiation-induced changes in hematocrit and blood urea nitrogen levels were not rescued by thalidomide. Moreover, thalidomide worsened tubular damage after irradiation and also negatively affected basal tubular function. Conclusions: Thalidomide improved the inflammatory and vascular side effects of kidney irradiation but could not reverse tubular toxicity, which probably prevented preservation of kidney function.« less

  9. Intermittent hypoxia causes histological kidney damage and increases growth factor expression in a mouse model of obstructive sleep apnea

    PubMed Central

    Ayas, Najib T.

    2018-01-01

    Epidemiological studies demonstrate an association between obstructive sleep apnea (OSA) and accelerated loss of kidney function. It is unclear whether the decline in function is due to OSA per se or to other confounding factors such as obesity. In addition, the structural kidney abnormalities associated with OSA are unclear. The objective of this study was to determine whether intermittent hypoxia (IH), a key pathological feature of OSA, induces renal histopathological damage using a mouse model. Ten 8-week old wild-type male CB57BL/6 mice were randomly assigned to receive either IH or intermittent air (IA) for 60 days. After euthanasia, one kidney per animal was paraformaldehyde-fixed and then sectioned for histopathological and immunohistochemical analysis. Measurements of glomerular hypertrophy and mesangial matrix expansion were made in periodic acid–Schiff stained kidney sections, while glomerular transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF) and vascular endothelial growth factor-A (VEGF-A) proteins were semi-quantified by immunohistochemistry. The antigen-antibody reaction was detected by 3,3′-diaminobenzidine chromogen where the color intensity semi-quantified glomerular protein expression. To enhance the accuracy of protein semi-quantification, the percentage of only highly-positive staining was used for analysis. Levels of TGF-β, CTGF and VEGF-A proteins in the kidney cortex were further quantified by western blotting. Cellular apoptosis was also investigated by measuring cortical antiapoptotic B-cell lymphoma 2 (Bcl-2) and apoptotic Bcl-2-associated X (Bax) proteins by western blotting. Further investigation of cellular apoptosis was carried out by fluorometric terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) staining. Finally, the levels of serum creatinine and 24-hour urinary albumin were measured as a general index of renal function. Our results indicate that mice exposed to IH have an

  10. Dehydration as a Cause of Chronic Kidney Disease: Role of Fructokinase

    DTIC Science & Technology

    2016-10-01

    1 AWARD NUMBER: W81XWH-14-1-0270 TITLE: Dehydration as a Cause of Chronic Kidney Disease: Role of Fructokinase PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Dehydration as a Cause of Chronic Kidney Disease: Role of Fructokinase 5b. GRANT NUMBER: W81XWH-14-1-0270 5c...SUPPLEMENTARY NOTES 14. ABSTRACT Our studies evaluate how recurrent dehydration can cause chronic kidney disease, an important question for the

  11. Eucalyptus globulus extract protects upon acetaminophen-induced kidney damages in male rat

    PubMed Central

    Dhibi, Sabah; Mbarki, Sakhria; Elfeki, Abdelfettah; Hfaiedh, Najla

    2014-01-01

    Plants have historically been used in treating many diseases. Eucalyptus globules, a rich source of bioactive compounds, and have been shown to possess antioxidative properties. The purpose of this study, carried out on male Wistar rats, was to evaluate the beneficial effects of Eucalyptus globulus extract upon acetaminophen-induced damages in kidney. Our study is realized in the Department of Biology, Faculty of Sciences of Sfax (Tunisia). 32 Wistar male rats; were divided into 4 batches: a control group (n=8), a group of rats treated with acetaminophen (goomg/kg) by intraperitoneal injection during 4 days (n=8), a group receiving Eucalyptus globulus extract (130 mg of dry leaves/kg/day) in drinking water during 42 days after 2 hours of acetaminophen administration (during 4 days) (n=8) and group received only Eucalyptus (n=8) during 42 days. After 6 weeks, animals from each group were rapidly sacrificed by decapitation. Blood serum was obtained by centrifugation. Under our experimental conditions, acetaminophen poisoning resulted in an oxidative stress evidenced by statistically significant losses in the activities of catalase (CAT), superoxide-dismutase (SOD), glutathione-peroxidase (GPX) activities and an increase in lipids peroxidation level in renal tissue of acetaminophen-treated group compared with the control group. Acetaminophen also caused kidney damage as evident by statistically significant (p<0.05) increase in levels of creatinine and urea and decreased levels of uric acid and proteins in blood. Histological analysis demonstrated alteration of proximal tubules, atrophy of the glomerule and dilatation of urinary space. Previous administration of plant extract is found to alleviate this acetaminophen-induced damage. PMID:24856382

  12. Microbiota metabolites: Pivotal players of cardiovascular damage in chronic kidney disease.

    PubMed

    Cosola, Carmela; Rocchetti, Maria Teresa; Cupisti, Adamasco; Gesualdo, Loreto

    2018-04-01

    In chronic kidney disease (CKD), cardiovascular (CV) damage is present in parallel which leads to an increased risk of CV disease. Both traditional and non-traditional risk factors contribute to CV damage in CKD. The systemic role of the microbiota as a central player in the pathophysiology of many organs is progressively emerging in the literature: the microbiota is indeed involved in a complex, bi-directional network between many organs, including the kidney and heart connection, although many of these relationships still need to be elucidated through in-depth mechanistic studies. The aim of this review is to provide evidence that microbiota metabolites influence non-traditional risk factors, such as inflammation and endothelial dysfunction in CKD-associated CV damage. Here, we report our current understanding and hypotheses on the gut-kidney and gut-heart axes and provide details on the potential mechanisms mediated by microbial metabolites. More specifically, we summarize some novel hypotheses linking the microbiota to blood pressure regulation and hypertension. We also emphasise the idea that the nutritional management of CKD should be redesigned and include the new findings from research on the intrinsic plasticity of the microbiota and its metabolites in response to food intake. The need is felt to integrate the classical salt and protein restriction approach for CKD patients with foods that enhance intestinal wellness. Finally, we discuss the new perspectives, especially the importance of taking care of the microbiota in order to prevent the risk of developing CKD and hypertension, as well as the still not tested but very promising CKD innovative treatments, such as postbiotic supplementation and bacteriotherapy. This interesting area of research offers potential complementary approaches to the management of CKD and CV damage assuming that the causal mechanisms underlying the gut-kidney and gut-heart axes are clarified. This will pave the way to the design

  13. Increased risk of kidney damage among Chinese adults with simple renal cyst.

    PubMed

    Kong, Xianglei; Ma, Xiaojing; Zhang, Chengyin; Su, Hong; Gong, Xiaojie; Xu, Dongmei

    2018-05-04

    The presence of simple renal cyst (SRC) has been related to hypertension, the early and long-term allograft function, and aortic disease, but the relationship with kidney damage was still controversial. Accordingly, we conducted a large sample cross-sectional study to explore the association of SRC with indicators of kidney damage among Chinese adults. A total of 42,369 adults (aged 45.8 ± 13.67 years, 70.6% males) who visited the Health Checkup Clinic were consecutively enrolled. SRC was assessed by ultrasonography according to Bosniak category. Multiple regression models were applied to explore the relationships between SRC and indicators of kidney damage [proteinuria (dipstick urine protein ≥ 1+) and decreased estimated glomerular filtration rate (DeGFR) < 60 ml/min/1.73 m 2 ]. Among all participants in the study, the prevalence of SRC was 10.5%. As a categorical outcome, participants with more 1 cyst and with 1 cyst had higher percentage of proteinuria [53 (5.3%) and 93 (2.7%) vs. 596 (1.6%), p < 0.001] and DeGFR [57 (5.7%) and 85 (2.5%) vs. 278 (0.7%), p < 0.001] compared with participants with no cyst. SRC significantly correlated with proteinuria [OR 1.59 (95% CI 1.30-1.95)] and DeGFR [OR 1.97 (95% CI 1.56-2.47)] after adjusting for potential confounders. Furthermore, the results also demonstrated that maximum diameter (per 1 cm increase), bilateral location, and multiple cysts significantly correlated with DeGFR in the multiple logistic regression analysis. The study revealed that SRC significantly correlated with kidney damage and special attention should be paid among Chinese adults with SRC.

  14. The role of fetal-maternal microchimerism as a natural-born healer in integrity improvement of maternal damaged kidney.

    PubMed

    Kajbafzadeh, Abdol-Mohammad; Sabetkish, Shabnam; Sabetkish, Nastaran

    2018-01-01

    To identify the fetal stem cell (FSC) response to maternal renal injury with emphasis on renal integrity improvement and Y chromosome detection in damaged maternal kidney. Eight non-green fluorescent protein (GFP) transgenic Sprague- Dawley rats were mated with GFP-positive transgenic male rats. Renal damage was induced on the right kidney at gestational day 11. The same procedure was performed in eight non-pregnant rats as control group. Three months after delivery, right nephrectomy was performed in order to evaluate the injured kidney. The fresh perfused kidneys were stained with anti-GFP antibody. Polymerase chain reaction (PCR) assay was also performed for the Y chromosome detection. Cell culture was performed to detect the GFP-positive cells. Technetium-99m-DMSA renal scan and single-photon emission computed tomography (SPECT) were performed after renal damage induction and 3 months later to evaluate the improvement of renal integrity. The presence of FSCs was confirmed by immune histochemical staining as well as immunofluorescent imaging of the damaged part. Gradient PCR of female rat purified DNA demonstrated the presence of Y-chromosome in the damaged maternal kidney. Moreover, the culture of kidney cells showed GPF- positive cells by immunofluorescence microscopy. The acute renal scar was repaired and the integrity of damaged kidney reached to near normal levels in experimental group as shown in DMSA scan. However, no significant improvement was observed in control group. FSC seems to be the main mechanism in repairing of the maternal renal injury during pregnancy as indicated by Y chromosome and GFP-positive cells in the sub-cultured medium. Copyright® by the International Brazilian Journal of Urology.

  15. Dose-effect relationship between drinking water fluoride levels and damage to liver and kidney functions in children.

    PubMed

    Xiong, Xianzhi; Liu, Junling; He, Weihong; Xia, Tao; He, Ping; Chen, Xuemin; Yang, Kedi; Wang, Aiguo

    2007-01-01

    Although a dose-effect relationship between water fluoride levels and damage to liver and kidney functions in animals has been reported, it was not demonstrated in humans. To evaluate the effects of drinking water fluoride levels on the liver and kidney functions in children with and without dental fluorosis, we identified 210 children who were divided into seven groups with 30 each based on different drinking water fluoride levels in the same residential area. We found that the fluoride levels in serum and urine of these children increased as the levels of drinking water fluoride increased. There were no significant differences in the levels of total protein (TP), albumin (ALB), aspartate transamine (AST), and alanine transamine (ALT) in serum among these groups. However, the activities of serum lactic dehydrogenase (LDH), urine N-acetyl-beta-glucosaminidase (NAG), and urine gamma-glutamyl transpeptidase (gamma-GT) in children with dental fluorosis and having water fluoride of 2.15-2.96 mg/L and in children having water fluoride of 3.15-5.69 mg/L regardless of dental fluorosis were significantly higher than children exposed to water fluoride of 0.61-0.87 mg/L in a dose-response manner. In contrast to children with dental fluorosis and having water fluoride of 2.15-2.96 and 3.10-5.69 mg/L, serum LDH activity of children without dental fluorosis but exposed to the same levels of water fluoride as those with dental fluorosis were also markedly lower, but the activities of NAG and gamma-GT in their urine were not. Therefore, our results suggest that drinking water fluoride levels over 2.0mg/L can cause damage to liver and kidney functions in children and that the dental fluorosis was independent of damage to the liver but not the kidney. Further studies on the mechanisms and significance underlying damage to the liver without dental fluorosis in the exposed children are warranted.

  16. Chronic kidney disease of uncertain etiology in Sri Lanka: Are leptospirosis and Hantaviral infection likely causes?

    PubMed

    Gamage, Chandika Damesh; Sarathkumara, Yomani Dilukshi

    2016-06-01

    Chronic kidney disease of uncertain etiology (CKDu) has been a severe burden and a public health crisis in Sri Lanka over the past two decades. Many studies have established hypotheses to identify potential risk factors although causative agents, risk factors and etiology of this disease are still uncertain. Several studies have postulated that fungal and bacterial nephrotoxins are a possible etiological factor; however, the precise link between hypothesized risk factors and the pathogenesis of chronic kidney disease has yet to be proven in prior studies. Leptospirosis and Hantavirus infections are important zoonotic diseases that are naturally maintained and transmitted via infected rodent populations and which present similar clinical and epidemiological features. Both infections are known to be a cause of acute kidney damage that can proceed into chronic renal failure. Several studies have reported presence of both infections in Sri Lanka. Therefore, we hypothesized that pathogenic Leptospira or Hantavirus are possible causative agents of acute kidney damage which eventually progresses to chronic kidney disease in Sri Lanka. The proposed hypothesis will be evaluated by means of an observational study design. Past infection will be assessed by a cross-sectional study to detect the presence of IgG antibodies with further confirmatory testing among chronic kidney disease patients and individuals from the community in selected endemic areas compared to low prevalence areas. Identification of possible risk factors for these infections will be followed by a case-control study and causality will be further determined with a cohort study. If the current hypothesis is true, affected communities will be subjected for medical interventions related to the disease for patient management while considering supportive therapies. Furthermore and possibly enhance their preventive and control measures to improve vector control to decrease the risk of infection. Copyright © 2016

  17. A Novel Therapy to Attenuate Acute Kidney Injury and Ischemic Allograft Damage after Allogenic Kidney Transplantation in Mice

    PubMed Central

    Gueler, Faikah; Shushakova, Nelli; Mengel, Michael; Hueper, Katja; Chen, Rongjun; Liu, Xiaokun; Park, Joon-Keun; Haller, Hermann

    2015-01-01

    Ischemia followed by reperfusion contributes to the initial damage to allografts after kidney transplantation (ktx). In this study we tested the hypothesis that a tetrapeptide EA-230 (AQGV), might improve survival and attenuate loss of kidney function in a mouse model of renal ischemia/reperfusion injury (IRI) and ischemia-induced delayed graft function after allogenic kidney transplantation. IRI was induced in male C57Bl/6N mice by transient bilateral renal pedicle clamping for 35 min. Treatment with EA-230 (20–50mg/kg twice daily i.p. for four consecutive days) was initiated 24 hours after IRI when acute kidney injury (AKI) was already established. The treatment resulted in markedly improved survival in a dose dependent manner. Acute tubular injury two days after IRI was diminished and tubular epithelial cell proliferation was significantly enhanced by EA-230 treatment. Furthermore, CTGF up-regulation, a marker of post-ischemic fibrosis, at four weeks after IRI was significantly less in EA-230 treated renal tissue. To learn more about these effects, we measured renal blood flow (RBF) and glomerular filtration rate (GFR) at 28 hours after IRI. EA-230 improved both GFR and RBF significantly. Next, EA-230 treatment was tested in a model of ischemia-induced delayed graft function after allogenic kidney transplantation. The recipients were treated with EA-230 (50 mg/kg) twice daily i.p. which improved renal function and allograft survival by attenuating ischemic allograft damage. In conclusion, EA-230 is a novel and promising therapeutic agent for treating acute kidney injury and preventing IRI-induced post-transplant ischemic allograft injury. Its beneficial effect is associated with improved renal perfusion after IRI and enhanced regeneration of tubular epithelial cells. PMID:25617900

  18. A novel therapy to attenuate acute kidney injury and ischemic allograft damage after allogenic kidney transplantation in mice.

    PubMed

    Gueler, Faikah; Shushakova, Nelli; Mengel, Michael; Hueper, Katja; Chen, Rongjun; Liu, Xiaokun; Park, Joon-Keun; Haller, Hermann; Wensvoort, Gert; Rong, Song

    2015-01-01

    Ischemia followed by reperfusion contributes to the initial damage to allografts after kidney transplantation (ktx). In this study we tested the hypothesis that a tetrapeptide EA-230 (AQGV), might improve survival and attenuate loss of kidney function in a mouse model of renal ischemia/reperfusion injury (IRI) and ischemia-induced delayed graft function after allogenic kidney transplantation. IRI was induced in male C57Bl/6N mice by transient bilateral renal pedicle clamping for 35 min. Treatment with EA-230 (20-50mg/kg twice daily i.p. for four consecutive days) was initiated 24 hours after IRI when acute kidney injury (AKI) was already established. The treatment resulted in markedly improved survival in a dose dependent manner. Acute tubular injury two days after IRI was diminished and tubular epithelial cell proliferation was significantly enhanced by EA-230 treatment. Furthermore, CTGF up-regulation, a marker of post-ischemic fibrosis, at four weeks after IRI was significantly less in EA-230 treated renal tissue. To learn more about these effects, we measured renal blood flow (RBF) and glomerular filtration rate (GFR) at 28 hours after IRI. EA-230 improved both GFR and RBF significantly. Next, EA-230 treatment was tested in a model of ischemia-induced delayed graft function after allogenic kidney transplantation. The recipients were treated with EA-230 (50 mg/kg) twice daily i.p. which improved renal function and allograft survival by attenuating ischemic allograft damage. In conclusion, EA-230 is a novel and promising therapeutic agent for treating acute kidney injury and preventing IRI-induced post-transplant ischemic allograft injury. Its beneficial effect is associated with improved renal perfusion after IRI and enhanced regeneration of tubular epithelial cells.

  19. Protective effect of an intrinsic antioxidant, HMH (5-hydroxy-1-methylhydantoin; NZ-419), against cellular damage of kidney tubules.

    PubMed

    Ienaga, Kazuharu; Park, Chan Hum; Yokozawa, Takako

    2013-07-01

    HMH (5-hydroxy-1-methylhydantoin; NZ-419) is a mammalian creatinine metabolite and an intrinsic antioxidant. HMH prevents the progression of chronic kidney disease in rats when a sufficient amount is taken orally. We assessed whether intrinsic and higher levels of HMH could protect tubular epithelial cells, LLC-PK(1) cells, against known cellular damage caused by xenobiotics, such as cisplatin and cephaloridine, or by hypoxia/reoxygenation treatment. Both cell damage and peroxidation, monitored as the leakage of lactate dehydrogenase (LDH) and malondialdehyde (MDA), respectively, from cells into the media, were inhibited by HMH in a concentration-dependent manner. The minimum effective concentration of HMH (2.5 μM) seemed to be too low for HMH to only be a direct hydroxyl radical scavenger. Additional antioxidant effect(s) inhibiting reactive oxygen species generation and/or modulating signal transduction pathways were suggested. The possibility that intrinsic HMH could be a protectant for the kidney was indicated. At the same time, for sufficient inhibition, higher concentrations than intrinsic HMH concentrations may be necessary. Patterns of efficacies of HMH on LDH and MDA against different kinds of cellular damage were compared with our reported data on those of corresponding, naturally occurring antioxidants. A common and specific inhibitory mechanism as well as common target(s) in kidney injuries were indicated. Copyright © 2012 Elsevier GmbH. All rights reserved.

  20. Detecting Kidney and Urinary Tract Abnormalities Before Birth

    MedlinePlus

    ... Advocacy Donate A to Z Health Guide Detecting Kidney and Urinary Tract Abnormalities Before Birth Print Email ... in many cases. Do these blockages always cause kidney damage? No. Before birth, the mother's placenta performs ...

  1. Damage Caused by the Rogue Trustee

    ERIC Educational Resources Information Center

    O'Banion, Terry

    2009-01-01

    Fifty-nine community college presidents and chancellors in 16 states report on the damage caused by rogue trustees. While the damage to presidents, other trustees, and faculty and staff is alarming, the damage these trustees cause the college suggests that the rogue trustee may be the single most destructive force ever to plague an educational…

  2. Mineral & Bone Disorder in Chronic Kidney Disease

    MedlinePlus

    ... blood pressure. Once damaged, the kidneys can’t filter blood as they should. This damage can cause ... machine to circulate a person’s blood through a filter outside the body. The blood passes from a ...

  3. Early superoxide scavenging accelerates renal microvascular rarefaction and damage in the stenotic kidney.

    PubMed

    Kelsen, Silvia; He, Xiaochen; Chade, Alejandro R

    2012-08-15

    Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution

  4. Early superoxide scavenging accelerates renal microvascular rarefaction and damage in the stenotic kidney

    PubMed Central

    Kelsen, Silvia; He, Xiaochen

    2012-01-01

    Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution

  5. [Causes of death with a functioning graft among kidney allograft recipients].

    PubMed

    Vega, Jorge; Videla, Christian; Borja, Hernán; Goecke, Helmuth; Martínez, Felipe; Betancour, Pablo

    2012-03-01

    Death with a functioning graft (DWGF) is now one of the main causes of renal transplant (RTx) loss. To determine whether the causes of DWGF, characteristics of donors and recipients and complications of RTx have changed in the last two decades. Cooperative study of a cohort of 418 kidney grafts performed between 1968 and 2010. Patients were divided into two groups according to whether their kidney transplants were performed between 1968 and 1992 (Group 1) or 1993 and 2010 (Group 2). Sixty eight patients experienced DWGF. Infections were the leading cause of DWGF in both groups (38 and 41%, respectively), followed by cardiovascular diseases (24 and 23% respectively), gastrointestinal disorders (21 and 26% respectively) and cancer (17 and 10% respectively). There were no significant differences in causes of death between the two groups according to the time elapsed since the renal transplantation. In patients in Group 1, the interval between diagnosis of renal failure and dialysis (HD) and the interval between the start of HD and kidney transplantation were significantly lower than in Group 2. The former had also an increased number of acute rejections in the first five years of kidney transplantation (p < 0.001). In Group 2, patients more often received their kidneys from deceased donors, had previous kidney transplantation, higher rate of antibodies to a panel of lymphocytes and an increased incidence of cardiovascular disorders after five years of RTx. The proportion of graft loss due to DWGF has increased over the last 2 decades, but its causes have not changed significantly. Infections are the most common causes of DWGF followed by cardiovascular and digestive diseases.

  6. [Combined heart-kidney transplantation in Mexic].

    PubMed

    Careaga-Reyna, Guillermo; Zetina-Tun, Hugo Jesús; Lezama-Urtecho, Carlos Alberto; Hernández-Domínguez, José Mariano; Santos-Caballero, Marlene

    In our country, heart and kidney transplantation is a novel option for treatment of combined terminal heart and kidney failure. This program began in 2012 for selected patients with documented terminal heart failure and structural kidney damage with renal failure. Description of cases: Between January 1, 2012 and April 30, 2016, we made 92 orthotopic heart transplantations. In five of these cases the heart transplantation was combined with kidney transplantation. There were three male and two female patients with a mean age 25.6 ± 5.2 years (range, 17-29). The patients improved their renal function and the heart transplantation was successful with an improved quality of life. One patient died from abdominal sepsis. The other patients are doing well. The combined heart-kidney transplantation is a safe and efficient procedure for patients with structural kidney and heart damage as a cause of terminal failure.

  7. Diabetic Kidney Problems

    MedlinePlus

    ... too high. Over time, this can damage your kidneys. Your kidneys clean your blood. If they are damaged, waste ... in your blood instead of leaving your body. Kidney damage from diabetes is called diabetic nephropathy. It ...

  8. Keep Your Kidneys Healthy

    MedlinePlus

    ... cause kidney damage if left untreated. Make healthy food choices Choose foods that are healthy for your heart ... healthy for your body. Tips for making healthy food choices Cook with a mix of spices instead of ...

  9. Modulatory effect of Mangifera indica against carbon tetrachloride induced kidney damage in rats.

    PubMed

    Awodele, Olufunsho; Adeneye, Adejuwon Adewale; Aiyeola, Sheriff Aboyade; Benebo, Adokiye Senibo

    2015-12-01

    There is little scientific evidence on the local use of Mangifera indica in kidney diseases. This study investigated the reno-modulatory roles of the aqueous stem bark extract of Mangifera indica (MIASE) against CCl4-induced renal damage. Rats were treated intragastrically with 125, 250 and 500 mg/kg/day MIASE for 7 days before and after the administration of CCl4 (3 ml/kg of 30% CCl4, i.p.). Serum levels of electrolytes (Na+, K+, Cl(-), HCO3(-)), urea and creatinine were determined. Renal tissue reduced glutathione (GSH), malondialdehyde (MDA), catalase (CAT), superoxide (SOD) activities were also assessed. The histopathological changes in kidneys were determined using standard methods. In CCl4 treated rats the results showed significant (p<0.05) increases in serum Na+, K+, Cl(-), urea and creatinine. CCl4 also caused significant (p<0.05) decreases in renal tissue SOD, CAT and GSH and significant (p<0.05) increases in MDA. The oral MIASE treatment (125-500 mg/kg) was found to significantly (p<0.05) attenuate the increase in serum electrolytes, urea and creatinine. Similarly, MIASE significantly (p<0.05) attenuated the decrease in SOD, CAT and GSH levels and correspondingly attenuated increases in MDA. Mangifera indica may present a great prospect for drug development in the management of kidney disease with lipid peroxidation as its etiology.

  10. Modulatory effect of Mangifera indica against carbon tetrachloride induced kidney damage in rats

    PubMed Central

    Adeneye, Adejuwon Adewale; Aiyeola, Sheriff Aboyade; Benebo, Adokiye Senibo

    2015-01-01

    There is little scientific evidence on the local use of Mangifera indica in kidney diseases. This study investigated the reno-modulatory roles of the aqueous stem bark extract of Mangifera indica (MIASE) against CCl4-induced renal damage. Rats were treated intragastrically with 125, 250 and 500 mg/kg/day MIASE for 7 days before and after the administration of CCl4 (3 ml/kg of 30% CCl4, i.p.). Serum levels of electrolytes (Na+, K+, Cl−, HCO3−), urea and creatinine were determined. Renal tissue reduced glutathione (GSH), malondialdehyde (MDA), catalase (CAT), superoxide (SOD) activities were also assessed. The histopathological changes in kidneys were determined using standard methods. In CCl4 treated rats the results showed significant (p<0.05) increases in serum Na+, K+, Cl−, urea and creatinine. CCl4 also caused significant (p<0.05) decreases in renal tissue SOD, CAT and GSH and significant (p<0.05) increases in MDA. The oral MIASE treatment (125-500 mg/kg) was found to significantly (p<0.05) attenuate the increase in serum electrolytes, urea and creatinine. Similarly, MIASE significantly (p<0.05) attenuated the decrease in SOD, CAT and GSH levels and correspondingly attenuated increases in MDA. Mangifera indica may present a great prospect for drug development in the management of kidney disease with lipid peroxidation as its etiology. PMID:27486379

  11. Mutations in GREB1L Cause Bilateral Kidney Agenesis in Humans and Mice.

    PubMed

    De Tomasi, Lara; David, Pierre; Humbert, Camille; Silbermann, Flora; Arrondel, Christelle; Tores, Frédéric; Fouquet, Stéphane; Desgrange, Audrey; Niel, Olivier; Bole-Feysot, Christine; Nitschké, Patrick; Roume, Joëlle; Cordier, Marie-Pierre; Pietrement, Christine; Isidor, Bertrand; Khau Van Kien, Philippe; Gonzales, Marie; Saint-Frison, Marie-Hélène; Martinovic, Jelena; Novo, Robert; Piard, Juliette; Cabrol, Christelle; Verma, Ishwar C; Puri, Ratna; Journel, Hubert; Aziza, Jacqueline; Gavard, Laurent; Said-Menthon, Marie-Hélène; Heidet, Laurence; Saunier, Sophie; Jeanpierre, Cécile

    2017-11-02

    Congenital anomalies of the kidney and urinary tract (CAKUT) constitute a major cause of chronic kidney disease in children and 20% of prenatally detected anomalies. CAKUT encompass a spectrum of developmental kidney defects, including renal agenesis, hypoplasia, and cystic and non-cystic dysplasia. More than 50 genes have been reported as mutated in CAKUT-affected case subjects. However, the pathophysiological mechanisms leading to bilateral kidney agenesis (BKA) remain largely elusive. Whole-exome or targeted exome sequencing of 183 unrelated familial and/or severe CAKUT-affected case subjects, including 54 fetuses with BKA, led to the identification of 16 heterozygous variants in GREB1L (growth regulation by estrogen in breast cancer 1-like), a gene reported as a target of retinoic acid signaling. Four loss-of-function and 12 damaging missense variants, 14 being absent from GnomAD, were identified. Twelve of them were present in familial or simplex BKA-affected case subjects. Female BKA-affected fetuses also displayed uterus agenesis. We demonstrated a significant association between GREB1L variants and BKA. By in situ hybridization, we showed expression of Greb1l in the nephrogenic zone in developing mouse kidney. We generated a Greb1l knock-out mouse model by CRISPR-Cas9. Analysis at E13.5 revealed lack of kidneys and genital tract anomalies in male and female Greb1l -/- embryos and a slight decrease in ureteric bud branching in Greb1l +/- embryos. We showed that Greb1l invalidation in mIMCD3 cells affected tubulomorphogenesis in 3D-collagen culture, a phenotype rescued by expression of the wild-type human protein. This demonstrates that GREB1L plays a major role in early metanephros and genital development in mice and humans. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. Complete staghorn calculus in polycystic kidney disease: infection is still the cause.

    PubMed

    Mao, Zhiguo; Xu, Jing; Ye, Chaoyang; Chen, Dongping; Mei, Changlin

    2013-08-01

    Kidney stones in patients with autosomal dominant polycystic kidney disease are common, regarded as the consequence of the combination of anatomic abnormality and metabolic risk factors. However, complete staghorn calculus is rare in polycystic kidney disease and predicts a gloomy prognosis of kidney. For general population, recent data showed metabolic factors were the dominant causes for staghorn calculus, but for polycystic kidney disease patients, the cause for staghorn calculus remained elusive. We report a case of complete staghorm calculus in a polycystic kidney disease patient induced by repeatedly urinary tract infections. This 37-year-old autosomal dominant polycystic kidney disease female with positive family history was admitted in this hospital for repeatedly upper urinary tract infection for 3 years. CT scan revealed the existence of a complete staghorn calculus in her right kidney, while there was no kidney stone 3 years before, and the urinary stone component analysis showed the composition of calculus was magnesium ammonium phosphate. UTI is an important complication for polycystic kidney disease and will facilitate the formation of staghorn calculi. As staghorn calculi are associated with kidney fibrosis and high long-term renal deterioration rate, prompt control of urinary tract infection in polycystic kidney disease patient will be beneficial in preventing staghorn calculus formation.

  13. A Short-Term Biological Indicator for Long-Term Kidney Damage after Radionuclide Therapy in Mice

    PubMed Central

    Pellegrini, Giovanni; Siwowska, Klaudia; Haller, Stephanie; Antoine, Daniel J.; Schibli, Roger; Kipar, Anja; Müller, Cristina

    2017-01-01

    Folate receptor (FR)-targeted radionuclide therapy using folate radioconjugates is of interest due to the expression of the FR in a variety of tumor types. The high renal accumulation of radiofolates presents, however, a risk of radionephropathy. A potential option to address this challenge would be to use radioprotectants, such as amifostine. Methods for early detection of kidney damage that—in this case—cannot be predicted based on dose estimations, would facilitate the development of novel therapies. The aim of this study was, therefore, to assess potentially changing levels of plasma and urine biomarkers and to determine DNA damage at an early stage after radiofolate application. The identification of an early indicator for renal damage in mice would be useful since histological changes become apparent only several months after treatment. Mice were injected with different quantities of 177Lu-folate (10 MBq, 20 MBq and 30 MBq), resulting in mean absorbed kidney doses of ~23 Gy, ~46 Gy and ~69 Gy, respectively, followed by euthanasia two weeks (>85% of the mean renal radiation dose absorbed) or three months later. Whereas all investigated biomarkers remained unchanged, the number of γ-H2AX-positive nuclei in the renal cortex showed an evident dose-dependent increase as compared to control values two weeks after treatment. Comparison with the extent of kidney injury determined by histological changes five to eight months after administration of the same 177Lu-folate activities suggested that the quantitative assessment of double-strand breaks can be used as a biological indicator for long-term radiation effects in the kidneys. This method may, thus, enable faster assessment of radiopharmaceuticals and protective measures by preventing logistically challenging long-term investigations to detect kidney damage. PMID:28635637

  14. Tuberculosis in the kidney (image)

    MedlinePlus

    Kidneys can be damaged by tuberculosis. Tuberculosis generally affects the lungs, but may cause infection in many other organs in the body. (Image courtesy of the Centers for Disease Control and Prevention.)

  15. Clinical characteristics of chronic kidney disease of non-traditional causes in women of agricultural communities in El Salvador.

    PubMed

    Herrera Valdés, Raúl; Orantes, Carlos M; Almaguer López, Miguel; López Marín, Laura; Arévalo, Pedro Alfonso; Smith González, Magaly J; Morales, Fabrizio E; Bacallao, Raymed; Bayarre, Héctor D; Vela Parada, Xavier F

    2015-01-01

    A chronic kidney disease of non-traditional causes (CKDu) has emerged in Central America and elsewhere, predominantly affecting male farmworkers. In El Salvador (2009), it was the second cause of death in men > 18 years old. Causality has not been determined. Most available research focused on men and there is scarce data on women. Describe the clinical and histopathologic characteristics of CKDu in women of agricultural communities in El Salvador. A descriptive study was carried out in 10 women with CKDu stages 2, 3a, and 3b. Researchers studied demographics, clinical examination; hematological and biochemical analyses, urine sediment, renal injury markers, and assessed renal, cardiac, and peripheral arteries, liver, pancreas, and lung anatomy and functions. Kidney biopsy was performed in all. Data was collected on the Lime Survey platform and exported to SPSS 19.0. Patient distribution by stages: 2 (70%), 3a (10%), 3b (20%). Occupation: agricultural 7; non-agricultural 3. agrochemical exposure 100%; farmworkers 70%; incidental malaria 50%, NSAIDs use 40%; hypertension 40%. nocturia 50%; dysuria 50%; arthralgia 70%; asthenia 50%; cramps 30%, profuse sweating 20%. Renal markers: albumin creatinine ratio (ACR) > 300 mg/g 90%; β microglobulin and neutrophil gelatinase- associated lipocalin (NGAL) presence in 40%. Kidney function: hypermagnesuria 100%; hyperphosphaturia 50%, hypercalciuria 40%; hypernatriuria 30%; hyponatremia 60%, hypocalcemia 50%. Doppler: tibial artery damage 40%. Neurological: reflex abnormalities 30%; Babinski and myoclonus 20%. Neurosensorial hypoacusis 70%. Histopathology: damage restricted mostly to the tubulo-interstitium, urine was essentially bland. CKDu in women is a chronic tubulointerstitial nephropathy with varied extrarenal symptoms.

  16. Complete staghorn calculus in polycystic kidney disease: infection is still the cause

    PubMed Central

    2013-01-01

    Background Kidney stones in patients with autosomal dominant polycystic kidney disease are common, regarded as the consequence of the combination of anatomic abnormality and metabolic risk factors. However, complete staghorn calculus is rare in polycystic kidney disease and predicts a gloomy prognosis of kidney. For general population, recent data showed metabolic factors were the dominant causes for staghorn calculus, but for polycystic kidney disease patients, the cause for staghorn calculus remained elusive. Case presentation We report a case of complete staghorm calculus in a polycystic kidney disease patient induced by repeatedly urinary tract infections. This 37-year-old autosomal dominant polycystic kidney disease female with positive family history was admitted in this hospital for repeatedly upper urinary tract infection for 3 years. CT scan revealed the existence of a complete staghorn calculus in her right kidney, while there was no kidney stone 3 years before, and the urinary stone component analysis showed the composition of calculus was magnesium ammonium phosphate. Conclusion UTI is an important complication for polycystic kidney disease and will facilitate the formation of staghorn calculi. As staghorn calculi are associated with kidney fibrosis and high long-term renal deterioration rate, prompt control of urinary tract infection in polycystic kidney disease patient will be beneficial in preventing staghorn calculus formation. PMID:24070202

  17. Transcriptome profile analysis reflects rat liver and kidney damage following chronic ultra-low dose Roundup exposure.

    PubMed

    Mesnage, Robin; Arno, Matthew; Costanzo, Manuela; Malatesta, Manuela; Séralini, Gilles-Eric; Antoniou, Michael N

    2015-08-25

    Glyphosate-based herbicides (GBH) are the major pesticides used worldwide. Converging evidence suggests that GBH, such as Roundup, pose a particular health risk to liver and kidneys although low environmentally relevant doses have not been examined. To address this issue, a 2-year study in rats administering 0.1 ppb Roundup (50 ng/L glyphosate equivalent) via drinking water (giving a daily intake of 4 ng/kg bw/day of glyphosate) was conducted. A marked increased incidence of anatomorphological and blood/urine biochemical changes was indicative of liver and kidney structure and functional pathology. In order to confirm these findings we have conducted a transcriptome microarray analysis of the liver and kidneys from these same animals. The expression of 4224 and 4447 transcript clusters (a group of probes corresponding to a known or putative gene) were found to be altered respectively in liver and kidney (p < 0.01, q < 0.08). Changes in gene expression varied from -3.5 to 3.7 fold in liver and from -4.3 to 5.3 in kidneys. Among the 1319 transcript clusters whose expression was altered in both tissues, ontological enrichment in 3 functional categories among 868 genes were found. First, genes involved in mRNA splicing and small nucleolar RNA were mostly upregulated, suggesting disruption of normal spliceosome activity. Electron microscopic analysis of hepatocytes confirmed nucleolar structural disruption. Second, genes controlling chromatin structure (especially histone-lysine N-methyltransferases) were mostly upregulated. Third, genes related to respiratory chain complex I and the tricarboxylic acid cycle were mostly downregulated. Pathway analysis suggests a modulation of the mTOR and phosphatidylinositol signalling pathways. Gene disturbances associated with the chronic administration of ultra-low dose Roundup reflect a liver and kidney lipotoxic condition and increased cellular growth that may be linked with regeneration in response to toxic effects causing damage

  18. Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage

    PubMed Central

    Caplin, Ben; Boruc, Olga; Bruce-Cobbold, Claire; Cutillas, Pedro; Dormann, Dirk; Faull, Peter; Grossman, Rebecca C.; Khadayate, Sanjay; Mas, Valeria R.; Nitsch, Dorothea D.; Wang, Zhen; Norman, Jill T.; Wilcox, Christopher S.; Wheeler, David C.; Leiper, James

    2015-01-01

    Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule–specific Ddah1 knockout (Ddah1PT−/−) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1PT−/− mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function. PMID:25855779

  19. Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage.

    PubMed

    Tomlinson, James A P; Caplin, Ben; Boruc, Olga; Bruce-Cobbold, Claire; Cutillas, Pedro; Dormann, Dirk; Faull, Peter; Grossman, Rebecca C; Khadayate, Sanjay; Mas, Valeria R; Nitsch, Dorothea D; Wang, Zhen; Norman, Jill T; Wilcox, Christopher S; Wheeler, David C; Leiper, James

    2015-12-01

    Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule-specific Ddah1 knockout (Ddah1(PT-/-)) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1(PT-/-) mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function. Copyright © 2015 by the American Society of Nephrology.

  20. Ginger extract protects rat's kidneys against oxidative damage after chronic ethanol administration.

    PubMed

    Shirpoor, Aireza; Rezaei, Farzaneh; Fard, Amin Abdollahzade; Afshari, Ali Taghizadeh; Gharalari, Farzaneh Hosseini; Rasmi, Yousef

    2016-12-01

    Chronic alcohol ingestion is associated with pronounced detrimental effects on the renal system. In the current study, the protective effect of ginger extract on ethanol-induced damage was evaluated through determining 8-OHdG, cystatin C, glomerular filtration rate, and pathological changes such as cell proliferation and fibrosis in rats' kidneys. Male wistar rats were randomly divided into three groups and were treated as follows: (1) control, (2) ethanol and (3) ginger extract treated ethanolic (GETE) groups. After a six weeks period of treatment, the results revealed proliferation of glomerular and tubular cells, fibrosis in glomerular and peritubular and a significant rise in the level of 8-OHdG, cystatin C, plasma urea and creatinine. Moreover, compared to the control group, the ethanol group showed a significant decrease in the urine creatinine and creatinine clearance. In addition, significant amelioration of changes in the structure of kidneys, along with restoration of the biochemical alterations were found in the ginger extract treated ethanolic group, compared to the ethanol group. These findings indicate that ethanol induces kidneys abnormality by oxidative DNA damage and oxidative stress, and that these effects can be alleviated using ginger as an antioxidant and anti-inflammatory agent. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Subclinical Kidney Damage in Hypertensive Patients: A Renal Window Opened on the Cardiovascular System. Focus on Microalbuminuria.

    PubMed

    Mulè, Giuseppe; Castiglia, Antonella; Cusumano, Claudia; Scaduto, Emilia; Geraci, Giulio; Altieri, Dario; Di Natale, Epifanio; Cacciatore, Onofrio; Cerasola, Giovanni; Cottone, Santina

    2017-01-01

    The kidney is one of the major target organs of hypertension.Kidney damage represents a frequent event in the course of hypertension and arterial hypertension is one of the leading causes of end-stage renal disease (ESRD).ESRD has long been recognized as a strong predictor of cardiovascular (CV) morbidity and mortality. However, over the past 20 years a large and consistent body of evidence has been produced suggesting that CV risk progressively increases as the estimated glomerular filtration rate (eGFR) declines and is already significantly elevated even in the earliest stages of renal damage. Data was supported by the very large collaborative meta-analysis of the Chronic Kidney Disease Prognosis Consortium, which provided undisputable evidence that there is an inverse association between eGFR and CV risk. It is important to remember that in evaluating CV disease using renal parameters, GFR should be assessed simultaneously with albuminuria.Indeed, data from the same meta-analysis indicate that also increased urinary albumin levels or proteinuria carry an increased risk of all-cause and CV mortality. Thus, lower eGFR and higher urinary albumin values are not only predictors of progressive kidney failure, but also of all-cause and CV mortality, independent of each other and of traditional CV risk factors.Although subjects with ESRD are at the highest risk of CV diseases, there will likely be more events in subjects with mil-to-moderate renal dysfunction, because of its much higher prevalence.These findings are even more noteworthy when one considers that a mild reduction in renal function is very common in hypertensive patients.The current European Society of Hypertension (ESH)/European Society of Cardiology (ESC) guidelines for the management of arterial hypertension recommend to sought in every patient signs of subclinical (or asymptomatic) renal damage. This was defined by the detection of eGFR between 30 mL/min/1.73 m 2 and 60 mL/min/1.73 m 2 or the

  2. Comparison of Aerobic Preservation by Venous Systemic Oxygen Persufflation or Oxygenated Machine Perfusion of Warm-Ischemia-Damaged Porcine Kidneys.

    PubMed

    Kalenski, Julia; Mancina, Elina; Paschenda, Pascal; Beckers, Christian; Bleilevens, Christian; Tóthová, Ľubomíra; Boor, Peter; Gross, Dominik; Tolba, René H; Doorschodt, Benedict M

    2016-01-01

    The global shortage of donor organs for transplantation has necessitated the expansion of the organ pool through increased use of organs from less ideal donors. Venous systemic oxygen persufflation (VSOP) and oxygenated machine perfusion (OMP) have previously demonstrated beneficial results compared to cold storage (CS) in the preservation of warm-ischemia-damaged kidney grafts. The aim of this study was to compare the efficacy of VSOP and OMP for the preservation of warm-ischemia-damaged porcine kidneys using the recently introduced Ecosol preservation solution compared to CS using Ecosol or histidine-tryptophan-ketoglutarate solution (HTK). Kidneys from German Landrace pigs (n = 5/group) were retrieved and washed out with either Ecosol or HTK after 45 min of clamping of the renal pedicle. As controls, kidneys without warm ischemia, cold stored for 24 h in HTK, were employed. Following 24 h of preservation by VSOP, OMP, CS-Ecosol, or CS-HTK, renal function and damage were assessed during 1 h using the isolated perfused porcine kidney model. During reperfusion, urine production was significantly higher in the VSOP and OMP groups than in the CS-HTK group; however, only VSOP could demonstrate lower urine protein concentrations and fractional excretion of sodium, which did not differ from the non-warm-ischemia-damaged control group. VSOP, CS-Ecosol, and controls showed better maintenance of the acid-base balance than CS-HTK. Reduced lipid peroxidation, as reflected in postreperfusion tissue thiobarbituric acid-reactive substance levels, was observed in the VSOP group compared to the OMP group, and the VSOP and CS-Ecosol groups had concentrations similar to the controls. The ratio of reduced to oxidized glutathione was higher in the VSOP, OMP, and CS-Ecosol groups than in the CS-HTK group and controls, with a higher ratio in the VSOP than in the OMP group. VSOP was associated with mitigation of oxidative stress in comparison to OMP and CS. Preservation of warm-ischemia-damaged

  3. Epidemiological characteristics of chronic kidney disease of non-traditional causes in women of agricultural communities of El Salvador.

    PubMed

    Orantes Navarro, Carlos M; Herrera Valdés, Raúl; López, Miguel Almaguer; Calero, Denis J; Fuentes de Morales, Jackeline; Alvarado Ascencio, Nelly P; Vela Parada, Xavier F; Zelaya Quezada, Susana M; Granados Castro, Delmy V; Orellana de Figueroa, Patricia

    2015-01-01

    In El Salvador end-stage renal disease (ESRD) was the first cause of hospital mortality overall, the first cause of hospital deaths in men, and the fifth cause of hospital mortality in women in 2013. In agricultural communities, chronic kidney disease (CKD) occurs predominantly in male agricultural workers, but it also affects women to a lesser degree, even those who are not involved in agricultural work. Internationally, most epidemiological CKD studies emphasize men and no epidemiological studies focused exclusively on women. To describe the epidemiological characteristics of CKD in females in agricultural communities of El Salvador. A cross-sectional epidemiological study was carried out in 2009 - 2011 based on active screening for CKD and risk factors in women aged ≥ 18 years in 3 disadvantaged populations of El Salvador: Bajo Lempa (Usulután Department), Guayapa Abajo (Ahuachapán Department), and Las Brisas (San Miguel Department). Epidemiological and clinical data were gathered through personal history, as well as urinalysis for renal damage markers, determinations of serum creatinine and glucose, and estimation of glomerular filtration rates. CKD cases were confirmed at 3 months. Prevalence of CKD was 13.9% in 1,412 women from 1,306 families studied. Chronic kidney disease of nontraditional causes (CKDu), not attributed to diabetes mellitus, hypertension, or proteinuric primary glomerulopathy (proteinuria > 1 g/L) was 6.6%. Prevalence of chronic renal failure was 6.8%. Prevalence of renal damage markers was 9.8% (microalbuminuria (30 - 300 mg/L) 5.7%; macroalbuminuria (> 300 mg/L) 2%; and hematuria, 2.1%. Prevalence of chronic kidney disease risk factors was: diabetes mellitus, 9.3%; hypertension, 23%; family history of CKD, 16%; family history of diabetes mellitus (DM), 18.7%; family history of hypertension (HT), 31.9%; obesity, 21%; central obesity, 30.7%; NSAID use, 84.3%; agricultural occupation, 15.2%; and contact with agrochemicals, 33.1%. CKD in

  4. [The diagnostic importance of the new marker KIM-1 in kidney damage].

    PubMed

    Marchewka, Zofia; Płonka, Joanna

    2013-07-24

    In recent years, the rapid development of scientific research led to the introduction of strategies based on new markers that allow for estimation of the latent disease period before the clinical symptoms of actual kidney failure are revealed. The experimental tests carried out on animals and cell lines derived from the proximal tubule have made possible the detection of genes that are induced early after hypoxia. The protein products of these genes can be considered as useful markers for the diagnosis of renal failure. The induction of gene KIM-1 (called Kidney Injury Molecule-1) results in the formation of protein that can be considered as a diagnostic marker. This work describes the data on the structure, biological function and importance of determining the concentrations of KIM-1 in the diagnosis of drug-induced toxicity and kidney damage.

  5. THE KNOCKED-OUT UNILATERAL KIDNEY! CAUSES AND PRESENTATION.

    PubMed

    Bangash, Kashif; Alam, Asaf; Amin, Mohammed; Anwar, Khursheed

    2015-01-01

    Due to lack of awareness and non-availability of proper medical facilities in Pakistan, patients with kidney problems tend to seek urological consultation very late when their kidney has already knocked-out. The aim of the study was to find the various presenting complaints of patients having unilateral loss of kidney function and their aetiologies. The study also targeted the patient's awareness regarding their disease. This descriptive case-series of 103 consecutive patients who were diagnosed as having less than 20% of function on DTPA Renal Scan were evaluated. The aetiology of the non-functioning kidney (NFK) was made on either imaging findings or during the exploration, and/or on histopathology if necessary. The results were analysed using SPSS 16.0. Results: The aetiology of the unilateral renal failure included those that were secondary to nephro-pelvic stones in 39.8% and ureteric stones in 14.6%. Of the other aetiologies culminating in a unilateral NFK, 7.8% of the patients had chronic pyelonephritis, 20.4% had PUJO and 5.8% were Genito-urinary Tuberculosis; 3.9% had VUR and were found incidentally, 3.9% developed non-functioning kidney iatrogenically. About 39.8% of the patients knew about their primary disease causing destruction of renal function since long. The remaining 60.2% were unaware that they had developed NFK already when they presented. Proper education through awareness program both for the public and general practitioners can detect early threats to the kidney and hence decrease the loss of a kidney. This will also decrease the number of nephrectomies carried out for the benign condition.

  6. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    PubMed

    Silachev, Denis N; Isaev, Nikolay K; Pevzner, Irina B; Zorova, Ljubava D; Stelmashook, Elena V; Novikova, Svetlana V; Plotnikov, Egor Y; Skulachev, Vladimir P; Zorov, Dmitry B

    2012-01-01

    Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β) in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s) which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated kidney cells with cortical neurons resulted in enchanced

  7. Protective Role for Antioxidants in Acute Kidney Disease

    PubMed Central

    Dennis, Joanne M.; Witting, Paul K.

    2017-01-01

    Acute kidney injury causes significant morbidity and mortality in the community and clinic. Various pathologies, including renal and cardiovascular disease, traumatic injury/rhabdomyolysis, sepsis, and nephrotoxicity, that cause acute kidney injury (AKI), induce general or regional decreases in renal blood flow. The ensuing renal hypoxia and ischemia promotes the formation of reactive oxygen species (ROS) such as superoxide radical anions, peroxides, and hydroxyl radicals, that can oxidatively damage biomolecules and membranes, and affect organelle function and induce renal tubule cell injury, inflammation, and vascular dysfunction. Acute kidney injury is associated with increased oxidative damage, and various endogenous and synthetic antioxidants that mitigate source and derived oxidants are beneficial in cell-based and animal studies. However, the benefit of synthetic antioxidant supplementation in human acute kidney injury and renal disease remains to be realized. The endogenous low-molecular weight, non-proteinaceous antioxidant, ascorbate (vitamin C), is a promising therapeutic in human renal injury in critical illness and nephrotoxicity. Ascorbate may exert significant protection by reducing reactive oxygen species and renal oxidative damage via its antioxidant activity, and/or by its non-antioxidant functions in maintaining hydroxylase and monooxygenase enzymes, and endothelium and vascular function. Ascorbate supplementation may be particularly important in renal injury patients with low vitamin C status. PMID:28686196

  8. The protective effect of Malva sylvestris on rat kidney damaged by vanadium

    PubMed Central

    2011-01-01

    Background The protective effect of the common mallow (Malva sylvestris) decoction on renal damages in rats induced by ammonium metavanadate poisoning was evaluated. On the one hand, vanadium toxicity is associated to the production of reactive oxygen species, causing a lipid peroxidation and an alteration in the enzymatic antioxidant defence. On the other hand, many medicinal plants are known to possess antioxidant and radical scavenging properties, thanks to the presence of flavonoids. These properties were confirmed in Malva sylvestris by two separate methods; namely, the Diphenyl-2-picrylhydrazyl assay and the Nitroblue Tetrazolium reduction assay. Results In 80 rats exposed to ammonium metavanadate (0.24 mmol/kg body weight in drinking water) for 90 days, lipid peroxidation levels and superoxide dismutase, catalase and glutathione peroxidase activities were measured in kidney. A significant increase in the formation of free radicals and antioxidant enzyme activities was noticed. In addition, a histological examination of kidney revealed a structural deterioration of the renal cortical capsules and a shrinking of the Bowman space. In animals intoxicated by metavanadate but also given a Malva sylvestris decoction (0.2 g dry mallow/kg body weight), no such pathologic features were observed: lipid peroxidation levels, antioxidant enzyme activities and histological features appeared normal as compared to control rats. Conclusion Malva sylvestris is proved to have a high antioxidative potential thanks to its richness in phenolic compounds. PMID:21513564

  9. Hyperactivation of Akt/mTOR and deficiency in tuberin increased the oxidative DNA damage in kidney cancer patients with diabetes

    PubMed Central

    Habib, Samy L.; Liang, Sitai

    2014-01-01

    Recent study from our laboratory showed that patients with diabetes are at a higher risk of developing kidney cancer. In the current study, we have explored one of the mechanisms by which diabetes accelerates tumorigenesis in the kidney. Kidney cancer tissue from patients with diabetes showed a higher activity of Akt and decreased in total protein of tuberin compared to kidney cancer patient without diabetes or diabetes alone. In addition, a significant increase in phospho-Akt/tuberin expression was associated with an increase in Ki67 expression and activation of mTOR in kidney tumor with or without diabetes compared to diabetes alone. In addition, decrease in tuberin expression resulted in a significant decrease in protein expression of OGG1 and increased in oxidative DNA damage, 8-oxodG in kidney tissues from patients with cancer or cancer+diabetes. Importantly, these data showed that the majority of the staining of Akt/tuberin/p70S6K phosphorylation was more prominently in the tubular cells. In addition, accumulation of oxidative DNA damage is localized only in the nucleus of tubular cells within the cortex region. These data suggest that Akt/tuberin/mTOR pathway plays an important role in the regulation DNA damage and repair pathways that may predispose diabetic kidneys to pathogenesis of renal cell carcinoma. PMID:24797175

  10. Oxidative Stress as a Mechanism Involved in Kidney Damage After Subchronic Exposure to Vanadium Inhalation and Oral Sweetened Beverages in a Mouse Model.

    PubMed

    Espinosa-Zurutuza, Maribel; González-Villalva, Adriana; Albarrán-Alonso, Juan Carlos; Colín-Barenque, Laura; Bizarro-Nevares, Patricia; Rojas-Lemus, Marcela; López-Valdéz, Nelly; Fortoul, Teresa I

    Kidney diseases have notably increased in the last few years. This is partially explained by the increase in metabolic syndrome, diabetes, and systemic blood hypertension. However, there is a segment of the population that has neither of the previous risk factors, yet suffers kidney damage. Exposure to atmospheric pollutants has been suggested as a possible risk factor. Air-suspended particles carry on their surface a variety of fuel combustion-related residues such as metals, and vanadium is one of these. Vanadium might produce oxidative stress resulting in the damage of some organs such as the kidney. Additionally, in countries like Mexico, the ingestion of sweetened beverages is a major issue; whether these beverages alone are responsible for direct kidney damage or whether their ingestion promotes the progression of an existing renal damage generates controversy. In this study, we report the combined effect of vanadium inhalation and sweetened beverages ingestion in a mouse model. Forty CD-1 male mice were distributed in 4 groups: control, vanadium inhalation, 30% sucrose in drinking water, and vanadium inhalation plus sucrose 30% in drinking water. Our results support that vanadium inhalation and the ingestion of 30% sucrose induce functional and histological kidney damage and an increase in oxidative stress biomarkers, which were higher in the combined effect of vanadium plus 30% sucrose. The results also support that the ingestion of 30% sucrose alone without hyperglycemia also produces kidney damage.

  11. Effect of Long-Term Systolic Blood Pressure Trajectory on Kidney Damage in the Diabetic Population: A Prospective Study in a Community-Based Chinese Cohort.

    PubMed

    Li, Jian-Chao; Tian, Jun; Wu, Shou-Ling; Wang, Zhi-Jun; Zhang, Xiao-Fei; Jia, Dao; Ding, Rong-Jing; Xiao, Xiong-Fu; Fan, Yu-Bo; Hu, Da-Yi

    2018-05-20

    Previous studies have shown that hypertension is an important factor contributing to the occurrence and progression of diabetic kidney damage. However, the relationship between the patterns of blood pressure (BP) trajectory and kidney damage in the diabetic population remains unclear. This prospective study investigated the effect of long-term systolic BP (SBP) trajectory on kidney damage in the diabetic population based on an 8-year follow-up community-based cohort. This study included 4556 diabetic participants among 101,510 participants. BP, estimated glomerular filtration rate (eGFR), and urinary protein were measured every 2 years from 2006 to 2014. SBP trajectory was identified by the censored normal modeling. Five discrete SBP trajectories were identified according to SBP range and the changing pattern over time. Kidney damage was evaluated through eGFR and urinary protein value. A multivariate logistic regression model was used to analyze the influence of different SBP trajectory groups on kidney damage. We identified five discrete SBP trajectories: low-stable group (n = 864), moderate-stable group (n = 1980), moderate increasing group (n = 609), elevated decreasing group, (n = 679), and elevated stable group (n = 424). The detection rate of kidney damage in the low-stable group (SBP: 118-124 mmHg) was the lowest among the five groups. The detection rate of each kidney damage index was higher in the elevated stable group (SBP: 159-172 mmHg) compared with the low-stable group. For details, the gap was 4.14 (11.6% vs. 2.8%) in eGFR <60 ml·min -1 ·1.73 m -2 and 3.66 (17.2% vs. 4.7%), 3.38 (25.0% vs. 7.4%), and 1.8 (10.6% vs. 5.9%) times in positive urinary protein, eGFR <60 ml·min -1 ·1.73 m -2 and/or positive urinary protein, and eGFR decline ≥30%, respectively (P < 0.01). An elevated stable SBP trajectory is an independent risk factor for kidney damage in the diabetic population.

  12. The effect of cholesterol overload on mouse kidney and kidney-derived cells.

    PubMed

    Honzumi, Shoko; Takeuchi, Miho; Kurihara, Mizuki; Fujiyoshi, Masachika; Uchida, Masashi; Watanabe, Kenta; Suzuki, Takaaki; Ishii, Itsuko

    2018-11-01

    Dyslipidemia is one of the onset and risk factors of chronic kidney disease and renal function drop is seen in lipoprotein abnormal animal models. However, the detailed molecular mechanism of renal lipotoxicity has not been clarified. Therefore, the present study aimed to investigate the influence of cholesterol overload using mouse kidney tissue and kidney-derived cultured cells. C57BL/6 mice were fed normal diet (ND) or 1.25% cholesterol-containing high-cholesterol diet (HCD) for 11 weeks, and we used megalin as a proximal tubule marker for immunohistology. We added beta-very low density lipoprotein (βVLDL) to kidney-derived cells and examined the effect of cholesterol overload on megalin protein and mRNA expression level, cell proliferation and cholesterol content in cells. In the kidney of HCD mice, the gap between glomerulus and the surrounding Bowman's capsule decreased and the expression level of megalin decreased. After βVLDL treatment to the cells, the protein expression and mRNA expression level of megalin decreased and cell proliferation was restrained. We also observed an increase in cholesterol accumulation in the cell and free cholesterol/phospholipid ratios increased. These findings suggest that the increased cholesterol load on kidney contribute to the decrease of megalin and the overloaded cholesterol is taken into the renal tubule epithelial cells, causing suppression on cell proliferation, which may be the cause of kidney damage.

  13. Selenium deficiency induced damages and altered expressions of metalloproteinases and their inhibitors (MMP1/3, TIMP1/3) in the kidneys of growing rats.

    PubMed

    Han, Jing; Liang, Hua; Yi, Jianhua; Tan, Wuhong; He, Shulan; Wu, Xiaofang; Shi, Xiaowei; Ma, Jing; Guo, Xiong

    2016-03-01

    Selenium is an essential trace element for the maintenance of structures and functions of kidney. To evaluate the effects of low selenium on the kidneys of growing rats, newborn rats were fed with selenium deficient and normal diets respectively for 109 days. As a result, rats fed with low selenium diets resulted in a decline in the body weight and the concentration of selenium in the kidney, especially the male rats from the low selenium groups. Moreover, the ultrastructure of glomerulus and tubules were damaged in low selenium group: the glomeruli were observed with hyperplasia of mesangial cells, fusion of podocyte foot processes and thickening of basement membrane; and the tubules were observed with vacuolar degenerated epithelial cells, increased edema fluid or protein solution between cells, microvilli edema, increased cell gaps and decreased cell links. Furthermore, the pathological changes in selenium deficient group included the increase of fibers around renal hilum aorta and in the renal collecting duct, and shed of cells in the proximal convoluted tubules. In addition, up-regulated expressions of matrix metalloproteinases (MMP1/3) and down-regulated expressions of their inhibitors (TIMP1/3) at the mRNA and protein levels were also appeared to be relevant to low selenium. The results suggested that low selenium in diet may cause low selenium concentration in the kidney of growing rat and lead to damages of the ultrastructure and extracellular matrix (ECM) of kidney. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Damaging Effects of Bisphenol A on the Kidney and the Protection by Melatonin: Emerging Evidences from In Vivo and In Vitro Studies

    PubMed Central

    Peerapanyasut, Wachirasek

    2018-01-01

    This study investigates the effects of bisphenol A (BPA) contamination on the kidney and the possible protection by melatonin in experimental rats and isolated mitochondrial models. Rats exposed to BPA (50, 100, and 150 mg/kg, i.p.) for 5 weeks demonstrated renal damages as evident by increased serum urea and creatinine and decreased creatinine clearance, together with the presence of proteinuria and glomerular injuries in a dose-dependent manner. These changes were associated with increased lipid peroxidation and decreased antioxidant glutathione and superoxide dismutase. Mitochondrial dysfunction was also evident as indicated by increased reactive oxygen species production, decreased membrane potential change, and mitochondrial swelling. Coadministration of melatonin resulted in the reversal of all the changes caused by BPA. Studies using isolated mitochondria showed that BPA incubation produced dose-dependent impairment in mitochondrial function. Preincubation with melatonin was able to sustain mitochondrial function and architecture and decreases oxidative stress upon exposure to BPA. The findings indicated that BPA is capable of acting directly on the kidney mitochondria, causing mitochondrial oxidative stress, dysfunction, and subsequently, leading to whole organ damage. Emerging evidence further suggests the protective benefits of melatonin against BPA nephrotoxicity, which may be mediated, in part, by its ability to diminish oxidative stress and maintain redox equilibrium within the mitochondria. PMID:29670679

  15. Acute Kidney Failure

    MedlinePlus

    ... through your urine Impaired blood flow to the kidneys Diseases and conditions that may slow blood flow ... anaphylaxis) Severe burns Severe dehydration Damage to the kidneys These diseases, conditions and agents may damage the ...

  16. Associations among environmental exposure to manganese, neuropsychological performance, oxidative damage and kidney biomarkers in children.

    PubMed

    Nascimento, Sabrina; Baierle, Marília; Göethel, Gabriela; Barth, Anelise; Brucker, Natália; Charão, Mariele; Sauer, Elisa; Gauer, Bruna; Arbo, Marcelo Dutra; Altknecht, Louise; Jager, Márcia; Dias, Ana Cristina Garcia; de Salles, Jerusa Fumagalli; Saint' Pierre, Tatiana; Gioda, Adriana; Moresco, Rafael; Garcia, Solange Cristina

    2016-05-01

    Environmental exposure to manganese (Mn) results in several toxic effects, mainly neurotoxicity. This study investigated associations among Mn exposure, neuropsychological performance, biomarkers of oxidative damage and early kidney dysfunction in children aged 6-12 years old. Sixty-three children were enrolled in this study, being 43 from a rural area and 20 from an urban area. Manganese was quantified in blood (B-Mn), hair (H-Mn) and drinking water using inductively coupled plasma mass spectrometry (ICP-MS). The neuropsychological functions assessed were attention, perception, working memory, phonological awareness and executive functions - inhibition. The Intelligence quotient (IQ) was also evaluated. The biomarkers malondialdehyde (MDA), protein carbonyls (PCO), δ-aminolevulinate dehydratase (ALA-D), reactivation indexes with dithiothreitol (ALA-RE/DTT) and ZnCl2 (ALA-RE/ZnCl2), non-protein thiol groups, as well as microalbuminuria (mALB) level and N-acetyl-β-D-glucosaminidase (NAG) activity were assessed. The results demonstrated that Mn levels in blood, hair and drinking water were higher in rural children than in urban children (p<0.01). Adjusted for potential confounding factors, IQ, age, gender and parents' education, significant associations were observed mainly between B-Mn and visual attention (β=0.649; p<0.001). Moreover, B-Mn was negatively associated with visual perception and phonological awareness. H-Mn was inversely associated with working memory, and Mn levels from drinking water with written language and executive functions - inhibition. Rural children showed a significant increase in oxidative damage to proteins and lipids, as well as alteration in kidney function biomarkers (p<0.05). Moreover, significant associations were found between B-Mn, H-Mn and Mn levels in drinking water and biomarkers of oxidative damage and kidney function, besides between some oxidative stress biomarkers and neuropsychological tasks (p<0.05). The findings of this

  17. Boldine Improves Kidney Damage in the Goldblatt 2K1C Model Avoiding the Increase in TGF-β.

    PubMed

    Gómez, Gonzalo I; Velarde, Victoria

    2018-06-25

    Boldine, a major aporphine alkaloid found in the Chilean boldo tree, is a potent antioxidant. Oxidative stress plays a detrimental role in the pathogenesis of kidney damage in renovascular hypertension (RVH). The activation of the renin-angiotensin system (RAS) is crucial to the development and progression of hypertensive renal damage and TGF-β is closely associated with the activation of RAS. In the present study, we assessed the effect of boldine on the progression of kidney disease using the 2K1C hypertension model and identifying mediators in the RAS, such as TGF-β, that could be modulated by this alkaloid. Toward this hypothesis, rats ( n = 5/group) were treated with boldine (50 mg/kg/day, gavage) for six weeks after 2K1C surgery (pressure ≥ 180 mmHg). Kidney function was evaluated by measuring of proteinuria/creatininuria ratio (U prot/U Crea), oxidative stress (OS) by measuring thiobarbituric acid reactive substances (TBARS). The evolution of systolic blood pressure (SBP) was followed weekly. Alpha-smooth muscle actin (α-SMA) and Col III were used as markers of kidney damage; ED-1 and osteopontin (OPN) were used as markers of inflammation. We also explored the effect in RAS mediators, such as ACE-1 and TGF-β. Boldine treatment reduced the UProt/UCrea ratio, plasma TBARS, and slightly reduced SBP in 2K1C hypertensive rats, producing no effect in control animals. In 2K1C rats treated with boldine the levels of α-SMA, Col III, ED-1, and OPN were lower when compared to 2K1C rats. Boldine prevented the increase in ACE-1 and TGF-β in 2K1C rats, suggesting that boldine reduces kidney damage. These results suggest that boldine could potentially be used as a nutraceutic.

  18. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis.

    PubMed

    Humphreys, Benjamin D; Xu, Fengfeng; Sabbisetti, Venkata; Grgic, Ivica; Movahedi Naini, Said; Wang, Ningning; Chen, Guochun; Xiao, Sheng; Patel, Dhruti; Henderson, Joel M; Ichimura, Takaharu; Mou, Shan; Soeung, Savuth; McMahon, Andrew P; Kuchroo, Vijay K; Bonventre, Joseph V

    2013-09-01

    Acute kidney injury predisposes patients to the development of both chronic kidney disease and end-stage renal failure, but the molecular details underlying this important clinical association remain obscure. We report that kidney injury molecule-1 (KIM-1), an epithelial phosphatidylserine receptor expressed transiently after acute injury and chronically in fibrotic renal disease, promotes kidney fibrosis. Conditional expression of KIM-1 in renal epithelial cells (Kim1(RECtg)) in the absence of an injury stimulus resulted in focal epithelial vacuolization at birth, but otherwise normal tubule histology and kidney function. By 4 weeks of age, Kim1(RECtg) mice developed spontaneous and progressive interstitial kidney inflammation with fibrosis, leading to renal failure with anemia, proteinuria, hyperphosphatemia, hypertension, cardiac hypertrophy, and death, analogous to progressive kidney disease in humans. Kim1(RECtg) kidneys had elevated expression of proinflammatory monocyte chemotactic protein-1 (MCP-1) at early time points. Heterologous expression of KIM-1 in an immortalized proximal tubule cell line triggered MCP-1 secretion and increased MCP-1-dependent macrophage chemotaxis. In mice expressing a mutant, truncated KIM-1 polypeptide, experimental kidney fibrosis was ameliorated with reduced levels of MCP-1, consistent with a profibrotic role for native KIM-1. Thus, sustained KIM-1 expression promotes kidney fibrosis and provides a link between acute and recurrent injury with progressive chronic kidney disease.

  19. NGAL (Lcn2) monomer is associated with tubulointerstitial damage in chronic kidney disease.

    PubMed

    Nickolas, Thomas L; Forster, Catherine S; Sise, Meghan E; Barasch, Nicholas; Solá-Del Valle, David; Viltard, Melanie; Buchen, Charles; Kupferman, Shlomo; Carnevali, Maria Luisa; Bennett, Michael; Mattei, Silvia; Bovino, Achiropita; Argentiero, Lucia; Magnano, Andrea; Devarajan, Prasad; Mori, Kiyoshi; Erdjument-Bromage, Hediye; Tempst, Paul; Allegri, Landino; Barasch, Jonathan

    2012-09-01

    The type and the extent of tissue damage inform the prognosis of chronic kidney disease (CKD), but kidney biopsy is not a routine test. Urinary tests that correlate with specific histological findings might serve as surrogates for the kidney biopsy. We used immunoblots and ARCHITECT-NGAL assays to define the immunoreactivity of urinary neutrophil gelatinase-associated lipocalin (NGAL) in CKD, and we used mass spectroscopy to identify associated proteins. We analyzed kidney biopsies to determine whether specific pathological characteristics associated with the monomeric NGAL species. Advanced CKD urine contained the NGAL monomer as well as novel complexes of NGAL. When these species were separated, we found a significant correlation between the NGAL monomer and glomerular filtration rate (r=-0.53, P<0.001), interstitial fibrosis (mild vs. severe disease; mean 54 vs. 167 μg uNGAL/g Cr, P<0.01), and tubular atrophy (mild vs. severe disease; mean 54 vs. 164 μg uNGAL/g Cr, P<0.01). Monospecific assays of the NGAL monomer demonstrated a correlation with histology that typifies progressive, severe CKD.

  20. Kidney Diseases

    MedlinePlus

    ... until you go to the bathroom. Most kidney diseases attack the nephrons. This damage may leave kidneys ... medicines. You have a higher risk of kidney disease if you have diabetes, high blood pressure, or ...

  1. Targeting Iron Homeostasis in Acute Kidney Injury

    PubMed Central

    Walker, Vyvyca J.; Agarwal, Anupam

    2017-01-01

    Summary Iron is an essential metal involved in several major cellular processes required to maintain life. Because of iron’s ability to cause oxidative damage, its transport, metabolism, and storage is strictly controlled in the body, especially in the small intestine, liver, and kidney. Iron plays a major role in acute kidney injury and has been a target for therapeutic intervention. However, the therapies that have been effective in animal models of acute kidney injury have not been successful in human beings. Targeting iron trafficking via ferritin, ferroportin, or hepcidin may offer new insights. This review focuses on the biology of iron, particularly in the kidney, and its implications in acute kidney injury. PMID:27085736

  2. Causes and timing of end-stage renal disease after living kidney donation.

    PubMed

    Matas, Arthur J; Berglund, Danielle M; Vock, David M; Ibrahim, Hassan N

    2018-05-01

    End-stage renal disease (ESRD) is a risk after kidney donation. We sought, in a large cohort of kidney donors, to determine the causes of donor ESRD, the interval from donation to ESRD, the role of the donor/recipient relationship, and the trajectory of the estimated GFR (eGFR) from donation to ESRD. From 1/1/1963 thru 12/31/2015, 4030 individuals underwent living donor nephrectomy at our center, as well as ascertainment of ESRD status. Of these, 39 developed ESRD (mean age ± standard deviation [SD] at ESRD, 62.4 ± 14.1 years; mean interval between donation and ESRD, 27.1 ± 9.8 years). Donors developing ESRD were more likely to be male, as well as smokers, and younger at donation, and to have donated to a first-degree relative. Of donors with a known cause of ESRD (n = 25), 48% was due to diabetes and/or hypertension; only 2 from a disease that would have affected 1 kidney (cancer). Of those 25 with an ascertainable ESRD cause, 4 shared a similar etiology of ESRD with their recipient. Almost universally, thechange of eGFR over time was stable, until new-onset disease (kidney or systemic). Knowledge of factors contributing to ESRD after living kidney donation can improve donor selection and counseling, as well as long-term postdonation care. © 2018 The American Society of Transplantation and the American Society of Transplant Surgeons.

  3. [Identifying the specific causes of kidney allograft loss: A population-based study].

    PubMed

    Lohéac, Charlotte; Aubert, Olivier; Loupy, Alexandre; Legendre, Christophe

    2018-04-01

    Results of kidney transplantation have been improving but long-term allograft survival remains disappointing. The objective of the present study was to identify the specific causes of renal allograft loss, to assess their incidence and long-term outcomes. A total of 4783 patients from four French centres, transplanted between January 2004 and January 2014 were prospectively included. A total of 9959 kidney biopsies (protocol and for cause) performed between January 2004 and March 2015 were included. Donor and recipient clinical and biological parameters as well as anti-HLA antibody directed against the donor were included. The main outcome was the long-term kidney allograft survival, including the study of the associated causes of graft loss, the delay of graft loss according to their causes and the determinants of graft loss. There were 732 graft losses during the follow-up period (median time: 4.51 years) with an identified cause in 95.08 %. Kidney allograft survival at 9 years post-transplant was 78 %. The causes of allograft loss were: antibody-mediated rejection (31.69 %), thrombosis (25.55 %), medical intercurrent disease (14.62 %), recurrence of primary renal disease (7.1 %), BK- or CMV-associated nephropathy (n=35, 4.78 %), T cell-mediated rejection (4.78 %), urological disease (2.46 %) and calcineurin inhibitor nephrotoxicity (1.09 %). The main causes of allograft loss were antibody-mediated rejection and thrombosis. These results encourage efforts to prevent and detect these complications earlier in order to improve allograft survival. Copyright © 2018 Association Société de néphrologie. Published by Elsevier Masson SAS. All rights reserved.

  4. Disruption of IFT Complex A Causes Cystic Kidneys without Mitotic Spindle Misorientation

    PubMed Central

    Jonassen, Julie A.; SanAgustin, Jovenal; Baker, Stephen P.

    2012-01-01

    Intraflagellar transport (IFT) complexes A and B build and maintain primary cilia. In the mouse, kidney-specific or hypomorphic mutant alleles of IFT complex B genes cause polycystic kidneys, but the influence of IFT complex A proteins on renal development is not well understood. In the present study, we found that HoxB7-Cre–driven deletion of the complex A gene Ift140 from collecting ducts disrupted, but did not completely prevent, cilia assembly. Mutant kidneys developed collecting duct cysts by postnatal day 5, with rapid cystic expansion and renal dysfunction by day 15 and little remaining parenchymal tissue by day 20. In contrast to many models of polycystic kidney disease, precystic Ift140-deleted collecting ducts showed normal centrosomal positioning and no misorientation of the mitotic spindle axis, suggesting that disruption of oriented cell division is not a prerequisite to cyst formation in these kidneys. Precystic collecting ducts had an increased mitotic index, suggesting that cell proliferation may drive cyst expansion even with normal orientation of the mitotic spindle. In addition, we observed significant increases in expression of canonical Wnt pathway genes and mediators of Hedgehog and tissue fibrosis in highly cystic, but not precystic, kidneys. Taken together, these studies indicate that loss of Ift140 causes pronounced renal cystic disease and suggest that abnormalities in several different pathways may influence cyst progression. PMID:22282595

  5. DNA Damage Response in Cisplatin-Induced Nephrotoxicity

    PubMed Central

    Zhu, Shiyao; Pabla, Navjotsingh; Tang, Chengyuan; He, Liyu; Dong, Zheng

    2015-01-01

    Cisplatin and its derivatives are widely used chemotherapeutic drugs for cancer treatment. However, they have debilitating side-effects in normal tissues and induce ototoxicity, neurotoxicity, and nephrotoxicity. In kidneys, cisplatin preferentially accumulates in renal tubular cells causing tubular cell injury and death, resulting in acute kidney injury (AKI). Recent studies have suggested that DNA damage and the associated DNA damage response (DDR) is an important pathogenic mechanism of AKI following cisplatin treatment. Activation of DDR may lead to cell cycle arrest and DNA repair for cell survival or, in the presence of severe injury, kidney cell death. Modulation of DDR may provide novel renoprotective strategies for cancer patients undergoing cisplatin chemotherapy. PMID:26564230

  6. Oxidative Stress in Kidney Diseases: The Cause or the Consequence?

    PubMed

    Krata, Natalia; Zagożdżon, Radosław; Foroncewicz, Bartosz; Mucha, Krzysztof

    2018-06-01

    Exaggerated oxidative stress (OS) is usually considered as a disturbance in regular function of an organism. The excessive levels of OS mediators may lead to major damage within the organism's cells and tissues. Therefore, the OS-associated biomarkers may be considered as new diagnostic tools of various diseases. In nephrology, researchers are looking for alternative methods replacing the renal biopsy in patients with suspicion of chronic kidney disease (CKD). Currently, CKD is a frequent health problem in world population, which can lead to progressive loss of kidney function and eventually to end-stage renal disease. The course of CKD depends on the primary disease. It is assumed that one of the factors influencing the course of CKD might be OS. In the current work, we review whether monitoring the OS-associated biomarkers in nephrology patients can support the decision-making process regarding diagnosis, prognostication and treatment initiation.

  7. Impact of the Di(2-Ethylhexyl) Phthalate Administration on Trace Element and Mineral Levels in Relation of Kidney and Liver Damage in Rats.

    PubMed

    Aydemir, Duygu; Karabulut, Gözde; Şimşek, Gülsu; Gok, Muslum; Barlas, Nurhayat; Ulusu, Nuriye Nuray

    2018-04-13

    Di(2-ethylhexyl) phthalate (DEHP) is a widely used synthetic polymer in the industry. DEHP may induce reproductive and developmental toxicity, obesity, carcinogenesis and cause abnormal endocrine function in both human and wildlife. The aim of this study was to investigate trace element and mineral levels in relation of kidney and liver damage in DEHP-administered rats. Therefore, prepubertal male rats were dosed with 0, 100, 200, and 400 mg/kg/day of DEHP. At the end of the experiment, trace element and mineral levels, glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6-PGD), glutathione reductase (GR) and glutathione S-transferase (GST) enzyme activities were evaluated in the serum, liver, and kidney samples of rats. Furthermore, serum clinical biochemistry parameters, organ/body weight ratios and histological changes were investigated to evaluate impact of DEHP more detailed. Our data indicated that sodium (Na), calcium (Ca), potassium (K), lithium (Li), rubidium (Rb) and cesium (Cs) levels significantly decreased, however iron (Fe) and selenium (Se) concentrations significantly increased in DEHP-administered groups compared to the control in the serum samples. On the other hand, upon DEHP administration, selenium concentration, G6PD and GR activities were significantly elevated, however 6-PGD activity significantly decreased compared to the control group in the kidney samples. Decreased G6PD activity was the only significant change between anti-oxidant enzyme activities in the liver samples. Upon DEHP administration, aberrant serum biochemical parameters have arisen and abnormal histological changes were observed in the kidney and liver tissue. In conclusion, DEHP may induce liver and kidney damage, also result abnormalities in the trace element and mineral levels.

  8. Diffuse vascular damage in a transplanted kidney: an indication for nuclear magnetic resonance?

    PubMed

    Burdese, M; Consiglio, V; Mezza, E; Savio, D; Guarena, C; Rossetti, M; Messina, M; Soragna, G; Suriani, C; Rabbia, C; Segoloni, G P; Piccoli, G B

    2005-06-01

    Vascular lesions are an increasing challenge after renal transplantation due to the wider indications for recipients and acceptance criteria for donors. Diagnostic approach and prognostic interpretation are still matter of controversy. The case reported herein may summarize some of the issues in this regard. A 54-year-old woman, on renal replacement therapy since 1974, and a kidney graft recipient from 1975 to 1999, received a second graft in 2001. The donor age was 65 years (cold ischemia 22 hours; two mismatches). The early posttransplant follow-up was characterized by delayed graft function, hypertension, and diabetes. During the initial hypertension workup, renal graft ultrasound (US) Doppler demonstrated increased vascular resistances, stable over time (resistance index 0.74 to 0.77); renal scintiscan displayed homogeneously parenchymoa and angio-magnetic resonance imaging (MRI), an homogeneous parenchymal vascularization. Initial immunosuppression with tacrolimus and steroids was modulated by adding mycophenolate mofetil to taper tacrolimus (to reduce nephrotoxicity and hypertension). Despite this, kidney function slowly deteriorated; serum creatinine reached 3 to 3.5 mg/dL by the second year. After a severe hypertensive crisis with unchanged scintiscan and US doppler examinations, angio-MRI revealed the almost complete disappearance of parenchymal enhancement beyond the lobar arteries. A renal biopsy confirmed the severe vascular damage. The patient was switched to rapamycine and a low-dose of an angiotension converting enzyme (ACE) inhibitor. She did relatively well (serum creatinine 2.2 to 3 mg/dL) for 6 months, when rapid functional impairment forced her to restart hemodialysis. This case, almost paradigmatic of the problems occurring when the rigid vasculature of long-term dialysis patients is matched with "marginal kidneys," suggests that MRI may be a sensible good to define vascular damage in the grafted kidney.

  9. Efficacy of vitamin C against liver and kidney damage induced by paraquat toxicity.

    PubMed

    Awadalla, Eatemad A

    2012-07-01

    Paraquat has been demonstrated to be a highly toxic compound for humans and animals and many cases of acute poisoning and death have been reported over the past few decades. The current experiment aimed to examine if vitamin C (ascorbic acid) alleviates the morphological changes induced by paraquat (PQ) administration in the liver and kidney of male albino rats. Male adult rats received paraquat (PQ) (1.5 mg/kg body weight) daily for three weeks. Vitamin C (VC) at a dose of 20 mg/kg body weight was given concomitantly with PQ to rats. Animals were divided into three groups in this experiment (control, PQ and PQ+VC). The morphopathological manifestations were investigated in tissues from liver and kidney. As expected, PQ administration induced marked changes in the morphological structure of the liver and kidney in PQ demonstrated animals. Importantly, vitamin C administration restored PQ-induced changes in the studied organs. Vitamin C administration attenuated the morphological damages induced by PQ in the liver and kidney of experimental animals. Our results suggest an antitoxic effect of vitamin C against paraquat. Copyright © 2010 Elsevier GmbH. All rights reserved.

  10. Understanding and preventing contrast-induced acute kidney injury.

    PubMed

    Fähling, Michael; Seeliger, Erdmann; Patzak, Andreas; Persson, Pontus B

    2017-03-01

    Contrast-induced acute kidney injury (CIAKI) occurs in up to 30% of patients who receive iodinated contrast media and is generally considered to be the third most common cause of hospital-acquired AKI. Accurate assessment of the incidence of CIAKI is obscured, however, by the use of various definitions for diagnosis, the different populations studied and the prophylactic measures put in place. A deeper understanding of the mechanisms that underlie CIAKI is required to enable reliable risk assessment for individual patients, as their medical histories will determine the specific pathways by which contrast media administration might lead to kidney damage. Here, we highlight common triggers that prompt the development of CIAKI and the subsequent mechanisms that ultimately cause kidney damage. We also discuss effective protective measures, such as rapidly acting oral hydration schemes and loop diuretics, in the context of CIAKI pathophysiology. Understanding of how CIAKI arises in different patient groups could enable a marked reduction in incidence and improved outcomes. The ultimate goal is to shape CIAKI prevention strategies for individual patients.

  11. Ureteric entrapment in sacroiliac joint causing hydroureter and ipsilateral kidney hypertrophy.

    PubMed

    Otsuru, Yurie; Kondo, Chuichi; Hara, Shohei; Takahashi, Hideo; Matsuno, Kenjiro

    2018-06-01

    A unilateral megaureter was found in an elderly female cadaver during routine dissection. The left proximal ureter, which was thick and convolute, descended and entered into the pelvic cavity, where the distal ureter was attached to the posterior pelvic wall at the inlet level. Removal of connective tissue surrounding the attached region revealed ureteric entrapment in the sacroiliac joint. The ipsilateral kidney, from which the megaureter originated, showed no pelvicalyceal dilatation. In contrast, the left kidney was enlarged, weighing 24% more than the right kidney. Differences in the upper urinary system between the obstructed and normal sides were examined in terms of gross anatomy, measurements, and histology. Although ureteric obstruction frequently causes hydroureter and hydronephrosis, the present case is very rare as the incomplete obstruction may have stimulated ipsilateral kidney growth, instead of contralateral compensatory augmentation.

  12. [Changes in body composition according to kidney damage in patients with type 2 diabetes mellitus].

    PubMed

    Medina-Escobedo, Martha; Romero-Campos, Sandra; Sansores-España, Delia; Viveros-Cortés, Angel; Villanueva-Jorge, Salha

    2013-01-01

    To know the relationship between total body composition and the stage of kidney damage, according to the K/DOQI classification, in patients with type 2 diabetes mellitus (T2DM). Under a correlation design, adults with T2DM were studied. Age, evolution time, fat and lean mass, fat percentage, total water, body index mass (BMI), creatinine clearance by Cockroft-Gault (CrCCG), glucose, HbA1c, proteinuria and microalbuminuria were determined. T test to compare independent means and Spearman correlation were used. The study included 60 men (23.4%) and 196 women (76.6%). There were no differences by gender when comparing age, BMI, duration of T2DM, blood glucose and HbA1c. The analysis showed a direct relationship between BMI (r = 0.281), the amount of fat mass (r = 0.360), lean tissue (r = 0.158), and water (r = 0.176) with the CrCCG (p < 0.0001). The biggest change in body composition, due to fat mass, was observed in chronic kidney disease stages 1-3, in which BMI had a good correlation with fat mass (r = 0.80, p < 0.001). Fat mass is inversely related to the stage of kidney damage in patients with T2DM.

  13. Kidney Failure

    MedlinePlus

    ... store Donate Now Give Monthly Give In Honor Kidney Failure (ESRD) Causes, Symptoms, & Treatments www.kidneyfund.org > ... Disaster preparedness Kidney failure/ESRD diet What causes kidney failure? In most cases, kidney failure is caused ...

  14. Diabetic Kidney Disease: A Syndrome Rather Than a Single Disease

    PubMed Central

    Piccoli, Giorgina B.; Grassi, Giorgio; Cabiddu, Gianfranca; Nazha, Marta; Roggero, Simona; Capizzi, Irene; De Pascale, Agostino; Priola, Adriano M.; Di Vico, Cristina; Maxia, Stefania; Loi, Valentina; Asunis, Anna M.; Pani, Antonello; Veltri, Andrea

    2015-01-01

    The term "diabetic kidney" has recently been proposed to encompass the various lesions, involving all kidney structures that characterize protean kidney damage in patients with diabetes. While glomerular diseases may follow the stepwise progression that was described several decades ago, the tenet that proteinuria identifies diabetic nephropathy is disputed today and should be limited to glomerular lesions. Improvements in glycemic control may have contributed to a decrease in the prevalence of glomerular lesions, initially described as hallmarks of diabetic nephropathy, and revealed other types of renal damage, mainly related to vasculature and interstitium, and these types usually present with little or no proteinuria. Whilst glomerular damage is the hallmark of microvascular lesions, ischemic nephropathies, renal infarction, and cholesterol emboli syndrome are the result of macrovascular involvement, and the presence of underlying renal damage sets the stage for acute infections and drug-induced kidney injuries. Impairment of the phagocytic response can cause severe and unusual forms of acute and chronic pyelonephritis. It is thus concluded that screening for albuminuria, which is useful for detecting "glomerular diabetic nephropathy", does not identify all potential nephropathies in diabetes patients. As diabetes is a risk factor for all forms of kidney disease, diagnosis in diabetic patients should include the same combination of biochemical, clinical, and imaging tests as employed in non-diabetic subjects, but with the specific consideration that chronic kidney disease (CKD) may develop more rapidly and severely in diabetic patients. PMID:26676663

  15. Vascular Damage and Kidney Transplant Outcomes: An Unfriendly and Harmful Link.

    PubMed

    Hernández, Domingo; Triñanes, Javier; Armas, Ana María; Ruiz-Esteban, Pedro; Alonso-Titos, Juana; Duarte, Ana; González-Molina, Miguel; Palma, Eulalia; Salido, Eduardo; Torres, Armando

    2017-07-01

    Kidney transplant (KT) is the treatment of choice for most patients with chronic kidney disease, but this has a high cardiovascular mortality due to traditional and nontraditional risk factors, including vascular calcification. Inflammation could precede the appearance of artery wall lesions, leading to arteriosclerosis and clinical and subclinical atherosclerosis in these patients. Additionally, mineral metabolism disorders and activation of the renin-angiotensin system could contribute to this vascular damage. Thus, understanding the vascular lesions that occur in KT recipients and the pathogenic mechanisms involved in their development could be crucial to optimize the therapeutic management and outcomes in survival of this population. This review focuses on the following issues: (1) epidemiological data framing the problem; (2) atheromatosis in KT patients: subclinical and clinical atheromatosis, involving ischemic heart disease, congestive heart failure, stroke and peripheral vascular disease; (3) arteriosclerosis and vascular calcifications; and (4) potential pathogenic mechanisms and their therapeutic targets. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  16. The effect of hypericum perforatum on kidney ischemia/reperfusion damage.

    PubMed

    Cakir, Murat; Duzova, Halil; Baysal, Işil; Gül, Cemile Ceren; Kuşcu, Gülbahar; Kutluk, Fatma; Çakin, Hilal; Şeker, Şifanur; İlbeği, Esranur; Uslu, Seda; Avci, Umut; Demir, Samet; Akinci, Cihan; Atli, Sercan

    2017-11-01

    It has been revealed in recent studies that Hypericum Perforatum (HP) is influential on cancer, inflammatory diseases, bacterial and viral diseases, and has neuroprotective and antioxidant properties. In this study, we investigated the effect of HP, which is known to have antioxidant and anti-inflammatory effects, on kidney I/R damage. Male Sprague-Dawley rats were divided into three groups, and each of the groups had eight rats: The Control Group; the Ischemia/Reperfusion (I/R) Group; and the IR + HP Group which was treated with 50 mg/kg of HP. The right kidneys of the rats were removed, and the left kidney developed ischemia during the 45th min, and reperfusion occurred in the following 3rd h. The histopathological findings and also the level of Malondialdehyde (MDA), Glutathione (GSH) and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX) enzyme activations in the renal tissues were measured. Blood Urea Nitrogen (BUN), Creatinin (Cre) from serum samples were determined. The levels of BUN, Cre, and kidney tissue MDA increased at a significant level, and the SOD, CAT, and GSH-PX enzyme activity decreased at a significant level in the I/R group, compared with the Control Group (p < 0.05). In the I/R + HP group, the levels of MDA decreased at a significant level compared to the I/R group, while the SOD, CAT, and GSH-PX activity increased (p < 0.05). In histopathological examinations, it was observed that the tubular dilatation and epithelial desquamation regressed in the IR + HP Group when compared with the I/R Group. It has been shown with the histological and biochemical results in this study that HP is protective against acute renal I/R.

  17. Autophagy and kidney inflammation.

    PubMed

    Kimura, Tomonori; Isaka, Yoshitaka; Yoshimori, Tamotsu

    2017-06-03

    Inflammation plays a pivotal role in pathophysiological processes of kidney diseases. Macroautophagy/autophagy plays multiple roles in inflammatory responses, and the regulation of inflammation by autophagy has great potential as a treatment for damaged kidneys. A growing body of evidence suggests autophagy protects kidney from versatile kidney inflammatory insults, including those that are acute, chronic, metabolic, and aging-related. It is noteworthy that, in kidney, mitophagy is active, and damaged lysosomes are removed by autophagy. In this mode, autophagy suppresses inflammation to protect the kidney. Systemic inflammation also affects the kidney via pro-inflammatory cytokines and infiltration of inflammatory cells, and autophagy also has a regulatory role in systemic inflammation. This review focuses on the roles of autophagy in kidney diseases and aging through inflammation, and discusses the potential usage of autophagy as an inflammatory modulator for the treatment of kidney diseases.

  18. [Hyperhydration and dialysis in acute kidney failure].

    PubMed

    Saner, Fuat H; Bienholz, Anja; Tyczynski, Bartosz; Kribben, Andreas; Feldkamp, Thorsten

    2015-05-01

    Despite the advances in critical care medicine, the hospital mortality in patients with acute kidney injury (AKI) requiring dialysis remains high. Depending on the underlying disease the in-house mortality is reported to be up to 80%. Several observational studies demonstrated an association between mortality and fluid overload. A primary mechanism of interest is that fluid overload causes tissue edema and subsequent reduction of perfusion, oxygenation and nutrient delivery. This results in further renal damage. In addition, fluid overload-related dilution within the extracellular space causes artificially low serum creatinine, which masks AKI diagnosis. As a consequence, renal protective management strategies are deferred, which further aggravates kidney injury. This aggravation of renal damage subsequently increases the mortality. This review discusses the role of fluid overload for outcomes in critically ill patients as described in the current literature and assesses criteria for the initiation of renal replacement therapy in this critically ill population. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Autophagy and kidney inflammation

    PubMed Central

    Kimura, Tomonori; Isaka, Yoshitaka; Yoshimori, Tamotsu

    2017-01-01

    ABSTRACT Inflammation plays a pivotal role in pathophysiological processes of kidney diseases. Macroautophagy/autophagy plays multiple roles in inflammatory responses, and the regulation of inflammation by autophagy has great potential as a treatment for damaged kidneys. A growing body of evidence suggests autophagy protects kidney from versatile kidney inflammatory insults, including those that are acute, chronic, metabolic, and aging-related. It is noteworthy that, in kidney, mitophagy is active, and damaged lysosomes are removed by autophagy. In this mode, autophagy suppresses inflammation to protect the kidney. Systemic inflammation also affects the kidney via pro-inflammatory cytokines and infiltration of inflammatory cells, and autophagy also has a regulatory role in systemic inflammation. This review focuses on the roles of autophagy in kidney diseases and aging through inflammation, and discusses the potential usage of autophagy as an inflammatory modulator for the treatment of kidney diseases. PMID:28441075

  20. Chronic Kidney Disease

    MedlinePlus

    You have two kidneys, each about the size of your fist. Their main job is to filter your blood. They remove wastes and ... help control blood pressure, and make hormones. Chronic kidney disease (CKD) means that your kidneys are damaged ...

  1. Mequindox-Induced Kidney Toxicity Is Associated With Oxidative Stress and Apoptosis in the Mouse.

    PubMed

    Liu, Qianying; Lei, Zhixin; Guo, Jingchao; Liu, Aimei; Lu, Qirong; Fatima, Zainab; Khaliq, Haseeb; Shabbir, Muhammad A B; Maan, Muhammad Kashif; Wu, Qinghua; Dai, Menghong; Wang, Xu; Pan, Yuanhu; Yuan, Zonghui

    2018-01-01

    Mequindox (MEQ), belonging to quinoxaline-di- N -oxides (QdNOs), is a synthetic antimicrobial agent widely used in China. Previous studies found that the kidney was one of the main toxic target organs of the QdNOs. However, the mechanisms underlying the kidney toxicity caused by QdNOs in vivo still remains unclear. The present study aimed to explore the molecular mechanism of kidney toxicity in mice after chronic exposure to MEQ. MEQ led to the oxidative stress, apoptosis, and mitochondrial damage in the kidney of mice. Meanwhile, MEQ upregulated Bax/Bcl-2 ratio, disrupted mitochondrial permeability transition pores, caused cytochrome c release, and a cascade activation of caspase, eventually induced apoptosis. The oxidative stress mediated by MEQ might led to mitochondria damage and apoptosis in a mitochondrial-dependent apoptotic pathway. Furthermore, upregulation of the Nrf2-Keap1 signaling pathway was also observed. Our findings revealed that the oxidative stress, mitochondrial dysfunction, and the Nrf2-Keap1 signaling pathway were associated with the kidney apoptosis induced by MEQ in vivo .

  2. Mequindox-Induced Kidney Toxicity Is Associated With Oxidative Stress and Apoptosis in the Mouse

    PubMed Central

    Liu, Qianying; Lei, Zhixin; Guo, Jingchao; Liu, Aimei; Lu, Qirong; Fatima, Zainab; Khaliq, Haseeb; Shabbir, Muhammad A. B.; Maan, Muhammad Kashif; Wu, Qinghua; Dai, Menghong; Wang, Xu; Pan, Yuanhu; Yuan, Zonghui

    2018-01-01

    Mequindox (MEQ), belonging to quinoxaline-di-N-oxides (QdNOs), is a synthetic antimicrobial agent widely used in China. Previous studies found that the kidney was one of the main toxic target organs of the QdNOs. However, the mechanisms underlying the kidney toxicity caused by QdNOs in vivo still remains unclear. The present study aimed to explore the molecular mechanism of kidney toxicity in mice after chronic exposure to MEQ. MEQ led to the oxidative stress, apoptosis, and mitochondrial damage in the kidney of mice. Meanwhile, MEQ upregulated Bax/Bcl-2 ratio, disrupted mitochondrial permeability transition pores, caused cytochrome c release, and a cascade activation of caspase, eventually induced apoptosis. The oxidative stress mediated by MEQ might led to mitochondria damage and apoptosis in a mitochondrial-dependent apoptotic pathway. Furthermore, upregulation of the Nrf2-Keap1 signaling pathway was also observed. Our findings revealed that the oxidative stress, mitochondrial dysfunction, and the Nrf2-Keap1 signaling pathway were associated with the kidney apoptosis induced by MEQ in vivo. PMID:29765325

  3. De Novo Kidney Regeneration with Stem Cells

    PubMed Central

    Yokote, Shinya; Yamanaka, Shuichiro; Yokoo, Takashi

    2012-01-01

    Recent studies have reported on techniques to mobilize and activate endogenous stem-cells in injured kidneys or to introduce exogenous stem cells for tissue repair. Despite many recent advantages in renal regenerative therapy, chronic kidney disease (CKD) remains a major cause of morbidity and mortality and the number of CKD patients has been increasing. When the sophisticated structure of the kidneys is totally disrupted by end stage renal disease (ESRD), traditional stem cell-based therapy is unable to completely regenerate the damaged tissue. This suggests that whole organ regeneration may be a promising therapeutic approach to alleviate patients with uncured CKD. We summarize here the potential of stem-cell-based therapy for injured tissue repair and de novo whole kidney regeneration. In addition, we describe the hurdles that must be overcome and possible applications of this approach in kidney regeneration. PMID:23251079

  4. Kidney Failure

    MedlinePlus

    Healthy kidneys clean your blood by removing excess fluid, minerals, and wastes. They also make hormones that keep your ... strong and your blood healthy. But if the kidneys are damaged, they don't work properly. Harmful ...

  5. Chronic Kidney Disease.

    PubMed

    Webster, Angela C; Nagler, Evi V; Morton, Rachael L; Masson, Philip

    2017-03-25

    The definition and classification of chronic kidney disease (CKD) have evolved over time, but current international guidelines define this condition as decreased kidney function shown by glomerular filtration rate (GFR) of less than 60 mL/min per 1·73 m 2 , or markers of kidney damage, or both, of at least 3 months duration, regardless of the underlying cause. Diabetes and hypertension are the main causes of CKD in all high-income and middle-income countries, and also in many low-income countries. Incidence, prevalence, and progression of CKD also vary within countries by ethnicity and social determinants of health, possibly through epigenetic influence. Many people are asymptomatic or have non-specific symptoms such as lethargy, itch, or loss of appetite. Diagnosis is commonly made after chance findings from screening tests (urinary dipstick or blood tests), or when symptoms become severe. The best available indicator of overall kidney function is GFR, which is measured either via exogenous markers (eg, DTPA, iohexol), or estimated using equations. Presence of proteinuria is associated with increased risk of progression of CKD and death. Kidney biopsy samples can show definitive evidence of CKD, through common changes such as glomerular sclerosis, tubular atrophy, and interstitial fibrosis. Complications include anaemia due to reduced production of erythropoietin by the kidney; reduced red blood cell survival and iron deficiency; and mineral bone disease caused by disturbed vitamin D, calcium, and phosphate metabolism. People with CKD are five to ten times more likely to die prematurely than they are to progress to end stage kidney disease. This increased risk of death rises exponentially as kidney function worsens and is largely attributable to death from cardiovascular disease, although cancer incidence and mortality are also increased. Health-related quality of life is substantially lower for people with CKD than for the general population, and falls as GFR

  6. Delayed Consequences of Acute Kidney Injury

    PubMed Central

    Parr, Sharidan K; Siew, Edward D

    2016-01-01

    Acute kidney injury (AKI) is an increasingly common complication of hospitalization and acute illness. Experimental data indicate that AKI may cause permanent kidney damage through tubulointerstitial fibrosis and progressive nephron loss, while also lowering the threshold for subsequent injury. Furthermore, preclinical data suggest that AKI may also cause distant organ dysfunction. The extension of these findings to human studies suggests long-term consequences of AKI including, but not limited to recurrent AKI, progressive kidney disease, elevated blood pressure, cardiovascular events, and mortality. As the number of AKI survivors increases, the need to better understand the mechanisms driving these processes becomes paramount. Optimizing care for AKI survivors will require understanding the short- and long-term risks associated with AKI, identifying patients at highest risk for poor outcomes, and testing interventions that target modifiable risk factors. In this review, we examine the literature describing the association between AKI and long-term outcomes and highlight opportunities for further research and potential intervention. PMID:27113695

  7. Contrast Enhanced Diagnostic Ultrasound Causes Renal Tissue Damage in a Porcine Model

    PubMed Central

    Miller, Douglas L.; Dou, Chunyan; Wiggins, Roger C.

    2010-01-01

    Objective Glomerular capillary hemorrhage (GCH) has been reported and confirmed as a consequence of contrast-enhanced diagnostic ultrasound (CEDUS) of rat kidney. This study assessed renal tissue injury in the larger porcine model. Methods The right kidneys of anesthetized pigs were imaged in 8 groups of 4 pigs. A Vingmed System Five (General Electric Co. Cincinnati OH) was used at 1.5 MHz in B-mode to intermittently scan the kidney at 4 s intervals. A Sequoia 512 (Acuson, Mountain View CA) was used in the 1.5 MHz Cadence CPS mode with intermittent agent-clearance bursts at 4 s intervals. Kidneys were scanned transabdominally, or after laparotomy through a saline standoff. The Sequoia 512 probe was placed in contact with the kidney for one group. Definity (Lantheus Medical Imaging, N. Billerica, MA) was infused at 4 μl/kg/min (diluted 33:1 in saline) for 4 min during scanning. Results Blood-filled urinary tubules were evident on the kidney surface for all groups, except for the group with the probe in contact with the kidney. GCH was found by histology in 31.7 % ± 9.8 % of glomeruli in the center of the scan plane for 1.7 MPa transabdominal scanning and 1.5 % ± 2.9 % of glomeruli in sham samples (P<0.05). In addition, hematuria was detected after scanning, and tubular obstruction occurred in some nephrons. Conclusion Renal tissue damage was induced by CEDUS in the porcine model. This result, together with previous studies in rats, support an hypothesis that GCH would occur in humans from similar CEDUS. PMID:20876892

  8. A human anti-dsDNA monoclonal antibody caused hyaline thrombi formation in kidneys of ‘leaky’ SCID mice

    PubMed Central

    Mason, L J; Ravirajan, C T; Latchman, D S; Isenberg, D A

    2001-01-01

    There are few studies assessing the pathogenicity of human monoclonal anti-DNA antibodies. The use of SCID mice avoids the problem of rejection of the human hybridoma cells thus allowing in vivo assessment of human immunoglobulins. Using electron microscopy we have shown that the human IgG anti-dsDNA monoclonal antibody, RH14, is nephritogenic in SCID mice, causing morphological changes in the kidney due to immunoglobulin deposition. The problem with using SCID mice is that they have an abnormal immune system; normally they are used at about 2 months of age, at which time they have virtually no functional T or B cells. It is known that older SCID mice become increasingly ‘leaky’, that is they develop some mature lymphocyte clones. Our aim was to assess if implanting anti-DNA antibodies into older ‘leaky’ SCID mice would result in pathology which was observable by light microscopy. Eight-month-old SCID mice were implanted with human hybridoma cells secreting either RH14 an anti-dsDNA IgG, CL24, an antiphospholipid antibody or an irrelevant human IgG control. As previously, RH14 deposited in the kidney and caused proteinuria but unexpectedly we also observed hyaline thrombi in the kidney glomeruli and peritubular capillaries. These thrombi occurred only in the case of RH14 implanted mice and were found to stain positively for human IgG and fibrin. However, apart from the interesting thrombi, we did not observe any greater pathological damage resulting from the anti-dsDNA antibody deposition than we had seen in the younger mice; indeed, the electron microscopic findings were more limited. PMID:11678910

  9. Kidney diseases caused by glomerular basement membrane type IV collagen defects in dogs.

    PubMed

    Lees, George E

    2013-01-01

    To review the pathogenesis, as well as the clinical and pathologic features of canine glomerular diseases caused by genetic type IV collagen defects. Original studies and review articles from human and veterinary medical fields. Presence in glomerular basement membranes (GBM) of a network composed of α3.α4.α5 heterotrimers of type IV collagen is required to maintain structure and function of glomerular capillary walls. Hereditary nephropathy (HN) is the most commonly used name for kidney diseases that occur in dogs due to genetic type IV collagen abnormalities. To date, 4 different collagen IV gene mutations have been identified in dogs with HN; 2 are COL4A5 mutations that cause X-linked HN (XL-HN), and 2 are COL4A4 mutations that cause autosomal recessive HN (AR-HN). Affected males with XL-HN and affected males and females with AR-HN develop juvenile-onset kidney disease manifested by proteinuria typically starting at 3-6 months of age and followed by progressive kidney disease leading to terminal failure usually at 6-24 months of age. Carrier female dogs with XL-HN also develop proteinuria starting at 3-6 months of age, but progressive disease causing kidney failure is uncommon until they are >5 years old. The distinctive pathologic lesions of HN are extensive multilaminar splitting and thickening of the GBM, as demonstrated by electron microscopy, and abnormal type IV collagen α-chain content of basement membranes, as demonstrated by immunolabeling. Identification of the underlying gene mutations has permitted genetic testing and selective breeding practices that currently are minimizing HN in breeds known to be at risk. Canine HN is a rare disease that should be considered whenever a dog exhibits a juvenile-onset kidney disease characterized partly by proteinuria, but highly specialized methods are required to pursue a definitive diagnosis. © Veterinary Emergency and Critical Care Society 2013.

  10. Hydronephrosis in the Wnt5a-ablated kidney is caused by an abnormal ureter-bladder connection.

    PubMed

    Yun, Kangsun; Perantoni, Alan O

    The Wnt5a null mouse is a complex developmental model which, among its several posterior-localized axis defects, exhibits multiple kidney phenotypes, including duplex kidney and loss of the medullary zone. We previously reported that ablation of Wnt5a in nascent mesoderm causes duplex kidney formation as a result of aberrant development of the nephric duct and abnormal extension of intermediate mesoderm. However, these mice also display a loss of the medullary region late in gestation. We have now genetically isolated duplex kidney formation from the medullary defect by specifically targeting the progenitors for both the ureteric bud and metanephric mesenchyme. The conditional mutants fail to form a normal renal medulla but no longer exhibit duplex kidney formation. Approximately 1/3 of the mutants develop hydronephrosis in the kidneys either uni- or bilaterally when using Dll1Cre. The abnormal kidney phenotype becomes prominent at E16.5, which approximates the time when urine production begins in the mouse embryonic kidney, and is associated with a dramatic increase in apoptosis only in mutant kidneys with hydronephrosis. Methylene blue dye injection and histologic examination reveal that aberrant cell death likely results from urine toxicity due to an abnormal ureter-bladder connection. This study shows that Wnt5a is not required for development of the renal medulla and that loss of the renal medullary region in the Wnt5a-deleted kidney is caused by an abnormal ureter-bladder connection. Published by Elsevier B.V.

  11. Proteomic and phosphoproteomic analysis of renal cortex in a salt-load rat model of advanced kidney damage

    PubMed Central

    Jiang, Shaoling; He, Hanchang; Tan, Lishan; Wang, Liangliang; Su, Zhengxiu; Liu, Yufeng; Zhu, Hongguo; Zhang, Menghuan; Hou, Fan Fan; Li, Aiqing

    2016-01-01

    Salt plays an essential role in the progression of chronic kidney disease and hypertension. However, the mechanisms underlying pathogenesis of salt-induced kidney damage remain largely unknown. Here, Sprague-Dawley rats, that underwent 5/6 nephrectomy (5/6Nx, a model of advanced kidney damage) or sham operation, were treated for 2 weeks with a normal or high-salt diet. We employed aTiO2 enrichment, iTRAQ labeling and liquid-chromatography tandem mass spectrometry strategy for proteomic and phosphoproteomic profiling of the renal cortex. We found 318 proteins differentially expressed in 5/6Nx group relative to sham group, and 310 proteins significantly changed in response to salt load in 5/6Nx animals. Totally, 1810 unique phosphopeptides corresponding to 550 phosphoproteins were identified. We identified 113 upregulated and 84 downregulated phosphopeptides in 5/6Nx animals relative to sham animals. Salt load induced 78 upregulated and 91 downregulated phosphopeptides in 5/6Nx rats. The differentially expressed phospholproteins are important transporters, structural molecules, and receptors. Protein-protein interaction analysis revealed that the differentially phosphorylated proteins in 5/6Nx group, Polr2a, Srrm1, Gsta2 and Pxn were the most linked. Salt-induced differential phosphoproteins, Myh6, Lmna and Des were the most linked. Altered phosphorylation levels of lamin A and phospholamban were validated. This study will provide new insight into pathogenetic mechanisms of chronic kidney disease and salt sensitivity. PMID:27775022

  12. [Plasma cell dyscrasias and renal damage].

    PubMed

    Pasquali, Sonia; Iannuzzella, Francesco; Somenzi, Danio; Mattei, Silvia; Bovino, Achiropita; Corradini, Mattia

    2012-01-01

    Kidney damage caused by immunoglobulin free light chains in the setting of plasma cell dyscrasias is common and may involve all renal compartments, from the glomerulus to the tubulointerstitium, in a wide variety of histomorphological and clinical patterns. The knowledge of how free light chains can promote kidney injury is growing: they can cause functional changes, be processed and deposited, mediate inflammation, apoptosis and fibrosis, and obstruct nephrons. Each clone of the free light chain is unique and its primary structure and post-translation modification can determine the type of renal disease. Measurement of serum free light chain concentrations and calculation of the serum kappa/lambda ratio, together with renal biopsy, represent essential diagnostic tools. An early and correct diagnosis of renal lesions due to plasma cell dyscrasias will allow early initiation of disease-specific treatment strategies. The treatment of free light chain nephropathies is evolving and knowledge of the pathways that promote renal damage should lead to further therapeutic developments.

  13. Wooden beverage cases cause little damage to bottle caps

    Treesearch

    R. Bruce Anderson; William C. Miller

    1973-01-01

    Wooden beverage cases cause little damage to aluminum resealable caps during distribution. A study at bottling plants and distribution warehouses showed that an average of 1 bottle out of 4,000 has cap damage. Most of the damage was attributed to handling at the warehouse and in transit. Some recommendations are given for improvement of wooden beverage cases to prevent...

  14. Mitochondria‐targeted antioxidant MitoQ reduced renal damage caused by ischemia‐reperfusion injury in rodent kidneys: Longitudinal observations of T 2‐weighted imaging and dynamic contrast‐enhanced MRI

    PubMed Central

    Liu, Xiaoge; Murphy, Michael P.; Xing, Wei; Wu, Huanhuan; Zhang, Rui

    2017-01-01

    Purpose To investigate the effect of mitochondria‐targeted antioxidant MitoQ in reducing the severity of renal ischemia‐reperfusion injury (IRI) in rats using T2‐weighted imaging and dynamic contrast‐enhanced MRI (DCE‐MRI). Methods Ischemia‐reperfusion injury was induced by temporarily clamping the left renal artery. Rats were pretreated with MitoQ or saline. The MRI examination was performed before and after IRI (days 2, 5, 7, and 14). The T2‐weighted standardized signal intensity of the outer stripe of the outer medulla (OSOM) was measured. The unilateral renal clearance rate kcl was derived from DCE‐MRI. Histopathology was evaluated after the final MRI examination. Results The standardized signal intensity of the OSOM on IRI kidneys with MitoQ were lower than those with saline on days 5 and 7 (P = 0.004, P < 0.001, respectively). Kcl values of IRI kidneys with MitoQ were higher than those with saline at all time points (P = 0.002, P < 0.001, P = 0.001, P < 0.001). Histopathology showed that renal damage was the most predominant on the OSOM of IRI kidneys with saline, which was less obvious with MitoQ (P < 0.001). Conclusions These findings demonstrate that MitoQ can reduce the severity of renal damage in rodent IRI models using T2‐weighted imaging and DCE‐MRI. Magn Reson Med 79:1559–1667, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28608403

  15. Kidney and heavy metals - The role of environmental exposure (Review).

    PubMed

    Lentini, Paolo; Zanoli, Luca; Granata, Antonio; Signorelli, Salvatore Santo; Castellino, Pietro; Dell'Aquila, Roberto

    2017-05-01

    Heavy metals are extensively used in agriculture and industrial applications such as production of pesticides, batteries, alloys, and textile dyes. Prolonged, intensive or excessive exposure can induce related systemic disorders. Kidney is a target organ in heavy metal toxicity for its capacity to filter, reabsorb and concentrate divalent ions. The extent and the expression of renal damage depends on the species of metals, the dose, and the time of exposure. Almost always acute kidney impairment differs from chronic renal failure in its mechanism and in the magnitude of the outcomes. As a result, clinical features and treatment algorithm are also different. Heavy metals in plasma exist in an ionized form, that is toxic and leads to acute toxicity and a bound, inert form when metal is conjugated with metallothionein and are then delivered to the liver and possible causing the kidney chronic damage. Treatment regimens include chelation therapy, supportive care, decontamination procedures and renal replacement therapies. This review adds specific considerations to kidney impairment due to the most common heavy metal exposures and its treatment.

  16. Familial mixed nephrocalcinosis as a cause of chronic kidney failure: two case reports.

    PubMed

    de Arruda, Pedro Francisco Ferraz; Gatti, Márcio; de Arruda, José Germano Ferraz; Fácio, Fernando Nestor; Spessoto, Luis Cesar Fava; de Arruda, Laísa Ferraz; de Godoy, José Maria Pereira; Godoy, Moacir Fernandes

    2014-10-27

    Nephrocalcinosis consists of the deposition of calcium salts in the renal parenchyma and is considered the mixed form when it involves the renal cortex and medulla. The main etiological agents of this condition are primary hyperparathyroidism, renal tubular acidosis, medullary sponge kidney, hyperoxaluria and taking certain drugs. These factors can lead to hypercalcemia and/or hypercalciuria, which can give rise to nephrocalcinosis. Patient 1 was a 48-year-old Caucasian woman with a history of bilateral nephrocalcinosis causing chronic kidney failure. Imaging examinations (X-ray, ultrasound and computed tomography of the abdomen) revealed extensive calcium deposits in the renal parenchyma, indicating nephrocalcinosis as the causal factor of the disease. Patient 2 is the 45-year-old brother of patient 1. He exhibited an advanced stage of chronic kidney failure. As nephrocalcinosis is considered to have a genetic component, a family investigation revealed this condition in patient 2. Nephrocalcinosis may be detected incidentally through diagnostic imaging studies. Whenever possible, treatment should include the base disease that caused the appearance of the calcification, as the precise etiological determination is extremely important.

  17. Optical Coherence Tomography in Kidney Transplantation

    NASA Astrophysics Data System (ADS)

    Andrews, Peter M.; Wierwille, Jeremiah; Chen, Yu

    End-stage renal disease (ESRD) is associated with both high mortality rates and an enormous economic burden [1]. The preferred treatment option for ESRD that can extend patients' lives and improve their quality of life is kidney transplantation. However, organ shortages continue to pose a major problem in kidney transplantation. Most kidneys for transplantation come from heart-beating cadavers. Although non-heart-beating cadavers represent a potentially large pool of donor kidneys, these kidneys are not often used due to the unknown extent of damage to the renal tubules (i.e., acute tubular necrosis or "ATN") induced by ischemia (i.e., lack of blood flow). Also, ischemic insult suffered by kidneys awaiting transplantation frequently causes ATN that leads to varying degrees of delayed graft function (DGF) after transplantation. Finally, ATN represents a significant risk for eventual graft and patient survival [2, 3] and can be difficult to discern from rejection. In present clinical practice, there is no reliable real-time test to determine the viability of donor kidneys and whether or not donor kidneys might exhibit ATN. Therefore, there is a critical need for an objective and reliable real-time test to predict ATN to use these organs safely and utilize the donor pool optimally. In this review, we provided preliminary data indicating that OCT can be used to predict the post-transplant function of kidneys used in transplantation.

  18. Subclinical chronic kidney disease modifies the diagnosis of experimental acute kidney injury.

    PubMed

    Succar, Lena; Pianta, Timothy J; Davidson, Trent; Pickering, John W; Endre, Zoltán H

    2017-09-01

    Extensive structural damage within the kidney must be present before serum creatinine increases. However, a subclinical phase of chronic kidney disease (CKD) usually goes undetected. Here we tested whether experimental subclinical CKD would modify functional and damage biomarker profiles of acute kidney injury (AKI). Subclinical CKD was induced in rats by adenine or aristolochic acid models but without increasing serum creatinine. After prolonged recovery (three to six weeks), AKI was induced with a subnephrotoxic dose of cisplatin. Urinary levels of kidney injury molecule-1 (KIM-1), cytochrome C, monocyte chemotactic protein-1 (MCP-1), clusterin, and interleukin-18 increased during CKD induction, without an increase in serum creatinine. After AKI in adenine-induced CKD, serum creatinine increased more rapidly, while increased urinary KIM-1, clusterin, and MCP-1 were delayed and reduced. Increased serum creatinine and biomarker excretion were associated with diffuse tubulointerstitial injury in the outer stripe of outer medulla coupled with over 50% cortical damage. Following AKI in aristolochic acid-induced CKD, increased serum creatinine, urinary KIM-1, clusterin, MCP-1, cytochrome C, and interleukin-18 concentrations and excretion were greater at day 21 than day 42 and inversely correlated with cortical injury. Subclinical CKD modified functional and damage biomarker profiles in diametrically opposite ways. Functional biomarker profiles were more sensitive, while damage biomarker diagnostic thresholds and increases were diminished and delayed. Damage biomarker concentrations and excretion were inversely linked to the extent of prior cortical damage. Thus, thresholds for AKI biomarkers may need to be lower or sampling delayed in the known presence of CKD. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  19. Kidney adysplasia and variable hydronephrosis, a new mutation affecting the odd-skipped related 1 gene in the mouse, causes variable defects in kidney development and hydronephrosis

    PubMed Central

    Davisson, Muriel T.; Cook, Susan A.; Akeson, Ellen C.; Liu, Don; Heffner, Caleb; Gudis, Polyxeni; Fairfield, Heather

    2015-01-01

    Many genes, including odd-skipped related 1 (Osr1), are involved in regulation of mammalian kidney development. We describe here a new recessive mutation (kidney adysplasia and variable hydronephrosis, kavh) in the mouse that leads to downregulation of Osr1 transcript, causing several kidney defects: agenesis, hypoplasia, and hydronephrosis with variable age of onset. The mutation is closely associated with a reciprocal translocation, T(12;17)4Rk, whose Chromosome 12 breakpoint is upstream from Osr1. The kavh/kavh mutant provides a model to study kidney development and test therapies for hydronephrosis. PMID:25834070

  20. Oxygen free radical induced damage in kidneys subjected to warm ischemia and reperfusion. Protective effect of superoxide dismutase.

    PubMed Central

    Baker, G L; Corry, R J; Autor, A P

    1985-01-01

    Superoxide anion free radical (O2-.) has been implicated in the pathogenesis of tissue injury consequent to ischemia/reperfusion in several different organs, including heart and bowel. Superoxide dismutase (SOD), an enzyme free radical scavenger specific for O2-., has been used successfully to protect these organs from structural damage during reoxygenation of ischemic tissue. It has been suggested that the catalytic action of xanthine oxidase in injured tissue is an important source of O2-. during reoxygenation. In order to evaluate the potential of SOD to protect against kidney damage resulting from transient ischemia followed by reperfusion with oxygenated blood, a model of warm renal ischemia was studied. LBNF1 rats underwent right nephrectomy and occlusion of the left renal artery for 45 minutes. Survival in the group of ischemic untreated rats (N = 30) was 56% at 7 days and serum creatinine was greatly elevated (p less than 0.01) in rats remaining alive over the full 7-day period. In strong contrast to these results, all of the animals treated with SOD before reperfusion (N = 18) were alive after 7 days similar to sham operated control rats (N = 8). Serum creatinine in the SOD treated rats was significantly elevated only to postoperative day 3 and thereafter returned to normal. Rats treated with inactive SOD (N = 4) or SOD before ischemia (N = 4) had decreased survival rates compared to ischemic untreated animals and prolonged elevation of serum creatinine. When the ischemia time was extended to 60 minutes, only 19% of the untreated animals (N = 16) survived at 7 days whereas nearly 60% of the SOD-treated animals survived (N = 19). Serum creatinine was greatly elevated during the full 7-day observation period in all surviving rats in the untreated ischemic group, whereas serum creatinine returned to normal (p less than 0.05) after 4 days in the surviving rats treated with SOD. To test whether the action of xanthine oxidase contributed to the kidney damage

  1. Mitochondria-targeted antioxidant MitoQ reduced renal damage caused by ischemia-reperfusion injury in rodent kidneys: Longitudinal observations of T2 -weighted imaging and dynamic contrast-enhanced MRI.

    PubMed

    Liu, Xiaoge; Murphy, Michael P; Xing, Wei; Wu, Huanhuan; Zhang, Rui; Sun, Haoran

    2018-03-01

    To investigate the effect of mitochondria-targeted antioxidant MitoQ in reducing the severity of renal ischemia-reperfusion injury (IRI) in rats using T 2 -weighted imaging and dynamic contrast-enhanced MRI (DCE-MRI). Ischemia-reperfusion injury was induced by temporarily clamping the left renal artery. Rats were pretreated with MitoQ or saline. The MRI examination was performed before and after IRI (days 2, 5, 7, and 14). The T 2 -weighted standardized signal intensity of the outer stripe of the outer medulla (OSOM) was measured. The unilateral renal clearance rate k cl was derived from DCE-MRI. Histopathology was evaluated after the final MRI examination. The standardized signal intensity of the OSOM on IRI kidneys with MitoQ were lower than those with saline on days 5 and 7 (P = 0.004, P < 0.001, respectively). K cl values of IRI kidneys with MitoQ were higher than those with saline at all time points (P = 0.002, P < 0.001, P = 0.001, P < 0.001). Histopathology showed that renal damage was the most predominant on the OSOM of IRI kidneys with saline, which was less obvious with MitoQ (P < 0.001). These findings demonstrate that MitoQ can reduce the severity of renal damage in rodent IRI models using T 2 -weighted imaging and DCE-MRI. Magn Reson Med 79:1559-1667, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  2. Bile duct ligation in developing rats: temporal progression of liver, kidney, and brain damage.

    PubMed

    Sheen, Jiunn-Ming; Huang, Li-Tung; Hsieh, Chih-Sung; Chen, Chih-Cheng; Wang, Jia-Yi; Tain, You-Lin

    2010-08-01

    Cholestatic liver disease may result in progressive end-stage liver disease and other extrahepatic complications. We explored the temporal progression of bile duct ligation (BDL)-induced cholestasis in developing rats, focusing on brain cognition and liver and kidney pathology, to elucidate whether these findings were associated with asymmetric dimethylarginine and oxidative stress alterations. Three groups of young male Sprague-Dawley rats were studied: one group underwent laparotomy (sham), another group underwent laparotomy and BDL for 2 weeks (BDL2), and a third group underwent laparotomy and BDL for 4 weeks (BDL4). The effect of BDL on liver was represented by transforming growth factor beta1 levels and histology activity index scores, which were worse in the BDL4 rats than in the BDL2 rats. BDL4 rats also exhibited more severe spatial memory deficits than BDL2 rats. In addition, renal injury was more progressive in BDL4 rats than in BDL2 rats because BDL4 rats displayed higher Cr levels, elevated tubulointerstitial injury scores, neutrophil gelatinase-associated lipocalin, and symmetric dimethylarginine levels. Our findings highlight the fact that young BDL rats exhibit similar trends of progression of liver, kidney, and brain damage. Further studies are needed to better delineate the nature of progression of organ damage in young cholestatic rats. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Kidney adysplasia and variable hydronephrosis, a new mutation affecting the odd-skipped related 1 gene in the mouse, causes variable defects in kidney development and hydronephrosis.

    PubMed

    Davisson, Muriel T; Cook, Susan A; Akeson, Ellen C; Liu, Don; Heffner, Caleb; Gudis, Polyxeni; Fairfield, Heather; Murray, Stephen A

    2015-06-15

    Many genes, including odd-skipped related 1 (Osr1), are involved in regulation of mammalian kidney development. We describe here a new recessive mutation (kidney adysplasia and variable hydronephrosis, kavh) in the mouse that leads to downregulation of Osr1 transcript, causing several kidney defects: agenesis, hypoplasia, and hydronephrosis with variable age of onset. The mutation is closely associated with a reciprocal translocation, T(12;17)4Rk, whose Chromosome 12 breakpoint is upstream from Osr1. The kavh/kavh mutant provides a model to study kidney development and test therapies for hydronephrosis. Copyright © 2015 the American Physiological Society.

  4. Cadmium, type 2 diabetes, and kidney damage in a cohort of middle-aged women

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barregard, Lars, E-mail: lars.barregard@amm.gu.se; Bergström, Göran, E-mail: goran.bergstrom@wlab.gu.se; Department of Molecular and Clinical Medicine, University of Gothenburg, SE-405 30 Gothenburg

    Background: It has been proposed that diabetic patients are more sensitive to the nephrotoxicity of cadmium (Cd) compared to non-diabetics, but few studies have examined this in humans, and results are inconsistent. Aim: To test the hypothesis that women with type 2 diabetes mellitus (DM) or impaired glucose tolerance (IGT) have higher risk of kidney damage from cadmium compared to women with normal glucose tolerance (NGT). Methods: All 64-year-old women in Gothenburg, Sweden, were invited to a screening examination including repeated oral glucose tolerance tests. Random samples of women with DM, IGT, and NGT were recruited for further clinical examinations.more » Serum creatinine was measured and used to calculate estimated glomerular filtration rate (eGFR). Albumin (Alb) and retinol-binding protein (RBP) were analyzed in a 12 h urine sample. Cadmium in blood (B-Cd) and urine (U-Cd) was determined using inductively coupled plasma mass spectrometry. Associations between markers of kidney function (eGFR, Alb, and RBP) and quartiles of B-Cd and U-Cd were evaluated in models, including also blood pressure and smoking habits. Results: The mean B-Cd (n=590) was 0.53 µg/L (median 0.34 µg/L). In multivariable models, a significant interaction was seen between high B-Cd (upper quartile, >0.56 µg/L) and DM (point estimate +0.40 mg Alb/12 h, P=0.04). In stratified analyzes, the effect of high B-Cd on Alb excretion was significant in women with DM (53% higher Alb/12 h, P=0.03), but not in women with IGT or NGT. Models with urinary albumin adjusted for creatinine showed similar results. In women with DM, the multivariable odds ratio (OR) for microalbuminuria (>15 mg/12 h) was increased in the highest quartile of B-Cd vs. B-Cd quartiles 1–3 in women with DM (OR 4.2, 95% confidence interval 1.1–12). No such effect was found in women with IGT or NGT. There were no associations between B-Cd and eGFR or excretion of RBP, and no differences between women with DM, IGT, or

  5. Kidney injury molecule-1 and microalbuminuria levels in Zambian population: biomarkers of kidney injury.

    PubMed

    Zulu, Mildred; Kaile, Trevor; Kantenga, Timothy; Chileshe, Chisanga; Nkhoma, Panji; Sinkala, Musalula

    2016-01-01

    Kidney injury affects renal excretion of plasma analytes and metabolic waste products with grave pathologic consequences. Early detection, thus of kidney injury is essential for injury specific intervention that may avert permanent renal damage and delay progression of kidney injury. We aimed to evaluate Kidney Injury Molecule-1 (KIM-1) and Microalbuminuria (MAU), as biomarkers of kidney injury, in comparison with creatinine. We compared the levels of urine MAU, urine KIM-1 and other plasma biochemical tests in specimens from 80 individuals with and without kidney disease. We found no difference in KIM-1 levels between the kidney disease group (2.82± 1.36ng/mL) and controls (3.29 ± 1.14ng/mL), p = 0.122. MAU was higher in participants with kidney disease (130.809± 84.744 µg/mL) than the controls (15.983± 20.442µg/mL), p ?0.001. KIM-1 showed a weak negative correlation with creatinine (r = -0.279, p = 0.09), whereas MAU was positively correlated with creatinine in participants with kidney disease with statistical significance (r = 0.556, p = 0.001). The study demonstrated that in Zambian setting MAU and creatinine are sensitive biomarkers in the diagnosis of kidney damage. We moreover propose further evaluation of KIM-1 as a biomarker of kidney injury.

  6. Kidney injury molecule-1 and microalbuminuria levels in Zambian population: biomarkers of kidney injury

    PubMed Central

    Zulu, Mildred; Kaile, Trevor; Kantenga, Timothy; Chileshe, Chisanga; Nkhoma, Panji; Sinkala, Musalula

    2016-01-01

    Introduction Kidney injury affects renal excretion of plasma analytes and metabolic waste products with grave pathologic consequences. Early detection, thus of kidney injury is essential for injury specific intervention that may avert permanent renal damage and delay progression of kidney injury. We aimed to evaluate Kidney Injury Molecule-1 (KIM-1) and Microalbuminuria (MAU), as biomarkers of kidney injury, in comparison with creatinine. Methods We compared the levels of urine MAU, urine KIM-1 and other plasma biochemical tests in specimens from 80 individuals with and without kidney disease. Results We found no difference in KIM-1 levels between the kidney disease group (2.82± 1.36ng/mL) and controls (3.29 ± 1.14ng/mL), p = 0.122. MAU was higher in participants with kidney disease (130.809± 84.744 µg/mL) than the controls (15.983± 20.442µg/mL), p ?0.001. KIM-1 showed a weak negative correlation with creatinine (r = -0.279, p = 0.09), whereas MAU was positively correlated with creatinine in participants with kidney disease with statistical significance (r = 0.556, p = 0.001). Conclusion The study demonstrated that in Zambian setting MAU and creatinine are sensitive biomarkers in the diagnosis of kidney damage. We moreover propose further evaluation of KIM-1 as a biomarker of kidney injury. PMID:27642395

  7. Methanol exposure does not produce oxidatively damaged DNA in lung, liver or kidney of adult mice, rabbits or primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCallum, Gordon P.; Siu, Michelle; Sweeting, J. Nicole

    2011-01-15

    In vitro and in vivo genotoxicity tests indicate methanol (MeOH) is not mutagenic, but carcinogenic potential has been claimed in one controversial long-term rodent cancer bioassay that has not been replicated. To determine whether MeOH could indirectly damage DNA via reactive oxygen species (ROS)-mediated mechanisms, we treated male CD-1 mice, New Zealand white rabbits and cynomolgus monkeys with MeOH (2.0 g/kg ip) and 6 h later assessed oxidative damage to DNA, measured as 8-oxo-2'-deoxyguanosine (8-oxodG) by HPLC with electrochemical detection. We found no MeOH-dependent increases in 8-oxodG in lung, liver or kidney of any species. Chronic treatment of CD-1 micemore » with MeOH (2.0 g/kg ip) daily for 15 days also did not increase 8-oxodG levels in these organs. These results were corroborated in DNA repair-deficient oxoguanine glycosylase 1 (Ogg1) knockout (KO) mice, which accumulated 8-oxodG in lung, kidney and liver with age, but exhibited no increase following MeOH, despite a 2-fold increase in renal 8-oxodG in Ogg1 KO mice following treatment with a ROS-initiating positive control, the renal carcinogen potassium bromate (KBrO{sub 3}; 100 mg/kg ip). These observations suggest that MeOH exposure does not promote the accumulation of oxidatively damaged DNA in lung, kidney or liver, and that environmental exposure to MeOH is unlikely to initiate carcinogenesis in these organs by DNA oxidation.« less

  8. MicroRNAs and Drug-induced Kidney Injury

    PubMed Central

    Pavkovic, Mira; Vaidya, Vishal S.

    2016-01-01

    Drug-induced kidney injury (DIKI) is a severe complication in hospitalized patients associated with higher probabilities of developing progressive chronic kidney disease or end-stage renal diseases. Furthermore, DIKI is a problem during preclinical and clinical phases of drug development leading to high rates of project terminations. Understanding the molecular perturbations caused by DIKI would pave the way for a new class of therapeutics to mitigate the damage. Yet, another approach to ameliorate DIKI is identifying sensitive and specific translational biomarkers that outperform the current diagnostic analytes like serum creatinine and facilitate early diagnosis. MicroRNAs (miRNAs), a class of non-coding RNAs, are increasingly being recognized to have a two-pronged approach towards DIKI management: 1) miRNAs have a regulatory role in gene expression and signaling pathways thereby making them novel interventional targets and 2) miRNAs enable diagnosis and prognosis of DIKI because of their stable presence in biofluids. In this review, apart from summarizing the literature on miRNAs in DIKI, we report small RNA sequencing results showing miRNA expression profiles at baseline in normal kidney samples from mice and humans. Additionally, we also compared the miRNA expression in biopsies of normal human kidneys to patients with acute tubular necrosis, and found 76 miRNAs significantly downregulated and 47 miRNAs upregulated (FDR adjusted p<0.05, +/−2-fold change). In summary, we highlight the transformative potential of miRNAs in therapeutics and translational medicine with a focus on drug-induced kidney damage. PMID:27126472

  9. Nebivolol ameliorated kidney damage in Zucker diabetic fatty rats by regulation of oxidative stress/NO pathway: comparison with captopril.

    PubMed

    Wang, Yan; An, Wenjing; Zhang, Fei; Niu, Mengzhen; Liu, Yu; Shi, Ruizan

    2018-06-23

    The aim was to evaluate the effects and mechanisms of nebivolol on renal damage in Zucker diabetic fatty (ZDF) rats, in comparison with those of atenolol and captopril. Animals were divided into: control lean Zucker rats, ZDF rats, ZDF rats orally treated with nebivolol (10 mg/kg), atenolol (100 mg/kg) or captopril (40 mg/kg) for 6 months. Systolic blood pressure (SBP), blood glucose, kidney structure and function, plasma and kidney levels of nitric oxide (NO) and asymmetric dimethylarginine (ADMA), and oxidant status were evaluated. Kidney expressions of AMP-activated protein kinase (AMPK), NADPH oxidase (NOX) isoforms 2 and 4 and subunit p22 phox , nitric oxide synthase (NOS) isoforms, eNOS uncoupling, protein arginine N-methyltransferase (PRMT) 1, and dimethylarginine dimethylaminohydrolase (DDAH) 1 and 2 were tested. All drugs induced a similar control of SBP. Nebivolol did not affect the increased plasma glucose. Unlike atenolol, nebivolol prevented the decrease in plasma insulin, and, like captopril, it reduced plasma lipid contents. Nebivolol ameliorated, to a greater extent than captopril, damages to renal structure and function, which were associated with an improvement in interlobular artery dysfunction. Nebivolol elevated kidney phosphorylation of AMPK, attenuated NOX4 and p22 phox expression and oxidative stress marker levels. Nebivolol increased plasma and renal NO, enhanced expressions of eNOS, p-eNOS and nNOS, and suppressed eNOS uncoupling and iNOS expression. High ADMA in plasma and kidney were decreased by nebivolol through increasing DDAH2 and decreasing PRMT1. Long-term treatment of nebivolol ameliorated diabetic nephropathy, at least in part, via regulation of renal oxidative stress/NO pathway. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Sox11 gene disruption causes congenital anomalies of the kidney and urinary tract (CAKUT).

    PubMed

    Neirijnck, Yasmine; Reginensi, Antoine; Renkema, Kirsten Y; Massa, Filippo; Kozlov, Vladimir M; Dhib, Haroun; Bongers, Ernie M H F; Feitz, Wout F; van Eerde, Albertien M; Lefebvre, Veronique; Knoers, Nine V A M; Tabatabaei, Mansoureh; Schulz, Herbert; McNeill, Helen; Schaefer, Franz; Wegner, Michael; Sock, Elisabeth; Schedl, Andreas

    2018-05-01

    Congenital abnormalities of the kidney and the urinary tract (CAKUT) belong to the most common birth defects in human, but the molecular basis for the majority of CAKUT patients remains unknown. Here we show that the transcription factor SOX11 is a crucial regulator of kidney development. SOX11 is expressed in both mesenchymal and epithelial components of the early kidney anlagen. Deletion of Sox11 in mice causes an extension of the domain expressing Gdnf within rostral regions of the nephrogenic cord and results in duplex kidney formation. On the molecular level SOX11 directly binds and regulates a locus control region of the protocadherin B cluster. At later stages of kidney development, SOX11 becomes restricted to the intermediate segment of the developing nephron where it is required for the elongation of Henle's loop. Finally, mutation analysis in a cohort of patients suffering from CAKUT identified a series of rare SOX11 variants, one of which interferes with the transactivation capacity of the SOX11 protein. Taken together these data demonstrate a key role for SOX11 in normal kidney development and may suggest that variants in this gene predispose to CAKUT in humans. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  11. Using insurance data to learn more about damages to buildings caused by surface runoff

    NASA Astrophysics Data System (ADS)

    Bernet, Daniel; Roethlisberger, Veronika; Prasuhn, Volker; Weingartner, Rolf

    2015-04-01

    In Switzerland, almost forty percent of total insurance loss due to natural hazards in the last two decades was caused by flooding. Those flood damages occurred not only within known inundation zones of water courses. Practitioners expect that roughly half of all flood damages lie outside of known inundation zones. In urban areas such damages may simply be caused by drainage system overload for instance. However, as several case studies show, natural and agricultural land play a major role in surface runoff formation leading to damages in rural and peri-urban areas. Although many damages are caused by surface runoff, the whole process chain including surface runoff formation, propagation through the landscape and damages to buildings is not well understood. Therefore, within the framework of a project, we focus our research on this relevant process. As such flash flood events have a very short response time and occur rather diffusely in the landscape, this process is very difficult to observe directly. Therefore indirect data sources with the potential to indicate spatial and temporal distributions of the process have to be used. For that matter, post-flood damage data may be a profitable source. Namely, insurance companies' damage claim records could provide a good picture about the spatial and temporal distributions of damages caused by surface runoff and, thus, about the process itself. In our research we analyze insurance data records of flood damage claims systematically to infer main drivers and influencing factors of surface runoff causing damages to buildings. To demonstrate the potential and drawbacks of using data from insurance companies in relation to damages caused by surface runoff, a case study is presented. A well-documented event with data from a public as well as a private insurance company is selected. The case study focuses on the differences of the datasets as well as the associated problems and advantages respectively. Furthermore, the

  12. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence.

    PubMed

    Sellarés, J; de Freitas, D G; Mengel, M; Reeve, J; Einecke, G; Sis, B; Hidalgo, L G; Famulski, K; Matas, A; Halloran, P F

    2012-02-01

    We prospectively studied kidney transplants that progressed to failure after a biopsy for clinical indications, aiming to assign a cause to every failure. We followed 315 allograft recipients who underwent indication biopsies at 6 days to 32 years posttransplant. Sixty kidneys progressed to failure in the follow-up period (median 31.4 months). Failure was rare after T-cell-mediated rejection and acute kidney injury and common after antibody-mediated rejection or glomerulonephritis. We developed rules for using biopsy diagnoses, HLA antibody and clinical data to explain each failure. Excluding four with missing information, 56 failures were attributed to four causes: rejection 36 (64%), glomerulonephritis 10 (18%), polyoma virus nephropathy 4 (7%) and intercurrent events 6 (11%). Every rejection loss had evidence of antibody-mediated rejection by the time of failure. Among rejection losses, 17 of 36 (47%) had been independently identified as nonadherent by attending clinicians. Nonadherence was more frequent in patients who progressed to failure (32%) versus those who survived (3%). Pure T-cell-mediated rejection, acute kidney injury, drug toxicity and unexplained progressive fibrosis were not causes of loss. This prospective cohort indicates that many actual failures after indication biopsies manifest phenotypic features of antibody-mediated or mixed rejection and also underscores the major role of nonadherence. © 2011 The American Society of Transplantation and the American Society of Transplant Surgeons.

  13. DNA damage in hemodialysis patients with chronic kidney disease; a test of the role of diabetes mellitus; a comet assay investigation.

    PubMed

    Mamur, Sevcan; Unal, Fatma; Altok, Kadriye; Deger, Serpil Muge; Yuzbasioglu, Deniz

    2016-04-01

    The incidence of chronic kidney disease (CKD) is increasing rapidly. Diabetes mellitus (DM) is the most important cause of CKD. We studied the possible role of DM in CKD patients with respect to DNA damage, as assessed by the comet assay in 60 CKD patients (with or without DM) undergoing hemodialysis and in 26 controls. Effects of other factors, such as age, sex, hypertension, duration of hemodialysis, body mass index (BMI), and levels of hemoglobin (HB), intact parathormone (iPTH), and ferritin (FER), were also examined. Primary DNA damage measured by the comet assay was significantly higher in CKD patients than in controls. Among CKD patients, the following correlations were observed. (1) There was no difference in comet tail length or tail intensity between diabetic and non-diabetic individuals. (2) Age, sex, hemoglobin, hypertension, duration of hemodialysis, and ferritin levels affected neither tail length nor intensity. (3) BMI values above 25kg/m(2) and iPTH levels above 300pg/ml were associated with significantly greater comet tail length. Our results indicate that primary DNA damage is increased in CKD patients undergoing hemodialysis, compared to controls; however, DM had no additional effect. Copyright © 2016. Published by Elsevier B.V.

  14. Protective Effects of Pinus halepensis L. Essential Oil on Aspirin-induced Acute Liver and Kidney Damage in Female Wistar Albino Rats.

    PubMed

    Bouzenna, Hafsia; Samout, Noura; Amani, Etaya; Mbarki, Sakhria; Tlili, Zied; Rjeibi, Ilhem; Elfeki, Abdelfattah; Talarmin, Hélène; Hfaiedh, Najla

    2016-08-01

    Aromatic and medicinal plants are sources of natural antioxidants thanks to their secondary metabolites. Administration of Pinus halepensis L. (Pinaceae family) in previous studies was found to alleviate deleterious effects of aspirin-induced damage on liver and kidney. The present study, carried out on female rats, evaluates the effects of P. halepensis L. essential oil (EOP) on aspirin (A)-induced damage to liver and kidney. The animals used in this study were rats (n=28) divided into 4 groups of 7 each: (1) a control group (C); (2) a group given NaCl for 56 days then treated with (A) (600 mg/kg) for 4 days (A); (3) a group fed with (EOP) for 56 days then (A) for 4 days; and a group fed with only (EOP) for 56 days and given NaCl for 4 days. Estimations of biochemical parameters in blood were determined using kit methods (Spinreact). Lipid peroxidation levels (TBARS), superoxide dismutase (SOD) and catalase (CAT), glutathione peroxidase (GPx) activities were determined. Histopathological study was done by immersing pieces of both organs in a fixative solution followed by paraffin embeddeding and hematoxylin-eosin staining. Under our experimental conditions, Aspirin at dose 600 mg/kg body weight induced an increase of serum biochemical parameters as well as an oxidative stress in both organs. An increase occurred in TBARS by 108% and 55%, a decrease in SOD by 78% and 53%, CAT by 53% and 78%, and GPx by 78% and 51% in liver and kidney, respectively, compared to control. Administration of EOP given to rats enabled correction in these parameters. It could be concluded that the treatment with P. halepensis L. essential oil inhibited aspirin-induced liver and kidney damage.

  15. Statistical analysis of low-rise building damage caused by the San Fernando earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholl, R.E.

    1974-02-01

    An empirical investigation of damage to low-rise buildings in two selected control areas within Glendale, California, caused by the ground motion precipitated by the San Fernando earthquake of February 9, 1971 is summarized. The procedures for obtaining the appropriate data and the methodology used in deriving ground motion-damage relationships are described. Motion-damage relationships are derived for overall damage and for the most frequently damaged building components. Overall motion-damage relationships are expressed in terms of damage incidence (damage ratio) and damage cost (damage cost factor). The motion-damage relationships derived from the earthquake data are compared with similar data obtained for lou-risemore » buildings subjected to ground motion generated by an underground nuclear explosion. Overall comparison results show that for the same spectral acceleration, the earthquake caused slightly more damage. Differences in ground-motion characteristics for the two types of disturbances provide the most probable explanation for this discrepancy. (auth)« less

  16. Protective effects of rosuvastatin and vitamin E against fipronil-mediated oxidative damage and apoptosis in rat liver and kidney.

    PubMed

    Abdel-Daim, Mohamed M; Abdeen, Ahmed

    2018-04-01

    Fipronil (FPN) is a phenylpyrazole insecticide that is extensively used in agriculture and veterinary applications. However, FPN is also a potent environmental toxicant to animals and humans. Therefore, the current study aimed to investigate the protective role of rosuvastatin (ROSU) and vitamin E (Vit E) against FPN-induced hepatorenal toxicity in albino rats. Seven groups with eight rats each were used for this purpose; these groups included the control vehicle group that received corn oil, the Vit E group (1000 mg/kg, orally), the ROSU group (10 mg/kg, orally), the FPN group (20 mg/kg, orally), the FPN-ROSU group, the FPN-Vit E group, and the FPN-Vit E-ROSU group. The results revealed that FPN significantly increased serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, cholesterol, urea, and creatinine. In addition, there were substantial increases in the liver and kidney contents of malondialdehyde and nitric oxide, along with significant decreases in glutathione, superoxide dismutase, catalase, and glutathione peroxidase. FPN also caused histological changes and increased the expression of caspase-3 in the liver and kidney tissues. However, administration of ROSU and Vit E alone or in combination ameliorated the FPN-induced oxidative damage and apoptosis, possibly through their antioxidant properties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Uric acid causes kidney injury through inducing fibroblast expansion, Endothelin-1 expression, and inflammation.

    PubMed

    Romi, Muhammad Mansyur; Arfian, Nur; Tranggono, Untung; Setyaningsih, Wiwit Ananda Wahyu; Sari, Dwi Cahyani Ratna

    2017-10-31

    Uric acid (UA) plays important roles in inducing renal inflammation, intra-renal vasoconstriction and renal damage. Endothelin-1 (ET-1) is a well-known profibrotic factor in the kidney and is associated with fibroblast expansion. We examined the role of hyperuricemia conditions in causing elevation of ET-1 expression and kidney injury. Hyperuricemia was induced in mice using daily intraperitoneal injection of uric acid 125 mg/Kg body weight. An NaCl injection was used in control mice. Mice were euthanized on days-7 (UA7) and 14 (UA14). We also added allopurinol groups (UAL7 and UAL14) with supplementation of allopurinol 50 mg/Kg body weight orally. Uric acid and creatinine serum were measured from blood serum. Periodic Acid Schiff (PAS) and Sirius Red staining were done for glomerulosclerosis, tubular injury and fibrosis quantification. mRNA expression examination was performed for nephrin, podocin, preproEndothelin-1 (ppET-1), MCP-1 and ICAM-1. PDGFRβ immunostaining was done for quantification of fibroblast, while α-SMA immunostaining was done for localizing myofibroblast. Western blot analysis was conducted to quantify TGF-β1, α-SMA and Endothelin A Receptor (ETAR) protein expression. Uric acid and creatinine levels were elevated after 7 and 14 days and followed by significant increase of glomerulosclerosis and tubular injury score in the uric acid group (p < 0.05 vs. control). Both UA7 and UA14 groups had higher fibrosis, tubular injury and glomerulosclerosis with significant increase of fibroblast cell number compared with control. RT-PCR revealed down-regulation of nephrin and podocin expression (p < 0.05 vs. control), and up-regulation of MCP-1, ET-1 and ICAM-1 expression (p < 0.05 vs. control). Western blot revealed higher expression of TGF-β1 and α-SMA protein expression. Determination of allopurinol attenuated kidney injury was based on reduction of fibroblast cell number, inflammation mediators and ppET-1 expression with reduction of TGF

  18. The targeted anti-oxidant MitoQ causes mitochondrial swelling and depolarization in kidney tissue.

    PubMed

    Gottwald, Esther M; Duss, Michael; Bugarski, Milica; Haenni, Dominik; Schuh, Claus D; Landau, Ehud M; Hall, Andrew M

    2018-04-01

    Kidney proximal tubules (PTs) contain a high density of mitochondria, which are required to generate ATP to power solute transport. Mitochondrial dysfunction is implicated in the pathogenesis of numerous kidney diseases. Damaged mitochondria are thought to produce excess reactive oxygen species (ROS), which can lead to oxidative stress and activation of cell death pathways. MitoQ is a mitochondrial targeted anti-oxidant that has shown promise in preclinical models of renal diseases. However, recent studies in nonkidney cells have suggested that MitoQ might also have adverse effects. Here, using a live imaging approach, and both in vitro and ex vivo models, we show that MitoQ induces rapid swelling and depolarization of mitochondria in PT cells, but these effects were not observed with SS-31, another targeted anti-oxidant. MitoQ consists of a lipophilic cation (Tetraphenylphosphonium [TPP]) joined to an anti-oxidant component (quinone) by a 10-carbon alkyl chain, which is thought to insert into the inner mitochondrial membrane (IMM). We found that mitochondrial swelling and depolarization was also induced by dodecyltriphenylphosphomium (DTPP), which consists of TPP and the alkyl chain, but not by TPP alone. Surprisingly, MitoQ-induced mitochondrial swelling occurred in the absence of a decrease in oxygen consumption rate. We also found that DTPP directly increased the permeability of artificial liposomes with a cardiolipin content similar to that of the IMM. In summary, MitoQ causes mitochondrial swelling and depolarization in PT cells by a mechanism unrelated to anti-oxidant activity, most likely because of increased IMM permeability due to insertion of the alkyl chain. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  19. Leukemia kidney infiltration can cause secondary polycythemia by activating hypoxia-inducible factor (HIF) pathway.

    PubMed

    Osumi, Tomoo; Awazu, Midori; Fujimura, Eriko; Yamazaki, Fumito; Hashiguchi, Akinori; Shimada, Hiroyuki

    2013-06-01

    Secondary polycythemia with increased production of erythropoietin (EPO) is known to occur in kidney diseases such as hydronephrosis and cystic disease, but the mechanism remains unclear. We report an 18-year-old female with isolated renal relapse of acute lymphoblastic leukemia accompanied by polycythemia. At the relapse, she presented with bilateral nephromegaly, mild renal dysfunction, and erythrocytosis with increased serum EPO levels up to 52.1 mIU/mL (9.1-32.8). Renal biopsy demonstrated diffuse lymphoblastic infiltration. The expression of hypoxia-inducible factor (HIF)-1α, which is undetectable in normal kidney, was observed in the renal tubule epithelium compressed by lymphoblastic cells. These findings suggest that erythrocytosis was caused by renal ischemia due to leukemic infiltration. Polycythemia probably became apparent because of the lack of leukemic involvement of the bone marrow. With chemotherapy, the serum EPO level rapidly decreased to normal range accompanied by the normalization of kidney size and function. Renal leukemic infiltration may enhance EPO production, although not recognized in the majority of cases because of bone marrow involvement. Our case has clarified the mechanism of previously reported polycythemia associated with renal diseases as renal ischemia. Furthermore, we have added renal ischemia resulting from tumor infiltration to the list of causes of secondary polycythemia.

  20. Effects of molybdenum and cadmium on the oxidative damage and kidney apoptosis in Duck.

    PubMed

    Shi, Lele; Cao, Huabin; Luo, Junrong; Liu, Ping; Wang, Tiancheng; Hu, Guoliang; Zhang, Caiying

    2017-11-01

    Molybdenum (Mo) is an essential element for human beings and animals; however, high dietary intake of Mo can lead to adverse reactions. Cadmium (Cd) is one of the major transitional metals which has toxic effects in animals. To investigate the co-induced toxic effects of Mo and Cd on oxidative damage and kidney apoptosis in duck, 120 ducks were randomly divided into control group and 5 treatment groups which were treated with a commercial diet containing different dosages of Mo and Cd. Kidney samples were collected on the 60th and 120th days to determine the mRNA expression levels of ceruloplasmin (CP), metallothionein (MT), Bak-1, and Caspase-3 by quantitative RT-PCR. Additionally, we also determined the antioxidant activity indexes and contents of Mo, Cd, copper (Cu), iron (Fe), zinc (Zn), and selenium (Se) in serum. Meanwhile, ultrastructural changes of the kidney were observed. The results showed that glutathione reductase (GR) activity and CP level in serum were decreased in combination groups. In addition, the antioxidant indexes were decreased in co-treated groups compared with single treated groups. The mRNA expression levels of Bak-1 and Caspase-3 increased in co-treated groups. The mRNA expression level of CP in high-dose combination group was downregulated, while the mRNA expression of MT was upregulated except for low-dose Mo group. Additionally, in the later period the content of Cu in serum decreased in joint groups while the contents of Mo and Cd increased. In addition, ultrastructural changes showed mitochondrial crest fracture, swelling, deformed nuclei, and karyopyknosis in co-treated groups. Taken together, it was suggested that dietary Mo and Cd might lead to oxidative stress, kidney apoptosis and disturb homeostasis of trace elements in duck, and it showed a possible synergistic relationship between the two elements. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Endothelial Progenitor Cells and Kidney Diseases.

    PubMed

    Ozkok, Abdullah; Yildiz, Alaattin

    2018-05-10

    Endothelial progenitor cells (EPC) are bone marrow derived or tissue-resident cells that play major roles in the maintenance of vascular integrity and repair of endothelial damage. Although EPCs may be capable of directly engrafting and regenerating the endothelium, the most important effects of EPCs seem to be depended on paracrine effects. In recent studies, specific microvesicles and mRNAs have been found to mediate the pro-angiogenic and regenerative effects of EPCs on endothelium. EPC counts have important prognostic implications in cardiovascular diseases (CVD). Uremia and inflammation are associated with lower EPC counts which probably contribute to increased CVD risks in patients with chronic kidney disease. Beneficial effects of the EPC therapies have been shown in studies performed on different models of CVD and kidney diseases such as acute and chronic kidney diseases and glomerulonephritis. However, lack of a clear definition and specific marker of EPCs is the most important problem causing difficulties in interpretation of the results of the studies investigating EPCs. © 2018 The Author(s). Published by S. Karger AG, Basel.

  2. Hyperhomocysteinemia and protein damage in chronic renal failure and kidney transplant pediatric patients--Italian initiative on uremic hyperhomocysteinemia (IIUH).

    PubMed

    Perna, Alessandra F; Ingrosso, Diego; Molino, Daniela; Galletti, Patrizia; Montini, Giovanni; Zacchello, Graziella; Bellantuono, Rosa; Caringella, Angela; Fede, Carmelo; Chimenz, Roberto; De Santo, Natale G

    2003-01-01

    Plasma homocysteine, a new cardiovascular risk factor in both children and adults, is higher in chronic renal failure or kidney transplant patients. This alteration has been linked, in chronic renal failure, to plasma protein damage, represented by increased L-isoaspartyl residues. We measured plasma homocysteine levels and plasma protein damage in pediatric patients from four different Italian regions with conservatively treated renal failure; hemodialysis, continuous ambulatory peritoneal dialysis (CAPD), or transplants, to establish the presence of protein damage and the relative role of hyperhomocysteinemia. High performance liquid chromatography (HPLC) separation measured total plasma homocysteine levels, using precolumn derivatization with ammonium 7-fluorobenzo-2-oxa-1, 3-diazole-4-sulphonate (SBD-F). Plasma protein L-isoaspartyl residues were quantitated using human recombinant protein carboxyl methyl transferase (PCMT). In all patient groups, homocysteine levels were significantly higher with respect to the control (Control: 6.87 +/- 0.73 microM) conservatively treated, 14.19 +/- 1.73 microM; hemodialysis, 27.03 +/- 4.32 microM; CAPD, 22.38 +/- 3.73 microM; transplanted, 20.22 +/- 2.27 microM, p < 0.001 vs. control]. Plasma protein damage was significantly higher in conservatively treated, hemodialysis (HD) and CAPD patients, while in transplant patients it was no different from the control. We concluded that in pediatric patients of different Italian geographical origin, plasma homocysteine levels were significantly higher in all groups with respect to healthy children; therefore contributing to the elevated cardiovascular risk present in these patients. Plasma protein L-isoaspartyl content was higher in renal failure patients, but kidney transplant patients had normal levels, indicating that this kind of protein damage relates more to the toxic action of uremic retention solutes, than to plasma homocysteine levels.

  3. Causes of graft failure in simultaneous pancreas-kidney transplantation by various time periods.

    PubMed

    Wakil, Kayo; Sugawara, Yasuhiko; Kokudo, Norihiro; Kadowaki, Takashi

    2013-01-01

    Data collected by the United Network for Organ Sharing from all approved United States transplant programs was analyzed. The data included 26,572 adult diabetic patients who received a primary pancreas transplant between January 1987 and December 2012. Simultaneous pancreas-kidney (SPK) transplantation was the major therapeutic option for diabetes patients. SPK had better graft survival than pancreas transplant alone (PTA) or pancreas-after-kidney (PAK) or pancreas-with-kidney (from a living donor, PWK). The 5-year pancreas graft survival rates for SPK, PWK, PAK, and PTA were 70.0%, 57.2%, 54.0%, and 48.2%, respectively. When long-term SPK pancreas graft survival was examined by various transplant time periods, it was found that survival has remained almost stable since 1996. Graft survival rates were high among the pancreas recipients transplanted in the periods 1996-2000, 2001-2005, and 2006-2012, and the rates were similar: the 5-year rates were 68.9%, 72.4%, and 73.8%, respectively. Technical failure was the leading cause of graft loss during the first year post-transplant, regardless of period: 61.3%, 68.6%, 64.2%, and 71.9% for 1987-1995, 1996-2000, 2001-2005, and 2006-2012, respectively. After one year, chronic rejection was the leading cause of graft loss in all periods: 51.8%, 53.2%, 44.3%, and 40.7% for 1987-1995, 1996-2000, 2001-2005, and 2006-2012, respectively. Chronic rejection accounted for around 50% (or more) of the grafts that survived over five years. Survival of long-term pancreas grafts as well as long-term causes of graft loss remained almost unchanged across the different transplant periods. Clearly, there is a need for a means to identify early markers of chronic rejection, and to control it to improve long-term survival.

  4. Renal transplantation induces mitochondrial uncoupling, increased kidney oxygen consumption, and decreased kidney oxygen tension.

    PubMed

    Papazova, Diana A; Friederich-Persson, Malou; Joles, Jaap A; Verhaar, Marianne C

    2015-01-01

    Hypoxia is an acknowledged pathway to renal injury and ischemia-reperfusion (I/R) and is known to reduce renal oxygen tension (Po2). We hypothesized that renal I/R increases oxidative damage and induces mitochondrial uncoupling, resulting in increased oxygen consumption and hence kidney hypoxia. Lewis rats underwent syngenic renal transplantation (TX) and contralateral nephrectomy. Controls were uninephrectomized (1K-CON) or left untreated (2K-CON). After 7 days, urinary excretion of protein and thiobarbituric acid-reactive substances were measured, and after 14 days glomerular filtration rate (GFR), renal blood flow, whole kidney Qo2, cortical Po2, kidney cortex mitochondrial uncoupling, renal oxidative damage, and tubulointerstitial injury were assessed. TX, compared with 1K-CON, resulted in mitochondrial uncoupling mediated via uncoupling protein-2 (16 ± 3.3 vs. 0.9 ± 0.4 pmol O2 · s(-1)· mg protein(-1), P < 0.05) and increased whole kidney Qo2 (55 ± 16 vs. 33 ± 10 μmol O2/min, P < 0.05). Corticomedullary Po2 was lower in TX compared with 1K-CON (30 ± 13 vs. 47 ± 4 μM, P < 0.05) whereas no significant difference was observed between 2K-CON and 1K-CON rats. Proteinuria, oxidative damage, and the tubulointerstitial injury score were not significantly different in 1K-CON and TX. Treatment of donors for 5 days with mito-TEMPO reduced mitochondrial uncoupling but did not affect renal hemodynamics, Qo2, Po2, or injury. Collectively, our results demonstrate increased mitochondrial uncoupling as an early event after experimental renal transplantation associated with increased oxygen consumption and kidney hypoxia in the absence of increases in markers of damage. Copyright © 2015 the American Physiological Society.

  5. Association of Proteinuria with Race, Cause of Chronic Kidney Disease, and Glomerular Filtration Rate in the Chronic Kidney Disease in Children Study

    PubMed Central

    Wong, Craig S.; Pierce, Christopher B.; Cole, Stephen R.; Warady, Bradley A.; Mak, Robert H.K.; Benador, Nadine M.; Kaskel, Fredrick; Furth, Susan L.; Schwartz, George J.

    2009-01-01

    Background and objectives: Proteinuria is associated with chronic kidney disease (CKD), and heavy proteinuria predicts a rapid decline in kidney function. However, the epidemiologic distribution of this important biomarker study is not well described in the pediatric CKD population. Design, setting, participants & measurements: This cross-sectional study of North American children with CKD examined the association of proteinuria among the baseline clinical variables in the cohort. Urinary protein-to-creatinine ratios (Up/c) were used to measure level of proteinuria. Results: Of the 419 subjects studied, the median GFR as measured by iohexol disappearance (iGFR) was 42 ml/min per 1.73 m2, median duration of CKD was six yr, and glomerular diseases accounted for 22% of the CKD diagnoses. Twenty-four percent of children had normal range (Up/c <0.2), 62% had significant, and 14% had nephrotic-range proteinuria (Up/c >2.0). A decrease in iGFR was associated with an increase in Up/c. At any level of GFR, a higher Up/c was associated with a glomerular cause of CKD and non-Caucasian race. Among subjects with a glomerular cause of CKD, Up/c was lower in subjects reporting utilization of renin-angiotensin system (RAS) antagonists (median Up/c = 0.93) compared with those who did not (median Up/c = 3.78). Conclusions: Proteinuria is associated with level of iGFR, cause of CKD, and race. The longitudinal study design of Chronic Kidney Disease in Children (CKiD) cohort study and the large number of subjects being studied has created an opportunity to better define the association between proteinuria and CKD progression. PMID:19297612

  6. Combining Functional and Tubular Damage Biomarkers Improves Diagnostic Precision for Acute Kidney Injury After Cardiac Surgery

    PubMed Central

    Basu, Rajit K.; Wong, Hector R.; Krawczeski, Catherine D.; Wheeler, Derek S.; Manning, Peter B.; Chawla, Lakhmir S.; Devarajan, Prasad; Goldstein, Stuart L.

    2015-01-01

    BACKGROUND Increases in serum creatinine (ΔSCr) from baseline signify acute kidney injury (AKI) but offer little granular information regarding its characteristics. The 10th Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) suggested that combining AKI biomarkers would provide better precision for AKI course prognostication. OBJECTIVES This study investigated the value of combining a functional damage biomarker (plasma cystatin C [pCysC]) with a tubular damage biomarker (urine neutrophil gelatinase-associated lipocalin [uNGAL]), forming a composite biomarker for prediction of discrete characteristics of AKI. METHODS Data from 345 children after cardiopulmonary bypass (CPB) were analyzed. Severe AKI was defined as Kidney Disease Global Outcomes Initiative stages 2 to 3 (>100% ΔSCr) within 7 days of CPB. Persistent AKI lasted >2 days. SCr in reversible AKI returned to baseline ≤48 h after CPB. The composite of uNGAL (>200 ng/mg urine Cr = positive [+]) and pCysC (>0.8 mg/l = positive [+]), uNGAL+/pCysC+, measured 2 h after CPB initiation, was compared to ΔSCr increases of ≤50% for correlation with AKI characteristics by using predictive probabilities, likelihood ratios (LR), and area under the curve receiver operating curve (AUC-ROC) values. RESULTS Severe AKI occurred in 18% of patients. The composite uNGAL+/pCysC+ demonstrated a greater likelihood than ΔSCr for severe AKI (+LR: 34.2 [13.0:94.0] vs. 3.8 [1.9:7.2]) and persistent AKI (+LR: 15.6 [8.8:27.5] versus 4.5 [2.3:8.8]). In AKI patients, the uNGAL−/pCysC+ composite was superior to ΔSCr for prediction of transient AKI. Biomarker composites carried greater probability for specific outcomes than ΔSCr strata. CONCLUSIONS Composites of functional and tubular damage biomarkers are superior to ΔSCr for predicting discrete characteristics of AKI. PMID:25541128

  7. Postrenal acute kidney injury in a patient with unilateral ureteral obstruction caused by urolithiasis: A case report.

    PubMed

    Kazama, Itsuro; Nakajima, Toshiyuki

    2017-10-01

    In patients with bilateral ureteral obstruction, the serum creatinine levels are often elevated, sometimes causing postrenal acute kidney injury (AKI). In contrast, those with unilateral ureteral obstruction present normal serum creatinine levels, as long as their contralateral kidneys are preserved intact. However, the unilateral obstruction of the ureter could affect the renal function, as it humorally influences the renal hemodynamics. A 66-year-old man with a past medical history of hypertension and diabetes mellitus came to our outpatient clinic because of right abdominal dullness. Unilateral ureteral obstruction caused by a radio-opaque calculus in the right upper ureter and a secondary renal dysfunction. As oral hydration and the use of calcium antagonists failed to allow the spontaneous stone passage, extracorporeal shock wave lithotripsy (ESWL) was performed. Immediately after the passage of the stone, the number of red blood cells in the urine was dramatically decreased and the serum creatinine level almost returned to the normal range with the significant increase in glomerular filtration rate. Unilateral ureteral obstruction by the calculus, which caused reflex vascular constriction and ureteral spasm in the contralateral kidney, was thought to be responsible for the deteriorating renal function.

  8. Acute kidney injury due to rhabdomyolysis and renal replacement therapy: a critical review

    PubMed Central

    2014-01-01

    Rhabdomyolysis, a clinical syndrome caused by damage to skeletal muscle and release of its breakdown products into the circulation, can be followed by acute kidney injury (AKI) as a severe complication. The belief that the AKI is triggered by myoglobin as the toxin responsible appears to be oversimplified. Better knowledge of the pathophysiology of rhabdomyolysis and following AKI could widen treatment options, leading to preservation of the kidney: the decision to initiate renal replacement therapy in clinical practice should not be made on the basis of the myoglobin or creatine phosphokinase serum concentrations. PMID:25043142

  9. Kidney Disease and the Nexus of Chronic Kidney Disease and Acute Kidney Injury: The Role of Novel Biomarkers as Early and Accurate Diagnostics.

    PubMed

    Yerramilli, Murthy; Farace, Giosi; Quinn, John; Yerramilli, Maha

    2016-11-01

    Chronic kidney disease (CKD) and acute kidney injury (AKI) are interconnected and the presence of one is a risk for the other. CKD is an important predictor of AKI after exposure to nephrotoxic drugs or major surgery, whereas persistent or repetitive injury could result in the progression of CKD. This brings new perspectives to the diagnosis and monitoring of kidney diseases highlighting the need for a panel of kidney-specific biomarkers that reflect functional as well as structural damage and recovery, predict potential risk and provide prognosis. This article discusses the kidney-specific biomarkers, symmetric dimethylarginine (SDMA), clusterin, cystatin B, and inosine. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN THE KIDNEYS OF GROWTH HORMONE TRANSGENIC MICE

    PubMed Central

    Coschigano, K.T.; Wetzel, A.N.; Obichere, N.; Sharma, A.; Lee, S.; Rasch, R.; Guigneaux, M.M.; Flyvbjerg, A.; Wood, T.G.; Kopchick, J.J.

    2010-01-01

    Objective Bovine growth hormone (bGH) transgenic mice develop severe kidney damage. This damage may be due, at least in part, to changes in gene expression. Identification of genes with altered expression in the bGH kidney may identify mechanisms leading to damage in this system that may also be relevant to other models of kidney damage. Design cDNA subtraction libraries, northern blot analyses, microarray analyses and real-time reverse transcription polymerase chain reaction (RT/PCR) assays were used to identify and verify specific genes exhibiting differential RNA expression between kidneys of bGH mice and their non-transgenic (NT) littermates. Results Immunoglobulins were the vast majority of genes identified by the cDNA subtractions and the microarray analyses as being up-regulated in bGH. Several glycoprotein genes and inflammation-related genes also showed increased RNA expression in the bGH kidney. In contrast, only a few genes were identified as being significantly down-regulated in the bGH kidney. The most notable decrease in RNA expression was for the gene encoding kidney androgen-regulated protein. Conclusions A number of genes were identified as being differentially expressed in the bGH kidney. Inclusion of two groups, immunoglobulins and inflammation-related genes, suggests a role of the immune system in bGH kidney damage. PMID:20655258

  11. Tenofovir-induced kidney injury.

    PubMed

    Gitman, Michael D; Hirschwerk, David; Baskin, Cindy H; Singhal, Pravin C

    2007-03-01

    Tenofovir disoproxil fumarate is a nucleotide reverse transcriptase inhibitor with activity against both HIV and the hepatitis B virus. It has had minimal nephrotoxic effects in early clinical trials, but as clinical use has widened, case reports describing tenofovir-induced renal tubular damage, Fanconi's syndrome and diabetes insipidus have been described. The authors review the pharmacokinetics, mechanism of action and clinical uses of tenofovir disoproxil fumarate. The large clinical trials, as well as the case reports of tenofovir-induced kidney injury, are also reviewed. The potential mechanism of renal damage is discussed and recommendations for evaluation and treatment of tenofovir-induced kidney injury are given.

  12. Chronic Kidney Disease (CKD)

    MedlinePlus

    ... Donate Now Give Monthly Give In Honor Chronic kidney disease (CKD) www.kidneyfund.org > Kidney Disease > Chronic ... Kidney-friendly diet for CKD What causes chronic kidney disease (CKD)? Anyone can get CKD. Some people ...

  13. Human recombinant erythropoietin reduces sensorimotor dysfunction and cognitive impairment in rat models of chronic kidney disease.

    PubMed

    Reza-Zaldívar, E E; Sandoval-Avila, S; Gutiérrez-Mercado, Y K; Vázquez-Méndez, E; Canales-Aguirre, A A; Esquivel-Solís, H; Gómez-Pinedo, U; Márquez-Aguirre, A L

    2017-11-10

    Chronic kidney disease (CKD) can cause anaemia and neurological disorders. Recombinant human erythropoietin (rHuEPO) is used to manage anaemia in CKD. However, there is little evidence on the effects of rHuEPO on behaviour and cognitive function in CKD. This study aimed to evaluate the impact of rHuEPO in sensorimotor and cognitive functions in a CKD model. Male Wistar rats were randomly assigned to 4 groups: control and CKD, with and without rHuEPO treatment (1050 IU per kg body weight, once weekly for 4 weeks). The Morris water maze, open field, and adhesive removal tests were performed simultaneously to kidney damage induction and treatment. Markers of anaemia and renal function were measured at the end of the study. Treatment with rHuEPO reduced kidney damage and corrected anaemia in rats with CKD. We observed reduced sensorimotor dysfunction in animals with CKD and treated with rHuEPO. These rats also completed the water maze test in a shorter time than the control groups. rHuEPO reduces kidney damage, corrects anemia, and reduces sensorimotor and cognitive dysfunction in animals with CKD. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Assessment of kidney stone and prevalence of its chemical compositions.

    PubMed

    Pandeya, A; Prajapati, R; Panta, P; Regmi, A

    2010-09-01

    Kidney stone analysis is the test done on the stone which cause problems when they block the flow of urine through or out of the kidneys. The stones cause severe pain and are also associated with morbidity and renal damage. There is also no clear understanding on the relative metabolic composition of renal calculi. Hence, the study is aimed to find out the chemical composition of it which can guide treatment and give information that may prevent more stones from forming. The study was carried out on the stones that had been sent to the department of Biochemistry (n = 99; M = 61; F = 38; Mean age: 33.6 +/- 14.4 years) Approximately 98.9% of stones were composed of oxalate, 95.9% of Calcium, 85.8% of phosphate, 62.6% of Urate, 46.4% of Ammonium and very few percentages of Carbonate.

  15. Rhabdomyolysis associated with cytomegalovirus infection in kidney transplant recipients.

    PubMed

    Jung, H-Y; Kim, K-H; Park, S-C; Lee, J-H; Choi, J-Y; Cho, J-H; Park, S-H; Kim, Y-L; Kim, H-K; Huh, S; Kim, C-D

    2014-12-01

    Rhabdomyolysis is a pathological syndrome caused by skeletal muscle cell damage that affects the integrity of the cellular membrane and leads to the release of toxic intracellular constituents into the bloodstream. Although cytomegalovirus (CMV) has rarely been reported as a cause of rhabdomyolysis, CMV infection could be considered as a possible cause because of its clinical significance in kidney transplant recipients (KTRs). We report 2 cases of rhabdomyolysis associated with CMV infection in KTRs. A 64-year-old woman (Case 1) and a 65-year-old man (Case 2), who had each received a kidney from a living unrelated donor, were admitted with complaints of weakness in both legs and myalgia. Laboratory findings revealed highly increased creatine phosphokinase and myoglobinuria. In both cases, no recent alterations of medications had occurred, and other causes of rhabdomyolysis--such as trauma, alcohol, drugs, and electrolyte abnormalities - were excluded. CMV pp65 antigen was positive, and patients were diagnosed with rhabdomyolysis associated with CMV infection. Both patients recovered without complications after ganciclovir treatment. In conclusion, CMV infection should be considered as a possible cause of rhabdomyolysis in KTRs. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Exome Sequencing Frequently Reveals the Cause of Early-Onset Chronic Kidney Disease

    PubMed Central

    Vivante, Asaf; Hildebrandt, Friedhelm

    2016-01-01

    The primary causes of chronic kidney disease (CKD) in children differ from those of adult onset CKD. In the United States the most common diagnostic groups of CKD that manifests before 25 years of age are: i) congenital anomalies of the kidneys and urinary tract (CAKUT) (49.1%), ii) steroid-resistant nephrotic syndrome (SRNS) (10.4%), iii) chronic glomerulonephritis (8.1%), and iv) renal cystic ciliopathies (5.3 %), encompassing >70% of CKD together. Recent findings suggest that early-onset CKD is caused by mutations in any one of over 200 different monogenic genes. High-throughput sequencing has very recently rendered identification of causative mutations in this high number of genes feasible. Molecular genetic diagnostics in early onset-CKD (before the age of 25 years) will, i) provide patients and families with a molecular genetic diagnosis, ii) generate new insights into diseases mechanisms, iii) allow etiology-based classification of patient cohorts for clinical studies and, iv) may have consequences for personalized treatment and prevention of CKD. In this review, we will discuss the implications of next-generation sequencing for clinical genetic diagnostics and discovery of novel genes in early-onset CKD. We also delineate the resulting opportunities for deciphering disease mechanisms and therapeutic implications. PMID:26750453

  17. Blocking rpS6 Phosphorylation Exacerbates Tsc1 Deletion–Induced Kidney Growth

    PubMed Central

    Wu, Huijuan; Chen, Jianchun; Xu, Jinxian; Dong, Zheng; Meyuhas, Oded

    2016-01-01

    The molecular mechanisms underlying renal growth and renal growth–induced nephron damage remain poorly understood. Here, we report that in murine models, deletion of the tuberous sclerosis complex protein 1 (Tsc1) in renal proximal tubules induced strikingly enlarged kidneys, with minimal cystogenesis and occasional microscopic tumorigenesis. Signaling studies revealed hyperphosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and increased phosphorylation of ribosomal protein S6 (rpS6) in activated renal tubules. Notably, knockin of a nonphosphorylatable rpS6 in these Tsc1-mutant mice exacerbated cystogenesis and caused drastic nephron damage and renal fibrosis, leading to kidney failure and a premature death rate of 67% by 9 weeks of age. In contrast, Tsc1 single-mutant mice were all alive and had far fewer renal cysts at this age. Mechanistic studies revealed persistent activation of mammalian target of rapamycin complex 1 (mTORC1) signaling causing hyperphosphorylation and consequent accumulation of 4E-BP1, along with greater cell proliferation, in the renal tubules of Tsc1 and rpS6 double-mutant mice. Furthermore, pharmacologic treatment of Tsc1 single-mutant mice with rapamycin reduced hyperphosphorylation and accumulation of 4E-BP1 but also inhibited phosphorylation of rpS6. Rapamycin also exacerbated cystic and fibrotic lesions and impaired kidney function in these mice, consequently leading to a premature death rate of 40% within 2 weeks of treatment, despite destroying tumors and decreasing kidney size. These findings indicate that Tsc1 prevents aberrant renal growth and tumorigenesis by inhibiting mTORC1 signaling, whereas phosphorylated rpS6 suppresses cystogenesis and fibrosis in Tsc1-deleted kidneys. PMID:26296742

  18. EFFECTS OF PROTEINURIA ON THE KIDNEY

    PubMed Central

    Baxter, James H.; Cotzias, George C.

    1949-01-01

    Repeated intraperitoneal injections twice daily of various proteins into young rats were regularly accompanied by an increase in the protein content of the urine, significant renal enlargement, and often some degree of renal pallor. The most marked changes were induced by gelatin, followed in order by human albumin and bovine globulin. Rat serum produced similar but less conclusive changes. Similar changes were not produced by equivalent amounts of urea or casein hydrolysate. In sections from the kidneys of animals receiving gelatin, the cells of the convoluted tubules appeared enlarged, and they contained clear "spaces" throughout the cytoplasm. The tubular cells of the animals receiving the other solutions were not obviously altered in size or shape, and the cytoplasmic changes were slight or absent. There was little evidence of increased multiplication of cells or of tubular dilatation in the kidneys of any of the groups. Changes in concentrations of plasma proteins and hemoglobin, and the results of preliminary studies of the injected proteins in urine and renal tissue following the injections, are described and their possible significance discussed. It appears that the renal enlargement, as well as the increase in proteinuria and the tubular alterations which followed the protein injections, might have been caused in part by effects on the kidney of protein molecules per se, perhaps most likely by the effects on the tubular cells of an increased amount of protein filtered through the glomerular membranes, rather than entirely by effects of products of protein digestion and metabolism reaching the kidney through the blood stream. In the majority of animals there was no evidence from the morphological or functional studies, that the prolonged and continuous proteinuria induced by the protein injections resulted in renal damage, unless the renal enlargement, and the cytoplasmic changes which occurred regularly with gelatin, are considered evidence of damage

  19. Renal damage mediated by oxidative stress: a hypothesis of protective effects of red wine.

    PubMed

    Rodrigo, Ramón; Rivera, Gonzalo

    2002-08-01

    Over the last decade, oxidative stress has been implicated in the pathogenesis of a wide variety of seemingly unrelated renal diseases. Epidemiological studies have documented an association of moderate wine consumption with a decreased risk of cardiovascular and neurological diseases; however, similar studies in the kidney are still lacking. The kidney is an organ highly vulnerable to damage caused by reactive oxygen species (ROS), likely due to the abundance of polyunsaturated fatty acids in the composition of renal lipids. ROS are involved in the pathogenic mechanism of conditions such as glomerulosclerosis and tubulointerstitial fibrosis. The health benefits of moderate consumption of red wine can be partly attributed to its antioxidant properties. Indeed, the kidney antioxidant defense system is enhanced after chronic exposure to moderate amounts of wine, a response arising from the combined effects of ethanol and the nonalcoholic components, mainly polyphenols. Polyphenols behave as potent ROS scavengers and metal chelators; ethanol, in turn, modulates the activity of antioxidant enzymes. Therefore, a hypothesis that red wine causes a decreased vulnerability of the kidney to the oxidative challenges could be proposed. This view is partly supported by direct evidences indicating that wine and antioxidants isolated from red wine, as well as other antioxidants, significantly attenuate or prevent the oxidative damage to the kidney. The present hypothesis paper provides a collective body of evidence suggesting a protective role of moderate wine consumption against the production and progression of renal diseases, based on the existing concepts on the pathophysiology of kidney injury mediated by oxidative stress.

  20. Acoustic radiation force impulse (ARFI) elastography for detection of renal damage in children.

    PubMed

    Göya, Cemil; Hamidi, Cihad; Ece, Aydın; Okur, Mehmet Hanifi; Taşdemir, Bekir; Çetinçakmak, Mehmet Güli; Hattapoğlu, Salih; Teke, Memik; Şahin, Cahit

    2015-01-01

    Acoustic radiation force impulse (ARFI) imaging is a promising method for noninvasive evaluation of the renal parenchyma. To investigate the contribution of ARFI quantitative US elastography for the detection of renal damage in kidneys with and without vesicoureteral reflux (VUR). One hundred seventy-six kidneys of 88 children (46 male, 42 female) who had been referred for voiding cystourethrography and 20 healthy controls were prospectively investigated. Patients were assessed according to severity of renal damage on dimercaptosuccinic acid (DMSA) scintigraphy. Ninety-eight age- and gender-matched healthy children constituted the control group. Quantitative shear wave velocity (SWV) measurements were performed in the upper and lower poles and in the interpolar region of each kidney. DMSA scintigraphy was performed in 62 children (124 kidneys). Comparisons of SWV values of kidneys with and without renal damage and/or VUR were done. Significantly higher SWV values were found in non-damaged kidneys. Severely damaged kidneys had the lowest SWV values (P < 0.001). High-grade (grade V-IV) refluxing kidneys had the lowest SWV values, while non-refluxing kidneys had the highest values (P < 0.05). Significant negative correlations were found between the mean quantitative US elastography values and DMSA scarring score (r = -0.788, P < 0.001) and VUR grade (r = -0.634, P < 0.001). SWV values of the control kidneys were significantly higher than those of damaged kidneys (P < 0.05). Our findings suggest decreasing SWV of renal units with increasing grades of vesicoureteric reflux, increasing DMSA-assessed renal damage and decreasing DMSA-assessed differential function.

  1. Effects of low dose pre-irradiation on hepatic damage and genetic material damage caused by cyclophosphamide.

    PubMed

    Yu, H-S; Song, A-Q; Liu, N; Wang, H

    2014-01-01

    Cyclophosphamide (CTX) can attack tumour cells, but can also damage the other cells and microstructures of an organism at different levels, such as haematopoietic cells, liver cells, peripheral lymphocyte DNA, and genetic materials. Low dose radiation (LDR) can induce general adaptation reaction. In this study, we explore the effects of low dose radiation on hepatic damage and genetic material damage caused by CTX. Mice were implanted subcutaneously with S180 cells in the left groin (control group excluded). On days 8 and 11, mice of the LDR and LDR+CTX groups were given 75 mGy of whole-body γ-irradiation; whereas mice of the CTX and LDR+CTX groups were injected intraperitoneally with 3.0 mg of CTX. All mice were sacrificed on day 13. DNA damage of the peripheral lymphocytes, alanine aminotransferase (ALT) activity, total protein (TP), albumin (ALB) of the plasma, malonyl-dialdheyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity of the hepatic homogenate, and micronucleus frequency (MNF) of polychromatoerythrocytes in the bone marrow were analysed. The control group had the lowest MDA content and the highest SOD and GSH-PX activity, whereas the CTX group had the highest MDA content and the lowest SOD and GSH-PX activity. Compared with the CTX group, the MDA content decreased significantly (p < 0.01) and the SOD and GSH-PX activity increased significantly (p < 0.05) in the LDR+CTX group. TP and ALB in control group were higher than that of the other groups. Compared with the sham-irradiated group, TP and ALB in the LDR group elevated significantly (p < 0.05). The control group had the lightest DNA damage, whereas the CTX group had the severest. DNA damage in LDR+CTX group was much lighter compared with that of the CTX group (p < 0.05). MNF in the CTX group increased significantly compared with the control and the sham-irradiated groups (p < 0.01). Compared with the CTX group, MNF in LDR+CTX group had a tendency of decline

  2. Stem cells in kidney regeneration.

    PubMed

    Yokote, Shinya; Yokoo, Takashi

    2012-01-01

    Currently many efforts are being made to apply regenerative medicine to kidney diseases using several types of stem/progenitor cells, such as mesenchymal stem cells, renal stem/progenitor cells, embryonic stem cells and induced pluripotent stem cells. Stem cells have the ability to repair injured organs and ameliorate damaged function. The strategy for kidney tissue repair is the recruitment of stem cells and soluble reparative factors to the kidney to elicit tissue repair and the induction of dedifferentiation of resident renal cells. On the other hand, where renal structure is totally disrupted, absolute kidney organ regeneration is needed to rebuild a whole functional kidney. In this review, we describe current advances in stem cell research for kidney tissue repair and de novo organ regeneration.

  3. Application of regenerative medicine for kidney diseases.

    PubMed

    Yokoo, Takashi; Fukui, Akira; Kobayashi, Eiji

    2007-01-01

    Following recent advancements of stem cell research, the potential for organ regeneration using somatic stem cells as an ultimate therapy for organ failure has increased. However, anatomically complicated organs such as the kidney and liver have proven more refractory to stem cell-based regenerative techniques. At present, kidney regeneration is considered to require one of two approaches depending on the type of renal failure, namely acute renal failure (ARF) and chronic renal failure (CRF).The kidney has the potential to regenerate itself provided that the damage is not too severe and the kidney's structure remains intact. Regenerative medicine for ARF should therefore aim to activate or support this potent. In cases of the irreversible damage to the kidney, which is most likely in patients with CRF undergoing long-term dialysis, self-renewal is totally lost. Thus, regenerative medicine for CRF will likely involve the establishment of a functional whole kidney de novo. This article reviews the challenges and recent advances in both approaches and discusses the potential approach of these novel strategies for clinical application.

  4. Retro-peritoneal cooling for kidney preservation from multi-organ cadaver donors.

    PubMed

    Salazar-Bañuelos, Anastasio; Monroy-Cuadros, Mauricio; Henriquez-Cooper, Hoover

    2018-05-01

    Minimizing ischemia is paramount in the procurement of kidneys for transplantation. A fast cooling and expeditious removal is ideal to minimize damage from warm ischemia, however, since the removal of kidneys is delayed in cadaver donation until all other organs are harvested, the risk of kidney damage increases due to contact with the warmer soft body tissues. Surgical techniques that expedite organ retrieval were developed to avoid organ damage. We test a modification of Thomas Starzl's improved technique for multi-organ harvesting by interposing an ice bag between the posterior aspect of the kidney and the psoas muscle in a randomized trial with 21 multi-organ cadaver donors. The modified technique decreases the extraction temperature of the kidneys significantly in comparison with the controls, p < .001. This simple technique improves the preservation of kidneys from cadaver donors, and can potentially have more impact on multi-organ donation after cardiac death. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Kidneys: Key Modulators of HDL Levels and Function

    PubMed Central

    Yang, Haichun; Fogo, Agnes B.; Kon, Valentina

    2016-01-01

    Purpose of review This review will examine advances in our understanding of the role kidneys play in HDL metabolism and the effect on levels, composition, and function of HDL particles. Recent findings Components of the HDL particles can cross the glomerular filtration barrier. Some of these components, including apolipoproteins and enzymes involved in lipid metabolism, are taken up by the proximal tubule and degraded, modified, salvaged/returned to the circulation, or lost in the urine. Injury of the glomerular capillaries or tubules can affect these intrarenal processes and modify HDL. Changes in the plasma and urine levels of HDL may be novel markers of kidney damage and/or mechanism(s) of kidney disease. Summary The kidneys have a significant role in metabolism of individual HDL components, which in turn modulate HDL levels, composition and functionality of HDL particles. These intrarenal effects may be useful markers of kidney damage and have consequences on kidney-related perturbations in HDL. PMID:27008596

  6. 6. 'ROCKFILLED CRIB 350 FEET LONG, REPAIRING DAMAGES CAUSED BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. 'ROCK-FILLED CRIB 350 FEET LONG, REPAIRING DAMAGES CAUSED BY FLOODS DURING SEASON OF 1927 TO THE DRY GULCH CANAL HEADING.' 1928 - Irrigation Canals in the Uinta Basin, Duchesne, Duchesne County, UT

  7. Apoptotic adipose-derived mesenchymal stem cell therapy protects against lung and kidney injury in sepsis syndrome caused by cecal ligation puncture in rats

    PubMed Central

    2013-01-01

    Introduction We tested the hypothesis that apoptotic adipose-derived mesenchymal stem cells (A-ADMSC) are superior to healthy (H)-ADMSC in attenuating cecal ligation puncture (CLP)-induced sepsis-mediated lung and kidney injuries. Methods Adult male rats divided into group 1 (sham controls), group 2 (CLP), group 3 [CLP + H-ADMSC administered at 0.5, 6, and 18 hours after CLP], and group 4 [CLP + A-ADMSC administered as in group 3] were sacrificed 72 hours after CLP with blood, lung, and kidney collected for studies. Results White blood cell (WBC) count, circulating TNF-α and creatinine levels were higher in groups 2 and 3 than in groups 1 and 4 (all P < 0.001). Kidney and lung damage scores were highest in group 2, lowest in group 1, significantly higher in group 3 than in group 4 (all P < 0.0001). Protein expressions of inflammatory (ICAM-1, MMP-9, TNF-α, NF-κB), oxidative, and apoptotic (Bax, caspase-3, PARP) biomarkers were higher in groups 2 and 3 than groups 1 and 4, whereas anti-apoptotic (Bcl-2) and mitochondrial integrity (cytochrome-C) biomarkers were lower in groups 2 and 3 than in groups 1 and 4 (all P < 0.001). Expressions of anti-oxidant biomarkers at protein (GR, GPx, NQO-1, HO-1) and cellular (GR, GPx) levels were highest in group 4 (all P < 0.001). The number of inflammatory cells (CD3+) in lungs and levels of DNA damage marker (γ-H2AX) in kidneys were higher in groups 2 and 3 than in groups 1 and 4 (all P < 0.001). Conclusions A-ADMSC therapy was superior to H-ADMSC therapy in protecting major organs from damage in rats with CLP-induced sepsis syndrome. PMID:24451364

  8. Protective Effects of Crocus Sativus L. Extract and Crocin against Chronic-Stress Induced Oxidative Damage of Brain, Liver and Kidneys in Rats

    PubMed Central

    Bandegi, Ahmad Reza; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Ghadrdoost, Behshid

    2014-01-01

    Purpose: Chronic stress has been reported to induce oxidative damage of the brain. A few studies have shown that Crocus Sativus L., commonly known as saffron and its active constituent crocin may have a protective effect against oxidative stress. The present work was designed to study the protective effects of saffron extract and crocin on chronic – stress induced oxidative stress damage of the brain, liver and kidneys. Methods: Rats were injected with a daily dose of saffron extract (30 mg/kg, IP) or crocin (30 mg/kg, IP) during a period of 21 days following chronic restraint stress (6 h/day). In order to determine the changes of the oxidative stress parameters following chronic stress, the levels of the lipid peroxidation product, malondialdehyde (MDA), the total antioxidant reactivity (TAR), as well as antioxidant enzyme activities glutathione peroxidase (GPx), glutathione reductase (GR) and superoxide dismutase (SOD) were measured in the brain, liver and kidneys tissues after the end of chronic stress. Results: In the stressed animals that receiving of saline, levels of MDA, and the activities of GPx, GR, and SOD were significantly higher (P<0.0001) and the TAR capacity were significantly lower than those of the non-stressed animals (P<0.0001). Both saffron extract and crocin were able to reverse these changes in the stressed animals as compared with the control groups (P<0.05). Conclusion: These observations indicate that saffron and its active constituent crocin can prevent chronic stress–induced oxidative stress damage of the brain, liver and kidneys and suggest that these substances may be useful against oxidative stress. PMID:25671180

  9. Clinical Courses of Graft Failure Caused by Chronic Allograft Dysfunction in Kidney Transplantation.

    PubMed

    Fujiwara, T; Teruta, S; Tsudaka, S; Ota, K; Matsuda, H

    Chronic allograft dysfunction (CAD) is a main cause of graft failure in kidney transplantation. We retrospectively analyzed 279 kidney transplant recipients who survived with a functioning graft for at least 2 years. CAD was defined as chronic graft deterioration, excluding other specific causes. We defined the pattern of decline in estimated glomerular filtration rate (eGFR), as follows: (1) "plateau" was defined as decline in eGFR ≤2 mL/min/1.73 m 2 /year; "long plateaus" were those lasting more than 5 years; (2) "rapid decline" was a decrease in eGFR ≥20 mL/min/1.73 m 2 /year. Patients diagnosed with CAD were categorized according to the occurrence of rapid decline and/or long plateau as follows: group 1, neither rapid decline nor long plateau; group 2, rapid decline only; group 3, long plateau only; and group 4, both rapid decline and long plateau. From a total of 81 graft losses, 51 (63%) failed because of CAD, with a median of 9.4 years. Sixteen patients belonged to group 1, 14 to group 2, 12 to group 3, and nine to group 4. Mean graft survival times in the four groups were 7.7 ± 1.1, 6.1 ± 3.1, 16.2 ± 2.5, and 10.8 ± 3.6 years, respectively (P < .001). There were significant differences among groups in donor age, year of transplantation, mean eGFR at baseline, and acute rejection rate after transplantation. The results indicate that this cohort of kidney transplant recipients who had CAD comprised subgroups with different clinical courses. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia.

    PubMed

    Ma, Lijie; Liu, Yan; Landry, Nichole K; El-Achkar, Tarek M; Lieske, John C; Wu, Xue-Ru

    2017-01-01

    Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin) gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys' thick ascending limb (TAL) caused unfolded protein response in younger (1-month old) mice and apoptosis in older (12-month old) mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies.

  11. Analysis of spatiotemporal metabolomic dynamics for sensitively monitoring biological alterations in cisplatin-induced acute kidney injury.

    PubMed

    Irie, Miho; Hayakawa, Eisuke; Fujimura, Yoshinori; Honda, Youhei; Setoyama, Daiki; Wariishi, Hiroyuki; Hyodo, Fuminori; Miura, Daisuke

    2018-01-29

    Clinical application of the major anticancer drug, cisplatin, is limited by severe side effects, especially acute kidney injury (AKI) caused by nephrotoxicity. The detailed metabolic mechanism is still largely unknown. Here, we used an integrated technique combining mass spectrometry imaging (MSI) and liquid chromatography-mass spectrometry (LC-MS) to visualize the diverse spatiotemporal metabolic dynamics in the mouse kidney after cisplatin dosing. Biological responses to cisplatin was more sensitively detected within 24 h as a metabolic alteration, which is much earlier than possible with the conventional clinical chemistry method of blood urea nitrogen (BUN) measurement. Region-specific changes (e.g., medulla and cortex) in metabolites related to DNA damage and energy generation were observed over the 72-h exposure period. Therefore, this metabolomics approach may become a novel strategy for elucidating early renal responses to cisplatin, prior to the detection of kidney damage evaluated by conventional method. Copyright © 2018. Published by Elsevier Inc.

  12. Careful: Acetaminophen in Pain Relief Medicines Can Cause Liver Damage

    MedlinePlus

    ... and Fever Reducers Careful: Acetaminophen in pain relief medicines can cause liver damage Share Tweet Linkedin Pin ... ingredient in many over-the-counter and prescription medicines that help relieve pain and reduce fever. More ...

  13. Rapid communications: antiperspirant induced DNA damage in canine cells by comet assay.

    PubMed

    Yiu, Gloria

    2004-01-01

    Abstract Millions of people around the world use antiperspirants to decrease or eliminate body odors. Most antiperspirants contain aluminum zirconium or another form of aluminum as its active ingredient. The present investigation applied Comet assay to detect if Secret Platinum for women, Old Spice for men, or Crystal Natural produced DNA damage in Madin-Darby canine kidney cells (MDCKII). This study has shown that antiperspirants cause DNA damage on a single-cell level. Additionally, our data showed us that in general, Secret Platinum for women and Old Spice for men, produced equivalent damage. Crystal Natural, marketed as being safer or less damaging, induced the most extensive damage of all three antiperspirants tested.

  14. Effect of blood pressure lowering on markers of kidney disease progression.

    PubMed

    Udani, Suneel M; Koyner, Jay L

    2009-10-01

    Hypertension remains a common comorbidity and cause of chronic kidney disease (CKD). As the number of patients with CKD grows, so does the need to identify modifiable risk factors for CKD progression. Data on slowing progression of CKD or preventing end-stage renal disease with aggressive blood pressure control have not yielded definitive conclusions regarding ideal blood pressure targets. Shifting the focus of antihypertensive therapy to alternative markers of end-organ damage, specifically proteinuria, has yielded some promise in preventing the progression of CKD. Nevertheless, proteinuria and decline in estimated GFR may represent an irreversible degree of injury to the kidney that limits the impact of any therapy. The identification and use of novel markers of kidney injury to assess the impact of antihyper-tensive therapy may yield clearer direction with regard to optimal management of hypertension in the setting of CKD.

  15. Autosomal dominant tubulointerstitial kidney disease caused by uromodulin mutations: seek and you will find.

    PubMed

    Raffler, Gabriele; Zitt, Emanuel; Sprenger-Mähr, Hannelore; Nagel, Mato; Lhotta, Karl

    2016-04-01

    Uromodulin (UMOD)-associated kidney disease belongs to the group of autosomal dominant interstitial kidney diseases and is caused by mutations in the UMOD gene. Affected patients present with hyperuricemia, gout, and progressive renal failure. The disease is thought to be very rare but is probably underdiagnosed. Two index patients from two families with tubulointerstitial nephropathy and hyperuricemia were examined, including blood and urine chemistry, ultrasound, and mutation analysis of the UMOD gene. In addition, other available family members were studied. In a 46-year-old female patient with a fractional excretion of uric acid of 3 %, analysis of the UMOD gene revealed a p.W202S missense mutation. The same mutation was found in her 72-year-old father, who suffers from gout and end-stage renal disease. The second index patient was a 47-year-old female with chronic kidney disease and gout for more than 10 years. Her fractional uric acid excretion was 3.5 %. Genetic analysis identified a novel p.H250Q UMOD mutation that was also present in her 12-year-old son, who had normal renal function and uric acid levels. In patients suffering from chronic tubulointerstitial nephropathy, hyperuricemia, and a low fractional excretion of uric acid mutation, analysis of the UMOD gene should be performed to diagnose UMOD-associated kidney disease.

  16. Environmental pollution and kidney diseases.

    PubMed

    Xu, Xin; Nie, Sheng; Ding, Hanying; Hou, Fan Fan

    2018-05-01

    The burden of disease and death attributable to environmental pollution is becoming a public health challenge worldwide, especially in developing countries. The kidney is vulnerable to environmental pollutants because most environmental toxins are concentrated by the kidney during filtration. Given the high mortality and morbidity of kidney disease, environmental risk factors and their effect on kidney disease need to be identified. In this Review, we highlight epidemiological evidence for the association between kidney disease and environmental pollutants, including air pollution, heavy metal pollution and other environmental risk factors. We discuss the potential biological mechanisms that link exposure to environmental pollutants to kidney damage and emphasize the contribution of environmental pollution to kidney disease. Regulatory efforts should be made to control environmental pollution and limit individual exposure to preventable or avoidable environmental risk. Population studies with accurate quantification of environmental exposure in polluted regions, particularly in developing countries, might aid our understanding of the dose-response relationship between pollutants and kidney diseases.

  17. Evaluation of roadside greenbelt trees damage caused by strangler plants in Bogor

    NASA Astrophysics Data System (ADS)

    Danniswari, Dibyanti; Nasrullah, Nizar

    2017-10-01

    Certain plants are called stranglers (hemiepiphyte) because they grow on host trees and slowly choking the host, which often results in the host’s death. The existence of strangler plants on roadside greenbelt trees is quite common in Bogor, but they may cause tree’s failure and threaten users’ safety. To prevent such hazard, evaluation of roadside greenbelt trees damage caused by strangler plants is important. This study was directed to analyse the vegetation of strangler plants in Bogor, to assess the damage caused by stranglers, and to compose strangled trees maintenance recommendations. This study was conducted in March to May 2014 by doing survey at five major roads in Bogor, which were Jalan Ahmad Yani, Jalan Sudirman, Jalan Pemuda, Jalan Semeru, and Jalan Juanda. The results showed that strangler species found in Bogor are Ficus benjamina, Ficus glauca, Ficus elastica, and Schefflera actinophylla. The most common species in Bogor is F. benjamina. Host trees that tend to be preferred by strangler plants are trees with large trunk, many branches, and medium to high height. The maintenance for every strangled tree is different according to the damage level, mild to severe damage could be treated by strangler root cutting to tree logging, respectively.

  18. 6-Gingerol-Rich Fraction from Zingiber officinale Prevents Hematotoxicity and Oxidative Damage in Kidney and Liver of Rats Exposed to Carbendazim.

    PubMed

    Salihu, Mariama; Ajayi, Babajide O; Adedara, Isaac A; Farombi, Ebenezer O

    2016-01-01

    Ginger (Zingiber officinale) is a globally marketed flavoring agent and cooking spice with a long history of human health benefits. The fungicide carbendazim (CBZ) is often detected in fruits and vegetables for human nutrition and has been reported to elicit toxic effects in different experimental animal models. The present study investigated the protective effects of 6-Gingerol-rich fraction (6-GRF) from ginger on hematotoxicity and hepatorenal damage in rats exposed to CBZ. CBZ was administered at a dose of 50 mg/kg alone or simultaneously administered with 6-GRF at 50, 100, and 200 mg/kg, whereas control rats received corn oil alone at 2 mL/kg for 14 days. Hematological examination showed that CBZ-mediated toxicity to the total white blood cell (WBC), neutrophils, lymphocytes, and platelets counts were normalized to the control values in rats cotreated with 6-GRF. Moreover, administration of CBZ significantly decreased the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase as well as glutathione level in the livers and kidneys of rats compared with control. However, the levels of hydrogen peroxide (H2O2) and malondialdehyde were markedly elevated in kidneys and livers of CBZ-treated rats compared with control. The significant elevation in the plasma indices of renal and hepatic dysfunction in CBZ-treated rats was confirmed by light microscopy. Coadministration of 6-GRF exhibited chemoprotection against CBZ-mediated hematotoxicity, augmented antioxidant status, and prevented oxidative damage in the kidney and liver of rats.

  19. Combining functional and tubular damage biomarkers improves diagnostic precision for acute kidney injury after cardiac surgery.

    PubMed

    Basu, Rajit K; Wong, Hector R; Krawczeski, Catherine D; Wheeler, Derek S; Manning, Peter B; Chawla, Lakhmir S; Devarajan, Prasad; Goldstein, Stuart L

    2014-12-30

    Increases in serum creatinine (ΔSCr) from baseline signify acute kidney injury (AKI) but offer little granular information regarding its characteristics. The 10th Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) suggested that combining AKI biomarkers would provide better precision for AKI course prognostication. This study investigated the value of combining a functional damage biomarker (plasma cystatin C [pCysC]) with a tubular damage biomarker (urine neutrophil gelatinase-associated lipocalin [uNGAL]), forming a composite biomarker for prediction of discrete characteristics of AKI. Data from 345 children after cardiopulmonary bypass (CPB) were analyzed. Severe AKI was defined as Kidney Disease Global Outcomes Initiative stages 2 to 3 (≥100% ΔSCr) within 7 days of CPB. Persistent AKI lasted >2 days. SCr in reversible AKI returned to baseline ≤48 h after CPB. The composite of uNGAL (>200 ng/mg urine Cr = positive [+]) and pCysC (>0.8 mg/l = positive [+]), uNGAL+/pCysC+, measured 2 h after CPB initiation, was compared to ΔSCr increases of ≥50% for correlation with AKI characteristics by using predictive probabilities, likelihood ratios (LR), and area under the curve receiver operating curve (AUC-ROC) values [Corrected]. Severe AKI occurred in 18% of patients. The composite uNGAL+/pCysC+ demonstrated a greater likelihood than ΔSCr for severe AKI (+LR: 34.2 [13.0:94.0] vs. 3.8 [1.9:7.2]) and persistent AKI (+LR: 15.6 [8.8:27.5] versus 4.5 [2.3:8.8]). In AKI patients, the uNGAL-/pCysC+ composite was superior to ΔSCr for prediction of transient AKI. Biomarker composites carried greater probability for specific outcomes than ΔSCr strata. Composites of functional and tubular damage biomarkers are superior to ΔSCr for predicting discrete characteristics of AKI. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  20. Inhibition property of green tea extract in relation to reserpine-induced ribosomal strips of rough endoplasmic reticulum (rER) of the rat kidney proximal tubule cells.

    PubMed

    Abdel-Majeed, Safer; Mohammad, Afzal; Shaima, Al-Bloushi; Mohammad, Rafique; Mousa, Shaker A

    2009-12-01

    The aim of this study was to evaluate the effect of green tea in inhibiting and reversing the nephrotoxicity of reserpine--a potent oxidative stress inducer--which induced cellular kidney damage. Serum biochemical parameters, antioxidant enzyme levels, thiobarbituric acid reactive substances (TBARS) and serum transaminases (glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT)) values and histopathology were systematically evaluated. Reserpine exposure led to increase the oxidative stress and organ injury was significantly observed through biochemical parameters and ultrastructural evaluation. Sprague-Dawely (S.D.) rats were intraperitonealy administered reserpine to induce oxidative kidney damage. Experimental rats were given green tea extract according to the protocol given below. Sixty rats were randomly divided into six groups, with 10 rats in each group. Reserpine was found to cause kidney proximal tubule damage, such as stripping and clustering of ribosomes from the rough endoplasmic reticulum (rER) and demolishing of mitochondrial christae with elevated level of oxidative stress markers, such as TBARS. While the ultrastructural study showed a revival of kidney proximal tubule cells as a result of the administration of green tea extract to rats. We suggest that green tea might elevate antioxidant defense system, clean up free radicals, lessen oxidative damages and protect kidney against reserpine-induced toxicity and thus had a potential protective effect.

  1. Hydration Status, Kidney Function, and Kidney Injury in Florida Agricultural Workers.

    PubMed

    Mix, Jacqueline; Elon, Lisa; Vi Thien Mac, Valerie; Flocks, Joan; Economos, Eugenia; Tovar-Aguilar, Antonio J; Stover Hertzberg, Vicki; McCauley, Linda A

    2018-05-01

    Recent findings suggest that laboring in hot occupational environments is related to kidney damage in agricultural workers. We examined hydration status and kidney function in 192 Florida agricultural workers. Blood and urine samples were collected over 555 workdays during the summers of 2015 and 2016. Urine-specific gravity (USG), serum creatinine, and other kidney function markers were examined pre- and post-shift on each workday. Multivariable mixed modeling was used to examine the association of risk factors with hydration status and acute kidney injury (AKI). Approximately 53% of workers were dehydrated (USG ≥1.020) pre-shift and 81% post-shift; 33% of participants had AKI on at least one workday. The odds of AKI increased 47% for each 5-degree (°F) increase in heat index. A strikingly high prevalence of dehydration and AKI exists in Florida agricultural workers.

  2. Meta-analysis of attitudes toward damage-causing mammalian wildlife.

    PubMed

    Kansky, Ruth; Kidd, Martin; Knight, Andrew T

    2014-08-01

    Many populations of threatened mammals persist outside formally protected areas, and their survival depends on the willingness of communities to coexist with them. An understanding of the attitudes, and specifically the tolerance, of individuals and communities and the factors that determine these is therefore fundamental to designing strategies to alleviate human-wildlife conflict. We conducted a meta-analysis to identify factors that affected attitudes toward 4 groups of terrestrial mammals. Elephants (65%) elicited the most positive attitudes, followed by primates (55%), ungulates (53%), and carnivores (44%). Urban residents presented the most positive attitudes (80%), followed by commercial farmers (51%) and communal farmers (26%). A tolerance to damage index showed that human tolerance of ungulates and primates was proportional to the probability of experiencing damage while elephants elicited tolerance levels higher than anticipated and carnivores elicited tolerance levels lower than anticipated. Contrary to conventional wisdom, experiencing damage was not always the dominant factor determining attitudes. Communal farmers had a lower probability of being positive toward carnivores irrespective of probability of experiencing damage, while commercial farmers and urban residents were more likely to be positive toward carnivores irrespective of damage. Urban residents were more likely to be positive toward ungulates, elephants, and primates when probability of damage was low, but not when it was high. Commercial and communal farmers had a higher probability of being positive toward ungulates, primates, and elephants irrespective of probability of experiencing damage. Taxonomic bias may therefore be important. Identifying the distinct factors explaining these attitudes and the specific contexts in which they operate, inclusive of the species causing damage, will be essential for prioritizing conservation investments. © 2014 The Authors. Conservation Biology

  3. Nitrative and oxidative DNA damage caused by K-ras mutation in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohnishi, Shiho; Saito, Hiromitsu; Suzuki, Noboru

    2011-09-23

    Highlights: {yields} Mutated K-ras in transgenic mice caused nitrative DNA damage, 8-nitroguanine. {yields} The mutagenic 8-nitroguanine seemed to be generated by iNOS via Ras-MAPK signal. {yields} Mutated K-ras produces additional mutagenic lesions, as a new oncogenic role. -- Abstract: Ras mutation is important for carcinogenesis. Carcinogenesis consists of multi-step process with mutations in several genes. We investigated the role of DNA damage in carcinogenesis initiated by K-ras mutation, using conditional transgenic mice. Immunohistochemical analysis revealed that mutagenic 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were apparently formed in adenocarcinoma caused by mutated K-ras. 8-Nitroguanine was co-localized with iNOS, eNOS, NF-{kappa}B, IKK, MAPK, MEK,more » and mutated K-ras, suggesting that oncogenic K-ras causes additional DNA damage via signaling pathway involving these molecules. It is noteworthy that K-ras mutation mediates not only cell over-proliferation but also the accumulation of mutagenic DNA lesions, leading to carcinogenesis.« less

  4. Renal Hypoxia and Dysoxia After Reperfusion of the Ischemic Kidney

    PubMed Central

    Legrand, Matthieu; Mik, Egbert G; Johannes, Tanja; Payen, Didier; Ince, Can

    2008-01-01

    Ischemia is the most common cause of acute renal failure. Ischemic-induced renal tissue hypoxia is thought to be a major component in the development of acute renal failure in promoting the initial tubular damage. Renal oxygenation originates from a balance between oxygen supply and consumption. Recent investigations have provided new insights into alterations in oxygenation pathways in the ischemic kidney. These findings have identified a central role of microvascular dysfunction related to an imbalance between vasoconstrictors and vasodilators, endothelial damage and endothelium–leukocyte interactions, leading to decreased renal oxygen supply. Reduced microcirculatory oxygen supply may be associated with altered cellular oxygen consumption (dysoxia), because of mitochondrial dysfunction and activity of alternative oxygen-consuming pathways. Alterations in oxygen utilization and/or supply might therefore contribute to the occurrence of organ dysfunction. This view places oxygen pathways’ alterations as a potential central player in the pathogenesis of acute kidney injury. Both in regulation of oxygen supply and consumption, nitric oxide seems to play a pivotal role. Furthermore, recent studies suggest that, following acute ischemic renal injury, persistent tissue hypoxia contributes to the development of chronic renal dysfunction. Adaptative mechanisms to renal hypoxia may be ineffective in more severe cases and lead to the development of chronic renal failure following ischemia-reperfusion. This paper is aimed at reviewing the current insights into oxygen transport pathways, from oxygen supply to oxygen consumption in the kidney and from the adaptation mechanisms to renal hypoxia. Their role in the development of ischemia-induced renal damage and ischemic acute renal failure are discussed. PMID:18488066

  5. Example Building Damage Caused by Mining Exploitation in Disturbed Rock Mass

    NASA Astrophysics Data System (ADS)

    Florkowska, Lucyna

    2013-06-01

    Issues concerning protection of buildings against the impact of underground coal mining pose significant scientific and engineering challenges. In Poland, where mining is a potent and prominent industry assuring domestic energy security, regions within reach of mining influences are plenty. Moreover, due to their industrial character they are also densely built-up areas. Because minerals have been extracted on an industrial scale in majority of those areas for many years, the rock mass structure has been significantly disturbed. Hence, exploitation of successive layers of multi-seam deposits might cause considerable damage - both in terms of surface and existing infrastructure networks. In the light of those facts, the means of mining and building prevention have to be improved on a regular basis. Moreover, they have to be underpinned by reliable analyses holistically capturing the comprehensive picture of the mining, geotechnical and constructional situation of structures. Scientific research conducted based on observations and measurements of mining-induced strain in buildings is deployed to do just that. Presented in this paper examples of damage sustained by buildings armed with protection against mining influences give an account of impact the mining exploitation in disturbed rock mass can have. This paper is based on analyses of mining damage to church and Nursing Home owned by Evangelical Augsburg Parish in Bytom-Miechowice. Neighbouring buildings differ in the date they were built, construction, building technology, geometry of the building body and fitted protection against mining damage. Both the buildings, however, have sustained lately significant deformation and damage caused by repeated mining exploitation. Selected damage has been discussed hereunder. The structures have been characterised, their current situation and mining history have been outlined, which have taken their toll on character and magnitude of damage. Description has been supplemented

  6. Kidney Disease Statistics for the United States

    MedlinePlus

    ... that a person’s kidneys are damaged and cannot filter blood the way they should. This damage can ... per 1.73 m 2 ). Dialysis: Treatment to filter wastes and water from the blood. When their ...

  7. Irian Jaya earthquake and tsunami cause serious damage

    NASA Astrophysics Data System (ADS)

    Imamura, Fumihiko; Subandono, D.; Watson, G.; Moore, A.; Takahashi, T.; Matsutomi, H.; Hidayat, R.

    On February 17,1996, at 0559 UT, a major earthquake with moment magnitude (Mw) 7.9 killed 107 people and caused major damage at Biak Island, 30-40 km southwest of the earthquake's epicenter (Figures 1 and 2). A devastating tsunami washed away all of the houses at Korim, a small village located in a narrow bay facing directly towards the incoming wave, and it left behind clear evidence of sand erosion and deposition that indicated how far the tsunami advanced. An unexpectedly large tsunami run-up of 7.7 m was measured at Wardo in western Biak, which faces away from the primary tsunami source. This high run-up may have been caused by a local submarine landslide.

  8. Antioxidants in kidney diseases: the impact of bardoxolone methyl.

    PubMed

    Rojas-Rivera, Jorge; Ortiz, Alberto; Egido, Jesus

    2012-01-01

    Drugs targeting the renin-angiotensin-aldosterone system (RAAS) are the mainstay of therapy to retard the progression of proteinuric chronic kidney disease (CKD) such as diabetic nephropathy. However, diabetic nephropathy is still the first cause of end-stage renal disease. New drugs targeted to the pathogenesis and mechanisms of progression of these diseases beyond RAAS inhibition are needed. There is solid experimental evidence of a key role of oxidative stress and its interrelation with inflammation on renal damage. However, randomized and well-powered trials on these agents in CKD are scarce. We now review the biological bases of oxidative stress and its role in kidney diseases, with focus on diabetic nephropathy, as well as the role of the Keap1-Nrf2 pathway and recent clinical trials targeting this pathway with bardoxolone methyl.

  9. Antioxidants in Kidney Diseases: The Impact of Bardoxolone Methyl

    PubMed Central

    Rojas-Rivera, Jorge; Ortiz, Alberto; Egido, Jesus

    2012-01-01

    Drugs targeting the renin-angiotensin-aldosterone system (RAAS) are the mainstay of therapy to retard the progression of proteinuric chronic kidney disease (CKD) such as diabetic nephropathy. However, diabetic nephropathy is still the first cause of end-stage renal disease. New drugs targeted to the pathogenesis and mechanisms of progression of these diseases beyond RAAS inhibition are needed. There is solid experimental evidence of a key role of oxidative stress and its interrelation with inflammation on renal damage. However, randomized and well-powered trials on these agents in CKD are scarce. We now review the biological bases of oxidative stress and its role in kidney diseases, with focus on diabetic nephropathy, as well as the role of the Keap1-Nrf2 pathway and recent clinical trials targeting this pathway with bardoxolone methyl. PMID:22701794

  10. DNA Damage in Euonymus japonicus Leaf Cells Caused by Roadside Pollution in Beijing

    PubMed Central

    Li, Tianxin; Zhang, Minjie; Gu, Ke; Herman, Uwizeyimana; Crittenden, John; Lu, Zhongming

    2016-01-01

    The inhalable particles from vehicle exhaust can cause DNA damage to exposed organisms. Research on DNA damage is primarily focused on the influence of specific pollutants on certain species or the effect of environmental pollution on human beings. To date, little research has quantitatively studied the relationship between roadside pollution and DNA damage. Based on an investigation of the roadside pollution in Beijing, Euonymus japonicus leaves of differing ages grown in heavily-polluted sections were chosen as biomonitors to detect DNA damage using the comet assay technique. The percentage of DNA in the tail and tail moment was chosen as the analysis index based on SPSS data analysis. The roadside samples showed significantly higher levels of DNA damage than non-roadside samples, which increased in older leaves, and the DNA damage to Euonymus japonicus leaf cells was positively correlated with haze-aggravated roadside pollution. The correlation between damage and the Air Quality Index (AQI) are 0.921 (one-year-old leaves), 0.894 (two-year-old leaves), and 0.878 (three-year-old leaves). Over time, the connection between DNA damage and AQI weakened, with the sensitivity coefficient for δyear 1 being larger than δyear 2 and δyear 3. These findings support the suitability and sensitivity of the comet assay for surveying plants for an estimation of DNA damage induced by environmental genotoxic agents. This study might be applied as a preliminary quantitative method for Chinese urban air pollution damage assessment caused by environmental stress. PMID:27455298

  11. Ricin crosses polarized human intestinal cells and intestines of ricin-gavaged mice without evident damage and then disseminates to mouse kidneys.

    PubMed

    Flora, Alyssa D; Teel, Louise D; Smith, Mark A; Sinclair, James F; Melton-Celsa, Angela R; O'Brien, Alison D

    2013-01-01

    Ricin is a potent toxin found in the beans of Ricinus communis and is often lethal for animals and humans when aerosolized or injected and causes significant morbidity and occasional death when ingested. Ricin has been proposed as a bioweapon because of its lethal properties, environmental stability, and accessibility. In oral intoxication, the process by which the toxin transits across intestinal mucosa is not completely understood. To address this question, we assessed the impact of ricin on the gastrointestinal tract and organs of mice after dissemination of toxin from the gut. We first showed that ricin adhered in a specific pattern to human small bowel intestinal sections, the site within the mouse gut in which a variable degree of damage has been reported by others. We then monitored the movement of ricin across polarized human HCT-8 intestinal monolayers grown in transwell inserts and in HCT-8 cell organoids. We observed that, in both systems, ricin trafficked through the cells without apparent damage until 24 hours post intoxication. We delivered a lethal dose of purified fluorescently-labeled ricin to mice by oral gavage and followed transit of the toxin from the gastrointestinal tracts to the internal organs by in vivo imaging of whole animals over time and ex vivo imaging of organs at various time points. In addition, we harvested organs from unlabeled ricin-gavaged mice and assessed them for the presence of ricin and for histological damage. Finally, we compared serum chemistry values from buffer-treated versus ricin-intoxicated animals. We conclude that ricin transverses human intestinal cells and mouse intestinal cells in situ prior to any indication of enterocyte damage and that ricin rapidly reaches the kidneys of intoxicated mice. We also propose that mice intoxicated orally with ricin likely die from distributive shock.

  12. Ricin Crosses Polarized Human Intestinal Cells and Intestines of Ricin-Gavaged Mice without Evident Damage and Then Disseminates to Mouse Kidneys

    PubMed Central

    Flora, Alyssa D.; Teel, Louise D.; Smith, Mark A.; Sinclair, James F.; Melton-Celsa, Angela R.; O’Brien, Alison D.

    2013-01-01

    Ricin is a potent toxin found in the beans of Ricinus communis and is often lethal for animals and humans when aerosolized or injected and causes significant morbidity and occasional death when ingested. Ricin has been proposed as a bioweapon because of its lethal properties, environmental stability, and accessibility. In oral intoxication, the process by which the toxin transits across intestinal mucosa is not completely understood. To address this question, we assessed the impact of ricin on the gastrointestinal tract and organs of mice after dissemination of toxin from the gut. We first showed that ricin adhered in a specific pattern to human small bowel intestinal sections, the site within the mouse gut in which a variable degree of damage has been reported by others. We then monitored the movement of ricin across polarized human HCT-8 intestinal monolayers grown in transwell inserts and in HCT-8 cell organoids. We observed that, in both systems, ricin trafficked through the cells without apparent damage until 24 hours post intoxication. We delivered a lethal dose of purified fluorescently-labeled ricin to mice by oral gavage and followed transit of the toxin from the gastrointestinal tracts to the internal organs by in vivo imaging of whole animals over time and ex vivo imaging of organs at various time points. In addition, we harvested organs from unlabeled ricin-gavaged mice and assessed them for the presence of ricin and for histological damage. Finally, we compared serum chemistry values from buffer-treated versus ricin-intoxicated animals. We conclude that ricin transverses human intestinal cells and mouse intestinal cells in situ prior to any indication of enterocyte damage and that ricin rapidly reaches the kidneys of intoxicated mice. We also propose that mice intoxicated orally with ricin likely die from distributive shock. PMID:23874986

  13. Hypertension in kidney transplantation is associated with an early renal nerve sprouting

    PubMed Central

    Rovella, Valentina; Borri, Filippo; Anemona, Lucia; Giannini, Elena; Giacobbi, Erica; Saggini, Andrea; Palmieri, Giampiero; Anselmo, Alessandro; Bove, Pierluigi; Melino, Gerry; Valentina, Guardini; Tesauro, Manfredi; Gabriele, D’Urso; Di Daniele, Nicola

    2017-01-01

    Abstract Background. Normalization of arterial pressure occurs in just a few patients with hypertensive chronic kidney disease undergoing kidney transplantation. Hypertension in kidney transplant recipients may be related to multiple factors. We aimed to assess whether hypertension in kidney-transplanted patients may be linked to reinnervation of renal arteries of the transplanted kidney. Methods. We investigated renal arteries innervation from native and transplanted kidneys in three patients 5 months, 2 years and 11 years after transplantation, respectively. Four transplanted kidneys from non-hypertensive patients on immunosuppressive treatment without evidence of hypertensive arteriolar damage were used as controls. Results. Evidence of nerve sprouting was observed as early as 5 months following transplantation, probably originated from ganglions of recipient patient located near the arterial anastomosis and was associated with mild hypertensive arteriolar damage. Regeneration of periadventitial nerves was already complete 2 years after transplantation. Nerve density tended to reach values observed in native kidney arteries and was associated with hypertension-related arteriolar lesions in transplanted kidneys. Control kidneys, albeit on an immunosuppressive regimen, presented only a modest regeneration of sympathetic nerves. Conclusions. Our results suggest that the considerable increase in sympathetic nerves, as found in patients with severe arterial damage, may be correlated to hypertension rather than to immunosuppressive therapy, thus providing a morphological basis for hypertension recurrence despite renal denervation. PMID:28498963

  14. Non-proteinuric rather than proteinuric renal diseases are the leading cause of end-stage kidney disease.

    PubMed

    Bolignano, Davide; Zoccali, Carmine

    2017-04-01

    Proteinuria is a distinguishing feature in primary and secondary forms of chronic glomerulonephritis, which contribute to no more than the 20% of the end-stage kidney disease (ESKD) population. The contribution of non-proteinuric nephropathies to the global ESKD burden is still poorly focused and scarce research efforts are dedicated to the elucidation of risk factors and mechanistic pathways triggering ESKD in these diseases. We abstracted information on proteinuria in the main renal diseases other than glomerulonephritides that may evolve into ESKD. In type 2 diabetes, non-proteinuric diabetic kidney disease (DKD) is more frequent than proteinuric DKD, and risk factors for non-proteinuric forms of DKD now receive increasing attention. Similarly, proteinuria is most often inconspicuous or absent in the most frequent cause of ESKD, i.e. hypertension-related chronic kidney disease (CKD), as well as in progressive cystic diseases like autosomal dominant polycystic kidney disease and in pyelonephritis/tubulo-interstitial diseases. Maintaining a high degree of attention in the care of CKD patients with proteinuria is fundamental to effectively retard progression toward kidney failure. However, substantial research efforts are still needed to develop treatment strategies that may help the vast majority of CKD patients who eventually develop ESKD via mechanistic pathways other than proteinuria. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  15. Plumb as a cause of kidney cancer (case study: Iran from 2008-2010).

    PubMed

    Mazdak, Hamid; Rashidi, Maasoumeh; Zohary, Moien

    2015-10-01

    The main threats to human health from heavy metals are associated with exposure to plumb (Pb), cadmium, mercury, and arsenic. Some hazards that threat human health are the results of environmental factors and the relevant pollutions. Some important categories of diseases including (cancers) have considerable differences in various places, as observed in their spatial prevalence and distribution maps. The present study sets out to investigate the correlation between kidney cancer and the concentration of Pb in Iran. In this study, the first challenge was to collect some relevant information. In this connection, the authors managed to gain access to data concerning kidney cancer in Iran. The data were collected by a health centre for the period of 2008-2010. Besides, a map of Pb distribution in soil, drawn by the Mineral Exploration Organization, and Plumb Concentration Information, collected by Agriculture Jihad Organization, were used. Using a geographic information system (GIS) software such as ArcGIS (USA), the researchers drew the map of the spatial distribution of kidney cancer in the Iran country. In the indirect methods, one measures vegetation stress caused by heavy metal soil contamination. In direct methods, target detection algorithms are used to detect a selected material on the basis of its unique spectral signature. In this research, we applied target detection algorithms on moderate resolution imaging spectroradiometer (MODIS) images to detect Pb. MODIS is a sensor placed on the Terra satellite that collects data in 35 spectral bands with 250-1,000 m special resolutions. The spatial distribution of kidney cancer in Iran country delineated above revealed a positive correlation between the amount of lead and the high frequency of kidney cancer. Regression analyses also confirmed this relationship (R (2) = 0.77 and R = 0.87). The findings of the current study underscore not only the importance of preventing exposure to Pb but also the importance of

  16. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia

    PubMed Central

    Landry, Nichole K.; El-Achkar, Tarek M.; Lieske, John C.

    2017-01-01

    Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin) gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys’ thick ascending limb (TAL) caused unfolded protein response in younger (1-month old) mice and apoptosis in older (12-month old) mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies. PMID:29145399

  17. Effects of chronic caloric restriction on kidney and heart redox status and antioxidant enzyme activities in Wistar rats

    PubMed Central

    Dutra, Márcio Ferreira; Bristot, Ivi Juliana; Batassini, Cristiane; Cunha, Núbia Broetto; Vizuete, Adriana Fernanda Kuckartz; de Souza, Daniela Fraga; Moreira, José Cláudio Fonseca; Gonçalves, Carlos-Alberto

    2012-01-01

    Caloric restriction (CR) has been associated with health benefits and these effects have been attributed, in part, to modulation of oxidative status by CR; however, data are still controversial. Here, we investigate the effects of seventeen weeks of chronic CR on parameters of oxidative damage/modification of proteins and on antioxidant enzyme activities in cardiac and kidney tissues. Our results demonstrate that CR induced an increase in protein carbonylation in the heart without changing the content of sulfhydryl groups or the activities of superoxide dismutase and catalase (CAT). Moreover, CR caused an increase in CAT activity in kidney, without changing other parameters. Protein carbonylation has been associated with oxidative damage and functional impairment; however, we cannot exclude the possibility that, under our conditions, this alteration indicates a different functional meaning in the heart tissue. In addition, we reinforce the idea that CR can increase CAT activity in the kidney. [BMB Reports 2012; 45(11): 671-676] PMID:23187008

  18. Uranium XAFS analysis of kidney from rats exposed to uranium

    PubMed Central

    Kitahara, Keisuke; Numako, Chiya; Terada, Yasuko; Nitta, Kiyohumi; Homma-Takeda, Shino

    2017-01-01

    The kidney is the critical target of uranium exposure because uranium accumulates in the proximal tubules and causes tubular damage, but the chemical nature of uranium in kidney, such as its chemical status in the toxic target site, is poorly understood. Micro-X-ray absorption fine-structure (µXAFS) analysis was used to examine renal thin sections of rats exposed to uranyl acetate. The U L III-edge X-ray absorption near-edge structure spectra of bulk renal specimens obtained at various toxicological phases were similar to that of uranyl acetate: their edge position did not shift compared with that of uranyl acetate (17.175 keV) although the peak widths for some kidney specimens were slightly narrowed. µXAFS measurements of spots of concentrated uranium in the micro-regions of the proximal tubules showed that the edge jump slightly shifted to lower energy. The results suggest that most uranium accumulated in kidney was uranium (VI) but a portion might have been biotransformed in rats exposed to uranyl acetate. PMID:28244440

  19. Uranium XAFS analysis of kidney from rats exposed to uranium.

    PubMed

    Kitahara, Keisuke; Numako, Chiya; Terada, Yasuko; Nitta, Kiyohumi; Shimada, Yoshiya; Homma-Takeda, Shino

    2017-03-01

    The kidney is the critical target of uranium exposure because uranium accumulates in the proximal tubules and causes tubular damage, but the chemical nature of uranium in kidney, such as its chemical status in the toxic target site, is poorly understood. Micro-X-ray absorption fine-structure (µXAFS) analysis was used to examine renal thin sections of rats exposed to uranyl acetate. The U L III -edge X-ray absorption near-edge structure spectra of bulk renal specimens obtained at various toxicological phases were similar to that of uranyl acetate: their edge position did not shift compared with that of uranyl acetate (17.175 keV) although the peak widths for some kidney specimens were slightly narrowed. µXAFS measurements of spots of concentrated uranium in the micro-regions of the proximal tubules showed that the edge jump slightly shifted to lower energy. The results suggest that most uranium accumulated in kidney was uranium (VI) but a portion might have been biotransformed in rats exposed to uranyl acetate.

  20. Crataegus songarica methanolic extract accelerates enzymatic status in kidney and heart tissue damage in albino rats and its in vitro cytotoxic activity.

    PubMed

    Ganie, Showkat Ahmad; Ali Dar, Tanveer; Zargar, Sabuhi; Bhat, Aashiq Hussain; Dar, Khalid Bashir; Masood, Akbar; Zargar, Mohammad Afzal

    2016-07-01

    Crataegus songarica K. Koch (Rosaceae) has been used in folk medicine to treat various diseases. This study evaluates the effect of C. songarica methanol extract on the kidney and heart tissue damage of albino rats, and to determine cytotoxic activity of various extracts of songarica on various human cancer cell lines. Rats were divided into six groups, Group I received water only; Group II received CCl4 (1 mL/kg b wt) intraperitoneal; C. songarica extract (at doses of 100, 200 and 300 mg/kg b wt) orally for 15 days. Cytotoxic activity was determined by SRB method using MCF-7, HeLa, HepG2, SF-295, SW480 and IMR-32 cell lines. Compared with CCl4 group, administration of C. songarica extract at the dose of 300 mg/kg b wt, significantly decreases serum creatinine (59.74%), urea (40.23%) and cholesterol (54 mg/dL), MDA (0.007 nmol/mg protein) in kidney and (0.025 nmol/mg protein) in heart tissue, along with evaluation of GSH (209.79 ± 54.6), GR (111.45 ± 2.84), GPx (94.01 ± 14.80), GST (201.71) in kidney tissue and GSH (51.47 ± 1.47), GR (45.42 ± 6.69), GPx (77.19 ± 10.94), GST (49.89) in heart tissue. In addition, methanol, ethanol and ethyl acetate extracts exhibited potent anticancer activity on six cancer cell lines with IC50 values ranging from 28.57 to 85.106 µg/mL. Crataegus songarica methanol extract has a potential antioxidant effect as it protects the kidney and heart tissue against CCl4-induced toxicity, prevents DNA damage and showed strong anticancer activity.

  1. Kidney function and plasma copeptin levels in healthy kidney donors and autosomal dominant polycystic kidney disease patients.

    PubMed

    Zittema, Debbie; van den Berg, Else; Meijer, Esther; Boertien, Wendy E; Muller Kobold, Anneke C; Franssen, Casper F M; de Jong, Paul E; Bakker, Stephan J L; Navis, Gerjan; Gansevoort, Ron T

    2014-09-05

    .001; β=-0.51, P<0.001, respectively). On the basis of the finding in donors that kidney clearance is not a main determinant of plasma copeptin levels, it was hypothesized that, in patients with autosomal dominant polycystic kidney disease, kidney damage and associated impaired urine concentration capacity determine copeptin levels. Copyright © 2014 by the American Society of Nephrology.

  2. Climatology of damage-causing hailstorms over Germany

    NASA Astrophysics Data System (ADS)

    Kunz, M.; Puskeiler, M.; Schmidberger, M.

    2012-04-01

    In several regions of Central Europe, such as southern Germany, Austria, Switzerland, and northern Italy, hailstorms often cause substantial damage to buildings, crops, or automobiles on the order of several million EUR. In the federal state of Baden-Württemberg, for example, most of the insured damage to buildings is caused by large hailstones. Due to both their local-scale extent and insufficient direct monitoring systems, hail swaths are not captured accurately and uniquely by a single observation system. Remote-sensing systems such as radars are able to detect convection signals in a basic way, but they lack the ability to discern a clear relation between measured intensity and hail on the ground. These shortcomings hamper statistical analysis on the hail probability and intensity. Hail modelling thus is a big challenge for the insurance industry. Within the project HARIS-CC (Hail Risk and Climate Change), different meteorological observations are combined (3D / 2D radar, lightning, satellite and radiosounding data) to obtain a comprehensive picture of the hail climatology over Germany. The various approaches were tested and calibrated with loss data from different insurance companies between 2005 and 2011. Best results are obtained by considering the vertical distance between the 0°C level of the atmosphere and the echo top height estimated from 3D reflectivity data from the radar network of German Weather Service (DWD). Additionally, frequency, intensity, width, and length of hail swaths are determined by applying a cell tracking algorithm to the 3D radar data (TRACE3D; Handwerker, 2002). The hailstorm tracks identified are merged with loss data using a geographical information system (GIS) to verify damage-causing hail on the ground. Evaluating the hailstorm climatology revealed that hail probability exhibits high spatial variability even over short distances. An important issue is the spatial pattern of hail occurrence that is considered to be due to

  3. Study of Histopathological and Molecular Changes of Rat Kidney under Simulated Weightlessness and Resistance Training Protective Effect

    PubMed Central

    Li, Zhili; Tian, Jijing; Abdelalim, Saed; Du, Fang; She, Ruiping; Wang, Desheng; Tan, Cheng; Wang, Huijuan; Chen, Wenjuan; Lv, Dongqiang; Chang, Lingling

    2011-01-01

    To explore the effects of long-term weightlessness on the renal tissue, we used the two months tail suspension model to simulate microgravity and investigated the simulated microgravity on the renal morphological damages and related molecular mechanisms. The microscopic examination of tissue structure and ultrastructure was carried out for histopathological changes of renal tissue morphology. The immunohistochemistry, real-time PCR and Western blot were performed to explore the molecular mechanisms associated the observations. Hematoxylin and eosin (HE) staining showed severe pathological kidney lesions including glomerular atrophy, degeneration and necrosis of renal tubular epithelial cells in two months tail-suspended rats. Ultrastructural studies of the renal tubular epithelial cells demonstrated that basal laminas of renal tubules were rough and incrassate with mitochondria swelling and vacuolation. Cell apoptosis in kidney monitored by the expression of Bax/Bcl-2 and caspase-3 accompanied these pathological damages caused by long-term microgravity. Analysis of the HSP70 protein expression illustrated that overexpression of HSP70 might play a crucial role in inducing those pathological damages. Glucose regulated protein 78 (GRP78), one of the endoplasmic reticulum (ER) chaperones, was up-regulated significantly in the kidney of tail suspension rat, which implied that ER-stress was associated with apoptosis. Furthermore, CHOP and caspase-12 pathways were activated in ER-stress induced apoptosis. Resistance training not only reduced kidney cell apoptosis and expression of HSP70 protein, it also can attenuate the kidney impairment imposed by weightlessness. The appropriate optimization might be needed for the long term application for space exploration. PMID:21625440

  4. Mineralocorticoid receptor activation causes cerebral vessel remodeling and exacerbates the damage caused by cerebral ischemia.

    PubMed

    Dorrance, Anne M; Rupp, Nikki C; Nogueira, Edson F

    2006-03-01

    Mineralocorticoid receptor antagonists protect against ischemic cerebrovascular disease; this appears to be caused by changes in cerebral vessel structure that would promote blood flow. Therefore, we hypothesized that mineralocorticoid receptor activation with deoxycorticosterone acetate would cause deleterious remodeling of the cerebral vasculature and exacerbate the damage caused by cerebral ischemia. Six-week-old male Wistar rats were treated with deoxycorticosterone acetate (200 mg/kg) for 6 weeks. At 12 weeks of age, the deoxycorticosterone acetate-treated rats had elevated systolic blood pressure compared with age-matched controls (157+/-5.9 versus 124+/-3.1 mm Hg deoxycorticosterone acetate versus control; P<0.05). The area of ischemic damage resulting from middle cerebral artery occlusion was greater in the deoxycorticosterone acetate-treated rats than control (63.5+/-3.72 versus 46.6+/-5.52% of the hemisphere infarcted, deoxycorticosterone acetate versus control; P<0.05). Middle cerebral artery structure was assessed using a pressurized arteriograph under calcium-free conditions. Over a range of intralumenal pressures, the lumen and ODs of the middle cerebral arteries were smaller in the deoxycorticosterone acetate-treated rats than the control rats (P<0.05). There was also an increase in the wall thickness and wall:lumen ratio in the vessels from deoxycorticosterone acetate-treated rats (P<0.05). The vessels from the deoxycorticosterone acetate-treated rats were stiffer than those from control rats as evidenced by a leftward shift in the stress/strain curve. These novel data suggest that mineralocorticoid receptor activation without salt loading and nephrectomy is sufficient to elicit deleterious effects on the cerebral vasculature that lead to inward hypertrophic remodeling and an increase in the ischemic damage in the event of a stroke.

  5. Experimental model for acute kidney injury caused by uropathogenic Escherichia coli.

    PubMed

    Skowron, Beata; Baranowska, Agnieszka; Kaszuba-Zwoińska, Jolanta; Więcek, Grażyna; Malska-Woźniak, Anna; Heczko, Piotr; Strus, Magdalena

    2017-06-19

    Acute kidney injury (AKI) is the rapid deterioration of renal function, diagnosed on the basis of an increase in serum creatinine and abnormal urinary parameters. AKI is associated with increased risk of mortality or chronic kidney disease (CKD). The aim of the study was to develop an experimental model for AKI resulting from Escherichia coli-induced pyelonephritis. E. coli was isolated from a patient with clinical symptoms of urinary tract infection (UTI). The study included three groups of female Wistar rats (groups 1, 2 and 3), in which pyelonephritis was induced by transurethral inoculation with highly virulent E. coli (105, 107 and 109 cfu/ml, respectively). Urine and blood samples for analysis were obtained prior to the inoculation (day 0), as well as 7, 14 and 21 days thereafter. Aside from a microbiological examination of urine samples, daily urine output, serum creatinine (CreaS), creatinine clearance (CrCl), interleukin 6 (IL-6), fractional excretion of sodium (FENa) and fractional excretion of urea (FEUrea) were determined. A histopathological examination of kidney and urinary bladder specimens was conducted as well. While UTI-related pyelonephritis developed irrespective of E. coli inoculum size, AKI was observed only following transurethral administration of E. coli at the intermediate and high dose, i.e. 107 and 109 cfu/ml, respectively (group 2 and 3). An increase in CreaS and abnormal diuresis were accompanied by changes in parameters specific for various forms of AKI, i.e. FENa and FEUrea. Based on these changes, administration of E. coli at 107 cfu/ml was demonstrated to induce renal AKI, whereas inoculation with 109 cfu/ml seemed to cause not only ascending pyelonephritis, but perhaps also bacteremia and urosepsis (prerenal component of AKI).

  6. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

    PubMed

    Woodman, Andrew G; Mah, Richard; Keddie, Danae; Noble, Ronan M N; Panahi, Sareh; Gragasin, Ferrante S; Lemieux, Hélène; Bourque, Stephane L

    2018-06-01

    Prenatal iron deficiency alters fetal developmental trajectories, which results in persistent changes in organ function. Here, we studied the effects of prenatal iron deficiency on fetal kidney and liver mitochondrial function. Pregnant Sprague-Dawley rats were fed partially or fully iron-restricted diets to induce a state of moderate or severe iron deficiency alongside iron-replete control rats. We assessed mitochondrial function via high-resolution respirometry and reactive oxygen species generation via fluorescence microscopy on gestational d 21. Hemoglobin levels were reduced in dams in the moderate (-31%) and severe groups (-54%) compared with controls, which was accompanied by 55% reductions in fetal hemoglobin levels in both moderate and severe groups versus controls. Male iron-deficient kidneys exhibited globally reduced mitochondrial content and respiration, as well as increased cytosolic superoxide and decreased NO. Female iron-deficient kidneys exhibited complex II down-regulation and increased mitochondrial oxidative stress. Male iron-deficient livers exhibited reduced complex IV respiration and increased cytosolic superoxide, whereas female liver tissues exhibited no alteration in oxidant levels or mitochondrial function. These findings indicate that prenatal iron deficiency causes changes in mitochondrial content and function as well as oxidant status in a sex- and organ-dependent manner, which may be an important mechanism that underlies the programming of cardiovascular disease.-Woodman, A. G., Mah, R., Keddie, D., Noble, R. M. N., Panahi, S., Gragasin, F. S., Lemieux, H., Bourque, S. L. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

  7. Chronic Kidney Disease in Kidney Stone Formers

    PubMed Central

    Krambeck, Amy E.; Lieske, John C.

    2011-01-01

    Summary Recent population studies have found symptomatic kidney stone formers to be at increased risk for chronic kidney disease (CKD). Although kidney stones are not commonly identified as the primary cause of ESRD, they still may be important contributing factors. Paradoxically, CKD can be protective against forming kidney stones because of the substantial reduction in urine calcium excretion. Among stone formers, those with rare hereditary diseases (cystinuria, primary hyperoxaluria, Dent disease, and 2,8 dihydroxyadenine stones), recurrent urinary tract infections, struvite stones, hypertension, and diabetes seem to be at highest risk for CKD. The primary mechanism for CKD from kidney stones is usually attributed to an obstructive uropathy or pyelonephritis, but crystal plugs at the ducts of Bellini and parenchymal injury from shockwave lithotripsy may also contribute. The historical shift to less invasive surgical management of kidney stones has likely had a beneficial impact on the risk for CKD. Among potential kidney donors, past symptomatic kidney stones but not radiographic stones found on computed tomography scans were associated with albuminuria. Kidney stones detected by ultrasound screening have also been associated with CKD in the general population. Further studies that better classify CKD, better characterize stone formers, more thoroughly address potential confounding by comorbidities, and have active instead of passive follow-up to avoid detection bias are needed. PMID:21784825

  8. Combusted but not smokeless tobacco products cause DNA damage in oral cavity cells.

    PubMed

    Gao, Hong; Prasad, G L; Zacharias, Wolfgang

    2014-05-01

    The aim of this work was to investigate genomic DNA damage in human oral cavity cells after exposure to different tobacco product preparations (TPPs). The oral carcinoma cell line 101A, gingival epithelial cells HGEC, and gingival fibroblasts HGF were exposed to TPM (total particulate matter from 3R4F cigarettes), ST/CAS (2S3 smokeless tobacco extract in complete artificial saliva), and NIC (nicotine). Treatments were for 24 h using TPM at its EC-50 doses, ST/CAS and NIC at doses with equi-nicotine units, and high doses for ST/CAS and NIC. Comet assays showed that TPM, but not ST/CAS or NIC, caused substantial DNA breaks in cells; only the high ST/CAS dose caused weak DNA damage. These results were confirmed by immunofluorescence for γ-H2AX protein. These data revealed that the combusted TPP caused substantial DNA damage in all cell types, whereas the two non-combusted TPPs exerted no or only minimal DNA damage. They support epidemiologic evidence on the relative risk associated with consumption of non-combusted versus combusted tobacco products, and help to understand potential genotoxic effects of such products on oral cavity cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Oxidative stress, inflammation, and DNA damage in multiple organs of mice acutely exposed to amorphous silica nanoparticles.

    PubMed

    Nemmar, Abderrahim; Yuvaraju, Priya; Beegam, Sumaya; Yasin, Javed; Kazzam, Elsadig E; Ali, Badreldin H

    2016-01-01

    The use of amorphous silica (SiO2) in biopharmaceutical and industrial fields can lead to human exposure by injection, skin penetration, ingestion, or inhalation. However, the in vivo acute toxicity of amorphous SiO2 nanoparticles (SiNPs) on multiple organs and the mechanisms underlying these effects are not well understood. Presently, we investigated the acute (24 hours) effects of intraperitoneally administered 50 nm SiNPs (0.25 mg/kg) on systemic toxicity, oxidative stress, inflammation, and DNA damage in the lung, heart, liver, kidney, and brain of mice. Lipid peroxidation was significantly increased by SiNPs in the lung, liver, kidney, and brain, but was not changed in the heart. Similarly, superoxide dismutase and catalase activities were significantly affected by SiNPs in all organs studied. While the concentration of tumor necrosis factor α was insignificantly increased in the liver and brain, its increase was statistically significant in the lung, heart, and kidney. SiNPs induced a significant elevation in pulmonary and renal interleukin 6 and interleukin-1 beta in the lung, liver, and brain. Moreover, SiNPs caused a significant increase in DNA damage, assessed by comet assay, in all the organs studied. SiNPs caused leukocytosis and increased the plasma activities of lactate dehydrogenase, creatine kinase, alanine aminotranferase, and aspartate aminotransferase. These results indicate that acute systemic exposure to SiNPs causes oxidative stress, inflammation, and DNA damage in several major organs, and highlight the need for thorough evaluation of SiNPs before they can be safely used in human beings.

  10. Protective effect of propolis on methotrexate-induced kidney injury in the rat.

    PubMed

    Ulusoy, Hasan Basri; Öztürk, İsmet; Sönmez, Mehmet Fatih

    2016-06-01

    Objectives Propolis is a potent antioxidant and a free radical scavenger. Pharmacological induction of heat shock proteins (HSPs) has been investigated for restoring normal cellular function following an injury. In this study, effect of propolis on HSP-70 expression in methotrexate-induced nephrotoxicity and direct preventive effect of propolis in this toxicity were investigated. Material and methods A total of 40 male Wistar albino rats were divided into four groups: Group 1 was the untreated control. On the eighth day of the experiment, groups 2 and 3 received single intraperitoneal injections of methotrexate (MTX) at 20 mg/kg. Groups 3 and 4 received 100 mg/kg/day propolis (by oral gavage) for 15 d by the first day of the experimental protocol. Then the rats were decapitated under ketamine esthesia and their kidney tissues were removed. HSP-70 expression, apoptosis, and histopathological damage scores were then compared. Results MTX caused epithelial desquamation into the lumen of the tubules, dilatation, and congestion of the peritubular vessels and renal corpuscles with obscure Bowman's space. The number of apoptotic cells (p = 0.000) and HSP-70 (p = 0.002) expression were increased in group 2. Propolis prevented the rise in number of apoptotic cells (p = 0.017), HSP-70 (p = 0.000) expression, and improved kidney morphology. Conclusions It was found that methotrexate gives rise to serious damage in the kidney and propolis is a potent antioxidant agent in preventing kidney injury.

  11. Vitamin E protects against the mitochondrial damage caused by cyclosporin A in LLC-PK1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arriba, G. de; Seccion de Nefrologia del Hospital Universitario de Guadalajara; Departamento de Medicina de la Universidad de Alcala de Henares

    Cyclosporin A (CsA) has nephrotoxic effects known to involve reactive oxygen species (ROS), since antioxidants prevent the kidney damage induced by this drug. Given that mitochondria are among the main sources of intracellular ROS, the aims of our study were to examine the mitochondrial effects of CsA in the porcine renal endothelial cell line LLC-PK1 and the influence of the antioxidant Vitamin E (Vit E). Following the treatment of LLC-PK1 cells with CsA, we assessed the mitochondrial synthesis of superoxide anion, permeability transition pore opening, mitochondrial membrane potential, cardiolipin peroxidation, cytochrome c release and cellular apoptosis, using flow cytometry andmore » confocal microscopy procedures. Similar experiments were done after Vit E preincubation of cells. CsA treatment increased superoxide anion in a dose-dependent way. CsA opened the permeability transition pores, caused Bax migration to mitochondria, and decreased mitochondrial membrane potential and cardiolipin content. Also CsA released cytochrome c into cytosol and provoked cellular apoptosis. Vit E pretreatment inhibited the effects that CsA induced on mitochondrial structure and function in LLC-PK1 cells and avoided apoptosis. CsA modifies mitochondrial LLC-PK1 cell physiology with loss of negative electrochemical gradient across the inner mitochondrial membrane and increased lipid peroxidation. These features are related to apoptosis and can explain the cellular damage that CsA induces. As Vit E inhibited these effects, our results suggest that they were mediated by an increase in ROS production by mitochondria.« less

  12. Is eye damage caused by stereoscopic displays?

    NASA Astrophysics Data System (ADS)

    Mayer, Udo; Neumann, Markus D.; Kubbat, Wolfgang; Landau, Kurt

    2000-05-01

    A normal developing child will achieve emmetropia in youth and maintain it. Thereby cornea, lens and axial length of the eye grow astonishingly coordinated. In the last years research has evidenced that this coordinated growing process is a visually controlled closed loop. The mechanism has been studied particularly in animals. It was found that the growth of the axial length of the eyeball is controlled by image focus information from the retina. It was shown that maladjustment can occur by this visually-guided growth control mechanism that result in ametropia. Thereby it has been proven that e.g. short-sightedness is not only caused by heredity, but is acquired under certain visual conditions. It is shown that these conditions are similar to the conditions of viewing stereoscopic displays where the normal accommodation convergence coupling is disjoint. An evaluation is given of the potential of damaging the eyes by viewing stereoscopic displays. Concerning this, different viewing methods for stereoscopic displays are evaluated. Moreover, clues are given how the environment and display conditions shall be set and what users shall be chosen to minimize the risk of eye damages.

  13. Coccidian Infection Causes Oxidative Damage in Greenfinches

    PubMed Central

    Sepp, Tuul; Karu, Ulvi; Blount, Jonathan D.; Sild, Elin; Männiste, Marju; Hõrak, Peeter

    2012-01-01

    The main tenet of immunoecology is that individual variation in immune responsiveness is caused by the costs of immune responses to the hosts. Oxidative damage resulting from the excessive production of reactive oxygen species during immune response is hypothesized to form one of such costs. We tested this hypothesis in experimental coccidian infection model in greenfinches Carduelis chloris. Administration of isosporan coccidians to experimental birds did not affect indices of antioxidant protection (TAC and OXY), plasma triglyceride and carotenoid levels or body mass, indicating that pathological consequences of infection were generally mild. Infected birds had on average 8% higher levels of plasma malondialdehyde (MDA, a toxic end-product of lipid peroxidation) than un-infected birds. The birds that had highest MDA levels subsequent to experimental infection experienced the highest decrease in infection intensity. This observation is consistent with the idea that oxidative stress is a causative agent in the control of coccidiosis and supports the concept of oxidative costs of immune responses and parasite resistance. The finding that oxidative damage accompanies even the mild infection with a common parasite highlights the relevance of oxidative stress biology for the immunoecological research. PMID:22615772

  14. Aldosterone Activates Transcription Factor Nrf2 in Kidney Cells Both In Vitro and In Vivo

    PubMed Central

    Oteiza, Patricia I.; Link, Samuel; Hey, Valentin; Stopper, Helga; Schupp, Nicole

    2014-01-01

    Abstract Aims: An increased kidney cancer risk was found in hypertensive patients, who frequently exhibit hyperaldosteronism, known to contribute to kidney injury, with oxidative stress playing an important role. The capacity of kidney cells to up-regulate transcription factor nuclear factor-erythroid-2-related factor 2 (Nrf2), a key regulator of the cellular antioxidative defense, as a prevention of aldosterone-induced oxidative damage was investigated both in vitro and in vivo. Results: Aldosterone activated Nrf2 and increased the expression of enzymes involved in glutathione (GSH) synthesis and detoxification. This activation depended on the mineralocorticoid receptor (MR) and oxidative stress. In vitro, Nrf2 activation, GSH amounts, and target gene levels decreased after 24 h, while oxidant levels remained high. Nrf2 activation could not protect cells against oxidative DNA damage, as aldosterone-induced double-strand breaks and 7,8-dihydro-8-oxo-guanine (8-oxodG) lesions steadily rose. The Nrf2 activator sulforaphane enhanced the Nrf2 response both in vitro and in vivo, thereby preventing aldosterone-induced DNA damage. In vivo, Nrf2 activation further had beneficial effects on the aldosterone-caused blood pressure increase and loss of kidney function. Innovation: This is the first study showing the activation of Nrf2 by aldosterone. Moreover, the results identify sulforaphane as a substance that is capable of preventing aldosterone-induced damage both in vivo and in vitro. Conclusion: Aldosterone-induced Nrf2 adaptive response cannot neutralize oxidative actions of chronically increased aldosterone, which, therefore could be causally involved in the increased cancer incidence of hypertensive individuals. Enhancing the cellular antioxidative defense with sulforaphane might exhibit beneficial effects. Antioxid. Redox Signal. 21, 2126–2142. PMID:24512358

  15. Influence of polychemotherapy on the morphology of metastases and kidney of resistant RLS-bearing mice.

    PubMed

    Zonov, E V; Voronina, E I; Zenkova, M A; Ageeva, T A; Ryabchikova, E I

    2013-03-01

    Polychemotherapy (PCT), widely used for the antitumor treatment has a pronounced toxic effect on the organism, and its cytostatic effect sometimes is canceled by multidrug resistance of a neoplasia. Comprehension of the nature and development of pathological changes caused by the PCT during the treatment of cancer is very important to improve the efficiency of the therapy and to clarify the mechanisms of tumor-host interactions. This study was aimed to examine PCT impact on kidney cells and tissues in mice with transplanted resistant lymphosacroma (RLS) and to analyze morphology of metastases of the tumor in kidney during PCT. Male mice CBA/LacSto (55 animals) were intramuscularly implanted in the right hind paw by 105 cells/ml of tumor RLS (a diffuse large B-cell lymphosarcoma) with multi-drug resistance (MDR) phenotype. Mice received combination of cyclophosphamide (50 mg/kg), oncovin (0.1 mg/kg), hydroxydaunorubicin (4 mg/kg), and prednisone (5 mg/kg) accordingly to CHOP scheme each 7 days after inoculation of the tumor. The kidneys were sampled on days 1, 3 and 7 after each series of injection of PCT preparations and processed for light and electron microscopy, immunohistochemical analysis of Ki-67 and Apaf-1 proteins also was performed. Tumor RLS produced metastases comprised of small cells in the kidneys of mice after 8 days post inoculation. Application of PCT resulted in destruction of small-cell metastases and development of many large-cell metastases in kidney. Application of PCT induced the development of prominent damage of nephron cells, primarily in S3 segments of proximal tubules. Even one series of PCT caused reduction of basal plasma folds in these cells and alteration of mitochondria. Damage of proximal tubules and involvement of distal tubules, renal bodies and interstitial tissue in the pathologic process, increased during the experiment. This work presents the description of morphological changes in kidney as well as of the tumor metastases

  16. Infectious complications as the leading cause of death after kidney transplantation: analysis of more than 10,000 transplants from a single center.

    PubMed

    de Castro Rodrigues Ferreira, Flávio; Cristelli, Marina Pontello; Paula, Mayara Ivani; Proença, Henrique; Felipe, Claudia Rosso; Tedesco-Silva, Helio; Medina-Pestana, José Osmar

    2017-08-01

    To identify specific causes of graft failure in a large sample of kidney transplant patients from a middle-income, developing country. Retrospective cohort study analyzing all consecutive single kidney transplants (KTs) performed at a single center in Brazil between January 1st 1998 and December 31st 2013. The database closing date was December 31st 2014. Out of 10,400 KTs, there were 1191 (11.45%) deaths with a functioning graft, 40 cases (0.38%) of primary non-function (PNF) and 1417 cases (13.62%) of graft loss excluding death and PNF as the cause. Infectious complications (404 cases, 34% of all deaths) were the major cause of death. Most deaths due to infection occurred within the first year after transplantation (157 deaths, 38.86%). Immunologic mechanisms, comprising acute rejection and immune-mediated interstitial fibrosis/tubular atrophy (IF/TA), were responsible for 52% of all cases of graft failure not involving recipient death. Half of the losses by acute rejection occurred late after transplantation. Contrary to what is observed in developed countries, infectious complications are the main challenge with kidney transplantation in Brazil. Non-adherence to treatment also appears to contribute significantly to long-term kidney graft loss. Strategies for improvement should focus on better compliance and a greater safety profile of immunosuppressive treatment.

  17. Protective properties of sesamin against fluoride-induced oxidative stress and apoptosis in kidney of carp (Cyprinus carpio) via JNK signaling pathway.

    PubMed

    Cao, Jinling; Chen, Jianjie; Xie, Lingtian; Wang, Jundong; Feng, Cuiping; Song, Jing

    2015-10-01

    Sesamin, a major lignan derived from sesame seeds, has been reported to have many benefits and medicinal properties. However, its protective effects against fluoride-induced injury in kidney of fish have not been clarified. Previously we found that fluoride exposure caused damage and apoptosis in the kidneys of the common carp, Cyprinus carpio. In this study, the effects of sesamin on renal oxidative stress and apoptosis in fluoride-exposed fish were determined. The results showed that sesamin alleviated significantly fluoride-induced renal damage and apoptosis of carp in a dose-dependent manner, indicated by the histopathological examination and ultrastructural observation. Moreover, treatment with sesamin also inhibited significantly fluoride-induced remarkable enhancement of reactive oxygen species (ROS) production and oxidative stress, such as the increase of lipid peroxidation level and the depletion of intracellular reduced glutathione (GSH) level in kidney. To explore the underlying mechanisms of sesamin action, we found that activities of caspase-3 were notably inhibited by treatment with sesamin in the kidney of fluoride-exposed fish. Sesamin decreased the levels of p-JNK protein in kidney, which in turn inactivated pro-apoptotic signaling events by restoring the balance between mitochondrial pro- and anti-apoptotic Bcl-2 and Bax proteins and by decreasing the release of mitochondrial cytochrome c in kidney of fluoride-exposed fish. JNK was also involved in the mitochondrial extrinsic apoptotic pathways of sesamin effects against fluoride-induced renal injury by regulating the levels of p-c-Jun, necrosis factor-alpha (TNF-α) and Bak proteins. These findings indicated that sesamin could protect kidney against fluoride-induced apoptosis by the oxidative stress downstream-mediated change in the inactivation of JNK signaling pathway. Taken together, sesamin plays an important role in maintaining renal health and preventing kidney from toxic damage induced by

  18. Chronic Broca's Aphasia Is Caused by Damage to Broca's and Wernicke's Areas

    PubMed Central

    Fridriksson, Julius; Fillmore, Paul; Guo, Dazhou; Rorden, Chris

    2015-01-01

    Despite being perhaps the most studied form of aphasia, the critical lesion location for Broca's aphasia has long been debated, and in chronic patients, cortical damage often extends far beyond Broca's area. In a group of 70 patients, we examined brain damage associated with Broca's aphasia using voxel-wise lesion-symptom mapping (VLSM). We found that damage to the posterior portion of Broca's area, the pars opercularis, is associated with Broca's aphasia. However, several individuals with other aphasic patterns had considerable damage to pars opercularis, suggesting that involvement of this region is not sufficient to cause Broca's aphasia. When examining only individuals with pars opercularis damage, we found that patients with Broca's aphasia had greater damage in the left superior temporal gyrus (STG; roughly Wernicke's area) than those with other aphasia types. Using discriminant function analysis and logistic regression, based on proportional damage to the pars opercularis and Wernicke's area, to predict whether individuals had Broca's or another types of aphasia, over 95% were classified correctly. Our findings suggest that persons with Broca's aphasia have damage to both Broca's and Wernicke's areas, a conclusion that is incongruent with classical neuropsychology, which has rarely considered the effects of damage to both areas. PMID:25016386

  19. A novel mutation causing nephronophthisis in the Lewis polycystic kidney rat localises to a conserved RCC1 domain in Nek8

    PubMed Central

    2012-01-01

    Background Nephronophthisis (NPHP) as a cause of cystic kidney disease is the most common genetic cause of progressive renal failure in children and young adults. NPHP is characterized by abnormal and/or loss of function of proteins associated with primary cilia. Previously, we characterized an autosomal recessive phenotype of cystic kidney disease in the Lewis Polycystic Kidney (LPK) rat. Results In this study, quantitative trait locus analysis was used to define a ~1.6Mbp region on rat chromosome 10q25 harbouring the lpk mutation. Targeted genome capture and next-generation sequencing of this region identified a non-synonymous mutation R650C in the NIMA (never in mitosis gene a)- related kinase 8 ( Nek8) gene. This is a novel Nek8 mutation that occurs within the regulator of chromosome condensation 1 (RCC1)-like region of the protein. Specifically, the R650C substitution is located within a G[QRC]LG repeat motif of the predicted seven bladed beta-propeller structure of the RCC1 domain. The rat Nek8 gene is located in a region syntenic to portions of human chromosome 17 and mouse 11. Scanning electron microscopy confirmed abnormally long cilia on LPK kidney epithelial cells, and fluorescence immunohistochemistry for Nek8 protein revealed altered cilia localisation. Conclusions When assessed relative to other Nek8 NPHP mutations, our results indicate the whole propeller structure of the RCC1 domain is important, as the different mutations cause comparable phenotypes. This study establishes the LPK rat as a novel model system for NPHP and further consolidates the link between cystic kidney disease and cilia proteins. PMID:22899815

  20. Prevalence of chronic kidney disease among patients undergoing transradial percutaneous coronary interventions.

    PubMed

    Hossain, Mohammad A; Quinlan, Amy; Heck-Kanellidis, Jennifer; Calderon, Dawn; Patel, Tejas; Gandhi, Bhavika; Patel, Shrinil; Hetavi, Mahida; Costanzo, Eric J; Cosentino, James; Patel, Chirag; Dewan, Asa; Kuo, Yen-Hong; Salman, Loay; Vachharajani, Tushar J

    2018-07-01

    While transradial approach to conduct percutaneous coronary interventions offers multiple advantages, the procedure can cause radial artery damage and occlusion. Because radial artery is the preferred site for the creation of an arteriovenous fistula to provide dialysis, patients with chronic kidney disease are particularly dependent on radial artery for their long-term survival. In this retrospective study, we investigated the prevalence of chronic kidney disease in patients undergoing coronary interventions via radial artery. Stage of chronic kidney disease was based on estimated glomerular filtration rate and National Kidney Foundation - Kidney Disease Outcomes Quality Initiative guidelines. A total of 497 patients undergoing transradial percutaneous coronary interventions were included. Over 70.4% (350/497) of the patients had chronic kidney disease. Stage II chronic kidney disease was observed in 243 (69%) patients (estimated glomerular filtration rate = 76.0 ± 8.4 mL/min). Stage III was observed in 93 (27%) patients (estimated glomerular filtration rate = 49 ± 7.5 mL/min). Stage IV chronic kidney disease was observed in 5 (1%) patients (estimated glomerular filtration rate = 25.6 ± 4.3 mL/min) and Stage V chronic kidney disease was observed in 9 (3%) patients (estimated glomerular filtration rate = 9.3 ± 3.5 mL/min). Overall, 107 of 350 patients (30%) had advanced chronic kidney disease, that is, stage III-V chronic kidney disease. Importantly, 14 of the 107 (13%) patients had either stage IV or V chronic kidney disease. This study finds that nearly one-third of the patients undergoing transradial percutaneous coronary interventions have advanced chronic kidney disease. Because many of these patients may require dialysis, the use of radial artery to conduct percutaneous coronary interventions must be carefully considered in chronic kidney disease population.

  1. [Kidney involvement in rheumatoid arthritis].

    PubMed

    Icardi, A; Araghi, P; Ciabattoni, M; Romano, U; Lazzarini, P; Bianchi, G

    2003-01-01

    Rheumatoid Arthritis (RA) is a widespread disease and its renal involvement, relatively common, is clinically significant because worsens course and mortality of the primary disease. There is still no agreement on the prevalence of renal disorders in RA: data analysis originates from different sources, as death certificates, autopsies, clinical and laboratory findings and kidney biopsies, each with its limitations. Histoimmunological studies on bioptical specimens of patients with RA and kidney damage, led to clarify prevalent pathologies. In order of frequency: glomerulonephritis and amyloidosis (60-65% and 20-30% respectively), followed by acute or chronic interstitial nephritis. Kidney injury during RA includes secondary renal amyloidosis, nephrotoxic effects of antirheumatic drugs and nephropathies as extra-articular manifestations (rheumatoid nephropathy). Amyloidosis affects survival, increases morbidity and is the main cause of end stage renal disease in patients with RA and nephropathy. Strong association between RA activity and amyloidosis needs the use of immunosuppressive and combined therapies, to prevent this complication and reduce risk of dialysis. Long-lasting and combined RA pharmacotherapy involves various renal side effects. In this review we describe NSAIDs and DMARDs (Disease-Modifying Antirheumatic Drugs) nephrotoxicity, particularly by gold compounds, D-penicillamine, cyclosporine A and methotrexate. Rare cases of IgA glomerulonephritis during immunomodulating therapy with leflunomide and TNF blocking receptor (etanercept) are reported; real clinical significance of this drug-related nephropathy will be established by development of RA treatment. In RA nephropathies, mesangial glomerulonephritis is the most frequent histological lesion (35-60 % out of biopsies from patients with urinary abnormalities and/or kidney impairment), followed by minimal change glomerulopathy (3-14%) and p-ANCA positive necrotizing crescentic glomerulonephritis.

  2. Marine Food Protection in Testicular Damages Caused by Diabetes Mellitus.

    PubMed

    Caiaffo, Vitor; Ribeiro de Oliveira, Belisa Duarte; de Sa, Fabricio Bezerra; Neto, Joaqvim Evencio; da Silva Junior, Voldemiro Amaro

    2017-01-01

    Diabetes Mellitus (DM) is a chronic hyperglycemic condition with major health concern on a global scale. DM is a heterogeneous metabolic disorder stemming from defective insulin secretion and/or resistance to action of insulin. Diabetes is recognized cause of male sexual dysfunction and affects reproductive function in humans and animal models, including the endocrine control of spermatogenesis, erectile dysfunction and ejaculation disorder. Testicular disorder is characteristically marked by reductions of testicle weight, sperm count and motility, as well as changes in the morphology of the seminiferous epithelium. Altered testosterone level is another characteristic of diabetic animals. Studies have demonstrated that DM increases apoptosis in germ cells and lead to the interruption of spermatogenesis, mainly by exerting an influence on Bcl-2 protein and cysteinedependent aspartate-directed proteases. DM also increases oxidative stress in testicular cells and excessive production of radical oxygen species has been demonstrated. Several strategies can be used as means of prevention and/or treatment for diverse types of damage to testicles by DM such as regular physical exercise, stress reduction and food intake of substances with antioxidant potential. A hypoglycemic and antioxidant potential diet, in particular, the seafood, can be a valuable instrument of guard against damage caused by DM, both the systemic level as testicular level. The objective of this review is to summarize evidences that study the antioxidant, anti-inflammatory and anti-apoptosis role of seafood in testicles morphology damages induced by diabetes mellitus. The seafood plays an antioxidant, anti-inflammatory and anti-apoptosis role in testicles morphology damages induced by diabetes mellitus. This relation seems to be associated with Omega-3 and carotenoids (astaxanthin) levels. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Biolasol: novel perfusion and preservation solution for kidneys.

    PubMed

    Cierpka, L; Ryszka, F; Dolińska, B; Smorąg, Z; Słomski, R; Wiaderkiewicz, R; Caban, A; Budziński, G; Oczkowicz, G; Wieczorek, J

    2014-10-01

    Biolasol solution (Pharmaceutical Research and Production Plant "Biochefa," Sosnowiec, Poland) is a novel extracellular perfusion and ex vivo hypothermic kidney preservation solution. It ensures maintenance of homeostasis, reduces tissue edema, has low viscosity, and allows the graft to preserve structural and functional integrity. It minimizes ischemia-reperfusion damage. Perfundates from control and transplanted kidneys flushed with Biolasol or ViaSpan solutions (Arkas, Warszawa, Poland) were analyzed. Parameters of serum and urine collected from 12 pigs after auto-transplantation were also analyzed. Renal medulla was investigated for structural alterations by analyzing hematoxylin and eosin-stained slides. The mean survival time of pigs after the auto-transplantation procedure was the measure for the novel Biolasol solution effectiveness. We observed a statistically significant decrease in marker enzyme levels alanine transaminase, aspartate transaminase, lactic dehydrogenase, and ions (Na and K) in pigs with grafts flushed with Biolasol. Histopathologic examination revealed that the renal cortex structure was not damaged after the use of Biolasol solution. Biolasol solution protects kidneys against ischemia damage and does not differ significantly from the "golden standard" ViaSpan solution.

  4. Histopathological assessment of cadmium effect on testicles and kidney of Oreochromis niloticus in different salinity

    NASA Astrophysics Data System (ADS)

    Hayati, Alfiah; Pratiwi, Hanna; Khoiriyah, Inayatul; Winarni, Dwi; Sugiharto

    2017-06-01

    This study was aimed to determine the effect of cadmium on testicles and kidney structure of Oreochromis niloticus in different salinity. Twenty-seven Oreochromis niloticus at age of 5±0.5 months with average size 11±1 cm and average weight 250±50 g were used and divided into nine treatment groups with variations in salinity (0, 5 and 10 ‰) and cadmium levels (0, 2.5, and 5 ppm). After two weeks of treatment periods, testicles and kidney was collected and then processed into histological slide. Result showed that cadmium and salinity variations caused change in diameter of seminiferous tubules in the testicles. Kidney structure also showing various damage such as necrosis and inflammation from groups treated with various concentration of salinity and cadmium. Smallest diameter of seminiferous tubules of the testicles and the highest percentage necrosis and inflammation of kidney was found from salinity:cadmium = 0‰ : 5 ppm treatment.

  5. Application of spectroscopic techniques for the analysis of kidney stones: a pilot study

    NASA Astrophysics Data System (ADS)

    Shameem, K. M., Muhammed; Chawla, Arun; Bankapur, Aseefhali; Unnikrishnan, V. K.; Santhosh, C.

    2016-03-01

    Identification and characterization of kidney stone remains one of the important analytical tasks in the medical field. Kidney stone is a common health complication throughout the world, which may cause severe pain, obstruction and infection of urinary tract, and can lead to complete renal damage. It commonly occurs in both sexes regardless of age. Kidney stones have different composition, although each stones have a major single characteristic component. A complete understanding of a sample properties and their function can only be feasible by utilizing elemental and molecular information simultaneously. Two laser based analytical techniques; Laser Induced Breakdown spectroscopy (LIBS) and Raman spectroscopy have been used to study different types of kidney stones from different patients. LIBS and Raman spectroscopy are highly complementary spectroscopic techniques, which provide elemental and molecular information of a sample. Q-switched Nd:YAG laser at 355 nm laser having energy 17mJ per pulse at 10 Hz repetition rate was used for getting LIBS spectra. Raman measurements were carried out using a home assembled micro-Raman spectrometer. Using the recorded Raman spectra of kidney stones, we were able to differentiate different kinds of kidney stones. LIBS spectra of the same stones are showing the evidence of C, Ca, H, and O and also suggest the presence of certain pigments.

  6. Muc1 is protective during kidney ischemia-reperfusion injury

    PubMed Central

    Pastor-Soler, Núria M.; Sutton, Timothy A.; Mang, Henry E.; Kinlough, Carol L.; Gendler, Sandra J.; Madsen, Cathy S.; Bastacky, Sheldon I.; Ho, Jacqueline; Al-bataineh, Mohammad M.; Hallows, Kenneth R.; Singh, Sucha; Monga, Satdarshan P.; Kobayashi, Hanako; Haase, Volker H.

    2015-01-01

    Ischemia-reperfusion injury (IRI) due to hypotension is a common cause of human acute kidney injury (AKI). Hypoxia-inducible transcription factors (HIFs) orchestrate a protective response in renal endothelial and epithelial cells in AKI models. As human mucin 1 (MUC1) is induced by hypoxia and enhances HIF-1 activity in cultured epithelial cells, we asked whether mouse mucin 1 (Muc1) regulates HIF-1 activity in kidney tissue during IRI. Whereas Muc1 was localized on the apical surface of the thick ascending limb, distal convoluted tubule, and collecting duct in the kidneys of sham-treated mice, Muc1 appeared in the cytoplasm and nucleus of all tubular epithelia during IRI. Muc1 was induced during IRI, and Muc1 transcripts and protein were also present in recovering proximal tubule cells. Kidney damage was worse and recovery was blocked during IRI in Muc1 knockout mice compared with congenic control mice. Muc1 knockout mice had reduced levels of HIF-1α, reduced or aberrant induction of HIF-1 target genes involved in the shift of glucose metabolism to glycolysis, and prolonged activation of AMP-activated protein kinase, indicating metabolic stress. Muc1 clearly plays a significant role in enhancing the HIF protective pathway during ischemic insult and recovery in kidney epithelia, providing a new target for developing therapies to treat AKI. Moreover, our data support a role specifically for HIF-1 in epithelial protection of the kidney during IRI as Muc1 is present only in tubule epithelial cells. PMID:25925251

  7. Cell damage caused by vaginal Candida albicans isolates from women with different symptomatologies.

    PubMed

    Faria, Daniella Renata; Sakita, Karina Mayumi; Akimoto-Gunther, Luciene Setsuko; Kioshima, Érika Seki; Svidzinski, Terezinha Inez Estivalet; Bonfim-Mendonça, Patrícia de Souza

    2017-08-01

    The present study aimed to characterize cell damage caused by vaginal Candida albicans isolates from women with different symptomatologies. It was evaluated 12 clinical isolates of C. albicans from vaginal samples: 4 from asymptomatic women (AS), 4 from women with a single episode of vulvovaginal candidiasis (VVC) and 4 from women with recurrent vulvovaginal candidiasis (RVVC). We evaluated the ability of C. albicans to adhere to human cervical cancer cells (SiHa), the yeast-SiHa cell interactions and cell damage. All of the clinical isolates presented a high adhesion capacity on SiHa cells. However, clinical isolates from symptomatic women (VVC and RVVC) had higher filamentation after contact (24 h) with SiHa cells and a greater capacity to cause cell damage (>80 %). Clinical isolates from symptomatic women had greater potential to invade SiHa cells, suggesting that they are more pathogenic than AS isolates.

  8. Re-examining the cause of the "Damage Belt" during the 1995 Kobe Earthquake

    NASA Astrophysics Data System (ADS)

    Matsushima, S.; Miyake, H.

    2017-12-01

    The 1995 Kobe earthquake caused devastating disaster which killed 6434 people and collapsed more than 1 million houses. The heavy damage was concentrated in a belt-like area, which was called the "Damage Belt". The cause of the "Damage Belt" was investigated by various researchers and it was found that it was a result of "The Basin-Edge Effect", which is the constructive interference of the direct S-wave with the basin-induced diffracted Rayleigh waves (Kawase, 1996). Matsushima and Kawase (2009) estimated the rupture model of the 1995 Kobe Earthquake by using 3-D reciprocal Green's functions and searching for the best fitting case by grid-search technique assuming plural rectangular strong motion generation areas (SMGAs) and succeeded to reproduce the high PGV area that corresponds to the "Damage Belt". In this study, we re-examine the cause of the "Damage Belt" by combining the estimated rupture model with the up-to-date 3-D velocity structure. The velocity structure of whole Japan has been modeled and is being modified occasionally by the Headquarters for Earthquake Research Promotion using the geological surveys conducted thoroughly by local governments as well as by large research projects since 1995. The very detailed velocity structure of the Osaka basin has been modeled by the Geological Survey of Japan, AIST (Horikawa et al., 2003; Sekiguchi et al., 2008). The aim of this study is to take in account of the different amplification characteristics due to the different velocity structure of the sediment from the seismic bedrock to the surface in Kobe, and investigate its effect to the results of the distribution of PGVs of the simulated ground motions.

  9. Retinal damage caused by air-fluid exchange during pars plana vitrectomy.

    PubMed

    Yang, Sam S; McDonald, H Richard; Everett, A I; Johnson, Robert N; Jumper, J Michael; Fu, Arthur D

    2006-03-01

    To report two cases of retinal damage associated with air infusion during pars plana vitrectomy. Observational case report. The authors reviewed the course of two patients who had retinal damage during par plana vitrectomy and air-fluid exchange for the treatment of macular hole and optic pit-related macular detachment, respectively. The intraoperative observations, postoperative course, and outcomes were reported. As a result of high air infusion flow during air-fluid exchange, retinal damage was created in the area contralateral to the infusion port. In Case 1, an oval area of whitening was noted on the first postoperative day. This area subsequently developed into a large retinal break associated with retinal detachment. In the second case, retinal whitening was noted intraoperatively. This region of pallor resolved quickly during the early postoperative period but resulted in a corresponding inferotemporal visual field defect. High infusion flow during air-fluid exchange in eyes undergoing vitrectomy surgery may result in significant retinal damage. This pressure-induced trauma initially causes retinal whitening that may be seen intraoperatively or during the early postoperative period. The region of damaged retina may develop a retinal break and detachment or a corresponding visual field defect.

  10. Chronic Broca's Aphasia Is Caused by Damage to Broca's and Wernicke's Areas.

    PubMed

    Fridriksson, Julius; Fillmore, Paul; Guo, Dazhou; Rorden, Chris

    2015-12-01

    Despite being perhaps the most studied form of aphasia, the critical lesion location for Broca's aphasia has long been debated, and in chronic patients, cortical damage often extends far beyond Broca's area. In a group of 70 patients, we examined brain damage associated with Broca's aphasia using voxel-wise lesion-symptom mapping (VLSM). We found that damage to the posterior portion of Broca's area, the pars opercularis, is associated with Broca's aphasia. However, several individuals with other aphasic patterns had considerable damage to pars opercularis, suggesting that involvement of this region is not sufficient to cause Broca's aphasia. When examining only individuals with pars opercularis damage, we found that patients with Broca's aphasia had greater damage in the left superior temporal gyrus (STG; roughly Wernicke's area) than those with other aphasia types. Using discriminant function analysis and logistic regression, based on proportional damage to the pars opercularis and Wernicke's area, to predict whether individuals had Broca's or another types of aphasia, over 95% were classified correctly. Our findings suggest that persons with Broca's aphasia have damage to both Broca's and Wernicke's areas, a conclusion that is incongruent with classical neuropsychology, which has rarely considered the effects of damage to both areas. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. The phenoptosis problem: what is causing the death of an organism? Lessons from acute kidney injury.

    PubMed

    Zorov, D B; Plotnikov, E Y; Jankauskas, S S; Isaev, N K; Silachev, D N; Zorova, L D; Pevzner, I B; Pulkova, N V; Zorov, S D; Morosanova, M A

    2012-07-01

    Programmed execution of various cells and intracellular structures is hypothesized to be not the only example of elimination of biological systems - the general mechanism can also involve programmed execution of organs and organisms. Modern rating of programmed cell death mechanisms includes 13 mechanistic types. As for some types, the mechanism of actuation and manifestation of cell execution has been basically elucidated, while the causes and intermediate steps of the process of fatal failure of organs and organisms remain unknown. The analysis of deaths resulting from a sudden heart arrest or multiple organ failure and other acute and chronic pathologies leads to the conclusion of a special role of mitochondria and oxidative stress activating the immune system. Possible mechanisms of mitochondria-mediated induction of the signaling cascades involved in organ failure and death of the organism are discussed. These mechanisms include generation of reactive oxygen species and damage-associated molecular patterns in mitochondria. Some examples of renal failure-induced deaths are presented with mechanisms and settings determined by some hypothetical super system rather than by the kidneys themselves. This system plays the key role in the process of physiological senescence and termination of an organism. The facts presented suggest that it is the immune system involved in mitochondrial signaling that can act as the system responsible for the organism's death.

  12. Chromium-induced membrane damage: protective role of ascorbic acid.

    PubMed

    Dey, S K; Nayak, P; Roy, S

    2001-07-01

    Importance of chromium as environmental toxicant is largely due to impact on the body to produce cellular toxicity. The impact of chromium and their supplementation with ascorbic acid was studied on plasma membrane of liver and kidney in male Wistar rats (80-100 g body weight). It has been observed that the intoxication with chromium (i.p.) at the dose of 0.8 mg/100 g body weight per day for a period of 28 days causes significant increase in the level of cholesterol and decrease in the level of phospholipid of both liver and kidney. The alkaline phosphatase, total ATPase and Na(+)-K(+)-ATPase activities were significantly decreased in both liver and kidney after chromium treatment, except total ATPase activity of kidney. It is suggested that chromium exposure at the present dose and duration induce for the alterations of structure and function of both liver and kidney plasma membrane. Ascorbic acid (i.p. at the dose of 0.5 mg/100 g body weight per day for period of 28 days) supplementation can reduce these structural changes in the plasma membrane of liver and kidney. But the functional changes can not be completely replenished by the ascorbic acid supplementation in response to chromium exposure. So it is also suggested that ascorbic acid (nutritional antioxidant) is useful free radical scavenger to restrain the chromium-induced membrane damage.

  13. Purple sweet potato color ameliorates kidney damage via inhibiting oxidative stress mediated NLRP3 inflammasome activation in high fat diet mice.

    PubMed

    Shan, Qun; Zheng, Yuanlin; Lu, Jun; Zhang, Zifeng; Wu, Dongmei; Fan, Shaohua; Hu, Bin; Cai, Xiangjun; Cai, Hao; Liu, Peilong; Liu, Fan

    2014-07-01

    Inflammation plays a crucial role in the pathogenesis of obesity. Purple sweet potato color (PSPC) has potential anti-inflammation efficacy. We evaluated the effect of PSPC on kidney injury induced by high fat diet (HFD) and explored the mechanism underlying these effects. The results showed that PSPC (700 mg/kg per day) reduced body weight, ratio of urine albumin to creatinine, inflammatory cell infiltration, and Collagen IV accumulation in mice fed an HFD (60% fat food) for 20 weeks. PSPC significantly reduced the expression level of kidney NLRP3 inflammasome including NLRP3 and ASC and Caspase-1, and resulted in decline of IL-1β. Moreover, PSPC inhibited the activation of I kappa B kinase β (IKKβ) and the nuclear translocation of nuclear factor kappa beta (NF-κB). Additionally, PSPC decreased the expression level of oxidative stress-associated AGE receptor (RAGE) and thioredoxin interacting protein (TXNIP) in the upstream of NLRP3 inflammasome. These data imply that the beneficial effects of PSPC on HFD-induced kidney dysfunction and damage are mediated through NLRP3 signaling pathways, suggesting a potential target for the prevention of obesity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Polymyxin B causes DNA damage in HK-2 cells and mice.

    PubMed

    Yun, B; Zhang, T; Azad, M A K; Wang, J; Nowell, C J; Kalitsis, P; Velkov, T; Hudson, D F; Li, J

    2018-03-20

    Increasing incidence of multidrug-resistant bacteria presents an imminent risk to global health. Polymyxins are 'last-resort' antibiotics against Gram-negative 'superbugs'; however, nephrotoxicity remains a key impediment in their clinical use. Molecular mechanisms underlying this nephrotoxicity remain poorly defined. Here, we examined the pathways which led to polymyxin B induced cell death in vitro and in vivo. Human proximal tubular cells were treated with polymyxin B (12.5-100 μM) for up to 24 h and showed a significant increase in micronuclei frequency, as well as abnormal mitotic events (over 40% in treated cells, p < 0.05). Time-course studies were performed using a mouse nephrotoxicity model (cumulative 72 mg/kg). Kidneys were collected over 48 h and investigated for histopathology and DNA damage. Notable increases in γH2AX foci (indicative of double-stranded breaks) were observed in both cell culture (up to ~ 44% cells with 5+ foci at 24 h, p < 0.05) and mice treated with polymyxin B (up to ~ 25%, p < 0.05). Consistent with these results, in vitro assays showed high binding affinity of polymyxin B to DNA. Together, our results indicate that polymyxin B nephrotoxicity is associated with DNA damage, leading to chromosome missegregation and genome instability. This novel mechanistic information may lead to new strategies to overcome the nephrotoxicity of this important last-line class of antibiotics.

  15. Using optical coherence tomography (OCT) to evaluate the status of human donor kidneys (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Andrews, Peter M.; Konkel, Brandon; Anderson, Erik; Stein, Matthew; Cooper, Matthew; Verbesey, Jennifer E.; Ghasemian, Seyed; Chen, Yu

    2016-02-01

    The main cause of delayed renal function following the transplant of donor kidneys is ischemic induced acute tubular necrosis (ATN). The ability to determine the degree of ATN suffered by donor kidneys prior to their transplant would enable transplant surgeons to use kidneys that might otherwise be discarded and better predict post-transplant renal function. Currently, there are no reliable tests to determine the extent of ATN of donor kidneys prior to their transplant. In ongoing clinical trials, we have been using optical coherence tomography (OCT) to non-invasively image the superficial proximal tubules of human donor kidneys prior to and following transplant, and correlate these observations with post-transplant renal function. Thus far we have studied over 40 living donor kidneys and 10 cadaver donor kidneys, and demonstrated that this imaging can be performed in a sterile and expeditious fashion in the operating room (OR). Because of many variables associated with a diverse population of donors/recipients and transplant operation parameters, more transplant data must be collected prior to drawing definite conclusions. Nevertheless, our observations have thus far mirrored our previously published laboratory results indicating that damage to the kidney proximal tubules as indicated by tubule swelling is a good measure of post-transplant ATN and delayed graft function. We conclude that OCT is a useful procedure for analyzing human donor kidneys.

  16. Curcumin reduces the risk of chronic kidney damage in mice with nonalcoholic steatohepatitis by modulating endoplasmic reticulum stress and MAPK signaling.

    PubMed

    Afrin, Mst Rejina; Arumugam, Somasundaram; Rahman, Md Azizur; Karuppagounder, Vengadeshprabhu; Harima, Meilei; Suzuki, Hiroshi; Miyashita, Shizuka; Suzuki, Kenji; Ueno, Kazuyuki; Yoneyama, Hiroyuki; Watanabe, Kenichi

    2017-08-01

    Developing confirmation recommends that in patients with dynamic type of NAFLD, particularly nonalcoholic steatohepatitis (NASH) may have the pathogenic parts in the advancement of kidney damage. In this study we have examined the impact of curcumin on NASH instigated chronic kidney damage (CKD) and the putative mechanisms. To prepare this NASH model, neonatal C57BL/6J male mice were exposed to low-dose streptozotocin (STZ) and were fed high-fat diet (HFD) at the age of 4weeks and continued up to 14weeks, curcumin was given at 100mg/kg dose by oral gavage daily after 10weeks of STZ injection and continued for 4weeks along with HFD feeding. NASH incited mice demonstrated nephrotoxicity as proved by declining renal capacity, which was evaluated by measuring blood urea nitrogen and creatinine in serum and histopathological variations from the norm. These progressions were switched by curcumin treatment, which brought about huge change in renal capacity. Furthermore, curcumin markedly decreased NAD(P)H oxidase subunits (p67phox, p47phox, p22phox), nitrotyrosine and CYP2E1 renal protein expression as well as reduced pro-inflammatory cytokine expression (TNFα, IL-1β, IFNγ). Renal protein expression of mitogen activated protein kinases (MAPKs) (p-JNK, p-ERK1/2) and glucose regulated protein 78, CHOP were increased in NASH induced mice and curcumin treatment attenuated these increased expressions. In addition, curcumin treatment also decreased the apoptosis signaling proteins (cleaved caspase-3, cleaved caspase-12) in the NASH kidney. Taken together, our results suggest that curcumin preserves the renal function, probably by attenuating the ER stress mediated MAPK signaling. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Urine biomarkers of kidney injury among adolescents in Nicaragua, a region affected by an epidemic of chronic kidney disease of unknown aetiology

    PubMed Central

    Ramírez-Rubio, Oriana; Amador, Juan José; Kaufman, James S.; Weiner, Daniel E.; Parikh, Chirag R.; Khan, Usman; McClean, Michael D.; Laws, Rebecca L.; López-Pilarte, Damaris; Friedman, David J.; Kupferman, Joseph; Brooks, Daniel R.

    2016-01-01

    Background An epidemic of chronic kidney disease (CKD) of non-traditional aetiology has been recently recognized by health authorities as a public health priority in Central America. Previous studies have identified strenuous manual work, agricultural activities and residence at low altitude as potential risk factors; however, the aetiology remains unknown. Because individuals are frequently diagnosed with CKD in early adulthood, we measured biomarkers of kidney injury among adolescents in different regions of Nicaragua to assess whether kidney damage might be initiated during childhood. Methods Participants include 200 adolescents aged 12–18 years with no prior work history from four different schools in Nicaragua. The location of the school served as a proxy for environmental exposures and geographic locations were selected to represent a range of factors that have been associated with CKD in adults (e.g. altitude, primary industry and CKD mortality rates). Questionnaires, urine dipsticks and kidney injury biomarkers [interleukin-18, N-acetyl-d-glucosaminidase (NAG), neutrophil gelatinase-associated lipocalin (NGAL) and albumin–creatinine ratio] were assessed. Biomarker concentrations were compared by school using linear regression models. Results Protein (3.5%) and glucose (1%) in urine measured by dipstick were rare and did not differ by school. Urine biomarkers of tubular kidney damage, particularly NGAL and NAG, showed higher concentrations in those schools and regions within Nicaragua that were defined a priori as having increased CKD risk. Painful urination was a frequent self-reported symptom. Conclusions Although interpretation of these urine biomarkers is limited because of the lack of population reference values, results suggest the possibility of early kidney damage prior to occupational exposures in these adolescents. PMID:26311057

  18. Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA.

    PubMed

    Gao, Qiuqiang; Liou, Liang-Chun; Ren, Qun; Bao, Xiaoming; Zhang, Zhaojie

    2014-03-03

    The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ 0 ). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ 0 cells. Deletion of SCW11 significantly decreases the sensitivity of ρ 0 cells to SDS after salt treatment, while overexpression of SCW11 results in higher sensitivity. In addition, salt stress in ρ 0 cells induces high levels of reactive oxygen species (ROS), which further damages the cell wall, causing cells to become more sensitive towards the cell wall-perturbing agent.

  19. Clusterin deficiency induces lipid accumulation and tissue damage in kidney.

    PubMed

    Heo, Jung-Yoon; Kim, Ji-Eun; Dan, Yongwook; Kim, Yong-Woon; Kim, Jong-Yeon; Cho, Kyu Hyang; Bae, Young Kyung; Im, Seung-Soon; Liu, Kwang-Hyeon; Song, In-Hwan; Kim, Jae-Ryong; Lee, In-Kyu; Park, So-Young

    2018-05-01

    Clusterin is a secretory glycoprotein that is involved in multiple physiopathological processes, including lipid metabolism. Previous studies have shown that clusterin prevents hepatic lipid accumulation via suppression of sterol regulatory element-binding protein (SREBP) 1. In this study, we examined the role of clusterin in renal lipid accumulation in clusterin-knockout mice and NRK52e tubular epithelial cells. Clusterin deficiency increased the expression of SREBP1 and its target genes and decreased malonyl-CoA decarboxylase protein levels in the kidney. Expression of the endocytic receptor, megalin, and scavenger receptor class A was increased in clusterin-deficient mice. Functional analysis of lipid metabolism also revealed that lipid uptake and triglyceride synthesis were increased and fatty acid oxidation was reduced, leading to increased lipid accumulation in clusterin-deficient mice. These phenomena were accompanied by mesangial expansion, fibrosis and increased urinary protein-to-creatinine ratio. High-fat feeding aggravated these clusterin deficiency-induced pathological changes. Clusterin knockdown in NRK52e cells increased lipogenic gene expression and lipid levels, whereas overexpression of clusterin by treatment with adenovirus or recombinant clusterin protein suppressed lipogenic gene expression and lipid levels. Transforming growth factor-beta 1 (TGFB1) expression increased in the kidney of clusterin-deficient mice and suppression of TGFB1 in NRK52e cells suppressed lipid accumulation. These results suggest that clusterin deficiency induces renal lipid accumulation by dysregulating the expression of lipid metabolism-related factors and TGFB1, thereby leading to chronic kidney disease. Hence, clusterin may serve as a therapeutic target for lipid-induced chronic kidney disease. © 2018 Society for Endocrinology.

  20. The role of heat shock proteins in kidney disease

    PubMed Central

    2016-01-01

    Abstract Heat Shock Proteins (HSP) belong to the family of intracellular proteins that are constitutively expressed and are upregulated by various stressors including heat, oxidative and chemical stress. HSP helps in reparative processes, including the refolding of damaged proteins and the removal of irreparably damaged proteins that would initiate cellular death or apoptosis. A growing body of evidence has expanded the role of HSP and defined their role in diseases such as neurodegenerative disorders, cancer, ischemic heart disease and kidney diseases. The protective role of HSP in ischemic renal injury has been described and HSP impairment has been noted in other forms of kidney injuries including post-transplant situation. Further research into the role of HSP in prevention of kidney injury is crucial if translation from the laboratory to patient bedside has to occur. This article aims to be a review of heat shock protein, and its relevance to kidney diseases. PMID:28191532

  1. The potential use of biomarkers in predicting contrast-induced acute kidney injury

    PubMed Central

    Andreucci, Michele; Faga, Teresa; Riccio, Eleonora; Sabbatini, Massimo; Pisani, Antonio; Michael, Ashour

    2016-01-01

    Contrast-induced acute kidney injury (CI-AKI) is a problem associated with the use of iodinated contrast media, causing kidney dysfunction in patients with preexisting renal failure. It accounts for 12% of all hospital-acquired kidney failure and increases the length of hospitalization, a situation that is worsening with increasing numbers of patients with comorbidities, including those requiring cardiovascular interventional procedures. So far, its diagnosis has relied upon the rise in creatinine levels, which is a late marker of kidney damage and is believed to be inadequate. Therefore, there is an urgent need for biomarkers that can detect CI-AKI sooner and more reliably. In recent years, many new biomarkers have been characterized for AKI, and these are discussed particularly with their use in known CI-AKI models and studies and include neutrophil gelatinase-associated lipocalin, cystatin C (Cys-C), kidney injury molecule-1, interleukin-18, N-acetyl-β-d-glucosaminidase, and L-type fatty acid-binding protein (L-FABP). The potential of miRNA and metabolomic technology is also mentioned. Early detection of CI-AKI may lead to early intervention and therefore improve patient outcome, and in future any one or a combination of several of these markers together with development in technology for their analysis may prove effective in this respect. PMID:27672338

  2. Long term follow up of kidney donors with asymptomatic renal stones.

    PubMed

    Serur, David; Charlton, Marian; Juluru, Krishna; Salama, Gayle; Locastro, Eve; Bretzlaff, Gretchen; Hartono, Choli

    2017-08-01

    Patients with asymptomatic kidney stones have a high rate of progression to becoming symptomatic kidney stones when followed for several years. Small kidney stones are often found incidentally on imaging when evaluating patients for kidney donation, and there is a concern that after nephrectomy, the donor may become symptomatic and incur damage to the remaining kidney. We reviewed kidney donors at our institution with asymptomatic stones and surveyed them several years after donation to see if the stones became clinically active. © 2017 Asian Pacific Society of Nephrology.

  3. Monoallelic Mutations to DNAJB11 Cause Atypical Autosomal-Dominant Polycystic Kidney Disease.

    PubMed

    Cornec-Le Gall, Emilie; Olson, Rory J; Besse, Whitney; Heyer, Christina M; Gainullin, Vladimir G; Smith, Jessica M; Audrézet, Marie-Pierre; Hopp, Katharina; Porath, Binu; Shi, Beili; Baheti, Saurabh; Senum, Sarah R; Arroyo, Jennifer; Madsen, Charles D; Férec, Claude; Joly, Dominique; Jouret, François; Fikri-Benbrahim, Oussamah; Charasse, Christophe; Coulibaly, Jean-Marie; Yu, Alan S; Khalili, Korosh; Pei, York; Somlo, Stefan; Le Meur, Yannick; Torres, Vicente E; Harris, Peter C

    2018-05-03

    Autosomal-dominant polycystic kidney disease (ADPKD) is characterized by the progressive development of kidney cysts, often resulting in end-stage renal disease (ESRD). This disorder is genetically heterogeneous with ∼7% of families genetically unresolved. We performed whole-exome sequencing (WES) in two multiplex ADPKD-like pedigrees, and we analyzed a further 591 genetically unresolved, phenotypically similar families by targeted next-generation sequencing of 65 candidate genes. WES identified a DNAJB11 missense variant (p.Pro54Arg) in two family members presenting with non-enlarged polycystic kidneys and a frameshifting change (c.166_167insTT) in a second family with small renal and liver cysts. DNAJB11 is a co-factor of BiP, a key chaperone in the endoplasmic reticulum controlling folding, trafficking, and degradation of secreted and membrane proteins. Five additional multigenerational families carrying DNAJB11 mutations were identified by the targeted analysis. The clinical phenotype was consistent in the 23 affected members, with non-enlarged cystic kidneys that often evolved to kidney atrophy; 7 subjects reached ESRD from 59 to 89 years. The lack of kidney enlargement, histologically evident interstitial fibrosis in non-cystic parenchyma, and recurring episodes of gout (one family) suggested partial phenotypic overlap with autosomal-dominant tubulointerstitial diseases (ADTKD). Characterization of DNAJB11-null cells and kidney samples from affected individuals revealed a pathogenesis associated with maturation and trafficking defects involving the ADPKD protein, PC1, and ADTKD proteins, such as UMOD. DNAJB11-associated disease is a phenotypic hybrid of ADPKD and ADTKD, characterized by normal-sized cystic kidneys and progressive interstitial fibrosis resulting in late-onset ESRD. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. Inflammatory stress promotes the development of obesity-related chronic kidney disease via CD36 in mice.

    PubMed

    Yang, Ping; Xiao, Yayun; Luo, Xuan; Zhao, Yunfei; Zhao, Lei; Wang, Yan; Wu, Tingting; Wei, Li; Chen, Yaxi

    2017-07-01

    Ectopic fat located in the kidney has emerged as a novel cause of obesity-related chronic kidney disease (CKD). In this study, we aimed to investigate whether inflammatory stress promotes ectopic lipid deposition in the kidney and causes renal injury in obese mice and whether the pathological process is mediated by the fatty acid translocase, CD36. High-fat diet (HFD) feeding alone resulted in obesity, hyperlipidemia, and slight renal lipid accumulation in mice, which nevertheless had normal kidney function. HFD-fed mice with chronic inflammation had severe renal steatosis and obvious glomerular and tubular damage, which was accompanied by increased CD36 expression. Interestingly, CD36 deficiency in HFD-fed mice eliminated renal lipid accumulation and pathological changes induced by chronic inflammation. In both human mesangial cells (HMCs) and human kidney 2 (HK2) cells, inflammatory stress increased the efficiency of CD36 protein incorporation into membrane lipid rafts, promoting FFA uptake and intracellular lipid accumulation. Silencing of CD36 in vitro markedly attenuated FFA uptake, lipid accumulation, and cellular stress induced by inflammatory stress. We conclude that inflammatory stress aggravates renal injury by activation of the CD36 pathway, suggesting that this mechanism may operate in obese individuals with chronic inflammation, making them prone to CKD. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  5. Thermal Analyses of a Human Kidney and a Rabbit Kidney During Cryopreservation by Vitrification.

    PubMed

    Ehrlich, Lili E; Fahy, Gregory M; Wowk, Brian G; Malen, Jonathan A; Rabin, Yoed

    2018-01-01

    This study focuses on thermal analysis of the problem of scaling up from the vitrification of rabbit kidneys to the vitrification of human kidneys, where vitrification is the preservation of biological material in the glassy state. The basis for this study is a successful cryopreservation protocol for a rabbit kidney model, based on using a proprietary vitrification solution known as M22. Using the finite element analysis (FEA) commercial code ANSYS, heat transfer simulations suggest that indeed the rabbit kidney unquestionably cools rapidly enough to be vitrified based on known intrarenal concentrations of M22. Scaling up 21-fold, computer simulations suggest less favorable conditions for human kidney vitrification. In this case, cooling rates below -100 °C are sometimes slower than 1 °C/min, a rate that provides a clear-cut margin of safety at all temperatures based on the stability of rabbit kidneys in past studies. Nevertheless, it is concluded in this study that vitrifying human kidneys is possible without significant ice damage, assuming that human kidneys can be perfused with M22 as effectively as rabbit kidneys. The thermal analysis suggests that cooling rates can be further increased by a careful design of the cryogenic protocol and by tailoring the container to the shape of the kidney, in contrast to the present cylindrical container. This study demonstrates the critical need for the thermal analysis of experimental cryopreservation and highlights the unmet need for measuring the thermophysical properties of cryoprotective solutions under conditions relevant to realistic thermal histories.

  6. Renoprotective effects of combined endothelin-converting enzyme/neutral endopeptidase inhibitor SLV338 in acute and chronic experimental renal damage.

    PubMed

    Sharkovska, Yuliya; Kalk, Philipp; von Websky, Karoline; Relle, Katharina; Pfab, Thiemo; Alter, Markus; Fischer, Yvan; Hocher, Berthold

    2011-01-01

    Acute kidney injury (AKI) as well as chronic renal failure are associated with a huge mortality/morbidity. However, so far no drugs have been approved for the treatment of acute kidney failure and only a few for the treatment of chronic kidney disease (CKD). We analysed the effect of SLV338, a neutral endopeptidase (NEP)/endothelin converting enzyme (ECE)-inhibitor in animal models of acute kidney failure as well as chronic renal failure. Acute renal failure was induced in male Wistar rats by uninephrectomy and clamping of the remaining kidney for 55 minutes. SLV338 (total dose: 4.9 mg/kg) or vehicle was continuously infused for 2 hours (starting 20 minutes prior to clamping). Sham operated animals served as controls. Plasma creatinine was measured at baseline and day 2 and 8 after renal ischemia-reperfusion. Hypertensive renal damage was induced in male Sprague Dawley rats by nitric oxide deficiency using L-NAME (50 mg/kg per day, added to drinking water for 4 weeks). One group was treated over the same time period with SLV338 (30 mg/kg per day, mixed with food). Systolic blood pressure was monitored weekly. At study end, urine and blood samples were collected and kidneys were harvested. Acute renal ischemia-reperfusion caused a 5-fold plasma creatinine elevation (day 2), which was significantly attenuated by more than 50% in animals treated with SLV338 (p < 0.05). Renal failure was accompanied by a 67% mortality in vehicle-treated rats, but only 20% after SLV338 treatment (p = 0.03 compared to sham controls). Chronic L-NAME administration caused hypertension, urinary albumin excretion, glomerulosclerosis, renal arterial remodelling, and renal interstitial fibrosis. Treatment with SLV338 did not significantly affect blood pressure, but abolished renal tissue damage (interstitial fibrosis, glomerulosclerosis, renal arterial remodelling (p < 0.05 versus L-NAME group in each case). The dual ECE/NEP inhibitor SLV338 preserves kidney function and reduces mortality in

  7. Murine lethal milk mutation causes maternal accumulation of zinc in intestine and kidney and reduced zinc transport to milk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dohyeel Lee; Cousins, R.J.

    1991-03-15

    The lethal milk (Lm) mutation is autosomal recessive in C57BL/6J mice and causes Zn deficiency in pups nursed by Lm dams. The genetic defect may cause a shift in the tissue Zn distribution in Lm dams since their milk has a 34-45% lower Zn concentration than milk of normal (N) dams. To examine tissue Zn distribution and Zn transport to milk and pups, 1 {mu}Ci of {sup 65}Zn was administered ip to lactating N and Lm dams. They also received 800 {mu}g Zn/ml in their drinking water to preclude short term, terminal zinc deficiency in the neonates nursed by Lmmore » dams. {sup 65}Zn content of milk and tissues of dams and tissues of pups was measured. Transport of {sup 65}Zn to milk of Lm dams was about 50% compared to milk of N dams. The percentage of the {sup 65}Zn dose recovered in the intestine, liver, and kidney of N pups nursed by LM dams was markedly lower than those of N pups nursed by N dams. In contrast, the percentage of {sup 65}Zn in the intestine and kidney of Lm dams was about twice that of N dams. The elevated intestinal {sup 65}Zn was paralleled by and elevated metallothionein concentration, but the increased {sup 65}Zn in the kidney was not. The Lm gene defect might limit Zn transport to milk by shifting the Zn distribution in lactating dams to the intestine, kidney, and perhaps other tissues.« less

  8. Tear drops of kidney: a historical overview of Polycystic Kidney Disease.

    PubMed

    Balat, Ayse

    2016-02-01

    Polycystic kidneydisease (PKD) is one of the most common inheritedkidneydiseases causing end stage renal disease. Although it has been in existence with humanity, it was defined in 18th century. The most detailed observations on PKD have been written after the disease of Stephen Bathory, the King of Poland. He had fatigue and chest pain accompanied by unconsciousness within a few days after a hunting trip, and died within 9 days, at the age of 53 years in 1586. Surgeon Jan Zigulitz described the cysts in his kidneys as large like those of a bull, with an uneven and bumpy surface during the mummification. Based on available information, 347 years later, a group of physicians and historians in Krakow concluded that the probable cause of Kings death was PKD and uremia. Unfortunately, PKD did not attracted the interest of physicians until the 18th century. In late 18th century, Matthew Baillie noted that these vesicular cysts in kidney were different from hydatid cysts, and described them as "false hydatids of kidney". In 1888, Flix Lejars used the term of "polycystic kidney" for the first time, and stressed that these cysts were bilateral, and causing clinically identifiable symptoms. At the end of 19th century, the basic clinical signs, and genetic basis of the disease have been better defined. However, the inheritance pattern could only be understood long years later. In this study, the history of PKD, i.e., the tear drops (cysts) of kidney will try to be explained by the light of old and current knowledge.

  9. [Protective effects of sulforaphane on the oxidative damage of kidney mitochondria complex in obese rats induced by high-fat diet].

    PubMed

    Xue, Hongfeng; Li, Yajie; Liang, Bing; Wang, Shuran

    2014-11-01

    To realize the oxidative damage of kidney mitochondrial complex in obese rats induced by high-fat diet and investigate the protective effects of sulforaphane against the damage. Eighty-eight adult male SD rats were used, after 1 week adaptability feeding, 8 rats were selected as control group and given low-fat diet. The other 80 rats were given high-fat diet. After 2 weeks, the 32 diet-induced obesity models were choosen whose weight gain was higher than 40%. The 32 rats were randomly divided into 4 groups, i.e. high fat group, high fat+sulforaphane low dose group, high fat+sulforaphane middle dose group and high fat+sulforaphane high dose group. The rats in the sulforaphane low, middle and high dose groups were orally administered with sulforaphane 5, 10 and 20 mg/kg, all the 4 groups were kept feeding high-fat diet for 5 weeks. All rats were sacrificed and their kidneys were removed to assay the index of oxidative damages. The content of ROS (0.26 ± 0.04) and MDA((0.87 ± 0.05) U/mg) in the hight-fat group were significantly higher than those in the control group((0.20 ± 0.02),(0.57 ± 0.08) U/mg)(t values were -3.02 and -4.72, P < 0.05). The activity of T-AOC((0.43 ± 0.04) U/mg) and MMP (12.09 ± 1.56) were lower than the control group ((0.48 ± 0.04 U/mg, (16.08 ± 3.12) )(t values were 2.06 and 2.28, P < 0.05). Gavage intervention with sulforaphane, the MDA amount ((0.67 ± 0.05), (0.55 ± 0.05), (0.56 ± 0.07) U/mg) in the sulforaphane low, middle and high dose groups were lower than the hight-fat group ((0.87 ± 0.05) U/mg (t values were 3.65, 5.71 and 5.60. P < 0.05). The activity of T-AOC ((0.49 ± 0.05), (0.55 ± 0.05), (0.54 ± 0.04) U/mg), T-SOD ((61.07 ± 2.79), (55.95 ± 2.39), (60.26 ± 6.02) U/mg) and the level of MMP ((17.17 ± 2.52), (18.24 ± 2.54), (18.21 ± 3.65)) were higher than in the high-fat group ((0.43 ± 0.04) U/mg,(47.22 ± 2.43) U/mg,(12.09 ± 1.56)) (tT-AOC values were -2.36, -4.83 and -4.30; tT-SOD values were -6.37, -4.71 and -5

  10. Abrupt Decline in Kidney Function Before Initiating Hemodialysis and All-Cause Mortality: The Chronic Renal Insufficiency Cohort (CRIC) Study.

    PubMed

    Hsu, Raymond K; Chai, Boyang; Roy, Jason A; Anderson, Amanda H; Bansal, Nisha; Feldman, Harold I; Go, Alan S; He, Jiang; Horwitz, Edward J; Kusek, John W; Lash, James P; Ojo, Akinlolu; Sondheimer, James H; Townsend, Raymond R; Zhan, Min; Hsu, Chi-Yuan

    2016-08-01

    It is not clear whether the pattern of kidney function decline in patients with chronic kidney disease (CKD) may relate to outcomes after reaching end-stage renal disease (ESRD). We hypothesize that an abrupt decline in kidney function prior to ESRD predicts early death after initiating maintenance hemodialysis therapy. Prospective cohort study. The Chronic Renal Insufficiency Cohort (CRIC) Study enrolled men and women with mild to moderate CKD. For this study, we studied 661 individuals who developed chronic kidney failure that required hemodialysis therapy initiation. The primary predictor was the presence of an abrupt decline in kidney function prior to ESRD. We incorporated annual estimated glomerular filtration rates (eGFRs) into a mixed-effects model to estimate patient-specific eGFRs at 3 months prior to initiation of hemodialysis therapy. Abrupt decline was defined as having an extrapolated eGFR≥30mL/min/1.73m(2) at that time point. All-cause mortality within 1 year after initiating hemodialysis therapy. Multivariable Cox proportional hazards. Among 661 patients with CKD initiating hemodialysis therapy, 56 (8.5%) had an abrupt predialysis decline in kidney function and 69 died within 1 year after initiating hemodialysis therapy. After adjustment for demographics, cardiovascular disease, diabetes, and cancer, abrupt decline in kidney function was associated with a 3-fold higher risk for death within the first year of ESRD (adjusted HR, 3.09; 95% CI, 1.65-5.76). Relatively small number of outcomes; infrequent (yearly) eGFR determinations; lack of more granular clinical data. Abrupt decline in kidney function prior to ESRD occurred in a significant minority of incident hemodialysis patients and predicted early death in ESRD. Copyright © 2016 National Kidney Foundation, Inc. All rights reserved.

  11. MiR-21 is required for efficient kidney regeneration in fish.

    PubMed

    Hoppe, Beate; Pietsch, Stefan; Franke, Martin; Engel, Sven; Groth, Marco; Platzer, Matthias; Englert, Christoph

    2015-11-17

    Acute kidney injury in mammals, which is caused by cardiovascular diseases or the administration of antibiotics with nephrotoxic side-effects is a life-threatening disease, since loss of nephrons is irreversible in mammals. In contrast, fish are able to generate new nephrons even in adulthood and thus provide a good model to study renal tubular regeneration. Here, we investigated the early response after gentamicin-induced renal injury, using the short-lived killifish Nothobranchius furzeri. A set of microRNAs was differentially expressed after renal damage, among them miR-21, which was up-regulated. A locked nucleic acid-modified antimiR-21 efficiently knocked down miR-21 activity and caused a lag in the proliferative response, enhanced apoptosis and an overall delay in regeneration. Transcriptome profiling identified apoptosis as a process that was significantly affected upon antimiR-21 administration. Together with functional data this suggests that miR-21 acts as a pro-proliferative and anti-apoptotic factor in the context of kidney regeneration in fish. Possible downstream candidate genes that mediate its effect on proliferation and apoptosis include igfbp3 and fosl1, among other genes. In summary, our findings extend the role of miR-21 in the kidney. For the first time we show its functional involvement in regeneration indicating that fast proliferation and reduced apoptosis are important for efficient renal tubular regeneration.

  12. The phytochemical, EGCG, extends lifespan by reducing liver and kidney function damage and improving age-associated inflammation and oxidative stress in healthy rats.

    PubMed

    Niu, Yucun; Na, Lixin; Feng, Rennan; Gong, Liya; Zhao, Yue; Li, Qiang; Li, Ying; Sun, Changhao

    2013-12-01

    It is known that phytochemicals have many potential health benefits in humans. The aim of this study was to investigate the effects of long-term consumption of the phytochemical, epigallocatechin gallate (EGCG), on body growth, disease protection, and lifespan in healthy rats. 68 male weaning Wistar rats were randomly divided into the control and EGCG groups. Variables influencing lifespan such as blood pressure, serum glucose and lipids, inflammation, and oxidative stress were dynamically determined from weaning to death. The median lifespan of controls was 92.5 weeks. EGCG increased median lifespan to 105.0 weeks and delayed death by approximately 8-12 weeks. Blood pressure and serum glucose and lipids significantly increased with age in both groups compared with the levels at 0 week. However, there were no differences in these variables between the two groups during the whole lifespan. Inflammation and oxidative stress significantly increased with age in both groups compared with 0 week and were significantly lower in serum and liver and kidney tissues in the EGCG group. Damage to liver and kidney function was significantly alleviated in the EGCG group. In addition, EGCG decreased the mRNA and protein expressions of transcription factor NF-κB and increased the upstream protein expressions of silent mating type information regulation two homolog one (SIRT1) and forkhead box class O 3a (FOXO3a). In conclusion, EGCG extends lifespan in healthy rats by reducing liver and kidney damage and improving age-associated inflammation and oxidative stress through the inhibition of NF-κB signaling by activating the longevity factors FoxO3a and SIRT1. © 2013 the Anatomical Society and John Wiley & Sons Ltd.

  13. Whole-exome sequencing reveals genetic variants associated with chronic kidney disease characterized by tubulointerstitial damages in North Central Region, Sri Lanka.

    PubMed

    Nanayakkara, Shanika; Senevirathna, S T M L D; Parahitiyawa, Nipuna B; Abeysekera, Tilak; Chandrajith, Rohana; Ratnatunga, Neelakanthi; Hitomi, Toshiaki; Kobayashi, Hatasu; Harada, Kouji H; Koizumi, Akio

    2015-09-01

    The familial clustering observed in chronic kidney disease of uncertain etiology (CKDu) characterized by tubulointerstitial damages in the North Central Region of Sri Lanka strongly suggests the involvement of genetic factors in its pathogenesis. The objective of the present study is to use whole-exome sequencing to identify the genetic variants associated with CKDu. Whole-exome sequencing of eight CKDu cases and eight controls was performed, followed by direct sequencing of candidate loci in 301 CKDu cases and 276 controls. Association study revealed rs34970857 (c.658G > A/p.V220M) located in the KCNA10 gene encoding a voltage-gated K channel as the most promising SNP with the highest odds ratio of 1.74. Four rare variants were identified in gene encoding Laminin beta2 (LAMB2) which is known to cause congenital nephrotic syndrome. Three out of four variants in LAMB2 were novel variants found exclusively in cases. Genetic investigations provide strong evidence on the presence of genetic susceptibility for CKDu. Possibility of presence of several rare variants associated with CKDu in this population is also suggested.

  14. Damage from wind and other causes in mixed white fir-red fir stands adjacent to clearcuttings

    Treesearch

    Donald T. Gordon

    1973-01-01

    Damage to timber surrounding clearcuttings and in one light selection cutting in mixed white fir-red fir stands was monitored for 6 years in northeastern California. In some years, bark beetles apparently killed more trees than did wind damage, but in two of the study years, severe wind storms caused much damage. One storm produced mainly break-age, apparently...

  15. Increased urine semaphorin-3A is associated with renal damage in hypertensive patients with chronic kidney disease: a nested case-control study.

    PubMed

    Viazzi, Francesca; Ramesh, Ganesan; Jayakumar, Calpurnia; Leoncini, Giovanna; Garneri, Debora; Pontremoli, Roberto

    2015-06-01

    Semaphorins are guidance proteins implicated in several processes such as angiogenesis, organogenesis, cell migration, and cytokine release. Experimental studies showed that semaphorin-3a (SEMA3A) administration induces transient massive proteinuria, podocyte foot process effacement and endothelial cell damage in healthy animals. While SEMA3A signaling has been demonstrated to be mechanistically involved in experimental diabetic glomerulopathy and in acute kidney injury, to date its role in human chronic kidney disease (CKD) has not been investigated. To test the hypothesis that SEMA3A may play a role in human CKD, we performed a cross-sectional, nested, case-control study on 151 matched hypertensive patients with and without CKD. SEMA3A was quantified in the urine (USEMA) by ELISA. Glomerular filtration rate was estimated (eGFR) by the CKD-EPI formula and albuminuria was measured as albumin-to-creatinine ratio (ACR). USEMA levels were positively correlated with urine ACR (p = 0.001) and serum creatinine (p < 0.001). USEMA was higher in patients with both components of renal damage as compared to those with only one and those with normal renal function (p < 0.007 and <0.001, respectively). The presence of increased USEMA levels (i.e. top quartile) entailed a fourfold higher risk of combined renal damage (p < 0.001) and an almost twofold higher risk of macroalbuminuria (p = 0.005) or of reduced eGFR, even adjusting for confounding factors (p = 0.002). USEMA is independently associated with CKD in both diabetic and non diabetic hypertensive patients. Further studies may help clarify the mechanisms underlying this association and possibly the pathogenic changes leading to the development of CKD.

  16. Etiological analysis of graft dysfunction following living kidney transplantation: a report of 366 biopsies.

    PubMed

    Zhang, Jin; Qiu, Jiang; Chen, Guo-Dong; Wang, Chang-Xi; Wang, Chang; Yu, Shuang-Jin; Chen, Li-Zhong

    2018-11-01

    The aim of this study is to investigate the clinical features of graft dysfunction following living kidney transplantation and to assess its causes. We retrospectively analyzed a series of 366 living kidney transplantation indication biopsies with a clear etiology and diagnosis from July 2003 to June 2016 at our center. The classifications and diagnoses were performed based on clinical and pathological characteristics. All biopsies were evaluated according to the Banff 2007 schema. Acute rejection (AR) occurred in 85 cases (22.0%), chronic rejection (CR) in 62 cases (16.1%), borderline rejection (BR) in 12 cases (3.1%), calcineurin inhibitor (CNI) toxicity damage in 41 cases (10.6%), BK virus-associated nephropathy (BKVAN) in 43 cases (11.1%), de novo or recurrent renal diseases in 134 cases (34.7%), and other causes in nine cases (2.3%); additionally, 20 cases had two simultaneous causes. The 80 cases with IgA nephropathy (IgAN) had the highest incidence (59.7%) of de novo or recurrent renal diseases. After a mean ± SD follow up of 3.7 ± 2.3 years, the 5-year graft cumulative survival rates of AR, CR, CNI toxicity, BKVAN, and de novo or recurrent renal diseases were 60.1%, 31.2%, 66.6%, 66.9%, and 67.1%, respectively. A biopsy is helpful for the diagnosis of graft dysfunction. De novo or recurrent renal disease, represented by IgAN, is a major cause of graft dysfunction following living kidney transplantation.

  17. Selective Cannabinoid 2 Receptor Stimulation Reduces Tubular Epithelial Cell Damage after Renal Ischemia-Reperfusion Injury.

    PubMed

    Pressly, Jeffrey D; Mustafa, Suni M; Adibi, Ammaar H; Alghamdi, Sahar; Pandey, Pankaj; Roy, Kuldeep K; Doerksen, Robert J; Moore, Bob M; Park, Frank

    2018-02-01

    Ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury (AKI), which is an increasing problem in the clinic and has been associated with elevated rates of mortality. Therapies to treat AKI are currently not available, so identification of new targets that can be modulated to ameliorate renal damage upon diagnosis of AKI is essential. In this study, a novel cannabinoid receptor 2 (CB2) agonist, SMM-295 [3'-methyl-4-(2-(thiophen-2-yl)propan-2-yl)biphenyl-2,6-diol], was designed, synthesized, and tested in vitro and in silico. Molecular docking of SMM-295 into a CB2 active-state homology model showed that SMM-295 interacts well with key amino acids to stabilize the active state. In human embryonic kidney 293 cells, SMM-295 was capable of reducing cAMP production with 66-fold selectivity for CB2 versus cannabinoid receptor 1 and dose-dependently increased mitogen-activated protein kinase and Akt phosphorylation. In vivo testing of the CB2 agonist was performed using a mouse model of bilateral IRI, which is a common model to mimic human AKI, where SMM-295 was immediately administered upon reperfusion of the kidneys after the ischemia episode. Histologic damage assessment 48 hours after reperfusion demonstrated reduced tubular damage in the presence of SMM-295. This was consistent with reduced plasma markers of renal dysfunction (i.e., creatinine and neutrophil gelatinase-associated lipocalin) in SMM-295-treated mice. Mechanistically, kidneys treated with SMM-295 were shown to have elevated activation of Akt with reduced terminal deoxynucleotidyl transferase-mediated digoxigenin-deoxyuridine nick-end labeling (TUNEL)-positive cells compared with vehicle-treated kidneys after IRI. These data suggest that selective CB2 receptor activation could be a potential therapeutic target in the treatment of AKI. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  18. The role of the immune system in kidney disease.

    PubMed

    Tecklenborg, J; Clayton, D; Siebert, S; Coley, S M

    2018-05-01

    The immune system and the kidneys are closely linked. In health the kidneys contribute to immune homeostasis, while components of the immune system mediate many acute forms of renal disease and play a central role in progression of chronic kidney disease. A dysregulated immune system can have either direct or indirect renal effects. Direct immune-mediated kidney diseases are usually a consequence of autoantibodies directed against a constituent renal antigen, such as collagen IV in anti-glomerular basement membrane disease. Indirect immune-mediated renal disease often follows systemic autoimmunity with immune complex formation, but can also be due to uncontrolled activation of the complement pathways. Although the range of mechanisms of immune dysregulation leading to renal disease is broad, the pathways leading to injury are similar. Loss of immune homeostasis in renal disease results in perpetual immune cell recruitment and worsening damage to the kidney. Uncoordinated attempts at tissue repair, after immune-mediated disease or non-immune mediated injury, result in fibrosis of structures important for renal function, leading eventually to kidney failure. As renal disease often manifests clinically only when substantial damage has already occurred, new diagnostic methods and indeed treatments must be identified to inhibit further progression and promote appropriate tissue repair. Studying cases in which immune homeostasis is re-established may reveal new treatment possibilities. © 2018 British Society for Immunology.

  19. [Assessment on the yield loss risk of longan caused by cold damage in South China].

    PubMed

    Zhao, Jun-fang; Yu, Hui-kang

    2016-02-01

    Using daily climate variables gathered from 64 meteorological stations in South China from 1961 to 2012, recognized hazard indicators about disaster grades of cold damage for longan, and methods on agricultural meteorological disasters risk and simulation technology, the yield loss risks of longan caused by cold damage in South China during different developmental periods were assessed. The results showed that during the period of physiologic differentiation of flower bud, the disasters of longan affected by mild cold damage in South China were the most common, followed by severe cold damage and moderate cold damage. The hazards caused by cold damage under different grades varied. In particular, under mild cold damage, light disaster of longan was found in Fujian, followed by Guangdong and Hainan, and Guangxi was serious. Under moderate cold damage, light disaster of longan was found in Hainan, followed by Guangdong and Guangxi, and Fujian was serious. Under severe cold damage, light disaster of longan was found in Hainan, followed by Guangdong and Guangxi, Fujian was serious. During the period of morphologic differentiation of flower bud, the disasters of longan affected by mild cold damage in South China were the most common, followed by severe cold damage and moderate cold damage, while the disasters of longan under mild, moderate and severe cold damages within this period were similar. Specifically, light disasters of longan were all found in Hainan, followed by Guangdong, Guangxi and Fujian. During the period of dormancy, the disaster of longan affected by mild cold damage in South China was the most common, followed by severe cold damage and moderate cold damage. Under mild and severe cold damage, light disaster of longan was found in Fujian, followed by Guangdong and Hainan, and Guangxi was serious. However, under moderate cold damage, light disaster of longan was found in Hainan and Guangxi, followed by Guangdong, and Fujian was serious. At the same level

  20. Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats?

    PubMed

    Akdag, Mehmet Zulkuf; Dasdag, Suleyman; Canturk, Fazile; Karabulut, Derya; Caner, Yusuf; Adalier, Nur

    2016-09-01

    Wireless internet (Wi-Fi) providers have become essential in our daily lives, as wireless technology is evolving at a dizzying pace. Although there are different frequency generators, one of the most commonly used Wi-Fi devices are 2.4GHz frequency generators. These devices are heavily used in all areas of life but the effect of radiofrequency (RF) radiation emission on users is generally ignored. Yet, an increasing share of the public expresses concern on this issue. Therefore, this study intends to respond to the growing public concern. The purpose of this study is to reveal whether long term exposure of 2.4GHz frequency RF radiation will cause DNA damage of different tissues such as brain, kidney, liver, and skin tissue and testicular tissues of rats. The study was conducted on 16 adult male Wistar-Albino rats. The rats in the experimental group (n=8) were exposed to 2.4GHz frequency radiation for over a year. The rats in the sham control group (n=8) were subjected to the same experimental conditions except the Wi-Fi generator was turned off. After the exposure period was complete the possible DNA damage on the rat's brain, liver, kidney, skin, and testicular tissues was detected through the single cell gel electrophoresis assay (comet) method. The amount of DNA damage was measured as percentage tail DNA value. Based on the DNA damage results determined by the single cell gel electrophoresis (Comet) method, it was found that the% tail DNA values of the brain, kidney, liver, and skin tissues of the rats in the experimental group increased more than those in the control group. The increase of the DNA damage in all tissues was not significant (p>0.05). However the increase of the DNA damage in rat testes tissue was significant (p<0.01). In conclusion, long-term exposure to 2.4GHz RF radiation (Wi-Fi) does not cause DNA damage of the organs investigated in this study except testes. The results of this study indicated that testes are more sensitive organ to RF

  1. The Antagonistic Effect of Selenium on Cadmium-Induced Damage and mRNA Levels of Selenoprotein Genes and Inflammatory Factors in Chicken Kidney Tissue.

    PubMed

    Wang, Xinyue; Bao, Rongkun; Fu, Jing

    2018-02-01

    Selenium (Se) is a necessary trace mineral in the diet of humans and animals. Cadmium (Cd) is a toxic heavy metal that can damage animal organs, especially the kidneys. Antagonistic interactions between Se and Cd have been reported in previous studies. However, little is known about the effects of Se against Cd toxicity and on the mRNA levels of 25 selenoprotein genes and inflammatory factors in chicken kidneys. In the current study, we fed chickens with a Se-treated, Cd-treated, or Se/Cd treated diet for 90 days. We then analyzed the mRNA expression of inflammatory factors (including prostaglandin E synthase (PTGES), nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2)) and 25 selenoprotein genes (Gpx1, Gpx2, Gpx3, Gpx4, Txnrd1, Txnrd2, Txnrd3, Dio1, Dio2, Dio3, SPS2, Sepp1, SelPb, Sep15, Selh, Seli, Selm, Selo, Sels, Sepx1, Selu, Selk, Selw, Seln, Selt). The results demonstrated that Cd exposure increased the Cd content in the chicken kidneys, renal tubular epithelial cells underwent denaturation and necrosis, and the tubules became narrow or disappeared. However, Se supplementation reduced the Cd content in chicken kidneys and induced normal development of renal tubular epithelial cells. In addition, we also observed that Se alleviated the Cd-induced increase in the mRNA levels of inflammatory factors and ameliorated the Cd-induced downtrend in the mRNA levels of 25 selenoprotein genes in chicken kidneys.

  2. Vegetarian Diet in Chronic Kidney Disease—A Friend or Foe

    PubMed Central

    Gluba-Brzózka, Anna; Franczyk, Beata; Rysz, Jacek

    2017-01-01

    Healthy diet is highly important, especially in patients with chronic kidney disease (CKD). Proper nutrition provides the energy to perform everyday activities, prevents infection, builds muscle, and helps to prevent kidney disease from getting worse. However, what does a proper diet mean for a CKD patient? Nutrition requirements differ depending on the level of kidney function and the presence of co-morbid conditions, including hypertension, diabetes, and cardiovascular disease. The diet of CKD patients should help to slow the rate of progression of kidney failure, reduce uremic toxicity, decrease proteinuria, maintain good nutritional status, and lower the risk of kidney disease-related secondary complications (cardiovascular disease, bone disease, and hypertension). It has been suggested that plant proteins may exert beneficial effects on blood pressure, proteinuria, and glomerular filtration rate, as well as results in milder renal tissue damage when compared to animal proteins. The National Kidney Foundation recommends vegetarianism, or part-time vegetarian diet as being beneficial to CKD patients. Their recommendations are supported by the results of studies demonstrating that a plant-based diet may hamper the development or progression of some complications of chronic kidney disease, such as heart disease, protein loss in urine, and the progression of kidney damage. However, there are sparse reports suggesting that a vegan diet is not appropriate for CKD patients and those undergoing dialysis due to the difficulty in consuming enough protein and in maintaining proper potassium and phosphorus levels. Therefore, this review will focus on the problem as to whether vegetarian diet and its modifications are suitable for chronic kidney disease patients. PMID:28394274

  3. Vegetarian Diet in Chronic Kidney Disease-A Friend or Foe.

    PubMed

    Gluba-Brzózka, Anna; Franczyk, Beata; Rysz, Jacek

    2017-04-10

    Healthy diet is highly important, especially in patients with chronic kidney disease (CKD). Proper nutrition provides the energy to perform everyday activities, prevents infection, builds muscle, and helps to prevent kidney disease from getting worse. However, what does a proper diet mean for a CKD patient? Nutrition requirements differ depending on the level of kidney function and the presence of co-morbid conditions, including hypertension, diabetes, and cardiovascular disease. The diet of CKD patients should help to slow the rate of progression of kidney failure, reduce uremic toxicity, decrease proteinuria, maintain good nutritional status, and lower the risk of kidney disease-related secondary complications (cardiovascular disease, bone disease, and hypertension). It has been suggested that plant proteins may exert beneficial effects on blood pressure, proteinuria, and glomerular filtration rate, as well as results in milder renal tissue damage when compared to animal proteins. The National Kidney Foundation recommends vegetarianism, or part-time vegetarian diet as being beneficial to CKD patients. Their recommendations are supported by the results of studies demonstrating that a plant-based diet may hamper the development or progression of some complications of chronic kidney disease, such as heart disease, protein loss in urine, and the progression of kidney damage. However, there are sparse reports suggesting that a vegan diet is not appropriate for CKD patients and those undergoing dialysis due to the difficulty in consuming enough protein and in maintaining proper potassium and phosphorus levels. Therefore, this review will focus on the problem as to whether vegetarian diet and its modifications are suitable for chronic kidney disease patients.

  4. The beneficial effects of zinc on diabetes-induced kidney damage in murine rodent model of type 1 diabetes mellitus.

    PubMed

    Yang, Fan; Li, Bing; Dong, Xiaoming; Cui, Wenpeng; Luo, Ping

    2017-07-01

    Diabetes mellitus is a chronic multi-factorial metabolic disorder resulting from impaired glucose homeostasis. Zinc is a key co-factor for the correct functioning of anti-oxidant enzymes. Zinc deficiency therefore, impairs their synthesis, leading to increased oxidative stress within cells. Zinc deficiency occurs commonly in diabetic patients. The aim of this study is to investigate the effects of varying concentrations of zinc on diabetic nephropathy (DN) and the underlying mechanisms involved. FVB male mice aged 8 weeks were injected intraperitoneally with multiple low-dose streptozotocin at a concentration of 50mg/kg body weight daily for 5 days. Diabetic and age-matched control mice were treated with special diets supplemented with zinc at varying concentrations (0.85mg/kg, 30mg/kg, 150mg/kg) for 3 months. The mice were fed with zinc diets to mimic the process of oral administration of zinc in human. Zinc deficiency to some extent aggravated the damage of diabetic kidney. Feeding with normal (30mg/kg zinc/kg diet) and especially high (150mg/kg zinc/kg diet) concentration zinc could protect the kidney against diabetes-induced damage. The beneficial effects of zinc on DN are achieved most likely due to the upregulation of Nrf2 and its downstream factors NQO1, SOD1, SOD2. Zinc upregulated the expression of Akt phosphorylation and GSK-3β phosphorylation, resulting in a reduction in Fyn nuclear translocation and export of Nrf2 to the cytosol. Thus, regular monitoring and maintaining of adequate levels of zinc are recommended in diabetic individuals in order to delay the development of DN. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. A Disease-causing Mutation Illuminates the Protein Membrane Topology of the Kidney-expressed Prohibitin Homology (PHB) Domain Protein Podocin*

    PubMed Central

    Schurek, Eva-Maria; Völker, Linus A.; Tax, Judit; Lamkemeyer, Tobias; Rinschen, Markus M.; Ungrue, Denise; Kratz, John E.; Sirianant, Lalida; Kunzelmann, Karl; Chalfie, Martin; Schermer, Bernhard; Benzing, Thomas; Höhne, Martin

    2014-01-01

    Mutations in the NPHS2 gene are a major cause of steroid-resistant nephrotic syndrome, a severe human kidney disorder. The NPHS2 gene product podocin is a key component of the slit diaphragm cell junction at the kidney filtration barrier and part of a multiprotein-lipid supercomplex. A similar complex with the podocin ortholog MEC-2 is required for touch sensation in Caenorhabditis elegans. Although podocin and MEC-2 are membrane-associated proteins with a predicted hairpin-like structure and amino and carboxyl termini facing the cytoplasm, this membrane topology has not been convincingly confirmed. One particular mutation that causes kidney disease in humans (podocinP118L) has also been identified in C. elegans in genetic screens for touch insensitivity (MEC-2P134S). Here we show that both mutant proteins, in contrast to the wild-type variants, are N-glycosylated because of the fact that the mutant C termini project extracellularly. PodocinP118L and MEC-2P134S did not fractionate in detergent-resistant membrane domains. Moreover, mutant podocin failed to activate the ion channel TRPC6, which is part of the multiprotein-lipid supercomplex, indicative of the fact that cholesterol recruitment to the ion channels, an intrinsic function of both proteins, requires C termini facing the cytoplasmic leaflet of the plasma membrane. Taken together, this study demonstrates that the carboxyl terminus of podocin/MEC-2 has to be placed at the inner leaflet of the plasma membrane to mediate cholesterol binding and contribute to ion channel activity, a prerequisite for mechanosensation and the integrity of the kidney filtration barrier. PMID:24596097

  6. Clinical Significance of Persistent Global and Focal Computed Tomography Nephrograms After Cardiac Catheterization and Their Relationships to Urinary Biomarkers of Kidney Damage and Procedural Factors: Pilot Study.

    PubMed

    Chu, Lisa L; Katzberg, Richard W; Solomon, Richard; Southard, Jeffrey; Evans, Scott J; Li, Chin-Shang; McDonald, Jennifer S; Payne, Catherine; Boone, John M; RamachandraRao, Satish P

    2016-12-01

    We evaluate the relationships between persistent computed tomography (CT) nephrograms and acute kidney injury after cardiac catheterization (CC). We compare changes in urinary biomarkers kidney injury molecule 1 (KIM-1), cystatin C, and serum creatinine to procedural factors. From 159 eligible patients without renal insufficiency (estimated glomerular filtration rate >60 mL/min), 40 random patients (age range, 42-81 years; mean age, 64 years; 25 men, 15 women) gave written informed consent to undergo unenhanced CT limited to their kidneys 24 hours after CC. Semiquantitative assessment for global nephrograms and quantitative assessment of focal nephrograms in each kidney was performed. Computed tomography attenuation (Hounsfield units) of the renal cortex was measured. Serum creatinine, KIM-1, and cystatin C were measured before and 24 hours after CC. Robust linear regression showed that both relative changes in KIM-1 and cystatin C had positive relationships with kidney CT attenuation (P = 0.012 and 0.002, respectively). Spearman rank correlation coefficient showed that both absolute changes and relative changes in KIM-1 and cystatin C had positive correlations with global nephrogram grades (P = 0.025 and 0.040, respectively, for KIM-1; P = 0.013 and 0.019, respectively, for cystatin C). Global nephrograms on unenhanced CT in patients who have undergone CC are significantly correlated with changes in urinary biomarkers for kidney damage.

  7. [Causes of decreased use of peritoneal dialysis as a kidney replacement therapy in the Netherlands].

    PubMed

    Hemke, Aline C; Dekker, Friedo W; Bos, Willem Jan W; Krediet, Raymond T; Heemskerk, Martin B A; Hoitsma, Andries J

    2012-01-01

    To study the extent and causes of the declining use of peritoneal dialysis (PD) as kidney replacement therapy in patients with end-stage renal disease in the Netherlands. Retrospective cohort study. The prevalence and incidence of various kidney replacement therapies in the Netherlands from 1995 to 2010 were analysed. Also the 5-year outflow of patients on PD or haemodialysis (HD) from 1995 to 2006 was analysed using the cumulative incidence competing risks method and Cox regression analysis. The absolute number of patients starting PD between 1995 and 2008 was stable at about 400 per year. There was a relative decline in the use of PD in the total dialysis population from 15% in 1995 to 8% in 2010. This decrease was seen in both large and small centres and was related to a relative increase in the numbers undergoing HD (67% before 2001, 74% in 2009), and kidney transplantation before dialysis (3% before 2002, 9% in 2009), as well as a decrease in change of therapy from HD to PD. The increased number starting on HD was associated with the growth of the incident patient group aged 65 years or older, most of whom (80-85%) underwent HD. Within the younger group (0-65 years) there was an increase in numbers on HD and in the number of pre-emptive transplantations. The decline in the prevalence of PD was partly explained by the relative increase in numbers starting HD, associated with an ageing patient population, fewer people changing from HD to PD therapy, and the increased number of kidney transplantations before dialysis in younger patients. The increasing prevalence of HD has been made possible by growth of the HD capacity.

  8. An in vivo photodynamic therapy with diode laser to cell activation of kidney dysfunction

    NASA Astrophysics Data System (ADS)

    Dyah Astuti, Suryani; Indra Prasaja, Brahma; Anggono Prijo, Tri

    2017-05-01

    This study aims to analyze the effect of photodynamic therapy (PDT) low level laser therapy (LLLT) 650 nm in the experimental animals mice (Musmuculus) suffering from kidney organ damage in mice (Musmuculus) in vivo. Exposure laser acupuncture was performed on the kidney BL-23. The conditioning of kidney damage in mice used carbofuraan 35 at a dose of 0.041697 mg/mice. LLLT 650 nm exposure was done on a wide variety of energy (0.5; 1.0; 1.5; 2.0; 4.0; 5.0; 6.0; 7.0) J. The histopathological kidney cells in mice renal impairment showed that exposure to 650 nm laser energy 1 Joule resulted in the reduction of damaged cells (necrosis) and normal cells were increased with the improvement of renal tubular cells (64.14 ± 8:02)%. Therefore, exposure to 650 nm LLLT on acupuncture points Shenshu (BL-23) has the ability to proliferation of renal tubular cells of mice.

  9. Judo as a possible cause of anoxic brain damage. A case report.

    PubMed

    Owens, R G; Ghadiali, E J

    1991-12-01

    The rules of judo provide for strangulation techniques in which the blood supply to the brain is blocked by pressure on the carotid arteries; such techniques produce anoxia and possible unconsciousness if the victim fails to submit. A case is presented of a patient with signs of anoxic brain damage, with psychometric investigation showing memory disturbance consistent with a left temporal lobe lesion. This patient had been frequently strangled during his career as a judo player; it is suggested that such frequent strangulation was the cause of the damage. Such an observation indicates the need for caution in the use of such techniques.

  10. Kidney epithelium specific deletion of kelch-like ECH-associated protein 1 (Keap1) causes hydronephrosis in mice.

    PubMed

    Noel, Sanjeev; Arend, Lois J; Bandapalle, Samatha; Reddy, Sekhar P; Rabb, Hamid

    2016-08-02

    Transcription factor Nrf2 protects from experimental acute kidney injury (AKI) and is promising to limit progression in human chronic kidney disease (CKD) by upregulating multiple antioxidant genes. We recently demonstrated that deletion of Keap1, the endogenous inhibitor of Nrf2, in T lymphocytes significantly protects from AKI. In this study, we investigated the effect of Keap1 deletion on Nrf2 mediated antioxidant response in the renal tubular epithelial cells. We deleted Keap1 exon 2 and 3 in the renal tubular epithelial cells by crossing Ksp-Cre mice with Keap1 floxed (Keap1 (f/f)) mice. Deletion of Keap1 gene in the kidney epithelial cells of Ksp-Keap1 (-/-) mice and its effect on Nrf2 target gene expression was performed using PCR and real-time PCR respectively. Histological evaluation was performed on H&E stained sections. Complete blood count, serum and urine analysis were performed to assess systemic effects of defective kidney development. Student's T test was used to determine statistical difference between the groups. Ksp-Cre resulted in the deletion of Keap1 exon 2 and 3 and subsequent upregulation of Nrf2 target genes, Nqo1, Gclm and Gclc in the kidney epithelial cells of Ksp-Keap1 (-/-) mice at baseline. Renal epithelial cell specific deletion of Keap1 in Ksp-Keap1 (-/-) mice caused marked renal pelvic expansion and significant compression of medullary parenchyma consistent with hydronephrosis in both (3 month-old) males and females. Kidneys from 6 month-old Ksp-Keap1 (-/-) mice showed progressive hydronephrosis. Hematological, biochemical and urinary analysis showed significantly higher red blood cell count (p = 0.04), hemoglobin (p = 0.01), hematocrit (p = 0.02), mean cell volume (p = 0.02) and mean cell hemoglobin concentration (p = 0.003) in Ksp-Keap1 (-/-) mice in comparison to Keap1 (f/f) mice. These unexpected findings demonstrate that Keap1 deletion in renal tubular epithelial cells results in an abnormal kidney

  11. At Risk for Kidney Disease?

    MedlinePlus

    ... in Adults Preventing CKD What If My Kidneys Fail? Clinical Trials Anemia High Blood Pressure Pour les personnes atteintes de diabète ou d’hypertension artérielle Heart Disease Mineral & Bone Disorder Causes of Chronic Kidney ...

  12. Bioengineering Kidneys for Transplantation

    PubMed Central

    Madariaga, Maria Lucia L.; Ott, Harald C.

    2014-01-01

    One in ten Americans suffer from chronic kidney disease, and close to 90,000 people die each year from causes related to kidney failure. Patients with end-stage renal disease are faced with two options: hemodialysis or transplantation. Unfortunately, the reach of transplantation is limited because of the shortage of donor organs and the need for immunosuppression. Bioengineered kidney grafts theoretically present a novel solution to both problems. Herein we discuss the history of bioengineering organs, the current status of bioengineered kidneys, considerations for the future of the field, and challenges to clinical translation. We hope that by integrating principles of tissue engineering, and stem cell and developmental biology, bioengineered kidney grafts will advance the field of regenerative medicine while meeting a critical clinical need. PMID:25217267

  13. Unrepaired DNA damage in macrophages causes elevation of particulate matter- induced airway inflammatory response.

    PubMed

    Luo, Man; Bao, Zhengqiang; Xu, Feng; Wang, Xiaohui; Li, Fei; Li, Wen; Chen, Zhihua; Ying, Songmin; Shen, Huahao

    2018-04-14

    The inflammatory cascade can be initiated with the recognition of damaged DNA. Macrophages play an essential role in particulate matter (PM)-induced airway inflammation. In this study, we aim to explore the PM induced DNA damage response of macrophages and its function in airway inflammation. The DNA damage response and inflammatory response were assessed using bone marrow-derived macrophages following PM treatment and mouse model instilled intratracheally with PM. We found that PM induced significant DNA damage both in vitro and in vivo and simultaneously triggered a rapid DNA damage response, represented by nuclear RPA, 53BP1 and γH2AX foci formation. Genetic ablation or chemical inhibition of the DNA damage response sensor amplified the production of cytokines including Cxcl1, Cxcl2 and Ifn-γ after PM stimulation in bone marrow-derived macrophages. Similar to that seen in vitro , mice with myeloid-specific deletion of RAD50 showed higher levels of airway inflammation in response to the PM challenge, suggesting a protective role of DNA damage sensor during inflammation. These data demonstrate that PM exposure induces DNA damage and activation of DNA damage response sensor MRN complex in macrophages. Disruption of MRN complex lead to persistent, unrepaired DNA damage that causes elevated inflammatory response.

  14. HANAC Syndrome Col4a1 Mutation Causes Neonate Glomerular Hyperpermeability and Adult Glomerulocystic Kidney Disease

    PubMed Central

    Chen, Zhiyong; Migeon, Tiffany; Verpont, Marie-Christine; Zaidan, Mohamad; Sado, Yoshikazu; Kerjaschki, Dontscho; Ronco, Pierre

    2016-01-01

    Hereditary angiopathy, nephropathy, aneurysms, and muscle cramps (HANAC) syndrome is an autosomal dominant syndrome caused by mutations in COL4A1 that encodes the α1 chain of collagen IV, a major component of basement membranes. Patients present with cerebral small vessel disease, retinal tortuosity, muscle cramps, and kidney disease consisting of multiple renal cysts, chronic kidney failure, and sometimes hematuria. Mutations producing HANAC syndrome localize within the integrin binding site containing CB3[IV] fragment of the COL4A1 protein. To investigate the pathophysiology of HANAC syndrome, we generated mice harboring the Col4a1 p.Gly498Val mutation identified in a family with the syndrome. Col4a1 G498V mutation resulted in delayed glomerulogenesis and podocyte differentiation without reduction of nephron number, causing albuminuria and hematuria in newborns. The glomerular defects resolved within the first month, but glomerular cysts developed in 3-month-old mutant mice. Abnormal structure of Bowman’s capsule was associated with metalloproteinase induction and activation of the glomerular parietal epithelial cells that abnormally expressed CD44, α-SMA, ILK, and DDR1. Inflammatory infiltrates were observed around glomeruli and arterioles. Homozygous Col4a1 G498V mutant mice additionally showed dysmorphic papillae and urinary concentration defects. These results reveal a developmental role for the α1α1α2 collagen IV molecule in the embryonic glomerular basement membrane, affecting podocyte differentiation. The observed association between molecular alteration of the collagenous network in Bowman’s capsule of the mature kidney and activation of parietal epithelial cells, matrix remodeling, and inflammation may account for glomerular cyst development and CKD in patients with COL4A1-related disorders. PMID:26260163

  15. HANAC Syndrome Col4a1 Mutation Causes Neonate Glomerular Hyperpermeability and Adult Glomerulocystic Kidney Disease.

    PubMed

    Chen, Zhiyong; Migeon, Tiffany; Verpont, Marie-Christine; Zaidan, Mohamad; Sado, Yoshikazu; Kerjaschki, Dontscho; Ronco, Pierre; Plaisier, Emmanuelle

    2016-04-01

    Hereditary angiopathy, nephropathy, aneurysms, and muscle cramps (HANAC) syndrome is an autosomal dominant syndrome caused by mutations in COL4A1 that encodes the α1 chain of collagen IV, a major component of basement membranes. Patients present with cerebral small vessel disease, retinal tortuosity, muscle cramps, and kidney disease consisting of multiple renal cysts, chronic kidney failure, and sometimes hematuria. Mutations producing HANAC syndrome localize within the integrin binding site containing CB3[IV] fragment of the COL4A1 protein. To investigate the pathophysiology of HANAC syndrome, we generated mice harboring the Col4a1 p.Gly498Val mutation identified in a family with the syndrome. Col4a1 G498V mutation resulted in delayed glomerulogenesis and podocyte differentiation without reduction of nephron number, causing albuminuria and hematuria in newborns. The glomerular defects resolved within the first month, but glomerular cysts developed in 3-month-old mutant mice. Abnormal structure of Bowman's capsule was associated with metalloproteinase induction and activation of the glomerular parietal epithelial cells that abnormally expressed CD44,α-SMA, ILK, and DDR1. Inflammatory infiltrates were observed around glomeruli and arterioles. Homozygous Col4a1 G498V mutant mice additionally showed dysmorphic papillae and urinary concentration defects. These results reveal a developmental role for the α1α1α2 collagen IV molecule in the embryonic glomerular basement membrane, affecting podocyte differentiation. The observed association between molecular alteration of the collagenous network in Bowman's capsule of the mature kidney and activation of parietal epithelial cells, matrix remodeling, and inflammation may account for glomerular cyst development and CKD in patients with COL4A1-related disorders. Copyright © 2016 by the American Society of Nephrology.

  16. Assessment of infrastructure functional damages caused by natural-technological disasters

    NASA Astrophysics Data System (ADS)

    Massabò, Marco; Trasforini, Eva; Traverso, Stefania; Rudari, Roberto; De Angeli, Silvia; Cecinati, Francesca; Cerruti, Valentina

    2013-04-01

    The assessment of infrastructure damages caused by technological disaster poses several challenges, from gathering needed information on the territorial system to the definition of functionality curves for infrastructures elements (such as, buildings, road school) that are exposed to both natural and technological event. Moreover, areas affected by natural or natech (technological disasters triggered by natural events) disasters have often very large extensions and a rapid survey of them to gather all the needed information is a very difficult task, for many reasons, not least the difficult access to the existing databases and resources. We use multispectral optical imagery with other geographical and unconventional data to identify and characterize exposed elements. Our efforts in the virtual survey and during the investigation steps have different aims: to identify the vulnerability of infrastructures, buildings or activities; to execute calculations of exposition to risk; to estimate physical and functional damages. Subsequently, we apply specific algorithms to estimate values of acting forces and physical and functional damages. The updated picture of target areas in terms of risk-prone people, infrastructures and their connections is very important. It is possible to develop algorithms providing values of systemic functionality for each network element. The methodology is here applied to a natech disaster, arising from the combination of a flood event (specifically, the January 2010 flooding of Drin and Buna rivers, with a worsening in the road safety levels in the Shkoder area) with and the subsequent overturning of a truck transporting hazardous material. The accident causes the loss of containment and the total material release. Once the release has taken place, the evolution will depend on the physical state of the substance spilled (liquid, gas or dust). As a specific case we consider the rupture of a trucks transporting liquid fuels such as gasoline

  17. Kidney-Heart Interactions in Acute Kidney Injury.

    PubMed

    Doi, Kent

    2016-01-01

    Acute kidney injury (AKI) is a common complication in critically ill patients treated in intensive care units. Renal replacement therapy (RRT)-requiring AKI occurs in approximately 5-10% patients in intensive care unit and their mortality rate is unacceptably high (50-60%), despite sufficient control of uremia using remarkably advanced modern RRT techniques. This suggests that there are unrecognized organ interactions following AKI that could worsen the outcomes. Cardiorenal syndrome has been defined based on clinical observations that acute and chronic heart failure causes kidney injury and AKI and that chronic kidney disease worsens heart diseases. Possible pathways that connect these 2 organs have been suggested; however, the precise mechanisms are yet to be clarified, particularly in AKI-induced cardiac dysfunction. This review focuses on acute cardiac dysfunction in the setting of AKI. A recent animal study demonstrated the dysregulation of mitochondrial dynamics caused by an increased dynamin-related protein 1 expression and cellular apoptosis of the heart in a renal ischemia reperfusion model. Although the precise mechanisms that induce cardiac mitochondrial injury in AKI remain unclear, cardiac mitochondria injury could be a novel candidate of drug targets against high mortality in severe AKI. © 2016 S. Karger AG, Basel.

  18. Women and kidney disease: reflections on World Kidney Day 2018.

    PubMed

    Piccoli, Giorgina B; Alrukhaimi, Mona; Liu, Zhi-Hong; Zakharova, Elena; Levin, Adeera

    2018-02-01

    Chronic kidney disease affects ∼10% of the world's adult population: it is within the top 20 causes of death worldwide, and its impact on patients and their families can be devastating. World Kidney Day and International Women's Day in 2018 coincide, thus offering an opportunity to reflect on the importance of women's health, and specifically their kidney health, to the community and the next generations, as well as to strive to be more curious about the unique aspects of kidney disease in women, so that we may apply those learnings more broadly. Girls and women, who make up ∼50% of the world's population, are important contributors to society as a whole and to their families. Gender differences continue to exist around the world in access to education, medical care and participation in clinical studies. Pregnancy is a unique state for women, offering an opportunity for diagnosis of kidney disease, and also a state where acute and chronic kidney diseases may manifest, and which may impact future generations with respect to kidney health. There are various autoimmune and other conditions that are more likely to impact women with profound consequences for child bearing, and for the fetus. Women have different complications on dialysis than men, and are more likely to be donors than recipients of kidney transplants. In this editorial, we focus on what we do and do not know about women, kidney health and kidney disease, and what we might learn in the future to improve outcomes worldwide.

  19. Women and kidney disease: reflections on World Kidney Day 2018

    PubMed Central

    Piccoli, Giorgina B; Alrukhaimi, Mona; Liu, Zhi-Hong; Zakharova, Elena

    2018-01-01

    Abstract Chronic kidney disease affects ∼10% of the world’s adult population: it is within the top 20 causes of death worldwide, and its impact on patients and their families can be devastating. World Kidney Day and International Women’s Day in 2018 coincide, thus offering an opportunity to reflect on the importance of women’s health, and specifically their kidney health, to the community and the next generations, as well as to strive to be more curious about the unique aspects of kidney disease in women, so that we may apply those learnings more broadly. Girls and women, who make up ∼50% of the world’s population, are important contributors to society as a whole and to their families. Gender differences continue to exist around the world in access to education, medical care and participation in clinical studies. Pregnancy is a unique state for women, offering an opportunity for diagnosis of kidney disease, and also a state where acute and chronic kidney diseases may manifest, and which may impact future generations with respect to kidney health. There are various autoimmune and other conditions that are more likely to impact women with profound consequences for child bearing, and for the fetus. Women have different complications on dialysis than men, and are more likely to be donors than recipients of kidney transplants. In this editorial, we focus on what we do and do not know about women, kidney health and kidney disease, and what we might learn in the future to improve outcomes worldwide. PMID:29435267

  20. Women and Kidney Disease: Reflections on World Kidney Day 2018.

    PubMed

    Piccoli, Giorgina B; Alrukhaimi, Mona; Liu, Zhi-Hong; Zakharova, Elena; Levin, Adeera

    2018-03-01

    : Chronic kidney disease aff ects approximately 10% of the world's adult population: it is within the top 20 causes of death worldwide, and its impact on patients and their families can be devastating. World Kidney Day and International Women's Day in 2018 coincide, thus off ering an opportunity to refl ect on the importance of women's health and specifically their kidney health, on the community, and the next generations, as well as to strive to be more curious about the unique aspects of kidney disease in women so that we may apply those learnings more broadly. Girls and women, who make up approximately 50% of the world's population, are important contributors to society and their families. Sex diff erences continue to exist around the world in access to education, medical care, and participation in clinical studies. Pregnancy is a unique state for women, off ering an opportunity for diagnosis of kidney disease, but also a state in which acute and chronic kidney diseases may manifest, and which may impact future generations with respect to kidney health. There are various autoimmune and other conditions that are more likely to impact women with profound consequences for child bearing, and on the fetus. Women have diff erent complications on dialysis than men and are more likely to be donors than recipients of kidney transplants.In this editorial, we focus on what we do and do not know about women, kidney health, and kidney disease, and what we might learn in the future to improve outcomes worldwide.

  1. Diabetic kidney disease.

    PubMed

    Thomas, Merlin C; Brownlee, Michael; Susztak, Katalin; Sharma, Kumar; Jandeleit-Dahm, Karin A M; Zoungas, Sophia; Rossing, Peter; Groop, Per-Henrik; Cooper, Mark E

    2015-07-30

    The kidney is arguably the most important target of microvascular damage in diabetes. A substantial proportion of individuals with diabetes will develop kidney disease owing to their disease and/or other co-morbidity, including hypertension and ageing-related nephron loss. The presence and severity of chronic kidney disease (CKD) identify individuals who are at increased risk of adverse health outcomes and premature mortality. Consequently, preventing and managing CKD in patients with diabetes is now a key aim of their overall management. Intensive management of patients with diabetes includes controlling blood glucose levels and blood pressure as well as blockade of the renin-angiotensin-aldosterone system; these approaches will reduce the incidence of diabetic kidney disease and slow its progression. Indeed, the major decline in the incidence of diabetic kidney disease (DKD) over the past 30 years and improved patient prognosis are largely attributable to improved diabetes care. However, there remains an unmet need for innovative treatment strategies to prevent, arrest, treat and reverse DKD. In this Primer, we summarize what is now known about the molecular pathogenesis of CKD in patients with diabetes and the key pathways and targets implicated in its progression. In addition, we discuss the current evidence for the prevention and management of DKD as well as the many controversies. Finally, we explore the opportunities to develop new interventions through urgently needed investment in dedicated and focused research. For an illustrated summary of this Primer, visit: http://go.nature.com/NKHDzg.

  2. Transcriptomic analysis on responses of the liver and kidney of finishing pigs fed cadmium contaminated rice.

    PubMed

    Xia, Yaoyao; Li, Jun; Ren, Wenkai; Feng, Zemeng; Huang, Ruilin; Yin, Yulong

    2018-06-01

    Cadmium (Cd) is a common harmful substance that has many deleterious effects on the liver and kidney. Most reports about Cd toxic studies focused on its inorganic status, whereas the toxicity of Cd in organic materials is less studied. Here, we performed RNA-seq to explore the influences of Cd contaminated rice on function of the liver and kidney of finishing pigs. The concentration of Cd in liver and kidney of pigs fed Cd contaminated rice increased by 4.00 and 2.94 times, respectively, compared to those in the control group. With transcriptomic analysis, approximately 4-6 × 10 7 clean reads were acquired. Five differently expressed genes (DEGs) were identified in the liver, and 12 DEGs in the kidney. SPHK2 was commonly down-regulated. No significantly enriched gene ontology (GO) terms were identified. By Kyoto encyclopaedia of genes and genomes (KEGG) enrichments, four pathways were identified in hepatic tissue, and five pathways in nephritic tissue. Intriguingly, two pathways (sphingolipid metabolism and VEGF signalling pathway) were altered both in the liver and kidney. Cd contaminated rice may cause liver and kidney damage and inflammation, or even lead to more severe harm to these tissues. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. In vitro and in vivo studies of Allium sativum extract against deltamethrin-induced oxidative stress in rats brain and kidney.

    PubMed

    Ncir, Marwa; Saoudi, Mongi; Sellami, Hanen; Rahmouni, Fatma; Lahyani, Amina; Makni Ayadi, Fatma; El Feki, Abdelfattah; Allagui, Mohamed Salah

    2017-09-18

    The present study investigated the in vitro and the in vivo antioxidant capacities of Allium sativum (garlic) extract against deltamethrin-induced oxidative damage in rat's brain and kidney. The in vitro result showed that highest extraction yield was achieved with methanol (20.08%). Among the tested extracts, the methanol extract exhibited the highest total phenolic, flavonoids contents and antioxidant activity. The in vivo results showed that deltamethrin treatment caused an increase of the acetylcholinesterase level (AChE) in brain and plasma, the brain and kidney conjugated dienes and lipid peroxidation (LPO) levels as compared to control group. The antioxidant enzymes results showed that deltamethrin treatment induced a significantly decrease (p < 0.01) in brain and kidney antioxidant enzymes as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) to control group. The co-administration of garlic extract reduced the toxic effects in brain and kidney tissues induced by deltamethrin.

  4. Methoxychlor causes mitochondrial dysfunction and oxidative damage in the mouse ovary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, R.K.; Schuh, R.A.; Department of Anesthesiology, University of Maryland, Baltimore, MD

    2006-11-01

    Methoxychlor (MXC) is an organochlorine pesticide that reduces fertility in female rodents by causing ovarian atrophy, persistent estrous cyclicity, and antral follicle atresia (apoptotic cell death). Oxidative damage resulting from reactive oxygen species (ROS) generation has been demonstrated to lead to toxicant-induced cell death. Thus, this work tested the hypothesis that MXC causes oxidative damage to the mouse ovary and affects mitochondrial respiration in a manner that stimulates ROS production. For the in vitro experiments, mitochondria were collected from adult cycling mouse ovaries, treated with vehicle (dimethyl sulfoxide; DMSO) or MXC, and subjected to polarographic measurements of respiration. For themore » in vivo experiments, adult cycling CD-1 mice were dosed with either vehicle (sesame oil) or MXC for 20 days. After treatment, ovarian mitochondria were isolated and subjected to measurements of respiration and fluorimetric measurements of H{sub 2}O{sub 2} production. Some ovaries were also fixed and processed for immunohistochemistry using antibodies for ROS production markers: nitrotyrosine and 8-hydroxy-2'-deoxyguanosine (8-OHG). Ovaries from in vivo experiments were also used to measure the mRNA expression and activity of antioxidants such as Cu/Zn superoxide dismutase (SOD1), glutathione peroxidase (GPX), and catalase (CAT). The results indicate that MXC significantly impairs mitochondrial respiration, increases production of H{sub 2}O{sub 2}, causes more staining for nitrotyrosine and 8-OHG in antral follicles, and decreases the expression and activity of SOD1, GPX, and CAT as compared to controls. Collectively, these data indicate that MXC inhibits mitochondrial respiration, causes ROS production, and decreases antioxidant expression and activity in the ovary, specifically in the antral follicles. Therefore, it is possible that MXC causes atresia of ovarian antral follicles by inducing oxidative stress through mitochondrial production of ROS.« less

  5. Flavonoids in Kidney Health and Disease

    PubMed Central

    Vargas, Félix; Romecín, Paola; García-Guillén, Ana I.; Wangesteen, Rosemary; Vargas-Tendero, Pablo; Paredes, M. Dolores; Atucha, Noemí M.; García-Estañ, Joaquín

    2018-01-01

    This review summarizes the latest advances in knowledge on the effects of flavonoids on renal function in health and disease. Flavonoids have antihypertensive, antidiabetic, and antiinflammatory effects, among other therapeutic activities. Many of them also exert renoprotective actions that may be of interest in diseases such as glomerulonephritis, diabetic nephropathy, and chemically-induced kidney insufficiency. They affect several renal factors that promote diuresis and natriuresis, which may contribute to their well-known antihypertensive effect. Flavonoids prevent or attenuate the renal injury associated with arterial hypertension, both by decreasing blood pressure and by acting directly on the renal parenchyma. These outcomes derive from their interference with multiple signaling pathways known to produce renal injury and are independent of their blood pressure-lowering effects. Oral administration of flavonoids prevents or ameliorates adverse effects on the kidney of elevated fructose consumption, high fat diet, and types I and 2 diabetes. These compounds attenuate the hyperglycemia-disrupted renal endothelial barrier function, urinary microalbumin excretion, and glomerular hyperfiltration that results from a reduction of podocyte injury, a determinant factor for albuminuria in diabetic nephropathy. Several flavonoids have shown renal protective effects against many nephrotoxic agents that frequently cause acute kidney injury (AKI) or chronic kidney disease (CKD), such as LPS, gentamycin, alcohol, nicotine, lead or cadmium. Flavonoids also improve cisplatin- or methotrexate-induced renal damage, demonstrating important actions in chemotherapy, anticancer and renoprotective effects. A beneficial prophylactic effect of flavonoids has been also observed against AKI induced by surgical procedures such as ischemia/reperfusion (I/R) or cardiopulmonary bypass. In several murine models of CKD, impaired kidney function was significantly improved by the administration

  6. Flavonoids in Kidney Health and Disease.

    PubMed

    Vargas, Félix; Romecín, Paola; García-Guillén, Ana I; Wangesteen, Rosemary; Vargas-Tendero, Pablo; Paredes, M Dolores; Atucha, Noemí M; García-Estañ, Joaquín

    2018-01-01

    This review summarizes the latest advances in knowledge on the effects of flavonoids on renal function in health and disease. Flavonoids have antihypertensive, antidiabetic, and antiinflammatory effects, among other therapeutic activities. Many of them also exert renoprotective actions that may be of interest in diseases such as glomerulonephritis, diabetic nephropathy, and chemically-induced kidney insufficiency. They affect several renal factors that promote diuresis and natriuresis, which may contribute to their well-known antihypertensive effect. Flavonoids prevent or attenuate the renal injury associated with arterial hypertension, both by decreasing blood pressure and by acting directly on the renal parenchyma. These outcomes derive from their interference with multiple signaling pathways known to produce renal injury and are independent of their blood pressure-lowering effects. Oral administration of flavonoids prevents or ameliorates adverse effects on the kidney of elevated fructose consumption, high fat diet, and types I and 2 diabetes. These compounds attenuate the hyperglycemia-disrupted renal endothelial barrier function, urinary microalbumin excretion, and glomerular hyperfiltration that results from a reduction of podocyte injury, a determinant factor for albuminuria in diabetic nephropathy. Several flavonoids have shown renal protective effects against many nephrotoxic agents that frequently cause acute kidney injury (AKI) or chronic kidney disease (CKD), such as LPS, gentamycin, alcohol, nicotine, lead or cadmium. Flavonoids also improve cisplatin- or methotrexate-induced renal damage, demonstrating important actions in chemotherapy, anticancer and renoprotective effects. A beneficial prophylactic effect of flavonoids has been also observed against AKI induced by surgical procedures such as ischemia/reperfusion (I/R) or cardiopulmonary bypass. In several murine models of CKD, impaired kidney function was significantly improved by the administration

  7. Cavitation Bubble Cluster Activity in the Breakage of Kidney Stones by Lithotripter Shock Waves

    PubMed Central

    Pishchalnikov, Yuriy A.; Sapozhnikov, Oleg A.; Bailey, Michael R.; Williams, James C.; Cleveland, Robin O.; Colonius, Tim; Crum, Lawrence A.; Evan, Andrew P.; McAteer, James A.

    2008-01-01

    High-speed photography was used to analyze cavitation bubble activity at the surface of artificial and natural kidney stones during exposure to lithotripter shock waves in vitro. Numerous individual bubbles formed at the surface of stones, but these bubbles did not remain independent and combined with one another to form bubble clusters. Bubble clusters formed at the proximal end, the distal end, and at the sides of stones. Each cluster collapsed to a narrow point of impact. Collapse of the proximal cluster caused erosion at the leading face of the stone and the collapse of clusters at the sides of stones appeared to contribute to the growth of cracks. Collapse of the distal cluster caused minimal damage. We conclude that cavitation-mediated damage to stones was due not to the action of solitary bubbles, but to the growth and collapse of bubble clusters. PMID:14565872

  8. The impact of aluminum, fluoride, and aluminum-fluoride complexes in drinking water on chronic kidney disease.

    PubMed

    Wasana, Hewa M S; Perera, Gamage D R K; De Gunawardena, Panduka S; Bandara, Jayasundera

    2015-07-01

    It is suspected that drinking water containing fluoride and aluminum results in negative health effects especially on brain, liver, and kidney. In this investigation, the effect of F, Al, and AlFx complex on chronic kidney disease (CKD) was investigated. Mice were treated either with WHO recommended or slightly higher F and Al levels in drinking water. Treatment solutions contained 0.05-10.0 mg/L of F, 0.08-10.0 mg/L of Al, or 0.07-15 mg/L of AlFx, and the treatment period was 42 weeks. Blood urea level and creatinine levels were investigated as a measure of malfunction of kidneys. Histopathological evaluations of kidney tissues were carried out to assess the extent of damage that F, Al, and AlFx complex could cause. It was demonstrated that the treated drinking water containing F and Al with par with WHO or moderately above the WHO levels or AlFx in low level (0.07-15 mg/L) does not lead to CKD in mice.

  9. Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage.

    PubMed

    Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J; Korangy, Firouzeh; Greten, Tim F

    2014-01-01

    Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.

  10. Tumor Induced Hepatic Myeloid Derived Suppressor Cells Can Cause Moderate Liver Damage

    PubMed Central

    Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J.; Korangy, Firouzeh; Greten, Tim F.

    2014-01-01

    Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage. PMID:25401795

  11. Do native parasitic plants cause more damage to exotic invasive hosts than native non-invasive hosts? An implication for biocontrol.

    PubMed

    Li, Junmin; Jin, Zexin; Song, Wenjing

    2012-01-01

    Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community.

  12. Do Native Parasitic Plants Cause More Damage to Exotic Invasive Hosts Than Native Non-Invasive Hosts? An Implication for Biocontrol

    PubMed Central

    Li, Junmin; Jin, Zexin; Song, Wenjing

    2012-01-01

    Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community. PMID:22493703

  13. Large Renal Corpuscle: Clinical Significance of Evaluation of the Largest Renal Corpuscle in Kidney Biopsy Specimens.

    PubMed

    Kataoka, Hiroshi; Mochizuki, Toshio; Nitta, Kosaku

    2018-01-01

    Renal prognostic factors of chronic kidney disease are important concerns for patients. Kidney biopsy can be used to evaluate not only the activity of the original disease but also various risk factors related to the lifestyle of patients. Considering that lifestyle-related factors, including obesity and metabolic syndrome, are crucial prognostic risk factors of kidney disease progression and all-cause mortality, evaluation of lifestyle-related prognostic factors in kidney biopsy of all kidney diseases is important. Renal corpuscle size (glomerular size) is an easily measured parameter and potentially acts as a predictor of long-term renal function. Large renal corpuscle found on kidney biopsy is a classic and simple indicator, and has merit owing to its quantitative nature, but it has yet to be used to its full potential in clinical settings. Large renal corpuscle is an index that includes not only the activity of the original disease but also the damage of various metabolic risk states as represented by obesity, diabetes, and metabolic syndrome. Large renal corpuscles could be used to guide therapy. In this review, after identifying the pitfalls regarding the assessment of mean values in medical research, we propose that measurement of the maximum renal corpuscle profile (glomerular profile) in renal biopsies would provide valuable insights into the diagnosis, prognosis, and management of kidney diseases. © 2018 S. Karger AG, Basel.

  14. Scattered Deletion of PKD1 in Kidneys Causes a Cystic Snowball Effect and Recapitulates Polycystic Kidney Disease

    PubMed Central

    Leonhard, Wouter N.; Zandbergen, Malu; Veraar, Kimberley; van den Berg, Susan; van der Weerd, Louise; Breuning, Martijn; de Heer, Emile

    2015-01-01

    In total, 1 in 1000 individuals carries a germline mutation in the PKD1 or PKD2 gene, which leads to autosomal dominant polycystic kidney disease (ADPKD). Cysts can form early in life and progressively increase in number and size during adulthood. Extensive research has led to the presumption that somatic inactivation of the remaining allele initiates the formation of cysts, and the progression is further accelerated by renal injury. However, this hypothesis is primarily on the basis of animal studies, in which the gene is inactivated simultaneously in large percentages of kidney cells. To mimic human ADPKD in mice more precisely, we reduced the percentage of Pkd1-deficient kidney cells to 8%. Notably, no pathologic changes occurred for 6 months after Pkd1 deletion, and additional renal injury increased the likelihood of cyst formation but never triggered rapid PKD. In mildly affected mice, cysts were not randomly distributed throughout the kidney but formed in clusters, which could be explained by increased PKD-related signaling in not only cystic epithelial cells but also, healthy-appearing tubules near cysts. In the majority of mice, these changes preceded a rapid and massive onset of severe PKD that was remarkably similar to human ADPKD. Our data suggest that initial cysts are the principal trigger for a snowball effect driving the formation of new cysts, leading to the progression of severe PKD. In addition, this approach is a suitable model for mimicking human ADPKD and can be used for preclinical testing. PMID:25361818

  15. [Autosomal dominant polycystic kidney].

    PubMed

    Jorge Adad, S; Estevão Barbosa, M; Fácio Luíz, J M; Furlan Rodrigues, M C; Iwamoto, S

    1996-01-01

    A 48-year-old male had autosomic dominant polycystic kidneys with dimensions, to the best of our knowledge, never previously reported; the right kidney weighed 15,100 g and measured 53 x 33 x 9cm and the left one 10.200 g and 46 x 21 x 7cm, with cysts measuring up to 14cm in diameter. Nephrectomy was done to control persistent hematuria and to relief disconfort caused by the large kidneys. The renal function is stable four years after transplantation.

  16. ROLE OF THE RENAL MICROCIRCULATION IN PROGRESSION OF CHRONIC KIDNEY INJURY IN OBESITY

    PubMed Central

    Chade, Alejandro R.; Hall, John E.

    2016-01-01

    Background Obesity is largely responsible for the growing incidence and prevalence of diabetes, cardiovascular, and renal disease. Current strategies to prevent and treat obesity and its consequences have been insufficient to reverse the ongoing trends. Lifestyle modification or pharmacological therapies often produce modest weight loss which is not sustained and recurrence of obesity is frequently observed, leading to progression of target organ damage in many obese subjects. Therefore, research efforts have focused not only on the factors that regulate energy balance, but also on understanding mechanisms of target organ injury in obesity. Summary and Key message Microvascular disease plays a pivotal role in progressive kidney injury from different etiologies such as hypertension, diabetes, and atherosclerosis, which are all important consequences of chronic obesity. The microvascular networks are anatomical units that are closely adapted to specific functions of nutrition and removal of waste in every organ. Damage of the small vessels in several tissues and organs has been reported in obesity and may increase cardio-renal risk. However, the mechanisms by which obesity and its attendant cardiovascular and metabolic consequences interact to cause renal microvascular injury and chronic kidney disease are still unclear, although substantial progress has been made in recent years. This review addresses potential mechanisms and consequences of obesity-induced renal microvascular injury as well as current treatments that may provide protection of the renal microcirculation and slow progressive kidney injury in obesity. PMID:27771702

  17. [Experimental liver and kidney surgery with CO2, CO, holmium, and neodym lasers. Cutting effect, hemostasis, histopathology, and healing (author's transl)].

    PubMed

    Karbe, E; Königsmann, G; Beck, R

    1980-01-01

    Various laser devices (CO2, CO, Nd: YAG, and holmium: YAG lasers) have been used on pig livers and on dog kidneys for comparison with conventional surgical instruments (electroscalpel, cryoscalpel, and scalpel). CO2 and CO lasers caused the least tissue damage, followed by the holmium laser; severe damage was caused by the Nd: YAG laser. The order was reverse for coagulative effect. The conventional reference instruments showed a weaker hemostatic effect. Surfaces cut by laser healed in four to eight weeks without complications. Remnants of charred tissue in various quantities could still be detected after eight weeks in all cases where CO2, CO, and Nd: YAG lasers had been used. This obviously did not affect scar formation.

  18. [Leiomyoma of the bladder causing the destruction of a kidney].

    PubMed

    Kehila, Mehdi; Mekni, Karima; Abouda, Hassine Saber; Chtourou, Maher; Zeghal, Dorra; Chanoufi, Mohamed Badis

    2016-01-01

    Leiomyoma of the bladder is a rare benign tumor deemed to have a good prognosis after surgical treatment. This is unfortunately not always true. We report the case of a 33 year-old patient who consulted for lumbar pain on right side. Exploration of patient revealed bladder floor solid tumor with non-functioning right kidney and left urinary tract dilation. Cystoscopy objectified solid tumor of the right perimeatal bladder. Tumor biopsies were performed together with the insertion of a left double J stent. Anatomo-pathologic study showed leiomyoma of the bladder. The patient underwent laparoscopic myomectomy. The postoperative course was uneventful. Pathological effect and sequelae was complete distruction of kidney.

  19. Acute Kidney Injury Facilitates Hypocalcemia by Exacerbating the Hyperphosphatemic Effect of Muscle Damage in Rhabdomyolysis.

    PubMed

    Higaki, Masato; Tanemoto, Masayuki; Shiraishi, Takeshi; Taniguchi, Kei; Fujigaki, Yoshihide; Uchida, Shunya

    2015-01-01

    Hypocalcemia is an important complication of rhabdomyolysis for which several pathogenic factors, including acute kidney injury (AKI), have been proposed. To gain insight regarding the hypocalcemic roles of AKI in rhabdomyolysis, we retrospectively examined patients with rhabdomyolysis. Of 28,387 patients admitted to the Department of Internal Medicine, 51 patients met the inclusion criteria for the study. Serum calcium was analyzed based on laboratory data including indicators of AKI, serum creatine kinase (CK) and serum inorganic phosphate (iP). Twenty-two patients (43%) had hypocalcemia. Compared with patients without hypocalcemia, they had a higher prevalence of AKI (82 vs. 55%; p = 0.046), higher levels of peak CK (39,100 ± 50,600 vs. 9,800 ± 11,900 IU/l; p = 0.003) and higher levels of peak iP (1.77 ± 1.10 vs. 1.10 ± 0.35 mmol/l; p = 0.007). Indicators of AKI were correlated with peak CK and peak iP and were not significant variables in the regression analysis for hypocalcemia. Peak CK and peak iP were not correlated with each other. Impaired phosphate use by muscle contributed to the increased iP. These findings indicate that muscle damage is the primary hypocalcemic factor in rhabdomyolysis. AKI facilitated hypocalcemia by exacerbating the hyperphosphatemic effects of muscle damage. Aggressive hydration, which could increase oxygen supply and subsequently repair phosphate use in muscle, might reduce the incidence of hypocalcemia in rhabdomyolysis. © 2015 S. Karger AG, Basel.

  20. Is reproduction costly? No increase of oxidative damage in breeding bank voles.

    PubMed

    Ołdakowski, Łukasz; Piotrowska, Zaneta; Chrzaácik, Katarzyna M; Sadowska, Edyta T; Koteja, Paweł; Taylor, Jan R E

    2012-06-01

    According to life-history theory, investment in reproduction is associated with costs, which should appear as decreased survival to the next reproduction or lower future reproductive success. It has been suggested that oxidative stress may be the proximate mechanism of these trade-offs. Despite numerous studies of the defense against reactive oxygen species (ROS) during reproduction, very little is known about the damage caused by ROS to the tissues of wild breeding animals. We measured oxidative damage to lipids and proteins in breeding bank vole (Myodes glareolus) females after rearing one and two litters, and in non-breeding females. We used bank voles from lines selected for high maximum aerobic metabolic rates (which also had high resting metabolic rates and food intake) and non-selected control lines. The oxidative damage was determined in heart, kidneys and skeletal muscles by measuring the concentration of thiobarbituric acid-reactive substances, as markers of lipid peroxidation, and carbonyl groups in proteins, as markers of protein oxidation. Surprisingly, we found that the oxidative damage to lipids in kidneys and muscles was actually lower in breeding than in non-breeding voles, and it did not differ between animals from the selected and control lines. Thus, contrary to our predictions, females that bred suffered lower levels of oxidative stress than those that did not reproduce. Elevated production of antioxidant enzymes and the protective role of sex hormones may explain the results. The results of the present study do not support the hypothesis that oxidative damage to tissues is the proximate mechanism of reproduction costs.

  1. Spermidine rescues proximal tubular cells from oxidative stress and necrosis after ischemic acute kidney injury.

    PubMed

    Kim, Jinu

    2017-10-01

    Kidney ischemia and reperfusion injury (IRI) is associated with a high mortality rate, which is attributed to tubular oxidative stress and necrosis; however, an effective approach to limit IRI remains elusive. Spermidine, a naturally occurring polyamine, protects yeast cells against aging through the inhibition of oxidative stress and necrosis. In the present study, spermidine supplementation markedly attenuated increases in plasma creatinine concentration and tubular injury score after IRI. In addition, exogenous spermidine potently inhibited oxidative stress, especially lipid peroxidation after IRI in kidneys and exposure to hydrogen peroxide in kidney proximal tubular cells, suppressing plasma membrane disruption and necrosis. Consistent with spermidine supplementation, upregulation of ornithine decarboxylase (ODC) in human kidney proximal tubular cells significantly diminished lipid peroxidation and necrosis induced by hydrogen peroxide-induced injury. Conversely, ODC deficiency significantly enhanced lipid peroxidation and necrosis after exposure to hydrogen peroxide. Finally, small interfering RNA-mediated ODC inhibition induced functional and histological damage in kidneys as well as it increased lipid hydroperoxide levels after IRI. In conclusion, these data suggest that spermidine level determines kidney proximal tubular damage through oxidative stress and necrosis induced by IRI, and this finding provides a novel target for prevention of tubular damage induced by IRI.

  2. Alteration in the cytokine levels and histopathological damage in common carp induced by glyphosate.

    PubMed

    Ma, Junguo; Li, Xiaoyu

    2015-06-01

    Glyphosate is one of the most frequently used herbicides, and it has been demonstrated to generate a series of toxicological problems in animals and humans. However, relatively little is known about the effects of glyphosate on the immune system of fish. In the present study, the acute toxicity of glyphosate on common carp was first determined; then, the contents of interferon-γ (IFN-γ), interleukin-1β (IL-1β), and tumor necrosis factor -α (TNF-α) and histopathological alterations in the liver, kidneys, and spleen of common carp exposed to 52.08 or 104.15 mg L(-1) of glyphosate for 168 h were also determined and evaluated. The results of the acute toxicity tests showed that the 96 h LC50 of glyphosate for common carp was 520.77 mg L(-1). Moreover, sub-acute exposure of glyphosate altered the contents of IFN-γ, IL-1β, and TNF-α in fish immune organs. For example, there was a remarkable increase in the IFN-γ content in the kidneys, while there was a decrease in the liver and spleen. The IL-1β content increased in liver and kidneys, but it decreased in the spleen, and TNF-α mainly increased in the fish liver, kidneys, and spleen. In addition, glyphosate-exposure also caused remarkable histopathological damage in the fish liver, kidneys, and spleen. These results suggest that glyphosate-caused cytokine alterations may result in an immune suppression or excessive activation in the treated common carp as well as may cause immune dysfunction or reduced immunity. In conclusion, glyphosate has immunotoxic effects on common carp. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Ischemic acute kidney injury and klotho in renal transplantation.

    PubMed

    Panah, Fatemeh; Ghorbanihaghjo, Amir; Argani, Hassan; Asadi Zarmehri, Maryam; Nazari Soltan Ahmad, Saeed

    2018-05-01

    Post-transplant ischemic acute kidney injury (AKI), secondary to ischemia reperfusion injury (IRI), is a major problem influencing on the short and long term graft and patient survival. Many molecular and cellular modifications are observed during IRI, for example, tissue damage result production of reactive oxygen species (ROS), cytokines, chemokines, and leukocytes recruitment which are activated by NF-κB (nuclear factor kappa B) signaling pathway. Therefore, inhibiting these processes can significantly protect renal parenchyma from tissue damage. Klotho protein, mainly produced in distal convoluted tubules (DCT), is an anti-senescence protein. There is increasing evidence to confirm a relationship between Klotho levels and renal allograft function. Many studies have also demonstrated that expression of the Klotho gene would be down regulated with IRI, so it will be used as an early biomarker for acute kidney injury after renal transplantation. Other studies suggest that Klotho may have a renoprotective effect for attenuating of kidney injury. In this review, we will discuss pathophysiology of IRI-induced acute kidney injury and its relation with klotho level in renal transplantation procedure. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  4. Phototherapy causes DNA damage in peripheral mononuclear leukocytes in term infants.

    PubMed

    Aycicek, Ali; Kocyigit, Abdurrahim; Erel, Ozcan; Senturk, Hakan

    2008-01-01

    Our aim was to determine whether endogenous mononuclear leukocyte DNA strand is a target of phototherapy. The study included 65 term infants aged between 3-10 days that had been exposed to intensive (n = 23) or conventional (n = 23) phototherapy for at least 48 hours due to neonatal jaundice, and a control group (n = 19). DNA damage was assayed by single-cell alkaline gel electrophoresis (comet assay). Plasma total antioxidant capacity and total oxidant status levels were also measured, and correlation between DNA damage and oxidative stress was investigated. Mean values of DNA damage scores in both the intensive and conventional phototherapy groups were significantly higher than those in the control group (p < 0.001). Mean values and standard deviation were 32 (9), 28 (9), 21 (7) arbitrary unit, respectively. Total oxidant status levels in both the intensive and conventional phototherapy groups were significantly higher than those in the control group (p = 0.005). Mean (standard deviation) values were 18.1 (4.2), 16.9 (4.4), 13.5 (4.2) micromol H2O2 equivalent/L, respectively. Similarly, oxidative stress index levels in both the intensive and conventional phototherapy groups were significantly higher than those in the control group (p = 0.041). Plasma total antioxidant capacity and total bilirubin levels did not differ between the groups (p > 0.05). There were no significant correlations between DNA damage scores and bilirubin, total oxidant status and oxidative stress levels in either phototherapy group (p > 0.05). Both conventional phototherapy and intensive phototherapy cause endogenous mononuclear leukocyte DNA damage in jaundiced term infants.

  5. Obesity and Kidney Disease: Hidden Consequences of the Epidemic.

    PubMed

    Kovesdy, Csaba P; Furth, Susan; Zoccali, Carmine

    2017-03-01

    Obesity has become a worldwide epidemic, and its prevalence has been projected to grow by 40% in the next decade. This increasing prevalence has implications for the risk of diabetes mellitus, cardiovascular disease, and also for chronic kidney disease. A high body mass index is one of the strongest risk factors for new-onset chronic kidney disease. In individuals affected by obesity, a compensatory hyperfiltration occurs to meet the heightened metabolic demands of the increased body weight. The increase in intraglomerular pressure can damage the kidneys and raise the risk of developing chronic kidney disease in the long-term. The incidence of obesity-related glomerulopathy has increased 10-fold in recent years. Obesity has also been shown to be a risk factor for nephrolithiasis, and for a number of malignancies including kidney cancer. This year, the World Kidney Day promotes education on the harmful consequences of obesity and its association with kidney disease, advocating healthy lifestyle and health policy measures that make preventive behaviors an affordable option.

  6. Immunological consequences of kidney cell death.

    PubMed

    Sarhan, Maysa; von Mässenhausen, Anne; Hugo, Christian; Oberbauer, Rainer; Linkermann, Andreas

    2018-01-25

    Death of renal cells is central to the pathophysiology of acute tubular necrosis, autoimmunity, necrotizing glomerulonephritis, cystic kidney disease, urosepsis, delayed graft function and transplant rejection. By means of regulated necrosis, immunogenic damage-associated molecular patterns (DAMPs) and highly reactive organelles such as lysosomes, peroxisomes and mitochondria are released from the dying cells, thereby causing an overwhelming immunologic response. The rupture of the plasma membrane exhibits the "point of no return" for the immunogenicity of regulated cell death, explaining why apoptosis, a highly organized cell death subroutine with long-lasting plasma membrane integrity, elicits hardly any immune response. Ferroptosis, an iron-dependent necrotic type cell death, results in the release of DAMPs and large amounts of lipid peroxides. In contrast, anti-inflammatory cytokines are actively released from cells that die by necroptosis, limiting the DAMP-induced immune response to a surrounding microenvironment, whereas at the same time, inflammasome-associated caspases drive maturation of intracellularly expressed interleukin-1β (IL-1β). In a distinct setting, additionally interleukin-18 (IL-18) is expressed during pyroptosis, initiated by gasdermin-mediated plasma membrane rupture. As all of these pathways are druggable, we provide an overview of regulated necrosis in kidney diseases with a focus on immunogenicity and potential therapeutic interventions.

  7. Gut-kidney crosstalk in septic acute kidney injury.

    PubMed

    Zhang, Jingxiao; Ankawi, Ghada; Sun, Jian; Digvijay, Kumar; Yin, Yongjie; Rosner, Mitchell H; Ronco, Claudio

    2018-05-03

    Sepsis is the leading cause of acute kidney injury (AKI) in the intensive care unit (ICU). Septic AKI is a complex and multifactorial process that is incompletely understood. During sepsis, the disruption of the mucus membrane barrier, a shift in intestinal microbial flora, and microbial translocation may lead to systemic inflammation, which further alters host immune and metabolic homeostasis. This altered homeostasis may promote and potentiate the development of AKI. As part of this vicious cycle, when AKI develops, the clearance of inflammatory mediators and metabolic products is decreased. This will lead to further gut injury and breakdown in mucous membrane barriers. Thus, changes in the gut during sepsis can initiate and propagate septic AKI. This deleterious gut-kidney crosstalk may be a potential target for therapeutic maneuvers. This review analyses the underlying mechanisms in gut-kidney crosstalk in septic AKI.

  8. Targeted microbubbles: a novel application for the treatment of kidney stones.

    PubMed

    Ramaswamy, Krishna; Marx, Vanessa; Laser, Daniel; Kenny, Thomas; Chi, Thomas; Bailey, Michael; Sorensen, Mathew D; Grubbs, Robert H; Stoller, Marshall L

    2015-07-01

    Kidney stone disease is endemic. Extracorporeal shockwave lithotripsy was the first major technological breakthrough where focused shockwaves were used to fragment stones in the kidney or ureter. The shockwaves induced the formation of cavitation bubbles, whose collapse released energy at the stone, and the energy fragmented the kidney stones into pieces small enough to be passed spontaneously. Can the concept of microbubbles be used without the bulky machine? The logical progression was to manufacture these powerful microbubbles ex vivo and inject these bubbles directly into the collecting system. An external source can be used to induce cavitation once the microbubbles are at their target; the key is targeting these microbubbles to specifically bind to kidney stones. Two important observations have been established: (i) bisphosphonates attach to hydroxyapatite crystals with high affinity; and (ii) there is substantial hydroxyapatite in most kidney stones. The microbubbles can be equipped with bisphosphonate tags to specifically target kidney stones. These bubbles will preferentially bind to the stone and not surrounding tissue, reducing collateral damage. Ultrasound or another suitable form of energy is then applied causing the microbubbles to induce cavitation and fragment the stones. This can be used as an adjunct to ureteroscopy or percutaneous lithotripsy to aid in fragmentation. Randall's plaques, which also contain hydroxyapatite crystals, can also be targeted to pre-emptively destroy these stone precursors. Additionally, targeted microbubbles can aid in kidney stone diagnostics by virtue of being used as an adjunct to traditional imaging methods, especially useful in high-risk patient populations. This novel application of targeted microbubble technology not only represents the next frontier in minimally invasive stone surgery, but a platform technology for other areas of medicine. © 2014 The Authors BJU International © 2014 BJU International Published

  9. Cyclooxygenase activity contributes to the monoaminergic damage caused by serial exposure to stress and methamphetamine

    PubMed Central

    Northrop, Nicole A.; Yamamoto, Bryan K.

    2013-01-01

    Methamphetamine (Meth) is a widely abused psychostimulant that causes long-term dopamine (DA) and serotonin (5-HT) depletions. Stress and Meth abuse are comorbid events in society and stress exacerbates Meth-induced monoaminergic terminal damage. Stress is also known to produce neuroinflammation. This study examined the role of the neuroinflammatory mediator, cyclooxygenase (COX), in the depletions of monoamines caused by serial exposure to chronic unpredictable stress (CUS) and Meth. CUS produced an increase in COX-2 protein expression and enhanced Meth-induced monoaminergic depletions in the striatum and hippocampus. The enhanced DA and 5-HT depletions in the striatum, but not the hippocampus, were prevented by pretreatment with COX inhibitor, ketoprofen, during stress or during Meth; however, ketoprofen did not attenuate the monoaminergic damage caused by Meth alone. The COX-dependent enhancement by stress of Meth-induced monoaminergic depletions was independent of hyperthermia, as ketoprofen did not attenuate Meth-induced hyperthermia. In addition, the EP1 receptor antagonist, SC-51089, did not attenuate DA or 5-HT depletions caused by stress and Meth. These findings illustrate that COX activity, but not activation of the EP1 receptor, is responsible for the potentiation of Meth-induced damage to striatal monoamine terminals by stress and suggests the use of anti-inflammatory drugs for mitigating the neurotoxic effects associated with the combination of stress and Meth. PMID:23643743

  10. Polycystic Kidney Disease with Hyperinsulinemic Hypoglycemia Caused by a Promoter Mutation in Phosphomannomutase 2.

    PubMed

    Cabezas, Oscar Rubio; Flanagan, Sarah E; Stanescu, Horia; García-Martínez, Elena; Caswell, Richard; Lango-Allen, Hana; Antón-Gamero, Montserrat; Argente, Jesús; Bussell, Anna-Marie; Brandli, Andre; Cheshire, Chris; Crowne, Elizabeth; Dumitriu, Simona; Drynda, Robert; Hamilton-Shield, Julian P; Hayes, Wesley; Hofherr, Alexis; Iancu, Daniela; Issler, Naomi; Jefferies, Craig; Jones, Peter; Johnson, Matthew; Kesselheim, Anne; Klootwijk, Enriko; Koettgen, Michael; Lewis, Wendy; Martos, José María; Mozere, Monika; Norman, Jill; Patel, Vaksha; Parrish, Andrew; Pérez-Cerdá, Celia; Pozo, Jesús; Rahman, Sofia A; Sebire, Neil; Tekman, Mehmet; Turnpenny, Peter D; Hoff, William Van't; Viering, Daan H H M; Weedon, Michael N; Wilson, Patricia; Guay-Woodford, Lisa; Kleta, Robert; Hussain, Khalid; Ellard, Sian; Bockenhauer, Detlef

    2017-08-01

    Hyperinsulinemic hypoglycemia (HI) and congenital polycystic kidney disease (PKD) are rare, genetically heterogeneous disorders. The co-occurrence of these disorders (HIPKD) in 17 children from 11 unrelated families suggested an unrecognized genetic disorder. Whole-genome linkage analysis in five informative families identified a single significant locus on chromosome 16p13.2 (logarithm of odds score 6.5). Sequencing of the coding regions of all linked genes failed to identify biallelic mutations. Instead, we found in all patients a promoter mutation (c.-167G>T) in the phosphomannomutase 2 gene ( PMM2 ), either homozygous or in trans with PMM2 coding mutations. PMM2 encodes a key enzyme in N-glycosylation. Abnormal glycosylation has been associated with PKD, and we found that deglycosylation in cultured pancreatic β cells altered insulin secretion. Recessive coding mutations in PMM2 cause congenital disorder of glycosylation type 1a (CDG1A), a devastating multisystem disorder with prominent neurologic involvement. Yet our patients did not exhibit the typical clinical or diagnostic features of CDG1A. In vitro, the PMM2 promoter mutation associated with decreased transcriptional activity in patient kidney cells and impaired binding of the transcription factor ZNF143. In silico analysis suggested an important role of ZNF143 for the formation of a chromatin loop including PMM2 We propose that the PMM2 promoter mutation alters tissue-specific chromatin loop formation, with consequent organ-specific deficiency of PMM2 leading to the restricted phenotype of HIPKD. Our findings extend the spectrum of genetic causes for both HI and PKD and provide insights into gene regulation and PMM2 pleiotropy. Copyright © 2017 by the American Society of Nephrology.

  11. Fascin-1 is released from proximal tubular cells in response to calcineurin inhibitors (CNIs) and correlates with isometric vacuolization in kidney transplanted patients

    PubMed Central

    Jacobs-Cachá, Conxita; Torres, Irina B; López-Hellín, Joan; Cantarell, Carme; Azancot, María A; Román, Antonio; Moreso, Francesc; Serón, Daniel; Meseguer, Anna; Sarró, Eduard

    2017-01-01

    Immunosuppression based on calcineurin inhibitors (CNIs) has greatly improved organ transplantation, although subsequent nephrotoxicity significantly hinders treatment success. There are no currently available specific soluble biomarkers for CNI-induced nephrotoxicity and diagnosis relies on renal biopsy, which is costly, invasive and may cause complications. Accordingly, identification of non-invasive biomarkers distinguishing CNI-induced kidney tubular damage from that of other etiologies would greatly improve diagnosis and enable more precise dosage adjustment. For this purpose, HK-2 cells, widely used to model human proximal tubule, were treated with CNIs cyclosporine-A and FK506, or staurosporine as a calcineurin-independent toxic compound, and secretomes of each treatment were analyzed by proteomic means. Among the differentially secreted proteins identified, only fascin-1 was specifically released by both CNIs but not by staurosporine. To validate fascin-1 as a biomarker of CNI-induced tubular toxicity, fascin-1 levels were analyzed in serum and urine from kidney-transplanted patients under CNIs treatment presenting or not isometric vacuolization (IV), which nowadays represents the main histological hallmark of CNI-induced tubular damage. Patients with chronic kidney disease (CKD) and healthy volunteers were used as controls. Our results show that urinary fascin-1 was only significantly elevated in the subset of CNI-treated patients presenting IV. Moreover, fascin-1 anticipated the rise of sCr levels in serially collected urine samples from CNI-treated pulmonary-transplanted patients, where a decline in kidney function and serum creatinine (sCr) elevation was mainly attributed to CNIs treatment. In conclusion, our results point towards fascin-1 as a putative soluble biomarker of CNI-induced damage in the kidney tubular compartment. PMID:28979691

  12. Fascin-1 is released from proximal tubular cells in response to calcineurin inhibitors (CNIs) and correlates with isometric vacuolization in kidney transplanted patients.

    PubMed

    Jacobs-Cachá, Conxita; Torres, Irina B; López-Hellín, Joan; Cantarell, Carme; Azancot, María A; Román, Antonio; Moreso, Francesc; Serón, Daniel; Meseguer, Anna; Sarró, Eduard

    2017-01-01

    Immunosuppression based on calcineurin inhibitors (CNIs) has greatly improved organ transplantation, although subsequent nephrotoxicity significantly hinders treatment success. There are no currently available specific soluble biomarkers for CNI-induced nephrotoxicity and diagnosis relies on renal biopsy, which is costly, invasive and may cause complications. Accordingly, identification of non-invasive biomarkers distinguishing CNI-induced kidney tubular damage from that of other etiologies would greatly improve diagnosis and enable more precise dosage adjustment. For this purpose, HK-2 cells, widely used to model human proximal tubule, were treated with CNIs cyclosporine-A and FK506, or staurosporine as a calcineurin-independent toxic compound, and secretomes of each treatment were analyzed by proteomic means. Among the differentially secreted proteins identified, only fascin-1 was specifically released by both CNIs but not by staurosporine. To validate fascin-1 as a biomarker of CNI-induced tubular toxicity, fascin-1 levels were analyzed in serum and urine from kidney-transplanted patients under CNIs treatment presenting or not isometric vacuolization (IV), which nowadays represents the main histological hallmark of CNI-induced tubular damage. Patients with chronic kidney disease (CKD) and healthy volunteers were used as controls. Our results show that urinary fascin-1 was only significantly elevated in the subset of CNI-treated patients presenting IV. Moreover, fascin-1 anticipated the rise of sCr levels in serially collected urine samples from CNI-treated pulmonary-transplanted patients, where a decline in kidney function and serum creatinine (sCr) elevation was mainly attributed to CNIs treatment. In conclusion, our results point towards fascin-1 as a putative soluble biomarker of CNI-induced damage in the kidney tubular compartment.

  13. Vasopressin Mediates the Renal Damage Induced by Limited Fructose Rehydration in Recurrently Dehydrated Rats.

    PubMed

    García-Arroyo, Fernando E; Tapia, Edilia; Blas-Marron, Mónica G; Gonzaga, Guillermo; Silverio, Octaviano; Cristóbal, Magdalena; Osorio, Horacio; Arellano-Buendía, Abraham S; Zazueta, Cecilia; Aparicio-Trejo, Omar Emiliano; Reyes-García, Juan G; Pedraza-Chaverri, José; Soto, Virgilia; Roncal-Jiménez, Carlos; Johnson, Richard J; Sánchez-Lozada, Laura G

    2017-01-01

    Recurrent dehydration and heat stress cause chronic kidney damage in experimental animals. The injury is exacerbated by rehydration with fructose-containing beverages. Fructose may amplify dehydration-induced injury by directly stimulating vasopressin release and also by acting as a substrate for the aldose reductase-fructokinase pathway, as both of these systems are active during dehydration. The role of vasopressin in heat stress associated injury has not to date been explored. Here we show that the amplification of renal damage mediated by fructose in thermal dehydration is mediated by vasopressin. Fructose rehydration markedly enhanced vasopressin (copeptin) levels and activation of the aldose reductase-fructokinase pathway in the kidney. Moreover, the amplification of the renal functional changes (decreased creatinine clearance and tubular injury with systemic inflammation, renal oxidative stress, and mitochondrial dysfunction) were prevented by the blockade of V1a and V2 vasopressin receptors with conivaptan. On the other hand, there are also other operative mechanisms when water is used as rehydration fluid that produce milder renal damage that is not fully corrected by vasopressin blockade. Therefore, we clearly showed evidence of the cross-talk between fructose, even at small doses, and vasopressin that interact to amplify the renal damage induced by dehydration. These data may be relevant for heat stress nephropathy as well as for other renal pathologies due to the current generalized consumption of fructose and deficient hydration habits.

  14. Renoprotective effects of asialoerythropoietin in diabetic mice against ischaemia-reperfusion-induced acute kidney injury.

    PubMed

    Nakazawa, Jun; Isshiki, Keiji; Sugimoto, Toshiro; Araki, Shin-Ichi; Kume, Shinji; Yokomaku, Yukiyo; Chin-Kanasaki, Masami; Sakaguchi, Masayoshi; Koya, Daisuke; Haneda, Masakazu; Kashiwagi, Atsunori; Uzu, Takashi

    2010-02-01

    Diabetic patients are at higher risk of failure to recover after acute kidney injury, however, the mechanism and therapeutic strategies remain unclear. Erythropoietin is cytoprotective in a variety of non-haematopoietic cells. The aim of the present study was to clarify the mechanism of diabetes-related acceleration of renal damage after ischaemia-reperfusion injury and to examine the therapeutic potential of asialoerythropoietin, a non-haematopoietic erythropoietin derivative, against ischaemia-reperfusion-induced acute kidney injury in diabetic mice. C57BL/6J mice with and without streptozotocin-induced diabetes were subjected to 30 min unilateral renal ischaemia-reperfusion injury at 1 week after induction of diabetes. They were divided into four group: (i) non-diabetic plus ischaemia-reperfusion injury; (ii) non-diabetic plus ischaemia-reperfusion injury plus asialoerythropoietin (3000 IU/kg bodyweight); (iii) diabetic plus ischaemia-reperfusion injury; and (iv) diabetic plus ischemia-reperfusion injury plus asialoerythropoietin. Experiments were conducted at the indicated time periods after ischaemia-reperfusion injury. Ischaemia-reperfusion injury of diabetic kidney resulted in significantly low protein expression levels of bcl-2, an anti-apoptotic molecule, and bone morphogenetic protein-7 (BMP-7), an anti-fibrotic and pro-regenerative factor, compared with non-diabetic kidneys. Diabetic kidney subsequently showed severe damage including increased tubular cell apoptosis, tubulointerstitial fibrosis and decreased tubular proliferation, compared with non-diabetic kidney. Treatment with asialoerythropoietin induced bcl-2 and BMP-7 expression in diabetic kidney and decreased tubular cell apoptosis, tubulointerstitial fibrosis and accelerated tubular proliferation. Reduced induction bcl-2 and BMP-7 may play a role in the acceleration of renal damage after ischaemia-reperfusion injury in diabetic kidney. The renoprotective effects of asialoerythropoietin on acute

  15. Ift25 is not a cystic kidney disease gene but is required for early steps of kidney development.

    PubMed

    Desai, Paurav B; San Agustin, Jovenal T; Stuck, Michael W; Jonassen, Julie A; Bates, Carlton M; Pazour, Gregory J

    2018-06-01

    Eukaryotic cilia are assembled by intraflagellar transport (IFT) where large protein complexes called IFT particles move ciliary components from the cell body to the cilium. Defects in most IFT particle proteins disrupt ciliary assembly and cause mid gestational lethality in the mouse. IFT25 and IFT27 are unusual components of IFT-B in that they are not required for ciliary assembly and mutant mice survive to term. The mutants die shortly after birth with numerous organ defects including duplex kidneys. Completely duplex kidneys result from defects in ureteric bud formation at the earliest steps of metanephric kidney development. Ureteric bud initiation is a highly regulated process involving reciprocal signaling between the ureteric epithelium and the overlying metanephric mesenchyme with regulation by the peri-Wolffian duct stroma. The finding of duplex kidney in Ift25 and Ift27 mutants suggests functions for these genes in regulation of ureteric bud initiation. Typically the deletion of IFT genes in the kidney causes rapid cyst growth in the early postnatal period. In contrast, the loss of Ift25 results in smaller kidneys, which show only mild tubule dilations that become apparent in adulthood. The smaller kidneys appear to result from reduced branching in the developing metanephric kidney. This work indicates that IFT25 and IFT27 are important players in the early development of the kidney and suggest that duplex kidney is part of the ciliopathy spectrum. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Untethering an unusual cause of kidney injury in a teenager with Down syndrome.

    PubMed

    Yen, Elizabeth; Miele, Niel F; Barone, Joseph G; Tyagi, Rachana; Weiss, Lynne S

    2014-11-01

    Acute kidney injury (AKI) is characterized by the acute nature and the inability of kidneys to maintain fluid homeostasis as well as adequate electrolyte and acid-base balance, resulting in an accumulation of nitrogenous waste and elevation of serum blood urea nitrogen and creatinine values. Acute kidney injury may be a single isolated event, yet oftentimes, it results from an acute chronic kidney disease. It is critical to seek out the etiology of AKI and to promptly manage the underlying chronic kidney disease to prevent comorbidities and mortality that may ensue. We described a case of a 16-year-old adolescent girl with Down syndrome who presented with AKI and electrolyte aberrance.Abdominal and renal ultrasounds demonstrated a significantly dilated bladder as well as frank hydronephrosis and hydroureter bilaterally. Foley catheter was successful in relieving the obstruction and improving her renal function. However, a magnetic resonance imaging was pursued in light of her chronic constipation and back pain, and it revealed a structural defect (tethered cord) that underlies a chronic process that was highly likely contributory to her AKI. She was managed accordingly with a guarded result and required long-term and close monitoring.

  17. A Rare Cause of Diarrhea in a Kidney Transplant Recipient: Dipylidium caninum.

    PubMed

    Sahin, I; Köz, S; Atambay, M; Kayabas, U; Piskin, T; Unal, B

    2015-09-01

    We report the first case of dipylidiasis in a kidney transplant recipient. Watery diarrhea due to Dipylidium caninum was observed in a male patient who had been undergone kidney transplantation 2 years before. The patient was successfully treated with niclosamide. D. caninum should be considered as an agent of diarrhea in transplant patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Ion Imbalance Is Involved in the Mechanisms of Liver Oxidative Damage in Rats Exposed to Glyphosate

    PubMed Central

    Tang, Juan; Hu, Ping; Li, Yansen; Win-Shwe, Tin-Tin; Li, Chunmei

    2017-01-01

    caused obvious damage to rats' liver and caused various mineral elements content imbalances in various organs of rats. Ion imbalance could weaken antioxidant capacity and involve in the mechanism of liver oxidative damage caused by GLP. PMID:29311996

  19. Women and kidney disease: Reflections on world kidney day 2018.

    PubMed

    Piccoli, Giorgina B; Alrukhaimi, Mona; Liu, Zhi-Hong; Zakharova, Elena; Levin, Adeera

    2018-03-01

    Chronic Kidney Disease affects approximately 10% of the world's adult population: it is within the top 20 causes of death worldwide, and its impact on patients and their families can be devastating. World Kidney Day and International Women's Day in 2018 coincide, thus offering an opportunity to reflect on the importance of women's health and specifically their kidney health, on the community, and the next generations, as well as to strive to be more curious about the unique aspects of kidney disease in women so that we may apply those learnings more broadly. Girls and women, who make up approximately 50% of the world's population, are important contributors to society and their families. Gender differences continue to exist around the world in access to education, medical care and participation in clinical studies. Pregnancy is a unique state for women, offering an opportunity for diagnosis of kidney disease, but also a state where acute and chronic kidney diseases may manifest, and which may impact future generations with respect to kidney health. There are various autoimmune and other conditions that are more likely to impact women with profound consequences for child bearing, and on the foetus. Low birth weight children have increased risk of metabolic diseases, CVD and CKD. Women have different complications on dialysis than men, and are more likely to be donors than recipients of kidney transplants. There is little data to guide best practice and limited research in the area. In this editorial, we focus on what we do and do not know about women, kidney health and kidney disease, and what we might learn in the future to improve outcomes worldwide. © 2018 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  20. Comparison of the Tendon Damage Caused by Four Different Anchor Systems Used in Transtendon Rotator Cuff Repair

    PubMed Central

    Zhang, Qing-Song; Liu, Sen; Zhang, Qiuyang; Xue, Yun; Ge, Dongxia; O'Brien, Michael J.; Savoie, Felix H.; You, Zongbing

    2012-01-01

    Objectives. The objective of this study was to compare the damage to the rotator cuff tendons caused by four different anchor systems. Methods. 20 cadaveric human shoulder joints were used for transtendon insertion of four anchor systems. The Healix Peek, Fastin RC, Bio-Corkscrew Suture, and Healix Transtend anchors were inserted through the tendons using standard transtendon procedures. The areas of tendon damage were measured. Results. The areas of tendon damage (mean ± standard deviation, n = 7) were 29.1 ± 4.3 mm2 for the Healix Peek anchor, 20.4 ± 2.3 mm2 for the Fastin RC anchor, 23.4 ± 1.2 mm2 for the Bio-Corkscrew Suture anchor, 13.7 ± 3.2 mm2 for the Healix Transtend anchor inserted directly, and 9.1 ± 2.1 mm2 for the Healix Transtend anchor inserted through the Percannula system (P < 0.001 or P < 0.001, compared to other anchors). Conclusions. In a cadaver transtendon rotator cuff repair model, smaller anchors caused less damage to the tendon tissues. The Healix Transtend implant system caused the least damage to the tendon tissues. Our findings suggest that smaller anchors should be considered when performing transtendon procedures to repair partial rotator cuff tears. PMID:22811923

  1. l-Citrulline Protects from Kidney Damage in Type 1 Diabetic Mice

    PubMed Central

    Romero, Maritza J.; Yao, Lin; Sridhar, Supriya; Bhatta, Anil; Dou, Huijuan; Ramesh, Ganesan; Brands, Michael W.; Pollock, David M.; Caldwell, Ruth B.; Cederbaum, Stephen D.; Head, C. Alvin; Bagi, Zsolt; Lucas, Rudolf; Caldwell, Robert W.

    2013-01-01

    Rationale: Diabetic nephropathy (DN) is a major cause of end-stage renal disease, associated with endothelial dysfunction. Chronic supplementation of l-arginine (l-arg), the substrate for endothelial nitric oxide synthase (eNOS), failed to improve vascular function. l-Citrulline (l-cit) supplementation not only increases l-arg synthesis, but also inhibits cytosolic arginase I, a competitor of eNOS for the use of l-arg, in the vasculature. Aims: To investigate whether l-cit treatment reduces DN in streptozotocin (STZ)-induced type 1 diabetes (T1D) in mice and rats and to study its effects on arginase II (ArgII) function, the main renal isoform. Methods: STZ-C57BL6 mice received l-cit or vehicle supplemented in the drinking water. For comparative analysis, diabetic ArgII knock out mice and l-cit-treated STZ-rats were evaluated. Results: l-Citrulline exerted protective effects in kidneys of STZ-rats, and markedly reduced urinary albumin excretion, tubulo-interstitial fibrosis, and kidney hypertrophy, observed in untreated diabetic mice. Intriguingly, l-cit treatment was accompanied by a sustained elevation of tubular ArgII at 16 weeks and significantly enhanced plasma levels of the anti-inflammatory cytokine IL-10. Diabetic ArgII knock out mice showed greater blood urea nitrogen levels, hypertrophy, and dilated tubules than diabetic wild type (WT) mice. Despite a marked reduction in collagen deposition in ArgII knock out mice, their albuminuria was not significantly different from diabetic WT animals. l-Cit also restored nitric oxide/reactive oxygen species balance and barrier function in high glucose-treated monolayers of human glomerular endothelial cells. Moreover, l-cit also has the ability to establish an anti-inflammatory profile, characterized by increased IL-10 and reduced IL-1β and IL-12(p70) generation in the human proximal tubular cells. Conclusion: l-Citrulline supplementation established an anti-inflammatory profile and significantly preserved the

  2. Varicocele-caused progressive damage in bilateral testis and sertoli cell-only syndrome in homolateral testis in rats.

    PubMed

    Liu, Jianjun; Ding, Degang; Liu, Jie

    2014-10-14

    We aimed to investigate whether varicocele (VC) in rats can cause Sertoli cell-only syndrome (SCOS). Forty adolescent SD rats were randomly divided into 4 groups: 4-weeks control group, 4-weeks experimental group, 12-weeks control group, and 12-weeks experimental group. Left varicocele models were introduced by partially ligating left kidney veins for the experimental groups, and the sham surgery groups as controls were executed with exactly the same surgery as in the experimental groups except for the ligation. Rats in control and experimental groups for 4 and 12 weeks were killed after laparotomy at 4 and 12 weeks, respectively, the testes were taken out and fixed in fixative containing 4% polyformaldehyde, then were stained by hematoxylin and eosin (HE). The density and viability of sperm were analyzed by computer-aided sperm analysis. Compared with rats in 4-weeks and 12-weeks control group, histological structures of bilateral testes in both experimental groups were impaired, most of them showing as focal focuses. The pathological changes of testes in rats of the 12-weeks experimental group were bilateral, and included atrophy of seminiferous tubules, turbulence of spermatogenic cells in seminiferous tubules, defluvium of most spermatogenic cells, abortion of spermatogenesis, and degradation of spermatogenic epithelia. One rat in the 12-weeks experimental group was shown having SCOS, with the spermatogenic cells in seminiferous tubules completely flaked, degraded, or absent, and only Sertoli cells lined the seminiferous tubules. Laboratory VC caused progressive impairment of homolateral testes, and SCOS could be induced when the damage was severe. Our results indicate that asthenozoospermia, azoospermia, and SCOS can be prevented by the earlier treatment of VC.

  3. Endothelial sirtuin 1 inactivation enhances capillary rarefaction and fibrosis following kidney injury through Notch activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kida, Yujiro; Zullo, Joseph A.; Renal Research Institute, Department of Physiology, New York Medical College, Valhalla, NY

    Peritubular capillary (PTC) rarefaction along with tissue fibrosis is a hallmark of chronic kidney disease (CKD). However, molecular mechanisms of PTC loss have been poorly understood. Previous studies have demonstrated that functional loss of endothelial sirtuin 1 (SIRT1) impairs angiogenesis during development and tissue damage. Here, we found that endothelial SIRT1 dysfunction causes activation of endothelial Notch1 signaling, which leads to PTC rarefaction and fibrosis following kidney injury. In mice lacking functional SIRT1 in the endothelium (Sirt1 mutant), kidney injury enhanced apoptosis and senescence of PTC endothelial cells with impaired endothelial proliferation and expanded myofibroblast population and collagen deposition. Comparedmore » to wild-type kidneys, Sirt1 mutant kidneys up-regulated expression of Delta-like 4 (DLL4, a potent Notch1 ligand), Hey1 and Hes1 (Notch target genes), and Notch intracellular domain-1 (NICD1, active form of Notch1) in microvascular endothelial cells (MVECs) post-injury. Sirt1 mutant primary kidney MVECs reduced motility and vascular assembly and enhanced senescence compared to wild-type kidney MVECs. This difference in the phenotype was negated with Notch inhibition. Concurrent stimulation of DLL4 and transforming growth factor (TGF)-β1 increased trans-differentiation of primary kidney pericytes into myofibroblast more than TGF-β1 treatment alone. Collectively, these results indicate that endothelial SIRT1 counteracts PTC rarefaction by repression of Notch1 signaling and antagonizes fibrosis via suppression of endothelial DLL4 expression. - Highlights: • SIRT1 represses Notch1 signaling in capillary endothelial cells in the kidney. • Endothelial SIRT1 is depleted in the kidney following injury. • Activation of endothelial Notch impairs angiogenesis in the kidney. • Increased expression of endothelial DLL4 enhances renal fibrosis.« less

  4. Chronic kidney disease screening methods and its implication for Malaysia: an in depth review.

    PubMed

    Almualm, Yasmin; Zaman Huri, Hasniza

    2015-01-01

    Chronic Kidney Disease has become a public health problem, imposing heath, social and human cost on societies worldwide. Chronic Kidney Disease remains asymptomatic till late stage when intervention cannot stop the progression of the disease. Therefore, there is an urgent need to detect the disease early. Despite the high prevalence of Chronic Kidney Disease in Malaysia, screening is still lacking behind. This review discusses the strengths and limitations of current screening methods for Chronic Kidney Disease from a Malaysian point of view. Diabetic Kidney Disease was chosen as focal point as Diabetes is the leading cause of Chronic Kidney Disease in Malaysia. Screening for Chronic Kidney Disease in Malaysia includes a urine test for albuminuria and a blood test for serum creatinine. Recent literature indicates that albuminuria is not always present in Diabetic Kidney Disease patients and serum creatinine is only raised after substantial kidney damage has occurred.  Recently, cystatin C was proposed as a potential marker for kidney disease but this has not been studied thoroughly in Malaysia.  Glomerular Filtration Rate is the best method for measuring kidney function and is widely estimated using the Modification of Diet for Renal Disease equation. Another equation, the Chronic Kidney Disease Epidemiology Collaboration Creatinine equation was introduced in 2009. The new equation retained the precision and accuracy of the Modification of Diet for Renal Disease equation at GFR < 60ml/min/1.73m2, showed less bias and improved precision at GFR>60ml/min/1.73m2. In Asian countries, adding an ethnic coefficient to the equation enhanced its performance. In Malaysia, a multi-ethnic Asian population, the Chronic Kidney Disease Epidemiology Collaboration equation should be validated and the Glomerular Filtration Rate should be reported whenever serum creatinine is ordered. Reporting estimated Glomerular Filtration Rate will help diagnose patients who would have been

  5. Chronic Kidney Disease Screening Methods and Its Implication for Malaysia: An in Depth Review

    PubMed Central

    Almualm, Yasmin; Huri, Hasniza Zaman

    2015-01-01

    Chronic Kidney Disease has become a public health problem, imposing heath, social and human cost on societies worldwide. Chronic Kidney Disease remains asymptomatic till late stage when intervention cannot stop the progression of the disease. Therefore, there is an urgent need to detect the disease early. Despite the high prevalence of Chronic Kidney Disease in Malaysia, screening is still lacking behind. This review discusses the strengths and limitations of current screening methods for Chronic Kidney Disease from a Malaysian point of view. Diabetic Kidney Disease was chosen as focal point as Diabetes is the leading cause of Chronic Kidney Disease in Malaysia. Screening for Chronic Kidney Disease in Malaysia includes a urine test for albuminuria and a blood test for serum creatinine. Recent literature indicates that albuminuria is not always present in Diabetic Kidney Disease patients and serum creatinine is only raised after substantial kidney damage has occurred. Recently, cystatin C was proposed as a potential marker for kidney disease but this has not been studied thoroughly in Malaysia. Glomerular Filtration Rate is the best method for measuring kidney function and is widely estimated using the Modification of Diet for Renal Disease equation. Another equation, the Chronic Kidney Disease Epidemiology Collaboration Creatinine equation was introduced in 2009. The new equation retained the precision and accuracy of the Modification of Diet for Renal Disease equation at GFR < 60ml/min/1.73m2, showed less bias and improved precision at GFR>60ml/min/1.73m2. In Asian countries, adding an ethnic coefficient to the equation enhanced its performance. In Malaysia, a multi-ethnic Asian population, the Chronic Kidney Disease Epidemiology Collaboration equation should be validated and the Glomerular Filtration Rate should be reported whenever serum creatinine is ordered. Reporting estimated Glomerular Filtration Rate will help diagnose patients who would have been

  6. Star fruit toxicity: a cause of both acute kidney injury and chronic kidney disease: a report of two cases.

    PubMed

    Abeysekera, R A; Wijetunge, S; Nanayakkara, N; Wazil, A W M; Ratnatunga, N V I; Jayalath, T; Medagama, A

    2015-12-17

    Star fruit (Averrhoa carambola) is commonly consumed as a herbal remedy for various ailments in tropical countries. However, the dangers associated with consumption of star fruit are not commonly known. Although star fruit induced oxalate nephrotoxicity in those with existing renal impairment is well documented, reports on its effect on those with normal renal function are infrequent. We report two unique clinical presentation patterns of star fruit nephrotoxicity following consumption of the fruit as a remedy for diabetes mellitus-the first, in a patient with normal renal function and the second case which we believe is the first reported case of chronic kidney disease (CKD) due to prolonged and excessive consumption of star fruits. The first patient is a 56-year-old female diabetic patient who had normal renal function prior to developing acute kidney injury (AKI) after consuming large amount of star fruit juice at once. The second patient, a 60-year-old male, also diabetic presented with acute on chronic renal failure following ingestion of a significant number of star fruits in a short duration with a background history of regular star fruit consumption over the past 2-3 years. Both had histologically confirmed oxalate induced renal injury. The former had histological features of acute tubulo-interstitial disease whilst the latter had acute-on-chronic interstitial disease; neither had histological evidence of diabetic nephropathy. Both recovered over 2 weeks without the need for haemodialysis. These cases illustrate the importance of obtaining the patient's detailed history with respect to ingestion of herbs, traditional medication and health foods such as star fruits especially in AKI or CKD of unknown cause.

  7. Protection by Chrysanthemum zawadskii extract from liver damage of mice caused by carbon tetrachloride is maybe mediated by modulation of QR activity

    PubMed Central

    Seo, Ji Yeon; Lim, Soon Sung; Park, Jia; Lim, Ji-Sun; Kim, Hyo Jung; Kang, Hui Jung; Yoon Park, Jung Han

    2010-01-01

    Our previous study demonstrated that methanolic extract of Chrysanthemum zawadskii Herbich var. latilobum Kitamura (Compositae) has the potential to induce detoxifying enzymes such as NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) (NQO1, QR) and glutathione S-transferase (GST). In this study we further fractionated methanolic extract of Chrysanthemum zawadskii and investigated the detoxifying enzyme-inducing potential of each fraction. The fraction (CZ-6) shown the highest QR-inducing activity was found to contain (+)-(3S,4S,5R,8S)-(E)-8-acetoxy-4-hydroxy-3-isovaleroyloxy-2-(hexa-2,4-diynyliden)-1,6-dioxaspiro [4,5] decane and increased QR enzyme activity in a dose-dependent manner. Furthermore, CZ-6 fraction caused a dose-dependent enhancement of luciferase activity in HepG2-C8 cells generated by stably transfecting antioxidant response element-luciferase gene construct, suggesting that it induces antioxidant/detoxifying enzymes through antioxidant response element (ARE)-mediated transcriptional activation of the relevant genes. Although CZ-6 fraction failed to induce hepatic QR in mice over the control, it restored QR activity suppressed by CCl4 treatment to the control level. Hepatic injury induced by CCl4 was also slightly protected by pretreatment with CZ-6. In conclusion, although CZ-6 fractionated from methanolic extract of Chrysanthemum zawadskii did not cause a significant QR induction in mice organs such as liver, kidney, and stomach, it showed protective effect from liver damage caused by CCl4. PMID:20461196

  8. Protection by Chrysanthemum zawadskii extract from liver damage of mice caused by carbon tetrachloride is maybe mediated by modulation of QR activity.

    PubMed

    Seo, Ji Yeon; Lim, Soon Sung; Park, Jia; Lim, Ji-Sun; Kim, Hyo Jung; Kang, Hui Jung; Yoon Park, Jung Han; Kim, Jong-Sang

    2010-04-01

    Our previous study demonstrated that methanolic extract of Chrysanthemum zawadskii Herbich var. latilobum Kitamura (Compositae) has the potential to induce detoxifying enzymes such as NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) (NQO1, QR) and glutathione S-transferase (GST). In this study we further fractionated methanolic extract of Chrysanthemum zawadskii and investigated the detoxifying enzyme-inducing potential of each fraction. The fraction (CZ-6) shown the highest QR-inducing activity was found to contain (+)-(3S,4S,5R,8S)-(E)-8-acetoxy-4-hydroxy-3-isovaleroyloxy-2-(hexa-2,4-diynyliden)-1,6-dioxaspiro [4,5] decane and increased QR enzyme activity in a dose-dependent manner. Furthermore, CZ-6 fraction caused a dose-dependent enhancement of luciferase activity in HepG2-C8 cells generated by stably transfecting antioxidant response element-luciferase gene construct, suggesting that it induces antioxidant/detoxifying enzymes through antioxidant response element (ARE)-mediated transcriptional activation of the relevant genes. Although CZ-6 fraction failed to induce hepatic QR in mice over the control, it restored QR activity suppressed by CCl(4) treatment to the control level. Hepatic injury induced by CCl(4) was also slightly protected by pretreatment with CZ-6. In conclusion, although CZ-6 fractionated from methanolic extract of Chrysanthemum zawadskii did not cause a significant QR induction in mice organs such as liver, kidney, and stomach, it showed protective effect from liver damage caused by CCl(4).

  9. De novo Uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure.

    PubMed

    Jenkins, Dagan; Bitner-Glindzicz, Maria; Malcolm, Sue; Hu, Chih-Chi A; Allison, Jennifer; Winyard, Paul J D; Gullett, Ambrose M; Thomas, David F M; Belk, Rachel A; Feather, Sally A; Sun, Tung-Tien; Woolf, Adrian S

    2005-07-01

    Human renal adysplasia usually occurs sporadically, and bilateral disease is the most common cause of childhood end-stage renal failure, a condition that is lethal without intervention using dialysis or transplantation. De novo heterozygous mutations in Uroplakin IIIa (UPIIIa) are reported in four of 17 children with kidney failure caused by renal adysplasia in the absence of an overt urinary tract obstruction. One girl and one boy in unrelated kindreds had a missense mutation at a CpG dinucleotide in the cytoplasmic domain of UPIIIa (Pro273Leu), both of whom had severe vesicoureteric reflux, and the girl had persistent cloaca; two other patients had de novo mutations in the 3' UTR (963 T-->G; 1003 T-->C), and they had renal adysplasia in the absence of any other anomaly. The mutations were absent in all sets of parents and in siblings, none of whom had radiologic evidence of renal adysplasia, and mutations were absent in two panels of 192 ethnically matched control chromosomes. UPIIIa was expressed in nascent urothelia in ureter and renal pelvis of human embryos, and it is suggested that perturbed urothelial differentiation may generate human kidney malformations, perhaps by altering differentiation of adjacent smooth muscle cells such that the metanephros is exposed to a functional obstruction of urine flow. With advances in renal replacement therapy, children with renal failure, who would otherwise have died, are surviving to adulthood. Therefore, although the mechanisms of action of the UPIIIa mutations have yet to be determined, these findings have important implications regarding genetic counseling of affected individuals who reach reproductive age.

  10. Static-transmission-error vibratory-excitation contributions from plastically deformed gear teeth caused by tooth bending-fatigue damage

    NASA Astrophysics Data System (ADS)

    Mark, W. D.; Reagor, C. P.

    2007-02-01

    To assess gear health and detect gear-tooth damage, the vibratory response from meshing gear-pair excitations is commonly monitored by accelerometers. In an earlier paper, strong evidence was presented suggesting that, in the case of tooth bending-fatigue damage, the principal source of detectable damage is whole-tooth plastic deformation; i.e. yielding, rather than changes in tooth stiffness caused by tooth-root cracks. Such plastic deformations are geometric deviation contributions to the "static-transmission-error" (STE) vibratory excitation caused by meshing gear pairs. The STE contributions caused by two likely occurring forms of such plastic deformations on a single tooth are derived, and displayed in the time domain as a function of involute "roll distance." Example calculations are provided for transverse contact ratios of Qt=1.4 and 1.8, for spur gears and for helical-gear axial contact ratios ranging from Qa=1.2 to Qa=3.6. Low-pass- and band-pass-filtered versions of these same STE contributions also are computed and displayed in the time domain. Several calculations, consisting of superposition of the computed STE tooth-meshing fundamental harmonic contribution and the band-pass STE contribution caused by a plastically deformed tooth, exhibit the amplitude and frequency or phase modulation character commonly observed in accelerometer-response waveforms caused by damaged teeth. General formulas are provided that enable computation of these STE vibratory-excitation contributions for any form of plastic deformation on any number of teeth for spur and helical gears with any contact ratios.

  11. Studies on the protective effect of dietary fish oil on uranyl-nitrate-induced nephrotoxicity and oxidative damage in rat kidney.

    PubMed

    Priyamvada, Shubha; Khan, Sara A; Khan, Md Wasim; Khan, Sheeba; Farooq, Neelam; Khan, Farah; Yusufi, A N K

    2010-01-01

    Human and animal exposure demonstrates that uranium is nephrotoxic. However, attempts to reduce it were not found suitable for clinical use. Dietary fish oil (FO) enriched in omega-3 fatty acids reduces the severity of cardiovascular and renal diseases. Present study investigates the protective effect of FO on uranyl nitrate (UN)-induced renal damage. Rats prefed with experimental diets for 15 days, given single nephrotoxic dose of UN (0.5mg/kg body weight) intraperitoneally. After 5d of UN treatment, serum/urine parameters, enzymes of carbohydrate metabolism, brush border membrane (BBM), oxidative stress and phosphate transport were analyzed in rat kidney. UN nephrotoxicity was characterized by increased serum creatinine and blood urea nitrogen. UN increased the activity of lactate dehydrogenase and NADP-malic enzyme whereas decreased malate, isocitrate and glucose-6-phophate dehydrogenases; glucose-6-phophatase, fructose-1, 6-bisphosphatase and BBM enzyme activities. UN caused oxidant/antioxidant imbalances as reflected by increased lipid peroxidation, activities of superoxide dismutase, glutathione peroxidase and decreased catalase activity. Feeding FO alone increased activities of enzymes of glucose metabolism, BBM, oxidative stress and Pi transport. UN-elicited alterations were prevented by FO feeding. However, corn oil had no such effects and was not similarly effective. In conclusion, FO appears to protect against UN-induced nephrotoxicity by improving energy metabolism and antioxidant defense mechanism. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. The central role of renal microcirculatory dysfunction in the pathogenesis of acute kidney injury.

    PubMed

    Ince, Can

    2014-01-01

    Acute kidney injury (AKI) is a rapidly developing condition often associated with critical illness, with a high degree of morbidity and mortality, whose pathophysiology is ill understood. Recent investigations have identified the dysfunction of the renal microcirculation and its cellular and subcellular constituents as being central to the etiology of AKI. Injury is caused by inflammatory activation involving endothelial leucocyte interactions in combination with dysregulation of the homeostatis between oxygen, nitric oxide, and reactive oxygen species. Effective therapies expected to resolve AKI will have to control inflammation and restore this homeostasis. In order to apply and guide these therapies effectively, diagnostic tools aimed at physiological biomarkers of AKI for monitoring renal microcirculatory function in advance of changes in pharmacological biomarkers associated with structural damage of the kidney will need to be developed. 2014 S. Karger AG, Basel.

  13. Endoplasmic Reticulum Stress in Ischemic and Nephrotoxic Acute Kidney Injury.

    PubMed

    Yan, Mingjuan; Shu, Shaoqun; Guo, Chunyuan; Tang, Chengyuan; Dong, Zheng

    2018-06-12

    Acute kidney injury is a medical condition characterized by kidney damage with a rapid decline of renal function, which is associated with high mortality and morbidity. Recent research has further established an intimate relationship between acute kidney injury and chronic kidney disease. Perturbations of kidney cells in acute kidney injury result in the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum, leading to unfolded protein response or endoplasmic reticulum stress. In this review, we analyze the role and regulation of endoplasmic reticulum stress in acute kidney injury triggered by renal ischemia-reperfusion and cisplatin nephrotoxicity. The balance between the two major components of unfolded protein response, the adaptive pathway and the apoptotic pathway, plays a critical role in determining the cell fate in endoplasmic reticulum stress. The adaptive pathway is evoked to attenuate translation, induce chaperones, maintain protein homeostasis, and promote cell survival. Prolonged endoplasmic reticulum stress activates the apoptotic pathway, resulting in the elimination of dysfunctional cells. Therefore, regulating ER stress in kidney cells may provide a therapeutic target in acute kidney injury.

  14. Depression and kidney transplantation.

    PubMed

    Chilcot, Joseph; Spencer, Benjamin Walter Jack; Maple, Hannah; Mamode, Nizam

    2014-04-15

    While kidney transplantation offers several advantages in terms of improved clinical outcomes and quality of life compared to dialysis modalities, depressive symptoms are still present in approximately 25% of patients, rates comparable to that of the hemodialysis population. Correlates of depressive symptoms include marital status, income, kidney function, history of affective illness, malnutrition, and inflammation. Depressive symptoms are also associated with poor outcomes following kidney transplantation including nonadherence to immunosuppressant medication, graft failure, and all-cause mortality. Efforts to detect and treat depression should be a priority if one is to improve treatment adherence, quality of life, and outcomes in transplant recipients.

  15. Assessment of cisplatin-induced kidney injury using an integrated rodent platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yafei; Brott, David; Luo, Wenli

    Current diagnosis of drug-induced kidney injury (DIKI) primarily relies on detection of elevated plasma creatinine (Cr) or blood urea nitrogen (BUN) levels; however, both are indices of overall kidney function and changes are delayed with respect to onset of nephron injury. Our aim was to investigate whether early changes in new urinary DIKI biomarkers predict plasma Cr, BUN, renal hemodynamic and kidney morphological changes associated with kidney injury following a single dose of cisplatin (CDDP) using an integrated platform in rodent. Conscious surgically prepared male Han Wistar rats were given a single intraperitoneal dose of CDDP (15 mg/kg). Glomerular filtrationmore » rate (GFR), effective renal plasma flow (ERPF), urinalysis, DIKI biomarkers, CDDP pharmacokinetics, blood pressures, heart rate, body temperature and electroencephalogram (EEG) were measured in the same vehicle- or CDDP-treated animals over 72 h. Plasma chemistry (including Cr and BUN) and renal tissues were examined at study termination. Cisplatin caused progressive reductions of GFR, ERPF, heart rate and body temperature from day 1 (0–24 h). DIKI biomarkers including alpha-glutathione S-transferase (α-GST) significantly increased as early as 6 h post-dose, which preceded significant declines of GFR and ERPF (24 h), increased plasma Cr and BUN (72 h), and associated with renal acute tubular necrosis at 72 h post-dose. The present study adds to the current understanding of CDDP action by demonstrating that early increases in urinary excretion of α-GST predict DIKI risk following acute exposure to CDDP in rats, before changes in traditional DIKI markers are evident. - Highlights: ► CDDP causes direct damage to kidneys without affecting EEG or CVS function. ► α-GST and albumin detect DIKI earlier when compared with traditional indices. ► Integrated “cardiovascular-EEG-renal” model to better understand DIKI mechanisms ► Promotes 3R's principles in drug discovery and development.« less

  16. l-Arginine normalizes NOS activity and zinc-MT homeostasis in the kidney of mice chronically exposed to inorganic mercury.

    PubMed

    Piacenza, Francesco; Malavolta, Marco; Cipriano, Catia; Costarelli, Laura; Giacconi, Robertina; Muti, Elisa; Tesei, Silvia; Pierpaoli, Sara; Basso, Andrea; Bracci, Massimo; Bonacucina, Viviana; Santarelli, Lory; Mocchegiani, Eugenio

    2009-09-28

    Inorganic mercury (HgCl2) exposure provokes damage in many organs, especially kidney. Inducible nitric oxide synthase (iNOS) expression, total NOS activity and the profiles of zinc (Zn), copper (Cu) and Hg as well as their distribution when bound to specific intracellular proteins, including metallothioneins (MT), were studied during HgCl2 exposure and after l-arginine treatment in C57BL/6 mouse kidney. HgCl2 exposure modulates differently iNOS expression and NOS activity, increasing iNOS expression but, conversely, decreasing total NOS activity in the mouse kidney. Moreover, during Hg exposure an increased MT production occurs. The kidney damage leads to a loss of urinary proteins, increased plasma creatinine and high Zn mobilization with consequent increased urinary Zn excretion. l-arginine treatment recovers NOS activity and induces a normalization of MT induction, plasma creatinine values and urinary proteins excretion, suggesting that l-arginine may limit kidney damages by Hg exposure.

  17. Clinico-pathological features of kidney disease in diabetic cases.

    PubMed

    Furuichi, Kengo; Shimizu, Miho; Okada, Hirokazu; Narita, Ichiei; Wada, Takashi

    2018-03-21

    Diabetic kidney disease is the major cause of end-stage kidney disease in developed countries. However, the onset of kidney disorder and the progression pattern of kidney dysfunction and proteinuria greatly vary cases by cases. Therefore, risk classification with clinical data and pathological findings is important. Recent clinico-pathological study with kidney biopsy samples from diabetic patients revealed that pathological changes of diabetic nephropathy are characteristic and have special impacts on prognosis in each clinical stage. Moreover, comparison of the clinico-pathological findings of diabetic nephropathy with hypertensive nephrosclerosis revealed that there are few differences in their pathological findings in cases with low albuminuria and preserved estimated glomerular filtration rate (eGFR). Because it is so difficult to clearly distinguish pure kidney lesions caused by diabetes and kidney lesions due to effects other than diabetes, it is vital that these overlapped pathological findings be confirmed on kidney biopsy in cases of early stage diabetes. Further research is warranted regarding the pathogenesis of diabetic nephropathy and indication of kidney biopsy in diabetic cases.

  18. Risk factors associated with post-kidney transplant malignancies: an article from the Cancer-Kidney International Network.

    PubMed

    Sprangers, Ben; Nair, Vinay; Launay-Vacher, Vincent; Riella, Leonardo V; Jhaveri, Kenar D

    2018-06-01

    In kidney transplant recipients, cancer is one of the leading causes of death with a functioning graft beyond the first year of kidney transplantation, and malignancies account for 8-10% of all deaths in the USA (2.6 deaths/1000 patient-years) and exceed 30% of deaths in Australia (5/1000 patient-years) in kidney transplant recipients. Patient-, transplant- and medication-related factors contribute to the increased cancer risk following kidney transplantation. While it is well established that the overall immunosuppressive dose is associated with an increased risk for cancer following transplantation, the contributive effect of different immunosuppressive agents is not well established. In this review we will discuss the different risk factors for malignancies after kidney transplantation.

  19. Two damaging hydrogeological events in Calabria, September 2000 and November 2015. Comparative analysis of causes and effects

    NASA Astrophysics Data System (ADS)

    Petrucci, Olga; Caloiero, Tommaso; Aurora Pasqua, Angela

    2016-04-01

    Each year, especially during winter season, some episode of intense rain affects Calabria, the southernmost Italian peninsular region, triggering flash floods and mass movements that cause damage and fatalities. This work presents a comparative analysis between two events that affected the southeast sector of the region, in 2000 and 2014, respectively. The event occurred between 9th and 10th of September 2000 is known in Italy as Soverato event, after the name of the municipality where it reached the highest damage severity. In the Soverato area, more than 200 mm of rain that fell in 24 hours caused a disastrous flood that swept away a campsite at about 4 a.m., killing 13 people and hurting 45. Besides, the rain affected a larger area, causing damage in 89 (out of 409) municipalities of the region. Flooding was the most common process, which damaged housing and trading. Landslide mostly affected the road network, housing and cultivations. The most recent event affected the same regional sector between 30th October and 2nd November 2015. The daily rain recorded at some of the rain gauges of the area almost reached 400 mm. Out of the 409 municipalities of Calabria, 109 suffered damage. The most frequent types of processes were both flash floods and landslides. The most heavily damaged element was the road network: the representative picture of the event is a railway bridge destroyed by the river flow. Housing was damaged too, and 486 people were temporarily evacuated from home. The event also caused a victim killed by a flood. The event-centred study approach aims to highlight differences and similarities in both the causes and the effects of the two events that occurred at a temporal distance of 14 years. The comparative analysis focus on three main aspects: the intensity of triggering rain, the modifications of urbanised areas, and the evolution of emergency management. The comparative analysis of rain is made by comparing the return period of both daily and

  20. 78 FR 41991 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. ACTION: Notice; Issuance of Advisory... Gas and Hazardous Liquid Pipeline Systems. Subject: Potential for Damage to Pipeline Facilities Caused...

  1. Resveratrol Rescues Kidney Mitochondrial Function Following Hemorrhagic Shock

    PubMed Central

    Wang, Hao; Guan, Yuxia; Karamercan, Mehmet Akif; Ye, Lan; Bhatti, Tricia; Becker, Lance B.; Baur, Joseph A.; Sims, Carrie A.

    2015-01-01

    Objective Hemorrhagic shock may contribute to acute kidney injury by profoundly altering renal mitochondrial function. Resveratrol (RSV), a naturally occurring sirtuin-1 (SIRT1) activator, has been shown to promote mitochondrial function and reduce oxidative damage in a variety of aging-related disease states. We hypothesized that RSV treatment during resuscitation would ameliorate kidney mitochondrial dysfunction and decrease oxidative damage following hemorrhagic shock. Method Using a decompensated hemorrhagic shock model, male Long-Evans rats (n=6 per group) were sacrificed prior to hemorrhage (Sham), at severe shock, and following either lactated Ringer’s (LR) Resuscitation or LR+RSV Resuscitation (RSV: 30mg/kg). At each time point, blood samples were assayed for arterial blood gases, lactate, blood urea nitrogen (BUN) and serum creatinine. Mitochondria were also isolated from kidney samples in order to assess individual electron transport complexes (CI, CII, and CIV) using high-resolution respirometry. Total mitochondria reactive oxygen species (ROS) were measured using fluorometry and lipid peroxidation was assessed by measuring 4-hydroxynonenal by Western blot. qPCR was used quantify mRNA from PGC1-α, SIRT1, and proteins known to mitigate oxidative damage and promote mitochondrial biogenesis. Results RSV supplementation during resuscitation restored mitochondrial respiratory capacity, decreased mitochondrial ROS and lipid peroxidation. Compared to standard LR resuscitation, RSV treatment significantly increased SIRT1 and PGC1-α expression and significantly increased both SOD2 and catalase expression. Although RSV was associated with decreased lactate production, pH, BUN and serum creatinine values did not differ between resuscitation strategies. Conclusions Resuscitation with RSV significantly restored renal mitochondrial function and decreased oxidative damage following hemorrhagic shock. PMID:25895148

  2. The Study of Foreign Object Damage Caused by Aircraft Operations on Unconventional and Bomb-Damaged Airfield Surfaces.

    DTIC Science & Technology

    1981-06-01

    GEARHART F. READDY , R. DUCHATELLIER THE BDM CORPORATION 7915 JONES BRANCH DRIVE MC LEAN, VIRGINIA 22102 JUNE 1981 FINAL REPORT SEPTEMBER 1980 - JUNE...8. CONTRACT OR GRANT NUMBER(s) D. N. Beatty J. J. Gearhart F.’ Readdy R. Duchatellier F08635-80-CO206 9 PERFORMING ORGANIZATION NAME AND ADDRESS 10...MCLEAN VA F/6 1/5 THE STUDY OF FORE16N OBJECT DAMAGE CAUSED BY AIRCRAFT OPERATION-ETCIU) JUN A1 D N BEATTY, F READDY . .J J GEARHART F0863580-C-0206

  3. Endovascular Repair of Abdominal Aortic Aneurysms in the Presence of a Transplanted Kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverberg, Daniel, E-mail: silverberg-d@msn.com; Yalon, Tal; Halak, Moshe

    PurposeTo present our experience performing endovascular repair of abdominal aortic aneurysms in kidney transplanted patients.MethodsA retrospective review of all patients who underwent endovascular aneurysm repair (EVAR) for abdominal aortic aneurysms (AAA) performed at our institution from 2007 to 2014. We identified all patients who had previously undergone a kidney transplant. Data collected included: comorbidities, preoperative imaging modalities, indication for surgery, stent graft configurations, pre- and postoperative renal function, perioperative complications, and survival rates.ResultsA total of 267 EVARs were performed. Six (2 %) had a transplanted kidney. Mean age was 74 (range, 64–82) years; five were males. Mean time from transplantation tomore » EVAR was 7.5 (range, 2–12) years. Five underwent preoperative planning with noncontrast modalities only. Devices used included bifurcated (n = 3), aortouniiliac (n = 2), and tube (n = 1) stent grafts. Technical success was achieved in all patients. None experienced deterioration in renal function. Median follow-up was 39 (range, 6–51) months. Four patients were alive at the time of the study. Two patients expired during the period of follow-up from unrelated causes.ConclusionsEVAR is an effective modality for the management of AAAs in the coexistence of a transplanted kidney. It can be performed with minimal morbidity and mortality without harming the transplanted kidney. Special consideration should be given to device configuration to minimize damage to the renal graft.« less

  4. Microvascular injury and the kidney in hypertension.

    PubMed

    Ruiz-Hurtado, G; Ruilope, L M

    Renal macrocirculation participates in the development of arterial hypertension. The elevation in systemic blood pressure (BP) can damage the kidney starting in the microcirculation. Established arterial hypertension impinge upon the large arteries and stiffness develops. As a consequence central BP raises and BP pulsatility appear and contribute to further damage renal microcirculation by direct transmission of the elevated BP. Copyright © 2017 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. L-FABP and IL-6 as markers of chronic kidney damage in children after hemolytic uremic syndrome.

    PubMed

    Lipiec, Katarzyna; Adamczyk, Piotr; Świętochowska, Elżbieta; Ziora, Katarzyna; Szczepańska, Maria

    2018-06-13

    Hemolytic-uremic syndrome (HUS) is a form of thrombotic microangiopathy, in the course of which some patients may develop chronic kidney disease (CKD). From a clinical point of view, it is important to search for markers that allow for early identification of patients at risk of a poor prognosis. The study evaluated the serum and urine levels of liver-type fatty acid binding protein (L-FABP) and interleukin 6 (IL-6). The study was conducted in 29 children with a history of HUS. The relationship between L-FABP and IL-6 and anthropometric measurements, the value of estimated glomerular filtration rate (eGFR) and albuminuria were additionally evaluated. In children after HUS, L-FABP and IL-6 concentration in both serum and urine was significantly higher in comparison to the control group. No differences in L-FABP and IL-6 concentration in serum and urine depending on the type of HUS and gender were noted. Correlation between L-FABP and IL-6 in serum and urine with eGFR and urine albumin-creatinine ratio (ACR) in the total group of patients after HUS was not detected. In the group of children after 6 month observation after HUS, a negative correlation of L-FABP concentration with eGFR was found. The results indicate that the higher concentration of L-FABP in serum and urine of children with a history of HUS can be the result of protracted injury initiated during the acute phase of the disease. Lack of correlation of L-FABP concentration with the ACR may be associated with a short (less than 6 months) observation after acute renal failure or merely temporary renal tubular damage in the acute phase of the disease. In contrast, higher levels of IL-6 in serum and urine in children after HUS compared to healthy children and the negative correlation of L-FABP concentration and eGFR in children after 6 month observation after HUS may confirm their participation in CKD. Thus, L-FABP and IL-6 seem to be good biomarkers of chronic kidney damage in survivors of the acute phase of

  6. Methodology to improve process understanding of surface runoff causing damages to buildings by analyzing insurance data records

    NASA Astrophysics Data System (ADS)

    Bernet, Daniel; Prasuhn, Volker; Weingartner, Rolf

    2015-04-01

    Several case studies in Switzerland highlight that many buildings which are damaged by floods are not located within the inundation zones of rivers, but outside the river network. In urban areas, such flooding can be caused by drainage system surcharge, low infiltration capacity of the urbanized landscape etc. However, in rural and peri-urban areas inundations are more likely caused by surface runoff formed on natural and arable land. Such flash floods have very short response time, occur rather diffusely and, thus, are very difficult to observe directly. In our approach, we use data records from private, but mostly from public insurance companies. The latter, present in 19 out of the total 26 Cantons of Switzerland, insure (almost) every building within the respective administrative zones and, in addition, hold a monopoly position. Damage claims, including flood damages, are usually recorded and, thus, data records from such public insurance companies are a very profitable data source to better understand surface runoff leading to damages. Although practitioners agree that this process is relevant, there seems to be a knowledge gap concerning spatial and temporal distributions as well as triggers and influencing factors of such damage events. Within the framework of a research project, we want to address this research gap and improve the understanding of the process chain from surface runoff formation up to possible damages to buildings. This poster introduces the methodology, which will be applied to a dataset including data from the majority of all 19 public insurance companies for buildings in Switzerland, counting over 50'000 damage claims, in order to better understand surface runoff. The goal is to infer spatial and temporal patterns as well as drivers and influencing factors of surface runoff possibly causing damages. In particular, the workflow of data acquisition, harmonization and treatment is outlined. Furthermore associated problems and challenges are

  7. A combined deficiency of vitamins E and C causes severe central nervous system damage in guinea pigs.

    PubMed

    Burk, Raymond F; Christensen, Joani M; Maguire, Mark J; Austin, Lori M; Whetsell, William O; May, James M; Hill, Kristina E; Ebner, Ford F

    2006-06-01

    A short period of combined deficiency of vitamins E and C causes profound central nervous system (CNS) dysfunction in guinea pigs. For this report, CNS histopathology was studied to define the nature and extent of injury caused by this double deficiency. Weanling guinea pigs were fed a vitamin E-deficient or -replete diet for 14 d. Then vitamin C was withdrawn from the diet of some guinea pigs. Four diet groups were thus formed: replete, vitamin E deficient, vitamin C deficient, and both vitamin E and C deficient. From 5 to 11 d after institution of the doubly deficient diet, 9 of 12 guinea pigs developed paralysis, and 2 more were found dead. The remaining guinea pig in the doubly deficient group and all animals in the other 3 groups survived without clinical impairment until the experiment was terminated at 13-15 d. Brains and spinal cords were serially sectioned and stained for examination. Only the combined deficiency produced damage in the CNS. The damage consisted mainly of nerve cell death, axonal degeneration, vascular injury, and associated glial cell responses. The spinal cord and the ventral pons in the brainstem were most severely affected, often exhibiting asymmetric cystic lesions. Several features of the lesions suggest that the primary damage was to blood vessels. These results indicate that the paralysis and death caused by combined deficiency of vitamins E and C in guinea pigs is caused by severe damage in the brainstem and spinal cord.

  8. Hypertension-misattributed kidney disease in African Americans.

    PubMed

    Skorecki, Karl L; Wasser, Walter G

    2013-01-01

    Lipkowitz et al. extend the African American Study of Kidney Disease and Hypertension to the level of genetic epidemiology, in a case-control study design. Analysis of genotypes at the APOL1 kidney disease risk region supports a paradigm shift in which genetic risk is proximate to both kidney disease and hypertension. The findings mandate urgency in clarifying mechanisms whereby APOL1 region risk variants interact with environmental triggers to cause progressive kidney disease accompanied by dangerous hypertension.

  9. Causes and Consequences of Sensory Hair Cell Damage and Recovery in Fishes.

    PubMed

    Smith, Michael E; Monroe, J David

    2016-01-01

    Sensory hair cells are the mechanotransductive receptors that detect gravity, sound, and vibration in all vertebrates. Damage to these sensitive receptors often results in deficits in vestibular function and hearing. There are currently two main reasons for studying the process of hair cell loss in fishes. First, fishes, like other non-mammalian vertebrates, have the ability to regenerate hair cells that have been damaged or lost via exposure to ototoxic chemicals or acoustic overstimulation. Thus, they are used as a biomedical model to understand the process of hair cell death and regeneration and find therapeutics that treat or prevent human hearing loss. Secondly, scientists and governmental natural resource managers are concerned about the potential effects of intense anthropogenic sounds on aquatic organisms, including fishes. Dr. Arthur N. Popper and his students, postdocs and research associates have performed pioneering experiments in both of these lines of fish hearing research. This review will discuss the current knowledge regarding the causes and consequences of both lateral line and inner ear hair cell damage in teleost fishes.

  10. Endoplasmic reticulum stress in kidney function and disease.

    PubMed

    Taniguchi, Mai; Yoshida, Hiderou

    2015-07-01

    Recently, a number of papers have reported that endoplasmic reticulum (ER) stress is involved in the onset of various kidney diseases, but the pathological mechanisms responsible have not been clarified. In this review, we summarize recent findings on this issue and try to clarify the pathology of ER stress-induced kidney diseases. ER stress is evoked in various kidney diseases, including diabetic nephropathy, renal fibrosis, inflammation or osmolar contrast-induced renal injury, ischemia-reperfusion, genetic mutations of renal proteins, proteinuria and cyclosporine A treatment. In some cases, chemical chaperones, such as 4-phenylbutyrate and taurodeoxycholic acid, relieve the symptoms, indicating that ER stress-induced apoptosis of renal cells is one of the major causes of certain kidney diseases. Actually, the ER stress response provides protection against some kidney diseases, although the PERK-ATF4-CHOP pathway of the ER stress response is proapoptotic in some kidney diseases. The disposal of unfolded proteins by autophagy is also protective for some ER stress-induced kidney diseases. Because ER stress is a major cause of some kidney diseases, the ER stress response and autophagy, which deal with unfolded proteins that accumulate in the ER, are promising therapeutic targets in acute and chronic kidney diseases.

  11. Biological Effect of Cynara cardunculus on Kidney Status of Hypercholesterolemic Rats

    PubMed Central

    Alkushi, Abdullah Glil

    2017-01-01

    Context: Cynara cardunculus or artichoke thistle belongs to the sunflower family and has a variety of cultivable forms. Historically, it was cultivated as a vegetable, but more recently, it is being used in cheese and biofuel preparation. Artichoke leaf extracts are also known for its medicinal purposes, particularly in reducing the elevated cholesterol levels in blood. Hypercholesterolemia (HC) is also associated with other complications such as impaired renal function and diabetes mellitus. A remedy without major side effects for HC and its associated complications is highly desirable. Aims: We explored the effect of artichoke on the kidneys of hypercholesterolemic adult male Sprague–Dawley albino rats. Subjects and Methods: Oral administration of 200 mg/kg and 400 mg/kg body weight (b.wt.) of C. cardunculus leaf extract (CCL) and C. cardunculus pulp extract (CCP) was made to male Sprague–Dawley albino hypercholesterolemic rats and investigated the levels of glucose, creatinine, uric acid, and urea in their blood. Results: We observed that both CCL and CCP significantly reduced the creatinine and uric acid levels in the blood in a dose-dependent manner (P < 0.05). Both CCL and CCP significantly reduced the blood glucose levels (P < 0.05). Further, the histopathological investigation of the kidney sections showed that CCL treatment resolved HC-associated kidney damage. Conclusion: CCL not only has cholesterol-reducing capacity but also reduces the blood glucose levels and repairs the impaired kidney functions and damages. These findings are significant particularly because HC results in further complications such as diabetes and kidney damage, both of which can be treated effectively with artichoke. SUMMARY C. cardunculus leaf extract (CCL) not only has cholesterol-reducing capacity but also reduces the blood glucose levels and repairs the impaired kidney functions and damages. This study evaluated the nephroprotective role of CCL and CCP in

  12. Hyperglycemia induced damage to mitochondrial respiration in renal mesangial and tubular cells: Implications for diabetic nephropathy.

    PubMed

    Czajka, Anna; Malik, Afshan N

    2016-12-01

    Damage to renal tubular and mesangial cells is central to the development of diabetic nephropathy (DN), a complication of diabetes which can lead to renal failure. Mitochondria are the site of cellular respiration and produce energy in the form of ATP via oxidative phosphorylation, and mitochondrial dysfunction has been implicated in DN. Since the kidney is an organ with high bioenergetic needs, we postulated that hyperglycemia causes damage to renal mitochondria resulting in bioenergetic deficit. The bioenergetic profiles and the effect of hyperglycemia on cellular respiration of human primary mesangial (HMCs) and proximal tubular cells (HK-2) were compared in normoglycemic and hyperglycemic conditions using the seahorse bio-analyzer. In normoglycemia, HK-2 had significantly lower basal, ATP-linked and maximal respiration rates, and lower reserve capacity compared to HMCs. Hyperglycemia caused a down-regulation of all respiratory parameters within 4 days in HK-2 but not in HMCs. After 8 days of hyperglycemia, down-regulation of respiratory parameters persisted in tubular cells with compensatory up-regulated glycolysis. HMCs had reduced maximal respiration and reserve capacity at 8 days, and by 12 days had compromised mitochondrial respiration despite which they did not enhance glycolysis. These data suggest that diabetes is likely to lead to a cellular deficit in ATP production in both cell types, although with different sensitivities, and this mechanism could significantly contribute to the cellular damage seen in the diabetic kidney. Prevention of diabetes induced damage to renal mitochondrial respiration may be a novel therapeutic approach for the prevention/treatment of DN. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Pelvic dystopia of right rudimentary multicystic dysplastic kidney as a rare cause of bedwetting in a patient with a single pelvic ectopic left kidney, and agenesis of the uterus and vagina (Mayer-Rokitansky-Küster-Hauser syndrome): a case report.

    PubMed

    Karimbayev, Kidirali; Dzumanazarov, Nazarbek; Akhaibekov, Mukhtar; Berdikulov, Nurzhan; Karimbayev, Abay; Mustafayev, Assanaly

    2018-05-07

    Pelvic dystopia of rudimentary multicystic dysplastic kidney as a rare cause of bedwetting in children. We report the case of a 14-year-old Kazakh girl who presented with difficulty in starting the stream of urine and intermittent interruption of the urinary stream while voiding as well as bedwetting, caused by a rare congenital disease (pelvic dystopia of rudimentary multicystic dysplastic kidney). The diagnostic workup, differential diagnosis, and management, and a review of the literature are presented. Persistent since she was 2 years old, bedwetting was stressful for both the parents and child. Initially detected radiologically and endoscopically, a bladder mass was thought suspicious for ureterocele, papilloma, or mixed tumor of the urinary bladder, but surprisingly, turned out to be a pelvic dystopia of the rudimentary multicystic dysplastic kidney. Transvesical excision of this mass was performed. The purpose of this case report is to draw attention to the fact that a persistent case of bedwetting which does not respond to conventional therapy should be subject to further examinations to exclude surgical causes of the disease.

  14. A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage.

    PubMed

    Maxwell, Adam D; Wang, Tzu-Yin; Yuan, Lingqian; Duryea, Alexander P; Xu, Zhen; Cain, Charles A

    2010-12-01

    Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel. The acoustic and mechanical properties of the gel phantom were found to be similar to soft tissue properties. The phantom's response to cavitation was evaluated using histotripsy. Histotripsy causes breakdown of tissue structures by the generation of controlled cavitation using short, focused, high-intensity ultrasound pulses. Histotripsy lesions were generated in the phantom and kidney tissue using a spherically focused 1-MHz transducer generating 15 cycle pulses, at a pulse repetition frequency of 100 Hz with a peak negative pressure of 14 MPa. Damage appeared clearly as increased optical transparency of the phantom due to rupture of individual red blood cells. The morphology of lesions generated in the phantom was very similar to that generated in kidney tissue at both macroscopic and cellular levels. Additionally, lesions in the phantom could be visualized as hypoechoic regions on a B-mode ultrasound image, similar to histotripsy lesions in tissue. High-speed imaging of the optically transparent phantom was used to show that damage coincides with the presence of cavitation. These results indicate that the phantom can accurately mimic the response of soft tissue to cavitation and provide a useful tool for studying damage induced by acoustic cavitation. Copyright © 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. [Causes and management of severe acute liver damage during pregnancy].

    PubMed

    Sepulveda-Martinez, Alvaro; Romero, Carlos; Juarez, Guido; Hasbun, Jorge; Parra-Cordero, Mauro

    2015-05-01

    Abnormalities in liver function tests appear in 3% of pregnancies. Severe acute liver damage can be an exclusive condition of pregnancy (dependent or independent of pre-eclampsia) or a concomitant disease. HELLP syndrome and acute fatty liver of pregnancy are the most severe liver diseases associated with pregnancy. Both appear during the third trimester and have a similar clinical presentation. Acute fatty liver may be associated with hypoglycemia and HELLP syndrome is closely linked with pre-eclampsia. Among concomitant conditions, fulminant acute hepatitis caused by medications or virus is the most severe disease. Its clinical presentation may be hyper-acute with neurological involvement and severe coagulation disorders. It has a high mortality and patients should be transplanted. Fulminant hepatic failure caused by acetaminophen overdose can be managed with n-acetyl cysteine. Because of the high fetal mortality rate, the gestational age at diagnosis is crucial.

  16. Aerial pesticide application causes DNA damage in pilots from Sinaloa, Mexico.

    PubMed

    Martínez-Valenzuela, C; Waliszewski, S M; Amador-Muñoz, O; Meza, E; Calderón-Segura, M E; Zenteno, E; Huichapan-Martínez, J; Caba, M; Félix-Gastélum, R; Longoria-Espinoza, R

    2017-01-01

    The use of pesticides in agricultural production originates residues in the environment where they are applied. Pesticide aerial application is a frequent source of exposure to pesticides by persons dedicated to agricultural practices and those living in neighboring communities of sprayed fields. The aim of the study was to assess the genotoxic effects of pesticides in workers occupationally exposed to these chemicals during their aerial application to agricultural fields of Sinaloa, Mexico. The study involved 30 pilots of airplanes used to apply pesticides via aerial application and 30 unexposed controls. Damage was evaluated through the micronucleus assay and by other nuclear abnormalities in epithelial cells of oral mucosa. The highest frequency ratios (FR) equal to 269.5 corresponded to binucleated cells followed by 54.2, corresponding to cells with pyknotic nuclei, 45.2 of cells with chromatin condensation, 3.7 of cells with broken-egg, 3.6 of cells with micronucleus, and 2.0 of karyolytic cells. Age, worked time, smoking, and alcohol consumption did not have significant influence on nuclear abnormalities in the pilots studied. Pesticide exposure was the main factor for nuclear abnormality results and DNA damage. Marked genotoxic damage was developed even in younger pilots with 2 years of short working period, caused by their daily occupational exposure to pesticides.

  17. Management of wildlife causing damage at Argonne National Laboratory-East, DuPage County, Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    The DOE, after an independent review, has adopted an Environmental Assessment (EA) prepared by the US Department of Agriculture (USDA) which evaluates use of an Integrated Wildlife Damage Management approach at Argonne National Laboratory-East (ANL-E) in DuPage County, Illinois (April 1995). In 1994, the USDA issued a programmatic Environmental Impact Statement (EIS) that covers nationwide animal damage control activities. The EA for Management of Wildlife Causing Damage at ANL-E tiers off this programmatic EIS. The USDA wrote the EA as a result of DOE`s request to USDA to prepare and implement a comprehensive Wildlife Management Damage Plan; the USDA hasmore » authority for animal damage control under the Animal Damage Control Act of 1931, as amended, and the Rural Development, Agriculture and Related Agencies Appropriations Act of 1988. DOE has determined, based on the analysis in the EA, that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an EIS is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).« less

  18. Transcription factor Nrf2 hyperactivation in early-phase renal ischemia-reperfusion injury prevents tubular damage progression.

    PubMed

    Nezu, Masahiro; Souma, Tomokazu; Yu, Lei; Suzuki, Takafumi; Saigusa, Daisuke; Ito, Sadayoshi; Suzuki, Norio; Yamamoto, Masayuki

    2017-02-01

    Acute kidney injury is a devastating disease with high morbidity in hospitalized patients and contributes to the pathogenesis of chronic kidney disease. An underlying mechanism of acute kidney injury involves ischemia-reperfusion injury which, in turn, induces oxidative stress and provokes organ damage. Nrf2 is a master transcription factor that regulates the cellular response to oxidative stress. Here, we examined the role of Nrf2 in the progression of ischemia-reperfusion injury-induced kidney damage in mice using genetic and pharmacological approaches. Both global and tubular-specific Nrf2 activation enhanced gene expression of antioxidant and NADPH synthesis enzymes, including glucose-6-phosphate dehydrogenase, and ameliorated both the initiation of injury in the outer medulla and the progression of tubular damage in the cortex. Myeloid-specific Nrf2 activation was ineffective. Short-term administration of the Nrf2 inducer CDDO during the initial phase of injury ameliorated the late phase of tubular damage. This inducer effectively protected the human proximal tubular cell line HK-2 from oxidative stress-mediated cell death while glucose-6-phosphate dehydrogenase knockdown increased intracellular reactive oxygen species. These findings demonstrate that tubular hyperactivation of Nrf2 in the initial phase of injury prevents the progression of reactive oxygen species-mediated tubular damage by inducing antioxidant enzymes and NADPH synthesis. Thus, Nrf2 may be a promising therapeutic target for preventing acute kidney injury to chronic kidney disease transition. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  19. Risk factors associated with post–kidney transplant malignancies: an article from the Cancer-Kidney International Network

    PubMed Central

    Nair, Vinay; Riella, Leonardo V; Jhaveri, Kenar D

    2018-01-01

    ABSTRACT In kidney transplant recipients, cancer is one of the leading causes of death with a functioning graft beyond the first year of kidney transplantation, and malignancies account for 8–10% of all deaths in the USA (2.6 deaths/1000 patient-years) and exceed 30% of deaths in Australia (5/1000 patient-years) in kidney transplant recipients. Patient-, transplant- and medication-related factors contribute to the increased cancer risk following kidney transplantation. While it is well established that the overall immunosuppressive dose is associated with an increased risk for cancer following transplantation, the contributive effect of different immunosuppressive agents is not well established. In this review we will discuss the different risk factors for malignancies after kidney transplantation. PMID:29942495

  20. The Effect of Diet on the Survival of Patients with Chronic Kidney Disease

    PubMed Central

    Rysz, Jacek; Franczyk, Beata; Ciałkowska-Rysz, Aleksandra; Gluba-Brzózka, Anna

    2017-01-01

    The prevalence of chronic kidney disease (CKD) is high and it is gradually increasing. Individuals with CKD should introduce appropriate measures to hamper the progression of kidney function deterioration as well as prevent the development or progression of CKD-related diseases. A kidney-friendly diet may help to protect kidneys from further damage. Patients with kidney damage should limit the intake of certain foods to reduce the accumulation of unexcreted metabolic products and also to protect against hypertension, proteinuria and other heart and bone health problems. Despite the fact that the influence of certain types of nutrients has been widely studied in relation to kidney function and overall health in CKD patients, there are few studies on the impact of a specific diet on their survival. Animal studies demonstrated prolonged survival of rats with CKD fed with protein-restricted diets. In humans, the results of studies are conflicting. Some of them indicate slowing down of the progression of kidney disease and reduction in proteinuria, but other underline significant worsening of patients’ nutritional state, which can be dangerous. A recent systemic study revealed that a healthy diet comprising many fruits and vegetables, fish, legumes, whole grains, and fibers and also the cutting down on red meat, sodium, and refined sugar intake was associated with lower mortality in people with kidney disease. The aim of this paper is to review the results of studies concerning the impact of diet on the survival of CKD patients. PMID:28505087

  1. The Effect of Diet on the Survival of Patients with Chronic Kidney Disease.

    PubMed

    Rysz, Jacek; Franczyk, Beata; Ciałkowska-Rysz, Aleksandra; Gluba-Brzózka, Anna

    2017-05-13

    The prevalence of chronic kidney disease (CKD) is high and it is gradually increasing. Individuals with CKD should introduce appropriate measures to hamper the progression of kidney function deterioration as well as prevent the development or progression of CKD-related diseases. A kidney-friendly diet may help to protect kidneys from further damage. Patients with kidney damage should limit the intake of certain foods to reduce the accumulation of unexcreted metabolic products and also to protect against hypertension, proteinuria and other heart and bone health problems. Despite the fact that the influence of certain types of nutrients has been widely studied in relation to kidney function and overall health in CKD patients, there are few studies on the impact of a specific diet on their survival. Animal studies demonstrated prolonged survival of rats with CKD fed with protein-restricted diets. In humans, the results of studies are conflicting. Some of them indicate slowing down of the progression of kidney disease and reduction in proteinuria, but other underline significant worsening of patients' nutritional state, which can be dangerous. A recent systemic study revealed that a healthy diet comprising many fruits and vegetables, fish, legumes, whole grains, and fibers and also the cutting down on red meat, sodium, and refined sugar intake was associated with lower mortality in people with kidney disease. The aim of this paper is to review the results of studies concerning the impact of diet on the survival of CKD patients.

  2. Urinary sodium excretion and kidney failure in non-diabetic chronic kidney disease

    PubMed Central

    Fan, Li; Tighiouart, Hocine; Levey, Andrew S.; Beck, Gerald J.; Sarnak, Mark J.

    2014-01-01

    Current guidelines recommend under 2g/day sodium intake in chronic kidney disease, but there are few studies relating sodium intake to long-term outcomes. Here we evaluated the association of mean baseline 24-hour urinary sodium excretion with kidney failure and a composite outcome of kidney failure or all-cause mortality using Cox regression in 840 participants enrolled in the Modification of Diet in Renal Disease Study. Mean 24-hour urinary sodium excretion was 3.46 g/day. Kidney failure developed in 617 and the composite outcome was reached in 723. In the primary analyses there was no association between 24-hour urine sodium and kidney failure [HR 0.99 (95% CI 0.91–1.08)] nor on the composite outcome [HR 1.01 (95% CI 0.93–1.09),] each per 1g/day higher urine sodium. In exploratory analyses there was a significant interaction of baseline proteinuria and sodium excretion with kidney failure. Using a 2-slope model, when urine sodium was under 3g/day, higher urine sodium was associated with increased risk of kidney failure in those with baseline proteinuria under 1g/day, and lower risk of kidney failure in those with baseline proteinuria of 1g/day or more. There was no association between urine sodium and kidney failure when urine sodium was 3g/day or more. Results were consistent using first baseline and time-dependent urine sodium. Thus, we noted no association of urine sodium with kidney failure. Results of the exploratory analyses need to be verified in additional studies and the mechanism explored. PMID:24646858

  3. How Networks of Informal Trails Cause Landscape Level Damage to Vegetation.

    PubMed

    Barros, Agustina; Marina Pickering, Catherine

    2017-07-01

    When visitors are not constrained to remain on formal trails, informal trail networks can develop and damage plant communities in protected areas. These networks can form in areas with low growing vegetation, where formal trails are limited, where there is limited regulation and where vegetation is slow to recover once disturbed. To demonstrate the extent of impacts from unregulated recreational use, we assessed damage to alpine vegetation by hikers and pack animals in the highest protected area in the southern Hemisphere: Aconcagua Park, in the Andes. Within the 237 ha area surveyed in the Horcones Valley, over 19 km of trails were found, nearly all of which (94%) were informal. This network of trails resulted in the direct loss of 11.5 ha of vegetation and extensive fragmentation of alpine meadows (21 fragments) and steppe vegetation (68 fragments). When levels of disturbance off these trails were quantified using rapid visual assessments, 81% of 102 randomly located plots showed evidence of disturbance, with the severity of disturbance greatest close to trails. As a result, vegetation in 90% of the Valley has been damaged by visitor use, nearly all of it from unregulated use. These results highlight the extent to which informal trails and trampling off-trail can cause landscape damage to areas of high conservation value, and hence the importance of better regulation of visitor use. The methodology used for off-trail impact assessment can be easily applied or adapted for other popular protected areas where trampling off-trail is also an issue.

  4. Physiological Expression of AMPKγ2RG Mutation Causes Wolff-Parkinson-White Syndrome and Induces Kidney Injury in Mice*

    PubMed Central

    Yang, Xiaodong; Mudgett, John; Bou-About, Ghina; Champy, Marie-France; Jacobs, Hugues; Monassier, Laurent; Pavlovic, Guillaume; Sorg, Tania; Herault, Yann; Petit-Demoulière, Benoit; Lu, Ku; Feng, Wen; Wang, Hongwu; Ma, Li-Jun; Askew, Roger; Erion, Mark D.; Kelley, David E.; Myers, Robert W.; Li, Cai

    2016-01-01

    Mutations of the AMP-activated kinase gamma 2 subunit (AMPKγ2), N488I (AMPKγ2NI) and R531G (AMPKγ2RG), are associated with Wolff-Parkinson-White (WPW) syndrome, a cardiac disorder characterized by ventricular pre-excitation in humans. Cardiac-specific transgenic overexpression of human AMPKγ2NI or AMPKγ2RG leads to constitutive AMPK activation and the WPW phenotype in mice. However, overexpression of these mutant proteins also caused profound, non-physiological increase in cardiac glycogen, which might abnormally alter the true phenotype. To investigate whether physiological levels of AMPKγ2NI or AMPKγ2RG mutation cause WPW syndrome and metabolic changes in other organs, we generated two knock-in mouse lines on the C57BL/6N background harboring mutations of human AMPKγ2NI and AMPKγ2RG, respectively. Similar to the reported phenotypes of mice overexpressing AMPKγ2NI or AMPKγ2RG in the heart, both lines developed WPW syndrome and cardiac hypertrophy; however, these effects were independent of cardiac glycogen accumulation. Compared with AMPKγ2WT mice, AMPKγ2NI and AMPKγ2RG mice exhibited reduced body weight, fat mass, and liver steatosis when fed with a high fat diet (HFD). Surprisingly, AMPKγ2RG but not AMPKγ2NI mice fed with an HFD exhibited severe kidney injury characterized by glycogen accumulation, inflammation, apoptosis, cyst formation, and impaired renal function. These results demonstrate that expression of AMPKγ2NI and AMPKγ2RG mutations at physiological levels can induce beneficial metabolic effects but that this is accompanied by WPW syndrome. Our data also reveal an unexpected effect of AMPKγ2RG in the kidney, linking lifelong constitutive activation of AMPK to a potential risk for kidney dysfunction in the context of an HFD. PMID:27621313

  5. Physiological Expression of AMPKγ2RG Mutation Causes Wolff-Parkinson-White Syndrome and Induces Kidney Injury in Mice.

    PubMed

    Yang, Xiaodong; Mudgett, John; Bou-About, Ghina; Champy, Marie-France; Jacobs, Hugues; Monassier, Laurent; Pavlovic, Guillaume; Sorg, Tania; Herault, Yann; Petit-Demoulière, Benoit; Lu, Ku; Feng, Wen; Wang, Hongwu; Ma, Li-Jun; Askew, Roger; Erion, Mark D; Kelley, David E; Myers, Robert W; Li, Cai; Guan, Hong-Ping

    2016-11-04

    Mutations of the AMP-activated kinase gamma 2 subunit (AMPKγ2), N488I (AMPKγ2 NI ) and R531G (AMPKγ2 RG ), are associated with Wolff-Parkinson-White (WPW) syndrome, a cardiac disorder characterized by ventricular pre-excitation in humans. Cardiac-specific transgenic overexpression of human AMPKγ2 NI or AMPKγ2 RG leads to constitutive AMPK activation and the WPW phenotype in mice. However, overexpression of these mutant proteins also caused profound, non-physiological increase in cardiac glycogen, which might abnormally alter the true phenotype. To investigate whether physiological levels of AMPKγ2 NI or AMPKγ2 RG mutation cause WPW syndrome and metabolic changes in other organs, we generated two knock-in mouse lines on the C57BL/6N background harboring mutations of human AMPKγ2 NI and AMPKγ2 RG , respectively. Similar to the reported phenotypes of mice overexpressing AMPKγ2 NI or AMPKγ2 RG in the heart, both lines developed WPW syndrome and cardiac hypertrophy; however, these effects were independent of cardiac glycogen accumulation. Compared with AMPKγ2 WT mice, AMPKγ2 NI and AMPKγ2 RG mice exhibited reduced body weight, fat mass, and liver steatosis when fed with a high fat diet (HFD). Surprisingly, AMPKγ2 RG but not AMPKγ2 NI mice fed with an HFD exhibited severe kidney injury characterized by glycogen accumulation, inflammation, apoptosis, cyst formation, and impaired renal function. These results demonstrate that expression of AMPKγ2 NI and AMPKγ2 RG mutations at physiological levels can induce beneficial metabolic effects but that this is accompanied by WPW syndrome. Our data also reveal an unexpected effect of AMPKγ2 RG in the kidney, linking lifelong constitutive activation of AMPK to a potential risk for kidney dysfunction in the context of an HFD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Nonsteroidal mineralocorticoid antagonists in diabetic kidney disease.

    PubMed

    Dojki, Farheen K; Bakris, George

    2017-09-01

    Current data highlight the pathological aspects of excess aldosterone in promoting glomerular hypertrophy, glomerulosclerosis, and proteinuria in diabetic kidney disease (DKD). The role of nonsteroidal mineralocorticoid receptor antagonists (MRAs) in DKD is being evaluated in ongoing clinical trials. Recent studies demonstrate beneficial effects of adding MRAs to the treatment regimen of patients with type 2 diabetes with nephropathy. The MRAs spironolactone and eplerenone can protect against organ damage caused by elevated levels of serum aldosterone in patients with heart failure and DKD but are limited by their side effects, for example, hyperkalemia. Finerenone is more selective for the mineralocorticoid receptor than spironolactone and has greater affinity for the mineralocorticoid receptor than eplerenone. It reduces the concentration of aldosterone without causing significant elevation in serum potassium. MRAs have a clear role in reducing albuminuria when used with other renin-angiotensin system blockers in DKD; however, hyperkalemia limits their use. This article provides an overview of clinical studies with a novel MRA, finerenone, and several nonsteroidal MRAs being studied for treatment in DKD.

  7. Monomeric neutrophil gelatinase associated lipocalin is associated with tubulointerstitial damage in chronic kidney disease

    PubMed Central

    Nickolas, Thomas L.; Forster, Catherine; Sise, Meghan E.; Barasch, Nicholas; Valle, David Solá-Del; Viltard, Melanie; Buchen, Charles; Kupferman, Shlomo; Carnevali, Maria Luisa; Bennett, Michael; Mattei, Silvia; Bovino, Achiropita; Argentiero, Lucia; Magnano, Andrea; Devarajan, Prasad; Mori, Kiyoshi; Erdjument-Bromage, Hediye; Tempst, Paul; Allegri, Landino; Barasch, Jonathan

    2012-01-01

    The rate of progression of chronic kidney disease (CKD) is difficult to predict using single measurements of serum creatinine or proteinuria. On the other hand, documented tubulointerstitial disease presages worsening CKD, but kidney biopsy is not practical for routine use and generally does not sample the tubulointerstitial compartment of the medulla. Perhaps a urine test that correlates with specific histological findings may serve as a surrogate for the kidney biopsy. Here we compared both immunoblot analysis (under non-reducing conditions) and a commercially available monomer immunoassays of Neutrophil Gelatinase Associated Lipocalin (NGAL) with pathological changes found in kidney biopsies, to determine whether specific histological characteristics associated with a specific NGAL species. We found that the urine of patients with advanced CKD contained NGAL monomers as well as higher molecular weight complexes containing NGAL, identified by MALDI-TOF/TOF mass spectroscopy. The NGAL monomer significantly correlated with glomerular filtration rate, interstitial fibrosis and tubular atrophy. Hence, specific assays of the NGAL monomer implicate histology associated with progressive, severe CKD. PMID:22695331

  8. Cellular and subcellular localization of uncoupling protein 2 in the human kidney.

    PubMed

    Nigro, Michelangelo; De Sanctis, Claudia; Formisano, Pietro; Stanzione, Rosita; Forte, Maurizio; Capasso, Giovambattista; Gigliotti, Giuseppe; Rubattu, Speranza; Viggiano, Davide

    2018-06-23

    The uncoupling protein-2 (UCP2) is an anion transporter that plays a key role in the control of intracellular oxidative stress. In animal models UCP2 downregulation has several pathological sequelae, particularly affecting the vasculature and the kidney. Specifically, in these models kidney damage is highly favored in the absence of UCP2 in the context of experimental hypertension. Confirmations of these data in humans awaits further information, as no data are yet available concerning the cell-type and subcellular expression in the human kidney. In the present study, we aimed to characterize the UCP2 protein distribution in human kidney biopsies. In humans UCP2 is mainly localized in proximal convoluted tubule cells, with an intracytoplasmic punctate staining. UCP2 positive puncta are often localized at the interface between the endoplasmic reticulum and the mitochondria. Glomerular structures do not express UCP2 at detectable levels. The expression of UCP2 in proximal tubular cells may explain their relative propensity to damage in pathological conditions including the hypertensive disease.

  9. Kidney Disease and Diabetes - What You Need to Know

    MedlinePlus

    ... of the spine. Their main job is to filter your blood to remove wastes that could damage ... healthy. Each kidney contains about one million tiny filters called nephrons. Inside each nephron are tiny blood ...

  10. Kidney stone erosion by micro scale hydrodynamic cavitation and consequent kidney stone treatment.

    PubMed

    Perk, Osman Yavuz; Şeşen, Muhsincan; Gozuacik, Devrim; Koşar, Ali

    2012-09-01

    The objective of this study is to reveal the potential of micro scale hydrodynamic bubbly cavitation for the use of kidney stone treatment. Hydrodynamically generated cavitating bubbles were targeted to the surfaces of 18 kidney stone samples made of calcium oxalate, and their destructive effects were exploited in order to remove kidney stones in in vitro experiments. Phosphate buffered saline (PBS) solution was used as the working fluid under bubbly cavitating conditions in a 0.75 cm long micro probe of 147 μm inner diameter at 9790 kPa pressure. The surface of calcium oxalate type kidney stones were exposed to bubbly cavitation at room temperature for 5 to 30 min. The eroded kidney stones were visually analyzed with a high speed CCD camera and using SEM (scanning electron microscopy) techniques. The experiments showed that at a cavitation number of 0.017, hydrodynamic bubbly cavitation device could successfully erode stones with an erosion rate of 0.31 mg/min. It was also observed that the targeted application of the erosion with micro scale hydrodynamic cavitation may even cause the fracture of the kidney stones within a short time of 30 min. The proposed treatment method has proven to be an efficient instrument for destroying kidney stones.

  11. Cadmium Transporters in the Kidney and Cadmium-Induced Nephrotoxicity

    PubMed Central

    Yang, Hong; Shu, Yan

    2015-01-01

    Among the organs in which the environmental pollutant cadmium causes toxicity, the kidney has gained the most attention in recent years. Numerous studies have sought to unravel the exact pathways by which cadmium enters the renal epithelial cells and the mechanisms by which it causes toxicity in the kidney. The purpose of this review is to present the progress made on the mechanisms of cadmium transport in the kidney and the role of transporter proteins in cadmium-induced nephrotoxicity. PMID:25584611

  12. Renal tissue damage induced by focused shock waves

    NASA Astrophysics Data System (ADS)

    Ioritani, N.; Kuwahara, M.; Kambe, K.; Taguchi, K.; Saitoh, T.; Shirai, S.; Orikasa, S.; Takayama, K.; Lush, P. A.

    1990-07-01

    Biological evidence of renal arterial wall damage induced by the microjet due to shock wave-cavitation bubble interaction was demonstrated in living dog kidneys. We also intended to clarify the mechanism of renal tissue damage and the effects of different conditions of shock wave exposure (peak pressure of focused area, number of shots, exposure rate) on the renal tissue damage in comparison to stone disintegration. Disruption of arterial wall was the most remarkable histological change in the focused area of the kidneys. This lesion appeared as if the wall had been punctured by a needle. Large hematoma formation in the renal parenchym, and interstitial hemorrhage seemed to be the results of the arterial lesion. This arterial disorder also led to ischemic necrosis of the tubules surrounding the hematoma. Micro-angiographic examination of extracted kidneys also proved such arterial puncture lesions and ischemic lesions. The number of shots required for model stone disintegration was not inversely proportional to peak pressure. It decreased markedly when peak pressure was above 700 bar. Similarly thenumber of shots for hematoma formation was not inversely proportional to peak pressure, however, this decreased markedly above 500 bar. These results suggested that a hematoma could be formed under a lower peak pressure than that required for stone disintegration.

  13. Magnetic resonance elastography can monitor changes in medullary stiffness in response to treatment in the swine ischemic kidney

    PubMed Central

    Zhang, Xin; Zhu, Xiangyang; Ferguson, Christopher M.; Jiang, Kai; Burningham, Tyson; Lerman, Amir; Lerman, Lilach O.

    2018-01-01

    Object Low-energy shockwave (SW) therapy attenuates damage in the stenotic kidney (STK) caused by atherosclerotic renal artery stenosis (ARAS). We hypothesized that magnetic resonance elastography (MRE) would detect attenuation of fibrosis following SW in unilateral ARAS kidneys. Materials and Methods Domestic pigs were randomized to control, unilateral ARAS, and ARAS treated with 6 sessions of SW over 3 consecutive weeks (n=7 each) starting after 3 weeks of ARAS or sham. Four weeks after SW treatment, renal fibrosis was evaluated with MRE in-vivo or trichrome staining ex-vivo. Blood pressure, single-kidney renal-blood-flow (RBF) and glomerular-filtration-rate (GFR) were assessed. Results MRE detected increased stiffness in the STK medulla (15.3±2.1 vs. 10.1±0.8 kPa, p<0.05) that moderately correlated with severity of fibrosis (R2=0.501, p<0.01), but did not identify mild STK cortical or contralateral kidney fibrosis. Trichrome staining showed that medullary fibrosis was increased in ARAS and alleviated by SW (10.4±1.8% vs. 2.9±0.2%, p<0.01). SW slightly decreased blood pressure and normalized STK RBF and GFR in ARAS. In the contralateral kidney, SW reversed the increase in RBF and GFR. Conclusion MRE might be a tool for noninvasive monitoring of medullary fibrosis in response to treatment in kidney disease. PMID:29289980

  14. Exacerbation of acute kidney injury by bone marrow stromal cells from rats with persistent renin-angiotensin system activation.

    PubMed

    Kankuri, Esko; Mervaala, Elina E; Storvik, Markus; Ahola, Aija M J; Levijoki, Jouko; Müller, Dominik N; Finckenberg, Piet; Mervaala, Eero M

    2015-06-01

    Hypertension and persistent activation of the renin-angiotensin system (RAS) are predisposing factors for the development of acute kidney injury (AKI). Although bone-marrow-derived stromal cells (BMSCs) have shown therapeutic promise in treatment of AKI, the impact of pathological RAS on BMSC functionality has remained unresolved. RAS and its local components in the bone marrow are involved in several key steps of cell maturation processes. This may also render the BMSC population vulnerable to alterations even in the early phases of RAS pathology. We isolated transgenic BMSCs (TG-BMSCs) from young end-organ-disease-free rats with increased RAS activation [human angiotensinogen/renin double transgenic rats (dTGRs)] that eventually develop hypertension and die of end-organ damage and kidney failure at 8 weeks of age. Control cells (SD-BMSCs) were isolated from wild-type Sprague-Dawley rats. Cell phenotype, mitochondrial reactive oxygen species (ROS) production and respiration were assessed, and gene expression profiling was carried out using microarrays. Cells' therapeutic efficacy was evaluated in a rat model of acute ischaemia/reperfusion-induced AKI. Serum urea and creatinine were measured at 24 h and 48 h. Acute tubular damage was scored and immunohistochemistry was used for evaluation for markers of inflammation [monocyte chemoattractant protein (MCP-1), ED-1], and kidney injury [kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL)]. TG-BMSCs showed distinct mitochondrial morphology, decreased cell respiration and increased production of ROS. Gene expression profiling revealed a pronounced pro-inflammatory phenotype. In contrast with the therapeutic effect of SD-BMSCs, administration of TG-BMSCs in the AKI model resulted in exacerbation of kidney injury and high mortality. Our results demonstrate that early persistent RAS activation can dramatically compromise therapeutic potential of BMSCs by causing a shift into a pro

  15. Why kidneys fail post-partum: a tubulocentric viewpoint.

    PubMed

    Villie, Patricia; Dommergues, Marc; Brocheriou, Isabelle; Piccoli, Giorgina Barbara; Tourret, Jérôme; Hertig, Alexandre

    2018-04-10

    Kidneys may fail post-partum in a number of circumstances due, for example, to post-partum haemorrhage, preeclampsia, amniotic fluid embolism or septic abortion. All these conditions in pregnancy and post partum represent a threat not only to the endothelium but also to the renal tubular epithelium, and as such may lead to rapid and also irreversible impairment of the renal function. This paper is a non-systematic review of the literature and of our experience, in which we discuss the main open issues on kidney disease in pregnancy and following delivery, in particular as regards tubular damage, with the aim to help reasoning on acute kidney injury (AKI) following delivery. The review will emphasize the often under-estimated importance of the tubular epithelium in the peri-partum period and will: (1) describe the main characteristics of the renal tissues around delivery; (2) define pregnancy-related AKI according to recent Kidney Disease/Improving Global Outcome (KDIGO) guidelines; (3) discuss the most common circumstances of post-partum AKI; and (4) describe the input expected from urinalysis, renal imaging and kidney biopsy.

  16. Suramin protects from cisplatin-induced acute kidney injury

    PubMed Central

    Dupre, Tess V.; Doll, Mark A.; Shah, Parag P.; Sharp, Cierra N.; Kiefer, Alex; Scherzer, Michael T.; Saurabh, Kumar; Saforo, Doug; Siow, Deanna; Casson, Lavona; Arteel, Gavin E.; Jenson, Alfred Bennett; Megyesi, Judit; Schnellmann, Rick G.; Beverly, Levi J.

    2015-01-01

    Cisplatin, a commonly used cancer chemotherapeutic, has a dose-limiting side effect of nephrotoxicity. Approximately 30% of patients administered cisplatin suffer from kidney injury, and there are limited treatment options for the treatment of cisplatin-induced kidney injury. Suramin, which is Federal Drug Administration-approved for the treatment of trypanosomiasis, improves kidney function after various forms of kidney injury in rodent models. We hypothesized that suramin would attenuate cisplatin-induced kidney injury. Suramin treatment before cisplatin administration reduced cisplatin-induced decreases in kidney function and injury. Furthermore, suramin attenuated cisplatin-induced expression of inflammatory cytokines and chemokines, endoplasmic reticulum stress, and apoptosis in the kidney cortex. Treatment of mice with suramin 24 h after cisplatin also improved kidney function, suggesting that the mechanism of protection is not by inhibition of tubular cisplatin uptake or its metabolism to nephrotoxic species. If suramin is to be used in the context of cancer, then it cannot prevent cisplatin-induced cytotoxicity of cancer cells. Suramin did not alter the dose-response curve of cisplatin in lung adenocarcinoma cells in vitro. In addition, suramin pretreatment of mice harboring lung adenocarcinomas did not alter the initial cytotoxic effects of cisplatin (DNA damage and apoptosis) on tumor cells. These results provide evidence that suramin has potential as a renoprotective agent for the treatment/prevention of cisplatin-induced acute kidney injury and justify future long-term preclinical studies using cotreatment of suramin and cisplatin in mouse models of cancer. PMID:26661653

  17. Hippocampal damage causes retrograde but not anterograde memory loss for context fear discrimination in rats.

    PubMed

    Lee, Justin Q; Sutherland, Robert J; McDonald, Robert J

    2017-09-01

    There is a substantial body of evidence that the hippocampus (HPC) plays and essential role in context discrimination in rodents. Studies reporting anterograde amnesia (AA) used repeated, alternating, distributed conditioning and extinction sessions to measure context fear discrimination. In addition, there is uncertainty about the extent of damage to the HPC. Here, we induced conditioned fear prior to discrimination tests and rats sustained extensive, quantified pre- or post-training HPC damage. Unlike previous work, we found that extensive HPC damage spares context discrimination, we observed no AA. There must be a non-HPC system that can acquire long-term memories that support context fear discrimination. Post-training HPC damage caused retrograde amnesia (RA) for context discrimination, even when rats are fear conditioned for multiple sessions. We discuss the implications of these findings for understanding the role of HPC in long-term memory. © 2017 Wiley Periodicals, Inc.

  18. Iatrogenic Damage to the Periodontium Caused by Periodontal Treatment Procedures

    PubMed Central

    Latheef, P; Sirajuddin, Syed; Gundapaneni, Veenadharini; MN, Kumuda; Apine, Ashwini

    2015-01-01

    Periodontitis is an inflammatory disease affecting the periodontium i.e. the tissues that surround and support the teeth. Periodontitis manifests as progressive loss of the alveolar bone around the teeth, and if left untreated, can cause loosening and subsequent loss of teeth. Periodontitis is initiated by microorganisms that adhere to and grow on the tooth's surfaces, besides an over -aggressive immune response against these microorganisms. The primary goal of periodontal therapy is to preserve the natural dentition by accomplishing and preserving a healthy functional periodontium. Many treatment modalities have been introduced to improve the therapeutic result of periodontal treatment which may also damage the periodontiumiatrogenically. PMID:26312087

  19. Renal accumulation of pentosidine in non-diabetic proteinuria-induced renal damage in rats.

    PubMed

    Waanders, Femke; Greven, Wendela L; Baynes, John W; Thorpe, Suzanne R; Kramer, Andrea B; Nagai, Ryoji; Sakata, Noriyuki; van Goor, Harry; Navis, Gerjan

    2005-10-01

    Advanced glycation end-products (AGEs) contribute to the pathogenesis of diabetic glomerulopathy. The role of AGEs in non-diabetic renal damage is not well characterized. First, we studied whether renal AGE accumulation occurs in non-diabetic proteinuria-induced renal damage and whether this is ameliorated by renoprotective treatment. Secondly, we investigated whether renal AGE accumulation was due to intrarenal effects of local protein trafficking. Pentosidine was measured (by high-performance liquid chromatography) in rats with chronic bilateral adriamycin nephropathy (AN), untreated and treated with lisinopril. Age-matched healthy rats served as negative controls. Secondly, we compared renal pentosidine in mild proteinuric and non-proteinuric kidneys of unilateral AN and in age-matched controls at 12 and 30 weeks. Intrarenal localization of pentosidine was studied by immunohistochemistry. Renal pentosidine was elevated in untreated AN (0.14+/-0.04 micromol/mol valine) vs healthy controls (0.04+/-0.01 micromol/mol valine, P<0.01). In lisinopril-treated AN, pentosidine was lower (0.09+/-0.02 micromol/mol valine) than in untreated AN (P<0.05). In unilateral proteinuria, pentosidine was similar in non-proteinuric and proteinuric kidneys. After 30 weeks of unilateral proteinuria, pentosidine was increased in both kidneys (0.26+/-0.10 micromol/mol valine) compared with controls (0.18+/-0.06 micromol/mol valine, P<0.05). Pentosidine (AN, week 30) was also increased compared with AN at week 12 (0.16+/-0.06 micromol/mol valine, P<0.01). In control and diseased kidneys, pentosidine was present in the collecting ducts. In proteinuric kidneys, in addition, pentosidine was present in the brush border and cytoplasm of dilated tubular structures, i.e. at sites of proteinuria-induced tubular damage. Pentosidine accumulates in non-diabetic proteinuric kidneys in damaged tubules, and renoprotective treatment by angiotensin-converting enzyme (ACE) inhibitors inhibits AGE

  20. Renal oxygenation and hemodynamics in acute kidney injury and chronic kidney disease

    PubMed Central

    Singh, Prabhleen; Ricksten, Sven-Erik; Bragadottir, Gudrun; Redfors, Bengt; Nordquist, Lina

    2013-01-01

    Summary 1. Acute kidney injury (AKI) puts a major burden on health systems that may arise from multiple initiating insults, including ischemia-reperfusion injury, cardiovascular surgery, radio-contrast administration as well as sepsis. Similarly, the incidence and prevalence of chronic kidney disease (CKD) continues to increase with significant morbidity and mortality. Moreover, an increasing number of AKI patients survive to develop CKD and end-stage kidney disease (ESRD). 2. Although the mechanisms for development of AKI and progression of CKD remain poorly understood, initial impairment of oxygen balance is likely to constitute a common pathway, causing renal tissue hypoxia and ATP starvation that will in turn induce extracellular matrix production, collagen deposition and fibrosis. Thus, possible future strategies for one or both conditions may involve dopamine, loop-diuretics, inducible nitric oxide synthase inhibitors and atrial natriuretic peptide, substances that target kidney oxygen consumption and regulators of renal oxygenation such as nitric oxide and heme oxygenase-1. PMID:23360244

  1. Chronic nandrolone administration promotes oxidative stress, induction of pro-inflammatory cytokine and TNF-α mediated apoptosis in the kidneys of CD1 treated mice.

    PubMed

    Riezzo, Irene; Turillazzi, Emanuela; Bello, Stefania; Cantatore, Santina; Cerretani, Daniela; Di Paolo, Marco; Fiaschi, Anna Ida; Frati, Paola; Neri, Margherita; Pedretti, Monica; Fineschi, Vittorio

    2014-10-01

    Nandrolone decanoate administration and strenuous exercise increase the extent of renal damage in response to renal toxic injury. We studied the role played by oxidative stress in the apoptotic response caused by nandrolone decanoate in the kidneys of strength-trained male CD1 mice. To measure cytosolic enzyme activity, glutathione peroxidase (GPx), glutathione reductase (GR) and malondialdehyde (MDA) were determined after nandrolone treatment. An immunohistochemical study and Western blot analysis were performed to evaluate cell apoptosis and to measure the effects of renal expression of inflammatory mediators (IL-1β, TNF-α) on the induction of apoptosis (HSP90, TUNEL). Dose-related oxidative damage in the kidneys of treated mice is shown by an increase in MDA levels and by a reduction of antioxidant enzyme GR and GPx activities, resulting in the kidney's reduced radical scavenging ability. Renal specimens of the treated group showed relevant glomeruli alterations and increased immunostaining and protein expressions, which manifested significant focal segmental glomerulosclerosis. The induction of proinflammatory cytokine expression levels was confirmed by Western blot analysis. Long-term administration of nandrolone promotes oxidative injury in the mouse kidneys. TNF-α mediated injury due to nandrolone in renal cells appears to play a role in the activation of both the intrinsic and extrinsic apoptosis pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A Review of Organ Transplantation: Heart, Lung, Kidney, Liver, and Simultaneous Liver-Kidney.

    PubMed

    Scheuher, Cynthia

    2016-01-01

    Heart, lung, kidney, liver, and simultaneous liver-kidney transplants share many features. They all follow the same 7-step process, the same 3 immunosuppressant medications, and the same reason for organ transplantation. Organs are transplanted because of organ failure. The similarities end there. Each organ has its unique causes for failure. Each organ also has its own set of criteria that must be met prior to transplantation. Simultaneous liver-kidney transplant criteria vary per transplant center but are similar in nature. Both the criteria required and the 7-step process are described by the United Network of Organ Sharing, which is a private, nonprofit organization, under contract with the US Department of Health and Human Services. Its function is to increase the number of transplants, improve survival rates after transplantation, promote safe transplant practices, and endorse efficiency. The purpose of this article is to review the reasons transplant is needed, specifically heart, lung, kidney, liver, and simultaneous liver-kidney, and a brief overview of the transplant process including criteria used, contraindications, and medications prescribed.

  3. N-acetyl-cysteine increases cellular dysfunction in progressive chronic kidney damage after acute kidney injury by dampening endogenous antioxidant responses.

    PubMed

    Small, David M; Sanchez, Washington Y; Roy, Sandrine F; Morais, Christudas; Brooks, Heddwen L; Coombes, Jeff S; Johnson, David W; Gobe, Glenda C

    2018-05-01

    Oxidative stress and mitochondrial dysfunction exacerbate acute kidney injury (AKI), but their role in any associated progress to chronic kidney disease (CKD) remains unclear. Antioxidant therapies often benefit AKI, but their benefits in CKD are controversial since clinical and preclinical investigations often conflict. Here we examined the influence of the antioxidant N-acetyl-cysteine (NAC) on oxidative stress and mitochondrial function during AKI (20-min bilateral renal ischemia plus reperfusion/IR) and progression to chronic kidney pathologies in mice. NAC (5% in diet) was given to mice 7 days prior and up to 21 days post-IR (21d-IR). NAC treatment resulted in the following: prevented proximal tubular epithelial cell apoptosis at early IR (40-min postischemia), yet enhanced interstitial cell proliferation at 21d-IR; increased transforming growth factor-β1 expression independent of IR time; and significantly dampened nuclear factor-like 2-initiated cytoprotective signaling at early IR. In the long term, NAC enhanced cellular metabolic impairment demonstrated by increased peroxisome proliferator activator-γ serine-112 phosphorylation at 21d-IR. Intravital multiphoton microscopy revealed increased endogenous fluorescence of nicotinamide adenine dinucleotide (NADH) in cortical tubular epithelial cells during ischemia, and at 21d-IR that was not attenuated with NAC. Fluorescence lifetime imaging microscopy demonstrated persistent metabolic impairment by increased free/bound NADH in the cortex at 21d-IR that was enhanced by NAC. Increased mitochondrial dysfunction in remnant tubular cells was demonstrated at 21d-IR by tetramethylrhodamine methyl ester fluorimetry. In summary, NAC enhanced progression to CKD following AKI not only by dampening endogenous cellular antioxidant responses at time of injury but also by enhancing persistent kidney mitochondrial and metabolic dysfunction.

  4. Maize Purple Plant Pigment Protects Against Fluoride-Induced Oxidative Damage of Liver and Kidney in Rats

    PubMed Central

    Zhang, Zhuo; Zhou, Bo; Wang, Hiaohong; Wang, Fei; Song, Yingli; Liu, Shengnan; Xi, Shuhua

    2014-01-01

    Anthocyanins are polyphenols and well known for their biological antioxidative benefits. Maize purple plant pigment (MPPP) extracted and separated from maize purple plant is rich in anthocyanins. In the present study, MPPP was used to alleviate the adverse effects generated by fluoride on liver and kidney in rats. The results showed that the ultrastructure of the liver and kidney in fluoride treated rats displayed shrinkage of nuclear and cell volume, swollen mitochondria and endoplasmic reticulum and vacuols formation in the liver and kidney cells. MPPP significantly attenuated these fluoride-induced pathological changes. The MDA levels in serum and liver tissue of fluoride alone treated group were significantly higher than those of the control group (p < 0.05). The presence of 5 g/kg MPPP in the diet reduced the elevation of MDA levels in blood and liver, and increased the SOD and GSH-Px activities in kidney and GSH level in liver and kidney compared with the fluoride alone treated group (p < 0.05). In addition, MPPP alleviated the decrease of Bcl-2 protein expression and the increase of Bax protein expression induced by fluoride. This study demonstrated the protective role of MPPP against fluoride-induced oxidative stress in liver and kidney of rats. PMID:24419046

  5. Effect of Γ-aminobutyric acid on kidney injury induced by renal ischemia-reperfusion in male and female rats: Gender-related difference.

    PubMed

    Vafapour, Marzieh; Nematbakhsh, Mehdi; Monajemi, Ramesh; Mazaheri, Safoora; Talebi, Ardeshir; Talebi, Nahid; Shirdavani, Soheyla

    2015-01-01

    The most important cause of kidney injury is renal ischemia/reperfusion injury (IRI), which is gender-related. This study was designed to investigate the protective role of Γ-aminobutyric acid (GABA (against IRI in male and female rats. Thirty-six female and male wistar rats were assigned to six experimental groups. The IRI was induced by clamping renal vessels for 45 min then was performed reperfusion for 24 h. The group sex posed to IRI were pretreated with GABA and were compared with the control groups. Serum levels of creatinine and blood urea nitrogen, kidney weight, and kidney tissue damage score increased in the IRI alone groups, (P < 0.05), while GABA decreased these parameters in female significantly (P < 0.05), but not in male rats. Uterus weight decreased significantly in female rats treated with GABA. Testis weight did not alter in male rats. Serum level of nitrite and kidney level of malondialdehyde (MDA) had no significant change in both female and male rats. Kidney level of nitrite increased significantly in female rats experienced IRI and serum level of MDA increased significantly in males that were exposed to IRI (P < 0.05). GABA could ameliorate kidney injury induced by renal IRI in a gender dependent manner.

  6. Baicalein, a Component of Scutellaria baicalensis, Attenuates Kidney Injury Induced by Myocardial Ischemia and Reperfusion.

    PubMed

    Lai, Chang-Chi; Huang, Po-Hsung; Yang, An-Han; Chiang, Shu-Chiung; Tang, Chia-Yu; Tseng, Kuo-Wei; Huang, Cheng-Hsiung

    2016-02-01

    Acute kidney injury is a common and severe complication of acute myocardial infarction and cardiac surgery. It results in increased mortality, morbidity, and duration of hospitalization. Baicalein is a component of the root of Scutellaria baicalensis, which has traditionally been used to treat cardiovascular and liver diseases in Asia. In this study, we investigated whether baicalein can attenuate kidney injury induced by myocardial ischemia and reperfusion in rats. Myocardial ischemia and reperfusion, induced by a 40-minute occlusion and a 3-hour reperfusion of the left anterior descending coronary artery, significantly increased blood urea nitrogen and creatinine levels in addition to causing histological changes in the kidneys. Kidney apoptosis was also significantly increased. Furthermore, myocardial ischemia and reperfusion significantly increased the serum levels of tumor necrosis factor-α, interleukin-1, and interleukin-6 as well as the tumor necrosis factor-α levels in the kidneys. Intravenous pretreatment with baicalein (in doses of 3, 10, or 30 mg/kg), however, significantly reduced the increases in the creatinine level, renal histological damage, and apoptosis induced by myocardial ischemia and reperfusion. In addition, the increases in the serum levels of tumor necrosis factor-α, interleukin-1, and interleukin-6, and of tumor necrosis factor-α in the kidneys were significantly reduced. Western blot analysis revealed that baicalein significantly increased Bcl-2 and reduced Bax in the kidneys. The phosphorylation of Akt and extracellular signal-regulated kinases 1 and 2 was also significantly increased. In conclusion, baicalein significantly attenuates kidney injury induced by myocardial ischemia and reperfusion. The underlying mechanisms might be related to the inhibition of apoptosis, possibly through the reduction of tumor necrosis factor-α production, the modulation of Bcl-2 and Bax, and the activation of Akt and extracellular signal

  7. HealthLines: Control Blood Pressure, Protect Your Kidneys

    MedlinePlus

    ... Home Current Issue Past Issues Health Lines Control Blood Pressure, Protect Your Kidneys Past Issues / Fall 2008 Table ... on. By Shana Potash, Staff Writer, NLM High blood pressure is a leading cause of chronic kidney disease ( ...

  8. Targeting Murine Mesenchymal Stem Cells to Kidney Injury Molecule-1 Improves Their Therapeutic Efficacy in Chronic Ischemic Kidney Injury.

    PubMed

    Zou, Xiangyu; Jiang, Kai; Puranik, Amrutesh S; Jordan, Kyra L; Tang, Hui; Zhu, Xiangyang; Lerman, Lilach O

    2018-05-01

    Mesenchymal stem cells (MSC) have been experimentally used for kidney repair, but modest retention limits their efficacy. Cell-surface coating allows modulating MSC homing and interaction with target cells. We coated mouse adipose tissue-derived MSC with antibodies directed against kidney injury molecule-1 (ab-KIM1), which is upregulated in injured kidneys, and tested the hypothesis that this would enhance their therapeutic effects in ischemic kidney injury. Untreated MSC, ab-KIM1-coated MSC (KIM-MSC), or vehicle, were injected systemically into the carotid artery of 2-kidneys, 1-clip mice 2 weeks after surgery. MSC retention in different organs was explored 24 hours, 48 hours, or 2 weeks after injection. Renal volume, perfusion, and oxygenation were studied 2 weeks after injection using magnetic resonance imaging in vivo, and renal inflammation, apoptosis, capillary density, and fibrosis ex vivo. The ab-KIM1 coating had little effect on MSC viability or proliferation. The stenotic kidney showed upregulated KIM1 expression, selective homing, and greater retention of KIM-MSC compared to untreated MSC and compared to other organs. KIM-MSC-injected mice improved renal perfusion and capillary density, and attenuated oxidative damage, apoptosis, and fibrosis compared to mice treated with vehicle or with native MSC. In conclusion, MSC coating with ab-KIM1 increased their retention in the ischemic kidney and enhanced their therapeutic efficacy. This novel method may be useful to selectively target injured kidneys, and supports further development of strategies to enhance cell-based treatment of ischemic kidney injury. Stem Cells Translational Medicine 2018;7:394-403. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  9. Targeting Murine Mesenchymal Stem Cells to Kidney Injury Molecule‐1 Improves Their Therapeutic Efficacy in Chronic Ischemic Kidney Injury

    PubMed Central

    Zou, Xiangyu; Jiang, Kai; Puranik, Amrutesh S.; Jordan, Kyra L.; Tang, Hui

    2018-01-01

    Abstract Mesenchymal stem cells (MSC) have been experimentally used for kidney repair, but modest retention limits their efficacy. Cell‐surface coating allows modulating MSC homing and interaction with target cells. We coated mouse adipose tissue‐derived MSC with antibodies directed against kidney injury molecule‐1 (ab‐KIM1), which is upregulated in injured kidneys, and tested the hypothesis that this would enhance their therapeutic effects in ischemic kidney injury. Untreated MSC, ab‐KIM1‐coated MSC (KIM‐MSC), or vehicle, were injected systemically into the carotid artery of 2‐kidneys, 1‐clip mice 2 weeks after surgery. MSC retention in different organs was explored 24 hours, 48 hours, or 2 weeks after injection. Renal volume, perfusion, and oxygenation were studied 2 weeks after injection using magnetic resonance imaging in vivo, and renal inflammation, apoptosis, capillary density, and fibrosis ex vivo. The ab‐KIM1 coating had little effect on MSC viability or proliferation. The stenotic kidney showed upregulated KIM1 expression, selective homing, and greater retention of KIM‐MSC compared to untreated MSC and compared to other organs. KIM‐MSC‐injected mice improved renal perfusion and capillary density, and attenuated oxidative damage, apoptosis, and fibrosis compared to mice treated with vehicle or with native MSC. In conclusion, MSC coating with ab‐KIM1 increased their retention in the ischemic kidney and enhanced their therapeutic efficacy. This novel method may be useful to selectively target injured kidneys, and supports further development of strategies to enhance cell‐based treatment of ischemic kidney injury. Stem Cells Translational Medicine 2018;7:394–403 PMID:29446551

  10. Klotho and activin A in kidney injury: plasma Klotho is maintained in unilateral obstruction despite no upregulation of Klotho biosynthesis in the contralateral kidney.

    PubMed

    Nordholm, Anders; Mace, Maria L; Gravesen, Eva; Hofman-Bang, Jacob; Morevati, Marya; Olgaard, Klaus; Lewin, Ewa

    2018-05-01

    In a new paradigm of etiology related to chronic kidney disease-mineral and bone disorder (CKD-MBD), kidney injury may cause induction of factors in the injured kidney that are released into the circulation and thereby initiate and maintain renal fibrosis and CKD-MBD. Klotho is believed to ameliorate renal fibrosis and CKD-MBD, while activin A might have detrimental effects. The unilateral ureter obstruction (UUO) model is used here to examine this concept by investigating early changes related to renal fibrosis in the obstructed kidney, untouched contralateral kidney, and vasculature which might be affected by secreted factors from the obstructed kidney, and comparing with unilateral nephrectomized controls (UNX). Obstructed kidneys showed early Klotho gene and protein depletion, whereas plasma Klotho increased in both UUO and UNX rats, indicating an altered metabolism of Klotho. Contralateral kidneys had no compensatory upregulation of Klotho and maintained normal expression of the examined fibrosis-related genes, as did remnant UNX kidneys. UUO caused upregulation of transforming growth factor-β and induction of periostin and activin A in obstructed kidneys without changes in the contralateral kidneys. Plasma activin A doubled in UUO rats after 10 days while no changes were seen in UNX rats, suggesting secretion of activin A from the obstructed kidney with potentially systemic effects on CKD-MBD. As such, increased aortic sclerostin was observed in UUO rats compared with UNX and normal controls. The present results are in line with the new paradigm and show very early vascular effects of unilateral kidney fibrosis, supporting the existence of a new kidney-vasculature axis.

  11. Pure Ethiodized Oil-based Transcatheter Ablative Therapy in Normal Rabbit Kidneys and Kidneys Inoculated with VX-2 Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konya, Andras, E-mail: akonya@mdanderson.org; Stephens, L. Clifton; Wright, Kenneth C.

    2011-10-15

    Purpose: To evaluate the efficacy of ablation with selective arterial injection of pure ethiodized oil followed by arterial occlusion with 9:1 ethanol-Ethiodol mixture (EEM) and coil placement in normal rabbit kidneys and kidneys inoculated with VX-2 carcinoma. Materials and Methods: All experiments were conducted with Animal Care and Use Committee approval. In six rabbits (group 1), one kidney was embolized with pure Ethiodol until capillary stasis, followed by injection of 9:1 EEM until arterial stasis and then coil placement into the main renal artery. In 12 other rabbits, one kidney was inoculated with VX-2 tumor. Ethiodol and EEM embolization andmore » coil placement followed 7 days later (group 2, n = 6) or 11-14 days later (group 3, n = 6). Kidneys were evaluated (angiography, computed tomography, macro- and microscopy) 7 days after treatment. Results: Capillary stasis was achieved in groups 1, 2, and 3 with (mean {+-} standard deviation) 0.47 {+-} 0.03, 0.53 {+-} 0.02, and 0.56 {+-} 0.04 ml of pure Ethiodol, followed by 0.47 {+-} 0.05, 0.42 {+-} 0.03, and 0.38 {+-} 0.04 ml of EEM, respectively, which caused complete arterial occlusion in 17 of 18 kidneys. In group 1, all but one kidney showed at least 95% generalized coagulative necrosis. In group 2, all six kidneys exhibited 100% coagulative necrosis, with no viable tumor present. In group 3, 100% coagulative necrosis was present in all kidneys, with a small viable tumor in one. Conclusion: In the rabbit, selective arterial injection of pure Ethiodol can cause complete renal parenchyma and tumor ablation when it is followed by prompt, contiguous, and permanent occlusion of the arterial compartment.« less

  12. Dental fluorosis, nutritional status, kidney damage, and thyroid function along with bone metabolic indicators in school-going children living in fluoride-affected hilly areas of Doda district, Jammu and Kashmir, India.

    PubMed

    Khandare, Arjun L; Gourineni, Shankar Rao; Validandi, Vakdevi

    2017-10-23

    A case-control study was undertaken among the school children aged 8-15 years to know the presence and severity of dental fluorosis, nutrition and kidney status, and thyroid function along with bone metabolic indicators in Doda district situated at high altitude where drinking water was contaminated and heat stress. This study included 824 participants with an age of 8-15 years. The results of the study reviled that dental fluorosis was significantly higher in affected than control area children. Urinary fluoride was significantly higher (p < 0.05) in affected children as compared to the control area school children. Nutritional status of affected children was lower than control area children. The chronic kidney damage (CKD) was higher in affected than control school children. Thyroid function was affected more in affected than control area schools. Serum creatinine, total alkaline phosphatase, parathyroid hormone, 1, 25(OH) 2 vitamin D, and osteocalcin were significantly higher in affected school children (p < 0.05) as compared to control school children, whereas there was no significant difference in triiodothyronine (T3), thyroxine (T4), and 25-OH vitamin D among the two groups. There was a significant decrease in thyroid-stimulating hormone (TSH) in the affected area school children compared to control. In conclusion, fluorotic area school children were more affected with dental fluorosis, kidney damage, along and some bone indicators as compared to control school children.

  13. Gender and living donor kidney transplantation.

    PubMed

    Khalifeh, Neda; Hörl, Walter H

    2011-03-01

    Renal transplantation is the first choice of treatment for end-stage renal disease (ESRD) patients. It offers a longer life span, a better quality of life, and lower health care costs as compared to long-term dialysis. In the past years, a constantly rising demand of kidneys on the one hand and a shortage of disposable organs on the other hand pose a growing challenge on transplant medicine. Donor and recipient gender may influence many aspects of kidney transplantation, but the nature of these interactions is still unclear. This article summarizes a part of our present knowledge in the field of gender-related kidney donation and kidney transplantation. Causes for gender disparity and its consequences will be discussed.

  14. Systems toxicology of chemically induced liver and kidney injuries: histopathology‐associated gene co‐expression modules

    PubMed Central

    Te, Jerez A.; AbdulHameed, Mohamed Diwan M.

    2016-01-01

    Abstract Organ injuries caused by environmental chemical exposures or use of pharmaceutical drugs pose a serious health risk that may be difficult to assess because of a lack of non‐invasive diagnostic tests. Mapping chemical injuries to organ‐specific histopathology outcomes via biomarkers will provide a foundation for designing precise and robust diagnostic tests. We identified co‐expressed genes (modules) specific to injury endpoints using the Open Toxicogenomics Project‐Genomics Assisted Toxicity Evaluation System (TG‐GATEs) – a toxicogenomics database containing organ‐specific gene expression data matched to dose‐ and time‐dependent chemical exposures and adverse histopathology assessments in Sprague–Dawley rats. We proposed a protocol for selecting gene modules associated with chemical‐induced injuries that classify 11 liver and eight kidney histopathology endpoints based on dose‐dependent activation of the identified modules. We showed that the activation of the modules for a particular chemical exposure condition, i.e., chemical‐time‐dose combination, correlated with the severity of histopathological damage in a dose‐dependent manner. Furthermore, the modules could distinguish different types of injuries caused by chemical exposures as well as determine whether the injury module activation was specific to the tissue of origin (liver and kidney). The generated modules provide a link between toxic chemical exposures, different molecular initiating events among underlying molecular pathways and resultant organ damage. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Toxicology published by John Wiley & Sons, Ltd. PMID:26725466

  15. Shock wave lithotripsy (SWL) induces significant structural and functional changes in the kidney

    NASA Astrophysics Data System (ADS)

    Evan, Andrew P.; Willis, Lynn R.; Lingeman, James E.

    2003-10-01

    The foundation for understanding SWL-injury has been well-controlled renal structural and functional studies in pigs, a model that closely mimics the human kidney. A clinical dose (2000 shocks at 24 kV) of SWL administered by the Dornier HM3 induces a predictable, unique vascular injury at F2 that is associated with transient renal vasoconstriction, seen as a reduction in renal plasma flow, in both treated and untreated kidneys. Unilateral renal denervation studies links the fall in blood flow in untreated kidneys to autonomic nerve activity in the treated kidney. SWL-induced trauma is associated with an acute inflammatory process, termed Lithotripsy Nephritis and tubular damage at the site of damage that leads to a focal region of scar. Lesion size increases with shock number and kV level. In addition, risk factors like kidney size and pre-existing renal disease (e.g., pyelonephritis), can exaggerate the predicted level of renal impairment. Our new protection data show that lesion size can be greatly reduced by a pretreatment session with low kV and shock number. The mechanisms of soft tissue injury probably involves shear stress followed by acoustic cavitation. Because of the perceived enhanced level of bioeffects from 3rd generation lithotripters, these observations are more relevant than ever.

  16. Secular Trends in Infection-Related Mortality after Kidney Transplantation.

    PubMed

    Kinnunen, Susanna; Karhapää, Pauli; Juutilainen, Auni; Finne, Patrik; Helanterä, Ilkka

    2018-05-07

    Infections are the most common noncardiovascular causes of death after kidney transplantation. We analyzed the current infection-related mortality among kidney transplant recipients in a nationwide cohort in Finland. Altogether, 3249 adult recipients of a first kidney transplant from 1990 to 2012 were included. Infectious causes of death were analyzed, and the mortality rates for infections were compared between two eras (1990-1999 and 2000-2012). Risk factors for infectious deaths were analyzed with Cox regression and competing risk analyses. Altogether, 953 patients (29%) died during the follow-up, with 204 infection-related deaths. Mortality rate (per 1000 patient-years) due to infections was lower in the more recent cohort (4.6; 95% confidence interval, 3.5 to 6.1) compared with the older cohort (9.1; 95% confidence interval, 7.6 to 10.7); the incidence rate ratio of infectious mortality was 0.51 (95% confidence interval, 0.30 to 0.68). The main causes of infectious deaths were common bacterial infections: septicemia in 38% and pulmonary infections in 45%. Viral and fungal infections caused only 2% and 3% of infectious deaths, respectively (such as individual patients with Cytomegalovirus pneumonia, Herpes simplex virus meningoencephalitis, Varicella zoster virus encephalitis, and Pneumocystis jirovecii infection). Similarly, opportunistic bacterial infections rarely caused death; only one death was caused by Listeria monocytogenes , and two were caused by Mycobacterium tuberculosis . Only 23 (11%) of infection-related deaths occurred during the first post-transplant year. Older recipient age, higher plasma creatinine concentration at the end of the first post-transplant year, diabetes as a cause of ESKD, longer pretransplant dialysis duration, acute rejection, low albumin level, and earlier era of transplantation were associated with increased risk of infectious death in multivariable analysis. The risk of death due to infectious causes after kidney

  17. Role of cytogenetic biomarkers in management of chronic kidney disease patients: A review.

    PubMed

    Khan, Zeba; Pandey, Manoj; Samartha, Ravindra M

    2016-10-01

    Chronic kidney disease (CKD) is much more common than people recognize, and habitually goes undetected and undiagnosed until the disease is well advanced or when their kidney functions is down to 25% of normal function. Genetic and non-genetic factors contribute to cause CKD. Non-genetic factors include hypertension, High level of DNA damage due to the production of reactive oxygen species and nucleic acid oxidation has been reported in CKD patients. Main genetic factor which causes CKD is diabetic nephropathy. A three- to nine-fold greater risk of End Stage Renal Disease (ESRD) is observed in individuals with a family history of ESRD. This greater risk have led researchers to search for genes linked to diabetic and other forms of nephropathy for the management of CKD. Multicenter consortia are currently recruiting large numbers of multiplex diabetic families with index cases having nephropathy for linkage and association analyses using various cytogenetic techniques. In addition, large-scale screening studies are underway, with the goals of better defining the overall prevalence of chronic kidney disease, as well as educating the population about risk factors for nephropathy, including family history. Cytogenetic biomarkers play an imperative role for the linkage study using G banding and detection of genomic instability in CKD patients. Classical and molecular cytogenetic tools with cytogenetic biomarkers provide remarkable findings in CKD patients. The aim of the present review is to draw outline of classical and molecular cytogenetic findings in CKD patients and their possible role in management to reduce genomic instability in CKD patients.

  18. Mechanisms by Which Dehydration May Lead to Chronic Kidney Disease.

    PubMed

    Roncal-Jimenez, C; Lanaspa, M A; Jensen, T; Sanchez-Lozada, L G; Johnson, R J

    2015-01-01

    Dehydration, a condition that characterizes excessive loss of body water, is well known to be associated with acute renal dysfunction; however, it has largely been considered reversible and to be associated with no long-term effects on the kidney. Recently, an epidemic of chronic kidney disease has emerged in Central America in which the major risk factor seems to be recurrent heat-associated dehydration. This has led to studies investigating whether recurrent dehydration may lead to permanent kidney damage. Three major potential mechanisms have been identified, including the effects of vasopressin on the kidney, the activation of the aldose reductase-fructokinase pathway, and the effects of chronic hyperuricemia. The discovery of these pathways has also led to the recognition that mild dehydration may be a risk factor in progression of all types of chronic kidney diseases. Furthermore, there is some evidence that increasing hydration, particularly with water, may actually prevent CKD. Thus, a whole new area of investigation is developing that focuses on the role of water and osmolarity and their influence on kidney function and health. © 2015 S. Karger AG, Basel.

  19. Common Elements in Rare Kidney Diseases: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference.

    PubMed

    Aymé, Ségolène; Bockenhauer, Detlef; Day, Simon; Devuyst, Olivier; Guay-Woodford, Lisa M; Ingelfinger, Julie R; Klein, Jon B; Knoers, Nine V A M; Perrone, Ronald D; Roberts, Julia; Schaefer, Franz; Torres, Vicente E; Cheung, Michael; Wheeler, David C; Winkelmayer, Wolfgang C

    2017-10-01

    Rare kidney diseases encompass at least 150 different conditions, most of which are inherited. Although individual rare kidney diseases raise specific issues, as a group these rare diseases can have overlapping challenges in diagnosis and treatment. These challenges include small numbers of affected patients, unidentified causes of disease, lack of biomarkers for monitoring disease progression, and need for complex care. To address common clinical and patient issues among rare kidney diseases, the KDIGO Controversies Conference entitled, Common Elements in Rare Kidney Diseases, brought together a panel of multidisciplinary clinical providers and patient advocates to address five central issues for rare kidney diseases. These issues encompassed diagnostic challenges, management of kidney functional decline and progression of chronic kidney disease, challenges in clinical study design, translation of advances in research to clinical care, and provision of practical and integrated patient support. Thus, by a process of consensus, guidance for addressing these challenges was developed and is presented here. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  20. The expanding roles of microRNAs in kidney pathophysiology.

    PubMed

    Metzinger-Le Meuth, Valérie; Fourdinier, Ophélie; Charnaux, Nathalie; Massy, Ziad A; Metzinger, Laurent

    2018-05-25

    MicroRNAs (miRNAs) are short single-stranded RNAs that control gene expression through base pairing with regions within the 3'-untranslated region of target mRNAs. These small non-coding RNAs are now increasingly known to be involved in kidney physiopathology. In this review we will describe how miRNAs were in recent years implicated in cellular and animal models of kidney disease but also in chronic kidney disease, haemodialysed and grafted patients, acute kidney injury patients and so on. At the moment miRNAs are considered as potential biomarkers in nephrology, but larger cohorts as well as the standardization of methods of measurement will be needed to confirm their usefulness. It will further be of the utmost importance to select specific tissues and biofluids to make miRNAs appropriate in day-to-day clinical practice. In addition, up- or down-regulating miRNAs that were described as deregulated in kidney diseases may represent innovative therapeutic methods to cure these disorders. We will enumerate in this review the most recent methods that can be used to deliver miRNAs in a specific and suitable way in kidney and other organs damaged by kidney failure, such as the cardiovascular system.

  1. The protective effect of hydroalcoholic extract of Ginger (Zingiber officinale Rosc.) against iron-induced functional and histological damages in rat liver and kidney

    PubMed Central

    Gholampour, Firouzeh; Behzadi Ghiasabadi, Fatemeh; Owji, Seyed Mohammad; Vatanparast, Jaafar

    2017-01-01

    Objective: Iron overload in the body is related with toxic effects and threatens the health. The aim of this study was to evaluate the protective role of hydroalcoholic extract of ginger (Zingiber officinale) against ferrous sulfate-induced hepatic and renal functional disorders and histological damages in rats. Materials and Methods: The rats were divided into four groups (n=7): Sham, Sham + G.E (ginger extract, 400 mg/kg/day for 14 days), FS (ferrous sulfate, 30 mg/kg/day for 14 days), FS+G.E (ferrous sulfate, 30 mg/kg/day for 14 days; ginger extract, 400 mg/kg/day for 11 days from the fourth day of ferrous sulfate injection). After 24 hr, blood, urine and tissue samples were collected. Results: Compared with Sham and Sham + G.E groups, administration of ferrous sulfate resulted in liver and kidney dysfunction as evidenced by significantly higher levels of serum hepatic markers and bilirubin, and lower levels of serum albumin, total protein, triglyceride, cholesterol and glucose, as well as lower creatinine clearance and higher fractional excretion of sodium (p<0.001). This was accompanied by increased malondialdehyde levels and histological damages (p<0.001). In the FS + G.E, ginger extract significantly (p<0.01) reversed the levels of serum hepatic markers, renal functional markers and lipid peroxidation marker. Furthermore, it restored the levels of serum total protein, albumin, glucose, triglycerides and cholesterol and decreased bilirubin concentration in the blood. All these changes were corroborated by histological observations of liver and kidney. Conclusion: In conclusion, ginger extract appears to exert protective effects against ferrous sulfate-induced hepatic and renal toxicity by reducing lipid peroxidation and chelating iron. PMID:29299437

  2. The protective effect of hydroalcoholic extract of Ginger (Zingiber officinale Rosc.) against iron-induced functional and histological damages in rat liver and kidney.

    PubMed

    Gholampour, Firouzeh; Behzadi Ghiasabadi, Fatemeh; Owji, Seyed Mohammad; Vatanparast, Jaafar

    2017-01-01

    Iron overload in the body is related with toxic effects and threatens the health. The aim of this study was to evaluate the protective role of hydroalcoholic extract of ginger ( Zingiber officinale ) against ferrous sulfate-induced hepatic and renal functional disorders and histological damages in rats. The rats were divided into four groups (n=7): Sham, Sham + G.E (ginger extract, 400 mg/kg/day for 14 days), FS (ferrous sulfate, 30 mg/kg/day for 14 days), FS+G.E (ferrous sulfate, 30 mg/kg/day for 14 days; ginger extract, 400 mg/kg/day for 11 days from the fourth day of ferrous sulfate injection). After 24 hr, blood, urine and tissue samples were collected. Compared with Sham and Sham + G.E groups, administration of ferrous sulfate resulted in liver and kidney dysfunction as evidenced by significantly higher levels of serum hepatic markers and bilirubin, and lower levels of serum albumin, total protein, triglyceride, cholesterol and glucose, as well as lower creatinine clearance and higher fractional excretion of sodium (p<0.001). This was accompanied by increased malondialdehyde levels and histological damages (p<0.001). In the FS + G.E, ginger extract significantly (p<0.01) reversed the levels of serum hepatic markers, renal functional markers and lipid peroxidation marker. Furthermore, it restored the levels of serum total protein, albumin, glucose, triglycerides and cholesterol and decreased bilirubin concentration in the blood. All these changes were corroborated by histological observations of liver and kidney. In conclusion, ginger extract appears to exert protective effects against ferrous sulfate-induced hepatic and renal toxicity by reducing lipid peroxidation and chelating iron.

  3. The Piezo Actuator-Driven Pulsed Water Jet System for Minimizing Renal Damage after Off-Clamp Laparoscopic Partial Nephrectomy.

    PubMed

    Kamiyama, Yoshihiro; Yamashita, Shinichi; Nakagawa, Atsuhiro; Fujii, Shinji; Mitsuzuka, Koji; Kaiho, Yasuhiro; Ito, Akihiro; Abe, Takaaki; Tominaga, Teiji; Arai, Yoichi

    2017-09-01

    In the setting of partial nephrectomy (PN) for renal cell carcinoma, postoperative renal dysfunction might be caused by surgical procedure. The aim of this study was to clarify the technical safety and renal damage after off-clamp laparoscopic PN (LPN) with a piezo actuator-driven pulsed water jet (ADPJ) system. Eight swine underwent off-clamp LPN with this surgical device, while off-clamp open PN was also performed with radio knife or soft coagulation. The length of the removed kidney was 40 mm, and the renal parenchyma was dissected until the renal calyx became clearly visible. The degree of renal degeneration from the resection surface was compared by Hematoxylin-Eosin staining and immunostaining for 1-methyladenosine, a sensitive marker for the ischemic tissue damage. The mRNA levels of neutrophil gelatinase-associated lipocalin (Ngal), a biomarker for acute kidney injury, were measured by quantitative real-time PCR. Off-clamp LPN with ADPJ system was successfully performed while preserving fine blood vessels and the renal calix with little bleeding. In contrast to other devices, the resection surface obtained with the ADPJ system showed only marginal degree of ischemic changes. Indeed, the expression level of Ngal mRNA was lower in the resection surface obtained with the ADPJ system than that with soft coagulation (p = 0.02). Furthermore, using the excised specimens of renal cell carcinoma, we measured the breaking strength at each site of the human kidney, suggesting the applicability of this ADPJ to clinical trials. In conclusion, off-clamp LPN with the ADPJ system could be safely performed with attenuated renal damage.

  4. Remote Sensing Techniques for Rapid Assessment of Forest Damage Caused by Catastrophic Climatic Events, NA-TP-01-01

    Treesearch

    William Ciesla; William Frament; Margaret Miller-Weeks

    2001-01-01

    Catastrophic climatic events such as hurricanes, tornadoes, and ice storms can cause billions of dollars in damage to infrastructure and personal property, loss of lives, and damage to natural resources. Forests are especially susceptible to these events. The following is a list of recent climatic events in North America that have had devastating effects on forest...

  5. Association of Kidney Function and Albuminuria With Prevalent and Incident Hypertension: The Atherosclerosis Risk in Communities (ARIC) Study

    PubMed Central

    Huang, Minxuan; Matsushita, Kunihiro; Sang, Yingying; Ballew, Shoshana H.; Astor, Brad C.; Coresh, Josef

    2014-01-01

    Background Decreased kidney function and kidney damage may predate hypertension, but only a few studies have investigated both types of markers simultaneously, and these studies have obtained conflicting results. Study Design Cross-sectional for prevalent and prospective observational study for incident hypertension. Setting & Participants 9,593 participants from the Atherosclerosis Risk in Communities (ARIC) Study, aged 53-75 years during 1996-1998. Predictors Several markers of kidney function (estimated glomerular filtration rate [eGFR] using serum creatinine and/or cystatin C and two novel markers [β-trace protein and β2-microglobulin]) and one marker of kidney damage (urinary albumin-creatinine ratio [ACR]). Every kidney marker was categorized by its quintiles (top quintile as a reference for eGFRs and bottom quintile for the rest). Outcomes Prevalent and incident hypertension. Measurements Prevalence and HRs of hypertension based on modified Poisson regression and Cox proportional hazards models, respectively. Results There were 4,378 participants (45.6%) with prevalent hypertension at baseline and 2,175 incident hypertension cases during a median follow-up of 9.8 years. While all five kidney function markers were significantly associated with prevalent hypertension, prevalent hypertension was most notably associated with higher ACR (adjusted prevalence ratio, 1.60 [95% CI, 1.50-1.71] for the highest vs lowest ACR quintile). Similarly, ACR was consistently associated with incident hypertension in all models tested (adjusted HR, 1.28 [95% CI, 1.10-1.49] for top quintile), while kidney function markers demonstrated significant associations in some, but not all, models. Even mildly increased ACR (9.14-14.0 mg/g) was significantly associated with incident hypertension. Limitations Self-reported use of antihypertensive medication for defining incident hypertension, single assessment of kidney markers, and relatively narrow age range. Conclusions Although all

  6. Sirolimus in kidney transplant donors and clinical and histologic improvement in recipients: rat model.

    PubMed

    Cicora, F; Lausada, N; Vasquez, D N; Cicora, P; Zalazar, G; Gonzalez, P; Palti, G; Raimondi, C

    2010-01-01

    Ischemia-reperfusion (I/R) injury is one of the risk factors for delayed graft function, acute rejection episodes, and impaired long-term allograft survival after kidney transplantation. This antigen-independent inflammatory process produces tissue damage. Isogeneic transplantation in a rat model is a useful method for study of nonimmunologic risk factors for kidney damage. To study the effect of sirolimus on I/R injury using only 1 dose of the drug in the donor. Eighteen rats were allocated to 3 groups of 6 rats each: sham group, control group, and rapamycin group. Improved renal function and systemic inflammatory response were observed in the rapamycin group compared with the control group (Deltaurea, Deltacreatinine, and DeltaC3, all P < .01). The number of apoptotic nuclei in the renal medulla in the control group was higher than in the rapamycin group (P < .01). Tubular damage was less severe in the rapamycin group compared with the control group (P < .01). Complement 3 and tumor necrosis factor-alpha expression in the kidney samples were significantly decreased when rapamycin was given to the donor rats (P > .01). Bcl-2 protein was upregulated in the rapamycin group compared with the control group (P < .01). Administration of rapamycin in donors attenuates the I/R injury process after kidney transplantation in a rat model.

  7. Magnetic resonance elastography can monitor changes in medullary stiffness in response to treatment in the swine ischemic kidney.

    PubMed

    Zhang, Xin; Zhu, Xiangyang; Ferguson, Christopher Martyn; Jiang, Kai; Burningham, Tyson; Lerman, Amir; Lerman, Lilach Orly

    2018-06-01

    Low-energy shockwave (SW) therapy attenuates damage in the stenotic kidney (STK) caused by atherosclerotic renal artery stenosis (ARAS). We hypothesized that magnetic resonance elastography (MRE) would detect attenuation of fibrosis following SW in unilateral ARAS kidneys. Domestic pigs were randomized to control, unilateral ARAS, and ARAS treated with 6 sessions of SW over 3 consecutive weeks (n = 7 each) starting after 3 weeks of ARAS or sham. Four weeks after SW treatment, renal fibrosis was evaluated with MRE in vivo or trichrome staining ex vivo. Blood pressure, single-kidney renal-blood-flow (RBF) and glomerular-filtration-rate (GFR) were assessed. MRE detected increased stiffness in the STK medulla (15.3 ± 2.1 vs. 10.1 ± 0.8 kPa, p < 0.05) that moderately correlated with severity of fibrosis (R 2  = 0.501, p < 0.01), but did not identify mild STK cortical or contralateral kidney fibrosis. Trichrome staining showed that medullary fibrosis was increased in ARAS and alleviated by SW (10.4 ± 1.8% vs. 2.9 ± 0.2%, p < 0.01). SW slightly decreased blood pressure and normalized STK RBF and GFR in ARAS. In the contralateral kidney, SW reversed the increase in RBF and GFR. MRE might be a tool for noninvasive monitoring of medullary fibrosis in response to treatment in kidney disease.

  8. Cardiovascular Disease Risk in Children With Kidney Disease.

    PubMed

    Sethna, Christine B; Merchant, Kumail; Reyes, Abigail

    2018-05-01

    Cardiovascular disease is a major cause of death in individuals diagnosed with kidney disease during childhood. Children with kidney disease often incur a significant cardiovascular burden that leads to increased risk for cardiovascular disease. Evidence has shown that children with kidney disease, including chronic kidney disease, dialysis, kidney transplantation, and nephrotic syndrome, develop abnormalities in cardiovascular markers such as hypertension, dyslipidemia, left ventricular hypertrophy, left ventricular dysfunction, atherosclerosis, and aortic stiffness. Early identification of modifiable risk factors and treatment may lead to a decrease of long-term cardiovascular morbidity and mortality, but evidence in this population is lacking. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Elevated plasma TGF-beta1 in renal diseases: cause or consequence?

    PubMed

    Junker, U; Haufe, C C; Nuske, K; Rebstock, K; Steiner, T; Wunderlich, H; Junker, K; Reinhold, D

    2000-07-01

    We previously reported elevated levels of TGF-beta1 in patients with renal carcinoma. Certain aspects led us to ask whether they might be caused by chronic damage to the kidney(s). Here we report on an extended set of patients with various renal diseases, lung cancer, humoral immunodeficiency and controls. For latent TGF-beta1 in plasma, we find that the control, immunodeficiency, lung cancer and kidney transplant groups do not differ significantly (means, 7.0-8.8 ng/ml). Also, acute short-term renal stress (extracorporal lithotrypsy) does not lead to an increase of TGF-beta1. However, the pyelonephritis patients present with levels of 19.0 ng/ml, chronic extracorporal dialysis patients with 15.5 ng/ml, and renal cell carcinoma patients with 22.8 ng/ml. For active TGF-beta1 these findings are exactly recovered. For serum levels, only the renal carcinoma group presents with significantly elevated levels of TGF-beta1. Kidney transplantation seems to normalize TGF-beta1 levels, while in the kidney cancer patients surgery has an effect only in part of the group. We conclude that elevated plasma TGF-beta1 levels are common in at least two chronic renal disease conditions, and that it normalizes with restoration of renal function. It is tempting to speculate that chronic elevation of TGF-beta1 in these patients may be critically involved in these conditions predisposing to renal cancer. Copyright 2000 Academic Press.

  10. The effect of high protein diet and exercise on irisin, eNOS, and iNOS expressions in kidney.

    PubMed

    Tastekin, Ebru; Palabiyik, Orkide; Ulucam, Enis; Uzgur, Selda; Karaca, Aziz; Vardar, Selma Arzu; Yilmaz, Ali; Aydogdu, Nurettin

    2016-08-01

    Long-term effects of high protein diets (HPDs) on kidneys are still not sufficiently studied. Irisin which increases oxygen consumption and thermogenesis in white fat cells was shown in skeletal muscles and many tissues. Nitric oxide synthases (NOS) are a family of enzymes catalyzing the production of nitric oxide (NO) from L-arginine. We aimed to investigate the effects of HPD, irisin and NO expression in kidney and relation of them with exercise and among themselves. Animals were grouped as control, exercise, HPD and exercise combined with HPD (exercise-HPD). Rats were kept on a HPD for 5 weeks and an exercise program was given them as 5 exercise and 2 rest days per week exercising on a treadmill with increasing speed and angle. In our study, while HPD group had similar total antioxidant capacity (TAC) levels with control group, exercise and exercise-HPD groups had lower levels (p < 0.05). Kidneys of exercising rats had no change in irisin or eNOS expression but their iNOS expression had increased (p < 0.001). HPD-E group has not been observed to cause kidney damage and not have a significant effect on rat kidney irisin, eNOS, or iNOS expression. Localization of irisin, eNOS, and iNOS staining in kidney is highly selective and quite clear in this study. Effects of exercise and HPD on kidney should be evaluated with different exercise protocols and contents of the diet. İrisin, eNOS, and iNOS staining localizations should be supported with various research studies.

  11. Chronic kidney disease as a cardiovascular risk factor: lessons from kidney donors.

    PubMed

    Price, Anna M; Edwards, Nicola C; Hayer, Manvir K; Moody, William E; Steeds, Richard P; Ferro, Charles J; Townend, Jonathan N

    2018-07-01

    Chronic kidney disease (CKD) is a major risk factor for cardiovascular disease but is often associated with other risks such as diabetes and hypertension and can be both a cause and an effect of cardiovascular disease. Although epidemiologic data of an independent association of reduced glomerular filtration rate with cardiovascular risk are strong, causative mechanisms are unclear. Living kidney donors provide a useful model for assessing the "pure" effects of reduced kidney function on the cardiovascular system. After nephrectomy, the glomerular filtration rate ultimately falls by about one-third so many can be classified as having chronic kidney disease stages 2 or 3. This prompts concern based on the data showing an elevated cardiovascular risk with these stages of chronic kidney disease. However, initial data suggested no increase in adverse cardiovascular effects compared with control populations. Recent reports have shown a possible late increase in cardiovascular event rates and an early increase in left ventricular mass and markers of risk such as urate and albuminuria. The long-term significance of these small changes is unknown. More detailed and long-term research is needed to determine the natural history of these changes and their clinical significance. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  12. Tubulointerstitial damage as the major pathological lesion in endemic chronic kidney disease among farmers in North Central Province of Sri Lanka.

    PubMed

    Nanayakkara, Shanika; Komiya, Toshiyuki; Ratnatunga, Neelakanthi; Senevirathna, S T M L D; Harada, Kouji H; Hitomi, Toshiaki; Gobe, Glenda; Muso, Eri; Abeysekera, Tilak; Koizumi, Akio

    2012-05-01

    Chronic kidney disease of uncertain etiology (CKDu) in North Central Province of Sri Lanka has become a key public health concern in the agricultural sector due to the dramatic rise in its prevalence and mortality among young farmers. Although cadmium has been suspected as a causative pathogen, there have been controversies. To date, the pathological characteristics of the disease have not been reported. Histopathological observations of 64 renal biopsies obtained at Anuradhapura General Hospital from October 2008 to July 2009 were scored according to Banff 97 Working Classification of Renal Allograft pathology. The correlations between the histological observations and clinical parameters were statistically analyzed. Interstitial fibrosis and tubular atrophy with or without nonspecific interstitial mononuclear cell infiltration was the dominant histopathological observation. Glomerular sclerosis, glomerular collapse, and features of vascular pathology such as fibrous intimal thickening and arteriolar hyalinosis were also common. Although hypertension was identified as one of the common clinical features among the cases, it did not influence the histopathological lesions in all the cases. This study concludes that tubulointerstitial damage is the major pathological lesion in CKDu. Exposure(s) to an environmental pathogen(s) should be systematically investigated to elucidate such tubulointerstitial damage in CKDu.

  13. Tubular overexpression of Gremlin in transgenic mice aggravates renal damage in diabetic nephropathy.

    PubMed

    Marchant, Vanessa; Droguett, Alejandra; Valderrama, Graciela; Burgos, M Eugenia; Carpio, Daniel; Kerr, Bredford; Ruiz-Ortega, Marta; Egido, Jesús; Mezzano, Sergio

    2015-09-15

    Diabetic nephropathy (DN) is currently a leading cause of end-stage renal failure worldwide. Gremlin was identified as a gene differentially expressed in mesangial cells exposed to high glucose and in experimental diabetic kidneys. We have described that Gremlin is highly expressed in biopsies from patients with diabetic nephropathy, predominantly in areas of tubulointerstitial fibrosis. In streptozotocin (STZ)-induced experimental diabetes, Gremlin deletion using Grem1 heterozygous knockout mice or by gene silencing, ameliorates renal damage. To study the in vivo role of Gremlin in renal damage, we developed a diabetic model induced by STZ in transgenic (TG) mice expressing human Gremlin in proximal tubular epithelial cells. The albuminuria/creatinuria ratio, determined at week 20 after treatment, was significantly increased in diabetic mice but with no significant differences between transgenic (TG/STZ) and wild-type mice (WT/STZ). To assess the level of renal damage, kidney tissue was analyzed by light microscopy (periodic acid-Schiff and Masson staining), electron microscopy, and quantitative PCR. TG/STZ mice had significantly greater thickening of the glomerular basement membrane, increased mesangial matrix, and podocytopenia vs. WT/STZ. At the tubulointerstitial level, TG/STZ showed increased cell infiltration and mild interstitial fibrosis. In addition, we observed a decreased expression of podocin and overexpression of monocyte chemoattractant protein-1 and fibrotic-related markers, including transforming growth factor-β1, Col1a1, and α-smooth muscle actin. Together, these results show that TG mice overexpressing Gremlin in renal tubules develop greater glomerular and tubulointerstitial injury in response to diabetic-mediated damage and support the involvement of Gremlin in diabetic nephropathy. Copyright © 2015 the American Physiological Society.

  14. Cutaneous and renal glomerular vasculopathy as a cause of acute kidney injury in dogs in the UK

    PubMed Central

    Hawkins, I.; Robin, C.; Newton, R. J.; Jepson, R.; Stanzani, G.; McMahon, L. A.; Pesavento, P.; Carr, T.; Cogan, T.; Couto, C. G.; Cianciolo, R.; Walker, D. J.

    2015-01-01

    To describe the signalment, clinicopathological findings and outcome in dogs presenting with acute kidney injury (AKI) and skin lesions between November 2012 and March 2014, in whom cutaneous and renal glomerular vasculopathy (CRGV) was suspected and renal thrombotic microangiopathy (TMA) was histopathologically confirmed. The medical records of dogs with skin lesions and AKI, with histopathologically confirmed renal TMA, were retrospectively reviewed. Thirty dogs from across the UK were identified with clinicopathological findings compatible with CRGV. These findings included the following: skin lesions, predominantly affecting the distal extremities; AKI; and variably, anaemia, thrombocytopaenia and hyperbilirubinaemia. Known causes of AKI were excluded. The major renal histopathogical finding was TMA. All thirty dogs died or were euthanised. Shiga toxin was not identified in the kidneys of affected dogs. Escherichia coli genes encoding shiga toxin were not identified in faeces from affected dogs. CRGV has previously been reported in greyhounds in the USA, a greyhound in the UK, without renal involvement, and a Great Dane in Germany. This is the first report of a series of non-greyhound dogs with CRGV and AKI in the UK. CRGV is a disease of unknown aetiology carrying a poor prognosis when azotaemia develops. PMID:25802439

  15. Trends in Hospitalizations for Acute Kidney Injury - United States, 2000-2014.

    PubMed

    Pavkov, Meda E; Harding, Jessica L; Burrows, Nilka R

    2018-03-16

    Acute kidney injury is a sudden decrease in kidney function with or without kidney damage, occurring over a few hours or days. Diabetes, hypertension, and advanced age are primary risk factors for acute kidney injury. It is increasingly recognized as an in-hospital complication of sepsis, heart conditions, and surgery (1,2). Its most severe stage requires treatment with dialysis. Acute kidney injury is also associated with higher likelihood of long-term care, incidence of chronic kidney disease and hospital mortality, and health care costs (1,2). Although a number of U.S. studies have indicated an increasing incidence of dialysis-treated acute kidney injury since the late 1990s (3), no data are available on national trends in diabetes-related acute kidney injury. To estimate diabetes- and nondiabetes-related acute kidney injury trends, CDC analyzed 2000-2014 data from the National Inpatient Sample (NIS) (4) and the National Health Interview Survey (NHIS) (5). Age-standardized rates of acute kidney injury hospitalizations increased by 139% (from 23.1 to 55.3 per 1,000 persons) among adults with diagnosed diabetes, and by 230% (from 3.5 to 11.7 per 1,000 persons) among those without diabetes. Improving both patient and provider awareness that diabetes, hypertension, and advancing age are frequently associated with acute kidney injury might reduce its occurrence and improve management of the underlying diseases in an aging population.

  16. Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury.

    PubMed

    Fani, Filippo; Regolisti, Giuseppe; Delsante, Marco; Cantaluppi, Vincenzo; Castellano, Giuseppe; Gesualdo, Loreto; Villa, Gianluca; Fiaccadori, Enrico

    2018-06-01

    Sepsis is a serious medical condition that can lead to multi-organ failure and shock, and it is associated with increased mortality. Acute kidney injury (AKI) is a frequent complication of sepsis in critically ill patients, and often requires renal replacement therapy. The pathophysiology of AKI in sepsis has not yet been fully defined. In the past, classic theories were mainly focused on systemic hemodynamic derangements, underscoring the key role of whole kidney hypoperfusion due to reduced renal blood flow. However, a growing body of experimental and clinical evidence now shows that, at least in the early phase of sepsis-associated AKI, renal blood flow is normal, or even increased. This could suggest a dissociation between renal blood flow and kidney function. In addition, the scant data available from kidney biopsies in human studies do not support diffuse acute tubular necrosis as the predominant lesion. Instead, increasing importance is now attributed to kidney damage resulting from a complex interaction between immunologic mechanisms, inflammatory cascade activation, and deranged coagulation pathways, leading to microvascular dysfunction, endothelial damage, leukocyte/platelet activation with the formation of micro-thrombi, epithelial tubular cell injury and dysfunction. Moreover, the same processes, through maladaptive responses leading to fibrosis acting from the very beginning, may set the stage for progression to chronic kidney disease in survivors from sepsis-associated AKI episodes. The aim of this narrative review is to summarize and discuss the latest evidence on the pathophysiological mechanisms involved in septic AKI, based on the most recent data from the literature.

  17. Liver and kidney toxicity induced by Afzal smokeless tobacco product in Oman.

    PubMed

    Al-Mukhaini, Nawal; Ba-Omar, Taher; Eltayeb, Elsadig; Al-Shihi, Aisha; Al-Riyami, Nafila; Al-Belushi, Jamila; Al-Adawi, Kawthar

    2017-04-01

    Afzal, the common smokeless tobacco product (STP) in Oman, is believed to contain toxins that may impair the function of some organs such as liver and kidney. An aqueous extract from Afzal was added to drinking water to be administrated orally to Wistar albino rats (n=72) young and adult from both genders weighing between 60-80g and 150-240g respectively for 8 weeks. Animals were divided into three groups: control (distilled water instead of Afzal extract), low-dose (3mgnicotine/kgbodyweight/day) and high-dose (6mgnicotine/kgbodyweight/day). The animals were euthanized and their blood, liver and kidney were collected for biochemical and histopathological investigations. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were assayed for the liver function, while blood urea nitrogen (BUN) and creatinine (CRT) were assayed for the kidney function. The results showed a significant increase in the ALT, AST, BUN and CRT levels (P<0.05) in both Afzal-treated groups (low and high doses) compared with the control. Histopathological findings revealed the initial but seem to be serious degenerative alterations of periportal fibrosis in liver and edematous and calcified changes in renal glomerulus among Afzal-treated groups. Additionally, the weight gain of the Afzal-treated groups was lower than the control group. Our findings show that the exposure of Wistar rats to the Afzal extract has the potentials of causing decreased weight gain and dose-dependent functional and structural damage to the biochemical and histological profiles of liver and kidney as well as serious biochemical effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Prevention of renal damage caused by Shiga toxin type 2: Action of Miglustat on human endothelial and epithelial cells.

    PubMed

    Girard, Magalí C; Sacerdoti, Flavia; Rivera, Fulton P; Repetto, Horacio A; Ibarra, Cristina; Amaral, María M

    2015-10-01

    Typical hemolytic uremic syndrome (HUS) is responsible for acute and chronic renal failure in children younger than 5 years old in Argentina. Renal damages have been associated with Shiga toxin type 1 and/or 2 (Stx1, Stx2) produced by Escherichia coli O157:H7, although strains expressing Stx2 are highly prevalent in Argentina. Human glomerular endothelial cells (HGEC) and proximal tubule epithelial cells are very Stx-sensitive since they express high levels of Stx receptor (Gb3). Nowadays, there is no available therapy to protect patients from acute toxin-mediated cellular injury. New strategies have been developed based on the Gb3 biosynthesis inhibition through blocking the enzyme glucosylceramide (GL1) synthase. We assayed the action of a GL1 inhibitor (Miglustat: MG), on the prevention of the renal damage induced by Stx2. HGEC primary cultures and HK-2 cell line were pre-treated with MG and then incubated with Stx2. HK- 2 and HGEC express Gb3 and MG was able to decrease the levels of this receptor. As a consequence, both types of cells were protected from Stx2 cytotoxicity and morphology damage. MG was able to avoid Stx2 effects in human renal cells and could be a feasible strategy to protect kidney tissues from the cytotoxic effects of Stx2 in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Sulfonamide toxicity in brook trout

    USGS Publications Warehouse

    Wood, E.M.; Yasutake, W.T.; Snieszko, S.F.

    1954-01-01

    Sterility was observed in female brook trout that were treated with sulfamerazine at frequent intervals for 2 years to control endemic furunculosis. Feeding sulfamerazine for a period of 8 months caused massive kidney damage similar to that observed in humans who develop allergies to “sulfa” drugs. Kidney damage of the type observed would probably cause renal insufficiency which would handicap any physiological function including reproduction. Feeding sulfonamides for periods up to 13 weeks did not produce kidney damage.

  20. Cochlear Damages Caused by Vibration Exposure

    PubMed Central

    Moussavi Najarkola, Seyyed Ali; Khavanin, Ali; Mirzaei, Ramazan; Salehnia, Mojdeh; Muhammadnejad, Ahad

    2013-01-01

    Background Many industrial devices have an excessive vibration which can affect human body systems. The effect of vibration on cochlear histology has been as a debatable problem in occupational health and medicine. Objectives Due to limitation present in human studies, the research was conducted to survey the influence of vibration on cochlear histology in an animal model. Materials and Methods Twelve albino rabbits were experimented as: Vibration group (n = 6; exposed to 1.0 m.s-2 r.m.s vertical whole-body vibration at 4 - 8 Hz for 8 hours per day during 5 consecutive days) versus Control group (n = 6; the same rabbits without vibration exposure). After finishing the exposure scenario, all rabbits were killed by CO2 inhalation; their cochleae were extracted and fixed in 10% formaldehyde for 48 hours, decalcified by 10% nitric acid for 24 hours. Specimens were dehydrated, embedded, sectioned 5 µm thick and stained with Hematoxylin and Eosin for light microscopy observations. Results Severely hydropic degenerated and vacuolated inner hair cells (IHCs) were observed in vibration group compared to the control group. Inter and intracellular edema was appeared in supporting cells (SC). Nuclei of outer hair cells (OHCs) seemed to be pyknotic. Slightly thickened basilar membrane (BM) was probably implied to inter cellular edematous. Tectorial Membrane (TM) was not affected pathologically. Conclusions Whole-body vibration could cause cochlear damages in male rabbits, though vibration-induced auditory functional effects might be resulted as subsequent outcome of prolonged high level vibration exposures. PMID:24616783

  1. Bile Cast Nephropathy Caused by Obstructive Cholestasis.

    PubMed

    Aniort, Julien; Poyet, Anaïs; Kemeny, Jean-Louis; Philipponnet, Carole; Heng, Anne-Elisabeth

    2017-01-01

    Acute kidney injury (AKI) is a major complication in patients with liver disease. Although hepatorenal syndrome is frequently involved, bile cast nephropathy, characterized by tubular bile cast formation, has been scarcely described in the setting of severe liver failure. Few renal histology studies are available in these patients. We describe a case of bile cast nephropathy in a patient with obstructive cholestasis caused by stones in the common bile duct. The kidney biopsy confirmed this diagnosis, with several green casts in tubular lumens, tubular injury, and bilirubin composition of the tubular casts with Hall stain. The patient had no confounding cause of kidney failure, and complete kidney recovery followed removal of the bile duct obstruction. This case shows that severe cholestasis is sufficient to cause AKI, and that AKI can be reversible after treatment of the biliary obstruction. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  2. Meta-Analysis of Attitudes toward Damage-Causing Mammalian Wildlife

    PubMed Central

    KANSKY, RUTH; KIDD, MARTIN; KNIGHT, ANDREW T

    2014-01-01

    Many populations of threatened mammals persist outside formally protected areas, and their survival depends on the willingness of communities to coexist with them. An understanding of the attitudes, and specifically the tolerance, of individuals and communities and the factors that determine these is therefore fundamental to designing strategies to alleviate human-wildlife conflict. We conducted a meta-analysis to identify factors that affected attitudes toward 4 groups of terrestrial mammals. Elephants (65%) elicited the most positive attitudes, followed by primates (55%), ungulates (53%), and carnivores (44%). Urban residents presented the most positive attitudes (80%), followed by commercial farmers (51%) and communal farmers (26%). A tolerance to damage index showed that human tolerance of ungulates and primates was proportional to the probability of experiencing damage while elephants elicited tolerance levels higher than anticipated and carnivores elicited tolerance levels lower than anticipated. Contrary to conventional wisdom, experiencing damage was not always the dominant factor determining attitudes. Communal farmers had a lower probability of being positive toward carnivores irrespective of probability of experiencing damage, while commercial farmers and urban residents were more likely to be positive toward carnivores irrespective of damage. Urban residents were more likely to be positive toward ungulates, elephants, and primates when probability of damage was low, but not when it was high. Commercial and communal farmers had a higher probability of being positive toward ungulates, primates, and elephants irrespective of probability of experiencing damage. Taxonomic bias may therefore be important. Identifying the distinct factors explaining these attitudes and the specific contexts in which they operate, inclusive of the species causing damage, will be essential for prioritizing conservation investments. Meta-Análisis de las Posturas hacia la Mam

  3. Changes in the aetiology, clinical presentation and management of acute interstitial nephritis, an increasingly common cause of acute kidney injury.

    PubMed

    Praga, Manuel; Sevillano, Angel; Auñón, Pilar; González, Ester

    2015-09-01

    Acute interstitial nephritis (AIN) is an important cause of acute kidney injury that has experienced significant epidemiological and clinical changes in the last years. The classical presentation, mostly induced by antibiotics and accompanied by evident hypersensitivity manifestations (skin rash, eosinophilia, fever) has been largely replaced by oligosymptomatic presentations that require a higher index of suspicion and are increasingly recognized in the elderly, having non-steroidal anti-inflammatory agents and proton pump inhibitors as frequent offending drugs. Drug-induced AIN continues to be the commonest type, but it requires a careful differential diagnosis with other entities (tubulointerstitial nephritis with uveitis syndrome, IgG4-related disease, drug reaction with eosinophilia and systemic symptom syndrome, sarcoidosis and other systemic diseases) that can also induce AIN. Cortico-dependant, relapsing AIN is a recently recognized entity that poses an important therapeutic challenge. Although corticosteroids are widely used in drug-induced AIN to speed kidney function recovery and avoid chronic kidney disease, their efficacy has not been tested by randomized controlled trials. New diagnostic tests and biomarkers, as well as prospective therapeutic studies are needed to improve AIN diagnosis and management. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  4. CD147 (EMMPRIN/Basigin) in kidney diseases: from an inflammation and immune system viewpoint.

    PubMed

    Kosugi, Tomoki; Maeda, Kayaho; Sato, Waichi; Maruyama, Shoichi; Kadomatsu, Kenji

    2015-07-01

    The glycosylated transmembrane protein CD147/basigin, also known as extracellular matrix metalloproteinase (MMP) inducer (EMMPRIN), contributes to cell survival, migration and cancer invasion. In normal kidneys, high expression of CD147 is detected only in the basolateral side of tubular epithelial cells (TECs). The pathophysiological roles of CD147 in the kidneys are diverse, ranging from involvement in the occurrence of acute kidney injury (AKI) that is frequently accompanied by ischemia, inflammation and a loss of self-tolerance to the progression of chronic kidney disease (CKD) that is caused by an imbalance in extracellular matrix protein turnover. In AKI induced by ischemia, it is the CD147 on neutrophils, rather than that on TECs, that coordinately participates in massive neutrophil recruitment via acting as a physiological ligand for E-selectin, which is specifically enhanced in the endothelium upon inflammatory stimulation. In the CKD that follows AKI, a molecular circuit involving CD147, MMPs and transforming growth factor-β may be involved in the pathogenesis of progressive fibrosis through hyaluronan production and macrophage infiltration. Whereas CD147 thus plays deleterious roles in ischemic and fibrotic kidney injuries, CD147 expression on lymphocytes might decrease the disease activity of lupus nephritis (LN) by functioning as a potential negative regulator of the extraordinary proliferation of lymphocytes that occurs in this disease. In line with these basic studies, our clinical data indicate the potential of plasma CD147 to function as a critical biomarker for both ischemic AKI and LN. CD147 is also involved in crosstalk between the kidneys and distant organs, which may be mediated by chemotactic cytokines that are derived from circulating inflammatory cells and damaged organs. Disruption of such a vicious chain reaction involving CD147 would therefore be required in order to overcome kidney diseases. Multidisciplinary research regarding CD147

  5. Kidney Dysplasia

    MedlinePlus

    ... Disease Ectopic Kidney Medullary Sponge Kidney Kidney Dysplasia Kidney Dysplasia What is kidney dysplasia? Kidney dysplasia is a condition in which ... Kidney dysplasia in one kidney What are the kidneys and what do they do? The kidneys are ...

  6. Comparison of myocardial damage among dogs at different stages of clinical leishmaniasis and dogs with idiopathic chronic kidney disease.

    PubMed

    Martínez-Hernández, L; Casamian-Sorrosal, D; Barrera-Chacón, R; Cuesta-Gerveno, J M; Belinchón-Lorenzo, S; Gómez Nieto, L C; Duque-Carrasco, F J

    2017-03-01

    Canine leishmaniasis (CanL) is a systemic disease caused by the protozoan parasite Leishmania infantum. Myocarditis in CanL has been described previously in CanL by histopathological analysis of post-mortem specimens and by evaluation of cardiac troponin I (cTnI) levels. However, the degree of myocardial damage at different stages of CanL and the role that concurrent azotaemia plays in this myocardial injury are unknown. The aim of this study was to prospectively evaluate and compare the presence of myocardial injury in dogs at different stages of clinical CanL and in dogs with severe idiopathic chronic kidney disease (CKD) by measuring cTnI. Forty-eight dogs were included in the study, divided into four groups: (1) group A (10 healthy dogs); (2) group B (17 dogs with CanL without renal azotaemia, classified as mild to severe in the LeishVet scheme); (3) group C (11 dogs with CanL and renal azotaemia, classified as very severe in the LeishVet scheme); and (4) group D (10 dogs with idiopathic CKD). Dogs in group C had significantly higher cTnI than dogs in groups B and D, although cTnI was also elevated in these groups. Dogs in group A had normal cTnI values. Dogs in groups D and C had similar renal IRIS classification scorers. Severe lymphoplasmocytic myocarditis and a positive real time PCR of L. infantum DNA were observed in all dogs in group C. Dogs with very severe CanL exhibit more myocardial injury than dogs with milder CanL or dogs with idiopathic CKD. Copyright © 2016. Published by Elsevier Ltd.

  7. Assessment of concrete damage and strength degradation caused by reinforcement corrosion

    NASA Astrophysics Data System (ADS)

    Nepal, Jaya; Chen, Hua-Peng

    2015-07-01

    Structural performance deterioration of reinforced concrete structures has been extensively investigated, but very limited studies have been carried out to investigate the effect of reinforcement corrosion on time-dependent reliability with consideration of the influence of mechanical characteristics of the bond interface due to corrosion. This paper deals with how corrosion in reinforcement creates different types of defects in concrete structure and how they are responsible for the structural capacity deterioration of corrosion affected reinforced concrete structures during their service life. Cracking in cover concrete due to reinforcement corrosion is investigated by using rebar-concrete model and realistic concrete properties. The flexural strength deterioration is analytically predicted on the basis of bond strength evolution due to reinforcement corrosion, which is examined by the experimental data available. The time-dependent reliability analysis is undertaken to calculate the life time structural reliability of corrosion damaged concrete structures by stochastic deterioration modelling of reinforced concrete. The results from the numerical example show that the proposed approach is capable of evaluating the damage caused by reinforcement corrosion and also predicting the structural reliability of concrete structures during their lifecycle.

  8. Women and kidney disease: reflections on World Kidney Day 2018: Kidney Health and Women's Health: a case for optimizing outcomes for present and future generations.

    PubMed

    Piccoli, Giorgina B; Alrukhaimi, Mona; Liu, Zhi-Hong; Zakharova, Elena; Levin, Adeera

    2018-02-01

    Chronic kidney disease (CKD) affects ∼10% of the world's adult population: it is one of the top 20 causes of death worldwide and its impact on patients and their families can be devastating. World Kidney Day and International Women's Day coincide in 2018, thus offering an opportunity to reflect on the importance of women's health, and specifically their kidney health, on the community and the next generations, as well as to strive to be more curious about the unique aspects of kidney disease in women so that we may apply these learnings more broadly. Girls and women, who make up ∼50% of the world's population, are important contributors to society and their families. Gender differences continue to exist around the world in access to education, medical care and participation in clinical studies. Pregnancy is a unique state for women, offering an opportunity for the diagnosis of kidney disease, and also a state where acute and chronic kidney diseases may manifest and that may impact future generations with respect to kidney health. There are various autoimmune and other conditions that are more likely to impact women with profound consequences for childbearing and on the fetus. Women have different complications on dialysis than men and are more likely to be donors than recipients of kidney transplants. In this editorial we focus on what we do and do not know about women, kidney health and kidney disease and what we might learn in the future to improve outcomes worldwide. © The Author(s) 2018. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  9. 20 CFR 670.900 - Are damages caused by students eligible for reimbursement under the Tort Claims Act?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR THE JOB CORPS UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Administrative and Management Provisions § 670.900 Are damages caused by students eligible for reimbursement under...

  10. Hydrogen sulfide accelerates the recovery of kidney tubules after renal ischemia/reperfusion injury.

    PubMed

    Han, Sang Jun; Kim, Jee In; Park, Jeen-Woo; Park, Kwon Moo

    2015-09-01

    Progression of acute kidney injury to chronic kidney disease (CKD) is associated with inadequate recovery of damaged kidney. Hydrogen sulfide (H2S) regulates a variety of cellular signals involved in cell death, differentiation and proliferation. This study aimed to identify the role of H2S and its producing enzymes in the recovery of kidney following ischemia/reperfusion (I/R) injury. Mice were subjected to 30 min of bilateral renal ischemia. Some mice were administered daily NaHS, an H2S donor, and propargylglycine (PAG), an inhibitor of the H2S-producing enzyme cystathionine gamma-lyase (CSE), during the recovery phase. Cell proliferation was assessed via 5'-bromo-2'-deoxyuridine (BrdU) incorporation assay. Ischemia resulted in decreases in CSE and cystathionine beta-synthase (CBS) expression and activity, and H2S level in the kidney. These decreases did not return to sham level until 8 days after ischemia when kidney had fibrotic lesions. NaHS administration to I/R-injured mice accelerated the recovery of renal function and tubule morphology, whereas PAG delayed that. Furthermore, PAG increased mortality after ischemia. NaHS administration to I/R-injured mice accelerated tubular cell proliferation, whereas it inhibited interstitial cell proliferation. In addition, NaHS treatment reduced post-I/R superoxide formation, lipid peroxidation, level of GSSG/GSH and Nox4 expression, whereas it increased catalase and MnSOD expression. Our findings demonstrate that H2S accelerates the recovery of I/R-induced kidney damage, suggesting that the H2S-producing transsulfuration pathway plays an important role in kidney repair after acute injury. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  11. Time-resolved optical spectroscopic quantification of red blood cell damage caused by cardiovascular devices

    NASA Astrophysics Data System (ADS)

    Sakota, D.; Sakamoto, R.; Sobajima, H.; Yokoyama, N.; Yokoyama, Y.; Waguri, S.; Ohuchi, K.; Takatani, S.

    2008-02-01

    Cardiovascular devices such as heart-lung machine generate un-physiological level of shear stress to damage red blood cells, leading to hemolysis. The diagnostic techniques of cell damages, however, have not yet been established. In this study, the time-resolved optical spectroscopy was applied to quantify red blood cell (RBC) damages caused by the extracorporeal circulation system. Experimentally, the fresh porcine blood was subjected to varying degrees of shear stress in the rotary blood pump, followed with measurement of the time-resolved transmission characteristics using the pico-second pulses at 651 nm. The propagated optical energy through the blood specimen was detected using a streak camera. The data were analyzed in terms of the mean cell volume (MCV) and mean cell hemoglobin concentration (MCHC) measured separately versus the energy and propagation time of the light pulses. The results showed that as the circulation time increased, the MCV increased with decrease in MCHC. It was speculated that the older RBCs with smaller size and fragile membrane properties had been selectively destroyed by the shear stress. The time-resolved optical spectroscopy is a useful technique in quantifying the RBCs' damages by measuring the energy and propagation time of the ultra-short light pulses through the blood.

  12. Acute kidney injury—an overview of diagnostic methods and clinical management

    PubMed Central

    Hertzberg, Daniel; Rydén, Linda; Pickering, John W.; Sartipy, Ulrik

    2017-01-01

    Abstract Acute kidney injury (AKI) is a common condition in multiple clinical settings. Patients with AKI are at an increased risk of death, over both the short and long term, and of accelerated renal impairment. As the condition has become more recognized and definitions more unified, there has been a rapid increase in studies examining AKI across many different clinical settings. This review focuses on the classification, diagnostic methods and clinical management that are available, or promising, for patients with AKI. Furthermore, preventive measures with fluids, acetylcysteine, statins and remote ischemic preconditioning, as well as when dialysis should be initiated in AKI patients are discussed. The classification of AKI includes both changes in serum creatinine concentrations and urine output. Currently, no kidney injury biomarkers are included in the classification of AKI, but proposals have been made to include them as independent diagnostic markers. Treatment of AKI is aimed at addressing the underlying causes of AKI, and at limiting damage and preventing progression. The key principles are: to treat the underlying disease, to optimize fluid balance and optimize hemodynamics, to treat electrolyte disturbances, to discontinue or dose-adjust nephrotoxic drugs and to dose-adjust drugs with renal elimination. PMID:28616210

  13. Evaluation of the damages caused by lightning current flowing through bearings

    NASA Technical Reports Server (NTRS)

    Celi, O.; Pigini, A.; Garbagnati, E.

    1991-01-01

    A laboratory for lightning current tests was set up allowing the generation of the lightning currents foreseen by the Standards. Lightning tests are carried out on different objects, aircraft materials and components, evaluating the direct and indirect effects of lightning. Recently a research was carried out to evaluate the effects of the lightning current flow through bearings with special reference to wind power generator applications. For this purpose, lightning currents of different amplitude were applied to bearings in different test conditions and the damages caused by the lightning current flow were analyzed. The influence of the load acting on the bearing, the presence of lubricant and the bearing rotation were studied.

  14. Ectopic Kidney

    MedlinePlus

    ... Ectopic Kidney Medullary Sponge Kidney Kidney Dysplasia Ectopic Kidney What is an ectopic kidney? An ectopic kidney is a birth defect in ... has an ectopic kidney. 1 What are the kidneys and what do they do? The kidneys are ...

  15. Long-Term Outcomes of Kidney Transplantation in Fabry Disease.

    PubMed

    Ersözlü, Sara; Desnick, Robert J; Huynh-Do, Uyen; Canaan-Kühl, Sima; Barbey, Frédéric; Genitsch, Vera; Müller, Thomas; Cheetham, Marcus; Flammer, Andreas; Schaub, Stefan; Nowak, Albina

    2018-04-24

    Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the α-galactosidase A gene that obliterate or markedly reduce α-galactosidase A activity. This results in the systemic accumulation of its glycosphingolipid substrates in body fluids and organs, including the kidney. Fabry nephropathy can lead to end-stage renal disease requiring kidney transplantation. Little is known about its long-term outcomes and the overall patient survival after kidney transplantation. Here, we report 17 Fabry patients (15 males, 2 females) who received kidney transplants and their long-term treatment and follow-up at 4 specialized Fabry centers. The posttransplant follow-up ranged to 25 years, with a median of 11.5 [range 0.8-25.5] years. Graft survival was similar and death-censored graft survival was superior to matched controls. Fabry patients died with functioning kidneys, mostly from cardiac causes. In 2 males 14 and 23 years posttransplant, the grafts had a few typical FD lamellar inclusions, presumably originating from invading host macrophages and vascular endothelial cells. We conclude that kidney transplantation has an excellent long-term outcome in Fabry disease.

  16. Oral sensory nerve damage: Causes and consequences.

    PubMed

    Snyder, Derek J; Bartoshuk, Linda M

    2016-06-01

    Oral sensations (i.e., taste, oral somatosensation, retronasal olfaction) are integrated into a composite sense of flavor, which guides dietary choices with long-term health impact. The nerves carrying this input are vulnerable to peripheral damage from multiple sources (e.g., otitis media, tonsillectomy, head injury), and this regional damage can boost sensations elsewhere in the mouth because of central interactions among nerve targets. Mutual inhibition governs this compensatory process, but individual differences lead to variation in whole-mouth outcomes: some individuals are unaffected, others experience severe loss, and some encounter sensory increases that may (if experienced early in life) elevate sweet-fat palatability and body mass. Phantom taste, touch, or pain sensations (e.g., burning mouth syndrome) may also occur, particularly in those expressing the most taste buds. To identify and treat these conditions effectively, emerging clinical tests measure regional vs. whole-mouth sensation, stimulated vs. phantom cues, and oral anatomy. Scaling methods allowing valid group comparisons have strongly aided these efforts. Overall, advances in measuring oral sensory function in health and disease show promise for understanding the varied clinical consequences of nerve damage.

  17. Oral Sensory Nerve Damage: Causes and Consequences

    PubMed Central

    Snyder, Derek J.; Bartoshuk, Linda M.

    2016-01-01

    Oral sensations (i.e., taste, oral somatosensation, retronasal olfaction) are integrated into a composite sense of flavor, which guides dietary choices with long-term health impact. The nerves carrying this input are vulnerable to peripheral damage from multiple sources (e.g., otitis media, tonsillectomy, head injury), and this regional damage can boost sensations elsewhere in the mouth because of central interactions among nerve targets. Mutual inhibition governs this compensatory process, but individual differences lead to variation in whole-mouth outcomes: some individuals are unaffected, others experience severe loss, and some encounter sensory increases that may (if experienced early in life) elevate sweet-fat palatability and body mass. Phantom taste, touch, or pain sensations (e.g., burning mouth syndrome) may also occur, particularly in those expressing the most taste buds. To identify and treat these conditions effectively, emerging clinical tests measure regional vs. whole-mouth sensation, stimulated vs. phantom cues, and oral anatomy. Scaling methods allowing valid group comparisons have strongly aided these efforts. Overall, advances in measuring oral sensory function in health and disease show promise for understanding the varied clinical consequences of nerve damage. PMID:27511471

  18. The inextricable role of the kidney in hypertension

    PubMed Central

    Crowley, Steven D.; Coffman, Thomas M.

    2014-01-01

    An essential link between the kidney and blood pressure control has long been known. Here, we review evidence supporting the premise that an impaired capacity of the kidney to excrete sodium in response to elevated blood pressure is a major contributor to hypertension, irrespective of the initiating cause. In this regard, recent work suggests that novel pathways controlling key sodium transporters in kidney epithelia have a critical impact on hypertension pathogenesis, supporting a model in which impaired renal sodium excretion is a final common pathway through which vascular, neural, and inflammatory responses raise blood pressure. We also address recent findings calling into question long-standing notions regarding the relationship between sodium intake and changes in body fluid volume. Expanded understanding of the role of the kidney as both a cause and target of hypertension highlights key aspects of pathophysiology and may lead to identification of new strategies for prevention and treatment. PMID:24892708

  19. Epigenetic modification of miR-10a regulates renal damage by targeting CREB1 in type 2 diabetes mellitus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Qun, E-mail: shanp@jsnu.edu.cn; Zheng, Guiho

    Emerging evidence has shown that microRNA-mediated gene expression modulation plays a crucial role in the pathogenesis of type 2 diabetes mellitus, but the novel miRNAs involved in type 2 diabetes and its functional regulatory mechanisms still need to be determined. In this study, we assessed the role of miR-10a in extracellular matrix accumulation in the kidney of diabetic mellitus induced by combining administration of chronic high fat diet (HFD) and low dosage of streptozotocin (STZ, 35 mg/kg). Here, we found that HFD/STZ administration decreased the level of microRNA (miR-10a) expression in ICR strain mice. Overexpression of miR-10a alleviated the increasedmore » ratio of urine albumin-to-creatinine (ACR) ratio of HFD/STZ mice. In contrast, knockdown of miR-10a increased the ratio of kidney ACR in naïve mice. Furthermore, cAMP response element binding protein 1 (CREB1) was validated as a target of miR-10a in vitro and in vivo. CREB1 and its downstream fibronectin (FN, extracellular matrix) were increased in HFD/STZ-treated mice, which was reversed by kidney miR-10a overexpression. The content of CREB1 and FN was increased by miR-10a knockdown in kidney of naïve mice. Furthermore, histone deacetylase 3 (HDAC3) was revealed to be increased in kidney of HFD/STZ mice, accompanied with the augmentation of ACR ratio and FN level. Knockdown of HDAC3 with siRNA significantly caused the increase of miR-10a, resulting in the decrease in CREB1 and FN expression in kidney of HFD/STZ mice. Contrarily, HDAC3 overexpression mediated by lentivirus decreased miR-10a content, and enhanced ACR value, CREB1 and FN formation in naïve mice. Collectively, these results elucidate that HDAC3/miR-10a/CREB1 serves as a new mechanism underlying kidney injury, providing potential therapeutic targets in type 2 diabetes. - Highlights: • Diabetes induces the decrease of miR-10a level in the kidney. • MiR-10a overexpression improves kidney damage of diabetes. • MiR-10a targeting

  20. Regenerating the kidney using human pluripotent stem cells and renal progenitors.

    PubMed

    Becherucci, Francesca; Mazzinghi, Benedetta; Allinovi, Marco; Angelotti, Maria Lucia; Romagnani, Paola

    2018-06-25

    Introduction Chronic kidney disease is a major healthcare problem worldwide and its cost is becoming no longer affordable. Indeed, restoring damaged renal structures or building a new kidney represent an ambitious and ideal alternative to renal replacement therapy. Streams of research have explored the possible application of pluripotent SCs (embryonic SCs and induced pluripotent SCs) in different strategies aimed at regenerate functioning nephrons and at understanding the mechanisms of kidney regeneration. Areas covered In this review, we will focus on the main potential applications of human pluripotent SCs to kidney regeneration, including those leading to rebuilding new kidneys or part of them (organoids, scaffolds, biological microdevices) as well as those aimed at understanding the pathophysiological mechanisms of renal disease and regenerative processes (modeling of kidney disease, genome editing). Moreover, we will discuss the role of endogenous renal progenitors cells in order to understand and promote kidney regeneration, as an attractive alternative to pluripotent SCs. Expert opinion Opportunities and pitfalls of all these strategies will be underlined, finally leading to the conclusion that a deeper knowledge of the biology of pluripotent SCs is mandatory, in order to allow us to hypothesize their clinical application.

  1. Kidney Response to the Spectrum of Diet-Induced Acid Stress

    PubMed Central

    Goraya, Nimrit; Wesson, Donald E.

    2018-01-01

    Chronic ingestion of the acid (H+)-producing diets that are typical of developed societies appears to pose a long-term threat to kidney health. Mechanisms employed by kidneys to excrete this high dietary H+ load appear to cause long-term kidney injury when deployed over many years. In addition, cumulative urine H+ excretion is less than the cumulative increment in dietary H+, consistent with H+ retention. This H+ retention associated with the described high dietary H+ worsens as the glomerular filtration rate (GFR) declines which further exacerbates kidney injury. Modest H+ retention does not measurably change plasma acid–base parameters but, nevertheless, causes kidney injury and might contribute to progressive nephropathy. Current clinical methods do not detect H+ retention in its early stages but the condition manifests as metabolic acidosis as it worsens, with progressive decline of the glomerular filtration rate. We discuss this spectrum of H+ injury, which we characterize as “H+ stress”, and the emerging evidence that high dietary H+ constitutes a threat to long-term kidney health. PMID:29751620

  2. Damage to lens fiber cells causes TRPV4-dependent Src family kinase activation in the epithelium.

    PubMed

    Shahidullah, M; Mandal, A; Delamere, N A

    2015-11-01

    The bulk of the lens consists of tightly packed fiber cells. Because mature lens fibers lack mitochondria and other organelles, lens homeostasis relies on a monolayer of epithelial cells at the anterior surface. The detection of various signaling pathways in lens epithelial cells suggests they respond to stimuli that influence lens function. Focusing on Src Family Kinases (SFKs) and Transient Receptor Potential Vanilloid 4 (TRPV4), we tested whether the epithelium can sense and respond to an event that occurs in fiber mass. The pig lens was subjected to localized freeze-thaw (FT) damage to fibers at posterior pole then the lens was incubated for 1-10 min in Krebs solution at 37 °C. Transient SFK activation in the epithelium was detectable at 1 min. Using a western blot approach, the ion channel TRPV4 was detected in the epithelium but was sparse or absent in fiber cells. Even though TRPV4 expression appears low at the actual site of FT damage to the fibers, SFK activation in the epithelium was suppressed in lenses subjected to FT damage then incubated with the TRPV4 antagonist HC067047 (10 μM). Na,K-ATPase activity was examined because previous studies report changes of Na,K-ATPase activity associated with SFK activation. Na,K-ATPase activity doubled in the epithelium removed from FT-damaged lenses and the response was prevented by HC067047 or the SFK inhibitor PP2 (10 μM). Similar changes were observed in response to fiber damage caused by injection of 5 μl hyperosmotic NaCl or mannitol solution beneath the surface of the posterior pole. The findings point to a TRPV4-dependent mechanism that enables the epithelial cells to detect remote damage in the fiber mass and respond within minutes by activating SFK and increasing Na,K-ATPase activity. Because TRPV4 channels are mechanosensitive, we speculate they may be stimulated by swelling of the lens structure caused by damage to the fibers. Increased Na,K-ATPase activity gives the lens greater capacity to

  3. Simulation of earthquake caused building damages for the development of fast reconnaissance techniques

    NASA Astrophysics Data System (ADS)

    Schweier, C.; Markus, M.; Steinle, E.

    2004-04-01

    Catastrophic events like strong earthquakes can cause big losses in life and economic values. An increase in the efficiency of reconnaissance techniques could help to reduce the losses in life as many victims die after and not during the event. A basic prerequisite to improve the rescue teams' work is an improved planning of the measures. This can only be done on the basis of reliable and detailed information about the actual situation in the affected regions. Therefore, a bundle of projects at Karlsruhe university aim at the development of a tool for fast information retrieval after strong earthquakes. The focus is on urban areas as the most losses occur there. In this paper the approach for a damage analysis of buildings will be presented. It consists of an automatic methodology to model buildings in three dimensions, a comparison of pre- and post-event models to detect changes and a subsequent classification of the changes into damage types. The process is based on information extraction from airborne laserscanning data, i.e. digital surface models (DSM) acquired through scanning of an area with pulsed laser light. To date, there are no laserscanning derived DSMs available to the authors that were taken of areas that suffered damages from earthquakes. Therefore, it was necessary to simulate such data for the development of the damage detection methodology. In this paper two different methodologies used for simulating the data will be presented. The first method is to create CAD models of undamaged buildings based on their construction plans and alter them artificially in such a way as if they had suffered serious damage. Then, a laserscanning data set is simulated based on these models which can be compared with real laserscanning data acquired of the buildings (in intact state). The other approach is to use measurements of actual damaged buildings and simulate their intact state. It is possible to model the geometrical structure of these damaged buildings based

  4. A new methodology for evaluating the damage to the skin barrier caused by repeated application and removal of adhesive dressings.

    PubMed

    Waring, Mike; Bielfeldt, Stephan; Mätzold, Katja; Wilhelm, Klaus-Peter

    2013-02-01

    Chronic wounds require frequent dressing changes. Adhesive dressings used for this indication can be damaging to the stratum corneum, particularly in the elderly where the skin tends to be thinner. Understanding the level of damage caused by dressing removal can aid dressing selection. This study used a novel methodology that applied a stain to the skin and measured the intensity of that stain after repeated application and removal of a series of different adhesive types. Additionally, a traditional method of measuring skin barrier damage (transepidermal water loss) was also undertaken and compared with the staining methodology. The staining methodology and measurement of transepidermal water loss differentiated the adhesive dressings, showing that silicone adhesives caused least trauma to the skin. The staining methodology was shown to be as effective as transepidermal water loss in detecting damage to the stratum corneum and was shown to detect disruption of the barrier earlier than the traditional technique. © 2012 John Wiley & Sons A/S.

  5. Impaired endogenous nighttime melatonin secretion relates to intrarenal renin-angiotensin system activation and renal damage in patients with chronic kidney disease.

    PubMed

    Ishigaki, Sayaka; Ohashi, Naro; Isobe, Shinsuke; Tsuji, Naoko; Iwakura, Takamasa; Ono, Masafumi; Sakao, Yukitoshi; Tsuji, Takayuki; Kato, Akihiko; Miyajima, Hiroaki; Yasuda, Hideo

    2016-12-01

    Activation of the intrarenal renin-angiotensin system (RAS) plays a critical role in the pathophysiology of chronic kidney disease (CKD) and hypertension. The circadian rhythm of intrarenal RAS activation leads to renal damage and hypertension, which are associated with diurnal blood pressure (BP) variation. The activation of intrarenal RAS following reactive oxygen species (ROS) activation, sympathetic hyperactivity and nitric oxide (NO) inhibition leads to the development of renal damage. Melatonin is a hormone regulating the circadian rhythm, and has multiple functions such as anti-oxidant and anti-adrenergic effects and enhancement of NO bioavailability. Nocturnal melatonin concentrations are lower in CKD patients. However, it is not known if impaired endogenous melatonin secretion is related to BP, intrarenal RAS, or renal damage in CKD patients. We recruited 53 CKD patients and conducted 24-h ambulatory BP monitoring. urine was collected during the daytime and nighttime. We investigated the relationship among the melatonin metabolite urinary 6-sulphatoxymelatonin (U-aMT6s), BP, renal function, urinary angiotensinogen (U-AGT), and urinary albumin (U-Alb). Patients' U-aMT6s levels were significantly and negatively correlated with clinical parameters such as renal function, systolic BP, U-AGT, and U-Alb, during both day and night. Multiple regression analyses for U-aMT6s levels were performed using age, gender, renal function, and each parameter (BPs, U-AGT or U-Alb), at daytime and nighttime. U-aMT6s levels were significantly associated with U-AGT (β = -0.31, p = 0.044) and U-Alb (β = -0.25, p = 0.025) only at night. Impaired nighttime melatonin secretion may be associated with nighttime intrarenal RAS activation and renal damage in CKD patients.

  6. Molecular basis of vascular damage caused by cigarette smoke exposure and a new approach to the treatment: Alpha-linolenic acid.

    PubMed

    Kaplan, Halil Mahir; Kuyucu, Yurdun; Polat, Sait; Pazarci, Percin; Yegani, Arash Alizadeh; Şingirik, Ergin; Ertuğ, Peyman

    2018-06-01

    Exposure to cigarette smoke (CS) causes vessel damage and mechanism of this damage has not yet been clearly identified. Therefore, in this study we aimed to investigate whether vessel damage due to the CS exposure will be prevented by the alpha-linolenic acid (ALA) or not which has anti-inflammatory effect in mice. For this reason, mice were grouped as controls (with and without CS) and ALA (with and without CS). The CS application continued 5 days a week for two months. At the end of two months, the mice were killed by cervical dislocation and their blood and thoracic aortas were isolated. ALA Treatment increased acetylcholine relaxations. CS decreased acetylcholine relaxation. CS with ALA treatment increased acetylcholine relaxations versus just CS treatment. CS caused rising in cyclooxigenase-2 and phospholipase A2 levels. This rise is inhibited with ALA treatment. CS decreased eNOS levels. But this result was not statistically significant. Furthermore, according to electron microscopic study CS damaged both smooth muscle and endothelium. While ALA treatment prevented smooth muscle damage it didn't prevent endothelial damage. Using cigarette and CS exposure is a risk factor for cardiovascular disease. Our study showed that this disease. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Immune checkpoint inhibitor (nivolumab)-associated kidney injury and the importance of recognizing concomitant medications known to cause acute tubulointerstitial nephritis: a case report.

    PubMed

    Koda, Ryo; Watanabe, Hirofumi; Tsuchida, Masafumi; Iino, Noriaki; Suzuki, Kazuo; Hasegawa, Go; Imai, Naofumi; Narita, Ichiei

    2018-02-27

    Acute tubulointerstitial nephritis (ATIN) has been increasingly recognized as an important manifestation of kidney injury associated with the use of immune checkpoint inhibitors (anti-PD-1 and anti-CTLA-4). While the exact pathophysiology remains unknown, corticosteroids are the mainstay of management. We describe a 67-year-old man with stage IV non-small-cell lung cancer who developed kidney injury during treatment with the anti-PD-1 antibody nivolumab. A kidney biopsy showed ATIN without granuloma formation. Considering their mechanism of action, immune checkpoint inhibitors can alter immunological tolerance to concomitant drugs that have been safely used for a long time. For more than 4 years before the initiation of nivolumab therapy, the patient had been receiving the proton pump inhibitor lansoprazole, known to cause drug-induced ATIN, without significant adverse events including kidney injury. He showed rapid improvement in kidney function in 3 days (creatinine decreased from 2.74 to 1.82 mg/dl) on discontinuation of lansoprazole. He then received 500 mg intravenous methylprednisolone for 3 days followed by 1 mg/kg/day oral prednisolone and his creatinine levels eventually stabilized around 1.7 mg/dl. Drug-induced lymphocyte stimulation test (DLST) for lansoprazole was positive. The rapid improvement of kidney function after discontinuation and DLST positivity indicate that lansoprazole contributed to the development of ATIN during nivolumab therapy. Considering the time course, it is plausible that nivolumab altered the long-lasting immunological tolerance against lansoprazole in this patient. To the best of our knowledge, this is the first case report of DLST positivity for a drug that had been used safely before the initiation of an immune checkpoint inhibitor. Although corticosteroid therapy is recommended, the recognition and discontinuation of concomitant drugs, especially those known to induce ATIN, is necessary for the management of kidney

  8. [Ascites and acute kidney injury].

    PubMed

    Piano, Salvatore; Tonon, Marta; Angeli, Paolo

    2016-07-01

    Ascites is the most common complication of cirrhosis. Ascites develops as a consequence of an abnormal splanchnic vasodilation with reduction of effecting circulating volume and activation of endogenous vasoconstrictors system causing salt and water retention. Patients with ascites have a high risk to develop further complications of cirrhosis such as hyponatremia, spontaneous bacterial peritonitis and acute kidney injury resulting in a poor survival. In recent years, new studies helped a better understanding of the pathophysiology of ascites and acute kidney injury in cirrhosis. Furthermore, new diagnostic criteria have been proposed for acute kidney injury and hepatorenal syndrome and a new algorithm for their management has been recommended with the aim of an early diagnosis and treatment. Herein we will review the current knowledge on the pathophysiology, diagnosis and treatment of ascites and acute kidney injury in patients with cirrhosis and we will identify the unmet needs that should be clarified in the next years.

  9. Interventions for chronic kidney disease in people with sickle cell disease

    PubMed Central

    Roy, Noemi BA; Fortin, Patricia M; Bull, Katherine R; Doree, Carolyn; Trivella, Marialena; Hopewell, Sally; Estcourt, Lise J

    2017-01-01

    Background Sickle cell disease (SCD) is one of the commonest severe monogenic disorders in the world, due to the inheritance of two abnormal haemoglobin (beta-globin) genes. SCD can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Kidney disease is a frequent and potentially severe complication in people with SCD. Chronic kidney disease is defined as abnormalities of kidney structure or function, present for more than three months. Sickle cell nephropathy refers to the spectrum of kidney complications in SCD. Glomerular damage is a cause of microalbuminuria and can develop at an early age in children with SCD, and increases in prevalence in adulthood. In people with sickle cell nephropathy, outcomes are poor as a result of the progression to proteinuria and chronic kidney insufficiency. Up to 12% of people who develop sickle cell nephropathy will develop end-stage renal disease. Objectives To assess the effectiveness of any intervention in preventing or reducing kidney complications or chronic kidney disease in people with SCD (including red blood cell transfusions, hydroxyurea and angiotensin-converting enzyme inhibitor (ACEI)), either alone or in combination with each other. Search methods We searched for relevant trials in the Cochrane Library, MEDLINE (from 1946), Embase (from 1974), the Transfusion Evidence Library (from 1980), and ongoing trial databases; all searches current to 05 April 2016. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register: 13 April 2017. Selection criteria Randomised controlled trials comparing interventions to prevent or reduce kidney complications or chronic kidney disease in people with SCD. There were no restrictions by outcomes examined, language or publication status. Data collection and analysis Two authors independently assessed trial eligibility, extracted data and assessed the risk of bias. Main results We included two trials with 215 participants

  10. Kidney disease in beagles injected with polonium-210

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruenger, F.W.; Lloyd, R.D.; Taylor, G.N.

    An unusually high incidence of kidney disease (tubular degeneration and necrosis with fibrous replacement) was observed among 24 beagles injected at about 5 years of age with 116 or 329 kBq 226Ra kg-1 but not among an additional 10 beagles given about 39 kBq 226Ra kg-1. This 226Ra solution also contained 210Pb, 210Bi, and 210Po. To determine whether the kidney disease was related to the radiation from 226Ra and its short-lived progeny or to the alpha radiation from 210Po, 2 beagles about 7 years of age were injected with 451 kBq 226Ra kg-1 of 210Po citrate. Measurements of polonium retentionmore » in the kidneys of 4 additional beagles given 210Bi citrate enabled us to model the retention of these emitters in the dog kidney and to estimate the kidney dose from the alpha radiation of 210Po following injection of either 226Ra + 210Bi + 210Po or 210Po only. Autoradiography revealed that almost equal concentrations of 210Po were in the tubular epithelium and/or its basement membrane and in the glomeruli, but very little of the 210Bi deposited in kidney tissue was present in the glomeruli. Radiation damage to the kidneys similar to that observed previously in beagles given 226Ra solutions that also contained 210Bi and 210Po was seen among the beagles given 210Po but not in the dogs given purified 226Ra. The analysis of these data indicated that the relatively high incidence of kidney disease among the mature beagles injected with 226Ra and its accompanying 210Bi and 210Po resulted from alpha irradiation of the kidneys by the substantial amount of 210Po that was in the injection solution.« less

  11. Oxidative Stress and Nucleic Acid Oxidation in Patients with Chronic Kidney Disease

    PubMed Central

    Sung, Chih-Chien; Hsu, Yu-Chuan; Lin, Yuh-Feng

    2013-01-01

    Patients with chronic kidney disease (CKD) have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS) production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate), deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies. PMID:24058721

  12. Urine Potassium Excretion, Kidney Failure, and Mortality in CKD.

    PubMed

    Leonberg-Yoo, Amanda K; Tighiouart, Hocine; Levey, Andrew S; Beck, Gerald J; Sarnak, Mark J

    2017-03-01

    Low urine potassium excretion, as a surrogate for dietary potassium intake, is associated with higher risk for hypertension and cardiovascular disease in a general population. Few studies have investigated the relationship of urine potassium with clinical outcomes in chronic kidney disease (CKD). Longitudinal cohort study. The MDRD (Modification of Diet in Renal Disease) Study was a randomized controlled trial (N = 840) conducted in 1989 to 1993 to examine the effects of blood pressure control and dietary protein restriction on kidney disease progression in adults aged 18 to 70 years with CKD stages 2 to 4. This post hoc analysis included 812 participants. The primary predictor variable was 24-hour urine potassium excretion, measured at baseline and at multiple time points (presented as time-updated average urine potassium excretion). Kidney failure, defined as initiation of dialysis therapy or transplantation, was determined from US Renal Data System data. All-cause mortality was assessed using the National Death Index. Median follow-up for kidney failure was 6.1 (IQR, 3.5-11.7) years, with 9 events/100 patient-years. Median all-cause mortality follow-up was 19.2 (IQR, 10.8-20.6) years, with 3 deaths/100 patient-years. Baseline mean urine potassium excretion was 2.39±0.89 (SD) g/d. Each 1-SD higher baseline urine potassium level was associated with an adjusted HR of 0.95 (95% CI, 0.87-1.04) for kidney failure and 0.83 (95% CI, 0.74-0.94) for all-cause mortality. Results were consistent using time-updated average urine potassium measurements. Analyses were performed using urine potassium excretion as a surrogate for dietary potassium intake. Results are obtained from a primarily young, nondiabetic, and advanced CKD population and may not be generalizable to the general CKD population. Higher urine potassium excretion was associated with lower risk for all-cause mortality, but not kidney failure. Copyright © 2016 National Kidney Foundation, Inc. Published by

  13. The Role of Topography in the Distribution and Intensity of Damage Caused by Deer in Polish Mountain Forests

    PubMed Central

    Ciesielski, Mariusz; Stereńczak, Krzysztof; Borowski, Zbigniew

    2016-01-01

    The increase in the deer population observed in recent decades has strongly impacted forest regeneration and the forest itself. The reduction in the quality of raw wood material, as a consequence of deer-mediated damage, constitutes a significant burden on forest owners. The basis for the commencement of preventive actions in this setting is the understanding of the populations and behaviors of deer in their natural environment. Although multiple studies have been carried out regarding this subject, only a few suggested topography as an important factor that may influence the distribution and intensity of deer-mediated damage. The detailed terrain models based on LiDAR data as well as the data on damage caused by deer from the State Forests database enabled thorough analyses of the distribution and intensity of damage in relation to land form in this study. These analyses were performed on three mountain regions in Poland: the Western Sudety Mountains, the Eastern Sudety Mountains, and the Beskidy Mountains. Even though these three regions are located several dozen to several hundred kilometers apart from each other, not all evaluated factors appeared common among them, and therefore, these regions have been analyzed separately. The obtained results indicated that the forest damage caused by deer increased with increasing altitude above 1000 m ASL. However, much larger areas of damage by deer were observed at elevations ranging from 401 to 1000 m ASL than at elevations below 400 m ASL. Moreover, the locations of damage (forest thickets and old stands) indicated that red deer is the species that exerts the strongest pressure on forest ecosystems. Our results show the importance of deer foraging behavior to the structure of the environment. PMID:27851776

  14. Curcumin causes DNA damage and affects associated protein expression in HeLa human cervical cancer cells.

    PubMed

    Shang, Hung-Sheng; Chang, Chuan-Hsun; Chou, Yu-Ru; Yeh, Ming-Yang; Au, Man-Kuan; Lu, Hsu-Feng; Chu, Yung-Lin; Chou, Hsiao-Min; Chou, Hsiu-Chen; Shih, Yung-Luen; Chung, Jing-Gung

    2016-10-01

    Cervical cancer is one of the most common cancers in women worldwide and it is a prominent cause of cancer mortality. Curcumin is one of the major compounds from Turmeric and has been shown to induce cytotoxic cell death in human cervical cancer cells. However, there is no study to show curcumin induced DNA damage action via the effect on the DNA damage and repair protein in cervical cancer cells in detail. In this study, we investigated whether or not curcumin induced cell death via DNA damage, chromatin condensation in human cervical cancer HeLa cells by using comet assay and DAPI staining, respectively, we found that curcumin induced cell death through the induction of DNA damage, and chromatin condensation. Western blotting and confocal laser microscopy examination were used to examine the effects of curcumin on protein expression associated with DNA damage, repair and translocation of proteins. We found that curcumin at 13 µM increased the protein levels associated with DNA damage and repair, such as O6-methylguanine-DNA methyltransferase, early-onset breast cancer 1 (BRCA1), mediator of DNA damage checkpoint 1, p-p53 and p-H2A.XSer140 in HeLa cells. Results from confocal laser systems microscopy indicated that curcumin increased the translocation of p-p53 and p-H2A.XSer140 from cytosol to nuclei in HeLa cells. In conclusion, curcumin induced cell death in HeLa cells via induction of DNA damage, and chromatin condensation in vitro.

  15. Kidney Facts

    MedlinePlus

    ... Page Transplant Living > Kidney KIDNEY TRANSPLANT LEARNING CENTER Kidney The kidneys are a vital organ in the ... your body. Location of the kidneys How the kidney works Your kidneys play a vital role in ...

  16. Depletion of kidney CD11c+ F4/80+ cells impairs the recovery process in ischaemia/reperfusion-induced acute kidney injury.

    PubMed

    Kim, Myung-Gyu; Boo, Chang Su; Ko, Yoon Sook; Lee, Hee Young; Cho, Won Yong; Kim, Hyoung Kyu; Jo, Sang-Kyung

    2010-09-01

    Recent studies provided evidence of the potential role of CD11c(+) F4/80(+) dendritic subset in mediating injury and repair. The purpose of this study was to examine the role of kidney CD11c(+) F4/80(+) dendritic subset in the recovery phase of ischaemia/reperfusion injury (IRI). Following ischaemia/reperfusion (I/R), liposome clodronate or phosphate buffered saline (PBS) was administered, and on day 7 biochemical and histologic kidney damage was assessed. Activation and depletion of CD11c(+) F4/80(+) dendritic subset were confirmed by flow cytometry. Isolation of kidney CD11c(+) cells on days 1 and 7 with in vitro culture for measuring cytokines was performed to define functional characteristics of these cells, and adoptive transfer of CD11c(+) cells was also done. Following kidney IRI, the percentage of CD11c(+) F4/80(+) kidney dendritic cell subset that co-expresses maturation marker increased. Liposome clodronate injection after I/R resulted in preferential depletion of CD11c(+) F4/80(+) kidney dendritic subset, and depletion of these cells was associated with persistent kidney injury, more apoptosis, inflammation and impaired tubular cell proliferation. CD11c(+) F4/80(+) cell depletion was also associated with higher tissue levels of pro-inflammatory cytokines and lower level of IL-10, indicating the persistence of inflammatory milieu. Isolated kidney CD11c(+) cells on day 7 showed different phenotype with increased production of IL-10 compared with those on day 1. Adoptive transfer of CD11c(+) cells partially reversed impaired tissue recovery. Our results suggest that kidney CD11c(+) F4/80(+) dendritic subset might contribute to the recovery process by dynamic phenotypic change from pro-inflammatory to anti-inflammatory with modulation of immune response.

  17. Implications of chronic kidney disease for dietary treatment in cardiovascular disease.

    PubMed

    Packard, Diane P; Milton, Joan E; Shuler, Lynn A; Short, Robert A; Tuttle, Katherine R

    2006-07-01

    Chronic kidney disease (CKD) often accompanies cardiovascular disease (CVD). Trends foretelling a greater burden of CKD and CVD are largely a result of increasing frequencies of obesity, hypertension, and diabetes. Nutritional therapy occupies a critical role in reducing risk factors and preventing progressive damage to the kidneys and heart. Nutritional assessment and treatment should take into account both health concerns. This review examines several diet components and eating styles for efficacy in the treatment of these conditions. A variety of dietary regimens claim to provide health benefits, but rigorous scientific validation of long-term efficacy is frequently lacking. An urgent need exists for eating styles that reduce risk of chronic diseases and that are acceptable and achievable in free-living populations. We describe our ongoing study, a randomized controlled trial comparing the American Heart Association Step II diet and a Mediterranean diet, in survivors of a first myocardial infarction. The primary end point is a composite of mortality and major CVD events. Because many in this population have CKD, indicators of kidney damage and function are prespecified secondary end points. Results of this trial should provide insight into optimal dietary interventions for persons with both CVD and CKD.

  18. Chronic kidney disease in Nicaragua: a qualitative analysis of semi-structured interviews with physicians and pharmacists.

    PubMed

    Ramirez-Rubio, Oriana; Brooks, Daniel R; Amador, Juan Jose; Kaufman, James S; Weiner, Daniel E; Scammell, Madeleine Kangsen

    2013-04-16

    Northwestern Nicaragua has a high prevalence of chronic kidney disease (CKD) of unknown cause among young adult men. In addition, frequent occurrence of urinary tract infections (UTI) among men and a dysuria syndrome described by sugarcane workers as "chistata" are both reported. This study examines health professionals´ perceptions regarding etiology of these conditions and their treatment approaches, including use of potentially nephrotoxic medications. Nineteen in-person semi-structured interviews were conducted in November 2010 among ten physicians and nine pharmacists practicing in the region. Health professionals perceived CKD as a serious and increasing problem in the region, primarily affecting young men working as manual laborers. All interviewees regarded occupational and environmental exposure to sun and heat, and dehydration as critical factors associated with the occurrence of CKD. These factors were also considered to play a role in the occurrence of chistata in the region. Health professionals indicated that reluctance among workers to hydrate might be influenced by perceptions of water contamination. Symptoms often were treated with non-steroidal anti-inflammatory drugs (NSAIDs), diuretics and antibiotics. Physicians acknowledged that the diagnosis of UTI usually was not based on microbial culture and opined that the use of potentially nephrotoxic medications may be contributing to CKD. Interviews provided evidence suggesting that medications such as diuretics, antibiotics and NSAIDs are widely used and sold over the counter for symptoms that may be related to dehydration and volume depletion. These factors, alone or in combination, may be possible contributors to kidney damage. Acute kidney damage coupled with volume depletion and exposures including medications and infectious agents should be further evaluated as causal factors for CKD in this region.

  19. Solitary Kidney

    MedlinePlus

    ... Solitary Kidney Your Kidneys & How They Work Solitary Kidney What is a solitary kidney? When a person has only one kidney or ... ureter are removed (bottom right). What are the kidneys and what do they do? The kidneys are ...

  20. Tuberin haploinsufficiency is associated with the loss of OGG1 in rat kidney tumors

    PubMed Central

    Habib, Samy L; Simone, Simona; Barnes, Jeff J; Abboud, Hanna E

    2008-01-01

    Background Tuberous sclerosis complex (TSC) is caused by defects in one of two tumor suppressor genes, TSC-1 or TSC-2. TSC-2 gene encodes tuberin, a protein involved in the pathogenesis of kidney tumors. Loss of heterozygosity (LOH) at the TSC2 locus has been detected in TSC-associated renal cell carcinoma (RCC) and in RCC in the Eker rat. Tuberin downregulates the DNA repair enzyme 8-oxoguanine DNA-glycosylase (OGG1) with important functional consequences, compromising the ability of cells to repair damaged DNA resulting in the accumulation of the mutagenic oxidized DNA, 8-oxo-dG. Loss of function mutations of OGG1 also occurs in human kidney clear cell carcinoma and may contribute to tumorgenesis. We investigated the distribution of protein expression and the activity of OGG1 and 8-oxo-dG and correlated it with the expression of tuberin in kidneys of wild type and Eker rats and tumor from Eker rat. Results Tuberin expression, OGG1 protein expression and activity were higher in kidney cortex than in medulla or papilla in both wild type and Eker rats. On the other hand, 8-oxo-dG levels were highest in the medulla, which expressed the lowest levels of OGG1. The basal levels of 8-oxo-dG were also higher in both cortex and medulla of Eker rats compared to wild type rats. In kidney tumors from Eker rats, the loss of the second TSC2 allele is associated with loss of OGG1 expression. Immunostaining of kidney tissue shows localization of tuberin and OGG1 mainly in the cortex. Conclusion These results demonstrate that OGG1 localizes with tuberin preferentially in kidney cortex. Loss of tuberin is accompanied by the loss of OGG1 contributing to tumorgenesis. In addition, the predominant expression of OGG1 in the cortex and its decreased expression and activity in the Eker rat may account for the predominant cortical localization of renal cell carcinoma. PMID:18218111

  1. Cyclosporine-induced changes in drug metabolizing enzymes in hyperlipemic rabbit kidneys could explain its toxicity.

    PubMed

    Elbarbry, Fawzy; Ragheb, Ahmed; Attia, Ahmed; Chibbar, Rajni; Marfleet, Travis; Shoker, Ahmed

    2010-11-01

    This study investigates the mechanism of cyclosporine A (CsA)-mediated nephrotoxicity by examining the hypothesis that CsA toxicity is mediated through its effect on the kidney drug metabolizing enzymes in a hyperlipemic rabbit model. Twenty-four female New Zealand white rabbits divided into four groups. Group 1 received regular diet. Group 2 received 1% cholesterol diet. Group 3 received CsA (25 mg/kg, orally once daily) and group 4 received 1% cholesterol diet and CsA (25 mg/kg, orally once daily). Cytochrome P450 2E1 (CYP2E1) activity in kidney microsomes was assessed by measuring p-nitrophenol hydroxylase activity. Generation of reactive oxygen species (ROS) was assessed by measuring malondialdehyde (MDA) and the protein carbonyl. Effect of CsA and hyperlipidemia on the antioxidant proteins were also assessed using standard techniques. CsA but not the high-cholesterol diet induced significant elevation in MDA, protein carbonyl and CYP2E1 activities in the kidney. The addition of cholesterol to CsA normalized ROS markers without affecting the CsA-enhanced CYP2E1 activity. Alone, CsA caused characteristic tubular injury, whereas the addition of high-cholesterol diet to CsA nearly abolished the tubular damage. CsA-enhanced rabbit kidney ROS and CYP2E1 activities. Hyperlipidemia attenuates CsA tubular injury, most probably due to normalization of renal ROS, but not CYP2E1 activity.

  2. Sulfasalazine-Induced Crystalluria Causing Severe Acute Kidney Injury.

    PubMed

    Durando, Michael; Tiu, Hannah; Kim, James Soo

    2017-12-01

    Sulfasalazine is an anti-inflammatory agent commonly used in the treatment of autoimmune conditions such as inflammatory bowel disease and rheumatoid arthritis. Sulfasalazine is converted by gut bacteria into sulfapyridine and the clinically active metabolite 5-aminosalicylic acid (5-ASA), and its efficacy is proportional to the 5-ASA concentration within the intestinal lumen. Renal complications are commonly reported for the chemically similar 5-ASA derivative mesalamine, but are not well-known side effects of sulfasalazine therapy. We report a 72-year-old patient with Crohn's disease managed with sulfasalazine for more than 10 years who presented with severe acute kidney injury (serum creatinine, 9.7mg/dL). Renal ultrasound revealed calculi and he subsequently spontaneously voided innumerable stones, which were composed of sulfasalazine metabolites. His renal calculi cleared and serum creatinine concentration improved to 3.1mg/dL after discontinuing sulfasalazine therapy and intravenous fluid hydration. His kidney function eventually returned to baseline. This case demonstrates that renal complications, in particular nephrolithiasis, may be an under-reported but potentially serious phenomenon in patients with inflammatory bowel disease treated with sulfasalazine and that their hydration status may play an important role in this process. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease

    PubMed Central

    Raj Krishnamurthy, Vidya M.; Wei, Guo; Baird, Bradley C.; Murtaugh, Maureen; Chonchol, Michel B.; Raphael, Kalani L.; Greene, Tom; Beddhu, Srinivasan

    2016-01-01

    Chronic kidney disease is considered an inflammatory state and a high fiber intake is associated with decreased inflammation in the general population. Here, we determined whether fiber intake is associated with decreased inflammation and mortality in chronic kidney disease, and whether kidney disease modifies the associations of fiber intake with inflammation and mortality. To do this, we analyzed data from 14,543 participants in the National Health and Nutrition Examination Survey III. The prevalence of chronic kidney disease (estimated glomerular filtration rate less than 60 ml/min per 1.73 m2) was 5.8%. For each 10-g/day increase in total fiber intake, the odds of elevated serum C-reactive protein levels were decreased by 11% and 38% in those without and with kidney disease, respectively. Dietary total fiber intake was not significantly associated with mortality in those without but was inversely related to mortality in those with kidney disease. The relationship of total fiber with inflammation and mortality differed significantly in those with and without kidney disease. Thus, high dietary total fiber intake is associated with lower risk of inflammation and mortality in kidney disease and these associations are stronger in magnitude in those with kidney disease. Interventional trials are needed to establish the effects of fiber intake on inflammation and mortality in kidney disease. PMID:22012132

  4. Nanoparticles can cause DNA damage across a cellular barrier

    NASA Astrophysics Data System (ADS)

    Bhabra, Gevdeep; Sood, Aman; Fisher, Brenton; Cartwright, Laura; Saunders, Margaret; Evans, William Howard; Surprenant, Annmarie; Lopez-Castejon, Gloria; Mann, Stephen; Davis, Sean A.; Hails, Lauren A.; Ingham, Eileen; Verkade, Paul; Lane, Jon; Heesom, Kate; Newson, Roger; Case, Charles Patrick

    2009-12-01

    The increasing use of nanoparticles in medicine has raised concerns over their ability to gain access to privileged sites in the body. Here, we show that cobalt-chromium nanoparticles (29.5 +/- 6.3 nm in diameter) can damage human fibroblast cells across an intact cellular barrier without having to cross the barrier. The damage is mediated by a novel mechanism involving transmission of purine nucleotides (such as ATP) and intercellular signalling within the barrier through connexin gap junctions or hemichannels and pannexin channels. The outcome, which includes DNA damage without significant cell death, is different from that observed in cells subjected to direct exposure to nanoparticles. Our results suggest the importance of indirect effects when evaluating the safety of nanoparticles. The potential damage to tissues located behind cellular barriers needs to be considered when using nanoparticles for targeting diseased states.

  5. Cell damage caused by ultraviolet B radiation in the desert cyanobacterium Phormidium tenue and its recovery process.

    PubMed

    Wang, Gaohong; Deng, Songqiang; Liu, Jiafeng; Ye, Chaoran; Zhou, Xiangjun; Chen, Lanzhou

    2017-10-01

    Phormidium tenue, a cyanobacterium that grows in the topsoil of biological soil crusts (BSCs), has the highest recovery rate among desert crust cyanobacteria after exposure to ultraviolet B (UV-B) radiation. However, the mechanism underlying its recovery process is unclear. To address this issue, we measured chlorophyll a fluorescence, generation of reactive oxygen species (ROS), lipid peroxidation, and repair of DNA breakage in P. tenue following exposure to UV-B. We found that UV-B radiation at all doses tested reduced photosynthesis and induced cell damage in P. tenue. However, P. tenue responded to UV-B radiation by rapidly reducing photosynthetic activity, which protects the cell by leaking less ROS. Antioxidant enzymes, DNA damage repair systems, and UV absorbing pigments were then induced to mitigate the damage caused by UV-B radiation. The addition of exogenous antioxidant chemicals ascorbate and N-acetylcysteine also mitigated the harmful effects caused by UV-B radiation and enhanced the recovery process. These chemicals could aid in the resistance of P. tenue to the exposure of intense UV-B radiation in desertified areas when inoculated onto the sand surface to form artificial algal crusts. Copyright © 2017. Published by Elsevier Inc.

  6. Population Growth and Damage Caused by Rhopalosiphum padi (L.) (Hemiptera, Aphididae) on Different Cultivars and Phenological Stages of Wheat.

    PubMed

    Savaris, M; Lampert, S; Salvadori, J R; Lau, D; Pereira, P R V S; Smaniotto, M A

    2013-10-01

    Among the aphids associated with wheat and other winter cereals, Rhopalosiphum padi (L.) is currently the predominant species in the wheat growing region of southern Brazil. The damage caused by this aphid occurs by direct feeding and/or by the transmission of pathogenic viruses, such as the Barley/Cereal yellow dwarf virus. In order to estimate the direct damage caused by R. padi on wheat, we evaluated the population growth of this aphid during the tillering and elongation stages and its effects on grain yield components. The experiment was conducted in a screenhouse with three wheat cultivars (BRS Guabiju, BRS Timbaúva, and Embrapa 16). The effect of a period of 16 days, starting from an infestation of 40 aviruliferous aphids/plant, was evaluated and compared to non-infested plants. In both stages, the population growth of R. padi was lower on the BRS Timbaúva. Although infestation caused a reduction in the grain yield of the three cultivars, this effect was lower for BRS Timbaúva. The cultivar Embrapa 16 supported higher infestations and was more tolerant to damage than the BRS Guabiju.

  7. Loss of MeCP2 Causes Urological Dysfunction and Contributes to Death by Kidney Failure in Mouse Models of Rett Syndrome.

    PubMed

    Ward, Christopher S; Huang, Teng-Wei; Herrera, José A; Samaco, Rodney C; Pitcher, Meagan R; Herron, Alan; Skinner, Steven A; Kaufmann, Walter E; Glaze, Daniel G; Percy, Alan K; Neul, Jeffrey L

    2016-01-01

    Rett Syndrome (RTT) is a neurodevelopmental disorder characterized by loss of acquired skills during development, autonomic dysfunction, and an increased risk for premature lethality. Clinical experience identified a subset of individuals with RTT that present with urological dysfunction including individuals with frequent urinary tract infections, kidney stones, and urine retention requiring frequent catheterization for bladder voiding. To determine if urologic dysfunction is a feature of RTT, we queried the Rett Syndrome Natural History Study, a repository of clinical data from over 1000 individuals with RTT and found multiple instances of urological dysfunction. We then evaluated urological function in a mouse model of RTT and found an abnormal pattern of micturition. Both male and female mice possessing Mecp2 mutations show a decrease in urine output per micturition event. Furthermore, we identified signs of kidney failure secondary to urethral obstruction. Although genetic strain background significantly affects both survival and penetrance of the urethral obstruction phenotype, survival and penetrance of urethral obstruction do not directly correlate. We have identified an additional phenotype caused by loss of MeCP2, urological dysfunction. Furthermore, we urge caution in the interpretation of survival data as an endpoint in preclinical studies, especially where causes of mortality are poorly characterized.

  8. Loss of MeCP2 Causes Urological Dysfunction and Contributes to Death by Kidney Failure in Mouse Models of Rett Syndrome

    PubMed Central

    Ward, Christopher S.; Huang, Teng-Wei; Herrera, José A.; Samaco, Rodney C.; Pitcher, Meagan R.; Herron, Alan; Skinner, Steven A.; Kaufmann, Walter E.; Glaze, Daniel G.; Percy, Alan K.; Neul, Jeffrey L.

    2016-01-01

    Rett Syndrome (RTT) is a neurodevelopmental disorder characterized by loss of acquired skills during development, autonomic dysfunction, and an increased risk for premature lethality. Clinical experience identified a subset of individuals with RTT that present with urological dysfunction including individuals with frequent urinary tract infections, kidney stones, and urine retention requiring frequent catheterization for bladder voiding. To determine if urologic dysfunction is a feature of RTT, we queried the Rett Syndrome Natural History Study, a repository of clinical data from over 1000 individuals with RTT and found multiple instances of urological dysfunction. We then evaluated urological function in a mouse model of RTT and found an abnormal pattern of micturition. Both male and female mice possessing Mecp2 mutations show a decrease in urine output per micturition event. Furthermore, we identified signs of kidney failure secondary to urethral obstruction. Although genetic strain background significantly affects both survival and penetrance of the urethral obstruction phenotype, survival and penetrance of urethral obstruction do not directly correlate. We have identified an additional phenotype caused by loss of MeCP2, urological dysfunction. Furthermore, we urge caution in the interpretation of survival data as an endpoint in preclinical studies, especially where causes of mortality are poorly characterized. PMID:27828991

  9. Genetics Home Reference: medullary cystic kidney disease type 1

    MedlinePlus

    ... They lead to the production of an altered protein. It is unclear how this change causes kidney disease. ... cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat Genet. 2013 Mar;45(3):299-303. ...

  10. Sepsis and Acute Kidney Injury.

    PubMed

    Bilgili, Beliz; Haliloğlu, Murat; Cinel, İsmail

    2014-12-01

    Acute kindney injury (AKI) is a clinical syndrome which is generally defined as an abrupt decline in glomerular filtration rate, causing accumulation of nitrogenous products and rapid development of fluid, electrolyte and acid base disorders. In intensive care unit sepsis and septic shock are leading causes of AKI. Sepsis-induced AKI literally acts as a biologic indicator of clinical deterioration. AKI triggers variety of immune, inflammatory, metabolic and humoral patways; ultimately leading distant organ dysfunction and increases morbidity and mortality. Serial mesurements of creatinine and urine volume do not make it possible to diagnose AKI at early stages. Serum creatinine influenced by age, weight, hydration status and become apparent only when the kidneys have lost 50% of their function. For that reason we need new markers, and many biomarkers in the diagnosis of early AKI activity is assessed. Historically "Risk-Injury-Failure-Loss-Endstage" (RIFLE), "Acute Kidney Injury Netwok" (AKIN) and "The Kidney Disease/ Improving Global Outcomes" (KDIGO) classification systems are used for diagnosing easily in clinical practice and research and grading disease. Classifications including diagnostic criteria are formed for the identification of AKI. Neutrophil gelatinase associated lipocalin (NGAL), cystatin-C (Cys-C), kidney injury molecule-1 (KIM-1) and also "cell cycle arrest" molecules has been concerned for clinical use. In this review the pathophysiology of AKI, with the relationship of sepsis and the importance of early diagnosis of AKI is evaluated.

  11. Kidney enlargement and multiple liver cyst formation implicate mutations in PKD1/2 in adult sporadic polycystic kidney disease.

    PubMed

    Fujimaru, T; Mori, T; Sekine, A; Mandai, S; Chiga, M; Kikuchi, H; Ando, F; Mori, Y; Nomura, N; Iimori, S; Naito, S; Okado, T; Rai, T; Hoshino, J; Ubara, Y; Uchida, S; Sohara, E

    2018-07-01

    Distinguishing autosomal-dominant polycystic kidney disease (ADPKD) from other inherited renal cystic diseases in patients with adult polycystic kidney disease and no family history is critical for correct treatment and appropriate genetic counseling. However, for patients with no family history, there are no definitive imaging findings that provide an unequivocal ADPKD diagnosis. We analyzed 53 adult polycystic kidney disease patients with no family history. Comprehensive genetic testing was performed using capture-based next-generation sequencing for 69 genes currently known to cause hereditary renal cystic diseases including ADPKD. Through our analysis, 32 patients had PKD1 or PKD2 mutations. Additionally, 3 patients with disease-causing mutations in NPHP4, PKHD1, and OFD1 were diagnosed with an inherited renal cystic disease other than ADPKD. In patients with PKD1 or PKD2 mutations, the prevalence of polycystic liver disease, defined as more than 20 liver cysts, was significantly higher (71.9% vs 33.3%, P = .006), total kidney volume was significantly increased (median, 1580.7 mL vs 791.0 mL, P = .027) and mean arterial pressure was significantly higher (median, 98 mm Hg vs 91 mm Hg, P = .012). The genetic screening approach and clinical features described here are potentially beneficial for optimal management of adult sporadic polycystic kidney disease patients. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. The Preinterventional Cystatin-Creatinine-Ratio: A Prognostic Marker for Contrast Medium-Induced Acute Kidney Injury and Long-Term All-Cause Mortality.

    PubMed

    Lüders, Florian; Meyborg, Matthias; Malyar, Nasser; Reinecke, Holger

    2015-01-01

    Contrast medium-induced acute kidney injury (CI-AKI) is an important iatrogenic complication following the injection of iodinated contrast media. The level of serum creatinine (SCr) is the currently accepted 'gold standard' to diagnose CI-AKI. Cystatin C (CyC) has been detected as a more sensitive marker for renal dysfunction. Both have their limitations. The role of the preinterventional CyC-SCr ratio for evaluating the risk for CI-AKI and long-term all-cause mortality was retrospectively analyzed in the prospective single-center 'Dialysis-versus-Diuresis trial'. CI-AKI was defined and staged according to the Acute Kidney Injury Network classification. Three hundred and seventy-three patients were included (average age 67.4 ± 10.2 years, 16.4% women, 29.2% with diabetes mellitus, mean baseline glomerular filtration rate 56.3 ± 20.2 ml/min/1.73 m(2) [as estimated by Chronic Kidney Disease Epidemiology Collaboration Serum Creatinine Cystatin C equation], 5.1% ejection fraction <35%). A total of 79 patients (21.2%) developed CI-AKI after elective heart catheterization, and 65 patients (17.4%) died during follow-up. Multivariate analyses by logistic regression confirmed that the preinterventional CyC-SCr ratio is independently associated with CI-AKI (OR 9.423, 95% CI 1.494-59.436, p = 0.017). Also, the Cox regression model found a high significant association between preinterventional CyC-SCr ratio and long-term all-cause mortality (mean follow-up 649 days, hazards ratio 4.096, 95% CI 1.625-10.329, p = 0.003). The preinterventional CyC-SCr ratio is independently associated with CI-AKI and highly significant associated with long-term mortality after heart catheterization. © 2015 S. Karger AG, Basel.

  13. Autosomal dominant polycystic kidney disease caused by somatic and germline mosaicism.

    PubMed

    Tan, A Y; Blumenfeld, J; Michaeel, A; Donahue, S; Bobb, W; Parker, T; Levine, D; Rennert, H

    2015-04-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a heterogeneous genetic disorder caused by loss of function mutations of PKD1 or PKD2 genes. Although PKD1 is highly polymorphic and the new mutation rate is relatively high, the role of mosaicism is incompletely defined. Herein, we describe the molecular analysis of ADPKD in a 19-year-old female proband and her father. The proband had a PKD1 truncation mutation c.10745dupC (p.Val3584ArgfsX43), which was absent in paternal peripheral blood lymphocytes (PBL). However, very low quantities of this mutation were detected in the father's sperm DNA, but not in DNA from his buccal cells or urine sediment. Next generation sequencing (NGS) analysis determined the level of this mutation in the father's PBL, buccal cells and sperm to be ∼3%, 4.5% and 10%, respectively, consistent with somatic and germline mosaicism. The PKD1 mutation in ∼10% of her father's sperm indicates that it probably occurred early in embryogenesis. In ADPKD cases where a de novo mutation is suspected because of negative PKD gene testing of PBL, additional evaluation with more sensitive methods (e.g. NGS) of the proband PBL and paternal sperm can enhance detection of mosaicism and facilitate genetic counseling. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Kidney fibroxanthoma (malignant fibrous xanthoma): a rare tumor and an unusual cause of retroperitoneal hemorrhage.

    PubMed

    Witz, M; Bernheim, J; Dinbar, A; Griffel, B

    1984-06-01

    A case of kidney fibroxanthoma (malignant fibrous xanthoma, malignant variant of xanthogranuloma), a rare malignant neoplasm of kidney, is described. In addition to the typical histologic features of retroperitoneal xanthogranuloma, this tumor showed obvious pleomorphism and mitotic activity of the histiocytes. We present this case in view of the rarity of this neoplasm and the unusual presentation as massive retroperitoneal hemorrhage.

  15. Nephro-protective action of P. santalinus against alcohol-induced biochemical alterations and oxidative damage in rats.

    PubMed

    Bulle, Saradamma; Reddy, Vaddi Damodara; Hebbani, Ananda Vardhan; Padmavathi, Pannuru; Challa, Chandrasekhar; Puvvada, Pavan Kumar; Repalle, Elisha; Nayakanti, Devanna; Aluganti Narasimhulu, Chandrakala; Nallanchakravarthula, Varadacharyulu

    2016-12-01

    The present study investigated the antioxidant potential of P. santalinus heartwood methanolic extract (PSE) against alcohol-induced nephro-toxicity. The results indicated an increase in the concentration of kidney damage plasma markers, urea and creatinine with a concomitant decrease in the concentration of uric acid in alcohol-administered rats. A significant decrease in plasma electrolytes and mineral levels with increased kidney thiobarbituric acid reactive substances (TBARS) and nitric oxide (NOx) levels was also observed. PSE treatment to alcohol-administered rats effectively prevented the elevation in TBARS and NOx levels. Decreased activity of Na + /K + -ATPase in alcohol administered rats was brought to near normal levels with treatment of PSE. Chronic alcohol consumption affects antioxidant enzymatic activity and reabsorption function of the kidney which is evident from the decreased level of GSH as well as the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione s-transferase (GST). However, treatment with PSE to alcohol-administered rats significantly enhanced these enzymatic activities and reduced glutathione (GSH) content close to normal level. Alcohol-induced organ damage was evident from morphological changes in the kidney. Nevertheless, administration of PSE effectively restored these morphological changes to normal. The flavonoid and tannoid compounds might have protective activity against alcohol-induced oxidative/nitrosative stress mediated kidney damage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Preeclampsia Risks in Kidney Donors and Recipients.

    PubMed

    Shah, Pratik B; Samra, Manpreet; Josephson, Michelle A

    2018-06-08

    To review the studies and practice guidelines on the preeclampsia risks in kidney donors and recipients. There is a small increased risk of gestational hypertension and preeclampsia in pregnancies that follow kidney donation. Kidney Disease Improving Global Outcomes (KDIGO) Clinical Practice Guideline (2017) and the 2015 American Society of Transplantation (AST) consensus conference statement recommends counseling kidney donors about this increased risk. There is no observed increase in fetal complications or eclampsia post-kidney donation. Preeclampsia is more commonly observed in kidney transplant recipients than the general population and these patients should be co-managed with an obstetrician with experience in managing high risk pregnancies. Although preeclampsia has not been found to have a deleterious effect on renal graft function, it can cause premature delivery. Risk calculators have been proposed and an elevated pre-pregnancy creatinine seems to be an important risk. KDIGO Clinical Practice Guidelines (2009) recommends attempting pregnancy when kidney function is stable with proteinuria of less than 1 g per day. The use of novel biomarkers for preeclampsia has not been published in this population. Preeclampsia is an important concern for female kidney donors and recipients of child-bearing age. These individuals should be appropriately counseled.

  17. Murine liver damage caused by exposure to nano-titanium dioxide

    NASA Astrophysics Data System (ADS)

    Hong, Jie; Zhang, Yu-Qing

    2016-03-01

    Due to its unique physiochemical properties, nano-titanium dioxide (nano-TiO2) is widely used in all aspects of people’s daily lives, bringing it into increasing contact with humans. Thus, this material’s security issues for humans have become a heavily researched subject. Nano-TiO2 can enter the body through the mouth, skin, respiratory tract or in other ways, after which it enters the blood circulation and is deposited in the liver, changing biochemical indicators and causing liver inflammation. Meanwhile, the light sensitivity of these nanoparticles allows them to become media-generating reactive oxygen species (ROS), causing an imbalance between oxidation and anti-oxidation that leads to oxidative stress and liver damage. Nano-TiO2 can be transported into cells via phagocytosis, where the nanoparticles bind to the mitochondrial membrane, resulting in the disintegration of the membrane and the electron transport chain within the mitochondria. Thus, more ROS are produced. Nano-TiO2 can also enter the nucleus, where it can directly embed into or indirectly affect DNA, thereby causing DNA breakage or affecting gene expression. These effects include increased mRNA and protein expression levels of inflammation-related factors and decreased mRNA and protein expression levels of IκB and IL-2, resulting in inflammation. Long-term inflammation of the liver causes HSC cell activation, and extracellular matrix (ECM) deposition is promoted by multiple signalling pathways, resulting in liver fibrosis. In this paper, the latest progress on murine liver injury induced by environmental TiO2 is systematically described. The toxicity of nano-TiO2 also depends on size, exposure time, surface properties, dosage, administration route, and its surface modification. Therefore, its toxic effects in humans should be studied in greater depth. This paper also provides useful reference information regarding the safe use of nano-TiO2 in the future.

  18. Serum metabolites are associated with all-cause mortality in chronic kidney disease.

    PubMed

    Hu, Jiun-Ruey; Coresh, Josef; Inker, Lesley A; Levey, Andrew S; Zheng, Zihe; Rebholz, Casey M; Tin, Adrienne; Appel, Lawrence J; Chen, Jingsha; Sarnak, Mark J; Grams, Morgan E

    2018-06-02

    Chronic kidney disease (CKD) involves significant metabolic abnormalities and has a high mortality rate. Because the levels of serum metabolites in patients with CKD might provide insight into subclinical disease states and risk for future mortality, we determined which serum metabolites reproducibly associate with mortality in CKD using a discovery and replication design. Metabolite levels were quantified via untargeted liquid chromatography and mass spectroscopy from serum samples of 299 patients with CKD in the Modification of Diet in Renal Disease (MDRD) study as a discovery cohort. Six among 622 metabolites were significantly associated with mortality over a median follow-up of 17 years after adjustment for demographic and clinical covariates, including urine protein and measured glomerular filtration rate. We then replicated associations with mortality in 963 patients with CKD from the African American Study of Kidney Disease and Hypertension (AASK) cohort over a median follow-up of ten years. Three of the six metabolites identified in the MDRD cohort replicated in the AASK cohort: fumarate, allantoin, and ribonate, belonging to energy, nucleotide, and carbohydrate pathways, respectively. Point estimates were similar in both studies and in meta-analysis (adjusted hazard ratios 1.63, 1.59, and 1.61, respectively, per doubling of the metabolite). Thus, selected serum metabolites were reproducibly associated with long-term mortality in CKD beyond markers of kidney function in two well characterized cohorts, providing targets for investigation. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  19. Notch3 orchestrates epithelial and inflammatory responses to promote acute kidney injury.

    PubMed

    Kavvadas, Panagiotis; Keuylian, Zela; Prakoura, Niki; Placier, Sandrine; Dorison, Aude; Chadjichristos, Christos E; Dussaule, Jean-Claude; Chatziantoniou, Christos

    2018-07-01

    Acute kidney injury is a major risk factor for subsequent chronic renal and/or cardiovascular complications. Previous studies have shown that Notch3 was de novo expressed in the injured renal epithelium in the early phases of chronic kidney disease. Here we examined whether Notch3 is involved in the inflammatory response and the epithelial cell damage that typifies ischemic kidneys using Notch3 knockout mice and mice with short-term activated Notch3 signaling (N3ICD) in renal epithelial cells. After ischemia/reperfusion, N3ICD mice showed exacerbated infiltration of inflammatory cells and severe tubular damage compared to control mice. Inversely, Notch3 knockout mice were protected against ischemia/reperfusion injury. Renal macrophages derived from Notch3 knockout mice failed to activate proinflammatory cytokines. Chromatin immunoprecipitation analysis of the Notch3 promoter identified NF-κB as the principal inducer of Notch3 in ischemia/reperfusion. Thus, Notch3 induced by NF-κB in the injured epithelium sustains a proinflammatory environment attracting activated macrophages to the site of injury leading to a rapid deterioration of renal function and structure. Hence, targeting Notch3 may provide a novel therapeutic strategy against ischemia/reperfusion and acute kidney injury by preservation of epithelial structure and disruption of proinflammatory signaling. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  20. Kidney Response to the Spectrum of Diet-Induced Acid Stress.

    PubMed

    Goraya, Nimrit; Wesson, Donald E

    2018-05-11

    Chronic ingestion of the acid (H⁺)-producing diets that are typical of developed societies appears to pose a long-term threat to kidney health. Mechanisms employed by kidneys to excrete this high dietary H⁺ load appear to cause long-term kidney injury when deployed over many years. In addition, cumulative urine H⁺ excretion is less than the cumulative increment in dietary H⁺, consistent with H⁺ retention. This H⁺ retention associated with the described high dietary H⁺ worsens as the glomerular filtration rate (GFR) declines which further exacerbates kidney injury. Modest H⁺ retention does not measurably change plasma acid⁻base parameters but, nevertheless, causes kidney injury and might contribute to progressive nephropathy. Current clinical methods do not detect H⁺ retention in its early stages but the condition manifests as metabolic acidosis as it worsens, with progressive decline of the glomerular filtration rate. We discuss this spectrum of H⁺ injury, which we characterize as “H⁺ stress”, and the emerging evidence that high dietary H⁺ constitutes a threat to long-term kidney health.

  1. [Damage to ancient mural paintings and petroglyphs caused by Pseudonocardia sp. - A review].

    PubMed

    Pan, Xiaoxuan; Ge, Qinya; Pan, Jiao

    2015-07-04

    The historical relics exposed to the natural environment during the long-term were vulnerable to microbial invasion. According to some new studies, microorganism of Pseudonocardia may is one of the main groups on the surface of mural paintings and petroglyphs, causing damage to the paints. Based on recent research progress, we reviewed the phenomenon according to the relationship between the ancient paintings and the growth conditions of Pseudonocardia, which could provide a new theory basis for the protection of cultural relics especially mural paintings and petroglyphs.

  2. Kidney disease among children in sub-Saharan Africa: a systematic review

    PubMed Central

    Tallman, Jacob E.; Chu, Emily Y.; Fitzgerald, Daniel W.; Pain, Kevin J.; Peck, Robert N.

    2015-01-01

    The global burden of kidney disease is increasing, and several etiologies first begin in childhood. Risk factors for pediatric kidney disease are common in Africa, but data regarding its prevalence are lacking. We completed a systematic review of community-based studies describing the prevalence of proteinuria, hematuria, abnormal imaging, or kidney dysfunction among children in sub-Saharan Africa. Medline and Embase were searched. Five hundred twenty-three references were reviewed. Thirty-two references from 9 countries in sub-Saharan Africa were included in the qualitative synthesis. The degree of kidney damage and abnormal imaging varied widely: proteinuria 32.5% (2.2%-56.0%); hematuria 31.1% (0.6%-67.0%); hydronephrosis 11.3% (0.0%-38.0%), hydroureter 7.5% (0.0%-26.4%), major kidney abnormalities 0.1% (0.0%-0.8%). Serum creatinine was reported in four studies with insufficient detail to identify the prevalence renal dysfunction. A majority of the studies were performed in Schistosoma haematobium endemic areas. A lower prevalence of kidney disease was observed in the few studies from non-endemic areas. Published data on pediatric kidney disease in sub-Saharan Africa is highly variable and dependent on S. haematobium prevalence. More community-based studies are needed to describe the burden of pediatric kidney disease, particularly in regions where S. haematobium infection is non-endemic. PMID:25420180

  3. The Carrier's Liability for Damage Caused by Delay in International Air Transport

    NASA Technical Reports Server (NTRS)

    Lee, Kang Bin

    2003-01-01

    Delay in the air transport occurs when passengers, baggage or cargo do not arrive at their destination at the time indicated in the contract of carriage. The causes of delay in the carriage of passengers are booking errors or double booking, delayed departure of aircraft, incorrect information regarding the time of departure, failure to land at the scheduled destination and changes in flight schedule or addition of extra landing stops. Delay in the carriage of baggage or cargo may have different causes: no reservation, lack of space, failure to load the baggage or cargo at the right place, or to deliver the covering documents at the right place. The Montreal Convention of 1999 Article 19 provides that 'The carrier is liable for damage occasioned by delay in the carriage by air of passengers, baggage or cargo. Nevertheless, the carder shall not be liable for damage occasioned by delay if it proves that it and its servants and agents took all measures that could reasonably be required to avoid the damage or that it was impossible for it or them to take such measures'. The Montreal Convention Article 22 provides liability limits of the carrier in case of delay for passengers and their baggage and for cargo. In the carriage of persons, the liability of the carrier for each passenger is limited to 4,150 SDR. In the carriage of baggage, the liability of the carrier is limited to 1,000 SDR for each passenger unless a special declaration as to the value of the baggage has been made. In the carriage of cargo, the liability of the carrier is limited to 17 SDR per kilogram unless a special declaration as to the value of the cargo has been made. The Montreal Convention Article 19 has shortcomings: it is silent on the duration of the liability for carriage,andit does not make any distinction between persons and good. It does not give any indication concerning the circumstances to be taken into account in cases of delay, and about the length of delay. In conclusion, it is

  4. Effect of trichloroethylene (TCE) toxicity on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in kidney and other rat tissues.

    PubMed

    Khan, Sheeba; Priyamvada, Shubha; Khan, Sara A; Khan, Wasim; Farooq, Neelam; Khan, Farah; Yusufi, A N K

    2009-07-01

    Trichloroethylene (TCE), an industrial solvent, is a major environmental contaminant. Histopathological examinations revealed that TCE caused liver and kidney toxicity and carcinogenicity. However, biochemical mechanism and tissue response to toxic insult are not completely elucidated. We hypothesized that TCE induces oxidative stress to various rat tissues and alters their metabolic functions. Male Wistar rats were given TCE (1000 mg/kg/day) in corn oil orally for 25 d. Blood and tissues were collected and analyzed for various biochemical and enzymatic parameters. TCE administration increased blood urea nitrogen, serum creatinine, cholesterol and alkaline phosphatase but decreased serum glucose, inorganic phosphate and phospholipids indicating kidney and liver toxicity. Activity of hexokinase, lactate dehydrogenase increased in the intestine and liver whereas decreased in renal tissues. Malate dehydrogenase and glucose-6-phosphatase and fructose-1, 6-bisphosphatase decreased in all tissues whereas increased in medulla. Glucose-6-phosphate dehydrogenase increased but NADP-malic enzyme decreased in all tissues except in medulla. The activity of BBM enzymes decreased but renal Na/Pi transport increased. Superoxide dismutase and catalase activities variably declined whereas lipid peroxidation significantly enhanced in all tissues. The present results indicate that TCE caused severe damage to kidney, intestine, liver and brain; altered carbohydrate metabolism and suppressed antioxidant defense system.

  5. Knowledge-based segmentation of pediatric kidneys in CT for measuring parenchymal volume

    NASA Astrophysics Data System (ADS)

    Brown, Matthew S.; Feng, Waldo C.; Hall, Theodore R.; McNitt-Gray, Michael F.; Churchill, Bernard M.

    2000-06-01

    The purpose of this work was to develop an automated method for segmenting pediatric kidneys in contrast-enhanced helical CT images and measuring the volume of the renal parenchyma. An automated system was developed to segment the abdomen, spine, aorta and kidneys. The expected size, shape, topology an X-ray attenuation of anatomical structures are stored as features in an anatomical model. These features guide 3-D threshold-based segmentation and then matching of extracted image regions to anatomical structures in the model. Following segmentation, the kidney volumes are calculated by summing included voxels. To validate the system, the kidney volumes of 4 swine were calculated using our approach and compared to the 'true' volumes measured after harvesting the kidneys. Automated volume calculations were also performed retrospectively in a cohort of 10 children. The mean difference between the calculated and measured values in the swine kidneys was 1.38 (S.D. plus or minus 0.44) cc. For the pediatric cases, calculated volumes ranged from 41.7 - 252.1 cc/kidney, and the mean ratio of right to left kidney volume was 0.96 (S.D. plus or minus 0.07). These results demonstrate the accuracy of the volumetric technique that may in the future provide an objective assessment of renal damage.

  6. 3,4-Methylenedioxymethamphetamine (MDMA) abuse may cause oxidative stress and potential free radical damage.

    PubMed

    Zhou, Jun F; Chen, Peng; Zhou, Ye H; Zhang, Liang; Chen, Huai H

    2003-05-01

    To investigate whether 3,4-methylenedioxymethamphetamine abuse (MDMA abuse) may cause oxidative stress and potential free radical damage in the bodies of MDMA abusers (MA), and to explore the mechanisms by which MDMA abuse may be causing oxidative stress. One hundred and twenty MA and 120 healthy volunteers (HV) were enrolled in a random control study design, in which the level of lipoperoxide (LPO) in erythrocytes, and the levels of Vitamin C (VC), Vitamin E (VE) and beta-carotene (beta-CAR) in plasma as well as the activities of superoxide dismutase (SOD) and catalase (CAT) in erythrocytes were determined by spectrophotometric methods. Compared with the average values of the above biochemical parameters in the HV group, the average value of LPO in erythrocytes in the MA group was significantly increased (P < 0.0001), while the average values of VC, VE and beta-CAR in plasma as well as those of SOD and CAT in erythrocytes in the MA group were significantly decreased (P < 0.0001). The analysis of bivariate correlations suggested that with the increase of the MDMA abuse dose and the MDMA abuse duration, the level of LPO in erythrocytes in the MA was increased (P < 0.0001), while the levels of VC, VE and beta-CAR in plasma as well as the activities of SOD and CAT in erythrocytes in the MA were decreased (P < 0.0001). The findings in this study suggest that MDMA abuse may cause oxidative stress and potential free radical damage to MA.

  7. Hyperuricemia, Acute and Chronic Kidney Disease, Hypertension, and Cardiovascular Disease: Report of a Scientific Workshop Organized by the National Kidney Foundation.

    PubMed

    Johnson, Richard J; Bakris, George L; Borghi, Claudio; Chonchol, Michel B; Feldman, David; Lanaspa, Miguel A; Merriman, Tony R; Moe, Orson W; Mount, David B; Sanchez Lozada, Laura Gabriella; Stahl, Eli; Weiner, Daniel E; Chertow, Glenn M

    2018-06-01

    Urate is a cause of gout, kidney stones, and acute kidney injury from tumor lysis syndrome, but its relationship to kidney disease, cardiovascular disease, and diabetes remains controversial. A scientific workshop organized by the National Kidney Foundation was held in September 2016 to review current evidence. Cell culture studies and animal models suggest that elevated serum urate concentrations can contribute to kidney disease, hypertension, and metabolic syndrome. Epidemiologic evidence also supports elevated serum urate concentrations as a risk factor for the development of kidney disease, hypertension, and diabetes, but differences in methodologies and inpacts on serum urate concentrations by even subtle changes in kidney function render conclusions uncertain. Mendelian randomization studies generally do not support a causal role of serum urate in kidney disease, hypertension, or diabetes, although interpretation is complicated by nonhomogeneous populations, a failure to consider environmental interactions, and a lack of understanding of how the genetic polymorphisms affect biological mechanisms related to urate. Although several small clinical trials suggest benefits of urate-lowering therapies on kidney function, blood pressure, and insulin resistance, others have been negative, with many trials having design limitations and insufficient power. Thus, whether uric acid has a causal role in kidney and cardiovascular diseases requires further study. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  8. Oxidative impairment and histopathological alterations in kidney and brain of mice following subacute lambda-cyhalothrin exposure.

    PubMed

    Pawar, Nitin Nanasaheb; Badgujar, Prarabdh Chandrakant; Sharma, Laxman Prasad; Telang, Avinash Gopal; Singh, Karam P

    2017-03-01

    Lambda cyhalothrin (LCT), a broad-spectrum type II (α-cyano) synthetic pyrethroid pesticide, is widely employed in various agricultural and animal husbandry practices for the control of pests. Acute and chronic exposure to LCT can elicit several adverse effects including oxidative stress. With the objective to investigate nephrotoxicity and neurotoxicity of LCT in mice, we evaluated oxidative stress parameters and histological changes in the kidney and brain of LCT exposed mice. Swiss albino mice were divided randomly into four groups ( n = 6 per group) as: (A) corn oil/vehicle control; (B) 0.5 mg/kg body weight (b.w.) LCT; (C) 1 mg/kg b.w. LCT; (D) 2 mg/kg b.w. LCT. Mice were treated orally for 28 days. LCT exposure significantly increased serum urea nitrogen, creatinine and urea levels. LCT exposure also increased lipid peroxidation, superoxide anion generation, nitrite level and decreased the level of reduced glutathione. The activities of superoxide dismutase, catalase and glutathione- S-transferase were depleted significantly in both kidney and brain. Histological examination revealed marked histopathological changes in the kidney and brain of mice that were more pronounced at high dose of LCT. Thus, results of the present study indicate that 28 days oral exposure of LCT causes oxidative damage to the kidney and brain of mice which in turn could be responsible for nephrotoxicity and neurotoxicity. Nevertheless, further detailed studies are required to prove these effects especially after long-term exposure.

  9. Metabolic syndrome: a multifaceted risk factor for kidney stones.

    PubMed

    Domingos, Fernando; Serra, Adelaide

    2014-10-01

    Kidney stones and metabolic syndrome (MetS) are common conditions in industrialized countries. There is growing evidence of associations between kidney stone disease and MetS or some of its components. The link between uric acid stones and MetS is well understood, but the link with calcium oxalate (CaOx) stones, the most common kidney stone composition, is more complex, and MetS is frequently overlooked as a risk factor for calcium nephrolithiasis. The physiopathological mechanisms of kidney stone disease in MetS are reviewed in this article. Uric acid stones are a consequence of the excessively acidic urine that results from insulin resistance. The pathophysiology of CaOx stones may include: increased excretion of lithogenesis promoters and decreased excretion of inhibitors; increased risk of Randall's plaque development; and inflammatory damage to renal epithelia by oxidative stress, as a consequence of the insulin-resistant milieu that characterizes MetS. The last mechanism contributes to the adhesion of CaOx crystals to subepithelial calcium deposits working as anchor sites where stones can grow. The predominant MetS features could determine the chemical composition of the stones in each patient. Kidney stones may be a renal manifestation of MetS and features of this syndrome should be looked for in patients with idiopathic nephrolithiasis.

  10. Clinical case report: a rare cause of acute kidney failure - tissue is the issue.

    PubMed

    Heggermont, Ward A; Verhoef, Gregor; Evenepoel, Pieter; Sprangers, Ben; Lerut, Evelyn; Tousseyn, Thomas; Claes, Kathleen

    2017-06-01

    A patient was admitted to the medical emergency department by his family physician. His complaints were weakness and fatigue for more than one week. Four days before admission, he went to his general practitioner for these complaints and also for painful elbows. His physician prescribed diclofenac and esomeprazole. Upon presentation, he had high systolic/diastolic blood pressure (>180/>90 mm Hg, measured repeatedly), and otherwise normal parameters. He had gained 6.5 kg in body weight. Clinical examination was normal, except for very mild bilateral malleolar edema. Routine blood tests showed a strongly elevated serum creatinine, hyperkalemia, and elevated lactate dehydrogenase. Haptoglobin levels were normal. Urinalysis showed a normal sediment, urine and blood cultures remained sterile. Ophthalmoscopy was completely normal, as was a routine chest X-ray. Renal ultrasound demonstrated kidneys with a diameter of 13 cm. Due to uncontrollable hypertension, our patient was hospitalized at the intensive care department where intravenous nifedipine was started, with good instantaneous control of blood pressure. Because of increasing potassium levels acute hemodialysis was started within 24 h after admission. Differential diagnosis consisted of diclofenac- or esomeprazole-induced interstitial nephritis or rapidly progressive glomerulonephritis. A renal biopsy was performed within 72 h after admission. The kidney biopsy showed an overwhelming inflammatory cell infiltrate consisting of a monoclonal lymphocytic cell population. However, the numerous mitotic figures, polyploidy, and prominent nucleoli present, were indicative of a lymphoma. Additional stainings confirmed a non-Hodgkin diffuse large-cell B-cell lymphoma. Treatment with R-CHOP (rituximab, cyclophosphamide, doxorubicine, vincristine, and prednisolone) was initiated with very good clinical and biochemical response, yet only mild recovery of kidney function. Occasionally the kidney is involved as an

  11. Thrombospondin-1 deficiency causes a shift from fibroproliferative to inflammatory kidney disease and delays onset of renal failure.

    PubMed

    Zeisberg, Michael; Tampe, Björn; LeBleu, Valerie; Tampe, Desiree; Zeisberg, Elisabeth M; Kalluri, Raghu

    2014-10-01

    Thrombospondin-1 (TSP1) is a multifunctional matricellular protein known to promote progression of chronic kidney disease. To gain insight into the underlying mechanisms through which TSP1 accelerates chronic kidney disease, we compared disease progression in Col4a3 knockout (KO) mice, which develop spontaneous kidney failure, with that of Col4a3;Tsp1 double-knockout (DKO) mice. Decline of excretory renal function was significantly delayed in the absence of TSP1. Although Col4a3;Tsp1 DKO mice did progress toward end-stage renal failure, their kidneys exhibited distinct histopathological lesions, compared with creatinine level-matched Col4a3 KO mice. Although kidneys of both Col4a3 KO and Col4a3;Tsp1 DKO mice exhibited a widened tubulointerstitium, predominant lesions in Col4a3 KO kidneys were collagen deposition and fibroblast accumulation, whereas in Col4a3;Tsp1 DKO kidney inflammation was predominant, with less collagen deposition. Altered disease progression correlated with impaired activation of transforming growth factor-β1 (TGF-β1) in vivo and in vitro in the absence of TSP1. In summary, our findings suggest that TSP1 contributes to progression of chronic kidney disease by catalyzing activation of latent TGF-β1, resulting in promotion of a fibroproliferative response over an inflammatory response. Furthermore, the findings suggest that fibroproliferative and inflammatory lesions are independent entities, both of which contribute to decline of renal function. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. National Kidney Foundation consensus conference on cardiovascular and kidney diseases and diabetes risk: an integrated therapeutic approach to reduce events.

    PubMed

    Bakris, George; Vassalotti, Joseph; Ritz, Eberhard; Wanner, Christoph; Stergiou, George; Molitch, Mark; Nesto, Richard; Kaysen, George A; Sowers, James R

    2010-10-01

    Cardiovascular disease (CVD) is the most common cause of death in industrialized nations. Type 2 diabetes is a CVD risk factor that confers risk similar to a previous myocardial infarction in an individual who does not have diabetes. In addition, the most common cause of chronic kidney disease (CKD) is diabetes. Together, diabetes and hypertension account for more than two-thirds of CVD risk, and other risk factors such as dyslipidemia contribute to the remainder of CVD risk. CKD, particularly with presence of significant albuminuria, should be considered an additional cardiovascular risk factor. There is no consensus on how to assess and stratify risk for patients with kidney disease across subspecialties that commonly treat such patients. This paper summarizes the results of a consensus conference utilizing a patient case to discuss the integrated management of hypertension, kidney disease, dyslipidemia, diabetes, and heart failure across disciplines.

  13. Drug repurposing in kidney disease.

    PubMed

    Panchapakesan, Usha; Pollock, Carol

    2018-07-01

    Drug repurposing, is the re-tasking of known medications for new clinical indications. Advantages, compared to de novo drug development, include reduced cost and time to market plus the added benefit of a known pharmacokinetic and safety profiles. Suitable drug candidates are identified through serendipitous observations, data mining, or increased understanding of disease mechanisms. This review highlights drugs suited for repurposing in kidney disease. The main cause of mortality in patients with chronic kidney disease is cardiovascular disease. Hence, we have included CV endpoints for the drugs. This review begins with candidates in acute kidney injury: vasodilators levosimendan and vitamin D, followed by candidates in CKD, with particular focus on diabetic kidney disease, autosomal dominant polycystic kidney disease, and focal segmental glomerulosclerosis. Examples include glucose-lowering drugs (sodium glucose co-transporter 2 inhibitors, glucagon-like peptide 1 agonists, and metformin), which have mechanistic potential for cardiac and/or renal protection beyond glucose lowering, with broader applicability to the nondiabetic population; xanthine oxidase inhibitors (allopurinol, febuxostat), selective endothelin receptor A antagonist (atrasentan), Janus kinase inhibitor (baricitinib), selective costimulation modulator (abatacept), pentoxyfylline, and the DNA demethylating agent/vasodilator (hydralazine). Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  14. Crossing Anatomic Barriers-Transplantation of a Kidney with 5 Arteries, Duplication of the Pyelocalyceal System, and Double Ureter.

    PubMed

    Bachul, Piotr J; Osuch, Czesław; Chang, Ea-Sle; Bętkowska-Prokop, Alina; Pasternak, Artur; Szura, Mirosław; Matyja, Andrzej; Walocha, Jerzy A

    2017-10-01

    During the time of organ harvest, it is crucial for the kidney procurement team to consider significant vascular anatomical variations. Multiple renal arteries are not uncommon, and unintentional injury can result in an irreversibly damaged kidney graft that needs to be discarded. We present a kidney graft with 5 renal arteries and a single vein that was successfully procured and implanted with good graft function at discharge and at 4-yr follow-up. According to the literature, additional renal arteries can be found in about 33% of kidneys. This is the first study on a kidney with 5 arteries in the published literature, especially in the context of transplantation.

  15. SERS-Based Prognosis of Kidney Transplant Outcome

    NASA Astrophysics Data System (ADS)

    Chi, Jingmao

    Kidney transplant is the predominant procedure of all organ transplants around the world. The number of patients on the waiting list for a kidney is growing rapidly, yet the number of donations does not keep up with the fast-growing need. This thesis focuses on the surface-enhanced Raman scattering (SERS) analysis of urine samples for prognosis of kidney transplant outcome, which can potentially let patients have a more timely treatment as well as expand the organ pool for transplant. We have observed unique SERS spectral features from urine samples of kidney transplant recipients that have strong associations with the kidney acute rejection (AR) based on the analysis of urine one day after the transplant. Our ability to provide an early prognosis of transplant outcome is a significant advance over the current gold standard of clinical diagnosis, which occurs weeks or months after the surgical procedure. The SERS analysis has also been applied to urine samples from deceased kidney donors. Excellent classification ability was achieved when the enhanced PCA-LDA analysis was used to classify and identify urine samples from different cases. The sensitivity of the acute tubular necrosis (ATN) class is more than 90%, which can indicate the usable kidneys in the high failure risk category. This analysis can help clinicians identify usable kidneys which would be discarded using conventional clinic methods as high failure risk. To investigate the biomarkers that cause the unique SERS features, an HPLC-SERS-MS approach was established. The high-performance liquid chromatography (HPLC) was used to separate the urinary components to reduce the sample complexity. The mass spectrometry (MS) was used to determine the formulas and the structures of the biomarkers. The presence of 1-methyl-2-pyrrolidone (NMP) and adenine in urine samples were confirmed by both MS and SERS analysis. Succinylmonocholine, a metabolite of suxamethonium, has a potential to be the biomarker that causes

  16. [Prevention and control of air pollution needs to strengthen further study on health damage caused by air pollution].

    PubMed

    Wu, T C

    2016-08-06

    Heath issues caused by air pollution such as particulate matter (PM) are much concerned and focused among air, water and soil pollutions because human breathe air for whole life span. Present comments will review physical and chemical characteristics of PM2.5 and PM10; Dose-response associations of PM10, PM2.5 and their components with mortality and risk of cardiopulmonary diseases, early health damages such as the decrease of lung functions and heart rate variability, DNA damage; And the roles of genetic variations and epigenetic changes in lung functions and heart rate variability, DNA damage related to PMs and their components. This comments list some limitations and perspectives about the associations of air pollution with health.

  17. The effect of zinc on healing of renal damage in rats.

    PubMed

    Salehipour, Mehdi; Monabbati, Ahmad; Ensafdaran, Mohammad Reza; Adib, Ali; Babaei, Amir Hossein

    2017-07-01

    Several studies have previously been performed to promote kidney healing after injuries. Objectives: The aim of this study was to investigate the effect of zinc on renal healing after traumatic injury in rats. Forty healthy female rats were selected and one of their kidneys was incised. Half of the incisions were limited only to the cortex (renal injury type I) and the other ones reached the pelvocalyceal system of the kidney (renal injury type II). All the rats in the zinc treated group (case group) received 36.3 mg zinc sulfate (contained 8.25 mg zinc) orally. After 28 days, the damaged kidneys were removed for histopathological studies. In the rats with type I injury, kidney inflammation of the case group was significantly lower than that of the control group. However, the result was not significant in rats with type II injury. Tissue loss and granulation tissue formation were significantly lower in the case group than the control group in both type I and II kidney injuries. Overall, Zinc can contribute to better healing of the rat's kidneys after a traumatic injury.

  18. Current approaches to prevention of contrast induced acute kidney injury.

    PubMed

    Blandon, Jimena; Mukherjee, Debabrata

    2011-10-01

    Contrast-induced acute kidney injury is one of the leading causes of hospital-acquired acute kidney injury. Thus far, no strategies have been clearly shown to be effective in preventing contrast-induced acute kidney injury beyond thorough patient selection, meticulous hydration of the patient, and minimizing the amount of contrast used. Additional studies are needed to define the optimal means of hydration, role of commonly advocated prophylaxis strategies such as N-acetylcysteine and develop newer more novel effective therapies to prevent or minimize the risk of kidney injury.

  19. Self-defense of Escherichia coli against damages caused by nanoalumina.

    PubMed

    Ma, Jing; Kang, Meiling; Zhang, Yingxia; Guo, Xuan; Tian, Zhongjing; Ding, Chengshi; Wang, Hongmei

    2017-10-01

    Although studies showed effects of nanoalumina (nano-Al 2 O 3 ) on Escherichia coli, no study completely provides understanding on how bacterial cells respond to damages, especially on how they initiate self-defense. In this study, we showed three types of responses of E. coli to damages caused by nano-Al 2 O 3 . Live, dead, and injured, bacteria showed improved survival rates reaching 104%, 116%, and 104% after exposure to 0.1, 1, and 10mmol/L of nano-Al 2 O 3 respectively. Survival rates improved from 100% to 114%, corresponding to an exposure time of 0-9h, and from 100% to 127%, corresponding to 0-1000μg/L Al 3+ . Improvements were noted in survival rates of E. coli K12 MG1655, HB101, DH5α, and K12 MG1655 △lexA treated by nano-Al 2 O 3 in Luria-Bertani (LB) exposure system or K12 MG1655 in LB, normal saline(NS) and H 2 O exposure system. Bacterial cells transformed from long rods to ellipsoidal or nearly spherical as form of self-preservation mechanism; this phenomenon may be related to changes in membrane potential induced by free Al 3+ released from nano-Al 2 O 3 particles. Molecular mechanism of this response involved inhibited gene expression of sythesis and metabolism of carbohydrates, lipids and proteins. Findings presented in this study may improve understanding of potential danger of nanomaterials and control their spread to environmen. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Oxidative Stress in Hypertension: Role of the Kidney

    PubMed Central

    Araujo, Magali

    2014-01-01

    Abstract Significance: Renal oxidative stress can be a cause, a consequence, or more often a potentiating factor for hypertension. Increased reactive oxygen species (ROS) in the kidney have been reported in multiple models of hypertension and related to renal vasoconstriction and alterations of renal function. Nicotinamide adenine dinucleotide phosphate oxidase is the central source of ROS in the hypertensive kidney, but a defective antioxidant system also can contribute. Recent Advances: Superoxide has been identified as the principal ROS implicated for vascular and tubular dysfunction, but hydrogen peroxide (H2O2) has been implicated in diminishing preglomerular vascular reactivity, and promoting medullary blood flow and pressure natriuresis in hypertensive animals. Critical Issues and Future Directions: Increased renal ROS have been implicated in renal vasoconstriction, renin release, activation of renal afferent nerves, augmented contraction, and myogenic responses of afferent arterioles, enhanced tubuloglomerular feedback, dysfunction of glomerular cells, and proteinuria. Inhibition of ROS with antioxidants, superoxide dismutase mimetics, or blockers of the renin-angiotensin-aldosterone system or genetic deletion of one of the components of the signaling cascade often attenuates or delays the onset of hypertension and preserves the renal structure and function. Novel approaches are required to dampen the renal oxidative stress pathways to reduced O2−• rather than H2O2 selectivity and/or to enhance the endogenous antioxidant pathways to susceptible subjects to prevent the development and renal-damaging effects of hypertension. Antioxid. Redox Signal. 20, 74–101. PMID:23472618