Science.gov

Sample records for kidney function bone

  1. Bone kidney interactions.

    PubMed

    Nickolas, Thomas L; Jamal, Sophie A

    2015-06-01

    The fact that bone disease and kidney disease co-exist is well known. Formally, this inter-relationship is called chronic kidney disease mineral bone disorder or CKD-MBD. Traditionally, it was thought that bone played a passive role in CKD-MBD - specifically that kidney disease caused disordered mineral metabolism which resulted in bone disease and ultimately fractures. More recently however our understanding of bone function in general and the role that bone plays in CKD-MBD in particular, has changed. This chapter will briefly review epidemiology of fractures in chronic kidney disease (CKD) and the roles that imaging and measuring markers of mineral metabolism can play in assessing fracture risk. We will then review more recent data consistent with the concept MBD occurs early in the course of CKD and, via the secretion of novel molecules and/or signalling pathways, the bone can influence other organ systems. PMID:26156535

  2. Effects of Dietary Calcium Supplementation on Bone Metabolism, Kidney Mineral Concentrations, and Kidney Function in Rats Fed a High-Phosphorus Diet.

    PubMed

    Katsumata, Shinichi; Matsuzaki, Hiroshi; Uehara, Mariko; Suzuki, Kazuharu

    2015-01-01

    We investigated the effects of dietary calcium (Ca) supplementation on bone metabolism, kidney mineral concentrations, and kidney function in rats fed a high-phosphorus (P) diet. Wistar strain rats were randomly divided into 4 dietary groups and fed their respective diets for 21 d: a diet containing 0.3% P and 0.5% Ca (C), a diet containing 1.5% P and 0.5% Ca (HP), a diet containing 0.3% P and 1.0% Ca (HCa), or a diet containing 1.5% P and 1.0% Ca (HPCa). Compared to the C group, the high-P diet increased serum parathyroid hormone concentration, markers of bone turnover, receptor activator of NF-κB ligand mRNA expression of the femur, kidney Ca and P concentrations, urinary N-acetyl-β-D-glucosaminidase activity, and urinary β2-microglobulin excretion, and decreased bone mineral content and bone mineral density of the femur and tibia. Dietary Ca supplementation improved the parameters of bone metabolism and kidney function in rats fed the high-P diet, while there were no significant differences in kidney Ca or P concentrations between the HP and HPCa groups. These results suggest that dietary Ca supplementation prevented the bone loss and decline in kidney function induced by a high-P diet, whereas dietary Ca supplementation did not affect kidney mineral concentrations in rats fed the high-P diet.

  3. Bone Disease after Kidney Transplantation.

    PubMed

    Bouquegneau, Antoine; Salam, Syrazah; Delanaye, Pierre; Eastell, Richard; Khwaja, Arif

    2016-07-01

    Bone and mineral disorders occur frequently in kidney transplant recipients and are associated with a high risk of fracture, morbidity, and mortality. There is a broad spectrum of often overlapping bone diseases seen after transplantation, including osteoporosis as well as persisting high- or low-turnover bone disease. The pathophysiology underlying bone disorders after transplantation results from a complex interplay of factors, including preexisting renal osteodystrophy and bone loss related to a variety of causes, such as immunosuppression and alterations in the parathyroid hormone-vitamin D-fibroblast growth factor 23 axis as well as changes in mineral metabolism. Management is complex, because noninvasive tools, such as imaging and bone biomarkers, do not have sufficient sensitivity and specificity to detect these abnormalities in bone structure and function, whereas bone biopsy is not a widely available diagnostic tool. In this review, we focus on recent data that highlight improvements in our understanding of the prevalence, pathophysiology, and diagnostic and therapeutic strategies of mineral and bone disorders in kidney transplant recipients. PMID:26912549

  4. Metabolic bone diseases in kidney transplant recipients.

    PubMed

    Zhang, Rubin; Chouhan, Kanwaljit K

    2012-10-01

    Metabolic bone disease after kidney transplantation has a complex pathophysiology and heterogeneous histology. Pre-existing renal osteodystrophy may not resolve completely, but continue or evolve into a different osteodystrophy. Rapid bone loss immediately after transplant can persist, at a lower rate, for years to come. These greatly increase the risk of bone fracture and vertebral collapse. Each patient may have multiple risk factors of bone loss, such as steroids usage, hypogonadism, persistent hyperparathyroidism (HPT), poor allograft function, metabolic acidosis, hypophosphatemia, vitamin D deficiency, aging, immobility and chronic disease. Clinical management requires a comprehensive approach to address the underlying and ongoing disease processes. Successful prevention of bone loss has been shown with vitamin D, bisphosphonates, calcitonin as well as treatment of hypogonadism and HPT. Novel approach to restore the normal bone remodeling and improve the bone quality may be needed in order to effectively decrease bone fracture rate in kidney transplant recipients. PMID:24175250

  5. Pathophysiology of chronic kidney disease-mineral and bone disorder.

    PubMed

    Mac Way, Fabrice; Lessard, Myriam; Lafage-Proust, Marie-Hélène

    2012-12-01

    Chronic kidney disease (CKD) alters the metabolism of several minerals, thereby inducing bone lesions and vessel-wall calcifications that can cause functional impairments and excess mortality. The histological bone abnormalities seen in CKD, known as renal osteodystrophy, consist of alterations in the bone turnover rate, which may be increased (osteitis fibrosa [OF]) or severely decreased (adynamic bone disease [AD]); abnormal mineralization (osteomalacia [OM]), and bone loss. Secondary hyperparathyroidism is related to early phosphate accumulation (responsible for FGF23 overproduction by bone tissue), decreased calcitriol production by the kidneys, and hypocalcemia. Secondary hyperparathyroidism is associated with OF. Other factors that affect bone include acidosis, chronic inflammation, nutritional deficiencies, and iatrogenic complications.

  6. Mechanisms of "kidney governing bones" theory in traditional Chinese medicine.

    PubMed

    Ju, Dahong; Liu, Meijie; Zhao, Hongyan; Wang, Jun

    2014-09-01

    Studies conducted by our group on the mechanism of "kidney governing bones" theory in traditional Chinese medicine (TCM) are reviewed in this paper. Conclusions can be summarized as follows. (1) Neuroendocrine-immune network (NIN)-osteoclast regulatory pathway OPG-RANKL-RANK is one of the mechanisms of "kidney governing bones." Although kidney-reinforcing therapy is regarded as one of the holistic regulatory mechanisms of the body, characteristic holistic regulation in TCM can be reflected through nonselective regulation of the NIN during kidney reinforcement therapy, which can be used to treat osteoporosis through microadjustments in the microenvironment of the bone marrow. (2) Marrow exhaustion in TCM, which is the state wherein lipocytes in the bone marrow increase whereas other cells decrease, serves as the pathogenesis of osteoporosis brought about by failure of the "kidney governing bones." (3) The kidney in TCM can be regarded as a complex system comprising multiple functional units in the body, including the unit "governing bones." Kidney deficiency refers to a deficiency in only one or more units of the kidney system and not the whole system itself, which explains the kidney-reinforcing effect of many herbs; some herbs can treat osteoporosis, but some cannot. Although both classified as kidney-reinforcing agents, the former can resolve failure of the "kidney governing bones" unit while the latter regulates the failure of other units in the kidney system. Despite the current understanding on "kidney governing bones" theory, the mechanism of "kidney governing bones" remains complicated and unresolved. Thus, further studies in this area are warranted.

  7. Markers of Bone Metabolism Are Affected by Renal Function and Growth Hormone Therapy in Children with Chronic Kidney Disease

    PubMed Central

    Doyon, Anke; Fischer, Dagmar-Christiane; Bayazit, Aysun Karabay; Canpolat, Nur; Duzova, Ali; Sözeri, Betül; Bacchetta, Justine; Balat, Ayse; Büscher, Anja; Candan, Cengiz; Cakar, Nilgun; Donmez, Osman; Dusek, Jiri; Heckel, Martina; Klaus, Günter; Mir, Sevgi; Özcelik, Gül; Sever, Lale; Shroff, Rukshana; Vidal, Enrico; Wühl, Elke; Gondan, Matthias; Melk, Anette; Querfeld, Uwe; Haffner, Dieter; Schaefer, Franz

    2015-01-01

    Objectives The extent and relevance of altered bone metabolism for statural growth in children with chronic kidney disease is controversial. We analyzed the impact of renal dysfunction and recombinant growth hormone therapy on a panel of serum markers of bone metabolism in a large pediatric chronic kidney disease cohort. Methods Bone alkaline phosphatase (BAP), tartrate-resistant acid phosphatase 5b (TRAP5b), sclerostin and C-terminal FGF-23 (cFGF23) normalized for age and sex were analyzed in 556 children aged 6–18 years with an estimated glomerular filtration rate (eGFR) of 10–60 ml/min/1.73m2. 41 children receiving recombinant growth hormone therapy were compared to an untreated matched control group. Results Standardized levels of BAP, TRAP5b and cFGF-23 were increased whereas sclerostin was reduced. BAP was correlated positively and cFGF-23 inversely with eGFR. Intact serum parathormone was an independent positive predictor of BAP and TRAP5b and negatively associated with sclerostin. BAP and TRAP5B were negatively affected by increased C-reactive protein levels. In children receiving recombinant growth hormone, BAP was higher and TRAP5b lower than in untreated controls. Sclerostin levels were in the normal range and higher than in untreated controls. Serum sclerostin and cFGF-23 independently predicted height standard deviation score, and BAP and TRAP5b the prospective change in height standard deviation score. Conclusion Markers of bone metabolism indicate a high-bone turnover state in children with chronic kidney disease. Growth hormone induces an osteoanabolic pattern and normalizes osteocyte activity. The osteocyte markers cFGF23 and sclerostin are associated with standardized height, and the markers of bone turnover predict height velocity. PMID:25659076

  8. [Bone turnover and mineralization in patients with kidney failure].

    PubMed

    James, Junichiro

    2016-09-01

    Bone remodeling is a device to accomplish "the buffering of the extracellular fluid mineral", which is one of the two major physiological functions of bone. Bone turnover is a term to express the frequency of bone remodeling, and its last step is calcification. When remodeling is induced, at first a large amount of mineral is released from bone to extracellular fluid transiently, and thereafter mineral is slowly and steadily drawn into bone. The extracellular minerals, especially calcium, are maintained by this repetition. When kidney is injured, bone turnover takes a wide spectrum from remarkably high cases to low cases. Primary calcification also shows marked individual differences. The classic renal bone diseases 5 classification clearly categorizes these disease condition, which is synonymous with renal osteodystrophy today. PMID:27561340

  9. Chronic kidney disease and bone metabolism.

    PubMed

    Kazama, Junichiro James; Matsuo, Koji; Iwasaki, Yoshiko; Fukagawa, Masafumi

    2015-05-01

    Chronic kidney disease-related mineral and bone disease (CKD-MBD) is a syndrome defined as a systemic mineral metabolic disorder associated with CKD, and the term renal osteodystrophy indicates a pathomorphological concept of bone lesions associated with CKD-MBD. Cortical bone thinning, abnormalities in bone turnover and primary/secondary mineralization, elevated levels of circulating sclerostin, increased apoptosis in osteoblasts and osteocytes, disturbance of the coupling phenomenon, iatrogenic factors, accumulated micro-crackles, crystal/collagen disorientation, and chemical modification of collagen crosslinks are all possible candidates found in CKD that could promote osteopenia and/or bone fragility. Some of above factors are the consequences of abnormal systemic mineral metabolism but for others it seem unlikely. We have used the term uremic osteoporosis to describe the uremia-induced bone fragility which is not derived from abnormal systemic mineral metabolism. Interestingly, the disease aspect of uremic osteoporosis appears to be similar to that of senile osteoporosis. PMID:25653092

  10. Mineral and bone disorder after kidney transplantation

    PubMed Central

    Taweesedt, Pahnwat T; Disthabanchong, Sinee

    2015-01-01

    After successful kidney transplantation, accumulated waste products and electrolytes are excreted and regulatory hormones return to normal levels. Despite the improvement in mineral metabolites and mineral regulating hormones after kidney transplantation, abnormal bone and mineral metabolism continues to present in most patients. During the first 3 mo, fibroblast growth factor-23 (FGF-23) and parathyroid hormone levels decrease rapidly in association with an increase in 1,25-dihydroxyvitamin D production. Renal phosphate excretion resumes and serum calcium, if elevated before, returns toward normal levels. FGF-23 excess during the first 3-12 mo results in exaggerated renal phosphate loss and hypophosphatemia occurs in some patients. After 1 year, FGF-23 and serum phosphate return to normal levels but persistent hyperparathyroidism remains in some patients. The progression of vascular calcification also attenuates. High dose corticosteroid and persistent hyperparathyroidism are the most important factors influencing abnormal bone and mineral metabolism in long-term kidney transplant (KT) recipients. Bone loss occurs at a highest rate during the first 6-12 mo after transplantation. Measurement of bone mineral density is recommended in patients with estimated glomerular filtration rate > 30 mL/min. The use of active vitamin D with or without bisphosphonate is effective in preventing early post-transplant bone loss. Steroid withdrawal regimen is also beneficial in preservation of bone mass in long-term. Calcimimetic is an alternative therapy to parathyroidectomy in KT recipients with persistent hyperparathyroidism. If parathyroidectomy is required, subtotal to near total parathyroidectomy is recommended. Performing parathyroidectomy during the waiting period prior to transplantation is also preferred in patients with severe hyperparathyroidism associated with hypercalcemia. PMID:26722650

  11. The Kidney-Vascular-Bone Axis in the Chronic Kidney Disease-Mineral Bone Disorder.

    PubMed

    Seifert, Michael E; Hruska, Keith A

    2016-03-01

    The last 25 years have been characterized by dramatic improvements in short-term patient and allograft survival after kidney transplantation. Long-term patient and allograft survival remains limited by cardiovascular disease and chronic allograft injury, among other factors. Cardiovascular disease remains a significant contributor to mortality in native chronic kidney disease as well as cardiovascular mortality in chronic kidney disease more than doubles that of the general population. The chronic kidney disease (CKD)-mineral bone disorder (MBD) is a syndrome recently coined to embody the biochemical, skeletal, and cardiovascular pathophysiology that results from disrupting the complex systems biology between the kidney, skeleton, and cardiovascular system in native and transplant kidney disease. The CKD-MBD is a unique kidney disease-specific syndrome containing novel cardiovascular risk factors, with an impact reaching far beyond traditional notions of renal osteodystrophy and hyperparathyroidism. This overview reviews current knowledge of the pathophysiology of the CKD-MBD, including emerging concepts surrounding the importance of circulating pathogenic factors released from the injured kidney that directly cause cardiovascular disease in native and transplant chronic kidney disease, with potential application to mechanisms of chronic allograft injury and vasculopathy.

  12. The Kidney-Vascular-Bone Axis in the Chronic Kidney Disease-Mineral Bone Disorder.

    PubMed

    Seifert, Michael E; Hruska, Keith A

    2016-03-01

    The last 25 years have been characterized by dramatic improvements in short-term patient and allograft survival after kidney transplantation. Long-term patient and allograft survival remains limited by cardiovascular disease and chronic allograft injury, among other factors. Cardiovascular disease remains a significant contributor to mortality in native chronic kidney disease as well as cardiovascular mortality in chronic kidney disease more than doubles that of the general population. The chronic kidney disease (CKD)-mineral bone disorder (MBD) is a syndrome recently coined to embody the biochemical, skeletal, and cardiovascular pathophysiology that results from disrupting the complex systems biology between the kidney, skeleton, and cardiovascular system in native and transplant kidney disease. The CKD-MBD is a unique kidney disease-specific syndrome containing novel cardiovascular risk factors, with an impact reaching far beyond traditional notions of renal osteodystrophy and hyperparathyroidism. This overview reviews current knowledge of the pathophysiology of the CKD-MBD, including emerging concepts surrounding the importance of circulating pathogenic factors released from the injured kidney that directly cause cardiovascular disease in native and transplant chronic kidney disease, with potential application to mechanisms of chronic allograft injury and vasculopathy. PMID:26356179

  13. Chronic Kidney Disease Impairs Bone Defect Healing in Rats

    PubMed Central

    Liu, Weiqing; Kang, Ning; Seriwatanachai, Dutmanee; Dong, Yuliang; Zhou, Liyan; Lin, Yunfeng; Ye, Ling; Liang, Xing; Yuan, Quan

    2016-01-01

    Chronic kidney disease (CKD) has been regarded as a risk for bone health. The aim of this study was to evaluate the effect of CKD on bone defect repair in rats. Uremia was induced by subtotal renal ablation, and serum levels of BUN and PTH were significantly elevated four weeks after the second renal surgery. Calvarial defects of 5-mm diameter were created and implanted with or without deproteinized bovine bone mineral (DBBM). Micro-CT and histological analyses consistently revealed a decreased newly regenerated bone volume for CKD rats after 4 and 8 weeks. In addition, 1.4-mm-diameter cortical bone defects were established in the distal end of femora and filled with gelatin sponge. CKD rats exhibited significantly lower values of regenerated bone and bone mineral density (BMD) within the cortical gap after 2 and 4 weeks. Moreover, histomorphometric analysis showed an increase in both osteoblast number (N.Ob/B.Pm) and osteoclast number (N.Oc/B.Pm) in CKD groups due to hyperparathyroidism. Notably, collagen maturation was delayed in CKD rats as verified by Masson’s Trichrome staining. These data indicate that declined renal function negatively affects bone regeneration in both calvarial and femoral defects. PMID:26955758

  14. Chronic Kidney Disease Impairs Bone Defect Healing in Rats.

    PubMed

    Liu, Weiqing; Kang, Ning; Seriwatanachai, Dutmanee; Dong, Yuliang; Zhou, Liyan; Lin, Yunfeng; Ye, Ling; Liang, Xing; Yuan, Quan

    2016-03-09

    Chronic kidney disease (CKD) has been regarded as a risk for bone health. The aim of this study was to evaluate the effect of CKD on bone defect repair in rats. Uremia was induced by subtotal renal ablation, and serum levels of BUN and PTH were significantly elevated four weeks after the second renal surgery. Calvarial defects of 5-mm diameter were created and implanted with or without deproteinized bovine bone mineral (DBBM). Micro-CT and histological analyses consistently revealed a decreased newly regenerated bone volume for CKD rats after 4 and 8 weeks. In addition, 1.4-mm-diameter cortical bone defects were established in the distal end of femora and filled with gelatin sponge. CKD rats exhibited significantly lower values of regenerated bone and bone mineral density (BMD) within the cortical gap after 2 and 4 weeks. Moreover, histomorphometric analysis showed an increase in both osteoblast number (N.Ob/B.Pm) and osteoclast number (N.Oc/B.Pm) in CKD groups due to hyperparathyroidism. Notably, collagen maturation was delayed in CKD rats as verified by Masson's Trichrome staining. These data indicate that declined renal function negatively affects bone regeneration in both calvarial and femoral defects.

  15. Bone-derived mesenchymal stromal cells from HIV transgenic mice exhibit altered proliferation, differentiation capacity and paracrine functions along with impaired therapeutic potential in kidney injury

    SciTech Connect

    Cheng, Kang; Rai, Partab; Lan, Xiqian; Plagov, Andrei; Malhotra, Ashwani; Gupta, Sanjeev; Singhal, Pravin C.

    2013-08-15

    Mesenchymal stem cells (MSCs) secrete paracrine factors that could be cytoprotective and serve roles in immunoregulation during tissue injury. Although MSCs express HIV receptors, and co-receptors, and are susceptible to HIV infection, whether HIV-1 may affect biological properties of MSCs needs more study. We evaluated cellular proliferation, differentiation and paracrine functions of MSCs isolated from compact bones of healthy control mice and Tg26 HIV-1 transgenic mice. The ability of MSCs to protect against cisplatin toxicity was studied in cultured renal tubular cells as well as in intact mice. We successfully isolated MSCs from healthy mice and Tg26 HIV-1 transgenic mice and found the latter expressed viral Nef, Vpu, NL4-3 and Vif genes. The proliferation and differentiation of Tg26 HIV-1 MSCs was inferior to MSCs from healthy mice. Moreover, transplantation of Tg26 HIV-1 MSCs less effectively improved outcomes compared with healthy MSCs in mice with acute kidney injury. Also, Tg26 HIV-1 MSCs secreted multiple cytokines, but at significantly lower levels than healthy MSCs, which resulted in failure of conditioned medium from these MSCs to protect cultured renal tubular cells from cisplatin toxicity. Therefore, HIV-1 had adverse biological effects on MSCs extending to their proliferation, differentiation, function, and therapeutic potential. These findings will help in advancing mechanistical insight in renal injury and repair in the setting of HIV-1 infection. -- Highlights: •MSCs isolated from HIV mice displayed HIV genes. •MSCs isolated from HIV mice exhibited attenuated growth and paracrine functions. •AKI mice with transplanted HIV-MSC displayed poor outcome. •HIV-1 MSC secreted multiple cytokines but at a lower level.

  16. Bone loss in chronic kidney disease: Quantity or quality?

    PubMed

    Zheng, Cai-Mei; Zheng, Jin-Quan; Wu, Chia-Chao; Lu, Chien-Lin; Shyu, Jia-Fwu; Yung-Ho, Hsu; Wu, Mei-Yi; Chiu, I-Jen; Wang, Yuan-Hung; Lin, Yuh-Feng; Lu, Kuo-Cheng

    2016-06-01

    Chronic kidney disease (CKD) patients experience bone loss and fracture because of a specific CKD-related systemic disorder known as CKD-mineral bone disorder (CKD-MBD). The bone turnover, mineralization, and volume (TMV) system describes the morphological bone lesions in renal osteodystrophy related to CKD-MBD. Bone turnover and bone volume are defined as high, normal, or low, and bone mineralization is classified as normal or abnormal. All types of bone histology related to TMV are responsible for both bone quantity and bone quality losses in CKD patients. This review focuses on current bone quantity and bone quality losses in CKD patients and finally discusses potential therapeutic measures. PMID:27049042

  17. Kidney function tests

    MedlinePlus

    Oh MS. Evaluation of renal function, water, electrolytes and acid-base balance. In: McPherson RA, Pincus MR, eds. Henry's Clinical Diagnosis and Management by Laboratory Methods . 22nd ed. Philadelphia, PA: Elsevier Saunders; ...

  18. Musculoskeletal Health, Kidney and Liver Function in Retired Jockeys.

    PubMed

    Cullen, S; Donohoe, A; McGoldrick, A; McCaffrey, N; Davenport, C; Byrne, B; Donaghy, C; Tormey, W; Smith, D; Warrington, G

    2015-11-01

    The long-term implications of making-weight daily on musculoskeletal health and functioning of the kidney and liver remain unknown. This study aimed to investigate musculoskeletal health and kidney and liver function in a group of retired jockeys. 28 retired male jockeys (age 50-70 years) provided fasting blood samples for markers of bone metabolism and kidney and liver function. A dual-energy x-ray absorptiometry (DXA) scan was performed for the assessment of bone mineral density (BMD). Established reference ranges were used for interpretation of results. Comparisons were made between retired jockeys based on the professional racing licence held: Flat, National Hunt or Dual. Mean whole-body osteopenia was reported, with no differences between groups. Bone markers, micronutrients, electrolytes and associated hormones, and markers for kidney and liver function were within clinical normative ranges. No differences existed between groups. Results indicate the retired jockeys in this study do not demonstrate compromised bone health or kidney and liver function. However, the retired jockeys may not have undergone chronic weight cycling in the extreme manner evident in present-day jockeys, indicating the next generation of jockeys may face more of a problem. Jockeys should be tracked longitudinally throughout their racing career and beyond. PMID:26212243

  19. Evaluating bone quality in patients with chronic kidney disease

    PubMed Central

    Malluche, Hartmut H.; Porter, Daniel S.; Pienkowski, David

    2013-01-01

    Bone of normal quality and quantity can successfully endure physiologically imposed mechanical loads. Chronic kidney disease–mineral and bone disorder (CKD–MBD) adversely affects bone quality through alterations in bone turnover and mineralization, whereas bone quantity is affected through changes in bone volume. Changes in bone quality can be associated with altered bone material, structure, or microdamage, which can result in an elevated rate of fracture in patients with CKD–MBD. Fractures cannot always be explained by reduced bone quantity and, therefore, bone quality should be assessed with a variety of techniques from the macro-organ level to the nanoscale level. In this Review, we demonstrate the importance of evaluating bone from multiple perspectives and hierarchical levels to understand CKD–MBD-related abnormalities in bone quality. Understanding the relationships between variations in material, structure, microdamage, and mechanical properties of bone in patients with CKD–MBD should aid in the development of new modalities to prevent, or treat, these abnormalities. PMID:24100399

  20. Report on 2012 ISN Nexus symposium: 'Bone and the kidney'.

    PubMed

    Drüeke, Tilman B; Olgaard, Klaus

    2013-04-01

    The Copenhagen 2012 Nexus symposium on 'Bone and the Kidney' followed the 'bench to bedside' approach of the Nexus symposia organized by the International Society of Nephrology. The main goal of the present symposium was to provide a unique forum for scientists and clinicians with an interest in the fascinating world of the many hormones and factors involved in mineral homeostasis, bone disease, and vascular calcification of patients with chronic kidney disease-mineral and bone disorder (CKD-MBD). The possibility of exchanging cutting-edge insights and discussing clinically relevant information on all aspects of the bone-kidney axis was open to all participants. The numerous lectures given at the symposium addressed current knowledge and recent advances in kidney and bone physiology, as well as the pathogenesis, diagnosis, and therapy of CKD-MBD, inspired by the intention to enhance the translation of basic science into clinical medicine. The lectures were followed by lively discussions of open questions and controversial issues. Our brief summary of interesting novel findings presented at this symposium is necessarily the result of a somewhat arbitrary choice among a wealth of exciting data brought to the attention of an enthusiastic audience.

  1. Bone histology in chronic kidney disease-related mineral and bone disorder.

    PubMed

    Kazama, Junichiro James

    2011-06-01

    A quantitative histological analysis of biopsied bone samples is currently regarded as the gold standard for a diagnosing procedure for bone diseases associated with chronic kidney disease-related mineral and bone disorder. Conventionally, "bone cell activities" and "bone mineralization" are applied as two independent assessment axes, and the histology results are classified into five categories according to these axes. Recently, a new bone histology classification system called the Turnover-Mineralization-Volume system, which applied "cancellous bone volume" as another major assessing axis, was advocated; however, both classification systems have many unsolved problems. Clinicians must realize the limitations in evaluating bone metabolism by bone histology. We will need to establish a new classification method for renal bone diseases independent of histological findings.

  2. [Mineral and bone disorder in chronic kidney disease].

    PubMed

    Matuszkiewicz-Rowińska, Joanna; Kulicki, Paweł

    2014-01-01

    Chronic kidney disease-mineral bone disorder (CKD-MBD) is characterized by at least one ofthefollowing: 1. biochemical abnormalities in calcium, phosphate, parathormone (PTH) and vitamin D metabolism; 2. renal osteodystrophy; and 3. cardiovascular or other soft tissue calcifications. All these abnormalities are interrelated and significantly contribute to the increased morbidity and mortality in patients with CKD. PMID:25782203

  3. Changing bone patterns with progression of chronic kidney disease.

    PubMed

    Drüeke, Tilman B; Massy, Ziad A

    2016-02-01

    It is commonly held that osteitis fibrosa and mixed uremic osteodystrophy are the predominant forms of renal osteodystrophy in patients with chronic kidney disease. Osteitis fibrosa is a high-turnover bone disease resulting mainly from secondary hyperparathyroidism, and mixed uremic osteodystrophy is in addition characterized by a mineralization defect most often attributed to vitamin D deficiency. However, there is ancient and more recent evidence that in early chronic kidney disease stages adynamic bone disease characterized by low bone turnover occurs first, at least in a significant proportion of patients. This could be due to the initial predominance of bone turnover-inhibitory conditions such as resistance to the action of parathyroid hormone (PTH), reduced calcitriol levels, sex hormone deficiency, diabetes, and, last but not least, uremic toxins leading to repression of osteocyte Wnt/β-catenin signaling and increased expression of Wnt antagonists such as sclerostin, Dickkopf-1, and sFRP4. The development of high-turnover bone disease would occur only later on, when serum PTH levels are able to overcome peripheral PTH resistance and the other inhibitory factors of bone formation. Whether FGF23 and Klotho play a direct role in the transition from low- to high-turnover bone disease or participate only indirectly via regulating PTH secretion remains to be seen. PMID:26806832

  4. Renal function in single-kidney rats.

    PubMed

    Provoost, A P; De Keijzer, M H; Wessel, J N; Molenaar, J C

    1989-01-01

    Can a single kidney survive for a normal life span? This is the type of question frequently asked by patients and especially by parents of children who lose one kidney in early childhood. Based on our wide experience with single-kidney rats, we will try to give an answer to this question. After the removal of its counterpart, the single remaining kidney will rapidly adapt to the new situation by a compensatory increase in the glomerular filtration rate (GFR) and renal mass. This is true not only for intact kidneys but also for damaged ones. The GFR level obtained by damaged kidneys will be less than that of intact single kidneys, however, depending on the degree of initial damage. The GFR is stable for a certain period of time, which is longer for intact single kidneys than for damaged kidneys and also depends on the daily protein intake; after that renal function will deteriorate. This decline in GFR is preceded by a marked increase in urinary protein excretion. Although the follow-up period is not completed yet, the survival time of single intact kidneys in rats on a normal diet is expected to be 15%-20% less than the normal rat life span. In rats on a lifelong high protein intake the kidney survival time drops to 40% below the normal rat life span. In rats on a moderately reduced protein intake, however, single intact kidneys may survive for a normal life span. The situation is worse for single damaged kidneys. Depending on the severity of the initial damage, kidney survival time will be much less than a normal life span. We studied rats with an initial recovery to 75% of renal function. Despite this initial recovery, the animals died of renal failure within 50% of the expected life span. A low-protein diet prolonged the renal survival by about 12%, a high-protein diet shortened it by the same percentage.

  5. Altered material properties are responsible for bone fragility in rats with chronic kidney injury.

    PubMed

    Iwasaki, Yoshiko; Kazama, Junichiro J; Yamato, Hideyuki; Matsugaki, Aira; Nakano, Takayoshi; Fukagawa, Masafumi

    2015-12-01

    Chronic kidney disease (CKD) is associated with an increased risk of fragility fractures, but the underlying pathophysiological mechanism remains obscure. We performed an in vivo experimental study to examine the roles of uremia and abnormal mineral/parathyroid metabolism in the development of bone metabolic abnormalities in uremic rats. Male Sprague-Dawley rats were divided into four groups, comprising sham operation (high turnover bone control=HTB-Cont), 5/6-nephrectomy (high turnover bone nephrectomized=HTB-Nx), thyroparathyroidectomy (low turnover bone control=LTB-Cont), and thyroparathyroidectomy plus 5/6 nephrectomy (low turnover bone nephrectomized=LTB-Nx), and maintained for 16 weeks. Uremia was successfully created in the LTB-Nx and HTB-Nx groups, while hyperparathyroidism was only found in the HTB-Nx group. Cancellous bone histomorphometry revealed significantly higher bone turnover in the HTB-Nx group than in the LTB-Nx group. Storage modulus at 1 Hz and tan delta in cortical bone of the femur, which represent the viscoelastic mechanical properties, were significantly lower in both Nx groups than in the Cont groups regardless of bone metabolism. Pentosidine-to-matrix ratio was increased and crystallinity was decreased in both Nx groups regardless of bone turnover. Mineral-to-matrix ratio was significantly decreased in the HTB-Nx group, but increased in the LTB-Nx group. Enzymatic collagen crosslinks were decreased in the HTB-Nx group. The degree of orientation of the c-axis in carbonated hydroxyapatite (biological apatite=BAp) crystallites was decreased in both Nx groups regardless of bone metabolism. Stepwise multivariate regression revealed that pentosodine-to-matrix ratio and BAp preferential c-axis orientation were significantly associated with storage modulus and tan delta. In conclusion, bone elastic mechanical properties deteriorated regardless of bone metabolism or bone mass in rats with chronic kidney injury. Various changes in bone mineral

  6. Allopurinol and kidney function: An update.

    PubMed

    Stamp, Lisa K; Chapman, Peter T; Palmer, Suetonia C

    2016-01-01

    Allopurinol is the most commonly used urate lowering therapy in the management of gout. Despite the fact that it has been available for over 40 years there is ongoing debate about optimal allopurinol dosing in gout patients with chronic kidney disease. Given that gout is common in patients with renal impairment, clinicians need to be aware of the relationships between serum urate and kidney function as well as the effects of allopurinol on kidney function and vice versa. The use of allopurinol in patients on dialysis is an understudied area. Dialysis reduces plasma oxypurinol concentrations, therefore the dose and time of administration in relationship to dialysis need to be carefully considered. Recently, it has been suggested that there may be a role for allopurinol in patients with chronic kidney disease without gout. Observational studies have reported an association between serum urate and chronic kidney disease and end stage renal failure. The effect of urate lowering therapy with allopurinol on progression of kidney disease has been examined in small studies with varying results. Larger clinical trials are currently underway. This review will examine the relationships between allopurinol and kidney function in adults with and without renal disease and address allopurinol dosing in gout patients with impaired kidney function.

  7. Update on Mineral and Bone Disorders in Chronic Kidney Disease.

    PubMed

    Foster, Jonathan D

    2016-11-01

    The inappropriate phosphorus retention observed in chronic kidney disease is central to the pathophysiology of mineral and bone disorders observed in these patients. Subsequent derangements in serum fibroblast growth factor 23, parathyroid hormone, and calcitriol concentrations play contributory roles. Therapeutic intervention involves dietary phosphorus restriction and intestinal phosphate binders in order to correct phosphorus retention and maintain normocalcemia. Additional therapies may be considered to normalize serum fibroblast growth factor 23 and parathyroid hormone. PMID:27436330

  8. Mineral and bone disorders in kidney transplant recipients: reversible, irreversible, and de novo abnormalities.

    PubMed

    Hirukawa, Takashi; Kakuta, Takatoshi; Nakamura, Michio; Fukagawa, Masafumi

    2015-08-01

    Given the advances in medical technologies related to kidney transplantation, the post-transplant graft survival rate and quality of life have improved dramatically. Nevertheless, post-transplant mortality rate still remains high as compared to the general population due to the development of cardiovascular events. It has recently been widely recognized that chronic kidney disease-mineral and bone disorders (CKD-MBD) significantly contribute to such poor prognosis at least in part. In the majority of kidney recipients, abnormal serum parameters for mineral and bone disorder (MBD), such as phosphorus, calcium, 1,25-dihydroxyvitamin D, parathyroid hormone and fibroblast growth factor 23, gradually return toward acceptable levels following the re-establishment of kidney function after transplantation; however, some irreversible abnormalities, developed as the result of long-term dialysis, persist, require treatment, or even progress after kidney transplantation. Thus, better management of CKD-MBD during pre-dialysis and dialysis period as well as after kidney transplantation is highly appreciated. PMID:25931403

  9. Vascular calcification, bone and mineral metabolism after kidney transplantation

    PubMed Central

    D’Marco, Luis; Bellasi, Antonio; Mazzaferro, Sandro; Raggi, Paolo

    2015-01-01

    The development of end stage renal failure can be seen as a catastrophic health event and patients with this condition are considered at the highest risk of cardiovascular disease among any other patient groups and risk categories. Although kidney transplantation was hailed as an optimal solution to such devastating disease, many issues related to immune-suppressive drugs soon emerged and it became evident that cardiovascular disease would remain a vexing problem. Progression of chronic kidney disease is accompanied by profound alterations of mineral and bone metabolism that are believed to have an impact on the cardiovascular health of patients with advanced degrees of renal failure. Cardiovascular risk factors remain highly prevalent after kidney transplantation, some immune-suppression drugs worsen the risk profile of graft recipients and the alterations of mineral and bone metabolism seen in end stage renal failure are not completely resolved. Whether this complex situation promotes progression of vascular calcification, a hall-mark of advanced chronic kidney disease, and whether vascular calcifications contribute to the poor cardiovascular outcome of post-transplant patients is reviewed in this article. PMID:26722649

  10. Sclerostin, Osteocytes, and Chronic Kidney Disease - Mineral Bone Disorder.

    PubMed

    Moysés, Rosa M A; Schiavi, Susan C

    2015-01-01

    Osteocytes respond to kidney damage by increasing production of secreted factors important to bone and mineral metabolism. These circulating proteins include the antianabolic factor, sclerostin, and the phosphaturic hormone, fibroblast growth factor 23 (FGF23). Elevated sclerostin levels correlate with increased FGF23, localized reduction in Wnt/β-catenin signaling in the skeleton and reduced osteoblast differentiation/activity. Decreased Wnt/β-catenin signaling occurs regardless of the overall changes in bone formation rates, suggesting that a reduction in the anabolic response may be a common feature of renal bone disorders but additional mechanisms may contribute to the diversity of osteodystrophy phenotypes. Recent preclinical studies support this hypothesis, as treatment with antisclerostin antibodies improved bone quality in the context of low but not high turnover renal osteodystrophy. Sclerostin also appears in the circulation suggesting additional roles outside the skeleton in normal and disease states. In patients with chronic kidney disease (CKD), serum levels are elevated several fold relative to healthy individuals. Emerging data suggest that these changes are associated with increased fracture rates but the relationship between sclerostin and cardiovascular disease is unclear. Additional epidemiologic studies that examine stage specific and patient sub-populations are needed to assess whether sclerostin elevations influence comorbidities associated with CKD. PMID:26288182

  11. Function of osteocytes in bone.

    PubMed

    Aarden, E M; Burger, E H; Nijweide, P J

    1994-07-01

    Although the structural design of cellular bone (i.e., bone containing osteocytes that are regularly spaced throughout the bone matrix) dates back to the first occurrence of bone as a tissue in evolution, and although osteocytes represent the most abundant cell type of bone, we know as yet little about the role of the osteocyte in bone metabolism. Osteocytes descend from osteoblasts. They are formed by the incorporation of osteoblasts into the bone matrix. Osteocytes remain in contact with each other and with cells on the bone surface via gap junction-coupled cell processes passing through the matrix via small channels, the canaliculi, that connect the cell body-containing lacunae with each other and with the outside world. During differentiation from osteoblasts to mature osteocyte the cells lose a large part of their cell organelles. Their cell processes are packed with microfilaments. In this review we discuss the various theories on osteocyte function that have taken in consideration these special features of osteocytes. These are 1) osteocytes are actively involved in bone turnover; 2) the osteocyte network is through its large cell-matrix contact surface involved in ion exchange; and 3) osteocytes are the mechanosensory cells of bone and play a pivotal role in functional adaptation of bone. In our opinion, especially the last theory offers an exciting concept for which some biomechanical, biochemical, and cell biological evidence is already available and which fully warrants further investigations.

  12. Bone imaging and fracture risk assessment in kidney disease.

    PubMed

    Jamal, Sophie A; Nickolas, Thomas L

    2015-06-01

    Fractures are more common and are associated with greater morbidity and morality in patients with kidney disease than in members of the general population. Thus, it is troubling that in chronic kidney disease (CKD) patients there has been a paradoxical increase in fracture rates over the past 20 years compared to the general population. Increased fracture incidence in CKD patients may be driven in part by the lack of screening for fracture risk. In the general population, dual energy X-ray absorptiometry (DXA) is the clinical standard to stratify fracture risk, and its use has contributed to decreases in fracture incidence. In contrast, in CKD, fracture risk screening with DXA has been uncommon due to its unclear efficacy in predicting fracture and its inability to predict type of renal osteodystrophy. Recently, several prospective studies conducted in patients across the spectrum of kidney disease have demonstrated that bone mineral density measured by DXA predicts future fracture risk and that clinically relevant information regarding fracture risk is provided by application of the World Health Organization cutoffs for osteopenia and osteoporosis to DXA measures. Furthermore, novel high-resolution imaging tools, such as high-resolution peripheral quantitative computed tomography (HR-pQCT), have been used to elucidate the effects of kidney disease on cortical and trabecular microarchitecture and bone strength and to identify potential targets for strategies that protect against fractures. This review will discuss the updated epidemiology of fractures in CKD, fracture risk screening by DXA, and the utility of state-of-the art imaging methods to uncover the effects of kidney disease on the skeleton. PMID:25744703

  13. Biomarkers in chronic kidney disease, from kidney function to kidney damage

    PubMed Central

    Lopez-Giacoman, Salvador; Madero, Magdalena

    2015-01-01

    Chronic kidney disease (CKD) typically evolves over many years, with a long latent period when the disease is clinically silent and therefore diagnosis, evaluation and treatment is based mainly on biomarkers that assess kidney function. Glomerular filtration rate (GFR) remains the ideal marker of kidney function. Unfortunately measuring GFR is time consuming and therefore GFR is usually estimated from equations that take into account endogenous filtration markers like serum creatinine (SCr) and cystatin C (CysC). Other biomarkers such as albuminuria may precede kidney function decline and have demonstrated to have strong associations with disease progression and outcomes. New potential biomarkers have arisen with the promise of detecting kidney damage prior to the currently used markers. The aim of this review is to discuss the utility of the GFR estimating equations and biomarkers in CKD and the different clinical settings where these should be applied. The CKD-Epidemiology Collaboration equation performs better than the modification of diet in renal disease equation, especially at GFR above 60 mL/min per 1.73 m2. Equations combining CysC and SCr perform better than the equations using either CysC or SCr alone and are recommended in situations where CKD needs to be confirmed. Combining creatinine, CysC and urine albumin to creatinine ratio improves risk stratification for kidney disease progression and mortality. Kidney injury molecule and neutrophil gelatinase-associated lipocalin are considered reasonable biomarkers in urine and plasma to determine severity and prognosis of CKD. PMID:25664247

  14. Heart and kidney transplantation using total lymphoid irradiation and donor bone marrow in mongrel dogs

    SciTech Connect

    Kahn, D.R.; Dufek, J.H.; Hong, R.; Caldwell, W.L.; Thomas, F.J.; Kolenda, D.R.; Swanson, D.K.; Struble, R.A.

    1980-07-01

    Heart and kidney allografts showed markedly prolonged survival in unrelated mongrel dogs following total lymphoid irradiation (TLI) and donor bone marrow without any other immunosuppression. In every animal the heart survived longer than the kidney. Placing the kidney allograft in the abdomen with the bone marrow given intraperitoneally doubled kidney survival over placement in the neck, but heart survival was equally prolonged in the abdomen or neck. Splenectomy before TLI or after TLI, but just before transplantation, almost completely eliminated the prolonged survival of both heart and kidney allografts. Thus there is suggestive evidence that TLI plus bone marrow from the donor may be valuable for transplantation in man, particularly heart transplantation.

  15. Adynamic bone disease: from bone to vessels in chronic kidney disease.

    PubMed

    Bover, Jordi; Ureña, Pablo; Brandenburg, Vincent; Goldsmith, David; Ruiz, César; DaSilva, Iara; Bosch, Ricardo J

    2014-11-01

    Adynamic bone disease (ABD) is a well-recognized clinical entity in the complex chronic kidney disease (CKD)-mineral and bone disorder. Although the combination of low intact parathyroid hormone (PTH) and low bone alkaline phosphatase levels may be suggestive of ABD, the gold standard for precise diagnosis is histomorphometric analysis of tetracycline double-labeled bone biopsies. ABD essentially is characterized by low bone turnover, low bone volume, normal mineralization, and markedly decreased cellularity with minimal or no fibrosis. ABD is increasing in prevalence relative to other forms of renal osteodystrophy, and is becoming the most frequent type of bone lesion in some series. ABD develops in situations with reduced osteoanabolic stimulation caused by oversuppression of PTH, multifactorial skeletal resistance to PTH actions in uremia, and/or dysregulation of Wnt signaling. All may contribute not only to bone disease but also to the early vascular calcification processes observed in CKD. Various risk factors have been linked to ABD, including calcium loading, ageing, diabetes, hypogonadism, parathyroidectomy, peritoneal dialysis, and antiresorptive therapies, among others. The relationship between low PTH level, ABD, increased risk fracture, and vascular calcifications may at least partially explain the association of ABD with increased mortality rates. To achieve optimal bone and cardiovascular health, attention should be focused not only on classic control of secondary hyperparathyroidism but also on prevention of ABD, especially in the steadily growing proportions of diabetic, white, and elderly patients. Overcoming the insufficient osteoanabolic stimulation in ABD is the ultimate treatment goal. PMID:25498381

  16. Roles of the kidney in the formation, remodeling and repair of bone.

    PubMed

    Wei, Kai; Yin, Zhiwei; Xie, Yuansheng

    2016-06-01

    The relationship between the kidney and bone is highly complex, and the kidney plays an important role in the regulation of bone development and metabolism. The kidney is the major organ involved in the regulation of calcium and phosphate homeostasis, which is essential for bone mineralization and development. Many substances synthesized by the kidney, such as 1,25(OH)2D3, Klotho, bone morphogenetic protein-7, and erythropoietin, are involved in different stages of bone formation, remodeling and repair. In addition, some cytokines which can be affected by the kidney, such as osteoprotegerin, sclerostin, fibroblast growth factor -23 and parathyroid hormone, also play important roles in bone metabolism. In this paper, we summarize the possible effects of these kidney-related cytokines on bone and their possible mechanisms. Most of these cytokines can interact with one another, constituting an intricate network between the kidney and bone. Therefore, kidney diseases should be considered among patients presenting with osteodystrophy and disturbances in bone and mineral metabolism, and treatment for renal dysfunction may accelerate their recovery. PMID:26943181

  17. Emerging functions of autophagy in kidney transplantation.

    PubMed

    Pallet, N; Livingston, M; Dong, Z

    2014-01-01

    In response to ischemic, toxic or immunological insults, the more frequent injuries encountered by the kidney, cells must adapt to maintain vital metabolic functions and avoid cell death. Among the adaptive responses activated, autophagy emerges as an important integrator of various extracellular and intracellular triggers (often related to nutrients availability or immunological stimuli), which, as a consequence,may regulate cell viability, and also immune functions,both innate or adaptive. The aim of this review is to make the synthesis of the recent literature on the implications of autophagy in the kidney transplantation field and to discuss the future directions for research. PMID:24369023

  18. Bone Genes in the Kidney of Stone Formers

    NASA Astrophysics Data System (ADS)

    Evan, Andrew P.; Bledsoe, Sharon B.

    2008-09-01

    Intraoperative papillary biopsies from kidneys of idiopathic-calcium oxalate stone formers (ICSF) have revealed a distinct pattern of mineral deposition in the interstitium of the renal papilla. The earliest sites of these deposits, termed Randall's plaque, are found in the basement membrane of thin loops of Henle and appear to spread into the surrounding interstitium down to the papillary epithelium. Recent studies show kidney stones of ICSF patients grow attached to the renal papilla and at sites of Randall's plaque. Together these observations suggest that plaque formation may be the critical step in stone formation. In order to control plaque formation and thereby reduce future kidney stone development, the mechanism of plaque deposition must be understood. Because the renal papilla has unique anatomical features similar to bone and the fact that the interstitial deposits of ICSF patients are formed of biological apatite, this paper tests the hypothesis that sites of interstitial plaque form as a result of cell-mediated osteoblast-like activity.

  19. Roles and regulation of bone morphogenetic protein-7 in kidney development and diseases

    PubMed Central

    Tsujimura, Taro; Idei, Mana; Yoshikawa, Masahiro; Takase, Osamu; Hishikawa, Keiichi

    2016-01-01

    The gene encoding bone morphogenetic protein-7 (Bmp7) is expressed in the developing kidney in embryos and also in the mature organ in adults. During kidney development, expression of Bmp7 is essential to determine the final number of nephrons in and proper size of the organ. The secreted BMP7 acts on the nephron progenitor cells to exert its dual functions: To maintain and expand the progenitor population and to provide them with competence to respond to differentiation cues, each relying on distinct signaling pathways. Intriguingly, in the adult organ, BMP7 has been implicated in protection against and regeneration from injury. Exogenous administration of recombinant BMP7 to animal models of kidney diseases has shown promising effects in counteracting inflammation, apoptosis and fibrosis evoked upon injury. Although the expression pattern of Bmp7 has been well described, the mechanisms by which it is regulated have remained elusive and the processes by which the secretion sites of BMP7 impinge upon its functions in kidney development and diseases have not yet been assessed. Understanding the regulatory mechanisms will pave the way towards gaining better insight into the roles of BMP7, and to achieving desired control of the gene expression as a therapeutic strategy for kidney diseases. PMID:27679685

  20. Roles and regulation of bone morphogenetic protein-7 in kidney development and diseases

    PubMed Central

    Tsujimura, Taro; Idei, Mana; Yoshikawa, Masahiro; Takase, Osamu; Hishikawa, Keiichi

    2016-01-01

    The gene encoding bone morphogenetic protein-7 (Bmp7) is expressed in the developing kidney in embryos and also in the mature organ in adults. During kidney development, expression of Bmp7 is essential to determine the final number of nephrons in and proper size of the organ. The secreted BMP7 acts on the nephron progenitor cells to exert its dual functions: To maintain and expand the progenitor population and to provide them with competence to respond to differentiation cues, each relying on distinct signaling pathways. Intriguingly, in the adult organ, BMP7 has been implicated in protection against and regeneration from injury. Exogenous administration of recombinant BMP7 to animal models of kidney diseases has shown promising effects in counteracting inflammation, apoptosis and fibrosis evoked upon injury. Although the expression pattern of Bmp7 has been well described, the mechanisms by which it is regulated have remained elusive and the processes by which the secretion sites of BMP7 impinge upon its functions in kidney development and diseases have not yet been assessed. Understanding the regulatory mechanisms will pave the way towards gaining better insight into the roles of BMP7, and to achieving desired control of the gene expression as a therapeutic strategy for kidney diseases.

  1. Roles and regulation of bone morphogenetic protein-7 in kidney development and diseases.

    PubMed

    Tsujimura, Taro; Idei, Mana; Yoshikawa, Masahiro; Takase, Osamu; Hishikawa, Keiichi

    2016-09-26

    The gene encoding bone morphogenetic protein-7 (Bmp7) is expressed in the developing kidney in embryos and also in the mature organ in adults. During kidney development, expression of Bmp7 is essential to determine the final number of nephrons in and proper size of the organ. The secreted BMP7 acts on the nephron progenitor cells to exert its dual functions: To maintain and expand the progenitor population and to provide them with competence to respond to differentiation cues, each relying on distinct signaling pathways. Intriguingly, in the adult organ, BMP7 has been implicated in protection against and regeneration from injury. Exogenous administration of recombinant BMP7 to animal models of kidney diseases has shown promising effects in counteracting inflammation, apoptosis and fibrosis evoked upon injury. Although the expression pattern of Bmp7 has been well described, the mechanisms by which it is regulated have remained elusive and the processes by which the secretion sites of BMP7 impinge upon its functions in kidney development and diseases have not yet been assessed. Understanding the regulatory mechanisms will pave the way towards gaining better insight into the roles of BMP7, and to achieving desired control of the gene expression as a therapeutic strategy for kidney diseases.

  2. Roles and regulation of bone morphogenetic protein-7 in kidney development and diseases.

    PubMed

    Tsujimura, Taro; Idei, Mana; Yoshikawa, Masahiro; Takase, Osamu; Hishikawa, Keiichi

    2016-09-26

    The gene encoding bone morphogenetic protein-7 (Bmp7) is expressed in the developing kidney in embryos and also in the mature organ in adults. During kidney development, expression of Bmp7 is essential to determine the final number of nephrons in and proper size of the organ. The secreted BMP7 acts on the nephron progenitor cells to exert its dual functions: To maintain and expand the progenitor population and to provide them with competence to respond to differentiation cues, each relying on distinct signaling pathways. Intriguingly, in the adult organ, BMP7 has been implicated in protection against and regeneration from injury. Exogenous administration of recombinant BMP7 to animal models of kidney diseases has shown promising effects in counteracting inflammation, apoptosis and fibrosis evoked upon injury. Although the expression pattern of Bmp7 has been well described, the mechanisms by which it is regulated have remained elusive and the processes by which the secretion sites of BMP7 impinge upon its functions in kidney development and diseases have not yet been assessed. Understanding the regulatory mechanisms will pave the way towards gaining better insight into the roles of BMP7, and to achieving desired control of the gene expression as a therapeutic strategy for kidney diseases. PMID:27679685

  3. Bone mineral disorder in chronic kidney disease: Klotho and FGF23; cardiovascular implications.

    PubMed

    Salanova Villanueva, Laura; Sánchez González, Carmen; Sánchez Tomero, José Antonio; Aguilera, Abelardo; Ortega Junco, Esther

    2016-01-01

    Cardiovascular factors are one of the main causes of morbidity and mortality in patients with chronic kidney disease. Bone mineral metabolism disorders and inflammation are pathological conditions that involve increased cardiovascular risk in chronic kidney disease. The cardiovascular risk involvement of bone mineral metabolism classical biochemical parameters such as phosphorus, calcium, vitamin D and PTH is well known. The newest markers, FGF23 and klotho, could also be implicated in cardiovascular disease.

  4. Serendipitous finding of transitional cell carcinoma of the kidney on bone and gallium imaging

    SciTech Connect

    Moreno, A.J.; Toney, M.A.; Griffith, J.C.; Rodriguez, A.A.; Turnbull, G.L. )

    1991-03-01

    A 50-year-old woman presented with low back pain. Bone scintigraphy showed a focus of increased activity in the upper pole of the left kidney. Subsequent Ga-67 citrate scintigraphy demonstrated this same abnormal focus as a region of increased activity. Ultrasonography showed a renal mass in the upper pole of the left kidney. At surgery a transitional cell carcinoma of the upper pole of the left kidney was found.

  5. Abnormalities in biomarkers of mineral and bone metabolism in kidney donors.

    PubMed

    Kasiske, Bertram L; Kumar, Rajiv; Kimmel, Paul L; Pesavento, Todd E; Kalil, Roberto S; Kraus, Edward S; Rabb, Hamid; Posselt, Andrew M; Anderson-Haag, Teresa L; Steffes, Michael W; Israni, Ajay K; Snyder, Jon J; Singh, Ravinder J; Weir, Matthew R

    2016-10-01

    Previous studies have suggested that kidney donors may have abnormalities of mineral and bone metabolism typically seen in chronic kidney disease. This may have important implications for the skeletal health of living kidney donors and for our understanding of the pathogenesis of long-term mineral and bone disorders in chronic kidney disease. In this prospective study, 182 of 203 kidney donors and 173 of 201 paired normal controls had markers of mineral and bone metabolism measured before and at 6 and 36 months after donation (ALTOLD Study). Donors had significantly higher serum concentrations of intact parathyroid hormone (24.6% and 19.5%) and fibroblast growth factor-23 (9.5% and 8.4%) at 6 and 36 months, respectively, as compared to healthy controls, and significantly reduced tubular phosphate reabsorption (-7.0% and -5.0%) and serum phosphate concentrations (-6.4% and -2.3%). Serum 1,25-dihydroxyvitamin D3 concentrations were significantly lower (-17.1% and -12.6%), while 25-hydroxyvitamin D (21.4% and 19.4%) concentrations were significantly higher in donors compared to controls. Moreover, significantly higher concentrations of the bone resorption markers, carboxyterminal cross-linking telopeptide of bone collagen (30.1% and 13.8%) and aminoterminal cross-linking telopeptide of bone collagen (14.2% and 13.0%), and the bone formation markers, osteocalcin (26.3% and 2.7%) and procollagen type I N-terminal propeptide (24.3% and 8.9%), were observed in donors. Thus, kidney donation alters serum markers of bone metabolism that could reflect impaired bone health. Additional long-term studies that include assessment of skeletal architecture and integrity are warranted in kidney donors.

  6. Bone: a new endocrine organ at the heart of chronic kidney disease and mineral and bone disorders.

    PubMed

    Vervloet, Marc G; Massy, Ziad A; Brandenburg, Vincent M; Mazzaferro, Sandro; Cozzolino, Mario; Ureña-Torres, Pablo; Bover, Jordi; Goldsmith, David

    2014-05-01

    Recent reports of several bone-derived substances, some of which have hormonal properties, have shed new light on the bone-cardiovascular axis. Deranged concentrations of humoral factors are not only epidemiologically connected to cardiovascular morbidity and mortality, but can also be causally implicated, especially in chronic kidney disease. FGF23 rises exponentially with advancing chronic kidney disease, seems to reach maladaptive concentrations, and then induces left ventricular hypertrophy, and is possibly implicated in the process of vessel calcification. Sclerostin and DKK1, both secreted mainly by osteocytes, are important Wnt inhibitors and as such can interfere with systems for biological signalling that operate in the vessel wall. Osteocalcin, produced by osteoblasts or released from mineralised bone, interferes with insulin concentrations and sensitivity, and its metabolism is disturbed in kidney disease. These bone-derived humoral factors might place the bone at the centre of cardiovascular disease associated with chronic kidney disease. Most importantly, factors that dictate the regulation of these substances in bone and subsequent secretion into the circulation have not been researched, and could provide entirely new avenues for therapeutic intervention.

  7. Anemia and bone disease of chronic kidney disease: pathogenesis, diagnosis, and management.

    PubMed

    Shemin, Douglas

    2014-12-02

    Anemia and metabolic bone disease accompany chronic kidney disease (CKD), and worsen as CKD progresses. It is likely that both processes contribute to the increased morbidity and mortality seen in CKD. This paper briefly reviews the pathogenesis and diagnosis of anemia and bone disease in CKD, and summarizes recent consensus guidelines for treatment.

  8. Kidney function decline and physical function in women

    PubMed Central

    Lin, Julie; Curhan, Gary C.

    2008-01-01

    Background. Cross-sectional analyses of kidney function and physical function have identified profound quality of life impairments in people with advanced kidney dysfunction. No data are currently available, however, on how kidney function decline may be associated with physical function. Methods. We undertook a study of kidney function decline and physical function in 2544 women participating in the Nurses’ Health Study. Glomerular filtration rates (GFR) were estimated using the four-variable MDRD equation from plasma creatinine measured in blood collected in 1989 and 2000. Physical function was assessed by the Physical Function Sub-Scale (PFS) score of the Short Form 36 (SF-36) in a questionnaire administered in the year 2000. PFS scores have been shown to correlate well with direct measures of physical function. Results. In the year 2000, the median age was 67 years, median body mass index (BMI) was 25.6 kg/m2, 48.5% had hypertension and 5.8% had diabetes. There were 427 women (16.8%) who experienced an ≥25% decline in eGFR between 1989 and 2000. Median PFS in 2000 for those with an eGFR decline of ≥25% was 80 compared to a PFS score of 85 for those without (P < 0.001). In fully adjusted models, the presence of an eGFR decline of ≥25% was independently associated with a 3.5-point lower PFS score (95% CI −5.4 to −1.5). Also, an eGFR decline of ≥25% was independently associated with an increased odds ratio of being in the lowest quartile of PFS score (OR 1.37; 95% CI 1.04–1.81). Conclusions. We conclude that an eGFR decline of ≥25% over 11 years is independently associated with lower physical function in women. PMID:18398018

  9. From "Kidneys Govern Bones" to Chronic Kidney Disease, Diabetes Mellitus, and Metabolic Bone Disorder: A Crosstalk between Traditional Chinese Medicine and Modern Science.

    PubMed

    Wang, Xiao-Qin; Zou, Xin-Rong; Zhang, Yuan Clare

    2016-01-01

    Although traditional Chinese medicine (TCM) and Western medicine have evolved on distinct philosophical foundations and reasoning methods, an increasing body of scientific data has begun to reveal commonalities. Emerging scientific evidence has confirmed the validity and identified the molecular mechanisms of many ancient TCM theories. One example is the concept of "Kidneys Govern Bones." Here we discuss the molecular mechanisms supporting this theory and its potential significance in treating complications of chronic kidney disease (CKD) and diabetes mellitus. Two signaling pathways essential for calcium-phosphate metabolism can mediate the effect of kidneys in bone homeostasis, one requiring renal production of bioactive vitamin D and the other involving an endocrine axis based on kidney-expressed Klotho and bone-secreted fibroblast growth factor 23. Disruption of either pathway can lead to calcium-phosphate imbalance and vascular calcification, accelerating metabolic bone disorder. Chinese herbal medicine is an adjunct therapy widely used for treating CKD and diabetes. Our results demonstrate the therapeutic effects and underlying mechanisms of a Chinese herbal formulation, Shen-An extracts, in diabetic nephropathy and renal osteodystrophy. We believe that the smart combination of Eastern and Western concepts holds great promise for inspiring new ideas and therapies for preventing and treating complications of CKD and diabetes.

  10. From "Kidneys Govern Bones" to Chronic Kidney Disease, Diabetes Mellitus, and Metabolic Bone Disorder: A Crosstalk between Traditional Chinese Medicine and Modern Science.

    PubMed

    Wang, Xiao-Qin; Zou, Xin-Rong; Zhang, Yuan Clare

    2016-01-01

    Although traditional Chinese medicine (TCM) and Western medicine have evolved on distinct philosophical foundations and reasoning methods, an increasing body of scientific data has begun to reveal commonalities. Emerging scientific evidence has confirmed the validity and identified the molecular mechanisms of many ancient TCM theories. One example is the concept of "Kidneys Govern Bones." Here we discuss the molecular mechanisms supporting this theory and its potential significance in treating complications of chronic kidney disease (CKD) and diabetes mellitus. Two signaling pathways essential for calcium-phosphate metabolism can mediate the effect of kidneys in bone homeostasis, one requiring renal production of bioactive vitamin D and the other involving an endocrine axis based on kidney-expressed Klotho and bone-secreted fibroblast growth factor 23. Disruption of either pathway can lead to calcium-phosphate imbalance and vascular calcification, accelerating metabolic bone disorder. Chinese herbal medicine is an adjunct therapy widely used for treating CKD and diabetes. Our results demonstrate the therapeutic effects and underlying mechanisms of a Chinese herbal formulation, Shen-An extracts, in diabetic nephropathy and renal osteodystrophy. We believe that the smart combination of Eastern and Western concepts holds great promise for inspiring new ideas and therapies for preventing and treating complications of CKD and diabetes. PMID:27668003

  11. Volumetric bone mineral density and bone structure in childhood chronic kidney disease.

    PubMed

    Wetzsteon, Rachel J; Kalkwarf, Heidi J; Shults, Justine; Zemel, Babette S; Foster, Bethany J; Griffin, Lindsay; Strife, C Frederic; Foerster, Debbie L; Jean-Pierre, Darlene K; Leonard, Mary B

    2011-09-01

    Chronic kidney disease (CKD) is associated with increased fracture risk and skeletal deformities. The impact of CKD on volumetric bone mineral density (vBMD) and cortical dimensions during growth is unknown. Tibia quantitative computed tomographic scans were obtained in 156 children with CKD [69 stages 2 to 3, 51 stages 4 to 5, and 36 stage 5D (dialysis)] and 831 healthy participants aged 5 to 21 years. Sex-, race-, and age- or tibia length-specific Z-scores were generated for trabecular BMD (TrabBMD), cortical BMD (CortBMD), cortical area (CortArea) and endosteal circumference (EndoC). Greater CKD severity was associated with a higher TrabBMD Z-score in younger participants (p < .001) compared with healthy children; this association was attenuated in older participants (interaction p < .001). Mean CortArea Z-score was lower (p < .01) in CKD 4-5 [-0.49, 95% confidence interval (CI) -0.80, -0.18)] and CKD 5D (-0.49, 95% CI -0.83, -0.15) compared with healthy children. Among CKD participants, parathyroid hormone (PTH) levels were positively associated with TrabBMD Z-score (p < .01), and this association was significantly attenuated in older participants (interaction p < .05). Higher levels of PTH and biomarkers of bone formation (bone-specific alkaline phosphatase) and resorption (serum C-terminal telopeptide of type 1 collagen) were associated with lower CortBMD and CortArea Z-scores and greater EndoC Z-score (r = 0.18-0.36, all p ≤ .02). CortBMD Z-score was significantly lower in CKD participants with PTH levels above versus below the upper limit of the Kidney Disease Outcome Quality Initiative (KDOQI) CKD stage-specific target range: -0.46 ± 1.29 versus 0.12 ± 1.14 (p < .01). In summary, childhood CKD and secondary hyperparathyroidism were associated with significant reductions in cortical area and CortBMD and greater TrabBMD in younger children. Future studies are needed to establish the fracture implications of these

  12. Optimal management of bone mineral disorders in chronic kidney disease and ESRD

    PubMed Central

    Lundquist, Andrew L.; Nigwekar, Sagar U.

    2016-01-01

    Purpose of review This review summarizes recent studies on chronic kidney disease-mineral bone disorders, with a focus on new developments in disease management. Recent findings The term chronic kidney disease-mineral bone disorder has come to describe an increasingly complex network of alterations in minerals and skeletal disorders that contribute to the significant cardiovascular morbidity and mortality seen in patients with chronic kidney disease and ESRD. Clinical studies continue to suggest associations with clinical outcomes, yet current clinical trials have failed to support causality. Variability in practice exists as current guidelines for management of bone-mineral disorders are often based on weak evidence. Recent studies implicate novel pathways for therapeutic intervention in clinical trials. Summary Mineral-bone disorders in chronic kidney disease arise from alterations in a number of molecules in an increasingly complex physiological network interconnecting bone and the cardiovascular system. Despite extensive associations with improved outcomes in a number of molecules, clinical trials have yet to prove causality and there is an absence of new therapies available to improve patient outcomes. Additional clinical trials that can incorporate the complexity of mineral bone disorders and with the ability to intervene on more than one pathway are needed to advance patient care. PMID:26785065

  13. When, how, and why a bone biopsy should be performed in patients with chronic kidney disease.

    PubMed

    Torres, Pablo Ureña; Bover, Jordi; Mazzaferro, Sandro; de Vernejoul, Marie Christine; Cohen-Solal, Martine

    2014-11-01

    In chronic kidney disease the excessive production of parathyroid hormone increases the bone resorption rate and leads to histologic bone signs of secondary hyperparathyroidism. However, in other situations, the initial increase in parathyroid hormone and bone remodeling may be slowed down excessively by a multitude of factors including age, ethnic origin, sex, and treatments such as vitamin D, calcium salts, calcimimetics, steroids, and so forth, leading to low bone turnover or adynamic bone disease. Both high and low bone turnover diseases actually are observed equally in chronic kidney disease patients treated by dialysis, and all types of renal osteodystrophy are associated with an increased risk of skeletal fractures, reduced quality of life, and poor clinical outcomes. Unfortunately, the diagnosis of these bone abnormalities cannot be obtained correctly by current clinical, biochemical, and imaging methods. Therefore, bone biopsy has been, and still remains, the gold standard analysis for assessing the exact type of renal osteodystrophy. It is also the unique way to assess the mechanisms of action, safety, and efficacy of new bone-targeting therapies. PMID:25498380

  14. Genetic loci influencing kidney function and chronic kidney disease in man

    PubMed Central

    Chambers, John C; Zhang, Weihua; Lord, Graham M; van der Harst, Pim; Lawlor, Debbie A; Sehmi, Joban S; Gale, Daniel P; Wass, Mark N; Ahmadi, Kourosh R; Bakker, Stephan JL; Beckmann, Jacqui; Bilo, Henk JG; Bochud, Murielle; Brown, Morris J; Caulfield, Mark J; Connell, John M C; Cook, Terence; Cotlarciuc, Ioana; Smith, George Davey; de Silva, Ranil; Deng, Guohong; Devuyst, Olivier; Dikkeschei, Lambert D.; Dimkovic, Nada; Dockrell, Mark; Dominiczak, Anna; Ebrahim, Shah; Eggermann, Thomas; Farrall, Martin; Ferrucci, Luigi; Floege, Jurgen; Forouhi, Nita G; Gansevoort, Ron T; Han, Xijin; Hedblad, Bo; van der Heide, Jaap J Homan; Hepkema, Bouke G; Hernandez-Fuentes, Maria; Hypponen, Elina; Johnson, Toby; de Jong, Paul E; Kleefstra, Nanne; Lagou, Vasiliki; Lapsley, Marta; Li, Yun; Loos, Ruth J F; Luan, Jian'an; Luttropp, Karin; Maréchal, Céline; Melander, Olle; Munroe, Patricia B; Nordfors, Louise; Parsa, Afshin; Penninx, Brenda W.; Perucha, Esperanza; Pouta, Anneli; Prokopenko, Inga; Roderick, Paul J; Ruokonen, Aimo; Samani, Nilesh; Sanna, Serena; Schalling, Martin; Schlessinger, David; Schlieper, Georg; Seelen, Marc AJ; Shuldiner, Alan R; Sjögren, Marketa; Smit, Johannes H.; Snieder, Harold; Soranzo, Nicole; Spector, Timothy D; Stenvinkel, Peter; Sternberg, Michael JE; Swaminathan, Ramasamyiyer; Tanaka, Toshiko; Ubink-Veltmaat, Lielith J.; Uda, Manuela; Vollenweider, Peter; Wallace, Chris; Waterworth, Dawn; Zerres, Klaus; Waeber, Gerard; Wareham, Nicholas J; Maxwell, Patrick H; McCarthy, Mark I; Jarvelin, Marjo-Riitta; Mooser, Vincent; Abecasis, Goncalo R; Lightstone, Liz; Scott, James; Navis, Gerjan; Elliott, Paul; Kooner., Jaspal S

    2013-01-01

    Chronic kidney disease (CKD), the result of permanent loss of kidney function, is a major global problem. We identify common genetic variants at chr2p12-p13, chr6q26, chr17q23 and chr19q13 associated with serum creatinine, a marker of kidney function (P=10−10 to 10−15). SNPs rs10206899 (near NAT8, chr2p12-p13) and rs4805834 (near SLC7A9, chr19q13) were also associated with CKD. Our findings provide new insight into metabolic, solute and drug-transport pathways underlying susceptibility to CKD. PMID:20383145

  15. Chronic kidney disease-mineral and bone disorder: Guidelines for diagnosis, treatment, and management.

    PubMed

    Moschella, Carla

    2016-07-01

    Chronic kidney disease affects 23 million Americans and is associated with many complications, one of the most complex of which is mineral and bone disorder. Pathophysiologic mechanisms begin to occur early in CKD but when the glomerular filtration rate declines to <50% of normal, biochemical and bone matrix abnormalities, which vary and are multifactorial, begin to be clinically apparent. Mainstays of treatment remain management of hyperphosphatemia and prevention or treatment of secondary hyperparathyroidism. PMID:27272731

  16. Benefits of omega-3 fatty acid against bone changes in salt-loaded rats: possible role of kidney.

    PubMed

    Ahmed, Mona A; Abd El Samad, Abeer A

    2013-10-01

    There is evidence that dietary fats are important components contributing in bone health and that bone mineral density is inversely related to sodium intake. Salt loading is also known to impose negative effects on renal function. The present study aimed to determine the effect of the polyunsaturated fatty acid omega-3 on bone changes imposed by salt loading, highlighting the role of kidney as a potential mechanism involved in this effect. Male Wistar rats were divided into three groups: control group, salt-loaded group consuming 2% NaCl solution as drinking water for 8 weeks, and omega-3-treated salt-loaded group receiving 1 g/kg/day omega-3 by gavage with consumption of 2% NaCl solution for 8 weeks. Systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), and heart rate (HR) were recorded. Plasma levels of sodium, potassium, calcium, inorganic phosphorus (Pi), alkaline phosphatase (ALP), creatinine, urea, 1,25-dihydroxyvitamin D [1,25(OH)2D3], and transforming growth factor-beta1 (TGF-β1) were measured. The right tibia and kidney were removed for histologic examination and renal immunohistochemical analysis for endothelial nitric oxide synthase (eNOS) was performed. The results revealed that omega-3 reduced SBP, DBP, and MAP and plasma levels of sodium, potassium, Pi, creatinine, urea, and TGF-β1, but increased plasma levels of calcium, ALP, and 1,25(OH)2D3 as well as renal eNOS. Omega-3 increased cortical and trabecular bone thickness, decreased osteoclast number, and increased newly formed osteoid bone. Renal morphology was found preserved. In conclusion, omega-3 prevents the disturbed bone status imposed by salt loading. This osteoprotective effect is possibly mediated by attenuation of alterations in Ca(2+), Pi, and ALP, and improvement of renal function and arterial blood pressure. PMID:24303178

  17. Benefits of omega-3 fatty acid against bone changes in salt-loaded rats: possible role of kidney.

    PubMed

    Ahmed, Mona A; Abd El Samad, Abeer A

    2013-10-01

    There is evidence that dietary fats are important components contributing in bone health and that bone mineral density is inversely related to sodium intake. Salt loading is also known to impose negative effects on renal function. The present study aimed to determine the effect of the polyunsaturated fatty acid omega-3 on bone changes imposed by salt loading, highlighting the role of kidney as a potential mechanism involved in this effect. Male Wistar rats were divided into three groups: control group, salt-loaded group consuming 2% NaCl solution as drinking water for 8 weeks, and omega-3-treated salt-loaded group receiving 1 g/kg/day omega-3 by gavage with consumption of 2% NaCl solution for 8 weeks. Systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), and heart rate (HR) were recorded. Plasma levels of sodium, potassium, calcium, inorganic phosphorus (Pi), alkaline phosphatase (ALP), creatinine, urea, 1,25-dihydroxyvitamin D [1,25(OH)2D3], and transforming growth factor-beta1 (TGF-β1) were measured. The right tibia and kidney were removed for histologic examination and renal immunohistochemical analysis for endothelial nitric oxide synthase (eNOS) was performed. The results revealed that omega-3 reduced SBP, DBP, and MAP and plasma levels of sodium, potassium, Pi, creatinine, urea, and TGF-β1, but increased plasma levels of calcium, ALP, and 1,25(OH)2D3 as well as renal eNOS. Omega-3 increased cortical and trabecular bone thickness, decreased osteoclast number, and increased newly formed osteoid bone. Renal morphology was found preserved. In conclusion, omega-3 prevents the disturbed bone status imposed by salt loading. This osteoprotective effect is possibly mediated by attenuation of alterations in Ca(2+), Pi, and ALP, and improvement of renal function and arterial blood pressure.

  18. Benefits of omega-3 fatty acid against bone changes in salt-loaded rats: possible role of kidney

    PubMed Central

    Ahmed, Mona A; Abd EL Samad, Abeer A

    2013-01-01

    There is evidence that dietary fats are important components contributing in bone health and that bone mineral density is inversely related to sodium intake. Salt loading is also known to impose negative effects on renal function. The present study aimed to determine the effect of the polyunsaturated fatty acid omega-3 on bone changes imposed by salt loading, highlighting the role of kidney as a potential mechanism involved in this effect. Male Wistar rats were divided into three groups: control group, salt-loaded group consuming 2% NaCl solution as drinking water for 8 weeks, and omega-3-treated salt-loaded group receiving 1 g/kg/day omega-3 by gavage with consumption of 2% NaCl solution for 8 weeks. Systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), and heart rate (HR) were recorded. Plasma levels of sodium, potassium, calcium, inorganic phosphorus (Pi), alkaline phosphatase (ALP), creatinine, urea, 1,25-dihydroxyvitamin D [1,25(OH)2D3], and transforming growth factor-beta1 (TGF-β1) were measured. The right tibia and kidney were removed for histologic examination and renal immunohistochemical analysis for endothelial nitric oxide synthase (eNOS) was performed. The results revealed that omega-3 reduced SBP, DBP, and MAP and plasma levels of sodium, potassium, Pi, creatinine, urea, and TGF-β1, but increased plasma levels of calcium, ALP, and 1,25(OH)2D3 as well as renal eNOS. Omega-3 increased cortical and trabecular bone thickness, decreased osteoclast number, and increased newly formed osteoid bone. Renal morphology was found preserved. In conclusion, omega-3 prevents the disturbed bone status imposed by salt loading. This osteoprotective effect is possibly mediated by attenuation of alterations in Ca2+, Pi, and ALP, and improvement of renal function and arterial blood pressure. PMID:24303178

  19. [Unilateral catheterless determination of kidney function in hydronephrosis].

    PubMed

    Müller, P; Schönberger, B; Strangfeld, D; Siewert, H

    1983-04-01

    Whereas the value of quantitative separate determination of kidney functioning is undisputed for most urological and nephrological problems, its value for the judgement of hydronephrotic kidneys is doubted by various working groups. Using 15 mongrel dogs, the nuclide excretion at certain times, various calculation intervals and the results of separate functional analysis of hydronephrotic and non-hydronephrotic kidneys were compared. Due to the early nuclide excretion with an advanced secretion peak it is no longer acceptable to use a 2-minute calculation interval for hydronephrotic kidneys in dogs. If the upper limit of the calculation interval is prior to the secretion peak, there will be no overestimation of the hydronephrotic kidneys. PMID:6868840

  20. High phosphate feeding promotes mineral and bone abnormalities in mice with chronic kidney disease

    PubMed Central

    Lau, Wei Ling; Linnes, Michael; Chu, Emily Y.; Foster, Brian L.; Bartley, Bryan A.; Somerman, Martha J.; Giachelli, Cecilia M.

    2013-01-01

    Background Chronic kidney disease-mineral bone disorder (CKD-MBD) is a systemic syndrome characterized by imbalances in mineral homeostasis, renal osteodystrophy (ROD) and ectopic calcification. The mechanisms underlying this syndrome in individuals with chronic kidney disease (CKD) are not yet clear. Methods We examined the effect of normal phosphate (NP) or high phosphate (HP) feeding in the setting of CKD on bone pathology, serum biochemistry and vascular calcification in calcification-prone dilute brown non-agouti (DBA/2) mice. Results In both NP and HP-fed CKD mice, elevated serum parathyroid hormone and alkaline phosphatase (ALP) levels were observed, but serum phosphorus levels were equivalent compared with sham controls. CKD mice on NP diet showed trabecular alterations in the long bone consistent with high–turnover ROD, including increased trabecular number with abundant osteoblasts and osteoclasts. Despite trabecular bone and serum biochemical changes, CKD/NP mice did not develop vascular calcification. In contrast, CKD/HP mice developed arterial medial calcification (AMC), more severe trabecular bone alterations and cortical bone abnormalities that included decreased cortical thickness and density, and increased cortical porosity. Cortical bone porosity and trabecular number strongly correlated with the degree of aortic calcification. Conclusions HP feeding was required to induce the full spectrum of CKD-MBD symptoms in CKD mice. PMID:23045434

  1. Kidney Versus Islet Allograft Survival After Induction of Mixed Chimerism With Combined Donor Bone Marrow Transplantation.

    PubMed

    Oura, Tetsu; Ko, Dicken S C; Boskovic, Svjetlan; O'Neil, John J; Chipashvili, Vaja; Koulmanda, Maria; Hotta, Kiyohiko; Kawai, Kento; Nadazdin, Ognjenka; Smith, R Neal; Cosimi, A B; Kawai, Tatsuo

    2016-01-01

    We have previously reported successful induction of transient mixed chimerism and long-term acceptance of renal allografts in MHC mismatched nonhuman primates. In this study, we attempted to extend this tolerance induction approach to islet allografts. A total of eight recipients underwent MHC mismatched combined islet and bone marrow (BM) transplantation after induction of diabetes by streptozotocin. Three recipients were treated after a nonmyeloablative conditioning regimen that included low-dose total body and thymic irradiation, horse Atgam (ATG), six doses of anti-CD154 monoclonal antibody (mAb), and a 1-month course of cyclosporine (CyA) (Islet A). In Islet B, anti-CD8 mAb was administered in place of CyA. In Islet C, two recipients were treated with Islet B, but without ATG. The results were compared with previously reported results of eight cynomolgus monkeys that received combined kidney and BM transplantation (Kidney A) following the same conditioning regimen used in Islet A. The majority of kidney/BM recipients achieved long-term renal allograft survival after induction of transient chimerism. However, prolonged islet survival was not achieved in similarly conditioned islet/BM recipients (Islet A), despite induction of comparable levels of chimerism. In order to rule out islet allograft loss due to CyA toxicity, three recipients were treated with anti-CD8 mAb in place of CyA. Although these recipients developed significantly superior mixed chimerism and more prolonged islet allograft survival (61, 103, and 113 days), islet function was lost soon after the disappearance of chimerism. In Islet C recipients, neither prolonged chimerism nor islet survival was observed (30 and 40 days). Significant improvement of mixed chimerism induction and islet allograft survival were achieved with a CyA-free regimen that included anti-CD8 mAb. However, unlike the kidney allograft, islet allograft tolerance was not induced with transient chimerism. Induction of more

  2. Bone Marrow and Kidney Transplant for Patients With Chronic Kidney Disease and Blood Disorders

    ClinicalTrials.gov

    2016-10-03

    Chronic Kidney Disease; Acute Myeloid Leukemia (AML); Acute Lymphoblastic Leukemia (ALL); Chronic Myelogenous Leukemia (CML); Chronic Lymphocytic Leukemia (CLL); Non-Hodgkin's Lymphoma (NHL); Hodgkin Disease; Multiple Myeloma; Myelodysplastic Syndrome (MDS); Aplastic Anemia; AL Amyloidosis; Diamond Blackfan Anemia; Myelofibrosis; Myeloproliferative Disease; Sickle Cell Anemia; Autoimmune Diseases; Thalassemia

  3. Novel in vivo techniques to visualize kidney anatomy and function.

    PubMed

    Peti-Peterdi, János; Kidokoro, Kengo; Riquier-Brison, Anne

    2015-07-01

    Intravital imaging using multiphoton microscopy (MPM) has become an increasingly popular and widely used experimental technique in kidney research over the past few years. MPM allows deep optical sectioning of the intact, living kidney tissue with submicron resolution, which is unparalleled among intravital imaging approaches. MPM has solved a long-standing critical technical barrier in renal research to study several complex and inaccessible cell types and anatomical structures in vivo in their native environment. Comprehensive and quantitative kidney structure and function MPM studies helped our better understanding of the cellular and molecular mechanisms of the healthy and diseased kidney. This review summarizes recent in vivo MPM studies with a focus on the glomerulus and the filtration barrier, although select, glomerulus-related renal vascular and tubular functions are also mentioned. The latest applications of serial MPM of the same glomerulus in vivo, in the intact kidney over several days, during the progression of glomerular disease are discussed. This visual approach, in combination with genetically encoded fluorescent markers of cell lineage, has helped track the fate and function (e.g., cell calcium changes) of single podocytes during the development of glomerular pathologies, and provided visual proof for the highly dynamic, rather than static, nature of the glomerular environment. Future intravital imaging applications have the promise to further push the limits of optical microscopy, and to advance our understanding of the mechanisms of kidney injury. Also, MPM will help to study new mechanisms of tissue repair and regeneration, a cutting-edge area of kidney research.

  4. Structural and Functional Changes With the Aging Kidney.

    PubMed

    Denic, Aleksandar; Glassock, Richard J; Rule, Andrew D

    2016-01-01

    Senescence or normal physiologic aging portrays the expected age-related changes in the kidney as compared to a disease that occurs in some but not all individuals. The microanatomical structural changes of the kidney with older age include a decreased number of functional glomeruli from an increased prevalence of nephrosclerosis (arteriosclerosis, glomerulosclerosis, and tubular atrophy with interstitial fibrosis), and to some extent, compensatory hypertrophy of remaining nephrons. Among the macroanatomical structural changes, older age associates with smaller cortical volume, larger medullary volume until middle age, and larger and more numerous kidney cysts. Among carefully screened healthy kidney donors, glomerular filtration rate (GFR) declines at a rate of 6.3 mL/min/1.73 m(2) per decade. There is reason to be concerned that the elderly are being misdiagnosed with CKD. Besides this expected kidney function decline, the lowest risk of mortality is at a GFR of ≥75 mL/min/1.73 m(2) for age <55 years but at a lower GFR of 45 to 104 mL/min/1.73 m(2) for age ≥65 years. Changes with normal aging are still of clinical significance. The elderly have less kidney functional reserve when they do actually develop CKD, and they are at higher risk for acute kidney injury.

  5. Bone Disorders in Chronic Kidney Disease: An Update in Diagnosis and Management.

    PubMed

    Babayev, Revekka; Nickolas, Thomas L

    2015-01-01

    Renal osteodystrophy (ROD) is a bone disorder that occurs in chronic kidney disease (CKD) patients and is associated with 2- to 14-fold increased fracture risk compared to the general population. Risk of fractures is also increased in kidney transplant recipients especially within the first 5 years after transplantation. Fractures in CKD patients are associated with increased morbidity and mortality; thus, proper screening and management of CKD bone complications is critical to improving clinical outcomes. Tetracycline double-labeled transiliac crest bone biopsy with histomorphometry is the gold standard for the diagnosis and classification of ROD. However, bone biopsy is not practical to obtain in all patients. Thus, there is great interest in noninvasive approaches that can be used in the clinic to assess ROD. Here, we discuss the role of surrogate measures of bone health in CKD patients, such as dual energy X-ray absorptiometry (DXA) and novel high-resolution imaging, in conjunction with biochemical biomarkers of bone turnover. Recommended guidelines for diagnosis and management of CKD-MBD are discussed.

  6. Bone Disorders in Chronic Kidney Disease: An Update in Diagnosis and Management.

    PubMed

    Babayev, Revekka; Nickolas, Thomas L

    2015-01-01

    Renal osteodystrophy (ROD) is a bone disorder that occurs in chronic kidney disease (CKD) patients and is associated with 2- to 14-fold increased fracture risk compared to the general population. Risk of fractures is also increased in kidney transplant recipients especially within the first 5 years after transplantation. Fractures in CKD patients are associated with increased morbidity and mortality; thus, proper screening and management of CKD bone complications is critical to improving clinical outcomes. Tetracycline double-labeled transiliac crest bone biopsy with histomorphometry is the gold standard for the diagnosis and classification of ROD. However, bone biopsy is not practical to obtain in all patients. Thus, there is great interest in noninvasive approaches that can be used in the clinic to assess ROD. Here, we discuss the role of surrogate measures of bone health in CKD patients, such as dual energy X-ray absorptiometry (DXA) and novel high-resolution imaging, in conjunction with biochemical biomarkers of bone turnover. Recommended guidelines for diagnosis and management of CKD-MBD are discussed. PMID:26332760

  7. Do kidney histology lesions predict long-term kidney function after liver transplantation?

    PubMed

    Kamar, Nassim; Maaroufi, Chakib; Guilbeau-Frugier, Céline; Servais, Aude; Meas-Yedid, Vannary; Tack, Ivan; Thervet, Eric; Cointault, Olivier; Esposito, Laure; Guitard, Joelle; Lavayssière, Laurence; Panterne, Clarisse; Muscari, Fabrice; Bureau, Christophe; Rostaing, Lionel

    2012-01-01

    Histological renal lesions observed after liver transplantation are complex, multifactorial, and interrelated. The aims of this study were to determine whether kidney lesions observed at five yr after liver transplantation can predict long-term kidney function. Ninety-nine liver transplant patients receiving calcineurin inhibitor (CNI)-based immunosuppression, who had undergone a kidney biopsy at 60±48 months post-transplant, were included in this follow-up study. Kidney biopsies were scored according to the Banff classification. Estimated glomerular filtration rate (eGFR) was assessed at last follow-up, that is, 109±48 months after liver transplantation. eGFR decreased from 92±33 mL/min at transplantation to 63±19 mL/min after six months, to 57±17 mL/min at the kidney biopsy, to 54±24 mL/min at last follow-up (p<0.0001). At last follow-up, only three patients required renal replacement therapy. After the kidney biopsy, 13 patients were converted from CNIs to mammalian target of rapamycin inhibitors, but no significant improvement in eGFR was observed after conversion. Elevated eGFR at six months post-transplant and a lower fibrous intimal thickening score (cv) observed at five yr post-transplant were the two independent predictive factors for eGFR≥60 mL/min at nine yr post-transplant. Long-term kidney function seems to be predicted by the kidney vascular lesions.

  8. Early chronic kidney disease-mineral bone disorder stimulates vascular calcification.

    PubMed

    Fang, Yifu; Ginsberg, Charles; Sugatani, Toshifumi; Monier-Faugere, Marie-Claude; Malluche, Hartmut; Hruska, Keith A

    2014-01-01

    The chronic kidney disease-mineral and bone disorder (CKD-MBD) syndrome is an extremely important complication of kidney diseases. Here we tested whether CKD-MBD causes vascular calcification in early kidney failure by developing a mouse model of early CKD in a background of atherosclerosis-stimulated arterial calcification. CKD equivalent in glomerular filtration reduction to human CKD stage 2 stimulated early vascular calcification and inhibited the tissue expression of α-klotho (klotho) in the aorta. In addition, osteoblast transition in the aorta was stimulated by early CKD as shown by the expression of the critical transcription factor Runx2. The ligand associated with the klotho-fibroblast growth factor receptor complex, FGF23, was found to be expressed in the vascular media of sham-operated mice. Its expression was decreased in early CKD. Increased circulating levels of the osteocyte-secreted proteins, FGF23, and sclerostin may have been related to increased circulating klotho levels. Finally, we observed low-turnover bone disease with a reduction in bone formation rates more than bone resorption. Thus, the CKD-MBD, characterized by cardiovascular risk factors, vascular calcification, increased circulating klotho, FGF23 and sclerostin levels, and low-turnover renal osteodystrophy, was established in early CKD. Early CKD caused a reduction of vascular klotho, stimulated vascular osteoblastic transition, increased osteocytic secreted proteins, and inhibited skeletal modeling producing the CKD-MBD. PMID:23884339

  9. Bone morphogenetic protein-7 expression and activity in the human adult normal kidney is predominantly localized to the distal nephron.

    PubMed

    Wetzel, P; Haag, J; Câmpean, V; Goldschmeding, R; Atalla, A; Amann, K; Aigner, T

    2006-08-01

    Bone morphogenetic protein-7 (BMP)-7 plays an important role during fetal kidney development. In the adult, BMP-7 is most strongly expressed in the kidney compared to other organs, but the exact expression pattern as well as the function of BMP-7 is unclear. The major aim of the present study was to define which parts of the human kidney do physiologically express BMP-7 and which cells appear to be targets of BMP activity by showing phosphorylated BMP-receptor-associated Smads 1, 5, or 8 and inhibitor of differentiation factor 1 (ID1) expression. BMP-7 expression was localized by immunohistology to the epithelia of the distal tubule as well as the collecting ducts (CDs). Phospho-Smads 1/5/8 and ID1 expression largely colocalized with BMP-7 and was also localized in the epithelia of the distal tubule and the CDs. This was confirmed by polymerase chain reaction-based mRNA expression analysis. In vitro, proximal tubular cells (PTCs) expressed BMP receptors and BMP-receptor-associated Smads and were reactive to BMP-7. Our data indicate that BMP-7 expression in the adult human kidney appears to be more restricted than in the fetal situation and predominantly found in the distal nephron. Also, evidence of in vivo BMP signalling (i.e. phospho-Smads and ID1 expression) was found there. These findings suggest that BMP-7 plays a physiological role mostly in this part of the kidney. Still, as reported previously, PTCs are responsive to BMP-7, but presumably not in an autocrine or paracrine mode in normal adult kidneys. PMID:16807538

  10. Calcium regulation and bone mineral metabolism in elderly patients with chronic kidney disease.

    PubMed

    Tejwani, Vickram; Qian, Qi

    2013-05-29

    The elderly chronic kidney disease (CKD) population is growing. Both aging and CKD can disrupt calcium (Ca2+) homeostasis and cause alterations of multiple Ca2+-regulatory mechanisms, including parathyroid hormone, vitamin D, fibroblast growth factor-23/Klotho, calcium-sensing receptor and Ca2+-phosphate product. These alterations can be deleterious to bone mineral metabolism and soft tissue health, leading to metabolic bone disease and vascular calcification and aging, termed CKD-mineral and bone disorder (MBD). CKD-MBD is associated with morbid clinical outcomes, including fracture, cardiovascular events and all-cause mortality. In this paper, we comprehensively review Ca2+ regulation and bone mineral metabolism, with a special emphasis on elderly CKD patients. We also present the current treatment-guidelines and management options for CKD-MBD.

  11. Concentrations of lead in liver, kidney, and bone of bald and golden eagles.

    PubMed

    Wayland, M; Neugebauer, E; Bollinger, T

    1999-08-01

    The diagnosis of lead poisoning in eagles relies on autopsy information and residue analysis of lead in certain tissues, usually liver or blood. Similarly, the assessment of elevated lead exposure in eagles depends on the determination of lead concentrations in these tissues. Renal and bone lead concentrations have rarely been examined in eagles. We examined relationships among hepatic, renal, and bone lead concentrations in bald and golden eagles from the Canadian prairie provinces. Hepatic and renal lead concentrations were strongly related (R2 = 0.87) while those in liver and bone were significantly but poorly related (R2 = 0.22). Renal lead concentrations of 5 and 18 microg x g-1 (dry weight) corresponded to hepatic lead concentrations of 6 and 30 microg x g-1, the hepatic concentrations that we used as criterion levels associated with elevated lead exposure and death from lead poisoning, respectively. Lead was elevated in 19 of 119 and 21 of 109 liver and kidney samples, respectively. Of these 19 and 21 liver and kidney samples, 14 and 11, respectively, had lead concentrations compatible with death from lead poisoning. Taken together, lead concentrations were elevated in liver or kidney samples from 25 eagles and were compatible with death from lead poisoning in 15. Mean bone lead was higher in eagles with elevated hepatic lead than in those exhibiting background hepatic lead concentrations. However, even in the former group, bone lead concentrations were lower than those in lead-exposed individuals of other species of birds. Bone is probably not a useful tissue for identifying elevated lead exposure in eagles. Three of eleven birds that had been shot had anomalous renal lead concentrations, suggestive of contamination by residue from lead ammunition. It is important to exclude such birds when assessing lead exposure.http://link.springer-ny. com/link/service/journals/00244/bibs/37n2p267.html

  12. Concentrations of lead in liver, kidney, and bone of bald and golden eagles.

    PubMed

    Wayland, M; Neugebauer, E; Bollinger, T

    1999-08-01

    The diagnosis of lead poisoning in eagles relies on autopsy information and residue analysis of lead in certain tissues, usually liver or blood. Similarly, the assessment of elevated lead exposure in eagles depends on the determination of lead concentrations in these tissues. Renal and bone lead concentrations have rarely been examined in eagles. We examined relationships among hepatic, renal, and bone lead concentrations in bald and golden eagles from the Canadian prairie provinces. Hepatic and renal lead concentrations were strongly related (R2 = 0.87) while those in liver and bone were significantly but poorly related (R2 = 0.22). Renal lead concentrations of 5 and 18 microg x g-1 (dry weight) corresponded to hepatic lead concentrations of 6 and 30 microg x g-1, the hepatic concentrations that we used as criterion levels associated with elevated lead exposure and death from lead poisoning, respectively. Lead was elevated in 19 of 119 and 21 of 109 liver and kidney samples, respectively. Of these 19 and 21 liver and kidney samples, 14 and 11, respectively, had lead concentrations compatible with death from lead poisoning. Taken together, lead concentrations were elevated in liver or kidney samples from 25 eagles and were compatible with death from lead poisoning in 15. Mean bone lead was higher in eagles with elevated hepatic lead than in those exhibiting background hepatic lead concentrations. However, even in the former group, bone lead concentrations were lower than those in lead-exposed individuals of other species of birds. Bone is probably not a useful tissue for identifying elevated lead exposure in eagles. Three of eleven birds that had been shot had anomalous renal lead concentrations, suggestive of contamination by residue from lead ammunition. It is important to exclude such birds when assessing lead exposure.http://link.springer-ny. com/link/service/journals/00244/bibs/37n2p267.html PMID:10398778

  13. The role of fibroblast growth factor 23 in chronic kidney disease-mineral and bone disorder.

    PubMed

    Diniz, Hugo; Frazão, João M

    2013-11-13

    Fibroblast Growth Factor 23 (FGF-23) is a bone-derived hormone involved in the regulation of phosphate homeostasis. FGF-23 levels are extremely elevated in Chronic Kidney Disease (CKD) and there is evidence supporting the role of this hormone in the pathogenesis of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Furthermore, recent data associates FGF-23 with the pathogenesis of systemic complications of CKD-MBD. The increasing evidence that the consequences of abnormal mineral metabolism are not restricted to bone disease changed the approach to the pathophysiology and treatment of disturbed bone and mineral metabolism in CKD patients. FGF-23 has been proposed to be the initial adaptive response in early CKD to protect the organism from the adverse effects of phosphate retention. Increased levels of FGF-23 observed in CKD patients are associated with cardiovascular mortality risk and was shown to mediate direct, "off-target" toxicity to the heart. This report aims to review the relevant aspects of the physiology of FGF-23 in bone biology and mineral homeostasis and the role of FGF-23 in the pathophysiology of CKD-BMD and its clinical implications. PMID:24158124

  14. Combined Bone Marrow and Kidney Transplantation for the Induction of Specific Tolerance

    PubMed Central

    Chen, Yi-Bin; Kawai, Tatsuo; Spitzer, Thomas R.

    2016-01-01

    The induction of specific tolerance, in order to avoid the detrimental effects of lifelong systemic immunosuppressive therapy after organ transplantation, has been considered the “Holy Grail” of transplantation. Experimentally, tolerance has been achieved through clonal deletion, through costimulatory blockade, through the induction or infusion of regulatory T-cells, and through the establishment of hematopoietic chimerism following donor bone marrow transplantation. The focus of this review is how tolerance has been achieved following combined bone marrow and kidney transplantation. Preclinical models of combined bone marrow and kidney transplantation have shown that tolerance can be achieved through either transient or sustained hematopoietic chimerism. Combined transplants for patients with multiple myeloma have shown that organ tolerance and prolonged disease remissions can be accomplished with such an approach. Similarly, multiple clinical strategies for achieving tolerance in patients without an underlying malignancy have been described, in the context of either transient or durable mixed chimerism or sustained full donor hematopoiesis. To expand the chimerism approach to deceased donor transplants, a delayed tolerance approach, which will involve organ transplantation with conventional immunosuppression followed months later by bone marrow transplantation, has been successful in a primate model. As combined bone marrow and organ transplantation become safer and increasingly successful, the achievement of specific tolerance may become more widely applicable. PMID:27239198

  15. Vitamin D and chronic kidney disease-mineral bone disease (CKD-MBD).

    PubMed

    Nigwekar, Sagar U; Tamez, Hector; Thadhani, Ravi I

    2014-01-01

    Chronic kidney disease (CKD) is a modern day epidemic and has significant morbidity and mortality implications. Mineral and bone disorders are common in CKD and are now collectively referred to as CKD- mineral and bone disorder (MBD). These abnormalities begin to appear even in early stages of CKD and contribute to the pathogenesis of renal osteodystrophy. Alteration in vitamin D metabolism is one of the key features of CKD-MBD that has major clinical and research implications. This review focuses on biology, epidemiology and management aspects of these alterations in vitamin D metabolism as they relate to skeletal aspects of CKD-MBD in adult humans. PMID:24605215

  16. Kidney Function in Severely Obese Adolescents Undergoing Bariatric Surgery

    PubMed Central

    Xiao, Nianzhou; Jenkins, Todd M; Nehus, Edward; Inge, Thomas H; Michalsky, Marc P; Harmon, Carroll M.; Helmrath, Michael A.; Brandt, Mary L.; Courcoulas, Anita; Moxey-Mims, Marva; Mitsnefes, Mark M

    2014-01-01

    Objective To describe objective measures of kidney function and analyze factors associated with kidney dysfunction in severely obese adolescents undergoing weight loss surgery. Design and Methods We analyzed cross-sectional data from 242 adolescent participants in the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) study before weight loss surgery. Kidney status was assessed by measuring urine albumin creatinine ratio to determine microalbuminuria and by calculating serum cystatin C-based estimated glomerular filtration rate (eGFR) to assess kidney function. Results Mean age and median body mass index (BMI) were 17.1 years and 50.5kg/m2, respectively; 76% were females and 65% were non-Hispanic white race. Fourteen percent of the cohort had microalbuminuria, and 3% had macroalbuminuria; 3% had eGFR <60 ml/min/1.73m2, and 7.1% had eGFR >150 ml/min/1.73m2. In adjusted analyses, female gender and increasing ferritin levels were significantly associated with the presence of microalbuminuria/macroalbuminuria. Increasing BMI and HOMA-IR values were significantly associated with lower eGFR. Conclusions A significant number of severely obese adolescents undergoing weight loss surgery have evidence of early kidney dysfunction. Longitudinal studies following weight loss surgery in these individuals are needed to determine whether these kidney abnormalities are reversible following weight loss therapy. PMID:25376399

  17. Dietary phosphorus excess: a risk factor in chronic bone, kidney, and cardiovascular disease?

    PubMed

    Uribarri, Jaime; Calvo, Mona S

    2013-01-01

    There is growing evidence in the nephrology literature supporting the deleterious health effect of excess dietary phosphorus intake. This issue has largely escaped the attention of nutrition experts until this symposium, which raised the question of whether the same health concerns should be extended to the general population. The potential hazard of a high phosphorus intake in the healthy population is illustrated by findings from acute and epidemiologic studies. Acute studies in healthy young adults demonstrate that phosphorus intakes in excess of nutrient needs may significantly disrupt the hormonal regulation of phosphorus contributing to disordered mineral metabolism, vascular calcification, bone loss, and impaired kidney function. One of the hormonal factors acutely affected by dietary phosphorus loading is fibroblast growth factor-23, which may be a key factor responsible for many of the cardiovascular disease (CVD) complications of high phosphorus intake. Increasingly, large epidemiological studies suggest that mild elevations of serum phosphorus within the normal range are associated with CVD risk in healthy populations. Few population studies link high dietary phosphorus intake to mild changes in serum phosphorus due to study design issues specific to phosphorus and inaccurate nutrient composition databases. The increasing phosphorus intake due to the use of phosphorus-containing ingredients in processed food and the growing consumption of processed convenience and fast foods is an important factor that needs to be emphasized.

  18. Dietary phosphorus excess: a risk factor in chronic bone, kidney, and cardiovascular disease?

    PubMed

    Uribarri, Jaime; Calvo, Mona S

    2013-01-01

    There is growing evidence in the nephrology literature supporting the deleterious health effect of excess dietary phosphorus intake. This issue has largely escaped the attention of nutrition experts until this symposium, which raised the question of whether the same health concerns should be extended to the general population. The potential hazard of a high phosphorus intake in the healthy population is illustrated by findings from acute and epidemiologic studies. Acute studies in healthy young adults demonstrate that phosphorus intakes in excess of nutrient needs may significantly disrupt the hormonal regulation of phosphorus contributing to disordered mineral metabolism, vascular calcification, bone loss, and impaired kidney function. One of the hormonal factors acutely affected by dietary phosphorus loading is fibroblast growth factor-23, which may be a key factor responsible for many of the cardiovascular disease (CVD) complications of high phosphorus intake. Increasingly, large epidemiological studies suggest that mild elevations of serum phosphorus within the normal range are associated with CVD risk in healthy populations. Few population studies link high dietary phosphorus intake to mild changes in serum phosphorus due to study design issues specific to phosphorus and inaccurate nutrient composition databases. The increasing phosphorus intake due to the use of phosphorus-containing ingredients in processed food and the growing consumption of processed convenience and fast foods is an important factor that needs to be emphasized. PMID:24038251

  19. Calciphylaxis in Patients With Preserved Kidney Function.

    PubMed

    Maroz, Natallia; Mohandes, Samer; Field, Halle; Kabakov, Zlata; Simman, Richard

    2014-04-01

    Calcific uremic arteriolopathy (CUA), also known as calciphylaxis, is a devastating disease typically seen in patients with end stage renal disease. It manifests as extremely painful symmetrical wounds resistant to surgical and medical interventions. The prevalence of CUA among hemodialysis dependent patients was found to be as high as 4.1%. The management of patients with CUA requires a multidisciplinary approach by the medical team, yet often results in a low rate of successful outcomes. Recently, non-uremic calciphylaxis (NUC) has been described in the absence of kidney disease. Limited knowledge exists on the management of NUC and the outcomes of this condition. Herein we describe three clinical scenarios of patients diagnosed with NUC in the absence of permanent or prolonged acute renal pathology. The reporting of successful and fruitless therapeutic interventions for wound management in NUC is important for compiling the evidence of effective therapeutic strategies.

  20. Calciphylaxis in Patients With Preserved Kidney Function

    PubMed Central

    Maroz, Natallia; Mohandes, Samer; Field, Halle; Kabakov, Zlata; Simman, Richard

    2015-01-01

    Calcific uremic arteriolopathy (CUA), also known as calciphylaxis, is a devastating disease typically seen in patients with end stage renal disease. It manifests as extremely painful symmetrical wounds resistant to surgical and medical interventions. The prevalence of CUA among hemodialysis dependent patients was found to be as high as 4.1%. The management of patients with CUA requires a multidisciplinary approach by the medical team, yet often results in a low rate of successful outcomes. Recently, non-uremic calciphylaxis (NUC) has been described in the absence of kidney disease. Limited knowledge exists on the management of NUC and the outcomes of this condition. Herein we describe three clinical scenarios of patients diagnosed with NUC in the absence of permanent or prolonged acute renal pathology. The reporting of successful and fruitless therapeutic interventions for wound management in NUC is important for compiling the evidence of effective therapeutic strategies. PMID:26442208

  1. Associations of deceased donor kidney injury with kidney discard and function after transplantation

    PubMed Central

    Hall, Isaac E.; Schröppel, Bernd; Doshi, Mona D.; Ficek, Joseph; Weng, Francis L.; Hasz, Rick D.; Thiessen-Philbrook, Heather; Reese, Peter P.; Parikh, Chirag R.

    2015-01-01

    Deceased-donor kidneys with acute kidney injury (AKI) are often discarded due to fear of poor outcomes. We performed a multicenter study to determine associations of AKI (increasing admission-to-terminal serum creatinine by AKI Network stages) with kidney discard, delayed graft function (DGF) and 6-month estimated glomerular filtration rate (eGFR). In 1632 donors, kidney discard risk increased for AKI stages 1, 2 and 3 (compared to no AKI) with adjusted relative risks of 1.28 (1.08–1.52), 1.82 (1.45–2.30) and 2.74 (2.0–3.75), respectively. Adjusted relative risk for DGF also increased by donor AKI stage: 1.27 (1.09–1.49), 1.70 (1.37–2.12) and 2.25 (1.74–2.91), respectively. Six-month eGFR, however, was similar across AKI categories but was lower for recipients with DGF (48 [interquartile range: 31–61] vs. 58 [45–75] ml/min/1.73m2 for no DGF, P<0.001). There was significant favorable interaction between donor AKI and DGF such that 6-month eGFR was progressively better for DGF kidneys with increasing donor AKI (46 [29–60], 49 [32–64], 52 [36–59] and 58 [39–71] ml/min/1.73m2 for no AKI, stage 1, 2 and 3, respectively; interaction P=0.05). Donor AKI is associated with kidney discard and DGF, but given acceptable 6-month allograft function, clinicians should consider cautious expansion into this donor pool. PMID:25762442

  2. Association of metabolic syndrome with kidney function and histology in living kidney donors.

    PubMed

    Ohashi, Y; Thomas, G; Nurko, S; Stephany, B; Fatica, R; Chiesa, A; Rule, A D; Srinivas, T; Schold, J D; Navaneethan, S D; Poggio, E D

    2013-09-01

    The selection of living kidney donors is based on a formal evaluation of the state of health. However, this spectrum of health includes subtle metabolic derangements that can cluster as metabolic syndrome. We studied the association of metabolic syndrome with kidney function and histology in 410 donors from 2005 to 2012, of whom 178 donors were systematically followed after donation since 2009. Metabolic syndrome was defined as per the NCEP ATPIII criteria, but using a BMI > 25 kg/m(2) instead of waist circumference. Following donation, donors received counseling on lifestyle modification. Metabolic syndrome was present in 50 (12.2%) donors. Donors with metabolic syndrome were more likely to have chronic histological changes on implant biopsies than donors with no metabolic syndrome (29.0% vs. 9.3%, p < 0.001). This finding was associated with impaired kidney function recovery following donation. At last follow-up, reversal of metabolic syndrome was observed in 57.1% of donors with predonation metabolic syndrome, while only 10.8% of donors developed de novo metabolic syndrome (p < 0.001). In conclusion, metabolic syndrome in donors is associated with chronic histological changes, and nephrectomy in these donors was associated with subsequent protracted recovery of kidney function. Importantly, weight loss led to improvement of most abnormalities that define metabolic syndrome.

  3. Berberine Improves Kidney Function in Diabetic Mice via AMPK Activation

    PubMed Central

    Zhao, Long; Sun, Li-Na; Nie, Hui-Bin; Wang, Xue-Ling; Guan, Guang-Ju

    2014-01-01

    Diabetic nephropathy is a major cause of morbidity and mortality in diabetic patients. Effective therapies to prevent the development of this disease are required. Berberine (BBR) has several preventive effects on diabetes and its complications. However, the molecular mechanism of BBR on kidney function in diabetes is not well defined. Here, we reported that activation of AMP-activated protein kinase (AMPK) is required for BBR-induced improvement of kidney function in vivo. AMPK phosphorylation and activity, productions of reactive oxygen species (ROS), kidney function including serum blood urea nitrogen (BUN), creatinine clearance (Ccr), and urinary protein excretion, morphology of glomerulus were determined in vitro or in vivo. Exposure of cultured human glomerulus mesangial cells (HGMCs) to BBR time- or dose-dependently activates AMPK by increasing the thr172 phosphorylation and its activities. Inhibition of LKB1 by siRNA or mutant abolished BBR-induced AMPK activation. Incubation of cells with high glucose (HG, 30 mM) markedly induced the oxidative stress of HGMCs, which were abolished by 5-aminoimidazole-4-carboxamide ribonucleoside, AMPK gene overexpression or BBR. Importantly, the effects induced by BBR were bypassed by AMPK siRNA transfection in HG-treated HGMCs. In animal studies, streptozotocin-induced hyperglycemia dramatically promoted glomerulosclerosis and impaired kidney function by increasing serum BUN, urinary protein excretion, and decreasing Ccr, as well as increased oxidative stress. Administration of BBR remarkably improved kidney function in wildtype mice but not in AMPKα2-deficient mice. We conclude that AMPK activation is required for BBR to improve kidney function in diabetic mice. PMID:25409232

  4. Kidney Function, β-Cell Function and Glucose Tolerance in Older Men

    PubMed Central

    Jia, Ting; Risérus, Ulf; Xu, Hong; Lindholm, Bengt; Ärnlöv, Johan; Sjögren, Per; Cederholm, Tommy; Larsson, Tobias E.; Ikizler, Talat Alp

    2015-01-01

    Context: Kidney dysfunction induces insulin resistance, but it is unknown if β cell function is affected. Objective: To investigate insulin release (β cell function) and glucose tolerance following a standardized oral glucose tolerance test (OGTT) across kidney function strata. Setting and Design: Community-based cohort study from the Uppsala Longitudinal Study of Adult Men (ULSAM). Participants and Main Outcome Measure: Included were 1015 nondiabetic Swedish men aged 70–71 years. All participants underwent OGTT and euglycaemic hyperinsulinaemic clamp (HEGC) tests, allowing determination of insulin sensitivity, β cell function, and glucose tolerance. Kidney function was estimated by cystatin C-algorithms. Mixed models were used to identify determinants of insulin secretion after the hyperglycemic load. Results: As many as 466 (46%) of participants presented moderate-advanced kidney disease. Insulin sensitivity (by HEGC) decreased across decreasing kidney function quartiles. After the OGTT challenge, however, β cell function indices (area under the curve for insulin release, the estimated first phase insulin release, and the insulinogenic index) were incrementally higher. Neither the oral disposition index nor the 2-h postload glucose tolerance differed across the kidney function strata. Mixed models showed that dynamic insulin release during the OGTT was inversely associated with kidney function, despite the correction for each individual's insulin sensitivity or its risk factors. Conclusions: In older men, β cell function after a hyperglycemic load appropriately compensated the loss in insulin sensitivity that accompanies kidney dysfunction. As a result, the net balance between insulin sensitivity and β cell function was preserved. PMID:25429626

  5. Cardiovascular risk and mineral bone disorder in patients with chronic kidney disease.

    PubMed

    Staude, Hagen; Jeske, Susann; Schmitz, Karin; Warncke, Gert; Fischer, Dagmar-Christiane

    2013-01-01

    The term chronic kidney disease-mineral bone disorder has been coined recently to highlight that the disturbed mineral and bone metabolism is a major contributor to vascular calcification and finally cardiovascular disease. This syndrome is characterized by clinical, biochemical and/or histological findings, i.e. i) biochemical alterations in the homeostasis of calcium, phosphate and their key player parathyroid hormone (PTH), Fibroblast growth factor-23 (FGF-23), klotho and vitamin-D, ii) the occurrence of vascular and/or soft tissue calcification, and iii) an abnormal bone structure and/or turnover. Apart from the combined and synergistic action of "traditional" and uremia-related risk factors, promoters and inhibitors of calcification have to be considered as well. This review will focus on the disturbed mineral metabolism as the triggering force behind distortion of vascular integrity and cardiovascular malfunction in CKD patients.

  6. Multiple New Loci Associated with Kidney Function and Chronic Kidney Disease: The CKDGen consortium

    PubMed Central

    Köttgen, Anna; Pattaro, Cristian; Böger, Carsten A.; Fuchsberger, Christian; Olden, Matthias; Glazer, Nicole L.; Parsa, Afshin; Gao, Xiaoyi; Yang, Qiong; Smith, Albert V.; O’Connell, Jeffrey R.; Li, Man; Schmidt, Helena; Tanaka, Toshiko; Isaacs, Aaron; Ketkar, Shamika; Hwang, Shih-Jen; Johnson, Andrew D.; Dehghan, Abbas; Teumer, Alexander; Paré, Guillaume; Atkinson, Elizabeth J.; Zeller, Tanja; Lohman, Kurt; Cornelis, Marilyn C.; Probst-Hensch, Nicole M.; Kronenberg, Florian; Tönjes, Anke; Hayward, Caroline; Aspelund, Thor; Eiriksdottir, Gudny; Launer, Lenore; Harris, Tamara B.; Rapmersaud, Evadnie; Mitchell, Braxton D.; Boerwinkle, Eric; Struchalin, Maksim; Cavalieri, Margherita; Singleton, Andrew; Giallauria, Francesco; Metter, Jeffery; de Boer, Ian; Haritunians, Talin; Lumley, Thomas; Siscovick, David; Psaty, Bruce M.; Zillikens, M. Carola; Oostra, Ben A.; Feitosa, Mary; Province, Michael; Levy, Daniel; de Andrade, Mariza; Turner, Stephen T.; Schillert, Arne; Ziegler, Andreas; Wild, Philipp S.; Schnabel, Renate B.; Wilde, Sandra; Muenzel, Thomas F.; Leak, Tennille S; Illig, Thomas; Klopp, Norman; Meisinger, Christa; Wichmann, H.-Erich; Koenig, Wolfgang; Zgaga, Lina; Zemunik, Tatijana; Kolcic, Ivana; Minelli, Cosetta; Hu, Frank B.; Johansson, Åsa; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Schreiber, Stefan; Aulchenko, Yurii S; Rivadeneira, Fernando; Uitterlinden, Andre G; Hofman, Albert; Imboden, Medea; Nitsch, Dorothea; Brandstätter, Anita; Kollerits, Barbara; Kedenko, Lyudmyla; Mägi, Reedik; Stumvoll, Michael; Kovacs, Peter; Boban, Mladen; Campbell, Susan; Endlich, Karlhans; Völzke, Henry; Kroemer, Heyo K.; Nauck, Matthias; Völker, Uwe; Polasek, Ozren; Vitart, Veronique; Badola, Sunita; Parker, Alexander N.; Ridker, Paul M.; Kardia, Sharon L. R.; Blankenberg, Stefan; Liu, Yongmei; Curhan, Gary C.; Franke, Andre; Rochat, Thierry; Paulweber, Bernhard; Prokopenko, Inga; Wang, Wei; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Shlipak, Michael G.; van Duijn, Cornelia M.; Borecki, Ingrid; Krämer, Bernhard K.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Witteman, Jacqueline C.; Pramstaller, Peter P.; Rettig, Rainer; Hastie, Nick; Chasman, Daniel I.; Kao, W. H.; Heid, Iris M.; Fox, Caroline S.

    2010-01-01

    Chronic kidney disease (CKD) is a significant public health problem, and recent genetic studies have identified common CKD susceptibility variants. The CKDGen consortium performed a meta-analysis of genome-wide association data in 67,093 Caucasian individuals from 20 population-based studies to identify new susceptibility loci for reduced renal function, estimated by serum creatinine (eGFRcrea), cystatin C (eGFRcys), and CKD (eGFRcrea <60 ml/min/1.73m2; n = 5,807 CKD cases). Follow-up of the 23 genome-wide significant loci (p<5×10−8) in 22,982 replication samples identified 13 novel loci for renal function and CKD (in or near LASS2, GCKR, ALMS1, TFDP2, DAB2, SLC34A1, VEGFA, PRKAG2, PIP5K1B, ATXN2, DACH1, UBE2Q2, and SLC7A9) and 7 creatinine production and secretion loci (CPS1, SLC22A2, TMEM60, WDR37, SLC6A13, WDR72, BCAS3). These results further our understanding of biologic mechanisms of kidney function by identifying loci potentially influencing nephrogenesis, podocyte function, angiogenesis, solute transport, and metabolic functions of the kidney. PMID:20383146

  7. Biomarkers of delayed graft function as a form of acute kidney injury in kidney transplantation.

    PubMed

    Malyszko, Jolanta; Lukaszyk, Ewelina; Glowinska, Irena; Durlik, Magdalena

    2015-01-01

    Renal transplantation ensures distinct advantages for patients with end-stage kidney disease. However, in some cases early complications can lead to allograft dysfunction and consequently graft loss. One of the most common early complications after kidney transplantation is delayed graft function (DGF). Unfortunately there is no effective treatment for DGF, however early diagnosis of DGF and therapeutic intervention (eg modification of immunosuppression) may improve outcome. Therefore, markers of acute kidney injury are required. Creatinine is a poor biomarker for kidney injury due principally to its inability to help diagnose early acute renal failure and complete inability to help differentiate among its various causes. Different urinary and serum proteins have been intensively investigated as possible biomarkers in this setting. There are promising candidate biomarkers with the ability to detect DGF. We focused on emerging biomarkers of DGF with NGAL is being the most studied followed by KIM-1, L-FABP, IL-18, and others. However, large randomized studies are needed to establish the value of new, promising biomarkers, in DGF diagnosis, prognosis and its cost-effectiveness. PMID:26175216

  8. Effects of dietary phosphate on adynamic bone disease in rats with chronic kidney disease--role of sclerostin?

    PubMed

    Ferreira, Juliana C; Ferrari, Guaraciaba O; Neves, Katia R; Cavallari, Raquel T; Dominguez, Wagner V; Dos Reis, Luciene M; Graciolli, Fabiana G; Oliveira, Elizabeth C; Liu, Shiguang; Sabbagh, Yves; Jorgetti, Vanda; Schiavi, Susan; Moysés, Rosa M A

    2013-01-01

    High phosphate intake is known to aggravate renal osteodystrophy along various pathogenetic pathways. Recent studies have raised the possibility that dysregulation of the osteocyte Wnt/β-catenin signaling pathway is also involved in chronic kidney disease (CKD)-related bone disease. We investigated the role of dietary phosphate and its possible interaction with this pathway in an experimental model of adynamic bone disease (ABD) in association with CKD and hypoparathyroidism. Partial nephrectomy (Nx) and total parathyroidectomy (PTx) were performed in male Wistar rats. Control rats with normal kidney and parathyroid function underwent sham operations. Rats were divided into three groups and underwent pair-feeding for 8 weeks with diets containing either 0.6% or 1.2% phosphate: sham 0.6%, Nx+PTx 0.6%, and Nx+PTx 1.2%. In the two Nx+PTx groups, serum creatinine increased and blood ionized calcium decreased compared with sham control group. They also presented hyperphosphatemia and reduced serum parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) levels. Fractional urinary excretion of phosphate increased in Nx+PTx 1.2% rats despite lower PTH and FGF23 levels than in sham group. These biochemical changes were accompanied by a decrease in bone formation rates. The Nx+PTx 1.2% group had lower bone volume (BV/TV), higher osteoblast and osteocyte apoptosis, and higher SOST and Dickkopf-1 gene expression than the Nx+PTx 0.6% group. Nx+PTx 0.6% rat had very low serum sclerostin levels, and Nx+PTx 1.2% had intermediate sclerostin levels compared with sham group. Finally, there was a negative correlation between BV/TV and serum sclerostin. These results suggest that high dietary phosphate intake decreases bone volume in an experimental model of CKD-ABD, possibly via changes in SOST expression through a PTH-independent mechanism. These findings could have relevance for the clinical setting of CKD-ABD in patients who low turnover bone disease might be attenuated

  9. From “Kidneys Govern Bones” to Chronic Kidney Disease, Diabetes Mellitus, and Metabolic Bone Disorder: A Crosstalk between Traditional Chinese Medicine and Modern Science

    PubMed Central

    Zou, Xin-Rong

    2016-01-01

    Although traditional Chinese medicine (TCM) and Western medicine have evolved on distinct philosophical foundations and reasoning methods, an increasing body of scientific data has begun to reveal commonalities. Emerging scientific evidence has confirmed the validity and identified the molecular mechanisms of many ancient TCM theories. One example is the concept of “Kidneys Govern Bones.” Here we discuss the molecular mechanisms supporting this theory and its potential significance in treating complications of chronic kidney disease (CKD) and diabetes mellitus. Two signaling pathways essential for calcium-phosphate metabolism can mediate the effect of kidneys in bone homeostasis, one requiring renal production of bioactive vitamin D and the other involving an endocrine axis based on kidney-expressed Klotho and bone-secreted fibroblast growth factor 23. Disruption of either pathway can lead to calcium-phosphate imbalance and vascular calcification, accelerating metabolic bone disorder. Chinese herbal medicine is an adjunct therapy widely used for treating CKD and diabetes. Our results demonstrate the therapeutic effects and underlying mechanisms of a Chinese herbal formulation, Shen-An extracts, in diabetic nephropathy and renal osteodystrophy. We believe that the smart combination of Eastern and Western concepts holds great promise for inspiring new ideas and therapies for preventing and treating complications of CKD and diabetes. PMID:27668003

  10. From “Kidneys Govern Bones” to Chronic Kidney Disease, Diabetes Mellitus, and Metabolic Bone Disorder: A Crosstalk between Traditional Chinese Medicine and Modern Science

    PubMed Central

    Zou, Xin-Rong

    2016-01-01

    Although traditional Chinese medicine (TCM) and Western medicine have evolved on distinct philosophical foundations and reasoning methods, an increasing body of scientific data has begun to reveal commonalities. Emerging scientific evidence has confirmed the validity and identified the molecular mechanisms of many ancient TCM theories. One example is the concept of “Kidneys Govern Bones.” Here we discuss the molecular mechanisms supporting this theory and its potential significance in treating complications of chronic kidney disease (CKD) and diabetes mellitus. Two signaling pathways essential for calcium-phosphate metabolism can mediate the effect of kidneys in bone homeostasis, one requiring renal production of bioactive vitamin D and the other involving an endocrine axis based on kidney-expressed Klotho and bone-secreted fibroblast growth factor 23. Disruption of either pathway can lead to calcium-phosphate imbalance and vascular calcification, accelerating metabolic bone disorder. Chinese herbal medicine is an adjunct therapy widely used for treating CKD and diabetes. Our results demonstrate the therapeutic effects and underlying mechanisms of a Chinese herbal formulation, Shen-An extracts, in diabetic nephropathy and renal osteodystrophy. We believe that the smart combination of Eastern and Western concepts holds great promise for inspiring new ideas and therapies for preventing and treating complications of CKD and diabetes.

  11. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells

    PubMed Central

    Florencio-Silva, Rinaldo; Sasso, Gisela Rodrigues da Silva; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling. PMID:26247020

  12. A patient with heart failure and worsening kidney function.

    PubMed

    Sarnak, Mark J

    2014-10-01

    There is high prevalence of CKD, defined by reduced GFR, in patients with heart failure. Reduced kidney function is associated with increased morbidity and mortality in this patient population. The cardiorenal syndrome (CRS) involves a bidirectional relationship between the heart and kidneys whereby dysfunction in either may exacerbate the function of the other, but this syndrome has been difficult to precisely define because it has many complex physiologic, biochemical, and hormonal abnormalities. The pathophysiology of CRS is not completely understood, but potential mechanisms include reduced kidney perfusion due to decreased forward flow, increased right ventricular and venous pressure, and neurohormonal adaptations. Treatment options include inotropic medications; diuretics; ultrafiltration; and medications, such as β-blockers, inhibitors of the renin-angiotensin-aldosterone system, and more novel treatments that focus on unique aspects of the pathophysiology. Recent observational studies suggest that treatments that result in a decrease in venous pressure and lead to hemoconcentration may be associated with improved outcomes. Patients with CRS that is not responsive to medical interventions should be considered for ventricular assist devices, heart transplantation, or combined heart and kidney transplantation.

  13. Interconnected network motifs control podocyte morphology and kidney function.

    PubMed

    Azeloglu, Evren U; Hardy, Simon V; Eungdamrong, Narat John; Chen, Yibang; Jayaraman, Gomathi; Chuang, Peter Y; Fang, Wei; Xiong, Huabao; Neves, Susana R; Jain, Mohit R; Li, Hong; Ma'ayan, Avi; Gordon, Ronald E; He, John Cijiang; Iyengar, Ravi

    2014-02-01

    Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3',5'-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element-binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor-driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease. PMID:24497609

  14. Noninvasive assessment of bone health in Indian patients with chronic kidney disease.

    PubMed

    Jabbar, Z; Aggarwal, P K; Chandel, N; Khandelwal, N; Kohli, H S; Sakhuja, V; Jha, V

    2013-05-01

    Abnormalities in mineral and bone disease are common in chronic kidney disease (CKD). Evaluation of bone health requires measurement of parameters of bone turnover, mineralization, and volume. There are no data on bone health in CKD patients from India. In this cross-sectional study, we evaluated serum biomarkers of bone turnover: Bone-specific alkaline phosphatase (BAP) and total deoxypyridinoline (tDPD) along with parathyroid hormone, 25(OH) vitamin D, and bone mineral density (BMD) using dual absorption X-ray absorptiometry in a cohort of 74 treatment-naive patients with newly diagnosed stage 4 and 5 CKD (age 42 ± 14.5 years, 54 men) and 52 non-CKD volunteers (age 40.2 ± 9.3 years, 40 men). Compared to the controls, CKD subjects showed elevated intact PTH (iPTH), BAP, and tDPD and lower BMD. There was a strong correlation between iPTH and BAP (r = 0.88, P < 0.0001), iPTH and tDPD (r = 0.51, P < 0.0001), and BAP and tDPD (r = 0.46, P = 0.0004). The iPTH elevation was greater than twice the upper range of normal in 73% cases, and BAP was >40 U/L in 66% cases. The combination of these markers suggests high turnover bone disease in over 60% cases. The prevalence of osteopenia and osteoporosis was 37% and 12%, respectively. Osteoporotic subjects had higher iPTH, BAP, and tDPD, suggesting a role of high turnover in genesis of osteoporosis. Vitamin D deficiency was seen in 80%, and another 13% had insufficient levels. Vitamin D correlated inversely with BAP (r = -0.3, P = 0.009), and levels were lower in those with iPTH >300 pg/ml (P = 0.0.04). In conclusion, over 60% of newly diagnosed Indian stage 4-5 CKD patients show biochemical parameters consistent with high turnover bone disease. High turnover could contribute to the development of osteoporosis in CKD subjects. Deficiency of 25 (OH) vitamin D is widespread and seems to have a role in the genesis of renal bone disease. Studies on the effect of supplementation of native vitamin D are needed. PMID:23814412

  15. Renal Artery Stenting in Patients with a Solitary Functioning Kidney

    SciTech Connect

    Cioni, Roberto; Vignali, Claudio; Petruzzi, Pasquale; Neri, Emanuele; Caramella, Davide; Vagli, Paola; Bargellini, Irene; Napoli, Vinicio; Pinto, Stefania; Bartolozzi, Carlo

    2001-12-15

    Purpose: To retrospectively evaluate the results of renal artery stenting in patients with renovascular disease and a solitary functioning kidney.Methods: Palmazstents were placed in 16 patients with a solitary functioning kidney,renal artery stenosis, hypertension and renal failure. Stenoses were evaluated with color Doppler ultrasound, MR angiography and digital subtraction angiography (DSA). Indications for stenting were: recoil after percutaneous transluminal renal angioplasty (PTRA) (63%),arterial dissection after PTRA (13%) and primary stenting (25%).Immediate results were evaluated by DSA. On follow-up (6-36 months),patients underwent periodical evaluation of clinical conditions (blood pressure and serum creatinine level) and stent patency, by means of color Doppler ultrasound.Results: Stent placement was successful in all patients (100%). Cumulative primary patency rate was: 100% at 1 day, 93.75% at 6 months, 81.25% at 12 months and 75% at 24 months. A significant reduction in diastolic blood pressure occurred (mean {+-} SD 104 {+-} 6 vs 92 {+-} 3;p < 0.05); renal function improved or stabilized in over 80% of patients. However, there was no significant difference in the creatinine values before and after treatment (mean {+-} SD 200 {+-} 142 mmol/l vs 197 {+-} 182 mmol/l; p> 0.05).Conclusion: Renal artery stenting, both after PTRA and as primary stenting, represents a safe procedure, able to preserve renal function in patients with a solitary functioning kidney.

  16. Is chronic kidney disease-mineral bone disorder (CKD-MBD) really a syndrome?

    PubMed

    Cozzolino, Mario; Ureña-Torres, Pablo; Vervloet, Marc G; Brandenburg, Vincent; Bover, Jordi; Goldsmith, David; Larsson, Tobias E; Massy, Ziad A; Mazzaferro, Sandro

    2014-10-01

    The concept of chronic kidney disease-mineral bone disorder (CKD-MBD) does not appear to fulfil the requirements for a syndrome at first glance, but its definition has brought some clear-cut benefits for clinicians and patients, including wider and more complex diagnostic and therapeutic approaches to the management of this challenging set of issues. Admittedly, not all components of CKD-MBD are present in all patients at all times, but these are highly interrelated, involving mineral and bone laboratory abnormalities, clinical and histological bone disease and finally, cardiovascular disease. The presence of typical biological bone ossification processes in an ectopic anatomical location in CKD has helped to define the existence of an unprecedented bone-vascular relationship, extending its interest even to other medical specialities. For now, we believe that CKD-MBD does not reach full criteria to be defined as a syndrome. However, this novel concept has clearly influenced current clinical guidelines. The National Kidney Foundation Kidney Disease Outcomes Quality Initiative (NKF/KDOQI™) guidelines in 2003 for instance recommended that calcium-based phosphate binders should be avoided to treat hyperphosphataemia in the presence of cardiovascular calcifications. In 2009, the KDIGO and other guidelines reinforced and extended this recommendation by stating that it is reasonable to choose oral phosphate binder therapy by taking into consideration other components of CKD-MBD. Similarly, it is also considered reasonable to use information on vascular/valvular calcification to guide the management of CKD-MBD. Our current assumption as a working group 'CKD-MBD' is that CKD-MBD has the potential to be defined a true syndrome, such as a constellation of concurrent signs and symptoms that suggest a common underlying mechanism for these components as opposed to the term disease. The term 'syndrome' also implies that in any patient at risk due to the presence of one or a few

  17. Is chronic kidney disease-mineral bone disorder (CKD-MBD) really a syndrome?

    PubMed

    Cozzolino, Mario; Ureña-Torres, Pablo; Vervloet, Marc G; Brandenburg, Vincent; Bover, Jordi; Goldsmith, David; Larsson, Tobias E; Massy, Ziad A; Mazzaferro, Sandro

    2014-10-01

    The concept of chronic kidney disease-mineral bone disorder (CKD-MBD) does not appear to fulfil the requirements for a syndrome at first glance, but its definition has brought some clear-cut benefits for clinicians and patients, including wider and more complex diagnostic and therapeutic approaches to the management of this challenging set of issues. Admittedly, not all components of CKD-MBD are present in all patients at all times, but these are highly interrelated, involving mineral and bone laboratory abnormalities, clinical and histological bone disease and finally, cardiovascular disease. The presence of typical biological bone ossification processes in an ectopic anatomical location in CKD has helped to define the existence of an unprecedented bone-vascular relationship, extending its interest even to other medical specialities. For now, we believe that CKD-MBD does not reach full criteria to be defined as a syndrome. However, this novel concept has clearly influenced current clinical guidelines. The National Kidney Foundation Kidney Disease Outcomes Quality Initiative (NKF/KDOQI™) guidelines in 2003 for instance recommended that calcium-based phosphate binders should be avoided to treat hyperphosphataemia in the presence of cardiovascular calcifications. In 2009, the KDIGO and other guidelines reinforced and extended this recommendation by stating that it is reasonable to choose oral phosphate binder therapy by taking into consideration other components of CKD-MBD. Similarly, it is also considered reasonable to use information on vascular/valvular calcification to guide the management of CKD-MBD. Our current assumption as a working group 'CKD-MBD' is that CKD-MBD has the potential to be defined a true syndrome, such as a constellation of concurrent signs and symptoms that suggest a common underlying mechanism for these components as opposed to the term disease. The term 'syndrome' also implies that in any patient at risk due to the presence of one or a few

  18. Molecular Mechanisms of Vascular Calcification in Chronic Kidney Disease: The Link between Bone and the Vasculature

    PubMed Central

    Byon, Chang Hyun

    2015-01-01

    Vascular calcification is highly prevalent in patients with chronic kidney disease (CKD) and increases mortality in those patients. Impaired calcium and phosphate homeostasis, increased oxidative stress, and loss of calcification inhibitors have been linked to vascular calcification in CKD. Additionally, impaired bone may perturb serum calcium/phosphate and their key regulator, parathyroid hormone, thus contributing to increased vascular calcification in CKD. Therapeutic approaches for CKD, such as phosphate binders and bisphosphonates, have been shown to ameliorate bone loss as well as vascular calcification. The precise mechanisms responsible for vascular calcification in CKD and the contribution of bone metabolism to vascular calcification have not been elucidated. This review discusses the role of systemic uremic factors and impaired bone metabolism in the pathogenesis of vascular calcification in CKD. The regulation of the key osteogenic transcription factor Runt-related transcription factor 2 (Runx2) and the emerging role of Runx2-dependent receptor activator of nuclear factor kappa-B ligand (RANKL) in vascular calcification of CKD are emphasized. PMID:25947259

  19. The consequences of chronic kidney disease on bone metabolism and growth in children

    PubMed Central

    Bacchetta, Justine; Harambat, Jérôme; Cochat, Pierre; Salusky, Isidro B.; Wesseling-Perry, Katherine

    2012-01-01

    Growth retardation, decreased final height and renal osteodystrophy (ROD) are common complications of childhood chronic kidney disease (CKD), resulting from a combination of abnormalities in the growth hormone (GH) axis, vitamin D deficiency, hyperparathyroidism, hypogonadism, inadequate nutrition, cachexia and drug toxicity. The impact of CKD-associated bone and mineral disorders (CKD–MBD) may be immediate (serum phosphate/calcium disequilibrium) or delayed (poor growth, ROD, fractures, vascular calcifications, increased morbidity and mortality). In 2012, the clinical management of CKD–MBD in children needs to focus on three main objectives: (i) to provide an optimal growth in order to maximize the final height with an early management with recombinant GH therapy when required, (ii) to equilibrate calcium/phosphate metabolism so as to obtain acceptable bone quality and cardiovascular status and (iii) to correct all metabolic and clinical abnormalities that can worsen bone disease, growth and cardiovascular disease, i.e. metabolic acidosis, anaemia, malnutrition and 25(OH)vitamin D deficiency. The aim of this review is to provide an overview of the mineral, bone and vascular abnormalities associated with CKD in children in terms of pathophysiology, diagnosis and clinical management. PMID:22851629

  20. FGF23 neutralization improves bone quality and osseointegration of titanium implants in chronic kidney disease mice.

    PubMed

    Sun, Ningyuan; Guo, Yuchen; Liu, Weiqing; Densmore, Michael; Shalhoub, Victoria; Erben, Reinhold G; Ye, Ling; Lanske, Beate; Yuan, Quan

    2015-02-10

    Chronic kidney disease (CKD) is a worldwide health problem. Serum levels of FGF23, a phosphaturic hormone, increase at the earliest stages of CKD, and have been found to be independently associated with the mortality and morbidity of CKD patients. The purpose of this study was to evaluate whether FGF23 neutralization was able to improve bone quality and osseointegration of titanium implants. Uremia was induced by 5/6 nephrectomy in adult female mice. Postsurgery, the mice were injected with vehicle or FGF23 neutralizing antibody (5 mg/kg body weight) 3 times a week. Experimental titanium implants were inserted in the distal end of the femurs. FGF23 neutralization significantly increased serum phosphate, 1,25(OH)2D and BUN, and decreased serum PTH and FGF23, relative to vehicle-treated CKD mice. Histomorphometric analysis of the tibiae indicated that FGF23 neutralization normalized the osteoidosis observed in vehicle-treated CKD mice. Although bone-implant contact ratio remained unchanged by anti-FGF23 antibody treatment, the strength of osseointegration, as evidenced by a biomechanical push-in test, was significantly improved by FGF23 neutralization. Our findings revealed that FGF23 neutralization effectively improves bone quality and osseointegration of titanium implants in CKD mice, suggesting FGF23 as a key factor of CKD related bone diseases.

  1. Plasma Uromodulin Correlates With Kidney Function and Identifies Early Stages in Chronic Kidney Disease Patients.

    PubMed

    Steubl, Dominik; Block, Matthias; Herbst, Victor; Nockher, Wolfgang Andreas; Schlumberger, Wolfgang; Satanovskij, Robin; Angermann, Susanne; Hasenau, Anna-Lena; Stecher, Lynne; Heemann, Uwe; Renders, Lutz; Scherberich, Jürgen

    2016-03-01

    Uromodulin, released from tubular cells of the ascending limb into the blood, may be associated with kidney function. This work studies the relevance of plasma uromodulin as a biomarker for kidney function in an observational cohort of chronic kidney disease (CKD) patients and subjects without CKD (CKD stage 0). It should be further evaluated if uromodulin allows the identification of early CKD stages.Plasma uromodulin, serum creatinine, cystatin C, blood-urea-nitrogen (BUN) concentrations, and estimated glomerular filtration rate (eGFR CKD-EPIcrea-cystatin) were assessed in 426 individuals of whom 71 were CKD stage 0 and 355 had CKD. Besides descriptive statistics, univariate correlations between uromodulin and biomarkers/eGFR were calculated using Pearson-correlation coefficient. Multiple linear regression modeling was applied to establish the association between uromodulin and eGFR adjusted for demographic parameters and pharmacologic treatment. Receiver-operating-characteristic (ROC) analysis adjusted for demographic parameters was performed to test if uromodulin allows differentiation of subjects with CKD stage 0 and CKD stage I.Mean uromodulin plasma levels were 85.7 ± 60.5 ng/mL for all CKD stages combined. Uromodulin was correlated with all biomarkers/eGFR in univariate analysis (eGFR: r = 0.80, creatinine: r = -0.76, BUN: r = -0.72, and cystatin C: r = -0.79). Multiple linear regression modeling showed significant association between uromodulin and eGFR (coefficient estimate β = 0.696, 95% confidence interval [CI] 0.603-0.719, P < 0.001). In ROC analysis uromodulin was the only parameter that significantly improved a model containing demographic parameters to differentiate between CKD 0° and I° (area under the curve [AUC] 0.831, 95% CI 0.746-0.915, P = 0.008) compared to creatinine, cystatin C, BUN, and eGFR (AUC for creatinine: 0.722, P = 0.056, cystatin C: 0.668, P = 0.418, BUN: 0.653, P = 0.811, and e

  2. Plasma Uromodulin Correlates With Kidney Function and Identifies Early Stages in Chronic Kidney Disease Patients

    PubMed Central

    Steubl, Dominik; Block, Matthias; Herbst, Victor; Nockher, Wolfgang Andreas; Schlumberger, Wolfgang; Satanovskij, Robin; Angermann, Susanne; Hasenau, Anna-Lena; Stecher, Lynne; Heemann, Uwe; Renders, Lutz; Scherberich, Jürgen

    2016-01-01

    Abstract Uromodulin, released from tubular cells of the ascending limb into the blood, may be associated with kidney function. This work studies the relevance of plasma uromodulin as a biomarker for kidney function in an observational cohort of chronic kidney disease (CKD) patients and subjects without CKD (CKD stage 0). It should be further evaluated if uromodulin allows the identification of early CKD stages. Plasma uromodulin, serum creatinine, cystatin C, blood-urea-nitrogen (BUN) concentrations, and estimated glomerular filtration rate (eGFR CKD-EPIcrea-cystatin) were assessed in 426 individuals of whom 71 were CKD stage 0 and 355 had CKD. Besides descriptive statistics, univariate correlations between uromodulin and biomarkers/eGFR were calculated using Pearson-correlation coefficient. Multiple linear regression modeling was applied to establish the association between uromodulin and eGFR adjusted for demographic parameters and pharmacologic treatment. Receiver-operating-characteristic (ROC) analysis adjusted for demographic parameters was performed to test if uromodulin allows differentiation of subjects with CKD stage 0 and CKD stage I. Mean uromodulin plasma levels were 85.7 ± 60.5 ng/mL for all CKD stages combined. Uromodulin was correlated with all biomarkers/eGFR in univariate analysis (eGFR: r = 0.80, creatinine: r = −0.76, BUN: r = −0.72, and cystatin C: r = −0.79). Multiple linear regression modeling showed significant association between uromodulin and eGFR (coefficient estimate β = 0.696, 95% confidence interval [CI] 0.603–0.719, P < 0.001). In ROC analysis uromodulin was the only parameter that significantly improved a model containing demographic parameters to differentiate between CKD 0° and I° (area under the curve [AUC] 0.831, 95% CI 0.746–0.915, P = 0.008) compared to creatinine, cystatin C, BUN, and eGFR (AUC for creatinine: 0.722, P = 0.056, cystatin C: 0.668, P = 0.418, BUN: 0.653, P

  3. Investigation of the relationship between low environmental exposure to metals and bone mineral density, bone resorption and renal function.

    PubMed

    Callan, A C; Devine, A; Qi, L; Ng, J C; Hinwood, A L

    2015-07-01

    Environmental exposure to metals has been linked to adverse health outcomes. Exposure to cadmium has been associated with decreased bone density, an increased risk of osteoporotic fracture and possible renal dysfunction. Older women are a group at risk of renal and bone density impacts and exposure to metals may be an important risk factor for these health outcomes. This study was a cross sectional study of 77 women aged 50 years and above examining the relationship between metals exposure and renal and bone health. Urinary and blood metals concentrations, plasma creatinine, iron, ferritin and transferrin were measured in these subjects. Bone biomarkers assessed included the pyridinium crosslinks, pyridinoline and deoxypyridinoline measured by ELISA. Renal function was assessed using eGFR and KIM-1. Whole body, hip and lumbar spine bone mineral density was assessed using DEXA. Blood and urinary metals concentrations were generally low in the subjects, with a median urinary cadmium concentration of 0.26 μg/g creatinine (range <0.065-1.03 μg/g). Urinary cadmium was found to be a significant predictor of bone mineral density at whole body, lumber spine, total hip and femoral neck, with increasing urinary Cd concentrations associated with decreased bone density. Urinary cadmium and aluminium concentrations were positively correlated with bone resorption whilst blood zinc and mercury concentrations were negatively correlated. Urinary aluminium was positively correlated with KIM-1 concentrations, a marker of early kidney damage, however blood zinc concentrations were significantly negatively correlated with this biomarker. This study provides additional support for low cadmium exposure being of concern for the health of older women. Further investigation into the role of exposure to other metals on bone and renal health is warranted.

  4. Pathophysiology of the Chronic Kidney Disease – Mineral Bone Disorder (CKD-MBD)

    PubMed Central

    Hruska, Keith A.; Seifert, Michael; Sugatani, Toshifumi

    2015-01-01

    Purpose of review The causes of excess cardiovascular mortality associated with chronic kidney disease (CKD) have been attributed in part to the CKD-mineral bone disorder syndrome (CKD-MBD), wherein, novel cardiovascular risk factors have been identified. The causes of the CKD-MBD are not well known and they will be discussed in this review Recent findings The discovery of WNT (portmanteau of wingless and int) inhibitors, especially Dickkopf 1 (Dkk1), produced during renal repair as participating in the pathogenesis of the vascular and skeletal components of the CKD-MBD implied that additional pathogenic factors are critical, and whose discovery lead to the finding that activin A is a second renal repair factor circulating in increased levels during CKD. Activin A derives from peritubular myofibroblasts of diseased kidneys, wherein it stimulates fibrosis, and decreases tubular klotho expression.The type 2 activin A receptor, ActRIIA, is induced by CKD in atherosclerotic aortas specifically in vascular smooth muscle cells (VSMC). Inhibition of ActRIIA signaling by a ligand trap inhibited CKD induced VSMC dedifferentiation, osteogenic transition and atherosclerotic calcification. Inhibition of ActRIIA signaling in the kidney decreased renal fibrosis and proteinuria. Summary These studies demonstrate that circulating renal repair factors are causal of the CKD-MBD and CKD associated cardiovascular disease, and identify ActRIIA signaling as a therapeutic target in CKD that links progression of renal disease and vascular disease. PMID:26050115

  5. In vitro function of cyst epithelium from human polycystic kidney.

    PubMed Central

    Perrone, R D

    1985-01-01

    It is thought that cysts in polycystic kidneys originate from nephron segments and function in a manner similar to the segment or origin. The indirect evidence for this derives from studies of microanatomy and cyst fluid composition. Cysts with low Na+ have been classified as distal, whereas cysts with high Na+ have been classified as proximal. In order to directly determine the transport characteristics of cyst epithelium, cysts from a human polycystic kidney were studied in vitro using Ussing chamber techniques. Composition of cyst fluid was determined in parallel with these studies. Cysts with low Na+ (gradient cysts) demonstrate characteristics consistent with distal nephron origin including elevated potential difference (PD), short-circuit current (Isc), and low conductance. PD and Isc of gradient cysts were amiloride sensitive. Nongradient cysts, however, require additional characterization. At least two types of nongradient cysts were identified, one with characteristics consistent with proximal nephron origin and another apparently without function. These studies are the first direct evidence for active transport of cysts from human polycystic kidney and provide strong evidence to support the concept that cysts function in the same manner as the nephron segment of origin. PMID:4056045

  6. Effects of Uremic Toxins from the Gut Microbiota on Bone: A Brief Look at Chronic Kidney Disease.

    PubMed

    Black, Ana Paula; Cardozo, Ludmila F M F; Mafra, Denise

    2015-10-01

    Patients with chronic kidney disease (CKD) frequently have mineral and bone disorders (CKD-MBD) that are caused by several mechanisms. Recent research has suggested that uremic toxins from the gut such as p-cresyl sulfate (PCS) and indoxyl sulfate (IS) could also be involved in the development of bone disease in patients with CKD. IS and PCS are produced by microbiota in the gut, carried into the plasma bound to serum albumin, and are normally excreted into the urine. However, in patients with CKD, there is an accumulation of high levels of these uremic toxins. The exact mechanisms of action of uremic toxins in bone disease remain unclear. The purpose of this brief review is to discuss the link between uremic toxins (IS and PCS) and bone mineral disease in chronic kidney disease.

  7. The science of Stewardship: due diligence for kidney donors and kidney function in living kidney donation--evaluation, determinants, and implications for outcomes.

    PubMed

    Poggio, Emilio D; Braun, William E; Davis, Connie

    2009-10-01

    Living kidney donor transplantation is now a common treatment for ESRD because it provides excellent outcomes to transplant recipients and is considered a safe procedure for prospective donors. The short- and long-term safety of prospective donors is paramount to the continued success of this procedure. Whereas the initial experiences with living kidney donors mostly included the healthiest, the increase in the need for organs and the changing demographic characteristics of the general population have subtly reshaped the suitability for donation. Kidney function assessment is a critical component of the evaluation of prospective donors; therefore, special emphasis is usually placed on this aspect of the evaluation. At the same time, consideration of kidney function after donation is important because it assists with the determination of renal health in donors. This review summarizes the process of predonation kidney function assessment, determinants of pre- and postdonation renal function, and, importantly, the potential implications of kidney function to the long-term outcomes of kidney donors.

  8. Dietary Fiber, Kidney Function, Inflammation, and Mortality Risk

    PubMed Central

    Xu, Hong; Huang, Xiaoyan; Risérus, Ulf; Krishnamurthy, Vidya M.; Cederholm, Tommy; Ärnlöv, Johan; Lindholm, Bengt; Sjögren, Per

    2014-01-01

    Background and objectives In the United States population, high dietary fiber intake has been associated with a lower risk of inflammation and mortality in individuals with kidney dysfunction. This study aimed to expand such findings to a Northern European population. Design, setting, participants, & measurements Dietary fiber intake was calculated from 7-day dietary records in 1110 participants aged 70–71 years from the Uppsala Longitudinal Study of Adult Men (examinations performed during 1991–1995). Dietary fiber was adjusted for total energy intake by the residual method. Renal function was estimated from the concentration of serum cystatin C, and deaths were registered prospectively during a median follow-up of 10.0 years. Results Dietary fiber independently and directly associated with eGFR (adjusted difference, 2.6 ml/min per 1.73 m2 per 10 g/d higher; 95% confidence interval [95% CI], 0.3 to 4.9). The odds of C-reactive protein >3 mg/L were lower (linear trend, P=0.002) with higher fiber quartiles. During follow-up, 300 participants died (incidence rate of 2.87 per 100 person-years at risk). Multiplicative interactions were observed between dietary fiber intake and kidney dysfunction in the prediction of mortality. Higher dietary fiber was associated with lower mortality in unadjusted analysis. These associations were stronger in participants with kidney dysfunction (eGFR<60 ml/min per 1.73 m2) (hazard ratio [HR], 0.58; 95% CI, 0.35 to 0.98) than in those without (HR, 1.30; 95% CI, 0.76 to 2.22; P value for interaction, P=0.04), and were mainly explained by a lower incidence of cancer-related deaths (0.25; 95% CI, 0.10 to 0.65) in individuals with kidney dysfunction versus individuals with an eGFR≥60 ml/min per 1.73 m2 (1.61; 95% CI, 0.69 to 3.74; P value for interaction, P=0.01). Conclusions High dietary fiber was associated with better kidney function and lower inflammation in community-dwelling elderly men from Sweden. High dietary fiber was also

  9. Changes in kidney function among Nicaraguan sugarcane workers

    PubMed Central

    Laws, Rebecca L; Brooks, Daniel R; Amador, Juan José; Weiner, Daniel E; Kaufman, James S; Ramírez-Rubio, Oriana; Riefkohl, Alejandro; Scammell, Madeleine K; López-Pilarte, Damaris; Sánchez, José Marcel; Parikh, Chirag R; McClean, Michael D

    2015-01-01

    Background: There is an epidemic of chronic kidney disease (CKD) of unknown etiology in Central American workers. Objectives: To investigate changes and job-specific differences in kidney function over a 6-month sugarcane harvest season, explore the potential role of hydration, and measure proteinuria. Methods: We recruited 284 Nicaraguan sugarcane workers performing seven distinct tasks. We measured urine albumin and serum creatinine and estimated glomerular filtration rate (eGFR). Results: eGFR varied by job and decreased during the harvest in seed cutters (−8.6 ml/min/1.73 m2), irrigators (−7.4 ml/min/1.73 m2), and cane cutters (−5.0 ml/min/1.73 m2), as compared to factory workers. The number of years employed at the company was negatively associated with eGFR. Fewer than 5% of workers had albumin-to-creatinine ratio (ACR) >30 mg/g. Conclusions: The decline in kidney function during the harvest and the differences by job category and employment duration provide evidence that one or more risk factors of CKD are occupational. PMID:25631575

  10. Estimating Kidney Function in the Critically Ill Patients

    PubMed Central

    Seller-Pérez, Gemma; Herrera-Gutiérrez, Manuel E.; Maynar-Moliner, Javier; Sánchez-Izquierdo-Riera, José A.; do Pico, José Luis

    2013-01-01

    Glomerular filtration rate (GFR) is an accepted measure for assessment of kidney function. For the critically ill patient, creatinine clearance is the method of reference for the estimation of the GFR, although this is often not measured but estimated by equations (i.e., Cockroft-Gault or MDRD) not well suited for the critically ill patient. Functional evaluation of the kidney rests in serum creatinine (Crs) that is subjected to multiple external factors, especially relevant overhydration and loss of muscle mass. The laboratory method used introduces variations in Crs, an important fact considering that small increases in Crs have serious repercussion on the prognosis of patients. Efforts directed to stratify the risk of acute kidney injury (AKI) have crystallized in the RIFLE or AKIN systems, based in sequential changes in Crs or urine flow. These systems have provided a common definition of AKI and, due to their sensitivity, have meant a considerable advantage for the clinical practice but, on the other side, have introduced an uncertainty in clinical research because of potentially overestimating AKI incidence. Another significant drawback is the unavoidable period of time needed before a patient is classified, and this is perhaps the problem to be overcome in the near future. PMID:23862059

  11. History of fluid balance and kidney function in space.

    PubMed

    Drummer, Christian; Cirillo, Massimo; De Santo, Natale G

    2004-01-01

    During the last four decades, about 400 people have been in Space, since Yuri Gagarin was sent in 1961 as the first human into Earth orbit. From the very beginning, the circulatory system of astronauts (meaning heart, vascular system, body fluid distribution and balance, and the kidney) was central to the medical concerns of Space physiologists and physicians because of its gravity-dependence. The present manuscript puts emphasize on some key scientists who worked in the field of body fluid regulation and kidney function in the USA, in Russia and in Europe during recent decades. The manuscript in particular summarizes the outcome of this research and describes the present understanding of how the body fluid regulatory system adapts to the extreme environment of Space. PMID:15151277

  12. How Is Kidney Cancer Diagnosed?

    MedlinePlus

    ... a person is healthy enough for surgery . Blood chemistry tests Blood chemistry tests are usually done in people who might ... a doctor to order a bone scan. Blood chemistry tests also look at kidney function, which is ...

  13. Tissue Kidney Injury Molecule-1 Expression in the Prediction of Renal Function for Several Years after Kidney Biopsy

    PubMed Central

    Simic Ogrizovic, Sanja; Basta-Jovanovic, Gordana; Radojevic, Sanja; Pavlovic, Jelena; Kotur Stevuljevic, Jelena; Dopsaj, Violeta; Naumovic, Radomir

    2013-01-01

    Objectives. Retrospective study was designed to examine the importance of tissue kidney injury molecule-1 (KIM-1) expression in predicting kidney function in sixty patients (27 males) aged 34.15 ± 12.23 years with different kidney diseases over three years after kidney biopsy. Materials and Methods. Tissue KIM-1 expression was determined immunohistochemically and KIM-1 staining was scored semiquantitatively, as well as tubulointerstitialis (TIN), inflammation, atrophy, and fibrosis. Kidney function (MDRD formula) and proteinuria/day were evaluated at the time of biopsy (GFR0) and 6, 12, 24, and 36 months later. Results. Significantly positive correlations between tissue KIM-1 expression and age (r = 0.313), TIN inflammation (r = 0.456), fibrosis (r = 0.317), and proteinuria at 6 months (r = 0.394) as well as negative correlations with GFR0 (r = −0.572), GFR6 (r = −0.442), GFR24 (r = −0.398), and GFR36 (r = −0.412) were found. Meanwhile, TIN inflammation was the best predictor of all measured kidney functions during three years, while tissue KIM-1 expression (P = 0.016) was a predictor only at 6 months after biopsy. Conclusion. Tissue KIM-1 expression significantly predicts kidney function solely at 6 months after biopsy, when the effects of immune and nonimmune treatments are the strongest. PMID:24282337

  14. Functional Magnetic Resonance Imaging in Acute Kidney Injury: Present Status

    PubMed Central

    Zhou, Hai Ying; Chen, Tian Wu; Zhang, Xiao Ming

    2016-01-01

    Acute kidney injury (AKI) is a common complication of hospitalization that is characterized by a sudden loss of renal excretory function and associated with the subsequent development of chronic kidney disease, poor prognosis, and increased mortality. Although the pathophysiology of renal functional impairment in the setting of AKI remains poorly understood, previous studies have identified changes in renal hemodynamics, perfusion, and oxygenation as key factors in the development and progression of AKI. The early assessment of these changes remains a challenge. Many established approaches are not applicable to humans because of their invasiveness. Functional renal magnetic resonance (MR) imaging offers an alternative assessment tool that could be used to evaluate renal morphology and function noninvasively and simultaneously. Thus, the purpose of this review is to illustrate the principle, application, and role of the techniques of functional renal MR imaging, including blood oxygen level-dependent imaging, arterial spin labeling, and diffusion-weighted MR imaging, in the management of AKI. The use of gadolinium in MR imaging may exacerbate renal impairment and cause nephrogenic systemic fibrosis. Therefore, dynamic contrast-enhanced MR imaging will not be discussed in this paper. PMID:26925411

  15. Incorporation of Bone Marrow Cells in Pancreatic Pseudoislets Improves Posttransplant Vascularization and Endocrine Function

    PubMed Central

    Wittig, Christine; Laschke, Matthias W.; Scheuer, Claudia; Menger, Michael D.

    2013-01-01

    Failure of revascularization is known to be the major reason for the poor outcome of pancreatic islet transplantation. In this study, we analyzed whether pseudoislets composed of islet cells and bone marrow cells can improve vascularization and function of islet transplants. Pancreatic islets isolated from Syrian golden hamsters were dispersed into single cells for the generation of pseudoislets containing 4×103 cells. To create bone marrow cell-enriched pseudoislets 2×103 islet cells were co-cultured with 2×103 bone marrow cells. Pseudoislets and bone marrow cell-enriched pseudoislets were transplanted syngeneically into skinfold chambers to study graft vascularization by intravital fluorescence microscopy. Native islet transplants served as controls. Bone marrow cell-enriched pseudoislets showed a significantly improved vascularization compared to native islets and pseudoislets. Moreover, bone marrow cell-enriched pseudoislets but not pseudoislets normalized blood glucose levels after transplantation of 1000 islet equivalents under the kidney capsule of streptozotocin-induced diabetic animals, although the bone marrow cell-enriched pseudoislets contained only 50% of islet cells compared to pseudoislets and native islets. Fluorescence microscopy of bone marrow cell-enriched pseudoislets composed of bone marrow cells from GFP-expressing mice showed a distinct fraction of cells expressing both GFP and insulin, indicating a differentiation of bone marrow-derived cells to an insulin-producing cell-type. Thus, enrichment of pseudoislets by bone marrow cells enhances vascularization after transplantation and increases the amount of insulin-producing tissue. Accordingly, bone marrow cell-enriched pseudoislets may represent a novel approach to increase the success rate of islet transplantation. PMID:23875013

  16. Mineral and bone disorder and vascular calcification in patients with chronic kidney disease.

    PubMed

    Peres, Luis Alberto Batista; Pércio, Pedro Paulo Verona

    2014-01-01

    Vascular calcifications has been associated with bone and mineral disorders. The alterations in the serum level of calcium concentrations and phosphate are importants factors implicated in the arterial calcification in chronic kidney disease. The pathogenesis of vascular calcification is a complex mechanism and not completely clear, being able to correspond to an active process of cellular transformation and heterotopic ossification. Beyond the hypercalcemia and hyperphosphatemia, they are involved in this process changes in the metabolism of inhibitors and promoters of calcification such as fetuin A, osteopontin, osteoprotegerin, and matrix gla protein. For the diagnosis of the calcified arterial injury are available several complementary methods, a method of estimate of the cardiovascular risk based on plain radiographs of the lumbar column and another method based on simple x-rays of the pelvis and hands. Below, we will present a review approching the link between vascular calcifications and mineral disorders. PMID:25055361

  17. 99Tcm-MAG3 renogram deconvolution in normal subjects and in normal functioning kidney grafts.

    PubMed

    González, A; Puchal, R; Bajén, M T; Mairal, L; Prat, L; Martin-Comin, J

    1994-09-01

    This study provides values of transit times obtained by 99Tcm- mercaptoacetyl triglycine (99Tcm-MAG3) renogram deconvolution for both normal subjects and kidney graft recipients. The analysis included 50 healthy kidney units from 25 volunteers and 28 normal functioning kidney grafts. The parameters calculated for the whole kidney (WK) and for the renal parenchyma (P) were: mean transit time (MTT) and times at 20% (T20) and 80% (T80) of renal retention function initial height. For healthy kidneys the WK MTT was 174 +/- 27 s and P MTT 148 +/- 22 s. The WK T20 values were 230 +/- 33 s and P T20 231 +/- 34 s. The WK T80 was 108 +/- 19 s and P T80 106 +/- 12 s. Whole kidney and parenchymal values of transit times for normal functioning kidney grafts do not present significant differences with respect to healthy kidneys. PMID:7816379

  18. Resveratrol Rescues Kidney Mitochondrial Function Following Hemorrhagic Shock

    PubMed Central

    Wang, Hao; Guan, Yuxia; Karamercan, Mehmet Akif; Ye, Lan; Bhatti, Tricia; Becker, Lance B.; Baur, Joseph A.; Sims, Carrie A.

    2015-01-01

    Objective Hemorrhagic shock may contribute to acute kidney injury by profoundly altering renal mitochondrial function. Resveratrol (RSV), a naturally occurring sirtuin-1 (SIRT1) activator, has been shown to promote mitochondrial function and reduce oxidative damage in a variety of aging-related disease states. We hypothesized that RSV treatment during resuscitation would ameliorate kidney mitochondrial dysfunction and decrease oxidative damage following hemorrhagic shock. Method Using a decompensated hemorrhagic shock model, male Long-Evans rats (n=6 per group) were sacrificed prior to hemorrhage (Sham), at severe shock, and following either lactated Ringer’s (LR) Resuscitation or LR+RSV Resuscitation (RSV: 30mg/kg). At each time point, blood samples were assayed for arterial blood gases, lactate, blood urea nitrogen (BUN) and serum creatinine. Mitochondria were also isolated from kidney samples in order to assess individual electron transport complexes (CI, CII, and CIV) using high-resolution respirometry. Total mitochondria reactive oxygen species (ROS) were measured using fluorometry and lipid peroxidation was assessed by measuring 4-hydroxynonenal by Western blot. qPCR was used quantify mRNA from PGC1-α, SIRT1, and proteins known to mitigate oxidative damage and promote mitochondrial biogenesis. Results RSV supplementation during resuscitation restored mitochondrial respiratory capacity, decreased mitochondrial ROS and lipid peroxidation. Compared to standard LR resuscitation, RSV treatment significantly increased SIRT1 and PGC1-α expression and significantly increased both SOD2 and catalase expression. Although RSV was associated with decreased lactate production, pH, BUN and serum creatinine values did not differ between resuscitation strategies. Conclusions Resuscitation with RSV significantly restored renal mitochondrial function and decreased oxidative damage following hemorrhagic shock. PMID:25895148

  19. Contribution of intestine, bone, kidney, and dialysis to extracellular fluid calcium content.

    PubMed

    Bushinsky, David A

    2010-01-01

    Calcium (Ca) balance is the net of Ca intake and output from the body over a period of time. The concept of Ca balance does not consider the redistribution of Ca that often occurs in patients with chronic kidney disease (CKD), especially those who are on dialysis, which is often in the form of soft tissue and/or vascular calcification. In this article, we consider movement of Ca with respect to the extracellular fluid (ECF) and develop a mathematical formulation for Ca homeostasis with respect to the ECF that includes input and output from the diet, the bone, the kidney, and dialysis. We consider calcium homeostasis in healthy individuals and in patients with excess parathyroid hormone, excess 1,25-dihydroxyvitamin D(3), and metabolic acidosis; patients who have CKD and are not on dialysis; and, finally, patients who have CKD and are on dialysis. On the basis of a number of assumptions, dialysis patients with a daily intake of >37.5 mmol of elemental Ca (1.5 g) have movement of Ca into the ECF even without supplemental activated vitamin D. Addition of activated vitamin D, which increases intestinal Ca absorption and can increase resorption of Ca from bone, leads to the movement of Ca into the ECF at virtually all levels of intake; however, there are numerous unanswered questions regarding Ca homeostasis in patients with CKD, including how much of the Ca, administered as a phosphate binder, is absorbed and what is the fate of this absorbed Ca. Until these pressing questions are answered with well-designed experiments, we do not know whether we are doing more harm than good for our dialysis patients by administering additional Ca as a phosphate binder, especially when they also receive activated vitamin D.

  20. Image Registration for Quantitative Analysis of Kidney Function using MRI

    NASA Astrophysics Data System (ADS)

    Sance, Rosario; Ledesma-Carbayo, María J.; Lundervold, Arvid; Santos, Andrés

    2006-10-01

    The aim of the present study is to analyze the possibilities of registration algorithms to compensate respiratory motion and deformation in abdominal DCE-MRI 3D temporary series. The final objective is that from registered data, appropriate intensity curves of local renal activity along the time could be represented for each kidney voxel. Assuming a relation between the voxel intensity and the contrast media concentration, this non-invasive renographic method could be used to evaluate the local renal function, and to calculate typical renal parameters like glomerular filtration rate.

  1. An Orientation Distribution Function for Trabecular Bone

    SciTech Connect

    Lawrence Livermore National Laboratory

    2004-10-08

    We describe a new method for quantifying the orientation of trabecular bone from three-dimensional images. Trabecular lattices from five human vertebrae were decomposed into individual trabecular elements, and the orientation, mass, and thickness of each element were recorded. Continuous functions that described the total mass (M({var_phi},{theta})) and mean thickness ({tau}({var_phi},{theta})) of all trabeculae as a function of orientation were derived. The results were compared with experimental measurements of the elastic modulus in the three principal anatomic directions. A power law scaling relationship between the anisotropies in mass and elastic modulus was observed; the scaling exponent was 1.41 (R{sup 2} = 0.88). As expected, the preponderance of trabecular mass was oriented along the cranial-caudal direction; on average, there was 3.4 times more mass oriented vertically than horizontally. Moreover, the vertical trabeculae were 30% thicker, on average, than the horizontal trabeculae. The vertical trabecular thickness was inversely related to the connectivity (R{sup 2} = 0.70; p = 0.07), suggesting a possible organization into either few, thick trabeculae or many thin trabeculae. The method, which accounts for the mechanical connectedness of the lattice, provides a rapid way to both visualize and quantify the three-dimensional organization of trabecular bone.

  2. Kidney damage biomarkers detect acute kidney injury but only functional markers predict mortality after paraquat ingestion.

    PubMed

    Mohamed, Fahim; Buckley, Nicholas A; Jayamanne, Shaluka; Pickering, John W; Peake, Philip; Palangasinghe, Chathura; Wijerathna, Thilini; Ratnayake, Indira; Shihana, Fathima; Endre, Zoltan H

    2015-09-01

    Acute kidney injury (AKI) is common following paraquat ingestion. The diagnostic performance of injury biomarkers was investigated in serial blood and urine samples from patients from 5 Sri Lankan hospitals. Functional AKI was diagnosed using serum creatinine (sCr) or serum cystatin C (sCysC). The 95th centile in healthy subjects defined the urinary biomarker cutoffs for diagnosing structural AKI. 50 poisoned patients provided 2 or more specimens, 76% developed functional AKI [AKIN stage 1 (n=12), 2 (n=7) or 3 (n=19)]; 19/26 patients with AKIN stage 2/3 also had functional AKI by sCysC criteria (≥50% increase). Urinary cystatin C (uCysC), clusterin (uClu) and NGAL (uNGAL) increased within 24h of ingestion compared with NoAKI patients and healthy controls. Each biomarker demonstrated moderate diagnostic utility [AUC-ROC: uCysC 0.79, uNGAL 0.79, uClu 0.68] for diagnosis of functional AKI at 16h. Death occurred only in subjects with functional AKI. Structural biomarker-based definitions detected more AKI than did sCr or sCysC, but did not independently predict death. Renal injury biomarkers did not add clinical value to patients who died rapidly due to multi-organ failure. Use of injury biomarkers within 16-24h may guide early intervention for reno-protection in less severe paraquat poisoning. PMID:26071311

  3. Lung function after bone marrow grafting

    SciTech Connect

    Depledge, M.H.; Barrett, A.; Powles, R.L.

    1983-02-01

    Results of a prospective lung function study are presented for 48 patients with acute myeloid leukemia (AML) treated with total body irradiation (TBI) and bone marrow transplantation (BMT) at the Royal Marsden Hospital between 1978 and 1980. Patients with active disease or who were in remission following cytoreductive chemotherapy had mildly impaired gas exchange prior to grafting. After TBI and BMT all patients studied developed progressive deterioration of lung function during the first 100 days, although these changes were subclinical. Infection and graft-versus-host disease (GvHD) were associated with further worsening of restrictive ventilatory defects and diffusing capacity (D/sub L/CO). Beyond 100 days, ventilatory ability returned to normal and gas transfer improved, although it failed to reach pre-transplant levels. There was no evidence of progressive pulmonary fibrosis during the first year after grafting.

  4. Kidney Function Can Improve in Patients with Hypertensive CKD

    PubMed Central

    Gadegbeku, Crystal; Lipkowitz, Michael S.; Rostand, Stephen; Lewis, Julia; Wright, Jackson T.; Appel, Lawrence J.; Greene, Tom; Gassman, Jennifer; Astor, Brad C.

    2012-01-01

    The typical assumption is that patients with CKD will have progressive nephropathy. Methodological issues, such as measurement error and regression to the mean, have made it difficult to document whether kidney function might improve in some patients. Here, we used data from 12 years of follow-up in the African American Study of Kidney Disease and Hypertension to determine whether some patients with CKD can experience a sustained improvement in GFR. We calculated estimated GFR (eGFR) based on serum creatinine measurements during both the trial and cohort phases. We defined clearly improved patients as those with positive eGFR slopes that we could not explain by random measurement variation under Bayesian mixed-effects models. Of 949 patients with at least three follow-up eGFR measurements, 31 (3.3%) demonstrated clearly positive eGFR slopes. The mean slope among these patients was +1.06 (0.12) ml/min per 1.73 m2 per yr, compared with −2.45 (0.07) ml/min per 1.73 m2 per yr among the remaining patients. During the trial phase, 24 (77%) of these 31 patients also had clearly positive slopes of 125I-iothalamate–measured GFR during the trial phase. Low levels of proteinuria at baseline and randomization to the lower BP goal (mean arterial pressure ≤92 mmHg) associated with improved eGFR. In conclusion, the extended follow-up from this study provides strong evidence that kidney function can improve in some patients with hypertensive CKD. PMID:22402803

  5. Smell and taste function in children with chronic kidney disease.

    PubMed

    Armstrong, Jessica E; Laing, David G; Wilkes, Fiona J; Kainer, Gad

    2010-08-01

    Loss of appetite and poor growth are common in children with chronic kidney disease (CKD), and changes in smell and/or taste function may be responsible, but the hypothesis has not been proven. This aims of this prospective age- and gender-controlled study were to determine whether: (1) changes in smell and taste function occur in children with CKD; (2) smell or taste dysfunction are associated with estimated glomerular filtration rate (eGFR); (3) there is an association between smell or taste loss and body mass index (BMI). The study cohort consisted of 72 children of whom 20 were CKD stage 3-5 patients, 12 were CKD stage 2 patients, 20 were clinical controls (CC) and 20 were healthy children (HC). The CKD patients and clinical controls were recruited from Sydney Children's Hospital and The Children's Hospital, Westmead, and healthy controls were recruited from a local school. Scores for each group from taste and smell chemosensory function tests were compared, and their relationship with renal function and BMI investigated. The CKD stage 3-5 group had a significantly lower taste identification score (85.6%, P < 0.001) than the CC (94.8%) and HC (94.8%) groups, with almost one third of the children in the CKD stage 3-5 group exhibiting taste loss. Decreased taste function was associated with decreased eGFR (r = 0.43, P < 0.01), but no association between BMI and taste function was found (r = 0.001, P > 0.9). Odour identification scores were not different; however, there was a positive relationship with BMI (r = 0.427, P = 0.006). We conclude that a loss of taste can occur in children with CKD and that when it occurs, it worsens as eGFR declines and is found early in kidney disease.

  6. Bone

    NASA Astrophysics Data System (ADS)

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  7. Mechanosensory function of microvilli of the kidney proximal tubule

    PubMed Central

    Du, Zhaopeng; Duan, Yi; Yan, QingShang; Weinstein, Alan M.; Weinbaum, Sheldon; Wang, Tong

    2004-01-01

    Normal variations in glomerular filtration induce proportional changes in proximal tubule Na+ reabsorption. This “glomerulotubular balance” derives from flow dependence of Na+ uptake across luminal cell membranes; however, the underlying physical mechanism is unknown. Our hypothesis is that flow-dependent reabsorption is an autoregulatory mechanism that is independent of neural and hormonal systems. It is signaled by the hydrodynamic torque (bending moment) on epithelial microvilli. Such signals need to be transmitted to the terminal web to modulate Na+-H+-exchange activity. To investigate this hypothesis, we examined Na+ transport and tubular diameter in response to different flow rates during the microperfusion of isolated S2 proximal tubules from mouse kidneys. The data were analyzed by using a mathematical model to estimate the microvillous torque as function of flow. In this model, increases in luminal diameter have the effect of blunting the impact of flow velocity on microvillous shear stress and, thus, microvillous torque. We found that variations in microvillous torque produce nearly identical fractional changes in Na+ reabsorption. Furthermore, the flow-dependent Na+ transport is increased by increasing luminal fluid viscosity, diminished in Na+-H+ exchanger isoform 3 knockout mice, and abolished by nontoxic disruption of the actin cytoskeleton. These data support our hypothesis that the “brush-border” microvilli serve a mechanosensory function in which fluid dynamic torque is transmitted to the actin cytoskeleton and modulates Na+ absorption in kidney proximal tubules. PMID:15319475

  8. Functional hyposplenism following allogeneic bone marrow transplantation.

    PubMed Central

    Cuthbert, R J; Iqbal, A; Gates, A; Toghill, P J; Russell, N H

    1995-01-01

    AIMS--To investigate the incidence of functional hyposplenism in a group of patients who had undergone allogeneic bone marrow transplantation (BMT). METHODS--Splenic function was assessed by counting the number of gluteraldehyde fixed red blood cells containing pits or indentations as examined by interference phase microscopy. Normal values are < 2% whereas splenectomy patients have values of 25 to 40%. RESULTS--Twenty eight BMT recipients (17 men, 11 women) were studied at varying periods post-transplant and the results compared with 20 healthy volunteers and 10 patients who had undergone splenectomy or had splenic atrophy because of haematological conditions. Of the 28 BMT recipients, one had undergone a prior splenectomy; of the remaining 27 patients, four (15%) had evidence of functional hyposplenism with between 5.0 and 34.0% pitted cells. Of these four patients, one had active extensive chronic graft versus host disease (GvHD) which has been previously reported to be associated with functional hyposplenism following transplantation. Only one of the four patients had peripheral blood red cell changes typical of hyposplenism. CONCLUSION--These results confirm that extensive chronic GvHD is associated with hyposplenism. Intermediate degrees of functional hyposplenism may also occur following BMT in the absence of chronic GvHD and in the absence of haematological features of hyposplenism on routine blood films. This may be of significance in mediating the susceptibility to infection with encapsulating bacteria seen following allogeneic BMT. PMID:7730489

  9. The Biomechanical Testing for the Assessment of Bone Quality in an Experimental Model of Chronic Kidney Disease.

    PubMed

    Oksztulska-Kolanek, Ewa; Znorko, Beata; Michałowska, Małgorzata; Pawlak, Krystyna

    2016-01-01

    Mineral metabolism disturbances are common in chronic kidney disease (CKD) and have been classified as a new clinical entity, also known as CKD-mineral and bone disorders (CKD-MBD). A decrease in the bone strength, whose clinical manifestation is a tendency for fracture, has been recognized as an important component of CKD-MBD. Because of ethical issues, measurements of the bone strength in the human body are usually limited to noninvasive techniques, such as radiography, dual-energy X-ray absorptiometry and the assays of bone turnover biomarkers. However, it has been postulated recently that the evidence concerning bone strength based solely on the determination of the bone quantity may be insufficient and that bone quality should also be examined. In this regard, an animal model of CKD can represent an experimental tool to test the effectiveness of new therapeutic strategies. Despite the many available methods that are used to diagnose metabolic bone disorders and predict fracture risk especially in small rodents with CKD, it turns out that the most appropriate are biomechanical tests, which can provide information about the structural and material properties of bone. The present review summarizes and discusses the principles for carrying out selected biomechanical tests (3-point bending test and compression test) and their application in clinical practice.

  10. [Modern poro-elastic biomechanical model of bone tissue. I. Biomechanical function of fluids in bone].

    PubMed

    Rogala, Piotr; Uklejewski, Ryszard; Stryła, Wanda

    2002-01-01

    The modern biomechanical two-phase poroelastic model of bone tissue is presented. Bone tissue is treated in this model as a porous elastically deformed solid filled with a viscous newtonian fluid. Traditional one-phase biomechanical model of bone tissue, which is characterized by the Young modulus and the Poisson's coefficient, is still valid and it can be treated as an approximate model in comparison with the more realistic two-phase model of bone tissue. The biomechanical function of fluids in bone is considered. Bone biodynamics is presented in form of the scheme which illustrates the mechano-adaptive, the mechano-electric and the electrophysiologic properties of bone tissue. Essentials of the poroelastic model of bone tissue is the mechanical load induced flow of intraosseous fluid and the associated strain generated electric potentials SGPs.

  11. Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis

    PubMed Central

    Malaval, Luc; Wade-Guéye, Ndéyé Marième; Boudiffa, Maya; Fei, Jia; Zirngibl, Ralph; Chen, Frieda; Laroche, Norbert; Roux, Jean-Paul; Burt-Pichat, Brigitte; Duboeuf, François; Boivin, Georges; Jurdic, Pierre; Lafage-Proust, Marie-Hélène; Amédée, Joëlle; Vico, Laurence; Rossant, Janet; Aubin, Jane E.

    2008-01-01

    Bone sialoprotein (BSP) and osteopontin (OPN) are both highly expressed in bone, but their functional specificities are unknown. OPN knockout (−/−) mice do not lose bone in a model of hindlimb disuse (tail suspension), showing the importance of OPN in bone remodeling. We report that BSP−/− mice are viable and breed normally, but their weight and size are lower than wild-type (WT) mice. Bone is undermineralized in fetuses and young adults, but not in older (≥12 mo) BSP−/− mice. At 4 mo, BSP−/− mice display thinner cortical bones than WT, but greater trabecular bone volume with very low bone formation rate, which indicates reduced resorption, as confirmed by lower osteoclast surfaces. Although the frequency of total colonies and committed osteoblast colonies is the same, fewer mineralized colonies expressing decreased levels of osteoblast markers form in BSP−/− versus WT bone marrow stromal cultures. BSP−/− hematopoietic progenitors form fewer osteoclasts, but their resorptive activity on dentin is normal. Tail-suspended BSP−/− mice lose bone in hindlimbs, as expected. In conclusion, BSP deficiency impairs bone growth and mineralization, concomitant with dramatically reduced bone formation. It does not, however, prevent the bone loss resulting from loss of mechanical stimulation, a phenotype that is clearly different from OPN−/− mice. PMID:18458111

  12. Urinary uromodulin, kidney function and cardiovascular disease in elderly adults

    PubMed Central

    Garimella, Pranav S.; Biggs, Mary L.; Katz, Ronit; Ix, Joachim H.; Bennett, Michael R.; Devarajan, Prasad; Kestenbaum, Bryan R.; Siscovick, David S.; Jensen, Majken K.; Shlipak, Michael G.; Chaves, Paulo H. M.; Sarnak, Mark J.

    2015-01-01

    Urinary uromodulin (uUMOD) is the most common secreted tubular protein in healthy adults. However, the relationship between uUMOD and clinical outcomes is still unclear. Here we measured uUMOD in 192 participants of the Cardiovascular Health Study with over a 30% decline in estimated glomerular filtration rate (eGFR) over 9 years, 54 with incident end stage renal disease (ESRD), and in a random sub-cohort of 958 participants. The association of uUMOD with eGFR decline was evaluated using logistic regression and with incident ESRD, cardiovascular disease, heart failure and mortality using Cox proportional regression. Mean age was 78 years and median uUMOD was 25.8 μg/mL. In a case-control study evaluating eGFR decline (192 cases and 231 controls), each standard deviation higher uUMOD was associated with a 23% lower odds of eGFR decline (odds ratio 0.77, (95% CI 0.62, 0.96)) and a 10% lower risk of mortality (hazard ratio 0.90, (95% CI 0.83, 0.98)) after adjusting for demographics, eGFR, albumin/creatinine ratio and other risk factors. There was no risk association of uUMOD with ESRD, cardiovascular disease or heart failure after multivariable adjustment. Thus, low uUMOD levels may identify persons at risk of progressive kidney disease and mortality above and beyond established markers of kidney disease, namely eGFR and the albumin/creatinine ratio. Future studies need to confirm these results and evaluate whether uUMOD is a marker of tubular health and/or whether it plays a causal role in preserving kidney function. PMID:26154925

  13. Biosignals analysis for kidney function effect analysis of fennel aromatherapy.

    PubMed

    Kim, Bong-Hyun; Cho, Dong-Uk; Seo, Ssang-Hee

    2015-01-01

    Human effort in order to enjoy a healthy life is diverse. IT technology to these analyzes, the results of development efforts, it has been applied. Therefore, I use the care and maintenance diagnostic health management and prevention than treatment. In particular, the aromatherapy treatment easy to use without the side effects there is no irritation, are widely used in modern society. In this paper, we measured the aroma effect by applying a biosignal analysis techniques; an experiment was performed to analyze. In particular, we design methods and processes of research based on the theory aroma that affect renal function. Therefore, in this paper, measuring the biosignals and after fennel aromatherapy treatment prior to the enforcement of the mutual comparison, through the analysis, studies were carried out to analyze the effect of fennel aromatherapy therapy on kidney function.

  14. Biosignals analysis for kidney function effect analysis of fennel aromatherapy.

    PubMed

    Kim, Bong-Hyun; Cho, Dong-Uk; Seo, Ssang-Hee

    2015-01-01

    Human effort in order to enjoy a healthy life is diverse. IT technology to these analyzes, the results of development efforts, it has been applied. Therefore, I use the care and maintenance diagnostic health management and prevention than treatment. In particular, the aromatherapy treatment easy to use without the side effects there is no irritation, are widely used in modern society. In this paper, we measured the aroma effect by applying a biosignal analysis techniques; an experiment was performed to analyze. In particular, we design methods and processes of research based on the theory aroma that affect renal function. Therefore, in this paper, measuring the biosignals and after fennel aromatherapy treatment prior to the enforcement of the mutual comparison, through the analysis, studies were carried out to analyze the effect of fennel aromatherapy therapy on kidney function. PMID:25977696

  15. Kidney Disease

    MedlinePlus

    ... version of this page please turn Javascript on. Kidney Disease What is Kidney Disease? What the Kidneys Do Click for more information You have two ... damaged, wastes can build up in the body. Kidney Function and Aging Kidney function may be reduced ...

  16. Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling.

    PubMed

    Mishina, Yuji; Starbuck, Michael W; Gentile, Michael A; Fukuda, Tomokazu; Kasparcova, Viera; Seedor, J Gregory; Hanks, Mark C; Amling, Michael; Pinero, Gerald J; Harada, Shun-ichi; Behringer, Richard R

    2004-06-25

    Bone morphogenetic proteins (BMPs) function during various aspects of embryonic development including skeletogenesis. However, their biological functions after birth are less understood. To investigate the role of BMPs during bone remodeling, we generated a postnatal osteoblast-specific disruption of Bmpr1a that encodes the type IA receptor for BMPs in mice. Mutant mice were smaller than controls up to 6 months after birth. Irregular calcification and low bone mass were observed, but there were normal numbers of osteoblasts. The ability of the mutant osteoblasts to form mineralized nodules in culture was severely reduced. Interestingly, bone mass was increased in aged mutant mice due to reduced bone resorption evidenced by reduced bone turnover. The mutant mice lost more bone after ovariectomy likely resulting from decreased osteoblast function which could not overcome ovariectomy-induced bone resorption. In organ culture of bones from aged mice, ablation of the Bmpr1a gene by adenoviral Cre recombinase abolished the stimulatory effects of BMP4 on the expression of lysosomal enzymes essential for osteoclastic bone resorption. These results demonstrate essential and age-dependent roles for BMP signaling mediated by BMPRIA (a type IA receptor for BMP) in osteoblasts for bone remodeling. PMID:15090551

  17. MAGI-2 scaffold protein is critical for kidney barrier function.

    PubMed

    Balbas, Minna D; Burgess, Michael R; Murali, Rajmohan; Wongvipat, John; Skaggs, Brian J; Mundel, Peter; Weins, Astrid; Sawyers, Charles L

    2014-10-14

    MAGUK Inverted 2 (MAGI-2) is a PTEN-interacting scaffold protein implicated in cancer on the basis of rare, recurrent genomic translocations and deletions in various tumors. In the renal glomerulus, MAGI-2 is exclusively expressed in podocytes, specialized cells forming part of the glomerular filter, where it interacts with the slit diaphragm protein nephrin. To further explore MAGI-2 function, we generated Magi-2-KO mice through homologous recombination by targeting an exon common to all three alternative splice variants. Magi-2 null mice presented with progressive proteinuria as early as 2 wk postnatally, which coincided with loss of nephrin expression in the glomeruli. Magi-2-null kidneys revealed diffuse podocyte foot process effacement and focal podocyte hypertrophy by 3 wk of age, as well as progressive podocyte loss. By 5.5 wk, coinciding with a near-complete loss of podocytes, Magi-2-null mice developed diffuse glomerular extracapillary epithelial cell proliferations, and died of renal failure by 3 mo of age. As confirmed by immunohistochemical analysis, the proliferative cell populations in glomerular lesions were exclusively composed of activated parietal epithelial cells (PECs). Our results reveal that MAGI-2 is required for the integrity of the kidney filter and podocyte survival. Moreover, we demonstrate that PECs can be activated to form glomerular lesions resembling a noninflammatory glomerulopathy with extensive extracapillary proliferation, sometimes resembling crescents, following rapid and severe podocyte loss.

  18. Is kidney function affecting the management of myocardial infarction? A retrospective cohort study in patients with normal kidney function, chronic kidney disease stage III-V, and ESRD.

    PubMed

    Saad, Marc; Karam, Boutros; Faddoul, Geovani; Douaihy, Youssef El; Yacoub, Harout; Baydoun, Hassan; Boumitri, Christine; Barakat, Iskandar; Saifan, Chadi; El-Charabaty, Elie; Sayegh, Suzanne El

    2016-01-01

    Patients with chronic kidney disease (CKD) are three times more likely to have myocardial infarction (MI) and suffer from increased morbidity and higher mortality. Traditional and unique risk factors are prevalent and constitute challenges for the standard of care. However, CKD patients have been largely excluded from clinical trials and little evidence is available to guide evidence-based treatment of coronary artery disease in patients with CKD. Our objective was to assess whether a difference exists in the management of MI (ST-segment elevation myocardial infarction and non-ST-segment elevation myocardial infarction) among patients with normal kidney function, CKD stage III-V, and end-stage renal disease (ESRD) patients. We conducted a retrospective cohort study on patients admitted to Staten Island University Hospital for the diagnosis of MI between January 2005 and December 2012. Patients were assigned to one of three groups according to their kidney function: Data collected on the medical management and the use of statins, platelet inhibitors, beta-blockers, and angiotensin converting enzyme inhibitors/angiotensin receptor blockers were compared among the three cohorts, as well as medical interventions including: catheterization and coronary artery bypass graft (CABG) when indicated. Chi-square test was used to compare the proportions between nominal variables. Binary logistic analysis was used in order to determine associations between treatment modalities and comorbidities, and to account for possible confounding factors. Three hundred and thirty-four patients (mean age 67.2±13.9 years) were included. In terms of management, medical treatment was not different among the three groups. However, cardiac catheterization was performed less in ESRD when compared with no CKD and CKD stage III-V (45.6% vs 74% and 93.9%) (P<0.001). CABG was performed in comparable proportions in the three groups and CABG was not associated with the degree of CKD (P=0.078) in binary

  19. Influence of the kidney histology at the time of donation on long term kidney function in living kidney donors.

    PubMed

    Goecke, H; Ortiz, A M; Troncoso, P; Martinez, L; Jara, A; Valdes, G; Rosenberg, H

    2005-10-01

    Living donation is the best choice for kidney transplantation, obtaining long-lasting good results for the recipient. Some concern still remains regarding the donor's long-term health. Kidney biopsy was routinely performed in our donor population at the time of donation many years ago. We found the existence of morphological kidney disease in those samples, in spite of normal clinical evaluations before donation. We attempted to correlate those abnormalities with long-term clinical outcomes. Donors were at least 10 years after surgery. A medical interview, including the SF-36 Health Survey, laboratory evaluation, and ambulatory blood pressure monitoring was performed on 27 donors meeting the inclusion criteria. Two donors had died after donation from unrelated causes with no known nephropathy. Histological analysis showed abnormalities in 16 of 29 donors. We found an increased prevalence of hypertension compared to the general population. Interestingly, there was no proteinuria in the donor population, and none developed clinical nephropathy. All subjects felt emotionally rewarded with donation, stating that their lives had no limitations. Our results suggest that kidney biopsy is neither necessary nor useful prior to donation because, although many donors had morphological kidney disease, none developed clinical nephropathy in the long term.

  20. Adipose-Derived Stem Cells in Functional Bone Tissue Engineering: Lessons from Bone Mechanobiology

    PubMed Central

    Bodle, Josephine C.; Hanson, Ariel D.

    2011-01-01

    This review aims to highlight the current and significant work in the use of adipose-derived stem cells (ASC) in functional bone tissue engineering framed through the bone mechanobiology perspective. Over a century of work on the principles of bone mechanosensitivity is now being applied to our understanding of bone development. We are just beginning to harness that potential using stem cells in bone tissue engineering. ASC are the primary focus of this review due to their abundance and relative ease of accessibility for autologous procedures. This article outlines the current knowledge base in bone mechanobiology to investigate how the knowledge from this area has been applied to the various stem cell-based approaches to engineering bone tissue constructs. Specific emphasis is placed on the use of human ASC for this application. PMID:21338267

  1. Functional Genetic Targeting of Embryonic Kidney Progenitor Cells Ex Vivo

    PubMed Central

    Junttila, Sanna; Saarela, Ulla; Halt, Kimmo; Manninen, Aki; Pärssinen, Heikki; Lecca, M. Rita; Brändli, André W.; Sims-Lucas, Sunder; Skovorodkin, Ilya

    2015-01-01

    The embryonic mammalian metanephric mesenchyme (MM) is a unique tissue because it is competent to generate the nephrons in response to Wnt signaling. An ex vivo culture in which the MM is separated from the ureteric bud (UB), the natural inducer, can be used as a classic tubule induction model for studying nephrogenesis. However, technological restrictions currently prevent using this model to study the molecular genetic details before or during tubule induction. Using nephron segment-specific markers, we now show that tubule induction in the MM ex vivo also leads to the assembly of highly segmented nephrons. This induction capacity was reconstituted when MM tissue was dissociated into a cell suspension and then reaggregated (drMM) in the presence of human recombinant bone morphogenetic protein 7/human recombinant fibroblast growth factor 2 for 24 hours before induction. Growth factor–treated drMM also recovered the capacity for organogenesis when recombined with the UB. Cell tracking and time-lapse imaging of chimeric drMM cultures indicated that the nephron is not derived from a single progenitor cell. Furthermore, viral vector-mediated transduction of green fluorescent protein was much more efficient in dissociated MM cells than in intact mesenchyme, and the nephrogenic competence of transduced drMM progenitor cells was preserved. Moreover, drMM cells transduced with viral vectors mediating Lhx1 knockdown were excluded from the nephric tubules, whereas cells transduced with control vectors were incorporated. In summary, these techniques allow reproducible cellular and molecular examinations of the mechanisms behind nephrogenesis and kidney organogenesis in an ex vivo organ culture/organoid setting. PMID:25201883

  2. [Considerations when using creatinine as a measure of kidney function].

    PubMed

    Drion, I Iefke; Fokkert, M J Marion; Bilo, H J G Henk

    2013-01-01

    Reported serum creatinine concentrations can sometimes vary considerably, even when the renal function does less so or even not. This variation is partly due to true changes in actual serum concentration, and partly due to interferences in the measurement technique, thus not reflecting a true change in concentration. Increased or decreased endogenous creatinine production, ingested creatinine sources through meat eating or certain creatine formulations, and interference by either browning of chromogenic substances in Jaffe measurement techniques or promotors and inhibitors of enzymatic reaction methods do play a role. Reliable serum creatinine measurements are needed for renal function estimating equations. In screening circumstances and daily practice, chronic kidney disease staging is based on these estimated glomerular filtration rate values. Given the possible influences on reported serum creatinine concentrations, it is important for health care workers to remain critical when interpreting outcomes of renal function estimating equations and to not see every reported result based on an equation as a true reflection of renal function. PMID:24330793

  3. Interactions between thyroid and kidney function in pathological conditions of these organ systems: a review.

    PubMed

    van Hoek, Ingrid; Daminet, Sylvie

    2009-02-01

    Thyroidal status affects kidney function already in the embryonic stage. Thyroid hormones influence general tissue growth as well as tubular functions, electrolyte handling and neural input. Hyper- and hypo-functioning of the thyroid influences mature kidney function indirectly by affecting the cardiovascular system and the renal blood flow, and directly by affecting glomerular filtration, electrolyte pumps, the secretory and absorptive capacity of the tubuli, and the structure of the kidney. Hyperthyroidism accelerates several physiologic processes, a fact which is reflected in the decreased systemic vascular resistance, increased cardiac output (CO), increased renal blood flow (RBF), hypertrophic and hyperplastic tubuli, and increased glomerular filtration rate (GFR). Renal failure can progress due to glomerulosclerosis, proteinuria and oxidative stress. Hypothyroidism has a more negative influence on kidney function. Peripheral vascular resistance is increased with intrarenal vasoconstriction, and CO is decreased, causing decreased RBF. The influence on the different tubular functions is modest, although the transport capacity is below normal. The GFR is decreased up to 40% in hypothyroid humans. Despite the negative influences on glomerular and tubular kidney function, a hypothyroid state has been described as beneficial in kidney disease. Kidney disease is associated with decreased thyroid hormone concentrations caused by central effects and by changes in peripheral hormone metabolism and thyroid hormone binding proteins. Geriatric cats form an animal model of disease because both hyperthyroidism and chronic kidney disease (CKD) have high prevalence among them, and the link between thyroid and kidney affects the evaluation of clinical wellbeing and the possible treatment options. PMID:19133263

  4. Controversies Surrounding High-Protein Diet Intake: Satiating Effect and Kidney and Bone Health12

    PubMed Central

    Cuenca-Sánchez, Marta; Navas-Carrillo, Diana; Orenes-Piñero, Esteban

    2015-01-01

    Long-term consumption of a high-protein diet could be linked with metabolic and clinical problems, such as loss of bone mass and renal dysfunction. However, although it is well accepted that a high-protein diet may be detrimental to individuals with existing kidney dysfunction, there is little evidence that high protein intake is dangerous for healthy individuals. High-protein meals and foods are thought to have a greater satiating effect than high-carbohydrate or high-fat meals. The effect of high-protein diets on the modulation of satiety involves multiple metabolic pathways. Protein intake induces complex signals, with peptide hormones being released from the gastrointestinal tract and blood amino acids and derived metabolites being released in the blood. Protein intake also stimulates metabolic hormones that communicate information about energy status to the brain. Long-term ingestion of high amounts of protein seems to decrease food intake, body weight, and body adiposity in many well-documented studies. The aim of this article is to provide an extensive overview of the efficacy of high protein consumption in weight loss and maintenance, as well as the potential consequences in human health of long-term intake. PMID:25979491

  5. Controversies surrounding high-protein diet intake: satiating effect and kidney and bone health.

    PubMed

    Cuenca-Sánchez, Marta; Navas-Carrillo, Diana; Orenes-Piñero, Esteban

    2015-05-01

    Long-term consumption of a high-protein diet could be linked with metabolic and clinical problems, such as loss of bone mass and renal dysfunction. However, although it is well accepted that a high-protein diet may be detrimental to individuals with existing kidney dysfunction, there is little evidence that high protein intake is dangerous for healthy individuals. High-protein meals and foods are thought to have a greater satiating effect than high-carbohydrate or high-fat meals. The effect of high-protein diets on the modulation of satiety involves multiple metabolic pathways. Protein intake induces complex signals, with peptide hormones being released from the gastrointestinal tract and blood amino acids and derived metabolites being released in the blood. Protein intake also stimulates metabolic hormones that communicate information about energy status to the brain. Long-term ingestion of high amounts of protein seems to decrease food intake, body weight, and body adiposity in many well-documented studies. The aim of this article is to provide an extensive overview of the efficacy of high protein consumption in weight loss and maintenance, as well as the potential consequences in human health of long-term intake.

  6. Emerging role of autophagy in kidney function, diseases and aging.

    PubMed

    Huber, Tobias B; Edelstein, Charles L; Hartleben, Björn; Inoki, Ken; Jiang, Man; Koya, Daisuke; Kume, Shinji; Lieberthal, Wilfred; Pallet, Nicolas; Quiroga, Alejandro; Ravichandran, Kameswaran; Susztak, Katalin; Yoshida, Sei; Dong, Zheng

    2012-07-01

    Autophagy is a highly conserved process that degrades cellular long-lived proteins and organelles. Accumulating evidence indicates that autophagy plays a critical role in kidney maintenance, diseases and aging. Ischemic, toxic, immunological, and oxidative insults can cause an induction of autophagy in renal epithelial cells modifying the course of various kidney diseases. This review summarizes recent insights on the role of autophagy in kidney physiology and diseases alluding to possible novel intervention strategies for treating specific kidney disorders by modifying autophagy. PMID:22692002

  7. Bone mineral density, adiposity, and cognitive functions.

    PubMed

    Sohrabi, Hamid R; Bates, Kristyn A; Weinborn, Michael; Bucks, Romola S; Rainey-Smith, Stephanie R; Rodrigues, Mark A; Bird, Sabine M; Brown, Belinda M; Beilby, John; Howard, Matthew; Criddle, Arthur; Wraith, Megan; Taddei, Kevin; Martins, Georgia; Paton, Athena; Shah, Tejal; Dhaliwal, Satvinder S; Mehta, Pankaj D; Foster, Jonathan K; Martins, Ian J; Lautenschlager, Nicola T; Mastaglia, Francis; Laws, Simon M; Martins, Ralph N

    2015-01-01

    Cognitive decline and dementia due to Alzheimer's disease (AD) have been associated with genetic, lifestyle, and environmental factors. A number of potentially modifiable risk factors should be taken into account when preventive or ameliorative interventions targeting dementia and its preclinical stages are investigated. Bone mineral density (BMD) and body composition are two such potentially modifiable risk factors, and their association with cognitive decline was investigated in this study. 164 participants, aged 34-87 years old (62.78 ± 9.27), were recruited for this longitudinal study and underwent cognitive and clinical examinations at baseline and after 3 years. Blood samples were collected for apolipoprotein E (APOE) genotyping and dual energy x-ray absorptiometry (DXA) was conducted at the same day as cognitive assessment. Using hierarchical regression analysis, we found that BMD and lean body mass, as measured using DXA were significant predictors of episodic memory. Age, gender, APOE status, and premorbid IQ were controlled for. Specifically, the List A learning from California Verbal Learning Test was significantly associated with BMD and lean mass both at baseline and at follow up assessment. Our findings indicate that there is a significant association between BMD and lean body mass and episodic verbal learning. While the involvement of modifiable lifestyle factors in human cognitive function has been examined in different studies, there is a need for further research to understand the potential underlying mechanisms. PMID:25741279

  8. Bone mineral density, adiposity, and cognitive functions

    PubMed Central

    Sohrabi, Hamid R.; Bates, Kristyn A.; Weinborn, Michael; Bucks, Romola S.; Rainey-Smith, Stephanie R.; Rodrigues, Mark A.; Bird, Sabine M.; Brown, Belinda M.; Beilby, John; Howard, Matthew; Criddle, Arthur; Wraith, Megan; Taddei, Kevin; Martins, Georgia; Paton, Athena; Shah, Tejal; Dhaliwal, Satvinder S.; Mehta, Pankaj D.; Foster, Jonathan K.; Martins, Ian J.; Lautenschlager, Nicola T.; Mastaglia, Francis; Laws, Simon M.; Martins, Ralph N.

    2015-01-01

    Cognitive decline and dementia due to Alzheimer's disease (AD) have been associated with genetic, lifestyle, and environmental factors. A number of potentially modifiable risk factors should be taken into account when preventive or ameliorative interventions targeting dementia and its preclinical stages are investigated. Bone mineral density (BMD) and body composition are two such potentially modifiable risk factors, and their association with cognitive decline was investigated in this study. 164 participants, aged 34–87 years old (62.78 ± 9.27), were recruited for this longitudinal study and underwent cognitive and clinical examinations at baseline and after 3 years. Blood samples were collected for apolipoprotein E (APOE) genotyping and dual energy x-ray absorptiometry (DXA) was conducted at the same day as cognitive assessment. Using hierarchical regression analysis, we found that BMD and lean body mass, as measured using DXA were significant predictors of episodic memory. Age, gender, APOE status, and premorbid IQ were controlled for. Specifically, the List A learning from California Verbal Learning Test was significantly associated with BMD and lean mass both at baseline and at follow up assessment. Our findings indicate that there is a significant association between BMD and lean body mass and episodic verbal learning. While the involvement of modifiable lifestyle factors in human cognitive function has been examined in different studies, there is a need for further research to understand the potential underlying mechanisms. PMID:25741279

  9. NOTCHing the bone: Insights into multi-functionality

    PubMed Central

    Engin, Feyza; Lee, Brendan

    2010-01-01

    Evolutionarily conserved Notch signaling plays a critical role during embryonic and postnatal life. The importance of Notch signaling in the determination of cell fate, and the spatio-temporal regulation of proliferation, differentiation and apoptosis has been demonstrated in various different organ systems. However, how Notch signaling affects the bone development was unknown until now. The in vivo effects of Notch signaling in lineage commitment, bone formation and bone resorption were demonstrated in recent studies. In addition to regulation of osteoblastogenesis, osteoblast directed osteoclastogenesis by Notch signaling revealed a dimorphic effect for this signaling pathway providing another example of such in bone development. Moreover, identification of the cross-talk between the hematopoietic stem cell niche and osteoblasts through Notch signaling also suggested another important role for Notch signaling, i.e., the coupling of cellular components of the bone microenvironment. The association between the gain and loss of function of Notch activity in bone pathology highlights Notch as a potentially novel therapeutic target for the treatment of metabolic bone disease and bone cancer. In this review, we will focus primarily on the regulation of bone cells, i.e., osteoblasts and osteoclasts by Notch signaling. We will also review the importance of Notch in specifying bone-hematopoietic stem cell niche interactions within the bone microenvironment. Finally, we will discuss potential clinical implications and future directions for this field. PMID:19520195

  10. Primary Squamous Cell Carcinoma of Kidney Associated With Large Calculus in Non-functioning Kidney: A Case Report.

    PubMed

    Kumar, Sanjay; Tomar, Vinay; Yadav, Sher S; Udawat, Hema; Priyadarshi, Shivam; Vyas, Nachiket; Agarwal, Neeraj

    2016-09-01

    Primary squamous cell carcinoma (SCC) of renal pelvis is a rare neoplasm. A 75-year old male presented with history of chronic dull aching pain in left flank region for last 10-years with history of left pyelolithotomy about 30-years back. After proper workup, large calculus with heterogeneous density mass detected in nonfunctioning left kidney. After radical nephrectomy, histopathological examination revealed squamous cell carcinoma of renal pelvis. SCC should be suspected in a patient with long history of renal calculous and associated mass in non functioning kidney. PMID:27313983

  11. Renal artery stent in solitary functioning kidneys: 77% of benefit

    PubMed Central

    Ma, Zhenjiang; Liu, Liangshuai; Zhang, Bing; Chen, Wei; Yang, Jianyong; Li, Heping

    2016-01-01

    Abstract Background: Solitary functioning kidney (SFK) is tough issue to address in clinical, mostly developed from renal artery stenosis (RAS) in adults. Although renal artery stent is widely used to help SFK patients, the efficacy of the stent is still disputable. This study is aimed at reviewing a series of SFK cases to draw a conclusion about the efficacy of renal artery stent. Methods: All related papers published in PubMed, Web of Science, EMBASE, and Cochrane Library were searched. Studies or subsets were included only if they satisfied certain criteria. The benefit rate which equaled the rate of improvement subjoining the rate of stabilization was calculated. All analyses were conducted with Stata version 12.0 (Stata Corporation, College Station, TX). Results: According to 7 papers on the efficacy of renal artery stent, 253 SFK patients were included. The result revealed that the renal artery stent could help SFK patients to improve or stabilize their renal function (RF). The benefit rate was 0.77, with 95% confidence interval between 0.72 and 0.83. Conclusions: With proper patient selection, renal artery stent could benefit SFK patients with a percentage odd of 0.77 to improve or stabilize the RF. PMID:27603380

  12. Measuring dynamic kidney function in an undergraduate physiology laboratory.

    PubMed

    Medler, Scott; Harrington, Frederick

    2013-12-01

    Most undergraduate physiology laboratories are very limited in how they treat renal physiology. It is common to find teaching laboratories equipped with the capability for high-resolution digital recordings of physiological functions (muscle twitches, ECG, action potentials, respiratory responses, etc.), but most urinary laboratories still rely on a "dipstick" approach of urinalysis. Although this technique can provide some basic insights into the functioning of the kidneys, it overlooks the dynamic processes of filtration, reabsorption, and secretion. In the present article, we provide a straightforward approach of using renal clearance measurements to estimate glomerular filtration rate, fractional water reabsorption, glucose clearance, and other physiologically relevant parameters. The estimated values from our measurements in laboratory are in close agreement with those anticipated based on textbook parameters. For example, we found glomerular filtration rate to average 124 ± 45 ml/min, serum creatinine to be 1.23 ± 0.4 mg/dl, and fractional water reabsorption to be ∼96.8%. Furthermore, analyses for the class data revealed significant correlations between parameters like fractional water reabsorption and urine concentration, providing opportunities to discuss urine concentrating mechanisms and other physiological processes. The procedures outlined here are general enough that most undergraduate physiology laboratory courses should be able to implement them without difficulty. PMID:24292917

  13. The Association between Elevated Levels of Peripheral Serotonin and Its Metabolite – 5-Hydroxyindoleacetic Acid and Bone Strength and Metabolism in Growing Rats with Mild Experimental Chronic Kidney Disease

    PubMed Central

    Oksztulska-Kolanek, Ewa; Znorko, Beata; Domaniewski, Tomasz; Rogalska, Joanna; Roszczenko, Alicja; Brzóska, Małgorzata Michalina; Pryczynicz, Anna; Kemona, Andrzej

    2016-01-01

    Chronic kidney disease (CKD) is associated with disturbances in bone strength and metabolism. The alterations of the serotonergic system are also observed in CKD. We used the 5/6 nephrectomy model of CKD to assess the impact of peripheral serotonin and its metabolite– 5-hydroxyindoleacetic acid on bone biomechanical properties and metabolism in growing rats. The animals were sacrificed one and three months after nephrectomy. Biomechanical properties were determined on two different bone types: the cortical bone of the femoral diaphysis using three-point bending test and the mixed cortico-trabecular bone by the bending test of the femoral neck. Biomechanical tests revealed preserved cortical bone strength, whereas work to fracture (W) and yield load (Fy) of mixed cortico-trabecular bone were significantly lower in CKD compared to controls. Serum activity of alkaline phosphatase (ALP), a bone formation marker, and tartrate-resistant acid phosphatase (TRACP 5b) reflecting bone resorption, were similar in CKD and controls. ALP was associated with lower femoral stiffness and strength, and higher displacements and W. TRACP 5b was inversely associated with cortical Fu and W. The elevated peripheral serotonergic system in CKD was: inversely associated with stiffness but positively related to the displacements and W; inversely associated with cortical Fy but positively correlated with this parameter in cortico-trabecular bone; inversely associated with ALP in controls but positively correlated with this biomarker in CKD animals. In conclusion, this study demonstrates the distinct effect of mild degree of CKD on bone strength in rapidly growing rats. The impaired renal function affects the peripheral serotonin metabolism, which in turn may influence the strength and metabolism of bones in these rats. This relationship seems to be beneficial on the biomechanical properties of the cortico-trabecular bone, whereas the cortical bone strength can be potentially reduced. PMID

  14. Paricalcitol and endothelial function in chronic kidney disease trial.

    PubMed

    Zoccali, Carmine; Curatola, Giuseppe; Panuccio, Vincenzo; Tripepi, Rocco; Pizzini, Patrizia; Versace, Marica; Bolignano, Davide; Cutrupi, Sebastiano; Politi, Raffaele; Tripepi, Giovanni; Ghiadoni, Lorenzo; Thadhani, Ravi; Mallamaci, Francesca

    2014-11-01

    Altered vitamin D metabolism and low levels of the active form of this vitamin, 1,25-dihydroxy-vitamin D, is a hallmark of chronic kidney disease (CKD), but there is still no randomized controlled trial testing the effect of active forms of vitamin D on vascular function in patients with CKD. Paricalcitol and ENdothelial fuNction in chronic kidneY disease (PENNY) is a double-blinded randomized controlled trial (ClinicalTrials.gov, NCT01680198) testing the effect of an active form of vitamin D, paricalcitol (2 μg/d×12 weeks) on endothelium-dependent and endothelium-independent vasodilatation in 88 patients with stage 3 to 4 CKD and parathormone >65 pg/mL (paricalcitol, n=44; placebo, n=44). Paricalcitol treatment reduced parathormone (-75 pg/mL; 95% confidence interval, -90 to -60), whereas parathormone showed a small rise during placebo (21 pg/mL; 95% confidence interval, 5-36). Blood pressure did not change in both study arms. Baseline flow-mediated dilation was identical in patients on paricalcitol (3.6±2.9%) and placebo (3.6±2.9%) groups. After 12 weeks of treatment, flow-mediated dilation rose in the paricalcitol but not in the placebo group, and the between-group difference in flow-mediated dilation changes (the primary end point, 1.8%; 95% confidence interval, 0.3-3.1%) was significant (P=0.016), and the mean proportional change in flow-mediated dilation was 61% higher in paricalcitol-treated patients than in placebo-treated patients. Such an effect was abolished 2 weeks after stopping the treatment. No effect of paricalcitol on endothelium-independent vasodilatation was registered. Paricalcitol improves endothelium-dependent vasodilatation in patients with stage 3 to 4 CKD. Findings in this study support the hypothesis that vitamin D may exert favorable effects on the cardiovascular system in patients with CKD.

  15. The Tacrolimus Metabolism Rate Influences Renal Function after Kidney Transplantation

    PubMed Central

    Thölking, Gerold; Fortmann, Christian; Koch, Raphael; Gerth, Hans Ulrich; Pabst, Dirk; Pavenstädt, Hermann; Kabar, Iyad; Hüsing, Anna; Wolters, Heiner

    2014-01-01

    The effective calcineurin inhibitor (CNI) tacrolimus (Tac) is an integral part of the standard immunosuppressive regimen after renal transplantation (RTx). However, as a potent CNI it has nephrotoxic potential leading to impaired renal function in some cases. Therefore, it is of high clinical impact to identify factors which can predict who is endangered to develop CNI toxicity. We hypothesized that the Tac metabolism rate expressed as the blood concentration normalized by the dose (C/D ratio) is such a simple predictor. Therefore, we analyzed the impact of the C/D ratio on kidney function after RTx. Renal function was analyzed 1, 2, 3, 6, 12 and 24 months after RTx in 248 patients with an immunosuppressive regimen including basiliximab, tacrolimus, mycophenolate mofetil and prednisolone. According to keep the approach simple, patients were split into three C/D groups: fast, intermediate and slow metabolizers. Notably, compared with slow metabolizers fast metabolizers of Tac showed significantly lower estimated glomerular filtration rate (eGFR) values at all the time points analyzed. Moreover, fast metabolizers underwent more indication renal biopsies (p = 0.006) which revealed a higher incidence of CNI nephrotoxicity (p = 0.015) and BK nephropathy (p = 0.024) in this group. We herein identified the C/D ratio as an easy calculable risk factor for the development of CNI nephrotoxicity and BK nephropathy after RTx. We propose that the simple C/D ratio should be taken into account early in patient’s risk management strategies. PMID:25340655

  16. The tacrolimus metabolism rate influences renal function after kidney transplantation.

    PubMed

    Thölking, Gerold; Fortmann, Christian; Koch, Raphael; Gerth, Hans Ulrich; Pabst, Dirk; Pavenstädt, Hermann; Kabar, Iyad; Hüsing, Anna; Wolters, Heiner; Reuter, Stefan; Suwelack, Barbara

    2014-01-01

    The effective calcineurin inhibitor (CNI) tacrolimus (Tac) is an integral part of the standard immunosuppressive regimen after renal transplantation (RTx). However, as a potent CNI it has nephrotoxic potential leading to impaired renal function in some cases. Therefore, it is of high clinical impact to identify factors which can predict who is endangered to develop CNI toxicity. We hypothesized that the Tac metabolism rate expressed as the blood concentration normalized by the dose (C/D ratio) is such a simple predictor. Therefore, we analyzed the impact of the C/D ratio on kidney function after RTx. Renal function was analyzed 1, 2, 3, 6, 12 and 24 months after RTx in 248 patients with an immunosuppressive regimen including basiliximab, tacrolimus, mycophenolate mofetil and prednisolone. According to keep the approach simple, patients were split into three C/D groups: fast, intermediate and slow metabolizers. Notably, compared with slow metabolizers fast metabolizers of Tac showed significantly lower estimated glomerular filtration rate (eGFR) values at all the time points analyzed. Moreover, fast metabolizers underwent more indication renal biopsies (p = 0.006) which revealed a higher incidence of CNI nephrotoxicity (p = 0.015) and BK nephropathy (p = 0.024) in this group. We herein identified the C/D ratio as an easy calculable risk factor for the development of CNI nephrotoxicity and BK nephropathy after RTx. We propose that the simple C/D ratio should be taken into account early in patient's risk management strategies. PMID:25340655

  17. Enhanced expression of bone morphogenetic protein system in aldosterone-treated mouse kidneys.

    PubMed

    Suzuki, Jiro; Otsuka, Fumio; Matsumoto, Yoshinori; Inagaki, Kenichi; Miyoshi, Tomoko; Takeda, Masaya; Tsukamoto, Naoko; Nakamura, Eri; Ogura, Kanako; Makino, Hirofumi

    2012-03-01

    Recent studies have shown that bone morphogenetic proteins (BMPs), particularly BMP-7, have an inhibitory role in the development of various renal diseases. We previously reported antagonistic effects of BMPs on renal mesangial cell proliferation induced by aldosterone (Aldo) in vitro. In the present study, we investigated in vivo roles of BMPs in Aldo-induced renal glomerular injury. BALB/c mice aged 6 weeks were treated with Aldo injection (5 μg per day, intraperitoneally) and/or oral administration of high-salt (2%) water for 9 weeks. Systemic blood pressure, body weight, kidney weight and daily proteinuria were not significantly changed by Aldo and/or high-salt treatment. However, renal histological examination revealed increases in glomerular cellularity and glomerular diameter in the groups treated with Aldo injection and high-salt administration. Immunohistochemistry demonstrated expression of BMP-4 and -7 in the glomerular mesangial region. Aldo causes renal glomerular damage by stimulating mesangial cell proliferation and increasing extracellular matrix via the mineralocorticoid receptor (MR). MR messenger RNA (mRNA) expression in the renal cortex was transiently increased by 3-week treatment with Aldo and high-salt intake, but was decreased by 9-week treatment. Furthermore, the expression levels of BMP-4 and -7 mRNA were enhanced in the renal cortex treated with Aldo and high-salt administration. These findings suggest that the renal BMP system is activated by Aldo under the condition of high-salt exposure, which may have a key role in antagonizing glomerular damage in vivo.

  18. Cross-sectional survey of kidney function in refinery employees

    SciTech Connect

    Viau, C.; Bernard, A.; Lauwerys, R.; Buchet, J.P.; Quaeghebeur, L.; Cornu, M.E.; Phillips, S.C.; Mutti, A.; Lucertini, S.; Franchini, I.

    1987-01-01

    We examined sensitive biochemical and immunological markers of kidney function and damage in 53 male oil refinery workers exposed to hydrocarbons and compared their results with those of a control group of 61 age-matched nonexposed males. The mean duration of employment of exposed males was 11 years. The current levels of exposure to a variety of aliphatic and aromatic hydrocarbons, as determined by personal monitoring, were well below the current threshold limit values. No difference was found in the urinary tubular parameters beta-N-acetyl-D-glucosaminidase, beta 2-microglobulin (beta 2-m) and retinol-binding protein. Similar serum beta 2-m levels indicated no impairment of the glomerular filtration rate in the exposed workers. The levels of circulating immune complexes were also identical in both groups. The mean albuminuria was slightly higher (p less than .005) in the exposed group in a quantitative assay but was not dipstick-detectable. The mean urinary excretion of a renal antigen was also higher (p less than .05) in the exposed group and correlated with the excretion of albumin. Finally, slightly higher titers of anti-laminin antibodies were found in five exposed employees, but this was not accompanied by an increased albuminuria. We conclude that chronic low-level hydrocarbon exposure in these refinery workers does not lead to clinically significant renal abnormalities. Nevertheless, some findings are consistent with the possible role of hydrocarbon exposure in the induction of renal disturbances.

  19. The regulation and function of microRNAs in kidney diseases

    PubMed Central

    Wei, Qingqing; Mi, Qing-Sheng; Dong, Zheng

    2013-01-01

    MicroRNAs (miRNA) are endogenous short non-coding RNAs which regulate virtually all major cellular processes by inhibiting target gene expression. In kidneys, miRNAs have been implicated in renal development, homeostasis and physiological functions. In addition, miRNAs play important roles in the pathogenesis of various renal diseases, including renal carcinoma, diabetic nephropathy, acute kidney injury, hypertensive nephropathy, polycystic kidney disease and others. Furthermore, miRNAs may have great values as biomarkers in different kidney diseases. PMID:23794512

  20. [Pharmaceutical therapy of bone metabolism disorders in chronic kidney disease mineral bone disorder (CKD-MBD) with special respect to antiresorptive substances].

    PubMed

    Lehmann, G; Wolf, G

    2014-05-01

    Disturbances in bone and mineral turnover are common complications in patients with impaired renal function. Besides an increased risk for cardiovascular events they promote skeletal events, such as bone pain and fractures. Evidence for the antifracture efficacy of antiresorptive and osteoanabolic treatment strategies has only been demonstrated for patients with osteoporosis. The use of osteotropic drugs in patients with impaired renal function requires large randomized placebo-controlled trials. PMID:24811357

  1. The associations of physical activity and television watching with change in kidney function in older adults

    PubMed Central

    Hawkins, Marquis; Newman, Anne B.; Madero, Magdalena; Patel, Kushang V.; Shlipak, Michael G.; Cooper, Jennifer; Johansen, Kirsten L.; Navaneethan, Sankar D.; Fried, Linda F

    2015-01-01

    BACKGROUND Physical activity (PA) may play a role in preserving kidney health. The purpose of this study was to determine if PA and sedentary behavior are associated with incident chronic kidney disease (CKD) and change in kidney function in older adults. METHODS The Health, Aging and Body Composition study is a prospective cohort of 3,075 well-functioning older adults. PA and television watching was measured by self-report and serum cystatin C was used to estimate glomerular filtration rate (eGFR). CKD was defined as an eGFR <60 ml/min/1.73m2. Rapid kidney function decline was defined as an annual loss in eGFR of >3ml/min/1.73m2. Discrete survival analysis was used to determine if baseline PA and television watching were related to 10-year cumulative incidence of CKD and rapid decline in kidney function. RESULTS Individuals who reported watching television >3 hours/day had a higher risk of incident CKD (HR 1.34; 95% CI: 1.09, 1.65) and experiencing a rapid decline in kidney function (HR 1.26; 95% CI 1.05, 1.52) compared to individuals who watched television < 2 hours/day. PA was not related to either outcome. CONCLUSIONS High levels of television watching are associated with declining kidney function; the mechanisms that underlie this association need further study. PMID:24762526

  2. Awareness level of kidney functions and diseases among adults in a Nigerian population.

    PubMed

    Okwuonu, C G; Chukwuonye, I I; Ogah, S O; Abali, C; Adejumo, O A; Oviasu, E

    2015-01-01

    The prevalence of kidney diseases is on the increase in Nigeria. The cost of its management is far beyond the reach of an average patient. Prevention is thus of paramount importance and awareness of kidney diseases will help in its prevention. The aim of this study is to assess the level of awareness of kidney functions and diseases among adults in a Nigerian population. A semi-structured, researcher - administered questionnaire was the tool for data collection. Four hundred and thirty-five questionnaires were analyzed. There were 160 males (36.8%) and 275 females (63.2%). The mean age was 42.8 ± 14 years with a range of 18-78 years. Among these, 82.1% were aware of the kidneys' involvement in waste removal from the body through urine while 36% and 29% were aware of kidneys' role in blood pressure regulation and blood production, respectively. Only 26.6% correctly identified at least two basic functions of the kidneys. Also, 32.6% of the respondents were aware of at least three common causes of kidney diseases in our environment. Majority of the respondents (70.7%) did not know that kidney diseases could be inherited. Furthermore, belief in alternative therapy for kidney disease was documented in 83.2%, while unawareness of dialysis as a treatment modality was recorded in 68% of the respondents. The awareness of kidney functions and diseases among the population is poor. Measures are needed to improve this to stem the rising prevalence of chronic kidney disease in Nigeria.

  3. Assessment of the human trabecular bone structure using Minkowski Functionals

    NASA Astrophysics Data System (ADS)

    Monetti, Roberto; Bauer, Jan; Sidorenko, Irina; Müller, Dirk; Rummeny, Ernst; Matsuura, Maiko; Eckstein, Felix; Lochmüller, Eva-Maria; Zysset, Philippe; Räth, Christoph

    2009-02-01

    Osteoporosis is bone disease which leads to low bone mass and the deterioration of the bone micro-architecture. Rarefied bone structures are more susceptible to fractures which are the worst complications of osteoporosis. Bone mineral density is considered to be the standard technique for predicting the bone strength and the effects of drug therapy. However, other properties of the bone like the trabecular structure and connectivity may also contribute. Here, we analyze μ-CT tomographic images for a sample of 151 specimens taken from human vertebrae in vitro. Using the local structural characterization of the bone trabecular network given by isotropic and anisotropic scaling indices, we generate structural decompositions of the μ-CT image and quantify the resulting patterns applying topological measures, namely the Minkowski Functionals (MF). The values of the MF are then used to assess the biomechanical properties of trabecular bone via a correlation analysis. Biomechanical properties were quantified by the maximum compressive strength calculated in an uniaxial compression test. We compare our results with those obtained using standard global histomorphometric parameters and the bone fraction BV/TV . Results obtained using structural decompositions obtained from anisotropic scaling indices were superior to those given by isotropic scaling indices. The highest correlation coefficient (r = 0.72) was better than those obtained for the standard global histomorphometric parameters and only comparable with the one given by BV/TV. Our results suggest that plate-like and dense column-like structures aligned along the direction of the external force play a relevant role for the prediction of bone strength.

  4. Fructus ligustri lucidi ethanol extract improves bone mineral density and properties through modulating calcium absorption-related gene expression in kidney and duodenum of growing rats.

    PubMed

    Feng, Xin; Lyu, Ying; Wu, Zhenghao; Fang, Yuehui; Xu, Hao; Zhao, Pengling; Xu, Yajun; Feng, Haotian

    2014-04-01

    Optimizing peak bone mass in early life is one of key preventive strategies against osteoporosis. Fructus ligustri lucidi (FLL), the fruit of Ligustrum lucidum Ait., is a commonly prescribed herb in many kidney-tonifying traditional Chinese medicinal formulas to alleviate osteoporosis. Previously, FLL extracts have been shown to have osteoprotective effect in aged or ovariectomized rats. In the present study, we investigated the effects of FLL ethanol extract on bone mineral density (BMD) and mechanical properties in growing male rats and explored the underlying mechanisms. Male weaning Sprague-Dawley rats were randomized into four groups and orally administrated for 4 months an AIN-93G formula-based diet supplementing with different doses of FLL ethanol extract (0.40, 0.65, and 0.90 %) or vehicle control, respectively. Then calcium balance, serum level of Ca, P, 25(OH)2D3, 1,25(OH)2D3, osteocalcin (OCN), C-terminal telopeptide of type I collagen (CTX-I), and parathyroid hormone, bone microarchitecture, and calcium absorption-related genes expression in duodenum and kidney were analyzed. The results demonstrated that FLL ethanol extract increased BMD of growing rats and improved their bone microarchitecture and mechanical properties. FLL ethanol extract altered bone turnover, as evidenced by increasing a bone formation maker, OCN, and decreasing a bone resorption maker, CTX-I. Intriguingly, both Ca absorption and Ca retention rate were elevated by FLL ethanol extract treatment, possibly through the mechanisms of up-regulating the transcriptions of calcitropic genes in kidney (1α-hydroxylase) and duodenum (vitamin D receptor, calcium transporter calbindin-D9k, and transient receptor potential vanilloid 6). In conclusion, FLL ethanol extract increased bone mass gain and improved bone properties via modulating bone turnover and up-regulating calcium absorption-related gene expression in kidney and duodenum, which could then activate 1,25(OH)2D3-dependent calcium

  5. Fructus ligustri lucidi ethanol extract improves bone mineral density and properties through modulating calcium absorption-related gene expression in kidney and duodenum of growing rats.

    PubMed

    Feng, Xin; Lyu, Ying; Wu, Zhenghao; Fang, Yuehui; Xu, Hao; Zhao, Pengling; Xu, Yajun; Feng, Haotian

    2014-04-01

    Optimizing peak bone mass in early life is one of key preventive strategies against osteoporosis. Fructus ligustri lucidi (FLL), the fruit of Ligustrum lucidum Ait., is a commonly prescribed herb in many kidney-tonifying traditional Chinese medicinal formulas to alleviate osteoporosis. Previously, FLL extracts have been shown to have osteoprotective effect in aged or ovariectomized rats. In the present study, we investigated the effects of FLL ethanol extract on bone mineral density (BMD) and mechanical properties in growing male rats and explored the underlying mechanisms. Male weaning Sprague-Dawley rats were randomized into four groups and orally administrated for 4 months an AIN-93G formula-based diet supplementing with different doses of FLL ethanol extract (0.40, 0.65, and 0.90 %) or vehicle control, respectively. Then calcium balance, serum level of Ca, P, 25(OH)2D3, 1,25(OH)2D3, osteocalcin (OCN), C-terminal telopeptide of type I collagen (CTX-I), and parathyroid hormone, bone microarchitecture, and calcium absorption-related genes expression in duodenum and kidney were analyzed. The results demonstrated that FLL ethanol extract increased BMD of growing rats and improved their bone microarchitecture and mechanical properties. FLL ethanol extract altered bone turnover, as evidenced by increasing a bone formation maker, OCN, and decreasing a bone resorption maker, CTX-I. Intriguingly, both Ca absorption and Ca retention rate were elevated by FLL ethanol extract treatment, possibly through the mechanisms of up-regulating the transcriptions of calcitropic genes in kidney (1α-hydroxylase) and duodenum (vitamin D receptor, calcium transporter calbindin-D9k, and transient receptor potential vanilloid 6). In conclusion, FLL ethanol extract increased bone mass gain and improved bone properties via modulating bone turnover and up-regulating calcium absorption-related gene expression in kidney and duodenum, which could then activate 1,25(OH)2D3-dependent calcium

  6. A Teaching Aid for Physiologists--Simulation of Kidney Function

    ERIC Educational Resources Information Center

    Packer, J. S.; Packer, J. E.

    1977-01-01

    Presented is the development of a simulation model of the facultative water transfer mechanism of the mammalian kidney. Discussion topics include simulation philosophy, simulation facilities, the model, and programming the model as a teaching aid. Graphs illustrate typical program displays. A listing of references concludes the article. (MA)

  7. Failure to visualize acutely injured kidneys with technetium-99m DMSA does not preclude recoverable function

    SciTech Connect

    Taylor, A. Jr.; Akiya, F.; Gregory, M.C.

    1986-03-01

    A 35-yr-old patient developed severe acute tubular necrosis requiring hemodialysis. A (99mTc)dimercaptosuccinic acid scan of the kidneys showed no renal uptake at 4 or 24 hr, but the patient subsequently recovered normal renal function as judged by a normal serum creatinine. Based on this case report and a review of the literature, one cannot assume irreversible loss of function in patients with acute renal failure, based on the absence of radiopharmaceutical uptake by the kidneys.

  8. Diving into the abyss of undiscovered kidney function-related factors.

    PubMed

    Limou, Sophie; Parsa, Afshin

    2016-10-01

    Meta-analyses and reintroduction of biological knowledge are 2 classic strategies to increase genomewide association study statistical power and overcome the burden of multiple testing. These strategies have empowered the nephrology community to discover new signals associated with kidney function and nephropathies. Here we discuss the current genomewide association study limitations and strategies to dive further into the abyss of yet-to-be discovered kidney function-related factors. PMID:27633863

  9. Molecular anatomy of the kidney: what have we learned from gene expression and functional genomics?

    PubMed Central

    Rumballe, Bree; Georgas, Kylie; Wilkinson, Lorine

    2011-01-01

    The discipline of paediatric nephrology encompasses the congenital nephritic syndromes, renal dysplasias, neonatal renal tumours, early onset cystic disease, tubulopathies and vesicoureteric reflux, all of which arise due to defects in normal kidney development. Indeed, congenital anomalies of the kidney and urinary tract (CAKUT) represent 20–30% of prenatal anomalies, occurring in 1 in 500 births. Developmental biologists have studied the anatomical and morphogenetic processes involved in kidney development for the last five decades. However, with the advent of transgenic mice, the sequencing of the genome, improvements in mutation detection and the advent of functional genomics, our understanding of the molecular basis of kidney development has grown significantly. Here we discuss how the advent of new genetic and genomics approaches has added to our understanding of kidney development and paediatric renal disease, as well as identifying areas in which we are still lacking knowledge. PMID:20049614

  10. Delayed Graft Function in Living-Donor Kidney Transplant: A Middle Eastern Perspective.

    PubMed

    Al Otaibi, Torki; Ahmadpoor, Pedram; Allawi, Ali Abdulmajid Dyab; Habhab, Wael Taher; Khatami, Mohammad Reza; Nafar, Mohsen; Glotz, Denis

    2016-02-01

    With an increased incidence of living-donor kidney transplants, in response to increasing unmet needs for renal transplant, a clear understanding of determinants of posttransplant outcomes is essential. The importance of delayed graft function in deceased-donor kidney transplant is now part of conventional medical wisdom, due to the large amount of evidence focused on this aspect. However, the same is not true for living-donor kidney transplant, partly due to lack of evidence on this crucial clinical question and partly due to lack of awareness about this issue. The current review aims to highlight the importance of delayed graft function as a crucial determinant of outcomes in living-donor kidney transplant. An exhaustive search of online medical databases was performed with appropriate search criteria to collect evidence about delayed graft function after living-donor kidney transplant, with a special focus on studies from the Middle East. Data on incidence, impact, risk factors, and possible prevention modalities of delayed graft function in patients undergoing living-donor kidney transplant are presented. A key finding of this review is that contemporary incidence rates reported from the Middle East are comparatively higher than those reported from outside the region. Although in absolute terms the incidence is lower than deceased donor kidney transplant, the effects of delayed graft function on graft rejection and graft and patient survival are sufficiently large to warrant the formulation of specific treatment protocols. Key to formulating prevention and treatment strategies is identifying discrete risk factors for delayed graft function. Although this evidence is scant, an overview has been provided. Further studies examining different aspects of delayed graft function incidence after living-donor kidney transplant are urgently needed to address a so far little known clinical question.

  11. Age dependent regulation of bone-mass and renal function by the MEPE ASARM-motif

    PubMed Central

    Zelenchuk, Lesya V; Hedge, Anne-Marie; Rowe, Peter S N

    2015-01-01

    Context Mice with null mutations in Matrix Extracellular Phosphoglycoprotein (MEPE) have increased bone mass, increased trabecular density and abnormal cancellous bone (MN-mice). These defects worsen with age and MEPE over expression induces opposite effects. Also, Genome Wide Association studies show MEPE plays a major role in bone mass. We hypothesized the conserved C-terminal MEPE ASARM-motif is chiefly responsible for regulating bone mass and trabecular structure. Design To test our theory we over expressed C-terminal ASARM-peptide in MN-mice using the Col1α1 promoter (MNAt-mice). We then compared the bone and renal phenotypes of the MNAt-mouse with the MN-mouse and the X-linked hypophosphatemic rickets mouse (HYP). The HYP mouse over expresses ASARM-peptides and is defective for the PHEX gene. Results The MN-mouse developed increased bone mass, bone strength and trabecular abnormalities that worsened markedly with age. Defects in bone formation were chiefly responsible with suppressed sclerostin and increased active β-catenin. Increased uric acid levels also suggested abnormalities in purine-metabolism and a reduced fractional excretion of uric acid signaled additional renal transport changes. The MN mouse developed a worsening hyperphosphatemia and reduced FGF23 with age. An increase in the fractional excretion of phosphate (FEP) despite the hyperphosphatemia confirms an imbalance in kidney-intestinal phosphate regulation. Also, the MN mice showed an increased creatinine clearance suggesting hyperfiltration. A reversal of the MN bone-renal phenotype changes occurred with the MNAt mice including the apparent hyperfiltration. The MNAt mice also developed localized hypomineralization, hypophosphatemia and increased FGF23. Conclusions The C-terminal ASARM-motif plays a major role in regulating bone–mass and cancellous structure as mice age. In healthy mice, the processing and release of free ASARM-peptide is chiefly responsible for preserving normal bone and

  12. Variation in Cancer Incidence among Patients with ESRD during Kidney Function and Nonfunction Intervals.

    PubMed

    Yanik, Elizabeth L; Clarke, Christina A; Snyder, Jon J; Pfeiffer, Ruth M; Engels, Eric A

    2016-05-01

    Among patients with ESRD, cancer risk is affected by kidney dysfunction and by immunosuppression after transplant. Assessing patterns across periods of dialysis and kidney transplantation may inform cancer etiology. We evaluated 202,195 kidney transplant candidates and recipients from a linkage between the Scientific Registry of Transplant Recipients and cancer registries, and compared incidence in kidney function intervals (time with a transplant) with incidence in nonfunction intervals (waitlist or time after transplant failure), adjusting for demographic factors. Incidence of infection-related and immune-related cancer was higher during kidney function intervals than during nonfunction intervals. Incidence was most elevated for Kaposi sarcoma (hazard ratio [HR], 9.1; 95% confidence interval (95% CI), 4.7 to 18), non-Hodgkin's lymphoma (HR, 3.2; 95% CI, 2.8 to 3.7), Hodgkin's lymphoma (HR, 3.0; 95% CI, 1.7 to 5.3), lip cancer (HR, 3.4; 95% CI, 2.0 to 6.0), and nonepithelial skin cancers (HR, 3.8; 95% CI, 2.5 to 5.8). Conversely, ESRD-related cancer incidence was lower during kidney function intervals (kidney cancer: HR, 0.8; 95% CI, 0.7 to 0.8 and thyroid cancer: HR, 0.7; 95% CI, 0.6 to 0.8). With each successive interval, incidence changed in alternating directions for non-Hodgkin's lymphoma, melanoma, and lung, pancreatic, and nonepithelial skin cancers (higher during function intervals), and kidney and thyroid cancers (higher during nonfunction intervals). For many cancers, incidence remained higher than in the general population across all intervals. These data indicate strong short-term effects of kidney dysfunction and immunosuppression on cancer incidence in patients with ESRD, suggesting a need for persistent cancer screening and prevention. PMID:26563384

  13. Spatial mapping of functional pelvic bone marrow using FLT PET

    PubMed Central

    McGuire, Sarah M.; Menda, Yusuf; Boles Ponto, Laura L.; Gross, Brandie; TenNapel, Mindi; Smith, Brian; Bayouth, John E.

    2014-01-01

    The purpose of this study was to determine the ability of regions identified with bony landmarks on CT imaging to accurately represent active bone marrow when compared to FLT PET imaging. These surrogate regions could then be used to create a bone marrow sparing radiation therapy plan when FLT PET imaging is not available. WB FLT PET images were obtained of 18 subjects prior to chemoradiation therapy. The FLT image of each subject was registered to a CT image acquired for that subject to obtain anatomic information of the pelvis. Seventeen regions were identified based on features of the pelvic bones, sacrum, and femoral heads. The probability of FLT uptake being located in each of 17 different CT-based regions of the bony pelvis was calculated using Tukey’s multiple comparison test. Statistical analysis of FLT uptake in the pelvis indicated 4 distinct groups within the 17 regions that had similar levels of activity. Regions located in the central part of the pelvis including the superior part of the sacrum, the inner halves of the iliac crests and the L5 vertebral body had greater FLT uptake than those in the peripheral regions (p < 0.05). We have developed a method to use CT defined pelvic bone regions to represent FLT PET identified functional bone marrow. Individual regions that have a statistically significant probability of containing functional bone marrow can be used as avoidance regions to reduce radiation dose to functional bone marrow in radiation therapy planning. However, because likely active bone marrow regions and pelvic targets typically overlap, patient specific spatial detail may be advantageous in IMRT planning scenarios and may best be provided using FLT PET imaging. PMID:25207403

  14. Men and women in space: bone loss and kidney stone risk after long-duration spaceflight.

    PubMed

    Smith, Scott M; Zwart, Sara R; Heer, Martina; Hudson, Edgar K; Shackelford, Linda; Morgan, Jennifer Ll

    2014-07-01

    Bone loss, a key concern for long-duration space travelers, is typically considered a female issue. The number of women who have flown long-duration space missions is now great enough to allow a quantitative comparison of changes in bone and renal stone risk by sex. Participants were 42 astronauts (33 men and 9 women) on long-duration missions to the International Space Station. Bone mineral density (by dual-energy X-ray absorptiometry) and biochemical markers of bone metabolism (from blood and urine samples) were evaluated before and after flight. Data were analyzed in two groups, based on available resistance exercise equipment. Missions were 49 to 215 days in duration, flown between 2000 and 2012. The bone density response to spaceflight was the same for men and women in both exercise groups. The bone mineral density response to flight was the same for men and women, and the typical decrease in bone mineral density (whole body and/or regional) after flight was not observed for either sex for those using an advanced resistive exercise device. Biochemical markers of bone formation and resorption responded similarly in male and female astronauts. The response of urinary supersaturation risk to spaceflight was not significantly different between men and women, although risks were typically increased after flight in both groups, and risks were greater in men than in women before and after flight. The responses of men and women to spaceflight with respect to these measures of bone health were not different.

  15. Increased bone morphogenetic protein 7 signalling in the kidneys of dogs affected with a congenital portosystemic shunt.

    PubMed

    van Dongen, Astrid M; Heuving, Susanne M; Tryfonidou, Marianna A; van Steenbeek, Frank G; Rothuizen, Jan; Penning, Louis C

    2015-05-01

    Dogs with a congenital portosystemic shunt (CPSS) often have enlarged and hyper-filtrating kidneys. Although expression of different growth factors has been well-described in the livers of dogs affected with a CPSS, their expression in the kidneys has yet to be determined. Bone morphogenetic protein 7 (BMP-7), hepatocyte growth factor (HGF) and transforming growth factor (TGF)-β have been implicated in renal development (BMP-7, HGF) or the onset of renal fibrosis (TGF-β). Moreover, BMP-7 and HGF have protective properties in renal fibrosis. In this study, the expression and activity of BMP-7 were investigated in renal biopsies obtained from 13 dogs affected with a CPSS and compared to similar samples from age-matched healthy control dogs. Both quantitative reverse-transcriptase PCR and Western blotting showed up-regulated BMP-7 signalling in kidneys of CPPS-affected dogs. These research findings may help to explain the renal pathology/dysfunction in dogs affected with a CPSS.

  16. Reducing bone cancer cell functions using selenium nanocomposites.

    PubMed

    Stolzoff, Michelle; Webster, Thomas J

    2016-02-01

    Cancer recurrence at the site of tumor resection remains a major threat to patient survival despite modern cancer therapeutic advances. Osteosarcoma, in particular, is a very aggressive primary bone cancer that commonly recurs after surgical resection, radiation, and chemotherapeutic treatment. The objective of the present in vitro study was to develop a material that could decrease bone cancer cell recurrence while promoting healthy bone cell functions. Selenium is a natural part of our diet which has shown promise for reducing cancer cell functions, inhibiting bacteria, and promoting healthy cells functions, yet, it has not been widely explored for osteosarcoma applications. For this purpose, due to their increased surface area, selenium nanoparticles (SeNP) were precipitated on a very common orthopedic tissue engineering material, poly-l-lactic acid (or PLLA). Selenium-coated PLLA materials were shown to selectively decrease long-term osteosarcoma cell density while promoting healthy, noncancerous, osteoblast functions (for example, up to two times more alkaline phosphatase activity on selenium coated compared to osteoblasts grown on typical tissue culture plates), suggesting they should be further studied for replacing tumorous bone tissue with healthy bone tissue. Importantly, results of this study were achieved without the use of chemotherapeutics or pharmaceutical agents, which have negative side effects. PMID:26454004

  17. Reducing bone cancer cell functions using selenium nanocomposites.

    PubMed

    Stolzoff, Michelle; Webster, Thomas J

    2016-02-01

    Cancer recurrence at the site of tumor resection remains a major threat to patient survival despite modern cancer therapeutic advances. Osteosarcoma, in particular, is a very aggressive primary bone cancer that commonly recurs after surgical resection, radiation, and chemotherapeutic treatment. The objective of the present in vitro study was to develop a material that could decrease bone cancer cell recurrence while promoting healthy bone cell functions. Selenium is a natural part of our diet which has shown promise for reducing cancer cell functions, inhibiting bacteria, and promoting healthy cells functions, yet, it has not been widely explored for osteosarcoma applications. For this purpose, due to their increased surface area, selenium nanoparticles (SeNP) were precipitated on a very common orthopedic tissue engineering material, poly-l-lactic acid (or PLLA). Selenium-coated PLLA materials were shown to selectively decrease long-term osteosarcoma cell density while promoting healthy, noncancerous, osteoblast functions (for example, up to two times more alkaline phosphatase activity on selenium coated compared to osteoblasts grown on typical tissue culture plates), suggesting they should be further studied for replacing tumorous bone tissue with healthy bone tissue. Importantly, results of this study were achieved without the use of chemotherapeutics or pharmaceutical agents, which have negative side effects.

  18. Improved Structure and Function in Autosomal Recessive Polycystic Rat Kidneys with Renal Tubular Cell Therapy.

    PubMed

    Kelly, K J; Zhang, Jizhong; Han, Ling; Kamocka, Malgorzata; Miller, Caroline; Gattone, Vincent H; Dominguez, Jesus H

    2015-01-01

    Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA.

  19. Improved Structure and Function in Autosomal Recessive Polycystic Rat Kidneys with Renal Tubular Cell Therapy

    PubMed Central

    Kelly, K. J.; Zhang, Jizhong; Han, Ling; Kamocka, Malgorzata; Miller, Caroline; Dominguez, Jesus H.

    2015-01-01

    Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA. PMID:26136112

  20. Longitudinal assessment of bone quality in pediatric patients with chronic kidney disease in relation to treatment modality.

    PubMed

    Gkogka, Chrysa; Christoforidis, Athanasios; Printza, Nikoleta; Kollios, Konstantinos; Kazantzidou, Eirini; Papachristou, Fotios

    2015-05-01

    Children with chronic kidney disease (CKD) are at high risk of developing impaired bone quality. Our aim was to investigate changes of bone quality in children with CKD in relation to their treatmant using two imaging techniques-dual energy X-ray absorptiometry and quantitative ultraSonography (QUS). Thirty-three patients with CKD (18 boys and 15 girls, mean age 10.37 ± 3.37 years) were evaluated with bone mineral density (BMD) measured by DXA at the lumbar spine and hip and with speed of sound (SOS) measured by QUS at the radius and tibia at the beginning and at the end of the study. The patient cohort consisted of 14 patients with CKD stage 3-4 not treated with dialysis (CKD group), 5 patients on peritoneal dialysis treatment (PD group) and 14 patients after kidney transplantation (RTx group). BMD measurements did not show any significant changes in CKD and PD patients during the study. There was a reduction in BMD measured at the lumbar spine, femoral neck and total hip in RTx patients that was approaching significance. During the 2-year follow-up, SOS measurements at the radius decreased significantly in PD patients, whereas SOS measurements at the tibia significantly improved in RTx patients. No significant changes in QUS parameters were recorded for patients in the CKD group. In conclusion, our study shows that QUS parameters seem to better reflect the state of hyperparathyroidism of renal osteodystrophy as they deteriorate significantly in patients on dialysis and improve after renal transplantation. PMID:24859053

  1. A monoclonal antibody against the surface of osteoblasts recognizes alkaline phosphatase isoenzymes in bone, liver, kidney, and intestine.

    PubMed

    Bruder, S P; Caplan, A I

    1990-01-01

    Monoclonal antibodies against the surface of embryonic osteogenic cells have been used to characterize the osteoblastic lineage. One antibody, SB-1, reacts in frozen sections with a family of cells in bone, liver, kidney, and intestine which are identically stained by the histochemical substrate for alkaline phosphatase. In this report, biochemical and immunochemical evidence is presented to indicate that SB-1 is directed against an epitope on alkaline phosphatase which is shared by isoenzymes in a variety of chick tissues. In a solid-phase assay system, high dilutions (1:10(5] of ascites fluid were found to give significant binding of SB-1 to alkaline phosphatase extracted from chick limb or intestine. Partial purification of intestinal alkaline phosphatase on a Sepharose CL-6B column results in the co-elution of alkaline phosphatase enzyme activity and antibody-binding material; this indicates that SB-1 recognizes intestinal alkaline phosphatase rather than an impurity in the crude preparation. Furthermore, Western immunoblots of chick calvarial bone extract electrophoresed on a 5-20% SDS-polyacrylamide gel show that SB-1 reacts with a single 155 kD band which also is stained by the alkaline phosphatase histochemical substrate. In a similar set of experiments, SB-1 reacts with an intestinal alkaline phosphatase isoenzyme whose molecular weight is approximately 185 kD. From these studies, we conclude that SB-1 is specifically reactive with alkaline phosphatase isoenzymes present in bone, liver, kidney, cartilage, and intestine. The reactive epitope is stable to SDS denaturation, not associated with the active site of the enzyme, and dependent on disulfide bonds which impart secondary structure to the protein.

  2. Effect of Thyrocalcitonin on Adenosine 3′:5′-Cyclic Phosphate Formation by Rat Kidney and Bone

    PubMed Central

    Murad, Ferid; Brewer, H. Bryan; Vaughan, Martha

    1970-01-01

    Thyrocalcitonin (TCT) increased the rate of accumulation of adenosine 3′:5′-cyclic phosphate (cyclic AMP) when added to incubations containing washed particles from whole rat kidney, adenosine triphosphate (ATP), MgSO4, and caffeine. The maximum stimulatory effect of TCT, 44 ± 6.7 per cent, was always less than the 150 to 250 per cent increase produced by parathyroid hormone (PTH). The effect of both hormones together was no greater than that of PTH alone when each was present at a maximally effective concentration. Since neither TCT nor PTH altered the rate of degradation of cyclic AMP by the kidney preparation, it may be inferred that their effects on cyclic AMP accumulation are the result of increased formation of cyclic AMP. Adenyl cyclase activity in homogenates of renal cortex was stimulated to a greater extent by TCT and PTH than was that of medulla, whereas, as reported earlier, the effect of vasopressin was much larger with homogenates of medulla. The accumulation of cyclic AMP in incubations of rat kidney cortex slices was increased 20 to 60 per cent by TCT and 50 to 140 per cent by PTH. The accumulation of cyclic AMP in incubations of rat calvaria was increased about threefold with TCT and nine to tenfold with PTH, while reduced and alkylated TCT had less than 10 per cent of the activity of TCT. These observations are consistent with the view that the physiological effects of TCT and PTH in kidney and bone are secondary to the enhanced formation of cyclic AMP. PMID:4313199

  3. Kidney function and lithium concentrations of rats given an injection of lithium orotate or lithium carbonate.

    PubMed

    Smith, D F; Schou, M

    1979-03-01

    A recent study by Kling et al (1978) noted the finding of higher lithium concentrations in serum and brain of rats after an intraperitoneal injection (2 mmol lithium kg-1) of lithium orotate as a slurry than of lithium carbonate in solution. The authors suggested that lithium orotate might offer advantages in the treatment of patients. We repeated the experiments of Kling et al but in addition examined the kidney function of the rats. Glomerular filtration rate and urine flow were markedly lower in rats given lithium orotate than in rats given lithium carbonate, sodium chloride or a sham injection. The renal lithium clearance was significantly lower, the kidney weight and the lithium concentrations in serum, kidney and heart significantly higher after injection of lithium orotate than after injection of lithium carbonate. The higher lithium concentrations could be accounted for by the lower kidney function. It seems inadvisable to use lithium orotate for the treatment of patients. PMID:34690

  4. Associations of Perfusate Biomarkers and Pump Parameters With Delayed Graft Function and Deceased Donor Kidney Allograft Function.

    PubMed

    Parikh, C R; Hall, I E; Bhangoo, R S; Ficek, J; Abt, P L; Thiessen-Philbrook, H; Lin, H; Bimali, M; Murray, P T; Rao, V; Schröppel, B; Doshi, M D; Weng, F L; Reese, P P

    2016-05-01

    Hypothermic machine perfusion (HMP) is increasingly used in deceased donor kidney transplantation, but controversy exists regarding the value of perfusion biomarkers and pump parameters for assessing organ quality. We prospectively determined associations between perfusate biomarkers (neutrophil gelatinase-associated lipocalin [NGAL], kidney injury molecule 1, IL-18 and liver-type fatty acid-binding protein [L-FABP]) and pump parameters (resistance and flow) with outcomes of delayed graft function (DGF) and 6-mo estimated GFR (eGFR). DGF occurred in 230 of 671 (34%) recipients. Only 1-h flow was inversely associated with DGF. Higher NGAL or L-FABP concentrations and increased resistance were inversely associated with 6-mo eGFR, whereas higher flow was associated with higher adjusted 6-mo eGFR. Discarded kidneys had consistently higher median resistance and lower median flow than transplanted kidneys, but median perfusate biomarker concentrations were either lower or not significantly different in discarded compared with transplanted kidneys. Notably, most recipients of transplanted kidneys with isolated "undesirable" biomarker levels or HMP parameters experienced acceptable 6-mo allograft function, suggesting these characteristics should not be used in isolation for discard decisions. Additional studies must confirm the utility of combining HMP measurements with other characteristics to assess kidney quality. PMID:26695524

  5. Nephrocalcinosis and hyperlipidemia in rats fed a cholesterol- and fat-rich diet: association with hyperoxaluria, altered kidney and bone minerals, and renal tissue phospholipid-calcium interaction.

    PubMed

    Schmiedl, A; Schwille, P O; Bonucci, E; Erben, R G; Grayczyk, A; Sharma, V

    2000-12-01

    To determine whether an "atherogenic" diet (excess of cholesterol and neutral fat) induces pathological calcification in various organs, including the kidney, and abnormal oxalate metabolism, 24 male Sprague-Dawley rats were fed either normal lab chow (controls, n = 12) or the cholesterol- and fat-rich experimental diet (CH-F, n = 12) for 111 +/- 3 days. CH-F rats developed dyslipidemia [high blood levels of triglycerides, total, low-density lipoprotein (LDL)-, very low-density lipoprotein (VLDL)-, high-density lipoprotein (HDL)-bound cholesterol, total phospholipids], elevated serum total alkaline phosphatase and lactate dehydrogenase (LDH) levels, in the absence of changes in overall renal function, extracellular mineral homeostasis [serum protein-corrected total calcium, magnesium, parathyroid hormone (PTH), 1,25-dihydroxyvitamin D (1,25(OH)2D)], plasma glycolate and oxalate levels. There was a redistribution of bone calcium and enhanced exchange of this within the extraosseous space, which was accompanied by significant bone calcium loss, but normal bone histomorphometry. Liver oxalate levels, if expressed per unit of defatted (DF) dry liver, were three times higher than in the controls. Urinary glycolate, oxalate, calcium and total protein excretion levels were elevated, the latter showing an excess of proteins > 100 kD and a deficit of proteins > 30-50 kD. Urinary calcium oxalate supersaturation was increased, and calcium phosphate supersaturation was unchanged. There were dramatically increased (by number, circumference, and area) renal calcium phosphate calcifications in the cortico-medullary region, but calcium oxalate deposits were not detectable. Electron microscopy (EM) and elemental analysis revealed intratubular calcium phosphate, apparently needle-like hydroxyapatite. Immunohistochemistry of renal tissue calcifications revealed co-localization of phospholipids and calcium phosphate. It is concluded that rats fed the CH-F diet exhibited: (1) a

  6. Wntless functions in mature osteoblasts to regulate bone mass.

    PubMed

    Zhong, Zhendong; Zylstra-Diegel, Cassandra R; Schumacher, Cassie A; Baker, Jacob J; Carpenter, April C; Rao, Sujata; Yao, Wei; Guan, Min; Helms, Jill A; Lane, Nancy E; Lang, Richard A; Williams, Bart O

    2012-08-14

    Recent genome-wide association studies of individuals of Asian and European descent have found that SNPs located within the genomic region (1p31.3) encoding the Wntless (Wls)/Gpr177 protein are associated significantly with reduced bone mineral density. Wls/Gpr177 is a newly identified chaperone protein that specifically escorts Wnt ligands for secretion. Given the strong functional association between the Wnt signaling pathways and bone development and homeostasis, we generated osteoblast-specific Wls-deficient (Ocn-Cre;Wls-flox) mice. Homozygous conditional knockout animals were born at a normal Mendelian frequency. Whole-body dual-energy X-ray absorptiometry scanning revealed that bone-mass accrual was significantly inhibited in homozygotes as early as 20 d of age. These homozygotes had spontaneous fractures and a high frequency of premature lethality at around 2 mo of age. Microcomputed tomography analysis and histomorphometric data revealed a dramatic reduction of both trabecular and cortical bone mass in homozygous mutants. Bone formation in homozygotes was severely impaired, but no obvious phenotypic change was observed in mice heterozygous for the conditional deletion. In vitro studies showed that Wls-deficient osteoblasts had a defect in differentiation and mineralization, with significant reductions in the expression of key osteoblast differentiation regulators. In summary, these results reveal a surprising and crucial role of osteoblast-secreted Wnt ligands in bone-mass accrual. PMID:22745162

  7. Wntless functions in mature osteoblasts to regulate bone mass.

    PubMed

    Zhong, Zhendong; Zylstra-Diegel, Cassandra R; Schumacher, Cassie A; Baker, Jacob J; Carpenter, April C; Rao, Sujata; Yao, Wei; Guan, Min; Helms, Jill A; Lane, Nancy E; Lang, Richard A; Williams, Bart O

    2012-08-14

    Recent genome-wide association studies of individuals of Asian and European descent have found that SNPs located within the genomic region (1p31.3) encoding the Wntless (Wls)/Gpr177 protein are associated significantly with reduced bone mineral density. Wls/Gpr177 is a newly identified chaperone protein that specifically escorts Wnt ligands for secretion. Given the strong functional association between the Wnt signaling pathways and bone development and homeostasis, we generated osteoblast-specific Wls-deficient (Ocn-Cre;Wls-flox) mice. Homozygous conditional knockout animals were born at a normal Mendelian frequency. Whole-body dual-energy X-ray absorptiometry scanning revealed that bone-mass accrual was significantly inhibited in homozygotes as early as 20 d of age. These homozygotes had spontaneous fractures and a high frequency of premature lethality at around 2 mo of age. Microcomputed tomography analysis and histomorphometric data revealed a dramatic reduction of both trabecular and cortical bone mass in homozygous mutants. Bone formation in homozygotes was severely impaired, but no obvious phenotypic change was observed in mice heterozygous for the conditional deletion. In vitro studies showed that Wls-deficient osteoblasts had a defect in differentiation and mineralization, with significant reductions in the expression of key osteoblast differentiation regulators. In summary, these results reveal a surprising and crucial role of osteoblast-secreted Wnt ligands in bone-mass accrual.

  8. Essential function of Wnt-4 for tubulogenesis in the Xenopus pronephric kidney.

    PubMed

    Saulnier, Didier M E; Ghanbari, Hedyeh; Brändli, André W

    2002-08-01

    In the vertebrate embryo, development of the excretory system is characterized by the successive formation of three distinct kidneys: the pronephros, mesonephros, and metanephros. While tubulogenesis in the metanephric kidney is critically dependent on the signaling molecule Wnt-4, it is unknown whether Wnt signaling is equally required for the formation of renal epithelia in the other embryonic kidney forms. We therefore investigated the expression of Wnt genes during the pronephric kidney development in Xenopus. Wnt4 was found to be associated with developing pronephric tubules, but was absent from the pronephric duct. Onset of pronephric Wnt-4 expression coincided with mesenchyme-to-epithelium transformation. To investigate Wnt-4 gene function, we performed gain- and loss-of-function experiments. Misexpression of Wnt4 in the intermediate and lateral mesoderm caused abnormal morphogenesis of the pronephric tubules, but was not sufficient to initiate ectopic tubule formation. We used a morpholino antisense oligonucleotide-based gene knockdown strategy to disrupt Wnt-4 gene function. Xenopus embryos injected with antisense Wnt-4 morpholinos developed normally, but marker gene and morphological analysis revealed a complete absence of pronephric tubules. Pronephric duct development was largely unaffected, indicating that ductogenesis may occur normally in the absence of pronephric tubules. Our results show that, as in the metanephric kidney, Wnt-4 is critically required for tubulogenesis in the pronephric kidney, indicating that a common, evolutionary conserved gene regulatory network may control tubulogenesis in different vertebrate excretory organs. PMID:12142017

  9. The Structure and Function of Non-Collagenous Bone Proteins

    NASA Technical Reports Server (NTRS)

    Hook, Magnus; McQuillan, David J.

    1997-01-01

    The research done under the cooperative research agreement for the project titled 'The structure and function of non-collagenous bone proteins' represented the first phase of an ongoing program to define the structural and functional relationships of the principal noncollagenous proteins in bone. An ultimate goal of this research is to enable design and execution of useful pharmacological compounds that will have a beneficial effect in treatment of osteoporosis, both land-based and induced by long-duration space travel. The goals of the now complete first phase were as follows: 1. Establish and/or develop powerful recombinant protein expression systems; 2. Develop and refine isolation and purification of recombinant proteins; 3. Express wild-type non-collagenous bone proteins; 4. Express site-specific mutant proteins and domains of wild-type proteins to enhance likelihood of crystal formation for subsequent solution of structure.

  10. Relationship between Fibroblast Growth Factor 23 and Biochemical and Bone Histomorphometric Alterations in a Chronic Kidney Disease Rat Model Undergoing Parathyroidectomy

    PubMed Central

    Liao, Hung-Wei; Hung, Peir-Haur; Hsiao, Chih-Yen; Liou, Hung-Hsiang; Lin, Hsin-Shih; Huang, Tsang-Hai; Jou, I-Ming; Tsai, Kuen-Jer

    2015-01-01

    Background Phosphate burden in chronic kidney disease (CKD) leads to elevated serum fibroblast factor-23 (FGF-23) levels, secondary hyperparathyroidism and chronic kidney disease-mineral bone disorder (CKD-MBD). However dissociated hyperphosphatemia and low serum FGF-23 concentrations have been observed in experimentally parathyoridectomized rats. The relationships between serum mineral, hormone, and bone metabolism may be altered in the presence of CKD. The aim of our study was to investigate whether a consistent relationship existed between serum FGF-23 levels, specific serum biochemical markers, and histomorphometric parameters of bone metabolism in a parathyroidectomized CKD animal model. Results Sprague Dawley rats were divided into 3 groups: parathyroidectomy (PTX) and CKD (PTX+CKD, 9 rats), CKD without PTX (CKD, 9 rats), and neither PTX nor CKD (sham-operated control, 8 rats); CKD was induced by partial nephrectomy. At 8 weeks after partial nephrectomy, serum biomarkers were measured. Bone histomorphometries of the distal femoral metaphyseal bone were analyzed. The mean serum FGF-23 levels and mean bone formation rate were the highest in the CKD group and the lowest in the PTX+CKD group. Bone volume parameters increased significantly in the PTX+CKD group. Pearson’s correlation revealed that serum FGF-23 levels associated with those of intact parathyroid hormone, phosphate, collagen type I C-telopeptide, and calcium. Univariate linear regression showed that serum FGF-23 values correlated with bone formation rate, bone volume, and osteoid parameters. Stepwise multivariate regression analysis revealed that circulating FGF-23 values were independently associated with bone volume and thickness (β = -0.737; p < 0.001 and β = -0.526; p = 0.006, respectively). Serum parathyroid hormone levels independently correlated with bone formation rate (β = 0.714; p < 0.001) while collagen type I C-telopeptide levels correlated with osteoid parameter. Conclusion Serum FGF

  11. Incidence of renal carcinoma in non-functioning kidney due to renal pelvic stone disease

    PubMed Central

    ZENGIN, KURSAD; TANIK, SERHAT; SENER, NEVZAT CAN; ALBAYRAK, SEBAHATTIN; EKICI, MUSA; BOZKURT, IBRAHIM HALIL; BAKIRTAS, HASAN; GURDAL, MESUT; IMAMOGLU, MUHAMMED ABDURRAHIM

    2015-01-01

    The objective of This study was to report our pathological findings in nephrectomy specimens from patients treated for non-functioning hydronephrotic kidney due to renal pelvic stone disease. A total of 97 patients who underwent nephrectomy for non-functioning hydronephrotic kidneys between January, 2011 and June, 2014 were retrospectively reviewed. A non-functioning kidney was defined as one having paper-thin parenchyma on urinary ultrasound or computed tomography, exhibiting no contrast visualization in the collecting duct system on intravenous urography and having a split renal function of <10% on nuclear renal function studies. Following pathological evaluation, 9 patients were diagnosed with xanthogranulomatous pyelonephritis, 9 with malignant tumors and 79 with chronic pyelonephritis. Of the patients with chronic pyelonephritis, 2 also had renal adenomas. The malignant tumors included 3 transitional cell carcinomas (TCC), 2 squamous cell carcinomas (SCC), 3 renal cell carcinomas (RCC) (1 sarcomatoid, 1 papillary and 1 clear cell RCC), whereas 1 patient had concurrent RCC and TCC. In conclusion, non-functioning kidneys, particularly those with kidney stones, should be managed as possible malignancies, due to the higher incidence of malignant tumors in such patients compared with the normal population. PMID:26171211

  12. Effect of Kidney Function on Drug Kinetics and Dosing in Neonates, Infants, and Children.

    PubMed

    Rodieux, Frederique; Wilbaux, Melanie; van den Anker, Johannes N; Pfister, Marc

    2015-12-01

    Neonates, infants, and children differ from adults in many aspects, not just in age, weight, and body composition. Growth, maturation and environmental factors affect drug kinetics, response and dosing in pediatric patients. Almost 80% of drugs have not been studied in children, and dosing of these drugs is derived from adult doses by adjusting for body weight/size. As developmental and maturational changes are complex processes, such simplified methods may result in subtherapeutic effects or adverse events. Kidney function is impaired during the first 2 years of life as a result of normal growth and development. Reduced kidney function during childhood has an impact not only on renal clearance but also on absorption, distribution, metabolism and nonrenal clearance of drugs. 'Omics'-based technologies, such as proteomics and metabolomics, can be leveraged to uncover novel markers for kidney function during normal development, acute kidney injury, and chronic diseases. Pharmacometric modeling and simulation can be applied to simplify the design of pediatric investigations, characterize the effects of kidney function on drug exposure and response, and fine-tune dosing in pediatric patients, especially in those with impaired kidney function. One case study of amikacin dosing in neonates with reduced kidney function is presented. Collaborative efforts between clinicians and scientists in academia, industry, and regulatory agencies are required to evaluate new renal biomarkers, collect and share prospective pharmacokinetic, genetic and clinical data, build integrated pharmacometric models for key drugs, optimize and standardize dosing strategies, develop bedside decision tools, and enhance labels of drugs utilized in neonates, infants, and children.

  13. [Validity of diagnostic methods for kidney function tests in the cat].

    PubMed

    Meyer-Lindenberg, A; Westhoff, A; Wohlsein, P; Nolte, I

    1996-08-01

    The diagnosis of kidney disease is difficult in the stage of compensation and impossible based solely on the routinely performed laboratory tests on blood and urine. For this reason, more sensitive methods are required. In the present study, three special techniques are compared with regard to their validity in the early diagnosis of kidney disease in the cat: 1. the molecular-weight related separation of urine proteins with the sodium-dodecyl-sulfate-polyacrylamide-gradient gel electrophoresis (SDS-page) in the PhastSystem, 2. measurement of the glomerular filtration rate (GFR) with the renalyzer PRX90 using an iodine containing contrast medium and 3. kidney scintigraphy. The results of this comparison demonstrate that these procedures are important adjuncts to common laboratory investigations in the testing of renal function. The SDS-page allows an early qualitative assessment on alterations of specific functional compartments of the kidney. However, it is not possible with this method alone to evaluate the degree of renal disturbance and it does not give information concerning the severity of renal functional impairment. Measurement of the GFR is also a valuable procedure which gives a quantitative result on the global renal function within a few hours. It is of special importance when subclinically disturbed kidney function is present. In the cat however it is until now not possible to give a correct prognosis in high grade nephropathies. Only scintigraphy allows unilateral assessment of renal function, which is most important in cats with morphologically altered kidneys, such as kidney cysts, hydronephrosis or tumours. PMID:9012026

  14. Genome-Wide Association and Functional Follow-Up Reveals New Loci for Kidney Function

    PubMed Central

    Fuchsberger, Christian; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; O'Seaghdha, Conall M.; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V.; O'Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D.; Gierman, Hinco J.; Feitosa, Mary; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Chouraki, Vincent; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank B.; Demirkan, Ayse; Oostra, Ben A.; de Andrade, Mariza; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H.-Erich; Kolcic, Ivana; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Endlich, Karlhans; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Giulianini, Franco; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Metzger, Marie; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K.; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S.; van Duijn, Cornelia M.; Borecki, Ingrid; Kardia, Sharon L. R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline C. M.; Hayward, Caroline; Ridker, Paul; Parsa, Afshin; Bochud, Murielle; Heid, Iris M.; Goessling, Wolfram; Chasman, Daniel I.; Kao, W. H. Linda; Fox, Caroline S.

    2012-01-01

    Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD. PMID:22479191

  15. Impaired function of bone marrow stromal cells in systemic mastocytosis.

    PubMed

    Nemeth, Krisztian; Wilson, Todd M; Ren, Jiaqiang J; Sabatino, Marianna; Stroncek, David M; Krepuska, Miklos; Bai, Yun; Robey, Pamela G; Metcalfe, Dean D; Mezey, Eva

    2015-07-01

    Patients with systemic mastocytosis (SM) have a wide variety of problems, including skeletal abnormalities. The disease results from a mutation of the stem cell receptor (c-kit) in mast cells and we wondered if the function of bone marrow stromal cells (BMSCs; also known as MSCs or mesenchymal stem cells) might be affected by the invasion of bone marrow by mutant mast cells. As expected, BMSCs from SM patients do not have a mutation in c-kit, but they proliferate poorly. In addition, while osteogenic differentiation of the BMSCs seems to be deficient, their adipogenic potential appears to be increased. Since the hematopoietic supportive abilities of BMSCs are also important, we also studied the engraftment in NSG mice of human CD34(+) hematopoietic progenitors, after being co-cultured with BMSCs of healthy volunteers vs. BMSCs derived from patients with SM. BMSCs derived from the bone marrow of patients with SM could not support hematopoiesis to the extent that healthy BMSCs do. Finally, we performed an expression analysis and found significant differences between healthy and SM derived BMSCs in the expression of genes with a variety of functions, including the WNT signaling, ossification, and bone remodeling. We suggest that some of the symptoms associated with SM might be driven by epigenetic changes in BMSCs caused by dysfunctional mast cells in the bone marrow of the patients.

  16. Polycystic Kidney Disease

    MedlinePlus

    ... a kidney transplant or blood-filtering treatments called dialysis. The two main types of PKD are autosomal ... so people with kidney failure must receive either dialysis or a kidney transplant to replace kidney function. ...

  17. Calcium citrate without aluminum antacids does not cause aluminum retention in patients with functioning kidneys

    NASA Technical Reports Server (NTRS)

    Sakhaee, K.; Wabner, C. L.; Zerwekh, J. E.; Copley, J. B.; Pak, L.; Poindexter, J. R.; Pak, C. Y.

    1993-01-01

    It has been suggested that calcium citrate might enhance aluminum absorption from food, posing a threat of aluminum toxicity even in patients with normal renal function. We therefore measured serum and urinary aluminum before and following calcium citrate therapy in patients with moderate renal failure and in normal subjects maintained on constant metabolic diets with known aluminum content (967-1034 mumol/day, or 26.1-27.9 mg/day, in patients and either 834 or 1579 mumol/day, or 22.5 and 42.6 mg/day, in normal subjects). Seven patients with moderate renal failure (endogenous creatinine clearance of 43 ml/min) took 50 mmol (2 g) calcium/day as effervescent calcium citrate with meals for 17 days. Eight normal women received 25 mmol (1 g) calcium/day as tricalcium dicitrate tablets with meals for 7 days. In patients with moderate renal failure, serum and urinary aluminum were normal before treatment at 489 +/- 293 SD nmol/l (13.2 +/- 7.9 micrograms/l) and 767 +/- 497 nmol/day (20.7 +/- 13.4 micrograms/day), respectively. They remained within normal limits and did not change significantly during calcium citrate treatment (400 +/- 148 nmol/l and 600 +/- 441 nmol/day, respectively). Similarly, no significant change in serum and urinary aluminum was detected in normal women during calcium citrate administration (271 +/- 59 vs 293 +/- 85 nmol/l and 515 +/- 138 vs 615 +/- 170 nmol/day, respectively). In addition, skeletal bone aluminum content did not change significantly in 14 osteoporotic patients (endogenous creatinine clearance of 68.5 ml/min) treated for 24 months with calcium citrate, 10 mmol calcium twice/day separately from meals (29.3 +/- 13.9 ng/mg ash bone to 27.9 +/0- 10.4, P = 0.727). In them, histomorphometric examination did not show any evidence of mineralization defect. Thus, calcium citrate given alone without aluminum-containing drugs does not pose a risk of aluminum toxicity in subjects with normal or functioning kidneys, when it is administered on an

  18. Splenic concentration of bone imaging agents in functional asplenia

    SciTech Connect

    Dhekne, R.D.

    1981-07-01

    Three cases of sickle cell disease associated with functional asplenia are described. The spleen was not visualized on routine Tc-99m-sulfur colloid scan. The bone scan performed with Tc-99m-phosphate compounds revealed abnormal splenic activity in all three cases. The previous case reports and the literature on this subject are reviewed.

  19. The biological function of type I receptors of bone morphogenetic protein in bone

    PubMed Central

    Lin, Shuxian; Svoboda, Kathy K H; Feng, Jian Q; Jiang, Xinquan

    2016-01-01

    Bone morphogenetic proteins (BMPs) have multiple roles in skeletal development, homeostasis and regeneration. BMPs signal via type I and type II serine/threonine kinase receptors (BMPRI and BMPRII). In recent decades, genetic studies in humans and mice have demonstrated that perturbations in BMP signaling via BMPRI resulted in various diseases in bone, cartilage, and muscles. In this review, we focus on all three types of BMPRI, which consist of activin-like kinase 2 (ALK2, also called type IA activin receptor), activin-like kinase 3 (ALK3, also called BMPRIA), and activin-like kinase 6 (ALK6, also called BMPRIB). The research areas covered include the current progress regarding the roles of these receptors during myogenesis, chondrogenesis, and osteogenesis. Understanding the physiological and pathological functions of these receptors at the cellular and molecular levels will advance drug development and tissue regeneration for treating musculoskeletal diseases and bone defects in the future. PMID:27088043

  20. DNA methylation profile associated with rapid decline in kidney function: findings from the CRIC Study

    PubMed Central

    Wing, Maria R.; Devaney, Joseph M.; Joffe, Marshall M.; Xie, Dawei; Feldman, Harold I.; Dominic, Elizabeth A.; Guzman, Nicolas J.; Ramezani, Ali; Susztak, Katalin; Herman, James G.; Cope, Leslie; Harmon, Brennan; Kwabi-Addo, Bernard; Gordish-Dressman, Heather; Go, Alan S.; He, Jiang; Lash, James P.; Kusek, John W.; Raj, Dominic S.

    2014-01-01

    Background Epigenetic mechanisms may be important in the progression of chronic kidney disease (CKD). Methods We studied the genome-wide DNA methylation pattern associated with rapid loss of kidney function using the Infinium HumanMethylation 450 K BeadChip in 40 Chronic Renal Insufficiency (CRIC) study participants (n = 3939) with the highest and lowest rates of decline in estimated glomerular filtration rate. Results The mean eGFR slope was 2.2 (1.4) and −5.1 (1.2) mL/min/1.73 m2 in the stable kidney function group and the rapid progression group, respectively. CpG islands in NPHP4, IQSEC1 and TCF3 were hypermethylated to a larger extent in subjects with stable kidney function (P-values of 7.8E−05 to 9.5E−05). These genes are involved in pathways known to promote the epithelial to mesenchymal transition and renal fibrosis. Other CKD-related genes that were differentially methylated are NOS3, NFKBIL2, CLU, NFKBIB, TGFB3 and TGFBI, which are involved in oxidative stress and inflammatory pathways (P-values of 4.5E−03 to 0.046). Pathway analysis using Ingenuity Pathway Analysis showed that gene networks related to cell signaling, carbohydrate metabolism and human behavior are epigenetically regulated in CKD. Conclusions Epigenetic modifications may be important in determining the rate of loss of kidney function in patients with established CKD. PMID:24516231

  1. Fetal myocardium in the kidney capsule: an in vivo model of repopulation of myocytes by bone marrow cells.

    PubMed

    Zhang, Eric Y; Xiong, Qiang; Ye, Lei; Suntharalingam, Piradeep; Wang, Xiaohong; Astle, C Michael; Zhang, Jianyi; Harrison, David E

    2012-01-01

    Debate surrounds the question of whether the heart is a post-mitotic organ in part due to the lack of an in vivo model in which myocytes are able to actively regenerate. The current study describes the first such mouse model--a fetal myocardial environment grafted into the adult kidney capsule. Here it is used to test whether cells descended from bone marrow can regenerate cardiac myocytes. One week after receiving the fetal heart grafts, recipients were lethally irradiated and transplanted with marrow from green fluorescent protein (GFP)-expressing C57Bl/6J (B6) donors using normal B6 recipients and fetal donors. Levels of myocyte regeneration from GFP marrow within both fetal myocardium and adult hearts of recipients were evaluated histologically. Fetal myocardium transplants had rich neovascularization and beat regularly after 2 weeks, continuing at checkpoints of 1, 2, 4, 6, 8 and12 months after transplantation. At each time point, GFP-expressing rod-shaped myocytes were found in the fetal myocardium, but only a few were found in the adult hearts. The average count of repopulated myocardium with green rod-shaped myocytes was 996.8 cells per gram of fetal myocardial tissue, and 28.7 cells per adult heart tissue, representing a thirty-five fold increase in fetal myocardium compared to the adult heart at 12 months (when numbers of green rod-shaped myocytes were normalized to per gram of myocardial tissue). Thus, bone marrow cells can differentiate to myocytes in the fetal myocardial environment. The novel in vivo model of fetal myocardium in the kidney capsule appears to be valuable for testing repopulating abilities of potential cardiac progenitors.

  2. Association Between Age-Related Decline of Kidney Function and Plasma Malondialdehyde

    PubMed Central

    Chen, Yaqin; Hu, Hui; Liu, Li; Hu, Xiaofei; Wang, Jun; Shi, Wang; Yin, Dazhong

    2012-01-01

    Abstract Oxidative stress is a key factor linked renal function decline with age. However, there is still no large cohort study exploring the potential role of oxidative stress in mild insufficiency of kidney function (MIKF) and chronic kidney disease (CKD) after adjusting for confounding factors. This study tested the hypothesis that oxidative stress, indicated by plasma malondialdehyde (MDA), is associated with the prevalence of MIKF and CKD after controlling the effects of confounding factors. Plasma levels of MDA and serum levels of fasting glucose, cholesterol, triglycerides, creatinine, alanine aminotransferase, and aspartate aminotransferase were analyzed from 2,169 Chinese Han adults. A questionnaire and physical examination were performed to identify and suspect risk factors of renal function decline with age. Kidney function, as indicated by estimated glomerular filtration rate, showed a significant decline with age in both male and female. Although the association between age and plasma MDA levels was nonlinear, MDA was negatively related to kidney function. The multivariate-adjusted odds ratios showed that plasma MDA had a significantly graded relation to the prevalence of MIKF and CKD with or without adjustment for covariates. By comparison with the lowest quartile, individuals with the highest quartile of MDA level had a 99% and 223% increased risk of developing MIKF and CKD, respectively. Further results from multiinteraction analysis demonstrated that plasma MDA may be the mediator linking different covariates with renal function decline. The most striking finding of this study was that oxidative stress, as indicated by plasma MDA levels, is associated with the prevalence of MIKF and/or CKD. Although imposing an increasing burden on the kidney and/or promoting a cyclical process of oxidative stress in the body, high levels of MDA in plasma may link the decline of kidney function with age. PMID:22530729

  3. Reduced renal calcium excretion in the absence of sclerostin expression: evidence for a novel calcium-regulating bone kidney axis.

    PubMed

    Kumar, Rajiv; Vallon, Volker

    2014-10-01

    The kidneys contribute to calcium homeostasis by adjusting the reabsorption and excretion of filtered calcium through processes that are regulated by parathyroid hormone (PTH) and 1α,25-dihydroxyvitamin D3 (1α,25[OH]2D3). Most of the filtered calcium is reabsorbed in the proximal tubule, primarily by paracellular mechanisms that are not sensitive to calcium-regulating hormones in physiologically relevant ways. In the distal tubule, however, calcium is reabsorbed by channels and transporters, the activity or expression of which is highly regulated and increased by PTH and 1α,25(OH)2D3. Recent research suggests that other, heretofore unrecognized factors, such as the osteocyte-specific protein sclerostin, also regulate renal calcium excretion. Clues in this regard have come from the study of humans and mice with inactivating mutations of the sclerostin gene that both have increased skeletal density, which would necessitate an increase in intestinal absorption and/or renal reabsorption of calcium. Deletion of the sclerostin gene in mice significantly diminishes urinary calcium excretion and increases fractional renal calcium reabsorption. This is associated with increased circulating 1α,25(OH)2D3 levels, whereas sclerostin directly suppresses 1α-hydroxylase in immortalized proximal tubular cells. Thus, evidence is accumulating that sclerostin directly or indirectly reduces renal calcium reabsorption, suggesting the presence of a novel calcium-excreting bone-kidney axis.

  4. [Bone metabolism and cardiovascular function update. Inter-communication between bone marrow hematopoiesis and skeletal/vascular network].

    PubMed

    Katayama, Yoshio

    2014-07-01

    The hematopoiesis takes place in the bone marrow. Because bone marrow is the "marrow" of the bone, bone marrow does not exist without bone. The specialized microenvironment for hematopoietic stem cells (HSCs) to be appropriately functional is called "niche" . In the recent ten years since the bone-forming osteoblast was identified as a HSC niche, the entire mesenchymal lineage cells from mesenchymal stem cells to end-terminal osteocytes have been recognized as niche cells or niche-modulators. Among these, mesenchymal stem/progenitor cells are located at perivascular area. The very recent study showed the difference between arteriolar and sinusoidal niches. It is likely that the vascular network and the bone tissue are connected by the mesenchymal lineage cells as a complex of bone forming system, and HSCs utilize this complex as a series of niche.

  5. Functionalized mesoporous bioactive glass scaffolds for enhanced bone tissue regeneration

    PubMed Central

    Zhang, Xingdi; Zeng, Deliang; Li, Nan; Wen, Jin; Jiang, Xinquan; Liu, Changsheng; Li, Yongsheng

    2016-01-01

    Mesoporous bioactive glass (MBG), which possesses excellent bioactivity, biocompatibility and osteoconductivity, has played an important role in bone tissue regeneration. However, it is difficult to prepare MBG scaffolds with high compressive strength for applications in bone regeneration; this difficulty has greatly hindered its development and use. To solve this problem, a simple powder processing technique has been successfully developed to fabricate a novel type of MBG scaffold (MBGS). Furthermore, amino or carboxylic groups could be successfully grafted onto MBGSs (denoted as N-MBGS and C-MBGS, respectively) through a post-grafting process. It was revealed that both MBGS and the functionalized MBGSs could significantly promote the proliferation and osteogenic differentiation of bMSCs. Due to its positively charged surface, N-MBGS presented the highest in vitro osteogenic capability of the three samples. Moreover, in vivo testing results demonstrated that N-MBGS could promote higher levels of bone regeneration compared with MBGS and C-MBGS. In addition to its surface characteristics, it is believed that the decreased degradation rate of N-MBGS plays a vital role in promoting bone regeneration. These findings indicate that MBGSs are promising materials with potential practical applications in bone regeneration, which can be successfully fabricated by combining a powder processing technique and post-grafting process. PMID:26763311

  6. Ultrasonic backscatter from cancellous bone: the apparent backscatter transfer function.

    PubMed

    Hoffmeister, Brent K; Mcpherson, Joseph A; Smathers, Morgan R; Spinolo, P Luke; Sellers, Mark E

    2015-12-01

    Ultrasonic backscatter techniques are being developed to detect changes in cancellous bone caused by osteoporosis. Many techniques are based on measurements of the apparent backscatter transfer function (ABTF), which represents the backscattered power from bone corrected for the frequency response of the measurement system. The ABTF is determined from a portion of the backscatter signal selected by an analysis gate of width τw delayed by an amount τd from the start of the signal. The goal of this study was to characterize the ABTF for a wide range of gate delays (1 μs ≤ τd ≤ 6 μs) and gate widths (1 μs ≤ τw ≤ 6 μs). Measurements were performed on 29 specimens of human cancellous bone in the frequency range 1.5 to 6.0 MHz using a broadband 5-MHz transducer. The ABTF was found to be an approximately linear function of frequency for most choices of τd and τw. Changes in τd and τw caused the frequency-averaged ABTF [quantified by apparent integrated backscatter (AIB)] and the frequency dependence of the ABTF [quantified by frequency slope of apparent backscatter (FSAB)] to change by as much as 24.6 dB and 6.7 dB/MHz, respectively. τd strongly influenced the measured values of AIB and FSAB and the correlation of AIB with bone density (-0.95 ≤ R ≤ +0.68). The correlation of FSAB with bone density was influenced less strongly by τd (-0.97 ≤ R ≤ -0.87). τw had a weaker influence than τd on the measured values of AIB and FSAB and the correlation of these parameters with bone density.

  7. Analysis of nephron composition and function in the adult zebrafish kidney.

    PubMed

    McCampbell, Kristen K; Springer, Kristin N; Wingert, Rebecca A

    2014-08-09

    The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.

  8. Grape Powder Improves Age-Related Decline in Mitochondrial and Kidney Functions in Fischer 344 Rats

    PubMed Central

    Ali, Quaisar

    2016-01-01

    We examined the effects and mechanism of grape powder- (GP-) mediated improvement, if any, on aging kidney function. Adult (3-month) and aged (21-month) Fischer 344 rats were treated without (controls) and with GP (1.5% in drinking water) and kidney parameters were measured. Control aged rats showed higher levels of proteinuria and urinary kidney injury molecule-1 (KIM-1), which decreased with GP treatment in these rats. Renal protein carbonyls (protein oxidation) and gp91phox-NADPH oxidase levels were high in control aged rats, suggesting oxidative stress burden in these rats. GP treatment in aged rats restored these parameters to the levels of adult rats. Moreover, glomerular filtration rate and sodium excretion were low in control aged rats suggesting compromised kidney function, which improved with GP treatment in aged rats. Interestingly, low renal mitochondrial respiration and ATP levels in control aged rats were associated with reduced levels of mitochondrial biogenesis marker MtTFA. Also, Nrf2 proteins levels were reduced in control aged rats. GP treatment increased levels of MtTFA and Nrf2 in aged rats. These results suggest that GP by potentially regulating Nrf2 improves aging mitochondrial and kidney functions. PMID:27528887

  9. Grape Powder Improves Age-Related Decline in Mitochondrial and Kidney Functions in Fischer 344 Rats.

    PubMed

    Pokkunuri, Indira; Ali, Quaisar; Asghar, Mohammad

    2016-01-01

    We examined the effects and mechanism of grape powder- (GP-) mediated improvement, if any, on aging kidney function. Adult (3-month) and aged (21-month) Fischer 344 rats were treated without (controls) and with GP (1.5% in drinking water) and kidney parameters were measured. Control aged rats showed higher levels of proteinuria and urinary kidney injury molecule-1 (KIM-1), which decreased with GP treatment in these rats. Renal protein carbonyls (protein oxidation) and gp (91phox) -NADPH oxidase levels were high in control aged rats, suggesting oxidative stress burden in these rats. GP treatment in aged rats restored these parameters to the levels of adult rats. Moreover, glomerular filtration rate and sodium excretion were low in control aged rats suggesting compromised kidney function, which improved with GP treatment in aged rats. Interestingly, low renal mitochondrial respiration and ATP levels in control aged rats were associated with reduced levels of mitochondrial biogenesis marker MtTFA. Also, Nrf2 proteins levels were reduced in control aged rats. GP treatment increased levels of MtTFA and Nrf2 in aged rats. These results suggest that GP by potentially regulating Nrf2 improves aging mitochondrial and kidney functions. PMID:27528887

  10. Circulating Follistatin in Patients with Chronic Kidney Disease: Implications for Muscle Strength, Bone Mineral Density, Inflammation, and Survival

    PubMed Central

    Miyamoto, Tetsu; Carrero, Juan Jesús; Rashid Qureshi, Abdul; Anderstam, Björn; Heimbürger, Olof; Bárány, Peter; Lindholm, Bengt

    2011-01-01

    Summary Background and objectives Follistatin mediates muscle growth and bone mineralization. At present, it is unknown whether circulating follistatin levels are altered in chronic kidney disease (CKD) or links to CKD risk factors and outcomes. Design, setting, participants, & measurements Plasma follistatin levels were cross-sectionally analyzed in relation to protein-energy wasting (PEW), handgrip strength (HGS), bone mineral density (BMD), and inflammatory markers in 280 CKD stage 5 patients, 32 CKD stage 4 patients, 16 CKD stage 3 patients, and 32 control subjects. In CKD stage 5 patients survival was prospectively investigated during a follow-up period of up to 5 years. Results The plasma follistatin concentration was not higher in CKD stage 5 patients than in other CKD stages or controls. In CKD stage 5 patients, circulating follistatin positively correlated with age, high-sensitivity C-reactive protein (hsCRP), and IL-6; negatively correlated with HGS, serum creatinine, and BMD; and was increased in patients with PEW. In a multivariate logistic regression model, lower HGS, lower BMD, and higher hsCRP independently correlated with higher follistatin levels. In a Cox regression model, follistatin levels were not associated with all-cause mortality. Conclusions Circulating follistatin levels were neither elevated nor predicted outcome in patients with CKD. However, increased follistatin levels occurred together with increased inflammation, reduced muscle strength, and low BMD, suggesting an involvement of a mechanism including follistatin in the uremic wasting process. PMID:21350111

  11. Endogenously elevated bilirubin modulates kidney function and protects from circulating oxidative stress in a rat model of adenine-induced kidney failure

    PubMed Central

    Boon, Ai-Ching; Lam, Alfred K.; Gopalan, Vinod; Benzie, Iris F.; Briskey, David; Coombes, Jeff S.; Fassett, Robert G.; Bulmer, Andrew C.

    2015-01-01

    Mildly elevated bilirubin is associated with a reduction in the presence and progression of chronic kidney disease and related mortality, which may be attributed to bilirubin’s antioxidant properties. This study investigated whether endogenously elevated bilirubin would protect against adenine-induced kidney damage in male hyperbilirubinaemic Gunn rats and littermate controls. Animals were orally administered adenine or methylcellulose solvent (vehicle) daily for 10 days and were then monitored for 28 days. Serum and urine were assessed throughout the protocol for parameters of kidney function and antioxidant/oxidative stress status and kidneys were harvested for histological examination upon completion of the study. Adenine-treated animals experienced weight-loss, polyuria and polydipsia; however, these effects were significantly attenuated in adenine-treated Gunn rats. No difference in the presence of dihydroadenine crystals, lymphocytic infiltration and fibrosis were noted in Gunn rat kidneys versus controls. However, plasma protein carbonyl and F2-isoprostane concentrations were significantly decreased in Gunn rats versus controls, with no change in urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine or kidney tissue F2-isoprostane concentrations. These data indicated that endogenously elevated bilirubin specifically protects from systemic oxidative stress in the vascular compartment. These data may help to clarify the protective relationship between bilirubin, kidney function and cardiovascular mortality in clinical investigations. PMID:26498893

  12. Aneurysmal bone cyst does not hinder the success of kidney transplantation. A case report.

    PubMed

    Giordano, Mario; Caloro, Giorgia; Gaeta, Alberto; Vergori, Antonio; Santangelo, Luisa; Giordano, Paolo; Ruggieri, Pietro

    2015-03-01

    Uremic osteodystrophy is an expected complication in subjects with chronic renal insufficiency. It develops gradually and progressively already during the conservative treatment and then during the dialysis treatment. It can present a wide histopathological spectrum including typical alterations (from osteitis fibrosa to osteomalacia and/or mixed lesions) or, more rarely, isolated bone lesions indicative of a brown tumor of the bone. These conditions must be clearly identified in the pretransplant phase, especially if a bone lesion indicative of a pathological condition possibly evolving into a neoplasm is detected fortuitously. We report the case of a 19-yr-old boy with renal insufficiency and candidate for a pre-emptive renal transplantation from a living donor, in whom the diagnosis of ABC of the pubic symphysis - asymptomatic and fortuitously detected while performing instrumental investigations - was suspected through the imaging studies (CT scan, MRI) and was confirmed by the histological examination. This made it possible to perform the renal transplant. The immunosuppressive treatment, which was subsequently administered, was based on steroids, calcineurin inhibitors (tacrolimus), and mycophenolate and did not determine any modification in the radiological aspect of the bone lesion, even after more than one yr from the transplant. PMID:25514989

  13. Kidney function of the American eel Anguilla rostrata.

    PubMed

    Schmidt-Nielsen, B; Renfro, J L

    1975-02-01

    Urine formation in the eel, acclimated to freshwater (FW) and seawater (SW) was studied. SW eels maintained higher plasma and urine osmotic and ionic concentrations than FW eels. Polyethylene-1,2-glycol-14C (PEG-14C) clearance was 29% greater than methoxy-inulin-3H clearance. PEG-14C clearance was considered to be the glomerular filtration rate (GFR). The GFR of SW and FW eels did not differ. Urine flow rate in SW eels was one-third of that in FW eels. The primary urinary solutes in both groups were Na and Cl. Apparently, tubular fluid secretion occurred in FW and, to a lesser degree, in SW eels. With the assumption that water reabsorption was secondary to Na reabsorption in the kidney, the clearance data were used to evaluate all possible explanations for what appeared to be fluid secretion. The data were inconsistent with the possibility that GFR had been underestimated due to glomerular sieving of PEG or active or passive reabsorption of the marker, but consistent with tubular fluid secretion. Furosemide caused diuresis in both groups of eels apparently by inhibition of Na reabsorption in the distal tubule, but it had no effect on the apparent tubular fluid secretion. Tubular ion secretion could not be conclusively implicated as a driving force for fluid secretion. However, the possibility of K, Ca, or Mg secretion in a proximal segment followed by reabsorption in a more distal part of the nephron was not ruled out.

  14. A case report of disabling bone pain after long-term kidney transplantation.

    PubMed

    Myint, T M M; Vucak-Dzumhur, M; Ebeling, P R; Elder, G J

    2014-02-01

    A 77-year-old man, who received a renal transplant 13 years before for IgA glomerulonephritis, was referred after he developed bilateral mid-tibial aching pain that did not improve with simple analgesia. He had recently been changed from low-dose cyclosporine to tacrolimus, but the pain did not improve when this was reversed. He had a history of focal prostatic adenocarcinoma, cryptococcal lung infection, osteoporosis treated with alendronate for 2 years and multiple squamous cell carcinomas, including one requiring left neck dissection and radiotherapy. Upon physical examination, he had gouty tophi and marked bilateral tibial tenderness but had no other clinical findings. Laboratory investigations included an elevated intact parathyroid hormone value of 7.9 pmol/L (1.6 to 6.9), bone specific alkaline phosphatase of 22 µg/L (3.7 to 20.9), urinary deoxypyridinoline/creatinine ratio of 7.2 nmol/mmol (2.5 to 5.4) and C-reactive protein. Chest X-ray and tibial X-rays were normal, but there was marrow oedema and a prominent periosteal reaction on magnetic resonance imaging. A radionuclide bone scan showed increased symmetrical, linear uptake in both tibiae and the left femur, and uptake was also noted in both clinically asymptomatic humeri. Tibial bone biopsy disclosed small deposits of poorly differentiated metastatic cancer and a follow-up chest CT revealed a lung lesion. It was concluded that the bone pain and periostitis was caused by primary lung cancer with metastatic disease to bone, and an associated hypertrophic osteoarthropathy.

  15. [Dynamic renal scintigraphy in assessing kidney function in patients with nonspecific colitis].

    PubMed

    Topchiĭ, T V; Moskalenko, N I; Man'kovskaia, O L; Morozova, N L

    1990-11-01

    Research into the morphofunctional status of the kidneys was conducted in patients with nonspecific colitis-NC (nonspecific ulcerative colitis-NUC and Crohn's disease). Urodynamics and partial function of the kidneys were assessed in 74 NC patients (51 NUC patients and 23 patients with Crohn's disease) on the basis of the findings of two-nuclide dynamic renal scintigraphy with 131I-hippuran and 99mTc-pentatech. Despite the absence of clinical symptomatology of urinary tract lesions, marked dysfunction of the kidneys of various degree (depending on severity of disease, tactics of its treatment and a type of surgical intervention) was noted in NC patients. In most cases changes of renal function were without visible clinical manifestations and were frequently undetectable by routine laboratory tests. Therefore dynamic renal scintigraphy was found necessary for investigation on NC patients. PMID:2259285

  16. Bone geometry according to menstrual function in female endurance athletes.

    PubMed

    Duckham, R L; Peirce, N; Bailey, C A; Summers, G; Cameron, N; Brooke-Wavell, K

    2013-05-01

    Athletes have higher bone mineral density (BMD) relative to nonathletes. In amenorrheic athletes BMD may be compromised by estrogen deficiency, but it is unknown whether this is accompanied by structural differences. We compared femoral neck bone geometry and density of a-/oligomenorrheic athletes (AAs), eumenorrheic athletes (EAs), and eumenorrheic controls (ECs). We recruited 156 women: (68 endurance athletes and 88 controls). Femoral neck BMD, section modulus (Z), and width were measured using dual-energy X-ray absorptiometry. Menstrual function was assessed by questionnaire and classified as EA (≥10 periods/year) or AA (≤9 periods/year): 24 athletes were AA and 44 EA. Femoral neck BMD was significantly higher in EA than AA (8 %, difference) and EC (11 % difference): mean [SE] 1.118 [0.015], 1.023 [0.020] and 0.999 [0.014] g cm(-2), respectively; p < 0.001. Z was significantly higher in EA than EC (11 % difference): EA 667 [19], AA 625 [21], and EC 592 [10] cm(3); p < 0.001. Femoral neck width did not differ between groups. All differences persisted after adjustment for height, age, and body mass. The higher femoral neck Z and BMD in athletes, despite similar width, may indicate that exercise-related bone gains are endosteal rather than periosteal. Athletes with amenorrhea had smaller increments in bone mass rather than structural adaptation. The maintained femoral neck width in controls may be an adaptive mechanism to conserve bone strength in bending despite inactivity-related bone decrement.

  17. Bone geometry according to menstrual function in female endurance athletes.

    PubMed

    Duckham, R L; Peirce, N; Bailey, C A; Summers, G; Cameron, N; Brooke-Wavell, K

    2013-05-01

    Athletes have higher bone mineral density (BMD) relative to nonathletes. In amenorrheic athletes BMD may be compromised by estrogen deficiency, but it is unknown whether this is accompanied by structural differences. We compared femoral neck bone geometry and density of a-/oligomenorrheic athletes (AAs), eumenorrheic athletes (EAs), and eumenorrheic controls (ECs). We recruited 156 women: (68 endurance athletes and 88 controls). Femoral neck BMD, section modulus (Z), and width were measured using dual-energy X-ray absorptiometry. Menstrual function was assessed by questionnaire and classified as EA (≥10 periods/year) or AA (≤9 periods/year): 24 athletes were AA and 44 EA. Femoral neck BMD was significantly higher in EA than AA (8 %, difference) and EC (11 % difference): mean [SE] 1.118 [0.015], 1.023 [0.020] and 0.999 [0.014] g cm(-2), respectively; p < 0.001. Z was significantly higher in EA than EC (11 % difference): EA 667 [19], AA 625 [21], and EC 592 [10] cm(3); p < 0.001. Femoral neck width did not differ between groups. All differences persisted after adjustment for height, age, and body mass. The higher femoral neck Z and BMD in athletes, despite similar width, may indicate that exercise-related bone gains are endosteal rather than periosteal. Athletes with amenorrhea had smaller increments in bone mass rather than structural adaptation. The maintained femoral neck width in controls may be an adaptive mechanism to conserve bone strength in bending despite inactivity-related bone decrement. PMID:23361333

  18. Profile of incident chronic kidney disease related-mineral bone disorders in chronic kidney disease Stage 4 and 5: A hospital based cross-sectional survey

    PubMed Central

    Valson, A. T.; Sundaram, M.; David, V. G.; Deborah, M. N.; Varughese, S.; Basu, G.; Mohapatra, A.; Alexander, S.; Jose, J.; Roshan, J.; Simon, B.; Rebekah, G.; Tamilarasi, V.; Jacob, C. K.

    2014-01-01

    Chronic kidney disease related-mineral bone disorder (CKD-MBD) has been poorly studied in pre-dialysis Indian CKD patients. We aimed to study the clinical, biochemical and extra skeletal manifestations of untreated CKD-MBD in pre-dialysis Stage 4 and 5 CKD patients attending nephrology out-patient clinic at a tertiary care hospital in South India. A hospital based cross-sectional survey including, demographic profile, history of CKD-MBD symptoms, measurement of serum calcium, phosphate, parathyroid hormone, 25 hydroxy vitamin D (25(OH) D) and alkaline phosphatase; lateral abdominal X-rays for abdominal aortic calcification (AAC) and echocardiography for valvular calcification (VC) was carried out. Of the 710 patients surveyed, 45% had no CKD-MBD related symptom. Prevalence of hypocalcemia, hyperphosphatemia, hyperparathyroidism (>150 pg/mL) and 25(OH) D levels <30 ng/mL was 66.3%, 59%, 89.3% and 74.7% respectively. Echocardiography was carried out in 471 patients; 96% of whom had VC (calcification score ≥1). Patients with VC were older and had lower 25(OH) D levels than those without. Lateral abdominal X-rays were obtained in 558 patients, 6.8% of whom were found to have AAC, which was associated with older age. Indian patients with incident CKD-MBD have a high prevalence of hypocalcemia, 25(OH) D deficiency and VC even prior to initiating dialysis while AAC does not appear to be common. The association between 25(OH) D deficiency and VC needs further exploration. PMID:24701042

  19. The relationship between serology of hepatitis E virus with liver and kidney function in kidney transplant patients

    PubMed Central

    Zeraati, Abbas Ali; Nazemian, Fatemeh; Takalloo, Ladan; Sahebkar, Amirhossein; Heidari, Elahe; Yaghoubi, Mohammad Ali

    2016-01-01

    Although hepatitis E virus (HEV) is well known to cause acute hepatitis, there are reports showing that HEV may also be responsible for progression of acute to chronic hepatitis and liver cirrhosis in patients receiving organ transplantation. In this study, we aimed to evaluate the prevalence of HEV in patients with kidney transplantation. In this study, 110 patients with kidney transplantation were recruited, and anti-HEV IgG, creatinine, alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and estimated glomerular filtration rate (eGFR) in the first, third and sixth months after renal transplantation were measured. The mean serum anti-HEV IgG titers in the study participants was 1.36 (range 0.23 to 6.3). Twenty-three patients were found to be seropositive for HEV Ab defined as anti-HEV IgG titer > 1.1. The difference in liver and renal function tests (creatinine, eGFR, AST, ALT and ALP) at different intervals was not significant between patients with HEV Ab titers higher and lower than 1.1 (p > 0.05). However, an inverse correlation was observed between HEV Ab and eGFR values in the first (p = 0.047, r = -0.21), third (p = 0.04, r = -0.20) and sixth (p = 0.04, r = -0.22) months after renal transplantation in patients with HEV Ab < 1.1 but not in the subgroup with HEV Ab > 1.1. Also, a significant correlation between age and HEV Ab levels was found in the entire study population (p = 0.001, r = 0.33). Our findings showed a high prevalence of seropositivity for anti-HEV IgG in patients receiving renal transplants. However, liver and renal functions were not found to be significantly different seropositive and seronegative patients by up to 6 months post-transplantation. PMID:27366144

  20. The relationship between serology of hepatitis E virus with liver and kidney function in kidney transplant patients.

    PubMed

    Zeraati, Abbas Ali; Nazemian, Fatemeh; Takalloo, Ladan; Sahebkar, Amirhossein; Heidari, Elahe; Yaghoubi, Mohammad Ali

    2016-01-01

    Although hepatitis E virus (HEV) is well known to cause acute hepatitis, there are reports showing that HEV may also be responsible for progression of acute to chronic hepatitis and liver cirrhosis in patients receiving organ transplantation. In this study, we aimed to evaluate the prevalence of HEV in patients with kidney transplantation. In this study, 110 patients with kidney transplantation were recruited, and anti-HEV IgG, creatinine, alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and estimated glomerular filtration rate (eGFR) in the first, third and sixth months after renal transplantation were measured. The mean serum anti-HEV IgG titers in the study participants was 1.36 (range 0.23 to 6.3). Twenty-three patients were found to be seropositive for HEV Ab defined as anti-HEV IgG titer > 1.1. The difference in liver and renal function tests (creatinine, eGFR, AST, ALT and ALP) at different intervals was not significant between patients with HEV Ab titers higher and lower than 1.1 (p > 0.05). However, an inverse correlation was observed between HEV Ab and eGFR values in the first (p = 0.047, r = -0.21), third (p = 0.04, r = -0.20) and sixth (p = 0.04, r = -0.22) months after renal transplantation in patients with HEV Ab < 1.1 but not in the subgroup with HEV Ab > 1.1. Also, a significant correlation between age and HEV Ab levels was found in the entire study population (p = 0.001, r = 0.33). Our findings showed a high prevalence of seropositivity for anti-HEV IgG in patients receiving renal transplants. However, liver and renal functions were not found to be significantly different seropositive and seronegative patients by up to 6 months post-transplantation. PMID:27366144

  1. Common variants in Mendelian kidney disease genes and their association with renal function.

    PubMed

    Parsa, Afshin; Fuchsberger, Christian; Köttgen, Anna; O'Seaghdha, Conall M; Pattaro, Cristian; de Andrade, Mariza; Chasman, Daniel I; Teumer, Alexander; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Kim, Young J; Taliun, Daniel; Li, Man; Feitosa, Mary; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; Glazer, Nicole; Isaacs, Aaron; Rao, Madhumathi; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Asa; Tönjes, Anke; Dehghan, Abbas; Couraki, Vincent; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Hofer, Edith; Hu, Frank; Demirkan, Ayse; Oostra, Ben A; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H-Erich; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; van Duijn, Cornelia M; Borecki, Ingrid; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Bochud, Murielle; Heid, Iris M; Siscovick, David S; Fox, Caroline S; Kao, W Linda; Böger, Carsten A

    2013-12-01

    Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research.

  2. Genetic polymorphisms of Interleukin-18 are not associated with allograft function in kidney transplant recipients.

    PubMed

    do Nascimento, Wenna Gleyce Araújo; Cilião, Daiani Alves; Genre, Julieta; Gondim, Dikson Dibe; Alves, Renata Gomes; Hassan, Neife Deghaide; Lima, Francisco Pignataro; Pereira, Maurício Galvão; Donadi, Eduardo Antônio; de Oliveira Crispim, Janaina Cristiana

    2014-06-01

    Interleukin 18 (IL-18) is a proinflammatory cytokine that plays a role in host defense by upregulating both innate and acquired immune responses. Analysis of IL18 polymorphisms may be clinically important since their roles have been recognized in a variety of inflammatory and autoimmune disorders. However, the role of this cytokine polymorphisms in kidney transplant still remains unclear. In this study, we evaluated the associations between IL18 polymorphisms and graft function assessed by creatinine clearance in kidney transplant recipients. A total of 82 kidney transplant recipients and 183 healthy controls were enrolled, and frequencies of alleles, genotypes and haplotypes for IL18 polymorphisms were determined and compared with creatinine clearance. The -607C/A (rs1946518) and -137C/G (rs187238) variant alleles in the IL18 gene were determined by polymerase chain reaction. In our study, no significant association was found between the IL18 variants and creatinine clearance (p > 0.05). Nonetheless, polymorphism analysis revealed an increase in the frequency of the IL18 major haplotype -607C/-137G in kidney transplant patients (odds ratio 2.57, 95% confidence interval 1.45-4.55, p = 0.0014). Finally, we found that IL18 polymorphisms did not influence the renal function and that IL18 haplotype -607C/-137G seems to be associated with kidney transplant recipients.

  3. Genetic polymorphisms of Interleukin-18 are not associated with allograft function in kidney transplant recipients

    PubMed Central

    do Nascimento, Wenna Gleyce Araújo; Cilião, Daiani Alves; Genre, Julieta; Gondim, Dikson Dibe; Alves, Renata Gomes; Hassan, Neife Deghaide; Lima, Francisco Pignataro; Pereira, Maurício Galvão; Donadi, Eduardo Antônio; de Oliveira Crispim, Janaina Cristiana

    2014-01-01

    Interleukin 18 (IL-18) is a proinflammatory cytokine that plays a role in host defense by upregulating both innate and acquired immune responses. Analysis of IL18 polymorphisms may be clinically important since their roles have been recognized in a variety of inflammatory and autoimmune disorders. However, the role of this cytokine polymorphisms in kidney transplant still remains unclear. In this study, we evaluated the associations between IL18 polymorphisms and graft function assessed by creatinine clearance in kidney transplant recipients. A total of 82 kidney transplant recipients and 183 healthy controls were enrolled, and frequencies of alleles, genotypes and haplotypes for IL18 polymorphisms were determined and compared with creatinine clearance. The -607C/A (rs1946518) and -137C/G (rs187238) variant alleles in the IL18 gene were determined by polymerase chain reaction. In our study, no significant association was found between the IL18 variants and creatinine clearance (p > 0.05). Nonetheless, polymorphism analysis revealed an increase in the frequency of the IL18 major haplotype -607C/-137G in kidney transplant patients (odds ratio 2.57, 95% confidence interval 1.45–4.55, p = 0.0014). Finally, we found that IL18 polymorphisms did not influence the renal function and that IL18 haplotype -607C/-137G seems to be associated with kidney transplant recipients. PMID:25071398

  4. Common Variants in Mendelian Kidney Disease Genes and Their Association with Renal Function

    PubMed Central

    Fuchsberger, Christian; Köttgen, Anna; O’Seaghdha, Conall M.; Pattaro, Cristian; de Andrade, Mariza; Chasman, Daniel I.; Teumer, Alexander; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Kim, Young J.; Taliun, Daniel; Li, Man; Feitosa, Mary; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; Glazer, Nicole; Isaacs, Aaron; Rao, Madhumathi; Smith, Albert V.; O’Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Couraki, Vincent; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Hofer, Edith; Hu, Frank; Demirkan, Ayse; Oostra, Ben A.; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H.-Erich; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; van Duijn, Cornelia M.; Borecki, Ingrid; Kardia, Sharon L.R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M.; Bochud, Murielle; Heid, Iris M.; Siscovick, David S.; Fox, Caroline S.; Kao, W. Linda; Böger, Carsten A.

    2013-01-01

    Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research. PMID:24029420

  5. Combined effects of fluoride and cadmium on liver and kidney function in male rats.

    PubMed

    Zhang, Junmin; Song, Jingjuan; Zhang, Jun; Chen, Xiao; Zhou, Meixia; Cheng, Guang; Xie, Xinyou

    2013-12-01

    It has been shown that cadmium and fluoride may both have adverse effects on liver and kidney functions, but most studies focus on a single agent. In this study, we observed the effects of cadmium and fluoride on liver and kidney functions using a rat model. Total of 24 Sprague-Dawley male rats were divided into four groups, one control group and three exposure groups that were given cadmium (50 mg/L) and fluoride (100 mg/L) alone or in combination via drinking water. At the 12th week, urine, blood, and kidney tissues were collected. Aspartate transaminase, alanine transaminase (ALT), urinary β2-microglobulin, and albumin were determined. Contents of malondialdehyde (MDA) and superoxide dismutase (SOD) in liver and kidney homogenates were measured to evaluate oxidative stress. There was a significant increase in serum ALT and urinary β2-microglobulin of rats in exposure groups compared with control. Serum ALT and urinary β2-microglobulin of rats exposed to cadmium and fluoride in combination was significantly higher than those treated with cadmium alone and fluoride alone. SOD declined significantly and MDA increased in combination group compared with control and those treated with cadmium and fluoride alone. Cadmium and fluoride co-exposure increase the liver and kidney damage compared with that exposed to cadmium or fluoride alone.

  6. Vestibular function and temporal bone imaging in DFNB1.

    PubMed

    Oonk, A M M; Beynon, A J; Peters, T A; Kunst, H P M; Admiraal, R J C; Kremer, H; Verbist, B; Pennings, R J E

    2015-09-01

    DFNB1 is the most prevalent type of hereditary hearing impairment known nowadays and the audiometric phenotype is very heterogeneous. There is, however, no consensus in literature on vestibular and imaging characteristics. Vestibular function and imaging results of 44 DFNB1 patients were evaluated in this retrospective study. All patients displayed a response during rotational velocity step testing. In 65% of the cases, the caloric results were within normal range bilaterally. The video head impulse test was normal in all patients. In 34.4% of the CT scans one or more temporal bone anomalies were found. The various anomalies found, were present in small numbers and none seemed convincingly linked to a specific DFNB1genotype. The group of DFNB1 patients presented here is the largest thus far evaluated for their vestibular function. From this study, it can be assumed that DFNB1 is not associated with vestibular dysfunction or specific temporal bone anomalies. PMID:26188104

  7. Functions of AP1 (Fos/Jun) in bone development.

    PubMed

    Wagner, E F

    2002-11-01

    Genetically modified mice and cells have provided important insights into the biological functions of the dimeric transcription factor complex AP1, in particular into its role in skeletal development. Data obtained from knockout mice revealed that some components, such as c-Fos are key regulators of bone cell differentiation, whereas others, like c-Jun, JunB and Fra-1 are essential in embryonic and/or postnatal development. Apart from identifying the specific roles of AP1 proteins in developmental processes, researchers are beginning to obtain a better molecular understanding of their cell-context dependent functions, their downstream target genes and how they regulate bone cell proliferation, differentiation, and apoptosis.

  8. Thyroid function and bone mineral density among Indian subjects

    PubMed Central

    Marwaha, Raman K.; Garg, M. K.; Tandon, Nikhil; Kanwar, Ratnesh; Narang, Aparna; Sastry, Archna; Bhadra, Kuntal

    2012-01-01

    Background: Thyroid hormones affect bone remodeling in patients with thyroid disease by acting directly or indirectly on bone cells. In view of limited information on correlation of thyroid function with bone mineral density (BMD) in euthyroid subjects, we undertook this study to evaluate the correlation between thyroid function with BMD in subjects with normal thyroid function and subclinical hypothyroidism. Material and Methods: A total of 1290 subjects included in this cross sectional study, were divided in Group-1 with normal thyroid function and Group-2 with subclinical hypothyroidism. Fasting blood samples were drawn for the estimation of serum 25(OH)D, intact parathyroid hormone, total and ionized calcium, inorganic phosphorus, and alkaline phosphatase. BMD at lumbar spine, femur, and forearm was measured. Results: BMD at all sites (radius, femur, and spine) were comparable in both groups. There was no difference in BMD when subjects were divided in tertiles of TSH in either group. In group-1, FT4 and TSH were positively associated with BMD at 33% radius whereas FT3 was negatively associated with BMD at femoral neck in multiple regression analysis after adjustment for age, sex, BMI, 25(OH)D and PTH levels. In group-2, there was no association observed between TSH and BMD at any site. Amongst all study subjects FT4 and FT3 were positively correlated with BMD at lumbar spine and radius respectively among all subjects. Conclusion: TSH does not affect BMD in euthyroid subjects and subjects with subclinical hypothyroidism. Thyroid hormones appear to have more pronounced positive effect on cortical than trabecular bone in euthyroid subjects. PMID:22837919

  9. Bone remodeling induced by dental implants of functionally graded materials.

    PubMed

    Lin, Daniel; Li, Qing; Li, Wei; Swain, Michael

    2010-02-01

    Functionally graded material (FGM) had been developed as a potential implant material to replace titanium for its improved capability of initial osseointegration. The idea behind FGM dental implant is that its properties can be tailored in accordance with the biomechanical needs at different regions adapting to its hosting bony tissues, therefore creating an improved overall integration and stability in the entire restoration. However, there have been very few reports available so far on predicting bone remodeling induced by FGM dental implants. This article aims to evaluate bone remodeling when replacing the titanium with a hydroxyapatite/collagen (HAP/Col) FGM model. A finite element model was constructed in the buccal-lingual section of a dental implant-bone structure generated from in vivo CT scan images. The remodeling simulation was performed over a 4 year healing period. Comparisons were made between the titanium implant and various FGM implants of this model. The FGM implants showed an improved bone remodeling outcome. The study is expected to provide a basis for future development of FGM implants.

  10. Augmented mandibular bone structurally adapts to functional loading.

    PubMed

    Verhoeven, J W; Ruijter, J M; Koole, R; de Putter, C; Terlou, M; Cune, M S

    2013-12-01

    Long-term changes in trabecular bone structure during the 10 years following onlay grafting with simultaneous mandibular implant placement were studied. Extraoral radiographs of both mandibular sides in eight patients were taken regularly. Bone structure was analysed using a custom-written image analysis program. Parameters studied were trabecular area and perimeter and marrow cavity area and perimeter. After skeletonisation of the trabecular network, the number of end points and branching points, skeleton length, and branch angle were determined. The observed structural changes agree with the development of a more complex and more delicate or fine osseous structure. The bone shows more trabecular branching. All changes are most pronounced in the graft spongiosa, but are also found in the graft cortex and in the original mandible. The mean trabecular branch angle becomes more horizontal. The applied technique can be used to analyse long-term changes in the architecture of bone grafts. Changes found in the graft architecture correspond to changes expected after functional adaptation to loading. PMID:23791249

  11. The kidney disease quality of life cognitive function subscale and cognitive performance maintenance hemodialysis patients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Cognitive impairment is common but often undiagnosed in patients with end-stage renal disease, in part reflecting limited validated and easily administered tools to assess cognitive function in dialysis patients. Accordingly, we assessed the utility of the Kidney Disease Quality of Life ...

  12. Antigravity suit inflation - Kidney function and cardiovascular and hormonal responses in men

    NASA Technical Reports Server (NTRS)

    Geelen, Ghislaine; Kravik, Stein E.; Hadj-Aissa, Aoumeur; Leftheriotis, Georges; Vincent, Madeleine

    1989-01-01

    The effect of the lower body positive pressure (LBPP) on kidney function in normal men was investigated in experiments in which the subjects underwent 30 min of sitting and then were subjected to 4.5 h of 70-deg head-up tilt. During the last 3 h of the tilt period, an antigravity suit (60 T legs, 30 T abdomen) was applied. The results showed that LBPP induces a significant increase in effective renal plasma flow and significant changes in the kidney excretory patterns, which were similar to those observed during a water immersion or the early phase of bed rest.

  13. Radionuclide determination of individual kidney function in the treatment of chronic renal obstruction

    SciTech Connect

    Belis, J.A.; Belis, T.E.; Lai, J.C.; Goodwin, C.A.; Gabriele, O.F.

    1982-04-01

    Differential radionuclide renal scans can be useful in the management of patients with chronic partial obstruction of 1 kidney. The /sup 99m/Tc diethylenetriaminepentaacetic acid perfusion scan can be used to assess glomerular blood flow. The /sup 131/I orthoiodohippurate renal scan provides qualitative functional information from scintigrams and quantitative evaluation of effective renal plasma flow to each kidney, as well as a total excretory index. Sequential /sup 99m/Tc diethylenetriaminepentaacetic acid and /sup 131/I orthoiodohippurate renal scans were used to assess individual renal function before and after surgical correction of unilateral chronic renal obstruction in 31 patients. The preservation of cortical perfusion on /supb 99m/Tc diethylenetriaminepentaacetic acid scans indicated that potential existed for partial recovery of renal function. Effective renal plasma flow and excretory index determined in conjunction with the /sup 131/I orthoiodohippurate scans provided a quantitative assessment of preoperative renal function, an evaluation of the effect of surgery and a sensitive method for long-term evaluation of differential renal function. Correction of ureteropelvic junction obstruction usually resulted in improvement in unilateral renal function. Neither nephrolithotomy nor extended pyelolithotomy diminished renal function in the kidney subjected to an operation and often improved it. Patients with long-standing distal ureteral obstruction had the least improvement in renal function postoperatively.

  14. Shock wave lithotripsy (SWL) induces significant structural and functional changes in the kidney

    NASA Astrophysics Data System (ADS)

    Evan, Andrew P.; Willis, Lynn R.; Lingeman, James E.

    2003-10-01

    The foundation for understanding SWL-injury has been well-controlled renal structural and functional studies in pigs, a model that closely mimics the human kidney. A clinical dose (2000 shocks at 24 kV) of SWL administered by the Dornier HM3 induces a predictable, unique vascular injury at F2 that is associated with transient renal vasoconstriction, seen as a reduction in renal plasma flow, in both treated and untreated kidneys. Unilateral renal denervation studies links the fall in blood flow in untreated kidneys to autonomic nerve activity in the treated kidney. SWL-induced trauma is associated with an acute inflammatory process, termed Lithotripsy Nephritis and tubular damage at the site of damage that leads to a focal region of scar. Lesion size increases with shock number and kV level. In addition, risk factors like kidney size and pre-existing renal disease (e.g., pyelonephritis), can exaggerate the predicted level of renal impairment. Our new protection data show that lesion size can be greatly reduced by a pretreatment session with low kV and shock number. The mechanisms of soft tissue injury probably involves shear stress followed by acoustic cavitation. Because of the perceived enhanced level of bioeffects from 3rd generation lithotripters, these observations are more relevant than ever.

  15. Mineral and Bone Disorder and Its Association with Cardiovascular Parameters in Chinese Patients with Chronic Kidney Disease

    PubMed Central

    Zhou, Chu; Wang, Fang; Wang, Jin-Wei; Zhang, Lu-Xia; Zhao, Ming-Hui

    2016-01-01

    Background: Mineral and bone disorder (MBD), especially hyperphosphatemia, is an independently risk factor for adverse prognosis in patients with chronic kidney disease (CKD). However, CKD-MBD among Chinese population was poorly studied. This study aimed to investigate the status of MBD and its association with cardiovascular parameters in Chinese patients with predialysis CKD. Methods: Chinese Cohort Study of Chronic Kidney Disease (C-STRIDE) is a prospective multicenter cohort study involving predialysis CKD patients in China. Markers of MBD, including serum phosphorus, calcium, and intact parathyroid hormone, were measured in baseline samples at the patients’ entry. The association between serum phosphorus and abdominal aortic calcification (AAC), left ventricular hypertrophy (LVH) were examined by logistic regression models. Results: Altogether 3194 predialysis patients with mean estimated glomerular filtration of 51.8 ± 33.1 ml·min−1.1.73 m−2 were included. The proportion of patients with hyperphosphatemia were 2.6%, 2.9%, 6.8%, and 27.1% in CKD Stages 3a, 3b, 4, and 5, respectively. Moreover, 71.6% of the patients with hyperphosphatemia did not receive any phosphate-binder (PB). Lateral abdominal X-rays were obtained in 2280 patients, 9.8% of the patients were diagnosed as having AAC. Altogether 2219 patients had data of echocardiography, and 13.2% of them were diagnosed with LVH. Multivariate logistic regression analysis showed that serum phosphorus was independently associated with the presence of AAC and LVH. Conclusions: In Chinese patients with CKD, the percentage of hyperphosphatemia is comparable to that of other countries while the usage of PBs is suboptimal. The prevalence of vascular calcification in Chinese patients is relatively lower compared with the Caucasian population. PMID:27647184

  16. Serum Paraoxonase Levels are Correlated with Impaired Aortic Functions in Patients with Chronic Kidney Disease

    PubMed Central

    Efe, Tolga H; Ertem, Ahmet G; Altunoglu, Alpaslan; Koseoglu, Cemal; Erayman, Ali; Bilgin, Murat; Kurmuş, Özge; Aslan, Turgay; Bilge, Mehmet

    2016-01-01

    Background The correlation between aortic functions and paraoxonase levels has been previously demonstrated by several earlier studies. In this study, we aimed to investigate the correlation between serum paraoxonase levels and aortic functions among patients with chronic kidney disease. Methods Our study enrolled 46 chronic kidney disease patients and 45 healthy controls. From these patients, serum cholesterol, creatinine, hemoglobin, and paraoxonase-1 levels were analyzed. Results Paraoxonase-1 levels were significantly lower in patients with chronic kidney disease compared to the controls (p < 0.001). Additionally, the extent of aortic stiffness index (%) was significantly higher in chronic kidney disease patients, but aortic strain and aortic distensibility were significantly higher in healthy controls (p < 0.001, p < 0.001, and p < 0.001, respectively). We further found that paraoxonase-1 levels were correlated with aortic stiffness index, aortic strain, and aortic distensibility (p < 0.001, p < 0.001, and p < 0.001, respectively). Conclusions Our study demonstrated that serum paraoxonase-1 levels were significantly correlated with impaired aortic functions. The results of this study highlight the impact of serum paraoxonase-1 activity on atherosclerosis and cardiovascular adverse events. PMID:27122934

  17. Efficacy and Safety of Bisphosphonates for Low Bone Mineral Density After Kidney Transplantation: A Meta-Analysis.

    PubMed

    Kan, Shun-Li; Ning, Guang-Zhi; Chen, Ling-Xiao; Zhou, Yong; Sun, Jing-Cheng; Feng, Shi-Qing

    2016-02-01

    In patients with low bone mineral density (BMD) after kidney transplantation, the role of bisphosphonates remains unclear. We performed a systematic review and meta-analysis to investigate the efficacy and safety of bisphosphonates.We retrieved trials from PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials (CENTRAL) from inception through May 2015. Only randomized controlled trials that compared bisphosphonate-treated and control groups of patients with low bone mineral density after kidney transplantation were included. The primary outcomes were the percent change in BMD, the absolute change in BMD, and the BMD at the end of study at the lumbar spine. The results were expressed as the mean difference (MD) or relative risk (RR) with the 95% confidence interval (CI). We used a random-effects model to pool the outcomes.We included 17 randomized controlled trials with 1067 patients. Only 1 included trial was found to be at low risk of bias. The rest of the included studies were found to have high to uncertain risk of bias. Compared with the control group, those who received bisphosphonates had a significant increase in percent change in BMD (mean difference [MD] = 5.51, 95% confidence interval [CI] 3.22-7.79, P < 0.00001) and absolute change in BMD (MD = 0.05, 95% CI 0.04-0.05, P < 0.00001), but a nonsignificant increase in BMD at the end of the study (MD = 0.02, 95% CI -0.01 to 0.05, P = 0.25) at the lumbar spine. Bisphosphonates resulted in a significant improvement in percent change in BMD (MD = 4.95, 95% CI 2.57-7.33, P < 0.0001), but a nonsignificant improvement in absolute change in BMD (MD = 0.03, 95% CI -0.00 to 0.06, P = 0.07) and BMD at the end of the study (MD = -0.01, 95% CI -0.04 to 0.02, P = 0.40) at the femoral neck. No significant differences were found in vertebral fractures, nonvertebral fractures, adverse events, and gastrointestinal adverse events.Bisphosphonates appear to have a

  18. Measuring Dynamic Kidney Function in an Undergraduate Physiology Laboratory

    ERIC Educational Resources Information Center

    Medler, Scott; Harrington, Frederick

    2013-01-01

    Most undergraduate physiology laboratories are very limited in how they treat renal physiology. It is common to find teaching laboratories equipped with the capability for high-resolution digital recordings of physiological functions (muscle twitches, ECG, action potentials, respiratory responses, etc.), but most urinary laboratories still rely on…

  19. Trans-ethnic Fine Mapping Highlights Kidney-Function Genes Linked to Salt Sensitivity.

    PubMed

    Mahajan, Anubha; Rodan, Aylin R; Le, Thu H; Gaulton, Kyle J; Haessler, Jeffrey; Stilp, Adrienne M; Kamatani, Yoichiro; Zhu, Gu; Sofer, Tamar; Puri, Sanjana; Schellinger, Jeffrey N; Chu, Pei-Lun; Cechova, Sylvia; van Zuydam, Natalie; Arnlov, Johan; Flessner, Michael F; Giedraitis, Vilmantas; Heath, Andrew C; Kubo, Michiaki; Larsson, Anders; Lindgren, Cecilia M; Madden, Pamela A F; Montgomery, Grant W; Papanicolaou, George J; Reiner, Alex P; Sundström, Johan; Thornton, Timothy A; Lind, Lars; Ingelsson, Erik; Cai, Jianwen; Martin, Nicholas G; Kooperberg, Charles; Matsuda, Koichi; Whitfield, John B; Okada, Yukinori; Laurie, Cathy C; Morris, Andrew P; Franceschini, Nora

    2016-09-01

    We analyzed genome-wide association studies (GWASs), including data from 71,638 individuals from four ancestries, for estimated glomerular filtration rate (eGFR), a measure of kidney function used to define chronic kidney disease (CKD). We identified 20 loci attaining genome-wide-significant evidence of association (p < 5 × 10(-8)) with kidney function and highlighted that allelic effects on eGFR at lead SNPs are homogeneous across ancestries. We leveraged differences in the pattern of linkage disequilibrium between diverse populations to fine-map the 20 loci through construction of "credible sets" of variants driving eGFR association signals. Credible variants at the 20 eGFR loci were enriched for DNase I hypersensitivity sites (DHSs) in human kidney cells. DHS credible variants were expression quantitative trait loci for NFATC1 and RGS14 (at the SLC34A1 locus) in multiple tissues. Loss-of-function mutations in ancestral orthologs of both genes in Drosophila melanogaster were associated with altered sensitivity to salt stress. Renal mRNA expression of Nfatc1 and Rgs14 in a salt-sensitive mouse model was also reduced after exposure to a high-salt diet or induced CKD. Our study (1) demonstrates the utility of trans-ethnic fine mapping through integration of GWASs involving diverse populations with genomic annotation from relevant tissues to define molecular mechanisms by which association signals exert their effect and (2) suggests that salt sensitivity might be an important marker for biological processes that affect kidney function and CKD in humans. PMID:27588450

  20. Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations.

    PubMed

    Okada, Yukinori; Sim, Xueling; Go, Min Jin; Wu, Jer-Yuarn; Gu, Dongfeng; Takeuchi, Fumihiko; Takahashi, Atsushi; Maeda, Shiro; Tsunoda, Tatsuhiko; Chen, Peng; Lim, Su-Chi; Wong, Tien-Yin; Liu, Jianjun; Young, Terri L; Aung, Tin; Seielstad, Mark; Teo, Yik-Ying; Kim, Young Jin; Lee, Jong-Young; Han, Bok-Ghee; Kang, Daehee; Chen, Chien-Hsiun; Tsai, Fuu-Jen; Chang, Li-Ching; Fann, S-J Cathy; Mei, Hao; Rao, Dabeeru C; Hixson, James E; Chen, Shufeng; Katsuya, Tomohiro; Isono, Masato; Ogihara, Toshio; Chambers, John C; Zhang, Weihua; Kooner, Jaspal S; Albrecht, Eva; Yamamoto, Kazuhiko; Kubo, Michiaki; Nakamura, Yusuke; Kamatani, Naoyuki; Kato, Norihiro; He, Jiang; Chen, Yuan-Tsong; Cho, Yoon Shin; Tai, E-Shyong; Tanaka, Toshihiro

    2012-08-01

    Chronic kidney disease (CKD), impairment of kidney function, is a serious public health problem, and the assessment of genetic factors influencing kidney function has substantial clinical relevance. Here, we report a meta-analysis of genome-wide association studies for kidney function-related traits, including 71,149 east Asian individuals from 18 studies in 11 population-, hospital- or family-based cohorts, conducted as part of the Asian Genetic Epidemiology Network (AGEN). Our meta-analysis identified 17 loci newly associated with kidney function-related traits, including the concentrations of blood urea nitrogen, uric acid and serum creatinine and estimated glomerular filtration rate based on serum creatinine levels (eGFRcrea) (P < 5.0 × 10(-8)). We further examined these loci with in silico replication in individuals of European ancestry from the KidneyGen, CKDGen and GUGC consortia, including a combined total of ∼110,347 individuals. We identify pleiotropic associations among these loci with kidney function-related traits and risk of CKD. These findings provide new insights into the genetics of kidney function. PMID:22797727

  1. Functional adaptation of long bone extremities involves the localized ``tuning'' of the cortical bone composition; evidence from Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Buckley, Kevin; Kerns, Jemma G.; Birch, Helen L.; Gikas, Panagiotis D.; Parker, Anthony W.; Matousek, Pavel; Goodship, Allen E.

    2014-11-01

    In long bones, the functional adaptation of shape and structure occurs along the whole length of the organ. This study explores the hypothesis that adaptation of bone composition is also site-specific and that the mineral-to-collagen ratio of bone (and, thus, its mechanical properties) varies along the organ's length. Raman spectroscopy was used to map the chemical composition of long bones along their entire length in fine spatial resolution (1 mm), and then biochemical analysis was used to measure the mineral, collagen, water, and sulfated glycosaminoglycan content where site-specific differences were seen. The results show that the mineral-to-collagen ratio of the bone material in human tibiae varies by <5% along the mid-shaft but decreases by >10% toward the flared extremities of the bone. Comparisons with long bones from other large animals (horses, sheep, and deer) gave similar results with bone material composition changing across tens of centimeters. The composition of the bone apatite also varied with the phosphate-to-carbonate ratio decreasing toward the ends of the tibia. The data highlight the complexity of adaptive changes and raise interesting questions about the biochemical control mechanisms involved. In addition to their biological interest, the data provide timely information to researchers developing Raman spectroscopy as a noninvasive tool for measuring bone composition in vivo (particularly with regard to sampling and measurement protocol).

  2. Differential Expression of Functional Fc-Receptors and Additional Immune Complex Receptors on Mouse Kidney Cells

    PubMed Central

    Suwanichkul, Adisak; Wenderfer, Scott E.

    2013-01-01

    The precise mechanisms by which circulating immune complexes accumulate in the kidney to form deposits in glomerulonephritis are not well understood. In particular, the role of resident cells within glomeruli of the kidney has been widely debated. Immune complexes have been shown to bind one glomerular cell type (mesangial cells) leading to functional responses such as pro-inflammatory cytokine production. To further assess the presence of functional immunoreceptors on resident glomerular cells, cultured mouse renal epithelial, endothelial, and mesangial cells were treated with heat-aggregated mouse IgG or preformed murine immune complexes. Mesangial and renal endothelial cells were found to bind IgG complexes, whereas glomerular epithelial cell binding was minimal. A blocking antibody for Fc-gamma receptors reduced binding to mesangial cells but not renal endothelial cells, suggesting differential immunoreceptor utilization. RT-PCR and immunostaining based screening of cultured renal endothelial cells showed limited low-level expression of known Fc-receptors and Igbinding proteins. The interaction between mesangial cells and renal endothelial cells and immune complexes resulted in distinct, cell-specific patterns of chemokine and cytokine production. This novel pathway involving renal endothelial cells likely contributes to the predilection of circulating immune complex accumulation within the kidney and to the inflammatory responses that drive kidney injury. PMID:23911392

  3. Function and Change with Aging of α-Klotho in the Kidney.

    PubMed

    Akasaka-Manya, K; Manya, H; Endo, T

    2016-01-01

    The α-Klotho mouse is an animal model that prematurely shows phenotypes resembling human aging, such as osteoporosis, arteriosclerosis, pulmonary emphysema, and kidney damage. Interestingly, these abnormalities are triggered by a deficiency of a single protein, α-Klotho. The kidney is an organ that highly expresses α-Klotho, suggesting that α-Klotho is important for kidney function. Recent studies suggest that α-Klotho is associated with phosphate, vitamin D, and calcium homeostasis. The calcium imbalance in α-Klotho mice may induce calpain overactivation, leading to cell death and tissue destruction. α-Klotho is predicted to have glycosidase activity, capable of modifying the N-glycans of channels and transporters and regulating transmembrane movement of several ions, including calcium. Interestingly, N-glycan changes are observed in the kidney of α-Klotho mice and normal aged mice in association with decreased α-Klotho levels. These results imply that glycobiology and α-Klotho function are interesting targets for future studies. PMID:27125745

  4. Effects of polybrominated biphenyls on kidney function and activity of renal microsomal enzymes.

    PubMed

    McCormack, K M; Kluwe, W M; Sanger, V L; Hook, J B

    1978-04-01

    Polybrominated biphenyls (PBBs) cause hepatic microsomal enzyme stimulation and histopathological alterations in several organs, including kidney. Concern about effects of PBBs on the health of newborns has increased after the discovery of PBBs in milk of nursing mothers. Therefore, it was of interest to investigate the effects of PBBs on kidney function and the activity of renal microsomal enzymes in adult and immature animals. Seven and eleven day old pups were treated with a single IP injection of either peanut oil or 150 mg/kg PBBs (FireMaster BP-6) in peanut oil. Adult virgin rats were fed diet containing 0 or 100 ppm PBBs for 30 or 90 days. Treatment with PBBs only retarded weight gain after 90 days exposure. Kidney-to-body weight ratio was not altered by PBBs. Arylhydrocarbon hydroxylase activity was increased while epoxide hydratase activity was decreased (adults) or not affected (immature rats) in kidney following treatment with PBBs. Administration of PBBs had no effect on blood urea nitrogen, the clearance of inulin, p-aminohippurate (PAH), or fractional sodium excretion. Similarly, the in vitro accumulation of PAH and N-methylnicotinamide (NMN) by thin renal cortical slices and ammoniagenesis and gluconeogenesis in renal cortical slices were not affected by PBBs. In conclusion, treatment with PBBs resulted in modification of the activity of renal microsomal enzyme activities but had no detectable effect on renal function. PMID:209969

  5. [Treatment for CKD-MBD(Chronic Kidney Disease-Mineral and Bone Disorder)].

    PubMed

    Iwashita, Yuko; Iwashita, Yu; Ito, Takafumi; Shigematsu, Takashi

    2016-02-01

    CKD is a common disease that is estimated to develop one in eight persons in Japan. The CKD itself is highly risk factor on the cardiac/vascular mortality. In addition,a new concept has been proposed "CKD-MBD". CKD-MBD is composed of a combination of abnormal mineral metabolism, abnormal bone, and extra skeletal calcification with cardiovascular high mortality. Treatment for CKD-MBD is a wide-ranging. We aim to decline cardiovascular event, fracture, and mortality rate of patients with CKD. The main therapeutic target for CKD-MBD becomes the phosphate control. Today, we can use of the VRDA, Calcimimetics and muti-phosphate binders as a lot of pharmacological intervention. PMID:26813506

  6. Unconventional Functions of Mitotic Kinases in Kidney Tumorigenesis

    PubMed Central

    Hascoet, Pauline; Chesnel, Franck; Le Goff, Cathy; Le Goff, Xavier; Arlot-Bonnemains, Yannick

    2015-01-01

    Human tumors exhibit a variety of genetic alterations, including point mutations, translocations, gene amplifications and deletions, as well as aneuploid chromosome numbers. For carcinomas, aneuploidy is associated with poor patient outcome for a large variety of tumor types, including breast, colon, and renal cell carcinoma. The Renal cell carcinoma (RCC) is a heterogeneous carcinoma consisting of different histologic types. The clear renal cell carcinoma (ccRCC) is the most common subtype and represents 85% of the RCC. Central to the biology of the ccRCC is the loss of function of the Von Hippel–Lindau gene, but is also associated with genetic instability that could be caused by abrogation of the cell cycle mitotic spindle checkpoint and may involve the Aurora kinases, which regulate centrosome maturation. Aneuploidy can also result from the loss of cell–cell adhesion and apical–basal cell polarity that also may be regulated by the mitotic kinases (polo-like kinase 1, casein kinase 2, doublecortin-like kinase 1, and Aurora kinases). In this review, we describe the “non-mitotic” unconventional functions of these kinases in renal tumorigenesis. PMID:26579493

  7. Evidence for Kidney Rejection after Combined Bone Marrow and Renal Transplantation Despite Ongoing Whole-blood Chimerism in Rhesus Macaques

    PubMed Central

    Ramakrishnan, Swetha K; Page, Andrew; Farris, Alton B.; Singh, Karnail; Leopardi, Frank; Hamby, Kelly; Sen, Sharon; Polnett, Aneesah; Deane, Taylor; Song, Mingqing; Stempora, Linda; Strobert, Elizabeth; Kirk, Allan D.; Larsen, Christian P.; Kean, Leslie S.

    2012-01-01

    Although there is evidence linking hematopoietic chimerism-induction and solid organ transplant tolerance, the mechanistic requirements for chimerism-induced tolerance are not clearly elucidated. To address this, we used an MHC-defined primate model to determine the impact of impermanent, T cell-poor, mixed-chimerism on renal allograft survival. We compared two cohorts: one receiving a bone marrow + renal transplant (“BMT/renal”) and one receiving only a renal transplant. Both cohorts received maintenance immunosuppression with CD28/CD40-directed costimulation blockade and sirolimus. As previously demonstrated, this transplant strategy consistently induced compartmentalized donor chimerism, (significant whole-blood chimerism, lacking T cell chimerism). This chimerism was not sufficient to prolong renal allograft acceptance: the BMT/renal mean survival time (MST, 76 days) was not significantly different than the renal transplant alone MST (85 days, p= 0. 46), with histopathology documenting T-cell mediated rejection. Flow cytometric analysis revealed significant enrichment for CD28-/CD95+ CD4+ and CD8+ Tem cells in the rejected kidney, suggesting a link between CD28-negative Tem and costimulation blockade-resistant rejection. These results suggest that in some settings, transient T cell-poor chimerism is not sufficient to induce tolerance to a concurrently placed renal allograft and that the presence of this chimerism per se is not an independent biomarker to identify tolerance. PMID:22642491

  8. Mesenchymal Progenitors Residing Close to the Bone Surface Are Functionally Distinct from Those in the Central Bone Marrow

    PubMed Central

    Siclari, Valerie A.; Zhu, Ji; Akiyama, Kentaro; Liu, Fei; Zhang, Xianrong; Chandra, Abhishek; Nah-Cederquist, Hyun-Duck; Shi, Songtao; Qin, Ling

    2013-01-01

    Long bone is an anatomically complicated tissue with trabecular-rich metaphyses at two ends and cortical-rich diaphysis at the center. The traditional flushing method only isolates mesenchymal progenitor cells from the central region of long bones and these cells are distant from the bone surface. We propose that mesenchymal progenitors residing in endosteal bone marrow that is close to the sites of bone formation, such as trabecular bone and endosteum, behave differently from those in the central bone marrow. In this report, we separately isolated endosteal bone marrow using a unique enzymatic digestion approach and demonstrated that it contained a much higher frequency of mesenchymal progenitors than the central bone marrow. Endosteal mesenchymal progenitors express traditional mesenchymal stem cell markers and are capable of multi-lineage differentiation. However, we found that mesenchymal progenitors isolated from different anatomical regions of the marrow did exhibit important functional differences. Compared to their central marrow counterparts, endosteal mesenchymal progenitors have superior proliferative ability with reduced expression of cell cycle inhibitors. They showed greater immunosuppressive activity in culture and in a mouse model of inflammatory bowel disease. Aging is a major contributing factor for trabecular bone loss. We found that old mice have a dramatically decreased number of endosteal mesenchymal progenitors compared to young mice. Parathyroid hormone (PTH) treatment potently stimulates bone formation. A single PTH injection greatly increased the number of endosteal mesenchymal progenitors, particularly those located at the metaphyseal bone, but had no effect on their central counterparts. In summary, endosteal mesenchymal progenitors are more metabolically active and relevant to physiological bone formation than central mesenchymal progenitors. Hence, they represent a biologically important target for future mesenchymal stem cell studies

  9. Donor-derived peripheral mononuclear cell DNA is associated with stable kidney allograft function: a randomized controlled trial.

    PubMed

    Solgi, Ghasem; Mytilineos, Joannis; Gadi, Vijayakrishna; Paul, Biswajit; Pourmand, Gholamreza; Mehrsai, Abdolrasoul; Nikbin, Behrouz; Amirzargar, Ali Akbar

    2011-01-01

    A large body of literature has documented an inconsistent relationship of peripheral donor cell chimerism with alloimmune tolerance following kidney transplantation. We revisit this association with assays capable of quantifying cellular microchimerism with 150-1500-fold greater sensitivity than previously utilized allo-antibody based flow cytometric approaches. Forty renal transplant patients, 20 with concurrent donor bone marrow infusion (DBMI) and 20 control participants without infusion were prospectively monitored for peripheral blood microchimerism using donor polymorphism-specific quantitative real-time PCR. Thirty-eight patients were evaluated for microchimerism, 19 in each group. The frequency of testing positive for (95% vs. 58%, p = 0.02) and mean concentrations of microchimerism (115 ± 66 vs. 13 ± 3 donor genomes/million recipient genomes, p = 0.007), respectively, were higher in infused patients compared with controls. Thirty-one patients maintained stable graft function; 17 in the DBMI group vs. 14 in controls. Patients with stable graft function in the DBMI group compared with control patients harbored microchimerism more frequently (94 vs. 50%, p = 0.01) and at higher concentrations (123 ± 67 vs. 11 ± 4, p = 0.007), respectively. Significant correlation between dose of infused cells and microchimerism levels was found post-transplant (p = 0.01). Using very sensitive assays, our findings demonstrate associations between the presence and quantity of microchimerism with stable graft function in infused patients.

  10. Surface Functionalization of Orthopedic Titanium Implants with Bone Sialoprotein

    PubMed Central

    Ritz, Ulrike; Ackermann, Angelika; Anthonissen, Joris; Kaufmann, Kerstin B.; Brendel, Christian; Götz, Hermann; Rommens, Pol M.; Hofmann, Alexander

    2016-01-01

    Orthopedic implant failure due to aseptic loosening and mechanical instability remains a major problem in total joint replacement. Improving osseointegration at the bone-implant interface may reduce micromotion and loosening. Bone sialoprotein (BSP) has been shown to enhance bone formation when coated onto titanium femoral implants and in rat calvarial defect models. However, the most appropriate method of BSP coating, the necessary level of BSP coating, and the effect of BSP coating on cell behavior remain largely unknown. In this study, BSP was covalently coupled to titanium surfaces via an aminosilane linker (APTES), and its properties were compared to BSP applied to titanium via physisorption and untreated titanium. Cell functions were examined using primary human osteoblasts (hOBs) and L929 mouse fibroblasts. Gene expression of specific bone turnover markers at the RNA level was detected at different intervals. Cell adhesion to titanium surfaces treated with BSP via physisorption was not significantly different from that of untreated titanium at any time point, whereas BSP application via covalent coupling caused reduced cell adhesion during the first few hours in culture. Cell migration was increased on titanium disks that were treated with higher concentrations of BSP solution, independent of the coating method. During the early phases of hOB proliferation, a suppressive effect of BSP was observed independent of its concentration, particularly when BSP was applied to the titanium surface via physisorption. Although alkaline phosphatase activity was reduced in the BSP-coated titanium groups after 4 days in culture, increased calcium deposition was observed after 21 days. In particular, the gene expression level of RUNX2 was upregulated by BSP. The increase in calcium deposition and the stimulation of cell differentiation induced by BSP highlight its potential as a surface modifier that could enhance the osseointegration of orthopedic implants. Both

  11. Fluid and Electrolyte Balance and Kidney Function Research in Space

    NASA Astrophysics Data System (ADS)

    Norsk, P.; Juel, N.; Kramer, H. J.; de Santo, N. G.; Regnard, J.; Heer, M.

    2005-06-01

    Fluid and electrolyte regulation in humans is modulated by gravitational stress through a complex interaction of cardiovascular reflexes, neuroendocrine variables, physical factors and renal function.Weightlessness is a unique tool to obtain more information on integrated fluid volume control. Results from space, however, have been unexpected and unpredictable from the results of ground- based simulations.The concept of how weightlesness and gravity modulate the regulation of body fluids and associated blood components must therefore be revised and a new simulation model developed. There are several main questions to be asked. Does weightlessness induce diuresis and natriuresis during the initial hours of spaceflight, leading to an extracellular and intravascular fluid volume deficit? Why are fluid- and sodium-retaining systems activated by spaceflight, and why are the renal responses to saline and water stimuli attenuated? Can excess sodium be stored in an hitherto unknown way, in particular during spaceflight? How can the effects of weightlessness on fluid and electrolyte regulation be correctly simulated on the ground? The information obtained from space might help us to understand how gravity degrades the fluid and electrolyte balance in sodium-retaining and oedema- forming states, such as in heart failure.

  12. Pretransplant transcriptome profiles identify among kidneys with delayed graft function those with poorer quality and outcome.

    PubMed

    Mas, Valeria R; Scian, Mariano J; Archer, Kellie J; Suh, Jihee L; David, Krystle G; Ren, Qing; Gehr, Todd W B; King, Anne L; Posner, Marc P; Mueller, Thomas F; Maluf, Daniel G

    2011-01-01

    Robust biomarkers are needed to identify donor kidneys with poor quality associated with inferior early and longer-term outcome. The occurrence of delayed graft function (DGF) is most often used as a clinical outcome marker to capture poor kidney quality. Gene expression profiles of 92 preimplantation biopsies were evaluated in relation to DGF and estimated glomerular filtration rate (eGFR) to identify preoperative gene transcript changes associated with short-term function. Patients were stratified into those who required dialysis during the first week (DGF group) versus those without (noDGF group) and subclassified according to 1-month eGFR of >45 mL/min (eGFR(hi)) versus eGFR of ≤45 mL/min (eGFR(lo)). The groups and subgroups were compared in relation to clinical donor and recipient variables and transcriptome-associated biological pathways. A validation set was used to confirm target genes. Donor and recipient characteristics were similar between the DGF versus noDGF groups. A total of 206 probe sets were significant between groups (P < 0.01), but the gene functional analyses failed to identify any significantly affected pathways. However, the subclassification of the DGF and noDGF groups identified 283 probe sets to be significant among groups and associated with biological pathways. Kidneys that developed postoperative DGF and sustained an impaired 1-month function (DGF(lo) group) showed a transcriptome profile of significant immune activation already preimplant. In addition, these kidneys maintained a poorer transplant function throughout the first-year posttransplant. In conclusion, DGF is a poor marker for organ quality and transplant outcome. In contrast, preimplant gene expression profiles identify "poor quality" grafts and may eventually improve organ allocation.

  13. Direct Reprogramming of Human Bone Marrow Stromal Cells into Functional Renal Cells Using Cell-free Extracts

    PubMed Central

    Papadimou, Evangelia; Morigi, Marina; Iatropoulos, Paraskevas; Xinaris, Christodoulos; Tomasoni, Susanna; Benedetti, Valentina; Longaretti, Lorena; Rota, Cinzia; Todeschini, Marta; Rizzo, Paola; Introna, Martino; Grazia de Simoni, Maria; Remuzzi, Giuseppe; Goligorsky, Michael S.; Benigni, Ariela

    2015-01-01

    Summary The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs), also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes—formation of “domes” and tubule-like structures—and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy. PMID:25754206

  14. Direct reprogramming of human bone marrow stromal cells into functional renal cells using cell-free extracts.

    PubMed

    Papadimou, Evangelia; Morigi, Marina; Iatropoulos, Paraskevas; Xinaris, Christodoulos; Tomasoni, Susanna; Benedetti, Valentina; Longaretti, Lorena; Rota, Cinzia; Todeschini, Marta; Rizzo, Paola; Introna, Martino; Grazia de Simoni, Maria; Remuzzi, Giuseppe; Goligorsky, Michael S; Benigni, Ariela

    2015-04-14

    The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs), also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes-formation of "domes" and tubule-like structures-and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy.

  15. Renal Nitric Oxide Deficiency and Chronic Kidney Disease in Young Sheep Born with a Solitary Functioning Kidney

    PubMed Central

    Singh, Reetu R.; Easton, Lawrence K.; Booth, Lindsea C.; Schlaich, Markus P.; Head, Geoffrey A.; Moritz, Karen M.; Denton, Kate M.

    2016-01-01

    Previously, we demonstrated that renal hemodynamic responses to nitric oxide (NO) inhibition were attenuated in aged, hypertensive sheep born with a solitary functioning kidney (SFK). NO is an important regulator of renal function, particularly, in the postnatal period. We hypothesized that the onset of renal dysfunction and hypertension in individuals with a SFK is associated with NO deficiency early in life. In this study, renal and cardiovascular responses to L-NAME infusion (Nw-nitro-L-arginine methyl ester) were examined in 6-month old lambs born with a SFK, induced by fetal unilateral nephrectomy (uni-x). Renal responses to L-NAME were attenuated in uni-x sheep with the fall in glomerular filtration rate (GFR) and urinary sodium excretion (UNaV) being less in the uni-x compared to sham lambs (%ΔGFR; −41 ± 3 vs −54 ± 4: P = 0.03, %ΔUNaV; −48 ± 5 vs −76 ± 3, P = 0.0008). 24 hour-basal urinary nitrate and nitrite (NOx) excretion was less in the uni-x animals compared to the sham (NOx excretion μM/min/kg; sham: 57 ± 7; uni-x: 38 ± 4, P = 0.02). L-NAME treatment reduced urinary NOx to undetectable levels in both groups. A reduction in NO bioavailability in early life may contribute to the initiation of glomerular and tubular dysfunction that promotes development and progression of hypertension in offspring with a congenital nephron deficit, including those with a SFK. PMID:27226113

  16. Role of Vitamin D in Cognitive Function in Chronic Kidney Disease

    PubMed Central

    Cheng, Zhen; Lin, Jing; Qian, Qi

    2016-01-01

    Both vitamin D deficiency and cognitive impairment are common in patients with chronic kidney disease (CKD). Vitamin D exerts neuroprotective and regulatory roles in the central nervous system. Hypovitaminosis D has been associated with muscle weakness and bone loss, cardiovascular diseases (hypertension, diabetes and hyperlipidemia), inflammation, oxidative stress, immune suppression and neurocognitive impairment. The combination of hypovitaminosis D and CKD can be even more debilitating, as cognitive impairment can develop and progress through vitamin D-associated and CKD-dependent/independent processes, leading to significant morbidity and mortality. Although an increasingly recognized comorbidity in CKD, cognitive impairment remains underdiagnosed and often undermanaged. Given the association of cognitive decline and hypovitaminosis D and their deleterious effects in CKD patients, determination of vitamin D status and when appropriate, supplementation, in conjunction with neuropsychological screening, should be considered integral to the clinical care of the CKD population. PMID:27187460

  17. Does cerebral angiography of cadaveric kidney donors interfere with graft function?

    PubMed

    Weibull, H; Cederholm, C; Almén, T; Bergqvist, D; Takolander, R; Husberg, B

    1987-01-01

    Cerebral angiography is used to diagnose brain death of cadaver kidney donors. Clinical and animal data suggest that angiographic contrast media may potentiate the noxious effect of renal ischemia. In order to find out if cerebral angiography of cadaveric kidney donors prior to nephrectomy interferes with function or survival of the renal grafts, two groups of cadaveric donors were compared. One group had been exposed to contrast medium from cerebral angiography in median 18 hours before nephrectomy and the other had not. There was no difference in graft survival and function between the two groups. In a previous investigation angiography was performed two hours before explantation and in that investigation there was a shorter graft survival in the angiography group than in a control group. A delay of 12 hours is suggested between cerebral angiography and explanation, to decrease the combined harmful effects of contrast media and ischemia on renal grafts.

  18. Cytokines and growth factors which regulate bone cell function

    NASA Astrophysics Data System (ADS)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  19. Genome-wide association study of kidney function decline in individuals of European descent

    PubMed Central

    Gorski, Mathias; Tin, Adrienne; Garnaas, Maija; McMahon, Gearoid M.; Chu, Audrey Y.; Tayo, Bamidele O.; Pattaro, Cristian; Teumer, Alexander; Chasman, Daniel I.; Chalmers, John; Hamet, Pavel; Tremblay, Johanne; Woodward, Marc; Aspelund, Thor; Eiriksdottir, Gudny; Gudnason, Vilmundur; Harris, Tammara B.; Launer, Lenore J.; Smith, Albert V.; Mitchell, Braxton D.; O'Connell, Jeffrey R.; Shuldiner, Alan R.; Coresh, Josef; Li, Man; Freudenberger, Paul; Hofer, Edith; Schmidt, Helena; Schmidt, Reinhold; Holliday, Elizabeth G.; Mitchell, Paul; Wang, Jie Jin; de Boer, Ian H.; Li, Guo; Siscovick, David S.; Kutalik, Zoltan; Corre, Tanguy; Vollenweider, Peter; Waeber, Gérard; Gupta, Jayanta; Kanetsky, Peter A.; Hwang, Shih-Jen; Olden, Matthias; Yang, Qiong; de Andrade, Mariza; Atkinson, Elizabeth J.; Kardia, Sharon L.R.; Turner, Stephen T.; Stafford, Jeanette M.; Ding, Jingzhong; Liu, Yongmei; Barlassina, Cristina; Cusi, Daniele; Salvi, Erika; Staessen, Jan A; Ridker, Paul M; Grallert, Harald; Meisinger, Christa; Müller-Nurasyid, Martina; Krämer, Bernhard K.; Kramer, Holly; Rosas, Sylvia E.; Nolte, Ilja M.; Penninx, Brenda W.; Snieder, Harold; Del Greco, Fabiola; Franke, Andre; Nöthlings, Ute; Lieb, Wolfgang; Bakker, Stephan J.L.; Gansevoort, Ron T.; van der Harst, Pim; Dehghan, Abbas; Franco, Oscar H.; Hofman, Albert; Rivadeneira, Fernando; Sedaghat, Sanaz; Uitterlinden, André G.; Coassin, Stefan; Haun, Margot; Kollerits, Barbara; Kronenberg, Florian; Paulweber, Bernhard; Aumann, Nicole; Endlich, Karlhans; Pietzner, Mike; Völker, Uwe; Rettig, Rainer; Chouraki, Vincent; Helmer, Catherine; Lambert, Jean-Charles; Metzger, Marie; Stengel, Benedicte; Lehtimäki, Terho; Lyytikäinen, Leo-Pekka; Raitakari, Olli; Johnson, Andrew; Parsa, Afshin; Bochud, Murielle; Heid, Iris M.; Goessling, Wolfram; Köttgen, Anna; Kao, H. Linda; Fox, Caroline S.; Böger, Carsten A.

    2014-01-01

    Genome wide association studies (GWAS) have identified multiple loci associated with cross-sectional eGFR, but a systematic genetic analysis of kidney function decline over time is missing. Here we conducted a GWAS meta-analysis among 63,558 participants of European descent, initially from 16 cohorts with serial kidney function measurements within the CKDGen Consortium, followed by independent replication among additional participants from 13 cohorts. In stage 1 GWAS meta-analysis, SNPs at MEOX2, GALNT11, IL1RAP, NPPA, HPCAL1 and CDH23 showed the strongest associations for at least one trait, in addition to the known UMOD locus which showed genome-wide significance with an annual change in eGFR. In stage 2 meta-analysis, the significant association at UMOD was replicated. Associations at GALNT11 with Rapid Decline (annual eGFRdecline of 3ml/min/1.73m2 or more), and CDH23 with eGFR change among those with CKD showed significant suggestive evidence of replication. Combined stage 1 and 2 meta-analyses showed significance for UMOD, GALNT11 and CDH23. Morpholino knockdowns of galnt11 and cdh23 in zebrafish embryos each had signs of severe edema 72 hours after gentamicin treatment compared to controls, but no gross morphological renal abnormalities before gentamicin administration. Thus, our results suggest a role in the deterioration of kidney function for the loci GALNT11 and CDH23, and show that the UMOD locus is significantly associated with kidney function decline. PMID:25493955

  20. Genome-wide association study of kidney function decline in individuals of European descent.

    PubMed

    Gorski, Mathias; Tin, Adrienne; Garnaas, Maija; McMahon, Gearoid M; Chu, Audrey Y; Tayo, Bamidele O; Pattaro, Cristian; Teumer, Alexander; Chasman, Daniel I; Chalmers, John; Hamet, Pavel; Tremblay, Johanne; Woodward, Marc; Aspelund, Thor; Eiriksdottir, Gudny; Gudnason, Vilmundur; Harris, Tamara B; Launer, Lenore J; Smith, Albert V; Mitchell, Braxton D; O'Connell, Jeffrey R; Shuldiner, Alan R; Coresh, Josef; Li, Man; Freudenberger, Paul; Hofer, Edith; Schmidt, Helena; Schmidt, Reinhold; Holliday, Elizabeth G; Mitchell, Paul; Wang, Jie Jin; de Boer, Ian H; Li, Guo; Siscovick, David S; Kutalik, Zoltan; Corre, Tanguy; Vollenweider, Peter; Waeber, Gérard; Gupta, Jayanta; Kanetsky, Peter A; Hwang, Shih-Jen; Olden, Matthias; Yang, Qiong; de Andrade, Mariza; Atkinson, Elizabeth J; Kardia, Sharon L R; Turner, Stephen T; Stafford, Jeanette M; Ding, Jingzhong; Liu, Yongmei; Barlassina, Cristina; Cusi, Daniele; Salvi, Erika; Staessen, Jan A; Ridker, Paul M; Grallert, Harald; Meisinger, Christa; Müller-Nurasyid, Martina; Krämer, Bernhard K; Kramer, Holly; Rosas, Sylvia E; Nolte, Ilja M; Penninx, Brenda W; Snieder, Harold; Fabiola Del Greco, M; Franke, Andre; Nöthlings, Ute; Lieb, Wolfgang; Bakker, Stephan J L; Gansevoort, Ron T; van der Harst, Pim; Dehghan, Abbas; Franco, Oscar H; Hofman, Albert; Rivadeneira, Fernando; Sedaghat, Sanaz; Uitterlinden, André G; Coassin, Stefan; Haun, Margot; Kollerits, Barbara; Kronenberg, Florian; Paulweber, Bernhard; Aumann, Nicole; Endlich, Karlhans; Pietzner, Mike; Völker, Uwe; Rettig, Rainer; Chouraki, Vincent; Helmer, Catherine; Lambert, Jean-Charles; Metzger, Marie; Stengel, Benedicte; Lehtimäki, Terho; Lyytikäinen, Leo-Pekka; Raitakari, Olli; Johnson, Andrew; Parsa, Afshin; Bochud, Murielle; Heid, Iris M; Goessling, Wolfram; Köttgen, Anna; Kao, W H Linda; Fox, Caroline S; Böger, Carsten A

    2015-05-01

    Genome-wide association studies (GWASs) have identified multiple loci associated with cross-sectional eGFR, but a systematic genetic analysis of kidney function decline over time is missing. Here we conducted a GWAS meta-analysis among 63,558 participants of European descent, initially from 16 cohorts with serial kidney function measurements within the CKDGen Consortium, followed by independent replication among additional participants from 13 cohorts. In stage 1 GWAS meta-analysis, single-nucleotide polymorphisms (SNPs) at MEOX2, GALNT11, IL1RAP, NPPA, HPCAL1, and CDH23 showed the strongest associations for at least one trait, in addition to the known UMOD locus, which showed genome-wide significance with an annual change in eGFR. In stage 2 meta-analysis, the significant association at UMOD was replicated. Associations at GALNT11 with Rapid Decline (annual eGFR decline of 3 ml/min per 1.73 m(2) or more), and CDH23 with eGFR change among those with CKD showed significant suggestive evidence of replication. Combined stage 1 and 2 meta-analyses showed significance for UMOD, GALNT11, and CDH23. Morpholino knockdowns of galnt11 and cdh23 in zebrafish embryos each had signs of severe edema 72 h after gentamicin treatment compared with controls, but no gross morphological renal abnormalities before gentamicin administration. Thus, our results suggest a role in the deterioration of kidney function for the loci GALNT11 and CDH23, and show that the UMOD locus is significantly associated with kidney function decline.

  1. Endocrine tumour in kidney affecting small bowel structure, motility, and absorptive function 1

    PubMed Central

    Gleeson, M. H.; Bloom, S. R.; Polak, J. M.; Henry, K.; Dowling, R. H.

    1971-01-01

    A 44-year-old woman is described with an endocrine tumour arising in the kidney. There were associated abnormalities of small intestinal morphology, motility, and absorptive function. These abnormalities reversed on removal of the tumour. Detailed studies showed that the tumour contained, and was secreting, glucagon. It is postulated that the intestinal abnormalities may have resulted from glucagon itself or another, as yet unidentified, hormone. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:4941684

  2. Is impaired kidney function an independent predictor of the risk of myocardial infarction in HIV-infected individuals?

    PubMed

    Lang, Sylvie; Mary-Krause, Murielle; Partisani, Marialuisa; Gilquin, Jacques; Simon, Anne; Cotte, Laurent; Boccara, Franck; Costagliola, Dominique

    2014-08-24

    We examined whether impaired kidney function is an independent risk factor for myocardial infarction in HIV-infected individuals without pre-existing coronary artery disease. The odds ratio for impaired kidney function fell from 1.22 (95% confidence interval 0.90-1.66) to 0.99 (95% confidence interval 0.69-1.41) after adjustment for cardiovascular risk factors and HIV-related parameters, with hypertension, high-density lipoprotein cholesterol, smoking and the CD4 T-cell nadir as most influential confounders. In this setting, no association was found between impaired kidney function and the risk of myocardial infarction.

  3. Markers of bone health, renal function, liver function, anthropometry and perception of mood: a comparison between Flat and National Hunt Jockeys.

    PubMed

    Wilson, G; Fraser, W D; Sharma, A; Eubank, M; Drust, B; Morton, J P; Close, G L

    2013-05-01

    Given the requirement of professional jockeys to make-weight daily, we tested the hypothesis that Flat and National Hunt (Jump) jockeys would display compromised health markers (bone health, vitamin D, liver and kidney function and mood) compared with established clinical norms, with Flat jockeys affected the greater. Daily energy intake was lower in Flat compared with Jump jockeys (6.11±1.25 vs. 7.47±0.83 MJ.day - 1, P=0.01) whereas there was no difference in urine osmolality (811±198 vs. 678±317 mOsmol x kg(-1) respectively, P=0.13). Serum total 25(OH)D was insufficient in Flat and Jump jockeys (37.6±28 vs. 35.1±14 nmol x L(-1) respectively although there was no difference between groups (P=0.79). Markers of bone metabolism (Plasma β-carboxy-terminal cross-linked teleopeptide (CTX) and Intact Parathyroid Hormone (PTH) and liver and kidney function were within clinical normative ranges although CTX and PTH were higher than average. Abnormal mood profiles were observed in both groups although significantly poorer in the Flat jockeys (P=0.01). We conclude that the current practices of jockeys to make-weight may have detrimental effects upon their health with Flat jockeys affected more so than Jump jockeys. Future studies should investigate the effects of improved dietary practices on the mental and physical health of Flat and Jump jockeys. PMID:23184478

  4. Environmental Exposure to Cadmium: Health Risk Assessment and its Associations with Hypertension and Impaired Kidney Function

    NASA Astrophysics Data System (ADS)

    Wu, Haiyun; Liao, Qilin; Chillrud, Steven N.; Yang, Qiang; Huang, Lei; Bi, Jun; Yan, Beizhan

    2016-07-01

    Cadmium (Cd) is a toxic metal. This study was aimed to estimate the potential health risks in a Cd-polluted district in China, and examine the relationship between urinary cadmium(UCd) and hypertension and impaired kidney function at low exposure levels (UCd: GM 1.3 μg/g creatinine). Blood pressure measurement, questionnaires, and collection of urinary samples were conducted from 217 residents. Environmental samples, food, and cigarette samples were collected and detected to estimate the risks posed by Cd and the contribution of inhalation, ingestion, and dermal contact pathways to these risks. A logistic regression model was used in examining associations between exposure and hypertension and impaired kidney function. Results show that this population is at high risk. For non-smokers, incremental lifetime cancer risk (ILCR) and hazard quotient (HQ) are 1.74E-04 and 2.96, and for smokers, they are 1.07E-03 and 52.5, respectively. Among all exposure pathways, smoking and foods cause the major increases in ILCR and HQ. UCd is significantly associated with hypertension (odds ratio (OR) = 1.468 95% confidence interval (CI): 1.104, 1.953; P = 0.008) and impaired kidney function (OR = 1.902, 95% CI: 1.054, 3.432; P = 0.033). The results demonstrate that Cd can potentially lead to adverse health effects.

  5. Ernest Henry Starling (1866-1927) on the glomerular and tubular functions of the kidney.

    PubMed

    Fine, Leon G

    2014-01-01

    Around the turn of the 20th century, Ernest Henry Starling (1866-1927) made many fundamental contributions to the understanding of human physiology. With a deep interest in how fluid balance is regulated, he naturally turned to explore the intricacies of kidney function. Early in his career he focused upon the process of glomerular filtration and was able to substantiate the view of Carl Ludwig that this process can be explained entirely upon the basis of hydrostatic and oncotic pressure gradients across the glomerular capillary wall and that the process can be regulated by alterations in the tone of the afferent and efferent arterioles. To explore renal tubular function he employed a heart-lung-kidney model in the dog and was able to infer that certain substances are reabsorbed by the tubules (e.g. sodium chloride) and certain by tubular secretion (e.g. uric acid, indigo carmine dye). By temporarily blocking tubular function using hydrocyanic acid he was able to conclude that secreted substances must be taken up on the peritubular side of the cell and concentrated within the cell to drive the secretory process. Finally, he was able to appreciate that the kidney is an organ which is regulated according to the needs of the organism and that the processes of glomerular filtration, tubular secretion and reabsorption are all subject to regulatory influences, which have evolved to conserve the normal chemical composition of the cells and fluids of the body. PMID:24970544

  6. Environmental Exposure to Cadmium: Health Risk Assessment and its Associations with Hypertension and Impaired Kidney Function.

    PubMed

    Wu, Haiyun; Liao, Qilin; Chillrud, Steven N; Yang, Qiang; Huang, Lei; Bi, Jun; Yan, Beizhan

    2016-01-01

    Cadmium (Cd) is a toxic metal. This study was aimed to estimate the potential health risks in a Cd-polluted district in China, and examine the relationship between urinary cadmium(UCd) and hypertension and impaired kidney function at low exposure levels (UCd: GM 1.3 μg/g creatinine). Blood pressure measurement, questionnaires, and collection of urinary samples were conducted from 217 residents. Environmental samples, food, and cigarette samples were collected and detected to estimate the risks posed by Cd and the contribution of inhalation, ingestion, and dermal contact pathways to these risks. A logistic regression model was used in examining associations between exposure and hypertension and impaired kidney function. Results show that this population is at high risk. For non-smokers, incremental lifetime cancer risk (ILCR) and hazard quotient (HQ) are 1.74E-04 and 2.96, and for smokers, they are 1.07E-03 and 52.5, respectively. Among all exposure pathways, smoking and foods cause the major increases in ILCR and HQ. UCd is significantly associated with hypertension (odds ratio (OR) = 1.468; 95% confidence interval (CI): 1.104, 1.953; P = 0.008) and impaired kidney function (OR = 1.902, 95% CI: 1.054, 3.432; P = 0.033). The results demonstrate that Cd can potentially lead to adverse health effects. PMID:27411493

  7. Environmental Exposure to Cadmium: Health Risk Assessment and its Associations with Hypertension and Impaired Kidney Function

    PubMed Central

    Wu, Haiyun; Liao, Qilin; Chillrud, Steven N.; Yang, Qiang; Huang, Lei; Bi, Jun; Yan, Beizhan

    2016-01-01

    Cadmium (Cd) is a toxic metal. This study was aimed to estimate the potential health risks in a Cd-polluted district in China, and examine the relationship between urinary cadmium(UCd) and hypertension and impaired kidney function at low exposure levels (UCd: GM 1.3 μg/g creatinine). Blood pressure measurement, questionnaires, and collection of urinary samples were conducted from 217 residents. Environmental samples, food, and cigarette samples were collected and detected to estimate the risks posed by Cd and the contribution of inhalation, ingestion, and dermal contact pathways to these risks. A logistic regression model was used in examining associations between exposure and hypertension and impaired kidney function. Results show that this population is at high risk. For non-smokers, incremental lifetime cancer risk (ILCR) and hazard quotient (HQ) are 1.74E-04 and 2.96, and for smokers, they are 1.07E-03 and 52.5, respectively. Among all exposure pathways, smoking and foods cause the major increases in ILCR and HQ. UCd is significantly associated with hypertension (odds ratio (OR) = 1.468; 95% confidence interval (CI): 1.104, 1.953; P = 0.008) and impaired kidney function (OR = 1.902, 95% CI: 1.054, 3.432; P = 0.033). The results demonstrate that Cd can potentially lead to adverse health effects. PMID:27411493

  8. Kidney (Renal) Failure

    MedlinePlus

    ... renal function using ureteral stenting, nephrostomy, surgery or dialysis. What is kidney (renal) failure? How is kidney ... as a urinary stent or kidney stone removal. Dialysis , including hemodialysis and peritoneal dialysis: These procedures remove ...

  9. Serum neutrophil gelatinase-associated lipocalin and recovery of kidney graft function after transplantation

    PubMed Central

    2014-01-01

    Background Neutrophil gelatinase-associated lipocalin (NGAL) is a marker for acute kidney injury. We studied whether serum NGAL predicts delayed graft function (DGF) and recovery of kidney function after transplantation. Methods Serum NGAL was analyzed using commercial ELISA and point-of-care (POC) (Triage®, Biosite) methods. Serum samples were collected from 176 consecutive, deceased-donor kidney recipients just before transplant surgery and on day 1 and 14 after transplantation. The first 132 samples were analyzed with both methods and the remaining samples with the POC method. Results The correlation between the ELISA and POC methods was 0.89, p < 0.0001 and hence the POC method was used for the remaining analyses. DGF was seen in 66/176 patients. Day 1 sNGAL was significantly higher in DGF (588 ng/ml, SD 189.6) compared to early graft function (355 ng/ml, SD 166.2, p < 0.0001) and this difference persisted on day 14. Day 1 sNGAL predicted DGF with an area under the curve (AUC) of 0.853 (CI 0.792-0.914, p < 0.0001). At the optimal cutoff level of 423 ng/ml the sensitivity was 87% and the specificity 77%. In a multivariate analysis, day 1 sNGAL emerged as an independent predictor of DGF. The sNGAL also predicted DGF lasting longer than 14 days with an AUC of 0.825 (CI 0.751-0.899, p < 0.0001). At the optimal cutoff level of 486 ng/ml, the sensitivity was 80% and specificity 75%. Conclusion Serum NGAL predicts clinically significant DGF and is useful in the care of kidney transplant recipients. PMID:25066815

  10. The Association Between Periodontal Disease and Kidney Function Decline in African Americans: The Jackson Heart Study

    PubMed Central

    Grubbs, Vanessa; Vittinghoff, Eric; Beck, James D.; Kshirsagar, Abhijit V.; Wang, Wei; Griswold, Michael E.; Powe, Neil R.; Correa, Adolfo; Young, Bessie

    2015-01-01

    Background Chronic kidney disease (CKD) remains a prevalent public health problem that disproportionately affects African Americans, despite intense efforts targeting traditional risk factors. Periodontal disease, a chronic bacterial infection of the oral cavity, is both common and modifiable and has been implicated as a novel potential CKD risk factor. We sought to examine to what extent periodontal disease is associated with kidney function decline. Methods Retrospective cohort study of 699 African American participants with preserved kidney function defined by an estimated glomerular filtration rate (eGFR) >60ml/min/1.73m2 at baseline who underwent complete dental examinations as part of the Dental-Atherosclerosis Risk in Communities study (1996–1998) and subsequently enrolled in the Jackson Heart Study (2000–2004). Using multivariable Poisson regression we examined the association of periodontal disease (severe vs. non-severe) with incident CKD defined as incident eGFR<60ml/min/1.73m2 and rapid (5% annualized) eGFR decline at follow-up among those with preserved eGFR at baseline. Results Mean age at baseline was 65.4 years (SD 5.2) and 16.3% (n=114) had severe periodontal disease. There were 21 cases (3.0%) of incident CKD after a mean follow-up of 4.8 (SD 0.6) years. Compared to participants with non-severe periodontal disease, those with severe periodontal disease had a 4-fold greater rate of incident CKD [adjusted incidence rate ratio 4.18, 95% CI (1.68 – 10.39), p=0.002]. Conclusion Severe periodontal disease is prevalent among a population at high-risk for CKD and is associated with clinically significant kidney function decline. Further research is needed to determine if periodontal disease treatment alters the trajectory of renal deterioration. PMID:26110451

  11. [Bone metabolism and cardiovascular function update. Nerve system and mutual interaction between bone and blood vessel].

    PubMed

    Ochi, Hiroki; Takeda, Shu

    2014-07-01

    The identification that nervous system controls bone metabolism through leptin deficient mice studies opened a new field in bone biology. Notably, sympathetic and parasympathetic nerve system regulate bone metabolism. In addition, sensory nerve system also has been shown to be involved in the regulation of bone homeostasis. On the other hand, traditionally, it is well known that invasion of vessels into cartilage during the skeletal development is important for normal bone formation. And, the decrease of angiogenesis with aging leads to low bone mass and delaying of fracture healing. Although these indicate that blood vessel activity is closely related to bone remodeling, its molecular mechanism is still unknown. Most recently, the mechanism of coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone was reported.

  12. Bone morphogenetic protein-2 may represent the molecular link between oxidative stress and vascular stiffness in chronic kidney disease.

    PubMed

    Dalfino, G; Simone, S; Porreca, S; Cosola, C; Balestra, C; Manno, C; Schena, F P; Grandaliano, G; Pertosa, G

    2010-08-01

    Oxidative stress and vascular calcifications are emergent risk factors for the accelerated atherosclerosis process featuring chronic kidney disease (CKD). Vascular calcification is an active process similar to bone modelling, where BMP-2 may play a pathogenic role. Aim of our study was to investigate the link between oxidative stress, BMP-2 protein expression and vascular disease in CKD. We enrolled 85 CKD patients (K-DOQI stage II or higher) and 41 healthy individuals. 8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG) was used as a marker of oxidative stress. Brachial-ankle pulse wave velocity (baPWV) was used as a measure of arterial stiffness. BMP-2 serum levels were significantly higher in CKD patients than in controls (p<0.0001). Serum 8-OHdG levels were significantly higher in CKD patients compared to controls (p<0.05). BMP-2 serum levels were inversely associated with eGFR (r=-0.3; p=0.01) and directly correlated with 8-OHdG serum concentrations (r=-0.3; p=0.03). Arterial stiffness was inversely correlated with eGFR (r=-0.4; p=0.001) and directly correlated with BMP-2 (r=0.3; p=0.03), 8-OHdG (r=0.4, p=0.02) and phosphorus serum levels (r=0.3; p=0.007). In a multiple regression model, phosphorus and BMP-2 were independently correlated with baPWV. In vitro exposure to H(2)O(2) induced a time and dose-dependent increase in BMP-2 expression in an immortalized endothelial cell line. Moreover, H(2)O(2) pre-incubation of cultured vascular smooth muscle cell enhanced the BMP-2-induced up-regulation of ALPL, an osteoblastic phenotype marker. Our data suggest that in CKD BMP-2 may represent the molecular link between oxidative stress and arterial stiffness due to vascular calcification. PMID:20537331

  13. A New Data Analysis System to Quantify Associations between Biochemical Parameters of Chronic Kidney Disease-Mineral Bone Disease

    PubMed Central

    Rodriguez, Mariano; Salmeron, M. Dolores; Martin-Malo, Alejandro; Barbieri, Carlo; Mari, Flavio; Molina, Rafael I.; Costa, Pedro; Aljama, Pedro

    2016-01-01

    Background In hemodialysis patients, deviations from KDIGO recommended values of individual parameters, phosphate, calcium or parathyroid hormone (PTH), are associated with increased mortality. However, it is widely accepted that these parameters are not regulated independently of each other and that therapy aimed to correct one parameter often modifies the others. The aim of the present study is to quantify the degree of association between parameters of chronic kidney disease and mineral bone disease (CKD-MBD). Methods Data was extracted from a cohort of 1758 adult HD patients between January 2000 and June 2013 obtaining a total of 46.141 records (10 year follow-up). We used an advanced data analysis system called Random Forest (RF) which is based on self-learning procedure with similar axioms to those utilized for the development of artificial intelligence. This new approach is particularly useful when the variables analyzed are closely dependent to each other. Results The analysis revealed a strong association between PTH and phosphate that was superior to that of PTH and Calcium. The classical linear regression analysis between PTH and phosphate shows a correlation coefficient is 0.27, p<0.001, the possibility to predict PTH changes from phosphate modification is marginal. Alternatively, RF assumes that changes in phosphate will cause modifications in other associated variables (calcium and others) that may also affect PTH values. Using RF the correlation coefficient between changes in serum PTH and phosphate is 0.77, p<0.001; thus, the power of prediction is markedly increased. The effect of therapy on biochemical variables was also analyzed using this RF. Conclusion Our results suggest that the analysis of the complex interactions between mineral metabolism parameters in CKD-MBD may demand a more advanced data analysis system such as RF. PMID:26808154

  14. Enhancing kidney function with thrombolytic therapy following donation after cardiac death: a multicenter quasi-blinded prospective randomized trial.

    PubMed

    Woodside, Kenneth J; Goldfarb, David A; Rabets, John C; Sanchez, Edmund Q; Lebovitz, Daniel J; Schulak, James A; Fung, John J; Eghtesad, Bijan

    2015-12-01

    Kidneys from donors after cardiac death (DCD) are at risk for inferior outcomes, possibly due to microthrombi and additional warm ischemia. We describe an organ procurement organization-wide trial utilizing thrombolytic tissue plasminogen activator (tPA) during machine pulsatile perfusion (MPP). A kidney from each recovered kidney pair was prospectively randomized to receive tPA (50 mg Alteplase) or no tPA (control) in the MPP perfusate. From 2011 to 2013, 24 kidneys were placed with enrolled recipients from 19 DCD kidney donors. There were no significant differences for absolute values of flow or resistance while undergoing MPP between the groups, nor rates of achieving discrete flow and resistance targets. While there was a trend toward lower creatinine and higher glomerular filtration rates in the tPA group at 3, 6, 9, and 12 months, these differences were not significant. Delayed graft function (DGF) rates were 41.7% in the tPA group vs. 58.4% in the control group (OR 0.51, 95%CI 0.10-2.59, p = 0.68). Death-censored graft survival was similar between the groups. In this pilot study, encouraging trends are seen in kidney allograft function independent of MPP parameters following DCD kidney transplantation for those kidneys receiving thrombolytic tPA and MPP, compared with standard MPP.

  15. [Experimental studies on effects of excessive iodine intake on morphology and function of kidney in mice].

    PubMed

    Zhou, X; Yin, G

    1996-11-01

    To understand that if excessive iodine can cause damage to tissues other than thyroid gland, mice were fed with iodine-excess water and iodine-excess goiter was caused in them. Hisitomorphology and function of the kidney, in addition to the thyroid gland, in goiter mice were observed. Results showed that two hundred days after being fed with 3,000 micrograms iodine per liter water, in addition to causing iodine-excess goiter characterized with proliferation of large amount of colloid in thyroid follicles, morphology and function of the kidneys in mice were significantly damaged, with prominent pathomorphological changes of crescent formation and metabolic inhibition in microsome membrane Na(+)-K(+)-ATPase activities in their kidneys. Na(+)-K(+)-ATPase activities were 21.95 +/- 7.50 mumolPi/mg Pr.hr in low iodine group, and 17.64 +/- 8.63 mumolPi/mg Pr.hr in excessive iodine group, with significant difference. It suggests that excessive iodine can cause damage not only to thyroid, but to the whole body.

  16. The pathophysiology of acid-base changes in chronically phosphate-depleted rats: bone-kidney interactions.

    PubMed Central

    Emmett, M; Goldfarb, S; Agus, Z S; Narins, R G

    1977-01-01

    Acid-base disturbances may develop secondary to the changes in renal tubular function and bone dynamics which attend phosphate depletion (PD). This work characterizes the acid-base status of rats fed a low phosphate diet. After 18 days, PD rats had marked calciuria (pair-fed controls: 0.3 +/- 0.2; PD 32.2 +/- 2.5 mueq/h; P less than 0.001), severe bicarbonaturia (controls: 0; PD 17.6 +/- 0.2 meq/h; P less than 0.001), and negative net acid excretion (controls: 44.5 +/- 2.9; PD: --6.6 +/- 2.5 meq/h; P less than 0.001), but plasma pH, HCO3, and PCO2 were equal in both groups. After 45 days, plasma HCO3 fell to 21.1 +/- 0.9 meq/liter in PD (controls: 23.6 +/- 0.5 meq/liter; P less than 0.05), while bicarbonaturia (controls: 0.4 +/- 0.2; PD: 3.8 +/- 1 mueq/h; P less than 0.02) and calciuria were present but diminished. These data suggested the coexistence of bone HCO3 mobilization and renal HCO3 wasting in PD. To test this thesis, bicarbonaturia was eliminated by nephrectomy. 24 h later plasma HCO3 was higher in PD rats (controls: 19.3 +/- 0.02; PD: 22.6 +/- 0.8 meq/liter; P less than 0.05), consistend with the presence of extrarenal HCO3 production. After inhibition of bone resorption with colchicine (1 mg/kg), plasma HCO3 decreased to 16.8 +/- 0.6 meq/liter in PD rats (controls): 26.4 +/- 1 meq/liter; P less than 0.001) while bicarbonaturia persisted. These data indicate that the plasma HCO3 in PD is the net result of renal HCO3 wasting and bone HCO3 mobilization. These combined effects maintain normal blood HCO3 initially (18 days) but with time (45 days), bone resorption diminishes and the acidifying renal tubular defect predominates. PMID:833276

  17. Can selective arterial clamping with fluorescence imaging preserve kidney function during robotic partial nephrectomy?

    PubMed Central

    McClintock, Tyler R.; Bjurlin, Marc A.; Wysock, James S.; Borofsky, Michael S.; Marien, Tracy P.; Okoro, Chinonyerem; Stifelman, Michael D.

    2015-01-01

    Objectives To compare renal functional outcomes in robotic partial nephrectomy (RPN) with selective arterial clamping guided by near infrared fluorescence (NIRF) imaging to a matched cohort of patients who underwent RPN without selective arterial clamping and NIRF imaging. Methods From April 2011 to December 2012, NIRF imaging-enhanced RPN with selective clamping was utilized in 42 cases. Functional outcomes of successful cases were compared with a cohort of patients, matched by tumor size, preoperative eGFR, functional kidney status, age, sex, body mass index, and American Society of Anesthesiologists score, who underwent RPN without selective clamping and NIRF imaging. Results In matched-pair analysis, selective clamping with NIRF was associated with superior kidney function at discharge, as demonstrated by postoperative eGFR (78.2 vs 68.5 ml/min per 1.73m2; P=0.04), absolute reduction of eGFR (−2.5 vs −14.0 ml/min per 1.73m2; P<0.01) and percent change in eGFR (−1.9% vs −16.8%, P<0.01). Similar trends were noted at three month follow up but these differences became non-significant (P[eGFR]=0.07], P[absolute reduction of eGFR]=0.10, and P[percent change in eGFR]=0.07). In the selective clamping group, a total of four perioperative complications occurred in three patients, all of which were Clavien I-III. Conclusion Utilization of NIRF imaging was associated with improved short-term renal functional outcomes when compared to RPN without selective arterial clamping and NIRF imaging. With this effect attenuated at later follow-up, randomized prospective studies and long-term assessment of kidney-specific functional outcomes are needed to further assess the benefits of this technology. PMID:24909960

  18. Integrin-specific hydrogels functionalized with VEGF for vascularization and bone regeneration of critical-size bone defects.

    PubMed

    García, José R; Clark, Amy Y; García, Andrés J

    2016-04-01

    Vascularization of bone defects is considered a crucial component to the successful regeneration of large bone defects. Although vascular endothelial growth factor (VEGF) has been delivered to critical-size bone defect models to augment blood vessel infiltration into the defect area, its potential to increase bone repair remains ambiguous. In this study, we investigated whether integrin-specific biomaterials modulate the effects of VEGF on bone regeneration. We engineered protease-degradable, VEGF-loaded poly(ethylene glycol) (PEG) hydrogels functionalized with either a triple-helical, α2 β1 integrin-specific peptide GGYGGGP(GPP)5 GFOGER(GPP)5 GPC (GFOGER) or an αv β3 integrin-targeting peptide GRGDSPC (RGD). Covalent incorporation of VEGF into the PEG hydrogel allowed for protease degradation-dependent release of the protein while maintaining VEGF bioactivity. When applied to critical-size segmental defects in the murine radius, GFOGER-functionalized VEGF-free hydrogels exhibited significantly increased vascular volume and density and resulted in a larger number of thicker blood vessels compared to RGD-functionalized VEGF-free hydrogels. VEGF-loaded RGD hydrogels increased vascularization compared to VEGF-free RGD hydrogels, but the levels of vascularization for these VEGF-containing RGD hydrogels were similar to those of VEGF-free GFOGER hydrogels. VEGF transiently increased bone regeneration in RGD hydrogels but had no effect at later time points. In GFOGER hydrogels, VEGF did not show an effect on bone regeneration. However, VEGF-free GFOGER hydrogels resulted in increased bone regeneration compared to VEGF-free RGD hydrogels. These findings demonstrate the importance of integrin-specificity in engineering constructs for vascularization and associated bone regeneration.

  19. The Structure and Function of Non-Collagenous Bone Proteins

    NASA Technical Reports Server (NTRS)

    Hook, Magnus

    1997-01-01

    The long-term goal for this program is to determine the structural and functional relationships of bone proteins and proteins that interact with bone. This information will used to design useful pharmacological compounds that will have a beneficial effect in osteoporotic patients and in the osteoporotic-like effects experienced on long duration space missions. The first phase of this program, funded under a cooperative research agreement with NASA through the Texas Medical Center, aimed to develop powerful recombinant expression systems and purification methods for production of large amounts of target proteins. Proteins expressed in sufficient'amount and purity would be characterized by a variety of structural methods, and made available for crystallization studies. In order to increase the likelihood of crystallization and subsequent high resolution solution of structures, we undertook to develop expression of normal and mutant forms of proteins by bacterial and mammalian cells. In addition to the main goals of this program, we would also be able to provide reagents for other related studies, including development of anti-fibrotic and anti-metastatic therapeutics.

  20. Functionalized silk-based biomaterials for bone formation.

    PubMed

    Sofia, S; McCarthy, M B; Gronowicz, G; Kaplan, D L

    2001-01-01

    Silks are being reassessed as biomaterial scaffolds due to their unique mechanical properties, opportunities for genetic tailoring of structure and thus function, and recent studies clarifying biocompatibility. We report on the covalent decoration of silk films with integrin recognition sequences (RGD) as well as parathyroid hormone (PTH, 1-34 amino acids) and a modified PTH 1-34 (mPTH) involved in the induction of bone formation. Osteoblast-like cell (Saos-2) responses to the decorated silk films indicate that the proteins serve as suitable bone-inducing matrices. Osteoblast-like cell adhesion was significantly increased on RGD and PTH compared to plastic, mPTH, and the control peptide RAD. At 2 weeks of culture, message levels of alkaline phosphatase were similar on all substrates, but by 4 weeks, alkaline phosphatase mRNA was greatest on RGD. At 2 weeks of culture, alpha 1(I) procollagen mRNA was elevated on silk, RGD, RAD, and PTH, and hardly detectable on mPTH and plastic. However, by 4 weeks RGD demonstrated the highest level compared to the other substrates. Osteocalcin message levels detected by RT-PCR were greatest on RGD at both time points. Calcification was also significantly elevated on RGD compared to the other substrates with an increase in number and size of the mineralized nodules in culture. Thus, RGD covalently decorated silk appears to stimulate osteoblast-based mineralization in vitro.

  1. Modes of action associated with uranium induced adverse effects in bone function and development.

    PubMed

    Arzuaga, Xabier; Gehlhaus, Martin; Strong, Jamie

    2015-07-16

    Uranium, a naturally occurring element used in military and industrial applications, accumulates in the skeletal system of animals and humans. Evidence from animal and in-vitro studies demonstrates that uranium exposure is associated with alterations in normal bone functions. The available studies suggest that upon absorption uranium directly affects bone development and maintenance by inhibiting osteoblast differentiation and normal functions, and indirectly by disrupting renal production of Vitamin D. Animal studies also provide evidence for increased susceptibility to uranium-induced bone toxicity during early life stages. The objective of this review is to provide a summary of uranium-induced bone toxicity and the potential mechanisms by which uranium can interfere with bone development and promote fragility. Since normal Vitamin D production and osteoblast functions are essential for bone growth and maintenance, young individuals and the elderly may represent potentially susceptible populations to uranium-induced bone damage.

  2. l-Carnitine improves cognitive and renal functions in a rat model of chronic kidney disease.

    PubMed

    Abu Ahmad, Nur; Armaly, Zaher; Berman, Sylvia; Jabour, Adel; Aga-Mizrachi, Shlomit; Mosenego-Ornan, Efrat; Avital, Avi

    2016-10-01

    Over the past decade, the prevalence of chronic kidney disease (CKD) has reached epidemic proportions. The search for novel pharmacological treatment for CKD has become an area of intensive clinical research. l-Carnitine, considered as the "gatekeeper" responsible for admitting long chain fatty acids into cell mitochondria. l-Carnitine synthesis and turnover are regulated mainly by the kidney and its levels inversely correlate with serum creatinine of normal subjects and CKD patients. Previous studies showed that l-carnitine administration to elderly people is improving and preserving cognitive function. As yet, there are no clinical intervention studies that investigated the effect of l-carnitine administration on cognitive impairment evidenced in CKD patients. Thus, we aimed to investigate the effects of l-carnitine treatment on renal function and on the cognitive performance in a rat model of progressive CKD. To assess the role of l-carnitine on CKD condition, we estimated the renal function and cognitive abilities in a CKD rat model. We found that all CKD animals exhibited renal function deterioration, as indicated by elevated serum creatinine, BUN, and ample histopathological abnormalities. l-Carnitine treatment of CKD rats significantly reduced serum creatinine and BUN, attenuated renal hypertrophy and decreased renal tissue damage. In addition, in the two way shuttle avoidance learning, CKD animals showed cognitive impairment which recovered by the administration of l-carnitine. We conclude that in a rat model of CKD, l-carnitine administration significantly improved cognitive and renal functions.

  3. Safety of Eplerenone for Kidney-Transplant Recipients with Impaired Renal Function and Receiving Cyclosporine A

    PubMed Central

    Barbe, Coralie; Lavaud, Sylvie; Toupance, Olivier; Nazeyrollas, Pierre; Jaisser, Frederic; Rieu, Philippe

    2016-01-01

    Background Animal studies have highlighted the role of vascular mineralocorticoid receptor during Cyclosporine A-induced nephrotoxicity. Mineralocorticoid receptor antagonists could improve kidney survival but are not commonly used during renal impairment and in association with several immunosuppressive drugs due to a supposed higher risk of adverse events. We tested the tolerance of eplerenone according to its expected adverse events: hyperkalemia, metabolic acidosis, hypotension, acute kidney failure, or any other adverse event. Methods We conducted a single-center, prospective, open-label study in 31 kidney-transplant recipients with impaired renal function (30 and 50 mL/min/1.73m2) and receiving cyclosporine A. All patients received eplerenone 25 mg/d for 8 weeks. Serum potassium, renal function and expected adverse events were closely monitored. Results Eight patients experienced mild hyperkalemia (>5 mmol/L), one moderate hyperkalemia (>5.5 mmol/L) and had to receive potassium-exchange resin. No severe hyperkalemia (>6 mmol/L) occurred. One acute kidney failure was observed, secondary to diarrhea. Basal serum potassium and bicarbonate were independently associated with a higher risk of developing mild hyperkalemia (>5 mmol/L) under treatment (OR 6.5, p = 0.003 and 0.7, p = 0.007, respectively). A cut-off value of 4.35 mmol/L for basal serum potassium was the best factor to predict the risk of developing mild hyperkalemia (>5 mmol/L). Conclusions Until eGFR falls to 30 mL/min/1.73m2, eplerenone could be safely given to kidney-transplant recipients receiving cyclosporine A, if kalemia is closely monitored. When renal function is impaired and if basal kalemia is >4.35 mmol/L, then clinicians should properly balance risk and benefit of eplerenone use and offer dietary advice. An adequately powered prospective randomized study is now needed to test its efficiency (and safety) in this population. Trial Registration ClinicalTrials.gov NCT01834768 PMID:27088859

  4. Kidney function decline after a non-dialysis-requiring acute kidney injury is associated with higher long-term mortality in critically ill survivors

    PubMed Central

    2012-01-01

    Introduction The adverse consequences of a non-dialysis-requiring acute kidney injury (AKI) are unclear. This study aimed to assess the long-term prognoses for critically ill patients experiencing a non-dialysis-requiring AKI. Methods This retrospective observational cohort study investigated non-dialysis-requiring AKI survivors in surgical intensive care units between January 2002 and June 2010. All longitudinal post-discharge serum creatinine measurements and information regarding end-stage renal disease (ESRD) and death were collected. We assessed the long-term outcomes of chronic kidney disease (CKD), ESRD and all-cause mortality beyond discharge. Results Of the 922 identified critically ill patients with a non-dialysis-requiring AKI, 634 (68.8%) patients who survived to discharge were enrolled. A total of 207 patients died after a median follow-up of 700.5 days. The median intervals between the onset of the AKI and the composite endpoints "stage 3 CKD or death", "stage 4 CKD or death", "stage 5 CKD or death", and "ESRD or death" were 685, 1319, 1743, and 2048 days, respectively. This finding shows a steady long-term decline in kidney function after discharge. Using the multivariate Cox proportional hazard model, we found that every 1 mL/min/1.73 m2 decrease from baseline estimated glomerular filtration rate (eGFR) of individuals who progressed to stage 3, 4, and 5 CKD increased the risks of long-term mortality by 0.7%, 2.3%, and 4.1%, respectively (all p < 0.05). This result indicates that the mortality risk increased significantly in a graded manner as kidney function declined from the baseline eGFR to advanced stages of CKD during the follow-up period. Conclusions In critically ill patients who survive a non-dialysis-requiring AKI, there is a need for continuous monitoring and kidney function protection beyond discharge. PMID:22789111

  5. Mechanisms and biological functions of autophagy in diseased and ageing kidneys.

    PubMed

    Fougeray, Sophie; Pallet, Nicolas

    2015-01-01

    Autophagy degrades pathogens, altered organelles and protein aggregates, and is characterized by the sequestration of cytoplasmic cargos within double-membrane-limited vesicles called autophagosomes. The process is regulated by inputs from the cellular microenvironment, and is activated in response to nutrient scarcity and immune triggers, which signal through a complex molecular network. Activation of autophagy leads to the formation of an isolation membrane, recognition of cytoplasmic cargos, expansion of the autophagosomal membrane, fusion with lysosomes and degradation of the autophagosome and its contents. Autophagy maintains cellular homeostasis during stressful conditions, dampens inflammation and shapes adaptive immunity. A growing body of evidence has implicated autophagy in kidney health, ageing and disease; it modulates tissue responses during acute kidney injuries, regulates podocyte homeostasis and protects against age-related renal disorders. The renoprotective functions of autophagy in epithelial renal cells and podocytes are mostly mediated by the clearance of altered mitochondria, which can activate inflammasomes and apoptosis, and the removal of protein aggregates, which might trigger inflammation and cell death. In translational terms, autophagy is undoubtedly an attractive target for developing new renoprotective treatments and identifying markers of kidney injury. PMID:25385287

  6. Impact of failed allograft nephrectomy on initial function and graft survival after kidney retransplantation.

    PubMed

    Schleicher, Christina; Wolters, Heiner; Kebschull, Linus; Anthoni, Christoph; Suwelack, Barbara; Senninger, Norbert; Palmes, Daniel; Mersfeld, Bernadette

    2011-03-01

    The management of an asymptomatic failed renal graft remains controversial. The aim of our study was to explore the effect of failed allograft nephrectomy on kidney retransplantation by comparing the outcome of recipients who underwent graft nephrectomy prior to retransplantation with those who did not. Retrospective comparison of patients undergoing kidney retransplantation with (group A, n = 121) and without (group B, n = 45) preliminary nephrectomy was performed, including subgroup analysis with reference to patients with multiple (≥2) retransplantations and patients of the European Senior Program (ESP). Nephrectomy leads to increased panel reactive antibody (PRA) levels prior to retransplantation and is associated with significantly increased rates of primary nonfunction (PNF; P = 0.05) and acute rejection (P = 0.04). Overall graft survival after retransplantation was significantly worse in group A compared with group B (P = 0.03). Among the subgroups especially ESP patients showed a shorter graft survival after previous allograft nephrectomy. On the multivariate analysis, pretransplant graft nephrectomy and PRA >70% were independent and significant risk factors associated with graft loss after kidney retransplantation. Nephrectomy of the failed allograft was not beneficial for retransplant outcome in our series. Patients with failed graft nephrectomy tended to have a higher risk of PNF and acute rejection after retransplantation. The possibility that the graft nephrectomy has a negative impact on graft function and survival after retransplantation is worth studying further.

  7. Combination of mouse models and genomewide association studies highlights novel genes associated with human kidney function.

    PubMed

    Jing, Jiaojiao; Pattaro, Cristian; Hoppmann, Anselm; Okada, Yukinori; Fox, Caroline S; Köttgen, Anna

    2016-10-01

    Genomewide association studies have identified numerous chronic kidney disease-associated genetic variants, but often do not pinpoint causal genes. This limitation was addressed by combining Mouse Genome Informatics with human genomewide association studies of kidney function. Genes for which mouse models showed abnormal renal physiology, morphology, glomerular filtration rate (GFR), or urinary albumin-to-creatinine ratio were identified from Mouse Genome Informatics. The corresponding human orthologs were then evaluated for GFR-associated single-nucleotide polymorphisms in 133,814 individuals and urinary albumin-to-creatinine ratio-associated SNPs in 54,451 individuals in genome-wide association studies meta-analysis of the CKDGen Consortium. After multiple testing corrections, significant associations with estimated GFR in humans were identified for single-nucleotide polymorphisms in 2, 7, and 17 genes causing abnormal GFR, abnormal physiology, and abnormal morphology in mice, respectively. Genes identified for abnormal kidney morphology showed significant enrichment for estimated GFR-associated single-nucleotide polymorphisms. In total, 19 genes contained variants associated with estimated GFR or the urinary albumin-to-creatinine ratio of which 16 mapped into previously reported genomewide significant loci. CYP26A1 and BMP4 emerged as novel signals subsequently validated in a large, independent study. An additional gene, CYP24A1, was discovered after conditioning on a published nearby association signal. Thus, our novel approach to combine comprehensive mouse phenotype information with human genomewide association studies data resulted in the identification of candidate genes for kidney disease pathogenesis.

  8. Combination of mouse models and genomewide association studies highlights novel genes associated with human kidney function.

    PubMed

    Jing, Jiaojiao; Pattaro, Cristian; Hoppmann, Anselm; Okada, Yukinori; Fox, Caroline S; Köttgen, Anna

    2016-10-01

    Genomewide association studies have identified numerous chronic kidney disease-associated genetic variants, but often do not pinpoint causal genes. This limitation was addressed by combining Mouse Genome Informatics with human genomewide association studies of kidney function. Genes for which mouse models showed abnormal renal physiology, morphology, glomerular filtration rate (GFR), or urinary albumin-to-creatinine ratio were identified from Mouse Genome Informatics. The corresponding human orthologs were then evaluated for GFR-associated single-nucleotide polymorphisms in 133,814 individuals and urinary albumin-to-creatinine ratio-associated SNPs in 54,451 individuals in genome-wide association studies meta-analysis of the CKDGen Consortium. After multiple testing corrections, significant associations with estimated GFR in humans were identified for single-nucleotide polymorphisms in 2, 7, and 17 genes causing abnormal GFR, abnormal physiology, and abnormal morphology in mice, respectively. Genes identified for abnormal kidney morphology showed significant enrichment for estimated GFR-associated single-nucleotide polymorphisms. In total, 19 genes contained variants associated with estimated GFR or the urinary albumin-to-creatinine ratio of which 16 mapped into previously reported genomewide significant loci. CYP26A1 and BMP4 emerged as novel signals subsequently validated in a large, independent study. An additional gene, CYP24A1, was discovered after conditioning on a published nearby association signal. Thus, our novel approach to combine comprehensive mouse phenotype information with human genomewide association studies data resulted in the identification of candidate genes for kidney disease pathogenesis. PMID:27263491

  9. Regulation of bone mass and osteoclast function depend on the F-actin modulator SWAP-70.

    PubMed

    Garbe, Annette I; Roscher, Anne; Schüler, Christiane; Lutter, Anne-Helen; Glösmann, Martin; Bernhardt, Ricardo; Chopin, Michael; Hempel, Ute; Hofbauer, Lorenz C; Rammelt, Stefan; Egerbacher, Monika; Erben, Reinhold G; Jessberger, Rolf

    2012-10-01

    Bone remodeling involves tightly regulated bone-resorbing osteoclasts and bone-forming osteoblasts. Determining osteoclast function is central to understanding bone diseases such as osteoporosis and osteopetrosis. Here, we report a novel function of the F-actin binding and regulatory protein SWAP-70 in osteoclast biology. F-actin ring formation, cell morphology, and bone resorption are impaired in Swap-70(-/-) osteoclasts, whereas the expression of osteoclast differentiation markers induced in vitro by macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) remains unaffected. Swap-70(-/-) mice develop osteopetrosis with increased bone mass, abnormally dense bone, and impaired osteoclast function. Ectopic expression of SWAP-70 in Swap-70(-/-) osteoclasts in vitro rescues their deficiencies in bone resorption and F-actin ring formation. Rescue requires a functional pleckstrin homology (PH) domain, known to support membrane localization of SWAP-70, and the F-actin binding domain. Transplantation of SWAP-70-proficient bone marrow into Swap-70(-/-) mice restores osteoclast resorption capacity in vivo. The identification of the role of SWAP-70 in promoting osteoclast function through modulating membrane-proximal F-actin rearrangements reveals a new pathway to control osteoclasts and bone homeostasis.

  10. Impaired Vestibular Function and Low Bone Mineral Density: Data from the Baltimore Longitudinal Study of Aging.

    PubMed

    Bigelow, Robin T; Semenov, Yevgeniy R; Anson, Eric; du Lac, Sascha; Ferrucci, Luigi; Agrawal, Yuri

    2016-10-01

    Animal studies have demonstrated that experimentally induced vestibular ablation leads to a decrease in bone mineral density, through mechanisms mediated by the sympathetic nervous system. Loss of bone mineral density is a common and potentially morbid condition that occurs with aging, and we sought to investigate whether vestibular loss is associated with low bone mineral density in older adults. We evaluated this question in a cross-sectional analysis of data from the Baltimore Longitudinal Study of Aging (BLSA), a large, prospective cohort study managed by the National Institute on Aging (N = 389). Vestibular function was assessed with cervical vestibular evoked myogenic potentials (cVEMPs), a measure of saccular function. Bone mineral density was assessed using dual-energy X-ray absorptiometry (DEXA). In two-way t test analysis, we observed that individuals with reduced vestibular physiologic function had significantly lower bone mineral density. In adjusted multivariate linear regression analyses, we observed that older individuals with reduced vestibular physiologic function had significantly lower bone mineral density, specifically in weight-bearing hip and lower extremity bones. These results suggest that the vestibular system may contribute to bone homeostasis in older adults, notably of the weight-bearing hip bones at greatest risk of osteoporotic fracture. Further longitudinal analysis of vestibular function and bone mineral density in humans is needed to characterize this relationship and investigate the potential confounding effect of physical activity.

  11. The Power of Renal Function Estimation Equations for Predicting Long-Term Kidney Graft Survival

    PubMed Central

    Choi, Hoon Young; Joo, Dong Jin; Song, Mi Kyung; Kim, Myoung Soo; Park, Hyeong Cheon; Kim, Yu Seun; Kim, Beom Seok

    2016-01-01

    Abstract Evaluation of renal function using an accurate estimation equation is important for predicting long-term graft survival. We designed this retrospective cohort study to evaluate the predictive power of renal function estimation by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) study equations for graft survival. We reviewed data of 3290 adult kidney transplant recipients who underwent transplantation at a single center between April 1979 and September 2012. The reliability and agreement of chronic kidney disease (CKD) stages based on the estimated glomerular filtration rate (eGFR) as calculated by the CKD-EPI and MDRD equations were evaluated using Bland–Altman plots and Cohen weighted kappa analyses. The predictive power of CKD stages as classified by each equation for graft survival was investigated using Cox regression models. Additionally, Pearson and Spearman correlation coefficients were used to reveal the relationship between graft survival and eGFR equations. Of 3290 kidney transplant recipients, 3040 were included in the analysis. The mean follow-up duration was 128.08 ± 83.54 months, and 29.8% of participants were reclassified to higher eGFR categories by the CKD-EPI equation compared to the category classification by the MDRD equation. eGFR calculated using the MDRD equation was underestimated compared to that calculated using the CKD-EPI equation, based on the Bland–Altman plot. In Cohen weighted kappa analysis, agreement across CKD stages classified using the 2 equations was reliable, but all CKD stages classified using the MDRD equation appeared to be in lower eGFR categories than those classified using the CKD-EPI equation. Pearson and Spearman correlation analyses indicated that the CKD stage as classified by the CKD-EPI equation, but not the MDRD equation, was significantly correlated with the risk of graft failure. In multivariable Cox regression analysis for

  12. Extracellular Matrix Proteins, Alkaline Phosphatase and Pyrophosphate as Molecular Determinants of Bone, Tooth, Kidney and Vascular Calcification

    NASA Astrophysics Data System (ADS)

    McKee, Marc D.

    2008-09-01

    Progress in biomineralization research in recent years has identified, characterized and described functions for key noncollagenous extracellular matrix proteins regulating crystal growth in the skeleton and dentition. Some of these same proteins expressed in soft tissues undergoing pathologic calcification also inhibit ectopic crystal growth. In addition to extracellular matrix proteins regulating matrix mineralization, the enzyme tissue-nonspecific alkaline phosphatase—which is highly expressed by cells in mineralized tissues—cleaves pyrophosphate, an anionic small-molecule inhibitor of mineralization. Together with the required mineral ion availability necessary for crystal growth, these molecular determinants appear to function in limiting the spread of pathologic calcification seen in soft tissues such as blood vessels and kidneys. Osteopontin, in particular, is a potent calcification inhibitor that accumulates in mineralized tissues and in calcified deposits during vascular calcification and nephrolithiasis/urolithiasis. Additional research is required to establish the exact temporal sequence in which the molecular determinants of pathologic calcification appear relative to mineral crystal growth in different tissues, and to establish their relationship (if any) to the activation of osteogenic differentiation programs.

  13. Associations of Sugar and Artificially Sweetened Soda with Albuminuria and Kidney Function Decline in Women

    PubMed Central

    Curhan, Gary C.

    2011-01-01

    Summary Background and objectives Sugar-sweetened soda is reported to be associated with increased risk for diabetes and albuminuria, but there are currently limited data on how sugar or artificially sweetened soda may be related to kidney function decline. Design, setting, participants, & measurements This study identified 3318 women participating in the Nurses' Health Study with data on soda intake and albuminuria; of these, 3256 also had data on estimated GFR (eGFR) change between 1989 and 2000. Cumulative average beverage intake was derived from the 1984, 1986, 1990, 1994, and 1998 food frequency questionnaires. Serving categories included <1/mo (referent), 1 to 4/mo, 2 to 6/wk, 1 to 1.9/d, and ≥2/d. Microalbuminuria (MA) was considered a urinary albumin-to-creatinine ratio of 25 to 355 μg/mg. For kidney function change, the primary outcome was a ≥30% decline in eGFR over 11 years; rapid eGFR decline defined as ≥3 ml/min per 1.73 m2 per year was also examined. Results Consumption of ≥2 servings per day of artificially sweetened (diet) soda was independently associated with eGFR decline ≥30% (OR 2.02, 95% CI 1.36 to 3.01) and ≥3 ml/min per 1.73 m2 per year (OR 2.20, 95% CI 1.36 to 3.55). No increased risk for eGFR decline was observed for <2 servings per day of diet soda. No associations were noted between diet soda and MA or sugar soda and MA or eGFR decline. Conclusions Consumption of ≥2 servings per day of artificially sweetened soda is associated with a 2-fold increased odds for kidney function decline in women. PMID:20884773

  14. Neural regulation of the kidney function in rats with cisplatin induced renal failure

    PubMed Central

    Goulding, Niamh E.; Johns, Edward J.

    2015-01-01

    Aim: Chronic kidney disease (CKD) is often associated with a disturbed cardiovascular homeostasis. This investigation explored the role of the renal innervation in mediating deranged baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory function in cisplatin-induced renal failure. Methods: Rats were either intact or bilaterally renally denervated 4 days prior to receiving cisplatin (5 mg/kg i.p.) and entered a chronic metabolic study for 8 days. At day 8, other groups of rats were prepared for acute measurement of RSNA or renal function with either intact or denervated kidneys. Results: Following the cisplatin challenge, creatinine clearance was 50% lower while fractional sodium excretion and renal cortical and medullary TGF-β1 concentrations were 3–4 fold higher in both intact and renally denervated rats compared to control rats. In cisplatin-treated rats, the maximal gain of the high-pressure baroreflex curve was only 20% that of control rats, but following renal denervation not different from that of renally denervated control rats. Volume expansion reduced RSNA by 50% in control and in cisplatin-treated rats but only following bilateral renal denervation. The volume expansion mediated natriuresis/diuresis was absent in the cisplatin-treated rats but was normalized following renal denervation. Conclusions: Cisplatin-induced renal injury impaired renal function and caused a sympatho-excitation with blunting of high and low pressure baroreflex regulation of RSNA, which was dependent on the renal innervation. It is suggested that in man with CKD there is a dysregulation of the neural control of the kidney mediated by its sensory innervation. PMID:26175693

  15. SDF-1/CXCR4 signaling preserves microvascular integrity and renal function in chronic kidney disease.

    PubMed

    Chen, Li-Hao; Advani, Suzanne L; Thai, Kerri; Kabir, M Golam; Sood, Manish M; Gibson, Ian W; Yuen, Darren A; Connelly, Kim A; Marsden, Philip A; Kelly, Darren J; Gilbert, Richard E; Advani, Andrew

    2014-01-01

    The progressive decline of renal function in chronic kidney disease (CKD) is characterized by both disruption of the microvascular architecture and the accumulation of fibrotic matrix. One angiogenic pathway recently identified as playing an essential role in renal vascular development is the stromal cell-derived factor-1α (SDF-1)/CXCR4 pathway. Because similar developmental processes may be recapitulated in the disease setting, we hypothesized that the SDF-1/CXCR4 system would regulate microvascular health in CKD. Expression of CXCR4 was observed to be increased in the kidneys of subtotally nephrectomized (SNx) rats and in biopsies from patients with secondary focal segmental glomerulosclerosis (FSGS), a rodent model and human correlate both characterized by aberration of the renal microvessels. A reno-protective role for local SDF-1/CXCR4 signaling was indicated by i) CXCR4-dependent glomerular eNOS activation following acute SDF-1 administration; and ii) acceleration of renal function decline, capillary loss and fibrosis in SNx rats treated with chronic CXCR4 blockade. In contrast to the upregulation of CXCR4, SDF-1 transcript levels were decreased in SNx rat kidneys as well as in renal fibroblasts exposed to the pro-fibrotic cytokine transforming growth factor β (TGF-β), the latter effect being attenuated by histone deacetylase inhibition. Increased renal SDF-1 expression was, however, observed following the treatment of SNx rats with the ACE inhibitor, perindopril. Collectively, these observations indicate that local SDF-1/CXCR4 signaling functions to preserve microvascular integrity and prevent renal fibrosis. Augmentation of this pathway, either purposefully or serendipitously with either novel or existing therapies, may attenuate renal decline in CKD. PMID:24637920

  16. Balanced Hydroxyethylstarch (HES 130/0.4) Impairs Kidney Function In-Vivo without Inflammation

    PubMed Central

    Schick, Martin Alexander; Baar, Wolfgang; Bruno, Raphael Romano; Wollborn, Jakob; Held, Christopher; Schneider, Reinhard; Flemming, Sven; Schlegel, Nicolas; Roewer, Norbert; Neuhaus, Winfried; Wunder, Christian

    2015-01-01

    Volume therapy is a standard procedure in daily perioperative care, and there is an ongoing discussion about the benefits of colloid resuscitation with hydroxyethylstarch (HES). In sepsis HES should be avoided due to a higher risk for acute kidney injury (AKI). Results of the usage of HES in patients without sepsis are controversial. Therefore we conducted an animal study to evaluate the impact of 6% HES 130/0.4 on kidney integrity with sepsis or under healthy conditions Sepsis was induced by standardized Colon Ascendens Stent Peritonitis (sCASP). sCASP-group as well as control group (C) remained untreated for 24 h. After 18 h sCASP+HES group (sCASP+VOL) and control+HES (C+VOL) received 50 ml/KG balanced 6% HES (VOL) 130/0.4 over 6h. After 24h kidney function was measured via Inulin- and PAH-Clearance in re-anesthetized rats, and serum urea, creatinine (crea), cystatin C and Neutrophil gelatinase-associated lipocalin (NGAL) as well as histopathology were analysed. In vitro human proximal tubule cells (PTC) were cultured +/- lipopolysaccharid (LPS) and with 0.1–4.0% VOL. Cell viability was measured with XTT-, cell toxicity with LDH-test. sCASP induced severe septic AKI demonstrated divergent results regarding renal function by clearance or creatinine measure focusing on VOL. Soleley HES (C+VOL) deteriorated renal function without sCASP. Histopathology revealed significantly derangements in all HES groups compared to control. In vitro LPS did not worsen the HES induced reduction of cell viability in PTC cells. For the first time, we demonstrated, that application of 50 ml/KG 6% HES 130/0.4 over 6 hours induced AKI without inflammation in vivo. Severity of sCASP induced septic AKI might be no longer susceptible to the way of volume expansion. PMID:26340751

  17. A correlation study of telomere length in peripheral blood leukocytes and kidney function with age.

    PubMed

    Zhang, Wei-Guang; Wang, Yong; Hou, Kai; Jia, Lin-Pei; Ma, Jie; Zhao, De-Long; Zhu, Shu-Ying; Bai, Xiao-Juan; Cai, Guang-Yan; Wang, Yan-Ping; Sun, Xue-Feng; Chen, Xiang-Mei

    2015-06-01

    The current study aimed to investigate the association between telomere length in peripheral blood leukocytes and kidney function in various age groups of a healthy population. A total of 139 healthy individuals were divided into five groups according to their age: 35‑44, 45‑54, 55‑64, 65‑74 and >75 years old. Peripheral blood leukocytes were obtained and the telomere restriction fragment (TRF) length was assayed using a digoxigenin‑labeled hybridization probe in Southern blot assays. Laboratory assays of kidney function were also performed. A correlation was observed between TRF length and age (r=‑0.314, P<0.001), with the telomere length of the individuals >75 years group being significantly shorter than the telomere length of the 35‑44, 45‑54 and 55‑64 years age groups (P<0.05). By contrast, the TRF length for males versus females did not differ for any of the age groups, while a correlation was observed between TRF length and serum levels of cystatin C (r=‑0.195, P<0.05). There was also a correlation between TRF length and glomerular filtration rate (r=‑0.184, P<0.05). The current study demonstrated that in this cohort, leukocyte telomere length reduced with age and was correlated with serum levels of cystatin C and glomerular filtration rate. Therefore, TRF length is associated with kidney function and may serve as a marker of aging.

  18. Pyridoxamine reduces postinjury fibrosis and improves functional recovery after acute kidney injury.

    PubMed

    Skrypnyk, Nataliya I; Voziyan, Paul; Yang, Haichun; de Caestecker, Christian R; Theberge, Marie-Claude; Drouin, Mathieu; Hudson, Billy; Harris, Raymond C; de Caestecker, Mark P

    2016-08-01

    Acute kidney injury (AKI) is a common and independent risk factor for death and chronic kidney disease (CKD). Despite promising preclinical data, there is no evidence that antioxidants reduce the severity of injury, increase recovery, or prevent CKD in patients with AKI. Pyridoxamine (PM) is a structural analog of vitamin B6 that interferes with oxidative macromolecular damage via a number of different mechanisms and is in a phase 3 clinical efficacy trial to delay CKD progression in patients with diabetic kidney disease. Because oxidative stress is implicated as one of the main drivers of renal injury after AKI, the ability of PM to interfere with multiple aspects of oxidative damage may be favorable for AKI treatment. In these studies we therefore evaluated PM treatment in a mouse model of AKI. Pretreatment with PM caused a dose-dependent reduction in acute tubular injury, long-term postinjury fibrosis, as well as improved functional recovery after ischemia-reperfusion AKI (IR-AKI). This was associated with a dose-dependent reduction in the oxidative stress marker isofuran-to-F2-isoprostane ratio, indicating that PM reduces renal oxidative damage post-AKI. PM also reduced postinjury fibrosis when administered 24 h after the initiating injury, but this was not associated with improvement in functional recovery after IR-AKI. This is the first report showing that treatment with PM reduces short- and long-term injury, fibrosis, and renal functional recovery after IR-AKI. These preclinical findings suggest that PM, which has a favorable clinical safety profile, holds therapeutic promise for AKI and, most importantly, for prevention of adverse long-term outcomes after AKI. PMID:27194713

  19. [Do shock waves damage the kidney? Morphologic and functional changes of the kidney following exposure to shock waves].

    PubMed

    Jaeger, P; Redha, S; Alund, G; Uhlschmid, G

    1989-07-01

    The introduction of extracorporeal shockwave lithotripsy (ESWL) as a routine procedure has brought about a dramatic change in the therapy of urolithiasis. More than 500,000 patients have been treated successfully. Although a tissue damaging effect of the shock wave on the kidney was regarded as non-existent, phenomena such as hematuria during ESWL treatment and subsequent subcapsular hematomas suggest the possibility of damage in the region of the renal parenchyma by the shockwave itself. To investigate this possibility canine kidneys were examined histologically at different intervals after shockwave exposure. Extensive histological changes such as hemorrhage and sometimes direct tubular damage were found, with scar formation after three months. These changes are limited to the areas exposed to ESWL treatment.

  20. [NAG (N-acetyl-beta-D-glucosaminidase)--a sensitive marker for disorders of kidney function].

    PubMed

    Skrezek, C; Bertermann, H; Schulz, F P; König, B

    1990-01-01

    In a clinical study we tested the use of the lysosomal enzyme NAG as a parameter of kidney function. Following prospective randomization, we examined NAG excretion during cisplatin treatment with/without nephroprotection, after intravenous urography with ionic/non-ionic contrast media, during lower/upper urinary tract infections and before/after extracorporeal shockwave lithotripsy for intrarenal calculi (first-generation equipment used). Measurements were performed in 3-h urine specimens and in urine collected over 24 h, using a simple method of analysis. A correlation between NAG leakage and functional disorder of the renal tubular cells seemed likely on the basis of additional clinical and experimental data. Increases, in some cases dramatic, in NAG excretion were observed after the administration of cisplatin and ionic contrast media, in acute pyelonephritis, and after extracorporeal shockwave lithotripsy. However, the increase in NAG excretion was less impressive during cisplatin therapy when nephroprotective amino acids were infused, and in the urography group when non-ionic contrast media were used. Infections of the lower urinary tract did not increase NAG excretion. The results indicate that NAG is a sensitive marker of occult renal dysfunction, which can be checked by non-invasive techniques and can be used in a clinic setting to detect functional disorders of the kidney.

  1. Effects of 10 to 30 years of lithium treatment on kidney function.

    PubMed

    Aiff, Harald; Attman, Per-Ola; Aurell, Mattias; Bendz, Hans; Ramsauer, Bernd; Schön, Staffan; Svedlund, Jan

    2015-05-01

    Long-term lithium treatment is associated with end-stage renal disease, but there is little evidence of a clinically significant reduction in renal function in most patients. We previously found that 1.5% of people who took lithium from the 1960s and 1970s developed end-stage renal disease; however, none of the patients who started after 1980 had end-stage renal disease. Here we aimed to study the prevalence and extent of kidney damage during the course of long-term lithium treatment since 1980. We retrieved serum lithium and creatinine levels from 4879 patients examined between 1 January 1981 and 31 December 2010. Only patients who started their lithium treatment during the study period and had at least 10 years of cumulative treatment were included. The study group comprised 630 adult patients (402 women and 228 men) with normal creatinine levels at the start of lithium treatment. There was a yearly increase in median serum creatinine levels already from the first year of treatment. About one-third of the patients who had taken lithium for 10-29 years had evidence of chronic renal failure but only 5% were in the severe or very severe category. The results indicate that a substantial proportion of adult patients who are treated with lithium for more than a decade develop signs of renal functional impairment, also when treated according to modern therapeutic principles. Our results emphasise that lithium treatment requires continuous monitoring of kidney function.

  2. Recent Developments of Functional Scaffolds for Craniomaxillofacial Bone Tissue Engineering Applications

    PubMed Central

    Kinoshita, Yukihiko; Maeda, Hatsuhiko

    2013-01-01

    Autogenous bone grafting remains a gold standard for the reconstruction critical-sized bone defects in the craniomaxillofacial region. Nevertheless, this graft procedure has several disadvantages such as restricted availability, donor-site morbidity, and limitations in regard to fully restoring the complicated three-dimensional structures in the craniomaxillofacial bone. The ultimate goal of craniomaxillofacial bone reconstruction is the regeneration of the physiological bone that simultaneously fulfills both morphological and functional restorations. Developments of tissue engineering in the last two decades have brought such a goal closer to reality. In bone tissue engineering, the scaffolds are fundamental, elemental and mesenchymal stem cells/osteoprogenitor cells and bioactive factors. A variety of scaffolds have been developed and used as spacemakers, biodegradable bone substitutes for transplanting to the new bone, matrices of drug delivery system, or supporting structures enhancing adhesion, proliferation, and matrix production of seeded cells according to the circumstances of the bone defects. However, scaffolds to be clinically completely satisfied have not been developed yet. Development of more functional scaffolds is required to be applied widely to cranio-maxillofacial bone defects. This paper reviews recent trends of scaffolds for crania-maxillofacial bone tissue engineering, including our studies. PMID:24163634

  3. Association of Kidney Function with Changes in the Endothelial Surface Layer

    PubMed Central

    Dane, Martijn J.C.; Khairoun, Meriem; Lee, Dae Hyun; van den Berg, Bernard M.; Eskens, Bart J.M.; Boels, Margien G.S.; van Teeffelen, Jurgen W.G.E.; Rops, Angelique L.W.M.M.; van der Vlag, Johan; van Zonneveld, Anton Jan; Reinders, Marlies E.J.; Vink, Hans; Rabelink, Ton J.

    2014-01-01

    Background and objectives ESRD is accompanied by endothelial dysfunction. Because the endothelial glycocalyx (endothelial surface layer) governs interactions between flowing blood and the vessel wall, perturbation could influence disease progression. This study used a novel noninvasive sidestream–darkfield imaging method, which measures the accessibility of red blood cells to the endothelial surface layer in the microcirculation (perfused boundary region), to investigate whether renal function is associated with endothelial surface layer dimensions. Design, setting, participants, & measurements Perfused boundary region was measured in control participants (n=10), patients with ESRD (n=23), participants with normal kidney function after successful living donor kidney transplantation (n=12), and patients who developed interstitial fibrosis/tubular atrophy after kidney transplantation (n=10). In addition, the endothelial activation marker angiopoietin-2 and shed endothelial surface layer components syndecan-1 and soluble thrombomodulin were measured using ELISA. Results Compared with healthy controls (1.82±0.16 µm), ESRD patients had a larger perfused boundary region (+0.23; 95% confidence interval, 0.46 to <0.01; P<0.05), which signifies loss of endothelial surface layer dimensions. This large perfused boundary region was accompanied by higher circulating levels of syndecan-1 (+57.71; 95% confidence interval, 17.38 to 98.04; P<0.01) and soluble thrombomodulin (+12.88; 95% confidence interval, 0.29 to 25.46; P<0.001). After successful transplantation, the perfused boundary region was indistinguishable from healthy controls (without elevated levels of soluble thrombomodulin or syndecan-1). In contrast, however, patients who developed interstitial fibrosis and tubular atrophy showed a large perfused boundary region (+0.36; 95% confidence interval, 0.09 to 0.63; P<0.01) and higher levels of endothelial activation markers. In addition, a significant correlation

  4. Kidney Function Decline and Apparent Treatment-Resistant Hypertension in the Elderly

    PubMed Central

    Kaboré, Jean; Metzger, Marie; Helmer, Catherine; Berr, Claudine; Tzourio, Christophe; Massy, Ziad A.; Stengel, Bénédicte

    2016-01-01

    Background Cross-sectional studies show a strong association between chronic kidney disease and apparent treatment-resistant hypertension, but the longitudinal association of the rate of kidney function decline with the risk of resistant hypertension is unknown. Methods The population-based Three-City included 8,695 participants older than 65 years, 4265 of them treated for hypertension. We estimated the odds ratios (OR) of new-onset apparent treatment-resistant hypertension, defined as blood pressure ≥ 140/90 mmHg despite use of 3 antihypertensive drug classes or ≥ 4 classes regardless of blood pressure, associated with the mean estimated glomerular filtration rate (eGFR) level and its rate of decline over 4 years, compared with both controlled hypertension and uncontrolled nonresistant hypertension with ≤ 2 drugs. GFR was estimated with three different equations. Results Baseline prevalence of apparent treatment-resistant hypertension and of controlled and uncontrolled nonresistant hypertension, were 6.5%, 62.3% and 31.2%, respectively. During follow-up, 162 participants developed apparent treatment-resistant hypertension. Mean eGFR decline with the MDRD equation was 1.5±2.9 mL/min/1.73 m² per year: 27.7% of the participants had an eGFR ≥3 and 10.1% ≥ 5 mL/min/1.73 m² per year. After adjusting for age, sex, obesity, diabetes, and cardiovascular history, the ORs for new-onset apparent treatment-resistant hypertension associated with a mean eGFR level, per 15 mL/min/1.73m² drop, were 1.23 [95% confidence interval 0.91–1.64] compared to controlled hypertension and 1.10 [0.83–1.45] compared to uncontrolled nonresistant hypertension; ORs associated with a decline rate ≥ 3 mL/min/1.73m² per year were 1.89 [1.09–3.29] and 1.99 [1.19–3.35], respectively. Similar results were obtained when we estimated GFR with the CKDEPI and the BIS1 equations. ORs tended to be higher for an eGFR decline rate ≥ 5 mL/min/1.73m² per year. Conclusion The speed of

  5. Kidney Function, Endothelial Activation and Atherosclerosis in Black and White Africans with Rheumatoid Arthritis

    PubMed Central

    Dessein, Patrick H.; Hsu, Hon-Chun; Tsang, Linda; Millen, Aletta M. E.; Woodiwiss, Angela J.; Norton, Gavin R.; Solomon, Ahmed; Gonzalez-Gay, Miguel A.

    2015-01-01

    Objective To determine whether kidney function independently relates to endothelial activation and ultrasound determined carotid atherosclerosis in black and white Africans with rheumatoid arthritis (RA). Methods We calculated the Jelliffe, 5 Cockcroft-Gault equations, Salazar-Corcoran, Modification of Diet in Renal Disease (MDRD) and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) estimated glomerular filtration rate (EGFR) equations in 233 (112 black) RA patients. Results The CKD-EPI eGFR was <90 ml/min/1.73m2 in 49.1% and 30.6% of black and white patients, respectively (odds ratio (95% confidence interval) = 2.19 (1.28–3.75), p = 0.004). EGFRs were overall consistently associated with monocyte chemoattractant protein-1 and angiopoietin 2 concentrations in white patients, and with carotid intima-media thickness and plaque in black participants. Amongst black patients, plaque prevalence was 36.7% and the area under the curve (AUC) of the receiver operating characteristic (ROC) curve was not associated with plaque presence for the MDRD equation (p = 0.3), whereas the respective relationship was significant or borderline significant (p = 0.003 to 0.08) and of similar extent (p>0.1 for comparisons of AUC (SE)) for the other 8 equations. Based on optimal eGFR cutoff values with sensitivities and specificities ranging from 42 to 60% and 70 to 91% respectively, as determined in ROC curve analysis, a low eGFR increased the odds ratio for plaque 2.2 to 4.0 fold. Conclusion Reduced kidney function is independently associated with atherosclerosis and endothelial activation in black and white Africans with RA, respectively. CKD is highly prevalent in black Africans with RA. Apart from the MDRD, eGFR equations are useful in predicting carotid plaque presence, a coronary heart disease equivalent, amongst black African RA patients. PMID:25806966

  6. Isoforms of Spectrin and Ankyrin Reflect the Functional Topography of the Mouse Kidney

    PubMed Central

    Stankewich, Michael C.; Moeckel, Gilbert W.; Ji, Lan; Ardito, Thomas; Morrow, Jon S.

    2016-01-01

    The kidney displays specialized regions devoted to filtration, selective reabsorption, and electrolyte and metabolite trafficking. The polarized membrane pumps, channels, and transporters responsible for these functions have been exhaustively studied. Less examined are the contributions of spectrin and its adapter ankyrin to this exquisite functional topography, despite their established contributions in other tissues to cellular organization. We have examined in the rodent kidney the expression and distribution of all spectrins and ankyrins by qPCR, Western blotting, immunofluorescent and immuno electron microscopy. Four of the seven spectrins (αΙΙ, βΙ, βΙΙ, and βΙΙΙ) are expressed in the kidney, as are two of the three ankyrins (G and B). The levels and distribution of these proteins vary widely over the nephron. αΙΙ/βΙΙ is the most abundant spectrin, found in glomerular endothelial cells; on the basolateral membrane and cytoplasmic vesicles in proximal tubule cells and in the thick ascending loop of Henle; and less so in the distal nephron. βΙΙΙ spectrin largely replaces βΙΙ spectrin in podocytes, Bowman’s capsule, and throughout the distal tubule and collecting ducts. βΙ spectrin is only marginally expressed; its low abundance hinders a reliable determination of its distribution. Ankyrin G is the most abundant ankyrin, found in capillary endothelial cells and all tubular segments. Ankyrin B populates Bowman’s capsule, podocytes, the ascending thick loop of Henle, and the distal convoluted tubule. Comparison to the distribution of renal protein 4.1 isoforms and various membrane proteins indicates a complex relationship between the spectrin scaffold, its adapters, and various membrane proteins. While some proteins (e.g. ankyrin B, βΙΙΙ spectrin, and aquaporin 2) tend to share a similar distribution, there is no simple mapping of different spectrins or ankyrins to most membrane proteins. The implications of this data are

  7. Mechanotransduction and the functional response of bone to mechanical strain.

    PubMed

    Duncan, R L; Turner, C H

    1995-11-01

    Mechanotransduction plays a crucial role in the physiology of many tissues including bone. Mechanical loading can inhibit bone resorption and increase bone formation in vivo. In bone, the process of mechanotransduction can be divided into four distinct steps: (1) mechanocoupling, (2) biochemical coupling, (3) transmission of signal, and (4) effector cell response. In mechanocoupling, mechanical loads in vivo cause deformations in bone that stretch bone cells within and lining the bone matrix and create fluid movement within the canaliculae of bone. Dynamic loading, which is associated with extracellular fluid flow and the creation of streaming potentials within bone, is most effective for stimulating new bone formation in vivo. Bone cells in vitro are stimulated to produce second messengers when exposed to fluid flow or mechanical stretch. In biochemical coupling, the possible mechanisms for the coupling of cell-level mechanical signals into intracellular biochemical signals include force transduction through the integrin-cytoskeleton-nuclear matrix structure, stretch-activated cation channels within the cell membrane, G protein-dependent pathways, and linkage between the cytoskeleton and the phospholipase C or phospholipase A pathways. The tight interaction of each of these pathways would suggest that the entire cell is a mechanosensor and there are many different pathways available for the transduction of a mechanical signal. In the transmission of signal, osteoblasts, osteocytes, and bone lining cells may act as sensors of mechanical signals and may communicate the signal through cell processes connected by gap junctions. These cells also produce paracrine factors that may signal osteoprogenitors to differentiate into osteoblasts and attach to the bone surface. Insulin-like growth factors and prostaglandins are possible candidates for intermediaries in signal transduction. In the effector cell response, the effects of mechanical loading are dependent upon the

  8. Mechanotransduction and the functional response of bone to mechanical strain

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Turner, C. H.

    1995-01-01

    Mechanotransduction plays a crucial role in the physiology of many tissues including bone. Mechanical loading can inhibit bone resorption and increase bone formation in vivo. In bone, the process of mechanotransduction can be divided into four distinct steps: (1) mechanocoupling, (2) biochemical coupling, (3) transmission of signal, and (4) effector cell response. In mechanocoupling, mechanical loads in vivo cause deformations in bone that stretch bone cells within and lining the bone matrix and create fluid movement within the canaliculae of bone. Dynamic loading, which is associated with extracellular fluid flow and the creation of streaming potentials within bone, is most effective for stimulating new bone formation in vivo. Bone cells in vitro are stimulated to produce second messengers when exposed to fluid flow or mechanical stretch. In biochemical coupling, the possible mechanisms for the coupling of cell-level mechanical signals into intracellular biochemical signals include force transduction through the integrin-cytoskeleton-nuclear matrix structure, stretch-activated cation channels within the cell membrane, G protein-dependent pathways, and linkage between the cytoskeleton and the phospholipase C or phospholipase A pathways. The tight interaction of each of these pathways would suggest that the entire cell is a mechanosensor and there are many different pathways available for the transduction of a mechanical signal. In the transmission of signal, osteoblasts, osteocytes, and bone lining cells may act as sensors of mechanical signals and may communicate the signal through cell processes connected by gap junctions. These cells also produce paracrine factors that may signal osteoprogenitors to differentiate into osteoblasts and attach to the bone surface. Insulin-like growth factors and prostaglandins are possible candidates for intermediaries in signal transduction. In the effector cell response, the effects of mechanical loading are dependent upon the

  9. Effect of radiation processing on nutritional, functional, sensory and antioxidant properties of red kidney beans

    NASA Astrophysics Data System (ADS)

    Marathe, S. A.; Deshpande, R.; Khamesra, Arohi; Ibrahim, Geeta; Jamdar, Sahayog N.

    2016-08-01

    In the present study dry red kidney beans (Phaseolus vulgaris), irradiated in the dose range of 0.25-10.0 kGy were evaluated for proximate composition, functional, sensory and antioxidant properties. Radiation processing up to 10 kGy did not affect proximate composition, hydration capacity and free fatty acid value. All the sensory attributes were unaffected at 1.0 kGy dose. The dose of 10 kGy, showed lower values for odor and taste, however, they were in acceptable range. Significant improvement in textural quality and reduction in cooking time was observed at dose of 10 kGy. Antioxidant activity of radiation processed samples was also assessed after normal processing such as soaking and pressure cooking. Both phenolic content and antioxidant activity evaluated in terms of DPPH free radical scavenging assay and inhibition in lipid peroxidation using rabbit erythrocyte ghost system, were marginally improved (5-10%) at the dose of 10 kGy in dry and cooked samples. During storage of samples for six months, no significant change was observed in sensory, cooking and antioxidant properties. Thus, radiation treatment of 1 kGy can be applied to get extended shelf life of kidney beans with improved functional properties without impairing bioactivity; nutritional quality and sensory property.

  10. The effect of cold ischemia time on delayed graft function and acute rejection in kidney transplantation.

    PubMed

    Sert, Ismail; Colak, Hulya; Tugmen, Cem; Dogan, Sait Murat; Karaca, Cezmi

    2014-09-01

    The objective of this study is to evaluate the impact of cold ischemia time (CIT) on delayed graft function (DGF) and acute rejection (AR) among deceased donor kidney transplant recipients. The medical records of 111 patients who underwent kidney transplantation from deceased donors between November 1994 and July 2009 were retrospectively analyzed. DGF was observed in 54% of the patients and the prevalence of AR in the first year after transplantation was 9.9%. The incidence of DGF was higher among patients with longer CIT. There was no correlation between CIT and AR episodes. Higher body weight of recipients and donors, history of prior blood transfusion and advanced donor age were related with DGF. Patients with DGF had higher serum creatinine levels at the first, third and fifth years. There was a negative correlation between recipient body weight and creatinine clearance at the first year. CIT has an important role in the development of DGF as a modifiable risk factor. Moreover, donors with advanced age and higher body weight as well as recipients with higher body weight and history of blood transfusions are at risk for the development of DGF. Prevention of DGF may help to improve graft function at the first, third and fifth years and shorten the hospital stay.

  11. Duration of chronic kidney disease reduces attention and executive function in pediatric patients

    PubMed Central

    Mendley, Susan R.; Matheson, Matthew; Shinnar, Shlomo; Lande, Marc; Gerson, Arlene C.; Butler, Robert; Warady, Bradley A.; Furth, Susan L.; Hooper, Stephen R.

    2014-01-01

    Chronic kidney disease (CKD) in childhood is associated with neurocognitive deficits. Affected children show worse performance on tests of intelligence than their unaffected siblings and skew toward the lower end of the normal range. Here we further assessed this association in 340 pediatric patients (ages 6 to 21) with mild-moderate CKD in The Chronic Kidney Disease in Childhood cohort from 48 pediatric centers in North America. Participants underwent a battery of age-appropriate tests including Conner’s Continuous Performance Test-II (CPT-II), Delis- Kaplan Executive Function System Tower task, and the Digit Span Backwards task from the age-appropriate Wechsler Intelligence Scale. Test performance was compared across the range of estimated GFR and duration of CKD with relevant covariates including maternal education, household income, IQ, blood pressure and preterm birth. Among the 340 patients, 35% had poor performance (below the mean by1.5 or more standard deviations) on at least one test of executive function. By univariate nonparametric comparison and multiple logistic regression, longer duration of CKD was associated with increased odds ratio for poor performance on the CPT-II Errors of Commission, a test of attention regulation and inhibitory control. Thus, in a population with mild to moderate CKD, the duration of disease rather than estimated GFR was associated with impaired attention regulation and inhibitory control. PMID:25252026

  12. Dietary Energy Density, Renal Function, and Progression of Chronic Kidney Disease

    PubMed Central

    Rouhani, Mohammad Hossein; Najafabadi, Mojgan Mortazavi; Esmaillzadeh, Ahmad; Feizi, Awat

    2016-01-01

    Background. There is evidence of the association between dietary energy density and chronic diseases. However, no report exists regarding the relation between DED and chronic kidney disease (CKD). Objective. To examine the association between dietary energy density (DED), renal function, and progression of chronic kidney disease (CKD). Design. Cross-sectional. Setting. Three nephrology clinics. Subjects. Two hundred twenty-one subjects with diagnosed CKD. Main Outcome Measure. Dietary intake of patients was assessed by a validated food frequency questionnaire. DED (in kcal/g) was calculated with the use of energy content and weight of solid foods and energy yielding beverages. Renal function was measured by blood urea nitrogen (BUN), serum creatinine (Cr), and estimated glomerular filtration rate (eGFR). Results. Patients in the first tertile of DED consumed more amounts of carbohydrate, dietary fiber, potassium, phosphorus, zinc, magnesium, calcium, folate, vitamin C, and vitamin B2. After adjusting for confounders, we could not find any significant trend for BUN and Cr across tertiles of DED. In multivariate model, an increased risk of being in the higher stage of CKD was found among those in the last tertile of DED (OR: 3.15; 95% CI: 1.30, 7.63; P = 0.01). Conclusion. We observed that lower DED was associated with better nutrient intake and lower risk of CKD progression.

  13. Evaluation of factors associated with cadmium exposure and kidney function in the general population.

    PubMed

    Huang, Mingai; Choi, Seong-Jin; Kim, Dong-Won; Kim, Na-Young; Bae, Hye-Sun; Yu, Seung-Do; Kim, Dae-Seon; Kim, Heon; Choi, Byung-Sun; Yu, Il-Je; Park, Jung-Duck

    2013-10-01

    Cadmium (Cd) is a nonessential toxic metal which is widely distributed in the environment. The general population is exposed to low levels of Cd and the kidney is the organ most sensitive to Cd toxicity. This study was performed to simultaneously evaluate Cd exposure, kidney function, and oxidative stress biomarkers in the general population. A total of 643 adults were interviewed to document demographic characteristics, lifestyles, past-medical history, and diet during the last 24 h. We estimated daily Cd intake based on the diet of study subjects who had not been exposed to Cd occupationally. Whole blood and urine samples were collected and analyzed to determine Cd concentrations and kidney function indices (β₂ -microglobulin [β₂-MG], N-acetyl-β-D-glucosaminidase [NAG], metallothionein [MT]). The oxidative stress index (malondialdehyde [MDA]) was determined from the urine. The daily Cd intake from diet was established as 7.07 μg/day. The mean concentration of Cd measured in the blood was 1.22 μg/L and urine was 0.95 μg/g creatinine. The concentrations of Cd in blood and urine were higher in females than in males. The blood levels of Cd were affected by sex, age, and smoking, and urine Cd was influenced by sex, age, and blood Cd. The urine Cd was positively correlated with MT, NAG activity, and MDA in females, but with NAG only in males. The blood Cd was associated with MT in males. Increased NAG activity was observed when Cd in urine reached 1.0 μg Cd/g creatinine and was also affected by age, hypertension, and diabetes mellitus. Urinary MT only responded to Cd in urine or blood. In summary, exposure to Cd in the general population was influenced by various factors including sex, age, and smoking habits. Such exposure might eventually cause tubular damage in the kidneys through the oxidative stress mechanism, and females might be more susceptible than males to Cd exposure under the environment.

  14. Exome Sequencing and Prediction of Long-Term Kidney Allograft Function

    PubMed Central

    Mesnard, Laurent; Muthukumar, Thangamani; Burbach, Maren; Li, Carol; Shang, Huimin; Dadhania, Darshana; Lee, John R.; Xiang, Jenny; Suberbielle, Caroline; Carmagnat, Maryvonnick; Ouali, Nacera; Rondeau, Eric; Abecassis, Michael M.; Suthanthiran, Manikkam

    2016-01-01

    Current strategies to improve graft outcome following kidney transplantation consider information at the human leukocyte antigen (HLA) loci. Cell surface antigens, in addition to HLA, may serve as the stimuli as well as the targets for the anti-allograft immune response and influence long-term graft outcomes. We therefore performed exome sequencing of DNA from kidney graft recipients and their living donors and estimated all possible cell surface antigens mismatches for a given donor/recipient pair by computing the number of amino acid mismatches in trans-membrane proteins. We designated this tally as the allogenomics mismatch score (AMS). We examined the association between the AMS and post-transplant estimated glomerular filtration rate (eGFR) using mixed models, considering transplants from three independent cohorts (a total of 53 donor-recipient pairs, 106 exomes, and 239 eGFR measurements). We found that the AMS has a significant effect on eGFR (mixed model, effect size across the entire range of the score: -19.4 [-37.7, -1.1], P = 0.0042, χ2 = 8.1919, d.f. = 1) that is independent of the HLA-A, B, DR matching, donor age, and time post-transplantation. The AMS effect is consistent across the three independent cohorts studied and similar to the strong effect size of donor age. Taken together, these results show that the AMS, a novel tool to quantify amino acid mismatches in trans-membrane proteins in individual donor/recipient pair, is a strong, robust predictor of long-term graft function in kidney transplant recipients. PMID:27684477

  15. Enhanced Control of In Vivo Bone Formation with Surface Functionalized Alginate Microbeads Incorporating Heparin and Human Bone Morphogenetic Protein-2

    PubMed Central

    Abbah, Sunny Akogwu; Liu, Jing; Goh, James Cho Hong

    2013-01-01

    In this study, we tested the hypothesis that a surface functionalization delivery platform incorporating heparin onto strontium alginate microbeads surfaces would convert this “naive carriers” into “mini-reservoirs” for localized in vivo delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) that will induce functional bone regeneration. In vitro evaluation confirmed that (1) heparin incorporation could immobilize and prolong rhBMP-2 release for approximately 3 weeks; (2) a significant decrease (p<0.01) in rhBMP-2 burst release is attainable depending on initial protein load; and (3) rhBMP-2 released from surface functionalized microbeads retained bioactivity and stimulated higher alkaline phosphatase activity in cultured C2C12 cells when compared with daily administration of fresh bolus rhBMP-2. Subsequently, surface functionalized microbeads were used for in vivo delivery of rhBMP-2 at local sites of posterolateral spinal fusion surgery in rats. The microbeads were loaded into the pores of medical-grade polyepsilone caprolactone-tricalcium phosphate scaffolds before implantation. Results revealed robust bone formation and a biomechanically solid fusion after 6 weeks. When compared with a control group consisting of an equivalent amount of rhBMP-2 that was directly adsorbed onto bare-surfaced microbeads with no heparin, a 5.3-fold increase in bone volume fraction and a 2.6-fold increase in bending stiffness (flexion/extension) were observed. When compared with collagen sponge carriers of rhBMP-2, a 1.5-fold and a 1.3-fold increase in bone volume fraction and bending stiffness were observed, respectively. More importantly, 3D micro-computed tomography images enabled the visualization of a well-contained newly formed bone at ipsilateral implant sites with surface functionalized rhBMP-2 delivery. This was absent with collagen sponge carriers where newly formed bone tissue was poorly contained and crossed over the posterior midline to

  16. Enhanced control of in vivo bone formation with surface functionalized alginate microbeads incorporating heparin and human bone morphogenetic protein-2.

    PubMed

    Abbah, Sunny Akogwu; Liu, Jing; Goh, James Cho Hong; Wong, Hee-Kit

    2013-02-01

    In this study, we tested the hypothesis that a surface functionalization delivery platform incorporating heparin onto strontium alginate microbeads surfaces would convert this "naive carriers" into "mini-reservoirs" for localized in vivo delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) that will induce functional bone regeneration. In vitro evaluation confirmed that (1) heparin incorporation could immobilize and prolong rhBMP-2 release for approximately 3 weeks; (2) a significant decrease (p<0.01) in rhBMP-2 burst release is attainable depending on initial protein load; and (3) rhBMP-2 released from surface functionalized microbeads retained bioactivity and stimulated higher alkaline phosphatase activity in cultured C(2)C(12) cells when compared with daily administration of fresh bolus rhBMP-2. Subsequently, surface functionalized microbeads were used for in vivo delivery of rhBMP-2 at local sites of posterolateral spinal fusion surgery in rats. The microbeads were loaded into the pores of medical-grade polyepsilone caprolactone-tricalcium phosphate scaffolds before implantation. Results revealed robust bone formation and a biomechanically solid fusion after 6 weeks. When compared with a control group consisting of an equivalent amount of rhBMP-2 that was directly adsorbed onto bare-surfaced microbeads with no heparin, a 5.3-fold increase in bone volume fraction and a 2.6-fold increase in bending stiffness (flexion/extension) were observed. When compared with collagen sponge carriers of rhBMP-2, a 1.5-fold and a 1.3-fold increase in bone volume fraction and bending stiffness were observed, respectively. More importantly, 3D micro-computed tomography images enabled the visualization of a well-contained newly formed bone at ipsilateral implant sites with surface functionalized rhBMP-2 delivery. This was absent with collagen sponge carriers where newly formed bone tissue was poorly contained and crossed over the posterior midline to contralateral

  17. Hemorrhage Exacerbates Radiation Effects on Survival, Leukocytopenia, Thrombopenia, Erythropenia, Bone Marrow Cell Depletion and Hematopoiesis, and Inflammation-Associated microRNAs Expression in Kidney.

    PubMed

    Kiang, Juliann G; Smith, Joan T; Anderson, Marsha N; Swift, Joshua M; Christensen, Christine L; Gupta, Paridhi; Balakathiresan, Nagaraja; Maheshwari, Radha K

    2015-01-01

    Exposure to high-dose radiation results in detrimental effects on survival. The effects of combined trauma, such as radiation in combination with hemorrhage, the typical injury of victims exposed to a radiation blast, on survival and hematopoietic effects have yet to be understood. The purpose of this study was to evaluate the effects of radiation injury (RI) combined with hemorrhage (i.e., combined injury, CI) on survival and hematopoietic effects, and to investigate whether hemorrhage (Hemo) enhanced RI-induced mortality and hematopoietic syndrome. Male CD2F1 mice (10 weeks old) were given one single exposure of γ- radiation (60Co) at various doses (0.6 Gy/min). Within 2 hr after RI, animals under anesthesia were bled 0% (Sham) or 20% (Hemo) of total blood volume via the submandibular vein. In these mice, Hemo reduced the LD50/30 for 30-day survival from 9.1 Gy (RI) to 8.75 Gy (CI) with a DMF of 1.046. RI resulted in leukocytopenia, thrombopenia, erythropenia, and bone marrow cell depletion, but decreased the caspase-3 activation response. RI increased IL-1β, IL-6, IL-17A, and TNF-α concentrations in serum, bone marrow, ileum, spleen, and kidney. Some of these adverse alterations were magnified by CI. Erythropoietin production was increased in kidney and blood more after CI than RI. Furthermore, CI altered the global miRNAs expression in kidney and the ingenuity pathway analysis showed that miRNAs viz., let-7e, miR-30e and miR-29b that were associated with hematopoiesis and inflammation. This study provides preliminary evidence that non-lethal Hemo exacerbates RI-induced mortality and cell losses associated with high-dose γ-radiation. We identified some of the initial changes occurring due to CI which may have facilitated in worsening the injury and hampering the recovery of animals ultimately resulting in higher mortality. PMID:26422254

  18. Hemorrhage Exacerbates Radiation Effects on Survival, Leukocytopenia, Thrombopenia, Erythropenia, Bone Marrow Cell Depletion and Hematopoiesis, and Inflammation-Associated microRNAs Expression in Kidney

    PubMed Central

    Kiang, Juliann G.; Smith, Joan T.; Anderson, Marsha N.; Swift, Joshua M.; Christensen, Christine L.; Gupta, Paridhi; Balakathiresan, Nagaraja; Maheshwari, Radha K.

    2015-01-01

    Exposure to high-dose radiation results in detrimental effects on survival. The effects of combined trauma, such as radiation in combination with hemorrhage, the typical injury of victims exposed to a radiation blast, on survival and hematopoietic effects have yet to be understood. The purpose of this study was to evaluate the effects of radiation injury (RI) combined with hemorrhage (i.e., combined injury, CI) on survival and hematopoietic effects, and to investigate whether hemorrhage (Hemo) enhanced RI-induced mortality and hematopoietic syndrome. Male CD2F1 mice (10 weeks old) were given one single exposure of γ- radiation (60Co) at various doses (0.6 Gy/min). Within 2 hr after RI, animals under anesthesia were bled 0% (Sham) or 20% (Hemo) of total blood volume via the submandibular vein. In these mice, Hemo reduced the LD50/30 for 30-day survival from 9.1 Gy (RI) to 8.75 Gy (CI) with a DMF of 1.046. RI resulted in leukocytopenia, thrombopenia, erythropenia, and bone marrow cell depletion, but decreased the caspase-3 activation response. RI increased IL-1β, IL-6, IL-17A, and TNF-α concentrations in serum, bone marrow, ileum, spleen, and kidney. Some of these adverse alterations were magnified by CI. Erythropoietin production was increased in kidney and blood more after CI than RI. Furthermore, CI altered the global miRNAs expression in kidney and the ingenuity pathway analysis showed that miRNAs viz., let-7e, miR-30e and miR-29b that were associated with hematopoiesis and inflammation. This study provides preliminary evidence that non-lethal Hemo exacerbates RI-induced mortality and cell losses associated with high-dose γ-radiation. We identified some of the initial changes occurring due to CI which may have facilitated in worsening the injury and hampering the recovery of animals ultimately resulting in higher mortality. PMID:26422254

  19. Aerobic training during hemodialysis improves body composition, muscle function, physical performance, and quality of life in chronic kidney disease patients

    PubMed Central

    Bae, Young-Hyeon; Lee, Suk Min; Jo, Jong Il

    2015-01-01

    [Purpose] We assessed the influences of individualized aerobic training on body composition, knee joint muscle function, physical performance, and quality of life in chronic kidney disease patients. [Subjects] Ten chronic kidney disease patients undergoing dialysis. [Methods] Overall physical function and quality of life before and after 12 weeks of aerobic training were evaluated by body composition, the six-minute walk test, cardiopulmonary exercise tests, and Short Form 36-item questionnaire. [Results] The six-minute walk test distance increased significantly after 12 weeks aerobic training. Resting metabolic rate, lactate threshold, maximum oxygen uptake, and quality of life tended to increase after training. Post-training weight, muscle mass, body fat mass, fat percentage, body mass index, and peak torque of right and left knee extension and flexion did not change significantly. [Conclusion] Intra-dialytic training can a safe approach to maintain or improve physical performance and quality of life of chronic kidney disease patients undergoing hemodialysis without adverse events or negative cardiovascular responses. Aerobic training may prevent a decline in body composition and knee joint muscle function due to inactivity in chronic kidney disease patients. Clinically, aerobic training may initially be adapted to maintain overall physical function or improve quality of life in chronic kidney disease patients undergoing hemodialysis. PMID:26157237

  20. Men and Women in Space: Bone Loss and Kidney Stone Risk after Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Zwart, Sara R.; Heer, Martina; Hudson, Edgar, K.; Shackelford, Linda; Morgan, Jennifer L. L.

    2014-01-01

    Bone loss on Earth is more prevalent in women than men, leading to the assumption that women may be at greater risk from bone loss during flight. Until recently, the number of women having flown long-duration missions was too small to allow any type of statistical analysis. We report here data from 42 astronauts on long-duration missions to the International Space Station, 33 men and 9 women. Bone mineral density (dual-energy X-ray absorptiometry), bone biochemistry (from blood and urine samples), and renal stone risk factors were evaluated before and after flight. Data were analyzed in two groups, based on available resistance exercise equipment. The response of bone mineral density to flight was the same for men and women, and the typical decrease in bone mineral density (whole body and/or regional) after flight was not observed for either sex for those using an Advanced Resistive Exercise Device. Bone biochemistry, specifically markers of formation and resorption, generally responded similarly in male and female astronauts. The response of urinary supersaturation risk to space flight was not significantly different between men and women, although risks were typically increased after flight in both groups and risks were generally greater in men than in women before and after flight. Overall, the bone and renal stone responses of men and women to space flight were not different.

  1. Technetium-99m dimercaptosuccinic acid uptake in long-term catheterized kidney. Comparison with renal function

    SciTech Connect

    Higashihara, E.; Tokuda, H.; Kishi, H.; Niijima, T.; Okada, Y.; Nishikawa, J.; Iio, M.

    1988-04-01

    We studied 23 long-term catheterized kidneys in 14 patients. The uptake of /sup 99m/Tc acid (/sup 99m/Tc-DMSA) was measured at one- and two-hour intervals after injection, and the uptake was corrected for variations in renal depth. These values were compared with inulin, creatinine, and para-amino hippurate (PAH) clearances which were measured in each kidney by collecting urine through long-term catheterization. Correlation coefficient was obtained between PAH clearance corrected for the body surface area and the two-hour uptake of /sup 99m/Tc-DMSA. The correlation coefficients between the two-hour uptake of /sup 99m/Tc-DMSA and the clearance values are not significantly different from those between the one-hour uptake and the clearance values. Corrections of the uptake for variations in renal depth did not improve the correlation coefficients. The results show that /sup 99m/Tc-DMSA is an excellent method to estimate the renal plasma flow and the one-hour uptake without correction for renal depth is clinically sufficient to evaluate the split renal function.

  2. Optical spectroscopy approach for the predictive assessment of kidney functional recovery following ischemic injury

    NASA Astrophysics Data System (ADS)

    Raman, Rajesh N.; Pivetti, Christopher D.; Rubenchik, Alexander M.; Matthews, Dennis L.; Troppmann, Christoph; Demos, Stavros G.

    2010-02-01

    Tissue that has undergone significant yet unknown amount of ischemic injury is frequently encountered in organ transplantation and trauma clinics. With no reliable real-time method of assessing the degree of injury incurred in tissue, surgeons generally rely on visual observation which is subjective. In this work, we investigate the use of optical spectroscopy methods as a potentially more reliable approach. Previous work by various groups was strongly suggestive that tissue autofluorescence from NADH obtained under UV excitation is sensitive to metabolic response changes. To test and expand upon this concept, we monitored autofluorescence and light scattering intensities of injured vs. uninjured rat kidneys via multimodal imaging under 355 nm, 325 nm, and 266 nm excitation as well as scattering under 500 nm illumination. 355 nm excitation was used to probe mainly NADH, a metabolite, while 266 nm excitation was used to probe mainly tryptophan to correct for non-metabolic signal artifacts. The ratio of autofluorescence intensities derived under these two excitation wavelengths was calculated and its temporal profile was fit to a relaxation model. Time constants were extracted, and longer time constants were associated with kidney dysfunction. Analysis of both the autofluorescence and light scattering images suggests that changes in microstructure tissue morphology, blood absorption spectral characteristics, and pH contribute to the behavior of the observed signal which may be used to obtain tissue functional information and offer predictive capability.

  3. Antigravity suit inflation: kidney function and cardiovascular and hormonal responses in men.

    PubMed

    Geelen, G; Kravik, S E; Hadj-Aissa, A; Leftheriotis, G; Vincent, M; Bizollon, C A; Sem-Jacobsen, C W; Greenleaf, J E; Gharib, C

    1989-02-01

    To investigate the effects of lower body positive pressure (LBPP) on kidney function while controlling certain cardiovascular and endocrine responses, seven men [35 +/- 2 (SE) yr] underwent 30 min of sitting and then 4.5 h of 70 degrees head-up tilt. An antigravity suit was applied (60 Torr legs, 30 Torr abdomen) during the last 3 h of tilt. A similar noninflation experiment was conducted where the suited subjects were tilted for 3.5 h. To provide adequate urine flow, the subjects were hydrated during the course of both experiments. Immediately after inflation, mean arterial pressure increased by 8 +/- 3 Torr and pulse rate decreased by 16 +/- 3 beats/min. Plasma renin activity and aldosterone were maximally suppressed (P less than 0.05) after 2.5 h of inflation. Plasma vasopressin decreased by 40-50% (P less than 0.05) and plasma sodium and potassium remained unchanged during both experiments. Glomerular filtration rate was not increased significantly by inflation, whereas inflation induced marked increases (P less than 0.05) in effective renal plasma flow (ERPF), urine flow, osmolar and free water clearances, and total and fractional sodium excretion. No such changes occurred during control. Thus, LBPP induces 1) a significant increase in ERPF and 2) significant changes in kidney excretory patterns similar to those observed during water immersion or the early phase of bed rest, situations that also result in central vascular volume expansion.

  4. Optical Spectroscopy Approach for the Predictive Assessment of Kidney Functional Recovery Following Ischemic Injury

    SciTech Connect

    Raman, R N; Pivetti, C D; Rubenchik, A M; Matthews, D L; Troppmann, C; Demos, S G

    2010-02-11

    Tissue that has undergone significant yet unknown amount of ischemic injury is frequently encountered in organ transplantation and trauma clinics. With no reliable real-time method of assessing the degree of injury incurred in tissue, surgeons generally rely on visual observation which is subjective. In this work, we investigate the use of optical spectroscopy methods as a potentially more reliable approach. Previous work by various groups was strongly suggestive that tissue autofluorescence from NADH obtained under UV excitation is sensitive to metabolic response changes. To test and expand upon this concept, we monitored autofluorescence and light scattering intensities of injured vs. uninjured rat kidneys via multimodal imaging under 355 nm, 325 nm, and 266 nm excitation as well as scattering under 500 nm illumination. 355 nm excitation was used to probe mainly NADH, a metabolite, while 266 nm excitation was used to probe mainly tryptophan to correct for non-metabolic signal artifacts. The ratio of autofluorescence intensities derived under these two excitation wavelengths was calculated and its temporal profile was fit to a relaxation model. Time constants were extracted, and longer time constants were associated with kidney dysfunction. Analysis of both the autofluorescence and light scattering images suggests that changes in microstructure tissue morphology, blood absorption spectral characteristics, and pH contribute to the behavior of the observed signal which may be used to obtain tissue functional information and offer predictive capability.

  5. Beyond the functional matrix hypothesis: a network null model of human skull growth for the formation of bone articulations.

    PubMed

    Esteve-Altava, Borja; Rasskin-Gutman, Diego

    2014-09-01

    Craniofacial sutures and synchondroses form the boundaries among bones in the human skull, providing functional, developmental and evolutionary information. Bone articulations in the skull arise due to interactions between genetic regulatory mechanisms and epigenetic factors such as functional matrices (soft tissues and cranial cavities), which mediate bone growth. These matrices are largely acknowledged for their influence on shaping the bones of the skull; however, it is not fully understood to what extent functional matrices mediate the formation of bone articulations. Aiming to identify whether or not functional matrices are key developmental factors guiding the formation of bone articulations, we have built a network null model of the skull that simulates unconstrained bone growth. This null model predicts bone articulations that arise due to a process of bone growth that is uniform in rate, direction and timing. By comparing predicted articulations with the actual bone articulations of the human skull, we have identified which boundaries specifically need the presence of functional matrices for their formation. We show that functional matrices are necessary to connect facial bones, whereas an unconstrained bone growth is sufficient to connect non-facial bones. This finding challenges the role of the brain in the formation of boundaries between bones in the braincase without neglecting its effect on skull shape. Ultimately, our null model suggests where to look for modified developmental mechanisms promoting changes in bone growth patterns that could affect the development and evolution of the head skeleton.

  6. Beyond the functional matrix hypothesis: a network null model of human skull growth for the formation of bone articulations

    PubMed Central

    Esteve-Altava, Borja; Rasskin-Gutman, Diego

    2014-01-01

    Craniofacial sutures and synchondroses form the boundaries among bones in the human skull, providing functional, developmental and evolutionary information. Bone articulations in the skull arise due to interactions between genetic regulatory mechanisms and epigenetic factors such as functional matrices (soft tissues and cranial cavities), which mediate bone growth. These matrices are largely acknowledged for their influence on shaping the bones of the skull; however, it is not fully understood to what extent functional matrices mediate the formation of bone articulations. Aiming to identify whether or not functional matrices are key developmental factors guiding the formation of bone articulations, we have built a network null model of the skull that simulates unconstrained bone growth. This null model predicts bone articulations that arise due to a process of bone growth that is uniform in rate, direction and timing. By comparing predicted articulations with the actual bone articulations of the human skull, we have identified which boundaries specifically need the presence of functional matrices for their formation. We show that functional matrices are necessary to connect facial bones, whereas an unconstrained bone growth is sufficient to connect non-facial bones. This finding challenges the role of the brain in the formation of boundaries between bones in the braincase without neglecting its effect on skull shape. Ultimately, our null model suggests where to look for modified developmental mechanisms promoting changes in bone growth patterns that could affect the development and evolution of the head skeleton. PMID:24975579

  7. Effect of saline adaptation and renal portal sodium infusion on glomerular size distributions and kidney function in domestic fowl.

    PubMed

    Wideman, R F; Satnick, J L; Mitsos, W J; Bennett, K R; Smith, S R

    1987-02-01

    Experiments were designed to evaluate acute and chronic effects of sodium on glomerular size distributions and kidney function of Single Comb White Leghorns. Chicks were raised on either tap water (control) or .6% NaCl (saline) drinking water. Kidney function studies were conducted when the birds reached 14 to 16 weeks of age. Saline-adapted birds had significantly lower glomerular filtration rates and significantly higher sodium and potassium excretion rates when compared with birds raised on tap water. Acute effects of sodium on kidney function were assessed by infusing 25 mM tetrasodium pyrophosphate unilaterally into the renal portal system. For birds raised on tap water, unilateral sodium infusion caused a significant unilateral reduction in the glomerular filtration rate. However, neither the acute nor the chronic reductions in glomerular filtration rates in response to sodium were associated with a reduction in the number of filtering nephrons. Saline-adapted birds had significantly hypertrophied glomeruli.

  8. [Bone and Nutrition. A novel function of phosphorus].

    PubMed

    Taketani, Yutaka; Imi, Yukiko; Abuduli, Maerjianghan

    2015-07-01

    Phosphorus is an essential nutrient for bone formation by forming hydroxyapatite with calcium. Simultaneously, phosphorus is also a component of high energy bond of ATP, nucleic acids, and phospholipids. Recent studies have demonstrated that excess or lack of dietary phosphorus intake may cause vascular dysfunction, cardiac hypertrophy, and impaired glucose tolerance. Here, we introduce recent findings about the effects of high or low dietary phosphorus intake on several organs except for bone.

  9. Nitric oxide synthesis in the kidney: isoforms, biosynthesis, and functions in health.

    PubMed

    Kone, Bruce C

    2004-07-01

    Nitric oxide (NO) is a gaseous free radical that serves cell signaling, cellular energetics, host defense, and inflammatory functions in virtually all cells. In the kidney and vasculature, NO plays fundamental roles in the control of systemic and intrarenal hemodynamics, the tubuloglomerular feedback response, pressure natriuresis, release of sympathetic neurotransmitters and renin, and tubular solute and water transport. NO is synthesized from L-arginine by NO synthases (NOS). Because of its high chemical reactivity and high diffusibility, NO production by each of the 3 major NOS isoforms is regulated tightly at multiple levels from gene transcription to spatial proximity near intended targets to covalent modification and allosteric regulation of the enzyme itself. Many of these regulatory mechanisms have yet to be tested in renal cells. The NOS isoforms are distributed differentially and regulated in the kidney, and there remains some controversy over the specific expression of functional protein for the NOS isoforms in specific renal cell populations. Mice with targeted deletion of each of the NOS isoforms have been generated, and these each have unique phenotypes. Studies of the renal and vascular phenotypes of these mice have yielded important insights into certain vascular diseases, ischemic acute renal failure, the tubuloglomerular feedback response, and some mechanisms of tubular fluid and electrolyte transport, but thus far have been underexploited. This review explores the collective knowledge regarding the structure, regulation, and function of the NOS isoforms gleaned from various tissues, and highlights the progress and gaps in understanding in applying this information to renal and vascular physiology. PMID:15252770

  10. Studies of lipid profile, liver function and kidney function parameters of rat plasma after chronic administration of "Sulavajrini Vatika".

    PubMed

    Kundu, N Krishna; Ullah, M Obayed; Hamid, Kaiser; Urmi, Kaniz Fatima; Bulbul, Israt Jahan; Khan, Muhammad Atikul Islam; Akter, Momita; Choudhuri, M S K

    2012-07-15

    The successful use of Ayurvedic medicines is for many years but there is no guideline for studying the toxicity of these preparations through preclinical or clinical investigations. The present study was conducted to evaluate the effect of conventionally prepared Sulavajrini Vatika (SBB), an Ayurvedic formulation on various biochemical parameters of experimental animals after chronic administration. The animal used was albino rats (Rattus norvegicus: Sprague-Dawley strain) and SBB was administered orally at a single dose of 100 mg kg(-1) b.wt. day(-1), up to 62 days. During the study, forty rats, equally of both sexes, were randomly grouped into four where one male and one female group were used as control and other groups were used as test. Among the lipid components, Triglyceride (TG) was decreased very high significantly in both sexes of animal. The decrease of Total Cholesterol (TC), Very Low Density Lipoprotein (VLDL) and high-density lipoprotein (HDL) were also highly significant. Low Density Lipoprotein (LDL) decreased in all SBB treated group. In the liver function parameters, the total protein and albumin content were increased very high significantly in both sexes of rat. But the bilirubin was decreased insignificantly in male and female rats. Serum Glutamic Pyruvic Transaminase (GPT), Glutamic Oxaloacetic Transaminase (GOT) and Alkaline Phosphatase (ALP) were decreased in all treated animals and it was very high significant. In case of kidney function parameters, creatinine was increased very high significantly but the urea was decreased very high significantly in both sexes of rat. The decrease in uric acid was not significant in none of the sexes of rat. The present study confirms that SBB can be contributory for the complications in diabetics with hyperlipidemia and nephropathy as it lowers most of the lipids components and improves liver function and kidney function parameters.

  11. Effects of acute and chronic hypohydration on kidney health and function.

    PubMed

    Feehally, John; Khosravi, Maryam

    2015-09-01

    The kidneys play a critical role in the homeostasis of body fluid tonicity and effective circulating volume. Renal homeostatic mechanisms are frequently challenged in acutely ill people. Fluid depletion causing hypovolemia may result in renal hypoperfusion that, if left untreated, may lead to acute kidney failure. Some populations, notably older people and neonates, are less tolerant of extremes in fluid loading and deprivation, similar to those with established chronic kidney disease. Risk of kidney injury during fluid depletion is increased by medications including diuretics, nonsteroidal antiinflammatory drugs, and renin-angiotensin system blockers. There is no consistent evidence indicating that lower-than-average fluid intake can cause chronic kidney disease, nor accelerate progression of established kidney disease. Increasing consumption of sugar-containing beverages is, however, a major concern for kidney health as a precursor of obesity and diabetes. There is no evidence that high dietary protein intake can cause chronic kidney disease, nor accelerate progression of established kidney disease. Idiosyncratic, adverse renal responses have been described with creatine supplements. There are only a few clinical conditions for which high fluid intake should be considered. These include recurrent kidney stones or urinary tract infections and, possibly, polycystic kidney disease. PMID:26290296

  12. Effects of acute and chronic hypohydration on kidney health and function.

    PubMed

    Feehally, John; Khosravi, Maryam

    2015-09-01

    The kidneys play a critical role in the homeostasis of body fluid tonicity and effective circulating volume. Renal homeostatic mechanisms are frequently challenged in acutely ill people. Fluid depletion causing hypovolemia may result in renal hypoperfusion that, if left untreated, may lead to acute kidney failure. Some populations, notably older people and neonates, are less tolerant of extremes in fluid loading and deprivation, similar to those with established chronic kidney disease. Risk of kidney injury during fluid depletion is increased by medications including diuretics, nonsteroidal antiinflammatory drugs, and renin-angiotensin system blockers. There is no consistent evidence indicating that lower-than-average fluid intake can cause chronic kidney disease, nor accelerate progression of established kidney disease. Increasing consumption of sugar-containing beverages is, however, a major concern for kidney health as a precursor of obesity and diabetes. There is no evidence that high dietary protein intake can cause chronic kidney disease, nor accelerate progression of established kidney disease. Idiosyncratic, adverse renal responses have been described with creatine supplements. There are only a few clinical conditions for which high fluid intake should be considered. These include recurrent kidney stones or urinary tract infections and, possibly, polycystic kidney disease.

  13. Structure based classification of μ-CT images of human trabecular bone using local Minkowski Functionals

    NASA Astrophysics Data System (ADS)

    Monetti, Roberto A.; Bauer, Jan; Sidorenko, Irina; Müller, Dirk; Rummeny, Ernst; Matsuura, Maiko; Eckstein, Felix; Lochmueller, Eva-Maria; Zysset, Philippe; Räth, Christoph

    2011-03-01

    We analyse μ-CT tomographic images of human trabecular bone in vitro. We consider a sample consisting of 201 bone specimens harvested from six different skeletal sites within a narrow range of bone fraction values. Using the characterization of the trabecular bone network given by local Minkowski Functionals, we apply classification algorithms in order to reveal structural similarities in the sample. Clusters show some interesting specific structural features, like compact, porous, and fragmented structures. The contribution of the different skeletal sites to these clusters indicate some variability due to intrinsic structural differences of the specific skeletal site.

  14. Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer

    PubMed Central

    Sawant, Anandi; Deshane, Jessy; Jules, Joel; Lee, Carnella M.; Harris, Brittney A.; Feng, Xu; Ponnazhagan, Selvarangan

    2012-01-01

    Enhanced bone destruction is a hallmark of various carcinomas such as breast cancer, where osteolytic bone metastasis is associated with increased morbidity and mortality. Immune cells contribute to osteolysis in cancer growth but the factors contributing to aggressive bone destruction are not well understood. In this study, we demonstrate the importance of myeloid-derived suppressor cells (MDSC) in this process at bone metastatic sites. Since MDSC originate from the same myeloid lineage as macrophages, which are osteoclast precursors, we hypothesized that MDSC may undergo osteoclast differentiation and contribute to enhanced bone destruction and tumor growth. Using an immunocompetent mouse model of breast cancer bone metastasis, we confirmed that MDSC isolated from the tumor-bone microenvironment differentiated into functional osteoclasts both in vitro and in vivo. Mechanistic investigations revealed that nitric oxide signaling was critical for differentiation of MDSC into osteoclasts. Remarkably, osteoclast differentiation did not occur in MDSC isolated from control or tumor-bearing mice that lacked bone metastasis, signifying the essential cross-talk between tumor cells and myeloid progenitors in the bone microenvironment as a requirement for osteoclast differentiation of MDSC. Overall, our results identify a wholly new facet to the multifunctionality of MDSC in driving tumor progression, in this case as a novel osteoclast progenitor that specifically drives bone metastasis during cancer progression. PMID:23243021

  15. Identification of human nephron progenitors capable of generation of kidney structures and functional repair of chronic renal disease

    PubMed Central

    Harari-Steinberg, Orit; Metsuyanim, Sally; Omer, Dorit; Gnatek, Yehudit; Gershon, Rotem; Pri-Chen, Sara; Ozdemir, Derya D; Lerenthal, Yaniv; Noiman, Tzahi; Ben-Hur, Herzel; Vaknin, Zvi; Schneider, David F; Aronow, Bruce J; Goldstein, Ronald S; Hohenstein, Peter; Dekel, Benjamin

    2013-01-01

    Identification of tissue-specific renal stem/progenitor cells with nephrogenic potential is a critical step in developing cell-based therapies for renal disease. In the human kidney, stem/progenitor cells are induced into the nephrogenic pathway to form nephrons until the 34 week of gestation, and no equivalent cell types can be traced in the adult kidney. Human nephron progenitor cells (hNPCs) have yet to be isolated. Here we show that growth of human foetal kidneys in serum-free defined conditions and prospective isolation of NCAM1+ cells selects for nephron lineage that includes the SIX2-positive cap mesenchyme cells identifying a mitotically active population with in vitro clonogenic and stem/progenitor properties. After transplantation in the chick embryo, these cells—but not differentiated counterparts—efficiently formed various nephron tubule types. hNPCs engrafted and integrated in diseased murine kidneys and treatment of renal failure in the 5/6 nephrectomy kidney injury model had beneficial effects on renal function halting disease progression. These findings constitute the first definition of an intrinsic nephron precursor population, with major potential for cell-based therapeutic strategies and modelling of kidney disease. PMID:23996934

  16. Glutathione S-transferase iso-enzymes in perfusate from pumped kidneys are associated with delayed graft function.

    PubMed

    Hall, I E; Bhangoo, R S; Reese, P P; Doshi, M D; Weng, F L; Hong, K; Lin, H; Han, G; Hasz, R D; Goldstein, M J; Schröppel, B; Parikh, C R

    2014-04-01

    Accurate and reliable assessment tools are needed in transplantation. The objective of this prospective, multi-center study was to determine the associations of the alpha and pi iso-enzymes of glutathione S-transferase (GST), measured from perfusate solution at the start and end (base and post) of kidney allograft machine perfusion, with subsequent delayed graft function (DGF). We also compared GST iso-enzyme perfusate levels from discarded versus transplanted kidneys. A total of 428 kidneys were linked to outcomes as recorded by the United Network of Organ Sharing. DGF, defined as any dialysis in the first week of transplant, occurred in 141 recipients (32%). Alpha- and pi-GST levels significantly increased during machine perfusion. The adjusted relative risks (95% confidence interval) of DGF with each log-unit increase in base and post pi-GST were 1.14 (1.0-1.3) and 1.36 (1.1-1.8), respectively. Alpha-GST was not independently associated with DGF. There were no significant differences in GST values between discarded and transplanted kidneys, though renal resistance was significantly higher in discarded kidneys. We found pi-GST at the end of machine perfusion to be independently associated with DGF. Further studies should elucidate the utility of GST for identifying injured kidneys with regard to organ allocation, discard and recipient management decisions.

  17. New insights into potential functions for the protein 4.1superfamily of proteins in kidney epithelium

    SciTech Connect

    Calinisan, Venice; Gravem, Dana; Chen, Ray Ping-Hsu; Brittin,Sachi; Mohandas, Narla; Lecomte, Marie-Christine; Gascard, Philippe

    2005-06-17

    Members of the protein 4.1 family of adapter proteins are expressed in a broad panel of tissues including various epithelia where they likely play an important role in maintenance of cell architecture and polarity and in control of cell proliferation. We have recently characterized the structure and distribution of three members of the protein 4.1 family, 4.1B, 4.1R and 4.1N, in mouse kidney. We describe here binding partners for renal 4.1 proteins, identified through the screening of a rat kidney yeast two-hybrid system cDNA library. The identification of putative protein 4.1-based complexes enables us to envision potential functions for 4.1 proteins in kidney: organization of signaling complexes, response to osmotic stress, protein trafficking, and control of cell proliferation. We discuss the relevance of these protein 4.1-based interactions in kidney physio-pathology in the context of their previously identified functions in other cells and tissues. Specifically, we will focus on renal 4.1 protein interactions with beta amyloid precursor protein (beta-APP), 14-3-3 proteins, and the cell swelling-activated chloride channel pICln. We also discuss the functional relevance of another member of the protein 4.1 superfamily, ezrin, in kidney physiopathology.

  18. Par3A is dispensable for the function of the glomerular filtration barrier of the kidney.

    PubMed

    Koehler, Sybille; Tellkamp, Frederik; Niessen, Carien M; Bloch, Wilhelm; Kerjaschki, Dontscho; Schermer, Bernhard; Benzing, Thomas; Brinkkoetter, Paul T

    2016-07-01

    Polarity signaling through the atypical PKC (aPKC)-Par polarity complex is essential for the development and maintenance of the podocyte architecture and the function of the glomerular filtration barrier of the kidney. To study the contribution of Par3A in this complex, we generated a novel Pard3 podocyte-specific knockout mouse model by targeting exon 6 of the Pard3 gene. Genetic deletion of Pard3a did not impair renal function, neither at birth nor later in life. Even challenging the animals did not result in glomerular disease. Despite its well-established role in aPKC-mediated signaling, Par3A appears to be dispensable for the function of the glomerular filtration barrier. Moreover, its homolog Pard3b, and not Pard3a, is the dominant Par3 gene expressed in podocytes and found at the basis of the slit diaphragm, where it partially colocalizes with podocin. In conclusion, Par3A function is either dispensable for slit diaphragm integrity, or compensatory mechanisms and a high redundancy of the different polarity proteins, including Par3B, Lgl, or PALS1, maintain the function of the glomerular filtration barrier, even in the absence of Par3A.

  19. Acute deterioration of renal function induced by star fruit ingestion in a patient with chronic kidney disease.

    PubMed

    Niticharoenpong, Kannika; Chalermsanyakorn, Panas; Panvichian, Ravat; Kitiyakara, Chagriya

    2006-01-01

    Star fruit (carambola) is a popular tropical fruit, usually consumed as fresh fruit or as fruit juice. In patients on dialysis, consumption of star fruits can lead to alterations of consciousness. In this case report, we describe a patient with underlying chronic kidney disease, who developed a rapid increase in serum creatinine and oxalate nephropathy after chronic ingestion of star fruit juice without overt neurotoxicity. The decline in renal function was not fully reversible after stoppage. This case demonstrates that star fruit consumption should be considered as a cause of rapid deterioration in renal function in patients with underlying chronic kidney disease that may result in permanent renal injury.

  20. Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice

    PubMed Central

    Zhou, Xin; Zhang, Zhaoping; Feng, Jian Q.; Dusevich, Vladmir M.; Sinha, Krishna; Zhang, Hua; Darnay, Bryant G.; de Crombrugghe, Benoit

    2010-01-01

    The transcription factor Osterix (Osx) is required for osteoblast differentiation and bone formation during embryonic development, but it is not known whether Osx has an essential function in postnatal bone growth and in bone homeostasis. Conditional deletion of Osx at several time points postnatally revealed that Osx was essential for osteoblast differentiation and new bone formation in growing and adult bones. Additionally, inactivation of Osx in bones severely disrupted the maturation, morphology, and function of osteocytes. These findings identify Osx as having an essential role in the cell-specific genetic program of osteocytes. Interestingly, Osx inactivation also led to the massive accumulation of unresorbed calcified cartilage in a large area below the growth plate of endochondral bones. This specific area was also marked by an unanticipated almost complete lack of bone marrow cells and a marked decrease in the density and size of osteoclasts. This diminished density of osteoclasts could contribute to the lack of resorption of mineralized cartilage. In addition, we speculate that the abnormally accumulated, mainly naked cartilage represents an unfavorable substrate for osteoclasts. Our study identifies Osx as an essential multifunctional player in postnatal bone growth and homeostasis. PMID:20615976

  1. The effects of the recommended dose of creatine monohydrate on kidney function.

    PubMed

    Taner, Basturk; Aysim, Ozagari; Abdulkadir, Unsal

    2011-02-01

    We report a case of a heretofore healthy 18-year-old man who presented with a 2-day history of nausea, vomiting and stomach ache while taking creatine monohydrate for bodybuilding purposes. The patient had acute renal failure, and a renal biopsy was performed to determine the cause of increased creatinine and proteinuria. The biopsy showed acute tubular necrosis. In the literature, creatine monohydrate supplementation and acute tubular necrosis coexistence had not been reported previously. Twenty-five days after stopping the creatine supplements, the patient recovered fully. Even recommended doses of creatine monohydrate supplementation may cause kidney damage; therefore, anybody using this supplement should be warned about this possible side effect, and their renal functions should be monitored regularly.

  2. Dynamic nuclear renography kinetic analysis: Four-compartment model for assessing kidney function

    SciTech Connect

    Raswan, T. R. Haryanto, F.

    2014-09-30

    Dynamic nuclear renography method produces TACs of kidneys and bladder. Multiple TACs data can be further analyzed to obtain the overview of urinary system's condition. Tracer kinetic analysis was performed using four-compartment models. The system's model consist of four irreversible compartment with four transport constants (k1, k2, k3 and k4). The mathematical expressions of tracer's distributions is fitted to experimental data (TACs) resulting in model constants. This transport constants represent the urinary system behavior, and later can be used for analyzing system's condition. Different intervals of kinetics parameter are clearly shown by abnormal system with respect to the normal one. Furthermore, the system with delayed uptake has 82% lower uptake parameters (k1 and k2) than normal one. Meanwhile, the system with prolonged clearance time has its kinetics parameters k3 or k4 lower than the others. This model is promising for quantitatively describe urinary system's function especially if supplied with more data.

  3. Efficacy and safety of lanthanum carbonate on chronic kidney disease–mineral and bone disorder in dialysis patients: a systematic review

    PubMed Central

    2013-01-01

    Background Chronic kidney disease–mineral and bone disorder (CKD–MBD) is a common complication in CKD patients, particularly in those with end-stage renal disease that requires dialysis. Lanthanum carbonate (LC) is a potent, non-aluminum, non-calcium phosphate binder. This systematic review evaluates the efficacy and safety of LC in CKD-MBD treatment for maintenance-dialysis patients. Methods A systematic review and meta-analysis on randomized controlled trials (RCTs) and quasi-RCTs was performed to assess the efficacy and safety of LC in maintenance hemodialysis or peritoneal dialysis patients. Analysis was performed using the statistical software Review Manager 5.1. Results Sixteen RCTs involving 3789 patients were identified and retained for this review. No statistical difference was found in all-cause mortality. The limited number of trials was insufficient to show the superiority of LC over other treatments in lowering vascular calcification or cardiovascular events and in improving bone morphology, bone metabolism, or bone turn-over parameters. LC decreased the serum phosphorus level and calcium × phosphate product (Ca × P) as compared to placebo. LC, calcium carbonate (CC), and sevelamer hydrochloride (SH) were comparable in terms of controlling the serum phosphorus, Ca × P product, and intact parathyroid hormone (iPTH) levels. However, LC resulted in a lower serum calcium level and a higher bone-specific alkaline phosphatase level compared with CC. LC had higher total cholesterol and low-density lipoprotein (LDL) cholesterol levels compared with SH. LC-treated patients appeared to have a higher rate of vomiting and lower risk of hypercalcemia, diarrhea, intradialytic hypotension, cramps or myalgia, and abdominal pain. Meta-analysis showed no significant difference in the incidence of other side effects. Accumulation of LC in blood and bone was below toxic levels. Conclusions LC has high efficacy in lowering serum phosphorus and iPTH levels without

  4. Associations of low-level urine cadmium with kidney function in lead workers

    PubMed Central

    Weaver, Virginia M.; Kim, Nam-Soo; Jaar, Bernard G.; Schwartz, Brian S.; Parsons, Patrick J.; Steuerwald, Amy J.; Todd, Andrew C.; Simon, David; Lee, Byung-Kook

    2010-01-01

    Objectives Low-level cadmium exposure, e.g., urinary cadmium < 2.0 μg/g creatinine, is widespread; recent data suggest nephrotoxicity even at these lower levels. Few studies have examined the impact of low-level cadmium exposure in workers who are occupationally exposed to other nephrotoxicants such as lead. Methods We evaluated associations of urine cadmium, a measure of cumulative dose, with four glomerular filtration measures and N-acetyl-β-D-glucosaminidase (NAG) in lead workers. Recent and cumulative lead dose was assessed via blood and tibia lead, respectively. Results In 712 lead workers, mean (SD) blood and tibia lead, urine cadmium, and estimated glomerular filtration rate (eGFR) using the Modification of Diet in Renal Disease equation were 23.1 (14.1) μg/dl, 26.6 (28.9) μg Pb/g bone mineral, 1.15 (0.66) μg/g creatinine, and 97.4 (19.2) ml/min/1.73m2, respectively. After adjustment for age, sex, body mass index, urine creatinine, smoking, alcohol, education, annual income, diastolic blood pressure, current or former lead worker job status, new or returning study participant, and blood and tibia lead, higher ln-urine cadmium was associated with higher calculated creatinine clearance, eGFR (β = 8.7 ml/min/1.73 m2; 95% CI = 5.4, 12.1) and ln-NAG but lower serum creatinine. Conclusions Potential explanations for these results include a normal physiologic response in which urine cadmium levels reflect renal filtration; the impact of adjustment for urine dilution with creatinine in models of kidney outcomes; and cadmium-related hyperfiltration. PMID:20974743

  5. Estimating kidney function and use of oral antidiabetic drugs in elderly.

    PubMed

    Douros, Antonios; Ebert, Natalie; Jakob, Olga; Martus, Peter; Kreutz, Reinhold; Schaeffner, Elke

    2015-06-01

    The prevalence of diabetes mellitus (DM) and renal impairment rises with age making regular estimation of glomerular filtration rate (eGFR) in older diabetics necessary. This study investigated the differences among available estimating equations in assessing eGFR in older diabetics and examined the use of oral antidiabetic drugs (OADs) in relation to renal function. Patients with DM were participants of the Berlin Initiative Study (BIS), a population-based cohort study initiated in 2009 in Berlin, Germany, to evaluate kidney function in people ≥70 years. GFR was estimated with the creatinine-based CKD-EPICREA (Chronic Kidney Disease Epidemiology Collaboration), the MDRD (Modification of Diet in Renal Diseases) and the BIS1 equation and was directly measured (mGFR) with iohexol clearance as a gold standard in a subgroup (n = 137). Creatinine clearance was estimated with the Cockcroft-Gault equation (CrCl). DM prevalence was 26% (539 of 2070 overall participants). The antidiabetic drugs most commonly used among OAD patients were metformin (67%), glimepiride (27%) and glibenclamide (14%). Three of ten metformin patients had a CrCl <60 mL/min. Compared to mGFR, the mean differences of filtration rates calculated by MDRD, CKD-EPICREA and BIS1 were +8.9, +6.7 and -1.8 mL/min/1.73 m(2) , respectively. Summing up, many patients with a CrCl <60 mL/min received metformin, although this represents a contraindication in Germany. Glibenclamide was commonly used despite its classification as potentially inappropriate medication in older adults. Finally, BIS1 performed better in estimating GFR in older diabetics than MDRD or CKD-EPICREA . PMID:25817734

  6. Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury

    PubMed Central

    Imberti, Barbara; Tomasoni, Susanna; Ciampi, Osele; Pezzotta, Anna; Derosas, Manuela; Xinaris, Christodoulos; Rizzo, Paola; Papadimou, Evangelia; Novelli, Rubina; Benigni, Ariela; Remuzzi, Giuseppe; Morigi, Marina

    2015-01-01

    Acute kidney injury (AKI) is one of the most relevant health issues, leading to millions of deaths. The magnitude of the phenomenon remarks the urgent need for innovative and effective therapeutic approaches. Cell-based therapy with renal progenitor cells (RPCs) has been proposed as a possible strategy. Studies have shown the feasibility of directing embryonic stem cells or induced Pluripotent Stem Cells (iPSCs) towards nephrogenic intermediate mesoderm and metanephric mesenchyme (MM). However, the functional activity of iPSC-derived RPCs has not been tested in animal models of kidney disease. Here, through an efficient inductive protocol, we directed human iPSCs towards RPCs that robustly engrafted into damaged tubuli and restored renal function and structure in cisplatin-mice with AKI. These results demonstrate that iPSCs are a valuable source of engraftable cells with regenerative activity for kidney disease and create the basis for future applications in stem cell-based therapy. PMID:25744951

  7. Krüppel-like factor 6 regulates mitochondrial function in the kidney

    PubMed Central

    Mallipattu, Sandeep K.; Horne, Sylvia J.; D’Agati, Vivette; Narla, Goutham; Liu, Ruijie; Frohman, Michael A.; Dickman, Kathleen; Chen, Edward Y.; Ma’ayan, Avi; Bialkowska, Agnieszka B.; Ghaleb, Amr M.; Nandan, Mandayam O.; Jain, Mukesh K.; Daehn, Ilse; Chuang, Peter Y.; Yang, Vincent W.; He, John C.

    2015-01-01

    Maintenance of mitochondrial structure and function is critical for preventing podocyte apoptosis and eventual glomerulosclerosis in the kidney; however, the transcription factors that regulate mitochondrial function in podocyte injury remain to be identified. Here, we identified Krüppel-like factor 6 (KLF6), a zinc finger domain transcription factor, as an essential regulator of mitochondrial function in podocyte apoptosis. We observed that podocyte-specific deletion of Klf6 increased the susceptibility of a resistant mouse strain to adriamycin-induced (ADR-induced) focal segmental glomerulosclerosis (FSGS). KLF6 expression was induced early in response to ADR in mice and cultured human podocytes, and prevented mitochondrial dysfunction and activation of intrinsic apoptotic pathways in these podocytes. Promoter analysis and chromatin immunoprecipitation studies revealed that putative KLF6 transcriptional binding sites are present in the promoter of the mitochondrial cytochrome c oxidase assembly gene (SCO2), which is critical for preventing cytochrome c release and activation of the intrinsic apoptotic pathway. Additionally, KLF6 expression was reduced in podocytes from HIV-1 transgenic mice as well as in renal biopsies from patients with HIV-associated nephropathy (HIVAN) and FSGS. Together, these findings indicate that KLF6-dependent regulation of the cytochrome c oxidase assembly gene is critical for maintaining mitochondrial function and preventing podocyte apoptosis. PMID:25689250

  8. Effect of sweetener and flavoring agent on oxidative indices, liver and kidney function levels in rats.

    PubMed

    Amin, Kamal A; Al-muzafar, Hessa M; Abd Elsttar, Adel H

    2016-01-01

    Food additives while attract consumers, improve quality, control weight and replace sugar, may affect seriously children and adults health. Here, we investigated the adverse effects of saccharin and methylsalicyltaes as sweetener and flavoring agent on lipid profile, blood glucose, renal, hepatic function and oxidative stress/antioxidants (lipid peroxidation, catalase and reduced glutathione in liver tissues). Saccharin and methylsalicylate were administered orally in young male albino rats at low and high dose for 30 days. Rats were divided into 5 groups, 1st control group, 2nd and 3rd (low and high saccharin-treated groups) and 4th and 5th (low and high methylsalicylate-treated group). Serum total cholesterol, triglyceride, glucose levels and body weight gain were found decreased in saccharin high dose group compared to control. Rats consumed high dose of saccharin showed a significant decrease in serum triglycerides, cholesterol and LDL levels. Low and high doses of saccharin exhibited a significant increase in liver function marker of ALT, AST, ALP activity, total proteins and albumin levels and renal function test (urea and creatinine levels) in comparison with control group. Further, saccharin at high dose induced significant decrease in liver GSH levels, catalase and SOD activity and increase in hepatic MDA level. Overall saccharin harmfully altered biochemical markers in liver and kidney at higher as well as lower doses. Whereas, methyl salicylates did not pose a risk for renal function and hepatic oxidative markers. PMID:26891553

  9. Pretransplant Immune- and Apoptosis-Related Gene Expression Is Associated with Kidney Allograft Function

    PubMed Central

    Kamińska, Dorota; Kościelska-Kasprzak, Katarzyna; Chudoba, Paweł; Mazanowska, Oktawia; Banasik, Mirosław; Żabinska, Marcelina; Boratyńska, Maria; Lepiesza, Agnieszka; Gomółkiewicz, Agnieszka; Dzięgiel, Piotr; Klinger, Marian

    2016-01-01

    Renal transplant candidates present immune dysregulation, caused by chronic uremia. The aim of the study was to investigate whether pretransplant peripheral blood gene expression of immune factors affects clinical outcome of renal allograft recipients. Methods. In a prospective study, we analyzed pretransplant peripheral blood gene expression in87 renal transplant candidates with real-time PCR on custom-designed low density arrays (TaqMan). Results. Immediate posttransplant graft function (14-day GFR) was influenced negatively by TGFB1 (P = 0.039) and positively by IL-2 gene expression (P = 0.040). Pretransplant blood mRNA expression of apoptosis-related genes (CASP3, FAS, and IL-18) and Th1-derived cytokine gene IFNG correlated positively with short- (6-month GFR CASP3: P = 0.027, FAS: P = 0.021, and IFNG: P = 0.029) and long-term graft function (24-month GFR CASP3: P = 0.003, FAS: P = 0.033, IL-18: P = 0.044, and IFNG: P = 0.04). Conclusion. Lowered pretransplant Th1-derived cytokine and apoptosis-related gene expressions were a hallmark of subsequent worse kidney function but not of acute rejection rate. The pretransplant IFNG and CASP3 and FAS and IL-18 genes' expression in the recipients' peripheral blood is the possible candidate for novel biomarker of short- and long-term allograft function. PMID:27382192

  10. Vascular calcification and renal bone disorders.

    PubMed

    Lu, Kuo-Cheng; Wu, Chia-Chao; Yen, Jen-Fen; Liu, Wen-Chih

    2014-01-01

    At the early stage of chronic kidney disease (CKD), the systemic mineral metabolism and bone composition start to change. This alteration is known as chronic kidney disease-mineral bone disorder (CKD-MBD). It is well known that the bone turnover disorder is the most common complication of CKD-MBD. Besides, CKD patients usually suffer from vascular calcification (VC), which is highly associated with mortality. Many factors regulate the VC mechanism, which include imbalances in serum calcium and phosphate, systemic inflammation, RANK/RANKL/OPG triad, aldosterone, microRNAs, osteogenic transdifferentiation, and effects of vitamins. These factors have roles in both promoting and inhibiting VC. Patients with CKD usually have bone turnover problems. Patients with high bone turnover have increase of calcium and phosphate release from the bone. By contrast, when bone turnover is low, serum calcium and phosphate levels are frequently maintained at high levels because the reservoir functions of bone decrease. Both of these conditions will increase the possibility of VC. In addition, the calcified vessel may secrete FGF23 and Wnt inhibitors such as sclerostin, DKK-1, and secreted frizzled-related protein to prevent further VC. However, all of them may fight back the inhibition of bone formation resulting in fragile bone. There are several ways to treat VC depending on the bone turnover status of the individual. The main goals of therapy are to maintain normal bone turnover and protect against VC. PMID:25136676

  11. Kidney, thyroid and other organ functions after 40 years or more of lithium therapy: a case series of five patients.

    PubMed

    Permoda-Osip, Agnieszka; Abramowicz, Maria; Kraszewska, Agnieszka; Suwalska, Aleksandra; Chlopocka-Wozniak, Maria; Rybakowski, Janusz K

    2016-08-01

    We present the cases of five patients (two men aged 64 years and 79 years) and three women (aged 64 years, 65 years and 75 years) who have received lithium treatment for 40-45 years, with particular regard to kidney and thyroid functions, hypercalcaemia and cognition, in the context of disease course and overall functioning. Lithium was initiated in the early phase of the illness (in three patients within the first 2 years). In four patients, lithium concentration was between 0.60 and 0.65 mmol/l and in one patient, between 0.7 and 0.8 mmol/l. Four were very good lithium responders. One man had stage 3 chronic kidney disease, and the other stage 2/3 chronic kidney disease. All three women had asymptomatic stage 2 chronic kidney disease. One woman had severe thyroid dysfunction (Hashimoto's disease) with extremely high levels of antithyroid peroxidase antibodies and antithyroglobulin antibodies and was receiving thyroxine. Serum calcium levels were normal or borderline in all five patients, and most cognitive functions were comparable to healthy persons of similar gender, age and years of education. All the patients were professionally active until 55-65 years and their family and social functioning were satisfactory. It was concluded that, in good lithium responders, ultra-long-term treatment with lithium enables good professional and psychosocial functioning, and the possible somatic side effects are manageable. PMID:27536347

  12. [Complex investigation and functional evaluation of patients with a solitary kidney and urolithic disease].

    PubMed

    Boĭko, A I; Hurzhenko, A Iu; Hanzhyĭ, V V; Hubar', A O

    2013-11-01

    Complex examination of patients, having solitary kidney and urolithic disease, was conducted. While comparing the calcium accumulation in glomerular and reabsorbed ultrafiltrate and radio-pharmpreparation in a solitary nonaffected kidney, their step by step increase was noted during follow-up to 1 yr after nephrectomy conduction. The static scintigraphy gives possibility to reveal the calcium content rising in glomerular and reabsorbed ultrafiltrate in each kidney separately.

  13. Functional microimaging: an integrated approach for advanced bone biomechanics and failure analysis

    NASA Astrophysics Data System (ADS)

    Voide, Romain; van Lenthe, G. H.; Schneider, Philipp; Thurner, Philipp J.; Wyss, Peter; Sennhauser, Urs; Stampanoni, Marco; Stauber, Martin; Snedeker, Jess G.; Müller, Ralph

    2006-03-01

    Biomechanical testing is the gold standard to determine bone competence, and has been used extensively. Direct mechanical testing provides detailed information on overall bone mechanical and material properties, but fails in revealing local properties such as local deformations and strains or quantification of fracture progression. Therefore, we incorporated several imaging methods in our mechanical setups in order to get a better insight into bone deformation and failure characteristics. Our aim was to develop an integrative approach for hierarchical investigation of bone, working at different scales of resolution ranging from the whole bone to its ultrastructure. At a macroscopic level, we used high-resolution and high-speed cameras which drastically increased the amount of information obtained from a biomechanical bone test. The new image data proved especially important when dealing with very small bones such as the murine femur. Here the feedback of the camera in the process of aligning and positioning the samples is indispensable for reproducibility. In addition, global failure behavior and fracture initiation can now be visualized with high temporal resolution. At a microscopic level, bone microstructure, i.e. trabecular architecture and cortical porosity, are known to influence bone strength and failure mechanisms significantly. For this reason, we developed an image-guided failure assessment technique, also referred to as functional microimaging, allowing direct time-lapsed 3D visualization and computation of local displacements and strains for better quantification of fracture initiation and progression at the microscopic level. While the resolution of typical desktop micro-computed tomography is around a few micrometers, highly brilliant X-rays from synchrotron radiation permit to explore the nanometer world. This allowed, for the first time, to uncover fully nondestructively the 3D ultrastructure of bone including vascular and cellular structures and to

  14. Functional rescue of a kidney anion exchanger 1 trafficking mutant in renal epithelial cells.

    PubMed

    Chu, Carmen Y S; King, Jennifer C; Berrini, Mattia; Alexander, R Todd; Cordat, Emmanuelle

    2013-01-01

    Mutations in the SLC4A1 gene encoding the anion exchanger 1 (AE1) can cause distal renal tubular acidosis (dRTA), a disease often due to mis-trafficking of the mutant protein. In this study, we investigated whether trafficking of a Golgi-retained dRTA mutant, G701D kAE1, or two dRTA mutants retained in the endoplasmic reticulum, C479W and R589H kAE1, could be functionally rescued to the plasma membrane of Madin-Darby Canine Kidney (MDCK) cells. Treatments with DMSO, glycerol, the corrector VX-809, or low temperature incubations restored the basolateral trafficking of G701D kAE1 mutant. These treatments had no significant rescuing effect on trafficking of the mis-folded C479W or R589H kAE1 mutants. DMSO was the only treatment that partially restored G701D kAE1 function in the plasma membrane of MDCK cells. Our experiments show that trafficking of intracellularly retained dRTA kAE1 mutants can be partially restored, and that one chemical treatment rescued both trafficking and function of a dRTA mutant. These studies provide an opportunity to develop alternative therapeutic solutions for dRTA patients. PMID:23460825

  15. Design of functionally graded dental implant in the presence of cancellous bone.

    PubMed

    Hedia, H S

    2005-10-01

    In a previous work by the author [Hedia HS, Mahmoud NA. Biomed Mater Eng 2004;14(2):133--143], a functionally graded material (FGM) dental implant was designed without cancellous bone in the model. In this investigation, the effect of the presence of cancellous bone as a thin layer around the dental implant was investigated. It is well known that the main inorganic component of natural bone is hydroxyapatite (HAP) and that the main organic component is collagen (Col). HAP implants are not bioabsorbable, and because induction of bone into and around the artificially made HAP is not always satisfactory, loosening or breakage of HAP implants might occur after implantation in the clinical application. The development of a new material that is bioabsorbable and that has osteo-conductive activity is needed. Therefore, the aim of the current investigation was to design an implant, in the presence of cancellous bone as a thin layer around it, from FGM. In this study, a novel biomaterial, Col/HAP, as a FGM, was developed using the finite element and optimization techniques that are available in the ANSYS package. These materials have a self-organized character similar to that of natural bone. The investigations have shown that the maximum stress in the cortical bone and cancellous bone for the Col/HAP functionally graded implant has been reduced by about 40% and 19%, respectively, compared with currently used titanium dental implants.

  16. The kidney and bisphosphonates.

    PubMed

    Miller, Paul D

    2011-07-01

    Bisphosphonates are eliminated from the human body by the kidney. Renal clearance is both by glomerular filtration and proximal tubular secretion. Bisphosphonates given rapidly in high doses in animal models have induced a variety of adverse renal effects, from glomerular sclerosis to acute tubular necrosis. Nevertheless in the doses that are registered for the management of postmenopausal osteoporosis (PMO), oral bisphosphonates have never been shown to adversely affect the kidney, even (in post-hoc analysis of clinical trial data) down to estimated glomerular filtration rates of 15 ml/min. In addition fracture risk reduction has also been observed in these populations with stage 4 chronic kidney disease (CKD) with age-related reductions in glomerular filtration rate (GFR). Intravenous zoledronic acid is safe when the infusion rate is no faster than 15 min though there have been short-term (days 9-11 post-infusion) increases in serum creatinine concentrations in a small sub-set of patients from the postmenopausal registration trials. For these reasons intravenous zoledronic acid should be avoided in patients with GFR levels <35 ml/min; and the patients should be well hydrated and have avoided the concomitant use of any agent that may impair renal function. Intravenous ibandronate has not to date been reported to induce acute changes in serum creatinine concentrations in the PMO clinical trial data, but the lack of head-to-head comparative data between ibandronate and zoledronic acid precludes knowing if one intravenous bisphosphonate is safer than the other. In patients with GFR levels <30-35 ml/min, the correct diagnosis of osteoporosis becomes more complex since other forms of renal bone disease, which require different management strategies than osteoporosis, need to be excluded before the assumption can be made that fractures and/or low bone mass are due to osteoporosis. In addition, in patients who may have pre-existing adynamic renal bone disease, there is a

  17. Monitoring the Intracellular Tacrolimus Concentration in Kidney Transplant Recipients with Stable Graft Function.

    PubMed

    Han, Seung Seok; Yang, Seung Hee; Kim, Min Chang; Cho, Joo-Youn; Min, Sang-Il; Lee, Jung Pyo; Kim, Dong Ki; Ha, Jongwon; Kim, Yon Su

    2016-01-01

    Although monitoring the intracellular concentration of immunosuppressive agents may be a promising approach to individualizing the therapy after organ transplantation, additional studies on this issue are needed prior to its clinical approval. We investigated the relationship between intracellular and whole blood concentrations of tacrolimus (IC-TAC and WB-TAC, respectively), the factors affecting this relationship, and the risk of rejection based upon IC-TAC in stable kidney recipients. Both IC-TAC and WB-TAC were measured simultaneously in 213 kidney recipients with stable graft function using LC-MS/MS. The tacrolimus ratio was defined as IC-TAC per WB-TAC. The genetic polymorphism of ABCB1 gene and flow cytometric analyses were conducted to probe the correlation between tacrolimus concentrations and the immunoreactivity status as a potential risk of rejection, respectively. The correlation between IC-TAC and WB-TAC was relatively linear (r = 0.67; P<0.001). The factors affecting the tacrolimus ratio were sex, hematocrit, and the transplant duration, as follows: a high tacrolimus ratio was noted in female patients, patients with a low hematocrit, and patients with a short transplant period. However, the tacrolimus ratio did not reflect the prior clinical outcomes (e.g., rejection) or the genetic polymorphism of ABCB1. After stimulation with phorbol-12-myristate 13-acetate and ionomycin, the proportion of T cells producing interferon-gamma or interleukin-2 was higher in the low-IC-TAC group than in the high-IC-TAC group. Further studies are required to evaluate the value of the intracellular tacrolimus concentrations in several clinical settings, such as rejection, infection, and drug toxicity.

  18. Functional integration of skeletal traits: an intraskeletal assessment of bone size, mineralization, and volume covariance.

    PubMed

    Schlecht, Stephen H; Jepsen, Karl J

    2013-09-01

    Understanding the functional integration of skeletal traits and how they naturally vary within and across populations will benefit assessments of functional adaptation directed towards interpreting bone stiffness in contemporary and past humans. Moreover, investigating how these traits intraskeletally vary will guide us closer towards predicting fragility from a single skeletal site. Using an osteological collection of 115 young adult male and female African-Americans, we assessed the functional relationship between bone robustness (i.e. total area/length), cortical tissue mineral density (Ct.TMD), and cortical area (Ct.Ar) for the upper and lower limbs. All long bones demonstrated significant trait covariance (p < 0.005) independent of body size, with slender bones having 25-50% less Ct.Ar and 5-8% higher Ct.TMD compared to robust bones. Robustness statistically explained 10.2-28% of Ct.TMD and 26.6-64.6% of Ct.Ar within male and female skeletal elements. This covariance is systemic throughout the skeleton, with either the slender or robust phenotype consistently represented within all long bones for each individual. These findings suggest that each person attains a unique trait set by adulthood that is both predictable by robustness and partially independent of environmental influences. The variation in these functionally integrated traits allows for the maximization of tissue stiffness and minimization of mass so that regardless of which phenotype is present, a given bone is reasonably stiff and strong, and sufficiently adapted to perform routine, habitual loading activities. Covariation intrinsic to functional adaptation suggests that whole bone stiffness depends upon particular sets of traits acquired during growth, presumably through differing levels of cellular activity, resulting in differing tissue morphology and composition. The outcomes of this intraskeletal examination of robustness and its correlates may have significant value in our progression

  19. Multiparametric Functional MRI: Non-Invasive Imaging of Inflammation and Edema Formation after Kidney Transplantation in Mice

    PubMed Central

    Gutberlet, Marcel; Bräsen, Jan Hinrich; Jang, Mi-Sun; Thorenz, Anja; Chen, Rongjun; Hertel, Barbara; Barrmeyer, Amelie; Schmidbauer, Martina; Meier, Martin; von Vietinghoff, Sibylle; Khalifa, Abedalrazag; Hartung, Dagmar; Haller, Hermann; Wacker, Frank

    2016-01-01

    Background Kidney transplantation (ktx) in mice is used to learn about rejection and to develop new treatment strategies. Past studies have mainly been based on histological or molecular biological methods. Imaging techniques to monitor allograft pathology have rarely been used. Methods Here we investigated mice after isogenic and allogenic ktx over time with functional MRI with diffusion-weighted imaging (DWI) and mapping of T2-relaxation time (T2-mapping) to assess graft inflammation and edema formation. To characterize graft pathology, we used PAS-staining, counted CD3-positive T-lymphocytes, analyzed leukocytes by means flow cytometry. Results DWI revealed progressive restriction of diffusion of water molecules in allogenic kidney grafts. This was paralleled by enhanced infiltration of the kidney by inflammatory cells. Changes in tissue diffusion were not seen following isogenic ktx. T2-times in renal cortex were increased after both isogenic and allogenic transplantation, consistent with tissue edema due to ischemic injury following prolonged cold ischemia time of 60 minutes. Lack of T2 increase in the inner stripe of the inner medulla in allogenic kidney grafts matched loss of tubular autofluorescence and may result from rejection-driven reductions in tubular water content due to tubular dysfunction and renal functional impairment. Conclusions Functional MRI is a valuable non-invasive technique for monitoring inflammation, tissue edema and tubular function. It permits on to differentiate between acute rejection and ischemic renal injury in a mouse model of ktx. PMID:27632553

  20. Potential role of PFOB enhanced sonography of the kidney. I. Detection of renal function and acute tubular necrosis.

    PubMed

    Munzing, D; Mattrey, R F; Reznik, V M; Mitten, R M; Peterson, T

    1991-04-01

    Perfluorooctylbromide (PFOB) enhances the echogenicity of perfused tissues on sonography. Since PFOB is not filtered and is limited to the intravascular space, the particles are concentrated in the vasa rectae as they travel across the osmotic gradient. Because sonography has been unable to detect renal function, we aimed to determine whether sonography when aided by PFOB could detect and distinguish the normal from the abnormal osmotic gradient. The sonographer, unaware of rabbit assignment, imaged both kidneys in 17 rabbits before and 24 hours after the temporary occlusion of one of the renal arteries and then again after the infusion of up to 5 ml/kg of PFOB (N = 10) or saline (N = 7). Two normal rabbits were imaged before and after PFOB infusion and then again after i.v. furosemide. Without PFOB, the normal and impaired kidneys were indistinguishable. The echogenicity of the medulla which was darker than cortex in normal kidneys became brighter than cortex after PFOB (increased by 117% +/- 10%; P less than 0.01). PFOB, which was visible in the renal medulla on real-time sonography, produced an echogenic gradient that increased in brightness towards the papillary tip. Because the medulla of kidneys with ATN mildly increased in brightness after PFOB (increased by 40% +/- 7.8%; P less than 0.01), and because the echogenic gradient produced by PFOB was reversed (decreased in brightness towards the papillary tip), ATN kidneys were distinguished from normal kidneys in all 10 rabbits after 2.5 ml/kg PFOB. Medullary echogenicity produced by PFOB in normal kidneys was lost after furosemide.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Communication between bone marrow niches in normal bone marrow function and during hemopathies progression

    PubMed Central

    Lamorte, Sara; Remédio, Leonor; Dias, Sergio

    2009-01-01

    Hematopoietic stem cell (HSC) chemotaxis, adhesion, proliferation, quiescence and differentiation are regulated by interactions with bone marrow (BM) niches. Two niches have been identified in the adult BM: the endosteal (close to the bone) and the perivascular niche (close to blood vessels). A vast body of literature has revealed the molecular basis for the interaction of HSCs with the two niches. However, the signals that regulate the communication between the two niches have not been well defined. Taking in consideration several clinical and experimental arguments this review highlights the molecular cues, involved in the communication between the BM niches, which regulate the basic properties of HSCs in physiological and malignant conditions. As such, it aims at clarifying the most important advances in basic and clinical research focusing on the role of different factors in the regulation of the BM microenvironment.

  2. Stromal cell-derived factor-1 (SDF1)-dependent recruitment of bone marrow-derived renal endothelium-like cells in a mouse model of acute kidney injury

    PubMed Central

    OHNISHI, Hiroyuki; MIZUNO, Shinya; MIZUNO-HORIKAWA, Yoko; KATO, Takashi

    2015-01-01

    Ischemic acute kidney injury (AKI) is the most key pathological event for accelerating progression to chronic kidney disease through vascular endothelial injury or dysfunction. Thus, it is critical to elucidate the molecular mechanism of endothelial protection and regeneration. Emerging evidence indicates that bone marrow-derived cells (BMCs) contribute to tissue reconstitution in several types of organs post-injury, but little is known whether and how BMCs contribute to renal endothelial reconstitution, especially in an early-stage of AKI. Using a mouse model of ischemic AKI, we provide evidence that incorporation of BMCs in vascular components (such as endothelial and smooth muscle cells) becomes evident within four days after renal ischemia and reperfusion, associated with an increase in stromal cell-derived factor-1 (SDF1) in endothelium and that in CXCR4/SDF1-receptor in BMCs. Notably, anti-CXCR4 antibody decreased the numbers of infiltrated BMCs and BMC-derived endothelium-like cells, but not of BMC-derived smooth muscle cell-like cells. These results suggest that reconstitution of renal endothelium post-ischemia partially depends on a paracrine loop of SDF1-CXCR4 between resident endothelium and BMCs. Such a chemokine ligand-receptor system may be attributable for selecting a cellular lineage (s), required for renal vascular protection, repair and homeostasis, even in an earlier phase of AKI. PMID:25833353

  3. Natural progression of renal function in the elderly: analysis of poor prognosis factors associated with chronic kidney disease.

    PubMed

    Heras, Manuel; García-Cosmes, Pedro; Fernández-Reyes, María J; Sánchez, Rosa

    2013-01-01

    In the last few years a debate has emerged on the range of normal renal function and the rate at which renal disease progresses in the elderly. In this review we analysed, on the basis of the results of the study Ancianos con enfermedad renal crónica del Hospital General de Segovia (Elderly people with chronic kidney disease of the Hospital General de Segovia), the poor prognosis factors associated with this disease: proteinuria, episodes of acute renal failure and heart failure, and the role of uric acid. Elderly people with chronic kidney disease who present these poor prognosis factors may benefit from follow-up by Nephrology. PMID:23897177

  4. Kidney Failure

    MedlinePlus

    ... if You Have Kidney Disease Kidney Failure Expand Dialysis Kidney Transplant Preparing for Kidney Failure Treatment Choosing Not to Treat with Dialysis or Transplant Paying for Kidney Failure Treatment Contact ...

  5. Kidney Function and Cognitive Impairment in US Adults: The REGARDS (Reasons for Geographic and Racial Differences in Stroke) Study

    PubMed Central

    Kurella-Tamura, Manjula; Wadley, Virginia; Yaffe, Kristine; McClure, Leslie A.; Howard, George; Go, Rodney; Allman, Richard M.; Warnock, David G.; McClellan, William

    2008-01-01

    Background The association between kidney function and cognitive impairment has not been assessed in a national sample with a wide spectrum of kidney disease severity. Study Design Cross-sectional. Setting & Participants 23,405 participants [EF1](mean age 64.9 ± 9.6 years) with baseline measurements of creatinine and cognitive function participating in the REGARDS (REasons for Geographic And Racial Differences in Stroke) Study, a study of stroke risk factors in a large national sample. Predictor Estimated glomerular filtration rate (eGFR). Outcome Cognitive impairment. Measurements Chronic kidney disease (CKD) was defined as an eGFR <60 ml/min/1.73m2 Kidney function was analyzed in 10 ml/min/1.73 m2 increments among those with CKD, and in exploratory analyses, across the range of kidney function. Cognitive function was assessed using the Six-item Screener and participants with a score ≤4 were considered to have cognitive impairment. Results CKD was associated with an increased prevalence of cognitive impairment, independent of confounding factors (odds ratio (OR) 1.23, 95% confidence interval (95% CI) 1.06, 1.43). Among those with CKD, each 10 ml/min/1.73m2 decrease in eGFR below 60 ml/min/1.73m2 was associated with an 11% increased prevalence of impairment (OR 1.11, 95% CI 1.04, 1.19). Exploratory analyses revealed a non-linear association between eGFR and the prevalence of cognitive impairment, with a significant, increased prevalence of impairment among those with eGFR <50 and ≥100 ml/min/1.73m2. Limitations Longitudinal measures of cognitive function were not available. Conclusions Among US adults, lower levels of kidney function are associated with an increased prevalence of cognitive impairment. The prevalence of impairment appears to increase early in the course of kidney disease; therefore screening for impairment should be considered among all adults with CKD. PMID:18585836

  6. Regional localization within the bone marrow influences the functional capacity of human HSCs.

    PubMed

    Guezguez, Borhane; Campbell, Clinton J V; Boyd, Allison L; Karanu, Francis; Casado, Fanny L; Di Cresce, Christine; Collins, Tony J; Shapovalova, Zoya; Xenocostas, Anargyros; Bhatia, Mickie

    2013-08-01

    Numerous studies have shown that the bone marrow (BM) niche plays a key role in mouse hematopoietic stem cell (HSC) function and involves contributions from a broad array of cell types. However, the composition and role of the human BM HSC niche have not been investigated. Here, using human bone biopsy specimens, we provide evidence of HSC propensity to localize to endosteal regions of the trabecular bone area (TBA). Through functional xenograft transplantation, we found that human HSCs localizing to the TBA have superior regenerative and self-renewal capacity and are molecularly distinct from those localizing to the long bone area (LBA). In addition, osteoblasts in the TBA possess unique characteristics and express a key network of factors that regulate TBA- versus LBA-localized human HSCs in vivo. Our study reveals that BM localization and architecture play a critical role in defining the functional and molecular properties of human HSCs.

  7. Association of apolipoprotein A1 and B with kidney function and chronic kidney disease in two multiethnic population samples

    PubMed Central

    Goek, Oemer-Necmi; Köttgen, Anna; Hoogeveen, Ron C.; Ballantyne, Christie M.; Coresh, Josef; Astor, Brad C.

    2012-01-01

    Background Circulating lipoproteins and their protein constituents, apolipoproteins, are risk factors for chronic kidney disease (CKD). The associations between apolipoprotein A1, apolipoprotein B and their ratio with glomerular filtration rate estimated from the new CKD Epidemiology Collaboration (CKD-EPI) equation (eGFR) are not well studied in the general population. Methods Associations between apolipoprotein A1, B and their ratio with the outcomes of eGFR, CKD (eGFR <60 mL/min/1.73m2) and albuminuria were examined in the Atherosclerosis Risk in Communities study (ARIC, n = 10 292, 1996–98) and the Third National Health and Nutrition Examination Survey (NHANES III, n = 7023, 1988–91). Cross-sectional multivariable-adjusted analyses were performed using linear and logistic regression. Prospective analyses related baseline apolipoprotein levels to subsequent CKD incidence over 10 years using the ARIC Carotid MRI follow-up cohort (n = 1659). Results Higher apolipoprotein A1 quartiles were associated with a lower prevalence of CKD [Q4 versus Q1: odds ratio (OR) 0.73, P-trend = 0.02 in ARIC; Q4 versus Q1: OR 0.53, P-trend <0.01 in NHANES III] as well as with higher eGFR (P-trend <0.01 in ARIC and NHANES III). No consistent significant associations were found for apolipoprotein B in either study. The apolipoprotein B/A1 ratio was significantly associated with eGFR across quartiles in both studies (P-trend <0.01) and with CKD in ARIC (Q4 versus Q1: OR 1.23, P-trend = 0.01). Prospectively, there were trends for the association of apolipoproteins with incident CKD [Q4 versus Q1: incidence rate ratio (IRR) = 0.68 for apolipoprotein A1, P-trend = 0.1; Q4 versus Q1: IRR = 1.35 for apolipoprotein B, P-trend = 0.2]. Associations were not systematically stronger when comparing traditional lipids (total cholesterol, low-density lipoprotein or high-density lipoprotein) to apolipoproteins. Conclusions Higher serum apolipoprotein A1 was associated with lower prevalence of CKD

  8. Performance of Chronic Kidney Disease Epidemiology Collaboration Creatinine-Cystatin C Equation for Estimating Kidney Function in Cirrhosis

    PubMed Central

    Mindikoglu, Ayse L.; Dowling, Thomas C.; Weir, Matthew R.; Seliger, Stephen L.; Christenson, Robert H.; Magder, Laurence S.

    2013-01-01

    Conventional creatinine-based glomerular filtration rate (GFR) equations are insufficiently accurate for estimating GFR in cirrhosis. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) recently proposed an equation to estimate GFR in subjects without cirrhosis using both serum creatinine and cystatin C levels. Performance of the new CKD-EPI creatinine-cystatin C equation (2012) was superior to previous creatinine- or cystatin C-based GFR equations. To evaluate the performance of the CKD-EPI creatinine-cystatin C equation in subjects with cirrhosis, we compared it to GFR measured by non-radiolabeled iothalamate plasma clearance (mGFR) in 72 subjects with cirrhosis. We compared the “bias”, “precision” and “accuracy” of the new CKD-EPI creatinine-cystatin C equation to that of 24-hour urinary creatinine clearance (CrCl), Cockcroft-Gault (CG) and previously reported creatinine- and/or cystatin C-based GFR-estimating equations. Accuracy of CKD-EPI creatinine-cystatin C equation as quantified by root mean squared error of difference scores [differences between mGFR and estimated GFR (eGFR) or between mGFR and CrCl, or between mGFR and CG equation for each subject] (RMSE=23.56) was significantly better than that of CrCl (37.69, P=0.001), CG (RMSE=36.12, P=0.002) and GFR-estimating equations based on cystatin C only. Its accuracy as quantified by percentage of eGFRs that differed by greater than 30% with respect to mGFR was significantly better compared to CrCl (P=0.024), CG (P=0.0001), 4-variable MDRD (P=0.027) and CKD-EPI creatinine 2009 (P=0.012) equations. However, for 23.61% of the subjects, GFR estimated by CKD-EPI creatinine-cystatin C equation differed from the mGFR by more than 30%. CONCLUSIONS The diagnostic performance of CKD-EPI creatinine-cystatin C equation (2012) in patients with cirrhosis was superior to conventional equations in clinical practice for estimating GFR. However, its diagnostic performance was substantially worse than

  9. The implications of anatomical and functional changes of the aging kidney: with an emphasis on the glomeruli.

    PubMed

    Glassock, Richard J; Rule, Andrew D

    2012-08-01

    Aging is both a natural and inevitable biological process. With advancing age, the kidneys undergo anatomical and physiological changes that are not only the consequences of normal organ senescence but also of specific diseases (such as atherosclerosis or diabetes) that occur with greater frequency in older individuals. Disentangling these two processes, one pathologic and the other physiologic, is difficult. In this review we concentrate on the glomerular structural and functional alterations that accompany natural aging. We also analyze how these changes affect the identification of individuals of advancing age as having chronic kidney disease (CKD) and how these changes can influence prognosis for adverse outcomes, including all-cause mortality, end-stage renal disease, cardiovascular events and mortality, and acute kidney injury. This review describes important shortcomings and deficiencies with our current approach and understanding of CKD in the older and elderly adult.

  10. THE CALCIUM CONTENT OF THE KIDNEY AS RELATED TO PARATHYROID FUNCTION

    PubMed Central

    Donohue, William; Spingarn, Clifford; Pappenheimer, Alwin M.

    1937-01-01

    Partial nephrectomy in rats leads to an increase in the calcium content of the residual renal tissue. This increase is correlated with enlargement of the parathyroid glands, the degree depending upon the severity of the kidney lesions. Early removal of the parathyroid glands almost completely prevents this increase in kidney calcium. PMID:19870692

  11. Water extract of Acer tegmentosum reduces bone destruction by inhibiting osteoclast differentiation and function.

    PubMed

    Ha, Hyunil; Shim, Ki-Shuk; Kim, Taesoo; An, Hyosun; Lee, Chung-Jo; Lee, Kwang Jin; Ma, Jin Yeul

    2014-04-01

    The stem of Acer tegmentosum has been widely used in Korea for the treatment of hepatic disorders. In this study, we investigated the bone protective effect of water extract of the stem of Acer tegmentosum (WEAT). We found that WEAT inhibits osteoclast differentiation induced by receptor activator of nuclear factor-κB ligand (RANKL), an essential cytokine for osteoclast differentiation. In osteoclast precursor cells, WEAT inhibited RANKL-induced activation of JNK, NF-κB, and cAMP response element-binding protein, leading to suppression of the induction of c-Fos and nuclear factor of activated T cells cytoplasmic 1, key transcription factors for osteoclast differentiation. In addition, WEAT inhibited bone resorbing activity of mature osteoclasts. Furthermore, the oral administration of WEAT reduced RANKL-induced bone resorption and trabecular bone loss in mice. Taken together, our study demonstrates that WEAT possesses a protective effect on bone destruction by inhibiting osteoclast differentiation and function.

  12. Estimation of bone Calcium-to-Phosphorous mass ratio using dual-energy nonlinear polynomial functions

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, P.; Koukou, V.; Martini, N.; Michail, C.; Kounadi, E.; Kandarakis, I.; Nikiforidis, G.; Fountos, G.

    2015-09-01

    In this study an analytical approximation of dual-energy inverse functions is presented for the estimation of the calcium-to-phosphorous (Ca/P) mass ratio, which is a crucial parameter in bone health. Bone quality could be examined by the X-ray dual-energy method (XDEM), in terms of bone tissue material properties. Low- and high-energy, log- intensity measurements were combined by using a nonlinear function, to cancel out the soft tissue structures and generate the dual energy bone Ca/P mass ratio. The dual-energy simulated data were obtained using variable Ca and PO4 thicknesses on a fixed total tissue thickness. The XDEM simulations were based on a bone phantom. Inverse fitting functions with least-squares estimation were used to obtain the fitting coefficients and to calculate the thickness of each material. The examined inverse mapping functions were linear, quadratic, and cubic. For every thickness, the nonlinear quadratic function provided the optimal fitting accuracy while requiring relative few terms. The dual-energy method, simulated in this work could be used to quantify bone Ca/P mass ratio with photon-counting detectors.

  13. [Radioisotopic quantification of kidney function using Tc-99m-DMSA. Comparison with creatinine clearance in children with a single kidney].

    PubMed

    Baillet, G; Gagnadoux, M F; Mathonnat, F; de Vernejoul, P; Broyer, M

    1986-01-01

    To assess the accuracy of renal function quantification with Tc 99m-DMSA in children, we compared DMSA renal uptake and creatinine clearance in 16 cases of children with single kidney. The age of the patients ranged from two month to fourteen years. DMSA renal uptake was measured 7 hours after injection and was normalized in percent of the injected activity. A significant correlation was found between creatinine clearance and DMSA uptake (Pearson's r = 0.866, p less than 0.01). Normal creatinine clearance in children (80 to 120 ml/min-1 X 1.73 m-2) allowed determination of normal renal uptake (36 to 60%). This study indicates that in cases of asymmetrical renal impairment renal uptake reflects split renal creatinine clearance. Since the former is much easier to measure, DMSA should play an important role in the evaluation of differential renal function.

  14. Testing Danegaptide Effects on Kidney Function after Ischemia/Reperfusion Injury in a New Porcine Two Week Model

    PubMed Central

    Keller, Anna K.; Hansen, Rie Schultz; Nørregaard, Rikke; Krag, Søren Palmelund; Møldrup, Ulla; Pedersen, Michael; Jespersen, Bente; Birn, Henrik

    2016-01-01

    Introduction Ischemia/reperfusion injury (I/R-I) is a leading cause of acute kidney injury (AKI) and is associated with increased mortality. Danegaptide is a selective modifier of the gap junction protein connexion 43. It has cytoprotective as well as anti-arrhythmic properties and has been shown to reduce the size of myocardial infarct in pigs. The aim of this study was to investigate the ischemia-protective effect of Danegaptide in a porcine renal I/R-I model with two weeks follow up. Methods Unilateral renal I/R-I was induced in pigs by clamping the left renal artery over a two hour period. The model allowed examination of renal blood flow by magnetic resonance imaging (MRI) and the measurement of single kidney GFR two weeks after injury. Eleven animals were randomized to Danegaptide-infusion while nine animals received placebo. Kidney histology and urinary neutrophil gelatinase-associated lipocalin (NGAL) excretion were included as markers of AKI. Results Unilateral kidney I/R-I resulted in an immediate ~50% GFR reduction, associated with a four-fold increase in urinary NGAL-excretion. Fourteen days after I/R-I, the total GFR was ~75% of baseline with a significantly lower GFR in the injured left kidney compared to the right kidney. No differences in GFR were observed between the treated and non-treated animals immediately after I/R-I or at Day 14. Furthermore, no differences were observed in the urinary excretion of NGAL, renal blood flow or other markers of renal function. Conclusions As expected this porcine renal I/R-I model was associated with reduced GFR two weeks after injury. Danegaptide did not improve renal function after I/R-I. PMID:27760220

  15. Hypertension and nephrotoxicity in the rate of decline in kidney function in diabetic nephropathy.

    PubMed

    Aubia, J; Hojman, L; Chine, M; Lloveras, J; Masramon, J; Llorach, I; Cuevas, X; Puig, J M

    1987-01-01

    Serum creatinine levels were determined prospectively every 2 to 3 months in 40 patients with diabetic nephropathy for a global observation period of 864 months. The monthly creatinine increasing rate was significantly lower in normotensive periods, mean arterial pressure (MAP) less than 115 mmHg, when compared with hypertensive periods, MAP greater than 125 mmHg. No significant difference was shown in periods with borderline hypertension (MAP between 115-124 mmHg). The mean creatinine increases were of 0.036 mg/dl/month, 0.3 mg/dl/month and 0.046 mg/dl/month respectively. Normotension was associated with a slowing down of the rate of decline in renal function in this group of moderate kidney failure with an initial mean serum creatinine of 2.26 mg/dl. The exposure of patients to nephrotoxics (aminoglycosides, and possibly anesthesia) significantly accelerated the decline in renal function: 0.39 mg/dl/month and 0.17 mg/dl/month respectively according to the concomitance or not of toxics and hypertension. The reported protective effect of diabetes against aminoglycosides nephrotoxicity in experimental conditions was not reflected in our clinical results. On the contrary, we suggest a possible enhanced sensibility of the diabetic patient with diabetic nephropathy to aminoglycosides leading to an acceleration of the progression of renal failure.

  16. Long bone development requires a threshold of Hox function.

    PubMed

    González-Martín, Ma Carmen; Mallo, Moises; Ros, Marian A

    2014-08-15

    The Hoxd(Del(11-13)) mutant is one of the animal models for human synpolydactyly, characterized by short and syndactylous digits. Here we have characterized in detail the cartilage and bone defects in these mutants. We report two distinct phenotypes: (i) a delay and change in pattern of chondrocyte maturation of metacarpals/metatarsals and (ii) formation of a poor and not centrally positioned primary ossification center in the proximal-intermediate phalanx. In the metacarpals of Hoxd(Del(11-13)) mutants, ossification occurs postnataly, in the absence of significant Ihh expression and without the establishment of growth plates, following patterns similar to those of short bones. The strong downregulation in Ihh expression is associated with a corresponding increase of the repressor form of Gli3. To evaluate the contribution of this alteration to the phenotype, we generated double Hoxd(Del(11-13));Gli3 homozygous mutants. Intriguingly, these double mutants showed a complete rescue of the phenotype in metatarsals but only partial phenotypic rescue in metacarpals. Our results support Hox genes being required in a dose-dependent manner for long bone cartilage maturation and suggest that and excess of Gli3R mediates a significant part of the Hoxd(Del(11-13)) chondrogenic phenotype.

  17. Estimation of bone perfusion as a function of intramedullary pressure in sheep

    SciTech Connect

    Rosenthal, M.S.; Lehner, C.E.; Pearson, D.W.; Kanikula, T.M.; Adler, G.G.; Venci, R.; Lanphier, E.H.; De Luca, P.M.

    1985-05-01

    It has been reported previously that following decompression (i.e. diving ascents) the intramedullary pressure (IMP) in bone can rise dramatically and possibly by the mechanism which can induce dysbaric osteonecrosis or the ''silent bends''. If the blood supply for the bone transverses the marrow compartment, than an increase in IMP could cause a temporary decrease in perfusion or hemostasis and hence ischemia leading to bone necrosis. To test this hypothesis, the authors measured the perfusion of bone in sheep as a function of IMP. The bone perfusion was estimated by measuring the perfusion-limited clearance of Ar-41 (E..gamma..=1293 keV, T/sub 1/2/=1.83 h) from the bone mineral matrix of sheep's tibia. The argon gas was formed in vivo by the fast neutron activation of Ca-44 to Ar-41 following the Ca-44(n,..cap alpha..) reaction. Clearance of Ar-41 was measured by time gated gamma-ray spectroscopy. These results indicate that an elevation of intramedullary pressure can decrease perfusion in bone and may cause bone necrosis.

  18. Kidney function and blood pressure in preschool-aged children exposed to cadmium and arsenic - potential alleviation by selenium

    SciTech Connect

    Skröder, Helena; Hawkesworth, Sophie; Kippler, Maria; El Arifeen, Shams; Wagatsuma, Yukiko; Moore, Sophie E.; Vahter, Marie

    2015-07-15

    Background: Early-life exposure to toxic compounds may cause long-lasting health effects, but few studies have investigated effects of childhood exposure to nephrotoxic metals on kidney and cardiovascular function. Objectives: To assess effects of exposure to arsenic and cadmium on kidney function and blood pressure in pre-school-aged children, and potential protection by selenium. Methods: This cross-sectional study was part of the 4.5 years of age (range: 4.4–5.4 years) follow-up of the children from a supplementation trial in pregnancy (MINIMat) in rural Bangladesh, and nested studies on early-life metal exposures. Exposure to arsenic, cadmium and selenium from food and drinking water was assessed by concentrations in children's urine, measured by ICP-MS. Kidney function was assessed by the estimated glomerular filtration rate (eGFR, n=1106), calculated from serum cystatin C, and by kidney volume, measured by ultrasound (n=375). Systolic and diastolic blood pressure was measured (n=1356) after five minutes rest. Results: Multivariable-adjusted regression analyzes showed that exposure to cadmium, but not arsenic, was inversely associated with eGFR, particularly in girls. A 0.5 µg/L increase in urinary cadmium among the girls (above spline knot at 0.12) was associated with a decrease in eGFR of 2.6 ml/min/1.73 m{sup 2}, corresponding to 0.2SD (p=0.022). A slightly weaker inverse association with cadmium was also indicated for kidney volume, but no significant associations were found with blood pressure. Stratifying on children's urinary selenium (below or above median of 12.6 µg/L) showed a three times stronger inverse association of U-Cd with eGFR (all children) in the lower selenium stratum (B=−2.8; 95% CI: −5.5, −0.20; p=0.035), compared to those with higher selenium (B=−0.79; 95% CI: −3.0, 1.4; p=0.49). Conclusions: Childhood cadmium exposure seems to adversely affect kidney function, but not blood pressure, in this population of young children

  19. Plasma Levels of Middle Molecules to Estimate Residual Kidney Function in Haemodialysis without Urine Collection

    PubMed Central

    Vilar, Enric; Boltiador, Capella; Wong, Jonathan; Viljoen, Adie; Machado, Ashwini; Uthayakumar, Arani; Farrington, Ken

    2015-01-01

    Background Residual Kidney Function (RKF) is associated with survival benefits in haemodialysis (HD) but is difficult to measure without urine collection. Middle molecules such as Cystatin C and β2-microglobulin accumulate in renal disease and plasma levels have been used to estimate kidney function early in this condition. We investigated their use to estimate RKF in patients on HD. Design Cystatin C, β2-microglobulin, urea and creatinine levels were studied in patients on incremental high-flux HD or hemodiafiltration(HDF). Over sequential HD sessions, blood was sampled pre- and post-session 1 and pre-session 2, for estimation of these parameters. Urine was collected during the whole interdialytic interval, for estimation of residual GFR (GFRResidual = mean of urea and creatinine clearance). The relationships of plasma Cystatin C and β2-microglobulin levels to GFRResidual and urea clearance were determined. Results Of the 341 patients studied, 64% had urine output>100ml/day, 32.6% were on high-flux HD and 67.4% on HDF. Parameters most closely correlated with GFRResidual were 1/β2-micoglobulin (r2 0.67) and 1/Cystatin C (r2 0.50). Both these relationships were weaker at low GFRResidual. The best regression model for GFRResidual, explaining 67% of the variation, was: GFRResidual=160.3⋅(1β2m)−4.2 Where β2m is the pre-dialysis β2 microglobulin concentration (mg/L). This model was validated in a separate cohort of 50 patients using Bland-Altman analysis. Areas under the curve in Receiver Operating Characteristic analysis aimed at identifying subjects with urea clearance≥2ml/min/1.73m2 was 0.91 for β2-microglobulin and 0.86 for Cystatin C. A plasma β2-microglobulin cut-off of ≤19.2mg/L allowed identification of patients with urea clearance ≥2ml/min/1.73m2 with 90% specificity and 65% sensitivity. Conclusion Plasma pre-dialysis β2-microglobulin levels can provide estimates of RKF which may have clinical utility and appear superior to cystatin C. Use

  20. Effect of cancellous bone on the functionally graded dental implant concept.

    PubMed

    Hedia, H S

    2005-01-01

    In a previous work by the author [H.S. Hedia and M. Nemat-Alla, Design optimization of functionally graded dental implant, submitted to be published in the J. Bio-Medical Materials and Engineering], a functionally graded material dental implant was designed without cansellous bone in the model. In this investigation the effect of presence cancellous bone as a thin layer around the dental implant was investigated. It is well known that the main inorganic component of natural bone is hydroxyapatite (HAP) and that the main organic component is collagen (Col). Hydroxyapatite HAP implants are not bioabsorbable, and because induction of bone into and around the artificially made HAP is not always satisfactory, loosening or breakage of HAP implants may occur after implantation in the clinical application. The development of a new material which is bioabsorbable and which has osteoconductive activity is needed. Therefore, the aim of the current investigation is to design an implant, in the presence of cancellous bone as a thin layer around it, from functionally graded material. In this study, a novel biomaterial, collagen/hydroxyapatite (Col/HAP) as a functionally graded material (FGM), was developed using the finite element and optimization techniques which are available in the ANSYS package. These materials have a self-organized character similar to that of natural bone. The investigations have shown that the maximum stress in the cortical bone and cancellous bone for the Col/HAP functionally graded implant has been reduced by about 40% and 19% respectively compared to currently used titanium dental implants.

  1. Disruption of Lrp4 function by genetic deletion or pharmacological blockade increases bone mass and serum sclerostin levels.

    PubMed

    Chang, Ming-Kang; Kramer, Ina; Huber, Thomas; Kinzel, Bernd; Guth-Gundel, Sabine; Leupin, Olivier; Kneissel, Michaela

    2014-12-01

    We identified previously in vitro LRP4 (low-density lipoprotein receptor-related protein 4) as a facilitator of the WNT (Wingless-type) antagonist sclerostin and found mutations disrupting this function to be associated with high bone mass in humans similar to patients lacking sclerostin. To further delineate the role of LRP4 in bone in vivo, we generated mice lacking Lrp4 in osteoblasts/osteocytes or osteocytes only. Lrp4 deficiency promoted progressive cancellous and cortical bone gain in both mutants, although more pronouncedly in mice deficient in osteoblast/osteocyte Lrp4, consistent with our observation in human bone that LRP4 is most strongly expressed by osteoblasts and early osteocytes. Bone gain was related primarily to increased bone formation. Interestingly, Lrp4 deficiency in bone dramatically elevated serum sclerostin levels whereas bone expression of Sost encoding for sclerostin was unaltered, indicating that osteoblastic Lrp4 retains sclerostin within bone. Moreover, we generated anti-LRP4 antibodies selectively blocking sclerostin facilitator function while leaving unperturbed LRP4-agrin interaction, which is essential for neuromuscular junction function. These antibodies increased bone formation and thus cancellous and cortical bone mass in skeletally mature rodents. Together, we demonstrate a pivotal role of LRP4 in bone homeostasis by retaining and facilitating sclerostin action locally and provide a novel avenue to bone anabolic therapy by antagonizing LRP4 sclerostin facilitator function.

  2. Disruption of Lrp4 function by genetic deletion or pharmacological blockade increases bone mass and serum sclerostin levels

    PubMed Central

    Chang, Ming-Kang; Kramer, Ina; Huber, Thomas; Kinzel, Bernd; Guth-Gundel, Sabine; Leupin, Olivier; Kneissel, Michaela

    2014-01-01

    We identified previously in vitro LRP4 (low-density lipoprotein receptor-related protein 4) as a facilitator of the WNT (Wingless-type) antagonist sclerostin and found mutations disrupting this function to be associated with high bone mass in humans similar to patients lacking sclerostin. To further delineate the role of LRP4 in bone in vivo, we generated mice lacking Lrp4 in osteoblasts/osteocytes or osteocytes only. Lrp4 deficiency promoted progressive cancellous and cortical bone gain in both mutants, although more pronouncedly in mice deficient in osteoblast/osteocyte Lrp4, consistent with our observation in human bone that LRP4 is most strongly expressed by osteoblasts and early osteocytes. Bone gain was related primarily to increased bone formation. Interestingly, Lrp4 deficiency in bone dramatically elevated serum sclerostin levels whereas bone expression of Sost encoding for sclerostin was unaltered, indicating that osteoblastic Lrp4 retains sclerostin within bone. Moreover, we generated anti-LRP4 antibodies selectively blocking sclerostin facilitator function while leaving unperturbed LRP4–agrin interaction, which is essential for neuromuscular junction function. These antibodies increased bone formation and thus cancellous and cortical bone mass in skeletally mature rodents. Together, we demonstrate a pivotal role of LRP4 in bone homeostasis by retaining and facilitating sclerostin action locally and provide a novel avenue to bone anabolic therapy by antagonizing LRP4 sclerostin facilitator function. PMID:25404300

  3. Biology of bone and how it orchestrates the form and function of the skeleton

    NASA Technical Reports Server (NTRS)

    Sommerfeldt, D. W.; Rubin, C. T.

    2001-01-01

    The principal role of the skeleton is to provide structural support for the body. While the skeleton also serves as the body's mineral reservoir, the mineralized structure is the very basis of posture, opposes muscular contraction resulting in motion, withstands functional load bearing, and protects internal organs. Although the mass and morphology of the skeleton is defined, to some extent, by genetic determinants, it is the tissue's ability to remodel--the local resorption and formation of bone--which is responsible for achieving this intricate balance between competing responsibilities. The aim of this review is to address bone's form-function relationship, beginning with extensive research in the musculoskeletal disciplines, and focusing on several recent cellular and molecular discoveries which help understand the complex interdependence of bone cells, growth factors, physical stimuli, metabolic demands, and structural responsibilities. With a clinical and spine-oriented audience in mind, the principles of bone cell and molecular biology and physiology are presented, and an attempt has been made to incorporate epidemiologic data and therapeutic implications. Bone research remains interdisciplinary by nature, and a deeper understanding of bone biology will ultimately lead to advances in the treatment of diseases and injuries to bone itself.

  4. Quantifying changes in the bone microarchitecture using Minkowski-functionals and scaling vectors: a comparative study

    NASA Astrophysics Data System (ADS)

    Raeth, Christoph W.; Mueller, Dirk; Link, Thomas M.; Boehm, Holger; Monetti, Roberto

    2006-03-01

    Osteoporosis is a metabolic bone disease leading to de-mineralization and increased risk of fracture. The two major factors that determine the biomechanical competence of bone are the degree of mineralization and the micro-architectural integrity. Today, modern imaging modalities exist that allow to depict structural details of trabecular bone tissue. Recently, non-linear techniques in 2D and 3D based on the scaling vector method (SVM) and the Minkowski functionals (MF) have been introduced, which show excellent performance in predicting bone strength and fracture risk. However, little is known about the performance of the various parameters with respect to monitoring structural changes due to progression of osteoporosis or as a result of medical treatment. We test and compare the two methodologies using realistic two-dimensional simulations of bone structures, which model the effect of osteoblasts and osteoclasts on the local change of relative bone density. Different realizations with slightly varying control parameters are considered. Our results show that even small changes in the trabecular structures, which are induced by variation of a control parameter of the system, become discernible by applying both the MF and the locally adapted scaling vector method. The results obtained with SVM are superior to those obtained with the Minkowski functionals. An additive combination of both measures drastically increases the sensitivity to slight changes in bone structures. These findings may be especially important for monitoring the treatment of patients, where the early recognition of (drug-induced) changes in the trabecular structure is crucial.

  5. Roles of estrogen and progesterone in modulating renal nerve function in the rat kidney

    PubMed Central

    Graceli, J.B.; Cicilini, M.A.; Bissoli, N.S.; Abreu, G.R.; Moysés, M.R.

    2013-01-01

    The maintenance of extracellular Na+ and Cl- concentrations in mammals depends, at least in part, on renal function. It has been shown that neural and endocrine mechanisms regulate extracellular fluid volume and transport of electrolytes along nephrons. Studies of sex hormones and renal nerves suggested that sex hormones modulate renal function, although this relationship is not well understood in the kidney. To better understand the role of these hormones on the effects that renal nerves have on Na+ and Cl- reabsorption, we studied the effects of renal denervation and oophorectomy in female rats. Oophorectomized (OVX) rats received 17β-estradiol benzoate (OVE, 2.0 mg·kg-1·day-1, sc) and progesterone (OVP, 1.7 mg·kg-1·day-1, sc). We assessed Na+ and Cl- fractional excretion (FENa+ and FECl-, respectively) and renal and plasma catecholamine release concentrations. FENa+, FECl-, water intake, urinary flow, and renal and plasma catecholamine release levels increased in OVX vs control rats. These effects were reversed by 17β-estradiol benzoate but not by progesterone. Renal denervation did not alter FENa+, FECl-, water intake, or urinary flow values vs controls. However, the renal catecholamine release level was decreased in the OVP (236.6±36.1 ng/g) and denervated rat groups (D: 102.1±15.7; ODE: 108.7±23.2; ODP: 101.1±22.1 ng/g). Furthermore, combining OVX + D (OD: 111.9±25.4) decreased renal catecholamine release levels compared to either treatment alone. OVE normalized and OVP reduced renal catecholamine release levels, and the effects on plasma catecholamine release levels were reversed by ODE and ODP replacement in OD. These data suggest that progesterone may influence catecholamine release levels by renal innervation and that there are complex interactions among renal nerves, estrogen, and progesterone in the modulation of renal function. PMID:23828583

  6. Effect of Bicarbonate Supplementation on Renal Function and Nutritional Indices in Predialysis Advanced Chronic Kidney Disease

    PubMed Central

    Jeong, Jiwon; Kwon, Soon Kil

    2014-01-01

    Current practice guidelines recommend alkali therapy in patients with chronic kidney disease (CKD) and metabolic acidosis to prevent complications. This study aims to investigate the effect of oral sodium bicarbonate supplementation on the progression of renal function and nutritional indices in patients with predialysis advanced CKD. Forty patients with predialysis stage 5 CKD(estimated glomerular filtration rate, eGFR <15mL/min per 1.73m2) and 40 patients with stage 4 CKD (eGFR 15 to 30mL/min per 1.73m2) who had a total CO2 less than 22mEq/L were assigned into the bicarbonate treatment group or control group for 12 months. In stage 4 CKD, there were significant differences in the changes of eGFR during the study between the treatment group and the control group (-2.30±4.49 versus -6.58±6.32mL/min/1.73m2, p<0.05). However, in stage 5 CKD, there were no significant differences in the change of eGFR during the study between the two groups (-2.10±2.06 versus -3.23±1.95mL/min/1.73 m2).There were no significant differences in the changes of nutritional indices such as albumin, prealbumin, transferrin, total lymphocyte count (TLC), and Ondodera's prognostic nutritional index (OPNI) during the study between the two groups. In stage 5 CKD, there were significant differences in the changes of TLC and OPNI between the two groups. In conclusion, our results demonstrate that bicarbonate supplementation slows the rate of decline of renal function in stage 4 CKD and improves nutritional indices in stage 5 CKD. Alkali therapy in advanced CKD may have beneficial effect on renal function and malnutrition. PMID:25606047

  7. Effects of Recombinant Human Erythropoietin on Resistance Artery Endothelial Function in Stage 4 Chronic Kidney Disease

    PubMed Central

    Briet, Marie; Barhoumi, Tlili; Mian, Muhammad Oneeb Rehman; Sierra, Cristina; Boutouyrie, Pierre; Davidman, Michael; Bercovitch, David; Nessim, Sharon J.; Frisch, Gershon; Paradis, Pierre; Lipman, Mark L.; Schiffrin, Ernesto L.

    2013-01-01

    Background Recent studies have raised concern about the safety of erythropoiesis‐stimulating agents because of evidence of increased risk of hypertension and cardiovascular morbidity and mortality in chronic kidney disease (CKD) patients. In the present study, we investigated the effects of recombinant human erythropoietin (EPO) on endothelial function of gluteal subcutaneous resistance arteries isolated from 17 stage 4 patients (estimated glomerular filtration rate 21.9±7.4 mL/min per 1.73 m2) aged 63±13 years. Methods and Results Arteries were mounted on a pressurized myograph. EPO impaired endothelium‐dependent relaxation in a concentration‐dependent manner. The maximal response to acetylcholine with EPO at 1, 10, and 20 IU/mL was reduced by 12%, 34%, and 43%, respectively, compared with the absence of EPO (P<0.001). EPO‐induced endothelial dysfunction was significantly associated with carotid stiffness and history of cardiovascular events. EPO had no effect on norepinephrine‐induced vasoconstriction or sodium nitroprusside–induced relaxation. ABT‐627, an endothelin type A receptor antagonist, and tempol, a superoxide dismutase mimetic, partially reversed the altered endothelial function in the presence of EPO (P<0.01). Increased expression of endothelin‐1 was found in the vessel wall after incubation with EPO. Conclusions EPO alters endothelial function of resistance arteries in CKD patients via a mechanism involving in part oxidative stress and signaling through an endothelin type A receptor. EPO‐induced endothelial dysfunction could contribute to deleterious effects of EPO described in large interventional trials. PMID:23584809

  8. Kidney Facts

    MedlinePlus

    ... Home / Before The Transplant / Organ Facts / Kidney Organ Facts Heart Lung Heart/Lung Kidney Pancreas Kidney/Pancreas Liver ... Receiving "the call" About the Operation Heart Lung Heart/Lung Kidney Pancreas Kidney/Pancreas Liver Intestine Kidney Facts The kidneys are a pair of reddish-brown ...

  9. The risk of allograft failure and the survival benefit of kidney transplantation are complicated by delayed graft function.

    PubMed

    Gill, Jagbir; Dong, Jianghu; Rose, Caren; Gill, John S

    2016-06-01

    Concern about the long-term impact of delayed graft function (DGF) may limit the use of high-risk organs for kidney transplantation. To understand this better, we analyzed 29,598 mate kidney transplants from the same deceased donor where only 1 transplant developed DGF. The DGF associated risk of graft failure was greatest in the first posttransplant year, and in patients with concomitant acute rejection (hazard ratio: 8.22, 95% confidence interval: 4.76-14.21). In contrast, the DGF-associated risk of graft failure after the first posttransplant year in patients without acute rejection was far lower (hazard ratio: 1.15, 95% confidence interval: 1.02-1.29). In subsequent analysis, recipients of transplants complicated by DGF still derived a survival benefit when compared with patients who received treatment with dialysis irrespective of donor quality as measured by the Kidney Donor Profile Index (KDPI). The difference in the time required to derive a survival benefit was longer in transplants with DGF than in transplants without DGF, and this difference was greatest in recipients of lower quality kidneys (difference: 250-279 days for KDPI 20%-60% vs. 809 days for the KDPI over 80%). Thus, the association of DGF with graft failure is primarily limited to the first posttransplant year. Transplants complicated by DGF provide a survival benefit compared to treatment with dialysis, but the survival benefit is lower in kidney transplants with lower KDPI. This information may increase acceptance of kidneys at high risk for DGF and inform strategies to minimize the risk of death in the setting of DGF.

  10. Functional and histologic alterations in growing solitary rat kidney as result of extracorporeal shockwaves.

    PubMed

    Ferreira, U; Claro, J de A; Rodrigues Netto, N; Denardi, F; Figueiredo, J F; Riccetto, C L

    1995-02-01

    The long-term effects of extracorporeal shockwave lithotripsy (SWL) on children treated for renal calculi are unclear. To study the effects on the immature animal, we evaluated 31 Wistar white rats that underwent right nephrectomy at 30 days of age. At 40 days of age they were divided into three groups: a control group of 10 rats that received no shockwaves; Group I (9 rats) that received 1000 shockwaves at 16.0 kV, and Group II (12 animals) that received 1000 shock waves at 17.2 kV. Six months later at maturity (7 months and 10 days of age), the following parameters were measured: (1) body and renal weight; (2) blood lithium, sodium, potassium, and creatinine; (3) fractional lithium, sodium, and potassium excretion; and (4) clearances of lithium and creatinine. The kidneys were studied grossly and histologically. We found no significant changes in overall animal and renal growth between the post-SWL and control groups. However, there were significant changes in renal function. The animals in Groups I and II presented significant increases in blood potassium compared with the control group. Furthermore, the 1000 x 17.2 kV group showed permanent histologic renal changes, including red cells in Bowman's capsule and glomerular congestion. The disorders caused by SWL are compatible with hyporeninemic hypoaldosteronism, inappropriately low plasma renin activity, and aldosterone deficiency.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Acute effects of grayanotoxin in rhododendron honey on kidney functions in rats.

    PubMed

    Silici, S; Doğan, Z; Sahin, H; Atayoğlu, T; Yakan, B

    2016-02-01

    The aim of the study is to evaluate the acute biochemical and histological changes in rat kidneys after treatment with grayanotoxin (GTX) of rhododendron honey (RH). A total of 60 Sprague-Dawley female rats were divided into five groups of 12 rats each, one being a control group (group 1) and group 2 was treated with 0.015 mg/kg/bw of GTX standard preparation via intraperitoneal injection. Groups 3, 4, and 5 were given RH at doses of 0.1, 0.5, and 2.5 g/kg/bw, respectively, via oral gavage. Compared to the control group, significant increases were observed in glucose, blood urea nitrogen (BUN), and creatinine levels of the GTX-injected groups after 1 h. However, in low dose RH group, such an increase was not observed and had a normal appearance histologically. Therefore, low dose (1 g/kg/bw) of RH produces no acute adverse effects on renal functions of rats.

  12. The Effects of Simvastatin on Proteinuria and Renal Function in Patients with Chronic Kidney Disease

    PubMed Central

    Satirapoj, Bancha; Promrattanakun, Anan; Supasyndh, Ouppatham; Choovichian, Panbuppa

    2015-01-01

    Current data suggests that statins might have beneficial effects on renal outcomes. Beneficial effects of statin treatment on renal progression in advanced chronic kidney disease (CKD) are obviously controversial. In a retrospective, controlled study, the authors have evaluated the effects of 53-week treatment with simvastatin, versus no treatment on proteinuria and renal function among 51 patients with CKD stages III-IV. By the end of the 53-week treatment, urine protein excretion decreased from 0.96 (IQR 0.54, 2.9) to 0.48 (IQR 0.18, 0.79) g/g creatinine (P < 0.001) in patients treated with simvastatin in addition to ACEI and ARBs, while no change was observed among the untreated patients. Moreover, a significantly greater decrease in urine protein excretion was observed in the simvastatin group as compared with the untreated group. The mean changes of serum creatinine and eGFR did not significantly differ in both groups. A significantly greater decrease in total cholesterol and LDL-cholesterol was found in the simvastatin group than in the untreated group. In summary, apart from lipid lowering among CKD patients, ingesting simvastatin was associated with a decrease in proteinuria. These statin effects may become important for supportive therapy in renal damage in the future. PMID:26543646

  13. Kidney function and risk triage in adults: threshold values and hierarchical importance

    PubMed Central

    Foley, Robert N.; Wang, Changchun; Snyder, Jon J.; Rule, Andrew D.; Collins, Allan J.

    2012-01-01

    In this study, we attempted to identify threshold values for kidney function measures that maximally discriminate short-term mortality, to identify major population segments in which these thresholds apply, and to classify the hierarchical rank of the thresholds when other classic risk factors are also considered. To do this we retrospectively identified estimated glomerular filtration rate (eGFR) and urinary albumin–creatinine ratio (ACR) thresholds to maximize sensitivity and specificity predictions for death in non-institutionalized NHANES III participants, representative of the United States population from 1988 to 1994 and followed through 2000. In a classification tree excluding dichotomizing variables, age 57 years was initially selected; ACR appeared in the second round and eGFR in the third. The prognostic discrimination of optimum eGFR and ACR thresholds exceeded those of commonly advocated public health screening measures, such as LDL cholesterol and fasting blood glucose, with body mass index appearing in the third round, and smoking and LDL cholesterol in the fourth. In a tree permitting dichotomizing variables, the ACR, systolic blood pressure, and glucose first appeared in the third round, with eGFR, smoking, and LDL in the fourth. Thus, the albumin–creatinine ratio and eGFR may be at least as efficient for survival-based clinical triage as most other classic risk factors. PMID:20720528

  14. Polarized endocytosis by Madin-Darby canine kidney cells transfected with functional chicken liver glycoprotein receptor

    PubMed Central

    1989-01-01

    We have studied the expression of the chicken hepatic glycoprotein receptor (chicken hepatic lectin [CHL]) in Madin-Darby canine kidney (MDCK) cells, by transfection of its cDNA under the control of a retroviral promotor. Transfected cell lines stably express 87,000 surface receptors/cell with a kd = 13 nM. In confluent monolayers, approximately 40% of CHL is localized at the plasma membrane. 98% of the surface CHL is expressed at the basolateral surface where it performs polarized endocytosis and degradation of glycoproteins carrying terminal N-acetylglucosamine at a rate of 50,000 ligand molecules/h. Studies of the half-life of metabolically labeled receptor and of the stability of biotinylated cell surface receptor after internalization indicate that transfected CHL performs several rounds of uptake and recycling before it gets degraded. The successful expression of a functional basolateral receptor in MDCK cells opens the way for the characterization of the mechanisms that control targeting and recycling of proteins to the basolateral membrane of epithelial cells. PMID:2687287

  15. /sup 99m/Tc-aprotinin: A new tracer for kidney morphology and function

    SciTech Connect

    Bianchi, C.; Donadio, C.; Tramonti, G.; Lorusso, P.; Bellitto, L.; Lunghi, F.

    1984-01-01

    Aprotinin (Ap), a low molecular weight polyeptide (6500 dalton), is a protease inhibitor which is electively and stably accumulated in the kidney. In 112 adult patients, with either uni- or bilateral renal disease with different degrees of renal impairment (from normal GFR to advanced renal failure), renal scans were performed by means of Ap labelled with /sup 99m/Tc. Highly satisfactory renal scans were obtained in all patients. In 20 patients with renal failure (serum creatinine 1.8 - 8.5 mg/dl, mean 4.7) a comparison was made of the renal scans obtained with /sup 99m/Tc-Ap and with /sup 99m/Tc-DMSA. /sup 99m/Tc-Ap was slightly better than /sup 99m/Tc-DMSA, especially in patients with far advanced renal failure. Some aspects of the pharmacokinetics of /sup 99m/Tc-Ap were studied in 72 cases. In 22 of these patients plasma clearance of /sup 99m/Tc-Ap was determined by the single injection method using a two-compartment model. In patients with GFR>90 ml/min plasma cl of /sup 99m/Tc-Ap was 67.6 +- 8.4 SD ml/min. A good correlation was observed between plasma clearance of /sup 99m/Tc-Ap and GFR (r = 0.74). After i.v. injection /sup 99m/Tc-Ap was stably fixed by the kidney. Renal radioactivity remained stable between the 2nd and the 8th hour after the injection. Urinary excretion of radioactivity measured in 35 patients in the first and in the second 2-hour interval after i.v. injection of /sup 99m/Tc-Ap was negligible in all patients (2.7 +- 1.5 SD percent of the dose in the fist 2 hours; 2.8 +- 1.4 SD between the 2nd and the 4th hour). Conclusions. /sup 99m/Tc-Ap is an excellent agent for renal imaging. It also seems promising for renal function studies.

  16. Monitoring molecular, functional and morphologic aspects of bone metastases using non-invasive imaging.

    PubMed

    Bauerle, Tobias; Komljenovic, Dorde; Semmler, Wolfhard

    2012-03-01

    Bone is among the most common locations of metastasis and therefore represents an important clinical target for diagnostic follow-up in cancer patients. In the pathogenesis of bone metastases, disseminated tumor cells proliferating in bone interact with the local microenvironment stimulating or inhibiting osteoclast and osteoblast activity. Non-invasive imaging methods monitor molecular, functional and morphologic changes in both compartments of these skeletal lesions - the bone and the soft tissue tumor compartment. In the bone compartment, morphologic information on skeletal destruction is assessed by computed tomography (CT) and radiography. Pathogenic processes of osteoclast and osteoblast activity, however, can be imaged using optical imaging, positron emission tomography (PET), single photon emission CT (SPECT) and skeletal scintigraphy. Accordingly, conventional magnetic resonance imaging (MRI) and CT as well as diffusion- weighted MRI and optical imaging are used to assess morphologic aspects on the macroscopic and cellular level of the soft tissue tumor compartment. Imaging methods such as PET, MR spectroscopy, dynamic contrast-enhanced techniques and vessel size imaging further elucidate on pathogenic processes in this compartment including information on metabolism and vascularization. By monitoring these aspects in bone lesions, new insights in the pathogenesis of skeletal metastases can be gained. In translation to the clinical situation, these novel methods for the monitoring of bone metastases might be applied in patients to improve follow-up of these lesions, in particular after therapeutic intervention. This review summarizes established and experimental imaging techniques for the monitoring of tumor and bone cell activity including molecular, functional and morphological aspects in bone metastases. PMID:22214500

  17. The uses and abuses of Vitamin D compounds in chronic kidney disease-mineral bone disease (CKD-MBD).

    PubMed

    Goldsmith, D J A; Massy, Z A; Brandenburg, V

    2014-11-01

    Vitamin D is of paramount importance to skeletal development, integrity and health. Vitamin D homeostatis is typically deranged in a number of chronic conditions, of which chronic kidney disease is one of the most important. The use of vitamin D based therapy to target secondary hyperparathyroidism is now several decades old, and there is a large body of clinical practice, experience, guidelines and research to underpin this. However, there are many unknowns, of significant clinical relevance. Amongst which is what "species" of vitamin D we should be using, in what patient, and, under what conditions. Sadly, there has been a real dearth of randomised controlled trials, and trials with outputs of clinical relevance, which means our clinical practice has not developed and refined adequately ove the last 4 decades. This article will discuss the vexed but critical questions of which vitamin D therapies might suit which kidney patients, and will high-light the many important clinical questions which urgently require answering. PMID:25498384

  18. Bone marrow-resident NK cells prime monocytes for regulatory function during infection

    PubMed Central

    Askenase, Michael H.; Han, Seong-Ji; Byrd, Allyson L.; da Fonseca, Denise Morais; Bouladoux, Nicolas; Wilhelm, Christoph; Konkel, Joanne E.; Hand, Timothy W.; Lacerda-Queiroz, Norinne; Su, Xin-Zhuan; Trinchieri, Giorgio; Grainger, John R.; Belkaid, Yasmine

    2015-01-01

    SUMMARY Tissue-infiltrating Ly6Chi monocytes play diverse roles in immunity, ranging from pathogen killing to immune regulation. How and where this diversity of function is imposed remains poorly understood. Here we show that during acute gastrointestinal infection, priming of monocytes for regulatory function preceded systemic inflammation and was initiated prior to bone marrow egress. Notably, natural killer (NK) cell-derived IFN-γ promoted a regulatory program in monocyte progenitors during development. Early bone marrow NK cell activation was controlled by systemic interleukin-12 (IL-12) produced by Batf3-dependent dendritic cells (DC) in the mucosal-associated lymphoid tissue (MALT). This work challenges the paradigm that monocyte function is dominantly imposed by local signals following tissue recruitment, and instead proposes a sequential model of differentiation in which monocytes are pre-emptively educated during development in the bone marrow to promote their tissue-specific function. PMID:26070484

  19. Human kidney amiloride-binding protein: cDNA structure and functional expression

    SciTech Connect

    Barbry, P.; Chassande, O.; Champigny, G.; Lingueglia, E.; Frelin, C.; Lazdunski, M. ); Champe, M.; Munemitsu, S.; Ullrich, A. ); Maes, P.; Tartar, A. Institut Pasteur de Lille )

    1990-10-01

    Phenamil, an analog of amiloride, is a potent blocker of the epithelial Na{sup plus} channel. It has been used to purify the porcine kidney amiloride-binding protein. Synthetic oligonucleotides derived from partial sequences have been used to screen a human kidney cDNA library and to isolate the cDNA encoding the human amiloride-binding protein. The primary structure was deduced from the DNA sequence analysis. The protein is 713 residues long, with a 19-amino acid signal peptide. The mRNA was expressed in 293-S and NIH 3T3 cells, yielding a glycoprotein (i) that binds amiloride and amiloride analogs with affinities similar to the amiloride receptor associated with the apical Na{sup plus} channel in pig kidney membranes and (ii) that is immunoprecipitated with monoclonal antibodies raised against pig kidney amiloride-binding protein.

  20. Human kidney amiloride-binding protein: cDNA structure and functional expression.

    PubMed Central

    Barbry, P; Champe, M; Chassande, O; Munemitsu, S; Champigny, G; Lingueglia, E; Maes, P; Frelin, C; Tartar, A; Ullrich, A

    1990-01-01

    Phenamil, an analog of amiloride, is a potent blocker of the epithelial Na+ channel. It has been used to purify the porcine kidney amiloride-binding protein. Synthetic oligonucleotides derived from partial sequences have been used to screen a human kidney cDNA library and to isolate the cDNA encoding the human amiloride-binding protein. The primary structure was deduced from the DNA sequence analysis. The protein is 713 residues long, with a 19-amino acid signal peptide. The mRNA was expressed in 293-S and NIH 3T3 cells, yielding a glycoprotein (i) that binds amiloride and amiloride analogs with affinities similar to the amiloride receptor associated with the apical Na+ channel in pig kidney membranes and (ii) that is immunoprecipitated with monoclonal antibodies raised against pig kidney amiloride-binding protein. Images PMID:2217167

  1. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    PubMed

    Pattaro, Cristian; Teumer, Alexander; Gorski, Mathias; Chu, Audrey Y; Li, Man; Mijatovic, Vladan; Garnaas, Maija; Tin, Adrienne; Sorice, Rossella; Li, Yong; Taliun, Daniel; Olden, Matthias; Foster, Meredith; Yang, Qiong; Chen, Ming-Huei; Pers, Tune H; Johnson, Andrew D; Ko, Yi-An; Fuchsberger, Christian; Tayo, Bamidele; Nalls, Michael; Feitosa, Mary F; Isaacs, Aaron; Dehghan, Abbas; d'Adamo, Pio; Adeyemo, Adebowale; Dieffenbach, Aida Karina; Zonderman, Alan B; Nolte, Ilja M; van der Most, Peter J; Wright, Alan F; Shuldiner, Alan R; Morrison, Alanna C; Hofman, Albert; Smith, Albert V; Dreisbach, Albert W; Franke, Andre; Uitterlinden, Andre G; Metspalu, Andres; Tonjes, Anke; Lupo, Antonio; Robino, Antonietta; Johansson, Åsa; Demirkan, Ayse; Kollerits, Barbara; Freedman, Barry I; Ponte, Belen; Oostra, Ben A; Paulweber, Bernhard; Krämer, Bernhard K; Mitchell, Braxton D; Buckley, Brendan M; Peralta, Carmen A; Hayward, Caroline; Helmer, Catherine; Rotimi, Charles N; Shaffer, Christian M; Müller, Christian; Sala, Cinzia; van Duijn, Cornelia M; Saint-Pierre, Aude; Ackermann, Daniel; Shriner, Daniel; Ruggiero, Daniela; Toniolo, Daniela; Lu, Yingchang; Cusi, Daniele; Czamara, Darina; Ellinghaus, David; Siscovick, David S; Ruderfer, Douglas; Gieger, Christian; Grallert, Harald; Rochtchina, Elena; Atkinson, Elizabeth J; Holliday, Elizabeth G; Boerwinkle, Eric; Salvi, Erika; Bottinger, Erwin P; Murgia, Federico; Rivadeneira, Fernando; Ernst, Florian; Kronenberg, Florian; Hu, Frank B; Navis, Gerjan J; Curhan, Gary C; Ehret, George B; Homuth, Georg; Coassin, Stefan; Thun, Gian-Andri; Pistis, Giorgio; Gambaro, Giovanni; Malerba, Giovanni; Montgomery, Grant W; Eiriksdottir, Gudny; Jacobs, Gunnar; Li, Guo; Wichmann, H-Erich; Campbell, Harry; Schmidt, Helena; Wallaschofski, Henri; Völzke, Henry; Brenner, Hermann; Kroemer, Heyo K; Kramer, Holly; Lin, Honghuang; Leach, I Mateo; Ford, Ian; Guessous, Idris; Rudan, Igor; Prokopenko, Inga; Borecki, Ingrid; Heid, Iris M; Kolcic, Ivana; Persico, Ivana; Jukema, J Wouter; Wilson, James F; Felix, Janine F; Divers, Jasmin; Lambert, Jean-Charles; Stafford, Jeanette M; Gaspoz, Jean-Michel; Smith, Jennifer A; Faul, Jessica D; Wang, Jie Jin; Ding, Jingzhong; Hirschhorn, Joel N; Attia, John; Whitfield, John B; Chalmers, John; Viikari, Jorma; Coresh, Josef; Denny, Joshua C; Karjalainen, Juha; Fernandes, Jyotika K; Endlich, Karlhans; Butterbach, Katja; Keene, Keith L; Lohman, Kurt; Portas, Laura; Launer, Lenore J; Lyytikäinen, Leo-Pekka; Yengo, Loic; Franke, Lude; Ferrucci, Luigi; Rose, Lynda M; Kedenko, Lyudmyla; Rao, Madhumathi; Struchalin, Maksim; Kleber, Marcus E; Cavalieri, Margherita; Haun, Margot; Cornelis, Marilyn C; Ciullo, Marina; Pirastu, Mario; de Andrade, Mariza; McEvoy, Mark A; Woodward, Mark; Adam, Martin; Cocca, Massimiliano; Nauck, Matthias; Imboden, Medea; Waldenberger, Melanie; Pruijm, Menno; Metzger, Marie; Stumvoll, Michael; Evans, Michele K; Sale, Michele M; Kähönen, Mika; Boban, Mladen; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Bouatia-Naji, Nabila; Martin, Nicholas G; Hastie, Nick; Probst-Hensch, Nicole; Soranzo, Nicole; Devuyst, Olivier; Raitakari, Olli; Gottesman, Omri; Franco, Oscar H; Polasek, Ozren; Gasparini, Paolo; Munroe, Patricia B; Ridker, Paul M; Mitchell, Paul; Muntner, Paul; Meisinger, Christa; Smit, Johannes H; Kovacs, Peter; Wild, Philipp S; Froguel, Philippe; Rettig, Rainer; Mägi, Reedik; Biffar, Reiner; Schmidt, Reinhold; Middelberg, Rita P S; Carroll, Robert J; Penninx, Brenda W; Scott, Rodney J; Katz, Ronit; Sedaghat, Sanaz; Wild, Sarah H; Kardia, Sharon L R; Ulivi, Sheila; Hwang, Shih-Jen; Enroth, Stefan; Kloiber, Stefan; Trompet, Stella; Stengel, Benedicte; Hancock, Stephen J; Turner, Stephen T; Rosas, Sylvia E; Stracke, Sylvia; Harris, Tamara B; Zeller, Tanja; Zemunik, Tatijana; Lehtimäki, Terho; Illig, Thomas; Aspelund, Thor; Nikopensius, Tiit; Esko, Tonu; Tanaka, Toshiko; Gyllensten, Ulf; Völker, Uwe; Emilsson, Valur; Vitart, Veronique; Aalto, Ville; Gudnason, Vilmundur; Chouraki, Vincent; Chen, Wei-Min; Igl, Wilmar; März, Winfried; Koenig, Wolfgang; Lieb, Wolfgang; Loos, Ruth J F; Liu, Yongmei; Snieder, Harold; Pramstaller, Peter P; Parsa, Afshin; O'Connell, Jeffrey R; Susztak, Katalin; Hamet, Pavel; Tremblay, Johanne; de Boer, Ian H; Böger, Carsten A; Goessling, Wolfram; Chasman, Daniel I; Köttgen, Anna; Kao, W H Linda; Fox, Caroline S

    2016-01-01

    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways. PMID:26831199

  2. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function

    PubMed Central

    Pattaro, Cristian; Teumer, Alexander; Gorski, Mathias; Chu, Audrey Y.; Li, Man; Mijatovic, Vladan; Garnaas, Maija; Tin, Adrienne; Sorice, Rossella; Li, Yong; Taliun, Daniel; Olden, Matthias; Foster, Meredith; Yang, Qiong; Chen, Ming-Huei; Pers, Tune H.; Johnson, Andrew D.; Ko, Yi-An; Fuchsberger, Christian; Tayo, Bamidele; Nalls, Michael; Feitosa, Mary F.; Isaacs, Aaron; Dehghan, Abbas; d'Adamo, Pio; Adeyemo, Adebowale; Dieffenbach, Aida Karina; Zonderman, Alan B.; Nolte, Ilja M.; van der Most, Peter J.; Wright, Alan F.; Shuldiner, Alan R.; Morrison, Alanna C.; Hofman, Albert; Smith, Albert V.; Dreisbach, Albert W.; Franke, Andre; Uitterlinden, Andre G.; Metspalu, Andres; Tonjes, Anke; Lupo, Antonio; Robino, Antonietta; Johansson, Åsa; Demirkan, Ayse; Kollerits, Barbara; Freedman, Barry I.; Ponte, Belen; Oostra, Ben A.; Paulweber, Bernhard; Krämer, Bernhard K.; Mitchell, Braxton D.; Buckley, Brendan M.; Peralta, Carmen A.; Hayward, Caroline; Helmer, Catherine; Rotimi, Charles N.; Shaffer, Christian M.; Müller, Christian; Sala, Cinzia; van Duijn, Cornelia M.; Saint-Pierre, Aude; Ackermann, Daniel; Shriner, Daniel; Ruggiero, Daniela; Toniolo, Daniela; Lu, Yingchang; Cusi, Daniele; Czamara, Darina; Ellinghaus, David; Siscovick, David S.; Ruderfer, Douglas; Gieger, Christian; Grallert, Harald; Rochtchina, Elena; Atkinson, Elizabeth J.; Holliday, Elizabeth G.; Boerwinkle, Eric; Salvi, Erika; Bottinger, Erwin P.; Murgia, Federico; Rivadeneira, Fernando; Ernst, Florian; Kronenberg, Florian; Hu, Frank B.; Navis, Gerjan J.; Curhan, Gary C.; Ehret, George B.; Homuth, Georg; Coassin, Stefan; Thun, Gian-Andri; Pistis, Giorgio; Gambaro, Giovanni; Malerba, Giovanni; Montgomery, Grant W.; Eiriksdottir, Gudny; Jacobs, Gunnar; Li, Guo; Wichmann, H-Erich; Campbell, Harry; Schmidt, Helena; Wallaschofski, Henri; Völzke, Henry; Brenner, Hermann; Kroemer, Heyo K.; Kramer, Holly; Lin, Honghuang; Leach, I. Mateo; Ford, Ian; Guessous, Idris; Rudan, Igor; Prokopenko, Inga; Borecki, Ingrid; Heid, Iris M.; Kolcic, Ivana; Persico, Ivana; Jukema, J. Wouter; Wilson, James F.; Felix, Janine F.; Divers, Jasmin; Lambert, Jean-Charles; Stafford, Jeanette M.; Gaspoz, Jean-Michel; Smith, Jennifer A.; Faul, Jessica D.; Wang, Jie Jin; Ding, Jingzhong; Hirschhorn, Joel N.; Attia, John; Whitfield, John B.; Chalmers, John; Viikari, Jorma; Coresh, Josef; Denny, Joshua C.; Karjalainen, Juha; Fernandes, Jyotika K.; Endlich, Karlhans; Butterbach, Katja; Keene, Keith L.; Lohman, Kurt; Portas, Laura; Launer, Lenore J.; Lyytikäinen, Leo-Pekka; Yengo, Loic; Franke, Lude; Ferrucci, Luigi; Rose, Lynda M.; Kedenko, Lyudmyla; Rao, Madhumathi; Struchalin, Maksim; Kleber, Marcus E.; Cavalieri, Margherita; Haun, Margot; Cornelis, Marilyn C.; Ciullo, Marina; Pirastu, Mario; de Andrade, Mariza; McEvoy, Mark A.; Woodward, Mark; Adam, Martin; Cocca, Massimiliano; Nauck, Matthias; Imboden, Medea; Waldenberger, Melanie; Pruijm, Menno; Metzger, Marie; Stumvoll, Michael; Evans, Michele K.; Sale, Michele M.; Kähönen, Mika; Boban, Mladen; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Bouatia-Naji, Nabila; Martin, Nicholas G.; Hastie, Nick; Probst-Hensch, Nicole; Soranzo, Nicole; Devuyst, Olivier; Raitakari, Olli; Gottesman, Omri; Franco, Oscar H.; Polasek, Ozren; Gasparini, Paolo; Munroe, Patricia B.; Ridker, Paul M.; Mitchell, Paul; Muntner, Paul; Meisinger, Christa; Smit, Johannes H.; Abecasis, Goncalo R.; Adair, Linda S.; Alexander, Myriam; Altshuler, David; Amin, Najaf; Arking, Dan E.; Arora, Pankaj; Aulchenko, Yurii; Bakker, Stephan J. L.; Bandinelli, Stefania; Barroso, Ines; Beckmann, Jacques S.; Beilby, John P.; Bergman, Richard N.; Bergmann, Sven; Bis, Joshua C.; Boehnke, Michael; Bonnycastle, Lori L.; Bornstein, Stefan R.; Bots, Michiel L.; Bragg-Gresham, Jennifer L.; Brand, Stefan-Martin; Brand, Eva; Braund, Peter S.; Brown, Morris J.; Burton, Paul R.; Casas, Juan P.; Caulfield, Mark J.; Chakravarti, Aravinda; Chambers, John C.; Chandak, Giriraj R.; Chang, Yen-Pei C.; Charchar, Fadi J.; Chaturvedi, Nish; Shin Cho, Yoon; Clarke, Robert; Collins, Francis S.; Collins, Rory; Connell, John M.; Cooper, Jackie A.; Cooper, Matthew N.; Cooper, Richard S.; Corsi, Anna Maria; Dörr, Marcus; Dahgam, Santosh; Danesh, John; Smith, George Davey; Day, Ian N. M.; Deloukas, Panos; Denniff, Matthew; Dominiczak, Anna F.; Dong, Yanbin; Doumatey, Ayo; Elliott, Paul; Elosua, Roberto; Erdmann, Jeanette; Eyheramendy, Susana; Farrall, Martin; Fava, Cristiano; Forrester, Terrence; Fowkes, F. Gerald R.; Fox, Ervin R.; Frayling, Timothy M.; Galan, Pilar; Ganesh, Santhi K.; Garcia, Melissa; Gaunt, Tom R.; Glazer, Nicole L.; Go, Min Jin; Goel, Anuj; Grässler, Jürgen; Grobbee, Diederick E.; Groop, Leif; Guarrera, Simonetta; Guo, Xiuqing; Hadley, David; Hamsten, Anders; Han, Bok-Ghee; Hardy, Rebecca; Hartikainen, Anna-Liisa; Heath, Simon; Heckbert, Susan R.; Hedblad, Bo; Hercberg, Serge; Hernandez, Dena; Hicks, Andrew A.; Hilton, Gina; Hingorani, Aroon D.; Bolton, Judith A Hoffman; Hopewell, Jemma C.; Howard, Philip; Humphries, Steve E.; Hunt, Steven C.; Hveem, Kristian; Ikram, M. Arfan; Islam, Muhammad; Iwai, Naoharu; Jarvelin, Marjo-Riitta; Jackson, Anne U.; Jafar, Tazeen H.; Janipalli, Charles S.; Johnson, Toby; Kathiresan, Sekar; Khaw, Kay-Tee; Kim, Hyung-Lae; Kinra, Sanjay; Kita, Yoshikuni; Kivimaki, Mika; Kooner, Jaspal S.; Kumar, M. J. Kranthi; Kuh, Diana; Kulkarni, Smita R.; Kumari, Meena; Kuusisto, Johanna; Kuznetsova, Tatiana; Laakso, Markku; Laan, Maris; Laitinen, Jaana; Lakatta, Edward G.; Langefeld, Carl D.; Larson, Martin G.; Lathrop, Mark; Lawlor, Debbie A.; Lawrence, Robert W.; Lee, Jong-Young; Lee, Nanette R.; Levy, Daniel; Li, Yali; Longstreth, Will T.; Luan, Jian'an; Lucas, Gavin; Ludwig, Barbara; Mangino, Massimo; Mani, K. Radha; Marmot, Michael G.; Mattace-Raso, Francesco U. S.; Matullo, Giuseppe; McArdle, Wendy L.; McKenzie, Colin A.; Meitinger, Thomas; Melander, Olle; Meneton, Pierre; Meschia, James F.; Miki, Tetsuro; Milaneschi, Yuri; Mohlke, Karen L.; Mooser, Vincent; Morken, Mario A.; Morris, Richard W.; Mosley, Thomas H.; Najjar, Samer; Narisu, Narisu; Newton-Cheh, Christopher; Nguyen, Khanh-Dung Hoang; Nilsson, Peter; Nyberg, Fredrik; O'Donnell, Christopher J.; Ogihara, Toshio; Ohkubo, Takayoshi; Okamura, Tomonori; Ong, RickTwee-Hee; Ongen, Halit; Onland-Moret, N. Charlotte; O'Reilly, Paul F.; Org, Elin; Orru, Marco; Palmas, Walter; Palmen, Jutta; Palmer, Lyle J.; Palmer, Nicholette D.; Parker, Alex N.; Peden, John F.; Peltonen, Leena; Perola, Markus; Pihur, Vasyl; Platou, Carl G. P.; Plump, Andrew; Prabhakaran, Dorairajan; Psaty, Bruce M.; Raffel, Leslie J.; Rao, Dabeeru C.; Rasheed, Asif; Ricceri, Fulvio; Rice, Kenneth M.; Rosengren, Annika; Rotter, Jerome I.; Rudock, Megan E.; Sõber, Siim; Salako, Tunde; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J.; Schwartz, Steven M.; Schwarz, Peter E. H.; Scott, Laura J.; Scott, James; Scuteri, Angelo; Sehmi, Joban S.; Seielstad, Mark; Seshadri, Sudha; Sharma, Pankaj; Shaw-Hawkins, Sue; Shi, Gang; Shrine, Nick R. G.; Sijbrands, Eric J. G.; Sim, Xueling; Singleton, Andrew; Sjögren, Marketa; Smith, Nicholas L.; Artigas, Maria Soler; Spector, Tim D.; Staessen, Jan A.; Stancakova, Alena; Steinle, Nanette I.; Strachan, David P.; Stringham, Heather M.; Sun, Yan V.; Swift, Amy J.; Tabara, Yasuharu; Tai, E-Shyong; Talmud, Philippa J.; Taylor, Andrew; Terzic, Janos; Thelle, Dag S.; Tobin, Martin D.; Tomaszewski, Maciej; Tripathy, Vikal; Tuomilehto, Jaakko; Tzoulaki, Ioanna; Uda, Manuela; Ueshima, Hirotsugu; Uiterwaal, Cuno S. P. M.; Umemura, Satoshi; van der Harst, Pim; van der Schouw, Yvonne T.; van Gilst, Wiek H.; Vartiainen, Erkki; Vasan, Ramachandran S.; Veldre, Gudrun; Verwoert, Germaine C.; Viigimaa, Margus; Vinay, D. G.; Vineis, Paolo; Voight, Benjamin F.; Vollenweider, Peter; Wagenknecht, Lynne E.; Wain, Louise V.; Wang, Xiaoling; Wang, Thomas J.; Wareham, Nicholas J.; Watkins, Hugh; Weder, Alan B.; Whincup, Peter H.; Wiggins, Kerri L.; Witteman, Jacqueline C. M.; Wong, Andrew; Wu, Ying; Yajnik, Chittaranjan S.; Yao, Jie; Young, J. H.; Zelenika, Diana; Zhai, Guangju; Zhang, Weihua; Zhang, Feng; Zhao, Jing Hua; Zhu, Haidong; Zhu, Xiaofeng; Zitting, Paavo; Zukowska-Szczechowska, Ewa; Okada, Yukinori; Wu, Jer-Yuarn; Gu, Dongfeng; Takeuchi, Fumihiko; Takahashi, Atsushi; Maeda, Shiro; Tsunoda, Tatsuhiko; Chen, Peng; Lim, Su-Chi; Wong, Tien-Yin; Liu, Jianjun; Young, Terri L.; Aung, Tin; Teo, Yik-Ying; Kim, Young Jin; Kang, Daehee; Chen, Chien-Hsiun; Tsai, Fuu-Jen; Chang, Li-Ching; Fann, S. -J. Cathy; Mei, Hao; Hixson, James E.; Chen, Shufeng; Katsuya, Tomohiro; Isono, Masato; Albrecht, Eva; Yamamoto, Kazuhiko; Kubo, Michiaki; Nakamura, Yusuke; Kamatani, Naoyuki; Kato, Norihiro; He, Jiang; Chen, Yuan-Tsong; Tanaka, Toshihiro; Reilly, Muredach P; Schunkert, Heribert; Assimes, Themistocles L.; Hall, Alistair; Hengstenberg, Christian; König, Inke R.; Laaksonen, Reijo; McPherson, Ruth; Thompson, John R.; Thorsteinsdottir, Unnur; Ziegler, Andreas; Absher, Devin; Chen, Li; Cupples13, L. Adrienne; Halperin, Eran; Li, Mingyao; Musunuru, Kiran; Preuss, Michael; Schillert, Arne; Thorleifsson, Gudmar; Wells, George A.; Holm, Hilma; Roberts, Robert; Stewart, Alexandre F. R.; Fortmann, Stephen; Go, Alan; Hlatky, Mark; Iribarren, Carlos; Knowles, Joshua; Myers, Richard; Quertermous, Thomas; Sidney, Steven; Risch, Neil; Tang, Hua; Blankenberg, Stefan; Schnabel, Renate; Sinning, Christoph; Lackner, Karl J.; Tiret, Laurence; Nicaud, Viviane; Cambien, Francois; Bickel, Christoph; Rupprecht, Hans J.; Perret, Claire; Proust, Carole; Münzel, Thomas F.; Barbalic, Maja; Chen, Ida Yii-Der; Demissie-Banjaw, Serkalem; Folsom, Aaron; Lumley, Thomas; Marciante, Kristin; Taylor, Kent D.; Volcik, Kelly; Gretarsdottir, Solveig; Gulcher, Jeffrey R.; Kong, Augustine; Stefansson, Kari; Thorgeirsson, Gudmundur; Andersen, Karl; Fischer, Marcus; Grosshennig, Anika; Linsel-Nitschke, Patrick; Stark, Klaus; Schreiber, Stefan; Aherrahrou, Zouhair; Bruse, Petra; Doering, Angela; Klopp, Norman; Diemert, Patrick; Loley, Christina; Medack, Anja; Nahrstedt, Janja; Peters, Annette; Wagner, Arnika K.; Willenborg, Christina; Böhm, Bernhard O.; Dobnig, Harald; Grammer, Tanja B.; Hoffmann, Michael M.; Meinitzer, Andreas; Winkelmann, Bernhard R.; Pilz, Stefan; Renner, Wilfried; Scharnagl, Hubert; Stojakovic, Tatjana; Tomaschitz, Andreas; Winkler, Karl; Guiducci, Candace; Burtt, Noel; Gabriel, Stacey B.; Dandona, Sonny; Jarinova, Olga; Qu, Liming; Wilensky, Robert; Matthai, William; Hakonarson, Hakon H.; Devaney, Joe; Burnett, Mary Susan; Pichard, Augusto D.; Kent, Kenneth M.; Satler, Lowell; Lindsay, Joseph M.; Waksman, Ron; Knouff, Christopher W.; Waterworth, Dawn M.; Walker, Max C.; Epstein, Stephen E.; Rader, Daniel J.; Nelson, Christopher P.; Wright, Benjamin J.; Balmforth, Anthony J.; Ball, Stephen G.; Loehr, Laura R.; Rosamond, Wayne D.; Benjamin, Emelia; Haritunians, Talin; Couper, David; Murabito, Joanne; Wang, Ying A.; Stricker, Bruno H.; Chang, Patricia P.; Willerson, James T.; Felix, Stephan B.; Watzinger, Norbert; Aragam, Jayashri; Zweiker, Robert; Lind, Lars; Rodeheffer, Richard J.; Greiser, Karin Halina; Deckers, Jaap W.; Stritzke, Jan; Ingelsson, Erik; Kullo, Iftikhar; Haerting, Johannes; Reffelmann, Thorsten; Redfield, Margaret M.; Werdan, Karl; Mitchell, Gary F.; Arnett, Donna K.; Gottdiener, John S.; Blettner, Maria; Friedrich, Nele; Kovacs, Peter; Wild, Philipp S.; Froguel, Philippe; Rettig, Rainer; Mägi, Reedik; Biffar, Reiner; Schmidt, Reinhold; Middelberg, Rita P. S.; Carroll, Robert J.; Penninx, Brenda W.; Scott, Rodney J.; Katz, Ronit; Sedaghat, Sanaz; Wild, Sarah H.; Kardia, Sharon L. R.; Ulivi, Sheila; Hwang, Shih-Jen; Enroth, Stefan; Kloiber, Stefan; Trompet, Stella; Stengel, Benedicte; Hancock, Stephen J.; Turner, Stephen T.; Rosas, Sylvia E.; Stracke, Sylvia; Harris, Tamara B.; Zeller, Tanja; Zemunik, Tatijana; Lehtimäki, Terho; Illig, Thomas; Aspelund, Thor; Nikopensius, Tiit; Esko, Tonu; Tanaka, Toshiko; Gyllensten, Ulf; Völker, Uwe; Emilsson, Valur; Vitart, Veronique; Aalto, Ville; Gudnason, Vilmundur; Chouraki, Vincent; Chen, Wei-Min; Igl, Wilmar; März, Winfried; Koenig, Wolfgang; Lieb, Wolfgang; Loos, Ruth J. F.; Liu, Yongmei; Snieder, Harold; Pramstaller, Peter P.; Parsa, Afshin; O'Connell, Jeffrey R.; Susztak, Katalin; Hamet, Pavel; Tremblay, Johanne; de Boer, Ian H.; Böger, Carsten A.; Goessling, Wolfram; Chasman, Daniel I.; Köttgen, Anna; Kao, W. H. Linda; Fox, Caroline S.

    2016-01-01

    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways. PMID:26831199

  3. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    PubMed

    Pattaro, Cristian; Teumer, Alexander; Gorski, Mathias; Chu, Audrey Y; Li, Man; Mijatovic, Vladan; Garnaas, Maija; Tin, Adrienne; Sorice, Rossella; Li, Yong; Taliun, Daniel; Olden, Matthias; Foster, Meredith; Yang, Qiong; Chen, Ming-Huei; Pers, Tune H; Johnson, Andrew D; Ko, Yi-An; Fuchsberger, Christian; Tayo, Bamidele; Nalls, Michael; Feitosa, Mary F; Isaacs, Aaron; Dehghan, Abbas; d'Adamo, Pio; Adeyemo, Adebowale; Dieffenbach, Aida Karina; Zonderman, Alan B; Nolte, Ilja M; van der Most, Peter J; Wright, Alan F; Shuldiner, Alan R; Morrison, Alanna C; Hofman, Albert; Smith, Albert V; Dreisbach, Albert W; Franke, Andre; Uitterlinden, Andre G; Metspalu, Andres; Tonjes, Anke; Lupo, Antonio; Robino, Antonietta; Johansson, Åsa; Demirkan, Ayse; Kollerits, Barbara; Freedman, Barry I; Ponte, Belen; Oostra, Ben A; Paulweber, Bernhard; Krämer, Bernhard K; Mitchell, Braxton D; Buckley, Brendan M; Peralta, Carmen A; Hayward, Caroline; Helmer, Catherine; Rotimi, Charles N; Shaffer, Christian M; Müller, Christian; Sala, Cinzia; van Duijn, Cornelia M; Saint-Pierre, Aude; Ackermann, Daniel; Shriner, Daniel; Ruggiero, Daniela; Toniolo, Daniela; Lu, Yingchang; Cusi, Daniele; Czamara, Darina; Ellinghaus, David; Siscovick, David S; Ruderfer, Douglas; Gieger, Christian; Grallert, Harald; Rochtchina, Elena; Atkinson, Elizabeth J; Holliday, Elizabeth G; Boerwinkle, Eric; Salvi, Erika; Bottinger, Erwin P; Murgia, Federico; Rivadeneira, Fernando; Ernst, Florian; Kronenberg, Florian; Hu, Frank B; Navis, Gerjan J; Curhan, Gary C; Ehret, George B; Homuth, Georg; Coassin, Stefan; Thun, Gian-Andri; Pistis, Giorgio; Gambaro, Giovanni; Malerba, Giovanni; Montgomery, Grant W; Eiriksdottir, Gudny; Jacobs, Gunnar; Li, Guo; Wichmann, H-Erich; Campbell, Harry; Schmidt, Helena; Wallaschofski, Henri; Völzke, Henry; Brenner, Hermann; Kroemer, Heyo K; Kramer, Holly; Lin, Honghuang; Leach, I Mateo; Ford, Ian; Guessous, Idris; Rudan, Igor; Prokopenko, Inga; Borecki, Ingrid; Heid, Iris M; Kolcic, Ivana; Persico, Ivana; Jukema, J Wouter; Wilson, James F; Felix, Janine F; Divers, Jasmin; Lambert, Jean-Charles; Stafford, Jeanette M; Gaspoz, Jean-Michel; Smith, Jennifer A; Faul, Jessica D; Wang, Jie Jin; Ding, Jingzhong; Hirschhorn, Joel N; Attia, John; Whitfield, John B; Chalmers, John; Viikari, Jorma; Coresh, Josef; Denny, Joshua C; Karjalainen, Juha; Fernandes, Jyotika K; Endlich, Karlhans; Butterbach, Katja; Keene, Keith L; Lohman, Kurt; Portas, Laura; Launer, Lenore J; Lyytikäinen, Leo-Pekka; Yengo, Loic; Franke, Lude; Ferrucci, Luigi; Rose, Lynda M; Kedenko, Lyudmyla; Rao, Madhumathi; Struchalin, Maksim; Kleber, Marcus E; Cavalieri, Margherita; Haun, Margot; Cornelis, Marilyn C; Ciullo, Marina; Pirastu, Mario; de Andrade, Mariza; McEvoy, Mark A; Woodward, Mark; Adam, Martin; Cocca, Massimiliano; Nauck, Matthias; Imboden, Medea; Waldenberger, Melanie; Pruijm, Menno; Metzger, Marie; Stumvoll, Michael; Evans, Michele K; Sale, Michele M; Kähönen, Mika; Boban, Mladen; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Bouatia-Naji, Nabila; Martin, Nicholas G; Hastie, Nick; Probst-Hensch, Nicole; Soranzo, Nicole; Devuyst, Olivier; Raitakari, Olli; Gottesman, Omri; Franco, Oscar H; Polasek, Ozren; Gasparini, Paolo; Munroe, Patricia B; Ridker, Paul M; Mitchell, Paul; Muntner, Paul; Meisinger, Christa; Smit, Johannes H; Kovacs, Peter; Wild, Philipp S; Froguel, Philippe; Rettig, Rainer; Mägi, Reedik; Biffar, Reiner; Schmidt, Reinhold; Middelberg, Rita P S; Carroll, Robert J; Penninx, Brenda W; Scott, Rodney J; Katz, Ronit; Sedaghat, Sanaz; Wild, Sarah H; Kardia, Sharon L R; Ulivi, Sheila; Hwang, Shih-Jen; Enroth, Stefan; Kloiber, Stefan; Trompet, Stella; Stengel, Benedicte; Hancock, Stephen J; Turner, Stephen T; Rosas, Sylvia E; Stracke, Sylvia; Harris, Tamara B; Zeller, Tanja; Zemunik, Tatijana; Lehtimäki, Terho; Illig, Thomas; Aspelund, Thor; Nikopensius, Tiit; Esko, Tonu; Tanaka, Toshiko; Gyllensten, Ulf; Völker, Uwe; Emilsson, Valur; Vitart, Veronique; Aalto, Ville; Gudnason, Vilmundur; Chouraki, Vincent; Chen, Wei-Min; Igl, Wilmar; März, Winfried; Koenig, Wolfgang; Lieb, Wolfgang; Loos, Ruth J F; Liu, Yongmei; Snieder, Harold; Pramstaller, Peter P; Parsa, Afshin; O'Connell, Jeffrey R; Susztak, Katalin; Hamet, Pavel; Tremblay, Johanne; de Boer, Ian H; Böger, Carsten A; Goessling, Wolfram; Chasman, Daniel I; Köttgen, Anna; Kao, W H Linda; Fox, Caroline S

    2016-01-21

    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.

  4. Endothelial Markers May Link Kidney Function to Cardiovascular Events in Type 2 Diabetes

    PubMed Central

    Maier, Christina; Clodi, Martin; Neuhold, Stephanie; Resl, Michael; Elhenicky, Marie; Prager, Rudolf; Moertl, Deddo; Strunk, Guido; Luger, Anton; Struck, Joachim; Pacher, Richard; Hülsmann, Martin

    2009-01-01

    OBJECTIVE The increased cardiovascular risk in diabetes has been linked to endothelial and renal dysfunction. The aim of this study was to investigate the role of stable fragments of the precursors of adrenomedullin, endothelin-1, vasopressin, and atrial natriuretic peptide in progression of cardiovascular disease in patients with diabetes. RESEARCH DESIGN AND METHODS This was a prospective, observational study design with a composite end point (death or unexpected admission to hospital due to a cardiovascular event) on 781 patients with type 2 diabetes (54 events, median duration of observation 15 months). The four stable precursor peptides midregional adrenomedullin (MR-proADM), midregional proatrial natriuretic peptide (MR-proANP), COOH-terminal proendothelin-1 (CT-proET-1), and COOH-terminal provasopressin or copeptin (CT-proAVP) were determined at baseline, and their association to renal function and cardiovascular events was studied using stepwise linear and Cox logistic regression analysis and receiver operating characteristic analysis, respectively. RESULTS MR-proADM, CT-proET-1, CT-proAVP, and MR-proANP were all elevated in patients with future cardiovascular events and independently correlated to serum creatinine. MR-proADM and MR-proANP were significant predictors of a future cardiovascular event, with MR-proANP being the stronger (area under the curve 0.802 ± 0.034, sensitivity 0.833, specificity 0.576, positive predictive value 0.132, and negative predictive value 0.978 with a cutoff value of 75 pmol/l). CONCLUSIONS The four serum markers of vasoactive and natriuretic peptides are related to both kidney function and cardiovascular events, thus linking two major complications of diabetes, diabetic nephropathy and cardiovascular disease. PMID:19564455

  5. Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function.

    PubMed

    Leupin, Olivier; Piters, Elke; Halleux, Christine; Hu, Shouih; Kramer, Ina; Morvan, Frederic; Bouwmeester, Tewis; Schirle, Markus; Bueno-Lozano, Manuel; Fuentes, Feliciano J Ramos; Itin, Peter H; Boudin, Eveline; de Freitas, Fenna; Jennes, Karen; Brannetti, Barbara; Charara, Nadine; Ebersbach, Hilmar; Geisse, Sabine; Lu, Chris X; Bauer, Andreas; Van Hul, Wim; Kneissel, Michaela

    2011-06-01

    Humans lacking sclerostin display progressive bone overgrowth due to increased bone formation. Although it is well established that sclerostin is an osteocyte-secreted bone formation inhibitor, the underlying molecular mechanisms are not fully elucidated. We identified in tandem affinity purification proteomics screens LRP4 (low density lipoprotein-related protein 4) as a sclerostin interaction partner. Biochemical assays with recombinant proteins confirmed that sclerostin LRP4 interaction is direct. Interestingly, in vitro overexpression and RNAi-mediated knockdown experiments revealed that LRP4 specifically facilitates the previously described inhibitory action of sclerostin on Wnt1/β-catenin signaling. We found the extracellular β-propeller structured domain of LRP4 to be required for this sclerostin facilitator activity. Immunohistochemistry demonstrated that LRP4 protein is present in human and rodent osteoblasts and osteocytes, both presumed target cells of sclerostin action. Silencing of LRP4 by lentivirus-mediated shRNA delivery blocked sclerostin inhibitory action on in vitro bone mineralization. Notably, we identified two mutations in LRP4 (R1170W and W1186S) in patients suffering from bone overgrowth. We found that these mutations impair LRP4 interaction with sclerostin and its concomitant sclerostin facilitator effect. Together these data indicate that the interaction of sclerostin with LRP4 is required to mediate the inhibitory function of sclerostin on bone formation, thus identifying a novel role for LRP4 in bone.

  6. Effect of kidney-reinforcing and marrow-beneficial Chinese medicine on bone metabolism-related factors following spinal cord injury in rats

    PubMed Central

    ZHOU, DA-AN; DENG, YUE NING; LIU, LEI; LI, JIAN JUN

    2016-01-01

    The present study aimed to investigate the effect of traditional Chinese kidney reinforcing and marrow-beneficial medicine (KRMB) on the prevention and treatment of abnormal bone metabolism and osteoporosis (OP) resulting from spinal cord injury (SCI). Rat models of OP following SCI were surgically established. The rats were randomly divided into five groups: Normal; sham operation + KRMB; normal + KRMB; SCI + KRMB; and SCI model group. Bone mineral density (BMD), and the expression of bone gamma-carboxyglutamic-acid containing protein (BGP), hepcidin mRNA and bone sialoprotein (BSP) were recorded at 1, 2, 4, 6, 8 and 10 weeks after the operation. BMD expression in the SCI model group was significantly lower compared with the normal, sham + KRMB and normal + KRMB groups at 4, 6, 8 and 10 weeks (P<0.01), and was significantly lower than that in the SCI + KRMB group at 6 (P<0.05), 8 and 10 weeks (P<0.01). The level of serum BGP in the SCI model group was significantly higher compared with the normal, sham + KRMB and normal + KRMB groups at each time point (P<0.01), and lower than the SCI + KRMB group (P<0.01). The SCI + KRMB group was significantly higher than the normal, sham operation + KRMB and normal + KRMB groups (P<0.01). Hepcidin mRNA expression in the rat livers in the normal, sham + KRMB and normal + KRMB group was significantly higher than that in the SCI + KRMB group and SCI model group at each time point (P<0.01). Hepcidin mRNA expression in the SCI + KRMB group was significantly higher than that in the SCI model group at 1 week (P<0.01), and significantly higher than the SCI model group at 2, 4, 6, 8 and 10 weeks (P<0.01). BSP expression in the SCI model group was significantly higher than that in the normal, sham + KRMB and normal + KRMB groups at each time point (P<0.01). BSP expression in SCI model group was higher than that in the SCI + KRMB group at 1 (P<0.05), 2, 4, 6, 8 and 10 weeks (P<0.01). In conclusion, KRMB traditional Chinese medicine may

  7. Population ancestry and genetic risk for diabetes and kidney, cardiovascular, and bone disease: modifiable environmental factors may produce the cures.

    PubMed

    Freedman, Barry I; Divers, Jasmin; Palmer, Nicholette D

    2013-12-01

    Variable rates of disease observed between members of different continental population groups may be mediated by inherited factors, environmental exposures, or their combination. This article provides evidence in support of differential allele frequency distributions that underlie the higher rates of nondiabetic kidney disease in the focal segmental glomerulosclerosis spectrum of disease and lower rates of coronary artery calcified atherosclerotic plaque and osteoporosis in populations of African ancestry. With recognition that these and other common complex diseases are affected by biological factors comes the realization that targeted manipulation of environmental exposures and pharmacologic treatments will have different effects based on genotype. The present era of precision medicine will couple one's genetic makeup with specific therapies to reduce rates of disease based on the presence of disease-specific alleles.

  8. Population Ancestry and Genetic Risk for Diabetes and Kidney, Cardiovascular, and Bone Disease: Modifiable Environmental Factors May Produce the Cures

    PubMed Central

    Freedman, Barry I.; Divers, Jasmin; Palmer, Nicholette D.

    2013-01-01

    Variable rates of disease observed between members of different continental population groups may be mediated by inherited factors, environmental exposures, or their combination. This manuscript provides evidence in support of differential allele frequency distributions that underlie the higher rates of non-diabetic kidney disease in the focal segmental glomerulosclerosis spectrum of disease and lower rates of coronary artery calcified atherosclerotic plaque and osteoporosis in populations of African ancestry. With recognition that these and other common complex diseases are affected by biologic factors comes the realization that targeted manipulation of environmental exposures and pharmacologic treatments will have different effects based on genotype. The current era of precision medicine will couple one’s genetic make-up with specific therapies to reduce rates of disease based on presence of disease-specific alleles. PMID:23896482

  9. Differences in Bone Quality between High versus Low Turnover Renal Osteodystrophy

    SciTech Connect

    Porter, Daniel S.; Pienkowski, David; Faugere, Marie-Claude; Malluche, Hartmut H.

    2012-01-01

    Abnormal bone turnover is common in chronic kidney disease (CKD), but its effects on bone quality remain unclear. This study sought to quantify the relationship between abnormal bone turnover and bone quality. Iliac crest bone biopsies were obtained from CKD-5 patients on dialysis with low (n=18) or high (n=17) turnover, and from volunteers (n=12) with normal turnover and normal kidney function. Histomorphometric methods were used to quantify the microstructural parameters; Fourier transform infrared spectroscopy and nanoindentation were used to quantify the material and mechanical properties in bone. Reduced mineral-to-matrix ratio, mineral crystal size, stiffness and hardness were observed in bone with high turnover compared to bone with normal or low turnover. Decreased cancellous bone volume and trabecular thickness were seen in bone with low turnover compared to bone with normal or high turnover. Bone quality, as defined by its microstructural, material, and mechanical properties, is related to bone turnover. These data suggest that turnover related alterations in bone quality may contribute to the known diminished mechanical competence of bone in CKD patients, albeit from different mechanisms for bone with high (material abnormality) vs. low (microstructural alteration) turnover. The present findings suggest that improved treatments for renal osteodystrophy should seek to avoid low or high bone turnover and aim for turnover rates as close to normal as possible.

  10. Evaluation of bone, nutrition, and physical function in Shorinji Kempo athletes

    PubMed Central

    Sumida, Sachiko; Iwamoto, Jun; Kamide, Naoto; Otani, Toshiro

    2012-01-01

    The objectives of this study were to reveal the proportion of Shorinji Kempo athletes who had suffered fractures related to sports activities, and to evaluate bone mass, bone turnover, nutritional status, and physical function in these athletes. A medical examination was carried out for 16 Shorinji Kempo collegiate athletes. Seven athletes (43.8%) had experienced a sports-related traumatic fracture during Shorinji Kempo practice. Four athletes (25.0%) had a lower speed of sound (% young adult mean < 100%), and five athletes (31.3%) had higher levels of urinary cross-linked N-terminal telopeptides of type 1 collagen (a bone turnover marker) than the age-adjusted standard values. All the athletes had a lower daily calcium intake than the adequate intake, 12 (75.0%) had a lower daily vitamin D intake, and 15 (93.8%) had a lower daily vitamin K intake. Significant positive correlations were found between the vertical jump height, and the daily energy, and protein intakes. Results suggest that fractures are a common injury in Shorinji Kempo athletes, and that some Shorinji Kempo athletes need to improve their bone mass, bone metabolism, and nutritional status in order to strengthen bone and improve physical function. PMID:24198593

  11. Sulfated hyaluronan improves bone regeneration of diabetic rats by binding sclerostin and enhancing osteoblast function.

    PubMed

    Picke, Ann-Kristin; Salbach-Hirsch, Juliane; Hintze, Vera; Rother, Sandra; Rauner, Martina; Kascholke, Christian; Möller, Stephanie; Bernhardt, Ricardo; Rammelt, Stefan; Pisabarro, M Teresa; Ruiz-Gómez, Gloria; Schnabelrauch, Matthias; Schulz-Siegmund, Michaela; Hacker, Michael C; Scharnweber, Dieter; Hofbauer, Christine; Hofbauer, Lorenz C

    2016-07-01

    Bone fractures in patients with diabetes mellitus heal poorly and require innovative therapies to support bone regeneration. Here, we assessed whether sulfated hyaluronan included in collagen-based scaffold coatings can improve fracture healing in diabetic rats. Macroporous thermopolymerized lactide-based scaffolds were coated with collagen including non-sulfated or sulfated hyaluronan (HA/sHA3) and inserted into 3 mm femoral defects of non-diabetic and diabetic ZDF rats. After 12 weeks, scaffolds coated with collagen/HA or collagen/sHA3 accelerated bone defect regeneration in diabetic, but not in non-diabetic rats as compared to their non-coated controls. At the tissue level, collagen/sHA3 promoted bone mineralization and decreased the amount of non-mineralized bone matrix. Moreover, collagen/sHA3-coated scaffolds from diabetic rats bound more sclerostin in vivo than the respective controls. Binding assays confirmed a high binding affinity of sHA3 to sclerostin. In vitro, sHA3 induced BMP-2 and lowered the RANKL/OPG expression ratio, regardless of the glucose concentration in osteoblastic cells. Both sHA3 and high glucose concentrations decreased the differentiation of osteoclastic cells. In summary, scaffolds coated with collagen/sHA3 represent a potentially suitable biomaterial to improve bone defect regeneration in diabetic conditions. The underlying mechanism involves improved osteoblast function and binding sclerostin, a potent inhibitor of Wnt signaling and osteoblast function. PMID:27131598

  12. Sulfated hyaluronan improves bone regeneration of diabetic rats by binding sclerostin and enhancing osteoblast function.

    PubMed

    Picke, Ann-Kristin; Salbach-Hirsch, Juliane; Hintze, Vera; Rother, Sandra; Rauner, Martina; Kascholke, Christian; Möller, Stephanie; Bernhardt, Ricardo; Rammelt, Stefan; Pisabarro, M Teresa; Ruiz-Gómez, Gloria; Schnabelrauch, Matthias; Schulz-Siegmund, Michaela; Hacker, Michael C; Scharnweber, Dieter; Hofbauer, Christine; Hofbauer, Lorenz C

    2016-07-01

    Bone fractures in patients with diabetes mellitus heal poorly and require innovative therapies to support bone regeneration. Here, we assessed whether sulfated hyaluronan included in collagen-based scaffold coatings can improve fracture healing in diabetic rats. Macroporous thermopolymerized lactide-based scaffolds were coated with collagen including non-sulfated or sulfated hyaluronan (HA/sHA3) and inserted into 3 mm femoral defects of non-diabetic and diabetic ZDF rats. After 12 weeks, scaffolds coated with collagen/HA or collagen/sHA3 accelerated bone defect regeneration in diabetic, but not in non-diabetic rats as compared to their non-coated controls. At the tissue level, collagen/sHA3 promoted bone mineralization and decreased the amount of non-mineralized bone matrix. Moreover, collagen/sHA3-coated scaffolds from diabetic rats bound more sclerostin in vivo than the respective controls. Binding assays confirmed a high binding affinity of sHA3 to sclerostin. In vitro, sHA3 induced BMP-2 and lowered the RANKL/OPG expression ratio, regardless of the glucose concentration in osteoblastic cells. Both sHA3 and high glucose concentrations decreased the differentiation of osteoclastic cells. In summary, scaffolds coated with collagen/sHA3 represent a potentially suitable biomaterial to improve bone defect regeneration in diabetic conditions. The underlying mechanism involves improved osteoblast function and binding sclerostin, a potent inhibitor of Wnt signaling and osteoblast function.

  13. Body composition and reproductive function exert unique influences on indices of bone health in exercising women.

    PubMed

    Mallinson, Rebecca J; Williams, Nancy I; Hill, Brenna R; De Souza, Mary Jane

    2013-09-01

    Reproductive function, metabolic hormones, and lean mass have been observed to influence bone metabolism and bone mass. It is unclear, however, if reproductive, metabolic and body composition factors play unique roles in the clinical measures of areal bone mineral density (aBMD) and bone geometry in exercising women. This study compares lumbar spine bone mineral apparent density (BMAD) and estimates of femoral neck cross-sectional moment of inertia (CSMI) and cross-sectional area (CSA) between exercising ovulatory (Ov) and amenorrheic (Amen) women. It also explores the respective roles of reproductive function, metabolic status, and body composition on aBMD, lumbar spine BMAD and femoral neck CSMI and CSA, which are surrogate measures of bone strength. Among exercising women aged 18-30 years, body composition, aBMD, and estimates of femoral neck CSMI and CSA were assessed by dual-energy x-ray absorptiometry. Lumbar spine BMAD was calculated from bone mineral content and area. Estrone-1-glucuronide (E1G) and pregnanediol glucuronide were measured in daily urine samples collected for one cycle or monitoring period. Fasting blood samples were collected for measurement of leptin and total triiodothyronine. Ov (n = 37) and Amen (n = 45) women aged 22.3 ± 0.5 years did not differ in body mass, body mass index, and lean mass; however, Ov women had significantly higher percent body fat than Amen women. Lumbar spine aBMD and BMAD were significantly lower in Amen women compared to Ov women (p < 0.001); however, femoral neck CSA and CSMI were not different between groups. E1G cycle mean and age of menarche were the strongest predictors of lumbar spine aBMD and BMAD, together explaining 25.5% and 22.7% of the variance, respectively. Lean mass was the strongest predictor of total hip and femoral neck aBMD as well as femoral neck CSMI and CSA, explaining 8.5-34.8% of the variance. Upon consideration of several potential osteogenic stimuli, reproductive function appears to play

  14. Antler stiffness in moose (Alces alces): correlated evolution of bone function and material properties?

    PubMed

    Blob, Richard W; Snelgrove, Jason M

    2006-09-01

    The material properties of bone can vary considerably among skeletal elements from different parts of the body that serve different functions. However, functional demands placed on a specific type of skeletal element also can vary at a variety of scales, such as between different parts of the element, among individuals of a species, and across species. Variation in bone material properties might be correlated with differing functional demands at any of these scales. In this study we performed three-point bending tests on bone specimens extracted from antlers of moose (Alces alces) to test for three types of variation in bone material stiffness (Young's modulus): within the antler structure, between populations of moose, and between moose and other deer species. Because superficial portions of the antler are exposed to greater bending stress and strain than deeper portions, and because the antler beam (the basal shaft that attaches to the skull) is subjected to greater bending moments than more distal parts of the antler, we predicted that superficial bone and bone from the beam would be stiffer than bone from other parts of the antler. Instead, we identified no significant differences in these comparisons. There were also no significant differences in antler stiffness between moose from Michigan and the Yukon, even though the rapid growth required of antlers from northern latitudes like the Yukon has the potential to compromise bone material properties. However, moose have significantly stiffer antlers (11.6 +/- 0.45 GPa, mean +/- SE) than any other deer in the odocoileine lineage. Moreover, phylogenetic reconstructions of the evolution of antler stiffness in deer indicate a strong potential that high antler stiffness is a derived feature of moose. The unusual palmate shape of moose antlers likely subjects their antler beams to higher bending moments than found in other odocoileines, a factor that may have contributed to the evolutionary divergence of moose antler

  15. Biomechanical analysis of functional adaptation of metatarsal bones in statically deformed feet.

    PubMed

    Madjarevic, Mladen; Kolundzic, Robert; Trkulja, Vladimir; Mirkovic, Maja; Pecina, Marko

    2009-02-01

    We analysed the functional adaptation of the first and second metatarsal bones to altered strain in flexible flatfoot. Fifty consecutive women (20-40 years of age) were enrolled: 31 patients with a flexible flatfoot and metatarsalgia (59 feet) and 19 controls with asymptomatic feet (37 feet). They were compared for cortical thickness (medial, lateral, dorsal and plantar) of the two bones. The null hypothesis of no overall difference between the deformed and healthy feet with regard to cortical thicknesses of the two bones was rejected in a multivariate test (p = 0.046). The groups differed significantly only regarding dorsal cortical thickness of the second metatarsal, which was around 18.1% greater in the deformed feet (95% confidence interval: 7.7-28.4%, p < 0.001). Hypertrophy of the dorsal corticalis of the second metatarsal bone appears to be the main metatarsal adaptive reaction to altered strain in the flexible flatfoot.

  16. Osteoblast function and bone histomorphometry in a murine model of Rett syndrome.

    PubMed

    Blue, Mary E; Boskey, Adele L; Doty, Stephen B; Fedarko, Neal S; Hossain, Mir Ahamed; Shapiro, Jay R

    2015-07-01

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder due to mutations affecting the neural transcription factor MeCP2. Approximately 50% of affected females have decreased bone mass. We studied osteoblast function using a murine model of RTT. Female heterozygote (HET) and male Mecp2-null mice were compared to wild type (WT) mice. Micro-CT of tibia from 5 week-old Mecp2-null mice showed significant alterations in trabecular bone including reductions in bone volume fraction (-29%), number (-19%), thickness (-9%) and connectivity density (-32%), and increases in trabecular separation (+28%) compared to WT. We also found significant reductions in cortical bone thickness (-18%) and in polar moment of inertia (-45%). In contrast, cortical and trabecular bone from 8 week-old WT and HET female mice were not significantly different. However, mineral apposition rate, mineralizing surface and bone formation rate/bone surface were each decreased in HET and Mecp2-null mice compared to WT mice. Histomorphometric analysis of femurs showed decreased numbers of osteoblasts but similar numbers of osteoclasts compared to WT, altered osteoblast morphology and decreased tissue synthesis of alkaline phosphatase in Mecp2-null and HET mice. Osteoblasts cultured from Mecp2-null mice, which unlike WT osteoblasts did not express MeCP2, had increased growth rates, but reductions in mRNA expression of type I collagen, Runx2 and Osterix compared to WT osteoblasts. These results indicate that MeCP2 deficiency leads to altered bone growth. Osteoblast dysfunction was more marked in Mecp2-null male than in HET female mice, suggesting that expression of MeCP2 plays a critical role in bone development.

  17. Kidney Cysts

    MedlinePlus

    ... fluid-filled sac. There are two types of kidney cysts. Polycystic kidney disease (PKD) runs in families. In PKD, the ... place of the normal tissue. They enlarge the kidneys and make them work poorly, leading to kidney ...

  18. Your Kidneys

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Your Kidneys KidsHealth > For Kids > Your Kidneys Print A A ... and it will be lighter. What Else Do Kidneys Do? Kidneys are always busy. Besides filtering the ...

  19. Kidney Disease

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Kidney Disease KidsHealth > For Teens > Kidney Disease Print A ... Syndrome Coping With Kidney Conditions What Do the Kidneys Do? You might never think much about some ...

  20. Kidney Dysplasia

    MedlinePlus

    ... following early in life: blood-filtering treatments called dialysis a kidney transplant Children with dysplasia in only ... mild dysplasia of both kidneys may not need dialysis or a kidney transplant for several years. Kidney ...

  1. Copeptin Is Associated with Kidney Length, Renal Function, and Prevalence of Simple Cysts in a Population-Based Study

    PubMed Central

    Ponte, Belen; Pruijm, Menno; Ackermann, Daniel; Vuistiner, Philippe; Guessous, Idris; Ehret, Georg; Alwan, Heba; Youhanna, Sonia; Paccaud, Fred; Mohaupt, Markus; Péchère-Bertschi, Antoinette; Vogt, Bruno; Burnier, Michel; Martin, Pierre-Yves; Devuyst, Olivier

    2015-01-01

    Arginine vasopressin (AVP) has a key role in osmoregulation by facilitating water transport in the collecting duct. Recent evidence suggests that AVP may have additional effects on renal function and favor cyst growth in polycystic kidney disease. Whether AVP also affects kidney structure in the general population is unknown. We analyzed the association of copeptin, an established surrogate for AVP, with parameters of renal function and morphology in a multicentric population-based cohort. Participants from families of European ancestry were randomly selected in three Swiss cities. We used linear multilevel regression analysis to explore the association of copeptin with renal function parameters as well as kidney length and the presence of simple renal cysts assessed by ultrasound examination. Copeptin levels were log-transformed. The 529 women and 481 men had median copeptin levels of 3.0 and 5.2 pmol/L, respectively (P<0.001). In multivariable analyses, the copeptin level was associated inversely with eGFR (β=−2.1; 95% confidence interval [95% CI], −3.3 to −0.8; P=0.002) and kidney length (β=−1.2; 95% CI, −1.9 to −0.4; P=0.003) but positively with 24-hour urinary albumin excretion (β=0.11; 95% CI, 0.01 to 0.20; P=0.03) and urine osmolality (β=0.08; 95% CI, 0.05 to 0.10; P<0.001). A positive association was found between the copeptin level and the presence of renal cysts (odds ratio, 1.6; 95% CI, 1.1 to 2.4; P=0.02). These results suggest that AVP has a pleiotropic role in renal function and may favor the development of simple renal cysts. PMID:25270071

  2. Functional Grading of Mineral and Collagen in the Attachment of Tendon to Bone

    PubMed Central

    Genin, Guy M.; Kent, Alistair; Birman, Victor; Wopenka, Brigitte; Pasteris, Jill D.; Marquez, Pablo J.; Thomopoulos, Stavros

    2009-01-01

    Abstract Attachment of dissimilar materials is a major challenge because high levels of localized stress may develop at their interfaces. An effective biologic solution to this problem exists at one of nature's most extreme interfaces: the attachment of tendon (a compliant, structural “soft tissue”) to bone (a stiff, structural “hard tissue”). The goal of our study was to develop biomechanical models to describe how the tendon-to-bone insertion derives its mechanical properties. We examined the tendon-to-bone insertion and found two factors that give the tendon-to-bone transition a unique grading in mechanical properties: 1), a gradation in mineral concentration, measured by Raman spectroscopy; and 2), a gradation in collagen fiber orientation, measured by polarized light microscopy. Our measurements motivate a new physiological picture of the tissue that achieves this transition, the tendon-to-bone insertion, as a continuous, functionally graded material. Our biomechanical model suggests that the experimentally observed increase in mineral accumulation within collagen fibers can provide significant stiffening of the partially mineralized fibers, but only for concentrations of mineral above a “percolation threshold” corresponding to formation of a mechanically continuous mineral network within each collagen fiber (e.g., the case of mineral connectivity extending from one end of the fiber to the other). Increasing dispersion in the orientation distribution of collagen fibers from tendon to bone is a second major determinant of tissue stiffness. The combination of these two factors may explain the nonmonotonic variation of stiffness over the length of the tendon-to-bone insertion reported previously. Our models explain how tendon-to-bone attachment is achieved through a functionally graded material composition, and provide targets for tissue engineered surgical interventions and biomimetic material interfaces. PMID:19686644

  3. Functional grading of mineral and collagen in the attachment of tendon to bone.

    PubMed

    Genin, Guy M; Kent, Alistair; Birman, Victor; Wopenka, Brigitte; Pasteris, Jill D; Marquez, Pablo J; Thomopoulos, Stavros

    2009-08-19

    Attachment of dissimilar materials is a major challenge because high levels of localized stress may develop at their interfaces. An effective biologic solution to this problem exists at one of nature's most extreme interfaces: the attachment of tendon (a compliant, structural "soft tissue") to bone (a stiff, structural "hard tissue"). The goal of our study was to develop biomechanical models to describe how the tendon-to-bone insertion derives its mechanical properties. We examined the tendon-to-bone insertion and found two factors that give the tendon-to-bone transition a unique grading in mechanical properties: 1), a gradation in mineral concentration, measured by Raman spectroscopy; and 2), a gradation in collagen fiber orientation, measured by polarized light microscopy. Our measurements motivate a new physiological picture of the tissue that achieves this transition, the tendon-to-bone insertion, as a continuous, functionally graded material. Our biomechanical model suggests that the experimentally observed increase in mineral accumulation within collagen fibers can provide significant stiffening of the partially mineralized fibers, but only for concentrations of mineral above a "percolation threshold" corresponding to formation of a mechanically continuous mineral network within each collagen fiber (e.g., the case of mineral connectivity extending from one end of the fiber to the other). Increasing dispersion in the orientation distribution of collagen fibers from tendon to bone is a second major determinant of tissue stiffness. The combination of these two factors may explain the nonmonotonic variation of stiffness over the length of the tendon-to-bone insertion reported previously. Our models explain how tendon-to-bone attachment is achieved through a functionally graded material composition, and provide targets for tissue engineered surgical interventions and biomimetic material interfaces.

  4. Dynamic Hydraulic Flow Stimulation on Mitigation of Trabecular Bone Loss in a Rat Functional Disuse Model

    PubMed Central

    Hu, Minyi; Cheng, Jiqi; Qin, Yi-Xian

    2012-01-01

    Bone fluid flow (BFF) has been demonstrated as a critical regulator in mechanotransductive signaling and bone adaptation. Intramedullary pressure (ImP) and matrix strain have been identified as potential generator to regulate BFF. To elevate in vivo oscillatory BFF using ImP, a dynamic hydraulic stimulation (DHS) approach was developed. The objective of this study was to evaluate the effects of DHS on mitigation of bone loss and structural alteration in a rat hindlimb suspension (HLS) functional disuse model. Sixty-one 5-month old female Sprague-Dawley rats were divided into five groups: 1) baseline control, 2) age-matched control, 3) HLS, 4) HLS + static loading, and 5) HLS + DHS. Hydraulic flow stimulation was carried out daily on a “10 min on-5min off-10min on” loading regime, 5 days/week, for total of 4 weeks in the tibial region. The metaphyseal trabecular regions of the proximal tibiae were analyzed using µCT and histomorphometry. Four weeks of HLS resulted in a significant loss of trabecular bone, leading to structural deterioration. HLS with static loading alone was not sufficient to attenuate the bone loss. Bone quantity and microarchitecture were significantly improved by applying DHS loading, resulting increase of 83% in bone volume fraction, 25% in trabecular number and mitigation of -26% in trabecular separation compared to HLS control. Histomorphometry analysis on trabecular mineralization coincided with the µCT analysis, in which DHS loading yielded increases of 34% in histomorphometric BV/TV, 121% in MS/BS, 190% in BFR/BS and 146% in BFR/BV, compared to the HLS control. Overall, the data demonstrated that dynamic hydraulic flow loading has potentials to provide regulatory signals for mitigating bone loss induced by functional disuse. This approach may provide a new alternative mechanical intervention for future clinical treatment for osteoporosis. PMID:22820398

  5. Diurnal blood pressure changes one year after kidney transplantation: relationship to allograft function, histology, and resistive index.

    PubMed

    Wadei, Hani M; Amer, Hatem; Taler, Sandra J; Cosio, Fernando G; Griffin, Matthew D; Grande, Joseph P; Larson, Timothy S; Schwab, Thomas R; Stegall, Mark D; Textor, Stephen C

    2007-05-01

    Loss of circadian BP change has been linked to target organ damage and accelerated kidney function loss in hypertensive patients with and without chronic kidney disease. Ambulatory BP-derived data from 119 consecutive kidney transplant recipients who presented for the first annual evaluation were examined in relation to allograft function, histology, and ultrasound findings. A total of 101 (85%) patients were receiving antihypertensive medications (median 2), and 85 (71%) achieved target awake average systolic BP (SBP) of <135 mmHg. A day-night change in SBP by 10% or more (dippers) was detected in 29 (24%). Dipping status was associated with younger recipient age, lack of diabetes, low chronic vascular score, and low resistive index. Nondippers and reverse dippers had lower GFR compared with dippers (P = 0.04). For every 10% nocturnal drop in SBP, GFR increased by 4.6 ml/min per 1.73 m(2) (R = 0.3, P = 0.003). Nondippers and reverse dippers were equally common in recipients with normal histology and in those with pathologic findings on surveillance biopsy. On multivariate analysis, percentage of nocturnal fall in SBP and elevated resistive index independently correlated with GFR. This study indicates that lack of nocturnal fall in SBP is related to poor allograft function, high chronic vascular score, and high resistive index irrespective of allograft fibrosis. Further studies are needed to determine whether restoration of normal BP pattern will confer better allograft outcome.

  6. Impact of Iodinated Contrast on Renal Function and Hemodynamics in Rats with Chronic Hyperglycemia and Chronic Kidney Disease.

    PubMed

    Fernandes, Sheila Marques; Martins, Daniel Malisani; da Fonseca, Cassiane Dezoti; Watanabe, Mirian; Vattimo, Maria de Fátima Fernandes

    2016-01-01

    Iodinated contrast (IC) is clinically used in diagnostic and interventional procedures, but its use can result in contrast-induced acute kidney injury (CI-AKI). Chronic kidney disease (CKD) and chronic hyperglycemia (CH) are important predisposing factors to CI-AKI. The aim of this study was to investigate the impact of iodinated contrast on the renal function and hemodynamics in rats with chronic hyperglycemia and chronic kidney disease. A total of 30 rats were divided into six groups; Sham: control of chronic renal disease; Citrate: control of chronic hyperglycemia (CH); Nx5/6: rats with 5/6 nephrectomy; Chronic Hyperglycemia: rats receiving Streptozotocin 65 mg/kg; Nx5/6 + IC: rats Nx5/6 received 6 mL/kg of IC; CH + IC: Chronic hyperglycemia rats receiving 6 mL/kg of IC. Renal function (inulin clearance; urinary neutrophil gelatinase-associated lipocalin, NGAL) and hemodynamics (arterial blood pressure; renal blood flow; renal vascular resistance) were evaluated. Iodinated contrast significantly increased urinary NGAL and reduced inulin clearance, while the hemodynamics parameters showed changes in arterial blood pressure, renal blood flow, and renal vascular resistance in both CKD and CH groups. The results suggest that the iodinated contrast in risk factors models has important impact on renal function and hemodynamics. NGAL was confirmed to play a role of highlight in diagnosis of CI-AKI. PMID:27034930

  7. Kidney function and the use of nitrofurantoin to treat urinary tract infections in older women

    PubMed Central

    Singh, Namisha; Gandhi, Sonja; McArthur, Eric; Moist, Louise; Jain, Arsh K.; Liu, Aiden R.; Sood, Manish M.; Garg, Amit X.

    2015-01-01

    Background: The antibiotic nitrofurantoin is commonly used to treat uncomplicated urinary tract infections. However, when this drug is used by patients with reduced kidney function, its urine concentration may be subtherapeutic. Methods: We conducted a population-based study of older women (mean age 79 years) in Ontario, Canada, whose estimated glomerular filtration rate was relatively low (median 38 mL/min per 1.73 m2) and for whom 1 of 4 antibiotics had been prescribed for urinary tract infection: nitrofurantoin, ciprofloxacin, norfloxacin or trimethoprim–sulfamethoxazole. We assessed 2 measures of treatment failure in the subsequent 14 days: receipt of a second antibiotic indicated for urinary tract infection and hospital encounter (emergency department visit or hospital admission) with a urinary tract infection. We repeated the analysis for older women with relatively high estimated glomerular filtration rate (median 69 mL/min per 1.73 m2). Results: The baseline characteristics of the 4 antibiotic groups were similar. Relative to nitrofurantoin, the other antibiotics (including ciprofloxacin) were associated with a lower rate of treatment failure among women with relatively low estimated glomerular filtration rate (for ciprofloxacin v. nitrofurantoin: second antibiotic prescription, 130/1989 [6.5%] v. 516/3739 [13.8%], odds ratio [OR] 0.44, 95% confidence interval [CI] 0.36–0.53; hospital encounter, 21/1989 [1.1%] v. 95/3739 [2.5%], OR 0.41, 95% CI 0.25–0.66). However, a similar risk of treatment failure with nitrofurantoin was also observed among women with relatively high estimated glomerular filtration rate. The results were consistent in multiple additional analyses. Interpretation: In this study, the presence of mild or moderate reductions in estimated glomerular filtration rate did not justify avoidance of nitrofurantoin. PMID:25918178

  8. Chronic Renal Insufficiency Cohort (CRIC) Study: Baseline Characteristics and Associations with Kidney Function

    PubMed Central

    Go, Alan S.; Appel, Lawrence J.; He, Jiang; Ojo, Akinlolu; Rahman, Mahboob; Townsend, Raymond R.; Xie, Dawei; Cifelli, Denise; Cohan, Janet; Fink, Jeffrey C.; Fischer, Michael J.; Gadegbeku, Crystal; Hamm, L. Lee; Kusek, John W.; Landis, J. Richard; Narva, Andrew; Robinson, Nancy; Teal, Valerie; Feldman, Harold I.

    2009-01-01

    Background and objectives: The Chronic Renal Insufficiency Cohort (CRIC) Study was established to examine risk factors for the progression of chronic kidney disease (CKD) and cardiovascular disease (CVD) in patients with CKD. We examined baseline demographic and clinical characteristics. Design, setting, participants, & measurements: Seven clinical centers recruited adults who were aged 21 to 74 yr and had CKD using age-based estimated GFR (eGFR) inclusion criteria. At baseline, blood and urine specimens were collected and information regarding health behaviors, diet, quality of life, and functional status was obtained. GFR was measured using radiolabeled iothalamate in one third of participants. Results: A total of 3612 participants were enrolled with mean age ± SD of 58.2 ± 11.0 yr; 46% were women, and 47% had diabetes. Overall, 45% were non-Hispanic white, 46% were non-Hispanic black, and 5% were Hispanic. Eighty-six percent reported hypertension, 22% coronary disease, and 10% heart failure. Mean body mass index was 32.1 ± 7.9 kg/m2, and 47% had a BP >130/80 mmHg. Mean eGFR was 43.4 ± 13.5 ml/min per 1.73 m2, and median (interquartile range) protein excretion was 0.17 g/24 h (0.07 to 0.81 g/24 h). Lower eGFR was associated with older age, lower socioeconomic and educational level, cigarette smoking, self-reported CVD, peripheral arterial disease, and elevated BP. Conclusions: Lower level of eGFR was associated with a greater burden of CVD as well as lower socioeconomic and educational status. Long-term follow-up of participants will provide critical insights into the epidemiology of CKD and its relationship to adverse outcomes. PMID:19541818

  9. Morphological and functional characteristics of the kidney of cartilaginous fishes: with special reference to urea reabsorption.

    PubMed

    Hyodo, Susumu; Kakumura, Keigo; Takagi, Wataru; Hasegawa, Kumi; Yamaguchi, Yoko

    2014-12-15

    For adaptation to high-salinity marine environments, cartilaginous fishes (sharks, skates, rays, and chimaeras) adopt a unique urea-based osmoregulation strategy. Their kidneys reabsorb nearly all filtered urea from the primary urine, and this is an essential component of urea retention in their body fluid. Anatomical investigations have revealed the extraordinarily elaborate nephron system in the kidney of cartilaginous fishes, e.g., the four-loop configuration of each nephron, the occurrence of distinct sinus and bundle zones, and the sac-like peritubular sheath in the bundle zone, in which the nephron segments are arranged in a countercurrent fashion. These anatomical and morphological characteristics have been considered to be important for urea reabsorption; however, a mechanism for urea reabsorption is still largely unknown. This review focuses on recent progress in the identification and mapping of various pumps, channels, and transporters on the nephron segments in the kidney of cartilaginous fishes. The molecules include urea transporters, Na(+)/K(+)-ATPase, Na(+)-K(+)-Cl(-) cotransporters, and aquaporins, which most probably all contribute to the urea reabsorption process. Although research is still in progress, a possible model for urea reabsorption in the kidney of cartilaginous fishes is discussed based on the anatomical features of nephron segments and vascular systems and on the results of molecular mapping. The molecular anatomical approach thus provides a powerful tool for understanding the physiological processes that take place in the highly elaborate kidney of cartilaginous fishes.

  10. Prolonged Delayed Graft Function Is Associated with Inferior Patient and Kidney Allograft Survivals

    PubMed Central

    de Sandes-Freitas, Tainá Veras; Felipe, Cláudia Rosso; Aguiar, Wilson Ferreira; Cristelli, Marina Pontello; Tedesco-Silva, Hélio; Medina-Pestana, José Osmar

    2015-01-01

    It is unclear if there is an association between the duration of delayed graft function (DGF) and kidney transplant (KT) outcomes. This study investigated the impact of prolonged DGF on patient and graft survivals, and renal function one year after KT. This single center retrospective analysis included all deceased donor KT performed between Jan/1998 and Dec/2008 (n = 1412). Patients were grouped in quartiles according to duration of DGF (1–5, 6–10, 11–15, and >15 days, designated as prolonged DGF). The overall incidence of DGF was 54.2%. Prolonged DGF was associated with retransplantation (OR 2.110, CI95% 1.064–4.184,p = 0.033) and more than 3 HLA mismatches (OR 1.819, CI95% 1.117–2.962,p = 0.016). The incidence of acute rejection was higher in patients with DGF compared with those without DGF (36.2% vs. 12.2%, p<0.001). Compared to patients without DGF, DGF(1–5), DGF(6–10), and DGF(11–15), patients with prolonged DGF showed inferior one year patient survival (95.2% vs. 95.4% vs. 95.5% vs. 93.4% vs. 88.86%, p = 0.003), graft survival (91% vs. 91.4% vs. 92% vs. 88.7% vs. 70.5%, p<0.001), death-censored graft survival (95.7% vs. 95.4% vs. 96.4% vs. 94% vs. 79.3%, p<0.001), and creatinine clearance (58.0±24.6 vs. 55.8±22.2 vs. 53.8±24.1 vs. 53.0±27.2 vs. 36.8±27.0 mL/min, p<0.001), respectively. Multivariable analysis showed that prolonged DGF was an independent risk factor for graft loss (OR 3.876, CI95% 2.270–6.618, p<0.001), death censored graft loss (OR 4.103, CI95% 2.055–8.193, p<0.001), and death (OR 3.065, CI95% 1.536–6.117, p = 0.001). Prolonged DGF, determined by retransplantation and higher HLA mismatches, was associated with inferior renal function, and patient and graft survivals at one year. PMID:26679933

  11. Phenotypic and functional analysis of bone marrow progenitor cell compartment in bone marrow failure.

    PubMed

    Maciejewski, J P; Anderson, S; Katevas, P; Young, N S

    1994-06-01

    Many laboratory findings have demonstrated that the haemopoietic stem cell compartment is defective in aplastic anaemia (AA). AA bone marrow (BM) and peripheral blood (PB) are profoundly deficient in colony-forming cells, and AA progenitors fail to proliferate in long-term assays even in the presence of an intact stroma. Our study was designed to characterize some quantitative and qualitative aspects of the progenitor cell defect in AA. Using flow cytometric analysis of BM from new AA patients and from those recovering after immunosuppressive therapy, we determined that the numbers of CD34+ and CD33+ cells were markedly decreased in AA. Although PB neutrophil counts did not correlate with BM CD34+ cell numbers in acute disease, there was an association between the overall severity of the disease and the degree of CD34+ cell reduction. A decrease in BM CD33+ cells was a common finding in MDS patients, but reduction in CD34+ cells was found only in some hypoplastic MDS cases. Sorting experiments demonstrated lower plating efficiency for purified CD34+ cells from AA BM in comparison to controls. Thus, diminished colony formation of total BM appeared to result from both quantitative and qualitative defects. Based on the association between increased cycling and c-kit receptor expression on CD34+ cells, we found that the mitotically active CD34+ cells bearing the c-kit antigen were reduced in AA. With clinical improvement, CD34+ and CD33+ cells increased in correlation with PB parameters, but they did not return to normal values. Sorted CD34+ cells from recovered patents showed improved plating efficiency.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Phylogenetic, functional, and structural components of variation in bone growth rate of amniotes.

    PubMed

    Cubo, Jorge; Legendre, Pierre; de Ricqlès, Armand; Montes, Laëtitia; de Margerie, Emmanuel; Castanet, Jacques; Desdevises, Yves

    2008-01-01

    The biological features observed in every living organism are the outcome of three sets of factors: historical (inherited by homology), functional (biological adaptation), and structural (properties inherent to the materials with which organs are constructed, and the morphogenetic rules by which they grow). Integrating them should bring satisfactory causal explanations of empirical data. However, little progress has been accomplished in practice toward this goal, because a methodologically efficient tool was lacking. Here we use a new statistical method of variation partitioning to analyze bone growth in amniotes. (1) Historical component. The variation of bone growth rates contains a significant phylogenetic signal, suggesting that the observed patterns are partly the outcome of shared ancestry. (2) Functional causation. High growth rates, although energy costly, may be adaptive (i.e., they may increase survival rates) in taxa showing short growth periods (e.g., birds). In ectothermic amniotes, low resting metabolic rates may limit the maximum possible growth rates. (3) Structural constraint. Whereas soft tissues grow through a multiplicative process, growth of mineralized tissues is accretionary (additive, i.e., mineralization fronts occur only at free surfaces). Bone growth of many amniotes partially circumvents this constraint: it is achieved not only at the external surface of the bone shaft, but also within cavities included in the bone cortex as it grows centrifugally. Our approach contributes to the unification of historicism, functionalism, and structuralism toward a more integrated evolutionary biology.

  13. Renal handling of cadmium in perfused rat kidney and effects on renal function and tissue composition.

    PubMed

    Diamond, G L; Cohen, J J; Weinstein, S L

    1986-11-01

    Isolated rat kidneys perfused with a Krebs-Ringer bicarbonate (KRB) solution containing 1 microM CdCl2 plus 6% substrate-free albumin (SFA) and a mixture of substrates accumulated substantially less cadmium in tissue than kidneys perfused with 1 microM CdCl2 in a protein-free KRB solution containing the same substrates: 11 vs. 205 nmol Cd/g dry wt. Decreasing the glomerular filtration rate (GFR) by occluding the ureters of kidneys perfused in the absence of albumin did not change the rate of net tissue uptake of cadmium (Cd), suggesting that the kidney can extract Cd from the peritubular capillary fluid and that net uptake of Cd is not dependent on the reabsorption of filtered Cd. The tissue accumulation of large quantities of Cd (1.8 mumol Cd/g dry wt), which established levels of non-metallothionein-bound Cd exceeding 1 mumol Cd/g dry wt, caused no changes in either GFR, perfusion flow rate, fractional reabsorption of Na+, fractional reabsorption of K+, fractional reabsorption of glucose, or free-water clearance. However, discrete changes in renal tissue K+ content were observed. Exposure to 1 microM CdCl2 resulted in a net loss of renal tissue K+ in rat kidneys perfused with substrate-enriched KRB containing 6% albumin. Exposure to 0.8 microM or 7 microM CdCl2 completely prevented K+ loss from kidneys perfused with a substrate-enriched, protein-free KRB solution. PMID:3777178

  14. Amphibian skull evolution: the developmental and functional context of simplification, bone loss and heterotopy.

    PubMed

    Schoch, Rainer R

    2014-12-01

    Despite their divergent morphology, extant and extinct amphibians share numerous features in the timing and spatial patterning of dermal skull elements. Here, I show how the study of these features leads to a deeper understanding of morphological evolution. Batrachians (salamanders and frogs) have simplified skulls, with dermal bones appearing rudimentary compared with fossil tetrapods, and open cheeks resulting from the absence of other bones. The batrachian skull bones may be derived from those of temnospondyls by truncation of the developmental trajectory. The squamosal, quadratojugal, parietal, prefrontal, parasphenoid, palatine, and pterygoid form rudimentary versions of their homologs in temnospondyls. In addition, failure to ossify and early fusion of bone primordia both result in the absence of further bones that were consistently present in Paleozoic tetrapods. Here, I propose a new hypothesis explaining the observed patterns of bone loss and emargination in a functional context. The starting observation is that jaw-closing muscles are arranged in a different way than in ancestors from the earliest ontogenetic stage onwards, with muscles attaching to the dorsal side of the frontal, parietal, and squamosal. The postparietal and supratemporal start to ossify in a similar way as in branchiosaurids, but are fused to neighboring elements to form continuous attachment areas for the internal adductor. The postfrontal, postorbital, and jugal fail to ossify, as their position is inconsistent with the novel arrangement of adductor muscles. Thus, rearrangement of adductors forms the common theme behind cranial simplification, driven by an evolutionary flattening of the skull in the batrachian stem.

  15. Single-walled carbon nanotubes functionalized with sodium hyaluronate enhance bone mineralization.

    PubMed

    Sá, M A; Ribeiro, H J; Valverde, T M; Sousa, B R; Martins-Júnior, P A; Mendes, R M; Ladeira, L O; Resende, R R; Kitten, G T; Ferreira, A J

    2016-02-01

    The aim of this study was to evaluate the effects of sodium hyaluronate (HY), single-walled carbon nanotubes (SWCNTs) and HY-functionalized SWCNTs (HY-SWCNTs) on the behavior of primary osteoblasts, as well as to investigate the deposition of inorganic crystals on titanium surfaces coated with these biocomposites. Primary osteoblasts were obtained from the calvarial bones of male newborn Wistar rats (5 rats for each cell extraction). We assessed cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay and by double-staining with propidium iodide and Hoechst. We also assessed the formation of mineralized bone nodules by von Kossa staining, the mRNA expression of bone repair proteins, and the deposition of inorganic crystals on titanium surfaces coated with HY, SWCNTs, or HY-SWCNTs. The results showed that treatment with these biocomposites did not alter the viability of primary osteoblasts. Furthermore, deposition of mineralized bone nodules was significantly increased by cells treated with HY and HY-SWCNTs. This can be partly explained by an increase in the mRNA expression of type I and III collagen, osteocalcin, and bone morphogenetic proteins 2 and 4. Additionally, the titanium surface treated with HY-SWCNTs showed a significant increase in the deposition of inorganic crystals. Thus, our data indicate that HY, SWCNTs, and HY-SWCNTs are potentially useful for the development of new strategies for bone tissue engineering.

  16. Single-walled carbon nanotubes functionalized with sodium hyaluronate enhance bone mineralization

    PubMed Central

    Sá, M.A.; Ribeiro, H.J.; Valverde, T.M.; Sousa, B.R.; Martins-Júnior, P.A.; Mendes, R.M.; Ladeira, L.O.; Resende, R.R.; Kitten, G.T.; Ferreira, A.J.

    2015-01-01

    The aim of this study was to evaluate the effects of sodium hyaluronate (HY), single-walled carbon nanotubes (SWCNTs) and HY-functionalized SWCNTs (HY-SWCNTs) on the behavior of primary osteoblasts, as well as to investigate the deposition of inorganic crystals on titanium surfaces coated with these biocomposites. Primary osteoblasts were obtained from the calvarial bones of male newborn Wistar rats (5 rats for each cell extraction). We assessed cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay and by double-staining with propidium iodide and Hoechst. We also assessed the formation of mineralized