Sample records for kidney specific expression

  1. AKI after Conditional and Kidney-Specific Knockdown of Stanniocalcin-1

    PubMed Central

    Huang, Luping; Belousova, Tatiana; Pan, Jenny Szu-Chin; Du, Jie; Ju, Huiming; Lu, Lianghao; Zhang, Pumin; Truong, Luan D.; Nuotio-Antar, Alli

    2014-01-01

    Stanniocalcin-1 is an intracrine protein; it binds to the cell surface, is internalized to the mitochondria, and diminishes superoxide generation through induction of uncoupling proteins. In vitro, stanniocalcin-1 inhibits macrophages and preserves endothelial barrier function, and transgenic overexpression of stanniocalcin-1 in mice protects against ischemia-reperfusion kidney injury. We sought to determine the kidney phenotype after kidney endothelium-specific expression of stanniocalcin-1 small hairpin RNA (shRNA). We generated transgenic mice that express stanniocalcin-1 shRNA or scrambled shRNA upon removal of a floxed reporter (phosphoglycerate kinase-driven enhanced green fluorescent protein) and used ultrasound microbubbles to deliver tyrosine kinase receptor-2 promoter-driven Cre to the kidney to permit kidney endothelium-specific shRNA expression. Stanniocalcin-1 mRNA and protein were expressed throughout the kidney in wild-type mice. Delivery of tyrosine kinase receptor-2 promoter-driven Cre to stanniocalcin-1 shRNA transgenic kidneys diminished the expression of stanniocalcin-1 mRNA and protein throughout the kidneys. Stanniocalcin-1 mRNA and protein expression did not change in similarly treated scrambled shRNA transgenic kidneys, and we observed no Cre protein expression in cultured and tyrosine kinase receptor-2 promoter-driven Cre–transfected proximal tubule cells, suggesting that knockdown of stanniocalcin-1 in epithelial cells in vivo may result from stanniocalcin-1 shRNA transfer from endothelial cells to epithelial cells. Kidney-specific knockdown of stanniocalcin-1 led to severe proximal tubule injury characterized by vacuolization, decreased uncoupling of protein-2 expression, greater generation of superoxide, activation of the unfolded protein response, initiation of autophagy, cell apoptosis, and kidney failure. Our observations suggest that stanniocalcin-1 is critical for tubular epithelial survival under physiologic conditions. PMID:24700878

  2. Nephron segment-specific gene expression using AAV vectors.

    PubMed

    Asico, Laureano D; Cuevas, Santiago; Ma, Xiaobo; Jose, Pedro A; Armando, Ines; Konkalmatt, Prasad R

    2018-02-26

    AAV9 vector provides efficient gene transfer in all segments of the renal nephron, with minimum expression in non-renal cells, when administered retrogradely via the ureter. It is important to restrict the transgene expression to the desired cell type within the kidney, so that the physiological endpoints represent the function of the transgene expressed in that specific cell type within kidney. We hypothesized that segment-specific gene expression within the kidney can be accomplished using the highly efficient AAV9 vectors carrying the promoters of genes that are expressed exclusively in the desired segment of the nephron in combination with administration by retrograde infusion into the kidney via the ureter. We constructed AAV vectors carrying eGFP under the control of: kidney-specific cadherin (KSPC) gene promoter for expression in the entire nephron; Na + /glucose co-transporter (SGLT2) gene promoter for expression in the S1 and S2 segments of the proximal tubule; sodium, potassium, 2 chloride co-transporter (NKCC2) gene promoter for expression in the thick ascending limb of Henle's loop (TALH); E-cadherin (ECAD) gene promoter for expression in the collecting duct (CD); and cytomegalovirus (CMV) early promoter that provides expression in most of the mammalian cells, as control. We tested the specificity of the promoter constructs in vitro for cell type-specific expression in mouse kidney cells in primary culture, followed by retrograde infusion of the AAV vectors via the ureter in the mouse. Our data show that AAV9 vector, in combination with the segment-specific promoters administered by retrograde infusion via the ureter, provides renal nephron segment-specific gene expression. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Unique molecular changes in kidney allografts after simultaneous liver-kidney compared with solitary kidney transplantation.

    PubMed

    Taner, Timucin; Park, Walter D; Stegall, Mark D

    2017-05-01

    Kidney allografts transplanted simultaneously with liver allografts from the same donor are known to be immunologically privileged. This is especially evident in recipients with high levels of donor-specific anti-HLA antibodies. Here we investigated the mechanisms of liver's protective impact using gene expression in the kidney allograft. Select solitary kidney transplant or simultaneous liver-kidney transplant recipients were retrospectively reviewed and separated into four groups: 16 cross-match negative kidney transplants, 15 cross-match positive kidney transplants, 12 cross-match negative simultaneous liver-kidney transplants, and nine cross-match-positive simultaneous liver-kidney transplants. Surveillance biopsies of cross-match-positive kidney transplants had increased expression of genes associated with donor-specific antigens, inflammation, and endothelial cell activation compared to cross-match-negative kidney transplants. These changes were not found in cross-match-positive simultaneous liver-kidney transplant biopsies when compared to cross-match-negative simultaneous liver-kidney transplants. In addition, simultaneously transplanting a liver markedly increased renal expression of genes associated with tissue integrity/metabolism, regardless of the cross-match status. While the expression of inflammatory gene sets in cross-match-positive simultaneous liver-kidney transplants was not completely reduced to the level of cross-match-negative kidney transplants, the downstream effects of donor-specific anti-HLA antibodies were blocked. Thus, simultaneous liver-kidney transplants can have a profound impact on the kidney allograft, not only by decreasing inflammation and avoiding endothelial cell activation in cross-match-positive recipients, but also by increasing processes associated with tissue integrity/metabolism by unknown mechanisms. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  4. IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN THE KIDNEYS OF GROWTH HORMONE TRANSGENIC MICE

    PubMed Central

    Coschigano, K.T.; Wetzel, A.N.; Obichere, N.; Sharma, A.; Lee, S.; Rasch, R.; Guigneaux, M.M.; Flyvbjerg, A.; Wood, T.G.; Kopchick, J.J.

    2010-01-01

    Objective Bovine growth hormone (bGH) transgenic mice develop severe kidney damage. This damage may be due, at least in part, to changes in gene expression. Identification of genes with altered expression in the bGH kidney may identify mechanisms leading to damage in this system that may also be relevant to other models of kidney damage. Design cDNA subtraction libraries, northern blot analyses, microarray analyses and real-time reverse transcription polymerase chain reaction (RT/PCR) assays were used to identify and verify specific genes exhibiting differential RNA expression between kidneys of bGH mice and their non-transgenic (NT) littermates. Results Immunoglobulins were the vast majority of genes identified by the cDNA subtractions and the microarray analyses as being up-regulated in bGH. Several glycoprotein genes and inflammation-related genes also showed increased RNA expression in the bGH kidney. In contrast, only a few genes were identified as being significantly down-regulated in the bGH kidney. The most notable decrease in RNA expression was for the gene encoding kidney androgen-regulated protein. Conclusions A number of genes were identified as being differentially expressed in the bGH kidney. Inclusion of two groups, immunoglobulins and inflammation-related genes, suggests a role of the immune system in bGH kidney damage. PMID:20655258

  5. Peroxisome proliferator activated receptor alpha regulates a male-specific cytochrome P450 in mouse liver.

    PubMed

    Jeffery, Brett; Choudhury, Agharul I; Horley, Neill; Bruce, Mary; Tomlinson, Simon R; Roberts, Ruth A; Gray, Tim J B; Barrett, David A; Shaw, P Nicholas; Kendall, David; Bell, David R

    2004-09-15

    We set out to find if the strain-specific, male-specific hepatic expression of Cyp4a protein in mouse was due to expression of Cyp4a12 and to understand the genetic basis for reported differences in expression. 12-Lauric acid hydroxylase (LAH) activity was found to show higher levels in male ddY, but not C57Bl/6, mouse liver microsomes. The expression of Cyp4a12 mRNA was studied using RNAase protection assays in male and female liver and kidney of nine mouse strains. Cyp4a12 was found to be highly expressed in male liver and kidney, but at much lower levels in female liver and kidney, in all strains studied. Western blotting with an antibody specific for Cyp4a12 confirmed that Cyp4a12 was expressed in a male specific fashion in C57Bl/6 mouse liver. RNAase protection analysis for Cyp4a10 and 14 in ddY mice revealed that neither of these genes showed male-specific expression. To further investigate genetic factors that control male-specific Cyp4a12 expression, PPARalpha+/+ and -/- mice were studied, showing that total P450 and 12-LAH activity was male-specific in +/+, but not -/- mice. RNAase protection assays were used to confirm that Cyp4a12 was lower in -/- mice. However, the male-specific Slp and MUP-1 genes retained hepatic male-specific levels of expression in +/+ and -/- mice, showing that the decrease in Cyp4a12 was not a general effect on male-specific expression. Thus, PPARalpha has a specific effect on constitutive expression of Cyp4a12.

  6. Reconstruction and Analysis of Human Kidney-Specific Metabolic Network Based on Omics Data

    PubMed Central

    Zhang, Ai-Di; Dai, Shao-Xing; Huang, Jing-Fei

    2013-01-01

    With the advent of the high-throughput data production, recent studies of tissue-specific metabolic networks have largely advanced our understanding of the metabolic basis of various physiological and pathological processes. However, for kidney, which plays an essential role in the body, the available kidney-specific model remains incomplete. This paper reports the reconstruction and characterization of the human kidney metabolic network based on transcriptome and proteome data. In silico simulations revealed that house-keeping genes were more essential than kidney-specific genes in maintaining kidney metabolism. Importantly, a total of 267 potential metabolic biomarkers for kidney-related diseases were successfully explored using this model. Furthermore, we found that the discrepancies in metabolic processes of different tissues are directly corresponding to tissue's functions. Finally, the phenotypes of the differentially expressed genes in diabetic kidney disease were characterized, suggesting that these genes may affect disease development through altering kidney metabolism. Thus, the human kidney-specific model constructed in this study may provide valuable information for the metabolism of kidney and offer excellent insights into complex kidney diseases. PMID:24222897

  7. Tissue-specific expression and regulation of the alternatively-spliced forms of lysyl hydroxylase 2 (LH2) in human kidney cells and skin fibroblasts.

    PubMed

    Walker, Linda C; Overstreet, Mayra A; Yeowell, Heather N

    2005-01-01

    Lysyl hydroxylases 1, 2, and 3 catalyse the hydroxylation of specific lysines in collagen. A small percentage of these hydroxylysine residues are precursors for the cross-link formation essential for the tensile strength of collagen. Lysyl hydroxylase 2 (LH2) exists as two alternatively-spliced forms; the long transcript (the major ubiquitously-expressed form) includes a 63 bp exon (13A) that is spliced out in the short form (expressed, together with the long form, in human kidney, spleen, liver, and placenta). This study shows that this alternative splicing event can be regulated by both cell density and cycloheximide (CHX). Although only the long form of LH2 is detected in untreated confluent human skin fibroblasts, after 24 h treatment with CHX the short LH2 transcript is also expressed. In kidney cells, in which both LH2 transcripts are equally expressed, the long LH2 transcript is significantly decreased after 24 h CHX treatment, whereas expression of the short transcript is slightly increased. This suggests that, in kidney cells, the splicing mechanism for the inclusion of exon 13A in LH2 requires a newly-synthesized protein factor that is suppressed by CHX, whereas, in skin fibroblasts in which levels of LH2 (long) are unaffected, CHX appears to suppress a factor that inhibits exclusion of exon 13A, thereby promoting expression of LH2 (short). As these alternate transcripts of LH2 may have specificity for hydroxylation of lysines in either telopeptide or helical collagen domains, their relative expression determines the type of cross-links formed, thereby affecting collagen strength. Therefore, any perturbation of the regulation of LH2 splicing could influence the stability of the extracellular matrix and contribute to specific connective tissue disorders.

  8. Selenium-dependent pre- and posttranscriptional mechanisms are responsible for sexual dimorphic expression of selenoproteins in murine tissues.

    PubMed

    Riese, Cornelia; Michaelis, Marten; Mentrup, Birgit; Götz, Franziska; Köhrle, Josef; Schweizer, Ulrich; Schomburg, Lutz

    2006-12-01

    Important enzymes for thyroid hormone metabolism, antioxidative defense, and intracellular redox control contain selenocysteine (Sec) in their active centers. Expression of these selenoproteins is tightly controlled, and a sex-specific phenotype is observed on disturbance of selenium (Se) transport in mice. Therefore, we analyzed Se concentrations and expression levels of several selenoproteins including type I iodothyronine deiodinase (Dio1) and glutathione peroxidase (GPx) isozymes in male and female mice. On regular lab chow, serum Se levels were comparable, but serum GPx3 activity was higher in females than males (1.3-fold). Selenoprotein P (SePP) mRNA levels were higher in livers (1.3-fold) and lower in kidneys (to 31%) in female compared with male mice. Orchidectomy alleviated the sex-specific differences in SePP mRNA amounts, indicating modulatory effects of androgens on SePP expression. Female mice expressed higher levels of Dio1 mRNA in kidney (2.6-fold) and liver (1.4-fold) in comparison with male mice. This sexual dimorphic expression of Dio1 mRNA was paralleled by increased Dio1 activity in female kidney (1.8-fold) but not in liver in which males expressed higher Dio1 activity (2.8-fold). Interestingly, Se deficiency decreased Dio1 activity more effectively in males than females, and resulting hepatic enzyme levels were then comparable between the sexes. At the same time, the sex-specific difference of Dio1 activity widened in kidney. Orchidectomy or estradiol treatment of ovariectomized females impacted stronger on renal than hepatic Dio1 expression. Thus, we conclude that Se-dependent posttranscriptional mechanisms are operational that affect either translational efficiency or Dio1 stability in a sex- and tissue-specific manner.

  9. Preimplantation Kidney Biopsies of Extended Criteria Donors Have a Heavier Inflammatory Burden Than Kidneys From Standard Criteria Donors

    PubMed Central

    Mazeti-Felicio, Camila M.; Caldas, Heloisa C.; Fernandes-Charpiot, Ida M.M.; Dezotti, Camila Z.; Baptista, Maria A.S.F.; Abbud-Filho, Mario

    2017-01-01

    Background Donors after brain death develop a systemic proinflammatory state that may predispose the kidneys to injury after transplantation. Because it is not known whether this inflammatory environment similarly affects the kidneys from expanded criteria donor (ECD) and standard criteria donors (SCD), we sought to evaluate differences in the gene expression of inflammatory cytokines in preimplantation biopsies (PIBx) from ECD and SCD kidneys. Methods Cytokines gene expression was measured in 80 PIBx (SCD, 52; ECD, 28) and associated with donor variables. Results Normal histology and chronic histological lesions were not different between both types of kidneys. ECD kidneys showed significant increase in the transcripts of MCP-1, RANTES, TGF-β1, and IL-10 when compared with SCD. Kidneys presenting normal histology had similar inflammatory profile except by a higher expression of RANTES observed in ECD (P = 0.04). Interstitial fibrosis and tubular atrophy (interstitial fibrosis and tubular atrophy ≥ 1) were associated with higher expression of TGF-β1, RANTES, and IL-10 in ECD compared with SCD kidneys. Cold ischemia time of 24 hours or longer was significantly associated with upregulation of FOXP3, MCP-1, RANTES, and IL10, whereas longer duration of donor hospitalization significantly increased gene expression of all markers. High FOXP3 expression was also associated with lower level of serum creatinine at 1 year. Donor age was not associated with any of the transcripts studied. Conclusions PIBx of ECD exhibit a higher gene expression of inflammatory cytokines when compared with SCD kidneys. This molecular profile may be a specific ECD kidney response to brain death and may help to predict the posttransplant outcomes of ECD recipients. PMID:28706983

  10. Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage

    PubMed Central

    Caplin, Ben; Boruc, Olga; Bruce-Cobbold, Claire; Cutillas, Pedro; Dormann, Dirk; Faull, Peter; Grossman, Rebecca C.; Khadayate, Sanjay; Mas, Valeria R.; Nitsch, Dorothea D.; Wang, Zhen; Norman, Jill T.; Wilcox, Christopher S.; Wheeler, David C.; Leiper, James

    2015-01-01

    Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule–specific Ddah1 knockout (Ddah1PT−/−) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1PT−/− mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function. PMID:25855779

  11. A kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene Cyp27b1 essential for vitamin D3 activation

    PubMed Central

    Meyer, Mark B.; Benkusky, Nancy A.; Kaufmann, Martin; Lee, Seong Min; Onal, Melda; Jones, Glenville; Pike, J. Wesley

    2017-01-01

    The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D3 to its hormonal form, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1, are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH)2D3-mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH)2D3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1. We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by inflammatory factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH)2D3 can fulfill separate functional roles, first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease. PMID:28808057

  12. Polyvalent cation receptor proteins (CaRs) are salinity sensors in fish.

    PubMed

    Nearing, J; Betka, M; Quinn, S; Hentschel, H; Elger, M; Baum, M; Bai, M; Chattopadyhay, N; Brown, E M; Hebert, S C; Harris, H W

    2002-07-09

    To determine whether calcium polyvalent cation-sensing receptors (CaRs) are salinity sensors in fish, we used a homology-based cloning strategy to isolate a 4.1-kb cDNA encoding a 1,027-aa dogfish shark (Squalus acanthias) kidney CaR. Expression studies in human embryonic kidney cells reveal that shark kidney senses combinations of Ca(2+), Mg(2+), and Na(+) ions at concentrations present in seawater and kidney tubules. Shark kidney is expressed in multiple shark osmoregulatory organs, including specific tubules of the kidney, rectal gland, stomach, intestine, olfactory lamellae, gill, and brain. Reverse transcriptase-PCR amplification using specific primers in two teleost fish, winter flounder (Pleuronectes americanus) and Atlantic salmon (Salmo salar), reveals a similar pattern of CaR tissue expression. Exposure of the lumen of winter flounder urinary bladder to the CaR agonists, Gd(3+) and neomycin, reversibly inhibit volume transport, which is important for euryhaline teleost survival in seawater. Within 24-72 hr after transfer of freshwater-adapted Atlantic salmon to seawater, there are increases in their plasma Ca(2+), Mg(2+), and Na(+) that likely serve as a signal for internal CaRs, i.e., brain, to sense alterations in salinity in the surrounding water. We conclude that CaRs act as salinity sensors in both teleost and elasmobranch fish. Their tissue expression patterns in fish provide insights into CaR functions in terrestrial animals including humans.

  13. Altered lipid metabolism in the aging kidney identified by three layered omic analysis

    PubMed Central

    Braun, Fabian; Rinschen, Markus M.; Bartels, Valerie; Frommolt, Peter; Habermann, Bianca; Hoeijmakers, Jan H.J.; Schumacher, Björn; Dollé, Martijn E.T.; Müller, Roman-Ulrich; Benzing, Thomas; Schermer, Bernhard; Kurschat, Christine E.

    2016-01-01

    Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease. PMID:26886165

  14. Altered lipid metabolism in the aging kidney identified by three layered omic analysis.

    PubMed

    Braun, Fabian; Rinschen, Markus M; Bartels, Valerie; Frommolt, Peter; Habermann, Bianca; Hoeijmakers, Jan H J; Schumacher, Björn; Dollé, Martijn E T; Müller, Roman-Ulrich; Benzing, Thomas; Schermer, Bernhard; Kurschat, Christine E

    2016-03-01

    Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease.

  15. Lin28 sustains early renal progenitors and induces Wilms tumor

    PubMed Central

    Urbach, Achia; Yermalovich, Alena; Zhang, Jin; Spina, Catherine S.; Zhu, Hao; Perez-Atayde, Antonio R.; Shukrun, Rachel; Charlton, Jocelyn; Sebire, Neil; Mifsud, William; Dekel, Benjamin; Pritchard-Jones, Kathy; Daley, George Q.

    2014-01-01

    Wilms Tumor, the most common pediatric kidney cancer, evolves from the failure of terminal differentiation of the embryonic kidney. Here we show that overexpression of the heterochronic regulator Lin28 during kidney development in mice markedly expands nephrogenic progenitors by blocking their final wave of differentiation, ultimately resulting in a pathology highly reminiscent of Wilms tumor. Using lineage-specific promoters to target Lin28 to specific cell types, we observed Wilms tumor only when Lin28 is aberrantly expressed in multiple derivatives of the intermediate mesoderm, implicating the cell of origin as a multipotential renal progenitor. We show that withdrawal of Lin28 expression reverts tumorigenesis and markedly expands the numbers of glomerulus-like structures and that tumor formation is suppressed by enforced expression of Let-7 microRNA. Finally, we demonstrate overexpression of the LIN28B paralog in a significant percentage of human Wilms tumor. Our data thus implicate the Lin28/Let-7 pathway in kidney development and tumorigenesis. PMID:24732380

  16. Tissue-specific expression and regulation by 1,25(OH)2D3 of chick protein kinase inhibitor (PKI) mRNA.

    PubMed

    Marchetto, G S; Henry, H L

    1997-02-01

    The heat-stable protein kinase inhibitor (PKI) protein is a specific and potent competitive inhibitor of the catalytic subunit of cAMP-dependent protein kinase (PKA). Previously, it has been shown that vitamin D status affects chick kidney PKI activity: a 5- to 10-fold increase in PKI activity was observed in kidneys of chronically vitamin D-deficient chicks and treatment with 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) in cultured kidney cells resulted in a 95% decrease in PKI activity. The authors have recently cloned the cDNA for chick kidney PKI and have used the coding sequence to study the regulation of PKI mRNA. Northern analysis showed the expression of two PKI messages, which are 2.7 and 3.3 kb in size. These mRNAs are expressed in brain, muscle, testis, and kidney, but not in pancreas, liver, or intestine. PKI mRNA steady-state levels are downregulated by 47% in kidneys from vitamin D-replete chicks as compared to vitamin D-deficient chicks. PKI mRNA levels in brain, muscle, and testis are not affected by vitamin D status. Treatment of primary chick kidney cultures treated with 10(-7) M 1,25(OH)2D3 for 24h resulted in a 20-30% decrease in PKI mRNA. 1,25(OH)2D3 treatment does not affect the stability of PKI mRNA as determined by treatment of cell cultures with actinomycin D. This study shows that 1,25(OH)2D3 directly and tissue-specifically downregulates PKI mRNA in the chick kidney.

  17. Heat shock protein 60 expression in heart, liver and kidney of broilers exposed to high temperature.

    PubMed

    Yan, Jianyan; Bao, Endong; Yu, Jimian

    2009-06-01

    The objective of this study was to investigate the expression and localization of HSP60 in the heart, liver, and kidney of acutely heat-stressed broilers at various stressing times. The plasma creatine kinase (CK) and glutamic pyruvic transaminase (GPT) concentrations statistic increased following heat stress. After 2h of heat stress, the tissues showed histopathological changes. Hsp60 expressed mainly in the cytoplasm of parenchyma cells heat stress. The intensity of the cytoplasmic staining varied and exhibited an organ-specific distribution pattern. Hsp60 levels in the hearts of heat-stressed chickens gradually increased at 1h (p<0.05) and peaked (p<0.05) at 5h; Hsp60 levels in the liver gradually decreased at 3h (p<0.05); Hsp60 levels in the kidney had no fluctuation. It is suggested that Hsp60 expression is tissue-specific and this may be linked to tissue damage in response to heat stress. The Hsp60 level is distinct in diverse tissues, indicating that Hsp60 may exert its protective effect by a tissue- and time-specific mechanism.

  18. Natural killer cells play a critical role in mediating inflammation and graft failure during antibody-mediated rejection of kidney allografts.

    PubMed

    Kohei, Naoki; Tanaka, Toshiaki; Tanabe, Kazunari; Masumori, Naoya; Dvorina, Nina; Valujskikh, Anna; Baldwin, William M; Fairchild, Robert L

    2016-06-01

    While the incidence of antibody-mediated kidney graft rejection has increased, the key cellular and molecular participants underlying this graft injury remain unclear. Rejection of kidney allografts in mice lacking the chemokine receptor CCR5 is dependent on production of donor-specific antibody. Here we determine if cells expressing cytotoxic function contributed to antibody-mediated kidney allograft rejection in these recipients. Wild-type C57BL/6, B6.CCR5(-/-), and B6.CD8(-/-)/CCR5(-/-) mice were transplanted with complete MHC-mismatched A/J kidney grafts, and intragraft inflammatory components were followed to rejection. B6.CCR5(-/-) and B6.CD8(-/-)/CCR5(-/-) recipients rejected kidney allografts by day 35, whereas 65% of allografts in wild-type recipients survived past day 80 post-transplant. Rejected allografts in wild-type C57BL/6, B6.CCR5(-/-), and B6.CD8(-/-)/CCR5(-/-) recipients expressed high levels of VCAM-1 and MMP7 mRNA that was associated with high serum titers of donor-specific antibody. High levels of perforin and granzyme B mRNA expression peaked on day 6 post-transplant in allografts in all recipients, but were absent in isografts. Depletion of natural killer cells in B6.CD8(-/-)/CCR5(-/-) recipients reduced this expression to background levels and promoted the long-term survival of 40% of the kidney allografts. Thus, natural killer cells have a role in increased inflammation during antibody-mediated kidney allograft injury and in rejection of the grafts. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  19. Natural killer cells play a critical role in mediating inflammation and graft failure during antibody-mediated rejection of kidney allografts

    PubMed Central

    Kohei, Naoki; Tanaka, Toshiaki; Tanabe, Kazunari; Masumori, Naoya; Dvorina, Nina; Valujskikh, Anna; Baldwin, William M.; Fairchild, Robert L.

    2016-01-01

    While the incidence of antibody-mediated kidney graft rejection has increased, the key cellular and molecular participants underlying this graft injury remain unclear. Rejection of kidney allografts in mice lacking the chemokine receptor CCR5 is dependent on production of donor-specific antibody. Here we determine if cells expressing cytotoxic function contributed to antibody-mediated kidney allograft rejection in these recipients. Wild type C57BL/6, B6.CCR5−/− and B6.CD8−/−/CCR5−/− mice were transplanted with complete MHC mismatched A/J kidney grafts and intra-graft inflammatory components were followed to rejection. B6.CCR5−/− and B6.CD8−/−/CCR5−/− recipients rejected kidney allografts by day 35 whereas 65% of allografts in wild type recipients survived past day 80 post-transplant. Rejected allografts in wild-type C57BL/6, B6.CCR5−/− and B6.CD8−/−/CCR5−/− recipients expressed high levels of VCAM-1 and MMP7 mRNA that was associated with high serum titers of donor-specific antibody. High levels of perforin and granzyme B mRNA expression peaked on day 6 post-transplant in allografts in all recipients, but were absent in isografts. Depletion of natural killer cells in B6.CD8−/−/CCR5−/− recipients reduced this expression to background levels and promoted the long-term survival of 40% of the kidney allografts. Thus, natural killer cells have a role in increased inflammation during antibody-mediated kidney allograft injury and in rejection of the grafts. PMID:27165816

  20. Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage.

    PubMed

    Tomlinson, James A P; Caplin, Ben; Boruc, Olga; Bruce-Cobbold, Claire; Cutillas, Pedro; Dormann, Dirk; Faull, Peter; Grossman, Rebecca C; Khadayate, Sanjay; Mas, Valeria R; Nitsch, Dorothea D; Wang, Zhen; Norman, Jill T; Wilcox, Christopher S; Wheeler, David C; Leiper, James

    2015-12-01

    Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule-specific Ddah1 knockout (Ddah1(PT-/-)) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1(PT-/-) mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function. Copyright © 2015 by the American Society of Nephrology.

  1. Histone deacetylase mediated silencing of AMWAP expression contributes to cisplatin nephrotoxicity

    PubMed Central

    Ranganathan, Punithavathi; Hamad, Rania; Mohamed, Riyaz; Jayakumar, Calpurnia; Muthusamy, Thangaraju; Ramesh, Ganesan

    2015-01-01

    Cisplatin-induced acute kidney injury is a serious problem in cancer patients during treatment of solid tumors. Currently, there are no therapies available to treat or prevent cisplatin nephrotoxicity. Since histone deacetylase (HDAC) inhibition augments cisplatin anti-tumor activity, we tested whether HDAC inhibitors can prevent cisplatin-induced nephrotoxicity and determined the underlying mechanism. Cisplatin up-regulated the expression of several HDACs in the kidney. Inhibition of HDAC with clinically used trichostatin A suppressed cisplatin-induced kidney injury, inflammation and epithelial cell apoptosis. Moreover, trichostatin A upregulated the novel anti-inflammatory protein, activated microglia/macrophage WAP domain protein (AMWAP), in epithelial cells which was enhanced with cisplatin treatment. Interestingly, HDAC1 and -2 specific inhibitors are sufficient to potently up-regulate AMWAP in epithelial cells. Administration of recombinant AMWAP or its epithelial cell-specific overexpression reduced cisplatin-induced kidney dysfunction. Moreover, AMWAP treatment suppressed epithelial cell apoptosis, and siRNA-based knockdown of AMWAP expression abolished trichostatin A-mediated suppression of epithelial cell apoptosis in vitro. Thus, HDAC-mediated silencing of AMWAP may contribute to cisplatin nephrotoxicity. Hence, HDAC1 and -2 specific inhibitors or AMWAP could be useful therapeutic agents for the prevention of cisplatin nephrotoxicity. PMID:26509586

  2. Implications of dynamic changes in miR-192 expression in ischemic acute kidney injury.

    PubMed

    Zhang, Lulu; Xu, Yuan; Xue, Song; Wang, Xudong; Dai, Huili; Qian, Jiaqi; Ni, Zhaohui; Yan, Yucheng

    2017-03-01

    Ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) with poor outcomes. While many important functions of microRNAs (miRNAs) have been identified in various diseases, few studies reported miRNAs in acute kidney IRI, especially the dynamic changes in their expression and their implications during disease progression. The expression of miR-192, a specific kidney-enriched miRNA, was assessed in both the plasma and kidney of IRI rats at different time points after kidney injury and compared to renal function and kidney histological changes. The results were validated in the plasma of the selected patients with AKI after cardiac surgery compared with those matched patients without AKI. The performance characteristics of miR-192 were summarized using area under the receiver operator characteristic (ROC) curves (AUC-ROC). MiRNA profiling in plasma led to the identification of 42 differentially expressed miRNAs in the IRI group compared to the sham group. MiR-192 was kidney-enriched and chosen for further validation. Real-time PCR showed that miR-192 levels increased by fourfold in the plasma and decreased by about 40% in the kidney of IRI rats. Plasma miR-192 expression started increasing at 3 h and peaked at 12 h, while kidney miR-192 expression started decreasing at 6 h and remained at a low level for 7 days after reperfusion. Plasma miR-192 level in patients with AKI increased at the time of ICU admission, was stable for 2 h and decreased after 24 h. AUC-ROC was 0.673 (95% CI: 0.540-0.806, p = 0.014). Plasma miR-192 expression was induced in a time-dependent manner after IRI in rats and patients with AKI after cardiac surgery, comparably to the kidney injury development and recovery process, and may be useful for the detection of AKI.

  3. l-Arginine normalizes NOS activity and zinc-MT homeostasis in the kidney of mice chronically exposed to inorganic mercury.

    PubMed

    Piacenza, Francesco; Malavolta, Marco; Cipriano, Catia; Costarelli, Laura; Giacconi, Robertina; Muti, Elisa; Tesei, Silvia; Pierpaoli, Sara; Basso, Andrea; Bracci, Massimo; Bonacucina, Viviana; Santarelli, Lory; Mocchegiani, Eugenio

    2009-09-28

    Inorganic mercury (HgCl2) exposure provokes damage in many organs, especially kidney. Inducible nitric oxide synthase (iNOS) expression, total NOS activity and the profiles of zinc (Zn), copper (Cu) and Hg as well as their distribution when bound to specific intracellular proteins, including metallothioneins (MT), were studied during HgCl2 exposure and after l-arginine treatment in C57BL/6 mouse kidney. HgCl2 exposure modulates differently iNOS expression and NOS activity, increasing iNOS expression but, conversely, decreasing total NOS activity in the mouse kidney. Moreover, during Hg exposure an increased MT production occurs. The kidney damage leads to a loss of urinary proteins, increased plasma creatinine and high Zn mobilization with consequent increased urinary Zn excretion. l-arginine treatment recovers NOS activity and induces a normalization of MT induction, plasma creatinine values and urinary proteins excretion, suggesting that l-arginine may limit kidney damages by Hg exposure.

  4. Human Alpha Defensin 5 Expression in the Human Kidney and Urinary Tract

    PubMed Central

    Porter, Edith; Bevins, Charles L.; DiRosario, Julianne; Becknell, Brian; Wang, Huanyu

    2012-01-01

    Background The mechanisms that maintain sterility in the urinary tract are incompletely understood. Recent studies have implicated the importance of antimicrobial peptides (AMP) in protecting the urinary tract from infection. Here, we characterize the expression and relevance of the AMP human alpha-defensin 5 (HD5) in the human kidney and urinary tract in normal and infected subjects. Methodology/Principal Findings Using RNA isolated from human kidney, ureter, and bladder tissue, we performed quantitative real-time PCR to show that DEFA5, the gene encoding HD5, is constitutively expressed throughout the urinary tract. With pyelonephritis, DEFA5 expression significantly increased in the kidney. Using immunoblot analysis, HD5 production also increased with pyelonephritis. Immunostaining localized HD5 to the urothelium of the bladder and ureter. In the kidney, HD5 was primarily produced in the distal nephron and collecting tubules. Using immunoblot and ELISA assays, HD5 was not routinely detected in non-infected human urine samples while mean urinary HD5 production increased with E.coli urinary tract infection. Conclusions/Significance DEFA5 is expressed throughout the urinary tract in non-infected subjects. Specifically, HD5 is expressed throughout the urothelium of the lower urinary tract and in the collecting tubules of the kidney. With infection, HD5 expression increases in the kidney and levels become detectable in the urine. To our knowledge, our findings represent the first to quantitate HD5 expression and production in the human kidney. Moreover, this is the first report to detect the presence of HD5 in infected urine samples. Our results suggest that HD5 may have an important role in maintaining urinary tract sterility. PMID:22359618

  5. A kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene Cyp27b1 essential for vitamin D3 activation.

    PubMed

    Meyer, Mark B; Benkusky, Nancy A; Kaufmann, Martin; Lee, Seong Min; Onal, Melda; Jones, Glenville; Pike, J Wesley

    2017-10-20

    The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D 3 to its hormonal form, 1α,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ), occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1 , are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH) 2 D 3 -mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH) 2 D 3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1 We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by inflammatory factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH) 2 D 3 can fulfill separate functional roles, first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Comparison of Glomerular and Podocyte mRNA Profiles in Streptozotocin-Induced Diabetes

    PubMed Central

    Fu, Jia; Wei, Chengguo; Lee, Kyung; Zhang, Weijia; He, Wu; Chuang, Peter

    2016-01-01

    Evaluating the mRNA profile of podocytes in the diabetic kidney may indicate genes involved in the pathogenesis of diabetic nephropathy. To determine if the podocyte-specific gene information contained in mRNA profiles of the whole glomerulus of the diabetic kidney accurately reflects gene expression in the isolated podocytes, we crossed Nos3−/− IRG mice with podocin-rtTA and TetON-Cre mice for enhanced green fluorescent protein labeling of podocytes before diabetic injury. Diabetes was induced by streptozotocin, and mRNA profiles of isolated glomeruli and sorted podocytes from diabetic and control mice were examined 10 weeks later. Expression of podocyte-specific markers in glomeruli was downregulated in diabetic mice compared with controls. However, expression of these markers was not altered in sorted podocytes from diabetic mice. When mRNA levels of glomeruli were corrected for podocyte number per glomerulus, the differences in podocyte marker expression disappeared. Analysis of the differentially expressed genes in diabetic mice also revealed distinct upregulated pathways in the glomeruli (mitochondrial function, oxidative stress) and in podocytes (actin organization). In conclusion, our data suggest reduced expression of podocyte markers in glomeruli is a secondary effect of reduced podocyte number, thus podocyte-specific gene expression detected in the whole glomerulus may not represent that in podocytes in the diabetic kidney. PMID:26264855

  7. Adrenal-kidney-gonad complex measurements may not predict gonad-specific changes in gene expression patterns during temperature-dependent sex determination in the red-eared slider turtle (Trachemys scripta elegans).

    PubMed

    Ramsey, Mary; Crews, David

    2007-08-01

    Many turtles, including the red-eared slider turtle (Trachemys scripta elegans) have temperature-dependent sex determination in which gonadal sex is determined by temperature during the middle third of incubation. The gonad develops as part of a heterogenous tissue complex that comprises the developing adrenal, kidney, and gonad (AKG complex). Owing to the difficulty in excising the gonad from the adjacent tissues, the AKG complex is often used as tissue source in assays examining gene expression in the developing gonad. However, the gonad is a relatively small component of the AKG, and gene expression in the adrenal-kidney (AK) compartment may interfere with the detection of gonad-specific changes in gene expression, particularly during early key phases of gonadal development and sex determination. In this study, we examine transcript levels as measured by quantitative real-time polymerase chain reaction for five genes important in slider turtle sex determination and differentiation (AR, ERalpha, ERbeta, aromatase, and Sf1) in AKG, AK, and isolated gonad tissues. In all cases, gonad-specific gene expression patterns were attenuated in AKG versus gonad tissue. All five genes were expressed in the AK in addition to the gonad at all stages/temperatures. Inclusion of the AK compartment masked important changes in gonadal gene expression. In addition, AK and gonad expression patterns are not additive, and gonadal gene expression cannot be predicted from intact AKG measurements. (c) 2007 Wiley-Liss, Inc.

  8. Systems Toxicology of Chemically Induced Liver and Kidney Injuries: Histopathology-Associated Gene Co-Expression Modules

    DTIC Science & Technology

    2016-01-04

    2016 (wileyonlinelibrary.com) DOI 10.1002/jat.3278Systems toxicology of chemically induced liver and kidney injuries: histopathology-associated gene...injuries that classify 11 liver and eight kidney histopathology endpoints based on dose-dependent activation of the identified modules. We showed that...well as determine whether the injury module activation was specific to the tissue of origin (liver and kidney ). The generated modules provide a link

  9. Translational Profiles of Medullary Myofibroblasts during Kidney Fibrosis

    PubMed Central

    Grgic, Ivica; Krautzberger, A. Michaela; Hofmeister, Andreas; Lalli, Matthew; DiRocco, Derek P.; Fleig, Susanne V.; Liu, Jing; Duffield, Jeremy S.; McMahon, Andrew P.; Aronow, Bruce

    2014-01-01

    Myofibroblasts secrete matrix during chronic injury, and their ablation ameliorates fibrosis. Development of new biomarkers and therapies for CKD will be aided by a detailed analysis of myofibroblast gene expression during the early stages of fibrosis. However, dissociating myofibroblasts from fibrotic kidney is challenging. We therefore adapted translational ribosome affinity purification (TRAP) to isolate and profile mRNA from myofibroblasts and their precursors during kidney fibrosis. We generated and characterized a transgenic mouse expressing an enhanced green fluorescent protein (eGFP)–tagged L10a ribosomal subunit protein under control of the collagen1α1 promoter. We developed a one-step procedure for isolation of polysomal RNA from collagen1α1-eGFPL10a mice subject to unilateral ureteral obstruction and analyzed and validated the resulting transcriptional profiles. Pathway analysis revealed strong gene signatures for cell proliferation, migration, and shape change. Numerous novel genes and candidate biomarkers were upregulated during fibrosis, specifically in myofibroblasts, and we validated these results by quantitative PCR, in situ, and Western blot analysis. This study provides a comprehensive analysis of early myofibroblast gene expression during kidney fibrosis and introduces a new technique for cell-specific polysomal mRNA isolation in kidney injury models that is suited for RNA-sequencing technologies. PMID:24652793

  10. Cellular and subcellular localization of uncoupling protein 2 in the human kidney.

    PubMed

    Nigro, Michelangelo; De Sanctis, Claudia; Formisano, Pietro; Stanzione, Rosita; Forte, Maurizio; Capasso, Giovambattista; Gigliotti, Giuseppe; Rubattu, Speranza; Viggiano, Davide

    2018-06-23

    The uncoupling protein-2 (UCP2) is an anion transporter that plays a key role in the control of intracellular oxidative stress. In animal models UCP2 downregulation has several pathological sequelae, particularly affecting the vasculature and the kidney. Specifically, in these models kidney damage is highly favored in the absence of UCP2 in the context of experimental hypertension. Confirmations of these data in humans awaits further information, as no data are yet available concerning the cell-type and subcellular expression in the human kidney. In the present study, we aimed to characterize the UCP2 protein distribution in human kidney biopsies. In humans UCP2 is mainly localized in proximal convoluted tubule cells, with an intracytoplasmic punctate staining. UCP2 positive puncta are often localized at the interface between the endoplasmic reticulum and the mitochondria. Glomerular structures do not express UCP2 at detectable levels. The expression of UCP2 in proximal tubular cells may explain their relative propensity to damage in pathological conditions including the hypertensive disease.

  11. Angiogenin Mediates Cell-Autonomous Translational Control under Endoplasmic Reticulum Stress and Attenuates Kidney Injury

    PubMed Central

    Mami, Iadh; Bouvier, Nicolas; El Karoui, Khalil; Gallazzini, Morgan; Rabant, Marion; Laurent-Puig, Pierre; Li, Shuping; Tharaux, Pierre-Louis; Beaune, Philippe; Thervet, Eric; Chevet, Eric; Hu, Guo-Fu

    2016-01-01

    Endoplasmic reticulum (ER) stress is involved in the pathophysiology of kidney disease and aging, but the molecular bases underlying the biologic outcomes on the evolution of renal disease remain mostly unknown. Angiogenin (ANG) is a ribonuclease that promotes cellular adaptation under stress but its contribution to ER stress signaling remains elusive. In this study, we investigated the ANG-mediated contribution to the signaling and biologic outcomes of ER stress in kidney injury. ANG expression was significantly higher in samples from injured human kidneys than in samples from normal human kidneys, and in mouse and rat kidneys, ANG expression was specifically induced under ER stress. In human renal epithelial cells, ER stress induced ANG expression in a manner dependent on the activity of transcription factor XBP1, and ANG promoted cellular adaptation to ER stress through induction of stress granules and inhibition of translation. Moreover, the severity of renal lesions induced by ER stress was dramatically greater in ANG knockout mice (Ang−/−) mice than in wild-type mice. These results indicate that ANG is a critical mediator of tissue adaptation to kidney injury and reveal a physiologically relevant ER stress-mediated adaptive translational control mechanism. PMID:26195817

  12. Podocyte-specific chemokine (C-C motif) receptor 2 overexpression mediates diabetic renal injury in mice

    PubMed Central

    You, Hanning; Gao, Ting; Raup-Konsavage, Wesley M.; Cooper, Timothy K.; Bronson, Sarah K.; Reeves, W. Brian; Awad, Alaa S.

    2016-01-01

    Inflammation is a central pathophysiologic mechanism that contributes to diabetes mellitus and diabetic nephropathy. Recently, we showed that macrophages directly contribute to diabetic renal injury, and that pharmacological blockade or genetic deficiency of chemokine (C-C motif) receptor 2 (CCR2) confers kidney protection in diabetic nephropathy. However, the direct role of CCR2 in kidney-derived cells such as podocytes in diabetic nephropathy remains unclear. To study this, we developed a transgenic mouse model expressing CCR2 specifically in podocytes (Tg(NPHS2-Ccr2)) on a nephropathy prone (DBA/2J) and CCR2 deficient (Ccr2−/−) background with heterozygous Ccr2+/− littermate controls. Diabetes was induced by streptozotocin. As expected, absence of CCR2 conferred kidney protection after nine weeks of diabetes. In contrast, transgenic CCR2 over expression in the podocytes of Ccr2−/− mice resulted in significantly increased albuminuria, blood urea nitrogen, histopathologic changes, kidney fibronectin and type-1 collagen expression, podocyte loss, and glomerular apoptosis after nine weeks of streptozotocin-induced diabetes. Interestingly, there was no concurrent increase in kidney macrophage recruitment or inflammatory cytokine levels in the mice. These findings support a direct role for CCR2 expression in podocytes to mediate diabetic renal injury, independent of monocyte/macrophage recruitment. Thus, targeting the CCR2 signaling cascade in podocytes could be a novel therapeutic approach for treatment of diabetic nephropathy. PMID:27914709

  13. Podocyte-specific RAP1GAP expression contributes to focal segmental glomerulosclerosis–associated glomerular injury

    PubMed Central

    Potla, Uma; Ni, Jie; Vadaparampil, Justin; Yang, Guozhe; Leventhal, Jeremy S.; Campbell, Kirk N.; Chuang, Peter Y.; Morozov, Alexei; He, John C.; D’Agati, Vivette D.; Klotman, Paul E.; Kaufman, Lewis

    2014-01-01

    Injury to the specialized epithelial cells of the glomerulus (podocytes) underlies the pathogenesis of all forms of proteinuric kidney disease; however, the specific genetic changes that mediate podocyte dysfunction after injury are not fully understood. Here, we performed a large-scale insertional mutagenic screen of injury-resistant podocytes isolated from mice and found that increased expression of the gene Rap1gap, encoding a RAP1 activation inhibitor, ameliorated podocyte injury resistance. Furthermore, injured podocytes in murine models of disease and kidney biopsies from glomerulosclerosis patients exhibited increased RAP1GAP, resulting in diminished glomerular RAP1 activation. In mouse models, podocyte-specific inactivation of Rap1a and Rap1b induced massive glomerulosclerosis and premature death. Podocyte-specific Rap1a and Rap1b haploinsufficiency also resulted in severe podocyte damage, including features of podocyte detachment. Over-expression of RAP1GAP in cultured podocytes induced loss of activated β1 integrin, which was similarly observed in kidney biopsies from patients. Furthermore, preventing elevation of RAP1GAP levels in injured podocytes maintained β1 integrin–mediated adhesion and prevented cellular detachment. Taken together, our findings suggest that increased podocyte expression of RAP1GAP contributes directly to podocyte dysfunction by a mechanism that involves loss of RAP1-mediated activation of β1 integrin. PMID:24642466

  14. Expression Profile of Cytokines and Enzymes mRNA in Blood Leukocytes of Dogs with Leptospirosis and Its Associated Pulmonary Hemorrhage Syndrome.

    PubMed

    Maissen-Villiger, Carla A; Schweighauser, Ariane; van Dorland, H Anette; Morel, Claudine; Bruckmaier, Rupert M; Zurbriggen, Andreas; Francey, Thierry

    2016-01-01

    Dogs with leptospirosis show similar organ manifestations and disease course as human patients, including acute kidney injury and pulmonary hemorrhage, making this naturally-occurring infection a good animal model for human leptospirosis. Expression patterns of cytokines and enzymes have been correlated with disease manifestations and clinical outcome in humans and animals. The aim of this study was to describe mRNA expression of pro- and anti-inflammatory mediators in canine leptospirosis and to compare it with other renal diseases to identify patterns characterizing the disease and especially its pulmonary form. The mRNA abundance of cytokines (IL-1α, IL-1β, IL-8, IL-10, TNF-α, TGF-β) and enzymes (5-LO, iNOS) was measured prospectively in blood leukocytes from 34 dogs with severe leptospirosis and acute kidney injury, including 22 dogs with leptospirosis-associated pulmonary hemorrhages. Dogs with leptospirosis were compared to 14 dogs with acute kidney injury of other origin than leptospirosis, 8 dogs with chronic kidney disease, and 10 healthy control dogs. Canine leptospirosis was characterized by high 5-LO and low TNF-α expression compared to other causes of acute kidney injury, although the decreased TNF-α expression was also seen in chronic kidney disease. Leptospirosis-associated pulmonary hemorrhage was not characterized by a specific pattern, with only mild changes noted, including increased IL-10 and decreased 5-LO expression on some days in affected dogs. Fatal outcome from pulmonary hemorrhages was associated with low TNF-α, high IL-1β, and high iNOS expression, a pattern possibly expressed also in dogs with other forms of acute kidney injury. The patterns of cytokine and enzyme expression observed in the present study indicate a complex pro- and anti-inflammatory response to the infection with leptospires. The recognition of these signatures may be of diagnostic and prognostic relevance for affected individuals and they may indicate options for newer therapies targeting the identified pathways.

  15. Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions.

    PubMed

    Hebecker, Betty; Vlaic, Sebastian; Conrad, Theresia; Bauer, Michael; Brunke, Sascha; Kapitan, Mario; Linde, Jörg; Hube, Bernhard; Jacobsen, Ilse D

    2016-11-03

    Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses.

  16. Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions

    PubMed Central

    Hebecker, Betty; Vlaic, Sebastian; Conrad, Theresia; Bauer, Michael; Brunke, Sascha; Kapitan, Mario; Linde, Jörg; Hube, Bernhard; Jacobsen, Ilse D.

    2016-01-01

    Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses. PMID:27808111

  17. Long noncoding RNA Hoxb3os is dysregulated in autosomal dominant polycystic kidney disease and regulates mTOR signaling.

    PubMed

    Aboudehen, Karam; Farahani, Shayan; Kanchwala, Mohammed; Chan, Siu Chiu; Avdulov, Svetlana; Mickelson, Alan; Lee, Dayeon; Gearhart, Micah D; Patel, Vishal; Xing, Chao; Igarashi, Peter

    2018-06-15

    Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating disease that is characterized by the accumulation of numerous fluid-filled cysts in the kidney. ADPKD is primarily caused by mutations in two genes, PKD1 and PKD2 Long noncoding RNAs (lncRNA), defined by a length >200 nucleotides and absence of a long ORF, have recently emerged as epigenetic regulators of development and disease; however, their involvement in PKD has not been explored previously. Here, we performed deep RNA-Seq to identify lncRNAs that are dysregulated in two orthologous mouse models of ADPKD (kidney-specific Pkd1 and Pkd2 mutant mice). We identified a kidney-specific, evolutionarily conserved lncRNA called Hoxb3os that was down-regulated in cystic kidneys from Pkd1 and Pkd2 mutant mice. The human ortholog HOXB3-AS1 was down-regulated in cystic kidneys from ADPKD patients. Hoxb3os was highly expressed in renal tubules in adult WT mice, whereas its expression was lost in the cyst epithelium of mutant mice. To investigate the function of Hoxb3os , we utilized CRISPR/Cas9 to knock out its expression in mIMCD3 cells. Deletion of Hoxb3os resulted in increased phosphorylation of mTOR and its downstream targets, including p70 S6 kinase, ribosomal protein S6, and the translation repressor 4E-BP1. Consistent with activation of mTORC1 signaling, Hoxb3os mutant cells displayed increased mitochondrial respiration. The Hoxb3os mutant phenotype was partially rescued upon re-expression of Hoxb3os in knockout cells. These findings identify Hoxb3os as a novel lncRNA that is down-regulated in ADPKD and regulates mTOR signaling and mitochondrial respiration. © 2018 Aboudehen et al.

  18. Glomerular Podocytes Express Type 1 Adenylate Cyclase: Inactivation Results in Susceptibility to Proteinuria

    PubMed Central

    Xiao, Zhijie; He, Liqun; Takemoto, Minoru; Jalanko, Hannu; Chan, Guy C.; Storm, Daniel R.; Betsholtz, Christer; Tryggvason, Karl; Patrakka, Jaakko

    2011-01-01

    Background/Aims The organization of actin cytoskeleton in podocyte foot processes plays a critical role in the maintenance of the glomerular filtration barrier. The cAMP pathway is an important regulator of the actin network assembly in cells. However, the role of the cAMP pathway in podocytes is not well understood. Type 1 adenylate cyclase (Adcy1), previously thought to be specific for neuronal tissue, is a member of the family of enzymes that catalyses the formation of cAMP. In this study, we characterized the expression and role of Adcy1 in the kidney. Methods Expression of Adcy1 was studied by RT-PCR, Northern blotting and in situ hybridization. The role of Adcy1 in podocytes was investigated by analyzing Adcy1 knockout mice (Adcy1–/–). Results and Conclusion: Adcy1 is expressed in the kidney specifically by podocytes. In the kidney, Adcy1 does not have a critical role in normal physiological functioning as kidney histology and function are normal in Adcy1–/– mice. However, albumin overload resulted in severe albuminuria in Adcy1–/– mice, whereas wild-type control mice showed only mild albumin leakage to urine. In conclusion, we have identified Adcy1 as a novel podocyte signaling protein that seems to have a role in compensatory physiological processes in the glomerulus. PMID:21196775

  19. Tissue- and agonist-specific regulation of human and murine plasminogen activator inhibitor-1 promoters in transgenic mice.

    PubMed

    Eren, M; Painter, C A; Gleaves, L A; Schoenhard, J A; Atkinson, J B; Brown, N J; Vaughan, D E

    2003-11-01

    Numerous studies have described regulatory factors and sequences that control transcriptional responses in vitro. However, there is a paucity of information on the qualitative and quantitative regulation of heterologous promoters using transgenic strategies. In order to investigate the physiological regulation of human plasminogen activator inhibitor type-1 (hPAI-1) expression in vivo compared to murine PAI-1 (mPAI-1) and to test the physiological relevance of regulatory mechanisms described in vitro, we generated transgenic mice expressing enhanced green fluorescent protein (EGFP) driven by the proximal -2.9 kb of the hPAI-1 promoter. Transgenic animals were treated with Ang II, TGF-beta1 and lipopolysaccharide (LPS) to compare the relative activation of the human and murine PAI-1 promoters. Ang II increased EGFP expression most effectively in brain, kidney and spleen, while mPAI-1 expression was quantitatively enhanced most prominently in heart and spleen. TGF-beta1 failed to induce activation of the hPAI-1 promoter but potently stimulated mPAI-1 in kidney and spleen. LPS administration triggered robust expression of mPAI-1 in liver, kidney, pancreas, spleen and lung, while EGFP was induced only modestly in heart and kidney. These results indicate that the transcriptional response of the endogenous mPAI-1 promoter varies widely in terms of location and magnitude of response to specific stimuli. Moreover, the physiological regulation of PAI-1 expression likely involves a complex interaction of transcription factors and DNA sequences that are not adequately replicated by in vitro functional studies focused on the proximal -2.9 kb promoter.

  20. Tetracapsuloides bryosalmonae infection affects the expression of genes involved in cellular signal transduction and iron metabolism in the kidney of the brown trout Salmo trutta.

    PubMed

    Kumar, Gokhlesh; Sarker, Subhodeep; Menanteau-Ledouble, Simon; El-Matbouli, Mansour

    2015-06-01

    Tetracapsuloides bryosalmonae is an enigmatic endoparasite which causes proliferative kidney disease in various species of salmonids in Europe and North America. The life cycle of the European strain of T. bryosalmonae generally completes in an invertebrate host freshwater bryozoan and vertebrate host brown trout (Salmo trutta) Linnaeus, 1758. Little is known about the gene expression in the kidney of brown trout during the developmental stages of T. bryosalmonae. In the present study, quantitative real-time PCR was applied to quantify the target genes of interest in the kidney of brown trout at different time points of T. bryosalmonae development. PCR primers specific for target genes were designed and optimized, and their gene expression levels were quantified in the cDNA kidney samples using SYBR Green Supermix. Expression of Rab GDP dissociation inhibitor beta, integral membrane protein 2B, NADH dehydrogenase 1 beta subcomplex subunit 6, and 26S protease regulatory subunit S10B were upregulated significantly in infected brown trout, while the expression of the ferritin M middle subunit was downregulated significantly. These results suggest that host genes involved in cellular signal transduction, proteasomal activities, including membrane transporters and cellular iron storage, are differentially upregulated or downregulated in the kidney of brown trout during parasite development. The gene expression pattern of infected renal tissue may support the development of intraluminal sporogonic stages of T. bryosalmonae in the renal tubular lumen of brown trout which may facilitate the release of viable parasite spores to transmit to the invertebrate host bryozoan.

  1. [Gene expression analyses of kidney biopsies: the European renal cDNA bank--Kröner-Fresenius biopsy bank].

    PubMed

    Cohen, C D; Kretzler, M

    2009-03-01

    Histological analysis of kidney biopsies is an essential part of our current diagnostic workup of patients with renal disease. Besides the already established diagnostic tools, new methods allow extensive analysis of the sample tissue's gene expression. Using results from a European multicenter study on gene expression analysis of renal biopsies, in this review we demonstrate that this novel approach not only expands the scope of so-called basic research but also might supplement future biopsy diagnostics. The goals are improved diagnosis and more specific therapy choice and prognosis estimates.

  2. Tissue-associated self-antigens containing exosomes: Role in allograft rejection.

    PubMed

    Sharma, Monal; Ravichandran, Ranjithkumar; Bansal, Sandhya; Bremner, Ross M; Smith, Michael A; Mohanakumar, T

    2018-06-15

    Exosomes are extracellular vesicles that express self-antigens (SAgs) and donor human leukocyte antigens. Tissue-specific exosomes can be detected in the circulation following lung, heart, kidney and islet cell transplantations. We collected serum samples from patients who had undergone lung (n = 30), heart (n = 8), or kidney (n = 15) transplantations to isolate circulating exosomes. Exosome purity was analyzed by Western blot, using CD9 exosome-specific markers. Tissue-associated lung SAgs, collagen V (Col-V) and K-alpha 1 tubulin (Kα1T), heart SAgs, myosin and vimentin, and kidney SAgs, fibronectin and collagen IV (Col-IV), were identified using western blot. Lung transplant recipients diagnosed with bronchiolitis obliterans syndrome had exosomes with higher expression of Col-V (4.2-fold) and Kα1T (37.1-fold) than stable. Exosomes isolated from heart transplant recipients diagnosed with coronary artery vasculopathy had a 3.9-fold increase in myosin and a 4.7-fold increase in vimentin compared with stable. Further, Kidney transplant recipients diagnosed with transplant glomerulopathy had circulating exosomes with a 2-fold increased expression of fibronectin and 2.5-fold increase in Col-IV compared with stable. We conclude that circulating exosomes with tissue associated SAgs have the potential to be a noninvasive biomarker for allograft rejection. Copyright © 2018. Published by Elsevier Inc.

  3. Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model.

    PubMed

    Semedo, Patricia; Correa-Costa, Matheus; Antonio Cenedeze, Marcos; Maria Avancini Costa Malheiros, Denise; Antonia dos Reis, Marlene; Shimizu, Maria Heloisa; Seguro, Antonio Carlos; Pacheco-Silva, Alvaro; Saraiva Camara, Niels Olsen

    2009-12-01

    Mesenchymal stem cells (MSCs) have regenerative properties in acute kidney injury, but their role in chronic kidney diseases is still unknown. More specifically, it is not known whether MSCs halt fibrosis. The purpose of this work was to investigate the role of MSCs in fibrogenesis using a model of chronic renal failure. MSCs were obtained from the tibias and femurs of male Wistar-EPM rats. Female Wistar rats were subjected to the remnant model, and 2|x|10(5) MSCs were intravenously administrated to each rat every other week for 8 weeks or only once and followed for 12 weeks. SRY gene expression was observed in female rats treated with male MSCs, and immune localization of CD73(+)CD90(+) cells at 8 weeks was also assessed. Serum and urine analyses showed an amelioration of functional parameters in MSC-treated animals at 8 weeks, but not at 12 weeks. Masson's trichrome and Sirius red staining demonstrated reduced levels of fibrosis in MSC-treated animals. These results were corroborated by reduced vimentin, type I collagen, transforming growth factor beta, fibroblast specific protein 1 (FSP-1), monocyte chemoattractant protein 1, and Smad3 mRNA expression and alpha smooth muscle actin and FSP-1 protein expression. Renal interleukin (IL)-6 and tumor necrosis factor alpha mRNA expression levels were significantly decreased after MSC treatment, whereas IL-4 and IL-10 expression levels were increased. All serum cytokine expression levels were decreased in MSC-treated animals. Taken together, these results suggested that MSC therapy can indeed modulate the inflammatory response that follows the initial phase of a chronic renal injury. The immunosuppressive and remodeling properties of MSCs may be involved in the decreased fibrosis in the kidney.

  4. Global Gene Expression Profiling in PAI-1 Knockout Murine Heart and Kidney: Molecular Basis of Cardiac-Selective Fibrosis

    PubMed Central

    Ghosh, Asish K.; Murphy, Sheila B.; Kishore, Raj; Vaughan, Douglas E.

    2013-01-01

    Fibrosis is defined as an abnormal matrix remodeling due to excessive synthesis and accumulation of extracellular matrix proteins in tissues during wound healing or in response to chemical, mechanical and immunological stresses. At present, there is no effective therapy for organ fibrosis. Previous studies demonstrated that aged plasminogen activator inhibitor-1(PAI-1) knockout mice develop spontaneously cardiac-selective fibrosis without affecting any other organs. We hypothesized that differential expressions of profibrotic and antifibrotic genes in PAI-1 knockout hearts and unaffected organs lead to cardiac selective fibrosis. In order to address this prediction, we have used a genome-wide gene expression profiling of transcripts derived from aged PAI-1 knockout hearts and kidneys. The variations of global gene expression profiling were compared within four groups: wildtype heart vs. knockout heart; wildtype kidney vs. knockout kidney; knockout heart vs. knockout kidney and wildtype heart vs. wildtype kidney. Analysis of illumina-based microarray data revealed that several genes involved in different biological processes such as immune system processing, response to stress, cytokine signaling, cell proliferation, adhesion, migration, matrix organization and transcriptional regulation were affected in hearts and kidneys by the absence of PAI-1, a potent inhibitor of urokinase and tissue-type plasminogen activator. Importantly, the expressions of a number of genes, involved in profibrotic pathways including Ankrd1, Pi16, Egr1, Scx, Timp1, Timp2, Klf6, Loxl1 and Klotho, were deregulated in PAI-1 knockout hearts compared to wildtype hearts and PAI-1 knockout kidneys. While the levels of Ankrd1, Pi16 and Timp1 proteins were elevated during EndMT, the level of Timp4 protein was decreased. To our knowledge, this is the first comprehensive report on the influence of PAI-1 on global gene expression profiling in the heart and kidney and its implication in fibrogenesis and several other biological processes. The significance of these observations in the light of heart-specific profibrotic signaling and fibrogenesis are discussed. PMID:23724005

  5. Identification and characterisation of TLR18-21 genes in Atlantic salmon (Salmo salar).

    PubMed

    Lee, P T; Zou, J; Holland, J W; Martin, S A M; Collet, B; Kanellos, T; Secombes, C J

    2014-12-01

    Teleost fish possess many types of toll-like receptor (TLR) some of which exist in other vertebrate groups and some that do not (ie so-called "fish-specific" TLRs). In this study, we identified in Atlantic salmon (Salmo salar) whole-genome shotgun (WGS) contigs seven TLRs that are not found in mammals, including six types of fish-specific TLRs (one TLR18, one TLR19, and four TLR20 members (two of which are putative soluble forms (s)) and one TLR21. Phylogenetic analysis revealed that teleost TLR19-21 are closely related with murine TLR11-TLR13, whilst teleost TLR18 groups with mammalian TLR1, 2, 6 and 10. A typical TLR protein domain structure was found in all these TLRs with the exception of TLR20b(s) and TLR20c(s). TLR-GFP expression plasmids transfected into SHK-1 cells showed that salmon TLR19, TLR20a and TLR20d were preferentially localised to the intracellular compartment. Real time PCR analysis suggested that salmon TLR19-TLR21 are mainly expressed in immune related organs, such as spleen, head kidney and gills, while TLR18 transcripts are more abundant in muscle. In vitro stimulation of primary head kidney cells with type I IFN, IFNγ and IL-1β had no impact on TLR expression. Infectious salmon anaemia virus (ISAV) infection, in vivo, down-regulated TLR20a, TLR20b(s), TLR20d and TLR21 in infected salmon kidney tissue. In contrast, up-regulation of TLR19 and TLR20a expression was found in posterior kidney in rainbow trout with clinical proliferative kidney disease (PKD). Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Mapping of Carboxypeptidase M in Normal Human Kidney and Renal Cell Carcinoma

    PubMed Central

    Denis, Catherine J.; Van Acker, Nathalie; De Schepper, Stefanie; De Bie, Martine; Andries, Luc; Fransen, Erik; Hendriks, Dirk; Kockx, Mark M.

    2013-01-01

    Although the kidney generally has been regarded as an excellent source of carboxypeptidase M (CPM), little is known about its renal-specific expression level and distribution. This study provides a detailed localization of CPM in healthy and diseased human kidneys. The results indicate a broad distribution of CPM along the renal tubular structures in the healthy kidney. CPM was identified at the parietal epithelium beneath the Bowman’s basement membrane and in glomerular mesangial cells. Capillaries, podocytes, and most interstitial cells were CPM negative. Tumor cells of renal cell carcinoma subtypes lose CPM expression upon dedifferentiation. Tissue microarray analysis demonstrated a correlation between low CPM expression and tumor cell type. CPM staining was intense on phagocytotic tumor-associated macrophages. Immunoreactive CPM was also detected in the tumor-associated vasculature. The absence of CPM in normal renal blood vessels points toward a role for CPM in angiogenesis. Coexistence of CPM and the epidermal growth factor receptor (EGFR) was detected in papillary renal cell carcinoma. However, the different subcellular localization of CPM and EGFR argues against an interaction between these h proteins. The description of the distribution of CPM in human kidney forms the foundation for further study of the (patho)physiological activities of CPM in the kidney. PMID:23172796

  7. Renal Dysfunction Induced by Kidney-Specific Gene Deletion of Hsd11b2 as a Primary Cause of Salt-Dependent Hypertension.

    PubMed

    Ueda, Kohei; Nishimoto, Mitsuhiro; Hirohama, Daigoro; Ayuzawa, Nobuhiro; Kawarazaki, Wakako; Watanabe, Atsushi; Shimosawa, Tatsuo; Loffing, Johannes; Zhang, Ming-Zhi; Marumo, Takeshi; Fujita, Toshiro

    2017-07-01

    Genome-wide analysis of renal sodium-transporting system has identified specific variations of Mendelian hypertensive disorders, including HSD11B2 gene variants in apparent mineralocorticoid excess. However, these genetic variations in extrarenal tissue can be involved in developing hypertension, as demonstrated in former studies using global and brain-specific Hsd11b2 knockout rodents. To re-examine the importance of renal dysfunction on developing hypertension, we generated kidney-specific Hsd11b2 knockout mice. The knockout mice exhibited systemic hypertension, which was abolished by reducing salt intake, suggesting its salt-dependency. In addition, we detected an increase in renal membrane expressions of cleaved epithelial sodium channel-α and T53-phosphorylated Na + -Cl - cotransporter in the knockout mice. Acute intraperitoneal administration of amiloride-induced natriuresis and increased urinary sodium/potassium ratio more in the knockout mice compared with those in the wild-type control mice. Chronic administration of amiloride and high-KCl diet significantly decreased mean blood pressure in the knockout mice, which was accompanied with the correction of hypokalemia and the resultant decrease in Na + -Cl - cotransporter phosphorylation. Accordingly, a Na + -Cl - cotransporter blocker hydrochlorothiazide significantly decreased mean blood pressure in the knockout mice. Chronic administration of mineralocorticoid receptor antagonist spironolactone significantly decreased mean blood pressure of the knockout mice along with downregulation of cleaved epithelial sodium channel-α and phosphorylated Na + -Cl - cotransporter expression in the knockout kidney. Our data suggest that kidney-specific deficiency of 11β-HSD2 leads to salt-dependent hypertension, which is attributed to mineralocorticoid receptor-epithelial sodium channel-Na + -Cl - cotransporter activation in the kidney, and provides evidence that renal dysfunction is essential for developing the phenotype of apparent mineralocorticoid excess. © 2017 American Heart Association, Inc.

  8. Apical Plasma Membrane Mispolarization of NaK-ATPase in Polycystic Kidney Disease Epithelia Is Associated with Aberrant Expression of the β2 Isoform

    PubMed Central

    Wilson, Patricia D.; Devuyst, Olivier; Li, Xiaohong; Gatti, Laura; Falkenstein, Doris; Robinson, Shawn; Fambrough, Douglas; Burrow, Christopher R.

    2000-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disease of the kidney, characterized by cystic enlargement of renal tubules, aberrant epithelial proliferation, and ion and fluid secretion into the lumen. Previous studies have shown abnormalities in polarization of membrane proteins, including mislocalization of the NaK-ATPase to the apical plasma membranes of cystic epithelia. Apically located NaK-ATPase has previously been shown to be fully functional in vivo and in membrane-grown ADPKD epithelial cells in vitro, where basal-to-apical 22Na transport was inhibited by application of ouabain to the apical membrane compartment. Studies were conducted with polymerase chain reaction-generated specific riboprobes and polyclonal peptide antibodies against human sequences of α1, α3, β1, and β2 subunits of NaK-ATPase. High levels of expression of α1 and β1 messenger RNA were detected in ADPKD and age-matched normal adult kidneys in vivo, whereas β2 messenger RNA was detected only in ADPKD kidneys. Western blot analysis and immunocytochemical studies showed that, in normal adult kidneys, peptide subunit-specific antibodies against α1 and β1 localized to the basolateral membranes of normal renal tubules, predominantly thick ascending limbs of Henle’s loop. In ADPKD kidneys, α1 and β2 subunits were localized to the apical epithelial cell membranes, whereas β1 was distributed throughout the cytoplasm and predominantly in the endoplasmic reticulum, but was not seen associated with cystic epithelial cell membranes or in cell membrane fractions. Polarizing, renal-derived epithelial Madin Darby canine kidney cells, stably expressing normal or N-terminally truncated chicken β1 subunits, showed selective accumulation in the basolateral Madin Darby canine kidney cell surface, whereas c-myc epitope-tagged chicken β2 or human β2 subunits accumulated selectively in the apical cell surface. Similarly, human ADPKD epithelial cell lines, which endogenously expressed α1 and β2 NaK-ATPase subunits, showed colocalization at the apical cell surface and coassociation by immunoprecipitation analysis. These results are consistent with a model in which the additional transcription and translation of the β2 subunit of NaK-ATPase may result in the apical mislocalization of NaK-ATPase in ADPKD cystic epithelia. PMID:10623674

  9. odd skipped related1 reveals a novel role for endoderm in regulating kidney vs. vascular cell fate

    PubMed Central

    Mudumana, Sudha P.; Hentschel, Dirk; Liu, Yan; Vasilyev, Aleksandr; Drummond, Iain A.

    2009-01-01

    Summary The kidney and vasculature are intimately linked functionally and during development, where nephric and blood/vascular progenitor cells occupy adjacent bands of mesoderm in zebrafish and frog embryos. Developmental mechanisms underlying the differentiation of kidney vs. blood/vascular lineages remain unknown. The odd skipped related1 (osr1) gene encodes a zinc finger transcription factor that is expressed in the germ ring mesendoderm and subsequently in the endoderm and intermediate mesoderm, prior to the expression of definitive kidney or blood/vascular markers. Knockdown of osr1 in zebrafish embryos resulted in a complete, segment-specific loss of anterior kidney progenitors and a compensatory increase in the number of angioblast cells in the same trunk region. Histology revealed a subsequent absence of kidney tubules, enlarged cardinal vein, and expansion of the posterior venous plexus. Altered kidney vs. vascular development correlated with expanded endoderm development in osr1 knockdowns. Combined osr1 loss of function and blockade of endoderm development by knockdown of sox32/casanova rescued anterior kidney development. The results indicate that osr1 activity is required to limit endoderm differentiation from mesendoderm and, in the absence of osr1, excess endoderm alters mesoderm differentiation, shifting the balance from kidney toward vascular development. PMID:18787069

  10. Systemic Hypoxia Changes the Organ-Specific Distribution of Vascular Endothelial Growth Factor and Its Receptors

    NASA Astrophysics Data System (ADS)

    Marti, Hugo H.; Risau, Werner

    1998-12-01

    Vascular endothelial growth factor (VEGF) plays a key role in physiological blood vessel formation and pathological angiogenesis such as tumor growth and ischemic diseases. Hypoxia is a potent inducer of VEGF in vitro. Here we demonstrate that VEGF is induced in vivo by exposing mice to systemic hypoxia. VEGF induction was highest in brain, but also occurred in kidney, testis, lung, heart, and liver. In situ hybridization analysis revealed that a distinct subset of cells within a given organ, such as glial cells and neurons in brain, tubular cells in kidney, and Sertoli cells in testis, responded to the hypoxic stimulus with an increase in VEGF expression. Surprisingly, however, other cells at sites of constitutive VEGF expression in normal adult tissues, such as epithelial cells in the choroid plexus and kidney glomeruli, decreased VEGF expression in response to the hypoxic stimulus. Furthermore, in addition to VEGF itself, expression of VEGF receptor-1 (VEGFR-1), but not VEGFR-2, was induced by hypoxia in endothelial cells of lung, heart, brain, kidney, and liver. VEGF itself was never found to be up-regulated in endothelial cells under hypoxic conditions, consistent with its paracrine action during normoxia. Our results show that the response to hypoxia in vivo is differentially regulated at the level of specific cell types or layers in certain organs. In these tissues, up- or down-regulation of VEGF and VEGFR-1 during hypoxia may influence their oxygenation after angiogenesis or modulate vascular permeability.

  11. Comparative Analysis of the Relationship between Trichloroethylene Metabolism and Tissue-Specific Toxicity among Inbred Mouse Strains: Kidney Effects

    PubMed Central

    Yoo, Hong Sik; Bradford, Blair U.; Kosyk, Oksana; Uehara, Takeki; Shymonyak, Svitlana; Collins, Leonard B.; Bodnar, Wanda M.; Ball, Louise M.; Gold, Avram; Rusyn, Ivan

    2014-01-01

    Trichloroethylene (TCE) is a well-known environmental and occupational toxicant that is classified as carcinogenic to humans based on the epidemiological evidence of an association with higher risk of renal cell carcinoma. A number of scientific issues critical for assessing human health risks from TCE remain unresolved, such as the amount of kidney-toxic glutathione conjugation metabolites formed, inter-species and -individual differences, and the mode of action for kidney carcinogenicity. We hypothesized that TCE metabolite levels in the kidney are associated with kidney-specific toxicity. Oral dosing with TCE was conducted in sub-acute (600 mg/kg/d; 5 days; 7 inbred mouse strains) and sub-chronic (100 or 400 mg/kg/d; 1, 2, or 4 weeks; 2 inbred mouse strains) designs. We evaluated the quantitative relationship between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P450-mediated oxidation [trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol] and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione], and various kidney toxicity phenotypes. In sub-acute study, we observed inter-strain differences in TCE metabolite levels in the kidney. In addition, we found that in several strains kidney-specific effects of TCE included induction of peroxisome proliferator-marker genes Cyp4a10 and Acox1, increased cell proliferation, and expression of KIM-1, a marker of tubular damage and regeneration. In sub-chronic study, peroxisome proliferator-marker gene induction and kidney toxicity diminished while cell proliferative response was elevated in a dose-dependent manner in NZW/LacJ, but not C57BL/6J mice. Overall, we show that TCE metabolite levels in the kidney are associated with kidney-specific toxicity and that these effects are strain-dependent. PMID:25424545

  12. Kidney specific protein-positive cells derived from embryonic stem cells reproduce tubular structures in vitro and differentiate into renal tubular cells.

    PubMed

    Morizane, Ryuji; Monkawa, Toshiaki; Fujii, Shizuka; Yamaguchi, Shintaro; Homma, Koichiro; Matsuzaki, Yumi; Okano, Hideyuki; Itoh, Hiroshi

    2014-01-01

    Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP)-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.

  13. Quantitative Expression of C-Type Lectin Receptors in Humans and Mice

    PubMed Central

    Lech, Maciej; Susanti, Heni Eka; Römmele, Christoph; Gröbmayr, Regina; Günthner, Roman; Anders, Hans-Joachim

    2012-01-01

    C-type lectin receptors and their adaptor molecules are involved in the recognition of glycosylated self-antigens and pathogens. However, little is known about the species- and organ-specific expression profiles of these molecules. We therefore determined the mRNA expression levels of Dectin-1, MR1, MR2, DC-SIGN, Syk, Card-9, Bcl-10, Malt-1, Src, Dec-205, Galectin-1, Tim-3, Trem-1, and DAP-12 in 11 solid organs of human and mice. Mouse organs revealed lower mRNA levels of most molecules compared to spleen. However, Dec-205 and Galectin-1 in thymus, Src in brain, MR2, Card-9, Bcl-10, Src, and Dec-205 in small intestine, MR2, Bcl-10, Src, Galectin-1 in kidney, and Src and Galectin-1 in muscle were at least 2-fold higher expressed compared to spleen. Human lung, liver and heart expressed higher mRNA levels of most genes compared to spleen. Dectin-1, MR1, Syk and Trem-1 mRNA were strongly up-regulated upon ischemia-reperfusion injury in murine kidney. Tim3, DAP-12, Card-9, DC-SIGN and MR2 were further up-regulated during renal fibrosis. Murine kidney showed higher DAP-12, Syk, Card-9 and Dectin-1 mRNA expression during the progression of lupus nephritis. Thus, the organ-, and species-specific expression of C-type lectin receptors is different between mice and humans which must be considered in the interpretation of related studies. PMID:22949850

  14. Comprehensive morphometric analysis of mononuclear cell infiltration during experimental renal allograft rejection.

    PubMed

    Hoffmann, Ute; Bergler, Tobias; Jung, Bettina; Steege, Andreas; Pace, Claudia; Rümmele, Petra; Reinhold, Stephan; Krüger, Bernd; Krämer, Bernhard K; Banas, Bernhard

    2013-01-01

    The role of specific subtypes of infiltrating cells in acute kidney allograft rejection is still not clear and was so far not examined by different analyzing methods under standardized conditions of an experimental kidney transplantation model. Immunohistochemical staining of CD3, CD20 and CD68 was performed in rat allografts, in syngeneically transplanted rats and in control rats with a test duration of 6 and 28 days. The detailed expression and localization of infiltrating cells were analyzed manually in different kidney compartments under light microscope and by the two different morphometric software programs. Data were correlated with the corresponding kidney function as well as with histopathological classification. The information provided by the morphometric software programs on the infiltration of the specific cell types after renal transplantation was in accordance with the manual analysis. Morphometric methods were solid to analyze reliably the induction of cellular infiltrates after renal transplantation. By manual analysis we could clearly demonstrate the detailed localization of the specific cell infiltrates in the different kidney compartments. Besides infiltration of CD3 and CD68 infiltrating cells, a robust infiltration of CD20 B-cells in allogeneically transplanted rats, even at early time points after transplantation was detected. Additionally an MHC class I expression could reliable be seen in allogeneically transplanted rats. The infiltration of B-cells and the reliable antigen presentation might act as a silent subclinical trigger for subsequent chronic rejection and premature graft loss. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. A kidney injury molecule-1 (Kim-1) gene reporter in a mouse artificial chromosome: the responsiveness to cisplatin toxicity in immortalized mouse kidney S3 cells.

    PubMed

    Kokura, Kenji; Kuromi, Yasushi; Endo, Takeshi; Anzai, Naohiko; Kazuki, Yasuhiro; Oshimura, Mitsuo; Ohbayashi, Tetsuya

    2016-10-01

    Kidney injury molecule-1 (Kim-1) has been validated as a urinary biomarker for acute and chronic renal damage. The expression of Kim-1 mRNA is also activated by acute kidney injury induced by cisplatin in rodents and humans. To date, the measurement of Kim-1 expression has not fully allowed the detection of in vitro cisplatin nephrotoxicity in immortalized culture cells, such as human kidney-2 cells and immortalized proximal tubular epithelial cells. We measured the augmentation of Kim-1 mRNA expression after the addition of cisplatin using immortalized S3 cells established from the kidneys of transgenic mice harboring temperature-sensitive large T antigen from Simian virus 40. A mouse Kim-1 gene luciferase reporter in conjunction with an Hprt gene reporter detected cisplatin-induced nephrotoxicity in S3 cells. These two reporter genes were contained in a mouse artificial chromosome, and two luciferases that emitted different wavelengths were used to monitor the respective gene expression. However, the Kim-1 reporter gene failed to respond to cisplatin in A9 fibroblast cells that contained the same reporter mouse artificial chromosome, suggesting cell type-specificity for activation of the reporter. We report the feasibility of measuring in vitro cisplatin nephrotoxicity using a Kim-1 reporter gene in S3 cells. © 2016 The Authors. The Journal of Gene Medicine Published by John Wiley & Sons, Ltd.

  16. In Utero Bisphenol A Concentration, Metabolism, and Global DNA Methylation Across Matched Placenta, Kidney, and Liver in the Human Fetus

    PubMed Central

    Nahar, Muna S.; Liao, Chunyang; Kannan, Kurunthachalam; Harris, Craig; Dolinoy, Dana C.

    2014-01-01

    While urine has been an easily accessible and feasible matrix for human biomonitoring, analytical measurements in internal tissues and organs can provide more accurate exposure assessments to understand disease etiology. This is especially important for the endocrine active compound, bisphenol A (BPA), where studies investigating internal doses at sensitive periods of human development are currently lacking. Herein, BPA concentrations, BPA-specific metabolizing enzyme gene expression, and global DNA methylation were characterized across three matched tissues from elective pregnancy terminations of 2nd trimester human fetuses: the placenta, liver, and kidney (N=12 each; N=36 total). Compared to liver (free: 0.54-50.5 ng/g), BPA concentrations were lower in matched placenta (<0.05-25.4 ng/g) and kidney (0.08-11.1 ng/g) specimens. BPA-specific metabolism gene expression of GUSB, UGT2B15, STS, and SULT1A1 differed across each tissue type; however, conjugation and deconjugation expression patterns were similar across the fetus. Average LINE1 and CCGG global methylation were 58.3 and 59.2% in placenta, 79.5 and 66.4% in fetal liver, and 77.9 and 77.0% in fetal kidney, with significant tissue-specific DNA methylation differences in both LINE1 (p-value <0.001) and CCGG content (p-value <0.001). Total BPA concentrations were positively associated with global methylation for the placenta only using the LINE1 assay (p-value: 0.002), suggesting organ-specific biological effects after fetal exposure. Utilizing sensitive human clinical specimens, results are informative for BPA toxicokinetics and toxicodynamics assessment in the developing human fetus. PMID:25434263

  17. Drug transporter expression profiling in a three-dimensional kidney proximal tubule in vitro nephrotoxicity model.

    PubMed

    Diekjürgen, Dorina; Grainger, David W

    2018-05-09

    Given currently poor toxicity translational predictions for drug candidates, improved mechanistic understanding underlying nephrotoxicity and drug renal clearance is needed to improve drug development and safety screening. Therefore, better relevant and well-characterized in vitro screening models are required to reliably predict human nephrotoxicity. Because kidney proximal tubules are central to active drug uptake and secretion processes and therefore to nephrotoxicity, this study acquired regio-specific expression data from recently reported primary proximal tubule three-dimensional (3D) hyaluronic acid gel culture and non-gel embedded cultured murine proximal tubule suspensions used in nephrotoxicity assays. Quantitative assessment of the mRNA expression of 21 known kidney tubule markers and important proximal tubule transporters with known roles in drug transport was obtained. Asserting superior gene expression levels over current commonly used two-dimensional (2D) kidney cell culture lines was the study objective. Hence, we compare previously published gel-based 3D proximal tubule fragment culture and their non-gel suspensions for up to 1 week. We demonstrate that 3D tubule culture exhibits superior gene expression levels and profiles compared to published commonly used 2D kidney cell lines (Caki-1 and HK-2) in plastic plate monocultures. Additionally, nearly all tested genes retain mRNA expression after 7 days in both proximal tubule cultures, a limitation of 2D cell culture lines. Importantly, gel presence is shown not to interfere with the gene expression assay. Western blots confirm protein expression of OAT1 and 3 and OCT2. Functional transport assays confirm their respective transporter functions in vitro. Overall, results validate retention of essential toxicity-relevant transporters in this published 3D proximal tubule model over conventional 2D kidney cell cultures, producing opportunities for more reliable, sensitive, and comprehensive drug toxicity studies relevant to drug development and nephrotoxicity goals.

  18. Estrogen directly and specifically downregulates NaPi-IIa through the activation of both estrogen receptor isoforms (ERα and ERβ) in rat kidney proximal tubule.

    PubMed

    Burris, Dara; Webster, Rose; Sheriff, Sulaiman; Faroqui, Rashma; Levi, Moshe; Hawse, John R; Amlal, Hassane

    2015-03-15

    We have previously demonstrated that estrogen (E2) downregulates phosphate transporter NaPi-IIa and causes phosphaturia and hypophosphatemia in ovariectomized rats. In the present study, we examined whether E2 directly targets NaPi-IIa in the proximal tubule (PT) and studied the respective roles of estrogen receptor isoforms (ERα and ERβ) in the downregulation of NaPi-IIa using both in vivo and an in vitro expression systems. We found that estrogen specifically downregulates NaPi-IIa but not NaPi-IIc or Pit2 in the kidney cortex. Proximal tubules incubated in a "shake" suspension with E2 for 24 h exhibited a dose-dependent decrease in NaPi-IIa protein abundance. Results from OVX rats treated with specific agonists for either ERα [4,4',4″;-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol, PPT] or ERβ [4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol, DPN] or both (PPT + DPN), indicated that only the latter caused a sharp downregulation of NaPi-IIa, along with significant phosphaturia and hypophosphatemia. Lastly, heterologous expression studies demonstrated that estrogen downregulated NaPi-IIa only in U20S cells expressing both ERα and ERβ, but not in cells expressing either receptor alone. In conclusion, these studies demonstrate that rat PT cells express both ERα and ERβ and that E2 induces phosphaturia by directly and specifically targeting NaPi-IIa in the PT cells. This effect is mediated via a mechanism involving coactivation of both ERα and ERβ, which likely form a functional heterodimer complex in the rat kidney proximal tubule. Copyright © 2015 the American Physiological Society.

  19. Estrogen directly and specifically downregulates NaPi-IIa through the activation of both estrogen receptor isoforms (ERα and ERβ) in rat kidney proximal tubule

    PubMed Central

    Burris, Dara; Webster, Rose; Sheriff, Sulaiman; Faroqui, Rashma; Levi, Moshe; Hawse, John R.

    2015-01-01

    We have previously demonstrated that estrogen (E2) downregulates phosphate transporter NaPi-IIa and causes phosphaturia and hypophosphatemia in ovariectomized rats. In the present study, we examined whether E2 directly targets NaPi-IIa in the proximal tubule (PT) and studied the respective roles of estrogen receptor isoforms (ERα and ERβ) in the downregulation of NaPi-IIa using both in vivo and an in vitro expression systems. We found that estrogen specifically downregulates NaPi-IIa but not NaPi-IIc or Pit2 in the kidney cortex. Proximal tubules incubated in a “shake” suspension with E2 for 24 h exhibited a dose-dependent decrease in NaPi-IIa protein abundance. Results from OVX rats treated with specific agonists for either ERα [4,4′,4″;-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol, PPT] or ERβ [4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol, DPN] or both (PPT + DPN), indicated that only the latter caused a sharp downregulation of NaPi-IIa, along with significant phosphaturia and hypophosphatemia. Lastly, heterologous expression studies demonstrated that estrogen downregulated NaPi-IIa only in U20S cells expressing both ERα and ERβ, but not in cells expressing either receptor alone. In conclusion, these studies demonstrate that rat PT cells express both ERα and ERβ and that E2 induces phosphaturia by directly and specifically targeting NaPi-IIa in the PT cells. This effect is mediated via a mechanism involving coactivation of both ERα and ERβ, which likely form a functional heterodimer complex in the rat kidney proximal tubule. PMID:25608964

  20. The expanding roles of microRNAs in kidney pathophysiology.

    PubMed

    Metzinger-Le Meuth, Valérie; Fourdinier, Ophélie; Charnaux, Nathalie; Massy, Ziad A; Metzinger, Laurent

    2018-05-25

    MicroRNAs (miRNAs) are short single-stranded RNAs that control gene expression through base pairing with regions within the 3'-untranslated region of target mRNAs. These small non-coding RNAs are now increasingly known to be involved in kidney physiopathology. In this review we will describe how miRNAs were in recent years implicated in cellular and animal models of kidney disease but also in chronic kidney disease, haemodialysed and grafted patients, acute kidney injury patients and so on. At the moment miRNAs are considered as potential biomarkers in nephrology, but larger cohorts as well as the standardization of methods of measurement will be needed to confirm their usefulness. It will further be of the utmost importance to select specific tissues and biofluids to make miRNAs appropriate in day-to-day clinical practice. In addition, up- or down-regulating miRNAs that were described as deregulated in kidney diseases may represent innovative therapeutic methods to cure these disorders. We will enumerate in this review the most recent methods that can be used to deliver miRNAs in a specific and suitable way in kidney and other organs damaged by kidney failure, such as the cardiovascular system.

  1. Cell type-specific glycoconjugates of collecting duct cells during maturation of the rat kidney.

    PubMed

    Holthöfer, H

    1988-08-01

    The ontogeny of lectin-positive epithelial cell types and the maturation of polarized expression of the glycocalyx of the collecting ducts (CD) of the rat kidney were studied from samples of 18th-day fetal and neonatal kidneys of various ages. Lectins from Dolichos biflorus (DBA) and Vicia villosa (VVA), with preferential affinity to principal cells, stained virtually all CD cells of the fetal kidneys. However, within two days postnatally, the number of cells positive for DBA and VVA decreased to amounts found in the adult kidneys. Moreover, a characteristic change occurred rapidly after birth in the intracellular polarization of the reactive glycoconjugates, from a uniform plasmalemmal to a preferentially apical staining. In contrast, lectins from Arachis hypogaea (PNA), Maclura pomifera (MPA) and Lotus tetragonolobus (LTA), reacting indiscriminatively with principal and intercalated cells of adult kidneys, stained most CD cells in the fetal kidneys, and failed to show any postnatal change in the amount of positive cells or in the intracellular polarization. The immunocytochemical tests for (Na + K)-ATPase and carbonic anhydrase (CA II) revealed the characteristic postnatal decrease in the amount of principal cells and simultaneous increase in the amount of CA II rich intercalated cells. DBA and VVA reactive cells also decreased postnatally, paralleling the changes observed in the (Na + K)-ATPase positive principal cells. The present results suggest that the expression of the cell type-specific glycocalyx of principal and intercalated cells is developmentally regulated, undergoes profound changes during maturation, and is most likely associated with electrolyte transport phenomena.

  2. Megalin-mediated specific uptake of chitosan/siRNA nanoparticles in mouse kidney proximal tubule epithelial cells enables AQP1 gene silencing.

    PubMed

    Gao, Shan; Hein, San; Dagnæs-Hansen, Frederik; Weyer, Kathrin; Yang, Chuanxu; Nielsen, Rikke; Christensen, Erik I; Fenton, Robert A; Kjems, Jørgen

    2014-01-01

    RNAi-based strategies provide a great therapeutic potential for treatment of various human diseases including kidney disorders, but face the challenge of in vivo delivery and specific targeting. The chitosan delivery system has previously been shown to target siRNA specifically to the kidneys in mice when administered intravenously. Here we confirm by 2D and 3D bioimaging that chitosan formulated siRNA is retained in the kidney for more than 48 hours where it accumulates in proximal tubule epithelial cells (PTECs), a process that was strongly dependent on the molecular weight of chitosan. Chitosan/siRNA nanoparticles, administered to chimeric mice with conditional knockout of the megalin gene, distributed almost exclusively in cells that expressed megalin, implying that the chitosan/siRNA particle uptake was mediated by a megalin-dependent endocytotic pathway. Knockdown of the water channel aquaporin 1 (AQP1) by up to 50% in PTECs was achieved utilizing the systemic i.v. delivery of chitosan/AQP1 siRNA in mice. In conclusion, specific targeting PTECs with the chitosan nanoparticle system may prove to be a useful strategy for knockdown of specific genes in PTECs, and provides a potential therapeutic strategy for treating various kidney diseases.

  3. Megalin-Mediated Specific Uptake of Chitosan/siRNA Nanoparticles in Mouse Kidney Proximal Tubule Epithelial Cells Enables AQP1 Gene Silencing

    PubMed Central

    Gao, Shan; Hein, San; Dagnæs-Hansen, Frederik; Weyer, Kathrin; Yang, Chuanxu; Nielsen, Rikke; Christensen, Erik I; Fenton, Robert A; Kjems, Jørgen

    2014-01-01

    RNAi-based strategies provide a great therapeutic potential for treatment of various human diseases including kidney disorders, but face the challenge of in vivo delivery and specific targeting. The chitosan delivery system has previously been shown to target siRNA specifically to the kidneys in mice when administered intravenously. Here we confirm by 2D and 3D bioimaging that chitosan formulated siRNA is retained in the kidney for more than 48 hours where it accumulates in proximal tubule epithelial cells (PTECs), a process that was strongly dependent on the molecular weight of chitosan. Chitosan/siRNA nanoparticles, administered to chimeric mice with conditional knockout of the megalin gene, distributed almost exclusively in cells that expressed megalin, implying that the chitosan/siRNA particle uptake was mediated by a megalin-dependent endocytotic pathway. Knockdown of the water channel aquaporin 1 (AQP1) by up to 50% in PTECs was achieved utilizing the systemic i.v. delivery of chitosan/AQP1 siRNA in mice. In conclusion, specific targeting PTECs with the chitosan nanoparticle system may prove to be a useful strategy for knockdown of specific genes in PTECs, and provides a potential therapeutic strategy for treating various kidney diseases. PMID:25157280

  4. RNA Sequencing Identifies Novel Translational Biomarkers of Kidney Fibrosis

    PubMed Central

    Craciun, Florin L.; Bijol, Vanesa; Ajay, Amrendra K.; Rao, Poornima; Kumar, Ramya K.; Hutchinson, John; Hofmann, Oliver; Joshi, Nikita; Luyendyk, James P.; Kusebauch, Ulrike; Moss, Christopher L.; Srivastava, Anand; Himmelfarb, Jonathan; Waikar, Sushrut S.; Moritz, Robert L.

    2016-01-01

    CKD is the gradual, asymptomatic loss of kidney function, but current tests only identify CKD when significant loss has already happened. Several potential biomarkers of CKD have been reported, but none have been approved for preclinical or clinical use. Using RNA sequencing in a mouse model of folic acid-induced nephropathy, we identified ten genes that track kidney fibrosis development, the common pathologic finding in patients with CKD. The gene expression of all ten candidates was confirmed to be significantly higher (approximately ten- to 150-fold) in three well established, mechanistically distinct mouse models of kidney fibrosis than in models of nonfibrotic AKI. Protein expression of these genes was also high in the folic acid model and in patients with biopsy-proven kidney fibrosis. mRNA expression of the ten genes increased with increasing severity of kidney fibrosis, decreased in response to therapeutic intervention, and increased only modestly (approximately two- to five-fold) with liver fibrosis in mice and humans, demonstrating specificity for kidney fibrosis. Using targeted selected reaction monitoring mass spectrometry, we detected three of the ten candidates in human urine: cadherin 11 (CDH11), macrophage mannose receptor C1 (MRC1), and phospholipid transfer protein (PLTP). Furthermore, urinary levels of each of these three proteins distinguished patients with CKD (n=53) from healthy individuals (n=53; P<0.05). In summary, we report the identification of urinary CDH11, MRC1, and PLTP as novel noninvasive biomarkers of CKD. PMID:26449608

  5. GDF11 induces kidney fibrosis, renal cell epithelial-to-mesenchymal transition, and kidney dysfunction and failure.

    PubMed

    Pons, Marianne; Koniaris, Leonidas G; Moe, Sharon M; Gutierrez, Juan C; Esquela-Kerscher, Aurora; Zimmers, Teresa A

    2018-05-03

    GDF11 modulates embryonic patterning and kidney organogenesis. Herein, we sought to define GDF11 function in the adult kidney and in renal diseases. In vitro renal cell lines, genetic, and murine in vivo renal injury models were examined. Among tissues tested, Gdf11 was highest in normal adult mouse kidney. Expression was increased acutely after 5/6 nephrectomy, ischemia-reperfusion injury, kanamycin toxicity, or unilateral ureteric obstruction. Systemic, high-dose GDF11 administration in adult mice led to renal failure, with accompanying kidney atrophy, interstitial fibrosis, epithelial-to-mesenchymal transition of renal tubular cells, and eventually death. These effects were associated with phosphorylation of SMAD2 and could be blocked by follistatin. In contrast, Gdf11 heterozygous mice showed reduced renal Gdf11 expression, renal fibrosis, and expression of fibrosis-associated genes both at baseline and after unilateral ureteric obstruction compared with wild-type littermates. The kidney-specific consequences of GDF11 dose modulation are direct effects on kidney cells. GDF11 induced proliferation and activation of NRK49f renal fibroblasts and also promoted epithelial-to-mesenchymal transition of IMCD-3 tubular epithelial cells in a SMAD3-dependent manner. Taken together, these data suggest that GDF11 and its downstream signals are critical in vivo mediators of renal injury. These effects are through direct actions of GDF11 on renal tubular cells and fibroblasts. Thus, regulation of GDF11 presents a therapeutic target for diseases involving renal fibrosis and impaired tubular function. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats.

    PubMed

    Zafrani, Lara; Ergin, Bulent; Kapucu, Aysegul; Ince, Can

    2016-12-20

    The effects of blood transfusion on renal microcirculation during sepsis are unknown. This study aimed to investigate the effect of blood transfusion on renal microvascular oxygenation and renal function during sepsis-induced acute kidney injury. Twenty-seven Wistar albino rats were randomized into four groups: a sham group (n = 6), a lipopolysaccharide (LPS) group (n = 7), a LPS group that received fluid resuscitation (n = 7), and a LPS group that received blood transfusion (n = 7). The mean arterial blood pressure, renal blood flow, and renal microvascular oxygenation within the kidney cortex were recorded. Acute kidney injury was assessed using the serum creatinine levels, metabolic cost, and histopathological lesions. Nitrosative stress (expression of endothelial (eNOS) and inducible nitric oxide synthase (iNOS)) within the kidney was assessed by immunohistochemistry. Hemoglobin levels, pH, serum lactate levels, and liver enzymes were measured. Fluid resuscitation and blood transfusion both significantly improved the mean arterial pressure and renal blood flow after LPS infusion. Renal microvascular oxygenation, serum creatinine levels, and tubular damage significantly improved in the LPS group that received blood transfusion compared to the group that received fluids. Moreover, the renal expression of eNOS was markedly suppressed under endotoxin challenge. Blood transfusion, but not fluid resuscitation, was able to restore the renal expression of eNOS. However, there were no significant differences in lactic acidosis or liver function between the two groups. Blood transfusion significantly improved renal function in endotoxemic rats. The specific beneficial effect of blood transfusion on the kidney could have been mediated in part by the improvements in renal microvascular oxygenation and sepsis-induced endothelial dysfunction via the restoration of eNOS expression within the kidney.

  7. Expression of receptor-type protein tyrosine phosphatase in developing and adult renal vasculature

    PubMed Central

    Takahashi, Keiko; Kim, Rachel; Lauhan, Colette; Park, Yuna; Nguyen, Nghiep G.; Vestweber, Dietmar; Dominguez, Melissa G.; Valenzuela, David M.; Murphy, Andrew J.; Yancopoulos, George D.; Gale, Nicholas W.; Takahashi, Takamune

    2017-01-01

    Renal vascular development is a coordinated process that requires ordered endothelial cell proliferation, migration, intercellular adhesion, and morphogenesis. In recent decades, studies have defined the pivotal role of endothelial receptor tyrosine kinases (RPTKs) in the development and maintenance of renal vasculature. However, the expression and the role of receptor tyrosine phosphatases (RPTPs) in renal endothelium are poorly understood, though coupled and counterbalancing roles of RPTKs and RPTPs are well defined in other systems. In this study, we evaluated the promoter activity and immunolocalization of two endothelial RPTPs, VE-PTP and PTPμ, in developing and adult renal vasculature using the heterozygous LacZ knock-in mice and specific antibodies. In adult kidneys, both VE-PTP and PTPμ were expressed in the endothelium of arterial, glomerular, and medullary vessels, while their expression was highly limited in peritubular capillaries and venous endothelium. VE-PTP and PTPμ promoter activity was also observed in medullary tubular segments in adult kidneys. In embryonic (E12.5, E13.5, E15.5, E17.5) and postnatal (P0, P3, P7) kidneys, these RPTPs were expressed in ingrowing renal arteries, developing glomerular microvasculature (as early as the S-shaped stage), and medullary vessels. Their expression became more evident as the vasculatures matured. Peritubular capillary expression of VE-PTP was also noted in embryonic and postnatal kidneys. Compared to VE-PTP, PTPμ immunoreactivity was relatively limited in embryonic and neonatal renal vasculature and evident immunoreactivity was observed from the P3 stage. These findings indicate 1) VE-PTP and PTPμ are expressed in endothelium of arterial, glomerular, and medullary renal vasculature, 2) their expression increases as renal vascular development proceeds, suggesting that these RPTPs play a role in maturation and maintenance of these vasculatures, and 3) peritubular capillary VE-PTP expression is down-regulated in adult kidneys, suggesting a role of VE-PTP in the development of peritubular capillaries. PMID:28542220

  8. Identification of Novel Tissue-Specific Genes by Analysis of Microarray Databases: A Human and Mouse Model

    PubMed Central

    Suh, Yeunsu; Davis, Michael E.; Lee, Kichoon

    2013-01-01

    Understanding the tissue-specific pattern of gene expression is critical in elucidating the molecular mechanisms of tissue development, gene function, and transcriptional regulations of biological processes. Although tissue-specific gene expression information is available in several databases, follow-up strategies to integrate and use these data are limited. The objective of the current study was to identify and evaluate novel tissue-specific genes in human and mouse tissues by performing comparative microarray database analysis and semi-quantitative PCR analysis. We developed a powerful approach to predict tissue-specific genes by analyzing existing microarray data from the NCBI′s Gene Expression Omnibus (GEO) public repository. We investigated and confirmed tissue-specific gene expression in the human and mouse kidney, liver, lung, heart, muscle, and adipose tissue. Applying our novel comparative microarray approach, we confirmed 10 kidney, 11 liver, 11 lung, 11 heart, 8 muscle, and 8 adipose specific genes. The accuracy of this approach was further verified by employing semi-quantitative PCR reaction and by searching for gene function information in existing publications. Three novel tissue-specific genes were discovered by this approach including AMDHD1 (amidohydrolase domain containing 1) in the liver, PRUNE2 (prune homolog 2) in the heart, and ACVR1C (activin A receptor, type IC) in adipose tissue. We further confirmed the tissue-specific expression of these 3 novel genes by real-time PCR. Among them, ACVR1C is adipose tissue-specific and adipocyte-specific in adipose tissue, and can be used as an adipocyte developmental marker. From GEO profiles, we predicted the processes in which AMDHD1 and PRUNE2 may participate. Our approach provides a novel way to identify new sets of tissue-specific genes and to predict functions in which they may be involved. PMID:23741331

  9. Comparative genomics reveals tissue-specific regulation of prolactin receptor gene expression

    USDA-ARS?s Scientific Manuscript database

    Prolactin (PRL), acting via the prolactin receptor, fulfills a diversity of biological functions including the maintenance of solute balance and mineral homeostasis via tissues such as the heart, kidneys and intestine. Expression and activity of the prolactin receptor (PRLR) is regulated by various ...

  10. Genomic integration of ERRγ-HNF1β regulates renal bioenergetics and prevents chronic kidney disease.

    PubMed

    Zhao, Juanjuan; Lupino, Katherine; Wilkins, Benjamin J; Qiu, Chengxiang; Liu, Jian; Omura, Yasuhiro; Allred, Amanda L; McDonald, Caitlin; Susztak, Katalin; Barish, Grant D; Pei, Liming

    2018-05-22

    Mitochondrial dysfunction is increasingly recognized as a critical determinant of both hereditary and acquired kidney diseases. However, it remains poorly understood how mitochondrial metabolism is regulated to support normal kidney function and how its dysregulation contributes to kidney disease. Here, we show that the nuclear receptor estrogen-related receptor gamma (ERRγ) and hepatocyte nuclear factor 1 beta (HNF1β) link renal mitochondrial and reabsorptive functions through coordinated epigenomic programs. ERRγ directly regulates mitochondrial metabolism but cooperatively controls renal reabsorption via convergent binding with HNF1β. Deletion of ERRγ in renal epithelial cells (RECs), in which it is highly and specifically expressed, results in severe renal energetic and reabsorptive dysfunction and progressive renal failure that recapitulates phenotypes of animals and patients with HNF1β loss-of-function gene mutations. Moreover, ERRγ expression positively correlates with renal function and is decreased in patients with chronic kidney disease (CKD). REC-ERRγ KO mice share highly overlapping renal transcriptional signatures with human patients with CKD. Together these findings reveal a role for ERRγ in directing independent and HNF1β-integrated programs for energy production and use essential for normal renal function and the prevention of kidney disease.

  11. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis.

    PubMed

    Humphreys, Benjamin D; Xu, Fengfeng; Sabbisetti, Venkata; Grgic, Ivica; Movahedi Naini, Said; Wang, Ningning; Chen, Guochun; Xiao, Sheng; Patel, Dhruti; Henderson, Joel M; Ichimura, Takaharu; Mou, Shan; Soeung, Savuth; McMahon, Andrew P; Kuchroo, Vijay K; Bonventre, Joseph V

    2013-09-01

    Acute kidney injury predisposes patients to the development of both chronic kidney disease and end-stage renal failure, but the molecular details underlying this important clinical association remain obscure. We report that kidney injury molecule-1 (KIM-1), an epithelial phosphatidylserine receptor expressed transiently after acute injury and chronically in fibrotic renal disease, promotes kidney fibrosis. Conditional expression of KIM-1 in renal epithelial cells (Kim1(RECtg)) in the absence of an injury stimulus resulted in focal epithelial vacuolization at birth, but otherwise normal tubule histology and kidney function. By 4 weeks of age, Kim1(RECtg) mice developed spontaneous and progressive interstitial kidney inflammation with fibrosis, leading to renal failure with anemia, proteinuria, hyperphosphatemia, hypertension, cardiac hypertrophy, and death, analogous to progressive kidney disease in humans. Kim1(RECtg) kidneys had elevated expression of proinflammatory monocyte chemotactic protein-1 (MCP-1) at early time points. Heterologous expression of KIM-1 in an immortalized proximal tubule cell line triggered MCP-1 secretion and increased MCP-1-dependent macrophage chemotaxis. In mice expressing a mutant, truncated KIM-1 polypeptide, experimental kidney fibrosis was ameliorated with reduced levels of MCP-1, consistent with a profibrotic role for native KIM-1. Thus, sustained KIM-1 expression promotes kidney fibrosis and provides a link between acute and recurrent injury with progressive chronic kidney disease.

  12. Hand2 inhibits kidney specification while promoting vein formation within the posterior mesoderm

    PubMed Central

    Perens, Elliot A; Garavito-Aguilar, Zayra V; Guio-Vega, Gina P; Peña, Karen T; Schindler, Yocheved L; Yelon, Deborah

    2016-01-01

    Proper organogenesis depends upon defining the precise dimensions of organ progenitor territories. Kidney progenitors originate within the intermediate mesoderm (IM), but the pathways that set the boundaries of the IM are poorly understood. Here, we show that the bHLH transcription factor Hand2 limits the size of the embryonic kidney by restricting IM dimensions. The IM is expanded in zebrafish hand2 mutants and is diminished when hand2 is overexpressed. Within the posterior mesoderm, hand2 is expressed laterally adjacent to the IM. Venous progenitors arise between these two territories, and hand2 promotes venous development while inhibiting IM formation at this interface. Furthermore, hand2 and the co-expressed zinc-finger transcription factor osr1 have functionally antagonistic influences on kidney development. Together, our data suggest that hand2 functions in opposition to osr1 to balance the formation of kidney and vein progenitors by regulating cell fate decisions at the lateral boundary of the IM. DOI: http://dx.doi.org/10.7554/eLife.19941.001 PMID:27805568

  13. Identification of the putative goldfish (Carassius auratus) magnesium transporter SLC41a1 and functional regulation in the gill, kidney, and intestine in response to dietary and environmental manipulations.

    PubMed

    Kodzhahinchev, Vladimir; Kovacevic, Drago; Bucking, Carol

    2017-04-01

    While magnesium requirements for teleost fish highlight the physiological importance of this cation for homeostasis, little is known regarding the molecular identity of transporters responsible for magnesium absorption or secretion. The recent characterization of the vertebrate magnesium transporter solute carrier 41a1 (SLC41a1) in the kidney of a euryhaline fish has provided a glimpse of possible moieties involved in piscine magnesium regulation. The present study obtained a novel SLC41a1 coding sequence for Carassius auratus and demonstrated ubiquitous expression in all tissues examined. Transcriptional regulation of SLC41a1 in response to dietary and environmental magnesium concentrations was observed across tissues. Specifically, decreased environmental magnesium correlated with decreased expression of SLC41a1 in the intestine, whereas the gill and kidney were unaffected. Dietary magnesium restriction correlated with decreased expression of SLC41a1 in the intestine and gill, while again no effects were detected in the kidney. Finally, elevated dietary magnesium correlated with increased expression of SLC41a1 in the kidney, while expression in the intestine and gill remained stable. Plasma magnesium was maintained in all treatments, and dietary assimilation efficiency increased with decreased dietary magnesium. Consumption of a single meal failed to impact SLC41a1 expression, and transcript abundance remained stable over the course of digestion in all treatments. Transcriptional regulation occurred between 7 and 14days following dietary and environmental manipulations and short-term regulation (e.g. <24h) was not observed. Overall the data supports transcriptional regulation of SLC41a1 reflecting a possible role in magnesium loss or secretion across tissues in fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Reduced expression of IQGAP2 and higher expression of IQGAP3 correlates with poor prognosis in cancers

    PubMed Central

    Kumar, Dinesh; Hassan, Md. Khurshidul; Pattnaik, Niharika; Mohapatra, Nachiketa

    2017-01-01

    IQGAPs is a family of proteins which comprises three members, in humans. The expression pattern and role of IQGAP1 has been well established in many cancers, whereas those of IQGAP2 and IQGAP3, have mostly remained unexplored. We used available large datasets, to explore the pan-cancer status of these two genes in-silico. Here we have analysed their mRNA expression and correlation with survivability in eight different cancers, including lung, breast, gastric, brain, colorectal, prostate, liver and kidney cancers and, their subtypes. The mRNA expression of IQGAP2 and IQGAP3 in individual cancers were analysed in two different publicly available databases viz. Oncomine and TCGA. The prognostic value of these genes in lung, breast and gastric cancer was analysed using Kaplan-Meier Plotter database, whereas for brain, colorectal, liver, prostate and kidney cancers, SurvExpress database was used. These results were validated by immunohistochemistry in cancer tissues (stomach, prostate, brain, colorectal). Moreover, we did IQGAP2 and IQGAP3 genomic alteration and, promoter methylation analysis using cBioportal and Wanderer web tool, respectively. Most of the cancer types (lung, breast, prostate, brain, gastric, liver, kidney and colorectal) showed increased IQGAP3 mRNA expression. In contrast, the IQGAP2 transcript levels were reduced across different cancers viz. lung, breast, gastric, liver, kidney and colorectal cancer. IQGAP2 expression correlated positively with survivability, on the contrary, IQGAP3 expression levels correlated inversely with survivability, in most of the cancers. Collectively, enhanced IQGAP3 and reduced IQGAP2 levels were frequently observed in multiple cancers with the former predicting poor survivability and the later opposite. Methylation pattern was significantly altered in most of the cancer types. We found copy no. variation and mutations in specific cancers, for IQGAP2 and IQGAP3. Our in-vivo (IHC) data confirmed the in-silico findings completely. Hence, IQGAP2 and IQGAP3 have potential to be used as prognostic markers or therapeutic targets in specific cancers. PMID:29073199

  15. Reduced expression of IQGAP2 and higher expression of IQGAP3 correlates with poor prognosis in cancers.

    PubMed

    Kumar, Dinesh; Hassan, Md Khurshidul; Pattnaik, Niharika; Mohapatra, Nachiketa; Dixit, Manjusha

    2017-01-01

    IQGAPs is a family of proteins which comprises three members, in humans. The expression pattern and role of IQGAP1 has been well established in many cancers, whereas those of IQGAP2 and IQGAP3, have mostly remained unexplored. We used available large datasets, to explore the pan-cancer status of these two genes in-silico. Here we have analysed their mRNA expression and correlation with survivability in eight different cancers, including lung, breast, gastric, brain, colorectal, prostate, liver and kidney cancers and, their subtypes. The mRNA expression of IQGAP2 and IQGAP3 in individual cancers were analysed in two different publicly available databases viz. Oncomine and TCGA. The prognostic value of these genes in lung, breast and gastric cancer was analysed using Kaplan-Meier Plotter database, whereas for brain, colorectal, liver, prostate and kidney cancers, SurvExpress database was used. These results were validated by immunohistochemistry in cancer tissues (stomach, prostate, brain, colorectal). Moreover, we did IQGAP2 and IQGAP3 genomic alteration and, promoter methylation analysis using cBioportal and Wanderer web tool, respectively. Most of the cancer types (lung, breast, prostate, brain, gastric, liver, kidney and colorectal) showed increased IQGAP3 mRNA expression. In contrast, the IQGAP2 transcript levels were reduced across different cancers viz. lung, breast, gastric, liver, kidney and colorectal cancer. IQGAP2 expression correlated positively with survivability, on the contrary, IQGAP3 expression levels correlated inversely with survivability, in most of the cancers. Collectively, enhanced IQGAP3 and reduced IQGAP2 levels were frequently observed in multiple cancers with the former predicting poor survivability and the later opposite. Methylation pattern was significantly altered in most of the cancer types. We found copy no. variation and mutations in specific cancers, for IQGAP2 and IQGAP3. Our in-vivo (IHC) data confirmed the in-silico findings completely. Hence, IQGAP2 and IQGAP3 have potential to be used as prognostic markers or therapeutic targets in specific cancers.

  16. Clinical-Grade Isolated Human Kidney Perivascular Stromal Cells as an Organotypic Cell Source for Kidney Regenerative Medicine.

    PubMed

    Leuning, Daniëlle G; Reinders, Marlies E J; Li, Joan; Peired, Anna J; Lievers, Ellen; de Boer, Hetty C; Fibbe, Willem E; Romagnani, Paola; van Kooten, Cees; Little, Melissa H; Engelse, Marten A; Rabelink, Ton J

    2017-02-01

    Mesenchymal stromal cells (MSCs) are immunomodulatory and tissue homeostatic cells that have shown beneficial effects in kidney diseases and transplantation. Perivascular stromal cells (PSCs) identified within several different organs share characteristics of bone marrow-derived MSCs (BM-MSCs). These PSCs may also possess tissue-specific properties and play a role in local tissue homeostasis. We hypothesized that human kidney-derived PSCs (hkPSCs) would elicit improved kidney repair in comparison with BM-MSCs. Here we introduce a novel, clinical-grade isolation method of hkPSCs from cadaveric kidneys by enriching for the perivascular marker, NG2. hkPSCs show strong transcriptional similarities to BM-MSCs but also show organotypic expression signatures, including the HoxD10 and HoxD11 nephrogenic transcription factors. Comparable to BM-MSCs, hkPSCs showed immunosuppressive potential and, when cocultured with endothelial cells, vascular plexus formation was supported, which was specifically in the hkPSCs accompanied by an increased NG2 expression. hkPSCs did not undergo myofibroblast transformation after exposure to transforming growth factor-β, further corroborating their potential regulatory role in tissue homeostasis. This was further supported by the observation that hkPSCs induced accelerated repair in a tubular epithelial wound scratch assay, which was mediated through hepatocyte growth factor release. In vivo, in a neonatal kidney injection model, hkPSCs reintegrated and survived in the interstitial compartment, whereas BM-MSCs did not show this potential. Moreover, hkPSCs gave protection against the development of acute kidney injury in vivo in a model of rhabdomyolysis-mediated nephrotoxicity. Overall, this suggests a superior therapeutic potential for the use of hkPSCs and their secretome in the treatment of kidney diseases. Stem Cells Translational Medicine 2017;6:405-418. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  17. Grouper tshβ Promoter-Driven Transgenic Zebrafish Marks Proximal Kidney Tubule Development

    PubMed Central

    Wang, Yang; Sun, Zhi-Hui; Zhou, Li; Li, Zhi; Gui, Jian-Fang

    2014-01-01

    Kidney tubule plays a critical role in recovering or secreting solutes, but the detailed morphogenesis remains unclear. Our previous studies have found that grouper tshβ (gtshβ) is also expressed in kidney, however, the distribution significance is still unknown. To understand the gtshβ role and kidney tubule morphogenesis, here, we have generated a transgenic zebrafish line Tg(gtshβ:GFP) with green fluorescent protein driven by the gtshβ promoter. Similar to the endogenous tshβ in zebrafish or in grouper, the gtshβ promoter-driven GFP is expressed in pituitary and kidney, and the developing details of proximal kidney tubule are marked in the transgenic zebrafish line. The gfp initially transcribes at 16 hours post fertilization (hpf) above the dorsal mesentery, and partially co-localizes with pronephric tubular markers slc20a1a and cdh17. Significantly, the GFP specifically localizes in proximal pronephric segments during embryogenesis and resides at kidney duct epithelium in adult fish. To test whether the gtshβ promoter-driven GFP may serve as a readout signal of the tubular development, we have treated the embryos with retinoic acid signaing (RA) reagents, in which exogenous RA addition results in a distal extension of the proximal segments, while RA inhibition induces a weakness and shortness of the proximal segments. Therefore, this transgenic line provides a useful tool for genetic or chemical analysis of kidney tubule. PMID:24905828

  18. Angiotensin II increases Pax-2 expression in fetal kidney cells via the AT2 receptor.

    PubMed

    Zhang, Shao-Ling; Moini, Babak; Ingelfinger, Julie R

    2004-06-01

    Although both the renin angiotensin system (RAS) and the paired homeobox 2 gene (Pax-2) seem critically important in renal organogenesis, whether and how they might interact has not been addressed. The present study asked whether a link between the RAS and Pax-2 exists in fetal renal cells, speculating that such an interaction, if present, might influence renal development. Embryonic kidney explants and embryonic renal cells (mouse late embryonic mesenchymal epithelial cells [MK4] and mouse early embryonic mesenchymal fibroblasts [MK3]) were used. Pax-2 protein and Pax-2 mRNA were detected by immunofluorescence, Western blot, reverse transcription-PCR, and real-time PCR. Angiotensin II (AngII) upregulated Pax-2 protein and Pax-2 mRNA expression via the AngII type 2 (AT(2)) receptor in MK4 but not in MK3 cells. The stimulatory effect of AngII on Pax-2 gene expression could be blocked by PD123319 (AT(2) inhibitor), AG 490 (a specific Janus kinase 2 inhibitor), and genistein (a tyrosine kinase inhibitor) but not by losartan (AT(1) inhibitor), SB203580 (specific p38 mitogen-activated protein kinase inhibitor), PD98059 (specific MEK inhibitor), SP600125 (JNK inhibitor), and diphenyleneiodonium chloride (an NADPH oxidase inhibitor). Moreover, embryonic kidney explants in culture confirmed that AngII upregulates Pax-2 gene expression via the AT(2) receptor. These studies demonstrate that the stimulatory effect of AngII on Pax-2 gene expression is mediated, at least in part, via the Janus kinase 2/signal transducers and activators of transcription signaling transduction pathway, suggesting that RAS and Pax-2 interactions may be important in renal development.

  19. Aging Selectively Modulates Vitamin C Transporter Expression Patterns in the Kidney.

    PubMed

    Forman, Katherine; Martínez, Fernando; Cifuentes, Manuel; Bertinat, Romina; Salazar, Katterine; Nualart, Francisco

    2017-09-01

    In the kidney, vitamin C is reabsorbed from the glomerular ultrafiltrate by sodium-vitamin C cotransporter isoform 1 (SVCT1) located in the brush border membrane of the proximal tubules. Although we know that vitamin C levels decrease with age, the adaptive physiological mechanisms used by the kidney for vitamin C reabsorption during aging remain unknown. In this study, we used an animal model of accelerated senescence (SAMP8 mice) to define the morphological alterations and aging-induced changes in the expression of vitamin C transporters in renal tissue. Aging induced significant morphological changes, such as periglomerular lymphocytic infiltrate and glomerular congestion, in the kidneys of SAMP8 mice, although no increase in collagen deposits was observed using 2-photon microscopy analysis and second harmonic generation. The most characteristic histological alteration was the dilation of intracellular spaces in the basolateral region of proximal tubule epithelial cells. Furthermore, a combination of laser microdissection, qRT-PCR, and immunohistochemical analyses allowed us to determine that SVCT1 expression specifically increased in the proximal tubules from the outer strip of the outer medulla (segment S3) and cortex (segment S2) during aging and that these tubules also express GLUT1. We conclude that aging modulates vitamin C transporter expression and that renal over-expression of SVCT1 enhances vitamin C reabsorption in aged animals that may synthesize less vitamin C. J. Cell. Physiol. 232: 2418-2426, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Matrix Metalloproteinase-7 Is a Urinary Biomarker and Pathogenic Mediator of Kidney Fibrosis

    PubMed Central

    Zhou, Dong; Tian, Yuan; Sun, Ling; Zhou, Lili; Xiao, Liangxiang; Tan, Roderick J.; Tian, Jianwei; Fu, Haiyan

    2017-01-01

    Matrix metalloproteinase-7 (MMP-7), a secreted zinc– and calcium–dependent endopeptidase, is a transcriptional target of canonical Wnt/β-catenin signaling. Because Wnt/β-catenin is activated in diseased kidney, we hypothesized that urinary MMP-7 level may be used as a noninvasive surrogate biomarker for fibrotic lesions. To test this hypothesis, we conducted a cross-sectional study, measuring urinary MMP-7 levels in a cohort of 102 patients with CKD. Compared with normal subjects, patients with various kidney disorders had markedly elevated urinary levels of MMP-7. Furthermore, urinary MMP-7 levels closely correlated with renal fibrosis scores in patients. In mice, knockout of MMP-7 ameliorated the fibrotic lesions and expression of matrix genes induced by obstructive injury. Genetic ablation of MMP-7 also preserved E-cadherin protein expression and substantially reduced the expression of total and dephosphorylated β-catenin and the de novo expression of vimentin and fibroblast-specific protein 1 in renal tubules of obstructed kidneys. In vitro, MMP-7 proteolytically degraded E-cadherin in proximal tubular cells, leading to β-catenin liberation and nuclear translocation and induction of β-catenin target genes by a mechanism independent of Wnt ligands. Finally, pharmacologic inhibition of MMP-7 immediately after obstructive injury reduced renal fibrosis in vivo. These results suggest that MMP-7 not only can serve as a noninvasive biomarker but also is an important pathogenic mediator of kidney fibrosis. PMID:27624489

  1. CD163-Macrophages Are Involved in Rhabdomyolysis-Induced Kidney Injury and May Be Detected by MRI with Targeted Gold-Coated Iron Oxide Nanoparticles

    PubMed Central

    Rubio-Navarro, Alfonso; Carril, Mónica; Padro, Daniel; Guerrero-Hue, Melanie; Tarín, Carlos; Samaniego, Rafael; Cannata, Pablo; Cano, Ainhoa; Villalobos, Juan Manuel Amaro; Sevillano, Ángel Manuel; Yuste, Claudia; Gutiérrez, Eduardo; Praga, Manuel; Egido, Jesús; Moreno, Juan Antonio

    2016-01-01

    Macrophages play an important role in rhabdomyolysis-acute kidney injury (AKI), although the molecular mechanisms involved in macrophage differentiation are poorly understood. We analyzed the expression and regulation of CD163, a membrane receptor mainly expressed by anti-inflammatory M2 macrophages, in rhabdomyolysis-AKI and developed targeted probes for its specific detection in vivo by MRI. Intramuscular injection of glycerol in mice promoted an early inflammatory response, with elevated proportion of M1 macrophages, and partial differentiation towards a M2 phenotype in later stages, where increased CD163 expression was observed. Immunohistological studies confirmed the presence of CD163-macrophages in human rhabdomyolysis-AKI. In cultured macrophages, myoglobin upregulated CD163 expression via HO-1/IL-10 axis. Moreover, we developed gold-coated iron oxide nanoparticles vectorized with an anti-CD163 antibody that specifically targeted CD163 in kidneys from glycerol-injected mice, as determined by MRI studies, and confirmed by electron microscopy and immunological analysis. Our findings are the first to demonstrate that CD163 is present in both human and experimental rhabdomyolysis-induced AKI, suggesting an important role of this molecule in this pathological condition. Therefore, the use of probes targeting CD163-macrophages by MRI may provide important information about the cellular composition of renal lesion in rhabdomyolysis. PMID:27162559

  2. CD163-Macrophages Are Involved in Rhabdomyolysis-Induced Kidney Injury and May Be Detected by MRI with Targeted Gold-Coated Iron Oxide Nanoparticles.

    PubMed

    Rubio-Navarro, Alfonso; Carril, Mónica; Padro, Daniel; Guerrero-Hue, Melanie; Tarín, Carlos; Samaniego, Rafael; Cannata, Pablo; Cano, Ainhoa; Villalobos, Juan Manuel Amaro; Sevillano, Ángel Manuel; Yuste, Claudia; Gutiérrez, Eduardo; Praga, Manuel; Egido, Jesús; Moreno, Juan Antonio

    2016-01-01

    Macrophages play an important role in rhabdomyolysis-acute kidney injury (AKI), although the molecular mechanisms involved in macrophage differentiation are poorly understood. We analyzed the expression and regulation of CD163, a membrane receptor mainly expressed by anti-inflammatory M2 macrophages, in rhabdomyolysis-AKI and developed targeted probes for its specific detection in vivo by MRI. Intramuscular injection of glycerol in mice promoted an early inflammatory response, with elevated proportion of M1 macrophages, and partial differentiation towards a M2 phenotype in later stages, where increased CD163 expression was observed. Immunohistological studies confirmed the presence of CD163-macrophages in human rhabdomyolysis-AKI. In cultured macrophages, myoglobin upregulated CD163 expression via HO-1/IL-10 axis. Moreover, we developed gold-coated iron oxide nanoparticles vectorized with an anti-CD163 antibody that specifically targeted CD163 in kidneys from glycerol-injected mice, as determined by MRI studies, and confirmed by electron microscopy and immunological analysis. Our findings are the first to demonstrate that CD163 is present in both human and experimental rhabdomyolysis-induced AKI, suggesting an important role of this molecule in this pathological condition. Therefore, the use of probes targeting CD163-macrophages by MRI may provide important information about the cellular composition of renal lesion in rhabdomyolysis.

  3. The UT-A Urea Transporter Promoter, UT-Aα, Targets Principal Cells of the Renal Inner Medullary Collecting Duct

    PubMed Central

    Fenton, Robert A.; Shodeinde, Adetola; Knepper, Mark A.

    2006-01-01

    The urea transporters, UT-A1 and UT-A3, two members of the UT-A gene family, are localized to the terminal portion of the inner medullary collecting duct (IMCD). In this manuscript, we demonstrate that 4.2-kb of the 5′-flanking region of the UT-A gene (UT-Aα promoter) is sufficient to drive the IMCD-specific expression of a heterologous reporter gene, β-galactosidase (β-Gal), in transgenic mice. RT-PCR, immunoblotting and immunohistochemistry demonstrate that within the kidney, transgene expression is confined to the terminal portion of the IMCD. Co-localization studies with aquaporin 2 show that expression is localized to the principal cells of the IMCD2 and IMCD3 regions. Utilizing β-Gal activity assays, we further show that within the kidney, the β-Gal transgene can be regulated by both water restriction and glucocorticoids, similar to the regulation of the endogenous UT-A gene. These results demonstrate that 4.2-kb of the UT-Aα promoter is sufficient to drive expression of a heterologous reporter gene in a tissue-specific and cell-specific fashion in transgenic mice PMID:16091580

  4. The Role of Endoplasmic Reticulum Stress in Diabetic Nephropathy.

    PubMed

    Fan, Ying; Lee, Kyung; Wang, Niansong; He, John Cijiang

    2017-03-01

    Diabetic nephropathy (DN) has become the leading cause of end-stage renal disease (ESRD) worldwide. Accumulating evidence suggests that endoplasmic reticulum (ER) stress plays a major role in the development and progression of DN. Recent findings suggested that many attributes of DN, such as hyperglycemia, proteinuria, and increased advanced glycation end products and free fatty acids, can all trigger unfolded protein response (UPR) in kidney cells. Herein, we review the current knowledge on the role of ER stress in the setting of kidney injury with a specific emphasis on DN. As maladaptive ER stress response caused by excessively prolonged UPR will eventually cause cell death and increase kidney injury, several ER stress inhibitors have been shown to improve DN in animal models, albeit blocking both adaptive and maladaptive UPR. More recently, reticulon-1A (RTN1A), an ER-associated protein, was shown to be increased in both human and mouse diabetic kidneys. Its expression correlates with the progression of DN, and its polymorphisms are associated with kidney disease in people with diabetes. Increased RTN1A expression heightened the ER stress response and renal cell apoptosis, and conversely reduced RTN1A in renal cells decreased apoptosis and ameliorated kidney injury and DN progression, suggesting that RTN1A may be a novel target to specifically restrain the maladaptive UPR. These findings suggest that ER stress response in renal cells is a key driver of progression of DN and that the inhibition of the unchecked ER stress response in DN, such as by inhibition of RTN1A function, may be a promising therapeutic approach against DN.

  5. Ontogenic development of kidney, thymus and spleen and phenotypic expression of CD3 and CD4 receptors on the lymphocytes of cobia (Rachycentroncanadum).

    PubMed

    Klosterhoff, Marta C; Pereira Júnior, Joaber; Rodrigues, Ricardo V; Gusmão, Emeline P; Sampaio, Luís A; Tesser, Marcelo B; Romano, Luis A

    2015-01-01

    In the present study was evaluated the ontogenic of immunocompetent organs of cobia up to 53 days after hatching (dah) through histology and immunohistochemistry techniques. The kidney was the first lymphohematopoietic organ to appear, at 1 dah, followed by the spleen at 5 dah and the thymus at 7 dah. The first CD3 receptors on the lymphocytes were observed in 27% of the thymic tissue at 7 dah and in 99% at 53 dah. The phenotypic expression of CD3 receptors was registered in 10% of the kidney at 8 dah and in 32% at 53 dah. CD4 receptors were observed in 5% and 63% of the thymic area at 7 and 53 dah, respectively. In the kidney, T4 lymphocytes were first observed at 13 dah in 9% of the organ and in 28% at 53 dah, defining the functional development of the specific system associated with immunological memory capacity.

  6. Peculiar Expression of CD3-Epsilon in Kidney of Ginbuna Crucian Carp.

    PubMed

    Miyazawa, Ryuichiro; Murata, Norifumi; Matsuura, Yuta; Shibasaki, Yasuhiro; Yabu, Takeshi; Nakanishi, Teruyuki

    2018-01-01

    TCR/CD3 complex is composed of the disulfide-linked TCR-αβ heterodimer that recognizes the antigen as a peptide presented by the MHC, and non-covalently paired CD3γε- and δε-chains together with disulfide-linked ζ-chain homodimers. The CD3 chains play key roles in T cell development and T cell activation. In the present study, we found nor or extremely lower expression of CD3ε in head- and trunk-kidney lymphocytes by flow cytometric analysis, while CD3ε was expressed at the normal level in lymphocytes from thymus, spleen, intestine, gill, and peripheral blood. Furthermore, CD4-1 + and CD8α + T cells from kidney express Zap-70, but not CD3ε, while the T cells from other tissues express both Zap-70 and CD3ε, although expression of CD3ε was low. Quantitative analysis of mRNA expression revealed that the expression level of T cell-related genes including tcrb, cd3 ε, zap-70 , and lck in CD4-1 + and CD8α + T cells was not different between kidney and spleen. Western blot analysis showed that CD3ε band was detected in the cell lysates of spleen but not kidney. To be interested, CD3ε-positive cells greatly increased after 24 h in in vitro culture of kidney leukocytes. Furthermore, expression of CD3ε in both transferred kidney and spleen leukocytes was not detected or very low in kidney, while both leukocytes expressed CD3ε at normal level in spleen when kidney and spleen leukocytes were injected into the isogeneic recipient. Lower expression of CD3ε was also found in kidney T lymphocytes of goldfish and carp. These results indicate that kidney lymphocytes express no or lower level of CD3ε protein in the kidney, although the mRNA of the gene was expressed. Here, we discuss this phenomenon from the point of function of kidney as reservoir for T lymphocytes in teleost, which lacks lymph node and bone marrow.

  7. Decreased Nephrin and GLEPP-1, But Increased VEGF, Flt-1, and Nitrotyrosine, Expressions in Kidney Tissue Sections From Women With Preeclampsia

    PubMed Central

    Zhao, Shuang; Gu, Xin; Groome, Lynn J.; Wang, Yuping

    2011-01-01

    Renal injury is a common pathophysiological feature in women with preeclampsia as evidenced by increased protein leakage (proteinuria) and glomerular injury (glomerular endotheliosis). Recently, podocyturia was found in preeclampsia, suggesting podocyte shedding occurs in this pregnancy disorder. However, podocyte function in preeclampsia is poorly understood. In this study, the authors have examined podocyte-specific protein expressions for nephrin, glomerular epithelial protein 1 (GLEPP-1), and ezrin in kidney biopsy tissue sections from women with preeclampsia. Expressions for vascular endothelial growth factor (VEGF) and its receptor Flt-1 and oxidative stress marker nitrotyrosine and antioxidant CuZn-superoxide dismutase (CuZn-SOD) were also examined. Kidney tissue sections from nonhypertensive and chronic hypertensive participants were stained as controls. The findings were (1) nephrin and GLEPP-1 were mainly expressed in glomerular podocytes; (2) ezrin was expressed in both glomerular podocytes and tubular epithelial cells; (3) compared to tissue sections from nonhypertensive and chronic hypertensive participants, nephrin and GLEPP-1 expressions were much reduced in tissue sections from preeclampsia and ezrin expression was reduced in podocytes; (4) enhanced VEGF, Flt-1, and nitrotyrosine, but reduced CuZn-SOD, expressions were observed in both glomerular podocytes and endothelial cells in tissue sections from preeclampsia; and (5) the expression pattern for nephrin, GLEPP-1, ezrin, VEGF, Flt-1, and CuZn-SOD were similar between tissue sections from nonhypertensive and chronic hypertensive participants. Although the authors could not conclude from this biopsy study whether the podocyte injury is the cause or effect of the preeclampsia phenotype, the data provide compelling evidence that podocyte injury accompanied by altered angiogenesis process and increased oxidative stress occurs in kidney of patients with preeclampsia. PMID:19528353

  8. MicroRNAs and Drug-induced Kidney Injury

    PubMed Central

    Pavkovic, Mira; Vaidya, Vishal S.

    2016-01-01

    Drug-induced kidney injury (DIKI) is a severe complication in hospitalized patients associated with higher probabilities of developing progressive chronic kidney disease or end-stage renal diseases. Furthermore, DIKI is a problem during preclinical and clinical phases of drug development leading to high rates of project terminations. Understanding the molecular perturbations caused by DIKI would pave the way for a new class of therapeutics to mitigate the damage. Yet, another approach to ameliorate DIKI is identifying sensitive and specific translational biomarkers that outperform the current diagnostic analytes like serum creatinine and facilitate early diagnosis. MicroRNAs (miRNAs), a class of non-coding RNAs, are increasingly being recognized to have a two-pronged approach towards DIKI management: 1) miRNAs have a regulatory role in gene expression and signaling pathways thereby making them novel interventional targets and 2) miRNAs enable diagnosis and prognosis of DIKI because of their stable presence in biofluids. In this review, apart from summarizing the literature on miRNAs in DIKI, we report small RNA sequencing results showing miRNA expression profiles at baseline in normal kidney samples from mice and humans. Additionally, we also compared the miRNA expression in biopsies of normal human kidneys to patients with acute tubular necrosis, and found 76 miRNAs significantly downregulated and 47 miRNAs upregulated (FDR adjusted p<0.05, +/−2-fold change). In summary, we highlight the transformative potential of miRNAs in therapeutics and translational medicine with a focus on drug-induced kidney damage. PMID:27126472

  9. Smad ubiquitination regulatory factor-2 in the fibrotic kidney: regulation, target specificity, and functional implication.

    PubMed

    Tan, Ruoyun; He, Weichun; Lin, Xia; Kiss, Lawrence P; Liu, Youhua

    2008-05-01

    Smad ubiquitination regulatory factor-2 (Smurf2) is an E3 ubiqutin ligase that plays a pivotal role in regulating TGF-beta signaling via selectively targeting key components of the Smad pathway for degradation. In this study, we have investigated the regulation of Smurf2 expression, its target specificity, and the functional implication of its induction in the fibrotic kidney. Immunohistochemical staining revealed that Smurf2 was upregulated specifically in renal tubules of kidney biopsies from patients with various nephropathies. In vitro, Smurf2 mRNA and protein were induced in human proximal tubular epithelial cells (HKC-8) upon TGF-beta1 stimulation. Ectopic expression of Smurf2 was sufficient to reduce the steady-state levels of Smad2, but not Smad1, Smad3, Smad4, and Smad7, in HKC-8 cells. Interestingly, Smurf2 was also able to downregulate the Smad transcriptional corepressors Ski, SnoN, and TG-interacting factor. Inhibition of the proteasomal pathway prevented Smurf2-mediated downregulation of Smad2 and Smad corepressors. Functionally, overexpression of Smurf2 enhanced the transcription of the TGF-beta-responsive promoter and augmented TGF-beta1-mediated E-cadherin suppression, as well as fibronectin and type I collagen induction in HKC-8 cells. These results indicate that Smurf2 specifically targets both positive and negative Smad regulators for destruction in tubular epithelial cells, thereby providing a complex fine-tuning of TGF-beta signaling. It appears that dysregulation of Smurf2 could contribute to an aberrant TGF-beta/Smad signaling in the pathogenesis of kidney fibrosis.

  10. Establishment of an inflamed animal model of diabetic nephropathy.

    PubMed

    Ma, Kun Ling; Zhang, Yang; Liu, Jing; Wu, Yu; Hu, Ze Bo; Ruan, Xiong Zhong; Liu, Bi Cheng

    2014-01-01

    Inflammatory stress plays a crucial role in the progression of diabetic nephropathy (DN). This study aimed to establish a novel inflamed animal model of DN and to evaluate its significance in DN. Nondiabetic db/m mice and diabetic db/db mice were randomly divided into four groups: db/m, db/m+casein, db/db, and db/db+casein for eight weeks. Casein was subcutaneously injected to induce chronic inflammation. Body weight and albumin to creatinine ratio (ACR) in the urine were measured every week. The plasma levels of serum amyloid protein A (SAA) and tumour necrotic factor-α (TNF-α) were determined with the enzyme-linked immunosorbent assay. The morphological changes to the renal pathology and ultra-microstructures were checked by pathological staining and electron microscopy. Immunofluorescent staining and Western blotting were used to determine the protein expression of podocyte-specific molecules and inflammatory cytokines in kidneys. ACR, plasma levels of SAA and TNF-α, protein expression of inflammatory cytokines, mesangial expansion, collagen accumulation, and foot process effacement in kidneys of casein-injected db/db mice were significantly increased compared with the db/db mice. Casein injection markedly decreased the protein expression of Wilms' tumor-1 and nephrin in kidneys of db/db mice, which are specific podocyte biomarkers, suggesting that chronic inflammation accelerates podocyte injuries in db/db mice. Interestingly, no obvious urinary protein, inflammatory cytokine expression, or histological changes in the kidneys of casein-injected db/m mice were found compared with the db/m mice. An inflamed animal model of DN was successfully established and may provide a useful tool for investigating the pathogenesis of DN under inflammatory stress.

  11. Comparative RNA-Seq transcriptome analyses reveal distinct metabolic pathways in diabetic nerve and kidney disease.

    PubMed

    Hinder, Lucy M; Park, Meeyoung; Rumora, Amy E; Hur, Junguk; Eichinger, Felix; Pennathur, Subramaniam; Kretzler, Matthias; Brosius, Frank C; Feldman, Eva L

    2017-09-01

    Treating insulin resistance with pioglitazone normalizes renal function and improves small nerve fibre function and architecture; however, it does not affect large myelinated nerve fibre function in mouse models of type 2 diabetes (T2DM), indicating that pioglitazone affects the body in a tissue-specific manner. To identify distinct molecular pathways regulating diabetic peripheral neuropathy (DPN) and nephropathy (DN), as well those affected by pioglitazone, we assessed DPN and DN gene transcript expression in control and diabetic mice with or without pioglitazone treatment. Differential expression analysis and self-organizing maps were then used in parallel to analyse transcriptome data. Differential expression analysis showed that gene expression promoting cell death and the inflammatory response was reversed in the kidney glomeruli but unchanged or exacerbated in sciatic nerve by pioglitazone. Self-organizing map analysis revealed that mitochondrial dysfunction was normalized in kidney and nerve by treatment; however, conserved pathways were opposite in their directionality of regulation. Collectively, our data suggest inflammation may drive large fibre dysfunction, while mitochondrial dysfunction may drive small fibre dysfunction in T2DM. Moreover, targeting both of these pathways is likely to improve DN. This study supports growing evidence that systemic metabolic changes in T2DM are associated with distinct tissue-specific metabolic reprogramming in kidney and nerve and that these changes play a critical role in DN and small fibre DPN pathogenesis. These data also highlight the potential dangers of a 'one size fits all' approach to T2DM therapeutics, as the same drug may simultaneously alleviate one complication while exacerbating another. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  12. Differential expression of liver and kidney proteins in a mouse model for primary hyperoxaluria type I.

    PubMed

    Hernández-Fernaud, Juan R; Salido, Eduardo

    2010-11-01

    Mutations in the alanine-glyoxylate aminotransferase gene (AGXT) are responsible for primary hyperoxaluria type I, a rare disease characterized by excessive hepatic oxalate production that leads to renal failure. A deeper understanding of the changes in the metabolic pathways secondary to the lack of AGXT expression is needed in order to explore substrate depletion as a therapeutic strategy to limit oxalate production in primary hyperoxaluria type I. We have developed an Agxt knockout (AgxtKO) mouse that reproduces some key features of primary hyperoxaluria type I. To improve our understanding of the metabolic adjustments subsequent to AGXT deficiency, we performed a proteomic analysis of the changes in expression levels of various subcellular fractions of liver and kidney metabolism linked to the lack of AGXT. In this article, we report specific changes in the liver and kidney proteome of AgxtKO mice that point to significant variations in gluconeogenesis, glycolysis and fatty acid pathways. Journal compilation © 2010 FEBS. No claim to original German government works.

  13. An Observational Cohort Feasibility Study to Identify Microvesicle and Micro-RNA Biomarkers of Acute Kidney Injury Following Pediatric Cardiac Surgery.

    PubMed

    Sullo, Nikol; Mariani, Silvia; JnTala, Maria; Kumar, Tracy; Woźniak, Marcin J; Smallwood, Dawn; Pais, Paolo; Westrope, Claire; Lotto, Attilio; Murphy, Gavin J

    2018-06-15

    Micro-RNA, small noncoding RNA fragments involved in gene regulation, and microvesicles, membrane-bound particles less than 1 μm known to regulate cellular processes including responses to injury, may serve as disease-specific biomarkers of acute kidney injury. We evaluated the feasibility of measuring these signals as well as other known acute kidney injury biomarkers in a mixed pediatric cardiac surgery population. Single center prospective cohort feasibility study. PICU. Twenty-four children (≤ 17 yr) undergoing cardiac surgery with cardiopulmonary bypass without preexisting inflammatory state, acute kidney injury, or extracorporeal life support. None. Acute kidney injury was defined according to modified Kidney Diseases Improving Global Outcomes criteria. Blood and urine samples were collected preoperatively and at 6-12 and 24 hours. Microvesicles derivation was assessed using flow cytometry and NanoSight analysis. Micro-RNAs were isolated from plasma and analyzed by microarray and quantitative real-time polymerase chain reaction. Data completeness for the primary outcomes was 100%. Patients with acute kidney injury (n = 14/24) were younger, underwent longer cardiopulmonary bypass, and required greater inotrope support. Acute kidney injury subjects had different fractional content of platelets and endothelial-derived microvesicles before surgery. Platelets and endothelial microvesicles levels were higher in acute kidney injury patients. A number of micro-RNA species were differentially expressed in acute kidney injury patients. Pathway analysis of candidate target genes in the kidney suggested that the most often affected pathways were phosphatase and tensin homolog and signal transducer and activator of transcription 3 signaling. Microvesicles and micro-RNAs expression patterns in pediatric cardiac surgery patients can be measured in children and potentially serve as tools for stratification of patients at risk of acute kidney injury.

  14. A novel gene encoding a TIG multiple domain protein is a positional candidate for autosomal recessive polycystic kidney disease.

    PubMed

    Xiong, Huaqi; Chen, Yongxiong; Yi, Yajun; Tsuchiya, Karen; Moeckel, Gilbert; Cheung, Joseph; Liang, Dan; Tham, Kyi; Xu, Xiaohu; Chen, Xing-Zhen; Pei, York; Zhao, Zhizhuang Jeo; Wu, Guanqing

    2002-07-01

    Autosomal recessive polycystic kidney disease (ARPKD) is a common hereditary renal cystic disease in infants and children. By genetic linkage analyses, the gene responsible for this disease, termed polycystic kidney and hepatic disease 1 (PKHD1), was mapped on human chromosome 6p21.1-p12, and has been further localized to a 1-cM genetic interval flanked by the D6S1714/D6S243 (telomeric) and D6S1024 (centromeric) markers. We recently identified a novel gene in this genetic interval from kidney cDNA, using cloning strategies. The gene PKHD1 (PKHD1-tentative) encodes a novel 3396-amino-acid protein with no apparent homology with any known proteins. We named its gene product "tigmin" because it contains multiple TIG domains, which usually are seen in proteins containing immunoglobulin-like folds. PKHD1 encodes an 11.6-kb transcript and is composed of 61 exons spanning an approximately 365-kb genomic region on chromosome 6p12-p11.2 adjacent to the marker D6S1714. Northern blot analyses demonstrated that the gene has discrete bands with one peak signal at approximately 11 kb, indicating that PKHD1 is likely to have multiple alternative transcripts. PKHD1 is highly expressed in adult and infant kidneys and weakly expressed in liver in northern blot analysis. This expression pattern parallels the tissue involvement observed in ARPKD. In situ hybridization analysis further revealed that the expression of PKHD1 in the kidney is mainly localized to the epithelial cells of the collecting duct, the specific tubular segment involved in cyst formation in ARPKD. These features of PKHD1 make it a strong positional candidate gene for ARPKD.

  15. Gas1 expression in parietal cells of Bowman's capsule in experimental diabetic nephropathy.

    PubMed

    Luna-Antonio, Brenda I; Rodriguez-Muñoz, Rafael; Namorado-Tonix, Carmen; Vergara, Paula; Segovia, Jose; Reyes, Jose L

    2017-07-01

    Gas1 (Growth Arrest-Specific 1) is a pleiotropic protein with novel functions including anti-proliferative and proapoptotic activities. In the kidney, the expression of Gas1 has been described in mesangial cells. In this study, we described that renal parietal cells of Bowman's capsule (BC) and the distal nephron cells also express Gas1. The role of Gas1 in the kidney is not yet known. There is a subpopulation of progenitor cells in Bowman's capsule with self-renewal properties which can eventually differentiate into podocytes as a possible mechanism of regeneration in the early stages of diabetic nephropathy. We analyzed the expression of Gas1 in the parietal cells of Bowman's capsule in murine experimental diabetes. We found that diabetes reduced the expression of Gas1 and increased the expression of progenitor markers like NCAM, CD24, and SIX1/2, and mesenchymal markers like PAX2 in the Bowman's capsule. We also analyzed the expression of WT1 (a podocyte-specific marker) on BC and observed an increase in the number of WT1 positive cells in diabetes. In contrast, nephrin, another podocyte-specific protein, decreases its expression in the first week of diabetes in the glomerular tuft, which is gradually restored during the second and third weeks of diabetes. These results suggest that in diabetes the decrease of Gas1 promotes the activation of parietal progenitor cells of Bowman's capsule that might differentiate into podocytes and compensate their loss observed in this pathology.

  16. Systems toxicology of chemically induced liver and kidney injuries: histopathology‐associated gene co‐expression modules

    PubMed Central

    Te, Jerez A.; AbdulHameed, Mohamed Diwan M.

    2016-01-01

    Abstract Organ injuries caused by environmental chemical exposures or use of pharmaceutical drugs pose a serious health risk that may be difficult to assess because of a lack of non‐invasive diagnostic tests. Mapping chemical injuries to organ‐specific histopathology outcomes via biomarkers will provide a foundation for designing precise and robust diagnostic tests. We identified co‐expressed genes (modules) specific to injury endpoints using the Open Toxicogenomics Project‐Genomics Assisted Toxicity Evaluation System (TG‐GATEs) – a toxicogenomics database containing organ‐specific gene expression data matched to dose‐ and time‐dependent chemical exposures and adverse histopathology assessments in Sprague–Dawley rats. We proposed a protocol for selecting gene modules associated with chemical‐induced injuries that classify 11 liver and eight kidney histopathology endpoints based on dose‐dependent activation of the identified modules. We showed that the activation of the modules for a particular chemical exposure condition, i.e., chemical‐time‐dose combination, correlated with the severity of histopathological damage in a dose‐dependent manner. Furthermore, the modules could distinguish different types of injuries caused by chemical exposures as well as determine whether the injury module activation was specific to the tissue of origin (liver and kidney). The generated modules provide a link between toxic chemical exposures, different molecular initiating events among underlying molecular pathways and resultant organ damage. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Toxicology published by John Wiley & Sons, Ltd. PMID:26725466

  17. Localization of Mg2+-sensing shark kidney calcium receptor SKCaR in kidney of spiny dogfish, Squalus acanthias.

    PubMed

    Hentschel, Hartmut; Nearing, Jacqueline; Harris, H William; Betka, Marlies; Baum, Michelle; Hebert, Steven C; Elger, Marlies

    2003-09-01

    We recently cloned a homologue of the bovine parathyroid calcium receptor from the kidney of a spiny dogfish (Squalus acanthias) and termed this new protein SKCaR. SKCaR senses alterations in extracellular Mg2+ after its expression in human embryonic kidney cells (Nearing J, Betka M, Quinn S, Hentschel H, Elger M, Baum M, Bai M, Chattopadyhay N, Brown E, Hebert S, and Harris HW. Proc Natl Acad. Sci USA 99: 9231-9236, 2002). In this report, we used light and electron microscopic immunocytochemical techniques to study the distribution of SKCaR in dogfish kidney. SKCaR antiserum bound to the apical membranes of shark kidney epithelial cells in the following tubular segments: proximal tubules (PIa and PIIb), late distal tubule, and collecting tubule/collecting duct as well as diffusely labeled cells of early distal tubule. The highly specific distribution of SKCaR in mesial tissue as well as lateral countercurrent bundles of dogfish kidney is compatible with a role for SKCaR to sense local tubular Mg2+ concentrations. This highly specific distribution of SKCaR protein in dogfish kidney could possibly work in concert with the powerful Mg2+ secretory system present in the PIIa segment of elasmobranch fish kidney to affect recycling of Mg2+ from putative Mg2+-sensing/Mg2+-reabsorbing segments. These data provide support for the possible existence of Mg2+ cycling in elasmobranch kidney in a manner analogous to that described for mammals.

  18. High Intensity Interval Training Favourably Affects Angiotensinogen mRNA Expression and Markers of Cardiorenal Health in a Rat Model of Early-Stage Chronic Kidney Disease.

    PubMed

    Tucker, Patrick S; Scanlan, Aaron T; Dalbo, Vincent J

    2015-01-01

    The majority of CKD-related complications stem from cardiovascular pathologies such as hypertension. To help reduce cardiovascular complications, aerobic exercise is often prescribed. Emerging evidence suggests high intensity interval training (HIIT) may be more beneficial than traditional aerobic exercise. However, appraisals of varying forms of aerobic exercise, along with descriptions of mechanisms responsible for health-related improvements, are lacking. This study examined the effects of 8 weeks of HIIT (85% VO2max), versus low intensity aerobic exercise (LIT; 45-50% VO2max) and sedentary behaviour (SED), in an animal model of early-stage CKD. Tissue-specific mRNA expression of RAAS-related genes and CKD-related clinical markers were examined. Compared to SED, HIIT resulted in increased plasma albumin (p = 0.001), reduced remnant kidney weight (p = 0.028), and reduced kidney weight-body weight ratios (p = 0.045). Compared to LIT, HIIT resulted in reduced Agt mRNA expression (p = 0.035), reduced plasma LDL (p = 0.001), triglycerides (p = 0.029), and total cholesterol (p = 0.002), increased plasma albumin (p = 0.047), reduced remnant kidney weight (p = 0.005), and reduced kidney weight-body weight ratios (p = 0.048). These results suggest HIIT is a more potent regulator of several markers that describe and influence health in CKD.

  19. High Intensity Interval Training Favourably Affects Angiotensinogen mRNA Expression and Markers of Cardiorenal Health in a Rat Model of Early-Stage Chronic Kidney Disease

    PubMed Central

    Tucker, Patrick S.; Scanlan, Aaron T.; Dalbo, Vincent J.

    2015-01-01

    The majority of CKD-related complications stem from cardiovascular pathologies such as hypertension. To help reduce cardiovascular complications, aerobic exercise is often prescribed. Emerging evidence suggests high intensity interval training (HIIT) may be more beneficial than traditional aerobic exercise. However, appraisals of varying forms of aerobic exercise, along with descriptions of mechanisms responsible for health-related improvements, are lacking. This study examined the effects of 8 weeks of HIIT (85% VO2max), versus low intensity aerobic exercise (LIT; 45–50% VO2max) and sedentary behaviour (SED), in an animal model of early-stage CKD. Tissue-specific mRNA expression of RAAS-related genes and CKD-related clinical markers were examined. Compared to SED, HIIT resulted in increased plasma albumin (p = 0.001), reduced remnant kidney weight (p = 0.028), and reduced kidney weight-body weight ratios (p = 0.045). Compared to LIT, HIIT resulted in reduced Agt mRNA expression (p = 0.035), reduced plasma LDL (p = 0.001), triglycerides (p = 0.029), and total cholesterol (p = 0.002), increased plasma albumin (p = 0.047), reduced remnant kidney weight (p = 0.005), and reduced kidney weight-body weight ratios (p = 0.048). These results suggest HIIT is a more potent regulator of several markers that describe and influence health in CKD. PMID:26090382

  20. A novel podocyte gene, semaphorin 3G, protects glomerular podocyte from lipopolysaccharide-induced inflammation.

    PubMed

    Ishibashi, Ryoichi; Takemoto, Minoru; Akimoto, Yoshihiro; Ishikawa, Takahiro; He, Peng; Maezawa, Yoshiro; Sakamoto, Kenichi; Tsurutani, Yuya; Ide, Shintaro; Ide, Kana; Kawamura, Harukiyo; Kobayashi, Kazuki; Tokuyama, Hirotake; Tryggvason, Karl; Betsholtz, Christer; Yokote, Koutaro

    2016-05-16

    Kidney diseases including diabetic nephropathy have become huge medical problems, although its precise mechanisms are still far from understood. In order to increase our knowledge about the patho-physiology of kidney, we have previously identified >300 kidney glomerulus-enriched transcripts through large-scale sequencing and microarray profiling of the mouse glomerular transcriptome. One of the glomerulus-specific transcripts identified was semaphorin 3G (Sema3G) which belongs to the semaphorin family. The aim of this study was to analyze both the in vivo and in vitro functions of Sema3G in the kidney. Sema3G was expressed in glomerular podocytes. Although Sema3G knockout mice did not show obvious glomerular defects, ultrastructural analyses revealed partially aberrant podocyte foot processes structures. When these mice were injected with lipopolysaccharide to induce acute inflammation or streptozotocin to induce diabetes, the lack of Sema3G resulted in increased albuminuria. The lack of Sema3G in podocytes also enhanced the expression of inflammatory cytokines including chemokine ligand 2 and interleukin 6. On the other hand, the presence of Sema3G attenuated their expression through the inhibition of lipopolysaccharide-induced Toll like receptor 4 signaling. Taken together, our results surmise that the Sema3G protein is secreted by podocytes and protects podocytes from inflammatory kidney diseases and diabetic nephropathy.

  1. A novel podocyte gene, semaphorin 3G, protects glomerular podocyte from lipopolysaccharide-induced inflammation

    PubMed Central

    Ishibashi, Ryoichi; Takemoto, Minoru; Akimoto, Yoshihiro; Ishikawa, Takahiro; He, Peng; Maezawa, Yoshiro; Sakamoto, Kenichi; Tsurutani, Yuya; Ide, Shintaro; Ide, Kana; Kawamura, Harukiyo; Kobayashi, Kazuki; Tokuyama, Hirotake; Tryggvason, Karl; Betsholtz, Christer; Yokote, Koutaro

    2016-01-01

    Kidney diseases including diabetic nephropathy have become huge medical problems, although its precise mechanisms are still far from understood. In order to increase our knowledge about the patho-physiology of kidney, we have previously identified >300 kidney glomerulus-enriched transcripts through large-scale sequencing and microarray profiling of the mouse glomerular transcriptome. One of the glomerulus-specific transcripts identified was semaphorin 3G (Sema3G) which belongs to the semaphorin family. The aim of this study was to analyze both the in vivo and in vitro functions of Sema3G in the kidney. Sema3G was expressed in glomerular podocytes. Although Sema3G knockout mice did not show obvious glomerular defects, ultrastructural analyses revealed partially aberrant podocyte foot processes structures. When these mice were injected with lipopolysaccharide to induce acute inflammation or streptozotocin to induce diabetes, the lack of Sema3G resulted in increased albuminuria. The lack of Sema3G in podocytes also enhanced the expression of inflammatory cytokines including chemokine ligand 2 and interleukin 6. On the other hand, the presence of Sema3G attenuated their expression through the inhibition of lipopolysaccharide-induced Toll like receptor 4 signaling. Taken together, our results surmise that the Sema3G protein is secreted by podocytes and protects podocytes from inflammatory kidney diseases and diabetic nephropathy. PMID:27180624

  2. Effect of dietary glutamine on growth performance, non-specific immunity, expression of cytokine genes, phosphorylation of target of rapamycin (TOR), and anti-oxidative system in spleen and head kidney of Jian carp (Cyprinus carpio var. Jian).

    PubMed

    Hu, Kai; Zhang, Jing-Xiu; Feng, Lin; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Jiang, Jun; Zhou, Xiao-Qiu

    2015-06-01

    This study was designed to investigate the effects of dietary glutamine on the growth performance, cytokines, target of rapamycin (TOR), and antioxidant-related parameters in the spleen and head kidney of juvenile Jian carp (Cyprinus carpio var. Jian). Fish were fed the basal (control) and glutamine-supplemented (12.0 g glutamine kg(-1) diet) diets for 6 weeks. Results indicated that the dietary glutamine supplementation improved the growth performance, spleen protein content, serum complement 3 content, and lysozyme activity in fish. In the spleen, glutamine down-regulated the expression of the interleukin 1 and interleukin 10 genes, and increased the level of phosphorylation of TOR protein. In the head kidney, glutamine down-regulated the tumor necrosis factor α and interleukin 10 gene expressions, phosphorylated and total TOR protein levels, while up-regulated the transforming growth factor β2 gene expression. Furthermore, the protein carbonyl content was decreased in the spleen of fish fed glutamine-supplemented diet; conversely, the anti-hydroxyl radical capacity and glutathione content in the spleen were increased by glutamine. However, diet supplemented with glutamine did not affect the lipid peroxidation, anti-superoxide anion capacity, and antioxidant enzyme activities in the spleen. Moreover, all of these antioxidant parameters in the head kidney were not affected by glutamine. Results from the present experiment showed the importance of dietary supplementation of glutamine in benefaction of the growth performance and several components of the innate immune system, and the deferential role in cytokine gene expression, TOR kinase activity, and antioxidant status between the spleen and head kidney of juvenile Jian carp.

  3. Logic programming to infer complex RNA expression patterns from RNA-seq data.

    PubMed

    Weirick, Tyler; Militello, Giuseppe; Ponomareva, Yuliya; John, David; Döring, Claudia; Dimmeler, Stefanie; Uchida, Shizuka

    2018-03-01

    To meet the increasing demand in the field, numerous long noncoding RNA (lncRNA) databases are available. Given many lncRNAs are specifically expressed in certain cell types and/or time-dependent manners, most lncRNA databases fall short of providing such profiles. We developed a strategy using logic programming to handle the complex organization of organs, their tissues and cell types as well as gender and developmental time points. To showcase this strategy, we introduce 'RenalDB' (http://renaldb.uni-frankfurt.de), a database providing expression profiles of RNAs in major organs focusing on kidney tissues and cells. RenalDB uses logic programming to describe complex anatomy, sample metadata and logical relationships defining expression, enrichment or specificity. We validated the content of RenalDB with biological experiments and functionally characterized two long intergenic noncoding RNAs: LOC440173 is important for cell growth or cell survival, whereas PAXIP1-AS1 is a regulator of cell death. We anticipate RenalDB will be used as a first step toward functional studies of lncRNAs in the kidney.

  4. Gene Expression in Wilms’ Tumor Mimics the Earliest Committed Stage in the Metanephric Mesenchymal-Epithelial Transition

    PubMed Central

    Li, Chi-Ming; Guo, Meirong; Borczuk, Alain; Powell, Charles A.; Wei, Michelle; Thaker, Harshwardhan M.; Friedman, Richard; Klein, Ulf; Tycko, Benjamin

    2002-01-01

    Wilms’ tumor (WT) has been considered a prototype for arrested cellular differentiation in cancer, but previous studies have relied on selected markers. We have now performed an unbiased survey of gene expression in WTs using oligonucleotide microarrays. Statistical criteria identified 357 genes as differentially expressed between WTs and fetal kidneys. This set contained 124 matches to genes on a microarray used by Stuart and colleagues (Stuart RO, Bush KT, Nigam SK: Changes in global gene expression patterns during development and maturation of the rat kidney. Proc Natl Acad Sci USA 2001, 98:5649–5654) to establish genes with stage-specific expression in the developing rat kidney. Mapping between the two data sets showed that WTs systematically overexpressed genes corresponding to the earliest stage of metanephric development, and underexpressed genes corresponding to later stages. Automated clustering identified a smaller group of 27 genes that were highly expressed in WTs compared to fetal kidney and heterologous tumor and normal tissues. This signature set was enriched in genes encoding transcription factors. Four of these, PAX2, EYA1, HBF2, and HOXA11, are essential for cell survival and proliferation in early metanephric development, whereas others, including SIX1, MOX1, and SALL2, are predicted to act at this stage. SIX1 and SALL2 proteins were expressed in the condensing mesenchyme in normal human fetal kidneys, but were absent (SIX1) or reduced (SALL2) in cells at other developmental stages. These data imply that the blastema in WTs has progressed to the committed stage in the mesenchymal-epithelial transition, where it is partially arrested in differentiation. The WT-signature set also contained the Wnt receptor FZD7, the tumor antigen PRAME, the imprinted gene NNAT and the metastasis-associated transcription factor E1AF. PMID:12057921

  5. Bradykinin-induced growth inhibition of normal rat kidney (NRK) cells is paralleled by a decrease in epidermal-growth-factor receptor expression.

    PubMed Central

    Van Zoelen, E J; Peters, P H; Afink, G B; Van Genesen, S; De Roos, D G; Van Rotterdam, W; Theuvenet, A P

    1994-01-01

    Normal rat kidney fibroblasts, grown to density arrest in the presence of epidermal growth factor (EGF), can be induced to undergo phenotypic transformation by treatment with transforming growth factor beta or retinoic acid. Here we show that bradykinin blocks this growth-stimulus-induced loss of density-dependent growth arrest by a specific receptor-mediated mechanism. The effects of bradykinin are specific, and are not mimicked by other phosphoinositide-mobilizing agents such as prostaglandin F2 alpha. Northern-blot analysis and receptor-binding studies demonstrate that bradykinin also inhibits the retinoic acid-induced increase in EGF receptor levels in these cells. These studies provide additional evidence that EGF receptor levels modulate EGF-induced expression of the transformed phenotype in these cells. Images Figure 5 PMID:8135739

  6. Elevated Endothelial Hypoxia-Inducible Factor-1α Contributes to Glomerular Injury and Promotes Hypertensive Chronic Kidney Disease.

    PubMed

    Luo, Renna; Zhang, Weiru; Zhao, Cheng; Zhang, Yujin; Wu, Hongyu; Jin, Jianping; Zhang, Wenzheng; Grenz, Almut; Eltzschig, Holger K; Tao, Lijian; Kellems, Rodney E; Xia, Yang

    2015-07-01

    Hypertensive chronic kidney disease is one of the most prevalent medical conditions with high morbidity and mortality in the United States and worldwide. However, early events initiating the progression to hypertensive chronic kidney disease are poorly understood. We hypothesized that elevated endothelial hypoxia-inducible factor-1α (HIF-1α) is a common early insult triggering initial glomerular injury leading to hypertensive chronic kidney disease. To test our hypothesis, we used an angiotensin II infusion model of hypertensive chronic kidney disease to determine the specific cell type and mechanisms responsible for elevation of HIF-1α and its role in the progression of hypertensive chronic kidney disease. Genetic studies coupled with reverse transcription polymerase chain reaction profiling revealed that elevated endothelial HIF-1α is essential to initiate glomerular injury and progression to renal fibrosis by the transcriptional activation of genes encoding multiple vasoactive proteins. Mechanistically, we found that endothelial HIF-1α gene expression was induced by angiotensin II in a nuclear factor-κB-dependent manner. Finally, we discovered reciprocal positive transcriptional regulation of endothelial Hif-1α and Nf-κb genes is a key driving force for their persistent activation and disease progression. Overall, our findings revealed that the stimulation of HIF-1α gene expression in endothelial cells is detrimental to induce kidney injury, hypertension, and disease progression. Our findings highlight early diagnostic opportunities and therapeutic approaches for hypertensive chronic kidney disease. © 2015 American Heart Association, Inc.

  7. Expression of TM4SF10, a Claudin/EMP/PMP22 family cell junction protein, during mouse kidney development and podocyte differentiation.

    PubMed

    Bruggeman, Leslie A; Martinka, Scott; Simske, Jeffrey S

    2007-02-01

    Cell junctions in the nephron are highly specialized to perform specific and distinct filtration and reabsorption functions. The mature kidney forms complex cell junctions including slit diaphragms that prevent the passage of serum proteins into the filtrate, and tubule cell junctions that regulate specific paracellular ion reuptake. We have investigated the expression of TM4SF10 (Trans-Membrane tetra(4)-Span Family 10) in mouse kidneys. TM4SF10 is the vertebrate orthologue of Caenorhabditis elegans VAB-9, a tetraspan adherens junction protein in the PMP22/EMP/Claudin family of proteins. We found that TM4SF10 localizes at the basal-most region of podocyte precursors before the capillary loop stage, at some tubule precursors, and at the ureteric bud junction with S-shaped bodies. Overall expression of TM4SF10 peaked at postnatal day 4 and was virtually absent in adult kidneys. The very limited expression of TM4SF10 protein that persisted into adulthood was restricted to a few tubule segments but remained localized to the basal region of lateral membranes. In undifferentiated cultured podocytes, TM4SF10 localized to the perinuclear region and translocated to the cell membrane after Cadherin appearance at cell-cell contacts. TM4SF10 colocalized with ZO1 and p120ctn in undifferentiated confluent podocytes and also colocalized with the tips of actin filaments at cell contacts. Upon differentiation of cultured podocytes, TM4SF10 protein disappeared from cell contacts and expression ceased. These results suggest that TM4SF10 functions during differentiation of podocytes and may participate in the maturation of cell junctions from simple adherens junctions to elaborate slit diaphragms. TM4SF10 may define a new class of Claudin-like proteins that function during junctional development.

  8. Renal F4/80+CD11c+ Mononuclear Phagocytes Display Phenotypic and Functional Characteristics of Macrophages in Health and in Adriamycin Nephropathy

    PubMed Central

    Wang, Yiping; Wang, Xin Maggie; Lu, Junyu; Lee, Vincent W.S.; Ye, Qianling; Nguyen, Hanh; Zheng, Guoping; Zhao, Ye; Alexander, Stephen I.; Harris, David C.H.

    2015-01-01

    Conventional markers of macrophages (Mфs) and dendritic cells (DCs) lack specificity and often overlap, leading to confusion and controversy regarding the precise function of these cells in kidney and other diseases. This study aimed to identify the phenotype and function of renal mononuclear phagocytes (rMPs) expressing key markers of both Mфs and DCs. F4/80+CD11c+ cells accounted for 45% of total rMPs in normal kidneys and in those from mice with Adriamycin nephropathy (AN). Despite expression of the DC marker CD11c, these double-positive rMPs displayed the features of Mфs, including Mф-like morphology, high expression of CD68, CD204, and CD206, and high phagocytic ability but low antigen-presenting ability. F4/80+CD11c+ cells were found in the cortex but not in the medulla of the kidney. In AN, F4/80+CD11c+ cells displayed an M1 Mф phenotype with high expression of inflammatory mediators and costimulatory factors. Adoptive transfer of F4/80+CD11c+ cells separated from diseased kidney aggravated renal injury in AN mice. Furthermore, adoptive transfer of common progenitors revealed that kidney F4/80+CD11c+ cells were derived predominantly from monocytes, but not from pre-DCs. In conclusion, renal F4/80+CD11c+ cells are a major subset of rMPs and display Mф-like phenotypic and functional characteristics in health and in AN. PMID:25012165

  9. Renal F4/80+ CD11c+ mononuclear phagocytes display phenotypic and functional characteristics of macrophages in health and in adriamycin nephropathy.

    PubMed

    Cao, Qi; Wang, Yiping; Wang, Xin Maggie; Lu, Junyu; Lee, Vincent W S; Ye, Qianling; Nguyen, Hanh; Zheng, Guoping; Zhao, Ye; Alexander, Stephen I; Harris, David C H

    2015-02-01

    Conventional markers of macrophages (Mфs) and dendritic cells (DCs) lack specificity and often overlap, leading to confusion and controversy regarding the precise function of these cells in kidney and other diseases. This study aimed to identify the phenotype and function of renal mononuclear phagocytes (rMPs) expressing key markers of both Mфs and DCs. F4/80(+)CD11c(+) cells accounted for 45% of total rMPs in normal kidneys and in those from mice with Adriamycin nephropathy (AN). Despite expression of the DC marker CD11c, these double-positive rMPs displayed the features of Mфs, including Mф-like morphology, high expression of CD68, CD204, and CD206, and high phagocytic ability but low antigen-presenting ability. F4/80(+)CD11c(+) cells were found in the cortex but not in the medulla of the kidney. In AN, F4/80(+)CD11c(+) cells displayed an M1 Mф phenotype with high expression of inflammatory mediators and costimulatory factors. Adoptive transfer of F4/80(+)CD11c(+) cells separated from diseased kidney aggravated renal injury in AN mice. Furthermore, adoptive transfer of common progenitors revealed that kidney F4/80(+)CD11c(+) cells were derived predominantly from monocytes, but not from pre-DCs. In conclusion, renal F4/80(+)CD11c(+) cells are a major subset of rMPs and display Mф-like phenotypic and functional characteristics in health and in AN. Copyright © 2015 by the American Society of Nephrology.

  10. Inhibition of Reticulon-1A-Mediated Endoplasmic Reticulum Stress in Early AKI Attenuates Renal Fibrosis Development.

    PubMed

    Fan, Ying; Xiao, Wenzhen; Lee, Kyung; Salem, Fadi; Wen, Jiejun; He, Li; Zhang, Jing; Fei, Yang; Cheng, Dongsheng; Bao, Hongda; Liu, Yumei; Lin, Fujun; Jiang, Gengru; Guo, Zhiyong; Wang, Niansong; He, John Cijiang

    2017-07-01

    Several animal studies have shown an important role for endoplasmic reticulum (ER) stress in AKI, whereas human studies are lacking. We recently reported that Reticulon-1A (RTN1A) is a key mediator of ER stress and kidney cell injury. Here, we investigated whether modulation of RTN1A expression during AKI contributes to the progression to CKD. In a retrospective study of 51 patients with AKI, increased expression of RTN1A and other ER stress markers were associated with the severity of kidney injury and with progression to CKD. In an inducible tubular cell-specific RTN1A-knockdown mouse model subjected to folic acid nephropathy (FAN) or aristolochic acid nephropathy, reduction of RTN1A expression during the initial stage of AKI attenuated ER stress and kidney cell injury in early stages and renal fibrosis development in later stages. Treatment of wild-type mice with tauroursodeoxycholic acid, an inhibitor of ER stress, after the induction of kidney injury with FA facilitated renoprotection similar to that observed in RTN1A-knockdown mice. Conversely, in transgenic mice with inducible tubular cell-specific overexpression of RTN1A subjected to FAN, induction of RTN1A overexpression aggravated ER stress and renal injury at the early stage and renal fibrosis at the late stage of FAN. Together, our human and mouse data suggest that the RTN1A-mediated ER stress response may be an important determinant in the severity of AKI and maladaptive repair that may promote progression to CKD. Copyright © 2017 by the American Society of Nephrology.

  11. Tissue-specific regulation of medium-chain acyl-CoA dehydrogenase gene by thyroid hormones in the developing rat.

    PubMed

    Djouadi, F; Riveau, B; Merlet-Benichou, C; Bastin, J

    1997-05-15

    During development, gene expression of medium-chain acyl-CoA dehydrogenase (MCAD), a nuclear-encoded mitochondrial enzyme that catalyses the first step of medium-chain fatty acid beta-oxidation, is highly regulated in tissues in accordance with fatty acid utilization, but the factors involved in this regulation are largely unknown. To investigate a possible role of thyroid hormones, rat pups were made hypothyroid by the administration of propylthiouracyl to the mother from day 12 of gestation, and their kidneys, heart and liver were removed on postnatal day 16 to determine MCAD mRNA abundance, protein level and enzyme activity. Similar experiments were run in 3,3',5-tri-iodothyronine (T3)-replaced hypothyroid (1 microg of T3/100 g body weight from postnatal day 5 to 15) and euthyroid pups. Hypothyroidism led to an increase in MCAD mRNA abundance in kidney and a decrease in abundance in heart, but had no effect in liver. The protein levels and enzyme activity were lowered in hypothyroid heart and kidney, suggesting that hypothyroidism affects post-transcriptional steps of gene expression in the kidney. All the effects of hypothyroidism were completely reversed in both heart and kidney by T3 replacement. Injection of a single T3 dose into 16-day-old euthyroid rats also led to tissue-specific changes in mRNA abundance. Nuclear run-on assays performed from hypothyroid and hypothyroid plus T3 rats showed that T3 stimulates MCAD gene transcription in heart and represses it in the kidney. These results indicate that the postnatal rise in circulating T3 is essential to the developmental regulation of the MCAD gene in vivo.

  12. Overexpression of catalase prevents hypertension and tubulointerstitial fibrosis and normalization of renal angiotensin-converting enzyme-2 expression in Akita mice

    PubMed Central

    Shi, Yixuan; Lo, Chao-Sheng; Chenier, Isabelle; Maachi, Hasna; Filep, Janos G.; Ingelfinger, Julie R.; Zhang, Shao-Ling

    2013-01-01

    We investigated the relationship among oxidative stress, hypertension, renal injury, and angiotensin-converting enzyme-2 (ACE2) expression in type 1 diabetic Akita mice. Blood glucose, blood pressure, and albuminuria were monitored for up to 5 mo in adult male Akita and Akita catalase (Cat) transgenic (Tg) mice specifically overexpressing Cat, a key antioxidant enzyme in their renal proximal tubular cells (RPTCs). Same-age non-Akita littermates and Cat-Tg mice served as controls. In separate studies, adult male Akita mice (14 wk) were treated with ANG 1–7 (500 μg·kg−1·day−1 sc) ± A-779, an antagonist of the Mas receptor (10 mg·kg−1·day−1 sc), and euthanized at the age of 18 wk. The left kidneys were processed for histology and apoptosis studies. Renal proximal tubules were isolated from the right kidneys to assess protein and gene expression. Urinary angiotensinogen (AGT), angiotensin II (ANG II), and ANG 1–7 were quantified by specific ELISAs. Overexpression of Cat attenuated renal oxidative stress; prevented hypertension; normalized RPTC ACE2 expression and urinary ANG 1–7 levels (both were low in Akita mice); ameliorated glomerular filtration rate, albuminuria, kidney hypertrophy, tubulointerstitial fibrosis, and tubular apoptosis; and suppressed profibrotic and proapoptotic gene expression in RPTCs of Akita Cat-Tg mice compared with Akita mice. Furthermore, daily administration of ANG 1–7 normalized systemic hypertension in Akita mice, which was reversed by A-779. These data demonstrate that Cat overexpression prevents hypertension and progression of nephropathy and highlight the importance of intrarenal oxidative stress and ACE2 expression contributing to hypertension and renal injury in diabetes. PMID:23552863

  13. LMW Heparin Prevents Increased Kidney Expression of Proinflammatory Mediators in (NZBxNZW)F1 Mice

    PubMed Central

    Kanapathippillai, Premasany; Rekvig, Ole Petter; Fenton, Kristin Andreassen

    2013-01-01

    We have previously demonstrated that continuous infusion of low molecular weight (LMW) heparin delays autoantibody production and development of lupus nephritis in (NZBxNZW)F1 (B/W) mice. In this study we investigated the effect of LMW heparin on renal cytokine and chemokine expression and on nucleosome-mediated activation of nucleosome-specific splenocytes. Total mRNA extracted from kidneys of heparin-treated or -untreated B/W mice was analysed by qPCR for the expression of several cytokines, chemokines, and Toll-like receptors. Splenocytes taken from B/W mice were stimulated with nucleosomes with or without the presence of heparin. Splenocyte cell proliferation as thymidine incorporation and the expression of costimulatory molecules and cell activation markers were measured. Heparin treatment of B/W mice reduced the in vivo expression of CCR2, IL1β, and TLR7 compared to untreated B/W mice. Nucleosome-induced cell proliferation of splenocytes was not influenced by heparin. The expression of CD80, CD86, CD69, CD25, CTLA-4, and TLR 2, 7, 8, and 9 was upregulated upon stimulation by nucleosomes, irrespective of whether heparin was added to the cell culture or not. In conclusion, treatment with heparin lowers the kidney expression of proinflammatory mediators in B/W mice but does not affect nucleosomal activation of splenocytes. PMID:24151519

  14. Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury.

    PubMed

    Hong, Quan; Zhang, Lu; Das, Bhaskar; Li, Zhengzhe; Liu, Bohan; Cai, Guangyan; Chen, Xiangmei; Chuang, Peter Y; He, John Cijiang; Lee, Kyung

    2018-06-01

    Podocyte injury and loss contribute to the progression of glomerular diseases, including diabetic kidney disease. We previously found that the glomerular expression of Sirtuin-1 (SIRT1) is reduced in human diabetic glomeruli and that the podocyte-specific loss of SIRT1 aggravated albuminuria and worsened kidney disease progression in diabetic mice. SIRT1 encodes an NAD-dependent deacetylase that modifies the activity of key transcriptional regulators affected in diabetic kidneys, including NF-κB, STAT3, p53, FOXO4, and PGC1-α. However, whether the increased glomerular SIRT1 activity is sufficient to ameliorate the pathogenesis of diabetic kidney disease has not been explored. We addressed this by inducible podocyte-specific SIRT1 overexpression in diabetic OVE26 mice. The induction of SIRT1 overexpression in podocytes for six weeks in OVE26 mice with established albuminuria attenuated the progression of diabetic glomerulopathy. To further validate the therapeutic potential of increased SIRT1 activity against diabetic kidney disease, we developed a new, potent and selective SIRT1 agonist, BF175. In cultured podocytes BF175 increased SIRT1-mediated activation of PGC1-α and protected against high glucose-mediated mitochondrial injury. In vivo, administration of BF175 for six weeks in OVE26 mice resulted in a marked reduction in albuminuria and in glomerular injury in a manner similar to podocyte-specific SIRT1 overexpression. Both podocyte-specific SIRT1 overexpression and BT175 treatment attenuated diabetes-induced podocyte loss and reduced oxidative stress in glomeruli of OVE26 mice. Thus, increased SIRT1 activity protects against diabetes-induced podocyte injury and effectively mitigates the progression of diabetic kidney disease. Published by Elsevier Inc.

  15. Expression of selected genes escaping from X inactivation in the 41, XX(Y)* mouse model for Klinefelter's syndrome.

    PubMed

    Werler, Steffi; Poplinski, Andreas; Gromoll, Jörg; Wistuba, Joachim

    2011-06-01

    We hypothesized that patients with Klinefelter's syndrome (KS) not only undergo X inactivation, but also that genes escape from inactivation. Their transcripts would constitute a significant difference, as male metabolism is not adapted to a 'female-like' gene dosage. We evaluated the expression of selected X-linked genes in our 41, XX(Y)* male mice to determine whether these genes escape inactivation and whether tissue-specific differences occur. Correct X inactivation was identified by Xist expression. Relative expression of X-linked genes was examined in liver, kidney and brain tissue by real-time PCR in adult XX(Y)* and XY* males and XX females. Expression of genes known to escape X inactivation was analysed. Relative mRNA levels of Pgk1 (control, X inactivated), and the genes Eif2s3x, Kdm5c, Ddx3x and Kdm6a escaping from X inactivation were quantified from liver, kidney and brain. Pgk1 mRNA expression showed no difference, confirming correct X inactivation. In kidney and liver, XX(Y)* males resembled the female expression pattern in all four candidate genes and were distinguishable from XY* males. Contrastingly, in brain tissue XX(Y)* males expressed all four genes higher than male and female controls. Altered expression of genes escaping X inactivation probably contributes directly to the XX(Y)* phenotype. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.

  16. Tubule-Derived Wnts Are Required for Fibroblast Activation and Kidney Fibrosis.

    PubMed

    Zhou, Dong; Fu, Haiyan; Zhang, Lu; Zhang, Ke; Min, Yali; Xiao, Liangxiang; Lin, Lin; Bastacky, Sheldon I; Liu, Youhua

    2017-08-01

    Cell-cell communication via Wnt ligands is necessary in regulating embryonic development and has been implicated in CKD. Because Wnt ligands are ubiquitously expressed, the exact cellular source of the Wnts involved in CKD remains undefined. To address this issue, we generated two conditional knockout mouse lines in which Wntless (Wls), a dedicated cargo receptor that is obligatory for Wnt secretion, was selectively ablated in tubular epithelial cells or interstitial fibroblasts. Blockade of Wnt secretion by genetic deletion of Wls in renal tubules markedly inhibited myofibroblast activation and reduced renal fibrosis after unilateral ureteral obstruction. This effect associated with decreased activation of β -catenin and downstream gene expression and preserved tubular epithelial integrity. In contrast, fibroblast-specific deletion of Wls exhibited little effect on the severity of renal fibrosis after obstructive or ischemia-reperfusion injury. In vitro , incubation of normal rat kidney fibroblasts with tubule-derived Wnts promoted fibroblast proliferation and activation. Furthermore, compared with kidney specimens from patients without CKD, biopsy specimens from patients with CKD also displayed increased expression of multiple Wnt proteins, predominantly in renal tubular epithelium. These results illustrate that tubule-derived Wnts have an essential role in promoting fibroblast activation and kidney fibrosis via epithelial-mesenchymal communication. Copyright © 2017 by the American Society of Nephrology.

  17. Host response to intravenous injection of epsilon toxin in mouse model: a proteomic view.

    PubMed

    Kumar, Bhoj; Alam, Syed Imteyaz; Kumar, Om

    2013-01-01

    Epsilon toxin (ETX) is an extremely potent pore-forming toxin and a category B biological agent. ETX is a major virulence determinant of Clostridium perfringens toxinotypes B and D, and is implicated in pathogenesis of rapidly fatal economically important pulpy kidney disease in lambs caused by toxinotype D. Despite being a toxin, ETX can be utilized as a tool to target glutamatergic neurons and for drug delivery into the CNS. 2DE-MS approach was employed to elucidate the host response to ETX following intravenous injection in mouse model. In total, 136 proteins were identified either differentially expressed in brain (18) and kidney (33); showing specific interaction with ETX from lysates of brain (4), kidney (21), or from plasma (42); and urine markers (18) of intoxication. Differentially expressed proteins in kidney included those involved in calcium homeostasis and cytoskeletal organization. Proteins involved in ER and oxidative stress and energy metabolism also showed differential levels in the target tissue after ETX treatment. The known functions of the proteins differentially expressed and those interacting with ETX indicate involvement of interlinked pathways. This study provides first proteomic account of host response to ETX exposure providing clues to mechanism of toxicity and potential therapeutic targets. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Accuracy of nursing diagnosis "readiness for enhanced hope" in patients with chronic kidney disease.

    PubMed

    Silva, Renan Alves; Melo, Geórgia Alcântara Alencar; Caetano, Joselany Áfio; Lopes, Marcos Venícios Oliveira; Butcher, Howard Karl; Silva, Viviane Martins da

    2017-07-06

    To analyse the accuracy of the nursing diagnosis readiness for enhanced hope in patients with chronic kidney disease. This is a cross-sectional study with 62 patients in the haemodialysis clinic conducted from August to November 2015. The Hearth Hope Scale was used to create definitions of the defining characteristics of the North American Nursing Diagnosis Association International. We analysed the measures of sensitivity, specificity, predictive value, likelihood ratio, and odds ratio of the defining characteristics of the diagnosis. Of the characteristics, 82.22% presented the diagnosis. The defining characteristics "Expresses the desire to enhance congruency of expectations with desires" and "Expresses the desire to enhance problem solving to meet goals" increased the chance of having the diagnosis by eleven and five, respectively. The characteristics, "Expresses desire to enhance congruency of expectations with desires" and "Expresses desire to enhance problem solving to meet goals" had good accuracy measures.

  19. Urea transporter proteins as targets for small-molecule diuretics.

    PubMed

    Esteva-Font, Cristina; Anderson, Marc O; Verkman, Alan S

    2015-02-01

    Conventional diuretics such as furosemide and thiazides target salt transporters in kidney tubules, but urea transporters (UTs) have emerged as alternative targets. UTs are a family of transmembrane channels expressed in a variety of mammalian tissues, in particular the kidney. UT knockout mice and humans with UT mutations exhibit reduced maximal urinary osmolality, demonstrating that UTs are necessary for the concentration of urine. Small-molecule screening has identified potent and selective inhibitors of UT-A, the UT protein expressed in renal tubule epithelial cells, and UT-B, the UT protein expressed in vasa recta endothelial cells. Data from UT knockout mice and from rodents administered UT inhibitors support the diuretic action of UT inhibition. The kidney-specific expression of UT-A1, together with high selectivity of the small-molecule inhibitors, means that off-target effects of such small-molecule drugs should be minimal. This Review summarizes the structure, expression and function of UTs, and looks at the evidence supporting the validity of UTs as targets for the development of salt-sparing diuretics with a unique mechanism of action. UT-targeted inhibitors may be useful alone or in combination with conventional diuretics for therapy of various oedemas and hyponatraemias, potentially including those refractory to treatment with current diuretics.

  20. MicroRNA profiling of human kidney cancer subtypes.

    PubMed

    Petillo, David; Kort, Eric J; Anema, John; Furge, Kyle A; Yang, Ximing J; Teh, Bin Tean

    2009-07-01

    Although the functions of most of the identified microRNAs (miRNAs) have yet to be determined, their use as potential biomarkers has been considered in several human diseases and cancers. In order to understand their role in renal tumorigenesis, we screened the expression levels of miRNAs in four subtypes of human renal neoplasms: clear cell, papillary, and chromophobe renal cell carcinomas (RCC) as well as benign renal oncocytomas. We found a unique miRNA signature for each subtype of renal tumor. Furthermore, we identified unique patterns of miRNA expression distinguishing clear cell RCC cases with favorable vs. unfavorable outcome. Specifically, we documented the overexpression of miRs 424 and 203 in clear cell RCC relative to papillary RCC, as well as the inversion of expression of miR-203 in the benign oncocytomas (where it is underexpressed relative to normal kidney) as compared to the malignant chromophobe RCC (where it is overexpressed relative to normal kidney). Our results further suggest that overexpression of S-has-miR-32 is associated with poor outcome. While previous studies have identified unique miRNA expression pattern distinguishing tumors from different anatomical locations, here we extend this principle to demonstrate the utility of miRNA expression profiling to identify a signature unique to various tumor subtypes at a single anatomic locus.

  1. C-kit+ cells isolated from developing kidneys are a novel population of stem cells with regenerative potential

    PubMed Central

    Rangel, Erika B; Gomes, Samirah A; Dulce, Raul A; Premer, Courtney; Rodrigues, Claudia O; Kanashiro-Takeuchi, Rosemeire M; Oskouei, Behzad; Carvalho, Decio A; Ruiz, Phillip; Reiser, Jochen; Hare, Joshua M

    2013-01-01

    The presence of tissue specific precursor cells is an emerging concept in organ formation and tissue homeostasis. Several progenitors are described in the kidneys. However, their identity as a true stem cell remains elusive. Here, we identify a neonatal kidney-derived c-kit+ cell population that fulfills all of the criteria as a stem cell. These cells were found in the thick ascending limb of Henle's loop and exhibited clonogenicity, self-renewal, and multipotentiality with differentiation capacity into mesoderm and ectoderm progeny. Additionally, c-kit+ cells formed spheres in nonadherent conditions when plated at clonal density and expressed markers of stem cells, progenitors, and differentiated cells. Ex-vivo expanded c-kit+ cells integrated into several compartments of the kidney, including tubules, vessels, and glomeruli, and contributed to functional and morphological improvement of the kidney following acute ischemia-reperfusion injury in rats. Together these findings document a novel neonatal rat kidney c-kit+ stem cell population that can be isolated, expanded, cloned, differentiated, and employed for kidney repair following acute kidney injury. These cells have important biological and therapeutic implications. PMID:23733311

  2. Cellular origin of fibronectin in interspecies hybrid kidneys

    PubMed Central

    1984-01-01

    The cellular origin of fibronectin in the kidney was studied in three experimental models. Immunohistochemical techniques that use cross- reacting or species-specific antibodies against mouse or chicken fibronectin were employed. In the first model studied, initially avascular mouse kidneys cultured on avian chorioallantoic membranes differentiate into epithelial kidney tubules and become vascularized by chorioallantoic vessels. Subsequently, hybrid glomeruli composed of mouse podocytes and avian endothelial-mesangial cells form. In immunohistochemical studies, cross-reacting antibodies to fibronectin stained vascular walls, tubular basement membranes, interstitium, and glomeruli of mouse kidney grafts. The species-specific antibodies reacting only with mouse fibronectin stained interstitial areas and tubular basement membranes, but showed no reaction with hybrid glomeruli and avian vascular walls. In contrast, species-specific antibodies against chicken fibronectin stained both the interstitial areas and the vascular walls as well as the endothelial-mesangial areas of the hybrid glomeruli, but did not stain the mouse-derived epithelial structures of the kidneys. In the second model, embryonic kidneys cultured under avascular conditions in vitro develop glomerular tufts, which are devoid of endothelial cells. These explants showed fluorescence staining for fibronectin only in tubular basement membranes and in interstitium. The avascular, purely epithelial glomerular bodies remained unstained. Finally, in outgrowths of separated embryonic glomeruli, the cross-reacting fibronectin antibodies revealed two populations of cells: one devoid of fibronectin and another expressing fibronectin in strong fibrillar and granular patterns. These results favor the idea that the main endogenous cellular sources for fibronectin in the embryonic kidney are the interstitial and vascular cells. All experiments presented here suggest that fibronectin is not synthesized by glomerular epithelial cells in vivo. PMID:6389571

  3. Unique protein expression signatures of survival time in kidney renal clear cell carcinoma through a pan-cancer screening.

    PubMed

    Han, Guangchun; Zhao, Wei; Song, Xiaofeng; Kwok-Shing Ng, Patrick; Karam, Jose A; Jonasch, Eric; Mills, Gordon B; Zhao, Zhongming; Ding, Zhiyong; Jia, Peilin

    2017-10-03

    In 2016, it is estimated that there will be 62,700 new cases of kidney cancer in the United States, and 14,240 patients will die from the disease. Because the incidence of kidney renal clear cell carcinoma (KIRC), the most common type of kidney cancer, is expected to continue to increase in the US, there is an urgent need to find effective diagnostic biomarkers for KIRC that could help earlier detection of and customized treatment strategies for the disease. Accordingly, in this study we systematically investigated KIRC's prognostic biomarkers for survival using the reverse phase protein array (RPPA) data and the high throughput sequencing data from The Cancer Genome Atlas (TCGA). With comprehensive data available in TCGA, we systematically screened protein expression based survival biomarkers in 10 major cancer types, among which KIRC presented many protein prognostic biomarkers of survival time. This is in agreement with a previous report that expression level changes (mRNAs, microRNA and protein) may have a better performance for prognosis of KIRC. In this study, we also identified 52 prognostic genes for KIRC, many of which are involved in cell-cycle and cancer signaling, as well as 15 tumor-stage-specific prognostic biomarkers. Notably, we found fewer prognostic biomarkers for early-stage than for late-stage KIRC. Four biomarkers (the RPPA protein IDs: FASN, ACC1, Cyclin_B1 and Rad51) were found to be prognostic for survival based on both protein and mRNA expression data. Through pan-cancer screening, we found that many protein biomarkers were prognostic for patients' survival in KIRC. Stage-specific survival biomarkers in KIRC were also identified. Our study indicated that these protein biomarkers might have potential clinical value in terms of predicting survival in KIRC patients and developing individualized treatment strategies. Importantly, we found many biomarkers in KIRC at both the mRNA expression level and the protein expression level. These biomarkers shared a significant overlap, indicating that they were technically replicable.

  4. Optimal route of diphtheria toxin administration to eliminate native nephron progenitor cells in vivo for kidney regeneration.

    PubMed

    Fukunaga, Shohei; Yamanaka, Shuichiro; Fujimoto, Toshinari; Tajiri, Susumu; Uchiyama, Taketo; Matsumoto, Kei; Ito, Takafumi; Tanabe, Kazuaki; Yokoo, Takashi

    2018-02-19

    To address the lack of organs for transplantation, we previously developed a method for organ regeneration in which nephron progenitor cell (NPC) replacement is performed via the diphtheria toxin receptor (DTR) system. In transgenic mice with NPC-specific expression of DTR, NPCs were eliminated by DT and replaced with NPCs lacking the DTR with the ability to differentiate into nephrons. However, this method has only been verified in vitro. For applications to natural models, such as animal fetuses, it is necessary to determine the optimal administration route and dose of DT. In this study, two DT administration routes (intra-peritoneal and intra-amniotic injection) were evaluated in fetal mice. The fetus was delivered by caesarean section at E18.5, and the fetal mouse kidney and RNA expression were evaluated. Additionally, the effect of the DT dose (25, 5, 0.5, and 0.05 ng/fetus-body) was studied. Intra-amniotic injection of DT led to a reduction in kidney volume, loss of glomeruli, and decreased differentiation marker expression. The intra-peritoneal route was not sufficient for NPC elimination. By establishing that intra-amniotic injection is the optimal administration route for DT, these results will facilitate studies of kidney regeneration in vivo. In addition, this method might be useful for analysis of kidney development at various time points by deleting NPCs during development. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Development of an Immunoassay for the Kidney Specific Protein myo-Inositol Oxygenase, a Potential Biomarker of Acute Kidney Injury

    PubMed Central

    Gaut, Joseph P.; Crimmins, Dan L.; Ohlendorf, Matt F.; Lockwood, Christina M.; Griest, Terry A.; Brada, Nancy A.; Hoshi, Masato; Sato, Bryan; Hotchkiss, Richard S.; Jain, Sanjay; Ladenson, Jack H.

    2014-01-01

    Background Acute kidney injury (AKI) affects 45% of critically ill patients resulting in increased morbidity and mortality. The diagnostic standard, serum creatinine (SCr), is non-specific and may not increase until days after injury. There is significant need for a renal specific AKI biomarker detectable early enough that there would be a potential window for therapeutic intervention. In this study, we sought to identify a renal specific biomarker of AKI. Methods Gene expression data was analyzed from normal mouse tissues to identify kidney specific genes, one of which was Miox. Monoclonal antibodies were generated to recombinant myo-inositol oxygenase (MIOX), and an immunoassay was developed to quantify MIOX in plasma. The immunoassay was tested in animals and retrospectively in patients with and without AKI. Results Kidney tissue specificity of MIOX was supported by Western blot. Immunohistochemistry localized MIOX to the proximal renal tubule. Plasma MIOX, undetectable at baseline, increased 24 hours following AKI in mice. Plasma MIOX was increased in critically ill patients with AKI (12.4 ± 4.3 ng/mL, n=42) compared with patients without AKI (0.5 ± 0.3 ng/mL, n=17) and was highest in patients with oliguric AKI (20.2 ± 7.5 ng/mL, n=23). Plasma MIOX increased 54.3 ± 3.8 hours before the increase in SCr. Conclusions MIOX is a renal specific, proximal tubule protein that is increased in plasma of animals and critically ill patients with AKI. MIOX preceded the elevation in SCr by approximately two days in human patients. Large-scale studies are warranted to further investigate MIOX as an AKI biomarker. PMID:24486646

  6. Hoxd11 specifies a program of metanephric kidney development within the intermediate mesoderm of the mouse embryo.

    PubMed

    Mugford, Joshua W; Sipilä, Petra; Kobayashi, Akio; Behringer, Richard R; McMahon, Andrew P

    2008-07-15

    The mammalian kidney consists of an array of tubules connected to a ductal system that collectively function to control water/salt balance and to remove waste from the organisms' circulatory system. During mammalian embryogenesis, three kidney structures form within the intermediate mesoderm. The two most anterior structures, the pronephros and the mesonephros, are transitory and largely non-functional, while the most posterior, the metanephros, persists as the adult kidney. We have explored the mechanisms underlying regional specific differentiation of the kidney forming mesoderm. Previous studies have shown a requirement for Hox11 paralogs (Hoxa11, Hoxc11 and Hoxd11) in metanephric development. Mice lacking all Hox11 activity fail to form metanephric kidney structures. We demonstrate that the Hox11 paralog expression is restricted in the intermediate mesoderm to the posterior, metanephric level. When Hoxd11 is ectopically activated in the anterior mesonephros, we observe a partial transformation to a metanephric program of development. Anterior Hoxd11(+) cells activate Six2, a transcription factor required for the maintenance of metanephric tubule progenitors. Additionally, Hoxd11(+) mesonephric tubules exhibit an altered morphology and activate several metanephric specific markers normally confined to distal portions of the functional nephron. Collectively, our data support a model where Hox11 paralogs specify a metanephric developmental program in responsive intermediate mesoderm. This program maintains tubule forming progenitors and instructs a metanephric specific pattern of nephron differentiation.

  7. [Impacts of the formula of Suoquanwan(SQW) on expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency].

    PubMed

    Cao, Hong-Ying; Wu, Qing-He; Huang, Ping; He, Jin-Yang

    2009-06-01

    To observe the impacts of the formula of Suoquanwan (SQW) on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency. The model rats were induced by adenine (250 mg/kg) for 4 weeks, then treated respectively with SQW or dDAVP. The expression of AQP-2 mRNA and AVPR-V2 mRNA in kidney of Yang-deficiency model by realtime fluorescence quantitative PCR method were investigated. In model rats, the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney decreased, dDAVP and SQW high dose could increased the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. The others had no influence on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. SQW can increase the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency.

  8. An intracellular matrix metalloproteinase-2 isoform induces tubular regulated necrosis: implications for acute kidney injury.

    PubMed

    Ceron, Carla S; Baligand, Celine; Joshi, Sunil; Wanga, Shaynah; Cowley, Patrick M; Walker, Joy P; Song, Sang Heon; Mahimkar, Rajeev; Baker, Anthony J; Raffai, Robert L; Wang, Zhen J; Lovett, David H

    2017-06-01

    Acute kidney injury (AKI) causes severe morbidity, mortality, and chronic kidney disease (CKD). Mortality is particularly marked in the elderly and with preexisting CKD. Oxidative stress is a common theme in models of AKI induced by ischemia-reperfusion (I-R) injury. We recently characterized an intracellular isoform of matrix metalloproteinase-2 (MMP-2) induced by oxidative stress-mediated activation of an alternate promoter in the first intron of the MMP-2 gene. This generates an NH 2 -terminal truncated MMP-2 (NTT-MMP-2) isoform that is intracellular and associated with mitochondria. The NTT-MMP-2 isoform is expressed in kidneys of 14-mo-old mice and in a mouse model of coronary atherosclerosis and heart failure with CKD. We recently determined that NTT-MMP-2 is induced in human renal transplants with delayed graft function and correlated with tubular cell necrosis. To determine mechanism(s) of action, we generated proximal tubule cell-specific NTT-MMP-2 transgenic mice. Although morphologically normal at the light microscopic level at 4 mo, ultrastructural studies revealed foci of tubular epithelial cell necrosis, the mitochondrial permeability transition, and mitophagy. To determine whether NTT-MMP-2 expression enhances sensitivity to I-R injury, we performed unilateral I-R to induce mild tubular injury in wild-type mice. In contrast, expression of the NTT-MMP-2 isoform resulted in a dramatic increase in tubular cell necrosis, inflammation, and fibrosis. NTT-MMP-2 mice had enhanced expression of innate immunity genes and release of danger-associated molecular pattern molecules. We conclude that NTT-MMP-2 "primes" the kidney to enhanced susceptibility to I-R injury via induction of mitochondrial dysfunction. NTT-MMP-2 may be a novel AKI treatment target.

  9. Diabetes mellitus reduces activity of human UDP-glucuronosyltransferase 2B7 in liver and kidney leading to decreased formation of mycophenolic acid acyl-glucuronide metabolite.

    PubMed

    Dostalek, Miroslav; Court, Michael H; Hazarika, Suwagmani; Akhlaghi, Fatemeh

    2011-03-01

    Mycophenolic acid (MPA) is an immunosuppressive agent commonly used after organ transplantation. Altered concentrations of MPA metabolites have been reported in diabetic kidney transplant recipients, although the reason for this difference is unknown. We aimed to compare MPA biotransformation and UDP-glucuronosyltransferase (UGT) expression and activity between liver (n = 16) and kidney (n = 8) from diabetic and nondiabetic donors. Glucuronidation of MPA, as well as the expression and probe substrate activity of UGTs primarily responsible for MPA phenol glucuronide (MPAG) formation (UGT1A1 and UGT1A9), and MPA acyl glucuronide (AcMPAG) formation (UGT2B7), was characterized. We have found that both diabetic and nondiabetic human liver microsomes and kidney microsomes formed MPAG with similar efficiency; however, AcMPAG formation was significantly lower in diabetic samples. This finding is supported by markedly lower glucuronidation of the UGT2B7 probe zidovudine, UGT2B7 protein, and UGT2B7 mRNA in diabetic tissues. UGT genetic polymorphism did not explain this difference because UGT2B7*2 or *1c genotype were not associated with altered microsomal UGT2B7 protein levels or AcMPAG formation. Furthermore, mRNA expression and probe activities for UGT1A1 or UGT1A9, both forming MPAG but not AcMPAG, were comparable between diabetic and nondiabetic tissues, suggesting the effect may be specific to UGT2B7-mediated AcMPAG formation. These findings suggest that diabetes mellitus is associated with significantly reduced UGT2B7 mRNA expression, protein level, and enzymatic activity of human liver and kidney, explaining in part the relatively low circulating concentrations of AcMPAG in diabetic patients.

  10. Transcriptional insulation of the human keratin 18 gene in transgenic mice.

    PubMed Central

    Neznanov, N; Thorey, I S; Ceceña, G; Oshima, R G

    1993-01-01

    Expression of the 10-kb human keratin 18 (K18) gene in transgenic mice results in efficient and appropriate tissue-specific expression in a variety of internal epithelial organs, including liver, lung, intestine, kidney, and the ependymal epithelium of brain, but not in spleen, heart, or skeletal muscle. Expression at the RNA level is directly proportional to the number of integrated K18 transgenes. These results indicate that the K18 gene is able to insulate itself both from the commonly observed cis-acting effects of the sites of integration and from the potential complications of duplicated copies of the gene arranged in head-to-tail fashion. To begin to identify the K18 gene sequences responsible for this property of transcriptional insulation, additional transgenic mouse lines containing deletions of either the 5' or 3' distal end of the K18 gene have been characterized. Deletion of 1.5 kb of the distal 5' flanking sequence has no effect upon either the tissue specificity or the copy number-dependent behavior of the transgene. In contrast, deletion of the 3.5-kb 3' flanking sequence of the gene results in the loss of the copy number-dependent behavior of the gene in liver and intestine. However, expression in kidney, lung, and brain remains efficient and copy number dependent in these transgenic mice. Furthermore, herpes simplex virus thymidine kinase gene expression is copy number dependent in transgenic mice when the gene is located between the distal 5'- and 3'-flanking sequences of the K18 gene. Each adult transgenic male expressed the thymidine kinase gene in testes and brain and proportionally to the number of integrated transgenes. We conclude that the characteristic of copy number-dependent expression of the K18 gene is tissue specific because the sequence requirements for transcriptional insulation in adult liver and intestine are different from those for lung and kidney. In addition, the behavior of the transgenic thymidine kinase gene in testes and brain suggests that the property of transcriptional insulation of the K18 gene may be conferred by the distal flanking sequences of the K18 gene and, additionally, may function for other genes. Images PMID:7681143

  11. Expression of nestin in embryonic tissues and its effects on clinicopathological characteristics of patients with placenta previa.

    PubMed

    Qiao, Yan-Yan; Chu, Ping

    2018-02-01

    In this study, we examined expression of nestin in the spinal cord, lung, kidney, stomach, colon, and intestine tissues at different stages of embryos in patients with placenta previa. Fetuses of 75 patients with placenta previa were assigned to case group and 80 fetuses from healthy pregnant women with normal placenta who voluntarily terminated pregnancy to control group. Clinical data of pregnant women were collected at the time of admission. Blood from elbow vein was collected to determine expression of serum nestin. Tissues from spinal cord, lung, kidney, stomach, colon, and intestine in 3-7 months fetuses of the two groups were extracted. Expression of nestin in tissues was detected by immunohistochemistry, Western blotting and RT-qPCR. The mRNA expression of nestin in the case group was increased. Nestin expression was correlated with the gestational age, age of foetus, and type of placenta previa in patients with placenta previa. Positive nestin expression was detected in the spinal cord, lung, kidney, stomach, intestine, and colon tissues in normal and placenta previa embryo at Stage I. The positive cell density and nestin expression decreased at Stage II, and further decreased at Stage III. The case group had higher nestin mRNA and protein levels throughout human fetal development. Findings of this study suggested that, nestin, as a specific marker of neural precursor cells, was expressed in various tissues of the embryo in patients with placenta previa and nestin expression was lower with increased maturation of the embryo. © 2017 Wiley Periodicals, Inc.

  12. Tissue Specific Modulation of cyp2c and cyp3a mRNA Levels and Activities by Diet-Induced Obesity in Mice: The Impact of Type 2 Diabetes on Drug Metabolizing Enzymes in Liver and Extra-Hepatic Tissues

    PubMed Central

    Chamoun, Michel; Gravel, Sophie; Turgeon, Jacques; Michaud, Veronique

    2017-01-01

    Various diseases such as type 2 diabetes (T2D) may alter drug clearance. The objective of this study was to evaluate the effects of T2D on CYP450 expressions and activities using high-fat diet (HFD) as a model of obesity-dependent diabetes in C57BL6 mice. The cyp450 mRNA expression levels for 15 different isoforms were determined in the liver and extra-hepatic tissues (kidneys, lungs and heart) of HFD-treated animals (n = 45). Modulation of cyp450 metabolic activities by HFD was assessed using eight known substrates for specific human ortholog CYP450 isoforms: in vitro incubations were conducted with liver and extra-hepatic microsomes. Expression levels of cyp3a11 and cyp3a25 mRNA were decreased in the liver (>2–14-fold) and kidneys (>2-fold) of HFD groups which correlated with a significant reduction in midazolam metabolism (by 21- and 5-fold in hepatic and kidney microsomes, respectively, p < 0.001). HFD was associated with decreased activities of cyp2b and cyp2c subfamilies in all organs tested except in the kidneys (for tolbutamide). Other cyp450 hepatic activities were minimally or not affected by HFD. Taken together, our data suggest that substrate-dependent and tissue-dependent modulation of cyp450 metabolic capacities by early phases of T2D are observed, which could modulate drug disposition and pharmacological effects in various tissues. PMID:28954402

  13. Role for transforming growth factor-beta1 in alport renal disease progression.

    PubMed

    Sayers, R; Kalluri, R; Rodgers, K D; Shield, C F; Meehan, D T; Cosgrove, D

    1999-11-01

    Alport syndrome results from mutations in either the alpha3(IV), alpha4(IV), or alpha5(IV) collagen genes. The disease is characterized by a progressive glomerulonephritis usually associated with a high-frequency sensorineural hearing loss. A mouse model for an autosomal form of Alport syndrome [collagen alpha3(IV) knockout] was produced and characterized. In this study, the model was exploited to demonstrate a potential role for transforming growth factor-beta1 (TGF-beta1) in Alport renal disease pathogenesis. Kidneys from normal and Alport mice, taken at different stages during the course of renal disease progression, were analyzed by Northern blot, in situ hybridization, and immunohistology for expression of TGF-beta1 and components of the extracellular matrix. Normal and Alport human kidney was examined for TGF-beta1 expression using RNase protection. The mRNAs encoding TGF-beta1 (in both mouse and human), entactin, fibronectin, and the collagen alpha1(IV) and alpha2(IV) chains were significantly induced in total kidney as a function of Alport renal disease progression. The induction of these specific mRNAs was observed in the glomerular podocytes of animals with advanced disease. Type IV collagen, laminin-1, and fibronectin were markedly elevated in the tubulointerstitium at 10 weeks, but not at 6 weeks, suggesting that elevated expression of specific mRNAs on Northern blots reflects events associated with tubulointerstitial fibrosis. The concomitant accumulation of mRNAs encoding TGF-beta1 and extracellular matrix components in the podocytes of diseased kidneys may reflect key events in Alport renal disease progression. These data suggest a role for TGF-beta1 in both glomerular and tubulointerstitial damage associated with Alport syndrome.

  14. Gymnocypris przewalskii decreases cytosolic carbonic anhydrase expression to compensate for respiratory alkalosis and osmoregulation in the saline-alkaline lake Qinghai.

    PubMed

    Yao, Zongli; Guo, Wenfei; Lai, Qifang; Shi, Jianquan; Zhou, Kai; Qi, Hongfang; Lin, Tingting; Li, Ziniu; Wang, Hui

    2016-01-01

    Naked carp (Gymnocypris przewalskii), endemic to the saline-alkaline Lake Qinghai, have the capacity to tolerate combined high salinity and alkalinity, but migrate to spawn in freshwater rivers each year. In this study, the full-length cDNA of the cytosolic carbonic anhydrase c isoform of G. przewalskii (GpCAc) was amplified and sequenced; mRNA levels and enzyme activity of GpCAc and blood chemistry were evaluated to understand the compensatory responses as the naked carp returned to the saline-alkaline lake after spawning. We found that GpCAc had a total length of 1400 bp and encodes a peptide of 260 amino acids. Comparison of the deduced amino acid sequences and phylogenetic analysis showed that GpCAc was a member of the cytosolic carbonic anhydrase II-like c family. Cytosolic-carbonic-anhydrase-c-specific primers were used to analyze the tissue distribution of GpCAc mRNA expression. Expression of GpCAc mRNA was found in brain, gill, liver, kidney, gut, and muscle tissues, but primarily in the gill and posterior kidney; however, none was evident in red blood cells. Transferring fish from river water to lake water resulted in a respiratory alkalosis, osmolality, and ion rise in the blood, as well as significant decreases in the expression and enzyme activity of GpCAc in both the gill and kidney within 96 h. These results indicate that GpCAc may play an important role in the acclimation to both high salinity and carbonate alkalinity. Specifically, G. przewalskii decreases cytosolic carbonic anhydrase c expression to compensate for a respiratory alkalosis and to aid in osmoregulation during the transition from river to saline-alkaline lake.

  15. Potential Use of Autologous Renal Cells from Diseased Kidneys for the Treatment of Renal Failure.

    PubMed

    George, Sunil K; Abolbashari, Mehran; Jackson, John D; Aboushwareb, Tamer; Atala, Anthony; Yoo, James J

    2016-01-01

    Chronic kidney disease (CKD) occurs when certain conditions cause the kidneys to gradually lose function. For patients with CKD, renal transplantation is the only treatment option that restores kidney function. In this study, we evaluated primary renal cells obtained from diseased kidneys to determine whether their normal phenotypic and functional characteristics are retained, and could be used for cell therapy. Primary renal cells isolated from both normal kidneys (NK) and diseased kidneys (CKD) showed similar phenotypic characteristics and growth kinetics. The expression levels of renal tubular cell markers, Aquaporin-1 and E-Cadherin, and podocyte-specific markers, WT-1 and Nephrin, were similar in both NK and CKD kidney derived cells. Using fluorescence- activated cell sorting (FACS), specific renal cell populations were identified and included proximal tubular cells (83.1% from NK and 80.3% from CKD kidneys); distal tubular cells (11.03% from NK and 10.9% from CKD kidneys); and podocytes (1.91% from NK and 1.78% from CKD kidneys). Ultra-structural analysis using scanning electron microscopy (SEM) revealed microvilli on the apical surface of cultured cells from NK and CKD samples. Moreover, transmission electron microscopy (TEM) analysis showed a similar organization of tight junctions, desmosomes, and other intracellular structures. The Na+ uptake characteristics of NK and CKD derived renal cells were also similar (24.4 mmol/L and 25 mmol/L, respectively) and no significant differences were observed in the protein uptake and transport characteristics of these two cell isolates. These results show that primary renal cells derived from diseased kidneys such as CKD have similar structural and functional characteristics to their counterparts from a normal healthy kidney (NK) when grown in vitro. This study suggests that cells derived from diseased kidney may be used as an autologous cell source for renal cell therapy, particularly in patients with CKD or end-stage renal disease (ESRD).

  16. Reactivation of NCAM1 defines a subpopulation of human adult kidney epithelial cells with clonogenic and stem/progenitor properties.

    PubMed

    Buzhor, Ella; Omer, Dorit; Harari-Steinberg, Orit; Dotan, Zohar; Vax, Einav; Pri-Chen, Sara; Metsuyanim, Sally; Pleniceanu, Oren; Goldstein, Ronald S; Dekel, Benjamin

    2013-11-01

    The nephron is composed of a monolayer of epithelial cells that make up its various compartments. In development, these cells begin as mesenchyme. NCAM1, abundant in the mesenchyme and early nephron lineage, ceases to express in mature kidney epithelia. We show that, once placed in culture and released from quiescence, adult human kidney epithelial cells (hKEpCs), uniformly positive for CD24/CD133, re-express NCAM1 in a specific cell subset that attains a stem/progenitor state. Immunosorted NCAM1(+) cells overexpressed early nephron progenitor markers (PAX2, SALL1, SIX2, WT1) and acquired a mesenchymal fate, indicated by high vimentim and reduced E-cadherin levels. Gene expression and microarray analysis disclosed both a proximal tubular origin of these cells and molecules regulating epithelial-mesenchymal transition. NCAM1(+) cells generated clonal progeny when cultured in the presence of fetal kidney conditioned medium, differentiated along mesenchymal lineages but retained the unique propensity to generate epithelial kidney spheres and produce epithelial renal tissue on single-cell grafting in chick CAM and mouse. Depletion of NCAM1(+) cells from hKEpCs abrogated stemness traits in vitro. Eliminating these cells during the regenerative response that follows glycerol-induced acute tubular necrosis worsened peak renal injury in vivo. Thus, higher clone-forming and developmental capacities characterize a distinct subset of adult kidney-derived cells. The ability to influence an endogenous regenerative response via NCAM1 targeting may lead to novel therapeutics for renal diseases. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Potential of IL-33 for Preventing the Kidney Injury via Regulating the Lipid Metabolism in Gout Patients

    PubMed Central

    Huang, Yan; Su, Qun; Lin, Qingyan; Liu, Wen; Yu, Bing; Liu, Yuan

    2016-01-01

    Interleukin-33 (IL-33), the most recently discovered member of the IL-1 superfamily, has been linked to several human pathologies including autoimmune diseases, sepsis, and allergy through its specific IL-1 receptor ST2. However, there is little information regarding the role of IL-33 in gout. In this study, we investigated the potential role of IL-33 in gout patients. The serum level of IL-33 was measured by ELISA, and the clinical and laboratory parameters, serum creatinine, urea, and lipid, were extracted from medical record system. The serum IL-33 expression was predominantly increased in gout patients compared to healthy controls, and the IL-33 levels were higher in patients without kidney injury. Furthermore, IL-33 showed a negative correlation with biomarkers of kidney injury, such as CRE and urea. The lipid metabolism dysfunction, tophi, and hypertension are the common reasons for kidney injury in gout. Interestingly, inverse and positive correlation of IL-33 expression was observed in LDL and HDL, respectively. However, there was no significant alteration in the gout patients with hypertension and tophi. These data suggested that IL-33 might act as a protective role in kidney injury through regulating the lipid metabolism in gout. PMID:27579324

  18. Polycystin-1 promotes PKC{alpha}-mediated NF-{kappa}B activation in kidney cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banzi, Manuela; Aguiari, Gianluca; Trimi, Viky

    2006-11-17

    Polycystin-1 (PC1), the PKD1 gene product, is a membrane receptor which regulates many cell functions, including cell proliferation and apoptosis, both typically increased in cyst lining cells in autosomal dominant polycystic kidney disease. Here we show that PC1 upregulates the NF-{kappa}B signalling pathway in kidney cells to prevent cell death. Human embryonic kidney cell lines (HEK293{sup CTT}), stably expressing a PC1 cytoplasmic terminal tail (CTT), presented increased NF-{kappa}B nuclear levels and NF-{kappa}B-mediated luciferase promoter activity. This, consistently, was reduced in HEK293 cells in which the endogenous PC1 was depleted by RNA interference. CTT-dependent NF-{kappa}B promoter activation was mediated by PKC{alpha}more » because it was blocked by its specific inhibitor Ro-320432. Furthermore, it was observed that apoptosis, which was increased in PC1-depleted cells, was reduced in HEK293{sup CTT} cells and in porcine kidney LtTA cells expressing a doxycycline-regulated CTT. Staurosporine, a PKC inhibitor, and parthenolide, a NF-{kappa}B inhibitor, significantly reduced the CTT-dependent antiapoptotic effect. These data reveal, therefore, a novel pathway by which polycystin-1 activates a PKC{alpha}-mediated NF-{kappa}B signalling and cell survival.« less

  19. Expression of bone morphogenetic proteins 4, 6 and 7 is downregulated in kidney allografts with interstitial fibrosis and tubular atrophy.

    PubMed

    Furic-Cunko, Vesna; Kes, Petar; Coric, Marijana; Hudolin, Tvrtko; Kastelan, Zeljko; Basic-Jukic, Nikolina

    2015-07-01

    Bone morphogenetic proteins (BMPs) are pleiotropic growth factors. This paper investigates the connection between the expression pattern of BMPs in kidney allograft tissue versus the cause of allograft dysfunction. The expression pattern of BMP2, BMP4, BMP6 and BMP7 in 50 kidney allografts obtained by transplant nephrectomy is investigated. Immunohistochemical staining is semiquantitatively evaluated for intensity to identify the expression pattern of BMPs in normal and allograft kidney tissues. The expression of BMP4 is unique between different tubular cell types in grafts without signs of fibrosis. This effect is not found in specimens with high grades of interstitial fibrosis and tubular atrophy (IFTA). In samples with IFTA grades II and III, the BMP7 expression is reduced in a significant fraction of specimens relative to those without signs of IFTA. The expression pattern of BMP6 indicates that its activation may be triggered by the act of transplantation and subsequent reperfusion injury. The expression of BMP2 is strong in all types of tubular epithelial cells and does not differ between the compared allografts and control kidney specimens. The intensity and expression pattern of BMP4, BMP6 and BMP7 in transplanted kidney tissue are found to be dependent upon the length of the transplanted period, the clinical indication for transplant nephrectomy and signs of IFTA in kidney tissue.

  20. Decreased expression of Na+-H+ exchanger isoforms 1 and 3 in denervated spontaneously hypertensive rat kidney.

    PubMed

    Li, Jianling; He, Qiaoling; Li, Qingjie; Huang, Rongjie; Wei, Xiaoyan; Pan, Xiaofeng; Wu, Weifeng

    2018-05-22

    To determine whether the sympathetic nerve plays a role in the regulation of Na + -H + exchange (NHE) in the kidney of spontaneously hypertensive rats (SHR), we investigated the expression of NHE and NHE regulatory protein family (NHERF) in the denervated kidneys compared with intact kidneys. Twelve-week-old male SHR and age-matched Wistar Kyoto (WKY) rats were used. SHR were randomly assigned to the renal denervated (RDNX, n = 8) or Sham (n = 8) groups. The protein and mRNA expression of NHE1, NHE3, NHERF1 and NHERF2 were assessed in the kidney of the groups. Following the renal denervation, immunohistochemistry and western blot analysis showed that NHE1 and NHE3 protein were significantly decreased in the kidney compared with Sham group. NHERF1 protein expression was significantly increased in RDNX compared with Sham group, whereas NHERF2 protein expression was significantly decreased after renal denervation. Similar results were observed at the mRNA level of NHE1, NHE3, NHERF1 and NHERF2 expression. The present findings suggest that the renal sympathetic nervous system plays a role in the regulation of NHE1 and NHE3 in the kidney of SHR, and NHERF1 may be involved in the expression of NHE3 in the kidney of SHR.

  1. Sall1-dependent signals affect Wnt signaling and ureter tip fate to initiate kidney development.

    PubMed

    Kiefer, Susan M; Robbins, Lynn; Stumpff, Kelly M; Lin, Congxing; Ma, Liang; Rauchman, Michael

    2010-09-01

    Development of the metanephric kidney depends on precise control of branching of the ureteric bud. Branching events represent terminal bifurcations that are thought to depend on unique patterns of gene expression in the tip compared with the stalk and are influenced by mesenchymal signals. The metanephric mesenchyme-derived signals that control gene expression at the ureteric bud tip are not well understood. In mouse Sall1 mutants, the ureteric bud grows out and invades the metanephric mesenchyme, but it fails to initiate branching despite tip-specific expression of Ret and Wnt11. The stalk-specific marker Wnt9b and the beta-catenin downstream target Axin2 are ectopically expressed in the mutant ureteric bud tips, suggesting that upregulated canonical Wnt signaling disrupts ureter branching in this mutant. In support of this hypothesis, ureter arrest is rescued by lowering beta-catenin levels in the Sall1 mutant and is phenocopied by ectopic expression of a stabilized beta-catenin in the ureteric bud. Furthermore, transgenic overexpression of Wnt9b in the ureteric bud causes reduced branching in multiple founder lines. These studies indicate that Sall1-dependent signals from the metanephric mesenchyme are required to modulate ureteric bud tip Wnt patterning in order to initiate branching.

  2. Specification of ion transport cells in the Xenopus larval skin

    PubMed Central

    Quigley, Ian K.; Stubbs, Jennifer L.; Kintner, Chris

    2011-01-01

    Specialized epithelial cells in the amphibian skin play important roles in ion transport, but how they arise developmentally is largely unknown. Here we show that proton-secreting cells (PSCs) differentiate in the X. laevis larval skin soon after gastrulation, based on the expression of a `kidney-specific' form of the H+v-ATPase that localizes to the plasma membrane, orthologs of the Cl–/HCO –3 antiporters ae1 and pendrin, and two isoforms of carbonic anhydrase. Like PSCs in other species, we show that the expression of these genes is likely to be driven by an ortholog of foxi1, which is also sufficient to promote the formation of PSC precursors. Strikingly, the PSCs form in the skin as two distinct subtypes that resemble the alpha- and beta-intercalated cells of the kidney. The alpha-subtype expresses ae1 and localizes H+v-ATPases to the apical plasma membrane, whereas the beta-subtype expresses pendrin and localizes the H+v-ATPase cytosolically or basolaterally. These two subtypes are specified during early PSC differentiation by a binary switch that can be regulated by Notch signaling and by the expression of ubp1, a transcription factor of the grainyhead family. These results have implications for how PSCs are specified in vertebrates and become functionally heterogeneous. PMID:21266406

  3. Transcript profiling of Wilms tumors reveals connections to kidney morphogenesis and expression patterns associated with anaplasia.

    PubMed

    Li, Wenliang; Kessler, Patricia; Williams, Bryan R G

    2005-01-13

    Anaplasia (unfavorable histology) is associated with therapy resistance and poor prognosis of Wilms tumor, but the molecular basis for this phenotype is unclear. Here, we used a cDNA array with 9240 clones relevant to cancer biology and/or kidney development to examine the expression profiles of 54 Wilms tumors, five normal kidneys and fetal kidney. By linking genes differentially expressed between fetal kidney and Wilms tumors to kidney morphogenesis, we found that genes expressed at a higher level in Wilms tumors tend to be expressed more in uninduced metanephrogenic mesenchyme or blastema than in their differentiated structures. Conversely, genes expressed at a lower level in Wilms tumors tend to be expressed less in uninduced metanephrogenic mesenchyme or blastema. We also identified 97 clones representing 76 Unigenes or unclustered ESTs that clearly separate anaplastic Wilms tumors from tumors with favorable histology. Genes in this set provide insight into the nature of the abnormal nuclear morphology of anaplastic tumors and may facilitate identification of molecular targets to improve their responsiveness to treatment.

  4. Functional involvement of the organic cation transporter 2 (rOct2) in the renal uptake of organic cations in rats.

    PubMed

    Umehara, K-I; Iwatsubo, T; Noguchi, K; Kamimura, H

    2008-01-01

    This study examined the contribution made by organic cation transporters (hOCT/rOct) to the saturable component of the renal uptake of 1-methyl-4-phenylpyridinium, tetraethylammonium (TEA), cimetidine and metformin into rOct2-expressing HEK293 cells and rat kidney slices. All the test compounds accumulated in the rat kidney slices in a carrier-mediated manner. The Michaelis- Menten constant (K(m)) values for saturable uptake of TEA, cimetidine and metformin into rat kidney slices were relatively comparable with those for the rOct2-expressing HEK293 cells. In addition, the relative uptake activity values of TEA, cimetidine and metformin in rat kidney slices were similar to those in rOct2-expressing HEK293 cells. This suggests that the saturable components involved in the renal uptake of TEA, cimetidine and metformin are mediated mainly by rOct2. The saturable uptake profile of cationic compounds into rat kidney can be evaluated in both cDNA-expressing cells and rat kidney slices, as well as the transporter expression pattern. This approach can also be used to estimate the saturable uptake mechanism of cationic compounds into the human kidney when human kidney slices and hOCT2-expressing cells are used.

  5. A method to facilitate and monitor expression of exogenous genes in the rat kidney using plasmid and viral vectors

    PubMed Central

    Corridon, Peter R.; Rhodes, George J.; Leonard, Ellen C.; Basile, David P.; Gattone, Vincent H.; Bacallao, Robert L.

    2013-01-01

    Gene therapy has been proposed as a novel alternative to treat kidney disease. This goal has been hindered by the inability to reliably deliver transgenes to target cells throughout the kidney, while minimizing injury. Since hydrodynamic forces have previously shown promising results, we optimized this approach and designed a method that utilizes retrograde renal vein injections to facilitate transgene expression in rat kidneys. We show, using intravital fluorescence two-photon microscopy, that fluorescent albumin and dextrans injected into the renal vein under defined conditions of hydrodynamic pressure distribute broadly throughout the kidney in live animals. We found injection parameters that result in no kidney injury as determined by intravital microscopy, histology, and serum creatinine measurements. Plasmids, baculovirus, and adenovirus vectors, designed to express EGFP, EGFP-actin, EGFP-occludin, EGFP-tubulin, tdTomato-H2B, or RFP-actin fusion proteins, were introduced into live kidneys in a similar fashion. Gene expression was then observed in live and ex vivo kidneys using two-photon imaging and confocal laser scanning microscopy. We recorded widespread fluorescent protein expression lasting more than 1 mo after introduction of transgenes. Plasmid and adenovirus vectors provided gene transfer efficiencies ranging from 50 to 90%, compared with 10–50% using baculovirus. Using plasmids and adenovirus, fluorescent protein expression was observed 1) in proximal and distal tubule epithelial cells; 2) within glomeruli; and 3) within the peritubular interstitium. In isolated kidneys, fluorescent protein expression was observed from the cortex to the papilla. These results provide a robust approach for gene delivery and the study of protein function in live mammal kidneys. PMID:23467422

  6. The Genetics and Epigenetics of Kidney Development

    PubMed Central

    Patel, Sanjeevkumar R.; Dressler, Gregory R.

    2013-01-01

    The development of the mammalian kidney has been studied at the genetic, biochemical, and cell biological level for more than 40 years. As such, detailed mechanisms governing early patterning, cell lineages, and inductive interactions are well described. How genes interact to specify the renal epithelial cells of the nephrons and how this specification is relevant to maintaining normal renal function is discussed. Implicit in the development of the kidney are epigenetic mechanisms that mark renal cell types and connect certain developmental regulatory factors to chromatin modifications that control gene expression patterns and cellular physiology. In adults, such regulatory factors and their epigenetic pathways may function in regeneration and may be disturbed in disease processes. PMID:24011574

  7. Protective Cytomegalovirus (CMV)-Specific T-Cell Immunity Is Frequent in Kidney Transplant Patients without Serum Anti-CMV Antibodies

    PubMed Central

    Litjens, Nicolle H. R.; Huang, Ling; Dedeoglu, Burç; Meijers, Ruud W. J.; Kwekkeboom, Jaap; Betjes, Michiel G. H.

    2017-01-01

    The absence of anti-cytomegalovirus (CMV) immunoglobulin G (IgG) is used to classify pretransplant patients as naïve for CMV infection (CMVneg patients). This study assessed whether pretransplant CMV-specific T-cell immunity exists in CMVneg patients and whether it protects against CMV infection after kidney transplantation. The results show that CMV-specific CD137+IFNγ+CD4+ and CD137+IFNγ+CD8+ memory T cells were present in 46 and 39% of CMVneg patients (n = 28) although at much lower frequencies compared to CMVpos patients (median 0.01 versus 0.58% for CD4+ and 0.05 versus 0.64% for CD8+ T cells) with a less differentiated CD28-expressing phenotype. In line with these data, CMV-specific proliferative CD4+ and CD8+ T cells were observed in CMVneg patients, which significantly correlated with the frequency of CMV-specific T cells. CMV-specific IgG antibody-secreting cells (ASC) could be detected at low frequency in 36% of CMVneg patients (1 versus 45 ASC/105 cells in CMVpos patients). CMVneg patients with pretransplant CMV-specific CD137+IFNγ+CD4+ T cells had a lower risk to develop CMV viremia after transplantation with a CMVpos donor kidney (relative risk: 0.43, P = 0.03). In conclusion, a solitary CMV-specific T-cell response without detectable anti-CMV antibodies is frequent and clinically relevant as it is associated with protection to CMV infection following transplantation with a kidney from a CMVpos donor. PMID:28955345

  8. Expression of cell adhesion molecules in the normal and T3 blocked development of the tadpole's kidney of Bufo arenarum (Amphibian, Anuran, Bufonidae).

    PubMed

    Izaguirre, M F; García-Sancho, M N; Miranda, L A; Tomas, J; Casco, V H

    2008-08-01

    Cell adhesion molecules act as signal transducers from the extracellular environment to the cytoskeleton and the nucleus and consequently induce changes in the expression pattern of structural proteins. In this study, we showed the effect of thyroid hormone (TH) inhibition and arrest of metamorphosis on the expression of E-cadherin, beta-and alpha-catenin in the developing kidney of Bufo arenarum. Cell adhesion molecules have selective temporal and spatial expression during development suggesting a specific role in nephrogenesis. In order to study mechanisms controlling the expression of adhesion molecules during renal development, we blocked the B. arenarum metamorphosis with a goitrogenic substance that blocks TH synthesis. E-cadherin expression in the proximal tubules is independent of thyroid control. However, the blockage of TH synthesis causes up-regulation of E-cadherin in the collecting ducts, the distal tubules and the glomeruli. The expression of beta-and alpha-catenin in the collecting ducts, the distal tubules, the glomeruli and the mesonephric mesenchyme is independent of TH. TH blockage causes up-regulation of beta-and alpha-catenin in the proximal tubules. In contrast to E-cadherin, the expression of the desmosomal cadherin desmoglein 1 (Dsg-1) is absent in the control of the larvae kidney during metamorphosis and is expressed in some interstitial cells in the KClO4 treated larvae. According to this work, the Dsg-1 expression is down-regulated by TH. We demonstrated that the expression of E-cadherin, Dsg-1, beta-catenin and alpha-catenin are differentially affected by TH levels, suggesting a hormone-dependent role of these proteins in the B. arenarum renal metamorphosis.

  9. Molecular Classifiers for Acute Kidney Transplant Rejection in Peripheral Blood by Whole Genome Gene Expression Profiling

    PubMed Central

    Kurian, S. M.; Williams, A. N.; Gelbart, T.; Campbell, D.; Mondala, T. S.; Head, S. R.; Horvath, S.; Gaber, L.; Thompson, R.; Whisenant, T.; Lin, W.; Langfelder, P.; Robison, E. H.; Schaffer, R. L.; Fisher, J. S.; Friedewald, J.; Flechner, S. M.; Chan, L. K.; Wiseman, A. C.; Shidban, H.; Mendez, R.; Heilman, R.; Abecassis, M. M.; Marsh, C. L.; Salomon, D. R.

    2015-01-01

    There are no minimally invasive diagnostic metrics for acute kidney transplant rejection (AR), especially in the setting of the common confounding diagnosis, acute dysfunction with no rejection (ADNR). Thus, though kidney transplant biopsies remain the gold standard, they are invasive, have substantial risks, sampling error issues and significant costs and are not suitable for serial monitoring. Global gene expression profiles of 148 peripheral blood samples from transplant patients with excellent function and normal histology (TX; n = 46), AR (n = 63) and ADNR (n = 39), from two independent cohorts were analyzed with DNA microarrays. We applied a new normalization tool, frozen robust multi-array analysis, particularly suitable for clinical diagnostics, multiple prediction tools to discover, refine and validate robust molecular classifiers and we tested a novel one-by-one analysis strategy to model the real clinical application of this test. Multiple three-way classifier tools identified 200 highest value probesets with sensitivity, specificity, positive predictive value, negative predictive value and area under the curve for the validation cohort ranging from 82% to 100%, 76% to 95%, 76% to 95%, 79% to 100%, 84% to 100% and 0.817 to 0.968, respectively. We conclude that peripheral blood gene expression profiling can be used as a minimally invasive tool to accurately reveal TX, AR and ADNR in the setting of acute kidney transplant dysfunction. PMID:24725967

  10. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease

    PubMed Central

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782

  11. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease.

    PubMed

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. http://rged.wall-eva.net. © The Author(s) 2014. Published by Oxford University Press.

  12. [Evaluation of immune status of kidney transplant recipients by combined HLA-G5 and sCD30].

    PubMed

    JIN, Zhan-kui; TIAN, Pu-xun; XUE, Wu-jun; DING, Xiao-ming; PAN, Xiao-ming; DING, Chen-guang; JIA, Li-ning; GE, Guan-qun; HAO, Jun-jun

    2010-09-28

    to study the relationship between the expression of serum human leucocyte antigen-G5 (HLA-G5)/soluble CD30 (sCD30) and the function of renal graft in kidney transplant recipients and investigate the immune status of recipients with combined HLA-G5 and sCD30. from January 2002 to November 2008, a total of 66 kidney transplant recipients in our centre were selected as subjects and divided into three groups: stable function of renal graft (n = 38), acute rejection (n = 15) and chronic rejection (n = 13). The expressions of serum HLA-G5 and sCD30 were detected. There were two different immune conditions with acute/chronic allograft rejection and normal renal graft in kidney transplant recipients as evaluated by combined HLA-G5 and sCD30. The sensitivity, specificity and critical value of the method were analyzed by the curve of receiver operating characteristic. the levels of HLA-G5 and sCD30 were significantly correlated with serum creatinine (r = -0.493, 0.691, both P < 0.01). Within the first year post-transplantation, the sensitivity was 78.6% and the specificity 85.7% when HLA-G5 critical value 82 microg/L and sCD30 critical value 12.2 microg/L. After one year post-transplantation: the sensitivity was 92.3% and the specificity 84.6% when HLA-G5 critical value 141 microg/L and sCD30 critical value 10.3 microg/L. the immune state of recipients are evaluated by combine HLA-G5 and sCD30 which may be a simple and valid method.

  13. Conditional ablation of glycogen synthase kinase 3β in postnatal mouse kidney.

    PubMed

    Ge, Yan; Si, Jin; Tian, Li; Zhuang, Shougang; Dworkin, Lance D; Gong, Rujun

    2011-01-01

    Glycogen synthase kinase (GSK)3 is a ubiquitously expressed serine/threonine kinase existing in two isoforms, namely GSK3α and GSK3β. Aside from the long-recognized role in insulin signal transduction and glycogen biosynthesis, GSK3β has been recently coined as a master control molecule in nuclear factor-κB activation and inflammatory kidney injury. Nevertheless, previous studies are less conclusive because they relied greatly on small molecule inhibitors, which lack selectivity and barely distinguish between the GSK3 isoforms. In addition, early embryonic lethality after global knockout of GSK3β precludes interrogation of the biological role of GSK3β in the adult kidney. To circumvent these issues, the Cre/loxP system was used to generate a conditional knockout mouse model in which the GSK3β gene was specifically deleted in kidney cortical tubules at postnatal mature stage. Kidney-specific ablation of GSK3β resulted in a phenotype no different from control littermates. Knockout mice (KO) were viable and exhibited normal development and normal kidney physiology in terms of kidney function, urine albumin excretion, and urine-concentrating ability. It is noteworthy that apart from normal glomerular and tubulointerstitial morphology, the kidneys from KO demonstrated more glycogen accumulation in the renal cortical tubules as assessed by both periodic acid-Schiff staining for light microscopy and direct biochemical assay, consistent with an elevated glycogen synthetic activity as evidenced by diminished inhibitory phosphorylation of glycogen synthase that occurred subsequent to GSK3β ablation. This finding was further validated by electron microscopic observations of increased deposition of glycogen particles in the renal tubules of KO, suggesting that GSK3α could not fully compensate for the loss of GSK3β in regulating glycogen metabolism in the kidney. Collectively, our study suggests that kidney-specific ablation of GSK3β barely affects kidney function and histology under normal circumstances. Extended examinations of these KO under diseased conditions are merited to understand the role of GSK3β in renal pathophysiology.

  14. Contribution of HIF-1alpha or HIF-2alpha to erythropoietin expression: in vivo evidence based on chromatin immunoprecipitation.

    PubMed

    Yeo, Eun-Jin; Cho, Young-Suk; Kim, Myung-Suk; Park, Jong-Wan

    2008-01-01

    Circulating erythropoietin (EPO) is mainly produced by the kidneys and mediates erythrogenesis in bone marrow and nonhematopoietic cell survival. EPO is also produced in other tissues where it functions as a paracrine. Moreover, the hypoxic induction of EPO is known to be mediated by HIF-1alpha and HIF-2alpha, but it remains obscure as to which of these two mediators mainly contributes to EPO expression. Thus, we designed in vivo experiments to evaluate the contributions made by HIF-1alpha and HIF-2alpha to EPO expression. In mice exposed to mild whole body hypoxia, HIF-1alpha and HIF-2alpha were both induced in all tissues examined. However, EPO mRNA was expressed in kidney and brain, but not in liver and lung. Likewise, chromatin immunoprecipitation (CHIP) analyses demonstrated that HIF-1alpha or HIF-2alpha binding to the EPO gene increased under hypoxic conditions only in kidney and brain. A comparison of CHIP data and EPO mRNA levels suggested that, during mild hypoxia, renal EPO transcription is induced equally by HIF-1alpha and HIF-2alpha, but that brain EPO is mainly induced during hypoxia by HIF-2alpha. Thus, HIF-1alpha and HIF-2alpha appear to contribute to EPO expression tissue specifically.

  15. Expression of Renal Aquaporins in Aristolochic Acid I and Aristolactam I-Induced Nephrotoxicity.

    PubMed

    Li, Ji; Zhang, Liang; Jiang, ZhenZhou; He, XiuQin; Zhang, LuYong; Xu, Ming

    2016-01-01

    Exposure to aristolochic acid (AA) can cause AA nephropathy, which is characterized by extensive proximal tubular damage and polyuria. To test the hypothesis that polyuria might be induced by altered regulation of aquaporins (AQPs) in the kidney, different doses of AA-I or aristolactam I (AL-I) were administered intraperitoneally to Sprague-Dawley rats, and urine, blood, and kidney samples were analyzed. In addition, AQP1, AQP2, AQP4 and AQP6 expression in the kidney were determined. The results showed dose-dependent proximal tubular damage and polyuria in the AA-I- and AL-I-treated groups, and the nephrotoxicity of AL-I was higher than that of AA-I. The expression of renal AQP1, AQP2 and AQP4, but not AQP6 were significantly inhibited by AA-I and AL-I. Comparison of the inhibition potencies of AA-I and AL-I showed that AL-I was a stronger inhibitor of AQP1 expression than AA-I, while there was no difference in their effects on AQP2 and AQP4. These results suggested that AA induced renal damage and polyuria were associated with a specific decrease in the expression of renal AQP1 AQP2 and AQP4, and AL-I showed higher nephrotoxicity than AA-I, which might be attributable to the differences in their inhibition of AQP1. © 2016 S. Karger AG, Basel.

  16. Metabolomics Reveals Signature of Mitochondrial Dysfunction in Diabetic Kidney Disease

    PubMed Central

    Karl, Bethany; Mathew, Anna V.; Gangoiti, Jon A.; Wassel, Christina L.; Saito, Rintaro; Pu, Minya; Sharma, Shoba; You, Young-Hyun; Wang, Lin; Diamond-Stanic, Maggie; Lindenmeyer, Maja T.; Forsblom, Carol; Wu, Wei; Ix, Joachim H.; Ideker, Trey; Kopp, Jeffrey B.; Nigam, Sanjay K.; Cohen, Clemens D.; Groop, Per-Henrik; Barshop, Bruce A.; Natarajan, Loki; Nyhan, William L.; Naviaux, Robert K.

    2013-01-01

    Diabetic kidney disease is the leading cause of ESRD, but few biomarkers of diabetic kidney disease are available. This study used gas chromatography-mass spectrometry to quantify 94 urine metabolites in screening and validation cohorts of patients with diabetes mellitus (DM) and CKD(DM+CKD), in patients with DM without CKD (DM–CKD), and in healthy controls. Compared with levels in healthy controls, 13 metabolites were significantly reduced in the DM+CKD cohorts (P≤0.001), and 12 of the 13 remained significant when compared with the DM–CKD cohort. Many of the differentially expressed metabolites were water-soluble organic anions. Notably, organic anion transporter-1 (OAT1) knockout mice expressed a similar pattern of reduced levels of urinary organic acids, and human kidney tissue from patients with diabetic nephropathy demonstrated lower gene expression of OAT1 and OAT3. Analysis of bioinformatics data indicated that 12 of the 13 differentially expressed metabolites are linked to mitochondrial metabolism and suggested global suppression of mitochondrial activity in diabetic kidney disease. Supporting this analysis, human diabetic kidney sections expressed less mitochondrial protein, urine exosomes from patients with diabetes and CKD had less mitochondrial DNA, and kidney tissues from patients with diabetic kidney disease had lower gene expression of PGC1α (a master regulator of mitochondrial biogenesis). We conclude that urine metabolomics is a reliable source for biomarkers of diabetic complications, and our data suggest that renal organic ion transport and mitochondrial function are dysregulated in diabetic kidney disease. PMID:23949796

  17. Generation of induced pluripotent stem cells derived from an autosomal dominant polycystic kidney disease patient with a p.Ser1457fs mutation in PKD1.

    PubMed

    Huang, Ching-Ying; Ho, Ming-Ching; Lee, Jia-Jung; Hwang, Daw-Yang; Ko, Hui-Wen; Cheng, Yu-Che; Hsu, Yu-Hung; Lu, Huai-En; Chen, Hung-Chun; Hsieh, Patrick C H

    2017-10-01

    Autosomal dominant polycystic kidney disease is one of the most prevalent forms of inherited cystic kidney disease, and can be characterized by kidney cyst formation and enlargement. Here we report the generation of a Type 1 ADPKD disease iPS cell line, IBMS-iPSC-012-12, which retains the conserved deletion of PKD1, normal karyotype and exhibits the properties of pluripotent stem cells such as ES-like morphology, expression of pluripotent markers and capacity to differentiate into all three germ layers. Our results show that we have successfully generated a patient-specific iPS cell line with a mutation in PKD1 for study of renal disease pathophysiology. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Expression of extracellular calcium (Ca2+o)-sensing receptor in human peripheral blood monocytes

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Olozak, I.; Chattopadhyay, N.; Butters, R. R.; Kifor, O.; Scadden, D. T.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    1998-01-01

    The calcium-sensing receptor (CaR) is a G protein-coupled receptor playing key roles in extracellular calcium ion (Ca2+o) homeostasis in parathyroid gland and kidney. Macrophage-like mononuclear cells appear at sites of osteoclastic bone resorption during bone turnover and may play a role in the "reversal" phase of skeletal remodeling that follows osteoclastic resorption and precedes osteoblastic bone formation. Bone resorption produces substantial local increases in Ca2+o that could provide a signal for such mononuclear cells present locally within the bone marrow microenvironment. Indeed, previous studies by other investigators have shown that raising Ca2+o either in vivo or in vitro stimulated the release of interleukin-6 (IL-6) from human peripheral blood monocytes, suggesting that these cells express a Ca2+o-sensing mechanism. In these earlier studies, however, the use of reverse transcription-polymerase chain reaction (RT-PCR) failed to detect transcripts for the CaR previously cloned from parathyroid and kidney in peripheral blood monocytes. Since we recently found that non-specific esterase-positive, putative monocytes isolated from murine bone marrow express the CaR, we reevaluated the expression of this receptor in human peripheral blood monocytes. Immunocytochemistry, flow cytometry, and Western blot analysis, performed using a polyclonal antiserum specific for the CaR, detected CaR protein in human monocytes. In addition, the use of RT-PCR with CaR-specific primers, followed by nucleotide sequencing of the amplified products, identified CaR transcripts in the cells. Therefore, taken together, our data show that human peripheral blood monocytes possess both CaR protein and mRNA very similar if not identical to those expressed in parathyroid and kidney that could mediate the previously described, direct effects of Ca2+o on these cells. Furthermore, since mononuclear cells isolated from bone marrow also express the CaR, the latter might play some role in the "reversal" phase of bone remodeling, sensing local changes in Ca2+o resulting from osteoclastic bone resorption and secreting osteotropic cytokines or performing other Ca2+o-regulated functions that contribute to the control of bone turnover.

  19. Susceptibility of human liver cells to porcine endogenous retrovirus.

    PubMed

    Lin, Xinzi; Qi, Lin; Li, Zhiguo; Chi, Hao; Lin, Wanjun; Wang, Yan; Jiang, Zesheng; Pan, Mingxin; Gao, Yi

    2013-12-01

    The risk of porcine endogenous retrovirus infection is a major barrier for pig-to-human xenotransplant. Porcine endogenous retrovirus, present in porcine cells, can infect many human and nonhuman primate cells in vitro, but there is no evidence available about in vitro infection of human liver cells. We investigated the susceptibility of different human liver cells to porcine endogenous retrovirus. The supernatant from a porcine kidney cell line was added to human liver cells, including a normal hepatocyte cell line (HL-7702 cells), primary hepatocytes (Phh cells), and a liver stellate cell line (Lx-2 cells), and to human embryonic kidney cells as a reference control. Expression of the porcine endogenous retrovirus antigen p15E in the human cells was evaluated with polymerase chain reaction, reverse transcription-polymerase chain reaction, and Western blot. The porcine endogenous retrovirus antigen p15E was not expressed in any human liver cells (HL-7702, Phh, or Lx-2 cells) that had been exposed to supernatants from porcine kidney cell lines. Porcine endogenous retrovirus-specific fragments were amplified in human kidney cells. Human liver cells tested were not susceptible to infection by porcine endogenous retrovirus. Therefore, not all human cells are susceptible to porcine endogenous retrovirus.

  20. Effects of TLR agonists and viral infection on cytokine and TLR expression in Atlantic salmon (Salmo salar).

    PubMed

    Arnemo, Marianne; Kavaliauskis, Arturas; Gjøen, Tor

    2014-10-01

    The development of efficient and cheap vaccines against several aquatic viruses is necessary for a sustainable fish farming industry. Toll-like receptor (TLR) ligands have already been used as good adjuvants in human vaccines. With more understanding of TLR expression, function, and ligand specificity in fish, more efficient adjuvants for fish viral vaccines can be developed. In this paper, we examine all known TLRs in Atlantic salmon (Salmo salar) and demonstrate that head kidney and spleen are the main organs expressing TLRs in salmon. We also show that adherent head kidney leucocytes from salmon are able to respond to many of the known agonists for human TLRs, and that viral infection can induce up-regulation of several TLRs. These findings substantiate these receptors' role in immune responses to pathogens in salmonids making their ligands attractive as vaccine adjuvant candidates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Two-Stage, In Silico Deconvolution of the Lymphocyte Compartment of the Peripheral Whole Blood Transcriptome in the Context of Acute Kidney Allograft Rejection

    PubMed Central

    Shannon, Casey P.; Balshaw, Robert; Ng, Raymond T.; Wilson-McManus, Janet E.; Keown, Paul; McMaster, Robert; McManus, Bruce M.; Landsberg, David; Isbel, Nicole M.; Knoll, Greg; Tebbutt, Scott J.

    2014-01-01

    Acute rejection is a major complication of solid organ transplantation that prevents the long-term assimilation of the allograft. Various populations of lymphocytes are principal mediators of this process, infiltrating graft tissues and driving cell-mediated cytotoxicity. Understanding the lymphocyte-specific biology associated with rejection is therefore critical. Measuring genome-wide changes in transcript abundance in peripheral whole blood cells can deliver a comprehensive view of the status of the immune system. The heterogeneous nature of the tissue significantly affects the sensitivity and interpretability of traditional analyses, however. Experimental separation of cell types is an obvious solution, but is often impractical and, more worrying, may affect expression, leading to spurious results. Statistical deconvolution of the cell type-specific signal is an attractive alternative, but existing approaches still present some challenges, particularly in a clinical research setting. Obtaining time-matched sample composition to biologically interesting, phenotypically homogeneous cell sub-populations is costly and adds significant complexity to study design. We used a two-stage, in silico deconvolution approach that first predicts sample composition to biologically meaningful and homogeneous leukocyte sub-populations, and then performs cell type-specific differential expression analysis in these same sub-populations, from peripheral whole blood expression data. We applied this approach to a peripheral whole blood expression study of kidney allograft rejection. The patterns of differential composition uncovered are consistent with previous studies carried out using flow cytometry and provide a relevant biological context when interpreting cell type-specific differential expression results. We identified cell type-specific differential expression in a variety of leukocyte sub-populations at the time of rejection. The tissue-specificity of these differentially expressed probe-set lists is consistent with the originating tissue and their functional enrichment consistent with allograft rejection. Finally, we demonstrate that the strategy described here can be used to derive useful hypotheses by validating a cell type-specific ratio in an independent cohort using the nanoString nCounter assay. PMID:24733377

  2. Expression of decoy receptor 3 in kidneys is associated with allograft survival after kidney transplant rejection.

    PubMed

    Weng, Shuo-Chun; Shu, Kuo-Hsiung; Wu, Ming-Ju; Wen, Mei-Chin; Hsieh, Shie-Liang; Chen, Nien-Jung; Tarng, Der-Cherng

    2015-09-03

    Decoy receptor 3 (DcR3) expression in kidneys has been shown to predict progression of chronic kidney disease. We prospectively investigated a cohort comprising 96 renal transplant recipients (RTRs) undergoing graft kidney biopsies. Computer-assisted quantitative immunohistochemical staining value of DcR3 in renal tubular epithelial cells (RTECs) was used to determine the predictive role of DcR3 in kidney disease progression. The primary end point was doubling of serum creatinine and/or graft failure. A multivariate Cox proportional hazards model was used to assess the risk of DcR3 expression in rejected kidney grafts toward the renal end point. In total, RTRs with kidney allograft rejection were evaluated and the median follow-up was 30.9 months. The greater expression of DcR3 immunoreactivity in RTECs was correlated with a higher rate of the histopathological concordance of acute T cell-mediated rejection. Compared with 65 non-progressors, 31 progressors had higher DcR3 expression (HDE) regardless of the traditional risk factors. Cox regression analysis showed HDE was significantly associated with the risk of renal end point with a hazard ratio of 3.19 (95% confidence interval, 1.40 to 7.27; P = 0.006) after adjusting for other variables. In repetitive biopsies, HDE in tissue showed rapid kidney disease progression due to persistent inflammation.

  3. Human Induced Pluripotent Stem Cell-Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation.

    PubMed

    Sharmin, Sazia; Taguchi, Atsuhiro; Kaku, Yusuke; Yoshimura, Yasuhiro; Ohmori, Tomoko; Sakuma, Tetsushi; Mukoyama, Masashi; Yamamoto, Takashi; Kurihara, Hidetake; Nishinakamura, Ryuichi

    2016-06-01

    Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator-like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in vitro These induced human podocytes exhibited apicobasal polarity, with nephrin proteins accumulated close to the basal domain, and possessed primary processes that were connected with slit diaphragm-like structures. Microarray analysis of sorted iPS cell-derived podocytes identified well conserved marker gene expression previously shown in mouse and human podocytes in vivo Furthermore, we developed a novel transplantation method using spacers that release the tension of host kidney capsules, thereby allowing the effective formation of glomeruli from human iPS cell-derived nephron progenitors. The human glomeruli were vascularized with the host mouse endothelial cells, and iPS cell-derived podocytes with numerous cell processes accumulated around the fenestrated endothelial cells. Therefore, the podocytes generated from iPS cells retain the podocyte-specific molecular and structural features, which will be useful for dissecting human glomerular development and diseases. Copyright © 2016 by the American Society of Nephrology.

  4. Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation

    PubMed Central

    Sharmin, Sazia; Taguchi, Atsuhiro; Kaku, Yusuke; Yoshimura, Yasuhiro; Ohmori, Tomoko; Sakuma, Tetsushi; Mukoyama, Masashi; Yamamoto, Takashi; Kurihara, Hidetake

    2016-01-01

    Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in vitro. These induced human podocytes exhibited apicobasal polarity, with nephrin proteins accumulated close to the basal domain, and possessed primary processes that were connected with slit diaphragm–like structures. Microarray analysis of sorted iPS cell–derived podocytes identified well conserved marker gene expression previously shown in mouse and human podocytes in vivo. Furthermore, we developed a novel transplantation method using spacers that release the tension of host kidney capsules, thereby allowing the effective formation of glomeruli from human iPS cell–derived nephron progenitors. The human glomeruli were vascularized with the host mouse endothelial cells, and iPS cell–derived podocytes with numerous cell processes accumulated around the fenestrated endothelial cells. Therefore, the podocytes generated from iPS cells retain the podocyte-specific molecular and structural features, which will be useful for dissecting human glomerular development and diseases. PMID:26586691

  5. RGMb protects against acute kidney injury by inhibiting tubular cell necroptosis via an MLKL-dependent mechanism.

    PubMed

    Liu, Wenjing; Chen, Binbin; Wang, Yang; Meng, Chenling; Huang, Huihui; Huang, Xiao-Ru; Qin, Jinzhong; Mulay, Shrikant R; Anders, Hans-Joachim; Qiu, Andong; Yang, Baoxue; Freeman, Gordon J; Lu, Hua Jenny; Lin, Herbert Y; Zheng, Zhi-Hua; Lan, Hui-Yao; Huang, Yu; Xia, Yin

    2018-02-13

    Tubular cell necrosis is a key histological feature of acute kidney injury (AKI). Necroptosis is a type of programed necrosis, which is executed by mixed lineage kinase domain-like protein (MLKL) upon its binding to the plasma membrane. Emerging evidence indicates that necroptosis plays a critical role in the development of AKI. However, it is unclear whether renal tubular cells undergo necroptosis in vivo and how the necroptotic pathway is regulated during AKI. Repulsive guidance molecule (RGM)-b is a member of the RGM family. Our previous study demonstrated that RGMb is highly expressed in kidney tubular epithelial cells, but its biological role in the kidney has not been well characterized. In the present study, we found that RGMb reduced membrane-associated MLKL levels and inhibited necroptosis in cultured cells. During ischemia/reperfusion injury (IRI) or oxalate nephropathy, MLKL was induced to express on the apical membrane of proximal tubular (PT) cells. Specific knockout of Rgmb in tubular cells (Rgmb cKO) increased MLKL expression at the apical membrane of PT cells and induced more tubular cell death and more severe renal dysfunction compared with wild-type mice. Treatment with the necroptosis inhibitor Necrostatin-1 or GSK'963 reduced MLKL expression on the apical membrane of PT cells and ameliorated renal function impairment after IRI in both wild-type and Rgmb cKO mice. Taken together, our results suggest that proximal tubular cell necroptosis plays an important role in AKI, and that RGMb protects against AKI by inhibiting MLKL membrane association and necroptosis in proximal tubular cells.

  6. Anxa4 Genes are Expressed in Distinct Organ Systems in Xenopus laevis and tropicalis But are Functionally Conserved

    PubMed Central

    Massé, Karine L; Collins, Robert J; Bhamra, Surinder; Seville, Rachel A

    2007-01-01

    Anxa4 belongs to the multigenic annexin family of proteins which are characterized by their ability to interact with membranes in a calcium-dependent manner. Defined as a marker for polarized epithelial cells, Anxa4 is believed to be involved in many cellular processes but its functions in vivo are still poorly understood. Previously, we cloned Xanx4 in Xenopus laevis (now referred to as anxa4a) and demonstrated its role during organogenesis of the pronephros, providing the first evidence of a specific function for this protein during the development of a vertebrate. Here, we describe the strict conservation of protein sequence and functional domains of anxa4 during vertebrate evolution. We also identify the paralog of anxa4a, anxa4b and show its specific temporal and spatial expression pattern is different from anxa4a. We show that anxa4 orthologs in X. laevis and tropicalis display expression domains in different organ systems. Whilst the anxa4a gene is mainly expressed in the kidney, Xt anxa4 is expressed in the liver. Finally, we demonstrate Xt anxa4 and anxa4a can display conserved function during kidney organogenesis, despite the fact that Xt anxa4 transcripts are not expressed in this domain. This study highlights the divergence of expression of homologous genes during Xenopus evolution and raises the potential problems of using X. tropicalis promoters in X. laevis. PMID:19279706

  7. Detection of prostate cancer-specific transcripts in extracellular vesicles isolated from post-DRE urine

    PubMed Central

    Pellegrini, Kathryn L.; Patil, Dattatraya; Douglas, Kristen J.S.; Lee, Grace; Wehrmeyer, Kathryn; Torlak, Mersiha; Clark, Jeremy; Cooper, Colin S.; Moreno, Carlos S.; Sanda, Martin G.

    2018-01-01

    Background The measurement of gene expression in post-digital rectal examination (DRE) urine specimens provides a non-invasive method to determine a patient’s risk of prostate cancer. Many currently available assays use whole urine or cell pellets for the analysis of prostate cancer-associated genes, although the use of extracellular vesicles (EVs) has also recently been of interest. We investigated the expression of prostate-, kidney-, and bladder-specific transcripts and known prostate cancer biomarkers in urine EVs. Methods Cell pellets and EVs were recovered from post-DRE urine specimens, with the total RNA yield and quality determined by Bioanalyzer. The levels of prostate, kidney, and bladder-associated transcripts in EVs were assessed by TaqMan qPCR and targeted sequencing. Results RNA was more consistently recovered from the urine EV specimens, with over 80% of the patients demonstrating higher RNA yields in the EV fraction as compared to urine cell pellets. The median EV RNA yield of 36.4 ng was significantly higher than the median urine cell pellet RNA yield of 4.8 ng. Analysis of the post-DRE urine EVs indicated that prostate-specific transcripts were more abundant than kidney- or bladder-specific transcripts. Additionally, patients with prostate cancer had significantly higher levels of the prostate cancer-associated genes PCA3 and ERG. Conclusions Post-DRE urine EVs are a viable source of prostate-derived RNAs for biomarker discovery and prostate cancer status can be distinguished from analysis of these specimens. Continued analysis of urine EVs offers the potential discovery of novel biomarkers for pre-biopsy prostate cancer detection. PMID:28419548

  8. Detection of prostate cancer-specific transcripts in extracellular vesicles isolated from post-DRE urine.

    PubMed

    Pellegrini, Kathryn L; Patil, Dattatraya; Douglas, Kristen J S; Lee, Grace; Wehrmeyer, Kathryn; Torlak, Mersiha; Clark, Jeremy; Cooper, Colin S; Moreno, Carlos S; Sanda, Martin G

    2017-06-01

    The measurement of gene expression in post-digital rectal examination (DRE) urine specimens provides a non-invasive method to determine a patient's risk of prostate cancer. Many currently available assays use whole urine or cell pellets for the analysis of prostate cancer-associated genes, although the use of extracellular vesicles (EVs) has also recently been of interest. We investigated the expression of prostate-, kidney-, and bladder-specific transcripts and known prostate cancer biomarkers in urine EVs. Cell pellets and EVs were recovered from post-DRE urine specimens, with the total RNA yield and quality determined by Bioanalyzer. The levels of prostate, kidney, and bladder-associated transcripts in EVs were assessed by TaqMan qPCR and targeted sequencing. RNA was more consistently recovered from the urine EV specimens, with over 80% of the patients demonstrating higher RNA yields in the EV fraction as compared to urine cell pellets. The median EV RNA yield of 36.4 ng was significantly higher than the median urine cell pellet RNA yield of 4.8 ng. Analysis of the post-DRE urine EVs indicated that prostate-specific transcripts were more abundant than kidney- or bladder-specific transcripts. Additionally, patients with prostate cancer had significantly higher levels of the prostate cancer-associated genes PCA3 and ERG. Post-DRE urine EVs are a viable source of prostate-derived RNAs for biomarker discovery and prostate cancer status can be distinguished from analysis of these specimens. Continued analysis of urine EVs offers the potential discovery of novel biomarkers for pre-biopsy prostate cancer detection. © 2017 Wiley Periodicals, Inc.

  9. CD74 in Kidney Disease

    PubMed Central

    Valiño-Rivas, Lara; Baeza-Bermejillo, Ciro; Gonzalez-Lafuente, Laura; Sanz, Ana Belen; Ortiz, Alberto; Sanchez-Niño, Maria Dolores

    2015-01-01

    CD74 (invariant MHC class II) regulates protein trafficking and is a receptor for macrophage migration inhibitory factor (MIF) and d-dopachrome tautomerase (d-DT/MIF-2). CD74 expression is increased in tubular cells and/or glomerular podocytes and parietal cells in human metabolic nephropathies, polycystic kidney disease, graft rejection and kidney cancer and in experimental diabetic nephropathy and glomerulonephritis. Stressors like abnormal metabolite (glucose, lyso-Gb3) levels and inflammatory cytokines increase kidney cell CD74. MIF activates CD74 to increase inflammatory cytokines in podocytes and tubular cells and proliferation in glomerular parietal epithelial cells and cyst cells. MIF overexpression promotes while MIF targeting protects from experimental glomerular injury and kidney cysts, and interference with MIF/CD74 signaling or CD74 deficiency protected from crescentic glomerulonephritis. However, CD74 may protect from interstitial kidney fibrosis. Furthermore, CD74 expression by stressed kidney cells raises questions about the kidney safety of cancer therapy strategies delivering lethal immunoconjugates to CD74-expressing cells. Thus, understanding CD74 biology in kidney cells is relevant for kidney therapeutics. PMID:26441987

  10. Reduced Utilization of Selenium by Naked Mole Rats Due to a Specific Defect in GPx1 Expression*

    PubMed Central

    Kasaikina, Marina V.; Lobanov, Alexei V.; Malinouski, Mikalai Y.; Lee, Byung Cheon; Seravalli, Javier; Fomenko, Dmitri E.; Turanov, Anton A.; Finney, Lydia; Vogt, Stefan; Park, Thomas J.; Miller, Richard A.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Naked mole rat (MR) Heterocephalus glaber is a rodent model of delayed aging because of its unusually long life span (>28 years). It is also not known to develop cancer. In the current work, tissue imaging by x-ray fluorescence microscopy and direct analyses of trace elements revealed low levels of selenium in the MR liver and kidney, whereas MR and mouse brains had similar selenium levels. This effect was not explained by uniform selenium deficiency because methionine sulfoxide reductase activities were similar in mice and MR. However, glutathione peroxidase activity was an order of magnitude lower in MR liver and kidney than in mouse tissues. In addition, metabolic labeling of MR cells with 75Se revealed a loss of the abundant glutathione peroxidase 1 (GPx1) band, whereas other selenoproteins were preserved. To characterize the MR selenoproteome, we sequenced its liver transcriptome. Gene reconstruction revealed standard selenoprotein sequences except for GPx1, which had an early stop codon, and SelP, which had low selenocysteine content. When expressed in HEK 293 cells, MR GPx1 was present in low levels, and its expression could be rescued neither by removing the early stop codon nor by replacing its SECIS element. In addition, GPx1 mRNA was present in lower levels in MR liver than in mouse liver. To determine if GPx1 deficiency could account for the reduced selenium content, we analyzed GPx1 knock-out mice and found reduced selenium levels in their livers and kidneys. Thus, MR is characterized by the reduced utilization of selenium due to a specific defect in GPx1 expression. PMID:21372135

  11. Differences in immunolocalization of Kim-1, RPA-1, and RPA-2 in kidneys of gentamicin-, cisplatin-, and valproic acid-treated rats: potential role of iNOS and nitrotyrosine.

    PubMed

    Zhang, Jun; Goering, Peter L; Espandiari, Parvaneh; Shaw, Martin; Bonventre, Joseph V; Vaidya, Vishal S; Brown, Ronald P; Keenan, Joe; Kilty, Cormac G; Sadrieh, Nakissa; Hanig, Joseph P

    2009-08-01

    The present study compared the immunolocalization of Kim-1, renal papillary antigen (RPA)-1, and RPA-2 with that of inducible nitric oxide synthase (iNOS) and nitrotyrosine in kidneys of gentamicin sulfate (Gen)- and cisplatin (Cis)-treated rats. The specificity of acute kidney injury (AKI) biomarkers, iNOS, and nitrotyrosine was evaluated by dosing rats with valproic acid (VPA). Sprague-Dawley (SD) rats were injected subcutaneously (sc) with 100 mg/kg/day of Gen for six or fourteen days; a single intraperitoneal (ip) dose of 1, 3, or 6 mg/kg of Cis; or 650 mg/kg/day of VPA (ip) for four days. In Gen-treated rats, Kim-1 was expressed in the epithelial cells, mainly in the S1/S2 segments but less so in the S3 segment, and RPA-1 was increased in the epithelial cells of collecting ducts (CD) in the cortex. Spatial expression of iNOS or nitrotyrosine with Kim-1 or RPA-1 was detected. In Cis-treated rats, Kim-1 was expressed only in the S3 segment cells, and RPA-1 and RPA-2 were increased in the epithelial cells of medullary CD or medullary loop of Henle (LH), respectively. Spatial expression of iNOS or nitrotyrosine with RPA-1 or RPA-2 was also identified. These findings suggest that peroxynitrite formation may be involved in the pathogenesis of Gen and Cis nephrotoxicity and that Kim-1, RPA-1, and RPA-2 have the potential to serve as site-specific biomarkers for Gen or Cis AKI.

  12. Overexpression of exogenous kidney-specific Ngal attenuates progressive cyst development and prolongs lifespan in a murine model of polycystic kidney disease.

    PubMed

    Wang, Ellian; Chiou, Yuan-Yow; Jeng, Wen-Yih; Lin, Hsiu-Kuan; Lin, Hsi-Hui; Chin, Hsian-Jean; Leo Wang, Chi-Kuang; Yu, Shang-Shiuan; Tsai, Shih-Chieh; Chiang, Chih-Ying; Cheng, Po-Hao; Lin, Hong-Jie; Jiang, Si-Tse; Chiu, Sou-Tyau; Hsieh-Li, Hsiu Mei

    2017-02-01

    Neutrophil gelatinase-associated lipocalin (Ngal) is a biomarker for acute and chronic renal injuries, including polycystic kidney disease (PKD). However, the effect of Ngal on PKD progression remains unexplored. To study this, we generated 3 strains of mice with different expression levels of Ngal within an established PKD model (Pkd1 L3/L3 ): Pkd1 L3/L3 (with endogenous Ngal), Pkd1 L3/L3 ; Ngal Tg/Tg (with endogenous and overexpression of exogenous kidney-specific Ngal) and Pkd1 L3/L3 ; Ngal -/- mice (with Ngal deficiency). Knockout of endogenous Ngal had no effect on phenotypes, cystic progression, or survival of the PKD mice. However, the transgenic mice had a significantly longer lifespan, smaller (but not fewer) renal cysts, and less interstitial fibrosis than the mice without or with endogenous Ngal. Western-blot analyses showed significant increases in Ngal and cleaved caspase-3 and decreases in α-smooth muscle actin, hypoxia-inducible factor 1-α, pro-caspase 3, proliferating cell nuclear antigen, Akt, mammalian target of rapamycin, and S6 Kinase in the transgenic mice as compared with the other 2 strains of PKD mice. Thus, overexpression of exogenous kidney-specific Ngal reduced cystic progression and prolonged the lifespan in PKD mice, was associated with reductions in interstitial fibrosis and proliferation, and augmented apoptosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  13. CMV induces HERV-K and HERV-W expression in kidney transplant recipients.

    PubMed

    Bergallo, Massimiliano; Galliano, Ilaria; Montanari, Paola; Gambarino, Stefano; Mareschi, Katia; Ferro, Francesca; Fagioli, Franca; Tovo, Pier-Angelo; Ravanini, Paolo

    2015-07-01

    Human endogenous retrovirus (HERVs) constitute approximately 8% of the human genome. Induction of HERV transcription is possible under certain circumstances, and may have a possible role in some pathological conditions. The aim of this study was to evaluate HERV-K and -W pol gene expression in kidney transplant recipients and to investigate the possible relationship between HERVs gene expression and CMV infection in these patients. Thirty-three samples of kidney transplant patients and twenty healthy blood donors were used to analyze, HERV-K and -W pol gene RNA expression by relative quantitative relative Real-Time PCR. We demonstrated that HERVs pol gene expression levels were higher in kidney transplant recipients than in healthy subjects. Moreover, HERV-K and -W pol gene expression was significantly higher in the group of kidney transplant recipients with high CMV viral load than in the groups with no or moderate CMV viral load. Our data suggest that CMV may facilitate in vivo HERV activation. Published by Elsevier B.V.

  14. Effects of Single and Combined Losartan and Tempol Treatments on Oxidative Stress, Kidney Structure and Function in Spontaneously Hypertensive Rats with Early Course of Proteinuric Nephropathy.

    PubMed

    Karanovic, Danijela; Grujic-Milanovic, Jelica; Miloradovic, Zoran; Ivanov, Milan; Jovovic, Djurdjica; Vajic, Una-Jovana; Zivotic, Maja; Markovic-Lipkovski, Jasmina; Mihailovic-Stanojevic, Nevena

    2016-01-01

    Oxidative stress has been widely implicated in both hypertension and chronic kidney disease (CKD). Hypertension is a major risk factor for CKD progression. In the present study we have investigated the effects of chronic single tempol (membrane-permeable radical scavenger) or losartan (angiotensin II type 1 receptor blocker) treatment, and their combination on systemic oxidative status (plasma thiobarbituric acid-reactive substances (pTBARS) production, plasma antioxidant capacity (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid, pABTS), erythrocyte antioxidant enzymes activities) and kidney oxidative stress (kTBARS, kABTS, kidney antioxidant enzymes activities), kidney function and structure in spontaneously hypertensive rats (SHR) with the early course of adriamycin-induced nephropathy. Adult SHR were divided into five groups. The control group received vehicle, while the other groups received adriamycin (2 mg/kg, i.v.) twice in a 21-day interval, followed by vehicle, losartan (L,10 mg/kg/day), tempol (T,100 mg/kg/day) or combined T+L treatment (by gavage) during a six-week period. Adriamycin significantly increased proteinuria, plasma lipid peroxidation, kidney protein oxidation, nitrite excretion, matrix metalloproteinase-1 (MMP-1) protein expression and nestin immunostaining in the kidney. Also, it decreased kidney antioxidant defense, kidney NADPH oxidase 4 (kNox4) protein expression and abolished anti-inflammatory response due to significant reduction of kidney NADPH oxidase 2 (kNox2) protein expression in SHR. All treatments reduced protein-to-creatinine ratio (marker of proteinuria), pTBARS production, kidney protein carbonylation, nitrite excretion, increased antioxidant capacity and restored kidney nestin expression similar to control. Both single treatments significantly improved systemic and kidney antioxidant defense, bioavailability of renal nitric oxide, reduced kMMP-1 protein expression and renal injury, thus retarded CKD progression. Losartan improved blood pressure, as well as tubular injury and restored anti-inflammatory defense by reverting kNox2 expression to the control level. Interestingly, tempol was more successful in reducing systemic oxidative stress, proteinuria, kMMP-1 and glomerulosclerosis. However, combined treatment failed to overcome the beneficial effects of single treatments in slowing down the progression of ADR-induced nephropathy in SHR.

  15. Protective Cytomegalovirus (CMV)-Specific T-Cell Immunity Is Frequent in Kidney Transplant Patients without Serum Anti-CMV Antibodies.

    PubMed

    Litjens, Nicolle H R; Huang, Ling; Dedeoglu, Burç; Meijers, Ruud W J; Kwekkeboom, Jaap; Betjes, Michiel G H

    2017-01-01

    The absence of anti-cytomegalovirus (CMV) immunoglobulin G (IgG) is used to classify pretransplant patients as naïve for CMV infection (CMV neg patients). This study assessed whether pretransplant CMV-specific T-cell immunity exists in CMV neg patients and whether it protects against CMV infection after kidney transplantation. The results show that CMV-specific CD137 + IFNγ + CD4 + and CD137 + IFNγ + CD8 + memory T cells were present in 46 and 39% of CMV neg patients ( n  = 28) although at much lower frequencies compared to CMV pos patients (median 0.01 versus 0.58% for CD4 + and 0.05 versus 0.64% for CD8 + T cells) with a less differentiated CD28-expressing phenotype. In line with these data, CMV-specific proliferative CD4 + and CD8 + T cells were observed in CMV neg patients, which significantly correlated with the frequency of CMV-specific T cells. CMV-specific IgG antibody-secreting cells (ASC) could be detected at low frequency in 36% of CMV neg patients (1 versus 45 ASC/10 5 cells in CMV pos patients). CMV neg patients with pretransplant CMV-specific CD137 + IFNγ + CD4 + T cells had a lower risk to develop CMV viremia after transplantation with a CMV pos donor kidney (relative risk: 0.43, P  = 0.03). In conclusion, a solitary CMV-specific T-cell response without detectable anti-CMV antibodies is frequent and clinically relevant as it is associated with protection to CMV infection following transplantation with a kidney from a CMV pos donor.

  16. Cardiac-specific expression and hypertrophic upregulation of the feline Na(+)-Ca(2+) exchanger gene H1-promoter in a transgenic mouse model.

    PubMed

    Müller, Joachim G; Isomatsu, Yukihisa; Koushik, Srinagesh V; O'Quinn, Michael; Xu, Lin; Kappler, Christiana S; Hapke, Elizabeth; Zile, Michael R; Conway, Simon J; Menick, Donald R

    2002-02-08

    The NCX1 gene contains three promoters (H1, K1, and Br1), and as a result of alternative promoter usage and alternative splicing, there are multiple tissue-specific variants of the Na(+)-Ca(2+) exchanger. We have proposed that for NCX1, the H1 promoter regulates expression in the heart, the K1 promoter regulates expression in the kidney, and the Br1 promoter regulates expression in the brain as well as low-level ubiquitous expression. Here, using a transgenic mouse model, we test the role of the DNA region including -1831 to 67 bp of intron 1, encompassing exon H1 of the feline NCX1 gene (NCX1H1). The NCX1H1 promoter was sufficient for driving the normal spatiotemporal pattern of NCX1 expression in cardiac development. The luciferase reporter gene was expressed in a heart-restricted pattern both in early embryos (embryonic days 8 to 14) and in later embryos (after embryonic day 14), when NCX1 is also expressed in other tissues. In the adult, no luciferase activity was detected in the kidney, liver, spleen, uterus, or skeletal muscle; minimal activity was detected in the brain; and very high levels of luciferase expression were detected in the heart. Transverse aortic constriction-operated mice showed significantly increased left ventricular mass after 7 days. In addition, there was a 2-fold upregulation of NCX1H1 promoter activity in the left ventricle in animals after 7 days of pressure overload compared with both control and sham-operated animals. This work demonstrates that the NCX1H1 promoter directs cardiac-specific expression of the exchanger in both the embryo and adult and is also sufficient for the upregulation of NCX1 in response to pressure overload.

  17. Influence of thyroid disorders on the kidney expression and plasma activity of aminopeptidase A.

    PubMed

    Wangensteen, R; Segarra, A B; Ramirez-Sanchez, M; Gasparo, M De; Dominguez, G; Banegas, I; Vargas, F; Vives, F; Prieto, I

    2015-04-01

    Thyroid disorders may affect blood pressure and renal function modifying factors of the plasmatic and kidney renin-angiotensin system such as aminopeptidase A (AP A) that metabolizes angiotensin II to angiotensin III. We investigated the expression of AP A in the kidney, as well as its enzymatic activity in the plasma of euthyroid, hyperthyroid, and hypothyroid adult male rats. Hyperthyroidism was induced by daily subcutaneous injections of tetraiodothyronine. Hypothyroid rats were obtained by administration of methimazole in drinking water. Expression of AP A was determined by Western blot analysis. Plasma AP A activity was measured fluorometrically using glutamyl-β-naphthylamide as substrate. While hyperthyroid rats exhibited lower levels of plasma AP A activity than controls, the kidney of hyperthyroid animals expressed significantly higher AP A than controls and hypothyroid animals. A discrepancy between the high expression of AP A in kidney of hyperthyroid rats and the low activity of AP A measured in plasma and kidney of hyperthyroid animals was found. The posttranslational influence of environmental biochemical factors may be in part responsible for that divergence.

  18. Uromodulin mRNA from Urinary Extracellular Vesicles Correlate to Kidney Function Decline in Type 2 Diabetes Mellitus.

    PubMed

    Yamamoto, Cindy M; Murakami, Taku; Oakes, Melanie L; Mitsuhashi, Masato; Kelly, Colleen; Henry, Robert R; Sharma, Kumar

    2018-05-18

    Extracellular vesicles (EVs) enclose mRNA derived from their cell of origin and are considered a source of potential biomarkers. We examined urinary EV mRNA from individuals with diabetic kidney disease (DKD), chronic kidney disease, type 2 diabetes (T2DM), and obese and healthy controls to determine if such biomarkers had the potential to classify kidney disease and predict patients at higher risk of renal function decline. A total of 242 participants enrolled in this study. Urinary EV mRNA from all subjects were isolated by a filter-based platform, and the expression of 8 target genes were determined by quantitative polymerase chain reaction (qPCR). Changes in estimated glomerular filtration rate (eGFR) in 161 T2DM patients were evaluated for 2 consecutive years and compared with EV RNA profiles at baseline. We observe that mild and severe DKD groups show a significant 3.2- and -4.4-fold increase in UMOD compared to healthy controls and expression increases linearly from healthy, diabetic, and DKD subjects. UMOD expression is significantly correlated to albumin creatinine ratio (ACR), eGFR, and HbA1c. Using linear discriminant analyses with mRNA from severe DKD and T2DM as training data, a multi-gene signature classified DKD and -non-DKD with a sensitivity of 93% and specificity of 73% with area under the receiver operating characteristic (ROC) curve (AUC) = 0.90. Although 6% of T2DM were determined to have a > 80% posterior probability of developing DKD based on this mRNA profile, eGFR changes observed within the 2-year follow-up did not reveal a decline in kidney function. Urinary EV UMOD mRNA levels are progressively elevated from T2DM to DKD groups and correlate with widely used eGFR and ACR diagnostic criteria. An EV mRNA signature could identify DKD with greater than 90% sensitivity and 70% specificity. © 2018 S. Karger AG, Basel.

  19. MiRNA-21 has effects to protect kidney injury induced by sepsis.

    PubMed

    Fu, Dian; Dong, Jie; Li, Ping; Tang, Chaopeng; Cheng, Wen; Xu, Zhenyu; Zhou, Wenquan; Ge, Jingping; Xia, Chen; Zhang, Zhengyu

    2017-10-01

    To investigate the miRNA-21 over-expression in the acute kidney injury induced by sepsis, we developed a sepsis induced in vitro model by lip polysaccharide (LPS) and in vovo model by cecal ligation and puncture (CLP) surgery. LPS or CLP surgery induced kidney cell apoptosis increasing. However, the kidney injury indexes of miRNA groups which were transfected with miRNA-21 were significantly suppressed. In further study, the relative proteins expressions were evaluated to explain the miRNA-21 mechanism to improve sepsis induced kidney cell apoptosis. The results were shown that miRNA-21 over-expression had effects to protect kidney cell apoptosis induced by sepsis via PTEN/PI3K/AKT signaling pathway. Copyright © 2017. Published by Elsevier Masson SAS.

  20. Urinary biomarkers in hexachloro-1:3-butadiene-induced acute kidney injury in the female Hanover Wistar rat; correlation of α-glutathione S-transferase, albumin and kidney injury molecule-1 with histopathology and gene expression.

    PubMed

    Swain, Aubrey; Turton, John; Scudamore, Cheryl L; Pereira, Ines; Viswanathan, Neeti; Smyth, Rosemary; Munday, Michael; McClure, Fiona; Gandhi, Mitul; Sondh, Surjit; York, Malcolm

    2011-05-01

    Hexachloro-1:3-butadiene (HCBD) causes kidney injury specific to the pars recta of the proximal tubule. In the present studies, injury to the nephron was characterized at 24 h following a single dose of HCBD, using a range of quantitative urinary measurements, renal histopathology and gene expression. Multiplexed renal biomarker measurements were performed using both the Meso Scale Discovery (MSD) and Rules Based Medicine platforms. In a second study, rats were treated with a single nephrotoxic dose of HCBD and the time course release of a range of traditional and newer urinary biomarkers was followed over a 25 day period. Urinary albumin (a marker of both proximal tubular function and glomerular integrity) and α-glutathione S-transferase (α-GST, a proximal tubular cell marker of cytoplasmic leakage) showed the largest fold change at 24 h (day 1) after dosing. Most other markers measured on either the MSD or RBM platforms peaked on day 1 or 2 post-dosing, whereas levels of kidney injury molecule-1 (KIM-1), a marker of tubular regeneration, peaked on day 3/4. Therefore, in rat proximal tubular nephrotoxicity, the measurement of urinary albumin, α-GST and KIM-1 is recommended as they potentially provide useful information about the function, degree of damage and repair of the proximal tubule. Gene expression data provided useful confirmatory information regarding exposure of the kidney and liver to HCBD, and the response of these tissues to HCBD in terms of metabolism, oxidative stress, inflammation, and regeneration and repair. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Oxygen-charged HTK-F6H8 emulsion reduces ischemia-reperfusion injury in kidneys from brain-dead pigs.

    PubMed

    Asif, Sana; Sedigh, Amir; Nordström, Johan; Brandhorst, Heide; Jorns, Carl; Lorant, Tomas; Larsson, Erik; Magnusson, Peetra U; Nowak, Greg; Theisinger, Sonja; Hoeger, Simone; Wennberg, Lars; Korsgren, Olle; Brandhorst, Daniel

    2012-12-01

    Prolonged cold ischemia is frequently associated with a greater risk of delayed graft function and enhanced graft failure. We hypothesized that media, combining a high oxygen-dissolving capacity with specific qualities of organ preservation solutions, would be more efficient in reducing immediate ischemia-reperfusion injury from organs stored long term compared with standard preservation media. Kidneys retrieved from brain-dead pigs were flushed using either cold histidine-tryptophan-ketoglutarate (HTK) or oxygen-precharged emulsion composed of 75% HTK and 25% perfluorohexyloctane. After 18 h of cold ischemia the kidneys were transplanted into allogeneic recipients and assessed for adenosine triphosphate content, morphology, and expression of genes related to hypoxia, environmental stress, inflammation, and apoptosis. Compared with HTK-flushed kidneys, organs preserved using oxygen-precharged HTK-perfluorohexyloctane emulsion had increased elevated adenosine triphosphate content and a significantly lower gene expression of hypoxia inducible factor-1α, vascular endothelial growth factor, interleukin-1α, tumor necrosis factor-α, interferon-α, JNK-1, p38, cytochrome-c, Bax, caspase-8, and caspase-3 at all time points assessed. In contrast, the mRNA expression of Bcl-2 was significantly increased. The present study has demonstrated that in brain-dead pigs the perfusion of kidneys with oxygen-precharged HTK-perfluorohexyloctane emulsion results in significantly reduced inflammation, hypoxic injury, and apoptosis and cellular integrity and energy content are well maintained. Histologic examination revealed less tubular, vascular, and glomerular changes in the emulsion-perfused tissue compared with the HTK-perfused counterparts. The concept of perfusing organs with oxygen-precharged emulsion based on organ preservation media represents an efficient alternative for improved organ preservation. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Specific Macrophage Subtypes Influence the Progression of Rhabdomyolysis-Induced Kidney Injury

    PubMed Central

    Belliere, Julie; Casemayou, Audrey; Ducasse, Laure; Zakaroff-Girard, Alexia; Martins, Frédéric; Iacovoni, Jason S.; Guilbeau-Frugier, Céline; Buffin-Meyer, Bénédicte; Pipy, Bernard; Chauveau, Dominique

    2015-01-01

    Rhabdomyolysis can be life threatening if complicated by AKI. Macrophage infiltration has been observed in rat kidneys after glycerol-induced rhabdomyolysis, but the role of macrophages in rhabdomyolysis-induced AKI remains unknown. Here, in a patient diagnosed with rhabdomyolysis, we detected substantial macrophage infiltration in the kidney. In a mouse model of rhabdomyolysis-induced AKI, diverse renal macrophage phenotypes were observed depending on the stage of the disease. Two days after rhabdomyolysis, F4/80lowCD11bhighLy6bhighCD206low kidney macrophages were dominant, whereas by day 8, F4/80highCD11b+Ly6blowCD206high cells became the most abundant. Single-cell gene expression analyses of FACS-sorted macrophages revealed that these subpopulations were heterogeneous and that individual cells simultaneously expressed both M1 and M2 markers. Liposomal clodronate-mediated macrophage depletion significantly reduced the early infiltration of F4/80lowCD11bhighLy6bhighCD206low macrophages. Furthermore, transcriptionally regulated targets potentially involved in disease progression, including fibronectin, collagen III, and chemoattractants that were identified via single-cell analysis, were verified as macrophage-dependent in situ. In vitro, myoglobin treatment induced proximal tubular cells to secrete chemoattractants and macrophages to express proinflammatory markers. At day 30, liposomal clodronate-mediated macrophage depletion reduced fibrosis and improved both kidney repair and mouse survival. Seven months after rhabdomyolysis, histologic lesions were still present but were substantially reduced with prior depletion of macrophages. These results suggest an important role for macrophages in rhabdomyolysis-induced AKI progression and advocate the utility of long-term follow-up for patients with this disease. PMID:25270069

  3. Specific macrophage subtypes influence the progression of rhabdomyolysis-induced kidney injury.

    PubMed

    Belliere, Julie; Casemayou, Audrey; Ducasse, Laure; Zakaroff-Girard, Alexia; Martins, Frédéric; Iacovoni, Jason S; Guilbeau-Frugier, Céline; Buffin-Meyer, Bénédicte; Pipy, Bernard; Chauveau, Dominique; Schanstra, Joost P; Bascands, Jean-Loup

    2015-06-01

    Rhabdomyolysis can be life threatening if complicated by AKI. Macrophage infiltration has been observed in rat kidneys after glycerol-induced rhabdomyolysis, but the role of macrophages in rhabdomyolysis-induced AKI remains unknown. Here, in a patient diagnosed with rhabdomyolysis, we detected substantial macrophage infiltration in the kidney. In a mouse model of rhabdomyolysis-induced AKI, diverse renal macrophage phenotypes were observed depending on the stage of the disease. Two days after rhabdomyolysis, F4/80(low)CD11b(high)Ly6b(high)CD206(low) kidney macrophages were dominant, whereas by day 8, F4/80(high)CD11b(+)Ly6b(low)CD206(high) cells became the most abundant. Single-cell gene expression analyses of FACS-sorted macrophages revealed that these subpopulations were heterogeneous and that individual cells simultaneously expressed both M1 and M2 markers. Liposomal clodronate-mediated macrophage depletion significantly reduced the early infiltration of F4/80(low)CD11b(high)Ly6b(high)CD206(low) macrophages. Furthermore, transcriptionally regulated targets potentially involved in disease progression, including fibronectin, collagen III, and chemoattractants that were identified via single-cell analysis, were verified as macrophage-dependent in situ. In vitro, myoglobin treatment induced proximal tubular cells to secrete chemoattractants and macrophages to express proinflammatory markers. At day 30, liposomal clodronate-mediated macrophage depletion reduced fibrosis and improved both kidney repair and mouse survival. Seven months after rhabdomyolysis, histologic lesions were still present but were substantially reduced with prior depletion of macrophages. These results suggest an important role for macrophages in rhabdomyolysis-induced AKI progression and advocate the utility of long-term follow-up for patients with this disease. Copyright © 2015 by the American Society of Nephrology.

  4. Serine proteases, inhibitors and receptors in renal fibrosis

    PubMed Central

    Eddy, Allison A.

    2011-01-01

    Summary Chronic kidney disease (CKD) is estimated to affect one in eight adults. Their kidney function progressively deteriorates as inflammatory and fibrotic processes damage nephrons. New therapies to prevent renal functional decline must build on basic research studies that identify critical cellular and molecular mediators. Plasminogen activator inhibitor-1 (PAI-1), a potent fibrosis-promoting glycoprotein, is one promising candidate. Absent from normal kidneys, PAI-1 is frequently expressed in injured kidneys. Studies in genetically engineered mice have demonstrated its potency as a pro-fibrotic molecule. Somewhat surprising, its ability to inhibit serine protease activity does not appear to be its primary pro-fibrotic effect in CKD. Both tissue-type plasminogen activator and plasminogen deficiency significantly reduced renal fibrosis severity after ureteral obstruction, while genetic urokinase (uPA) deficiency had no effect. PAI-1 expression is associated with enhanced recruitment of key cellular effectors of renal fibrosis – interstitial macrophages and myofibroblasts. The ability of PAI-1 to promote cell migration involves interactions with the low-density lipoprotein receptor-associate protein-1 and also complex interactions with uPA bound to its receptor (uPAR) and several leukocyte and matrix integrins that associate with uPAR as co-receptors. uPAR is expressed by several cell types in damaged kidneys, and studies in uPAR-deficient mice have shown that its serves a protective role. uPAR mediates additional anti-fibrotic effects - it interacts with specific co-receptors to degrade PAI-1 and extracellular collagens, and soluble uPAR has leukocyte chemoattractant properties. Molecular pathways activated by serine proteases and their inhibitor, PAI-1, are promising targets for future anti-fibrotic therapeutic agents. PMID:19350108

  5. Impact of S100A8 expression on kidney cancer progression and molecular docking studies for kidney cancer therapeutics.

    PubMed

    Mirza, Zeenat; Schulten, Hans-Juergen; Farsi, Hasan Ma; Al-Maghrabi, Jaudah A; Gari, Mamdooh A; Chaudhary, Adeel Ga; Abuzenadah, Adel M; Al-Qahtani, Mohammed H; Karim, Sajjad

    2014-04-01

    The proinflammatory protein S100A8, which is expressed in myeloid cells under physiological conditions, is strongly expressed in human cancer tissues. Its role in tumor cell differentiation and tumor progression is largely unclear and virtually unstudied in kidney cancer. In the present study, we investigated whether S100A8 could be a potential anticancer drug target and therapeutic biomarker for kidney cancer, and the underlying molecular mechanisms by exploiting its interaction profile with drugs. Microarray-based transcriptomics experiments using Affymetrix HuGene 1.0 ST arrays were applied to renal cell carcinoma specimens from Saudi patients for identification of significant genes associated with kidney cancer. In addition, we retrieved selected expression data from the National Center for Biotechnology Information Gene Expression Omnibus database for comparative analysis and confirmation of S100A8 expression. Ingenuity Pathway Analysis (IPA) was used to elucidate significant molecular networks and pathways associated with kidney cancer. The probable polar and non-polar interactions of possible S100A8 inhibitors (aspirin, celecoxib, dexamethasone and diclofenac) were examined by performing molecular docking and binding free energy calculations. Detailed analysis of bound structures and their binding free energies was carried out for S100A8, its known partner (S100A9), and S100A8-S100A9 complex (calprotectin). In our microarray experiments, we identified 1,335 significantly differentially expressed genes, including S100A8, in kidney cancer using a cut-off of p<0.05 and fold-change of 2. Functional analysis of kidney cancer-associated genes showed overexpression of genes involved in cell-cycle progression, DNA repair, cell death, tumor morphology and tissue development. Pathway analysis showed significant disruption of pathways of atherosclerosis signaling, liver X receptor/retinoid X receptor (LXR/RXR) activation, notch signaling, and interleukin-12 (IL-12) signaling. We identified S100A8 as a prospective biomarker for kidney cancer and in silico analysis showed that aspirin, celecoxib, dexamethasone and diclofenac binds to S100A8 and may inhibit downstream signaling in kidney cancer. The present study provides an initial overview of differentially expressed genes in kidney cancer of Saudi Arabian patients using whole-transcript, high-density expression arrays. Our analysis suggests distinct transcriptomic signatures, with significantly high levels of S100A8, and underlying molecular mechanisms contributing to kidney cancer progression. Our docking-based findings shed insight into S100A8 protein as an attractive anticancer target for therapeutic intervention in kidney cancer. To our knowledge, this is the first structure-based docking study for the selected protein targets using the chosen ligands.

  6. Downregulation of the Cl-/HCO3-Exchanger Pendrin in Kidneys of Mice with Cystic Fibrosis: Role in the Pathogenesis of Metabolic Alkalosis.

    PubMed

    Varasteh Kia, Mujan; Barone, Sharon; McDonough, Alicia A; Zahedi, Kamyar; Xu, Jie; Soleimani, Manoocher

    2018-01-01

    Patients with cystic fibrosis (CF) are prone to the development of metabolic alkalosis; however, the pathogenesis of this life threatening derangement remains unknown. We hypothesized that altered acid base transport machinery in the kidney collecting duct underlies the mechanism of impaired bicarbonate elimination in the CF kidney. Balance studies in metabolic cages were performed in WT and CFTR knockout (CF) mice with the intestinal rescue in response to bicarbonate loading or salt restriction, and the expression levels and cellular distribution of acid base and electrolyte transporters in the proximal tubule, collecting duct and small intestine were examined by western blots, northern blots and/or immunofluorescence labeling. Baseline parameters, including acid-base and systemic vascular volume status were comparable in WT and CF mice, as determined by blood gas, kidney renin expression and urine chloride excretion. Compared with WT animals, CF mice demonstrated a significantly higher serum HCO3- concentration (22.63 in WT vs. 26.83 mEq/l in CF mice; n=4, p=0.013) and serum pH (7.33 in WT vs. 7.42 in CF mice; n=4, p=0.00792) and exhibited impaired kidney HCO3- excretion (urine pH 8.10 in WT vs. 7.35 in CF mice; n=7, p=0.00990) following a 3-day oral bicarbonate load. When subjected to salt restriction, CF mice developed a significantly higher serum HCO3- concentration vs. WT animals (29.26 mEq/L in CF mice vs. 26.72 in WT; n=5, p=0.0291). Immunofluorescence labeling demonstrated a profound reduction in the apical expression of the Cl-/HCO3- exchanger pendrin in cortical collecting duct cells and western and northern blots indicated diminished plasma membrane abundance and mRNA expression of pendrin in CF kidneys. We propose that patients with cystic fibrosis are prone to the development of metabolic alkalosis secondary to the inactivation of the bicarbonate secreting transporter pendrin, specifically during volume depletion, which is a common occurrence in CF patients. © 2018 The Author(s). Published by S. Karger AG, Basel.

  7. Ozanimod (RPC1063), a selective S1PR1 and S1PR5 modulator, reduces chronic inflammation and alleviates kidney pathology in murine systemic lupus erythematosus.

    PubMed

    Taylor Meadows, Kristen R; Steinberg, Marcos W; Clemons, Bryan; Stokes, Matthew E; Opiteck, Gregory J; Peach, Robert; Scott, Fiona L

    2018-01-01

    Ozanimod (RPC1063) is a specific and potent small molecule modulator of the sphingosine 1-phosphate receptor 1 (S1PR1) and receptor 5 (S1PR5), which has shown therapeutic benefit in clinical trials of relapsing multiple sclerosis and ulcerative colitis. Ozanimod and its active metabolite, RP-101075, exhibit a similar specificity profile at the S1P receptor family in vitro and pharmacodynamic profile in vivo. The NZBWF1 mouse model was used in therapeutic dosing mode to assess the potential benefit of ozanimod and RP-101075 in an established animal model of systemic lupus erythematosus. Compared with vehicle-treated animals, ozanimod and RP-101075 reduced proteinuria over the duration of the study and serum blood urea nitrogen at termination. Additionally, ozanimod and RP-101075 reduced kidney disease in a dose-dependent manner, as measured by histological assessment of mesangial expansion, endo- and exo-capillary proliferation, interstitial infiltrates and fibrosis, glomerular deposits, and tubular atrophy. Further exploration into gene expression changes in the kidney demonstrate that RP-101075 also significantly reduced expression of fibrotic and immune-related genes in the kidneys. Of note, RP-101075 lowered the number of plasmacytoid dendritic cells, a major source of interferon alpha in lupus patients, and reduced all B and T cell subsets in the spleen. Given the efficacy demonstrated by ozanimod and its metabolite RP-101075 in the NZBWF1 preclinical animal model, ozanimod may warrant clinical evaluation as a potential treatment for systemic lupus erythematosus.

  8. Ozanimod (RPC1063), a selective S1PR1 and S1PR5 modulator, reduces chronic inflammation and alleviates kidney pathology in murine systemic lupus erythematosus

    PubMed Central

    Taylor Meadows, Kristen R.; Steinberg, Marcos W.; Clemons, Bryan; Stokes, Matthew E.; Opiteck, Gregory J.; Peach, Robert; Scott, Fiona L.

    2018-01-01

    Ozanimod (RPC1063) is a specific and potent small molecule modulator of the sphingosine 1-phosphate receptor 1 (S1PR1) and receptor 5 (S1PR5), which has shown therapeutic benefit in clinical trials of relapsing multiple sclerosis and ulcerative colitis. Ozanimod and its active metabolite, RP-101075, exhibit a similar specificity profile at the S1P receptor family in vitro and pharmacodynamic profile in vivo. The NZBWF1 mouse model was used in therapeutic dosing mode to assess the potential benefit of ozanimod and RP-101075 in an established animal model of systemic lupus erythematosus. Compared with vehicle-treated animals, ozanimod and RP-101075 reduced proteinuria over the duration of the study and serum blood urea nitrogen at termination. Additionally, ozanimod and RP-101075 reduced kidney disease in a dose-dependent manner, as measured by histological assessment of mesangial expansion, endo- and exo-capillary proliferation, interstitial infiltrates and fibrosis, glomerular deposits, and tubular atrophy. Further exploration into gene expression changes in the kidney demonstrate that RP-101075 also significantly reduced expression of fibrotic and immune-related genes in the kidneys. Of note, RP-101075 lowered the number of plasmacytoid dendritic cells, a major source of interferon alpha in lupus patients, and reduced all B and T cell subsets in the spleen. Given the efficacy demonstrated by ozanimod and its metabolite RP-101075 in the NZBWF1 preclinical animal model, ozanimod may warrant clinical evaluation as a potential treatment for systemic lupus erythematosus. PMID:29608575

  9. Mitochondrial Abnormality Facilitates Cyst Formation in Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Ishimoto, Yu; Yoshihara, Daisuke; Kugita, Masanori; Nagao, Shizuko; Shimizu, Akira; Takeda, Norihiko; Wake, Masaki; Honda, Kenjiro; Zhou, Jing

    2017-01-01

    ABSTRACT Autosomal dominant polycystic kidney disease (ADPKD) constitutes the most inherited kidney disease. Mutations in the PKD1 and PKD2 genes, encoding the polycystin 1 and polycystin 2 Ca2+ ion channels, respectively, result in tubular epithelial cell-derived renal cysts. Recent clinical studies demonstrate oxidative stress to be present early in ADPKD. Mitochondria comprise the primary reactive oxygen species source and also their main effector target; however, the pathophysiological role of mitochondria in ADPKD remains uncharacterized. To clarify this function, we examined the mitochondria of cyst-lining cells in ADPKD model mice (Ksp-Cre PKD1flox/flox) and rats (Han:SPRD Cy/+), demonstrating obvious tubular cell morphological abnormalities. Notably, the mitochondrial DNA copy number and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) expression were decreased in ADPKD model animal kidneys, with PGC-1α expression inversely correlated with oxidative stress levels. Consistent with these findings, human ADPKD cyst-derived cells with heterozygous and homozygous PKD1 mutation exhibited morphological and functional abnormalities, including increased mitochondrial superoxide. Furthermore, PGC-1α expression was suppressed by decreased intracellular Ca2+ levels via calcineurin, p38 mitogen-activated protein kinase (MAPK), and nitric oxide synthase deactivation. Moreover, the mitochondrion-specific antioxidant MitoQuinone (MitoQ) reduced intracellular superoxide and inhibited cyst epithelial cell proliferation through extracellular signal-related kinase/MAPK inactivation. Collectively, these results indicate that mitochondrial abnormalities facilitate cyst formation in ADPKD. PMID:28993480

  10. Febuxostat Prevents Renal Interstitial Fibrosis by the Activation of BMP-7 Signaling and Inhibition of USAG-1 Expression in Rats.

    PubMed

    Cao, Jing; Li, Yong; Peng, Yingxian; Zhang, Yaqian; Li, Huanhuan; Li, Ran; Xia, Anzhou

    2015-01-01

    Renal interstitial fibrosis (RIF) is a common pathology associated with end-stage renal diseases. The activation of bone morphogenetic protein-7 (BMP-7)-Smad1/5/8 pathway seems to alleviate RIF. Uterine sensitization-associated gene-1 (USAG-1), a kidney-specific BMPs antagonist, is associated with the development and prognosis of several renal diseases. Febuxostat is a xanthine oxidase inhibitor that can attenuate the renal dysfunction of patients. The purpose of this study was to investigate the effects of febuxostat on renal fibrosis and to clarify the mechanisms underlying these effects. Rats were randomly divided into 6 groups termed a sham-operated group, a unilateral ureteral obstruction (UUO) group, 3 doses of febuxostat groups (low, intermediate and high doses) and a sham group treated with high-dose febuxostat. After 14 days, renal function, relative kidney weight, accumulation of glycogen and collagens were examined by different methods. Expression of α-SMA, transforming growth factor-β1 (TGF-β1), BMP-7 and USAG-1 was detected by western blotting and RT-PCR, respectively. The phosphorylation level of Smad1/5/8 was also quantified by western blotting. The renal function was declined, and large amounts of glycogen and collagens were deposited in the kidneys of UUO rats compared with the rats in the sham group. Besides, expression of α-SMA and USAG-1 in these kidneys was elevated, and the TGF-β1 was also activated, while the BMP-7-Smad1/5/8 pathway was inhibited. Febuxostat reversed the changes stated earlier, exhibiting protective effects on RIF induced by UUO. Febuxostat was able to attenuate RIF caused by UUO, which was associated with the activation of BMP-7-Smad1/5/8 pathway and the inhibition of USAG-1 expression in the kidneys of UUO rats. © 2015 S. Karger AG, Basel.

  11. Atrazine affects kidney and adrenal hormones (AHs) related genes expressions of rare minnow (Gobiocypris rarus).

    PubMed

    Yang, Lihua; Zha, Jinmiao; Li, Wei; Li, Zhaoli; Wang, Zijian

    2010-05-05

    Atrazine, one of the most widely used herbicides, has been proved to interfere with sexual hormones. However few studies have considered the effects of atrazine on adrenal hormones (AH). In this study, rare minnow (Gobiocypris rarus) was exposed to 0, 3, 10, 33, 100 and 333microg/l atrazine for 28 days. The histopathology of kidney and gill was examined and the expressions of AHs-related genes including Na(+),K(+)-ATPase, glucocorticoid receptor (gr), heat shock protein 70 (hsp70), and heat shock protein 90 (hsp90) in kidney and gill were quantitatively determined. Histopathological observation revealed obvious lesions in gill including hyperplasia, necrosis in epithelium region, aneurysm and lamellar fusion at concentrations as low as 10microg/l. The observed lesions in kidney included extensive expansion in the lumen, degenerative and necrotic changes of the tubular epithelia, shrinkage of the glomerulus as well as increase of the Bowman's space at concentrations as low as 10microg/l. The expressions of Na(+),K(+)-ATPase, gr, hsp70 and hsp90 in the kidney of females were significantly decreased at all concentrations. For males, the expressions of hsp90 in the kidney of all treated groups were significantly down-regulated, while gr at all concentrations and hsp70 at 10, 33, 100microg/l were significantly up-regulated. However in the gill, the expressions of these genes were not significantly different from the control. These results indicated that exposure to atrazine caused impairments of kidney and gill of fish at environmental related concentrations. Histopathological lesions could partly attribute to the changes of the expressions of AHs-related genes in kidney. We concluded also that atrazine is a potential AHs-disruptor and AHs-related genes in kidney of fish could be used as sensitive molecular biomarkers.

  12. ET-1 deletion from endothelial cells protects the kidney during the extension phase of ischemia/reperfusion injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arfian, Nur; Emoto, Noriaki, E-mail: emoto@med.kobe-u.ac.jp; Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe

    Highlights: Black-Right-Pointing-Pointer Ischemia/reperfusion injury (IRI) induced increased endothelin-1 (ET-1) expression. Black-Right-Pointing-Pointer IRI was accompanied by tubular injury and remodeling of renal arteries. Black-Right-Pointing-Pointer IRI increased oxidative stress and inflammation. Black-Right-Pointing-Pointer Genetic suppression of ET-1 in endothelial cells attenuates IRI in the kidney. Black-Right-Pointing-Pointer The mechanisms include the inhibition of oxidative stress and inflammation. -- Abstract: Background: The prognosis of patients after acute kidney injury (AKI) is poor and treatment is limited. AKI is mainly caused by renal ischemia/reperfusion injury (IRI). During the extension phase of IRI, endothelial damage may participate in ischemia and inflammation. Endothelin-1 (ET-1) which is mostly secretedmore » by endothelial cells is an important actor of IRI, particularly through its strong vasoconstrictive properties. We aimed to analyze the specific role of ET-1 from the endothelial cells in AKI. Methods: We used mice lacking ET-1 in the vascular endothelial cells (VEETKO). We induced IRI in VEETKO mice and wild type controls by clamping both kidneys for 30 min. Sham operated mice were used as controls. Mice were sacrificed one day after IRI in order to investigate the extension phase of IRI. Kidney function was assessed based on serum creatinine concentration. Levels of expression of ET-1, its receptor ET{sub A}, protein kinase C, eNOS, E-Cadherin and inflammation markers were evaluated by real time PCR or western blot. Tubular injury was scored on periodic acid Schiff stained kidney preparations. Lumen and wall area of small intrarenal arteries were measured on kidney slices stained for alpha smooth muscle cell actin. Oxidative stress, macrophage infiltration and cell proliferation was evaluated on slices stained for 8-hydroxy-2 Prime -deoxyguanosine, F4/80 and PCNA, respectively. Results: IRI induced kidney failure and increased ET-1 and ET{sub A} receptor expression. This was accompanied by tubular injury, wall thickening and reduction of lumen area/wall area ratio of small renal arteries, increased oxidative stress and inflammation. These parameters were attenuated in VEETKO mice. Conclusion: Our results suggest that suppression of ET-1 from the endothelial cells attenuates IRI kidney injury. Blocking ET-1 effects may represent a therapeutic strategy in the management of AKI.« less

  13. Towards Personalized Treatment of Prostate Cancer: PSMA I&T, a Promising Prostate-Specific Membrane Antigen-Targeted Theranostic Agent

    PubMed Central

    Chatalic, Kristell L.S.; Heskamp, Sandra; Konijnenberg, Mark; Molkenboer-Kuenen, Janneke D.M.; Franssen, Gerben M.; Clahsen-van Groningen, Marian C.; Schottelius, Margret; Wester, Hans-Jürgen; van Weerden, Wytske M.; Boerman, Otto C.; de Jong, Marion

    2016-01-01

    Prostate-specific membrane antigen (PSMA) is a well-established target for nuclear imaging and therapy of prostate cancer (PCa). Radiolabeled small-molecule PSMA inhibitors are excellent candidates for PCa theranostics—they rapidly and efficiently localize in tumor lesions. However, high tracer uptake in kidneys and salivary glands are major concerns for therapeutic applications. Here, we present the preclinical application of PSMA I&T, a DOTAGA-chelated urea-based PSMA inhibitor, for SPECT/CT imaging and radionuclide therapy of PCa. 111In-PSMA I&T showed dose-dependent uptake in PSMA-expressing tumors, kidneys, spleen, adrenals, lungs and salivary glands. Coadministration of 2-(phosphonomethyl)pentane-1,5-dioic acid (2-PMPA) efficiently reduced PSMA-mediated renal uptake of 111In-PSMA I&T, with the highest tumor/kidney radioactivity ratios being obtained using a dose of 50 nmol 2-PMPA. SPECT/CT clearly visualized subcutaneous tumors and sub-millimeter intraperitoneal metastases; however, high renal and spleen uptake in control mice (no 2-PMPA) interfered with visualization of metastases in the vicinity of those organs. Coadministration of 2-PMPA increased the tumor-to-kidney absorbed dose ratio during 177Lu-PSMA I&T radionuclide therapy. Hence, at equivalent absorbed dose to the tumor (36 Gy), coinjection of 2-PMPA decreased absorbed dose to the kidneys from 30 Gy to 12 Gy. Mice injected with 177Lu-PSMA I&T only, showed signs of nephrotoxicity at 3 months after therapy, whereas mice injected with 177Lu-PSMA I&T + 2-PMPA did not. These data indicate that PSMA I&T is a promising theranostic tool for PCa. PSMA-specific uptake in kidneys can be successfully tackled using blocking agents such as 2-PMPA. PMID:27162555

  14. Tissue-specific expression of transgenic secreted ACE in vasculature can restore normal kidney functions, but not blood pressure, of Ace-/- mice.

    PubMed

    Chattopadhyay, Saurabh; Kessler, Sean P; Colucci, Juliana Almada; Yamashita, Michifumi; Senanayake, Preenie deS; Sen, Ganes C

    2014-01-01

    Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE.

  15. Tissue-Specific Expression of Transgenic Secreted ACE in Vasculature Can Restore Normal Kidney Functions, but Not Blood Pressure, of Ace-/- Mice

    PubMed Central

    Chattopadhyay, Saurabh; Kessler, Sean P.; Colucci, Juliana Almada; Yamashita, Michifumi; Senanayake, Preenie deS; Sen, Ganes C.

    2014-01-01

    Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE. PMID:24475296

  16. Modulation of Atlantic salmon miRNome response to sea louse infestation.

    PubMed

    Valenzuela-Muñoz, Valentina; Novoa, Beatriz; Figueras, Antonio; Gallardo-Escárate, Cristian

    2017-11-01

    MicroRNAs are non-coding RNA that plays a crucial role in post-transcriptional regulation and immune system regulation. On other hand, sea lice are prevalent parasites that affect salmon farming, generating different degrees of immune suppression depending on the salmon and sea louse species. Caligus rogercresseyi for example, which affects the salmon industry in Chile, decreases Th1 response, macrophage activation, TLR-mediated response and iron regulation in infected fish. In this study, we explore Atlantic salmon miRNome during infestation by C. rogercresseyi. Using small RNA sequencing, we annotated 1718 miRNAs for skin and head kidney from infected Atlantic salmon. The most abundant families identified were mir-10, mir-21, mir-30, mir-181 and let7. Significant differences were found between tissue, with 1404 annotated miRNA in head kidney and 529 in skin. Differential analysis of transcript expression indicated that at an early stage of infestation miRNA expression was higher in head kidney than in skin tissue, revealing tissue-specific expression patterns. In parallel, miRNA target prediction using 3'UTRs from highly regulated immune-related genes and iron metabolism showed that mir-140-4 and mir-181a-2-5 modulate the expression of TLR22 and Aminolevulinic acid synthase, respectively. This study contributes knowledge about the immune response of Atlantic salmon during infestation with sea lice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys.

    PubMed

    Petersen, Björn; Ramackers, Wolf; Lucas-Hahn, Andrea; Lemme, Erika; Hassel, Petra; Queisser, Anna-Lisa; Herrmann, Doris; Barg-Kues, Brigitte; Carnwath, Joseph W; Klose, Johannes; Tiede, Andreas; Friedrich, Lars; Baars, Wiebke; Schwinzer, Reinhard; Winkler, Michael; Niemann, Heiner

    2011-01-01

    The major immunological hurdle to successful porcine-to-human xenotransplantation is the acute vascular rejection (AVR), characterized by endothelial cell (EC) activation and perturbation of coagulation. Heme oxygenase-1 (HO-1) and its derivatives have anti-apoptotic, anti-inflammatory effects and protect against reactive oxygen species, rendering HO-1 a promising molecule to control AVR. Here, we report the production and characterization of pigs transgenic for human heme oxygenase-1 (hHO-1) and demonstrate significant protection in porcine kidneys against xenograft rejection in ex vivo perfusion with human blood and transgenic porcine aortic endothelial cells (PAEC) in a TNF-α-mediated apoptosis assay. Transgenic and non-transgenic PAEC were tested in a TNF-α-mediated apoptosis assay. Expression of adhesion molecules (ICAM-1, VCAM-1, and E-selectin) was measured by real-time PCR. hHO-1 transgenic porcine kidneys were perfused with pooled and diluted human AB blood in an ex vivo perfusion circuit. MHC class-II up-regulation after induction with IFN-γ was compared between wild-type and hHO-1 transgenic PAEC. Cloned hHO-1 transgenic pigs expressed hHO-1 in heart, kidney, liver, and in cultured ECs and fibroblasts. hHO-1 transgenic PAEC were protected against TNF-α-mediated apoptosis. Real-time PCR revealed reduced expression of adhesion molecules like ICAM-1, VCAM-1, and E-selectin. These effects could be abrogated by the incubation of transgenic PAECs with the specific HO-1 inhibitor zinc protoporphorine IX (Zn(II)PPIX, 20 μm). IFN-γ induced up-regulation of MHC class-II molecules was significantly reduced in PAECs from hHO-1 transgenic pigs. hHO-1 transgenic porcine kidneys could successfully be perfused with diluted human AB-pooled blood for a maximum of 240 min (with and without C1 inh), while in wild-type kidneys, blood flow ceased after ∼60 min. Elevated levels of d-Dimer and TAT were detected, but no significant consumption of fibrinogen and antithrombin was determined. Microthrombi could not be detected histologically. These results are encouraging and warrant further studies on the biological function of heme oxygenase-I expression in hHO-1 transgenic pigs in the context of xenotransplantation. © 2011 John Wiley & Sons A/S.

  18. Regulated necrosis-related molecule mRNA expression in humans and mice and in murine acute tissue injury and systemic autoimmunity leading to progressive organ damage, and progressive fibrosis.

    PubMed

    Honarpisheh, Mohsen; Desai, Jyaysi; Marschner, Julian A; Weidenbusch, Marc; Lech, Maciej; Vielhauer, Volker; Anders, Hans-Joachim; Mulay, Shrikant R

    2016-12-01

    The species-specific, as well as organ-specific expression of regulated necrosis (RN)-related molecules, is not known. We determined the expression levels of tumour necrosis factor receptor-1 (TNFR1), receptor activated protein kinase (RIPK)1, RIPK3, mixed lineage kinase domain-like (MLKL), CASP8, Fas-associated protein with death domain (FADD), cellular inhibitor of apoptosis protein (CIAP)1, CIAP2, glutathione peroxidase-4 (GPX4), cyclophilin D (CYPD), CASP1, NLRP3 and poly(ADP-ribose) polymerase-1 (PARP1) in human and mouse solid organs. We observed significant differences in expression of these molecules between human and mice. In addition, we characterized their expression profiles in acute as well as persistent tissue injury and chronic tissue remodelling using acute and chronic kidney injury models. We observed that the degree and pattern of induction of RN-related molecules were highly dependent on the trigger and disease pathogenesis. Furthermore, we studied their expression patterns in mice with lupus-like systemic autoimmunity, which revealed that the expression of MLKL, GPX4 and PARP1 significantly increased in the spleen along disease progression and CASP1, RIPK1, RIPK3 and CYPD were higher at the earlier stages but were significantly decreased in the later stages. In contrast, in the kidney, the expression of genes involved in pyroptosis, e.g. NLRP3 and CASP1 were significantly increased and TNFR1, RIPK1, RIPK3, CIAP1/2 and GPX4 were significantly decreased along the progression of lupus nephritis (LN). Thus, the organ- and species-specific expression of RN-related molecules should be considered during designing experiments, interpreting the results as well as extrapolating the conclusions from one species or organ to another species or organ respectively. © 2016 The Author(s).

  19. Regulated necrosis-related molecule mRNA expression in humans and mice and in murine acute tissue injury and systemic autoimmunity leading to progressive organ damage, and progressive fibrosis

    PubMed Central

    Honarpisheh, Mohsen; Desai, Jyaysi; Marschner, Julian A.; Weidenbusch, Marc; Lech, Maciej; Vielhauer, Volker; Anders, Hans-Joachim; Mulay, Shrikant R.

    2016-01-01

    The species-specific, as well as organ-specific expression of regulated necrosis (RN)-related molecules, is not known. We determined the expression levels of tumour necrosis factor receptor-1 (TNFR1), receptor activated protein kinase (RIPK)1, RIPK3, mixed lineage kinase domain-like (MLKL), CASP8, Fas-associated protein with death domain (FADD), cellular inhibitor of apoptosis protein (CIAP)1, CIAP2, glutathione peroxidase-4 (GPX4), cyclophilin D (CYPD), CASP1, NLRP3 and poly(ADP-ribose) polymerase-1 (PARP1) in human and mouse solid organs. We observed significant differences in expression of these molecules between human and mice. In addition, we characterized their expression profiles in acute as well as persistent tissue injury and chronic tissue remodelling using acute and chronic kidney injury models. We observed that the degree and pattern of induction of RN-related molecules were highly dependent on the trigger and disease pathogenesis. Furthermore, we studied their expression patterns in mice with lupus-like systemic autoimmunity, which revealed that the expression of MLKL, GPX4 and PARP1 significantly increased in the spleen along disease progression and CASP1, RIPK1, RIPK3 and CYPD were higher at the earlier stages but were significantly decreased in the later stages. In contrast, in the kidney, the expression of genes involved in pyroptosis, e.g. NLRP3 and CASP1 were significantly increased and TNFR1, RIPK1, RIPK3, CIAP1/2 and GPX4 were significantly decreased along the progression of lupus nephritis (LN). Thus, the organ- and species-specific expression of RN-related molecules should be considered during designing experiments, interpreting the results as well as extrapolating the conclusions from one species or organ to another species or organ respectively. PMID:27811014

  20. Ameliorative effect of vitamin E on hepatic oxidative stress and hypoimmunity induced by high-fat diet in turbot (Scophthalmus maximus).

    PubMed

    Jia, Yudong; Jing, Qiqi; Niu, Huaxin; Huang, Bin

    2017-08-01

    This study was conducted to examine the effects of vitamin E on growth performance, oxidative stress and non-specific immunity of turbot (Scophthalmus maximus) fed with high-fat diet. Results showed that high-fat diet significantly increased hepatosomatic index, viscerosomatic index, hepatic malondialdehyde level and decreased catalase and superoxide dismutase activities, whereas final weight, specific growth rate and survival rate remained unchanged. Meanwhile, nitro blue tetrazolium positive leucocytes of head kidney, respiratory burst activity in head-kidney macrophage, phagocytic index and serum lysozyme activity were significantly reduced after feeding with high-fat diet. Furthermore, fish fed with high-fat diet promoted higher expression of heat shock protein (hsp70, hsp90), and inhibited expression of complement component 3 (c3) in the liver and tumor necrosis factor-α (tnf-α), interleukine 1β (il-1β), toll like receptor 22 (tlr-22) in the spleen and head-kidney, respectively. However, simultaneous supplementation with 480 mg kg -1 vitamin E protected turbot against high-fat diet-induced hepatic oxidative stress, hypoimmunity through attenuating lipid peroxidation, renewing antioxidant enzymes activities and nonspecific immune responses, and modulating the expression of stress protein (hsp70, hsp90) and immune-related genes (c3, tnf-α, il-1β, tlr-22). In conclusion, the obtained results indicate the vitamin E as a wildly used functional feed additive contributes potentially to alleviate high-fat diet-induced hepatic oxidative stress and hypoimmunity, maintain the health, and improve the broodstock management for turbot. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Downregulation of NCC and NKCC2 cotransporters by kidney-specific WNK1 revealed by gene disruption and transgenic mouse models.

    PubMed

    Liu, Zhen; Xie, Jian; Wu, Tao; Truong, Thao; Auchus, Richard J; Huang, Chou-Long

    2011-03-01

    WNK1 (with-no-lysine[K]-1) is a protein kinase of which mutations cause a familial hypertension and hyperkalemia syndrome known as pseudohypoaldosteronism type 2 (PHA2). Kidney-specific (KS) WNK1 is an alternatively spliced form of WNK1 kinase missing most of the kinase domain. KS-WNK1 downregulates the Na(+)-Cl(-) cotransporter NCC by antagonizing the effect of full-length WNK1 when expressed in Xenopus oocytes. The physiological role of KS-WNK1 in the regulation of NCC and potentially other Na(+) transporters in vivo is unknown. Here, we report that mice overexpressing KS-WNK1 in the kidney exhibited renal Na(+) wasting, elevated plasma levels of angiotensin II and aldosterone yet lower blood pressure relative to wild-type littermates. Immunofluorescent staining revealed reduced surface expression of total and phosphorylated NCC and the Na(+)-K(+)-2Cl(-) cotransporter NKCC2 in the distal convoluted tubule and the thick ascending limb of Henle's loop, respectively. Conversely, mice with targeted deletion of exon 4A (the first exon for KS-WNK1) exhibited Na(+) retention, elevated blood pressure on a high-Na(+) diet and increased surface expression of total and phosphorylated NCC and NKCC2 in respective nephron segments. Thus, KS-WNK1 is a negative regulator of NCC and NKCC2 in vivo and plays an important role in the control of Na(+) homeostasis and blood pressure. These results have important implications to the pathogenesis of PHA2 with WNK1 mutations.

  2. Kidney fibroblast growth factor 23 does not contribute to elevation of its circulating levels in uremia.

    PubMed

    Mace, Maria L; Gravesen, Eva; Nordholm, Anders; Hofman-Bang, Jacob; Secher, Thomas; Olgaard, Klaus; Lewin, Ewa

    2017-07-01

    Fibroblast growth factor 23 (FGF23) secreted by osteocytes is a circulating factor essential for phosphate homeostasis. High plasma FGF23 levels are associated with cardiovascular complications and mortality. Increases of plasma FGF23 in uremia antedate high levels of phosphate, suggesting a disrupted feedback regulatory loop or an extra-skeletal source of this phosphatonin. Since induction of FGF23 expression in injured organs has been reported we decided to examine the regulation of FGF23 gene and protein expressions in the kidney and whether kidney-derived FGF23 contributes to the high plasma levels of FGF23 in uremia. FGF23 mRNA was not detected in normal kidneys, but was clearly demonstrated in injured kidneys, already after four hours in obstructive nephropathy and at 8 weeks in the remnant kidney of 5/6 nephrectomized rats. No renal extraction was found in uremic rats in contrast to normal rats. Removal of the remnant kidney had no effect on plasma FGF23 levels. Well-known regulators of FGF23 expression in bone, such as parathyroid hormone, calcitriol, and inhibition of the FGF receptor by PD173074, had no impact on kidney expression of FGF23. Thus, the only direct contribution of the injured kidney to circulating FGF23 levels in uremia appears to be reduced renal extraction of bone-derived FGF23. Kidney-derived FGF23 does not generate high plasma FGF23 levels in uremia and is regulated differently than the corresponding regulation of FGF23 gene expression in bone. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  3. ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mingli; Yin, Huancai; Bai, Pengli

    This paper aimed to investigate the role of adenosine triphosphate-binding cassette (ABC) transporters on the efflux and the toxicity of nanoparticles in liver and kidney cells. In this study, we synthesized CdTe quantum dots (QDs) that were monodispersed and emitted green fluorescence (maximum peak at 530 nm). Such QDs tended to accumulate in human hepatocellular carcinoma cells (HepG2), human kidney cells 2 (HK-2), and Madin-Darby canine kidney (MDCK) cells, and cause significant toxicity in all the three cell lines. Using specific inhibitors and inducers of P-glycoprotein (Pgp) and multidrug resistance associated proteins (Mrps), the cellular accumulation and subsequent toxicity ofmore » QDs in HepG2 and HK-2 cells were significantly affected, while only slight changes appeared in MDCK cells, corresponding well with the functional expressions of ABC transporters in cells. Moreover, treatment of QDs caused concentration- and time- dependent induction of ABC transporters in HepG2 and HK-2 cells, but such phenomenon was barely found in MDCK cells. Furthermore, the effects of CdTe QDs on ABC transporters were found to be greater than those of CdCl{sub 2} at equivalent concentrations of cadmium, indicating that the effects of QDs should be a combination of free Cd{sup 2+} and specific properties of QDs. Overall, these results indicated a strong dependence between the functional expressions of ABC transporters and the efflux of QDs, which could be an important reason for the modulation of QDs toxicity by ABC transporters. - Highlights: • ABC transporters contributed actively to the cellular efflux of CdTe quantum dots. • ABC transporters affected the cellular toxicity of CdTe quantum dots. • Treatment of CdTe quantum dots induced the gene expression of ABC transporters. • Free Cd{sup 2+} should be partially involved in the effects of QDs on ABC transporters. • Cellular efflux of quantum dots could be an important modulator for its toxicity.« less

  4. Megalin/LRP2 Expression Is Induced by Peroxisome Proliferator-Activated Receptor -Alpha and -Gamma: Implications for PPARs' Roles in Renal Function

    PubMed Central

    Cabezas, Felipe; Lagos, Jonathan; Céspedes, Carlos; Vio, Carlos P.; Bronfman, Miguel; Marzolo, María-Paz

    2011-01-01

    Background Megalin is a large endocytic receptor with relevant functions during development and adult life. It is expressed at the apical surface of several epithelial cell types, including proximal tubule cells (PTCs) in the kidney, where it internalizes apolipoproteins, vitamins and hormones with their corresponding carrier proteins and signaling molecules. Despite the important physiological roles of megalin little is known about the regulation of its expression. By analyzing the human megalin promoter, we found three response elements for the peroxisomal proliferator-activated receptor (PPAR). The objective of this study was to test whether megalin expression is regulated by the PPARs. Methodology/Principal Findings Treatment of epithelial cell lines with PPARα or PPARγ ligands increased megalin mRNA and protein expression. The stimulation of megalin mRNA expression was blocked by the addition of specific PPARα or PPARγ antagonists. Furthermore, PPAR bound to three PPAR response elements located in the megalin promoter, as shown by EMSA, and PPARα and its agonist activated a luciferase construct containing a portion of the megalin promoter and the first response element. Accordingly, the activation of PPARα and PPARγ enhanced megalin expression in mouse kidney. As previously observed, high concentrations of bovine serum albumin (BSA) decreased megalin in PTCs in vitro; however, PTCs pretreated with PPARα and PPARγ agonists avoided this BSA-mediated reduction of megalin expression. Finally, we found that megalin expression was significantly inhibited in the PTCs of rats that were injected with BSA to induce tubulointerstitial damage and proteinuria. Treatment of these rats with PPARγ agonists counteracted the reduction in megalin expression and the proteinuria induced by BSA. Conclusions PPARα/γ and their agonists positively control megalin expression. This regulation could have an important impact on several megalin-mediated physiological processes and on pathophysiologies such as chronic kidney disease associated with diabetes and hypertension, in which megalin expression is impaired. PMID:21311715

  5. Rheb/mTORC1 Signaling Promotes Kidney Fibroblast Activation and Fibrosis

    PubMed Central

    Jiang, Lei; Xu, Lingling; Mao, Junhua; Li, Jianzhong; Fang, Li; Zhou, Yang; Liu, Wei; He, Weichun; Zhao, Allan Zijian

    2013-01-01

    Ras homolog enriched in brain (Rheb) is a small GTPase that regulates cell growth, differentiation, and survival by upregulating mammalian target of rapamycin complex 1 (mTORC1) signaling. The role of Rheb/mTORC1 signaling in the activation of kidney fibroblasts and the development of kidney fibrosis remains largely unknown. In this study, we found that Rheb/mTORC1 signaling was activated in interstitial myofibroblasts from fibrotic kidneys. Treatment of rat kidney interstitial fibroblasts (NRK-49F cell line) with TGFβ1 also activated Rheb/mTORC1 signaling. Blocking Rheb/mTORC1 signaling with rapamycin or Rheb small interfering RNA abolished TGFβ1-induced fibroblast activation. In a transgenic mouse, ectopic expression of Rheb activated kidney fibroblasts. These Rheb transgenic mice exhibited increased activation of mTORC1 signaling in both kidney tubular and interstitial cells as well as progressive interstitial renal fibrosis; rapamycin inhibited these effects. Similarly, mice with fibroblast-specific deletion of Tsc1, a negative regulator of Rheb, exhibited activated mTORC1 signaling in kidney interstitial fibroblasts and increased renal fibrosis, both of which rapamycin abolished. Taken together, these results suggest that Rheb/mTORC1 signaling promotes the activation of kidney fibroblasts and contributes to the development of interstitial fibrosis, possibly providing a therapeutic target for progressive renal disease. PMID:23661807

  6. TRPP2-dependent Ca2+ signaling in dorso-lateral mesoderm is required for kidney field establishment in Xenopus.

    PubMed

    Futel, Mélinée; Leclerc, Catherine; Le Bouffant, Ronan; Buisson, Isabelle; Néant, Isabelle; Umbhauer, Muriel; Moreau, Marc; Riou, Jean-François

    2015-03-01

    In Xenopus laevis embryos, kidney field specification is dependent on retinoic acid (RA) and coincides with a dramatic increase of Ca(2+) transients, but the role of Ca(2+) signaling in the kidney field is unknown. Here, we identify TRPP2, a member of the transient receptor potential (TRP) superfamily of channel proteins encoded by the pkd2 gene, as a central component of Ca(2+) signaling in the kidney field. TRPP2 is strongly expressed at the plasma membrane where it might regulate extracellular Ca(2+) entry. Knockdown of pkd2 in the kidney field results in the downregulation of pax8, but not of other kidney field genes (lhx1, osr1 and osr2). We further show that inhibition of Ca(2+) signaling with an inducible Ca(2+) chelator also causes downregulation of pax8, and that pkd2 knockdown results in a severe inhibition of Ca(2+) transients in kidney field explants. Finally, we show that disruption of RA results both in an inhibition of intracellular Ca(2+) signaling and of TRPP2 incorporation into the plasma membrane of kidney field cells. We propose that TRPP2-dependent Ca(2+) signaling is a key component of pax8 regulation in the kidney field downstream of RA-mediated non-transcriptional control of TRPP2. © 2015. Published by The Company of Biologists Ltd.

  7. Regulation of cytochrome P-450 4A activity by peroxisome proliferator-activated receptors in the rat kidney.

    PubMed

    Ishizuka, Tsuneo; Ito, Osamu; Tan, Liping; Ogawa, Susumu; Kohzuki, Masahiro; Omata, Ken; Takeuchi, Kazuhisa; Ito, Sadayoshi

    2003-11-01

    The localization of cytochrome P-450 4A, peroxisome proliferator-activated receptor (PPAR) alpha, and PPARgamma proteins, and the inducibility of P-450 4A expression and activity by PPAR agonists were determined in the rat kidney. The expressions of these proteins in isolated nephron segments were evaluated by immunoblot analysis, and the production of 20-hydroxyeicosatetraenoic acid (20-HETE) was measured as P-450 4A activity. P-450 4A proteins were expressed predominantly in the proximal tubule (PT), with lower expression in the preglomerular arteriole (Art), glomerulus (Glm), and medullary thick ascending limb (mTAL), but their expression was not detected in the inner medullary collecting duct (IMCD). PPARalpha protein was expressed in the PT and mTAL, and PPARgamma protein was expressed in the IMCD and mTAL. Treatment with clofibrate, the PPARalpha agonist, increased P-450 4A protein levels and the production of 20-HETE in microsomes prepared from the renal cortex, whereas treatment with pioglitazone, the PPARgamma agonist, affected neither of them. These results indicate that PPARalpha and PPARgamma proteins are localized in different nephron segments and the inducibility of P-450 4A expression and activity by the PPAR agonists correlates with the nephron-specific localization of the respective PPAR isoforms.

  8. The effect of cholesterol overload on mouse kidney and kidney-derived cells.

    PubMed

    Honzumi, Shoko; Takeuchi, Miho; Kurihara, Mizuki; Fujiyoshi, Masachika; Uchida, Masashi; Watanabe, Kenta; Suzuki, Takaaki; Ishii, Itsuko

    2018-11-01

    Dyslipidemia is one of the onset and risk factors of chronic kidney disease and renal function drop is seen in lipoprotein abnormal animal models. However, the detailed molecular mechanism of renal lipotoxicity has not been clarified. Therefore, the present study aimed to investigate the influence of cholesterol overload using mouse kidney tissue and kidney-derived cultured cells. C57BL/6 mice were fed normal diet (ND) or 1.25% cholesterol-containing high-cholesterol diet (HCD) for 11 weeks, and we used megalin as a proximal tubule marker for immunohistology. We added beta-very low density lipoprotein (βVLDL) to kidney-derived cells and examined the effect of cholesterol overload on megalin protein and mRNA expression level, cell proliferation and cholesterol content in cells. In the kidney of HCD mice, the gap between glomerulus and the surrounding Bowman's capsule decreased and the expression level of megalin decreased. After βVLDL treatment to the cells, the protein expression and mRNA expression level of megalin decreased and cell proliferation was restrained. We also observed an increase in cholesterol accumulation in the cell and free cholesterol/phospholipid ratios increased. These findings suggest that the increased cholesterol load on kidney contribute to the decrease of megalin and the overloaded cholesterol is taken into the renal tubule epithelial cells, causing suppression on cell proliferation, which may be the cause of kidney damage.

  9. Molecular cloning of the myo-inositol oxygenase gene from the kidney of baboons

    PubMed Central

    González-Álvarez, Rafael; Pérez-Ibave, Diana Cristina; Garza-Rodríguez, María Lourdes; Lugo-Trampe, Ángel; Delgado-Enciso, Iván; Tejero-Barrera, María Elizabeth; Martínez-De-Villarreal, Laura Elia; Garza-Guajardo, Raquel; Sánchez-Chaparro, María Marisela; Ruiz-Ayma, Gabriel; Barboza-Quintana, Oralia; Barrera-Saldaña, Hugo Alberto; Rocha-Pizaña, María Del Refugio; Rodríguez-Sánchez, Irám Pablo

    2017-01-01

    The enzyme myo-Inositol oxygenase (MIOX) is also termed ALDRL6. It is a kidney-specific member of the aldo-keto reductase family. MIOX catalyzes the first reaction involved in the myo-inositol metabolism signaling pathway and is fully expressed in mammalian tissues. MIOX catalyzes the oxidative cleavage of myo-Inositol and its epimer, D-chiro-Inositol to D-glucuronate. The dioxygen-dependent cleavage of the C6 and C1 bond in myo-Inositol is achieved by utilizing the Fe2+/Fe3+ binuclear iron center of MIOX. This enzyme has also been implicated in the complications of diabetes, including diabetic nephropathy. The MIOX gene was amplified with reverse transcription-polymerase chain reaction from baboon tissue samples, and the product was cloned and sequenced. MIOX expression in the baboon kidney is described in the present study. The percentages of nucleotide and amino acid similarities between baboons and humans were 95 and 96%, respectively. The MIOX protein of the baboon may be structurally identical to that of humans. Furthermore, the evolutionary changes, which have affected these sequences, have resulted from purifying forces. PMID:29085625

  10. Molecular cloning of the myo-inositol oxygenase gene from the kidney of baboons.

    PubMed

    González-Álvarez, Rafael; Pérez-Ibave, Diana Cristina; Garza-Rodríguez, María Lourdes; Lugo-Trampe, Ángel; Delgado-Enciso, Iván; Tejero-Barrera, María Elizabeth; Martínez-De-Villarreal, Laura Elia; Garza-Guajardo, Raquel; Sánchez-Chaparro, María Marisela; Ruiz-Ayma, Gabriel; Barboza-Quintana, Oralia; Barrera-Saldaña, Hugo Alberto; Rocha-Pizaña, María Del Refugio; Rodríguez-Sánchez, Irám Pablo

    2017-10-01

    The enzyme myo-Inositol oxygenase (MIOX) is also termed ALDRL6. It is a kidney-specific member of the aldo-keto reductase family. MIOX catalyzes the first reaction involved in the myo-inositol metabolism signaling pathway and is fully expressed in mammalian tissues. MIOX catalyzes the oxidative cleavage of myo-Inositol and its epimer, D-chiro-Inositol to D-glucuronate. The dioxygen-dependent cleavage of the C6 and C1 bond in myo-Inositol is achieved by utilizing the Fe 2+ /Fe 3+ binuclear iron center of MIOX. This enzyme has also been implicated in the complications of diabetes, including diabetic nephropathy. The MIOX gene was amplified with reverse transcription-polymerase chain reaction from baboon tissue samples, and the product was cloned and sequenced. MIOX expression in the baboon kidney is described in the present study. The percentages of nucleotide and amino acid similarities between baboons and humans were 95 and 96%, respectively. The MIOX protein of the baboon may be structurally identical to that of humans. Furthermore, the evolutionary changes, which have affected these sequences, have resulted from purifying forces.

  11. Effects of a restricted fetal growth environment on human kidney morphology, cell apoptosis and gene expression.

    PubMed

    Wang, Yan-Ping; Chen, Xu; Zhang, Zhi-Kun; Cui, Hong-Yan; Wang, Peng; Wang, Yue

    2015-12-01

    Kidney development is key to the onset of hypertension and cardiovascular diseases in adults, and in the fetal stage will be impaired by a lack of nutrients in utero in animal models. However, few human studies have been performed. Kidney samples from fetuses in a fetal growth restriction (FGR) environment were collected and the morphological characteristics were observed. Potentially molecular mechanisms were explored by analyzing apoptosis and kidney-development related gene expression. The results indicated that no malformations were observed in the kidney samples of the FGR group, but the mean kidney weight and volume were significantly decreased. Moreover, the ratio of apoptotic cells and Bax-positive cells was increased and the ratio of Bcl-2-positive cells was decreased in the FGR group, indicating potential apoptosis induction under an in utero FGR environment. Finally, aberrant expression of renin and angiotensinogen indicated potential kidney functional abnormalities in the FGR group. Our study suggested increased apoptosis and decreased renin and angiotensinogen expression during human kidney development in an FGR environment. The current results will be helpful to further explore the molecular mechanism of FGR and facilitate future studies of hypertension and cardiovascular diseases and the establishment of preventive methods. © The Author(s) 2014.

  12. The impact of preserved Klotho gene expression on anti-oxidative stress activity in healthy kidney.

    PubMed

    Kimura, Takaaki; Shiizaki, Kazuhiro; Kurosu, Hiroshi; Akimoto, Tetsu; Shinzato, Takahiro; Shimizu, Toshihiro; Kurosawa, Akira; Kubo, Taro; Nanmoku, Koji; Kuro-O, Makoto; Yagisawa, Takashi

    2018-04-25

    Klotho, which was originally identified as an anti-aging gene, forms a complex with fibroblast growth factor 23 (FGF23) receptor in kidney, with subsequent signaling that regulates mineral metabolism. Other biological activities of Klotho including anti-aging effects such as protection from various cellular stress have been shown, however, the precise mechanism of these effects of Klotho gene in the healthy human kidney is not well understood. In this study, we examined the relationships of Klotho and anti-oxidative stress gene expression levels in zero-hour biopsy specimens from 44 donors in kidney transplantation and verified them in animal models whose Klotho gene expression levels were varied. The nitrotyrosine expression level in kidney was evaluated in these animal models. Expression levels of Klotho gene were positively correlated with p53 gene, and antioxidant enzyme genes such as Catalase, superoxide dismutase 1 (SOD1), SOD2, peroxiredoxin 3 (PRDX3), and glutathione peroxidase 1 (GPX1) but not clinical parameters such as age and renal function, and pathological features such as glomerulosclerosis and interstitial fibrosis tubular atrophy. The expression levels of all genes were significantly higher in mice with Klotho overexpression than in wild-type mice, and those except for PRDX3 and GPX1 were significantly lower in Klotho-deficient mice than in wild-type littermate mice. Nitrotyrosine-positive bands of various sizes were observed in kidney from Klotho-deficient mice only. The preservation of Klotho gene expression might induce the anti-oxidative stress mechanism for homeostasis of healthy human kidney independently of its general condition including age, renal function, and histological findings.

  13. Deregulation of PAX2 expression in renal cell tumours: mechanisms and potential use in differential diagnosis

    PubMed Central

    Patrício, Patrícia; Ramalho-Carvalho, João; Costa-Pinheiro, Pedro; Almeida, Mafalda; Barros-Silva, João Diogo; Vieira, Joana; Dias, Paula Cristina; Lobo, Francisco; Oliveira, Jorge; Teixeira, Manuel R; Henrique, Rui; Jeronimo, Carmen

    2013-01-01

    Expression of PAX2 (Paired-box 2) is suppressed through promoter methylation at the later stages of embryonic development, but eventually reactivated during carcinogenesis. Pax-2 is commonly expressed in the most prevalent renal cell tumour (RCT) subtypes—clear cell RCC (ccRCC), papillary RCC (pRCC) and oncocytoma—but not in chromophobe RCC (chrRCC), which frequently displays chromosome 10 loss (to which PAX2 is mapped). Herein, we assessed the epigenetic and/or genetic alterations affecting PAX2 expression in RCTs and evaluated its potential as biomarker. We tested 120 RCTs (30 of each main subtype) and four normal kidney tissues. Pax-2 expression was assessed by immunohistochemistry and PAX2 mRNA expression levels were determined by quantitative RT-PCR. PAX2 promoter methylation status was assessed by methylation-specific PCR and bisulfite sequencing. Chromosome 10 and PAX2 copy number alterations were determined by FISH. Pax-2 immunoexpression was significantly lower in chrRCC compared to other RCT subtypes. Using a 10% immunoexpression cut-off, Pax-2 immunoreactivity discriminated chrRCC from oncocytoma with 67% sensitivity and 90% specificity. PAX2 mRNA expression was significantly lower in chrRCC, compared to ccRCC, pRCC and oncocytoma, and transcript levels correlated with immunoexpression. Whereas no promoter methylation was found in RCTs or normal kidney, 69% of chrRCC displayed chromosome 10 monosomy, correlating with Pax-2 immunoexpression. We concluded that Pax-2 expression might be used as an ancillary tool to discriminate chrRCC from oncocytomas with overlapping morphological features. The biological rationale lies on the causal relation between Pax-2 expression and chromosome 10 monosomy, but not PAX2 promoter methylation, in chrRCC. PMID:23890189

  14. Selective Deletion of the Brain-Specific Isoform of Renin Causes Neurogenic Hypertension.

    PubMed

    Shinohara, Keisuke; Liu, Xuebo; Morgan, Donald A; Davis, Deborah R; Sequeira-Lopez, Maria Luisa S; Cassell, Martin D; Grobe, Justin L; Rahmouni, Kamal; Sigmund, Curt D

    2016-12-01

    The renin-angiotensin system (RAS) in the brain is a critical determinant of blood pressure, but the mechanisms regulating RAS activity in the brain remain unclear. Expression of brain renin (renin-b) occurs from an alternative promoter-first exon. The predicted translation product is a nonsecreted enzymatically active renin whose function is unknown. We generated a unique mouse model by selectively ablating the brain-specific isoform of renin (renin-b) while preserving the expression and function of the classical isoform expressed in the kidney (renin-a). Preservation of renal renin was confirmed by measurements of renin gene expression and immunohistochemistry. Surprisingly, renin-b-deficient mice exhibited hypertension, increased sympathetic nerve activity to the kidney and heart, and impaired baroreflex sensitivity. Whereas these mice displayed decreased circulating RAS activity, there was a paradoxical increase in brain RAS activity. Physiologically, renin-b-deficient mice exhibited an exaggerated depressor response to intracerebroventricular administration of losartan, captopril, or aliskiren. At the molecular level, renin-b-deficient mice exhibited increased expression of angiotensin-II type 1 receptor in the paraventricular nucleus, which correlated with an increased renal sympathetic nerve response to leptin, which was dependent on angiotensin-II type 1 receptor activity. Interestingly, despite an ablation of renin-b expression, expression of renin-a was significantly increased in rostral ventrolateral medulla. These data support a new paradigm for the genetic control of RAS activity in the brain by a coordinated regulation of the renin isoforms, with expression of renin-b tonically inhibiting expression of renin-a under baseline conditions. Impairment of this control mechanism causes neurogenic hypertension. © 2016 American Heart Association, Inc.

  15. Tuberin haploinsufficiency is associated with the loss of OGG1 in rat kidney tumors

    PubMed Central

    Habib, Samy L; Simone, Simona; Barnes, Jeff J; Abboud, Hanna E

    2008-01-01

    Background Tuberous sclerosis complex (TSC) is caused by defects in one of two tumor suppressor genes, TSC-1 or TSC-2. TSC-2 gene encodes tuberin, a protein involved in the pathogenesis of kidney tumors. Loss of heterozygosity (LOH) at the TSC2 locus has been detected in TSC-associated renal cell carcinoma (RCC) and in RCC in the Eker rat. Tuberin downregulates the DNA repair enzyme 8-oxoguanine DNA-glycosylase (OGG1) with important functional consequences, compromising the ability of cells to repair damaged DNA resulting in the accumulation of the mutagenic oxidized DNA, 8-oxo-dG. Loss of function mutations of OGG1 also occurs in human kidney clear cell carcinoma and may contribute to tumorgenesis. We investigated the distribution of protein expression and the activity of OGG1 and 8-oxo-dG and correlated it with the expression of tuberin in kidneys of wild type and Eker rats and tumor from Eker rat. Results Tuberin expression, OGG1 protein expression and activity were higher in kidney cortex than in medulla or papilla in both wild type and Eker rats. On the other hand, 8-oxo-dG levels were highest in the medulla, which expressed the lowest levels of OGG1. The basal levels of 8-oxo-dG were also higher in both cortex and medulla of Eker rats compared to wild type rats. In kidney tumors from Eker rats, the loss of the second TSC2 allele is associated with loss of OGG1 expression. Immunostaining of kidney tissue shows localization of tuberin and OGG1 mainly in the cortex. Conclusion These results demonstrate that OGG1 localizes with tuberin preferentially in kidney cortex. Loss of tuberin is accompanied by the loss of OGG1 contributing to tumorgenesis. In addition, the predominant expression of OGG1 in the cortex and its decreased expression and activity in the Eker rat may account for the predominant cortical localization of renal cell carcinoma. PMID:18218111

  16. Effects of Single and Combined Losartan and Tempol Treatments on Oxidative Stress, Kidney Structure and Function in Spontaneously Hypertensive Rats with Early Course of Proteinuric Nephropathy

    PubMed Central

    Grujic-Milanovic, Jelica; Miloradovic, Zoran; Ivanov, Milan; Jovovic, Djurdjica; Vajic, Una-Jovana; Zivotic, Maja; Markovic-Lipkovski, Jasmina; Mihailovic-Stanojevic, Nevena

    2016-01-01

    Oxidative stress has been widely implicated in both hypertension and chronic kidney disease (CKD). Hypertension is a major risk factor for CKD progression. In the present study we have investigated the effects of chronic single tempol (membrane-permeable radical scavenger) or losartan (angiotensin II type 1 receptor blocker) treatment, and their combination on systemic oxidative status (plasma thiobarbituric acid-reactive substances (pTBARS) production, plasma antioxidant capacity (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid, pABTS), erythrocyte antioxidant enzymes activities) and kidney oxidative stress (kTBARS, kABTS, kidney antioxidant enzymes activities), kidney function and structure in spontaneously hypertensive rats (SHR) with the early course of adriamycin-induced nephropathy. Adult SHR were divided into five groups. The control group received vehicle, while the other groups received adriamycin (2 mg/kg, i.v.) twice in a 21-day interval, followed by vehicle, losartan (L,10 mg/kg/day), tempol (T,100 mg/kg/day) or combined T+L treatment (by gavage) during a six-week period. Adriamycin significantly increased proteinuria, plasma lipid peroxidation, kidney protein oxidation, nitrite excretion, matrix metalloproteinase-1 (MMP-1) protein expression and nestin immunostaining in the kidney. Also, it decreased kidney antioxidant defense, kidney NADPH oxidase 4 (kNox4) protein expression and abolished anti-inflammatory response due to significant reduction of kidney NADPH oxidase 2 (kNox2) protein expression in SHR. All treatments reduced protein-to-creatinine ratio (marker of proteinuria), pTBARS production, kidney protein carbonylation, nitrite excretion, increased antioxidant capacity and restored kidney nestin expression similar to control. Both single treatments significantly improved systemic and kidney antioxidant defense, bioavailability of renal nitric oxide, reduced kMMP-1 protein expression and renal injury, thus retarded CKD progression. Losartan improved blood pressure, as well as tubular injury and restored anti-inflammatory defense by reverting kNox2 expression to the control level. Interestingly, tempol was more successful in reducing systemic oxidative stress, proteinuria, kMMP-1 and glomerulosclerosis. However, combined treatment failed to overcome the beneficial effects of single treatments in slowing down the progression of ADR-induced nephropathy in SHR. PMID:27560781

  17. Dopamine treatment attenuates acute kidney injury in a rat model of deep hypothermia and rewarming - The role of renal H2S-producing enzymes.

    PubMed

    Dugbartey, George J; Talaei, Fatemeh; Houwertjes, Martin C; Goris, Maaike; Epema, Anne H; Bouma, Hjalmar R; Henning, Robert H

    2015-12-15

    Hypothermia and rewarming produces organ injury through the production of reactive oxygen species. We previously found that dopamine prevents hypothermia and rewarming-induced apoptosis in cultured cells through increased expression of the H2S-producing enzyme cystathionine β-Synthase (CBS). Here, we investigate whether dopamine protects the kidney in deep body cooling and explore the role of H2S-producing enzymes in an in vivo rat model of deep hypothermia and rewarming. In anesthetized Wistar rats, body temperature was decreased to 15°C for 3h, followed by rewarming for 1h. Rats (n≥5 per group) were treated throughout the procedure with vehicle or dopamine infusion, and in the presence or absence of a non-specific inhibitor of H2S-producing enzymes, amino-oxyacetic acid (AOAA). Kidney damage and renal expression of three H2S-producing enzymes (CBS, CSE and 3-MST) was quantified and serum H2S level measured. Hypothermia and rewarming induced renal damage, evidenced by increased serum creatinine, renal reactive oxygen species production, KIM-1 expression and influx of immune cells, which was accompanied by substantially lowered renal expression of CBS, CSE, and 3-MST and lowered serum H2S levels. Infusion of dopamine fully attenuated renal damage and maintained expression of H2S-producing enzymes, while normalizing serum H2S. AOAA further decreased the expression of H2S-producing enzymes and serum H2S level, and aggravated renal damage. Hence, dopamine preserves renal integrity during deep hypothermia and rewarming likely by maintaining the expression of renal H2S-producing enzymes and serum H2S. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Expression of transforming growth factor alpha and epidermal growth factor receptor messenger RNA in neoplastic and nonneoplastic human kidney tissue.

    PubMed

    Mydlo, J H; Michaeli, J; Cordon-Cardo, C; Goldenberg, A S; Heston, W D; Fair, W R

    1989-06-15

    Using Northern blot analysis, we have demonstrated that mRNA for transforming growth factor alpha (TGF-alpha) was expressed in five malignant kidney tissue specimens but was not detected in their autologous nonneoplastic homologues. In addition, the expression of epidermal growth factor (EGF) receptor mRNA in these malignant tissues was 2- to 3-fold greater than in nontransformed tissues. In two cases examined using immunohistochemistry, we were able to correlate the increased expression of the mRNA with an increase in protein expression. Since TGF-alpha is known to bind to the EGF receptor, the finding of an increased expression of both TGF-alpha and EGF receptor mRNA in kidney tumor tissue suggests that interaction between TGF-alpha and the EGF receptor may play a role in promoting transformation and/or proliferation of kidney neoplasms, perhaps by an autocrine mechanism.

  19. Patterns of Personality in Living Kidney Donors.

    PubMed

    De Pasquale, C; Veroux, M; Sinagra, N; Sanfiorenzo, A; Sanzone, A; Trigona, C; Giaquinta, A; Veroux, P; Pistorio, M L

    2016-03-01

    The decision to undergo living donor transplantation determines a particular condition characterized by strong mental and emotional anguish, both for the patient and his family. Many recent studies showed the concern of living donors who, rather than being driven by altruistic reasons, meet the decision to donate with ambivalence, liabilities, and/or in response to family pressures. The aim of this study was to analyze the more frequently encountered personality variables in a sample of potential kidney living donors, together with any psychological variables that can express possible risks of an impulsive decision and/or poorly processed from a cognitive and emotional point of view. We examined 32 potential kidney donors. The personality study was performed using The Millon Clinical Multiaxial Inventory-III. The psychic symptoms were studied through the Symptom Checklist-90-R. The quality of life was studied through the Complete Form Health Survey (SF-36). The study showed that the ability to express free and therefore invalid consent, in the role of donor, is an expression of specific personality patterns, cognitive, emotional aspects and interpersonal experiences. The psychological-psychiatric evaluation of potential donors is fundamental to certify the state of mental health and psychological well-being, an indispensable prerequisite for the donation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. siRNA Delivery to the Glomerular Mesangium Using Polycationic Cyclodextrin Nanoparticles Containing siRNA

    PubMed Central

    Gale, Aaron; Wu, Peiwen; Ma, Rong; Davis, Mark E.

    2015-01-01

    There is an urgent need for new therapies that can halt or reverse the course of chronic kidney disease with minimal side-effect burden on the patient. Small interfering RNA (siRNA) nanoparticles are new therapeutic entities in clinical development that could be useful for chronic kidney disease treatment because they combine the tissue-specific targeting properties of nanoparticles with the gene-specific silencing effects of siRNA. Recent reports have emerged demonstrating that the kidney, specifically the glomerulus, is a readily accessible site for nanoparticle targeting. Here, we explore the hypothesis that intravenously administered polycationic cyclodextrin nanoparticles containing siRNA (siRNA/CDP-NPs) can be used for delivery of siRNA to the glomerular mesangium. We demonstrate that siRNA/CDP-NPs localize to the glomerular mesangium with limited deposition in other areas of the kidney after intravenous injection. Additionally, we report that both mouse and human mesangial cells rapidly internalize siRNA/CDP-NPs in vitro and that nanoparticle uptake can be enhanced by attaching the targeting ligands mannose or transferrin to the nanoparticle surface. Lastly, we show knockdown of mesangial enhanced green fluorescent protein expression in a reporter mouse strain following iv treatment with siRNA/CDP-NPs. Altogether, these data demonstrate the feasibility of mesangial targeting using intravenously administered siRNA/CDP-NPs. PMID:25734248

  1. Imaging mass spectrometry reveals direct albumin fragmentation within the diabetic kidney.

    PubMed

    Grove, Kerri J; Lareau, Nichole M; Voziyan, Paul A; Zeng, Fenghua; Harris, Raymond C; Hudson, Billy G; Caprioli, Richard M

    2018-05-17

    Albumin degradation in the renal tubules is impaired in diabetic nephropathy such that levels of the resulting albumin fragments increase with the degree of renal injury. However, the mechanism of albumin degradation is unknown. In particular, fragmentation of the endogenous native albumin has not been demonstrated in the kidney and the enzymes that may contribute to fragmentation have not been identified. To explore this we utilized matrix-assisted laser desorption/ionization imaging mass spectrometry for molecular profiling of specific renal regions without disturbing distinct tissue morphology. Changes in protein expression were measured in kidney sections of eNOS -/- db/db mice, a model of diabetic nephropathy, by high spatial resolution imaging allowing molecular localizations at the level of single glomeruli and tubules. Significant increases were found in the relative abundances of several albumin fragments in the kidney of the mice with diabetic nephropathy compared with control nondiabetic mice. The relative abundance of fragments detected correlated positively with the degree of nephropathy. Furthermore, specific albumin fragments accumulating in the lumen of diabetic renal tubules were identified and predicted the enzymatic action of cathepsin D based on cleavage specificity and in vitro digestions. Importantly, this was demonstrated directly in the renal tissue with the endogenous nonlabeled murine albumin. Thus, our results provide molecular insights into the mechanism of albumin degradation in diabetic nephropathy. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  2. Comparison of the Gene Expression Profiles from Normal and Fgfrl1 Deficient Mouse Kidneys Reveals Downstream Targets of Fgfrl1 Signaling

    PubMed Central

    Gerber, Simon D.; Amann, Ruth; Wyder, Stefan; Trueb, Beat

    2012-01-01

    Fgfrl1 (fibroblast growth factor receptor-like 1) is a transmembrane receptor that is essential for the development of the metanephric kidney. It is expressed in all nascent nephrogenic structures and in the ureteric bud. Fgfrl1 null mice fail to develop the metanephric kidneys. Mutant kidney rudiments show a dramatic reduction of ureteric branching and a lack of mesenchymal-to-epithelial transition. Here, we compared the expression profiles of wildtype and Fgfrl1 mutant kidneys to identify genes that act downstream of Fgfrl1 signaling during the early steps of nephron formation. We detected 56 differentially expressed transcripts with 2-fold or greater reduction, among them many genes involved in Fgf, Wnt, Bmp, Notch, and Six/Eya/Dach signaling. We validated the microarray data by qPCR and whole-mount in situ hybridization and showed the expression pattern of candidate genes in normal kidneys. Some of these genes might play an important role during early nephron formation. Our study should help to define the minimal set of genes that is required to form a functional nephron. PMID:22432025

  3. Peptide Regulation of Cells Renewal Processes in Kidney Tissue Cultures from Young and Old Animals.

    PubMed

    Chalisova, N I; Lin'kova, N S; Nichik, T E; Ryzhak, A P; Dudkov, A V; Ryzhak, G A

    2015-05-01

    Polypeptide complex isolated from calf kidneys stimulates the processes of cell renewal in organotypic kidney tissue cultures from young and old rats. The polypeptide complex enhances expression of proliferation marker Ki-67 and reduces expression of proapoptotic peptide p53 in kidney explants obtained from young and old animals. Short peptides T-31 (AED) and T-35 (EDL) also stimulate proliferation and reduce apoptosis of the kidney cells, but to a lesser degree than the polypeptide complex. The results provide the basis for further investigation of the polypeptide complex as a preparation for the therapy of kidney diseases, including age-related pathologies.

  4. Transcriptional noise in intact and TGF-beta treated human kidney cells; the importance of time-series designs.

    PubMed

    Rabieian, Reyhaneh; Moein, Shiva; Khanahmad, Hossein; Mortazavi, Mojgan; Gheisari, Yousof

    2018-05-26

    The transforming growth factor (TGF)-β signaling pathway plays a key role in various cellular processes. However, insufficient knowledge about the complex and sometimes paradoxical functions of this pathway hinders its therapeutic targeting. In this study, the transcriptional profile of seven mediators and downstream elements of the TGF-β pathway were assessed in TGF-β treated and untreated human kidney derived cells for 2 weeks in a time course manner. As expected the up-regulation of ACTA2 and COL1A2 was evident in the treated cells. However, we observed remarkable fluctuations in gene expression, even in the supposedly steady states. The magnitude of noise was diverse in the examined genes. Our findings underscore the significance of time-course designs for gene expression analyses and clearly show that misleading data can be obtained in single point measurements. Furthermore, we propose specific considerations in the interpretation of time-course data in the context of noisy gene expression. © 2018 International Federation for Cell Biology.

  5. Cloning and primary immunological study of TGF-β1 and its receptors TβR I /TβR II in tilapia(Oreochromis niloticus).

    PubMed

    Zhan, Xu-liang; Ma, Tai-yang; Wu, Jin-ying; Yi, Li-yuan; Wang, Jing-yuan; Gao, Xiao-ke; Li, Wen-sheng

    2015-07-01

    The transforming growth factor β (TGF-β) superfamily plays critical roles in tumor suppression, cell proliferation and differentiation, tissue morphogenesis, lineage determination, cell migration and apoptosis. Recently, TGF-β1, one important member of TGF-β superfamily, is suggested as an immune regulator in the teleost. In this study, we cloned the cDNAs of TGF-β1 and its receptors, TβR I and TβR II (including three isoforms) from tilapia (Genbank accession numbers: KP754231- KP754235). A tissue distribution profile analysis indicated that TGF-β1 was highly expressed in the head kidney, gill, spleen, kidney and PBLs (peripheral blood leukocytes); TβR I only showed considerable expression in the liver; and TβR II-2 was highly expressed in the kidney, gill, liver, head kidney and heart. We determined that the mRNA expressions of TGF-β and TβR I /TβR II-2 were significantly increased in tilapia head kidney and spleen leukocytes by the stimulation of Lipopolysaccharide (LPS) or Poly I: C. We also examined their expressions in the spleen and head kidney of tilapia after IP injection of streptococcus agalactiae. The results showed that the mRNA expressions of these three genes all increased in the head kidney as early as 6 h post infection, and in the spleen 3 d post infection. In addition, the protein level of TGF-β1 was also up-regulated in the head kidney and the spleen after infection. Taken together, our data indicate that the TGF-β1-TβR I /TβR II-2 system functions potentially in tilapia immune system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Kidney and heavy metals - The role of environmental exposure (Review).

    PubMed

    Lentini, Paolo; Zanoli, Luca; Granata, Antonio; Signorelli, Salvatore Santo; Castellino, Pietro; Dell'Aquila, Roberto

    2017-05-01

    Heavy metals are extensively used in agriculture and industrial applications such as production of pesticides, batteries, alloys, and textile dyes. Prolonged, intensive or excessive exposure can induce related systemic disorders. Kidney is a target organ in heavy metal toxicity for its capacity to filter, reabsorb and concentrate divalent ions. The extent and the expression of renal damage depends on the species of metals, the dose, and the time of exposure. Almost always acute kidney impairment differs from chronic renal failure in its mechanism and in the magnitude of the outcomes. As a result, clinical features and treatment algorithm are also different. Heavy metals in plasma exist in an ionized form, that is toxic and leads to acute toxicity and a bound, inert form when metal is conjugated with metallothionein and are then delivered to the liver and possible causing the kidney chronic damage. Treatment regimens include chelation therapy, supportive care, decontamination procedures and renal replacement therapies. This review adds specific considerations to kidney impairment due to the most common heavy metal exposures and its treatment.

  7. Inhibition of p38 MAPK during cellular activation modulate gene expression of head kidney leukocytes isolated from Atlantic salmon (Salmo salar) fed soy bean oil or fish oil based diets.

    PubMed

    Holen, E; Winterthun, S; Du, Z-Y; Krøvel, A V

    2011-01-01

    Head kidney leukocytes isolated from Atlantic salmon fed either a diet based on fish oil (FO) or soy bean oil (VO) were used in order to evaluate if different lipid sources could contribute to cellular activation of the salmon innate immune system. A specific inhibitor of p38 MAPK, SB202190, was used to investigate the effect of lipopolysaccharide (LPS) signalling in the head kidney leukocytes. The results show that LPS up regulate IL-1β, TNF-α, Cox2 expression in leukocytes isolated from fish fed either diet. The p38 MAPK inhibitor, SB202190, reduced the LPS induced expression of these genes in both dietary groups. In LPS stimulated leukocytes isolated from VO fed fish, SB202190 showed a clear dose dependent inhibitory effect on IL-1β, TNF-α and Cox2 expression. This effect was also observed for Cox2 in leukocytes isolated from FO fed fish. Furthermore, there was a stronger mean induction of Cox2 in LPS stimulated leucocytes isolated from the VO-group compared to LPS stimulated leukocytes isolated from the FO-group. In both dietary groups, LPS stimulation of salmon head kidney leukocytes increased the induction of CD83, a dendrite cell marker, while the inhibitor reduced CD83 expression in the VO fed fish only. The inhibitor also clearly reduced hsp27 expression in VO fed fish. Indicating a p38 MAPK feedback loop, LPS significantly inhibited the expression of p38MAPK itself in both diets, while SB202190 increased p38MAPK expression especially in the VO diet group. hsp70 expression was not affected by any treatment or feed composition. There were also differences in p38MAPK protein phosphorylation comparing treatment groups but no obvious difference comparing the two dietary groups. The results indicate that dietary fatty acids have the ability to modify signalling through p38 MAPK which may have consequences for the fish's ability to handle infections and stress. Signalling through p38MAPK is ligand dependent and affects gene and protein expression differently. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. The lineage-specific gene ponzr1 is essential for zebrafish pronephric and pharyngeal arch development.

    PubMed

    Bedell, Victoria M; Person, Anthony D; Larson, Jon D; McLoon, Anna; Balciunas, Darius; Clark, Karl J; Neff, Kevin I; Nelson, Katie E; Bill, Brent R; Schimmenti, Lisa A; Beiraghi, Soraya; Ekker, Stephen C

    2012-02-01

    The Homeobox (Hox) and Paired box (Pax) gene families are key determinants of animal body plans and organ structure. In particular, they function within regulatory networks that control organogenesis. How these conserved genes elicit differences in organ form and function in response to evolutionary pressures is incompletely understood. We molecularly and functionally characterized one member of an evolutionarily dynamic gene family, plac8 onzin related protein 1 (ponzr1), in the zebrafish. ponzr1 mRNA is expressed early in the developing kidney and pharyngeal arches. Using ponzr1-targeting morpholinos, we show that ponzr1 is required for formation of the glomerulus. Loss of ponzr1 results in a nonfunctional glomerulus but retention of a functional pronephros, an arrangement similar to the aglomerular kidneys found in a subset of marine fish. ponzr1 is integrated into the pax2a pathway, with ponzr1 expression requiring pax2a gene function, and proper pax2a expression requiring normal ponzr1 expression. In addition to pronephric function, ponzr1 is required for pharyngeal arch formation. We functionally demonstrate that ponzr1 can act as a transcription factor or co-factor, providing the first molecular mode of action for this newly described gene family. Together, this work provides experimental evidence of an additional mechanism that incorporates evolutionarily dynamic, lineage-specific gene families into conserved regulatory gene networks to create functional organ diversity.

  9. Immunotargeting and cloning of two CD34 variants exhibiting restricted expression in adult rat endothelia in vivo.

    PubMed

    Testa, Jacqueline E; Chrastina, Adrian; Oh, Phil; Li, Yan; Witkiewicz, Halina; Czarny, Malgorzata; Buss, Tim; Schnitzer, Jan E

    2009-08-01

    Mapping protein expression of endothelial cells (EC) in vivo is fundamental to understanding cellular function and may yield new tissue-selective targets. We have developed a monoclonal antibody, MAb J120, to a protein expressed primarily in rat lung and heart endothelium. The antigen was identified as CD34, a marker of hematopoietic stem cells and global marker of endothelial cells in human and mouse tissues. PCR-based cloning identified two CD34 variant proteins, full length and truncated, both of which are expressed on luminal endothelial cell plasma membranes (P) isolated from lung. Truncated CD34 predominated in heart P, and neither variant was detected in P from kidney or liver. CD34 in lung was readily accessible to (125)I-J120 inoculated intravenously, and immunohistochemistry showed strong CD34 expression in lung EC. Few microvessels stained in heart and kidney, and no CD34 was detected in vessels of other organs or in lymphatics. We present herein the first complete sequence of a rat CD34 variant and show for the first time that the encoded truncated variant is endogenously expressed on EC in vivo. We also demonstrate that CD34 expression in rat EC, unlike mouse and human, is restricted in its distribution enabling quite specific lung targeting in vivo.

  10. MicroRNA-140-5p attenuated oxidative stress in Cisplatin induced acute kidney injury by activating Nrf2/ARE pathway through a Keap1-independent mechanism.

    PubMed

    Liao, Weitang; Fu, Zongjie; Zou, Yanfang; Wen, Dan; Ma, Hongkun; Zhou, Fangfang; Chen, Yongxi; Zhang, Mingjun; Zhang, Wen

    2017-11-15

    Oxidative stress was predominantly involved in the pathogenesis of acute kidney injury (AKI). Recent studies had reported the protective role of specific microRNAs (miRNAs) against oxidative stress. Hence, we investigated the levels of miR140-5p and its functional role in the pathogenesis of Cisplatin induced AKI. A mice Cisplatin induced-AKI model was established. We found that miR-140-5p expression was markedly increased in mice kidney. Bioinformatics analysis revealed nuclear factor erythroid 2-related factor (Nrf2) was a potential target of miR-140-5p, We demonstrated that miR-140-5p did not affect Kelch-like ECH-associated protein 1 (Keap1) level but directly targeted the 3'-UTR of Nrf2 mRNA and played a positive role in the regulation of Nrf2 expression which was confirmed by luciferase activity assay and western blot. What was more, consistent with miR140-5p expression, the mRNA and protein levels of Nrf2, as well as antioxidant response element (ARE)-driven genes Heme Oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase l (NQO1) were significantly increased in mice kidney tissues. In vitro study, Enforced expression of miR-140-5p in HK2 cells significantly attenuated oxidative stress by decreasing ROS level and increasing the expression of manganese superoxide dismutase (MnSOD). Simultaneously, miR-140-5p decreased lactate dehydrogenase (LDH) leakage and improved cell vitality in HK2 cells under Cisplatin-induced oxidative stress. However, HK2 cells transfected with a siRNA targeting Nrf2 abrogated the protective effects of miR-140-5p against oxidative stress. These results indicated that miR-140-5p might exert its anti-oxidative stress function via targeting Nrf2. Our findings showed the novel transcriptional role of miR140-5p in the expression of Nrf2 and miR-140-5p protected against Cisplatin induced oxidative stress by activating Nrf2-dependent antioxidant pathway, providing a potentially therapeutic target in acute kidney injury. Copyright © 2017. Published by Elsevier Inc.

  11. Differential HIF and NOS responses to acute anemia: defining organ-specific hemoglobin thresholds for tissue hypoxia.

    PubMed

    Tsui, Albert K Y; Marsden, Philip A; Mazer, C David; Sled, John G; Lee, Keith M; Henkelman, R Mark; Cahill, Lindsay S; Zhou, Yu-Qing; Chan, Neville; Liu, Elaine; Hare, Gregory M T

    2014-07-01

    Tissue hypoxia likely contributes to anemia-induced organ injury and mortality. Severe anemia activates hypoxia-inducible factor (HIF) signaling by hypoxic- and neuronal nitric oxide (NO) synthase- (nNOS) dependent mechanisms. However, organ-specific hemoglobin (Hb) thresholds for increased HIF expression have not been defined. To assess organ-specific Hb thresholds for tissue hypoxia, HIF-α (oxygen-dependent degradation domain, ODD) luciferase mice were hemodiluted to mild, moderate, or severe anemia corresponding to Hb levels of 90, 70, and 50 g/l, respectively. HIF luciferase reporter activity, HIF protein, and HIF-dependent RNA levels were assessed. In the brain, HIF-1α was paradoxically decreased at mild anemia, returned to baseline at moderate anemia, and then increased at severe anemia. Brain HIF-2α remained unchanged at all Hb levels. Both kidney HIF-1α and HIF-2α increased earlier (Hb ∼70-90 g/l) in response to anemia. Liver also exhibited an early HIF-α response. Carotid blood flow was increased early (Hb ∼70, g/l), but renal blood flow remained relatively constant, only increased at Hb of 50 g/l. Anemia increased nNOS (brain and kidney) and endothelia NOS (eNOS) (kidney) levels. Whereas anemia-induced increases in brain HIFα were nNOS-dependent, our current data demonstrate that increased renal HIFα was nNOS independent. HIF-dependent RNA levels increased linearly (∼10-fold) in the brain. However, renal HIF-RNA responses (MCT4, EPO) increased exponentially (∼100-fold). Plasma EPO levels increased near Hb threshold of 90 g/l, suggesting that the EPO response is sensitive. Collectively, these observations suggest that each organ expresses a different threshold for cellular HIF/NOS hypoxia responses. This knowledge may help define the mechanism(s) by which the brain and kidney maintain oxygen homeostasis during anemia. Copyright © 2014 the American Physiological Society.

  12. [Effect of Cordyceps sinensis on the expression of HIF-1α and NGAL in rats with renal ischemia-reperfusion injury].

    PubMed

    Yu, Honglei; Zhou, Qiaoling; Huang, Renfa; Yuan, Mingxia; Ao, Xiang; Yang, Jinghua

    2012-01-01

    To observe the level of urinary neutrophil gelatinase-associated lipocalin (NGAL), the expression of hypoxia inducible factor-1α (HIF-1α) and NGAL in rat kidney after renal ischemia and reperfusion (I/R), before and after the treatment with Cordyceps Sinensis (C. sinensis), and to explore the mechanism of C. sinensis against I/R injury. A total of 45 healthy male Sprague-Dawley rats were randomly divided into a sham group, a renal I/R model group, and a C. sinensis group (15 in each group).The rats in the sham group and the renal I/R model group were intragastrically administered saline (2 mL/d), and rats in the treatment group were intragastricabby administered of C. sinensis [5.0 g/(kg.d)]. The rats were sacrificed at 24, 48, and 72 h, respectively after the reperfusion and urinary N-acetyl-β-D-glucosaminidase (NAG) level was measured, renal function in rats was detected, and the pathological changes were observed with HE staining. We determined the urinary NGAL levels in the rats by ELISA, the expression of HIF-1α mRNA by RT-PCR, and the expressions of HIF-1α and NGAL proteins by confocal immunofluorescence. Compared with the sham group, the levels of BUN, SCr, levels of NAG and NGAL in urine were increased in the I/R group and the C. sinensis group, reached a peak at 24 h after the reperfusion and slowly declined at 48 and 72 h. Glomerular and tubulointerstitial areas in the sham group did not show any pathological change. Induced pathological changes included tubular cell necrosis, focal areas of proximal tubular dilation, distal tubular casts, effacement and loss of proximal tubule brush border, etc. Compared with the sham group, the expression of HIF-1α and NGAL in the kidney tissues of the I/R group and the C. sinensis group increased. C. sinensis can lower the level of NAG and NGAL in the urine and the expression of NGAL protein in the kidney tissues. It up-regulated the expression of HIF-1α mRNA and protein in the kidney tissues whilst attenuated the pathological changes. Renal I/R injury in rats can lead to pathological changes in renal tubular epithelial cells and renal interstitial damage, which are consistent with the pathological features of acute kidney injury (AKI).The level of urinary NAGL increases after the I/R, and positively correlates with the level of urinary NAG and pathological changes, suggesting that urinary NGAL may serve as a urinary biomarker for specific detection of tubular injury in AKI. C. sinensis can attenuate the renal I/ R-induced AKI. Its mechanism may be associated with up-regulating the expression of HIF-1α and down-regulating the expression of NGAL in the kidney tissues.

  13. Ammonia transport in the kidney by Rhesus glycoproteins

    PubMed Central

    Verlander, Jill W.

    2014-01-01

    Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH3 and trapping of NH4+ with a new model in which specific and regulated transport of both NH3 and NH4+ across renal epithelial cell membranes via specific membrane proteins is required for normal ammonia metabolism. A major advance has been the recognition that members of a recently recognized transporter family, the Rhesus glycoprotein family, mediate critical roles in renal and extrarenal ammonia transport. The erythroid-specific Rhesus glycoprotein, Rh A Glycoprotein (Rhag), was the first Rhesus glycoprotein recognized as an ammonia-specific transporter. Subsequently, the nonerythroid Rh glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), were cloned and identified as ammonia transporters. They are expressed in specific cell populations and membrane domains in distal renal epithelial cells, where they facilitate ammonia secretion. In this review, we discuss the distribution of Rhbg and Rhcg in the kidney, the regulation of their expression and activity in physiological disturbances, the effects of genetic deletion on renal ammonia metabolism, and the molecular mechanisms of Rh glycoprotein-mediated ammonia transport. PMID:24647713

  14. IL-36α Regulates Tubulointerstitial Inflammation in the Mouse Kidney.

    PubMed

    Ichii, Osamu; Kimura, Junpei; Okamura, Tadashi; Horino, Taro; Nakamura, Teppei; Sasaki, Hayato; Elewa, Yaser Hosny Ali; Kon, Yasuhiro

    2017-01-01

    IL-36α, a member of the IL-1 family, is a crucial mediator of inflammatory responses. We previously found that IL-36α was overexpressed in injured distal tubules (DTs); however, its pathological function remains unclear. Herein, unilateral ureter obstruction (UUO) or folic acid (FA) injection was performed in mouse kidneys to assess the role of IL-36α in kidney injury. IL-36α mRNA and protein expression significantly increased in the kidneys within 24 h after UUO. IL-36α localized to dilated DTs. IL-36α expression significantly correlated with the progression of tubulointerstitial cell infiltration and tubular epithelium cell death in UUO kidneys and with renal dysfunction in FA-induced acute kidney injury mice. At 24 h after UUO, IL-36α + DT epithelial cells showed loose intercellular digitations. IL-1RL2, an IL-36α receptor protein, localized to podocytes, proximal tubules, and DTs in the healthy kidney. IL-1RL2 was expressed in interstitial cells and platelets or extended primary cilia of DT epithelial cells in UUO kidneys. IL-36α stimulation promoted the production of IL-6 and Prss35, an inflammatory cytokine and collagen remodeling-associated enzyme, respectively, in cultured NIH3T3 fibroblasts. UUO-treated IL-36α-knockout (KO) mice showed milder kidney injury features than wild-type (WT) mice did. In UUO kidneys from IL-36α-KO mice, the expression of genes associated with inflammatory response and sensory perception was significantly different from that in WT mice. Altogether, our data indicate an association between intrarenal IL-36α overexpression and the progression of tubulointerstitial inflammations and morpho-functional alterations of DT epithelial cells. IL-36α may be a novel kidney injury marker useful for evaluating DT damages.

  15. Application of small RNA sequencing to identify microRNAs in acute kidney injury and fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellegrini, Kathryn L.

    Establishing a microRNA (miRNA) expression profile in affected tissues provides an important foundation for the discovery of miRNAs involved in the development or progression of pathologic conditions. We conducted small RNA sequencing to generate a temporal profile of miRNA expression in the kidneys using a mouse model of folic acid-induced (250 mg/kg i.p.) kidney injury and fibrosis. From the 103 miRNAs that were differentially expressed over the time course (> 2-fold, p < 0.05), we chose to further investigate miR-18a-5p, which is expressed during the acute stage of the injury; miR-132-3p, which is upregulated during transition between acute and fibroticmore » injury; and miR-146b-5p, which is highly expressed at the peak of fibrosis. Using qRT-PCR, we confirmed the increased expression of these candidate miRNAs in the folic acid model as well as in other established mouse models of acute injury (ischemia/reperfusion injury) and fibrosis (unilateral ureteral obstruction). In situ hybridization confirmed high expression of miR-18a-5p, miR-132-3p and miR-146b-5p throughout the kidney cortex in mice and humans with severe kidney injury or fibrosis. When primary human proximal tubular epithelial cells were treated with model nephrotoxicants such as cadmium chloride (CdCl{sub 2}), arsenic trioxide, aristolochic acid (AA), potassium dichromate (K{sub 2}Cr{sub 2}O{sub 7}) and cisplatin, miRNA-132-3p was upregulated 4.3-fold after AA treatment and 1.5-fold after K{sub 2}Cr{sub 2}O{sub 7} and CdCl{sub 2} treatment. These results demonstrate the application of temporal small RNA sequencing to identify miR-18a, miR-132 and miR-146b as differentially expressed miRNAs during distinct phases of kidney injury and fibrosis progression. - Highlights: • We used small RNA sequencing to identify differentially expressed miRNAs in kidney. • Distinct patterns were found for acute injury and fibrotic stages in the kidney. • Upregulation of miR-18a, -132 and -146b was confirmed in mice and human kidneys.« less

  16. [Expression of A-type atrial natriuretic peptide receptor in the kidneys of renovascular hypertension rats and its implication].

    PubMed

    Liu, Rong-Tao; Xiao, Jing; Guo, Hui-Ling; Qiu, Dun-Guo; Yin, Hua-Hu; Wang, Zheng-Rong

    2005-11-01

    To investigate the expression of A-type atrial natriuretic peptide receptor (ANPR-A) in the kidneys of renovascular hypertension rats and evaluate the significance of the expression. The rat model of renovascular hypertension was produced by constricting one lateral renal artery. After the renal artery being constricted for 4 weeks and 8 weeks, the systolic BP of rats was measured with a manometer using the tail-cuff method. Then, the expression of ANPR-A was respectively detected by immunohistochemical technique in the kidneys of the two-kidney, one-clip (2K1C) rats, and the expression level of ANPR-A was semi-quantitatively measured by Mias-2000 computer image analyzer. At 4 weeks after the artery-constricted operation,the expression of ANPR-A increased significantly in 2K1C hypertensive rat glomeruli and decreased significantly in renal tubules, compared with control (P<0.01), but there was no marked change in medullar collecting tubules. At 8 weeks after the artery-constricted operation, the expression of ANPR-A decreased significantly in 2K1C hypertensive rat renal tubules and medullar collecting tubules, compared with control (P<0.01); however, there was weak expression in glomeruli, and no statistically significant difference was seen when compared with control (P>0.05). The expression of ANPR-A decreased significantly in kidney tissues of renovascular

  17. Expression of extracellular calcium (Ca2 + o)-sensing receptor in the clonal osteoblast-like cell lines, UMR-106 and SAOS-2

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Kifor, O.; Chattopadhyay, N.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    1998-01-01

    The calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays key roles in extracellular calcium ion (Ca2 + o) homeostasis in parathyroid gland and kidney. More recent data have suggested the presence of this receptor in additional tissues, such as brain, intestine and skin. In this study, we examined the expression of the CaR in the rat and human osteosarcoma cell lines, UMR-106 and SAOS-2, respectively, which possess osteoblast-like characteristics. Both immunocytochemistry and Western blot analysis, using a polyclonal antiserum specific for the CaR, detected CaR protein in UMR-106 and SAOS-2 cells. The use of reverse transcription-polymerase chain reaction (RT-PCR) with CaR-specific primers, followed by nucleotide sequencing of the amplified products, also identified CaR transcripts in each cell line. Therefore, taken together, our data strongly suggest that the osteoblast-like cell lines, UMR-106 and SAOS-2, possess both CaR protein and mRNA very similar if not identical to those in parathyroid and kidney.

  18. Renal expression of aminopeptidase A in rats with two-kidney, one-clip hypertension.

    PubMed

    Wolf, G; Wenzel, U; Assmann, K J; Stahl, R A

    2000-12-01

    Angiotensin II (ANG II) is a major factor involved in the progression of chronic renal disease. Although the generation of this vasoactive peptide has been investigated in great detail, only a few studies have hitherto addressed the metabolism of ANG II into fragments such as angiotensin III and IV (ANG III, IV) which may exert physiological effects independent of ANG II. Aminopeptidase A (APA) is the major enzyme degrading ANG II. The aim of the current study was to evaluate glomerular APA expression in rats with two-kidney, one-clip hypertension. The left renal artery was restricted with a 0.2-mm silver clip. Kidneys were harvested 1 and 4 weeks after surgery. APA enzyme and protein expression was evaluated in kidney sections. Total APA enzyme activity and mRNA expression was assessed in isolated glomeruli. Degradation of exogenous ANG II by isolated glomeruli was measured with reverse-phase high-performance liquid chromatography. APA enzyme activity, protein, and mRNA expression were stimulated in the clipped kidney 1 week after surgery compared with the contralateral kidney or normal controls. In contrast, 4 weeks after clipping APA activity and expression was higher in the contralateral kidney. In parallel to these findings, degradation of ANG II was greatest in isolated glomeruli obtained from the clipped kidney after 1 week. However, preparations from the contralateral kidney 4 weeks after surgery were more active in the metabolism of exogenous ANG II. The present study provides evidence that APA is complexly regulated in in vivo situations with an activated local renin-ANG II system. ANG II appears to play a direct role in this regulation. However, since conversion of ANG II to ANG III by APA is the initial step leading to the formation of ANG IV which may exert detrimental effects not mediated through classical ANG II receptors, a local increase in APA activity may contribute to the progression of chronic renal disease even during complete AT(1)-receptor blockade.

  19. Expression of a novel isoform of Na+/H+ exchanger 3 in the kidney and intestine of banded houndshark, Triakis scyllium

    PubMed Central

    Li, Shanshan; Takabe, Souichirou; Chen, An-Ping; Romero, Michael F.; Umezawa, Takahiro; Nakada, Tsutomu; Hyodo, Susumu; Hirose, Shigehisa

    2013-01-01

    Na+/H+ exchanger 3 (NHE3) provides one of the major Na+ absorptive pathways of the intestine and kidney in mammals, and recent studies of aquatic vertebrates (teleosts and elasmobranchs) have demonstrated that NHE3 is expressed in the gill and plays important roles in ion and acid-base regulation. To understand the role of NHE3 in elasmobranch osmoregulatory organs, we analyzed renal and intestinal expressions and localizations of NHE3 in a marine elasmobranch, Japanese banded houndshark (Triakis scyllium). mRNA for Triakis NHE3 was most highly expressed in the gill, kidney, spiral intestine, and rectum. The kidney and intestine expressed a transcriptional isoform of NHE3 (NHE3k/i), which has a different amino terminus compared with that of NHE3 isolated from the gill (NHE3g), suggesting that NHE3k/i and NHE3g arise from a single gene by alternative promoter usage. Immunohistochemical analyses of the Triakis kidney demonstrated that NHE3k/i is expressed in the apical membrane of a part of the proximal and late distal tubules in the sinus zone. In the bundle zone of the kidney, NHE3k/i was expressed in the apical membrane of the early distal tubules known as the diluting segment. In the spiral intestine and rectum, NHE3k/i was localized toward the apical membrane of the epithelial cells. The transcriptional levels of NHE3k/i were increased in the kidney when Triakis was acclimated in 130% seawater, whereas those in the spiral intestine were increased in fish acclimated in diluted seawater. These results suggest that NHE3 is involved in renal Na+ reabsorption, urine acidification, and intestinal Na+ absorption in elasmobranchs. PMID:23485868

  20. JBP485 improves gentamicin-induced acute renal failure by regulating the expression and function of Oat1 and Oat3 in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xinjin; Meng, Qiang; Liu, Qi

    2013-09-01

    We investigated the effects of JBP485 (an anti-inflammatory dipeptide and a substrate of OAT) on regulation of the expression and function of renal Oat1 and Oat3, which can accelerate the excretion of accumulated uremic toxins (e.g. indoxyl sulfate) in the kidney to improve gentamicin-induced ARF in rats. JBP485 caused a significant decrease in the accumulation of endogenous substances (creatinine, blood urea nitrogen and indoxyl sulfate) in vivo, an increase in the excretion of exogenous compounds (lisinopril and inulin) into urine, and up-regulation of the expressions of renal Oat1 and Oat3 in the kidney tissues and slices via substrate induction. Tomore » determine the effect of JBP485 on the accelerated excretion of uremic toxins mediated by Oat1 and Oat3, the mRNA and protein expression levels of renal basolateral Oats were assessed by quantitative real-time PCR, western blot, immunohistochemical analysis and an immunofluorescence method. Gentamicin down-regulated the expression of Oats mRNA and protein in rat kidney, and these effects were reversed after administration of JBP485. In addition, JBP485 caused a significant decrease in MPO and MDA levels in the kidney, and improved the pathological condition of rat kidney. These results indicated that JBP485 improved acute renal failure by increasing the expression and function of Oat1 and Oat3, and by decreasing overoxidation of the kidney in gentamicin-induced ARF rats. - Highlights: • JBP485 could up-regulate function and expression of Oat1 and Oat3 in kidney. • Effects of JBP485 on ARF are mediated by stimulating excretion of uremic toxins. • JBP485 protected against gentamicin-induced ARF by decreasing MPO and MDA.« less

  1. ACE2 alterations in kidney disease.

    PubMed

    Soler, María José; Wysocki, Jan; Batlle, Daniel

    2013-11-01

    Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase that degrades angiotensin (Ang) II to Ang-(1-7). ACE2 is highly expressed within the kidneys, it is largely localized in tubular epithelial cells and less prominently in glomerular epithelial cells and in the renal vasculature. ACE2 activity has been shown to be altered in diabetic kidney disease, hypertensive renal disease and in different models of kidney injury. There is often a dissociation between tubular and glomerular ACE2 expression, particularly in diabetic kidney disease where ACE2 expression is increased at the tubular level but decreased at the glomerular level. In this review, we will discuss alterations in circulating and renal ACE2 recently described in different renal pathologies and disease models as well as their possible significance.

  2. ACE2 alterations in kidney disease

    PubMed Central

    Soler, María José; Wysocki, Jan; Batlle, Daniel

    2013-01-01

    Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase that degrades angiotensin (Ang) II to Ang-(1–7). ACE2 is highly expressed within the kidneys, it is largely localized in tubular epithelial cells and less prominently in glomerular epithelial cells and in the renal vasculature. ACE2 activity has been shown to be altered in diabetic kidney disease, hypertensive renal disease and in different models of kidney injury. There is often a dissociation between tubular and glomerular ACE2 expression, particularly in diabetic kidney disease where ACE2 expression is increased at the tubular level but decreased at the glomerular level. In this review, we will discuss alterations in circulating and renal ACE2 recently described in different renal pathologies and disease models as well as their possible significance. PMID:23956234

  3. Organ-specific carboxylesterase profiling identifies the small intestine and kidney as major contributors of activation of the anticancer prodrug CPT-11

    PubMed Central

    Hatfield, M. Jason; Tsurkan, Lyudmila; Garrett, Michael; Shaver, Timothy M.; Hyatt, Janice L.; Edwards, Carol C.; Hicks, Latorya D.; Potter, Philip M.

    2010-01-01

    The activation of the anticancer prodrug CPT-11, to its active metabolite SN-38, is primarily mediated by carboxylesterases (CE). In humans, three CEs have been identified, of which human liver CE (hCE1; CES1) and human intestinal CE (hiCE; CES2) demonstrate significant ability to hydrolyze the drug. However, while the kinetic parameters of CPT-11 hydrolysis have been measured, the actual contribution of each enzyme to activate the drug in biological samples has not been addressed. Hence, we have used a combination of specific CE inhibition and conventional chromatographic techniques to determine the amounts, and hydrolytic activity, of CEs present within human liver, kidney, intestinal and lung specimens. These studies confirm that hiCE demonstrates the most efficient kinetic parameters for CPT-11 activation, however, due to the high levels of hCE1 that are expressed in liver, the latter enzyme can contribute up to 50% of the total of drug hydrolysis in this tissue. Conversely, in human duodenum, jejunum, ileum and kidney, where hCE1 expression is very low, greater than 99% of the conversion of CPT-11 to SN-38 was mediated by hiCE. Furthermore, analysis of lung microsomal extracts indicated that CPT-11 activation was more proficient in samples obtained from smokers. Overall, our studies demonstrate that hCE1 plays a significant role in CPT-11 hydrolysis even though it is up to 100-fold less efficient at drug activation than hiCE, and that drug activation in the intestine and kidney are likely major contributors to SN-38 production in vivo. PMID:20833148

  4. High homocysteine induces betaine depletion

    PubMed Central

    Imbard, Apolline; Benoist, Jean-François; Esse, Ruben; Gupta, Sapna; Lebon, Sophie; de Vriese, An S; de Baulny, Helene Ogier; Kruger, Warren; Schiff, Manuel; Blom, Henk J.

    2015-01-01

    Betaine is the substrate of the liver- and kidney-specific betaine-homocysteine (Hcy) methyltransferase (BHMT), an alternate pathway for Hcy remethylation. We hypothesized that BHMT is a major pathway for homocysteine removal in cases of hyperhomocysteinaemia (HHcy). Therefore, we measured betaine in plasma and tissues from patients and animal models of HHcy of genetic and acquired cause. Plasma was collected from patients presenting HHcy without any Hcy interfering treatment. Plasma and tissues were collected from rat models of HHcy induced by diet and from a mouse model of cystathionine β-synthase (CBS) deficiency. S-adenosyl-methionine (AdoMet), S-adenosyl-homocysteine (AdoHcy), methionine, betaine and dimethylglycine (DMG) were quantified by ESI—LC–MS/MS. mRNA expression was quantified using quantitative real-time (QRT)-PCR. For all patients with diverse causes of HHcy, plasma betaine concentrations were below the normal values of our laboratory. In the diet-induced HHcy rat model, betaine was decreased in all tissues analysed (liver, brain, heart). In the mouse CBS deficiency model, betaine was decreased in plasma, liver, heart and brain, but was conserved in kidney. Surprisingly, BHMT expression and activity was decreased in liver. However, in kidney, BHMT and SLC6A12 expression was increased in CBS-deficient mice. Chronic HHcy, irrespective of its cause, induces betaine depletion in plasma and tissues (liver, brain and heart), indicating a global decrease in the body betaine pool. In kidney, betaine concentrations were not affected, possibly due to overexpression of the betaine transporter SLC6A12 where betaine may be conserved because of its crucial role as an osmolyte. PMID:26182429

  5. High homocysteine induces betaine depletion.

    PubMed

    Imbard, Apolline; Benoist, Jean-François; Esse, Ruben; Gupta, Sapna; Lebon, Sophie; de Vriese, An S; de Baulny, Helene Ogier; Kruger, Warren; Schiff, Manuel; Blom, Henk J

    2015-04-28

    Betaine is the substrate of the liver- and kidney-specific betaine-homocysteine (Hcy) methyltransferase (BHMT), an alternate pathway for Hcy remethylation. We hypothesized that BHMT is a major pathway for homocysteine removal in cases of hyperhomocysteinaemia (HHcy). Therefore, we measured betaine in plasma and tissues from patients and animal models of HHcy of genetic and acquired cause. Plasma was collected from patients presenting HHcy without any Hcy interfering treatment. Plasma and tissues were collected from rat models of HHcy induced by diet and from a mouse model of cystathionine β-synthase (CBS) deficiency. S-adenosyl-methionine (AdoMet), S-adenosyl-homocysteine (AdoHcy), methionine, betaine and dimethylglycine (DMG) were quantified by ESI-LC-MS/MS. mRNA expression was quantified using quantitative real-time (QRT)-PCR. For all patients with diverse causes of HHcy, plasma betaine concentrations were below the normal values of our laboratory. In the diet-induced HHcy rat model, betaine was decreased in all tissues analysed (liver, brain, heart). In the mouse CBS deficiency model, betaine was decreased in plasma, liver, heart and brain, but was conserved in kidney. Surprisingly, BHMT expression and activity was decreased in liver. However, in kidney, BHMT and SLC6A12 expression was increased in CBS-deficient mice. Chronic HHcy, irrespective of its cause, induces betaine depletion in plasma and tissues (liver, brain and heart), indicating a global decrease in the body betaine pool. In kidney, betaine concentrations were not affected, possibly due to overexpression of the betaine transporter SLC6A12 where betaine may be conserved because of its crucial role as an osmolyte. © 2015 Author(s).

  6. Defining the Molecular Character of the Developing and Adult Kidney Podocyte

    PubMed Central

    Brunskill, Eric W.; Georgas, Kylie; Rumballe, Bree; Little, Melissa H.; Potter, S. Steven

    2011-01-01

    Background The podocyte is a remarkable cell type, which encases the capillaries of the kidney glomerulus. Although mesodermal in origin it sends out axonal like projections that wrap around the capillaries. These extend yet finer projections, the foot processes, which interdigitate, leaving between them the slit diaphragms, through which the glomerular filtrate must pass. The podocytes are a subject of keen interest because of their key roles in kidney development and disease. Methodology/Principal Findings In this report we identified and characterized a novel transgenic mouse line, MafB-GFP, which specifically marked the kidney podocytes from a very early stage of development. These mice were then used to facilitate the fluorescent activated cell sorting based purification of podocytes from embryos at E13.5 and E15.5, as well as adults. Microarrays were then used to globally define the gene expression states of podocytes at these different developmental stages. A remarkable picture emerged, identifying the multiple sets of genes that establish the neuronal, muscle, and phagocytic properties of podocytes. The complete combinatorial code of transcription factors that create the podocyte was characterized, and the global lists of growth factors and receptors they express were defined. Conclusions/Significance The complete molecular character of the in vivo podocyte is established for the first time. The active molecular functions and biological processes further define their unique combination of features. The results provide a resource atlas of gene expression patterns of developing and adult podocytes that will help to guide further research of these incredible cells. PMID:21931791

  7. Schistosoma mansoni infection causes oxidative stress and alters receptor for advanced glycation endproduct (RAGE) and tau levels in multiple organs in mice.

    PubMed

    de Oliveira, Ramatis Birnfeld; Senger, Mario Roberto; Vasques, Laura Milan; Gasparotto, Juciano; dos Santos, João Paulo Almeida; Pasquali, Matheus Augusto de Bittencourt; Moreira, José Claudio Fonseca; Silva, Floriano Paes; Gelain, Daniel Pens

    2013-04-01

    Schistosomiasis is a parasitic disease caused by trematode worms from the Schistosoma genus and is characterized by high rates of morbidity. The main organs affected in this pathology, such as liver, kidneys and spleen, are shifted to a pro-oxidant state in the course of the infection. Here, we compared oxidative stress parameters of liver, kidney and spleen with other organs affected by schistosomiasis - heart, brain cortex and lungs. The results demonstrated that mice infected with Schistosoma mansoni had altered non-enzymatic antioxidant status in lungs and brain, increased carbonyl levels in lungs, and a moderate level of oxidative stress in heart. A severe redox imbalance in liver and kidneys and decreased non-enzymatic antioxidant capacity in spleen were also observed. Superoxide dismutase and catalase activities were differently modulated in liver, kidney and heart, and we found that differences in Superoxide dismutase 2 and catalase protein content may be responsible for these differences. Lungs had decreased receptor for advanced glycation endproduct expression and the brain cortex presented altered tau expression and phosphorylation levels, suggesting important molecular changes in these tissues, as homeostasis of these proteins is widely associated with the normal function of their respective organs. We believe that these results demonstrate for the first time that changes in the redox profile and expression of tissue-specific proteins of organs such as heart, lungs and brain are observed in early stages of S. mansoni infection. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  8. A variant in a cis-regulatory element enhances claudin-14 expression and is associated with pediatric-onset hypercalciuria and kidney stones.

    PubMed

    Ure, Megan E; Heydari, Emma; Pan, Wanling; Ramesh, Ajay; Rehman, Sabah; Morgan, Catherine; Pinsk, Maury; Erickson, Robin; Herrmann, Johannes M; Dimke, Henrik; Cordat, Emmanuelle; Lemaire, Mathieu; Walter, Michael; Alexander, R Todd

    2017-06-01

    The greatest risk factor for kidney stones is hypercalciuria, the etiology of which is largely unknown. A recent genome-wide association study (GWAS) linked hypercalciuria and kidney stones to a claudin-14 (CLDN14) risk haplotype. However, the underlying molecular mechanism was not delineated. Recently, renal CLDN14 expression was found to increase in response to increased plasma calcium, thereby inducing calciuria. We hypothesized therefore that some children with hypercalciuria and kidney stones harbor a CLDN14 variant that inappropriately increases gene expression. To test this hypothesis, we sequenced the CLDN14 risk haplotype in a cohort of children with idiopathic hypercalciuria and kidney stones. An intronic SNP was more frequent in affected children. Dual luciferase and cell-based assays demonstrated increased reporter or CLDN14 expression when this polymorphism was introduced. In silico studies predicted the SNP introduced a novel insulinoma-associated 1 (INSM1) transcription factor binding site. Consistent with this, repeating the dual luciferase assay in the presence of INSM1 further increased reporter expression. Our data suggest that children with the INSM1 binding site within the CLDN14 risk haplotype have a higher likelihood of hypercalciuria and kidney stones. Enhanced CLDN14 expression may play a role in the pathophysiology of their hypercalciuria. © 2017 Wiley Periodicals, Inc.

  9. Effect of systemic administration of lipopolysaccharides derived from Porphyromonas gingivalis on gene expression in mice kidney.

    PubMed

    Harada, Fumiya; Uehara, Osamu; Morikawa, Tetsuro; Hiraki, Daichi; Onishi, Aya; Toraya, Seiko; Adhikari, Bhoj Raj; Takai, Rie; Yoshida, Koki; Sato, Jun; Nishimura, Michiko; Chiba, Itsuo; Wu, Ching Zong; Abiko, Yoshihiro

    2018-01-31

    Although an association between periodontitis and chronic kidney disease (CKD) has been suggested, the mechanism involved remains unclear. Herein, we examined the global gene expression profile in a mouse model that showed no acute inflammation in the kidney following stimulation with lipopolysaccharides (LPS) derived from Porphyromonas gingivalis (PG-LPS). The mice were injected with PG-LPS at a concentration of 5 mg/kg intraperitoneally, every 3 days, for 1 month. Microarray analysis was used to identify 10 genes with the highest expression levels in the kidney stimulated with PG-LPS. Among them, the functions of five genes (Saa3, Ticam2, Reg3b, Ocxt2a, and Xcr1) were known. The upregulation of these genes was confirmed by quantitative polymerase chain reaction assay. Furthermore, we examined whether the expression of these upregulated genes were altered in endothelial cells derived from the kidney, in vitro. The mRNA expression levels of all five genes were significantly higher in the experimental group than in the controls (no LPS stimulation; *p < 0.05). In conclusion, the responses noted in the kidney may have arisen mainly from the endothelial cells. Moreover, upregulation of the expression levels of Saa3, Ticam2, Reg3b, Ocxt2a, and Xcr1 may be associated with the pathogenesis of CKD.

  10. Hyperactivation of Akt/mTOR and deficiency in tuberin increased the oxidative DNA damage in kidney cancer patients with diabetes

    PubMed Central

    Habib, Samy L.; Liang, Sitai

    2014-01-01

    Recent study from our laboratory showed that patients with diabetes are at a higher risk of developing kidney cancer. In the current study, we have explored one of the mechanisms by which diabetes accelerates tumorigenesis in the kidney. Kidney cancer tissue from patients with diabetes showed a higher activity of Akt and decreased in total protein of tuberin compared to kidney cancer patient without diabetes or diabetes alone. In addition, a significant increase in phospho-Akt/tuberin expression was associated with an increase in Ki67 expression and activation of mTOR in kidney tumor with or without diabetes compared to diabetes alone. In addition, decrease in tuberin expression resulted in a significant decrease in protein expression of OGG1 and increased in oxidative DNA damage, 8-oxodG in kidney tissues from patients with cancer or cancer+diabetes. Importantly, these data showed that the majority of the staining of Akt/tuberin/p70S6K phosphorylation was more prominently in the tubular cells. In addition, accumulation of oxidative DNA damage is localized only in the nucleus of tubular cells within the cortex region. These data suggest that Akt/tuberin/mTOR pathway plays an important role in the regulation DNA damage and repair pathways that may predispose diabetic kidneys to pathogenesis of renal cell carcinoma. PMID:24797175

  11. The effect of high protein diet and exercise on irisin, eNOS, and iNOS expressions in kidney.

    PubMed

    Tastekin, Ebru; Palabiyik, Orkide; Ulucam, Enis; Uzgur, Selda; Karaca, Aziz; Vardar, Selma Arzu; Yilmaz, Ali; Aydogdu, Nurettin

    2016-08-01

    Long-term effects of high protein diets (HPDs) on kidneys are still not sufficiently studied. Irisin which increases oxygen consumption and thermogenesis in white fat cells was shown in skeletal muscles and many tissues. Nitric oxide synthases (NOS) are a family of enzymes catalyzing the production of nitric oxide (NO) from L-arginine. We aimed to investigate the effects of HPD, irisin and NO expression in kidney and relation of them with exercise and among themselves. Animals were grouped as control, exercise, HPD and exercise combined with HPD (exercise-HPD). Rats were kept on a HPD for 5 weeks and an exercise program was given them as 5 exercise and 2 rest days per week exercising on a treadmill with increasing speed and angle. In our study, while HPD group had similar total antioxidant capacity (TAC) levels with control group, exercise and exercise-HPD groups had lower levels (p < 0.05). Kidneys of exercising rats had no change in irisin or eNOS expression but their iNOS expression had increased (p < 0.001). HPD-E group has not been observed to cause kidney damage and not have a significant effect on rat kidney irisin, eNOS, or iNOS expression. Localization of irisin, eNOS, and iNOS staining in kidney is highly selective and quite clear in this study. Effects of exercise and HPD on kidney should be evaluated with different exercise protocols and contents of the diet. İrisin, eNOS, and iNOS staining localizations should be supported with various research studies.

  12. Regulation of cyclic adenosine monophosphate response element binding protein on renin expression in kidney via complex cyclic adenosine monophosphate response element-binding-protein-binding protein/P300 recruitment.

    PubMed

    Li, Pei; Zhang, Jing; Zhu, Yuanfang; Liu, Ming; Xuan, Jin

    2015-11-01

    Renin synthesis and release is the rate-limiting step in the renin-angiotensin system, because cyclic adenosine monophosphate (cAMP) has been identified as dominant pathway for renin gene expression, and cAMP response element-binding protein (CREB) is found in the human and mouse renin promoter. This study aimed to evaluate the role of CREB in expression of the renin gene. We created conditional deletion of CREB in mice with low-sodium diet, specifically in renin cells of the kidney. To assess the effect of CREB on renin expression, immunostaining of renin was used in samples from wild-type mice and mice with gene knock-down of CREB. Cyclic AMP response element-binding-protein-binding protein (CBP) and p300 were measured in cultured renin cells of the mice, and RNA detection was done with real-time polymerase chain reaction. With low-sodium diet, renin was expressed along the whole wall of the afferent glomerular arterioles in wild-type mice, while there was no increase or even decrease in renin expression in CREB-specific deletion mice; RNA level of renin in cultured cells decreased by 50% with single knock-down of CREB, CBP, or p300, and decreased 70% with triple knock-down of CREB, CBP, and p300. This study found that CREB was important for renin synthesis and the role of CREB can be achieved through the recruitment of co-activators CBP and p300.

  13. Tissue-specific selection of stable reference genes for real-time PCR normalization in an obese rat model.

    PubMed

    Cabiati, Manuela; Raucci, Serena; Caselli, Chiara; Guzzardi, Maria Angela; D'Amico, Andrea; Prescimone, Tommaso; Giannessi, Daniela; Del Ry, Silvia

    2012-06-01

    Obesity is a complex pathology with interacting and confounding causes due to the environment, hormonal signaling patterns, and genetic predisposition. At present, the Zucker rat is an eligible genetic model for research on obesity and metabolic syndrome, allowing scrutiny of gene expression profiles. Real-time PCR is the benchmark method for measuring mRNA expressions, but the accuracy and reproducibility of its data greatly depend on appropriate normalization strategies. In the Zucker rat model, no specific reference genes have been identified in myocardium, kidney, and lung, the main organs involved in this syndrome. The aim of this study was to select among ten candidates (Actb, Gapdh, Polr2a, Ywhag, Rpl13a, Sdha, Ppia, Tbp, Hprt1 and Tfrc) a set of reference genes that can be used for the normalization of mRNA expression data obtained by real-time PCR in obese and lean Zucker rats both at fasting and during acute hyperglycemia. The most stable genes in the heart were Sdha, Tbp, and Hprt1; in kidney, Tbp, Actb, and Gapdh were chosen, while Actb, Ywhag, and Sdha were selected as the most stably expressed set for pulmonary tissue. The normalization strategy was used to analyze mRNA expression of tumor necrosis factor α, the main inflammatory mediator in obesity, whose variations were more significant when normalized with the appropriately selected reference genes. The findings obtained in this study underline the importance of having three stably expressed reference gene sets for use in the cardiac, renal, and pulmonary tissues of an experimental model of obese and hyperglycemic Zucker rats.

  14. MicroRNAs 223-3p and 93-5p in patients with chronic kidney disease before and after renal transplantation.

    PubMed

    Ulbing, M; Kirsch, A H; Leber, B; Lemesch, S; Münzker, J; Schweighofer, N; Hofer, D; Trummer, O; Rosenkranz, A R; Müller, H; Eller, K; Stadlbauer, V; Obermayer-Pietsch, B

    2017-02-01

    Chronic kidney disease (CKD) is associated with a multifactorial dysregulation of bone and vascular calcification and closely linked to increased cardiovascular mortality and concomitant bone disease. We aimed to investigate specific microRNA (miRNA) signatures in CKD patients to find indicators for vascular calcification and/or bone mineralization changes during CKD and after kidney transplantation (KT). A miRNA array was used to investigate serum miRNA profiles in CKD patients, then selected miRNAs were quantified in a validation cohort comprising 73 patients in CKD stages 3 to 5, 67 CKD patients after KT, and 36 healthy controls. A spectrum of biochemical parameters including markers for kidney function, inflammation, glucose, and mineral metabolism was determined. The relative expression of miR-223-3p and miR-93-5p was down-regulated in patients with CKD stage 4 and 5 compared to healthy controls. This down-regulation disappeared after kidney transplantation even when lower glomerular filtration rates (eGFR) persisted. MiR-223-3p and miR-93-5p were associated with interleukin-6 (IL-6) and eGFR levels, and by trend with interleukin-8 (IL-8), C-peptide, hematocrit, and parathyroid hormone (PTH). This study contributes new knowledge of serum miRNA expression profiles in CKD, potentially reflecting pathophysiological changes of bone and calcification pathways associated with inflammation, vascular calcification, mineral and glucose metabolism. Identified miRNA signatures can contribute to future risk markers or future therapeutic targets in bone and kidney disease. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Macrophage Phenotype Controls Long-Term AKI Outcomes—Kidney Regeneration versus Atrophy

    PubMed Central

    Gröbmayr, Regina; Ryu, Mi; Lorenz, Georg; Hartter, Ingo; Mulay, Shrikant R.; Susanti, Heni Eka; Kobayashi, Koichi S.; Flavell, Richard A.; Anders, Hans-Joachim

    2014-01-01

    The mechanisms that determine full recovery versus subsequent progressive CKD after AKI are largely unknown. Because macrophages regulate inflammation as well as epithelial recovery, we investigated whether macrophage activation influences AKI outcomes. IL-1 receptor–associated kinase-M (IRAK-M) is a macrophage-specific inhibitor of Toll-like receptor (TLR) and IL-1 receptor signaling that prevents polarization toward a proinflammatory phenotype. In postischemic kidneys of wild-type mice, IRAK-M expression increased for 3 weeks after AKI and declined thereafter. However, genetic depletion of IRAK-M did not affect immunopathology and renal dysfunction during early postischemic AKI. Regarding long-term outcomes, wild-type kidneys regenerated completely within 5 weeks after AKI. In contrast, IRAK-M−/− kidneys progressively lost up to two-thirds of their original mass due to tubule loss, leaving atubular glomeruli and interstitial scarring. Moreover, M1 macrophages accumulated in the renal interstitial compartment, coincident with increased expression of proinflammatory cytokines and chemokines. Injection of bacterial CpG DNA induced the same effects in wild-type mice, and TNF-α blockade with etanercept partially prevented renal atrophy in IRAK-M−/− mice. These results suggest that IRAK-M induction during the healing phase of AKI supports the resolution of M1 macrophage– and TNF-α–dependent renal inflammation, allowing structural regeneration and functional recovery of the injured kidney. Conversely, IRAK-M loss-of-function mutations or transient exposure to bacterial DNA may drive persistent inflammatory mononuclear phagocyte infiltrates, which impair kidney regeneration and promote CKD. Overall, these results support a novel role for IRAK-M in the regulation of wound healing and tissue regeneration. PMID:24309188

  16. Early activation of deleterious molecular pathways in the kidney in experimental heart failure with atrial remodeling.

    PubMed

    Ichiki, Tomoko; Huntley, Brenda K; Harty, Gail J; Sangaralingham, S Jeson; Burnett, John C

    2017-05-01

    Heart failure (HF) is a major health problem with worsening outcomes when renal impairment is present. Therapeutics for early phase HF may be effective for cardiorenal protection, however the detailed characteristics of the kidney in early-stage HF (ES-HF), and therefore treatment for potential renal protection, are poorly defined. We sought to determine the gene and protein expression profiles of specific maladaptive pathways of ES-HF in the kidney and heart. Experimental canine ES-HF, characterized by de-novo HF with atrial remodeling but not ventricular fibrosis, was induced by right ventricular pacing for 10 days. Kidney cortex (KC), medulla (KM), left ventricle (LV), and left atrial (LA) tissues from ES-HF versus normal canines ( n  = 4 of each) were analyzed using RT-PCR microarrays and protein assays to assess genes and proteins related to inflammation, renal injury, apoptosis, and fibrosis. ES-HF was characterized by increased circulating natriuretic peptides and components of the renin-angiotensin-aldosterone system and decreased sodium and water excretion with mild renal injury and up-regulation of CNP and renin genes in the kidney. Compared to normals, widespread genes, especially genes of the inflammatory pathways, were up-regulated in KC similar to increases seen in LA Protein expressions related to inflammatory cytokines were also augmented in the KC Gene and protein changes were less prominent in the LV and KM The ES-HF displayed mild renal injury with widespread gene changes and increased inflammatory cytokines. These changes may provide important clues into the pathophysiology of ES-HF and for therapeutic molecular targets in the kidney of ES-HF. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  17. Fell-Muir lecture: connective tissue growth factor (CCN2) – a pernicious and pleiotropic player in the development of kidney fibrosis

    PubMed Central

    Mason, Roger M

    2013-01-01

    Connective tissue growth factor (CTGF, CCN2) is a member of the CCN family of matricellular proteins. It interacts with many other proteins, including plasma membrane proteins, modulating cell function. It is expressed at low levels in normal adult kidney cells but is increased in kidney diseases, playing important roles in inflammation and in the development of glomerular and interstitial fibrosis in chronic disease. This review reports the evidence for its expression in human and animal models of chronic kidney disease and summarizes data showing that anti-CTGF therapy can successfully attenuate fibrotic changes in several such models, suggesting that therapies targeting CTGF and events downstream of it in renal cells may be useful for the treatment of human kidney fibrosis. Connective tissue growth factor stimulates the development of fibrosis in the kidney in many ways including activating cells to increase extracellular matrix synthesis, inducing cell cycle arrest and hypertrophy, and prolonging survival of activated cells. The relationship between CTGF and the pro-fibrotic factor TGFβ is examined and mechanisms by which CTGF promotes signalling by the latter are discussed. No specific cellular receptors for CTGF have been discovered but it interacts with and activates several plasma membrane proteins including low-density lipoprotein receptor-related protein (LRP)-1, LRP-6, tropomyosin-related kinase A, integrins and heparan sulphate proteoglycans. Intracellular signalling and downstream events triggered by such interactions are reviewed. Finally, the relationships between CTGF and several anti-fibrotic factors, such as bone morphogenetic factor-4 (BMP4), BMP7, hepatocyte growth factor, CCN3 and Oncostatin M, are discussed. These may determine whether injured tissue heals or progresses to fibrosis. PMID:23110747

  18. Gene Expression and Pathway Analysis of Effects of the CMAH Deactivation on Mouse Lung, Kidney and Heart

    PubMed Central

    Kwon, Deug-Nam; Chang, Byung-Soo; Kim, Jin-Hoi

    2014-01-01

    Background N-glycolylneuraminic acid (Neu5Gc) is generated by hydroxylation of CMP-Neu5Ac to CMP-Neu5Gc, catalyzed by CMP-Neu5Ac hydroxylase (CMAH). However, humans lack this common mammalian cell surface molecule, Neu5Gc, due to inactivation of the CMAH gene during evolution. CMAH is one of several human-specific genes whose function has been lost by disruption or deletion of the coding frame. It has been suggested that CMAH inactivation has resulted in biochemical or physiological characteristics that have resulted in human-specific diseases. Methodology/Principal Findings To identify differential gene expression profiles associated with the loss of Neu5Gc expression, we performed microarray analysis using Illumina MouseRef-8 v2 Expression BeadChip, using the main tissues (lung, kidney, and heart) from control mice and CMP-Neu5Ac hydroxylase (Cmah) gene knock-out mice, respectively. Out of a total of 25,697 genes, 204, 162, and 147 genes were found to be significantly modulated in the lung, kidney, and heart tissues of the Cmah null mouse, respectively. In this study, we examined the gene expression profiles, using three commercial pathway analysis software packages: Ingenuity Pathways Analysis, Kyoto Encyclopedia of Genes and Genomes analysis, and Pathway Studio. The gene ontology analysis revealed that the top 6 biological processes of these genes included protein metabolism and modification, signal transduction, lipid, fatty acid, and steroid metabolism, nucleoside, nucleotide and nucleic acid metabolism, immunity and defense, and carbohydrate metabolism. Gene interaction network analysis showed a common network that was common to the different tissues of the Cmah null mouse. However, the expression of most sialytransferase mRNAs of Hanganutziu-Deicher antigen, sialy-Tn antigen, Forssman antigen, and Tn antigen was significantly down-regulated in the liver tissue of Cmah null mice. Conclusions/Significance Mice bearing a human-like deletion of the Cmah gene serve as an important model for the study of abnormal pathogenesis and/or metabolism caused by the evolutionary loss of Neu5Gc synthesis in humans. PMID:25229777

  19. Utility of HLA Antibody Testing in Kidney Transplantation

    PubMed Central

    Konvalinka, Ana

    2015-01-01

    HLA antigens are polymorphic proteins expressed on donor kidney allograft endothelium and are critical targets for recipient immune recognition. HLA antibodies are risk factors for acute and chronic rejection and allograft loss. Solid-phase immunoassays for HLA antibody detection represent a major advance in sensitivity and specificity over cell-based methods and are widely used in organ allocation and pretransplant risk assessment. Post-transplant, development of de novo donor–specific HLA antibodies and/or increase in donor-specific antibodies from pretransplant levels are associated with adverse outcomes. Although single antigen bead assays have allowed sensitive detection of recipient HLA antibodies and their specificities, a number of interpretive considerations must be appreciated to understand test results in clinical and research contexts. This review, which is especially relevant for clinicians caring for transplant patients, discusses the technical aspects of single antigen bead assays, emphasizes their quantitative limitations, and explores the utility of HLA antibody testing in identifying and managing important pre- and post-transplant clinical outcomes. PMID:25804279

  20. Insight into mechanism of oxidative DNA damage in angiomyolipomas from TSC patients

    PubMed Central

    Habib, Samy L

    2009-01-01

    Background The tuberous sclerosis complex (TSC) is caused by defects in one of two tumor suppressor genes, TSC-1 or TSC-2. TSC-2 gene encodes tuberin, a protein involved in the pathogenesis of kidney tumors, both angiomyolipomas and renal cell carcinomas. Loss of heterozygosity at the 8-oxoG-DNA glycosylase (OGG1) allele is found in human kidney clear cell carcinoma identifying loss of OGG1 function as a possible contributor to tumorigenesis in the kidney. Tuberin regulates OGG1 through the transcription factor NF-YA in cultured cells. The purpose of this study is to determine the effect of tuberin-deficiency on OGG1 protein and mRNA levels as well as on 8-oxodG levels in kidney tumors from patients with TSC. In addition we evaluated the phophorylation level of downstream targets of mTOR, phospho-S70K, in kidney tumor tissue from TSC patients. Results Kidney angiomyolipoma tissue from TSC patients expresses significant levels of phopho-tuberin and low levels of tuberin compared to control kidney tissue. The increase in tuberin phosphorylation and the decrease tuberin expression are associated with decrease in OGG1 protein and mRNA levels in tumor samples compared to normal kidney samples. The decrease OGG1 expression is also associated with significant decrease in the transcription factor, NF-YA, expression in tumor samples compared to normal tissues. In addition, the levels of 8-oxodG are 4-fold higher in tumors compared to control samples. The significant increase of phospho-tuberin expression is associated with increase phosphorylation of S6K in tumor samples compared to controls. Cyclin D1 expression is also 3-fold higher in increase in the tumor tissues compared to normal kidney tissues. Conclusion These data indicate that tuberin deficiency in angiomyolipoma enhances mTOR activation by phosphorylation of S6K and downregulation of protein and mRNA expression of OGG1 resulted in accumulation of oxidized DNA in patients with TSC. These data suggest that tuberin and OGG1 are important proteins in the pathogenesis of angiomyolipoma in TSC patients. PMID:19265534

  1. Specific regions of the brain are capable of fructose metabolism.

    PubMed

    Oppelt, Sarah A; Zhang, Wanming; Tolan, Dean R

    2017-02-15

    High fructose consumption in the Western diet correlates with disease states such as obesity and metabolic syndrome complications, including type II diabetes, chronic kidney disease, and non-alcoholic fatty acid liver disease. Liver and kidneys are responsible for metabolism of 40-60% of ingested fructose, while the physiological fate of the remaining fructose remains poorly understood. The primary metabolic pathway for fructose includes the fructose-transporting solute-like carrier transport proteins 2a (SLC2a or GLUT), including GLUT5 and GLUT9, ketohexokinase (KHK), and aldolase. Bioinformatic analysis of gene expression encoding these proteins (glut5, glut9, khk, and aldoC, respectively) identifies other organs capable of this fructose metabolism. This analysis predicts brain, lymphoreticular tissue, placenta, and reproductive tissues as possible additional organs for fructose metabolism. While expression of these genes is highest in liver, the brain is predicted to have expression levels of these genes similar to kidney. RNA in situ hybridization of coronal slices of adult mouse brains validate the in silico expression of glut5, glut9, khk, and aldoC, and show expression across many regions of the brain, with the most notable expression in the cerebellum, hippocampus, cortex, and olfactory bulb. Dissected samples of these brain regions show KHK and aldolase enzyme activity 5-10 times the concentration of that in liver. Furthermore, rates of fructose oxidation in these brain regions are 15-150 times that of liver slices, confirming the bioinformatics prediction and in situ hybridization data. This suggests that previously unappreciated regions across the brain can use fructose, in addition to glucose, for energy production. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Specific regions of the brain are capable of fructose metabolism

    PubMed Central

    Oppelt, Sarah A.; Zhang, Wanming; Tolan, Dean R.

    2017-01-01

    High fructose consumption in the Western diet correlates with disease states such as obesity and metabolic syndrome complications, including type II diabetes, chronic kidney disease, and nonalcoholic fatty acid liver disease. Liver and kidneys are responsible for metabolism of 40–60% of ingested fructose, while the physiological fate of the remaining fructose remains poorly understood. The primary metabolic pathway for fructose includes the fructose-transporting solute-like carrier transport proteins 2a (SLC2a or GLUT), including GLUT5 and GLUT9, ketohexokinase (KHK), and aldolase. Bioinformatic analysis of gene expression encoding these proteins (glut5, glut9, khk, and aldoC, respectively) identifies other organs capable of this fructose metabolism. This analysis predicts brain, lymphoreticular tissue, placenta, and reproductive tissues as possible additional organs for fructose metabolism. While expression of these genes is highest in liver, the brain is predicted to have expression levels of these genes similar to kidney. RNA in situ hybridization of coronal slices of adult mouse brains validate the in silico expression of glut5, glut9, khk, and aldoC, and show expression across many regions of the brain, with the most notable expression in the cerebellum, hippocampus, cortex, and olfactory bulb. Dissected samples of these brain regions show KHK and aldolase enzyme activity 5–10 times the concentration of that in liver. Furthermore, rates of fructose oxidation in these brain regions are 15–150 times that of liver slices, confirming the bioinformatics prediction and in situ hybridization data. This suggests that previously unappreciated regions across the brain can use fructose, in addition to glucose, for energy production. PMID:28034722

  3. Molecular evidence for a role for K+-Cl− cotransporters in the kidney

    PubMed Central

    Melo, Zesergio; Cruz-Rangel, Silvia; Bautista, Rocio; Vázquez, Norma; Castañeda-Bueno, María; Mount, David B.; Pasantes-Morales, Herminia; Mercado, Adriana

    2013-01-01

    K+-Cl− cotransporter (KCC) isoforms 3 (KCC3) and 4 (KCC4) are expressed at the basolateral membrane of proximal convoluted tubule cells, and KCC4 is present in the basolateral membrane of the thick ascending loop of Henle's limb and α-intercalated cells of the collecting duct. Little is known, however, about the physiological roles of these transporters in the kidney. We evaluated KCC3 and KCC4 mRNA and protein expression levels and intrarenal distribution in male Wistar rats or C57 mice under five experimental conditions: hyperglycemia after a single dose of streptozotocin, a low-salt diet, metabolic acidosis induced by ammonium chloride in drinking water, and low- or high-K+ diets. Both KCC3 mRNA and protein expression were increased during hyperglycemia in the renal cortex and at the basolateral membrane of proximal tubule cells but not with a low-salt diet or acidosis. In contrast, KCC4 protein expression was increased by a low-sodium diet in the whole kidney and by metabolic acidosis in the renal outer medulla, specifically at the basolateral membrane of α-intercalated cells. The increased protein expression of KCC4 by a low-salt diet was also observed in WNK4 knockout mice, suggesting that upregulation of KCC4 in these circumstances is not WNK4 dependent. No change in KCC3 or KCC4 protein expression was observed under low- or high-K+ diets. Our data are consistent with a role for KCC3 in the proximal tubule glucose reabsorption mechanism and for KCC4 in salt reabsorption of the thick ascending loop of Henle's loop and acid secretion of the collecting duct. PMID:24089410

  4. Protein S Protects against Podocyte Injury in Diabetic Nephropathy.

    PubMed

    Zhong, Fang; Chen, Haibing; Xie, Yifan; Azeloglu, Evren U; Wei, Chengguo; Zhang, Weijia; Li, Zhengzhe; Chuang, Peter Y; Jim, Belinda; Li, Hong; Elmastour, Firas; Riyad, Jalish M; Weber, Thomas; Chen, Hongyu; Wang, Yongjun; Zhang, Aihua; Jia, Weiping; Lee, Kyung; He, John C

    2018-05-01

    Background Diabetic nephropathy (DN) is a leading cause of ESRD in the United States, but the molecular mechanisms mediating the early stages of DN are unclear. Methods To assess global changes that occur in early diabetic kidneys and to identify proteins potentially involved in pathogenic pathways in DN progression, we performed proteomic analysis of diabetic and nondiabetic rat glomeruli. Protein S (PS) among the highly upregulated proteins in the diabetic glomeruli. PS exerts multiple biologic effects through the Tyro3, Axl, and Mer (TAM) receptors. Because increased activation of Axl by the PS homolog Gas6 has been implicated in DN progression, we further examined the role of PS in DN. Results In human kidneys, glomerular PS expression was elevated in early DN but suppressed in advanced DN. However, plasma PS concentrations did not differ between patients with DN and healthy controls. A prominent increase of PS expression also colocalized with the expression of podocyte markers in early diabetic kidneys. In cultured podocytes, high-glucose treatment elevated PS expression, and PS knockdown further enhanced the high-glucose-induced apoptosis. Conversely, PS overexpression in cultured podocytes dampened the high-glucose- and TNF- α -induced expression of proinflammatory mediators. Tyro3 receptor was upregulated in response to high glucose and mediated the anti-inflammatory response of PS. Podocyte-specific PS loss resulted in accelerated DN in streptozotocin-induced diabetic mice, whereas the transient induction of PS expression in glomerular cells in vivo attenuated albuminuria and podocyte loss in diabetic OVE26 mice. Conclusions Our results support a protective role of PS against glomerular injury in DN progression. Copyright © 2018 by the American Society of Nephrology.

  5. Cytokine modulation by stress hormones and antagonist specific hormonal inhibition in rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata) head kidney primary cell culture.

    PubMed

    Khansari, Ali Reza; Parra, David; Reyes-López, Felipe E; Tort, Lluís

    2017-09-01

    A tight interaction between endocrine and immune systems takes place mainly due to the key role of head kidney in both hormone and cytokine secretion, particularly under stress situations in which the physiological response promotes the synthesis and release of stress hormones which may lead into immunomodulation as side effect. Although such interaction has been previously investigated, this study evaluated for the first time the effect of stress-associated hormones together with their receptor antagonists on the expression of cytokine genes in head kidney primary cell culture (HKPCC) of the freshwater rainbow trout (Oncorhynchus mykiss) and the seawater gilthead sea bream (Sparus aurata). The results showed a striking difference when comparing the response obtained in trout and seabream. Cortisol and adrenocorticotropic hormone (ACTH) decreased the expression of immune-related genes in sea bream but not in rainbow trout and this cortisol effect was reverted by the antagonist mifepristone but not spironolactone. On the other hand, while adrenaline reduced the expression of pro-inflammatory cytokines (IL-1β, IL-6) in rainbow trout, the opposite effect was observed in sea bream showing an increased expression (IL-1β, IL-6). Interestingly, this effect was reverted by antagonist propranolol but not phentolamine. Overall, our results confirm the regional interaction between endocrine and cytokine messengers and a clear difference in the sensitivity to the hormonal stimuli between the two species. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. T-Box Genes in the Kidney and Urinary Tract.

    PubMed

    Kispert, A

    2017-01-01

    T-box (Tbx) genes encode an ancient group of transcription factors that play important roles in patterning, specification, proliferation, and differentiation programs in vertebrate organogenesis. This is testified by severe organ malformation syndromes in mice homozygous for engineered null alleles of specific T-box genes and by the large number of human inherited organ-specific diseases that have been linked to mutations in these genes. One of the organ systems that has not been associated with loss of specific T-box gene function in human disease for long is the excretory system. However, this has changed with the finding that mutations in TBX18, a member of a vertebrate-specific subgroup within the Tbx1-subfamily of T-box transcription factor genes, cause congenital anomalies of the kidney and urinary tract, predominantly hydroureter and ureteropelvic junction obstruction. Gene expression analyses, loss-of-function studies, and lineage tracing in the mouse suggest a primary role for this transcription factor in specifying the ureteric mesenchyme in the common anlage of the kidney, the ureter, and the bladder. We review the function of Tbx18 in ureterogenesis and discuss the body of evidence that Tbx18 and other members of the T-box gene family, namely, Tbx1, Tbx2, Tbx3, and Tbx20, play additional roles in development and homeostasis of other components of the excretory system in vertebrates. © 2017 Elsevier Inc. All rights reserved.

  7. Transcription factor Nrf2 hyperactivation in early-phase renal ischemia-reperfusion injury prevents tubular damage progression.

    PubMed

    Nezu, Masahiro; Souma, Tomokazu; Yu, Lei; Suzuki, Takafumi; Saigusa, Daisuke; Ito, Sadayoshi; Suzuki, Norio; Yamamoto, Masayuki

    2017-02-01

    Acute kidney injury is a devastating disease with high morbidity in hospitalized patients and contributes to the pathogenesis of chronic kidney disease. An underlying mechanism of acute kidney injury involves ischemia-reperfusion injury which, in turn, induces oxidative stress and provokes organ damage. Nrf2 is a master transcription factor that regulates the cellular response to oxidative stress. Here, we examined the role of Nrf2 in the progression of ischemia-reperfusion injury-induced kidney damage in mice using genetic and pharmacological approaches. Both global and tubular-specific Nrf2 activation enhanced gene expression of antioxidant and NADPH synthesis enzymes, including glucose-6-phosphate dehydrogenase, and ameliorated both the initiation of injury in the outer medulla and the progression of tubular damage in the cortex. Myeloid-specific Nrf2 activation was ineffective. Short-term administration of the Nrf2 inducer CDDO during the initial phase of injury ameliorated the late phase of tubular damage. This inducer effectively protected the human proximal tubular cell line HK-2 from oxidative stress-mediated cell death while glucose-6-phosphate dehydrogenase knockdown increased intracellular reactive oxygen species. These findings demonstrate that tubular hyperactivation of Nrf2 in the initial phase of injury prevents the progression of reactive oxygen species-mediated tubular damage by inducing antioxidant enzymes and NADPH synthesis. Thus, Nrf2 may be a promising therapeutic target for preventing acute kidney injury to chronic kidney disease transition. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  8. AT2R (Angiotensin II Type 2 Receptor)-Mediated Regulation of NCC (Na-Cl Cotransporter) and Renal K Excretion Depends on the K Channel, Kir4.1.

    PubMed

    Wu, Peng; Gao, Zhong-Xiuzi; Duan, Xin-Peng; Su, Xiao-Tong; Wang, Ming-Xiao; Lin, Dao-Hong; Gu, Ruimin; Wang, Wen-Hui

    2018-04-01

    AT2R (AngII [angiotensin II] type 2 receptor) is expressed in the distal nephrons. The aim of the present study is to examine whether AT2R regulates NCC (Na-Cl cotransporter) and Kir4.1 of the distal convoluted tubule. AngII inhibited the basolateral 40 pS K channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule treated with losartan but not with PD123319. AT2R agonist also inhibits the K channel, indicating that AT2R was involved in tonic regulation of Kir4.1. The infusion of PD123319 stimulated the expression of tNCC (total NCC) and pNCC (phosphorylated NCC; Thr 53 ) by a time-dependent way with the peak at 4 days. PD123319 treatment (4 days) stimulated the basolateral 40 pS K channel activity, augmented the basolateral K conductance, and increased the negativity of distal convoluted tubule membrane. The stimulation of Kir4.1 was essential for PD123319-induced increase in NCC because inhibiting AT2R increased the expression of tNCC and pNCC only in wild-type but not in the kidney-specific Kir4.1 knockout mice. Renal clearance study showed that thiazide-induced natriuretic effect was larger in PD123319-treated mice for 4 days than untreated mice. However, this effect was absent in kidney-specific Kir4.1 knockout mice which were also Na wasting under basal conditions. Finally, application of AT2R antagonist decreased the renal ability of K excretion and caused hyperkalemia in wild-type but not in kidney-specific Kir4.1 knockout mice. We conclude that AT2R-dependent regulation of NCC requires Kir4.1 in the distal convoluted tubule and that AT2R plays a role in stimulating K excretion by inhibiting Kir4.1 and NCC. © 2018 American Heart Association, Inc.

  9. Effect of choline on antioxidant defenses and gene expressions of Nrf2 signaling molecule in the spleen and head kidney of juvenile Jian carp (Cyprinus carpio var. Jian).

    PubMed

    Wu, Pei; Jiang, Wei-Dan; Liu, Yang; Chen, Gang-Fu; Jiang, Jun; Li, Shu-Hong; Feng, Lin; Zhou, Xiao-Qiu

    2014-06-01

    The present work evaluates the effects of various levels of dietary choline on antioxidant defenses and gene expressions of Nrf2 signaling molecule in spleen and head kidney of juvenile Jian carp (Cyprinus carpio var. Jian). Fish were fed with six different experimental diets containing graded levels of choline at 165 (choline-deficient control), 310, 607, 896, 1167 and 1820 mg kg(-1) diet for 65 days. At the end of the feeding trail, fish were challenged with Aeromonas hydrophila and mortalities were recorded over 17 days. Dietary choline significantly decreased malondialdehyde and protein carbonyl contents in spleen and head kidney. However, anti-superoxide anion and anti-hydroxyl radical activities in spleen and head kidney also decreased. Interestingly, activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) in spleen, GPx activity in head kidney, and glutathione contents in spleen and head kidney were decreased with increase of dietary choline levels up to a certain point, whereas, activities of SOD, GST and GR in head kidney showed no significantly differences among groups. Similarly, expression levels of CuZnSOD, MnSOD, CAT, GPx1a, GPx1b and GR gene in spleen and head kidney were significantly lower in group with choline level of 607 mg kg(-1) diet than those in the choline-deficient group. The relative gene expressions of Nrf2 in head kidney and Keap1a in spleen and head kidney were decreased with increasing of dietary choline up to a certain point. However, the relative gene expression of Nrf2 in spleen were not significantly affected by dietary choline. In conclusion, dietary choline decreased the oxidant damage and regulated the antioxidant system in immune organs of juvenile Jian carp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Yak response to high-altitude hypoxic stress by altering mRNA expression and DNA methylation of hypoxia-inducible factors.

    PubMed

    Xiong, Xianrong; Fu, Mei; Lan, Daoliang; Li, Jian; Zi, Xiangdong; Zhong, Jincheng

    2015-01-01

    Hypoxia-inducible factors (HIFs) are oxygen-dependent transcriptional activators, which play crucial roles in tumor angiogenesis and mammalian development, and regulate the transcription of genes involved in oxygen homeostasis in response to hypoxia. However, information on HIF-1α and HIF-2α in yak (Bos grunniens) is scarce. The complete coding region of yak HIF-2α was cloned, its mRNA expression in several tissues were determined, and the expression levels were compared with those of closely related low-altitude cattle (Bos taurus), and the methylation status of promoter regions were analyzed to better understand the roles of HIF-1α and HIF-2α in domesticated yak. The yak HIF-2α cDNA was cloned and sequenced in the present work reveals the evolutionary conservation through multiple sequence alignment, although 15 bases changed, resulting in 8 amino acid substitutions in the translated proteins in cattle. The tissue-specific expression results showed that HIF-1α is ubiquitously expressed, whereas HIF-2α expression is limited to endothelial tissues (kidney, heart, lung, spleen, and liver) and blood in yak. Both HIF-1α and HIF-2α expressions were higher in yak tissues than in cattle. The HIF-1α expression level is much higher in yak than cattle in these organs, except for the lung (P < 0.05), but the HIF-2α gene is significantly different in the heart, spleen, and kidney (P < 0.05). Furthermore, the methylation levels in the 5' flanking regulatory regions of HIF-1α and HIF-2α in yak kidney were significantly decreased than cattle counterparts (P < 0.05). Identifying these genes and the comparison of different expressions facilitates the understanding of the biological high-altitude hypoxic stress response mechanism and may assist current medical research to understand hypoxia-related diseases.

  11. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Carol F., E-mail: carol-webb@omrf.org; Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights:more » • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.« less

  12. MicroRNA-141-3p/200a-3p target and may be involved in post-transcriptional repression of RNA decapping enzyme Dcp2 during renal development.

    PubMed

    Zhang, Ming-Nan; Tang, Qun-Ye; Li, Rui-Min; Song, Man-Gen

    2018-06-18

    The RNA decapping enzyme Dcp2 is a crucial enzyme involved in the process of RNA turnover, which can post-transcriptionally regulate gene expression. Dcp2 has been found to be highly expressed in embryonic, but not adult, kidneys. Here we showed that Dcp2 mRNA was expressed, but Dcp2 proteins were absent, in mouse kidneys after postnatal day 10 (P10). In kidneys of adult Dcp2-IRES-EGFP knock-in mice, Dcp2 was undetectable but EGFP was expressed, indicating that Dcp2 mRNA was not completely silenced in adult kidneys. Using luciferase reporter assays, we found that miR-141-3p/200a-3p directly targeted the 3' UTR of Dcp2 mRNA. Overexpression of miR-141-3p and miR-200a-3p downregulated endogenous Dcp2 protein expression. Furthermore, miR-141-3p and miR-200a-3p expression was low in embryonic kidneys but increased dramatically after P10 and was negatively correlated with Dcp2 protein expression during renal development. These results suggest miR-141-3p/200a-3p may be involved in post-transcriptional repression of Dcp2 expression during renal development. IRES: internal ribosome entry site; EGFP: enhanced green fluorescent protein; UTR: untranslated region.

  13. Creatine pretreatment prevents birth asphyxia-induced injury of the newborn spiny mouse kidney.

    PubMed

    Ellery, Stacey J; Ireland, Zoe; Kett, Michelle M; Snow, Rod; Walker, David W; Dickinson, Hayley

    2013-02-01

    Acute kidney injury (AKI) is a major complication for infants following an asphyxic insult at birth. We aimed to determine if kidney structure and function were affected in an animal model of birth asphyxia and if maternal dietary creatine supplementation could provide an energy reserve to the fetal kidney, maintaining cellular respiration during asphyxia and preventing AKI. Pregnant spiny mice were maintained on normal chow or chow supplemented with creatine from day 20 gestation. On day 38 (term ~39 d), pups were delivered by cesarean section (c-section) or subjected to intrauterine asphyxia. Twenty-four hours after insult, kidneys were collected for histological or molecular analysis. Urine and plasma were also collected for biochemical analysis. AKI was evident at 24 h after birth asphyxia, with a higher incidence of shrunken glomeruli (P < 0.02), disturbance to tubular arrangement, tubular dilatation, a twofold increase (P < 0.02) in expression of Ngal (early marker of kidney injury), and decreased expression of the podocyte differentiation marker nephrin. Maternal creatine supplementation prevented the glomerular and tubular abnormalities observed in the kidney at 24 h and the increased expression of Ngal. Maternal creatine supplementation may prove useful in ameliorating kidney injury associated with birth asphyxia.

  14. [Locus HS.633957 expression in human gastrointestinal tract and tumors].

    PubMed

    Polev, D E; Krukovskaia, L L; Kozlov, A P

    2011-01-01

    Human locus HS.633957 corresponds to its namesake cluster in the UniGene database http:/www.ncbi.nlm.nih.gov/unigene. It is located on chromosome 7 and is 3.7 tpn in size. It does not seem to encode proteins nor has its function been identified. According to bioinformation evidence, its expression is tumor-specific. PCR assay on kDNA samples from different intact human tissues detected its slight expression in liver, heart, embryonal brain and kidney as well as in a wide spectrum of tumors. This work features locus Hs.633957 expression in different parts of human gastrointestinal tract and tumors.

  15. Protective Effects of Hydrogen Sulfide in the Ageing Kidney.

    PubMed

    Hou, Cui-Lan; Wang, Ming-Jie; Sun, Chen; Huang, Yong; Jin, Sheng; Mu, Xue-Pan; Chen, Ying; Zhu, Yi-Chun

    2016-01-01

    Aims . The study aimed to examine whether hydrogen sulfide (H 2 S) generation changed in the kidney of the ageing mouse and its relationship with impaired kidney function. Results . H 2 S levels in the plasma, urine, and kidney decreased significantly in ageing mice. The expression of two known H 2 S-producing enzymes in kidney, cystathionine γ -lyase (CSE) and cystathionine- β -synthase (CBS), decreased significantly during ageing. Chronic H 2 S donor (NaHS, 50  μ mol/kg/day, 10 weeks) treatment could alleviate oxidative stress levels and renal tubular interstitial collagen deposition. These protective effects may relate to transcription factor Nrf2 activation and antioxidant proteins such as HO-1, SIRT1, SOD1, and SOD2 expression upregulation in the ageing kidney after NaHS treatment. Furthermore, the expression of H 2 S-producing enzymes changed with exogenous H 2 S administration and contributed to elevated H 2 S levels in the ageing kidney. Conclusions . Endogenous hydrogen sulfide production in the ageing kidney is insufficient. Exogenous H 2 S can partially rescue ageing-related kidney dysfunction by reducing oxidative stress, decreasing collagen deposition, and enhancing Nrf2 nuclear translocation. Recovery of endogenous hydrogen sulfide production may also contribute to the beneficial effects of NaHS treatment.

  16. CD147 (EMMPRIN/Basigin) in kidney diseases: from an inflammation and immune system viewpoint.

    PubMed

    Kosugi, Tomoki; Maeda, Kayaho; Sato, Waichi; Maruyama, Shoichi; Kadomatsu, Kenji

    2015-07-01

    The glycosylated transmembrane protein CD147/basigin, also known as extracellular matrix metalloproteinase (MMP) inducer (EMMPRIN), contributes to cell survival, migration and cancer invasion. In normal kidneys, high expression of CD147 is detected only in the basolateral side of tubular epithelial cells (TECs). The pathophysiological roles of CD147 in the kidneys are diverse, ranging from involvement in the occurrence of acute kidney injury (AKI) that is frequently accompanied by ischemia, inflammation and a loss of self-tolerance to the progression of chronic kidney disease (CKD) that is caused by an imbalance in extracellular matrix protein turnover. In AKI induced by ischemia, it is the CD147 on neutrophils, rather than that on TECs, that coordinately participates in massive neutrophil recruitment via acting as a physiological ligand for E-selectin, which is specifically enhanced in the endothelium upon inflammatory stimulation. In the CKD that follows AKI, a molecular circuit involving CD147, MMPs and transforming growth factor-β may be involved in the pathogenesis of progressive fibrosis through hyaluronan production and macrophage infiltration. Whereas CD147 thus plays deleterious roles in ischemic and fibrotic kidney injuries, CD147 expression on lymphocytes might decrease the disease activity of lupus nephritis (LN) by functioning as a potential negative regulator of the extraordinary proliferation of lymphocytes that occurs in this disease. In line with these basic studies, our clinical data indicate the potential of plasma CD147 to function as a critical biomarker for both ischemic AKI and LN. CD147 is also involved in crosstalk between the kidneys and distant organs, which may be mediated by chemotactic cytokines that are derived from circulating inflammatory cells and damaged organs. Disruption of such a vicious chain reaction involving CD147 would therefore be required in order to overcome kidney diseases. Multidisciplinary research regarding CD147 functions may open a new avenue for targeting therapeutics for kidney diseases. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  17. Role of Hyperhomocysteinemia in the Regulation of Oxidative Stress and Inflammatory Responses in the Kidney: Protective Effect of Folic Acid Supplementation

    NASA Astrophysics Data System (ADS)

    Hwang, Sun-Young

    Hyperhomocysteinemia, a condition of elevated blood homocysteine (Hcy) level, is an independent risk factor for cardiovascular disease. Folic acid supplementation can effectively reduce blood Hcy levels. Recent studies have demonstrated that hyperhomocysteinemia is also associated with kidney disease. However, the underlying mechanisms remain unclear. The overall objective of the study was to investigate the biochemical and molecular mechanisms of Hcy-induced kidney injury and the effect of folic acid supplementation on Hcy-induced kidney injury. Hyperhomocysteinemia was induced in Sprague-Dawley rats by feeding a high-methionine diet for 12 weeks. An elevation of serum total Hcy level was observed in hyperhomocysteinemic rats. Hyperhomocysteinemia-induced superoxide anion production via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation resulted in oxidative stress in the kidney. Reduction of oxidative stress by inhibiting superoxide anion production effectively ameliorated hyperhomocysteinemia-induced kidney injury. Inflammatory responses such as increased chemokine expression have been implicated as one of the mechanisms of kidney disease. Monocyte chemoattractant protein-1 (MCP-1) is a potent chemokine that is involved in the inflammatory response in kidney disease. Nuclear factor-kappa B (NF-kappaB) plays an important role in upregulation of MCP-1 expression. We investigated the effect of hyperhomocysteinemia on MCP-1 expression and the molecular mechanism responsible for such an effect in rat kidneys as well as in human kidney proximal tubular cells.

  18. Polarity and transport properties of rabbit kidney proximal tubule cells on collagen IV-coated porous membranes.

    PubMed

    Genestie, I; Morin, J P; Vannier, B; Lorenzon, G

    1995-07-01

    A high degree of functional polarity has been obtained in primary cultures of rabbit kidney proximal tubule cells grown on collagen IV-coated porous membranes. Tight confluency was attained 6 days after seeding and maintained for at least 6 more days, as shown by analysis of paracellular inulin diffusion. From day 6 onward, L-lactate, ammonia, and D-glucose concentration gradient and a pH difference of approximately 1 unit developed between the two nutrient medium compartments. Confluent monolayers expressed organic ion transport properties higher than those formerly reported for other cell models. Transcellular transport of 20 microM tetraethylammonium was directed from basal to apical compartment and was specifically inhibited by mepiperphenidol (1 mM). Unidirectional transport of 2.4 microM p-aminohippurate also occurred from basal to apical compartment, was saturable, and specifically inhibited by probenecid (1 mM). These results suggest that rabbit kidney proximal tubule cells, cultured under the experimental conditions described here, may be a useful model for the in vitro study of highly polarized renal transport processes.

  19. Visualization of Calcium Dynamics in Kidney Proximal Tubules

    PubMed Central

    Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Csohány, Rózsa; Prókai, Ágnes; Kis-Petik, Katalin; Szabó, Attila; Bősze, Zsuzsanna; Bender, Balázs; Tóvári, József; Enyedi, Ágnes; Orbán, Tamás I.

    2015-01-01

    Intrarenal changes in cytoplasmic calcium levels have a key role in determining pathologic and pharmacologic responses in major kidney diseases. However, cell-specific delivery of calcium-sensitive probes in vivo remains problematic. We generated a transgenic rat stably expressing the green fluorescent protein-calmodulin–based genetically encoded calcium indicator (GCaMP2) predominantly in the kidney proximal tubules. The transposon-based method used allowed the generation of homozygous transgenic rats containing one copy of the transgene per allele with a defined insertion pattern, without genetic or phenotypic alterations. We applied in vitro confocal and in vivo two-photon microscopy to examine basal calcium levels and ligand- and drug-induced alterations in these levels in proximal tubular epithelial cells. Notably, renal ischemia induced a transient increase in cellular calcium, and reperfusion resulted in a secondary calcium load, which was significantly decreased by systemic administration of specific blockers of the angiotensin receptor and the Na-Ca exchanger. The parallel examination of in vivo cellular calcium dynamics and renal circulation by fluorescent probes opens new possibilities for physiologic and pharmacologic investigations. PMID:25788535

  20. Expression Analysis of Interferon-Stimulated Gene 15 in the Rock Bream Oplegnathus fasciatus against Rock Bream Iridovirus (RSIV) Challenge.

    PubMed

    Kim, Kyung-Hee; Yang, In Jung; Kim, Woo-Jin; Park, Choul-Ji; Park, Jong-Won; Noh, Gyeong Eon; Lee, Seunghyung; Lee, Young Mee; Hwang, Hyung Kyu; Kim, Hyun Chul

    2017-12-01

    Interferon-stimulated gene 15 (ISG15) is known to interfere with viral replication and infection by limiting the viral infection of cells. Interferon-stimulated gene 15 (ISG15) interferes with viral replication and infectivity by limiting viral infection in cells. It also plays an important role in the immune response. In this study, tissue-specific expression of ISG15 in healthy rock bream samples and spatial and temporal expression analysis of rock bream ISG15 (RbISG15) were performed following rock bream iridovirus (RSIV) infection. RbISG15 expression was significantly higher in the eye, gill, intestine, kidney, liver, muscle, spleen, and stomach, but low in the brain. There were particularly high levels of expression in the liver and muscle. RbISG15 expression was also examined in several tissues and at various times following RSIV infection. ISG15 expression increased within 3 h in the whole body and decreased at 24 h after infection. In addition, temporal expression of several tissues following RSIV infection showed a similar pattern in the muscle, kidney, and spleen, increasing at 3 h and decreasing at 72 h. These results suggest that ISG15 plays an important role in the immune response of rock bream. Overall, this study characterizes the response of RbISG15 following RSIV infection.

  1. Induction of alkaline phosphatase in the inflamed intestine: a novel pharmacological target for inflammatory bowel disease.

    PubMed

    Sánchez de Medina, Fermín; Martínez-Augustin, Olga; González, Raquel; Ballester, Isabel; Nieto, Ana; Gálvez, Julio; Zarzuelo, Antonio

    2004-12-15

    This study demonstrates the upregulation of alkaline phosphatase and the mechanisms involved in experimental colitis. All models of ileal and colonic inflammation examined, which were characterized by significant oxidative stress and neutrophil infiltration, resulted in an increase in alkaline phosphatase activity which was attributable to both epithelial cells and cells of the lamina propria, mainly leukocytes. The increase in alkaline phosphatase sensitivity to the inhibitors levamisole and homoarginine, together with changes in the apparent molecular size and in the sialization of the enzyme, indicated a change in the isoform expressed. An increase in tissue non-specific alkaline phosphatase expression was observed by Western blotting. Treatment with the bone/kidney alkaline phosphatase inhibitor levamisole or a monoclonal antibody resulted in significant protection from colonic inflammation. Taken together, these results indicate that the kidney isoform is a marker of intestinal inflammation and that it might even constitute a target for pharmacological intervention.

  2. In an Ovine Model of Polycystic Ovary Syndrome (PCOS) Prenatal Androgens Suppress Female Fetal Renal Gluconeogenesis

    PubMed Central

    Connolly, Fiona; Rae, Michael T.; Späth, Katharina; Boswell, Lyndsey; McNeilly, Alan S.; Duncan, W. Colin

    2015-01-01

    Increased maternal androgen exposure during pregnancy programmes a polycystic ovary syndrome (PCOS)-like condition, with metabolic dysfunction, in adult female offspring. Other in utero exposures associated with the development of insulin resistance, such as intrauterine growth restriction and exposure to prenatal glucocorticoids, are associated with altered fetal gluconeogenesis. We therefore aimed to assess the effect of maternal androgenisation on the expression of PEPCK and G6PC in the ovine fetus. Pregnant Scottish Greyface sheep were treated with twice weekly testosterone propionate (TP; 100mg) or vehicle control from day 62 to day102 of gestation. At day 90 and day 112 fetal plasma and liver and kidney tissue was collected for analysis. PEPCK and G6PC expression were analysed by quantitative RT-PCR, immunohistochemistry and western blotting. PEPCK and G6PC were localised to fetal hepatocytes but maternal androgens had no effect on female or male fetuses. PEPCK and G6PC were also localised to the renal tubules and renal PEPCK (P<0.01) and G6PC (P = 0.057) were lower in females after prenatal androgenisation with no change in male fetuses. These tissue and sex specific observations could not be explained by alterations in fetal insulin or cortisol. The sexual dimorphism may be related to the increase in circulating estrogen (P<0.01) and testosterone (P<0.001) in females but not males. The tissue specific effects may be related to the increased expression of ESR1 (P<0.01) and AR (P<0.05) in the kidney when compared to the fetal liver. After discontinuation of maternal androgenisation female fetal kidney PEPCK expression normalised. These data further highlight the fetal and sexual dimorphic effects of maternal androgenisation, an antecedent to adult disease and the plasticity of fetal development. PMID:26148093

  3. Carbamylated erythropoietin protects the kidneys from ischemia-reperfusion injury without stimulating erythropoiesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imamura, Ryoichi; Isaka, Yoshitaka; Ichimaru, Naotsugu

    Several studies have shown that erythropoietin (EPO) can protect the kidneys from ischemia-reperfusion injury and can raise the hemoglobin (Hb) concentration. Recently, the EPO molecule modified by carbamylation (CEPO) has been identified and was demonstrated to be able to protect several organs without increasing the Hb concentration. We hypothesized that treatment with CEPO would protect the kidneys from tubular apoptosis and inhibit subsequent tubulointerstitial injury without erythropoiesis. The therapeutic effect of CEPO was evaluated using a rat ischemia-reperfusion injury model. Saline-treated kidneys exhibited increased tubular apoptosis with interstitial expression of {alpha}-smooth muscle actin ({alpha}-SMA), while EPO treatment inhibited tubular apoptosismore » and {alpha}-SMA expression to some extent. On the other hand, CEPO-treated kidneys showed minimal tubular apoptosis with limited expression of {alpha}-SMA. Moreover, CEPO significantly promoted tubular epithelial cell proliferation without erythropoiesis. In conclusion, we identified a new therapeutic approach using CEPO to protect kidneys from ischemia-reperfusion injury.« less

  4. Histological and transcriptomic responses of two immune organs, the spleen and head kidney, in Nile tilapia (Oreochromis niloticus) to long-term hypersaline stress.

    PubMed

    Xu, Chang; Li, Erchao; Suo, Yantong; Su, Yujie; Lu, Minghui; Zhao, Qun; Qin, Jian G; Chen, Liqiao

    2018-05-01

    Hyperosmotic stress can adversely affect fish immunity, but little is known about the histological and transcriptomic responses of immune organs in fish in a hyperosmotic environment. This study evaluated the effects of long-term hypersaline conditions (16‰) on the growth, histology and transcriptomics of the two main immune organs, the spleen and head kidney, in Nile tilapia Oreochromis niloticus relative to those reared in freshwater for eight weeks. No differences in weight gain and specific growth rate were found between fish reared under these two salinities. Hyperosmotic stress induced a congestive or enlarged spleen. Platelet- and coagulation-related gene expression was significantly decreased in tilapia at 16‰. The red cell distribution width and value of the mean corpuscular hemoglobin were significantly greater in fish at 16‰ salinity than in control fish in freshwater. A large volume of melano-macrophages in the spleen and pigment deposition in both the spleen and head kidney were observed in the histological sections in fish at 16‰ salinity. Transmission electron microscopic results showed abnormal macrophages with deposition granules in the spleen and head kidney and more neutrophils in the head kidney of fish at 16‰ than in control fish. In total, 772 and 502 genes were annotated for significantly different expression in the spleen and head kidney, respectively, and corresponded to five and one significantly changed immune system pathways, respectively. The complement pathway in the spleen was significantly down-regulated at 16‰. This study indicates that long-term exposure of Nile tilapia to a hyperosmotic environment can induce splenomegaly, reduce coagulation function, enhance phagocytic activity and down-regulate the complement pathway in the spleen. The spleen is a more sensitive organ for immune responses to chronic ambient salinity stress than the head kidney in Nile tilapia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Regulation of tissue factor and inflammatory mediators by Egr-1 in a mouse endotoxemia model.

    PubMed

    Pawlinski, Rafal; Pedersen, Brian; Kehrle, Bettina; Aird, William C; Frank, Rolf D; Guha, Mausumee; Mackman, Nigel

    2003-05-15

    In septic shock, tissue factor (TF) activates blood coagulation, and cytokines and chemokines orchestrate an inflammatory response. In this study, the role of Egr-1 in lipopolysaccharide (LPS) induction of TF and inflammatory mediators in vivo was evaluated using Egr-1(+/+) and Egr-1(-/-) mice. Administration of LPS transiently increased the steady-state levels of Egr-1 mRNA in the kidneys and lungs of Egr-1(+/+) mice with maximal induction at one hour. Egr-1 was expressed in epithelial cells in the kidneys and lungs in untreated and LPS-treated mice. LPS induction of monocyte chemoattractant protein mRNA in the kidneys and lungs of Egr-1(-/-) mice was not affected at 3 hours, but its expression was significantly reduced at 8 hours compared with the expression observed in Egr-1(+/+) mice. Similarly, LPS induction of TF mRNA expression in the kidneys and lungs at 8 hours was reduced in Egr-1(-/-) mice. However, Egr-1 deficiency did not affect plasma levels of tumor necrosis factor alpha in endotoxemic mice. Moreover, Egr-1(+/+) and Egr-1(-/-) mice exhibited similar survival times in a model of acute endotoxemia. These data indicate that Egr-1 does not contribute to the early inflammatory response in the kidneys and lungs or the early systemic inflammatory response in endotoxemic mice. However, Egr-1 does contribute to the sustained expression of inflammatory mediators and to the maximal expression of TF at 8 hours in the kidneys and lungs.

  6. Suppressed heat shock protein response in the kidney of exercise-trained diabetic rats.

    PubMed

    Lappalainen, J; Oksala, N K J; Laaksonen, D E; Khanna, S; Kokkola, T; Kaarniranta, K; Sen, C K; Atalay, M

    2018-07-01

    Impaired expression of heat shock proteins (HSPs) and increased oxidative stress may contribute to the pathophysiology of diabetes by disrupted tissue protection. Acute exercise induces oxidative stress, whereas exercise training up-regulates endogenous antioxidant defenses and HSP expression. Although diabetic nephropathy is a major contributor to diabetic morbidity, information regarding the effect of HSPs on kidney protection is limited. This study evaluated the effects of eight-week exercise training on kidney HSP expression and markers of oxidative stress at rest and after acute exercise in rats with or without streptozotocin-induced diabetes. Induction of diabetes increased DNA-binding activity of heat shock factor-1, but decreased the expression of HSP72, HSP60, and HSP90. The inflammatory markers IL-6 and TNF-alpha were increased in the kidney tissue of diabetic animals. Both exercise training and acute exercise increased HSP72 and HSP90 protein levels only in non-diabetic rats. On the other hand, exercise training appeared to reverse the diabetes-induced histological changes together with decreased expression of TGF-beta as a key inducer of glomerulosclerosis, and decreased levels of IL-6 and TNF-alpha. Notably, HSP72 and TGF-beta were negatively correlated. In conclusion, impaired HSP defense seems to contribute to kidney injury vulnerability in diabetes and exercise training does not up-regulate kidney HSP expression despite the improvements in histopathological and inflammatory markers. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. HNF-1B specifically regulates the transcription of the {gamma}a-subunit of the Na{sup +}/K{sup +}-ATPase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferre, Silvia; Veenstra, Gert Jan C.; Bouwmeester, Rianne

    2011-01-07

    Research highlights: {yields} Defects in HNF-1B transcription factor affect Mg{sup 2+} handling in the distal kidney. {yields} {gamma}a- and {gamma}b- subunits of the Na{sup +}/K{sup +}-ATPase colocalize in the distal convoluted tubule of the nephron. {yields} HNF-1B specifically activates {gamma}a expression. {yields} HNF-1B mutants have a dominant negative effect on wild type HNF-1B activity. {yields} Defective transcription of {gamma}a may promote renal Mg{sup 2+} wasting. -- Abstract: Hepatocyte nuclear factor-1B (HNF-1B) is a transcription factor involved in embryonic development and tissue-specific gene expression in several organs, including the kidney. Recently heterozygous mutations in the HNF1B gene have been identified inmore » patients with hypomagnesemia due to renal Mg{sup 2+} wasting. Interestingly, ChIP-chip data revealed HNF-1B binding sites in the FXYD2 gene, encoding the {gamma}-subunit of the Na{sup +}/K{sup +}-ATPase. The {gamma}-subunit has been described as one of the molecular players in the renal Mg{sup 2+} reabsorption in the distal convoluted tubule (DCT). Of note, the FXYD2 gene can be alternatively transcribed into two main variants, namely {gamma}a and {gamma}b. In the present study, we demonstrated via two different reporter gene assays that HNF-1B specifically acts as an activator of the {gamma}a-subunit, whereas the {gamma}b-subunit expression was not affected. Moreover, the HNF-1B mutations H69fsdelAC, H324S325fsdelCA, Y352finsA and K156E, previously identified in patients with hypomagnesemia, prevented transcription activation of {gamma}a-subunit via a dominant negative effect on wild type HNF1-B. By immunohistochemistry, it was shown that the {gamma}a- and {gamma}b-subunits colocalize at the basolateral membrane of the DCT segment of mouse kidney. On the basis of these data, we suggest that abnormalities involving the HNF-1B gene may impair the relative abundance of {gamma}a and {gamma}b, thus affecting the transcellular Mg{sup 2+} reabsorption in the DCT.« less

  8. Expression of Nek1 during kidney development and cyst formation in multiple nephron segments in the Nek1-deficient kat2J mouse model of polycystic kidney disease.

    PubMed

    Chen, Yumay; Chiang, Huai-Chin; Litchfield, Patricia; Pena, Michelle; Juang, Charity; Riley, Daniel J

    2014-07-17

    Neks, mammalian orthologs of the fungal protein kinase never-in-mitosis A, have been implicated in the pathogenesis of polycystic kidney disease. Among them, Nek1 is the primary protein inactivated in kat2J mouse models of PKD. We report the expression pattern of Nek1 and characterize the renal cysts that develop in kat2J mice. Nek1 is detectable in all murine tissues but its expression in wild type and kat2J heterozygous kidneys decrease as the kidneys mature, especially in tubular epithelial cells. In the embryonic kidney, Nek1 expression is most prominent in cells that will become podocytes and proximal tubules. Kidney development in kat2J homozygous mice is aberrant early, before the appearance of gross cysts: developing cortical zones are thin, populated by immature glomeruli, and characterized by excessive apoptosis of several cell types. Cysts in kat2J homozygous mice form postnatally in Bowman's space as well as different tubular subtypes. Late in life, kat2J heterozygous mice form renal cysts and the cells lining these cysts lack staining for Nek1. The primary cilia of cells lining cysts in kat2J homozygous mice are morphologically diverse: in some cells they are unusually long and in others there are multiple cilia of varying lengths. Our studies indicate that Nek1 deficiency leads to disordered kidney maturation, and cysts throughout the nephron.

  9. Upregulation of Oxidative Stress Related Genes in a Chronic Kidney Disease Attributed to Specific Geographical Locations of Sri Lanka

    PubMed Central

    Sayanthooran, Saravanabavan; Gunerathne, Lishanthe; Abeysekera, Tilak D. J.; Sooriyapathirana, Suneth S.

    2016-01-01

    Objective. To infer the influence of internal and external oxidative stress in chronic kidney disease patients of unknown etiology (CKDu) in Sri Lanka, by analyzing expression of genes related directly or indirectly to oxidative stress: glutamate-cysteine ligase catalytic subunit (GCLC), glutathione S-transferase mu 1 (GSTM1), glucose-6-phosphate dehydrogenase (G6PD), fibroblast growth factor-23 (FGF23), and NLR family pyrin domain containing 3 (NLRP3). Methods. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was carried out for the selected populations: CKDu patients (n = 43), chronic kidney disease patients (CKD; n = 14), healthy individuals from a CKDu endemic area (GHI; n = 9), and nonendemic area (KHI; n = 16). Fold changes were quantified relative to KHI. Results. GCLC had greater than threefold upregulation in all three study groups, with a maximum of 7.27-fold upregulation in GHI (p = 0.000). GSTM1 was not expressed in 25.6% of CKDu and 42.9% of CKD patients, but CKDu patients expressing GSTM1 showed upregulation of 2.60-fold (p < 0.05). Upregulation of FGF23 and NLRP3 genes in CKD and CKDu was observed (p < 0.01), with greater fold changes in CKD. Conclusion. Results suggest higher influence of external sources of oxidative stress in CKDu, possibly owing to environmental conditions. PMID:27975059

  10. Upregulation of Oxidative Stress Related Genes in a Chronic Kidney Disease Attributed to Specific Geographical Locations of Sri Lanka.

    PubMed

    Sayanthooran, Saravanabavan; Magana-Arachchi, Dhammika N; Gunerathne, Lishanthe; Abeysekera, Tilak D J; Sooriyapathirana, Suneth S

    2016-01-01

    Objective. To infer the influence of internal and external oxidative stress in chronic kidney disease patients of unknown etiology (CKDu) in Sri Lanka, by analyzing expression of genes related directly or indirectly to oxidative stress: glutamate-cysteine ligase catalytic subunit (GCLC), glutathione S-transferase mu 1 (GSTM1), glucose-6-phosphate dehydrogenase (G6PD), fibroblast growth factor-23 (FGF23), and NLR family pyrin domain containing 3 (NLRP3). Methods. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was carried out for the selected populations: CKDu patients ( n = 43), chronic kidney disease patients (CKD; n = 14), healthy individuals from a CKDu endemic area (GHI; n = 9), and nonendemic area (KHI; n = 16). Fold changes were quantified relative to KHI. Results. GCLC had greater than threefold upregulation in all three study groups, with a maximum of 7.27-fold upregulation in GHI ( p = 0.000). GSTM1 was not expressed in 25.6% of CKDu and 42.9% of CKD patients, but CKDu patients expressing GSTM1 showed upregulation of 2.60-fold ( p < 0.05). Upregulation of FGF23 and NLRP3 genes in CKD and CKDu was observed ( p < 0.01), with greater fold changes in CKD. Conclusion. Results suggest higher influence of external sources of oxidative stress in CKDu, possibly owing to environmental conditions.

  11. Proteomic identification of processes and pathways characteristic of osmoregulatory tissues in spiny dogfish shark (Squalus acanthias).

    PubMed

    Lee, Jinoo; Valkova, Nelly; White, Mark P; Kültz, Dietmar

    2006-09-01

    We used dogfish shark (Squalus acanthias) as a model for proteome analysis of six different tissues to evaluate tissue-specific protein expression on a global scale and to deduce specific functions and the relatedness of multiple tissues from their proteomes. Proteomes of heart, brain, kidney, intestine, gill, and rectal gland were separated by two-dimensional gel electrophoresis (2DGE), gel images were matched using Delta 2D software and then evaluated for tissue-specific proteins. Sixty-one proteins (4%) were found to be in only a single type of tissue and 535 proteins (36%) were equally abundant in all six tissues. Relatedness between tissues was assessed based on tissue-specific expression patterns of all 1465 consistently resolved protein spots. This analysis revealed that tissues with osmoregulatory function (kidney, intestine, gill, rectal gland) were more similar in their overall proteomes than non-osmoregulatory tissues (heart, brain). Sixty-one proteins were identified by MALDI-TOF/TOF mass spectrometry and biological functions characteristic of osmoregulatory tissues were derived from gene ontology and molecular pathway analysis. Our data demonstrate that the molecular machinery for energy and urea metabolism and the Rho-GTPase/cytoskeleton pathway are enriched in osmoregulatory tissues of sharks. Our work provides a strong rationale for further study of the contribution of these mechanisms to the osmoregulation of marine sharks.

  12. N-linked oligosaccharides on the low density lipoprotein receptor homolog SorLA/LR11 are modified with terminal GalNAc-4-SO4 in kidney and brain.

    PubMed

    Fiete, Dorothy; Mi, Yiling; Oats, Edward L; Beranek, Mary C; Baenziger, Jacques U

    2007-01-19

    Sorting protein-related receptor (SorLA/LR11) is a highly conserved mosaic receptor that is expressed by cells in a number of different tissues including principal cells of the collecting ducts in the kidney and neurons in the central and peripheral nervous systems. SorLA/LR11 has features that indicate it serves as a sorting receptor shuttling between the plasma membrane, endosomes, and the Golgi. We have found that a fraction of SorLA/LR11 that is synthesized in the kidney and the brain bears N-linked oligosaccharides that are modified with terminal beta1,4-linked GalNAc-4-SO(4). Oligosaccharides located in the vacuolar sorting (Vps) 10p domain (Vps10p domain) are modified with beta1,4-linked GalNAc when the Vps10p domain is expressed in cells along with either of two recently cloned protein-specific beta1,4GalNAc-transferases, GalNAcTIII and GalNAcTIV. Either of two sequences with basic amino acids located within the Vps10p domain is able to mediate recognition by these beta1,4GalNAc-transferases. The highly specific modification of oligosaccharides in the Vps10p domain of SorLA/LR11 with terminal GalNAc-4-SO(4) suggests that this unusual modification may modulate the interaction of SorLA/LR11 with proteins and influence their trafficking.

  13. High maternal sodium intake alters sex-specific renal renin-angiotensin system components in newborn Wistar offspring.

    PubMed

    Maia, D R R; Lopes, K L; Heimann, J C; Furukawa, L N S

    2016-01-28

    This study aimed to evaluate the systemic and renal renin-angiotensin-aldosterone system (RAAS) at birth in male and female offspring and in mothers fed a high sodium diet (HSD) before and during gestation. Female Wistar rats were fed a HSD (8.0% NaCl) or a normal sodium diet (1.3% NaCl) from 8 weeks of age until delivery of their first litter. Maternal body weight, tail blood pressure, and food and water intake were evaluated. The litter sizes were assessed, and the body and kidney weights of the offspring were measured. Both mothers and offspring were euthanized immediately following the birth of the pups to evaluate plasma renin activity (PRA), renal renin content (RRC), renal angiotensin-converting enzyme (ACE) activity, renal angiotensin (Ang) II content, serum aldosterone (ALDO) levels, and renal cortical and medullary renin messenger RNA expression. In mothers in the HSD group, water intake and kidney mass were higher, whereas renal ACE activity, Ang II, PRA, ALDO and RRC were decreased. In the offspring of HSD-fed dams, the body and kidney mass were lower in both genders, renal ACE activity was lower in females and renal Ang II was lower in males. PRA, RRC, renin gene expression and ALDO levels did not differ between the groups of offspring. The data presented herein showed that a maternal HSD during pregnancy induces low birth weight and a sex-specific response in the RAAS in offspring.

  14. Expression of TNF-alpha, TGF-beta, IP-10 and IL-10 mRNA in kidneys of hamsters infected with pathogenic Leptospira.

    PubMed

    Lowanitchapat, Alisa; Payungporn, Sunchai; Sereemaspun, Amornpun; Ekpo, Pattama; Phulsuksombati, Duangporn; Poovorawan, Yong; Chirathaworn, Chintana

    2010-09-01

    Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira. Although several components of this organism have been identified, the molecular mechanisms underlying pathogenesis of this infectious disease are still poorly understood. Besides, direct injury by microbial factors, cytokines produced in response to infection have been proposed to be involved in pathogenesis of leptospirosis. In this study, cytokine gene expression in kidneys was investigated. Hamsters were injected with pathogenic Leptospira interrogans serovar Pyrogenes and were sacrificed on days 3, 5 and 7 after infection. RNA was extracted from kidney tissues. Real-time PCR was performed to demonstrate expression of TNF-alpha, TGF-beta, IP-10 and IL-10 mRNA in kidneys. TNF-alpha, TGF-beta and IP-10 expression could be demonstrated since day 3 post-infection whereas IL-10 expression was detected later on day 5. Leptospira infection resulted in not only expression of a proinflammatory cytokine, TNF-alpha, but also a T cell chemokine, IP-10. Detection of IP-10 suggested the involvement of T cell recruitment in the immune response or pathology in infected kidneys. Expressions of anti-inflammatory cytokines, TGF-beta and IL-10 were also observed. However, the level of TGF-beta expression was prominent since day 3 post-infection whereas IL-10 expression was clearly observed on day 5. Further experiments will provide additional information whether there is a correlation between the expression of these cytokines and pathologies found in an affected organ. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Pre-Treatment with Curcumin Ameliorates Cisplatin-Induced Kidney Damage by Suppressing Kidney Inflammation and Apoptosis in Rats.

    PubMed

    Soetikno, Vivian; Sari, Shinta Dewi Permata; Ul Maknun, Lulu; Sumbung, Nielda Kezia; Rahmi, Deliana Nur Ihsani; Pandhita, Bashar Adi Wahyu; Louisa, Melva; Estuningtyas, Ari

    2018-06-26

    In addition to oxidative stress, inflammation and apoptosis have an important role in the pathogenesis of cisplatin-induced kidney damage. This study aimed to investigate the molecular mechanisms of protective effects of curcumin against cisplatin-induced kidney inflammation and apoptosis in rats. Eighteen rats were equally divided into three groups; normal (0.5% CMC-Na), cisplatin (CDPP) (7 mg/kg i.p.), and cisplatin+curcumin (CMN100) groups. Curcumin was given at a dose of 100 mg/kg orally for nine days, starts one week before giving a single dose of cisplatin. Kidney and plasma were taken for analysis. Cisplatin challenged rats demonstrated kidney injury as shown by reduced creatinine clearance, increased of plasma BUN, plasma creatinine, and kidney MDA, decreased of kidney GSH levels, and kidney histopathology alterations. Also, cisplatin increased ERK1/2 phosphorylation and NF-κB expression, which subsequently increased mRNA expression of TNF-α, IL-6, KIM-1, NGAL, and Bax/Bcl-2 ratio as well as decreased mRNA expression of IL-10 in kidney tissues. Pre-treatment with curcumin significantly ameliorated inflammation and apoptosis induced by cisplatin. In addition, curcumin downregulated Ctr1 and OCT2 drug transporters as compared to cisplatin group. Histopathological examination furthers confirmed the kidney damage protection effect of curcumin. These data indicate that curcumin has nephroprotective properties against cisplatin-induced kidney damage in rats and this effect is associated with its anti-inflammatory and anti-apoptosis profiles, in addition to its antioxidant. Hence, curcumin may be useful for preventing kidney damage against cisplatin administration. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Tricellulin, occludin and claudin-3 expression in salmon intestine and kidney during salinity adaptation.

    PubMed

    Tipsmark, C K; Madsen, S S

    2012-08-01

    Molecular regulation of tight junctions in osmoregulatory epithelia of euryhaline fishes must be extensive during ontogeny and acclimation to salinity changes. In this study, five tight junction proteins were examined in Atlantic salmon (Salmo salar): tight junction associated tricellulin, occludin and claudin-3 isoforms (a, b, c). A survey of tissue distribution in freshwater (FW) salmon showed that tricellulin expression was highest in the intestine. Occludin was detected in tissues with importance for epithelial transport and the order of expression was gill>intestine>kidney. The three claudin-3 isoforms were expressed at highest level in kidney tissue. Transfer of juvenile FW salmon to seawater (SW) elevated intestinal tricellulin and occludin mRNA, and these transcripts were also elevated at the time of best SW-tolerance during the course of smoltification. In the kidney, expression of tricellulin and claudin-3 isoforms was elevated after SW-transfer and tricellulin, occludin, claudin-3a and -3b increased in March before the peak smolt stage. In the gill, none of the examined tight junction proteins were impacted by SW-transfer. The data suggest that expression of tricellulin and occludin is dynamically involved in reorganization of intestinal epithelium and possibly changed paracellular permeability during SW-acclimation. The increased renal tricellulin and claudin-3 expression in SW suggests a role in remodeling of the kidney during SW-acclimation. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Tamm-Horsfall Protein Regulates Granulopoiesis and Systemic Neutrophil Homeostasis

    PubMed Central

    Micanovic, Radmila; Chitteti, Brahmananda R.; Dagher, Pierre C.; Srour, Edward F.; Khan, Shehnaz; Hato, Takashi; Lyle, Allison; Tong, Yan; Wu, Xue-Ru

    2015-01-01

    Tamm-Horsfall protein (THP) is a glycoprotein uniquely expressed in the kidney. We recently showed an important role for THP in mediating tubular cross-talk in the outer medulla and in suppressing neutrophil infiltration after kidney injury. However, it remains unclear whether THP has a broader role in neutrophil homeostasis. In this study, we show that THP deficiency in mice increases the number of neutrophils, not only in the kidney but also in the circulation and in the liver, through enhanced granulopoiesis in the bone marrow. Using multiplex ELISA, we identified IL-17 as a key granulopoietic cytokine specifically upregulated in the kidneys but not in the liver of THP−/− mice. Indeed, neutralization of IL-17 in THP−/− mice completely reversed the systemic neutrophilia. Furthermore, IL-23 was also elevated in THP−/− kidneys. We performed real-time PCR on laser microdissected tubular segments and FACS-sorted renal immune cells and identified the S3 proximal segments, but not renal macrophages, as a major source of increased IL-23 synthesis. In conclusion, we show that THP deficiency stimulates proximal epithelial activation of the IL-23/IL-17 axis and systemic neutrophilia. Our findings provide evidence that the kidney epithelium in the outer medulla can regulate granulopoiesis. When this novel function is added to its known role in erythropoiesis, the kidney emerges as an important regulator of the hematopoietic system. PMID:25556169

  18. Disruption of IFT Complex A Causes Cystic Kidneys without Mitotic Spindle Misorientation

    PubMed Central

    Jonassen, Julie A.; SanAgustin, Jovenal; Baker, Stephen P.

    2012-01-01

    Intraflagellar transport (IFT) complexes A and B build and maintain primary cilia. In the mouse, kidney-specific or hypomorphic mutant alleles of IFT complex B genes cause polycystic kidneys, but the influence of IFT complex A proteins on renal development is not well understood. In the present study, we found that HoxB7-Cre–driven deletion of the complex A gene Ift140 from collecting ducts disrupted, but did not completely prevent, cilia assembly. Mutant kidneys developed collecting duct cysts by postnatal day 5, with rapid cystic expansion and renal dysfunction by day 15 and little remaining parenchymal tissue by day 20. In contrast to many models of polycystic kidney disease, precystic Ift140-deleted collecting ducts showed normal centrosomal positioning and no misorientation of the mitotic spindle axis, suggesting that disruption of oriented cell division is not a prerequisite to cyst formation in these kidneys. Precystic collecting ducts had an increased mitotic index, suggesting that cell proliferation may drive cyst expansion even with normal orientation of the mitotic spindle. In addition, we observed significant increases in expression of canonical Wnt pathway genes and mediators of Hedgehog and tissue fibrosis in highly cystic, but not precystic, kidneys. Taken together, these studies indicate that loss of Ift140 causes pronounced renal cystic disease and suggest that abnormalities in several different pathways may influence cyst progression. PMID:22282595

  19. Molecular Characterization and Expression of α-Globin and β-Globin Genes in the Euryhaline Flounder (Platichthys flesus)

    PubMed Central

    Lu, Weiqun; Mayolle, Aurelie; Cui, Guoqiang; Luo, Lei; Balment, Richard J.

    2011-01-01

    In order to understand the possible role of globin genes in fish salinity adaptation, we report the molecular characterization and expression of all four subunits of haemoglobin, and their response to salinity challenge in flounder. The entire open reading frames of α1-globin and α2-globin genes were 432 and 435 bp long, respectively, whereas the β1-globin and β2-globin genes were both 447 bp. Although the head kidney (pronephros) is the predicted major site of haematopoiesis, real-time PCR revealed that expression of α-globin and β-globin in kidney (mesonephros) was 1.5 times higher than in head kidney. Notably, the α1-globin and β1-globin mRNA expression was higher than α2-globin and β2-globin in kidney. Expression levels of all four globin subunits were higher in freshwater- (FW-) than in seawater- (SW-)adapted fish kidney. If globins do play a role in salinity adaptation, this is likely to be more important in combating the hemodilution faced by fish in FW than the dehydration and salt loading which occur in SW. PMID:21969841

  20. Targeted Therapy for Melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Thomas; Moore, Herbert

    The research project, entitled ”Targeted Therapy for Melanoma,” was focused on investigating the use of kidney protection measures to lower the non-specific kidney uptake of the radiolabeled Pb-DOTA-ReCCMSH peptide. Previous published work demonstrated that the kidney exhibited the highest non-target tissue uptake of the 212Pb/203Pb radiolabeled melanoma targeting peptide DOTA-ReCCMSH. The radiolabeled alpha-melanocyte stimulating hormone (α-MSH) peptide analog DOTA-Re(Arg 11)CCMSH, which binds the melanocortin-1 receptor over-expressed on melanoma tumor cells, has shown promise as a PRRT agent in pre-clinical studies. High tumor uptake of 212Pb labeled DOTA-Re(Arg 11)CCMSH resulted in tumor reduction or eradication in melanoma therapy studies. Of particularmore » note was the 20-50% cure rate observed when melanoma mice were treated with alpha particle emitter 212Pb. However, as with most PRRT agents, high radiation doses to the kidneys where observed. To optimize tumor treatment efficacy and reduce nephrotoxicity, the tumor to kidney uptake ratio must be improved. Strategies to reduce kidney retention of the radiolabeled peptide, while not effecting tumor uptake and retention, can be broken into several categories including modification of the targeting peptide sequence and reducing proximal tubule reabsorption.« less

  1. New insights into potential functions for the protein 4.1superfamily of proteins in kidney epithelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calinisan, Venice; Gravem, Dana; Chen, Ray Ping-Hsu

    2005-06-17

    Members of the protein 4.1 family of adapter proteins are expressed in a broad panel of tissues including various epithelia where they likely play an important role in maintenance of cell architecture and polarity and in control of cell proliferation. We have recently characterized the structure and distribution of three members of the protein 4.1 family, 4.1B, 4.1R and 4.1N, in mouse kidney. We describe here binding partners for renal 4.1 proteins, identified through the screening of a rat kidney yeast two-hybrid system cDNA library. The identification of putative protein 4.1-based complexes enables us to envision potential functions for 4.1more » proteins in kidney: organization of signaling complexes, response to osmotic stress, protein trafficking, and control of cell proliferation. We discuss the relevance of these protein 4.1-based interactions in kidney physio-pathology in the context of their previously identified functions in other cells and tissues. Specifically, we will focus on renal 4.1 protein interactions with beta amyloid precursor protein (beta-APP), 14-3-3 proteins, and the cell swelling-activated chloride channel pICln. We also discuss the functional relevance of another member of the protein 4.1 superfamily, ezrin, in kidney physiopathology.« less

  2. How to grow a kidney: patient-specific kidney organoids come of age.

    PubMed

    Schmidt-Ott, Kai M

    2017-01-01

    The notion of regrowing a patient's kidney in a dish has fascinated researchers for decades and has spurred visions of revolutionary clinical applications. Recently, this option has come closer to reality. Key technologies have been developed to generate patient-specific pluripotent stem cells and to edit their genome. Several laboratories have devised protocols to differentiate patient-specific pluripotent stem cells into kidney cells or into in vitro organoids that resemble the kidney with respect to cell types, tissue architecture and disease pathology. This was possible because of rapidly expanding knowledge regarding the cellular and molecular basis of embryonic kidney development. Generating kidney cells or organoids from patient-specific stem cells may prove to be clinically useful in several ways. First, patient-specific kidney cells or organoids could be used to predict an individual's response to stressors, toxins or medications and thereby develop personalized treatment decisions. Second, patient-specific stem cells harbour the individual's genetic defects. This may potentially enable genetic rescue attempts to establish the significance of a genetic defect in a stem cell-derived organoid or it may allow testing of patient-specific targeted therapies for kidney disease in vitro. From a tissue engineering perspective, patient-specific kidney organoids might provide a key advance towards engineering immunocompatible transplantable kidneys. This review article summarizes recent developments in the field and discusses its current limitations and future perspectives. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  3. Mutant p53 expression in kidney tubules adjacent to renal cell carcinoma: evidence of a precursor lesion.

    PubMed

    Lai, R; el Dabbagh, L; Mourad, W A

    1996-06-01

    Neoplastic transformation can be associated with mutations of the p53 gene. This leads to stabilization of its protein product and to its accumulation, which allows immunohistochemical detection. Mutant p53 expression has been seen in many neoplasms, including renal cell carcinoma (RCC). We recently described putative precursor lesions of RCC. The lesions were defined as intratubular epithelial dysplasia (IED) of kidney tubules adjacent to RCC. They were seen in one-third of the cases studied. The findings were based only on light microscopic analysis. We hypothesized that neoplastic transformation would be manifested by mutant p53 expression in the kidney tubules adjacent to RCC and not in nonneoplastic kidneys. Immunohistochemical staining for p53 in 24 cases of RCC with adjacent kidneys was performed. We used the DO-7 monoclonal antibody reactive for the N-terminal of the p53 protein on formalin-fixed paraffin-embedded tissue. Sections from 14 kidneys resected for nonneoplastic conditions were used as controls. Twenty-one (87%) of the 24 cases of RCC had nuclear p53 expression in the tumor cells. This included 14 cases (58%) with intense reactivity and 7 cases (29%) with weaker p53 immunoreactivity. Of the 24 cases of RCC, IED was identified in 13 cases (54%). Immunoreactivity for p53 was focally seen in tubules of all the lesions, as well as in the nonlesional areas. Six of the lesions exhibited intense nuclear staining. The kidneys adjacent to the RCC, with no evidence of IED, showed focally intense positive p53 nuclear staining in four cases. None of the control specimens showed p53 expression. Our findings provide supportive evidence that previously described IED in kidneys adjacent to RCC are most likely precursor lesions of the neoplasm. Aberrant expression of p53 in areas without evidence of IED may suggest that neoplastic transformation manifested by p53 mutation in kidney tubules may be seen before the development of the morphologic features of dysplasia and malignancy.

  4. The Roles of CD147 and/or Cyclophilin A in Kidney Diseases

    PubMed Central

    Wang, Chunting; Zhang, Jicheng; Qie, Guoqiang

    2014-01-01

    CD147 is a widely expressed integral plasma membrane glycoprotein and has been involved in a variety of physiological and pathological activities in combination with different partners, including cyclophilins, caveolin-1, monocarboxylate transporters, and integrins. Recent data demonstrate that both CyPA and CD147 significantly contribute to renal inflammation, acute kidney injury, renal fibrosis, and renal cell carcinoma. Here we review the current understanding of cyclophilin A and CD147 expression and functions in kidney diseases and potential implications for treatment of kidney diseases. PMID:25580061

  5. Effects of gonadectomy and testosterone treatment on aquaporin expression in the kidney of normotensive and hypertensive rats.

    PubMed

    Loh, Su Yi; Giribabu, Nelli; Salleh, Naguib

    2017-07-01

    We tested the hypothesis that testosterone-induced increase in blood pressure was due to changes in aquaporin (AQP) expression in kidneys. In this study, expression level of kidney AQPs was investigated under testosterone influence. Adult normotensive Wistar Kyoto (WKY) and hypertensive SHR male and female rats underwent gonadectomy. For female rats, testosterone was given for six weeks duration, two weeks following ovariectomy via subcutaneous silastic implant. Mean arterial pressure (MAP) was measured in all the rats after eight weeks via carotid artery cannulation and the rats were then sacrificed and kidneys were harvested for analyses of AQP-1, 2, 3, 4, 6, and 7 mRNA and protein expressions by quantitative real-time PCR and Western blotting, respectively. Distribution of AQP subunits' protein in kidneys was observed by immunofluorescence. In male WKY rats, MAP, AQP-1, 2, 4, and 7 protein; and mRNA expression decreased however AQP-3 protein and mRNA expression increased following orchidectomy. The vice versa effects were observed in testosterone-treated ovariectomized female WKY rats. However, no changes in AQP-6 expression were observed. Meanwhile, in adult male SHR rats, MAP and expression level of all AQP subunits decreased following orchidectomy. The opposite effects were seen in ovariectomized female SHR rats following testosterone treatment. Immunofluorescence study showed AQP-1 and AQP-7 were distributed in the proximal convoluted tubules (PCT) while AQP-2, AQP-4, and AQP-6 were distributed in the collecting ducts (CDs). AQP-3 was distributed in the PCT and CD. In conclusion, changes in AQP subunit expression in kidneys could explain changes in blood pressure under testosterone influence. Impact statement This study provides fundamental understanding on the mechanisms underlying testosterone-induced increase in blood pressure which involve regulation of aquaporin channel subunits in the kidneys. A better understanding of this issue can help to explain the reason for higher blood pressure in males as compared to females and may explain the reason for higher blood pressure in females after menopause than females before menopause, the former most probably related to the changes in female androgen.

  6. The lineage-specific gene ponzr1 is essential for zebrafish pronephric and pharyngeal arch development

    PubMed Central

    Bedell, Victoria M.; Person, Anthony D.; Larson, Jon D.; McLoon, Anna; Balciunas, Darius; Clark, Karl J.; Neff, Kevin I.; Nelson, Katie E.; Bill, Brent R.; Schimmenti, Lisa A.; Beiraghi, Soraya; Ekker, Stephen C.

    2012-01-01

    The Homeobox (Hox) and Paired box (Pax) gene families are key determinants of animal body plans and organ structure. In particular, they function within regulatory networks that control organogenesis. How these conserved genes elicit differences in organ form and function in response to evolutionary pressures is incompletely understood. We molecularly and functionally characterized one member of an evolutionarily dynamic gene family, plac8 onzin related protein 1 (ponzr1), in the zebrafish. ponzr1 mRNA is expressed early in the developing kidney and pharyngeal arches. Using ponzr1-targeting morpholinos, we show that ponzr1 is required for formation of the glomerulus. Loss of ponzr1 results in a nonfunctional glomerulus but retention of a functional pronephros, an arrangement similar to the aglomerular kidneys found in a subset of marine fish. ponzr1 is integrated into the pax2a pathway, with ponzr1 expression requiring pax2a gene function, and proper pax2a expression requiring normal ponzr1 expression. In addition to pronephric function, ponzr1 is required for pharyngeal arch formation. We functionally demonstrate that ponzr1 can act as a transcription factor or co-factor, providing the first molecular mode of action for this newly described gene family. Together, this work provides experimental evidence of an additional mechanism that incorporates evolutionarily dynamic, lineage-specific gene families into conserved regulatory gene networks to create functional organ diversity. PMID:22274699

  7. Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits.

    PubMed

    Rhie, Suhn Kyong; Guo, Yu; Tak, Yu Gyoung; Yao, Lijing; Shen, Hui; Coetzee, Gerhard A; Laird, Peter W; Farnham, Peggy J

    2016-01-01

    Although technological advances now allow increased tumor profiling, a detailed understanding of the mechanisms leading to the development of different cancers remains elusive. Our approach toward understanding the molecular events that lead to cancer is to characterize changes in transcriptional regulatory networks between normal and tumor tissue. Because enhancer activity is thought to be critical in regulating cell fate decisions, we have focused our studies on distal regulatory elements and transcription factors that bind to these elements. Using DNA methylation data, we identified more than 25,000 enhancers that are differentially activated in breast, prostate, and kidney tumor tissues, as compared to normal tissues. We then developed an analytical approach called Tracing Enhancer Networks using Epigenetic Traits that correlates DNA methylation levels at enhancers with gene expression to identify more than 800,000 genome-wide links from enhancers to genes and from genes to enhancers. We found more than 1200 transcription factors to be involved in these tumor-specific enhancer networks. We further characterized several transcription factors linked to a large number of enhancers in each tumor type, including GATA3 in non-basal breast tumors, HOXC6 and DLX1 in prostate tumors, and ZNF395 in kidney tumors. We showed that HOXC6 and DLX1 are associated with different clusters of prostate tumor-specific enhancers and confer distinct transcriptomic changes upon knockdown in C42B prostate cancer cells. We also discovered de novo motifs enriched in enhancers linked to ZNF395 in kidney tumors. Our studies characterized tumor-specific enhancers and revealed key transcription factors involved in enhancer networks for specific tumor types and subgroups. Our findings, which include a large set of identified enhancers and transcription factors linked to those enhancers in breast, prostate, and kidney cancers, will facilitate understanding of enhancer networks and mechanisms leading to the development of these cancers.

  8. Dact2 is expressed in the developing ureteric bud/collecting duct system of the kidney and controls morphogenetic behavior of collecting duct cells.

    PubMed

    Lee, Wen-Chin; Hough, Melinda T; Liu, Weijia; Ekiert, Robert; Lindström, Nils O; Hohenstein, Peter; Davies, Jamie A

    2010-10-01

    The overall pattern of the developing kidney is set in large part by the developing ureteric bud/collecting duct system, and dysgenesis of this system accounts for a variety of clinically significant renal diseases. Understanding how the behavior of cells in the developing ureteric bud/collecting duct is controlled is therefore important to understanding the normal and abnormal kidney. Dact proteins have recently been identified as cytoplasmic regulators of intracellular signaling. Dact1 inhibits Wnt signaling, and Dact2 inhibits transforming growth factor (TGF)-β signaling. Here, we report that Dact2 is expressed in developing and adult mouse kidneys, specifically in the ureteric bud/collecting duct epithelium, a structure whose morphogenesis is controlled partially by TGF-β. When small interfering RNA is used to knock down Dact2 expression in collecting duct cells, they show some constitutive phospho-Smad2, undetectable in controls, and elevated phospho-Smad2 in response to TGF-β. They also show defective migration and, in a monolayer wound-healing assay, they fail to assemble a leading edge "cable" of actomyosin and advance instead as a disorganized mass of lamellipodium-bearing cells. This effect is seriously exacerbated by exogenous TGF-β, although control cells tolerate it well. In three-dimensional culture, Dact2 knockdown cells form cysts and branching tubules, but the outlines of the cysts made by knockdown cells are ragged rather than smooth and the branching tubules are decorated with many fine spikes not seen in controls. These data suggest Dact2 plays a role in regulating morphogenesis by renal collecting duct cells, probably by protecting cells from overly strong TGF-β pathway activation.

  9. Kinetics and thiol requirements of iodothyronine 5'-deiodination are tissue-specific in common carp (Cyprinus carpio L.).

    PubMed

    Klaren, Peter H M; Geven, Edwin J W; Nagelkerke, Anika; Flik, Gert

    2012-03-01

    Iodothyronine deiodinases determine the biological activity of thyroid hormones. Despite the homology of the catalytic sites of mammalian and teleostean deiodinases, in-vitro requirements for the putative thiol co-substrate dithiothreitol (DTT) vary considerably between vertebrate species. To further our insights in the interactions between the deiodinase protein and its substrates: thyroid hormone and DTT, we measured enzymatic iodothyronine 5'-deiodination, Dio1 and Dio2 mRNA expression, and Dio1 affinity probe binding in liver and kidney preparations from a freshwater teleost, the common carp (Cyprinus carpio L.). Deiodination rates, using reverse T3 (rT3, 3,3',5'-triiodothyronine) as the substrate, were analysed as a function of the iodothyronine and DTT concentrations. In kidney rT3 5'-deiodinase activity measured at rT3 concentrations up to 10 μM and in the absence of DTT does not saturate appreciably. In the presence of 1mM DTT, renal rT3 deiodination rates are 20-fold lower. In contrast, rT3 5'-deiodination in liver is potently stimulated by 1mM DTT. The marked biochemical differences between 5'-deiodination in liver and kidney are not associated with the expression of either Dio1 or Dio2 mRNA since both organs express both deiodinase types. In liver and kidney, DTT stimulates the incorporation of N-bromoacetylated affinity labels in proteins with estimated molecular masses of 57 and 55, and 31 and 28 kDa, respectively. Although primary structures are highly homologous, the biochemistry of carp deiodinases differs markedly from their mammalian counterparts. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Septic shock non-thyroidal illness syndrome causes hypothyroidism and conditions for reduced sensitivity to thyroid hormone.

    PubMed

    Castro, Isabel; Quisenberry, Leah; Calvo, Rosa-Maria; Obregon, Maria-Jesus; Lado-Abeal, Joaquin

    2013-04-01

    Non-thyroidal illness syndrome (NTIS) is part of the neuroendocrine response to stress, but the significance of this syndrome remains uncertain. The aim of this study was to investigate the effect of lipopolysaccharide (LPS)-induced NTIS on thyroid hormone (TH) levels and TH molecular targets, as well as the relationship between septic shock nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) activation and TH receptor β (THRB) gene expression at a multi-tissue level in a pig model. Prepubertal domestic pigs were given i.v. saline or LPS for 48 h. Serum and tissue TH was measured by chemiluminescence and RIA. Expression of THRs and cofactors was measured by real-time PCR, and deiodinase (DIO) activity was measured by enzyme assays. Tissue NF-kB nuclear binding activity was evaluated by EMSA. LPS-treated pigs had decreased TH levels in serum and most tissues. DIO1 expression in liver and kidney and DIO1 activity in kidney decreased after LPS. No changes in DIO2 activity were observed between groups. LPS induced an increase in hypothalamus, thyroid, and liver DIO3 activity. Among the other studied genes, monocarboxylate transporter 8 and THRB were the most commonly repressed in endotoxemic pigs. LPS-induced NF-kB activation was associated with a decrease in THRB gene expression only in frontal lobe, adrenal gland, and kidney cortex. We conclude that LPS-induced NTIS in pigs is characterized by hypothyroidism and tissue-specific reduced TH sensitivity. The role of NF-kB in regulating THRB expression during endotoxemia, if any, is restricted to a limited number of tissues.

  11. Liver fatty-acid-binding protein in heart and kidney allograft recipients in relation to kidney function.

    PubMed

    Przybylowski, P; Koc-Zorawska, E; Malyszko, J S; Kozlowska, S; Mysliwiec, M; Malyszko, J

    2011-10-01

    Mammalian intracellular fatty-acid-binding proteins (FABPs), a large multigene family, encode 14-kD proteins that are members of a superfamily of lipid-binding proteins. FABPs are tissue specific. Liver-type FABP (L-FABP) can be filtered through the glomerulus owing to its small molecular size, similar to cystatin C, but it is reabsorbed by proximal tubule epithelial cells like other small proteins. In the human kidney, L-FABP is expressed predominantly in proximal tubules. It had been suggested that the presence of L-FABP in urine reflects hypoxic conditions resulting from decreased peritubular capillary flow, serving as a marker of acute kidney injury. The aim of this study was to assess urinary L-FABP in 111 heart and 76 kidney transplant recipients in relation to kidney function. Complete blood count, urea, fasting glucose, creatinine, and the N-terminal fragment of brain natriuretic protein were studied by standard laboratory methods; L-FABP and cystatin C, by ELISA using commercially available kits. Kidney transplant recipients displayed significantly higher L-FABP than heart recipients. Upon univariate analysis, urinary L-FABP correlated, with serum creatinine, cystatin C and estimated glomerular filtration ratio (eGFR) in kidney allograft recipients. However, in heart transplant recipients it was not related to kidney function, as reflected by creatinine or eGFR; was strongly related to cystatin C (r=0.34; P<.001) and urinary creatinine (r=-0.29; P<.01), and NGAL (r=0.29; P<.01). Upon multiple regression analysis, the best predictor of urinary L-FABP in kidney allograft recipients, was eGFR whereas in heart recipients, no parameter independently predicted L-FABP. Successful heart transplantation is associated with kidney injury as reflected by a reduced eGFR; however, in this population, L-FABP did not serve as a marker of kidney function. In contrast, in kidney allograft recipients, L-FABP may be a potential early marker for impaired kidney function/injury. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Distinct Contributions of TNF Receptor 1 and 2 to TNF-Induced Glomerular Inflammation in Mice

    PubMed Central

    Taubitz, Anela; Schwarz, Martin; Eltrich, Nuru; Lindenmeyer, Maja T.; Vielhauer, Volker

    2013-01-01

    TNF is an important mediator of glomerulonephritis. The two TNF-receptors TNFR1 and TNFR2 contribute differently to glomerular inflammation in vivo, but specific mechanisms of TNFR-mediated inflammatory responses in glomeruli are unknown. We investigated their expression and function in murine kidneys, isolated glomeruli ex vivo, and glomerular cells in vitro. In normal kidney TNFR1 and TNFR2 were preferentially expressed in glomeruli. Expression of both TNFRs and TNF-induced upregulation of TNFR2 mRNA was confirmed in murine glomerular endothelial and mesangial cell lines. In vivo, TNF exposure rapidly induced glomerular accumulation of leukocytes. To examine TNFR-specific inflammatory responses in intrinsic glomerular cells but not infiltrating leukocytes we performed microarray gene expression profiling on intact glomeruli isolated from wildtype and Tnfr-deficient mice following exposure to soluble TNF ex vivo. Most TNF-induced effects were exclusively mediated by TNFR1, including induced glomerular expression of adhesion molecules, chemokines, complement factors and pro-apoptotic molecules. However, TNFR2 contributed to TNFR1-dependent mRNA expression of inflammatory mediators in glomeruli when exposed to low TNF concentrations. Chemokine secretion was absent in TNF-stimulated Tnfr1-deficient glomeruli, but also significantly decreased in glomeruli lacking TNFR2. In vivo, TNF-induced glomerular leukocyte infiltration was abrogated in Tnfr1-deficient mice, whereas Tnfr2-deficiency decreased mononuclear phagocytes infiltrates, but not neutrophils. These data demonstrate that activation of intrinsic glomerular cells by soluble TNF requires TNFR1, whereas TNFR2 is not essential, but augments TNFR1-dependent effects. Previously described TNFR2-dependent glomerular inflammation may therefore require TNFR2 activation by membrane-bound, but not soluble TNF. PMID:23869211

  13. Newly available antibodies with practical applications in surgical pathology.

    PubMed

    Chan, John K C

    2013-12-01

    Selected antibodies that have become available in recent years and have applications in diagnostic pathology are discussed. They include antibodies that are organ-related, provide information on cellular differentiation or histogenetic type, have predictive value in tumors, and highlight infective agents. PAX8 (paired box gene 8) is a marker expressed in the lower female genital tract, thyroid, and kidney and their tumors. Napsin A is expressed in the lung and kidney and is an alternative marker for pulmonary adenocarcinoma. Arginase A is a sensitive and specific marker for liver tumors. ERG (Ets-related gene) is an excellent marker for endothelium and vascular tumors as well as prostatic cancer (about 50% of cases). SOX10 (SRY-related HMG box) is expressed predominantly in melanocytic and Schwann cells and the corresponding tumors. DOG1 (discovered on GIST 1) is an excellent marker for gastrointestinal stromal tumor (GIST) and acinic cell carcinoma. OCT3/4 is a pan-germ cell tumor marker, except yolk sac tumor. SALL4 is positive in various types of germ cell tumors, including yolk sac tumor. MUC4 (mucin-related antigen 4) is a sensitive and specific marker for low-grade fibromyxoid sarcoma. Langerin is a specific marker for Langerhans cells and their tumors. SOX11 is a sensitive marker for mantle cell lymphoma. New generation antibodies against anaplastic lymphoma kinase (ALK) are required to reliably demonstrate ALK gene translocation in pulmonary carcinomas. Lack of expression of succinate dehydrogenase B is seen in paragangliomas of the hereditary form and in the pediatric type of GIST. Antibodies against Trepenoma pallidum can facilitate the diagnosis of syphilis, whereas those against SV40 (simian virus 40) are helpful for diagnosis of BK virus infection and progressive multifocal leukoencephalopathy.

  14. Altered paracellular cation permeability due to a rare CLDN10B variant causes anhidrosis and kidney damage.

    PubMed

    Klar, Joakim; Piontek, Jörg; Milatz, Susanne; Tariq, Muhammad; Jameel, Muhammad; Breiderhoff, Tilman; Schuster, Jens; Fatima, Ambrin; Asif, Maria; Sher, Muhammad; Mäbert, Katrin; Fromm, Anja; Baig, Shahid M; Günzel, Dorothee; Dahl, Niklas

    2017-07-01

    Claudins constitute the major component of tight junctions and regulate paracellular permeability of epithelia. Claudin-10 occurs in two major isoforms that form paracellular channels with ion selectivity. We report on two families segregating an autosomal recessive disorder characterized by generalized anhidrosis, severe heat intolerance and mild kidney failure. All affected individuals carry a rare homozygous missense mutation c.144C>G, p.(N48K) specific for the claudin-10b isoform. Immunostaining of sweat glands from patients suggested that the disease is associated with reduced levels of claudin-10b in the plasma membranes and in canaliculi of the secretory portion. Expression of claudin-10b N48K in a 3D cell model of sweat secretion indicated perturbed paracellular Na+ transport. Analysis of paracellular permeability revealed that claudin-10b N48K maintained cation over anion selectivity but with a reduced general ion conductance. Furthermore, freeze fracture electron microscopy showed that claudin-10b N48K was associated with impaired tight junction strand formation and altered cis-oligomer formation. These data suggest that claudin-10b N48K causes anhidrosis and our findings are consistent with a combined effect from perturbed TJ function and increased degradation of claudin-10b N48K in the sweat glands. Furthermore, affected individuals present with Mg2+ retention, secondary hyperparathyroidism and mild kidney failure that suggest a disturbed reabsorption of cations in the kidneys. These renal-derived features recapitulate several phenotypic aspects detected in mice with kidney specific loss of both claudin-10 isoforms. Our study adds to the spectrum of phenotypes caused by tight junction proteins and demonstrates a pivotal role for claudin-10b in maintaining paracellular Na+ permeability for sweat production and kidney function.

  15. Transcriptome Analysis in Patients with Chronic Kidney Disease on Hemodialysis Disclosing a Key Role for CD16+CX3CR1+ Monocytes

    PubMed Central

    Dhondt, Annemieke; De Meyer, Grim; Neirynck, Nathalie; Bernaert, Pascale; Van den Bergh, Rafael; Brouckaert, Peter; Vanholder, Raymond; Glorieux, Griet

    2015-01-01

    The risk for cardiovascular morbidity and mortality is increased in chronic kidney disease; in this process micro-inflammation plays an essential role. Responsible mechanisms remain to a large extent unidentified. In this pilot study transcriptome analysis of peripheral blood monocytes was used to identify in an unprejudiced manner which factors could be discriminative for cardiovascular disease in patients with chronic kidney disease on hemodialysis. Forty gender- and age-matched, non-diabetic, non-smoking subjects with CRP < 20 mg/L were recruited: 9 healthy controls, 11 patients with eGFR > 60 mL/min/1.73m2 and a history of cardiovascular event (CVE), 10 patients with chronic kidney disease stage 5 on hemodialysis without previous cardiovascular event (CKD5HD) and 10 with a previous cardiovascular event (CKD5HD/CVE). Monocytes were isolated and their mRNA was submitted to focused transcriptome analysis using a macroarray platform containing ca. 700 genes associated with macrophage functional capacity. The macroarray data indicated 9 genes (8 upregulated and 1 downregulated) with a significant differential expression in CKD5HD/CVE vs. CVE alone, after excluding genes differentially expressed in CKD5HD vs. control. For FCGR3A (CD16) and CX3CR1 (chemokine receptor) the upregulation vs. control and vs. CVE could be confirmed by quantitative RT-PCR for all CKD5HD patients. Furthermore, CX3CR1 relative expression on monocytes correlated with CRP. Flow cytometric analysis of purified monocytes confirmed a significant increase in the percentage of CD16 positive monocytes in all CKD5HD patients vs. control and CVE. The present study indicates the importance of a specific pro-inflammatory monocyte subpopulation, positive for CD16 and the co-expressed chemokine receptor, CX3CR1, discriminative for CKD5HD patients. PMID:25830914

  16. The abundance of cis-acting loci leading to differential allele expression in F1 mice and their relationship to loci harboring genes affecting complex traits.

    PubMed

    Yeo, Seungeun; Hodgkinson, Colin A; Zhou, Zhifeng; Jung, Jeesun; Leung, Ming; Yuan, Qiaoping; Goldman, David

    2016-08-11

    Genome-wide surveys have detected cis-acting quantitative trait loci altering levels of RNA transcripts (RNA-eQTLs) by associating SNV alleles to transcript levels. However, the sensitivity and specificity of detection of cis- expression quantitative trait loci (eQTLs) by genetic approaches, reliant as it is on measurements of transcript levels in recombinant inbred strains or offspring from arranged crosses, is unknown, as is their relationship to QTL's for complex phenotypes. We used transcriptome-wide differential allele expression (DAE) to detect cis-eQTLs in forebrain and kidney from reciprocal crosses between three mouse inbred strains, 129S1/SvlmJ, DBA/2J, and CAST/EiJ and C57BL/6 J. Two of these crosses were previously characterized for cis-eQTLs and QTLs for various complex phenotypes by genetic analysis of recombinant inbred (RI) strains. 5.4 %, 1.9 % and 1.5 % of genes assayed in forebrain of B6/129SF1, B6/DBAF1, and B6/CASTF1 mice, respectively, showed differential allelic expression, indicative of cis-acting alleles at these genes. Moreover, the majority of DAE QTLs were observed to be tissue-specific with only a small fraction showing cis-effects in both tissues. Comparing DAE QTLs in F1 mice to cis-eQTLs previously mapped in RI strains we observed that many of the cis-eQTLs were not confirmed by DAE. Additionally several novel DAE-QTLs not identified as cis-eQTLs were identified suggesting that there are differences in sensitivity and specificity for QTL detection between the two methodologies. Strain specific DAE QTLs in B6/DBAF1 mice were located in excess at candidate genes for alcohol use disorders, seizures, and angiogenesis previously implicated by genetic linkage in C57BL/6J × DBA/2JF2 mice or BXD RI strains. Via a survey for differential allele expression in F1 mice, a substantial proportion of genes were found to have alleles altering expression in cis-acting fashion. Comparing forebrain and kidney, many or most of these alleles were tissue-specific in action. The identification of strain specific DAE QTLs, can assist in assessment of candidate genes located within the large intervals associated with trait QTLs.

  17. Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite and kidney development

    PubMed Central

    Yan, Bo; Neilson, Karen M.; Ranganathan, Ramya; Maynard, Thomas; Streit, Andrea; Moody, Sally A.

    2014-01-01

    Background Six1 plays an important role in the development of several vertebrate organs, including cranial sensory placodes, somites and kidney. Although Six1 mutations cause one form of Branchio-Otic Syndrome (BOS), the responsible gene in many patients has not been identified; genes that act downstream of Six1 are potential BOS candidates. Results We sought to identify novel genes expressed during placode, somite and kidney development by comparing gene expression between control and Six1-expressing ectodermal explants. The expression patterns of 19 of the significantly up-regulated and 11 of the significantly down-regulated genes were assayed from cleavage to larval stages. 28/30 genes are expressed in the otocyst, a structure that is functionally disrupted in BOS, and 26/30 genes are expressed in the nephric mesoderm, a structure that is functionally disrupted in the related Branchio-Otic-Renal (BOR) syndrome. We also identified the chick homologues of 5 genes and show that they have conserved expression patterns. Conclusions Of the 30 genes selected for expression analyses, all are expressed at many of the developmental times and appropriate tissues to be regulated by Six1. Many have the potential to play a role in the disruption of hearing and kidney function seen in BOS/BOR patients. PMID:25403746

  18. Endothelial sirtuin 1 inactivation enhances capillary rarefaction and fibrosis following kidney injury through Notch activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kida, Yujiro; Zullo, Joseph A.; Renal Research Institute, Department of Physiology, New York Medical College, Valhalla, NY

    Peritubular capillary (PTC) rarefaction along with tissue fibrosis is a hallmark of chronic kidney disease (CKD). However, molecular mechanisms of PTC loss have been poorly understood. Previous studies have demonstrated that functional loss of endothelial sirtuin 1 (SIRT1) impairs angiogenesis during development and tissue damage. Here, we found that endothelial SIRT1 dysfunction causes activation of endothelial Notch1 signaling, which leads to PTC rarefaction and fibrosis following kidney injury. In mice lacking functional SIRT1 in the endothelium (Sirt1 mutant), kidney injury enhanced apoptosis and senescence of PTC endothelial cells with impaired endothelial proliferation and expanded myofibroblast population and collagen deposition. Comparedmore » to wild-type kidneys, Sirt1 mutant kidneys up-regulated expression of Delta-like 4 (DLL4, a potent Notch1 ligand), Hey1 and Hes1 (Notch target genes), and Notch intracellular domain-1 (NICD1, active form of Notch1) in microvascular endothelial cells (MVECs) post-injury. Sirt1 mutant primary kidney MVECs reduced motility and vascular assembly and enhanced senescence compared to wild-type kidney MVECs. This difference in the phenotype was negated with Notch inhibition. Concurrent stimulation of DLL4 and transforming growth factor (TGF)-β1 increased trans-differentiation of primary kidney pericytes into myofibroblast more than TGF-β1 treatment alone. Collectively, these results indicate that endothelial SIRT1 counteracts PTC rarefaction by repression of Notch1 signaling and antagonizes fibrosis via suppression of endothelial DLL4 expression. - Highlights: • SIRT1 represses Notch1 signaling in capillary endothelial cells in the kidney. • Endothelial SIRT1 is depleted in the kidney following injury. • Activation of endothelial Notch impairs angiogenesis in the kidney. • Increased expression of endothelial DLL4 enhances renal fibrosis.« less

  19. Effects of an Antimutagenic 1,4-Dihydropyridine AV-153 on Expression of Nitric Oxide Synthases and DNA Repair-related Enzymes and Genes in Kidneys of Rats with a Streptozotocin Model of Diabetes Mellitus.

    PubMed

    Ošiņa, Kristīne; Rostoka, Evita; Isajevs, Sergejs; Sokolovska, Jelizaveta; Sjakste, Tatjana; Sjakste, Nikolajs

    2016-11-01

    Development of complications of diabetes mellitus (DM), including diabetic nephropathy, is a complex multi-stage process, dependent on many factors including the modification of nitric oxide (NO) production and an impaired DNA repair. The goal of this work was to study in vivo effects of 1,4-dihydropyridine AV-153, known as antimutagen and DNA binder, on the expression of several genes and proteins involved in NO metabolism and DNA repair in the kidneys of rats with a streptozotocin (STZ)-induced model of DM. Transcription intensity was monitored by means of real-time RT-PCR and the expression of proteins by immunohistochemistry. Development of DM significantly induced PARP1 protein expression, while AV-153 (0.5 mg/kg) administration decreased it. AV-153 increased the expression of Parp1 gene in the kidneys of both intact and diabetic animals. Expression of H2afx mRNA and γH2AX histone protein, a marker of DNA breakage, was not changed in diabetic animals, but AV-153 up-regulated the expression of the gene without any impact on the protein expression. Development of DM was followed by a significant increase in iNOS enzyme expression, while AV-153 down-regulated the enzyme expression up to normal levels. iNos gene expression was also found to be increased in diabetic animals, but unlike the protein, the expression of mRNA was found to be enhanced by AV-153 administration. Expression of both eNOS protein and eNos gene in the kidneys was down-regulated, and the administration of AV-153 normalized the expression level. The effects of the compound in the kidneys of diabetic animals appear to be beneficial, as a trend for the normalization of expression of NO synthases is observed. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  20. CIN85 Deficiency Prevents Nephrin Endocytosis and Proteinuria in Diabetes

    PubMed Central

    Teng, Beina; Schroder, Patricia; Müller-Deile, Janina; Schenk, Heiko; Staggs, Lynne; Tossidou, Irini; Dikic, Ivan; Haller, Hermann

    2016-01-01

    Diabetic nephropathy (DN) is the major cause of end-stage renal disease worldwide. Podocytes are important for glomerular filtration barrier function and maintenance of size selectivity in protein filtration in the kidney. Podocyte damage is the basis of many glomerular diseases characterized by loss of interdigitating foot processes and decreased expression of components of the slit diaphragm. Nephrin, a podocyte-specific protein, is the main component of the slit diaphragm. Loss of nephrin is observed in human and rodent models of diabetic kidney disease. The long isoform of CIN85 (RukL) is a binding partner of nephrin that mediates nephrin endocytosis via ubiquitination in podocytes. Here we demonstrate that the loss of nephrin expression and the onset of proteinuria in diabetic mice correlate with an increased accumulation of ubiquitinated proteins and expression of CIN85/RukL in podocytes. CIN85/RukL deficiency preserved nephrin surface expression on the slit diaphragm and reduced proteinuria in diabetic mice, whereas overexpression of CIN85 in zebrafish induced severe edema and disruption of the filtration barrier. Thus, CIN85/RukL is involved in endocytosis of nephrin in podocytes under diabetic conditions, causing podocyte depletion and promoting proteinuria. CIN85/RukL expression therefore shows potential to be a novel target for antiproteinuric therapy in diabetes. PMID:27531950

  1. Expression of Dentin Sialophosphoprotein in Non-mineralized Tissues

    PubMed Central

    Prasad, Monica; Zhu, Qinglin; Sun, Yao; Wang, Xiaofang; Kulkarni, Ashok; Boskey, Adele; Feng, Jian Q.

    2011-01-01

    Dentin sialophosphoprotein (DSPP) and its cleaved products, dentin phosphoprotein (DPP) and dentin sialoprotein (DSP), play important roles in biomineralization. Believed to be tooth specific, the authors’ group revealed its expression in bone, and more recently, they and other groups also showed its expression in a few types of soft tissues. In this study, the authors systematically examined the expression of DSPP in a variety of non-mineralized tissues using reverse-transcription polymerase chain reaction (RT-PCR), real-time PCR, Western immunoblotting, and immunohistochemistry analyses in wild-type mice as well as β-galactosidase assays in the Dspp lacZ knock-in mice. These approaches showed the presence of DSPP in the salivary glands, cartilage, liver, kidney, and brain and its absence in the heart and spleen. Real-time PCR showed that the expression levels of DSPP mRNA in salivary glands, cartilage, liver, and kidney were higher than in the bone. Interestingly, DSPP was observed in the pericytes of blood vessels in the dental pulp, which are believed to be able to differentiate into odontoblasts. On the basis of these observations, the authors conclude that DSPP and/or its cleaved products may fulfill important functions in certain non-mineralized tissues in addition to its role in biomineralization. PMID:22043023

  2. Ultrastructural characterization of atrial natriuretic peptide receptors (ANP-R) mRNA expression in rat kidney cortex.

    PubMed

    Grandclément, B; Morel, G

    1998-06-01

    Atrial natriuretic peptide (ANP) and two complementary peptides named brain natriuretic peptide and C-type natriuretic peptide are involved in diuresis, natriuresis, hypotension and vasorelaxation. Their actions are mediated by highly selective and specific ANP receptors. Three subtypes have been characterized and cloned: ANP receptor A, -B and -C. In the present study, the mRNA for each subtype was detected by ultrastructural in situ hybridization on ultrathin sections of Lowicryl-embedded tissue and frozen tissue. The distribution of mRNA (visualized by gold particles) for each subtype was found to differ in different cells of the nephron. The three subtypes of this receptor family were expressed in all the parts of the nephron, but their expression levels were different. The ANPR-A mRNA was the most abundant in cells of glomerulus, proximal and distal tubules. The subtype C was the least expressed mRNA in glomerulus. In contrast, the subcellular localization of the three mRNAs was similar; they were found in the cytoplasmic matrix and the euchromatin of the nucleus. In conclusion, the differential expression of these mRNAs in kidney cortex indicates that these three peptides act directly in differing parts of nephron regions which are the glomerulus, the proximal and distal tubules.

  3. (Pro)renin Receptor Is an Amplifier of Wnt/β-Catenin Signaling in Kidney Injury and Fibrosis.

    PubMed

    Li, Zhen; Zhou, Lili; Wang, Yongping; Miao, Jinhua; Hong, Xue; Hou, Fan Fan; Liu, Youhua

    2017-08-01

    The (pro)renin receptor (PRR) is a transmembrane protein with multiple functions. However, its regulation and role in the pathogenesis of CKD remain poorly defined. Here, we report that PRR is a downstream target and an essential component of Wnt/ β -catenin signaling. In mouse models, induction of CKD by ischemia-reperfusion injury (IRI), adriamycin, or angiotensin II infusion upregulated PRR expression in kidney tubular epithelium. Immunohistochemical staining of kidney biopsy specimens also revealed induction of renal PRR in human CKD. Overexpression of either Wnt1 or β -catenin induced PRR mRNA and protein expression in vitro Notably, forced expression of PRR potentiated Wnt1-mediated β -catenin activation and augmented the expression of downstream targets such as fibronectin, plasminogen activator inhibitor 1, and α -smooth muscle actin ( α -SMA). Conversely, knockdown of PRR by siRNA abolished β -catenin activation. PRR potentiation of Wnt/ β -catenin signaling did not require renin, but required vacuolar H + ATPase activity. In the mouse model of IRI, transfection with PRR or Wnt1 expression vectors promoted β -catenin activation, aggravated kidney dysfunction, and worsened renal inflammation and fibrotic lesions. Coexpression of PRR and Wnt1 had a synergistic effect. In contrast, knockdown of PRR expression ameliorated kidney injury and fibrosis after IRI. These results indicate that PRR is both a downstream target and a crucial element in Wnt signal transmission. We conclude that PRR can promote kidney injury and fibrosis by amplifying Wnt/ β -catenin signaling. Copyright © 2017 by the American Society of Nephrology.

  4. Adipose tissue-derived mesenchymal stem cells in long-term dialysis patients display downregulation of PCAF expression and poor angiogenesis activation.

    PubMed

    Yamanaka, Shuichiro; Yokote, Shinya; Yamada, Akifumi; Katsuoka, Yuichi; Izuhara, Luna; Shimada, Yohta; Omura, Nobuo; Okano, Hirotaka James; Ohki, Takao; Yokoo, Takashi

    2014-01-01

    We previously demonstrated that mesenchymal stem cells (MSCs) differentiate into functional kidney cells capable of urine and erythropoietin production, indicating that they may be used for kidney regeneration. However, the viability of MSCs from dialysis patients may be affected under uremic conditions. In this study, we isolated MSCs from the adipose tissues of end-stage kidney disease (ESKD) patients undergoing long-term dialysis (KD-MSCs; mean: 72.3 months) and from healthy controls (HC-MSCs) to compare their viability. KD-MSCs and HC-MSCs were assessed for their proliferation potential, senescence, and differentiation capacities into adipocytes, osteoblasts, and chondrocytes. Gene expression of stem cell-specific transcription factors was analyzed by PCR array and confirmed by western blot analysis at the protein level. No significant differences of proliferation potential, senescence, or differentiation capacity were observed between KD-MSCs and HC-MSCs. However, gene and protein expression of p300/CBP-associated factor (PCAF) was significantly suppressed in KD-MSCs. Because PCAF is a histone acetyltransferase that mediates regulation of hypoxia-inducible factor-1α (HIF-1α), we examined the hypoxic response in MSCs. HC-MSCs but not KD-MSCs showed upregulation of PCAF protein expression under hypoxia. Similarly, HIF-1α and vascular endothelial growth factor (VEGF) expression did not increase under hypoxia in KD-MSCs but did so in HC-MSCs. Additionally, a directed in vivo angiogenesis assay revealed a decrease in angiogenesis activation of KD-MSCs. In conclusion, long-term uremia leads to persistent and systematic downregulation of PCAF gene and protein expression and poor angiogenesis activation of MSCs from patients with ESKD. Furthermore, PCAF, HIF-1α, and VEGF expression were not upregulated by hypoxic stimulation of KD-MSCs. These results suggest that the hypoxic response may be blunted in MSCs from ESKD patients.

  5. Adipose Tissue-Derived Mesenchymal Stem Cells in Long-Term Dialysis Patients Display Downregulation of PCAF Expression and Poor Angiogenesis Activation

    PubMed Central

    Yamanaka, Shuichiro; Yokote, Shinya; Yamada, Akifumi; Katsuoka, Yuichi; Izuhara, Luna; Shimada, Yohta; Omura, Nobuo; Okano, Hirotaka James; Ohki, Takao; Yokoo, Takashi

    2014-01-01

    We previously demonstrated that mesenchymal stem cells (MSCs) differentiate into functional kidney cells capable of urine and erythropoietin production, indicating that they may be used for kidney regeneration. However, the viability of MSCs from dialysis patients may be affected under uremic conditions. In this study, we isolated MSCs from the adipose tissues of end-stage kidney disease (ESKD) patients undergoing long-term dialysis (KD-MSCs; mean: 72.3 months) and from healthy controls (HC-MSCs) to compare their viability. KD-MSCs and HC-MSCs were assessed for their proliferation potential, senescence, and differentiation capacities into adipocytes, osteoblasts, and chondrocytes. Gene expression of stem cell-specific transcription factors was analyzed by PCR array and confirmed by western blot analysis at the protein level. No significant differences of proliferation potential, senescence, or differentiation capacity were observed between KD-MSCs and HC-MSCs. However, gene and protein expression of p300/CBP-associated factor (PCAF) was significantly suppressed in KD-MSCs. Because PCAF is a histone acetyltransferase that mediates regulation of hypoxia-inducible factor-1α (HIF-1α), we examined the hypoxic response in MSCs. HC-MSCs but not KD-MSCs showed upregulation of PCAF protein expression under hypoxia. Similarly, HIF-1α and vascular endothelial growth factor (VEGF) expression did not increase under hypoxia in KD-MSCs but did so in HC-MSCs. Additionally, a directed in vivo angiogenesis assay revealed a decrease in angiogenesis activation of KD-MSCs. In conclusion, long-term uremia leads to persistent and systematic downregulation of PCAF gene and protein expression and poor angiogenesis activation of MSCs from patients with ESKD. Furthermore, PCAF, HIF-1α, and VEGF expression were not upregulated by hypoxic stimulation of KD-MSCs. These results suggest that the hypoxic response may be blunted in MSCs from ESKD patients. PMID:25025381

  6. Helios expression and Foxp3 TSDR methylation of IFNy+ and IFNy- Treg from kidney transplant recipients with good long-term graft function.

    PubMed

    Trojan, Karina; Unterrainer, Christian; Weimer, Rolf; Bulut, Nuray; Morath, Christian; Aly, Mostafa; Zhu, Li; Opelz, Gerhard; Daniel, Volker

    2017-01-01

    There is circumstantial evidence that IFNy+ Treg might have clinical relevance in transplantation. IFNy+ Treg express IFNy receptors and are induced by IFNy. In the present study we investigated in kidney transplant recipients with good long-term stable graft function the absolute cell counts of IFNy+ Treg subsets and whether their expression of Foxp3 is stable or transient. Helios expression determined by eight-color-fluorescence flow cytometry and methylation status of the Foxp3 Treg specific demethylation region (TSDR) served as indicators for stability of Foxp3 expression. Methylation status was investigated in enriched IFNy+ and IFNy- Treg preparations originating from peripheral blood using high resolution melt analysis. A total of 136 transplant recipients and 52 healthy controls were studied. Proportions of IFNy+ Treg were similar in patients and healthy controls (0.05% and 0.04% of all CD4+ lymphocytes; p = n.s.). Patients also had similar absolute counts of IFNy producing Helios+ and Helios- Treg (p = n.s.). Most of the IFNy+ and IFNy- Treg in transplant recipients had a methylated Foxp3 TSDR, however, there was a sizeable proportion of IFNy+ and IFNy- Treg with demethylated Foxp3 TSDR. Male and female patients showed more frequently methylated IFNy+ and IFNy- Treg than male and female controls (all p<0.05). Kidney transplant recipients with good long-term stable graft function have similar levels of IFNy+ Treg as healthy controls. IFNy+ and IFNy- Treg subsets in patients consist of cells with stable and cells with transient Foxp3 expression; however, patients showed more frequently methylated IFNy+ and IFNy- Treg than controls. The data show increased levels of Treg subsets with stable as well as transient Foxp3 expression in patients with stable allograft acceptance compared to healthy controls.

  7. Deregulation of PAX2 expression in renal cell tumours: mechanisms and potential use in differential diagnosis.

    PubMed

    Patrício, Patrícia; Ramalho-Carvalho, João; Costa-Pinheiro, Pedro; Almeida, Mafalda; Barros-Silva, João Diogo; Vieira, Joana; Dias, Paula Cristina; Lobo, Francisco; Oliveira, Jorge; Teixeira, Manuel R; Henrique, Rui; Jeronimo, Carmen

    2013-08-01

    Expression of PAX2 (Paired-box 2) is suppressed through promoter methylation at the later stages of embryonic development, but eventually reactivated during carcinogenesis. Pax-2 is commonly expressed in the most prevalent renal cell tumour (RCT) subtypes-clear cell RCC (ccRCC), papillary RCC (pRCC) and oncocytoma--but not in chromophobe RCC (chrRCC), which frequently displays chromosome 10 loss (to which PAX2 is mapped). Herein, we assessed the epigenetic and/or genetic alterations affecting PAX2 expression in RCTs and evaluated its potential as biomarker. We tested 120 RCTs (30 of each main subtype) and four normal kidney tissues. Pax-2 expression was assessed by immunohistochemistry and PAX2 mRNA expression levels were determined by quantitative RT-PCR. PAX2 promoter methylation status was assessed by methylation-specific PCR and bisulfite sequencing. Chromosome 10 and PAX2 copy number alterations were determined by FISH. Pax-2 immunoexpression was significantly lower in chrRCC compared to other RCT subtypes. Using a 10% immunoexpression cut-off, Pax-2 immunoreactivity discriminated chrRCC from oncocytoma with 67% sensitivity and 90% specificity. PAX2 mRNA expression was significantly lower in chrRCC, compared to ccRCC, pRCC and oncocytoma, and transcript levels correlated with immunoexpression. Whereas no promoter methylation was found in RCTs or normal kidney, 69% of chrRCC displayed chromosome 10 monosomy, correlating with Pax-2 immunoexpression. We concluded that Pax-2 expression might be used as an ancillary tool to discriminate chrRCC from oncocytomas with overlapping morphological features. The biological rationale lies on the causal relation between Pax-2 expression and chromosome 10 monosomy, but not PAX2 promoter methylation, in chrRCC. © 2013 The Authors. Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  8. Aromatase, steroid-5-alpha-reductase type 1 and type 2 mRNA expression in gonads and in brain of Xenopus laevis during ontogeny.

    PubMed

    Urbatzka, R; Lutz, I; Kloas, W

    2007-01-01

    The key enzymes involved in the production of endogenous sex steroids are steroid-5-alpha-reductase and aromatase converting testosterone (T) into dihydrotestosterone (DHT) and into estradiol (E2), respectively. To gain more insights into the molecular mechanisms of sexual differentiation of amphibians, we determined the mRNA expression of steroid-5-alpha-reductase type1 (Srd5a1), type2 (Srd5a2) and aromatase (Aro) during ontogeny starting from the egg and ending after completion of metamorphosis in Xenopus laevis. Expression of all three enzymes was measured by means of semi-quantitative RT-PCR, determining for the first time Srd5a1 and Srd5a2 mRNA expression in amphibians. mRNA was analyzed in whole body homogenates from stage 12 to 48, while brain and gonads with kidney were studied separately from stage 48 to 66. Different ontogenetic mRNA expression patterns were observed for all genes analyzed, revealing early mRNA expression of Srd5a1 already in the egg at stage 12 whereas Srd5a2 and Aro was detected at stage 39. Sex-specific mRNA expressions of Srd5a2 and of Aro were determined in the gonads with kidney but not in brain. Srd5a2 was two-fold higher expressed in testes than in ovaries while Aro mRNA was ten-fold higher in ovaries. No gender-specific mRNA expression was observed for Srd5a1 in gonads and in brain. The ontogenetic patterns of Aro, Srd5a1 and Srd5a2 suggest that these genes are involved in sexual differentiation of gonads and brain already in early developmental stages. Especially in gonads Srd5a2 seems to be important for physiological regulation of testis development while Aro is associated with the development of ovaries.

  9. Cholecystokinin Plays a Novel Protective Role in Diabetic Kidney Through Anti-inflammatory Actions on Macrophage

    PubMed Central

    Miyamoto, Satoshi; Shikata, Kenichi; Miyasaka, Kyoko; Okada, Shinichi; Sasaki, Motofumi; Kodera, Ryo; Hirota, Daisho; Kajitani, Nobuo; Takatsuka, Tetsuharu; Kataoka, Hitomi Usui; Nishishita, Shingo; Sato, Chikage; Funakoshi, Akihiro; Nishimori, Hisakazu; Uchida, Haruhito Adam; Ogawa, Daisuke; Makino, Hirofumi

    2012-01-01

    Inflammatory process is involved in the pathogenesis of diabetic nephropathy. In this article, we show that cholecystokinin (CCK) is expressed in the kidney and exerts renoprotective effects through its anti-inflammatory actions. DNA microarray showed that CCK was upregulated in the kidney of diabetic wild-type (WT) mice but not in diabetic intracellular adhesion molecule-1 knockout mice. We induced diabetes in CCK-1 receptor (CCK-1R) and CCK-2R double-knockout (CCK-1R−/−,-2R−/−) mice, and furthermore, we performed a bone marrow transplantation study using CCK-1R−/− mice to determine the role of CCK-1R on macrophages in the diabetic kidney. Diabetic CCK-1R−/−,-2R−/− mice revealed enhanced albuminuria and inflammation in the kidney compared with diabetic WT mice. In addition, diabetic WT mice with CCK-1R−/− bone marrow–derived cells developed more albuminuria than diabetic CCK-1R−/− mice with WT bone marrow–derived cells. Administration of sulfated cholecystokinin octapeptide (CCK-8S) ameliorated albuminuria, podocyte loss, expression of proinflammatory genes, and infiltration of macrophages in the kidneys of diabetic rats. Furthermore, CCK-8S inhibited both expression of tumor necrosis factor-α and chemotaxis in cultured THP-1 cells. These results suggest that CCK suppresses the activation of macrophage and expression of proinflammatory genes in diabetic kidney. Our findings may provide a novel strategy of therapy for the early stage of diabetic nephropathy. PMID:22357963

  10. Changes of Klotho protein and Klotho mRNA expression in a hydroxy-L-proline induced hyperoxaluric rat model.

    PubMed

    Jaturakan, Orapun; Buranakarl, Chollada; Dissayabutra, Thasinas; Chaiyabutr, Narongsak; Kijtawornrat, Anusak; Rungsipipat, Anudep

    2017-11-17

    Klotho protein is recognized as having a renoprotective effect and is used as a biomarker for kidney injury. We investigated the level of Klotho protein in hyperoxaluria-induced kidney injury and the effects of vitamin E (Vit E) and vitamin C (Vit C) supplementation. Hyperoxaluria was induced by feeding 2% (w/v) Hydroxy-L-proline (HLP) in the drinking water for 21 days. Rats were divided into 5 groups; control (Group 1, n=7), HLP treated rats that received nothing else (Group 2, n=7), Vit E (Group 3, n=6), Vit C (Group 4, n=6) and both Vit E and Vit C (Group 5, n=7). Vit E (200 mg/kg) was injected on days 1, 6, 11 and 16, while Vit C (500 mg/kg) was given intravenously on days 1 and 11. The Klotho protein levels and oxidative status were measured. The expression level of kidney Klotho protein expression was significantly reduced by HLP-treatment, while the mRNA expression was higher (P<0.05), the plasma and kidney malondialdehyde and kidney superoxide dismutase activities were increased, and the kidney reduced glutathione and urinary total antioxidant status were decreased (P<0.05). All of these changes were ameliorated by administration of Vit E, Vit C or especially the co-administration of both. In conclusion, HLP-induced hyperoxaluria reduced the kidney Klotho protein level, which could be restored by Vit E and/or Vit C.

  11. Changes of Klotho protein and Klotho mRNA expression in a hydroxy-L-proline induced hyperoxaluric rat model

    PubMed Central

    JATURAKAN, Orapun; BURANAKARL, Chollada; DISSAYABUTRA, Thasinas; CHAIYABUTR, Narongsak; KIJTAWORNRAT, Anusak; RUNGSIPIPAT, Anudep

    2017-01-01

    Klotho protein is recognized as having a renoprotective effect and is used as a biomarker for kidney injury. We investigated the level of Klotho protein in hyperoxaluria-induced kidney injury and the effects of vitamin E (Vit E) and vitamin C (Vit C) supplementation. Hyperoxaluria was induced by feeding 2% (w/v) Hydroxy-L-proline (HLP) in the drinking water for 21 days. Rats were divided into 5 groups; control (Group 1, n=7), HLP treated rats that received nothing else (Group 2, n=7), Vit E (Group 3, n=6), Vit C (Group 4, n=6) and both Vit E and Vit C (Group 5, n=7). Vit E (200 mg/kg) was injected on days 1, 6, 11 and 16, while Vit C (500 mg/kg) was given intravenously on days 1 and 11. The Klotho protein levels and oxidative status were measured. The expression level of kidney Klotho protein expression was significantly reduced by HLP-treatment, while the mRNA expression was higher (P<0.05), the plasma and kidney malondialdehyde and kidney superoxide dismutase activities were increased, and the kidney reduced glutathione and urinary total antioxidant status were decreased (P<0.05). All of these changes were ameliorated by administration of Vit E, Vit C or especially the co-administration of both. In conclusion, HLP-induced hyperoxaluria reduced the kidney Klotho protein level, which could be restored by Vit E and/or Vit C. PMID:28943597

  12. Simultaneous Expression from Both the Sense and Antisense Strand of the Erythropoietin Receptor Gene Mitigates Acute Lung Injury

    DTIC Science & Technology

    2017-09-01

    Toronto) which immunoprecipitates EpoR but works poorly in immunoblots and not at in immunohistochemistry (Hu et al., Kidney Int. 2013 Sep;84(3):468-81...DAPI EpoR/GFP/DAPIGFP/DAPI C.. Ba/F32EpoR2Flag2GFP.cells 9 Figure 4. Screening the new MAbs to human RopE. Human embryonic kidney -293 (HEK-293) cells...ontogeny of EpoR and RopE expression Figure 7. Concordant RopE and EpoR expression was observed in the lung (left) and the kidney (right) that increase

  13. Kidney Transplant Rejection and Tissue Injury by Gene Profiling of Biopsies and Peripheral Blood Lymphocytes

    PubMed Central

    Flechner, Stuart M.; Kurian, Sunil M.; Head, Steven R.; Sharp, Starlette M.; Whisenant, Thomas C.; Zhang, Jie; Chismar, Jeffrey D.; Horvath, Steve; Mondala, Tony; Gilmartin, Timothy; Cook, Daniel J.; Kay, Steven A.; Walker, John R.; Salomon, Daniel R.

    2007-01-01

    A major challenge for kidney transplantation is balancing the need for immunosuppression to prevent rejection, while minimizing drug-induced toxicities. We used DNA microarrays (HG-U95Av2 GeneChips, Affymetrix) to determine gene expression profiles for kidney biopsies and peripheral blood lymphocytes (PBLs) in transplant patients including normal donor kidneys, well-functioning transplants without rejection, kidneys undergoing acute rejection, and transplants with renal dysfunction without rejection. We developed a data analysis schema based on expression signal determination, class comparison and prediction, hierarchical clustering, statistical power analysis and real-time quantitative PCR validation. We identified distinct gene expression signatures for both biopsies and PBLs that correlated significantly with each of the different classes of transplant patients. This is the most complete report to date using commercial arrays to identify unique expression signatures in transplant biopsies distinguishing acute rejection, acute dysfunction without rejection and well-functioning transplants with no rejection history. We demonstrate for the first time the successful application of high density DNA chip analysis of PBL as a diagnostic tool for transplantation. The significance of these results, if validated in a multicenter prospective trial, would be the establishment of a metric based on gene expression signatures for monitoring the immune status and immunosuppression of transplanted patients. PMID:15307835

  14. A Bioinformatics Approach Identifies Signal Transducer and Activator of Transcription-3 and Checkpoint Kinase 1 as Upstream Regulators of Kidney Injury Molecule-1 after Kidney Injury

    PubMed Central

    Ajay, Amrendra Kumar; Kim, Tae-Min; Ramirez-Gonzalez, Victoria; Park, Peter J.; Frank, David A.

    2014-01-01

    Kidney injury molecule-1 (KIM-1)/T cell Ig and mucin domain-containing protein-1 (TIM-1) is upregulated more than other proteins after AKI, and it is highly expressed in renal damage of various etiologies. In this capacity, KIM-1/TIM-1 acts as a phosphatidylserine receptor on the surface of injured proximal tubular epithelial cells, mediating phagocytosis of apoptotic cells, and it may also act as a costimulatory molecule for immune cells. Despite recognition of KIM-1 as an important therapeutic target for kidney disease, the regulators of KIM-1 transcription in the kidney remain unknown. Using a bioinformatics approach, we identified upstream regulators of KIM-1 after AKI. In response to tubular injury in rat and human kidneys or oxidant stress in human proximal tubular epithelial cells (HPTECs), KIM-1 expression increased significantly in a manner that corresponded temporally and regionally with increased phosphorylation of checkpoint kinase 1 (Chk1) and STAT3. Both ischemic and oxidant stress resulted in a dramatic increase in reactive oxygen species that phosphorylated and activated Chk1, which subsequently bound to STAT3, phosphorylating it at S727. Furthermore, STAT3 bound to the KIM-1 promoter after ischemic and oxidant stress, and pharmacological or genetic induction of STAT3 in HPTECs increased KIM-1 mRNA and protein levels. Conversely, inhibition of STAT3 using siRNAs or dominant negative mutants reduced KIM-1 expression in a kidney cancer cell line (769-P) that expresses high basal levels of KIM-1. These observations highlight Chk1 and STAT3 as critical upstream regulators of KIM-1 expression after AKI and may suggest novel approaches for therapeutic intervention. PMID:24158981

  15. Cells differentiated from mouse embryonic stem cells via embryoid bodies express renal marker molecules.

    PubMed

    Kramer, Jan; Steinhoff, Jürgen; Klinger, Matthias; Fricke, Lutz; Rohwedel, Jürgen

    2006-03-01

    Differentiation of mouse embryonic stem (ES) cells via embryoid bodies (EB) is established as a suitable model to study cellular processes of development in vitro. ES cells are known to be pluripotent because of their capability to differentiate into cell types of all three germ layers including germ cells. Here, we show that ES cells differentiate into renal cell types in vitro. We found that genes were expressed during EB cultivation, which have been previously described to be involved in renal development. Marker molecules characteristic for terminally differentiated renal cell types were found to be expressed predominantly during late stages of EB cultivation, while marker molecules involved in the initiation of nephrogenesis were already expressed during early steps of EB development. On the cellular level--using immunostaining--we detected cells expressing podocin, nephrin and wt-1, characteristic for differentiated podocytes and other cells, which expressed Tamm-Horsfall protein, a marker for distal tubule epithelial cells of kidney tissue. Furthermore, the proximal tubule marker molecules renal-specific oxido reductase, kidney androgen-related protein and 25-hydroxyvitamin D3alpha-hydroxylase were found to be expressed in EBs. In particular, we could demonstrate that cells expressing podocyte marker molecules assemble to distinct ring-like structures within the EBs. Because the differentiation efficiency into these cell types is still relatively low, application of fibroblast growth factor (FGF)-2 in combination with leukaemia inhibitory factor was tested for induction, but did not enhance ES cell-derived renal differentiation in vitro.

  16. Combining eicosapentaenoic acid, decosahexaenoic acid and arachidonic acid, using a fully crossed design, affect gene expression and eicosanoid secretion in salmon head kidney cells in vitro.

    PubMed

    Holen, Elisabeth; He, Juyun; Espe, Marit; Chen, Liqiou; Araujo, Pedro

    2015-08-01

    Future feed for farmed fish are based on untraditional feed ingredients, which will change nutrient profiles compared to traditional feed based on marine ingredients. To understand the impact of oils from different sources on fish health, n-6 and n-3 polyunsaturated fatty acids (PUFAs) were added to salmon head kidney cells, in a fully crossed design, to monitor their individual and combined effects on gene expression. Exposing salmon head kidney cells to single fatty acids, arachidonic acid (AA) or decosahexaenoic acid (DHA), resulted in down-regulation of cell signaling pathway genes and specific fatty acid metabolism genes as well as reduced prostaglandin E2 (PGE2) secretion. Eicosapentaenoic acid (EPA) had no impact on gene transcription in this study, but reduced the cell secretion of PGE2. The combined effect of AA + EPA resulted in up-regulation of eicosanoid pathway genes and the pro-inflammatory cytokine, tumor necrosis factor alpha (TNF-α), Bclx (an inducer of apoptosis) and fatty acid translocase (CD36) as well as increased cell secretion of PGE2 into the media. Adding single fatty acids to salmon head kidney cells decreased inflammation markers in this model. The combination AA + EPA acted differently than the rest of the fatty acid combinations by increasing the inflammation markers in these cells. The concentration of fatty acid used in this experiment did not induce any lipid peroxidation responses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Altered Osteocyte-Specific Protein Expression in Bone after Childhood Solid Organ Transplantation

    PubMed Central

    Pereira, Renata C.; Valta, Helena; Tumber, Navdeep; Salusky, Isidro B.; Jalanko, Hannu

    2015-01-01

    Background Bone fragility is common post solid organ transplantation but little is known about bone pathology on a tissue level. Abnormal osteocytic protein expression has been linked to compromised bone health in chronic kidney disease (CKD) and immunosuppressant medications may impact osteocyte function. Methods Transiliac bone biopsies were obtained from 22 pediatric solid organ allograft recipients (average age 15.6 years) an average of 6.3 ± 1.2 years after transplantation and from 12 pediatric pre-dialysis CKD patients (average age 13.2 years). Histomorphometry and immunohistochemistry for FGF23, DMP1, sclerostin, and osteopontin were performed on all biopsies. Results FGF23 and sclerostin were increased in transplant recipients relative to non-transplant CKD, regardless of the type of allograft received and despite, in the case of liver and heart recipients, a higher GFR. Bone DMP1 expression was higher in liver or heart than in kidney recipients, concomitant with higher serum phosphate values. Osteopontin expression was higher in CKD than in transplant recipients (p<0.01). Bone FGF23 and sclerostin correlated directly (r = 0.38, p<0.05); bone FGF23 expression and osteoid thickness correlated inversely (r = - 0.46, p<0.01). Conclusions Solid-organ transplantation is associated with increased FGF23 and sclerostin expression. The contribution of these findings to compromised bone health post transplantation warrants further evaluation. PMID:26390291

  18. Altered Osteocyte-Specific Protein Expression in Bone after Childhood Solid Organ Transplantation.

    PubMed

    Pereira, Renata C; Valta, Helena; Tumber, Navdeep; Salusky, Isidro B; Jalanko, Hannu; Mäkitie, Outi; Wesseling Perry, Katherine

    2015-01-01

    Bone fragility is common post solid organ transplantation but little is known about bone pathology on a tissue level. Abnormal osteocytic protein expression has been linked to compromised bone health in chronic kidney disease (CKD) and immunosuppressant medications may impact osteocyte function. Transiliac bone biopsies were obtained from 22 pediatric solid organ allograft recipients (average age 15.6 years) an average of 6.3 ± 1.2 years after transplantation and from 12 pediatric pre-dialysis CKD patients (average age 13.2 years). Histomorphometry and immunohistochemistry for FGF23, DMP1, sclerostin, and osteopontin were performed on all biopsies. FGF23 and sclerostin were increased in transplant recipients relative to non-transplant CKD, regardless of the type of allograft received and despite, in the case of liver and heart recipients, a higher GFR. Bone DMP1 expression was higher in liver or heart than in kidney recipients, concomitant with higher serum phosphate values. Osteopontin expression was higher in CKD than in transplant recipients (p<0.01). Bone FGF23 and sclerostin correlated directly (r = 0.38, p<0.05); bone FGF23 expression and osteoid thickness correlated inversely (r = - 0.46, p<0.01). Solid-organ transplantation is associated with increased FGF23 and sclerostin expression. The contribution of these findings to compromised bone health post transplantation warrants further evaluation.

  19. The reciprocal relationship between heme oxygenase and nitric oxide synthase in the organs of lipopolysaccharide-treated rodents.

    PubMed

    Furuichi, Masayuki; Yokozuka, Motoi; Takemori, Ken; Yamanashi, Yoshitaka; Sakamoto, Atsuhiro

    2009-08-01

    The production of nitric oxide (NO) by inducible NO synthase (NOS) and carbon monoxide (CO) by inducible heme oxygenase (HO) contributes greatly to endotoxemia. Reciprocal relationships have been proposed between the NO/NOS and CO/HO systems. However, the interaction between these systems during endotoxemia is unclear, and it is unknown whether the interactive behavior differs among organs. Using endotoxic rats, we studied the effects of the inducible NOS (iNOS) inhibitor L-canavanine (CAN), and the HO inhibitor zinc protoporphyrin (ZPP) on gene expression and protein levels of iNOS, endothelial NOS (eNOS), inducible HO (HO-1), and constitutive HO (HO-2) in the brain, lung, heart, liver and kidney tissue. Intravenous injection of LPS significantly increased iNOS and HO-1 gene expression in all organs. The effects of LPS on eNOS gene expression differed among organs, with increased expression in the liver and kidney, and no change in the lung, brain and heart. ZPP administration down-regulated the LPS-induced increase in HO-1 expression and produced a further increase in iNOS expression in all organs. These data suggest that the CO/HO system modifies the NO/NOS system in endotoxic organs, and that there were only minor organ-specific behaviors in terms of the relationship between these systems in the organs examined.

  20. Heterogeneous Nuclear Ribonucleoprotein F Suppresses Angiotensinogen Gene Expression and Attenuates Hypertension and Kidney Injury in Diabetic Mice

    PubMed Central

    Lo, Chao-Sheng; Chang, Shiao-Ying; Chenier, Isabelle; Filep, Janos G.; Ingelfinger, Julie R.; Zhang, Shao Ling; Chan, John S.D.

    2012-01-01

    We investigated the impact of heterogeneous nuclear ribonucleoprotein F (hnRNP F) overexpression on angiotensinogen (Agt) gene expression, hypertension, and renal proximal tubular cell (RPTC) injury in high-glucose milieu both in vivo and in vitro. Diabetic Akita transgenic (Tg) mice specifically overexpressing hnRNP F in their RPTCs were created, and the effects on systemic hypertension, Agt gene expression, renal hypertrophy, and interstitial fibrosis were studied. We also examined immortalized rat RPTCs stably transfected with control plasmid or plasmid containing hnRNP F cDNA in vitro. The results showed that hnRNP F overexpression attenuated systemic hypertension, suppressed Agt and transforming growth factor-β1 (TGF-β1) gene expression, and reduced urinary Agt and angiotensin II levels, renal hypertrophy, and glomerulotubular fibrosis in Akita hnRNP F-Tg mice. In vitro, hnRNP F overexpression prevented the high-glucose stimulation of Agt and TGF-β1 mRNA expression and cellular hypertrophy in RPTCs. These data suggest that hnRNP F plays a modulatory role and can ameliorate hypertension, renal hypertrophy, and interstitial fibrosis in diabetes. The underlying mechanism is mediated, at least in part, via the suppression of intrarenal Agt gene expression in vivo. hnRNP F may be a potential target in the treatment of hypertension and kidney injury in diabetes. PMID:22664958

  1. IL-34 mediates acute kidney injury and worsens subsequent chronic kidney disease

    PubMed Central

    Baek, Jea-Hyun; Zeng, Rui; Weinmann-Menke, Julia; Valerius, M. Todd; Wada, Yukihiro; Ajay, Amrendra K.; Colonna, Marco; Kelley, Vicki R.

    2015-01-01

    Macrophages (Mø) are integral in ischemia/reperfusion injury–incited (I/R-incited) acute kidney injury (AKI) that leads to fibrosis and chronic kidney disease (CKD). IL-34 and CSF-1 share a receptor (c-FMS), and both cytokines mediate Mø survival and proliferation but also have distinct features. CSF-1 is central to kidney repair and destruction. We tested the hypothesis that IL-34–dependent, Mø-mediated mechanisms promote persistent ischemia-incited AKI that worsens subsequent CKD. In renal I/R, the time-related magnitude of Mø-mediated AKI and subsequent CKD were markedly reduced in IL-34–deficient mice compared with controls. IL-34, c-FMS, and a second IL-34 receptor, protein-tyrosine phosphatase ζ (PTP-ζ) were upregulated in the kidney after I/R. IL-34 was generated by tubular epithelial cells (TECs) and promoted Mø-mediated TEC destruction during AKI that worsened subsequent CKD via 2 distinct mechanisms: enhanced intrarenal Mø proliferation and elevated BM myeloid cell proliferation, which increases circulating monocytes that are drawn into the kidney by chemokines. CSF-1 expression in TECs did not compensate for IL-34 deficiency. In patients, kidney transplants subject to I/R expressed IL-34, c-FMS, and PTP−ζ in TECs during AKI that increased with advancing injury. Moreover, IL-34 expression increased, along with more enduring ischemia in donor kidneys. In conclusion, IL-34-dependent, Mø-mediated, CSF-1 nonredundant mechanisms promote persistent ischemia-incited AKI that worsens subsequent CKD. PMID:26121749

  2. Cloning and characterization of aquaglyceroporin genes from rainbow smelt (Osmerus mordax) and transcript expression in response to cold temperature.

    PubMed

    Hall, Jennifer R; Clow, Kathy A; Rise, Matthew L; Driedzic, William R

    2015-09-01

    Aquaglyceroporins (GLPs) are integral membrane proteins that facilitate passive movement of water, glycerol and urea across cellular membranes. In this study, GLP-encoding genes were characterized in rainbow smelt (Osmerus mordax mordax), an anadromous teleost that accumulates high glycerol and modest urea levels in plasma and tissues as an adaptive cryoprotectant mechanism in sub-zero temperatures. We report the gene and promoter sequences for two aqp10b paralogs (aqp10ba, aqp10bb) that are 82% identical at the predicted amino acid level, and aqp9b. Aqp10bb and aqp9b have the 6 exon structure common to vertebrate GLPs. Aqp10ba has 8 exons; there are two additional exons at the 5' end, and the promoter sequence is different from aqp10bb. Molecular phylogenetic analysis suggests that the aqp10b paralogs arose from a gene duplication event specific to the smelt lineage. Smelt GLP transcripts are ubiquitously expressed; however, aqp10ba transcripts were highest in kidney, aqp10bb transcripts were highest in kidney, intestine, pyloric caeca and brain, and aqp9b transcripts were highest in spleen, liver, red blood cells and kidney. In cold-temperature challenge experiments, plasma glycerol and urea levels were significantly higher in cold- compared to warm-acclimated smelt; however, GLP transcript levels were generally either significantly lower or remained constant. The exception was significantly higher aqp10ba transcript levels in kidney. High aqp10ba transcripts in smelt kidney that increase significantly in response to cold temperature in congruence with plasma urea suggest that this gene duplicate may have evolved to allow the re-absorption of urea to concomitantly conserve nitrogen and prevent freezing. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Characterization of the rat RALDH1 promoter. A functional CCAAT and octamer motif are critical for basal promoter activity.

    PubMed

    Guimond, Julie; Devost, Dominic; Brodeur, Helene; Mader, Sylvie; Bhat, Pangala V

    2002-12-12

    Retinal dehydrogenase type 1 (RALDH1) catalyzes the oxidation of retinal to retinoic acid (RA), a metabolite of vitamin A important for embryogenesis and tissue differentiation. Rat RALDH1 is expressed to high levels in developing kidney, and in stomach, intestine epithelia. To understand the mechanisms of the transcriptional regulation of rat RALDH1, we cloned a 1360-base pair (bp) 5'-flanking region of RALDH1 gene. Using luciferase reporter constructs transfected into HEK 293 and LLCPK (kidney-derived) cells, basal promoter activity was associated with sequences between -80 and +43. In this minimal promoter region, TATA and CCAAT cis-acting elements as well as SP1, AP1 and octamer (Oct)-binding sites were present. The CCAAT box and Oct-binding site, located between positions -72 and -68 and -56 and -49, respectively, were shown by deletion analysis and site-directed mutation to be critical for promoter activity. Nuclear extracts from kidney cells contain proteins specifically binding the Oct and CCAAT sequences, resulting in the formation of six complexes, while different patterns of complexes were observed with non-kidney cell extracts. Gel shift assays using either single or double mutations of the Oct and CCAAT sequences as well as super shift assays demonstrated single and double occupancy of these two sites by Oct-1 and CBF-A. In addition, unidentified proteins also bound the Oct motif specifically in the absence of CBF-A binding. These results demonstrate specific involvement of Oct and CCAAT-binding proteins in the regulation of RALDH1 gene.

  4. Elevated Na+/K+-ATPase responses and its potential role in triggering ion reabsorption in kidneys for homeostasis of marine euryhaline milkfish (Chanos chanos) when acclimated to hypotonic fresh water.

    PubMed

    Tang, Cheng-Hao; Wu, Wen-Yi; Tsai, Shu-Chuan; Yoshinaga, Tatsuki; Lee, Tsung-Han

    2010-08-01

    The milkfish (Chanos chanos) is an economic species in Southeast Asia. In Taiwan, the milkfish are commercially cultured in environments of various salinities. Na(+)/K(+)-ATPase (NKA) is a key enzyme for fish iono- and osmoregulation. When compared with gills, NKA and its potential role were less examined by different approaches in the other osmoregulatory organs (e.g., kidney) of euryhaline teleosts. The objective of this study was to investigate the correlation between osmoregulatory plasticity and renal NKA in this euryhaline species. Muscle water contents (MWC), plasma, and urine osmolality, kidney histology, as well as distribution, expression (mRNA and protein), and specific activity of renal NKA were examined in juvenile milkfish acclimated to fresh water (FW), seawater (SW 35 per thousand), and hypersaline water (HSW 60 per thousand) for at least two weeks before experiments. MWC showed no significant difference among all groups. Plasma osmolality was maintained within the range of physiological homeostasis in milkfish acclimated to different salinities, while, urine osmolality of FW-acclimated fish was evidently lower than SW- and HSW-acclimated individuals. The renal tubules were identified by staining with periodic acid Schiff's reagent and hematoxylin. Moreover, immunohistochemical staining showed that NKA was distributed in the epithelial cells of proximal tubules, distal tubules, and collecting tubules, but not in glomeruli, of milkfish exposed to different ambient salinities. The highest abundance of relative NKA alpha subunit mRNA was found in FW-acclimated milkfish rather than SW- and HSW-acclimated individuals. Furthermore, relative protein amounts of renal NKA alpha and beta subunits as well as NKA-specific activity were also found to be higher in the FW group than SW and the HSW groups. This study integrated diverse levels (i.e., histological distribution, gene, protein, and specific activity) of renal NKA expression and illustrated the potential role of NKA in triggering ion reabsorption in kidneys of the marine euryhaline milkfish when acclimated to a hypotonic FW environment.

  5. S1P1 receptor inhibits kidney epithelial mesenchymal transition triggered by ischemia/reperfusion injury via the PI3K/Akt pathway.

    PubMed

    Wang, Weina; Wang, Aimei; Luo, Guochang; Ma, Fengqiao; Wei, Xiaoming; Bi, Yongyi

    2018-06-13

    Ischemia/reperfusion (I/R) is a major cause of acute kidney injury (AKI), along with delayed graft function, which can trigger chronic kidney injury by stimulating epithelial to mesenchymal transition (EMT) in the kidney canaliculus. Sphingosine 1-phosphate receptor 1 (S1P1) is a G protein-coupled receptor that is indispensable for vessel homeostasis. This study aimed to investigate the influence of S1P1 on the mechanisms underlying I/R-induced EMT in the kidney using in vivo and in vitro models. Wild-type (WT) and S1P1-overexpressing kidney canaliculus cells were subject to hypoxic conditions followed by reoxygenation in the presence or absence of FTY720-P, a potent S1P1 agonist. In vivo, bilateral arteria renalis in wild-type mice and mice with silenced S1P1 were clamped for 30 min to obtain I/R models. We found that hypoxia/reoxygenation (H/R) significantly enhanced the expressions of EMT biomarkers and down-regulated S1P1 expression in wild-type canaliculus cells. In contrast, FTY720-P treatment or overexpression of S1P1 significantly suppressed EMT in wild-type canaliculus cells. Furthermore, after 48-72 h, a significant upregulation of EMT biomarker expression was triggered by I/R in mice with silenced S1P1, while the expressions of these markers did not change in wild-type mice. A kt activity was increased with H/R-induced EMT, suggesting that the protective influence of FTY720-P was due to its inhibition of PI3K/Akt. Therefore, the results of this study provide evidence that down-regulation of S1P1 expression is essential for the generation and progression of EMT triggered by I/R. S1P1 exhibits a prominent inhibitory effect on kidney I/R-induced EMT in the kidney by affecting the PI3K/Akt pathway.

  6. Xenon Protects Against Septic Acute Kidney Injury via miR-21 Target Signaling Pathway.

    PubMed

    Jia, Ping; Teng, Jie; Zou, Jianzhou; Fang, Yi; Wu, Xie; Liang, Mingyu; Ding, Xiaoqiang

    2015-07-01

    Septic acute kidney injury is one of the most common and life-threatening complications in critically ill patients, and there is no approved effective treatment. We have shown xenon provides renoprotection against ischemia-reperfusion injury and nephrotoxicity in rodents via inhibiting apoptosis. Here, we studied the effects of xenon preconditioning on septic acute kidney injury and its mechanism. Experimental animal investigation. University research laboratory. Experiments were performed with male C57BL/6 mice, 10 weeks of age, weighing 20-25 g. We induced septic acute kidney injury by a single intraperitoneal injection of Escherichia coli lipopolysaccharide at a dose of 20 mg/kg. Mice were exposed for 2 hours to either 70% xenon or 70% nitrogen, 24 hours before the onset of septic acute kidney injury. In vivo knockdown of miR-21 was performed using locked nucleic acid-modified anti-miR, the role of miR-21 in renal protection conferred by the xenon preconditioning was examined, and miR-21 signaling pathways were analyzed. Xenon preconditioning provided morphologic and functional renoprotection, characterized by attenuation of renal tubular damage, apoptosis, and a reduction in inflammation. Furthermore, xenon treatment significantly upregulated the expression of miR-21 in kidney, suppressed proinflammatory factor programmed cell death protein 4 expression and nuclear factor-κB activity, and increased interleukin-10 production. Meanwhile, xenon preconditioning also suppressed the expression of proapoptotic protein phosphatase and tensin homolog deleted on chromosome 10, activating protein kinase B signaling pathway, subsequently increasing the expression of antiapoptotic B-cell lymphoma-2, and inhibiting caspase-3 activity. Knockdown of miR-21 upregulated its target effectors programmed cell death protein 4 and phosphatase and tensin homolog deleted on chromosome 10 expression, resulted in an increase in apoptosis, and exacerbated lipopolysaccharide-induced acute kidney injury. Our findings demonstrated that xenon preconditioning protected against lipopolysaccharide-induced acute kidney injury via activation of miR-21 target signaling pathways.

  7. Tuberin-deficiency downregulates N-cadherin and upregulates vimentin in kidney tumor of TSC patients

    PubMed Central

    Liang, Sitai; Salas, Tiffanie; Gencaslan, Emre; Li, Baojie; Habib, Samy L.

    2014-01-01

    Angiomyolipomas (AMLs) are associated with cell fibrosis in kidney of Tuberous Sclerosis Complex patients. The mechanism by which the fibrotic proteins accumulated in AMLs has not been explored. In the present study, we investigated the role of Akt/tuberin/mTOR pathway in the regulation cell fibrosis proteins. AML cells that expressed low levels of tuberin showed less expression of N-cadherin and higher of vimentin proteins compared to HEK293 cells. AML cells infected with Ad-tuberin showed a significant decrease in vimentin and an increase in N-cadherin protein expression. In addition, cells treated with rapamycin showed a significant increase in p-Akt and a decrease in p-p70S6K that was associated with a decrease expression of vimentin and a slight increase expression in N-cadherin. On the other hand, cells treated with Akt inhibitor revealed a significant decrease in p-Akt and p-p70S6K that was associated with a significant decrease in vimentin and an increase in N-cadherin expression. In addition, cells transfected with DN-Akt or DN-S6K show significant increase expression in N-cadherin and a decrease in vimentin. Moreover, cells transfected with siRNA against rictor or siRNA against raptor resulted in a decrease in vimentin and an increase N-cadherin expression. Kidney tumors from TSC patients showed significant decrease in N-cadherin and significant increased in vimentin protein expression compared to control kidney tissues. These data comprise the first report to provide the role of Akt/tuberin/mTORC1/2 in the regulation of N-cadherin and vimentin that are involved in the progression of fibrosis in kidney tumor of TSC patients. PMID:25149531

  8. Expression analysis of cyp11a1 during gonadal development, recrudescence and after hCG induction and sex steroid analog treatment in the catfish, Clarias batrachus.

    PubMed

    Rajakumar, Anbazhagan; Senthilkumaran, Balasubramanian

    2014-10-01

    In teleosts, the levels of steroids are critical for sexual development and hence, expression of steroidogenic enzyme genes and specific substrate availability are indispensable for gonadal steroidogenesis. Early stages of steroidogenesis specifically cholesterol to pregnenolone conversion by Cyp11a1 is crucial for estradiol and testosterone biosynthesis. Based on this, in this study, full length cDNA of cyp11a1 (2581bp) was cloned from catfish testis to investigate the importance of Cyp11a1 by analyzing the expression of cyp11a1 during gonadal development, seasonal reproductive cycle, after human chorionic gonadotropin (hCG) induction and sex steroid analog treatment. Phylogenetic analysis revealed that the Cyp11a1 is more conserved across teleosts. Tissue distribution analysis showed that the cyp11a1 expression was higher in the testis followed by the brain, head kidney, muscle and ovary compared to other tissues analyzed. High expression of cyp11a1 in the head kidney and muscle revealed that Cyp11a1 could potentially regulate the extra-gonadal and/or circulating steroid levels in teleosts. Developing and mature testes showed higher expression of cyp11a1 than the ovary of corresponding age group. Further, cyp11a1 expression was found to be higher during pre-spawning and spawning phases of testicular cycle and was upregulated by hCG, in vivo and in vitro, which indicates the possible regulation by gonadotropin. Exposure of methyltestosterone (1μg/L) and ethinylestradiol (1μg/L) for 21days during catfish testicular development showed lower cyp11a1 expression levels in the testis and brain indicating a certain feedback intervention. These results suggest possible role for Cyp11a1 in the testis development and recrudescence. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. CCR2-dependent Gr1high monocytes promote kidney injury in shiga toxin-induced hemolytic uremic syndrome in mice.

    PubMed

    Pohl, Judith-Mira; Volke, Julia K; Thiebes, Stephanie; Brenzel, Alexandra; Fuchs, Kerstin; Beziere, Nicolas; Ehrlichmann, Walter; Pichler, Bernd J; Squire, Anthony; Gueler, Faikah; Engel, Daniel R

    2018-06-01

    The hemolytic uremic syndrome (HUS) is a life-threatening disease of the kidney that is induced by shiga toxin-producing E.coli. Major changes in the monocytic compartment and in CCR2-binding chemokines have been observed. However, the specific contribution of CCR2-dependent Gr1 high monocytes is unknown. To investigate the impact of these monocytes during HUS, we injected a combination of LPS and shiga toxin into mice. We observed an impaired kidney function and elevated levels of the CCR2-binding chemokine CCL2 after shiga toxin/LPS- injection, thus suggesting Gr1 high monocyte infiltration into the kidney. Indeed, the number of Gr1 high monocytes was strongly increased one day after HUS induction. Moreover, these cells expressed high levels of CD11b suggesting activation after tissue entry. Non-invasive PET-MR imaging revealed kidney injury mainly in the kidney cortex and this damage coincided with the detection of Gr1 high monocytes. Lack of Gr1 high monocytes in Ccr2-deficient animals reduced neutrophil gelatinase-associated lipocalin and blood urea nitrogen levels. Moreover, the survival of Ccr2-deficient animals was significantly improved. Conclusively, this study demonstrates that CCR2-dependent Gr1 high monocytes contribute to the kidney injury during HUS and targeting these cells is beneficial during this disease. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Inhibition of plasma kallikrein-kinin system to alleviate renal injury and arthritis symptoms in rats with adjuvant-induced arthritis.

    PubMed

    Zhu, Jie; Wang, Hui; Chen, Jingyu; Wei, Wei

    2018-04-01

    Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Impairment of kidney functions in RA was observed. However, the mechanism of kidney injury of RA has not been clear. Plasma kallikrein-kinin system (KKS) was involved in inflammatory processes in kidney disease. This study aimed to explore the role of plasma KKS in immune reactions and kidney injury of RA. The paw of AA rats appeared to be swelling and redness, the arthritis index was significantly increased on the 18, 21 and 24 d after injection and secondary inflammation in multi-sites was observed. Kidney dysfunction accompanied with inflammatory cell infiltration, tubular epithelial cell mitochondrial swelling and vacuolar degeneration, renal glomerular foot process fusions and glomerular basement membrane thickening were observed in AA rats. The expressions of neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (Kim-1) in kidney of AA rats were increased. In addition, expressions of BK, PK, B1R and B2R in the renal tissue of AA rats were up-regulated. Pro-inflammatory cytokines IL-2, IFN-γ and TNF-α were increased and anti-inflammatory cytokines IL-4 and IL-10 were low in kidney. Plasma kallikrein (PK) inhibitor PKSI-527 attenuated arthritis signs and renal damage, and inhibited BK, PK, B1R and B2R expressions. The protein expressions of P38, p-P38 and p-JNK and IFN-γ and TNF-α were inhibited by PKSI-527. These findings demonstrate that plasma KKS activation contributed to the renal injury of AA rats through MAPK signaling pathway. Plasma KKS might be a potential target for RA therapy.

  11. Hydrolyzed fish proteins modulates both inflammatory and antioxidant gene expression as well as protein expression in a co culture model of liver and head kidney cells isolated from Atlantic salmon (Salmo salar).

    PubMed

    Holen, Elisabeth; He, Juyun; Araujo, Pedro; Seliussen, Jørgen; Espe, Marit

    2016-07-01

    Hydrolyzed fish proteins (H-pro) contain high concentrations of free amino acids and low molecular peptides that potentially may benefit fish health. The following study aimed to test whether the water-soluble phase of H-pro could attenuate lipopolysaccharide (LPS) provoked inflammation in liver cells and head kidney cells isolated from Atlantic salmon. Cells were grown as mono cultures or co cultures to assess possible crosstalk between immune cells and metabolic cells during treatments. Cells were added media with or without H-pro for 2 days before LPS exposure and harvested 24 h post LPS exposure. Respective cells without H-pro and LPS were used as controls. H-pro alone could affect expression of proteins directly as H-pro increased catalase protein expression in head kidney- and liver cells, regardless of culturing methods and LPS treatment. Leukotriene B4 (LTB4) production was also increased by H-pro in head kidney cells co cultured with liver cells. H-pro increased LPS induced interleukin 1β (IL-1β) transcription in liver cells co cultured with head kidney cells. All cultures of head kidney cells showed a significant increase in IL-1β transcription when treated with H-pro + LPS. H-pro decreased caspase-3 transcription in liver cells cultured co cultured with head kidney cells. Peroxisome proliferator activated receptor α (PPAR α) was upregulated, regardless of treatment, in liver cells co cultured with head kidney cells clearly showing that culturing method alone affected gene transcription. H-pro alone and together with LPS as an inflammation inducer, affect both antioxidant and inflammatory responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Regulation of oxygen utilization by angiotensin II in chronic kidney disease

    PubMed Central

    Deng, Aihua; Tang, Tong; Singh, Prabhleen; Wang, Chen; Satriano, Joe; Thomson, Scott C; Blantz, Roland C

    2010-01-01

    Angiotensin II (ANG II) blockade delays progression of chronic kidney disease (CKD) by modifying intrarenal hemodynamics, but the effect on metabolic adaptations has not been examined. Using renal ablation/infarction (A/I) model of CKD in rats at one week, the effects of ANG II blockade by captopril (CAP) and losartan (LOS) on renal O2 consumption (QO2), renal nitric oxide (NO) activity and nitric oxide synthase (NOS) protein expression was examined. A/I kidneys exhibited proteinuria, reduced GFR, renal blood flow (RBF) and NOS-1 protein expression, while QO2 factored by sodium reabsorption (QO2/TNa) was markedly increased. CAP + LOS treatment increased GFR, RBF, and TNa, while QO2 remained unchanged, thus normalizing QO2/TNa. NOS-1 expression was normalized with CAP + LOS, as was proteinuria. Triple antihypertensive therapy administered to control for the blood pressure reduction, and lysine administration to increase GFR and RBF, did not normalize QO2/TNa, suggesting a specific effect of ANG II in elevating QO2/TNa. NOS blockade, to test functional NO activity on QO2 and QO2/TNa, increased QO2 in shams, but not in untreated A/I. The increase in QO2 was restored in CAP + LOS treated A/I. CAP + LOS treatment normalized the increased QO2/TNa and functional NO activity in A/I independent of the blood pressure and GFR effects, providing evidence for an additional mechanism underlying the benefits of ANG II inhibition therapy. PMID:18818681

  13. Gene expression profiling in rat kidney after intratracheal exposure to cadmium-doped nanoparticles

    NASA Astrophysics Data System (ADS)

    Coccini, Teresa; Roda, Elisa; Fabbri, Marco; Sacco, Maria Grazia; Gribaldo, Laura; Manzo, Luigi

    2012-08-01

    While nephrotoxicity of cadmium is well documented, very limited information exists on renal effects of exposure to cadmium-containing nanomaterials. In this work, "omics" methodologies have been used to assess the action of cadmium-containing silica nanoparticles (Cd-SiNPs) in the kidney of Sprague-Dawley rats exposed intratracheally. Groups of animals received a single dose of Cd-SiNPs (1 mg/rat), CdCl2 (400 μg/rat) or 0.1 ml saline (control). Renal gene expression was evaluated 7 and 30 days post exposure by DNA microarray technology using the Agilent Whole Rat Genome Microarray 4x44K. Gene modulating effects were observed in kidney at both time periods after treatment with Cd-SiNPs. The number of differentially expressed genes being 139 and 153 at the post exposure days 7 and 30, respectively. Renal gene expression changes were also observed in the kidney of CdCl2-treated rats with a total of 253 and 70 probes modulated at 7 and 30 days, respectively. Analysis of renal gene expression profiles at day 7 indicated in both Cd-SiNP and CdCl2 groups downregulation of several cluster genes linked to immune function, oxidative stress, and inflammation processes. Differing from day 7, the majority of cluster gene categories modified by nanoparticles in kidney 30 days after dosing were genes implicated in cell regulation and apoptosis. Modest renal gene expression changes were observed at day 30 in rats treated with CdCl2. These results indicate that kidney may be a susceptible target for subtle long-lasting molecular alterations produced by cadmium nanoparticles locally instilled in the lung.

  14. The Role of Palladin in Podocytes.

    PubMed

    Artelt, Nadine; Ludwig, Tim A; Rogge, Henrik; Kavvadas, Panagiotis; Siegerist, Florian; Blumenthal, Antje; van den Brandt, Jens; Otey, Carol A; Bang, Marie-Louise; Amann, Kerstin; Chadjichristos, Christos E; Chatziantoniou, Christos; Endlich, Karlhans; Endlich, Nicole

    2018-05-02

    Background Podocyte loss and effacement of interdigitating podocyte foot processes are the major cause of a leaky filtration barrier and ESRD. Because the complex three-dimensional morphology of podocytes depends on the actin cytoskeleton, we studied the role in podocytes of the actin bundling protein palladin, which is highly expressed therein. Methods We knocked down palladin in cultured podocytes by siRNA transfection or in zebrafish embryos by morpholino injection and studied the effects by immunofluorescence and live imaging. We also investigated kidneys of mice with podocyte-specific knockout of palladin (PodoPalld-/- mice) by immunofluorescence and ultrastructural analysis and kidney biopsy specimens from patients by immunostaining for palladin. Results Compared with control-treated podocytes, palladin-knockdown podocytes had reduced actin filament staining, smaller focal adhesions, and downregulation of the podocyte-specific proteins synaptopodin and α -actinin-4. Furthermore, palladin-knockdown podocytes were more susceptible to disruption of the actin cytoskeleton with cytochalasin D, latrunculin A, or jasplakinolide and showed altered migration dynamics. In zebrafish embryos, palladin knockdown compromised the morphology and dynamics of epithelial cells at an early developmental stage. Compared with PodoPalld+/+ controls, PodoPalld-/- mice developed glomeruli with a disturbed morphology, an enlarged subpodocyte space, mild effacement, and significantly reduced expression of nephrin and vinculin. Furthermore, nephrotoxic serum injection led to significantly higher levels of proteinuria in PodoPalld-/- mice than in controls. Kidney biopsy specimens from patients with diabetic nephropathy and FSGS showed downregulation of palladin in podocytes as well. Conclusions Palladin has an important role in podocyte function in vitro and in vivo . Copyright © 2018 by the American Society of Nephrology.

  15. The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis

    PubMed Central

    Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L.; Wang, Yanlin

    2014-01-01

    Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. Since chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly fewer bone marrow-derived fibroblasts accumulated in the kidney of CXCR6 knockout mice in response to injury, expressed less profibrotic chemokines and cytokines, displayed fewer myofibroblasts, and expressed less α-smooth muscle actin in the obstructed kidneys compared with wild-type mice. CXCR6 deficiency inhibited total collagen deposition and suppressed expression of collagen I and fibronectin in the obstructed kidneys. Furthermore, wild type mice engrafted with CXCR6−/− bone marrow cells displayed fewer bone marrow-derived fibroblasts in the kidneys with obstructive injury and showed less severe renal fibrosis compared with wild-type mice engrafted with CXCR6+/+ bone marrow cells. Transplant of wild type bone marrow into CXCR6−/− recipients restored recruitment of myeloid fibroblasts and susceptibility to fibrosis. Hematopoietic fibroblasts migrate into injured kidney and proliferate and differentiate into myofibroblasts. Thus, CXCR6, together with other chemokines and their receptors, may play important roles in the recruitment of bone marrow-derived fibroblast precursors into the kidney and contribute to the pathogenesis of renal fibrosis. PMID:24646857

  16. The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis.

    PubMed

    Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L; Wang, Yanlin

    2014-08-01

    Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, and they proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. As chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly, the kidney of CXCR6 knockout mice accumulated fewer bone marrow-derived fibroblasts in response to injury, expressed less profibrotic chemokines and cytokines, displayed fewer myofibroblasts, and expressed less α-smooth muscle actin in the obstructed kidneys compared with wild-type (WT) mice. CXCR6 deficiency inhibited total collagen deposition and suppressed the expression of collagen I and fibronectin in the obstructed kidneys. Furthermore, WT mice engrafted with CXCR6(-/-) bone marrow cells displayed fewer bone marrow-derived fibroblasts in the kidneys with obstructive injury and showed less severe renal fibrosis compared with WT mice engrafted with CXCR6(+/+) bone marrow cells. Transplant of WT bone marrow into CXCR6(-/-) recipients restored recruitment of myeloid fibroblasts and susceptibility to fibrosis. Hematopoietic fibroblasts migrate into injured kidney and proliferate and differentiate into myofibroblasts. Thus, CXCR6, together with other chemokines and their receptors, may have important roles in the recruitment of bone marrow-derived fibroblast precursors into the kidney and contribute to the pathogenesis of renal fibrosis.

  17. Development of a quantitative assay to measure expression of transforming growth factor ß (TGF-ß) in Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) and evaluation of potential pitfalls in use with field-collected samples

    USGS Publications Warehouse

    Robertson, Laura S.; Ottinger, Christopher A.; Burdick, Summer M.; VanderKooi, Scott P.

    2012-01-01

    The Nature Conservancy is in the process of restoring the Williamson River Delta in an attempt to recreate important juvenile habitat for the endangered shortnose sucker Chasmistes brevirostris and the endangered Lost River sucker Deltistes luxatus. Measurement of TGF-β mRNA expression level was one of the indicators chosen to evaluate juvenile sucker health during the restoration process. TGF-β mRNA expression level has been correlated with disease status in several laboratory studies and TGF-β mRNA expression level has been used as a species-specific indicator of immune status in field-based fish health assessments. We describe here the identification of TGF-β and a possible splice variant from shortnose sucker and from Lost River sucker. The performance of a quantitative RT-PCR assay to measure TGF-β mRNA expression level was evaluated in field-collected spleen and kidney tissue samples. The quality of extracted RNA was higher in tissues harvested in September compared to July and higher in tissues harvested at lower temperature compared to higher temperature. In addition, the expression level of both TGF-β and 18S as assessed by qRT-PCR was higher in samples with higher quality RNA. TGF-β mRNA expression was lower in kidney than in spleen in both Lost River sucker and shortnose sucker.

  18. Aberrant Smad3 phosphoisoforms in cyst-lining epithelial cells in the cpk mouse, a model of autosomal recessive polycystic kidney disease.

    PubMed

    Hama, Taketsugu; Nakanishi, Koichi; Sato, Masashi; Mukaiyama, Hironobu; Togawa, Hiroko; Shima, Yuko; Miyajima, Masayasu; Nozu, Kandai; Nagao, Shizuko; Takahashi, Hisahide; Sako, Mayumi; Iijima, Kazumoto; Yoshikawa, Norishige; Suzuki, Hiroyuki

    2017-12-01

    Cystic epithelia acquire mesenchymal-like features in polycystic kidney disease (PKD). In this phenotypic alteration, it is well known that transforming growth factor (TGF)-β/Smad3 signaling is involved; however, there is emerging new data on Smad3 phosphoisoforms: Smad3 phosphorylated at linker regions (pSmad3L), COOH-terminal regions (pSmad3C), and both (pSmad3L/C). pSmad3L/C has a pathological role in colorectal cancer. Mesenchymal phenotype-specific cell responses in the TGF-β/Smad3 pathway are implicated in carcinomas. In this study, we confirmed mesenchymal features and examined Smad3 phosphoisoforms in the cpk mouse, a model of autosomal recessive PKD. Kidney sections were stained with antibodies against mesenchymal markers and domain-specific phospho-Smad3. TGF-β, pSmad3L, pSmad3C, JNK, cyclin-dependent kinase (CDK) 4, and c-Myc were evaluated by Western blotting. Cophosphorylation of pSmad3L/C was assessed by immunoprecipitation. α-Smooth muscle actin, which indicates mesenchymal features, was expressed higher in cpk mice. pSmad3L expression was increased in cpk mice and was predominantly localized in the nuclei of tubular epithelial cells in cysts; however, pSmad3C was equally expressed in both cpk and control mice. Levels of pSmad3L, JNK, CDK4, and c-Myc protein in nuclei were significantly higher in cpk mice than in controls. Immunoprecipitation showed that Smad3 was cophosphorylated (pSmad3L/C) in cpk mice. Smad3 knockout/ cpk double-mutant mice revealed amelioration of cpk abnormalities. These findings suggest that upregulating c-Myc through the JNK/CDK4-dependent pSmad3L pathway may be key to the pathophysiology in cpk mice. In conclusion, a qualitative rather than a quantitative abnormality of the TGF-β/Smad3 pathway is involved in PKD and may be a target for disease-specific intervention. Copyright © 2017 the American Physiological Society.

  19. Upregulation of microRNA 142-3p in the peripheral blood and urinary cells of kidney transplant recipients with post-transplant graft dysfunction

    PubMed Central

    Domenico, T.D.; Joelsons, G.; Montenegro, R.M.; Manfro, R.C.

    2017-01-01

    We analyzed microRNA (miR)-142-3p expression in leucocytes of the peripheral blood and urinary sediment cell samples obtained from kidney transplant recipients who developed graft dysfunction. Forty-one kidney transplant recipients with kidney graft dysfunction and 8 stable patients were included in the study. The groups were divided according to histological analysis into acute rejection group (n=23), acute tubular necrosis group (n=18) and stable patients group used as a control for gene expression (n=8). Percutaneous biopsies were performed and peripheral blood samples and urine samples were obtained. miR-142-3p was analyzed by real-time polymerase chain reaction. The group of patients with acute tubular necrosis presented significantly higher expressions in peripheral blood (P<0.05) and urine (P<0.001) compared to the stable patients group. Also, in the peripheral blood, miR-142-3p expression was significantly higher in the acute tubular necrosis group compared to the acute rejection group (P<0.05). Urine samples of the acute rejection group presented higher expression compared to the stable patients group (P<0.001) but the difference between acute tubular necrosis and acute rejection groups was not significant in the urinary analyzes (P=0.079). miR-142-3p expression has a distinct pattern of expression in the setting of post-operative acute tubular necrosis after kidney transplantation and may potentially be used as a non-invasive biomarker for renal graft dysfunction. PMID:28380212

  20. Upregulation of microRNA 142-3p in the peripheral blood and urinary cells of kidney transplant recipients with post-transplant graft dysfunction.

    PubMed

    Domenico, T D; Joelsons, G; Montenegro, R M; Manfro, R C

    2017-04-03

    We analyzed microRNA (miR)-142-3p expression in leucocytes of the peripheral blood and urinary sediment cell samples obtained from kidney transplant recipients who developed graft dysfunction. Forty-one kidney transplant recipients with kidney graft dysfunction and 8 stable patients were included in the study. The groups were divided according to histological analysis into acute rejection group (n=23), acute tubular necrosis group (n=18) and stable patients group used as a control for gene expression (n=8). Percutaneous biopsies were performed and peripheral blood samples and urine samples were obtained. miR-142-3p was analyzed by real-time polymerase chain reaction. The group of patients with acute tubular necrosis presented significantly higher expressions in peripheral blood (P<0.05) and urine (P<0.001) compared to the stable patients group. Also, in the peripheral blood, miR-142-3p expression was significantly higher in the acute tubular necrosis group compared to the acute rejection group (P<0.05). Urine samples of the acute rejection group presented higher expression compared to the stable patients group (P<0.001) but the difference between acute tubular necrosis and acute rejection groups was not significant in the urinary analyzes (P=0.079). miR-142-3p expression has a distinct pattern of expression in the setting of post-operative acute tubular necrosis after kidney transplantation and may potentially be used as a non-invasive biomarker for renal graft dysfunction.

  1. Lysyl oxidase‑like 2 is expressed in kidney tissue and is associated with the progression of tubulointerstitial fibrosis.

    PubMed

    Choi, Sung-Eun; Jeon, Nara; Choi, Hoon Young; Shin, Jae Il; Jeong, Hyeon Joo; Lim, Beom Jin

    2017-09-01

    Tubulointerstitial fibrosis is a common end point of chronic kidney diseases, and preventing its progression is key to avoiding renal failure. Transforming growth factor‑β (TGF‑β) and associated molecules promote tubulointerstitial fibrosis; however, effective therapies targeting these molecules have yet to be developed. Lysyl oxidase‑like 2 (LOXL2), which is involved in invasive growth and metastasis of malignant neoplasms, has recently been reported to serve a key role in hepatic and pulmonary fibrosis. However, little is currently known regarding LOXL2 expression in the kidney and its involvement in tubulointerstitial fibrosis. The present study evaluated LOXL2 expression in human and mouse kidney tissues, as well as in cultured renal cells. LOXL2 protein expression was detected in glomerular capillary loops and tubular epithelial cells in human and mouse kidneys. Glomerular LOXL2 was localized to the cytoplasm of podocytes, as determined by double immunofluorescence microscopy using a podocyte marker (synaptopodin). This result was supported by western blot analysis, which demonstrated that LOXL2 protein expression is present in cultured human podocytes and HK‑2 human proximal tubular cells. In addition, the mRNA and protein expression levels of LOXL2 were higher in a mouse model of tubulointerstitial fibrosis compared with in control mice. In addition, immunohistochemistry results demonstrated that LOXL2 is present in the fibrous interstitium and infiltrating mononuclear cells in a mouse model of tubulointerstitial fibrosis. The present study demonstrated that LOXL2 is expressed in compartments of renal tissue, where it appears to contribute to the progression of tubulointerstitial fibrosis.

  2. Differential expression of the intermediate filament protein nestin during renal development and its localization in adult podocytes.

    PubMed

    Chen, Jing; Boyle, Scott; Zhao, Min; Su, Wei; Takahashi, Keiko; Davis, Linda; Decaestecker, Mark; Takahashi, Takamune; Breyer, Matthew D; Hao, Chuan-Ming

    2006-05-01

    Nestin, an intermediate filament protein, is widely used as stem cell marker. Nestin has been shown to interact with other cytoskeleton proteins, suggesting a role in regulating cellular cytoskeletal structure. These studies examined renal nestin localization and developmental expression in mice. In developing kidney, anti-nestin antibody revealed strong immunoreactivity in vascular cleft of the S-shaped body and vascular tuft of capillary loop-stage glomerulus. The nestin-positive structures also were labeled by endothelial cell markers FLK1 and CD31 in immature glomeruli. Nestin was not detected in epithelial cells of immature glomeruli. In contrast, in mature glomerular, nestin immunoreactivity was observed only outside laminin-positive glomerular basement membrane, and co-localized with nephrin, consistent with podocyte nestin expression. In adult kidney, podocytes were the only cells that exhibited persistent nestin expression. Nestin was not detected in ureteric bud and its derivatives throughout renal development. Cell lineage studies, using a nestin promoter-driven Cre mouse and a ROSA26 reporter mouse, showed a strong beta-galactosidase activity in intermediate mesoderm in an embryonic day 10 embryo and all of the structures except those that were derived from ureteric bud in embryonic kidney through adult kidney. These studies show that nestin is expressed in progenitors of glomerular endothelial cells and renal progenitors that are derived from metanephric mesenchyme. In the adult kidney, nestin expression is restricted to differentiated podocytes, suggesting that nestin could play an important role in maintaining the structural integrity of the podocytes.

  3. Gene Expression Analysis Reveals New Possible Mechanisms of Vancomycin-Induced Nephrotoxicity and Identifies Gene Markers Candidates

    PubMed Central

    Dieterich, Christine; Puey, Angela; Lyn, Sylvia; Swezey, Robert; Furimsky, Anna; Fairchild, David; Mirsalis, Jon C.; Ng, Hanna H.

    2009-01-01

    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and sacrificed on day 8. Clinical chemistry and histopathology demonstrated kidney injury at 400 mg/kg only. Hierarchical clustering analysis revealed that kidney gene expression profiles of all mice treated at 400 mg/kg clustered with those of mice administered 200 mg/kg iv. Transcriptional profiling might thus be more sensitive than current clinical markers for detecting kidney damage, though the profiles can differ with the route of administration. Analysis of transcripts whose expression was changed by at least twofold compared with vehicle saline after high iv and ip doses of vancomycin suggested the possibility of oxidative stress and mitochondrial damage in vancomycin-induced toxicity. In addition, our data showed changes in expression of several transcripts from the complement and inflammatory pathways. Such expression changes were confirmed by relative real-time reverse transcription–polymerase chain reaction. Finally, our results further substantiate the use of gene markers of kidney toxicity such as KIM-1/Havcr1, as indicators of renal injury. PMID:18930951

  4. Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates.

    PubMed

    Dieterich, Christine; Puey, Angela; Lin, Sylvia; Lyn, Sylvia; Swezey, Robert; Furimsky, Anna; Fairchild, David; Mirsalis, Jon C; Ng, Hanna H

    2009-01-01

    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and sacrificed on day 8. Clinical chemistry and histopathology demonstrated kidney injury at 400 mg/kg only. Hierarchical clustering analysis revealed that kidney gene expression profiles of all mice treated at 400 mg/kg clustered with those of mice administered 200 mg/kg iv. Transcriptional profiling might thus be more sensitive than current clinical markers for detecting kidney damage, though the profiles can differ with the route of administration. Analysis of transcripts whose expression was changed by at least twofold compared with vehicle saline after high iv and ip doses of vancomycin suggested the possibility of oxidative stress and mitochondrial damage in vancomycin-induced toxicity. In addition, our data showed changes in expression of several transcripts from the complement and inflammatory pathways. Such expression changes were confirmed by relative real-time reverse transcription-polymerase chain reaction. Finally, our results further substantiate the use of gene markers of kidney toxicity such as KIM-1/Havcr1, as indicators of renal injury.

  5. The electroneutral sodium/bicarbonate cotransporter containing an amino terminal 123-amino-acid cassette is expressed predominantly in the heart

    PubMed Central

    Cooper, Deborah S.; Lee, Hye Jeong; Yang, Han Soo; Kippen, Joseph; Yun, C. Chris; Choi, Inyeong

    2006-01-01

    Summary In this study, we examined the tissue-specific expression of two electroneutral Na/HCO3 cotransporter (NBCn1) variants that differ from each other by the presence of the N-terminal 123 amino acids (cassette II). A rat Northern blot with the probe to nucleotides encoding cassette II detected a 9 kb NBCn1 mRNA strongly in the heart and weakly in skeletal muscles, but absent from most of the tissues including kidney, brain, and pancreas. In the rat heart, PCR with primers flanking cassette II preferentially amplified a DNA fragment that lacked cassette II. However, in the human heart, PCR preferentially amplified a fragment that contained cassette II. This larger PCR product was found virtually in all regions of the human cardiovascular system with strong amplification in the apex, atrium, and atrioventricular nodes. These findings indicate that the variant containing cassette II is almost absent in tissues including brain, kidney, and pancreas, where NBCn1 has been extensively examined. PMID:16547769

  6. Inflammatory Monocytes Mediate Early and Organ-Specific Innate Defense During Systemic Candidiasis

    PubMed Central

    Ngo, Lisa Y.; Kasahara, Shinji; Kumasaka, Debra K.; Knoblaugh, Sue E.; Jhingran, Anupam; Hohl, Tobias M.

    2014-01-01

    Candida albicans is a commensal fungus that can cause systemic disease in patients with breaches in mucosal integrity, indwelling catheters, and defects in phagocyte function. Although circulating human and murine monocytes bind C. albicans and promote inflammation, it remains unclear whether C-C chemokine receptor 2 (CCR2)– and Ly6C-expressing inflammatory monocytes exert a protective or a deleterious function during systemic infection. During murine systemic candidiasis, interruption of CCR2-dependent inflammatory monocyte trafficking into infected kidneys impaired fungal clearance and decreased murine survival. Depletion of CCR2-expressing cells led to uncontrolled fungal growth in the kidneys and brain and demonstrated an essential antifungal role for inflammatory monocytes and their tissue-resident derivatives in the first 48 hours postinfection. Adoptive transfer of purified inflammatory monocytes in depleted hosts reversed the defect in fungal clearance to a substantial extent, indicating a compartmentally and temporally restricted protective function that can be transferred to enhance systemic innate antifungal immunity. PMID:23922372

  7. Osmoregulation Requires Brain Expression of the Renal Na-K-2Cl Cotransporter NKCC2

    PubMed Central

    Konopacka, Agnieszka; Qiu, Jing; Yao, Song T.; Greenwood, Michael P.; Greenwood, Mingkwan; Lancaster, Thomas; Inoue, Wataru; de Souza Mecawi, Andre; Vechiato, Fernanda M.V.; de Lima, Juliana B.M.; Coletti, Ricardo; Hoe, See Ziau; Martin, Andrew; Lee, Justina; Joseph, Marina; Hindmarch, Charles; Paton, Julian; Antunes-Rodrigues, Jose; Bains, Jaideep

    2015-01-01

    The Na-K-2Cl cotransporter 2 (NKCC2) was thought to be kidney specific. Here we show expression in the brain hypothalamo-neurohypophyseal system (HNS), wherein upregulation follows osmotic stress. The HNS controls osmotic stability through the synthesis and release of the neuropeptide hormone, arginine vasopressin (AVP). AVP travels through the bloodstream to the kidney, where it promotes water conservation. Knockdown of HNS NKCC2 elicited profound effects on fluid balance following ingestion of a high-salt solution—rats produced significantly more urine, concomitant with increases in fluid intake and plasma osmolality. Since NKCC2 is the molecular target of the loop diuretics bumetanide and furosemide, we asked about their effects on HNS function following disturbed water balance. Dehydration-evoked GABA-mediated excitation of AVP neurons was reversed by bumetanide, and furosemide blocked AVP release, both in vivo and in hypothalamic explants. Thus, NKCC2-dependent brain mechanisms that regulate osmotic stability are disrupted by loop diuretics in rats. PMID:25834041

  8. The Emerging Importance of Non-HLA Autoantibodies in Kidney Transplant Complications.

    PubMed

    Cardinal, Héloise; Dieudé, Mélanie; Hébert, Marie-Josée

    2017-02-01

    Antibodies that are specific to organ donor HLA have been involved in the majority of cases of antibody-mediated rejection in solid organ transplant recipients. However, recent data show that production of non-HLA autoantibodies can occur before transplant in the form of natural autoantibodies. In contrast to HLAs, which are constitutively expressed on the cell surface of the allograft endothelium, autoantigens are usually cryptic. Tissue damage associated with ischemia-reperfusion, vascular injury, and/or rejection creates permissive conditions for the expression of cryptic autoantigens, allowing these autoantibodies to bind antigenic targets and further enhance vascular inflammation and renal dysfunction. Antiperlecan/LG3 antibodies and antiangiotensin II type 1 receptor antibodies have been found before transplant in patients with de novo transplants and portend negative long-term outcome in patients with renal transplants. Here, we review mounting evidence suggesting an important role for autoantibodies to cryptic antigens as novel accelerators of kidney dysfunction and acute or chronic allograft rejection. Copyright © 2017 by the American Society of Nephrology.

  9. Development of a Targeted Urine Proteome Assay for kidney diseases.

    PubMed

    Cantley, Lloyd G; Colangelo, Christopher M; Stone, Kathryn L; Chung, Lisa; Belcher, Justin; Abbott, Thomas; Cantley, Jennifer L; Williams, Kenneth R; Parikh, Chirag R

    2016-01-01

    Since human urine is the most readily available biofluid whose proteome changes in response to disease, it is a logical sample for identifying protein biomarkers for kidney diseases. Potential biomarkers were identified by using a multiproteomics workflow to compare urine proteomes of kidney transplant patients with immediate and delayed graft function. Differentially expressed proteins were identified, and corresponding stable isotope labeled internal peptide standards were synthesized for scheduled MRM. The Targeted Urine Proteome Assay (TUPA) was then developed by identifying those peptides for which there were at least two transitions for which interference in a urine matrix across 156 MRM runs was <30%. This resulted in an assay that monitors 224 peptides from 167 quantifiable proteins. TUPA opens the way for using a robust mass spectrometric technology, MRM, for quantifying and validating biomarkers from among 167 urinary proteins. This approach, while developed using differentially expressed urinary proteins from patients with delayed versus immediate graft function after kidney transplant, can be expanded to include differentially expressed urinary proteins in multiple kidney diseases. Thus, TUPA could provide a single assay to help diagnose, prognose, and manage many kidney diseases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. [The relationship between acute rejection and expression of sCD30 for the patients after kidney transplantation].

    PubMed

    Yang, Jian-Lin; Hao, Hong-Jun; Qin, Bin; Bang, Ling-Qing; Zhang, Zhi-Hong; Xin, Dian-Qi; Guo, Ying-Lu; Na, Yan-Qun

    2005-03-16

    To study the relationship between the sCD30 and acute rejection. We tested the sCD30 level in serum for 58 cases with kidney transplantation before and the 7th day and 28th day after operation by ELISA. 31 healthy individual for control group, and simultaneously recorded the incidence of rejection after kidney transplantation. The results showed that there is an obviously relation before kidney transplantation between the sCD30 level in serum and the incidence of acute rejection (chi = 4.843, P = 0.028, P < 0.05). There is a significantly relation at the 7th day after kidney transplantation between the sCD30 level in serum and the incidence of acute rejection (chi = 7.201, P = 0.007, P < 0.01). There is no obviously relation at 28th day after kidney transplantation between the sCD30 level in serum and the incidence of acute rejection (chi = 2.095, P = 0.148, P > 0.05). The results suggested that the expressions of sCD30 are related to acute rejection. We speculated that the expressions of sCD30 could play an important role in acute rejection.

  11. Effect of erythropoietin on mesenchymal stem cell differentiation and secretion in vitro in an acute kidney injury microenvironment.

    PubMed

    Liu, N M; Tian, J; Wang, W W; Han, G F; Cheng, J; Huang, J; Zhang, J Y

    2013-02-28

    We investigated the effect of erythropoietin (EPO) on differentiation and secretion of bone marrow-derived mesenchymal stem cells in an acute kidney injury microenvironment. Acute kidney injury mouse models were prepared. Both renal cortices were then immediately collected to produce the ischemia/reperfusion kidney homogenate supernatant. The morphological and ultrastructural changes in the cells were observed using an inverted microscope and a transmission electron microscope. Cytokeratin-18 was detected using flow cytometry. Bone morphogenetic protein-7 levels, hepatocyte growth factor, and vascular endothelial growth factor in the culture medium were detected using an enzyme-linked immunosorbent assay. The cells had high CD29 and CD44 expression, as well as low CD34 and CD45 expression. More round and oval cells with cobble-like appearances were observed after EPO treatment. In addition, an increase in the number of rough endoplasmic reticula, lysosomes, and mitochondria was observed in the cytoplasm; the intercellular junction peculiar to epithelial cells was also seen on the cell surface. After treatment with ischemia/reperfusion kidney homogenate supernatant, cytokeratin-18 expression increased significantly and EPO could magnify its expression. Bone morphogenetic protein-7 levels, hepatocyte growth factor, and vascular endothelial growth factor levels after treatment with ischemia/reperfusion kidney homogenate supernatant significantly decreased, whereas EPO increased the cytokine secretion. The acute kidney injury microenvironment can induce the bone marrow-derived mesenchymal stem cells to partially differentiate into renal tubular epithelium-shaped cells, but weaken their secretion function. EPO intervention can boost up their differentiation function and reverse their low secretion effect.

  12. Expression patterns of the aquaporin gene family during renal development: influence of genetic variability.

    PubMed

    Parreira, Kleber S; Debaix, Huguette; Cnops, Yvette; Geffers, Lars; Devuyst, Olivier

    2009-08-01

    High-throughput analyses have shown that aquaporins (AQPs) belong to a cluster of genes that are differentially expressed during kidney organogenesis. However, the spatiotemporal expression patterns of the AQP gene family during tubular maturation and the potential influence of genetic variation on these patterns and on water handling remain unknown. We investigated the expression patterns of all AQP isoforms in fetal (E13.5 to E18.5), postnatal (P1 to P28), and adult (9 weeks) kidneys of inbred (C57BL/6J) and outbred (CD-1) mice. Using quantitative polymerase chain reaction (PCR), we evidenced two mRNA patterns during tubular maturation in C57 mice. The AQPs 1-7-11 showed an early (from E14.5) and progressive increase to adult levels, similar to the mRNA pattern observed for proximal tubule markers (Megalin, NaPi-IIa, OAT1) and reflecting the continuous increase in renal cortical structures during development. By contrast, AQPs 2-3-4 showed a later (E15.5) and more abrupt increase, with transient postnatal overexpression. Most AQP genes were expressed earlier and/or stronger in maturing CD-1 kidneys. Furthermore, adult CD-1 kidneys expressed more AQP2 in the collecting ducts, which was reflected by a significant delay in excreting a water load. The expression patterns of proximal vs. distal AQPs and the earlier expression in the CD-1 strain were confirmed by immunoblotting and immunostaining. These data (1) substantiate the clustering of important genes during tubular maturation and (2) demonstrate that genetic variability influences the regulation of the AQP gene family during tubular maturation and water handling by the mature kidney.

  13. Normal tubular regeneration and differentiation of the post-ischemic kidney in mice lacking vimentin.

    PubMed Central

    Terzi, F.; Maunoury, R.; Colucci-Guyon, E.; Babinet, C.; Federici, P.; Briand, P.; Friedlander, G.

    1997-01-01

    Proliferation and dedifferentiation of tubular cells are the hallmark of early regeneration after renal ischemic injury. Vimentin, a class III intermediate filament expressed only in mesenchymal cells of mature mammals, was shown to be transiently expressed in post-ischemic renal tubular epithelial cells. Vimentin re-expression was interpreted as a marker of cellular dedifferentiation, but its role in tubular regeneration after renal ischemia has also been hypothesized. This role was evaluated in mice bearing a null mutation of the vimentin gene. Expression of vimentin, proliferating cell nuclear antigen (a marker of cellular proliferation), and villin (a marker of differentiated brush-border membranes) was studied in wild-type (Vim+/+), heterozygous (Vim+/-), and homozygous (Vim-/-) mice subjected to transient ischemia of the left kidney. As expected, vimentin was detected by immunohistochemistry at the basal pole of proximal tubular cells from post-ischemic kidney in Vim+/+ and Vim+/- mice from day 2 to day 28. The expression of the reporter gene beta-galactosidase in Vim+/- and Vim-/- mice confirmed the tubular origin of vimentin. No compensatory expression of keratin could be demonstrated in Vim-/- mice. The intensity of proliferating cell nuclear antigen labeling and the pattern of villin expression were comparable in Vim-/-, Vim+/- and Vim+/+ mice at any time of the study. After 60 days, the structure of post-ischemic kidneys in Vim-/- mice was indistinguishable from that of normal non-operated kidneys in Vim+/+ mice. In conclusion, 1) the pattern of post-ischemic proximal tubular cell proliferation, differentiation, and tubular organization was not impaired in mice lacking vimentin and 2) these results suggest that the transient tubular expression of vimentin is not instrumental in tubular regeneration after renal ischemic injury. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 PMID:9094992

  14. Identification and expression analysis of peroxisome proliferator-activated receptors cDNA in a reptile, the leopard gecko (Eublepharis macularius).

    PubMed

    Kato, Keisuke; Oka, Yoshitaka; Park, Min Kyun

    2008-05-01

    Despite the physiological and evolutionary significance of lipid metabolism in amniotes, the molecular mechanisms involved have been unclear in reptiles. To elucidate this, we investigated peroxisome proliferators-activated receptors (PPARs) in the leopard gecko (Eublepharis macularius). PPARs belong to a nuclear hormone-receptor family mainly involved in lipid metabolism. Although PPARs have been widely studied in mammals, little information about them is yet available from reptiles. We identified in the leopard gecko partial cDNA sequences of PPARalpha and beta, and full sequences of two isoforms of PPARgamma. This is the first report of reptilian PPARgamma mRNA isoforms. We also evaluated the organ distribution of expression of these genes by using RT-PCR and competitive PCR. The expression level of PPARalpha mRNA was highest in the large intestine, and moderate in the liver and kidney. The expression level of PPARbeta mRNA was highest in the kidney and large intestine, and moderate in the liver. Similarly to the expression of human PPARgamma isoforms, PPARgammaa was expressed ubiquitously, whereas the expression of PPARgammab was restricted. The highest levels of their expression, however, were observed in the large intestine, rather than in the adipose tissue as in mammals. Taken together, these results showed that the profile of PPARbeta mRNA expression in the leopard gecko is similar to that in mammals, and that those of PPAR alpha and gamma are species specific. This may reflect adaptation to annual changes in lipid storage due to seasonal food availability.

  15. Alu sequence involvement in transcriptional insulation of the keratin 18 gene in transgenic mice.

    PubMed Central

    Thorey, I S; Ceceña, G; Reynolds, W; Oshima, R G

    1993-01-01

    The human keratin 18 (K18) gene is expressed in a variety of adult simple epithelial tissues, including liver, intestine, lung, and kidney, but is not normally found in skin, muscle, heart, spleen, or most of the brain. Transgenic animals derived from the cloned K18 gene express the transgene in appropriate tissues at levels directly proportional to the copy number and independently of the sites of integration. We have investigated in transgenic mice the dependence of K18 gene expression on the distal 5' and 3' flanking sequences and upon the RNA polymerase III promoter of an Alu repetitive DNA transcription unit immediately upstream of the K18 promoter. Integration site-independent expression of tandemly duplicated K18 transgenes requires the presence of either an 825-bp fragment of the 5' flanking sequence or the 3.5-kb 3' flanking sequence. Mutation of the RNA polymerase III promoter of the Alu element within the 825-bp fragment abolishes copy number-dependent expression in kidney but does not abolish integration site-independent expression when assayed in the absence of the 3' flanking sequence of the K18 gene. The characteristics of integration site-independent expression and copy number-dependent expression are separable. In addition, the formation of the chromatin state of the K18 gene, which likely restricts the tissue-specific expression of this gene, is not dependent upon the distal flanking sequences of the 10-kb K18 gene but rather may depend on internal regulatory regions of the gene. Images PMID:7692231

  16. Interleukin-1β Activates a MYC-Dependent Metabolic Switch in Kidney Stromal Cells Necessary for Progressive Tubulointerstitial Fibrosis.

    PubMed

    Lemos, Dario R; McMurdo, Michael; Karaca, Gamze; Wilflingseder, Julia; Leaf, Irina A; Gupta, Navin; Miyoshi, Tomoya; Susa, Koichiro; Johnson, Bryce G; Soliman, Kirolous; Wang, Guanghai; Morizane, Ryuji; Bonventre, Joseph V; Duffield, Jeremy S

    2018-06-01

    Background Kidney injury is characterized by persisting inflammation and fibrosis, yet mechanisms by which inflammatory signals drive fibrogenesis remain poorly defined. Methods RNA sequencing of fibrotic kidneys from patients with CKD identified a metabolic gene signature comprising loss of mitochondrial and oxidative phosphorylation gene expression with a concomitant increase in regulators and enzymes of glycolysis under the control of PGC1 α and MYC transcription factors, respectively. We modeled this metabolic switch in vivo , in experimental murine models of kidney injury, and in vitro in human kidney stromal cells (SCs) and human kidney organoids. Results In mice, MYC and the target genes thereof became activated in resident SCs early after kidney injury, suggesting that acute innate immune signals regulate this transcriptional switch. In vitro , stimulation of purified human kidney SCs and human kidney organoids with IL-1 β recapitulated the molecular events observed in vivo , inducing functional metabolic derangement characterized by increased MYC-dependent glycolysis, the latter proving necessary to drive proliferation and matrix production. MYC interacted directly with sequestosome 1/p62, which is involved in proteasomal degradation, and modulation of p62 expression caused inverse effects on MYC expression. IL-1 β stimulated autophagy flux, causing degradation of p62 and accumulation of MYC. Inhibition of the IL-1R signal transducer kinase IRAK4 in vivo or inhibition of MYC in vivo as well as in human kidney organoids in vitro abrogated fibrosis and reduced tubular injury. Conclusions Our findings define a connection between IL-1 β and metabolic switch in fibrosis initiation and progression and highlight IL-1 β and MYC as potential therapeutic targets in tubulointerstitial diseases. Copyright © 2018 by the American Society of Nephrology.

  17. A model-specific role of microRNA-223 as a mediator of kidney injury during experimental sepsis.

    PubMed

    Colbert, James F; Ford, Joshay A; Haeger, Sarah M; Yang, Yimu; Dailey, Kyrie L; Allison, Kristen C; Neudecker, Viola; Evans, Christopher M; Richardson, Vanessa L; Brodsky, Kelley S; Faubel, Sarah; Eltzschig, Holger K; Schmidt, Eric P; Ginde, Adit A

    2017-08-01

    Sepsis outcomes are heavily dependent on the development of septic organ injury, but no interventions exist to interrupt or reverse this process. microRNA-223 (miR-223) is known to be involved in both inflammatory gene regulation and host-pathogen interactions key to the pathogenesis of sepsis. The goal of this study was to determine the role of miR-223 as a mediator of septic kidney injury. Using miR-223 knockout mice and multiple models of experimental sepsis, we found that miR-223 differentially influences acute kidney injury (AKI) based on the model used. In the absence of miR-223, mice demonstrated exaggerated AKI in sterile models of sepsis (LPS injection) and attenuated AKI in a live-infection model of sepsis (cecal ligation and puncture). We demonstrated that miR-223 expression is induced in kidney homogenate after cecal ligation and puncture, but not after LPS or fecal slurry injection. We investigated additional potential mechanistic explanations including differences in peritoneal bacterial clearance and host stool virulence. Our findings highlight the complex role of miR-223 in the pathogenesis of septic kidney injury, as well as the importance of differences in experimental sepsis models and their consequent translational applicability. Copyright © 2017 the American Physiological Society.

  18. Kidney epithelium specific deletion of kelch-like ECH-associated protein 1 (Keap1) causes hydronephrosis in mice.

    PubMed

    Noel, Sanjeev; Arend, Lois J; Bandapalle, Samatha; Reddy, Sekhar P; Rabb, Hamid

    2016-08-02

    Transcription factor Nrf2 protects from experimental acute kidney injury (AKI) and is promising to limit progression in human chronic kidney disease (CKD) by upregulating multiple antioxidant genes. We recently demonstrated that deletion of Keap1, the endogenous inhibitor of Nrf2, in T lymphocytes significantly protects from AKI. In this study, we investigated the effect of Keap1 deletion on Nrf2 mediated antioxidant response in the renal tubular epithelial cells. We deleted Keap1 exon 2 and 3 in the renal tubular epithelial cells by crossing Ksp-Cre mice with Keap1 floxed (Keap1 (f/f)) mice. Deletion of Keap1 gene in the kidney epithelial cells of Ksp-Keap1 (-/-) mice and its effect on Nrf2 target gene expression was performed using PCR and real-time PCR respectively. Histological evaluation was performed on H&E stained sections. Complete blood count, serum and urine analysis were performed to assess systemic effects of defective kidney development. Student's T test was used to determine statistical difference between the groups. Ksp-Cre resulted in the deletion of Keap1 exon 2 and 3 and subsequent upregulation of Nrf2 target genes, Nqo1, Gclm and Gclc in the kidney epithelial cells of Ksp-Keap1 (-/-) mice at baseline. Renal epithelial cell specific deletion of Keap1 in Ksp-Keap1 (-/-) mice caused marked renal pelvic expansion and significant compression of medullary parenchyma consistent with hydronephrosis in both (3 month-old) males and females. Kidneys from 6 month-old Ksp-Keap1 (-/-) mice showed progressive hydronephrosis. Hematological, biochemical and urinary analysis showed significantly higher red blood cell count (p = 0.04), hemoglobin (p = 0.01), hematocrit (p = 0.02), mean cell volume (p = 0.02) and mean cell hemoglobin concentration (p = 0.003) in Ksp-Keap1 (-/-) mice in comparison to Keap1 (f/f) mice. These unexpected findings demonstrate that Keap1 deletion in renal tubular epithelial cells results in an abnormal kidney development consistent with hydronephrosis and reveals a novel Keap1 mediated signaling pathway in renal development.

  19. Distribution of hydrogen sulfide (H₂S)-producing enzymes and the roles of the H₂S donor sodium hydrosulfide in diabetic nephropathy.

    PubMed

    Yamamoto, Junichiro; Sato, Waichi; Kosugi, Tomoki; Yamamoto, Tokunori; Kimura, Toshihide; Taniguchi, Shigeki; Kojima, Hiroshi; Maruyama, Shoichi; Imai, Enyu; Matsuo, Seiichi; Yuzawa, Yukio; Niki, Ichiro

    2013-02-01

    Hydrogen sulfide (H(2)S) has recently been found to play beneficial roles in ameliorating several diseases, including hypertension, atherosclerosis and cardiac/renal ischemia-reperfusion injuries. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), the main enzymes in the transsulfuration pathway, catalyze H(2)S production in mammalian tissues. However, the distributions and precise roles of these enzymes in the kidney have not yet been identified. The present study examined the localization of both enzymes in the normal kidney and the effect of the H(2)S donor sodium hydrosulfide (NaHS) in the renal peritubular capillary (PTC) under conditions of diabetic nephropathy, using pancreatic β-cell-specific calmodulin-overexpressing transgenic mice as a model of diabetes. In the normal kidney, we detected expression of both CBS and CSE in the brush border and cytoplasm of the proximal tubules, but not in the glomeruli, distal tubules and vascular endothelial cells of renal PTCs. Administration of NaHS increased PTC diameter and blood flow. We further evaluated whether biosynthesis of H(2)S was altered in a spontaneous diabetic model that developed renal lesions similar to human diabetic nephropathy. CSE expression was markedly reduced under diabetic conditions, whereas CBS expression was unaffected. Progressive diabetic nephropathy showed vasoconstriction and a loss of blood flow in PTCs that was ameliorated by NaHS treatment. These findings suggest that CSE expression in the proximal tubules may also regulate tubulointerstitial microcirculation via H(2)S production. H(2)S may represent a target of treatment to prevent progression of ischemic injury in diabetic nephropathy.

  20. Cdc42 deficiency induces podocyte apoptosis by inhibiting the Nwasp/stress fibers/YAP pathway

    PubMed Central

    Huang, Z; Zhang, L; Chen, Y; Zhang, H; Zhang, Q; Li, R; Ma, J; Li, Z; Yu, C; Lai, Y; Lin, T; Zhao, X; Zhang, B; Ye, Z; Liu, S; Wang, W; Liang, X; Liao, R; Shi, W

    2016-01-01

    Podocyte apoptosis is a major mechanism that leads to proteinuria in many chronic kidney diseases. However, the concert mechanisms that cause podocyte apoptosis in these kidney diseases are not fully understood. The Rho family of small GTPases has been shown to be required in maintaining podocyte structure and function. Recent studies have indicated that podocyte-specific deletion of Cdc42 in vivo, but not of RhoA or Rac1, leads to congenital nephrotic syndrome and glomerulosclerosis. However, the underlying cellular events in podocyte controlled by Cdc42 remain unclear. Here, we assessed the cellular mechanisms by which Cdc42 regulates podocyte apoptosis. We found that the expression of Cdc42 and its activity were significantly decreased in high glucose-, lipopolysaccharide- or adriamycin-injured podocytes. Reduced Cdc42 expression in vitro and in vivo by small interfering RNA and selective Cdc42 inhibitor ML-141, respectively, caused podocyte apoptosis and proteinuria. Our results further demonstrated that insufficient Cdc42 or Nwasp, its downstream effector, could decrease the mRNA and protein expression of YAP, which had been regarded as an anti-apoptosis protein in podocyte. Moreover, our data indicated that the loss of stress fibers caused by Cdc42/Nwasp deficiency also decreased Yes-associated protein (YAP) mRNA and protein expression, and induced podocyte apoptosis. Podocyte apoptosis induced by Cdc42/Nwasp/stress fiber deficiency was significantly inhibited by overexpressing-active YAP. Thus, the Cdc42/Nwasp/stress fibers/YAP signal pathway may potentially play an important role in regulating podocyte apoptosis. Maintaining necessary Cdc42 would be one potent way to prevent proteinuria kidney diseases. PMID:26986510

  1. Arterially Delivered Mesenchymal Stem Cells Prevent Obstruction-Induced Renal Fibrosis

    PubMed Central

    Asanuma, Hiroshi; Vanderbrink, Brian A.; Campbell, Matthew T.; Hile, Karen L.; Zhang, Hongji; Meldrum, Daniel R.; Meldrum, Kirstan K.

    2010-01-01

    Purpose Mesenchymal stem cells (MSCs) hold promise for the treatment of renal disease. While MSCs have been shown to accelerate recovery and prevent acute renal failure in multiple disease models, the effect of MSC therapy on chronic obstruction-induced renal fibrosis has not previously been evaluated. Materials and Methods Male Sprague-Dawley rats underwent renal artery injection of vehicle or fluorescent-labeled human bone marrow-derived MSCs immediately prior to sham operation or induction of left ureteral obstruction (UUO). One or 4 weeks later, the kidneys were harvested and the renal cortex analyzed for evidence of stem cell infiltration, epithelial-mesenchymal transition (EMT) as evidenced by E-cadherin/α-smooth muscle actin (α-SMA) expression and fibroblast specific protein (FSP+) staining, renal fibrosis (collagen content, Masson’s trichrome staining), and cytokine and growth factor activity (ELISA and real time RT-PCR). Results Fluorescent-labeled MSCs were detected in the interstitium of the kidney up to 4 weeks post-obstruction. Arterially delivered MSCs significantly reduced obstruction-induced α-SMA expression, FSP+ cell accumulation, total collagen content, and tubulointerstitial fibrosis, while simultaneously preserving E-cadherin expression, suggesting that MSCs prevent obstruction-induced EMT and renal fibrosis. Exogenous MSCs reduced obstruction-induced tumor necrosis factor-α (TNF-α) levels, but did not alter transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor (VEGF), interleukin-10 (IL-10), fibroblast growth factor (FGF), or hepatocyte growth factor (HGF) expression. Conclusions Human bone marrow-derived MSCs remain viable several weeks after delivery into the kidney and provide protection against obstruction-induced EMT and chronic renal fibrosis. While the mechanism of MSCs-induced renal protection during obstruction remains unclear, our results demonstrate that alterations in TNF-α production may be involved. PMID:20850784

  2. Single or combined effects of Lactobacillus sakei and inulin on growth, non-specific immunity and IgM expression in leopard grouper (Mycteroperca rosacea).

    PubMed

    Reyes-Becerril, Martha; Ascencio, Felipe; Gracia-Lopez, Vicente; Macias, Ma Esther; Roa, Marcos Cadena; Esteban, María Ángeles

    2014-08-01

    The aim of this study was to evaluate the single or combined effects of Lactobacillus sakei with inulin suitable for immunological in vivo studies in farmed fish. By in vitro assays, L. sakei strain 5-4 showed antibacterial activities against all assayed fish pathogens (except the Vibrio harveyi strain CAIM-1793). L. sakei was able to survive at high fish bile concentrations. Fermentation of the agave inulin resulted in a large increase in number of lactobacilli. For the in vivo study, fish were fed for 8 weeks four practical diets: control diet (control), L. sakei 5-4 (10(7) CFU/g), inulin (1% or 10 g/kg) and L. sakei + inulin (10(7) CFU/g + 10 g/kg). The weight gain showed clearly the synergistic effect of L. sakei 5-4 and inulin at 6 and 8 weeks of treatments. Leopard grouper fed with L. sakei alone or combined with inulin have significantly increased the assayed physiological and humoral immune parameters. By real-time PCR assays, the mRNA transcripts of immunoglobulin M (IgM) were found to be higher expressed in intestine, head kidney, mucus, gill, spleen and skin. Moreover, mRNA expression levels of IgM in head kidney and anterior intestine were measured by real-time PCR. L. sakei 5-4 and L. sakei + inulin supplemented diet up-regulated the expression of IgM at week 4 and 8 in intestine and head kidney, respectively. These results support the idea that the L. sakei 5-4 alone or combined with agave inulin improved growth performance and stimulates the immune system of leopard grouper.

  3. Modulation of NADP(+)-dependent isocitrate dehydrogenase in aging.

    PubMed

    Kil, In Sup; Lee, Young Sup; Bae, Young Seuk; Huh, Tae Lin; Park, Jeen-Woo

    2004-01-01

    NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose-6-phosphate dehydrogenase, malic enzyme, and NADP(+)-specific isocitrate dehydrogenases (ICDHs). Here, we investigated age-related changes in ICDH activity and protein expression in IMR-90 human diploid fibroblast cells and tissues from Fischer 344 rats. We found that in IMR-90 cells the activity of cytosolic ICDH (IDPc) gradually increased with age up to the 46-48 population doubling level (PDL) and then gradually decreased at later PDL. 2',7'-Dichloro-fluorescein fluorescence which reflects intracellular ROS generation was increased with aging in IMR-90 cells. In ad libitum-fed rats, we noted age-related, tissue-specific modulations of IDPc and mitochondrial ICDH (IDPm) activities and protein expression in the liver, kidney and testes. In contrast, ICDH activities and protein expression were not significantly modulated in diet-restricted rats. These data suggest that modulation of ICDH is an age-dependent and a tissue-specific phenomenon.

  4. Reduced Abd-B Hox function during kidney development results in lineage infidelity.

    PubMed

    Magella, Bliss; Mahoney, Robert; Adam, Mike; Potter, S Steven

    2018-06-15

    Hox genes can function as key drivers of segment identity, with Hox mutations in Drosophila often resulting in dramatic homeotic transformations. In addition, however, they can serve other essential functions. In mammals, the study of Hox gene roles in development is complicated by the presence of four Hox clusters with a total of 39 genes showing extensive functional overlap. In this study, in order to better understand shared core Hox functions, we examined kidney development in mice with frameshift mutations of multiple Abd-B type Hox genes. The resulting phenotypes included dramatically reduced branching morphogenesis of the ureteric bud, premature depletion of nephron progenitors and abnormal development of the stromal compartment. Most unexpected, however, we also observed a cellular level lineage infidelity in nephron segments. Scattered cells within the proximal tubules, for example, expressed genes normally expressed only in collecting ducts. Multiple combinations of inappropriate nephron segment specific marker expression were found. In some cases, cells within a tubule showed incorrect identity, while in other cases cells showed ambiguous character, with simultaneous expression of genes associated with more than one nephron segment. These results give evidence that Hox genes have an overlapping core function at the cellular level in driving and/or maintaining correct differentiation decisions. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Low-protein diet supplemented with ketoacids reduces the severity of renal disease in 5/6 nephrectomized rats: a role for KLF15.

    PubMed

    Gao, Xiang; Huang, Lianghu; Grosjean, Fabrizio; Esposito, Vittoria; Wu, Jianxiang; Fu, Lili; Hu, Huimin; Tan, Jiangming; He, Cijian; Gray, Susan; Jain, Mukesh K; Zheng, Feng; Mei, Changlin

    2011-05-01

    Dietary protein restriction is an important treatment for chronic kidney disease. Herein, we tested the effect of low-protein or low-protein plus ketoacids (KA) diet in a remnant kidney model. Rats with a remnant kidney were randomized to receive normal protein diet (22%), low-protein (6%) diet (LPD), or low-protein (5%) plus KA (1%) diet for 6 months. Protein restriction prevented proteinuria, decreased blood urea nitrogen levels, and renal lesions; however, the LPD retarded growth and decreased serum albumin levels. Supplementation with KA corrected these abnormalities and provided superior renal protection compared with protein restriction alone. The levels of Kruppel-like factor-15 (KLF15), a transcription factor shown to reduce cardiac fibrosis, were decreased in remnant kidneys. Protein restriction, which increased KLF15 levels in the normal kidney, partially recovered the levels of KLF15 in remnant kidney. The expression of KLF15 in mesangial cells was repressed by oxidative stress, transforming growth factor-β, and tumor necrosis factor (TNF)-α. The suppressive effect of TNF-α on KLF15 expression was mediated by TNF receptor-1 and nuclear factor-κB. Overexpression of KLF15 in mesangial and HEK293 cells significantly decreased fibronectin and type IV collagen mRNA levels. Furthermore, KLF15 knockout mice developed glomerulosclerosis following uninephrectomy. Thus, KLF15 may be an antifibrotic factor in the kidney, and its decreased expression may contribute to the progression of kidney disease.

  6. Interaction of temperature and salinity on the expression of immunity factors in different tissues of juvenile turbot Scophthalmus maximus based on response surface methodology

    NASA Astrophysics Data System (ADS)

    Huang, Zhihui; Ma, Aijun; Wang, Xin'an; Lei, Jilin; Li, Weiye; Wang, Ting; Yang, Zhi; Qu, Jiangbo

    2015-01-01

    Central Composite Design (CCD) and response surface methodology were used in the experiment to examine the combined effect of temperature (16-28°C) and salinity (18-42) on Hsp70 and IgM genes expression levels in turbot ( Scophthalmus maximus) liver and kidney. The results showed that the coefficients of determination ( R 2 =0.965 2 for liver Hsp70, 0.972 9 for kidney Hsp70, 0.921 for liver IgM and 0.962 1 for kidney IgM) and probability values ( P<0.01) were significant for the regression model. The interactive effect between temperature and salinity on liver Hsp70, kidney Hsp70 and liver IgM were not significant ( P>0.05), while the interactive effect between temperature and salinity on kidney IgM was significant ( P<0.01). The model equation could be used in practice for forecasting Hsp70 and IgM genes expression levels in the liver and kidney of juvenile turbot via applying statistical optimization of the response of interest, at which the maximum liver Hsp70, kidney Hsp70, liver IgM and kidney IgM of 1.48, 1.49, 2.48, and 1.38, respectively, were reached. The present model may be valuable in assessing the feasibility of turbot farming at different geographic locations and, furthermore, could be a useful reference for scientists studying the immunity of turbot.

  7. Exploring the Therapeutic Mechanism of Desmodium styracifolium on Oxalate Crystal-Induced Kidney Injuries Using Comprehensive Approaches Based on Proteomics and Network Pharmacology.

    PubMed

    Hou, Jiebin; Chen, Wei; Lu, Hongtao; Zhao, Hongxia; Gao, Songyan; Liu, Wenrui; Dong, Xin; Guo, Zhiyong

    2018-01-01

    Purpose: As a Chinese medicinal herb, Desmodium styracifolium (Osb.) Merr (DS) has been applied clinically to alleviate crystal-induced kidney injuries, but its effective components and their specific mechanisms still need further exploration. This research first combined the methods of network pharmacology and proteomics to explore the therapeutic protein targets of DS on oxalate crystal-induced kidney injuries to provide a reference for relevant clinical use. Methods: Oxalate-induced kidney injury mouse, rat, and HK-2 cell models were established. Proteins differentially expressed between the oxalate and control groups were respectively screened using iTRAQ combined with MALDI-TOF-MS. The common differential proteins of the three models were further analyzed by molecular docking with DS compounds to acquire differential targets. The inverse docking targets of DS were predicted through the platform of PharmMapper. The protein-protein interaction (PPI) relationship between the inverse docking targets and the differential proteins was established by STRING. Potential targets were further validated by western blot based on a mouse model with DS treatment. The effects of constituent compounds, including luteolin, apigenin, and genistein, were investigated based on an oxalate-stimulated HK-2 cell model. Results: Thirty-six common differentially expressed proteins were identified by proteomic analysis. According to previous research, the 3D structures of 15 major constituents of DS were acquired. Nineteen differential targets, including cathepsin D (CTSD), were found using molecular docking, and the component-differential target network was established. Inverse-docking targets including p38 MAPK and CDK-2 were found, and the network of component-reverse docking target was established. Through PPI analysis, 17 inverse-docking targets were linked to differential proteins. The combined network of component-inverse docking target-differential proteins was then constructed. The expressions of CTSD, p-p38 MAPK, and p-CDK-2 were shown to be increased in the oxalate group and decreased in kidney tissue by the DS treatment. Luteolin, apigenin, and genistein could protect oxalate-stimulated tubular cells as active components of DS. Conclusion: The potential targets including the CTSD, p38 MAPK, and CDK2 of DS in oxalate-induced kidney injuries and the active components (luteolin, apigenin, and genistein) of DS were successfully identified in this study by combining proteomics analysis, network pharmacology prediction, and experimental validation.

  8. Toll-Like Receptor and Accessory Molecule mRNA Expression in Humans and Mice as Well as in Murine Autoimmunity, Transient Inflammation, and Progressive Fibrosis

    PubMed Central

    Ramaiah, Santhosh Kumar Vankayala; Günthner, Roman; Lech, Maciej; Anders, Hans-Joachim

    2013-01-01

    The cell type-, organ-, and species-specific expression of the Toll-like receptors (TLRs) are well described, but little is known about the respective expression profiles of their accessory molecules. We therefore determined the mRNA expression levels of LBP, MD2, CD36, CD14, granulin, HMGB1, LL37, GRP94, UNC93b1, TRIL, PRAT4A, AP3B1, AEP and the respective TLRs in human and mouse solid organs. Humans and mice displayed significant differences between their respective mRNA expression patterns of these factors. In addition, the expression profiles in transient tissue inflammation upon renal ischemia-reperfusion injury, in spleens and kidneys from mice with lupus-like systemic autoimmunity, and in progressive tissue fibrosis upon unilateral ureteral obstruction were studied. Several TLR co-factors were specifically regulated during the different phases of these disease entities, suggesting a functional involvement in the disease process. Thus, the organ- and species-specific expression patterns need to be considered in the design and interpretation of studies related to TLR-mediated innate immunity, which seems to be involved in the tissue injury phase, in the phase of tissue regeneration, and in progressive tissue remodelling. PMID:23803655

  9. Comparison of Bacterial Burden and Cytokine Gene Expression in Golden Hamsters in Early Phase of Infection with Two Different Strains of Leptospira interrogans.

    PubMed

    Fujita, Rie; Koizumi, Nobuo; Sugiyama, Hiromu; Tomizawa, Rina; Sato, Ryoichi; Ohnishi, Makoto

    2015-01-01

    Leptospirosis, a zoonotic infection with worldwide prevalence, is caused by pathogenic spirochaetes of Leptospira spp., and exhibits an extremely broad clinical spectrum in human patients. Although previous studies indicated that specific serovars or genotypes of Leptospira spp. were associated with severe leptospirosis or its outbreak, the mechanism underlying the difference in virulence of the various Leptospira serotypes or genotypes remains unclear. The present study addresses this question by measuring and comparing bacterial burden and cytokine gene expression in hamsters infected with strains of two L. interrogans serovars Manilae (highly virulent) and Hebdomadis (less virulent). The histopathology of kidney, liver, and lung tissues was also investigated in infected hamsters. A significantly higher bacterial burden was observed in liver tissues of hamsters infected with serovar Manilae than those infected with serovar Hebdomadis (p < 0.01). The average copy number of the leptospiral genome was 1,302 and 20,559 in blood and liver, respectively, of hamsters infected with serovar Manilae and 1,340 and 4,896, respectively, in hamsters infected with serovar Hebdomadis. The expression levels of mip1alpha in blood; tgfbeta, il1beta, mip1alpha, il10, tnfalpha and cox2 in liver; and tgfbeta, il6, tnfalpha and cox2 in lung tissue were significantly higher in hamsters infected with serovar Manilae than those infected with serovar Hebdomadis (p < 0.05). In addition, infection with serovar Manilae resulted in a significantly larger number of hamsters with tnfalpha upregulation (p = 0.04). Severe distortion of tubular cell arrangement and disruption of renal tubules in kidney tissues and hemorrhage in lung tissues were observed in Manilae-infected hamsters. These results demonstrate that serovar Manilae multiplied more efficiently in liver tissues and induced significantly higher expression of genes encoding pro- and anti-inflammatory cytokines than serovar Hebdomadis even in tissues for which a significant difference in leptospiral load was not observed. In addition, our results suggest a serovar Manilae-specific mechanism responsible for inducing severe damage in kidneys and hemorrhage in lung.

  10. Comparison of Bacterial Burden and Cytokine Gene Expression in Golden Hamsters in Early Phase of Infection with Two Different Strains of Leptospira interrogans

    PubMed Central

    Fujita, Rie; Koizumi, Nobuo; Sugiyama, Hiromu; Tomizawa, Rina; Sato, Ryoichi; Ohnishi, Makoto

    2015-01-01

    Leptospirosis, a zoonotic infection with worldwide prevalence, is caused by pathogenic spirochaetes of Leptospira spp., and exhibits an extremely broad clinical spectrum in human patients. Although previous studies indicated that specific serovars or genotypes of Leptospira spp. were associated with severe leptospirosis or its outbreak, the mechanism underlying the difference in virulence of the various Leptospira serotypes or genotypes remains unclear. The present study addresses this question by measuring and comparing bacterial burden and cytokine gene expression in hamsters infected with strains of two L. interrogans serovars Manilae (highly virulent) and Hebdomadis (less virulent). The histopathology of kidney, liver, and lung tissues was also investigated in infected hamsters. A significantly higher bacterial burden was observed in liver tissues of hamsters infected with serovar Manilae than those infected with serovar Hebdomadis (p < 0.01). The average copy number of the leptospiral genome was 1,302 and 20,559 in blood and liver, respectively, of hamsters infected with serovar Manilae and 1,340 and 4,896, respectively, in hamsters infected with serovar Hebdomadis. The expression levels of mip1alpha in blood; tgfbeta, il1beta, mip1alpha, il10, tnfalpha and cox2 in liver; and tgfbeta, il6, tnfalpha and cox2 in lung tissue were significantly higher in hamsters infected with serovar Manilae than those infected with serovar Hebdomadis (p < 0.05). In addition, infection with serovar Manilae resulted in a significantly larger number of hamsters with tnfalpha upregulation (p = 0.04). Severe distortion of tubular cell arrangement and disruption of renal tubules in kidney tissues and hemorrhage in lung tissues were observed in Manilae-infected hamsters. These results demonstrate that serovar Manilae multiplied more efficiently in liver tissues and induced significantly higher expression of genes encoding pro- and anti-inflammatory cytokines than serovar Hebdomadis even in tissues for which a significant difference in leptospiral load was not observed. In addition, our results suggest a serovar Manilae-specific mechanism responsible for inducing severe damage in kidneys and hemorrhage in lung. PMID:26146835

  11. An angiotensin-(1–7) peptidase in the kidney cortex, proximal tubules, and human HK-2 epithelial cells that is distinct from insulin-degrading enzyme

    PubMed Central

    Wilson, Bryan A.; Cruz-Diaz, Nildris; Marshall, Allyson C.; Pirro, Nancy T.; Su, Yixin; Gwathmey, TanYa M.; Rose, James C.

    2015-01-01

    Angiotensin 1–7 [ANG-(1–7)] is expressed within the kidney and exhibits renoprotective actions that antagonize the inflammatory, fibrotic, and pro-oxidant effects of ANG II. We previously identified an peptidase that preferentially metabolized ANG-(1–7) to ANG-(1–4) in the brain medulla and cerebrospinal fluid (CSF) of sheep (Marshall AC, Pirro NT, Rose JC, Diz DI, Chappell MC. J Neurochem 130: 313–323, 2014); thus the present study established the expression of the peptidase in the kidney. Utilizing a sensitive HPLC-based approach, we demonstrate a peptidase activity that hydrolyzed ANG-(1–7) to ANG-(1–4) in the sheep cortex, isolated tubules, and human HK-2 renal epithelial cells. The peptidase was markedly sensitive to the metallopeptidase inhibitor JMV-390; human HK-2 cells expressed subnanomolar sensitivity (IC50 = 0.5 nM) and the highest specific activity (123 ± 5 fmol·min−1·mg−1) compared with the tubules (96 ± 12 fmol·min−1·mg−1) and cortex (107 ± 9 fmol·min−1·mg−1). The peptidase was purified 41-fold from HK-2 cells; the activity was sensitive to JMV-390, the chelator o-phenanthroline, and the mercury-containing compound p-chloromercuribenzoic acid (PCMB), but not to selective inhibitors against neprilysin, neurolysin and thimet oligopeptidase. Both ANG-(1–7) and its endogenous analog [Ala1]-ANG-(1–7) (alamandine) were preferentially hydrolyzed by the peptidase compared with ANG II, [Asp1]-ANG II, ANG I, and ANG-(1–12). Although the ANG-(1–7) peptidase and insulin-degrading enzyme (IDE) share similar inhibitor characteristics of a metallothiolendopeptidase, we demonstrate marked differences in substrate specificity, which suggest these peptidases are distinct. We conclude that an ANG-(1–7) peptidase is expressed within the renal proximal tubule and may play a potential role in the renal renin-angiotensin system to regulate ANG-(1–7) tone. PMID:25568136

  12. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Senyan; Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, NY 12201; Yao, Yunyi

    The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity withmore » the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity.« less

  13. Human amniotic epithelial cells inhibit CD4+ T cell activation in acute kidney injury patients by influencing the miR-101-c-Rel-IL-2 pathway.

    PubMed

    Liu, Junfeng; Hua, Rong; Gong, Zhangbin; Shang, Bin; Huang, Yongyi; Guo, Lihe; Liu, Te; Xue, Jun

    2017-01-01

    In the pathogenesis of acute kidney injury (AKI), the release of multiple interleukins can lead to increased kidney damage. Human amniotic epithelial cells (HuAECs) can inhibit immune cell activation in vivo and in vitro. We hypothesized that HuAECs could weaken patient-derived peripheral blood CD4+ T-cell activation and decreasing the ability of these cells to express and release IL-2. -Cell proliferation assay revealed that under the same culture conditions, activated AKI patient-derived CD4+ T cells had a significantly reduced proliferation rate when were co-cultured with HuAECs. And the level of IL-2 released was also significantly reduced. Western blot and qRT-PCR assays showed that the expression of c-Rel in the CD4+ T cells was also significantly reduced. However, the expression level of endogenous miR-101 in the CD4+ T cells co-cultured with HuAECs was significantly increased. Luciferase reporter assay results suggested that miR-101 could bind to a specific site in the c-Rel 3' UTR and induce the post-transcriptional silencing of c-Rel. Subsequently, we over-expressed miR-101 in AKI patient-derived CD4+ T cells. The qRT-PCR and western blot assay results revealed that the expression of endogenous c-Rel was significantly reduced, while the ELISA results indicated that the level of IL-2 released was also significantly decreased. Finally, ChIP-PCR assay results showed that the miR-101-overexpressing CD4+ T-cell group and the HuAEC co-culture CD4+ T-cell group exhibited significantly decreased binding capacities between the 'c-Rel-NFκB' complex and the IL-2 gene promoter, and the transcriptional activity of IL-2 was also significantly decreased. Therefore, we confirmed that HuAECs can stimulate miR-101 expression in AKI patient-derived peripheral blood CD4+ T cells, thus inhibiting the expression of the miR-101 target gene c-Rel and leading to a reduction in IL-2 expression and release. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Apolipoprotein A-I in Labeo rohita: Cloning and functional characterisation reveal its broad spectrum antimicrobial property, and indicate significant role during ectoparasitic infection.

    PubMed

    Mohapatra, Amruta; Karan, Sweta; Kar, Banya; Garg, L C; Dixit, A; Sahoo, P K

    2016-08-01

    Apolipoprotein A-I (ApoA-I) is the most abundant and multifunctional high-density lipoprotein (HDL) having a major role in lipid transport and potent antimicrobial activity against a wide range of microbes. In this study, a complete CDS of 771 bp of Labeo rohita (rohu) ApoA-I (LrApoA-I) encoding a protein of 256 amino acids was amplified, cloned and sequenced. Tissue specific transcription analysis of LrApoA-I revealed its expression in a wide range of tissues, with a very high level of expression in liver and spleen. Ontogenic study of LrApoA-I expression showed presence of transcripts in milt and 3 h post-fertilization onwards in the larvae. The expression kinetics of LrApoA-I was studied upon infection with three different types of pathogens to elucidate its functional significance. Its expression was found to be up-regulated in the anterior kidney of L. rohita post-infection with Aeromonas hydrophila. Similarly following poly I:C (poly inosinic:cytidylic) stimulation, the transcript levels increased in both the anterior kidney and liver tissues. Significant up-regulation of LrApoA-I expression was observed in skin, mucous, liver and anterior kidney of the fish challenged with the ectoparasite Argulus siamensis. Immunomodulatory effect of recombinant LrApoA-I (rApoA-I) produced in Escherichia coli was demonstrated against A. hydrophila challenge in vivo. L. rohita administered with rApoA-I at a dose of 100 μg exhibited significantly higher protection (∼55%) upon challenge with A. hydrophila 12 h post-administration of the protein, in comparison to that observed in control group, along with higher level of expression of immune-related genes. The heightened expression of ApoA-I observed post-infection reflected its involvement in immune responses against a wide range of infections including bacterial, viral as well as parasitic pathogens. Our results also suggest the possibility of using rApoA-I as an immunostimulant, particularly rendering protection against A. hydrophila. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Differential response of bone and kidney to ACEI in db/db mice: A potential effect of captopril on accelerating bone loss.

    PubMed

    Zhang, Yan; Li, Xiao-Li; Sha, Nan-Nan; Shu, Bing; Zhao, Yong-Jian; Wang, Xin-Luan; Xiao, Hui-Hui; Shi, Qi; Wong, Man-Sau; Wang, Yong-Jun

    2017-04-01

    The components of renin-angiotensin system (RAS) are expressed in the kidney and bone. Kidney disease and bone injury are common complications associated with diabetes. This study aimed to investigate the effects of an angiotensin-converting enzyme inhibitor, captopril, on the kidney and bone of db/db mice. The db/db mice were orally administered by gavage with captopril for 8weeks with db/+ mice as the non-diabetic control. Serum and urine biochemistries were determined by standard colorimetric methods or ELISA. Histological measurements were performed on the kidney by periodic acid-schiff staining and on the tibial proximal metaphysis by safranin O and masson-trichrome staining. Trabecular bone mass and bone quality were analyzed by microcomputed tomography. Quantitative polymerase chain reaction and immunoblotting were applied for molecular analysis on mRNA and protein expression. Captopril significantly improved albuminuria and glomerulosclerosis in db/db mice, and these effects might be attributed to the down-regulation of angiotensin II expression and the expression of its down-stream profibrotic factors in the kidney, like connective tissue growth factor and vascular endothelial growth factor. Urinary excretion of calcium and phosphorus markedly increased in db/db mice in response to captopril. Treatment with captopril induced a decrease in bone mineral density and deterioration of trabecular bone at proximal metaphysis of tibia in db/db mice, as shown in the histological and reconstructed 3-dimensional images. Even though captopril effectively reversed the diabetes-induced changes in calcium-binding protein 28-k and vitamin D receptor expression in the kidney as well as the expression of RAS components and bradykinin receptor-2 in bone tissue, treatment with captopril increased the osteoclast-covered bone surface, reduced the osteoblast-covered bone surface, down-regulated the expression of type 1 collagen and transcription factor runt-related transcription factor 2 (markers for osteoblastic functions), and up-regulated the expression of carbonic anhydrase II (marker for bone resorption). Captopril exerted therapeutic effects on renal injuries associated with type 2 diabetes but worsened the deteriorations of trabecular bone in db/db mice; the latter of which was at least in part due to the stimulation of osteoclastogenesis and the suppression of osteogenesis by captopril. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Dual Regulation of Gluconeogenesis by Insulin and Glucose in the Proximal Tubules of the Kidney.

    PubMed

    Sasaki, Motohiro; Sasako, Takayoshi; Kubota, Naoto; Sakurai, Yoshitaka; Takamoto, Iseki; Kubota, Tetsuya; Inagi, Reiko; Seki, George; Goto, Moritaka; Ueki, Kohjiro; Nangaku, Masaomi; Jomori, Takahito; Kadowaki, Takashi

    2017-09-01

    Growing attention has been focused on the roles of the proximal tubules (PTs) of the kidney in glucose metabolism, including the mechanism of regulation of gluconeogenesis. In this study, we found that PT-specific insulin receptor substrate 1/2 double-knockout mice, established by using the newly generated sodium-glucose cotransporter 2 (SGLT2)-Cre transgenic mice, exhibited impaired insulin signaling and upregulated gluconeogenic gene expression and renal gluconeogenesis, resulting in systemic insulin resistance. In contrast, in streptozotocin-treated mice, although insulin action was impaired in the PTs, the gluconeogenic gene expression was unexpectedly downregulated in the renal cortex, which was restored by administration of an SGLT1/2 inhibitor. In the HK-2 cells, the gluconeogenic gene expression was suppressed by insulin, accompanied by phosphorylation and inactivation of forkhead box transcription factor 1 (FoxO1). In contrast, glucose deacetylated peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), a coactivator of FoxO1, via sirtuin 1, suppressing the gluconeogenic gene expression, which was reversed by inhibition of glucose reabsorption. These data suggest that both insulin signaling and glucose reabsorption suppress the gluconeogenic gene expression by inactivation of FoxO1 and PGC1α, respectively, providing insight into novel mechanisms underlying the regulation of gluconeogenesis in the PTs. © 2017 by the American Diabetes Association.

  17. Intercalated cell-specific Rh B glycoprotein deletion diminishes renal ammonia excretion response to hypokalemia

    PubMed Central

    Bishop, Jesse M.; Lee, Hyun-Wook; Handlogten, Mary E.; Han, Ki-Hwan; Verlander, Jill W.

    2013-01-01

    The ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbg's role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO). Hypokalemia induced by feeding a K+-free diet increased urinary ammonia excretion significantly. In mice with intact Rhbg expression, hypokalemia increased Rhbg protein expression in intercalated cells in the cortical collecting duct (CCD) and in the outer medullary collecting duct (OMCD). Deletion of Rhbg from intercalated cells inhibited hypokalemia-induced changes in urinary total ammonia excretion significantly and completely prevented hypokalemia-induced increases in urinary ammonia concentration, but did not alter urinary pH. We conclude that hypokalemia increases Rhbg expression in intercalated cells in the cortex and outer medulla and that intercalated cell Rhbg expression is necessary for the normal increase in renal ammonia excretion in response to hypokalemia. PMID:23220726

  18. Effect of mesenchymal stem cells on anti-Thy1,1 induced kidney injury in albino rats

    PubMed Central

    Sakr, Saber; Rashed, Laila; Zarouk, Waheba; El-Shamy, Rania

    2013-01-01

    Objective To evaluate the effect of mesenchymal stem cells (MSCs) in rats with anti-Thy1,1 nephritis. Methods Female albino rats were divided into three groups, control group, anti-Thy1,1 group and treatment with i.v. MSCs group. MSCs were derived from bone marrow of male albino rats, Y-chromosome gene was detected by polymerase chain reaction in the kidney. Serum urea and creatinine were estimated for all groups. Kidney of all studied groups was examined histologically and histochemically (total carbohydrates and total proteins). DNA fragmentation and expression of α-SMA were detected. Results Kidney of animals injected with anti-Thy1,1 showed inflammatory leucocytic infiltration, hypertrophied glomeruli, tubular necrosis and congestion in the renal blood vessels. The kidney tissue also showed reduction of carbohydrates and total proteins together with increase in apoptosis and in expression of α-SMA. Moreover, the levels of urea and creatinine were elevated. Treating animals with MSCs revealed that kidney tissue displayed an improvement in the histological and histochemical changes. Apoptosis and α-SMA expression were decreased, and the levels of urea and creatinine decreased. Conclusions The obtained results demonstrated the potential of MSCs to ameliorate the structure and function of the kidney in rats with anti-Thy1,1 nephritis possibly through the release of paracrine growth factor(s). PMID:23620833

  19. Lack of specificity of antibodies raised against CLN3, the lysosomal/endosomal transmembrane protein mutated in juvenile Batten disease

    PubMed Central

    Nelson, Tarah

    2017-01-01

    Juvenile CLN3 (Batten) disease, a fatal, childhood neurodegenerative disorder, results from mutations in the CLN3 gene encoding a lysosomal/endosomal transmembrane protein. The exact physiological function of CLN3 is still unknown and it is unclear how CLN3 mutations lead to selective neurodegeneration. To study the tissue expression and subcellular localization of the CLN3 protein, a number of anti-CLN3 antibodies have been generated using either the whole CLN3 protein or short peptides from CLN3 for immunization. The specificity of these antibodies, however, has never been tested properly. Using immunoblot experiments, we show that commercially available or researcher-generated anti-CLN3 antibodies lack specificity: they detect the same protein bands in wild-type (WT) and Cln3−/− mouse brain and kidney extracts prepared with different detergents, in membrane proteins isolated from the cerebellum, cerebral hemisphere and kidney of WT and Cln3−/− mice, in cell extracts of WT and Cln3−/− mouse embryonic fibroblast cultures, and in lysates of BHK cells lacking or overexpressing human CLN3. Protein BLAST searches with sequences from peptides used to generate anti-CLN3 antibodies identified short motifs present in a number of different mouse and human proteins, providing a plausible explanation for the lack of specificity of anti-CLN3 antibodies. Our data provide evidence that immunization against a transmembrane protein with low to medium expression level does not necessarily generate specific antibodies. Because of the possible cross-reactivity to other proteins, the specificity of an antibody should always be checked using tissue samples from an appropriate knock-out animal or using knock-out cells. PMID:29089465

  20. Immunohistochemical examination of effects of kefir, koumiss and commercial probiotic capsules on platelet derived growth factor-c and platelet derived growth factor receptor-alpha expression in mouse liver and kidney.

    PubMed

    Bakir, B; Sari, E K; Aydin, B D; Yildiz, S E

    2015-04-01

    We investigated using immunohistochemistry the effects of kefir, koumiss and commercial probiotic capsules on the expression of platelet derived growth factor-c (PDGF-C) and platelet derived growth factor receptor-alpha (PDGFR-α) in mouse liver and kidney. Mice were assigned to four groups: group 1 was given commercial probiotic capsules, group 2 was given kefir, group 3 was given koumiss and group 4 was untreated. After oral administration for 15 days, body weights were recorded and liver and kidney tissue samples were obtained. Hematoxylin and eosin staining was used to examine histology. PDGF-C and PDGFR-α in liver and kidney were localized using the streptavidin-biotin peroxidase complex method (ABC). We found that the weights of the mice in the kefir, koumiss and commercial probiotic capsules groups increased compared to the control group. No differences in liver and kidney histology were observed in any of the experimental groups. Kefir, koumiss and the commercial probiotic preparation increased PDGF-C and PDGFR-α expression.

  1. Arsenic accumulation, elimination, and interaction with copper, zinc and manganese in liver and kidney of rats.

    PubMed

    Cui, Xing; Okayasu, Ryuichi

    2008-12-01

    The arsenic accumulation, distribution and influences on metallothionein-1 (MT-1) expression and other trace elements in various organs were examined in rats orally exposed to sodium arsenate (iAs(V)). Rats received a dose of 0, 1, 10 and 100ppm of iAs(V) in drinking water daily for 4- and 16-weeks. Arsenic seems to be distributed in all of the tissues, and was accumulated relatively higher in the spleen, lung and kidney compared to the liver, and much lower in skin and cerebrum. High dose of iAs(V)-exposure significantly increased the concentration of copper in the kidney, but did not influence other trace elements such as zinc and manganese in the liver. The mRNA expression of MT-1 was dose-dependently increased by iAs(V)-exposure in the liver whereas it was decreased in the kidney. These data indicate that arsenic is widely distributed and significantly accumulated in various organs and influences on other trace elements, and also modulates MT-1 expression in the liver and kidney.

  2. [Transcription factors NF-kB, HIF-1, HIF-2, growth factor VEGF, VEGFR2 and carboanhydrase IX mRNA and protein level in the development of kidney cancer metastasis].

    PubMed

    Spirina, L V; Usynin, Y A; Yurmazov, Z A; Slonimskaya, E M; Kolegova, E S; Kondakova, I V

    2017-01-01

    Here, we have investigated the participation of nuclear factors NF-kB, HIF-1 and HIF-2, VEGF, VEGFR2, and carboanhydrase IX in clear-cell renal cancer. We have determined the expression and protein level of transcription factors, VEGF, VEGFR2, and carboanhydrase IX in tumor and normal tissues of 30 patients with kidney cancer. The Real-Time PCR and ELISA were used in the study. The low levels of HIF-1 mRNA expression associated with high levels of HIF-1 protein were also associated with metastasis. The expression levels of VEGF, VEGFR2, and their protein levels are increased in primary tumors of patients with disseminated kidney cancer compared to nonmetastatic cancer. No correlation was revealed between the content of mRNA and encoded proteins in the kidney cancer tissues. The changes in the ratios of mRNA levels and the respective proteins (HIF-1α, HIF-2, NF-kB, VEGF, VEGFR2, and carboanhydrase IX) may contribute to kidney-cancer metastasis.

  3. Pharmacologic modulation of ACE2 expression.

    PubMed

    Soler, María José; Barrios, Clara; Oliva, Raymond; Batlle, Daniel

    2008-10-01

    Angiotensin-converting enzyme 2 (ACE2) is an enzymatically active homologue of angiotensin-converting enzyme that degrades angiotensin I, angiotensin II, and other peptides. Recent studies have shown that under pathologic conditions, ACE2 expression in the kidney is altered. In this review, we briefly summarize recent studies dealing with pharmacologic interventions that modulate ACE2 expression. ACE2 amplification may have a potential therapeutic role for kidney disease and hypertension.

  4. A roadmap for the genetic analysis of renal aging

    PubMed Central

    Noordmans, Gerda A; Hillebrands, Jan-Luuk; van Goor, Harry; Korstanje, Ron

    2015-01-01

    Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age-related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age-associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high-resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression. PMID:26219736

  5. Kif3a Controls Murine Nephron Number Via GLI3 Repressor, Cell Survival, and Gene Expression in a Lineage-Specific Manner

    PubMed Central

    Chi, Lijun; Galtseva, Alevtina; Chen, Lin; Mo, Rong; Hui, Chi-chung; Rosenblum, Norman D.

    2013-01-01

    The primary cilium is required during early embryo patterning, epithelial tubulogenesis, and growth factor-dependent signal transduction. The requirement for primary cilia during renal epithelial-mesenchymal tissue interactions that give rise to nephrons is undefined. Here, we used Cre-mediated recombination to generate mice with Kif3a deficiency targeted to the ureteric and/or metanephric mesenchyme cell lineages in the embryonic kidney. Gradual loss of primary cilia in either lineage leads to a phenotype of reduced nephron number. Remarkably, in addition to cyst formation, loss of primary cilia in the ureteric epithelial cell leads to decreased expression of Wnt11 and Ret and reduced ureteric branching. Constitutive expression of GLI3 repressor (Gli3Δ699/+) rescues these abnormalities. In embryonic metanephric mesenchyme cells, Kif3a deficiency limits survival of nephrogenic progenitor cells and expression of genes required for nephron formation. Together, our data demonstrate that Kif3a controls nephron number via distinct cell lineage-specific mechanisms. PMID:23762375

  6. Houttuynia cordata aqueous extract attenuated glycative and oxidative stress in heart and kidney of diabetic mice.

    PubMed

    Hsu, Cheng-Chin; Yang, Hui-Ting; Ho, Jing-Jing; Yin, Mei-Chin; Hsu, Jen-Ying

    2016-03-01

    The anti-glycative and anti-oxidative effects from Houttuynia cordata leaves aqueous extract (HCAE) in heart and kidney of diabetic mice were examined. HCAE, at 1 or 2 %, was supplied in drinking water for 8 weeks. Plasma glucose and blood urea nitrogen (BUN) levels and creatine phosphokinase (CPK) activity were measured. The production of oxidative and inflammatory factors was determined. Activity and protein expression of associated enzymes or regulators were analyzed. HCAE intake at both doses lowered plasma glucose and BUN levels, and CPK activity and also restored creatinine clearance rate in diabetic mice. HCAE intake, only at 2 %, retained plasma insulin levels (P < 0.05). HCAE reduced reactive oxygen species, protein carbonyl, interleukin-6, tumor necrosis factor-alpha, N (ε) -(carboxymethyl)-lysine, pentosidine and fructose levels, and reserved glutathione content in heart and kidney of diabetic mice (P < 0.05). Diabetes enhanced aldose reductase (AR) activity and protein expression in heart and kidney (P < 0.05). HCAE intake at both doses decreased renal AR activity and protein expression, but only at 2 % lowered cardiac AR activity and protein expression (P < 0.05). Diabetes increased protein expression of RAGE, p47(phox) and gp91(phox), nuclear factor kappa-B (NF-κB) p50, NF-κB p65 and mitogen-activated protein kinase in heart and kidney (P < 0.05). HCAE intake only at 2 % limited RAGE expression, but at 1 and 2 % downregulated p47(phox), NF-κB p65 and p-p38 expression in these organs (P < 0.05). These findings suggest that Houttuynia cordata leaves aqueous extract could ameliorate cardiac and renal injury under diabetic condition.

  7. Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney.

    PubMed

    Kim, Jinu; Kim, Ki Young; Jang, Hee-Seong; Yoshida, Takumi; Tsuchiya, Ken; Nitta, Kosaku; Park, Jeen-Woo; Bonventre, Joseph V; Park, Kwon Moo

    2009-03-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) synthesizes reduced NADP (NADPH), which is an essential cofactor for the generation of reduced glutathione (GSH), the most abundant and important antioxidant in mammalian cells. We investigated the role of IDPc in kidney ischemia-reperfusion (I/R) in mice. The activity and expression of IDPc were highest in the cortex, modest in the outer medulla, and lowest in the inner medulla. NADPH levels were greatest in the cortex. IDPc expression in the S1 and S2 segments of proximal tubules was higher than in the S3 segment, which is much more susceptible to I/R. IDPc protein was also highly expressed in the mitochondrion-rich intercalated cells of the collecting duct. IDPc activity was 10- to 30-fold higher than the activity of glucose-6-phosphate dehydrogenase, another producer of cytosolic NADPH, in various kidney regions. This study identifies that IDPc may be the primary source of NADPH in the kidney. I/R significantly reduced IDPc expression and activity and NADPH production and increased the ratio of oxidized glutathione to total glutathione [GSSG/(GSH+GSSG)], resulting in kidney dysfunction, tubular cell damage, and lipid peroxidation. In LLC-PK(1) cells, upregulation of IDPc by IDPc gene transfer protected the cells against hydrogen peroxide, enhancing NADPH production, inhibiting the increase of GSSG/(GSH+GSSG), and reducing lipid peroxidation. IDPc downregulation by small interference RNA treatment presented results contrasting with the upregulation. In conclusion, these results demonstrate that IDPc is expressed differentially along tubules in patterns that may contribute to differences in susceptibility to injury, is a major enzyme in cytosolic NADPH generation in kidney, and is downregulated with I/R.

  8. Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney

    PubMed Central

    Kim, Jinu; Kim, Ki Young; Jang, Hee-Seong; Yoshida, Takumi; Tsuchiya, Ken; Nitta, Kosaku; Park, Jeen-Woo; Bonventre, Joseph V.; Park, Kwon Moo

    2009-01-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) synthesizes reduced NADP (NADPH), which is an essential cofactor for the generation of reduced glutathione (GSH), the most abundant and important antioxidant in mammalian cells. We investigated the role of IDPc in kidney ischemia-reperfusion (I/R) in mice. The activity and expression of IDPc were highest in the cortex, modest in the outer medulla, and lowest in the inner medulla. NADPH levels were greatest in the cortex. IDPc expression in the S1 and S2 segments of proximal tubules was higher than in the S3 segment, which is much more susceptible to I/R. IDPc protein was also highly expressed in the mitochondrion-rich intercalated cells of the collecting duct. IDPc activity was 10- to 30-fold higher than the activity of glucose-6-phosphate dehydrogenase, another producer of cytosolic NADPH, in various kidney regions. This study identifies that IDPc may be the primary source of NADPH in the kidney. I/R significantly reduced IDPc expression and activity and NADPH production and increased the ratio of oxidized glutathione to total glutathione [GSSG/(GSH+GSSG)], resulting in kidney dysfunction, tubular cell damage, and lipid peroxidation. In LLC-PK1 cells, upregulation of IDPc by IDPc gene transfer protected the cells against hydrogen peroxide, enhancing NADPH production, inhibiting the increase of GSSG/(GSH+GSSG), and reducing lipid peroxidation. IDPc downregulation by small interference RNA treatment presented results contrasting with the upregulation. In conclusion, these results demonstrate that IDPc is expressed differentially along tubules in patterns that may contribute to differences in susceptibility to injury, is a major enzyme in cytosolic NADPH generation in kidney, and is downregulated with I/R. PMID:19106211

  9. Cyclooxygenase-2 Selectively Controls Renal Blood Flow Through a Novel PPARβ/δ-Dependent Vasodilator Pathway.

    PubMed

    Kirkby, Nicholas S; Sampaio, Walkyria; Etelvino, Gisele; Alves, Daniele T; Anders, Katie L; Temponi, Rafael; Shala, Fisnik; Nair, Anitha S; Ahmetaj-Shala, Blerina; Jiao, Jing; Herschman, Harvey R; Xiaomeng, Wang; Wahli, Walter; Santos, Robson A; Mitchell, Jane A

    2018-02-01

    Cyclooxygenase-2 (COX-2) is an inducible enzyme expressed in inflammation and cancer targeted by nonsteroidal anti-inflammatory drugs. COX-2 is also expressed constitutively in discreet locations where its inhibition drives gastrointestinal and cardiovascular/renal side effects. Constitutive COX-2 expression in the kidney regulates renal function and blood flow; however, the global relevance of the kidney versus other tissues to COX-2-dependent blood flow regulation is not known. Here, we used a microsphere deposition technique and pharmacological COX-2 inhibition to map the contribution of COX-2 to regional blood flow in mice and compared this to COX-2 expression patterns using luciferase reporter mice. Across all tissues studied, COX-2 inhibition altered blood flow predominantly in the kidney, with some effects also seen in the spleen, adipose, and testes. Of these sites, only the kidney displayed appreciable local COX-2 expression. As the main site where COX-2 regulates blood flow, we next analyzed the pathways involved in kidney vascular responses using a novel technique of video imaging small arteries in living tissue slices. We found that the protective effect of COX-2 on renal vascular function was associated with prostacyclin signaling through PPARβ/δ (peroxisome proliferator-activated receptor-β/δ). These data demonstrate the kidney as the principle site in the body where local COX-2 controls blood flow and identifies a previously unreported PPARβ/δ-mediated renal vasodilator pathway as the mechanism. These findings have direct relevance to the renal and cardiovascular side effects of drugs that inhibit COX-2, as well as the potential of the COX-2/prostacyclin/PPARβ/δ axis as a therapeutic target in renal disease. © 2018 The Authors.

  10. Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury

    PubMed Central

    Shi, Yingfeng; Xu, Liuqing; Tang, Jinhua; Fang, Lu; Ma, Shuchen; Ma, Xiaoyan; Nie, Jing; Pi, Xiaoling; Qiu, Andong; Zhuang, Shougang

    2017-01-01

    Histone deacetylase 6 (HDAC6) inhibition has been reported to protect against ischemic stroke and prolong survival after sepsis in animal models. However, it remains unknown whether HDAC6 inhibition offers a renoprotective effect after acute kidney injury (AKI). In this study, we examined the effect of tubastatin A (TA), a highly selective inhibitor of HDAC6, on AKI in a murine model of glycerol (GL) injection-induced rhabdomyolysis. Following GL injection, the mice developed severe acute tubular injury as indicated by renal dysfunction; expression of neutrophil gelatinase-associated lipocalin (NGAL), an injury marker of renal tubules; and an increase of TdT-mediated dUTP nick-end labeling (TUNEL)-positive tubular cells. These changes were companied by increased HDAC6 expression in the cytoplasm of renal tubular cells. Administration of TA significantly reduced serum creatinine and blood urea nitrogen levels as well as attenuated renal tubular damage in injured kidneys. HDAC6 inhibition also resulted in decreased expression of NGAL, reduced apoptotic cell, and inactivated caspase-3 in the kidney after acute injury. Moreover, injury to the kidney increased phosphorylation of nuclear factor (NF)-κB and expression of multiple cytokines/chemokines including tumor necrotic factor-α and interleukin-6 and monocyte chemoattractant protein-1, as well as macrophage infiltration. Treatment with TA attenuated all those responses. Finally, HDAC6 inhibition reduced the level of oxidative stress by suppressing malondialdehyde (MDA) and preserving expression of superoxide dismutase (SOD) in the injured kidney. Collectively, these data indicate that HDAC6 contributes to the pathogenesis of rhabdomyolysis-induced AKI and suggest that HDAC6 inhibitors have therapeutic potential for AKI treatment. PMID:28052874

  11. Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury.

    PubMed

    Shi, Yingfeng; Xu, Liuqing; Tang, Jinhua; Fang, Lu; Ma, Shuchen; Ma, Xiaoyan; Nie, Jing; Pi, Xiaoling; Qiu, Andong; Zhuang, Shougang; Liu, Na

    2017-03-01

    Histone deacetylase 6 (HDAC6) inhibition has been reported to protect against ischemic stroke and prolong survival after sepsis in animal models. However, it remains unknown whether HDAC6 inhibition offers a renoprotective effect after acute kidney injury (AKI). In this study, we examined the effect of tubastatin A (TA), a highly selective inhibitor of HDAC6, on AKI in a murine model of glycerol (GL) injection-induced rhabdomyolysis. Following GL injection, the mice developed severe acute tubular injury as indicated by renal dysfunction; expression of neutrophil gelatinase-associated lipocalin (NGAL), an injury marker of renal tubules; and an increase of TdT-mediated dUTP nick-end labeling (TUNEL)-positive tubular cells. These changes were companied by increased HDAC6 expression in the cytoplasm of renal tubular cells. Administration of TA significantly reduced serum creatinine and blood urea nitrogen levels as well as attenuated renal tubular damage in injured kidneys. HDAC6 inhibition also resulted in decreased expression of NGAL, reduced apoptotic cell, and inactivated caspase-3 in the kidney after acute injury. Moreover, injury to the kidney increased phosphorylation of nuclear factor (NF)-κB and expression of multiple cytokines/chemokines including tumor necrotic factor-α and interleukin-6 and monocyte chemoattractant protein-1, as well as macrophage infiltration. Treatment with TA attenuated all those responses. Finally, HDAC6 inhibition reduced the level of oxidative stress by suppressing malondialdehyde (MDA) and preserving expression of superoxide dismutase (SOD) in the injured kidney. Collectively, these data indicate that HDAC6 contributes to the pathogenesis of rhabdomyolysis-induced AKI and suggest that HDAC6 inhibitors have therapeutic potential for AKI treatment. Copyright © 2017 the American Physiological Society.

  12. Non-neuronal expression of choline acetyltransferase in the rat kidney.

    PubMed

    Maeda, Seishi; Jun, Jin Gon; Kuwahara-Otani, Sachi; Tanaka, Koichi; Hayakawa, Tetsu; Seki, Makoto

    2011-09-12

    Acetylcholine (ACh) has been shown to increase ion and water excretion in the kidneys, resulting in hypotension. However, no evidence of renal parasympathetic innervation has been shown, and the source of ACh acting on nephrons is still unknown. The aim of the present study was to identify ACh-producing cells in the rat kidney, by examining the expression of cholinergic agents and localization of an ACh-synthesizing enzyme, choline acetyltransferase (ChAT), in the kidney. Adult mail Sprague-Dawley rats were used in this study. Expression of mRNA of cholinergic agents, ChAT, vesicular ACh transporter (VAChT), and high-affinity choline transporter (CHT-1), in the kidney was examined by RT-PCR. Localization of ChAT mRNA and protein was examined by in situ hybridization and tyramide-enhanced immunohistochemistry, respectively. RT-PCR showed the expression of ChAT, VAChT, and CHT-1. In situ hybridization demonstrated that ChAT mRNA is localized to the renal cortical collecting ducts (CCD). Immunohistochemistry showed that the ChAT-positive cells were principal cells, and that they were unevenly distributed in the tubules, and constituted approximately 15.2% of CCD in the cortex, and 3.6% and 1.5% in the outer and inner medulla, respectively. ChAT-positive immunoreactivity was localized to the apical side of principal cells, suggesting that ACh synthesis may occur in the apical compartment of these cells. These results suggest that the cholinergic effects in the nephron may be mediated at least in part by ACh originating from CCD principal cells and its expression may be locally regulated in the rat kidney. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Xenon Protects Against Septic Acute Kidney Injury via miR-21 Target Signaling Pathway*

    PubMed Central

    Jia, Ping; Teng, Jie; Zou, Jianzhou; Fang, Yi; Wu, Xie; Liang, Mingyu

    2015-01-01

    Objectives: Septic acute kidney injury is one of the most common and life-threatening complications in critically ill patients, and there is no approved effective treatment. We have shown xenon provides renoprotection against ischemia-reperfusion injury and nephrotoxicity in rodents via inhibiting apoptosis. Here, we studied the effects of xenon preconditioning on septic acute kidney injury and its mechanism. Design: Experimental animal investigation. Setting: University research laboratory. Subjects: Experiments were performed with male C57BL/6 mice, 10 weeks of age, weighing 20–25 g. Interventions: We induced septic acute kidney injury by a single intraperitoneal injection of Escherichia coli lipopolysaccharide at a dose of 20 mg/kg. Mice were exposed for 2 hours to either 70% xenon or 70% nitrogen, 24 hours before the onset of septic acute kidney injury. In vivo knockdown of miR-21 was performed using locked nucleic acid-modified anti-miR, the role of miR-21 in renal protection conferred by the xenon preconditioning was examined, and miR-21 signaling pathways were analyzed. Measurements and Main Results: Xenon preconditioning provided morphologic and functional renoprotection, characterized by attenuation of renal tubular damage, apoptosis, and a reduction in inflammation. Furthermore, xenon treatment significantly upregulated the expression of miR-21 in kidney, suppressed proinflammatory factor programmed cell death protein 4 expression and nuclear factor-κB activity, and increased interleukin-10 production. Meanwhile, xenon preconditioning also suppressed the expression of proapoptotic protein phosphatase and tensin homolog deleted on chromosome 10, activating protein kinase B signaling pathway, subsequently increasing the expression of antiapoptotic B-cell lymphoma-2, and inhibiting caspase-3 activity. Knockdown of miR-21 upregulated its target effectors programmed cell death protein 4 and phosphatase and tensin homolog deleted on chromosome 10 expression, resulted in an increase in apoptosis, and exacerbated lipopolysaccharide-induced acute kidney injury. Conclusion: Our findings demonstrated that xenon preconditioning protected against lipopolysaccharide-induced acute kidney injury via activation of miR-21 target signaling pathways. PMID:25844699

  14. Selection of suitable endogenous reference genes for qPCR in kidney and hypothalamus of rats under testosterone influence

    PubMed Central

    2017-01-01

    Real-time quantitative PCR (qPCR) is the most reliable and accurate technique for analyses of gene expression. Endogenous reference genes are being used to normalize qPCR data even though their expression may vary under different conditions and in different tissues. Nonetheless, verification of expression of reference genes in selected studied tissue is essential in order to accurately assess the level of expression of target genes of interest. Therefore, in this study, we attempted to examine six commonly used reference genes in order to identify the gene being expressed most constantly under the influence of testosterone in the kidneys and hypothalamus. The reference genes include glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin beta (ACTB), beta-2 microglobulin (B2m), hypoxanthine phosphoribosyltransferase 1 (HPRT), peptidylprolylisomerase A (Ppia) and hydroxymethylbilane synthase (Hmbs). The cycle threshold (Ct) value for each gene was determined and data obtained were analyzed using the software programs NormFinder, geNorm, BestKeeper, and rank aggregation. Results showed that Hmbs and Ppia genes were the most stably expressed in the hypothalamus. Meanwhile, in kidneys, Hmbs and GAPDH appeared to be the most constant genes. In conclusion, variations in expression levels of reference genes occur in kidneys and hypothalamus under similar conditions; thus, it is important to verify reference gene levels in these tissues prior to commencing any studies. PMID:28591185

  15. Prostaglandin E1 reduces the glomerular mRNA expression of monocyte-chemoattractant protein 1 in anti-thymocyte antibody-induced glomerular injury.

    PubMed

    Jocks, T; Zahner, G; Freudenberg, J; Wolf, G; Thaiss, F; Helmchen, U; Stahl, R A

    1996-06-01

    To study whether prostaglandins (PG) can regulate the mRNA expression of monocyte-chemoattractant protein 1 (MCP-1) in glomerular immune injury, MCP-1 mRNA levels were evaluated in anti-thymocyte antibody (ATS) -induced glomerular injury by Northern blotting and reverse transcription-polymerase chain reaction. Immune injury was induced in vivo by the intravenous application of ATS to male Wistar rats and in vitro by the perfusion of isolated rat kidneys with ATS and rat serum. In vivo 3 h and 5 days after antibody application, glomerular mRNA expression of MCP-1 was markedly enhanced compared with controls. In the isolated perfused kidney, antibody and complement also induced an increase in MCP-1 expression at 10 min and 60 min after antibody perfusion. When the rats were treated with PGE (250 micrograms, twice daily), the increase in MCP-1 expression was reduced. This was associated with a reduction of intraglomerular recruitment of monocytes/macrophages. In the isolated perfused kidneys, PGE1 (1 mg/L) prevented the antibody- and rat serum-stimulated increase in glomerular MCP-1 mRNA expression. These data demonstrate that PGE1 reduces glomerular MCP-1 mRNA expression in glomerulonephritis and in the isolated perfused rat kidney after induction of immune injury with antibody and complement. The data suggest that prostaglandins might mediate MCP-1 effects in glomerular immune injuries.

  16. Clusterin deficiency induces lipid accumulation and tissue damage in kidney.

    PubMed

    Heo, Jung-Yoon; Kim, Ji-Eun; Dan, Yongwook; Kim, Yong-Woon; Kim, Jong-Yeon; Cho, Kyu Hyang; Bae, Young Kyung; Im, Seung-Soon; Liu, Kwang-Hyeon; Song, In-Hwan; Kim, Jae-Ryong; Lee, In-Kyu; Park, So-Young

    2018-05-01

    Clusterin is a secretory glycoprotein that is involved in multiple physiopathological processes, including lipid metabolism. Previous studies have shown that clusterin prevents hepatic lipid accumulation via suppression of sterol regulatory element-binding protein (SREBP) 1. In this study, we examined the role of clusterin in renal lipid accumulation in clusterin-knockout mice and NRK52e tubular epithelial cells. Clusterin deficiency increased the expression of SREBP1 and its target genes and decreased malonyl-CoA decarboxylase protein levels in the kidney. Expression of the endocytic receptor, megalin, and scavenger receptor class A was increased in clusterin-deficient mice. Functional analysis of lipid metabolism also revealed that lipid uptake and triglyceride synthesis were increased and fatty acid oxidation was reduced, leading to increased lipid accumulation in clusterin-deficient mice. These phenomena were accompanied by mesangial expansion, fibrosis and increased urinary protein-to-creatinine ratio. High-fat feeding aggravated these clusterin deficiency-induced pathological changes. Clusterin knockdown in NRK52e cells increased lipogenic gene expression and lipid levels, whereas overexpression of clusterin by treatment with adenovirus or recombinant clusterin protein suppressed lipogenic gene expression and lipid levels. Transforming growth factor-beta 1 (TGFB1) expression increased in the kidney of clusterin-deficient mice and suppression of TGFB1 in NRK52e cells suppressed lipid accumulation. These results suggest that clusterin deficiency induces renal lipid accumulation by dysregulating the expression of lipid metabolism-related factors and TGFB1, thereby leading to chronic kidney disease. Hence, clusterin may serve as a therapeutic target for lipid-induced chronic kidney disease. © 2018 Society for Endocrinology.

  17. [Rhein promotes the expression of SIRT1 in kidney tissues of type 2 diabetic rat].

    PubMed

    Chen, Weidong; Chang, Baochao; Zhang, Yan; Yang, Ping; Liu, Lei

    2015-05-01

    To observe the effect of rhein on the expression of SIRT1(Sirtuin 1) in kidney of diabetic rats, and to explore the role of rhein in protecting rat kidney against diabetic nephropathy and possible mechanism. The type 2 diabetic rats were induced by high-glucose and high-fat diet combined with streptozotocin (35 mg/kg body mass). Seventy-five eight-week-old male SD rats were randomly divided into 6 groups: normal group, diabetic group, low-, medium- and high-dose (50, 100, 150 mg/kg) rhein treatment groups and 10 mg/kg pioglitazone treatment group. The rats were given corresponding substances intragastrically once a day. At the end of the 16th week, the fasting plasma glucose (FPG), fasting insulin (FINS), triglycerides (TG), total cholesterol (TC), serum creatinine (Scr) and 24 hours urine protein (24 h U-PRO) were determined. The renal hypertrophy index (KM/BM), insulin resistance index (HOMA-IR) were calculated. The pathological changes in renal tissues were examined by PAS staining under a light microscopy. The mean glomerular area (MGA) and mean glomerular volume (MGV) were measured by pathological image analysis system. Western blotting and real-time quantitative PCR were used to determine the expression of SIRT1 in renal tissues at protein and mRNA levels, respectively. The expression of SIRT1 was down-regulated in the kidney of diabetic rats. The levels of FPG, FINS, HOMA-IR, TG, TC, Scr, 24 h U-PRO, KM/BM, MGA and MGV significantly decreased and the histopathology of renal tissues were significantly improved in all treatment groups compared with diabetic group. The expression of SIRT1 mRNA and protein markedly increased in rhein treatment groups and pioglitazone treatment group compared with diabetic group. The indicators in high-dose rhein treatment group were improved more significantly than those in the other groups. Correlation analysis showed that the expression of SIRT1 was negatively correlated with 24 h U-PRO and MGV. The expression of SIRT1 was reduced in kidney tissues of diabetic rats. Rhein could attenuate kidney damage in diabetic rats by improving the insulin resistance and dyslipidemia, and increasing the SIRT1 expression.

  18. Characterization and expression of cyp19a gene in the Chinese giant salamander Andrias davidianus.

    PubMed

    Hu, Qiaomu; Xiao, Hanbing; Tian, HaiFeng; Meng, Yan

    2016-02-01

    We cloned the full length cyp19a of Chinese giant salamander Andrias davidianus, determined its distribution in tissues and developing gonads, and analyzed the CpG methylation pattern of the cyp19a promoter. The results revealed isoforms of 1706 bp (G arom) and 1698 bp (B arom) in length, differing in the 5' flanking region, both encoding 502 amino acids. The G arom gene was observed mainly in the ovary and kidney, with little in other investigated tissues, while B arom expression was high in the brain, ovary, testis, and pituitary, with low or undetected expression in other examined tissues. Total aromatase expression was high in the ovary; moderate in the kidney, brain, testis, and pituitary; and low in the remaining tissues. G arom expression was significantly higher in the ovary than in the testis and gradually decreased with maturation of the salamander. A single injection of methyltestosterone or letrozole resulted in ovarian G arom expression decreasing over a 12-96 h period. A 1366 bp sequence of the cyp19a promoter was cloned and shown to be conserved in selected species. CpG methylation level was negatively correlated with cyp19a expression in the examined tissues and developing ovaries. Five and three CpG methylation sites positively correlated with DNA methylation levels in tissues and developing ovary, suggesting that they play an important role in regulating cyp19a expression. The aromatase gene showed two isoforms with distinct expression patterns, and the promoter methylation level at specific CpG sites was associated with variation in expression profiles of tissues and developing ovaries. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Hydrogen sulfide accelerates the recovery of kidney tubules after renal ischemia/reperfusion injury.

    PubMed

    Han, Sang Jun; Kim, Jee In; Park, Jeen-Woo; Park, Kwon Moo

    2015-09-01

    Progression of acute kidney injury to chronic kidney disease (CKD) is associated with inadequate recovery of damaged kidney. Hydrogen sulfide (H2S) regulates a variety of cellular signals involved in cell death, differentiation and proliferation. This study aimed to identify the role of H2S and its producing enzymes in the recovery of kidney following ischemia/reperfusion (I/R) injury. Mice were subjected to 30 min of bilateral renal ischemia. Some mice were administered daily NaHS, an H2S donor, and propargylglycine (PAG), an inhibitor of the H2S-producing enzyme cystathionine gamma-lyase (CSE), during the recovery phase. Cell proliferation was assessed via 5'-bromo-2'-deoxyuridine (BrdU) incorporation assay. Ischemia resulted in decreases in CSE and cystathionine beta-synthase (CBS) expression and activity, and H2S level in the kidney. These decreases did not return to sham level until 8 days after ischemia when kidney had fibrotic lesions. NaHS administration to I/R-injured mice accelerated the recovery of renal function and tubule morphology, whereas PAG delayed that. Furthermore, PAG increased mortality after ischemia. NaHS administration to I/R-injured mice accelerated tubular cell proliferation, whereas it inhibited interstitial cell proliferation. In addition, NaHS treatment reduced post-I/R superoxide formation, lipid peroxidation, level of GSSG/GSH and Nox4 expression, whereas it increased catalase and MnSOD expression. Our findings demonstrate that H2S accelerates the recovery of I/R-induced kidney damage, suggesting that the H2S-producing transsulfuration pathway plays an important role in kidney repair after acute injury. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  20. A comparative study: Difference in omega-6/omega-3 balance and saturated fat in diets for Atlantic salmon (Salmo salar) affect immune-, fat metabolism-, oxidative and apoptotic-gene expression, and eicosanoid secretion in head kidney leukocytes.

    PubMed

    Holen, Elisabeth; Araujo, Pedro; Sissener, Nini H; Rosenlund, Grethe; Waagbø, Rune

    2018-01-01

    The aim of this study was to compare how different dietary vegetable oil n-6/n-3 ratios affect gene responses involved in inflammation, signaling pathways, fatty acid synthesis and oxidation, oxidation and apoptosis as well as eicosanoid production in salmon head kidney tissues and isolated head kidney leukocytes. Salmon smolts (200 g) were fed four different diets where the main lipid components were palm oil (n-6/n-3 ratio = 0.7), rapeseed oil (n-6/n-3 ratio = 0.9), and soybean oil (n-6/n-3 ratio = 2.4) and a high soybean oil diet with an n-6/n-3 ratio = 4. Both head kidney tissue and leukocytes isolated from head kidneys were sampled from the four diets, but from different fish. Leukocytes isolated from the head kidneys were seeded into culture wells and added lipopolysaccharide (LPS) to induce inflammatory responses. Controls without LPS were included. Head kidney leukocytes and the tissues should have the same phenotype reflecting the different diets. Interleukin 1β (IL-1β) transcription was elevated in head kidney tissue and especially in LPS treated leukocytes isolated from soybean oil (n-6/n-3 = 2.4) fed salmon, which confirmed the suitability of the in vitro model in this experiment. Leukocytes, treated with LPS, and isolated from salmon fed the soybean oil diet (n-6/n-3 = 2.4) also upregulated tumor necrosis factor alpha (tnf-α), cyclooxygenase (cox2), prostaglandin D and E synthase (ptgds, ptges), fatty acyl synthase (fas), 5 and 6 desaturases (5des, 6 des) and a fatty acid translocase protein (cd36) when compared to the other diets. The results suggest that diets with a specific n-6/n-3 ratio influence the transcription of pro-inflammatory genes and may be cross-linked to transcription of selected fatty acid metabolism genes. Salmon fed the palm oil diet (n-6/n-3 = 0.7) showed a lower expression of inflammatory genes. Instead, peroxisome proliferator activated receptor β1 (pparβ1), acyl coenzyme A (aco), apoptosis regulator (bax) and superoxide dismutase (sod) were upregulated in leukocytes in vitro, while head kidney tissue transcription of a dendritic marker (cd83) was lower than measured in tissues from fish fed the other diets. The concentration of LTB4 (10-20 ng/mL) were relatively constant in leukocyte supernatants, all diets. Head kidney leukocytes from soybean oil (n-6/n-3 = 2.4) fed fish produced LPS induced PGE2 (mean 0.5 ng/mL) while leukocytes isolated from palm oil diet (n-6/n-3 = 0.7) secreted very high amounts of LTB5 (50-70 ng/mL). In addition, equal amounts of LPS induced PGE2 and PGE3 (mean 0, 5 ng/mL) were produced, indicating that the n-6/n-3 ratio of this saturated fatty acid may have a specific impact on eicosanoid production in the head kidney of salmon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Kidney-specific WNK1 isoform (KS-WNK1) is a potent activator of WNK4 and NCC.

    PubMed

    Argaiz, Eduardo R; Chavez-Canales, Maria; Ostrosky-Frid, Mauricio; Rodriguez-Gama, Alejandro; Vázquez, Norma; Gonzalez-Rodriguez, Xochiquetzal; Garcia-Valdés, Jesus; Hadchouel, Juliette; Ellison, David H; Gamba, Gerardo

    2018-05-30

    Familial Hyperkalemic Hypertension (FHHt) can be mainly attributed to increased activity of the renal Na+:Cl- cotransporter (NCC), which is caused by altered expression and regulation of the WNK1 and WNK4 kinases. The WNK1 gene gives rise to a kidney-specific isoform that lacks the kinase domain (KS-WNK1), the expression of which occurs primarily in the distal convoluted tubule. The role played by KS-WNK1 in the modulation of the WNK/SPAK/NCC pathway remains elusive. In the present study, we assessed the effect of human KS-WNK1 on NCC activity and on the WNK4-SPAK pathway. Microinjection of oocytes with human KS-WNK1 cRNA induces remarkable activation and phosphorylation of SPAK and NCC. The effect of KS-WNK1 was abrogated by eliminating a WNK-WNK interacting domain and by a specific WNK inhibitor, WNK463, indicating that the activation of SPAK/NCC by KS-WNK1 is due to interaction with another WNK kinase. Under control conditions in oocytes, the activating serine 335 of the WNK4 T loop is not phosphorylated. In contrast, this serine becomes phosphorylated when the intracellular chloride concentration ([Cl-]i) is reduced or when KS-WNK1 is co-expressed with WNK4. KS-WNK1-mediated activation of WNK4 is not due to a decrease of the [Cl-]i. Coimmunoprecipitation analysis revealed that KS-WNK1 and WNK4 interact with each other and that WNK4 becomes autophosphorylated at serine 335 when it is associated with KS-WNK1. Together, these observations suggest that WNK4 becomes active in the presence of KS-WNK1, despite a constant [Cl-]i.

  2. Expression of kidney injury molecule-1 (Kim-1) in relation to necrosis and apoptosis during the early stages of Cd-induced proximal tubule injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prozialeck, Walter C.; Edwards, Joshua R.; Lamar, Peter C.

    2009-08-01

    Cadmium (Cd) is a nephrotoxic industrial and environmental pollutant that causes a generalized dysfunction of the proximal tubule. Kim-1 is a transmembrane glycoprotein that is normally not detectable in non-injured kidney, but is up-regulated and shed into the urine during the early stages of Cd-induced proximal tubule injury. The objective of the present study was to examine the relationship between the Cd-induced increase in Kim-1 expression and the onset of necrotic and apoptotic cell death in the proximal tubule. Adult male Sprague-Dawley rats were treated with 0.6 mg (5.36 {mu}mol) Cd/kg, subcutaneously, 5 days per week for up to 12more » weeks. Urine samples were analyzed for levels of Kim-1 and the enzymatic markers of cell death, lactate dehydrogenase (LDH) and alpha-glutathione-S-transferase ({alpha}-GST). In addition, necrotic cells were specifically labeled by perfusing the kidneys in situ with ethidium homodimer using a procedure that has been recently developed and validated in the Prozialeck laboratory. Cryosections of the kidneys were also processed for the immunofluorescent visualization of Kim-1 and the identification of apoptotic cells by TUNEL labeling. Results showed that significant levels of Kim-1 began to appear in the urine after 6 weeks of Cd treatment, whereas the levels of total protein, {alpha}-GST and LDH were not increased until 8-12 weeks. Results of immunofluorescence labeling studies showed that after 6 weeks and 12 weeks, Kim-1 was expressed in the epithelial cells of the proximal tubule, but that there was no increase in the number of necrotic cells, and only a modest increase in the number of apoptotic cells at 12 weeks. These results indicate that the Cd-induced increase in Kim-1 expression occurs before the onset of necrosis and at a point where there is only a modest level of apoptosis in the proximal tubule.« less

  3. Nephrologists' perspectives on waitlisting and allocation of deceased donor kidneys for transplant.

    PubMed

    Tong, Allison; Howard, Kirsten; Wong, Germaine; Cass, Alan; Jan, Stephen; Irving, Michelle; Craig, Jonathan C

    2011-11-01

    Deceased donor kidneys are a scarce resource and there is debate about how to maximize the benefit from each donated kidney while ensuring equity of access to transplants. Allocation of kidneys to waitlisted patients is determined by a computer algorithm, but the decision to waitlist patients or accept the kidneys offered is largely at the discretion of nephrologists. This study aims to elicit nephrologists' perspectives on waitlisting patients for kidney transplant and the allocation of deceased kidneys. We conducted semistructured face-to-face interviews with adult and pediatric nephrologists from 15 Australian nephrology or transplant centers. Transcripts were analyzed for descriptive and analytical themes. 25 nephrologists participated. 5 major themes on waitlisting and deceased donor kidney allocation were identified: patient advocacy (championing their own patients, empowering patients, giving hope, individualizing judgments, patient preferences, and limited autonomy), professional and moral integrity (transparency, avoiding value judgments, and eliminating bias), protecting center reputation (gatekeeping), achieving equity (uniformity, avoiding discrimination, and fairness for specific populations), and maximizing societal benefit (prioritizing best use of kidney, resource implications, favoring social contribution, and improving efficiency of the allocation process). In making individual patient assessments, estimates about outcomes for a patient had to be resolved with whether it was reasonable from a broader societal perspective. Nephrologists expressed their primary responsibility in terms of giving their own patients access to a transplant and upholding professional integrity by maintaining transparency and avoiding value judgments and bias. However, nephrologists perceived an obligation to protect their center's reputation through the selection of "good" patients, and this caused some frustration. Despite having personal preferences for optimizing the balance between societal benefit and equity, nephrologists did not want direct responsibility for ensuring societal benefit in clinical practice. Rather, they placed the onus on policy makers and the community to reconcile such tensions and advocate for societal benefit. Copyright © 2011 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  4. PAX3 is expressed in the stromal compartment of the developing kidney and in Wilms tumors with myogenic phenotype.

    PubMed

    Hueber, Pierre-Alain; Fukuzawa, Ryuji; Elkares, Reyhan; Chu, Leelee; Blumentkrantz, Miriam; He, Shu-Jie; Anaka, Matthew R; Reeve, Anthony E; Eccles, Michael; Jabado, Nada; Iglesias, Diana M; Goodyer, Paul R

    2009-01-01

    Wilms tumor (WT) is the most frequent renal neoplasm of childhood; a myogenic component is observed in 5% to 10% of tumors. We demonstrate for the first time that myogenic WTs are associated with expression of PAX3, a transcription factor known to specify myoblast cell fate during muscle development. In a panel of 20 WTs, PAX3 was identified in 13 of 13 tumor samples with myogenic histopathology but was absent in 7 of 7 tumors lacking a myogenic component. Furthermore, we show that PAX3 is expressed in the metanephric mesenchyme and stromal compartment of developing mouse kidney. Modulation of endogenous PAX3 expression in human embryonic kidney (HEK293) cells influenced cell migration in in vitro assays. Mutations of WT1 were consistently associated with PAX3 expression in WTs, and modulation of WT1 expression in HEK293 cells was inversely correlated with the level of endogenous PAX3 protein. We demonstrate abundant PAX3 and absence of PAX2 expression in a novel cell line (WitP3) isolated from the stromal portion of a WT bearing a homozygous deletion of the WT1 gene. We hypothesize that PAX3 sets stromal cell fate in developing kidney but is normally suppressed by WT1 during the mesenchyme-to-epithelium transition leading to nephrogenesis. Loss of WT1 permits aberrant PAX3 expression in a subset of WTs with myogenic phenotype.

  5. H2S improves renal fibrosis in STZ-induced diabetic rats by ameliorating TGF-β1 expression.

    PubMed

    Li, Yan; Li, Lin; Zeng, Ou; Liu, Jun Mao; Yang, Jun

    2017-11-01

    Nephropathy develops in many patients with type 1 diabetes mellitus (T1DM). However, the specific mechanisms and therapies remain unclear. For this purpose we investigated the effects of hydrogen sulfide (H 2 S) on renal fibrosis in streptozotocin (STZ) induced diabetic rats and its underlying mechanisms. Experimental rats were randomly divided into four groups: Control group (normal rats), DM group (diabetes rats), DM + NaHS group [diabetes rats treated with sodium hydrosulfide (NaHS)], and NaHS group (normal rats treated with NaHS). The diabetic models were established by intraperitoneal injection of STZ. The NaHS-treated rats were injected with NaHS as an exogenous donor of H 2 S. At the same time, control group and DM group were administrated with equal doses of normal saline (NS). After eight weeks, the rats' urine samples were collected to measure the renal hydroxyproline content by basic hydrolysis method with a hydroxyproline detection kit. Collagen I and III content was detected by immunohistochemical method, and the pathology morphology of kidney was analyzed by Masson staining. Protein expressions of transforming growth factor beta 1 (TGF-β1), ERK1/2, TIMP1, TIMP2, MMP-2, MMP-7, MMP-8, MMP-11, and MMP-14 were assessed by western blotting. The results showed that significant fibrosis occurred in the kidney of diabetes rats. NaHS treatment downregulated TGF-β1, ERK1/2, TIMP1, TIMP2, MMP-2, MMP-7, MMP-8, MMP-11, and MMP-14 expressions in the kidney of these diabetes rats (p<.01). This result suggests that NaHS treatment could attenuate renal fibrosis by TGF-β1 signaling, and its mechanisms may be correlated with ERK1/2 expression and modulation of MMPs/TIMPs expression. Therefore, H 2 S may provide a promising option for defensing against diabetic renal fibrosis through TGF-β1 signaling, equilibrating the balance between profibrotic and antifibrotic mediators.

  6. Role of 2',3'-cyclic nucleotide 3'-phosphodiesterase in the renal 2',3'-cAMP-adenosine pathway.

    PubMed

    Jackson, Edwin K; Gillespie, Delbert G; Mi, Zaichuan; Cheng, Dongmei; Bansal, Rashmi; Janesko-Feldman, Keri; Kochanek, Patrick M

    2014-07-01

    Energy depletion increases the renal production of 2',3'-cAMP (a positional isomer of 3',5'-cAMP that opens mitochondrial permeability transition pores) and 2',3'-cAMP is converted to 2'-AMP and 3'-AMP, which in turn are metabolized to adenosine. Because the enzymes involved in this "2',3'-cAMP-adenosine pathway" are unknown, we examined whether 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) participates in the renal metabolism of 2',3'-cAMP. Western blotting and real-time PCR demonstrated expression of CNPase in rat glomerular mesangial, preglomerular vascular smooth muscle and endothelial, proximal tubular, thick ascending limb and collecting duct cells. Real-time PCR established the expression of CNPase in human glomerular mesangial, proximal tubular and vascular smooth muscle cells; and the level of expression of CNPase was greater than that for phosphodiesterase 4 (major enzyme for the metabolism of 3',5'-cAMP). Overexpression of CNPase in rat preglomerular vascular smooth muscle cells increased the metabolism of exogenous 2',3'-cAMP to 2'-AMP. Infusions of 2',3'-cAMP into isolated CNPase wild-type (+/+) kidneys increased renal venous 2'-AMP, and this response was diminished by 63% in CNPase knockout (-/-) kidneys, whereas the conversion of 3',5'-cAMP to 5'-AMP was similar in CNPase +/+ vs. -/- kidneys. In CNPase +/+ kidneys, energy depletion (metabolic poisons) increased kidney tissue levels of adenosine and its metabolites (inosine, hypoxanthine, xanthine, and uric acid) without accumulation of 2',3'-cAMP. In contrast, in CNPase -/- kidneys, energy depletion increased kidney tissue levels of 2',3'-cAMP and abolished the increase in adenosine and its metabolites. In conclusion, kidneys express CNPase, and renal CNPase mediates in part the renal 2',3'-cAMP-adenosine pathway. Copyright © 2014 the American Physiological Society.

  7. Identification of Barramundi (Lates calcarifer) DC-SCRIPT, a Specific Molecular Marker for Dendritic Cells in Fish

    PubMed Central

    Zoccola, Emmanuelle; Delamare-Deboutteville, Jérôme; Barnes, Andrew C.

    2015-01-01

    Antigen presentation is a critical step bridging innate immune recognition and specific immune memory. In mammals, the process is orchestrated by dendritic cells (DCs) in the lymphatic system, which initiate clonal proliferation of antigen-specific lymphocytes. However, fish lack a classical lymphatic system and there are currently no cellular markers for DCs in fish, thus antigen-presentation in fish is poorly understood. Recently, antigen-presenting cells similar in structure and function to mammalian DCs were identified in various fish, including rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio). The present study aimed to identify a potential molecular marker for DCs in fish and therefore targeted DC-SCRIPT, a well-conserved zinc finger protein that is preferentially expressed in all sub-types of human DCs. Putative dendritic cells were obtained in culture by maturation of spleen and pronephros-derived monocytes. DC-SCRIPT was identified in barramundi by homology using RACE PCR and genome walking. Specific expression of DC-SCRIPT was detected in barramundi cells by Stellaris mRNA FISH, in combination with MHCII expression when exposed to bacterial derived peptidoglycan, suggesting the presence of DCs in L. calcarifer. Moreover, morphological identification was achieved by light microscopy of cytospins prepared from these cultures. The cultured cells were morphologically similar to mammalian and trout DCs. Migration assays determined that these cells have the ability to move towards pathogens and pathogen associated molecular patterns, with a preference for peptidoglycans over lipopolysaccharides. The cells were also strongly phagocytic, engulfing bacteria and rapidly breaking them down. Barramundi DCs induced significant proliferation of responder populations of T-lymphocytes, supporting their role as antigen presenting cells. DC-SCRIPT expression in head kidney was higher 6 and 24 h following intraperitoneal challenge with peptidoglycan and lipopolysaccharide and declined after 3 days relative to PBS-injected controls. Relative expression was also lower in the spleen at 3 days post challenge but increased again at 7 days. As DC-SCRIPT is a constitutively expressed nuclear receptor, independent of immune activation, this may indicate initial migration of immature DCs from head kidney and spleen to the injection site, followed by return to the spleen for maturation and antigen presentation. DC-SCRIPT may be a valuable tool in the investigation of antigen presentation in fish and facilitate optimisation of vaccines and adjuvants for aquaculture. PMID:26173015

  8. Immunomodulatory Effects of Dietary Seaweeds in LPS Challenged Atlantic Salmon Salmo salar as Determined by Deep RNA Sequencing of the Head Kidney Transcriptome

    PubMed Central

    Palstra, Arjan P.; Kals, Jeroen; Blanco Garcia, Ainhoa; Dirks, Ron P.; Poelman, Marnix

    2018-01-01

    Seaweeds may represent immuno-stimulants that could be used as health-promoting fish feed components. This study was performed to gain insights into the immunomodulatory effects of dietary seaweeds in Atlantic salmon. Specifically tested were 10% inclusion levels of Laminaria digitata (SW1) and a commercial blend of seaweeds (Oceanfeed®) (SW2) against a fishmeal based control diet (FMC). Differences between groups were assessed in growth, feed conversion ratio and blood parameters hematocrit and hemoglobin. After a LPS challenge of fish representing each of the three groups, RNAseq was performed on the head kidney as major immune organ to determine transcriptomic differences in response to the immune activation. Atlantic salmon fed with dietary seaweeds did not show major differences in performance in comparison with fishmeal fed fish. RNAseq resulted in ∼154 million reads which were mapped against a NCBI Salmo salar reference and against a de novo assembled S. salar reference for analyses of expression of immune genes and ontology of immune processes among the 87,600 cDNA contigs. The dietary seaweeds provoked a more efficient immune response which involved more efficient identification of the infection site, and processing and presentation of antigens. More specifically, chemotaxis and the chemokine-mediated signaling were improved and therewith the defense response to Gram-positive bacterium reduced. Specific Laminaria digitata effects included reduction of the interferon-gamma-mediated signaling. Highly upregulated and specific for this diet was the expression of major histocompatibility complex class I-related gene protein. The commercial blend of seaweeds caused more differential expression than Laminaria digitata and improved immune processes such as receptor-mediated endocytosis and cell adhesion, and increased the expression of genes involved in response to lipopolysaccharide and inflammatory response. Particularly, expression of many important immune receptors was up-regulated illustrating increased responsiveness. NF-kappa-B inhibitor alpha is an important gene that marked the difference between both seaweed diets as Laminaria digitata inhibits the expression for this cytokine while the blend of seaweeds stimulates it. It can be concluded that the inclusion of seaweeds such as Laminaria digitata can have important modulatory effects on the immune capacity of Atlantic salmon resulting in a more efficient immune response. PMID:29910738

  9. Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control.

    PubMed

    Féraille, E; Doucet, A

    2001-01-01

    Tubular reabsorption of filtered sodium is quantitatively the main contribution of kidneys to salt and water homeostasis. The transcellular reabsorption of sodium proceeds by a two-step mechanism: Na(+)-K(+)-ATPase-energized basolateral active extrusion of sodium permits passive apical entry through various sodium transport systems. In the past 15 years, most of the renal sodium transport systems (Na(+)-K(+)-ATPase, channels, cotransporters, and exchangers) have been characterized at a molecular level. Coupled to the methods developed during the 1965-1985 decades to circumvent kidney heterogeneity and analyze sodium transport at the level of single nephron segments, cloning of the transporters allowed us to move our understanding of hormone regulation of sodium transport from a cellular to a molecular level. The main purpose of this review is to analyze how molecular events at the transporter level account for the physiological changes in tubular handling of sodium promoted by hormones. In recent years, it also became obvious that intracellular signaling pathways interacted with each other, leading to synergisms or antagonisms. A second aim of this review is therefore to analyze the integrated network of signaling pathways underlying hormone action. Given the central role of Na(+)-K(+)-ATPase in sodium reabsorption, the first part of this review focuses on its structural and functional properties, with a special mention of the specificity of Na(+)-K(+)-ATPase expressed in renal tubule. In a second part, the general mechanisms of hormone signaling are briefly introduced before a more detailed discussion of the nephron segment-specific expression of hormone receptors and signaling pathways. The three following parts integrate the molecular and physiological aspects of the hormonal regulation of sodium transport processes in three nephron segments: the proximal tubule, the thick ascending limb of Henle's loop, and the collecting duct.

  10. Elevated Vitamin D Receptor Levels in Genetic Hypercalciuric Stone-Forming Rats Are Associated With Downregulation of Snail

    PubMed Central

    Bai, Shaochun; Wang, Hongwei; Shen, Jikun; Zhou, Randal; Bushinsky, David A; Favus, Murray J

    2010-01-01

    Patients with idiopathic hypercalciuria (IH) and genetic hypercalciuric stone-forming (GHS) rats, an animal model of IH, are both characterized by normal serum Ca, hypercalciuria, Ca nephrolithiasis, reduced renal Ca reabsorption, and increased bone resorption. Serum 1,25-dihydroxyvitamin D [1,25(OH)2D] levels are elevated or normal in IH and are normal in GHS rats. In GHS rats, vitamin D receptor (VDR) protein levels are elevated in intestinal, kidney, and bone cells, and in IH, peripheral blood monocyte VDR levels are high. The high VDR is thought to amplify the target-tissue actions of normal circulating 1,25(OH)2D levels to increase Ca transport. The aim of this study was to elucidate the molecular mechanisms whereby Snail may contribute to the high VDR levels in GHS rats. In the study, Snail gene expression and protein levels were lower in GHS rat tissues and inversely correlated with VDR gene expression and protein levels in intestine and kidney cells. In human kidney and colon cell lines, ChIP assays revealed endogenous Snail binding close to specific E-box sequences within the human VDR promoter region, whereas only one E-box specifically bound Snail in the rat promoter. Snail binding to rat VDR promoter E-box regions was reduced in GHS compared with normal control intestine and was accompanied by hyperacetylation of histone H3. These results provide evidence that elevated VDR in GHS rats likely occurs because of derepression resulting from reduced Snail binding to the VDR promoter and hyperacetylation of histone H3. © 2010 American Society for Bone and Mineral Research. PMID:19929616

  11. Bardoxolone methyl (BARD) ameliorates aristolochic acid (AA)-induced acute kidney injury through Nrf2 pathway.

    PubMed

    Wu, Juan; Liu, Xinhui; Fan, Jinjin; Chen, Wenfang; Wang, Juan; Zeng, Youjia; Feng, Xiaorang; Yu, Xueqing; Yang, Xiao

    2014-04-06

    Bardoxolone methyl (BARD) is an antioxidant modulator that acts through induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. This study aimed to investigate the role of BARD in protecting kidneys from aristolochic acid (AA)-induced acute kidney injury (AKI). Male C57BL/6 mice received intraperitoneal (i.p.) injections of aristolochic acid I (AAI) (5mg/kg/day) for 5 days to produce acute AA nephropathy (AAN) model. BARD (10mg/kg/day, i.p.) was applied for 7 consecutive days, starting 2 days prior to AAI administration. The mice in the AA group showed AKI as evidenced by worsening kidney function evaluated by blood urea nitrogen (BUN) and serum creatinine (SCr) levels, and severe tubulointerstitial injury marked by massive tubule necrosis in kidney tissues. BARD significantly reduced BUN and SCr levels which were elevated by AAI. Additionally, AAI-induced histopathological renal damage was ameliorated by BARD. Furthermore, the expression of Nrf2 was reduced, and its repressor Kelch-like ECH-associated protein 1 (Keap1) was increased significantly, whereas heme oxygenase-1 (HO-1) was upregulated and NAD(P)H quinone oxidoreductase-1 (NQO1) was barely increased in the cytoplasm of tubules in kidneys after treatment with AAI. BARD significantly upregulated renal Nrf2, NQO1 and HO-1 expression and downregulated Keap1 expression compared with those in the AA group. Moreover, it was found that Nrf2 was expressed both in the cytoplasm and nuclear of glomeruli and tubules, whereas NQO1 and HO-1 were localized in the cytoplasm of tubules only. In conclusion, AA-induced acute renal injury was associated with impaired Nrf2 activation and expression of its downstream target genes in renal tissues. BARD prevented renal damage induced by AAI, and this renoprotective effect may be exerted by activating the Nrf2 signaling pathway and increasing expression of the downstream target genes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Chronic effects of soft drink consumption on the health state of Wistar rats: A biochemical, genetic and histopathological study.

    PubMed

    Alkhedaide, Adel; Soliman, Mohamed Mohamed; Salah-Eldin, Alaa-Eldin; Ismail, Tamer Ahmed; Alshehiri, Zafer Saad; Attia, Hossam Fouad

    2016-06-01

    The present study was performed to examine the effects of chronic soft drink consumption (SDC) on oxidative stress, biochemical alterations, gene biomarkers and histopathology of bone, liver and kidney. Free drinking water of adult male Wistar rats was substituted with three different soft drinks: Coca‑Cola, Pepsi and 7‑Up, for three consecutive months. The serum and organs were collected for examining the biochemical parameters associated with bone, liver and kidney functions. Semi‑quantitative reverse transcription polymerase chain reaction was used to observe the changes in the expression of genes in the liver and kidney, which are associated with oxidative stress resistance. Histopathological investigations were performed to determine the changes in bone, liver and kidney tissues using hematoxylin and eosin stains. SDC affected liver, kidney and bone function biomarkers. Soft drinks increased oxidative stress, which is represented by an increase in malondialdehyde and a decrease in antioxidant levels. SDC affected serum mineral levels, particularly calcium and phosphorus. Soft drinks downregulated the expression levels of glutathione‑S‑transferase and super oxide dismutase in the liver compared with that of control rats. Rats administered Coca‑Cola exhibited a hepatic decrease in the mRNA expression of α2‑macroglobulin compared with rats administered Pepsi and 7‑Up. On the other hand, SDC increased the mRNA expression of α1‑acid glycoprotein. The present renal studies revealed that Coca‑Cola increased the mRNA expression levels of desmin, angiotensinogen and angiotensinogen receptor compared with the other groups, together with mild congestion in renal histopathology. Deleterious histopathological changes were reported predominantly in the bone and liver of the Coca‑Cola and Pepsi groups. In conclusion, a very strict caution must be considered with SDC due to the increase in oxidative stress biomarkers and disruption in the expression of certain genes associated with the bio‑vital function of both the liver and kidney.

  13. Epoxyeicosatrienoic Acid Analog Decreases Renal Fibrosis by Reducing Epithelial-to-Mesenchymal Transition

    PubMed Central

    Skibba, Melissa; Hye Khan, Md. Abdul; Kolb, Lauren L.; Yeboah, Michael M.; Falck, John R.; Amaradhi, Radhika; Imig, John D.

    2017-01-01

    Renal fibrosis, which is a critical pathophysiological event in chronic kidney diseases, is associated with renal epithelial-to-mesenchymal transition (EMT). Epoxyeicosatrienoic acids (EETs) are Cyp epoxygenase arachidonic acid metabolites that demonstrate biological actions that result in kidney protection. Herein, we investigated the ability of 14,15-EET and its synthetic analog, EET-A, to reduce kidney fibrosis induced by unilateral ureter obstruction (UUO). C57/BL6 male mice underwent sham or UUO surgical procedures and were treated with 14,15-EET or EET-A in osmotic pump (i.p.) for 10 days following UUO surgery. UUO mice demonstrated renal fibrosis with an 80% higher kidney-collagen positive area and 70% higher α-smooth muscle actin (SMA) positive renal areas compared to the sham group. As a measure of collagen content, kidney hydroxyproline content was also higher in UUO (6.4 ± 0.5 μg/10 mg) compared to sham group (2.5 ± 0.1 μg/10 mg). Along with marked renal fibrosis, UUO mice had reduced renal expression of EET producing Cyp epoxygenase enzymes. Endogenous 14,15-EET or EET-A demonstrated anti-fibrotic action in UUO by reducing kidney-collagen positive area (50–60%), hydroxyproline content (50%), and renal α-SMA positive area (85%). In UUO mice, renal expression of EMT inducers, Snail1 and ZEB1 were higher compared to sham group. Accordingly, renal epithelial marker E-cadherin expression was reduced and mesenchymal marker expression was elevated in the UUO compared to sham mice. Interestingly, EET-A reduced EMT in UUO mice by deceasing renal Snail1 and ZEB1 expression. EET-A treatment also opposed the decrease in renal E-cadherin expression and markedly reduced several prominent renal mesenchymal/myofibroblast markers in UUO mice. Overall, our results demonstrate that EET-A is a novel anti-fibrotic agent that reduces renal fibrosis by decreasing renal EMT. PMID:28713267

  14. Chronic effects of soft drink consumption on the health state of Wistar rats: A biochemical, genetic and histopathological study

    PubMed Central

    ALKHEDAIDE, ADEL; SOLIMAN, MOHAMED MOHAMED; SALAH-ELDIN, ALAA-ELDIN; ISMAIL, TAMER AHMED; ALSHEHIRI, ZAFER SAAD; ATTIA, HOSSAM FOUAD

    2016-01-01

    The present study was performed to examine the effects of chronic soft drink consumption (SDC) on oxidative stress, biochemical alterations, gene biomarkers and histopathology of bone, liver and kidney. Free drinking water of adult male Wistar rats was substituted with three different soft drinks: Coca-Cola, Pepsi and 7-Up, for three consecutive months. The serum and organs were collected for examining the biochemical parameters associated with bone, liver and kidney functions. Semi-quantitative reverse transcription polymerase chain reaction was used to observe the changes in the expression of genes in the liver and kidney, which are associated with oxidative stress resistance. Histopathological investigations were performed to determine the changes in bone, liver and kidney tissues using hematoxylin and eosin stains. SDC affected liver, kidney and bone function biomarkers. Soft drinks increased oxidative stress, which is represented by an increase in malondialdehyde and a decrease in antioxidant levels. SDC affected serum mineral levels, particularly calcium and phosphorus. Soft drinks downregulated the expression levels of glutathione-S-transferase and super oxide dismutase in the liver compared with that of control rats. Rats administered Coca-Cola exhibited a hepatic decrease in the mRNA expression of α2-macroglobulin compared with rats administered Pepsi and 7-Up. On the other hand, SDC increased the mRNA expression of α1-acid glycoprotein. The present renal studies revealed that Coca-Cola increased the mRNA expression levels of desmin, angiotensinogen and angiotensinogen receptor compared with the other groups, together with mild congestion in renal histopathology. Deleterious histopathological changes were reported predominantly in the bone and liver of the Coca-Cola and Pepsi groups. In conclusion, a very strict caution must be considered with SDC due to the increase in oxidative stress biomarkers and disruption in the expression of certain genes associated with the bio-vital function of both the liver and kidney. PMID:27121771

  15. Transcriptional regulation of podocyte specification and differentiation.

    PubMed

    Quaggin, Susan E

    2002-05-15

    Glomerular visceral epithelial cells (podocytes) are highly specialized cells found in the vertebrate and invertebrate kidney and make up a major portion of the filtration barrier between blood and urinary spaces. During development, specification and differentiation of the podocyte lineage must be tightly orchestrated to produce highly specialized characteristics such as foot processes and slit diaphragms. Furthermore, podocytes are poised to direct incoming endothelial and mesangial cells during glomerular development. They express a number of growth factors that likely play a major role in these processes. Recent findings from transgenic and knockout mouse models and the identification of genes responsible for human podocyte disease have provided insight into transcriptional regulation of some of these processes. These transcription factors include Pax2, WT1 (the Wilms tumor suppressor gene), Pod1 (capsulin, epicardin), Kreisler (maf-1), lmx1b, and mf2. Furthermore, regulatory regions from a podocyte-restricted gene, NPHS1 (nephrin) that are required to direct podocyte-specific expression have been identified from both human and murine genes and provide a tool to further dissect the transcriptional regulation of podocyte-specific gene expression. This article reviews the present state of knowledge regarding transcriptional regulation of podocyte specification and differentiation. Copyright 2002 Wiley-Liss, Inc.

  16. Expression of the Fanconi anemia group A gene (Fanca) during mouse embryogenesis.

    PubMed

    Abu-Issa, R; Eichele, G; Youssoufian, H

    1999-07-15

    About 80% of all cases of Fanconi anemia (FA) can be accounted for by complementation groups A and C. To understand the relationship between these groups, we analyzed the expression pattern of the mouse FA group-A gene (Fanca) during embryogenesis and compared it with the known pattern of the group-C gene (Fancc). Northern analysis of RNA from mouse embryos at embryonic days 7, 11, 15, and 17 showed a predominant 4.5 kb band in all stages. By in situ hybridization, Fanca transcripts were found in the whisker follicles, teeth, brain, retina, kidney, liver, and limbs. There was also stage-specific variation in Fanca expression, particularly within the developing whiskers and the brain. Some tissues known to express Fancc (eg, gut) failed to show Fanca expression. These observations show that (1) Fanca is under both tissue- and stage-specific regulation in several tissues; (2) the expression pattern of Fanca is consistent with the phenotype of the human disease; and (3) Fanca expression is not necessarily coupled to that of Fancc. The presence of distinct tissue targets for FA genes suggests that some of the variability in the clinical phenotype can be attributed to the complementation group assignment.

  17. CAR/PXR provide directives for Cyp3a41 gene regulation differently from Cyp3a11.

    PubMed

    Anakk, S; Kalsotra, A; Kikuta, Y; Huang, W; Zhang, J; Staudinger, J L; Moore, D D; Strobel, H W

    2004-01-01

    This study reports that Cyp3a41 gene contains 13 exons and is localized on the chromosome 5. CYP3A41 is a female-specific isoform that is predominantly expressed in the liver. Estrogen signaling is not responsible for its female specificity. CYP3A41 expression in kidney and brain is observed only in 50% of mice examined. PXR mediates dexamethasone-dependent suppression of CYP3A41. In contrast to CYP3A11, CYP3A41 expression is not induced by pregnenolone-16alpha-carbonitrile (PCN) in wild-type mice, but is significantly suppressed by PCN in PXR(-/-) mice. Phenobarbital and TCPOBOP induce CYP3A11 expression only in the presence of CAR, but have no effect on CYP3A41 expression. Immunoblot and erythromycin demethylase activity analysis reveal robust CYP3A induction after PCN treatment, which is poorly correlated to CYP3A41. These findings suggest a differential role for CAR/PXR in regulating individual CYP3A isoforms by previously characterized CYP3A inducers.

  18. Cell Biology of Thiazide Bone Effects

    NASA Astrophysics Data System (ADS)

    Gamba, Gerardo; Riccardi, Daniela

    2008-09-01

    The thiazide-sensitive Na+:Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian kidney. The activity of NCC is not only related to salt metabolism, but also to calcium and magnesium homeostasis due to the inverse relationship between NCC activity and calcium reabsorption. Hence, the thiazide-type diuretics that specifically block NCC have been used for years, not only for treatment of hypertension and edematous disease, but also for the management of renal stone disease. Epidemiological studies have shown that chronic thiazide treatment is associated with higher bone mineral density and reduced risk of bone fractures, which can only partly be explained in terms of their effects on the kidney. In this regard, we have recently shown that NCC is expressed in bone cells and that inhibition of NCC in bone, either by thiazides or by reduction of NCC protein with specific siRNA, is associated with increased mineralization in vitro. These observations open a field of study to begin to understand the cell biology of the beneficial effects of thiazides in bone.

  19. The developmental programme for genesis of the entire kidney is recapitulated in Wilms tumour.

    PubMed

    Fukuzawa, Ryuji; Anaka, Matthew R; Morison, Ian M; Reeve, Anthony E

    2017-01-01

    Wilms tumour (WT) is an embryonal tumour that recapitulates kidney development. The normal kidney is formed from two distinct embryological origins: the metanephric mesenchyme (MM) and the ureteric bud (UB). It is generally accepted that WT arises from precursor cells in the MM; however whether UB-equivalent structures participate in tumorigenesis is uncertain. To address the question of the involvement of UB, we assessed 55 Wilms tumours for the molecular features of MM and UB using gene expression profiling, immunohistochemsitry and immunofluorescence. Expression profiling primarily based on the Genitourinary Molecular Anatomy Project data identified molecular signatures of the UB and collecting duct as well as those of the proximal and distal tubules in the triphasic histology group. We performed immunolabeling for fetal kidneys and WTs. We focused on a central epithelial blastema pattern which is the characteristic of triphasic histology characterized by UB-like epithelial structures surrounded by MM and MM-derived epithelial structures, evoking the induction/aggregation phase of the developing kidney. The UB-like epithelial structures and surrounding MM and epithelial structures resembling early glomerular epithelium, proximal and distal tubules showed similar expression patterns to those of the developing kidney. These observations indicate WTs can arise from a precursor cell capable of generating the entire kidney, such as the cells of the intermediate mesoderm from which both the MM and UB are derived. Moreover, this provides an explanation for the variable histological features of mesenchymal to epithelial differentiation seen in WT.

  20. The developmental programme for genesis of the entire kidney is recapitulated in Wilms tumour

    PubMed Central

    Anaka, Matthew R.; Morison, Ian M.; Reeve, Anthony E.

    2017-01-01

    Wilms tumour (WT) is an embryonal tumour that recapitulates kidney development. The normal kidney is formed from two distinct embryological origins: the metanephric mesenchyme (MM) and the ureteric bud (UB). It is generally accepted that WT arises from precursor cells in the MM; however whether UB-equivalent structures participate in tumorigenesis is uncertain. To address the question of the involvement of UB, we assessed 55 Wilms tumours for the molecular features of MM and UB using gene expression profiling, immunohistochemsitry and immunofluorescence. Expression profiling primarily based on the Genitourinary Molecular Anatomy Project data identified molecular signatures of the UB and collecting duct as well as those of the proximal and distal tubules in the triphasic histology group. We performed immunolabeling for fetal kidneys and WTs. We focused on a central epithelial blastema pattern which is the characteristic of triphasic histology characterized by UB-like epithelial structures surrounded by MM and MM-derived epithelial structures, evoking the induction/aggregation phase of the developing kidney. The UB-like epithelial structures and surrounding MM and epithelial structures resembling early glomerular epithelium, proximal and distal tubules showed similar expression patterns to those of the developing kidney. These observations indicate WTs can arise from a precursor cell capable of generating the entire kidney, such as the cells of the intermediate mesoderm from which both the MM and UB are derived. Moreover, this provides an explanation for the variable histological features of mesenchymal to epithelial differentiation seen in WT. PMID:29040332

  1. Histone deacetylase and GATA-binding factor 6 regulate arterial remodeling in angiotensin II-induced hypertension.

    PubMed

    Kim, Gwi Ran; Cho, Soo-Na; Kim, Hyung-Seok; Yu, Seon Young; Choi, Sin Young; Ryu, Yuhee; Lin, Ming Quan; Jin, Li; Kee, Hae Jin; Jeong, Myung Ho

    2016-11-01

    Histone deacetylase (HDAC) inhibitors have been reported to improve essential and secondary hypertension. However, the specific HDAC that might serve as a therapeutic target and the associated upstream and downstream molecules involved in regulating hypertension remain unknown. Our study was aimed at investigating whether a selective inhibitor of class II HDAC (MC1568) modulates hypertension, elucidating the underlying mechanism. Hypertension was established by administering angiotensin II (Ang II) to mice before treatment with MC1568. SBP was measured. Treatment with MC1568 reduced elevated SBP; attenuated arterial remodeling in the kidney's small arteries and thoracic aorta; and inhibited cell cycle regulatory gene expression, vascular smooth muscle cell (VSMC) proliferation, DNA synthesis, and VSMC hypertrophy in vivo and in vitro. Ang II enhanced the expression of phosphorylated HDAC4 and GATA-binding factor 6 (GATA6) proteins, which were specifically localized in the cytoplasm of cells in the arteries of kidneys and in aortas. Forced expression and knockdown of HDAC4 increased and decreased, respectively, the proliferation and expression of cell cycle genes in VSMCs. GATA6, a newly described binding partner of HDAC4, markedly enhanced the size and number of VSMCs. Calcium/calmodulin-dependent kinase IIα (CaMKIIα), but not HDAC4, translocated from the nucleus to the cytoplasm in response to Ang II. CaMKIIα and protein kinase D1 were associated with VSMC hypertrophy and hyperplasia via direct interaction with HDAC4. MC1568 treatment weakened the association between HDAC4 and CaMKIIα. These results suggest that class II HDAC inhibition attenuates hypertension by negatively regulating VSMC hypertrophy and hyperplasia via the CaMKIIα/protein kinase D1/HDAC4/GATA6 pathway.

  2. RGS4 inhibits angiotensin II signaling and macrophage localization during renal reperfusion injury independent of vasospasm

    PubMed Central

    Pang, Paul; Jin, Xiaohua; Proctor, Brandon M.; Farley, Michelle; Roy, Nilay; Chin, Matthew S.; von Andrian, Ulrich H.; Vollmann, Elisabeth; Perro, Mario; Hoffman, Ryan J.; Chung, Joseph; Chauhan, Nikita; Mistri, Murti; Muslin, Anthony J.; Bonventre, Joseph V.; Siedlecki, Andrew M.

    2014-01-01

    Vascular inflammation is a major contributor to the severity of acute kidney injury. In the context of vasospasm-independent reperfusion injury we studied the potential anti-inflammatory role of the Gα-related RGS protein, RGS4. Transgenic RGS4 mice were resistant to 25 minute injury, although post-ischemic renal arteriolar diameter was equal to the wild type early after injury. A 10 minute unilateral injury was performed to study reperfusion without vasospasm. Eighteen hours after injury blood flow was decreased in the inner cortex of wild type mice with preservation of tubular architecture. Angiotensin II levels in the kidneys of wild type and transgenic mice were elevated in a sub-vasoconstrictive range 12 and 18 hours after injury. Angiotensin II stimulated pre-glomerular vascular smooth muscle cells (VSMC) to secrete the macrophage chemoattractant, RANTES; a process decreased by angiotensin II R2 (AT2) inhibition. However, RANTES increased when RGS4 expression was suppressed implicating Gα protein activation in an AT2-RGS4-dependent pathway. RGS4 function, specific to VSMC, was tested in a conditional VSMC-specific RGS4 knockout showing high macrophage density by T2 MRI compared to transgenic and non-transgenic mice after the 10 minute injury. Arteriolar diameter of this knockout was unchanged at successive time points after injury. Thus, RGS4 expression, specific to renal VSMC, inhibits angiotensin II-mediated cytokine signaling and macrophage recruitment during reperfusion, distinct from vasomotor regulation. PMID:25469849

  3. Purification of Recombinant Ebola Virus Glycoprotein and VP40 from a Human Cell Line

    DTIC Science & Technology

    2017-01-01

    from a human cell line. Plasmids coding for the expression of these proteins were transiently transfected into human embryonic kidney cells 293 and...protein expression. Expi293F cells were derived from the line of human embryonic kidney cells 293 (i.e., HEK293 cells), and they were grown in a

  4. GENE EXPRESSION PROFILING OF THE RAT KIDNEY FOLLOWING CHRONIC EXPOSURE (100 WKS) TO THE WATER DISINFECTANT BYPRODUCT AND RENAL CARCINOGEN, POTASSIUM BROMATE.

    EPA Science Inventory

    Gene expression profiling of the rat kidney following chronic exposure (100 wks) to the water
    disinfectant byproduct and renal carcinogen, potassium bromate.

    Don Delker, James Allen, Gail Nelson, Tanya Moore, Barbara Roop, Russell Owen, and Anthony DeAngelo. Environment...

  5. The AKT-mTOR signalling pathway in kidney cancer tissues

    NASA Astrophysics Data System (ADS)

    Spirina, L. V.; Usynin, Y. A.; Kondakova, I. V.; Yurmazov, Z. A.; Slonimskaya, E. M.; Kolegova, E. S.

    2015-11-01

    An increased expression of phospho-AKT, m-TOR, glycogen regulator GSK-3-beta and transcription inhibitor 4E-BP1 was observed in kidney cancer tissues. Tumor size growth was associated with a high level of c-Raf and low content of phospho-m-TOR. Cancer metastasis development led to a decreased PTEN and phospho-AKT expression.

  6. Genetic Targeting or Pharmacologic Inhibition of NADPH Oxidase Nox4 Provides Renoprotection in Long-Term Diabetic Nephropathy

    PubMed Central

    Jha, Jay C.; Gray, Stephen P.; Barit, David; Okabe, Jun; El-Osta, Assam; Namikoshi, Tamehachi; Thallas-Bonke, Vicki; Wingler, Kirstin; Szyndralewiez, Cedric; Heitz, Freddy; Touyz, Rhian M.; Cooper, Mark E.; Schmidt, Harald H.H.W.

    2014-01-01

    Diabetic nephropathy may occur, in part, as a result of intrarenal oxidative stress. NADPH oxidases comprise the only known dedicated reactive oxygen species (ROS)–forming enzyme family. In the rodent kidney, three isoforms of the catalytic subunit of NADPH oxidase are expressed (Nox1, Nox2, and Nox4). Here we show that Nox4 is the main source of renal ROS in a mouse model of diabetic nephropathy induced by streptozotocin administration in ApoE−/− mice. Deletion of Nox4, but not of Nox1, resulted in renal protection from glomerular injury as evidenced by attenuated albuminuria, preserved structure, reduced glomerular accumulation of extracellular matrix proteins, attenuated glomerular macrophage infiltration, and reduced renal expression of monocyte chemoattractant protein-1 and NF-κB in streptozotocin-induced diabetic ApoE−/− mice. Importantly, administration of the most specific Nox1/4 inhibitor, GKT137831, replicated these renoprotective effects of Nox4 deletion. In human podocytes, silencing of the Nox4 gene resulted in reduced production of ROS and downregulation of proinflammatory and profibrotic markers that are implicated in diabetic nephropathy. Collectively, these results identify Nox4 as a key source of ROS responsible for kidney injury in diabetes and provide proof of principle for an innovative small molecule approach to treat and/or prevent chronic kidney failure. PMID:24511132

  7. Recovery of infectious classical swine fever virus (CSFV) from full-length genomic cDNA clones by a swine kidney cell line expressing bacteriophage T7 RNA polymerase.

    PubMed

    van Gennip, H G; van Rijn, P A; Widjojoatmodjo, M N; Moormann, R J

    1999-03-01

    A new method for the recovery of infectious classical swine fever virus (CSFV) from full-length genomic cDNA clones of the C-strain was developed. Classical reverse genetics is based on transfection of in vitro transcribed RNA to target cells to recover RNA viruses. However, the specific infectivity of such in vitro transcribed RNA in swine kidney cells is usually low. To improve reverse genetics for CSFV, a stable swine kidney cell line was established that expresses cytoplasmic bacteriophage T7 RNA polymerase (SK6.T7). A 200-fold increased virus titre was obtained from SK6.T7 cells transfected with linearized full-length cDNA compared to in vitro transcribed RNA, whereas transfection of circular full-length cDNA resulted in 20-fold increased virus titres. Viruses generated on the SK6.T7 cells are indistinguishable from the viruses generated by the classical reverse genetic procedures. These results show the improved recovery of infectious CSFV directly from full-length cDNAs. Furthermore, the reverse genetic procedures are simplified to a faster, one step protocol. We conclude that the SK6.T7 cell line will be a valuable tool for recovering mutant CSFV and will contribute to future pestivirus research.

  8. Indoxyl sulfate enhances IL-1β-induced E-selectin expression in endothelial cells in acute kidney injury by the ROS/MAPKs/NFκB/AP-1 pathway.

    PubMed

    Shen, Wen-Ching; Liang, Chan-Jung; Huang, Tao-Ming; Liu, Chen-Wei; Wang, Shu-Huei; Young, Guang-Huar; Tsai, Jaw-Shiun; Tseng, Ying-Chin; Peng, Yu-Sen; Wu, Vin-Cent; Chen, Yuh-Lien

    2016-11-01

    Uremic toxins are considered a risk factor for cardiovascular disorders in kidney diseases, but it is not known whether, under inflammatory conditions, they affect adhesion molecule expression on endothelial cells, which may play a critical role in acute kidney injury (AKI). In the present study, in cardiovascular surgery-related AKI patients, who are known to have high plasma levels of the uremic toxin indoxyl sulfate (IS), plasma levels of IL-1β were found to be positively correlated with plasma levels of the adhesion molecule E-selectin. In addition, high E-selectin and IL-1β expression were seen in the kidney of ischemia/reperfusion mice in vivo. We also examined the effects of IS on E-selectin expression by IL-1β-treated human umbilical vein endothelial cells (HUVECs) and the underlying mechanism. IS pretreatment of HUVECs significantly increased IL-1β-induced E-selectin expression, monocyte adhesion, and the phosphorylation of mitogen-activated protein kinases (ERK, p38, and JNK) and transcription factors (NF-κB and AP-1), and phosphorylation was decreased by pretreatment with inhibitors of ERK1/2 (PD98059), p38 MAPK (SB202190), and JNK (SP600125). Furthermore, IS increased IL-1β-induced reactive oxygen species (ROS) production and this effect was inhibited by pretreatment with N-acetylcysteine (a ROS scavenger) or apocynin (a NADPH oxidase inhibitor). Gel shift assays and ChIP-PCR demonstrated that IS enhanced E-selectin expression in IL-1-treated HUVECs by increasing NF-κB and AP-1 DNA-binding activities. Moreover, IS-enhanced E-selectin expression in IL-1β-treated HUVECs was inhibited by Bay11-7082, a NF-κB inhibitor. Thus, IS may play an important role in the development of cardiovascular disorders in kidney diseases during inflammation by increasing endothelial expression of E-selectin.

  9. Reduced Autophagy by a microRNA-mediated Signaling Cascade in Diabetes-induced Renal Glomerular Hypertrophy.

    PubMed

    Deshpande, Supriya; Abdollahi, Maryam; Wang, Mei; Lanting, Linda; Kato, Mitsuo; Natarajan, Rama

    2018-05-03

    Autophagy plays a key role in the pathogenesis of kidney diseases, however its role in diabetic nephropathy (DN), and particularly in kidney glomerular mesangial cells (MCs) is not very clear. Transforming Growth Factor- β1 (TGF-β), a key player in the pathogenesis of DN, regulates expression of various microRNAs (miRNAs), some of which are known to regulate the expression of autophagy genes. Here we demonstrate that miR-192, induced by TGF-β signaling, plays an important role in regulating autophagy in DN. The expression of key autophagy genes was decreased in kidneys of streptozotocin-injected type-1 and type-2 (db/db) diabetic mice and this was reversed by treatment with Locked Nucleic Acid (LNA) modified miR-192 inhibitors. Changes in autophagy gene expression were also attenuated in kidneys of diabetic miR-192-KO mice. In vitro studies using mouse glomerular mesangial cells (MMCs) also showed a decrease in autophagy gene expression with TGF-β treatment. miR-192 mimic oligonucleotides also decreased the expression of certain autophagy genes. These results demonstrate that TGF-β and miR-192 decrease autophagy in MMCs under diabetic conditions and this can be reversed by inhibition or deletion of miR-192, further supporting miR-192 as a useful therapeutic target for DN.

  10. Macrophage and epithelial cell H-ferritin expression regulates renal inflammation

    PubMed Central

    Bolisetty, Subhashini; Zarjou, Abolfazl; Hull, Travis D.; Traylor, Amie; Perianayagam, Anjana; Joseph, Reny; Kamal, Ahmed I; Arosio, Paolo; Soares, Miguel P; Jeney, Viktoria; Balla, Jozsef; George, James F.; Agarwal, Anupam

    2015-01-01

    Inflammation culminating in fibrosis contributes to progressive kidney disease. Crosstalk between the tubular epithelium and interstitial cells regulates inflammation by a coordinated release of cytokines and chemokines. Here we studied the role of heme oxygenase-1 (HO-1) and the heavy subunit of ferritin (FtH) in macrophage polarization and renal inflammation. Deficiency in HO-1 was associated with increased FtH expression, accumulation of macrophages with a dysregulated polarization profile, and increased fibrosis following unilateral ureteral obstruction in mice; a model of renal inflammation and fibrosis. Macrophage polarization in vitro was predominantly dependent on FtH expression in isolated bone marrow-derived mouse monocytes. Utilizing transgenic mice with conditional deletion of FtH in the proximal tubules (FtHPT−/−) or myeloid cells (FtHLysM−/−), we found that myeloid FtH deficiency did not affect polarization or accumulation of macrophages in the injured kidney compared to wild-type (FtH+/+) controls. However, tubular FtH deletion led to a marked increase in pro-inflammatory macrophages. Furthermore, injured kidneys from FtHPT−/− mice expressed significantly higher levels of inflammatory chemokines and fibrosis compared to kidneys from FtH+/+ and FtHLysM−/− mice. Thus, there are differential effects of FtH in macrophages and epithelial cells, which underscores the critical role of FtH in tubular-macrophage crosstalk during kidney injury. PMID:25874599

  11. Icariin protects rats against 5/6 nephrectomy-induced chronic kidney failure by increasing the number of renal stem cells.

    PubMed

    Huang, Zhongdi; He, Liqun; Huang, Di; Lei, Shi; Gao, Jiandong

    2015-10-21

    Chronic kidney disease poses a serious health problem worldwide with increasing prevalence and lack of effective treatment. This study aimed to investigate the mechanism of icariin in alleviating chronic renal failure induced by 5/6 nephrectomy in rats. The chronic renal failure model was established by a two-phased 5/6 nephrectomy procedure. The model rats were given daily doses of water or icariin for 8 weeks. The kidney morphology was checked by HE staining. The levels of blood urea nitrogen, serum creatinine, and serum uric acid were measured by colometric methods. The expression of specified genes was analyzed by quantitative real-time PCR and immunohistochemical staining. The number of renal stem/progenitor cells was analyzed by CD133 and CD24 immunohistochemical staining. Icariin protected against CDK-caused damages to kidney histology and improved renal function, significantly reduced levels of BUN, creatinine, and uric acid. Icariin inhibited the expression level of TGF-β1 whereas upregulated HGF, BMP-7, WT-1, and Pax2 expression. Moreover, ccariin significantly increased the expression of CD24, CD133, Osr1, and Nanog in remnant kidney and the numbers of CD133(+)/CD24(+) renal stem/progenitor cells. These data demonstrated that icariin effectively alleviated 5/6 nephrectomy induced chronic renal failure through increasing renal stem/progenitor cells.

  12. Aromatase Deficient Female Mice Demonstrate Altered Expression of Molecules Critical for Renal Calcium Reabsorption

    NASA Astrophysics Data System (ADS)

    Öz, Orhan K.; Hajibeigi, Asghar; Cummins, Carolyn; van Abel, Monique; Bindels, René J.; Kuro-o, Makoto; Pak, Charles Y. C.; Zerwekh, Joseph E.

    2007-04-01

    The incidence of kidney stones increases in women after the menopause, suggesting a role for estrogen deficiency. In order to determine if estrogen may be exerting an effect on renal calcium reabsorption, we measured urinary calcium excretion in the aromatase-deficient female mouse (ArKO) before and following estrogen therapy. ArKO mice had hypercalciuria that corrected during estrogen administration. To evaluate the mechanism by which estrogen deficiency leads to hypercalciuria, we examined the expression of several proteins involved in distal tubule renal calcium reabsorption, both at the message and protein levels. Messenger RNA levels of TRPV5, TRPV6, calbindin-D28K, the Na+/Ca++ exchanger (NCX1), and the plasma membrane calcium ATPase (PMCA1b) were significantly decreased in kidneys of ArKO mice. On the other hand, klotho mRNA levels were elevated in kidneys of ArKO mice. ArKO renal protein extracts had lower levels of calbindin-D28K but higher levels of the klotho protein. Immunochemistry demonstrated increased klotho expression in ArKO kidneys. Estradiol therapy normalized the expression of TRPV5, calbindin-D28K, PMCA1b and klotho. Taken together, these results demonstrate that estrogen deficiency produced by aromatase inactivation is sufficient to produce a renal leak of calcium and consequent hypercalciuria. This may represent one mechanism leading to the increased incidence of kidney stones following the menopause in women.

  13. Nuclear Respiratory Factor-1 (NRF-1) Gene Expression in Chronic Kidney Disease Patients Undergoing Hemodialysis and Mitochondrial Oxidative Dysregulation.

    PubMed

    Hashad, Doaa; Elgohry, Iman; Dwedar, Fatma

    2016-11-01

    Chronic kidney disease (CKD) is characterized by progressive irreversible deterioration of renal functions. Advanced stages of CKD are associated with oxidative stress due to the imbalance between oxidant production and antioxidant defense mechanisms. Survival of patients with end stage renal diseases is maintained on variable forms of renal replacement therapies (RRT) which include peritoneal dialysis, hemodialysis, and sometimes renal transplantation. In humans, Nuclear Respiratory Factor 1 (NRF-1) gene encodes for a transcription factor that, together with the transcriptional co-activator encoded by Peroxisome Proliferator activated Receptor Gamma coactivator 1 Alpha (PGC1-a) gene, stimulates the expression of a broad set of nuclear genes (as COX6C) which are involved in mitochondrial biogenesis and functions. As mitochondria are considered a major source of reactive oxidant species, the objective of the present study was to assess mitochondrial oxidative dysregulation occurring in chronic kidney disease patients undergoing hemodialysis employing NRF-1 and COX6C genes' expression as an indicator of mitochondrial oxidative metabolism. Forty-nine chronic kidney disease patients undergoing intermittent hemodialysis were included in the present study. A group of thirty-three age- and gender- matched healthy volunteers served as a control group. Assessment of expression of NRF-1 and COX6C genes was performed using quantitative real-time PCR technique. NRF-1 and COX6C expression showed a statistically significant difference between both studied groups being down-regulated in CKD patients. In addition, malondialdehyde (MDA) levels were higher in patients on hemodialysis indicating lipid peroxidation. A negative correlation was detected between MDA level and expression of both NRF-1 and COX6C genes. Chronic kidney disease patients undergoing hemodialysis might be subjected to potential mitochondrial oxidative dysregulation with subsequent possible vascular and tissue injury.

  14. Preventive effect of Ibrolipim on suppressing lipid accumulation and increasing lipoprotein lipase in the kidneys of diet-induced diabetic minipigs

    PubMed Central

    2011-01-01

    Background The role of renal lipoprotein lipase (LPL) per se in kidney diseases is still controversial and obscure. The purpose of this study was to observe the preventive effects of Ibrolipim, a LPL activator, on lipid accumulation and LPL expression in the kidneys of minipigs fed a high-sucrose and high-fat diet (HSFD). Methods Male Chinese Bama minipigs were fed a control diet or HSFD with or without 0.1 g/kg/day Ibrolipim for 5 months. Body weight, plasma glucose, insulin, lipids, LPL activity, and urinary microalbumin were measured. Renal tissue was obtained for detecting LPL activity and contents of triglyceride and cholesterol, observing the renal lipid accumulation by Oil Red O staining, and examining the mRNA and protein expression of LPL by real time PCR, Western Blot and immunohistochemistry. Results Feeding HSFD to minipigs caused weight gain, hyperglycemia, hyperinsulinemia, hyperlipidemia and microalbuminuria. HSFD increased plasma LPL activity while it decreased the mRNA and protein expression and activity of LPL in the kidney. The increases in renal triglyceride and cholesterol contents were associated with the decrease in renal LPL activity of HSFD-fed minipigs. In contrast, supplementing Ibrolipim into HSFD lowered body weight, plasma glucose, insulin, triglyceride and urinary albumin concentrations while it increased plasma total cholesterol and HDL-C. Ibrolipim suppressed the renal accumulation of triglyceride and cholesterol, and stimulated the diet-induced down-regulation of LPL expression and activity in the kidney. Conclusions Ibrolipim exerts renoprotective and hypolipidemic effects via the increase in renal LPL activity and expression, and thus the increased expression and activity of renal LPL play a vital role in suppressing renal lipid accumulation and ameliorating proteinuria in diet-induced diabetic minipigs. PMID:21762526

  15. Investigation of aquaporins and apparent diffusion coefficient from ultra-high b-values in a rat model of diabetic nephropathy.

    PubMed

    Wang, Yu; Zhang, Heng; Zhang, Ruzhi; Zhao, Zhoushe; Xu, Ziqian; Wang, Lei; Liu, Rongbo; Gao, Fabao

    2017-01-01

    To assess kidney damage in a rat model of type-2 diabetic nephropathy based on apparent diffusion coefficient (ADC) data obtained from ultra-high b-values and discuss its relationship to the expression of aquaporins (AQPs). This study was approved by the institutional Animal Care and Use Committee. Thirty male Sprague-Dawley rats were randomised into two groups: (1) untreated controls and (2) diabetes mellitus (DM). All rats underwent diffusion-weighted imaging (DWI) with 18 b-values (0-4500 s/mm 2 ). Maps of low ADC (ADC low ), standard ADC (ADC st ) and ultra-high ADC (ADC uh ) were calculated from low b-values (0-200 s/mm 2 ), standard b-values (300-1500 s/mm 2 ) and ultra-high b-values (1700-4500 s/mm 2 ), respectively. The expression of AQPs in the kidneys was studied using immunohistochemistry. Laboratory parameters of diabetic and kidney functions, ADC low , ADC st , ADC uh , and the optical density (OD) of AQP expression in the two groups were compared using an independent t test. Correlations between ADCs and the OD of AQP expression were evaluated by Pearson's correlation analysis. ADC uh were significantly higher in the cortex (CO), outer stripe of the outer medulla (OS) and inner stripe of the outer medulla (IS), and the OD values of AQ-2 were significantly higher in the OS, IS and inner medulla (IM) in DM animals compared with control animals. ADC uh and OD values of AQP-2 expression were positively correlated in the OS, IS and IM of the kidney. ADC uh may work as useful metrics for early detection of kidney damage in diabetic nephropathy and may be associated with AQP-2 expression.

  16. PRINS Long Noncoding RNA Involved in IP-10-Mediated Allograft Rejection in Rat Kidney Transplant.

    PubMed

    Zou, X-F; Song, B; Duan, J-H; Hu, Z-D; Cui, Z-L; Yang, T

    2018-06-01

    Previously, high levels of CXCR3+ T-cell recruitment was demonstrated in the prolonged ischemia-accelerated acute allograft rejection in rat kidney transplant. In the present study, the effect of chemokine IP-10 was investigated and the expression of chemokine-related PRINS (Psoriasis susceptibility-related RNA gene induced by stress) lncRNA determined in the allografts subjected to ischemia. F344-to-Lewis rat kidney transplantation was performed, and renal grafts were stored for 2 hours or 16 hours. Samples were removed at 24 hours and 7 days after operation. Cellular infiltration was determined with the use of immunohistochemistry, and messenger RNA expression was assessed with the use of real-time polymerase chain reaction. The 16-hour-ischemia kidney displayed acute tubule damage and up-regulation of PRINS lncRNA expression. On day 7, IP-10 expression and CD3-positive T cells were increased in allografts compared with control samples, which were inhibited by the IP-10 antibody treatment accompanied by reduced serum creatinine. These observations provide evidence for IP-10 in a regulatory role in cold ischemia-elicited acute allograft rejection and in PRINS lncRNA expression. Our data enhance the understanding of the mechanism underlying between prolonged ischemia and acute rejection. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Gene Expression Profiling of Peripheral Blood From Kidney Transplant Recipients for the Early Detection of Digestive System Cancer.

    PubMed

    Kusaka, M; Okamoto, M; Takenaka, M; Sasaki, H; Fukami, N; Kataoka, K; Ito, T; Kenmochi, T; Hoshinaga, K; Shiroki, R

    2017-06-01

    Kidney transplant recipients are at increased risk of developing cancer in comparison with the general population. To effectively manage post-transplantation malignancies, it is essential to proactively monitor patients. A long-term intensive screening program was associated with a reduced incidence of cancer after transplantation. This study evaluated the usefulness of the gene expression profiling of peripheral blood samples obtained from kidney transplant patients and adopted a screening test for detecting cancer of the digestive system (gastric, colon, pancreas, and biliary tract). Nineteen patients were included in this study and a total of 53 gene expression screening tests were performed. The gene expression profiles of blood-delivered total RNA and whole genome human gene expression profiles were obtained. We investigated the expression levels of 2665 genes associated with digestive cancers and counted the number of genes in which expression was altered. A hierarchical clustering analysis was also performed. The final prediction of the cancer possibility was determined according to an algorithm. The number of genes in which expression was altered was significantly increased in the kidney transplant recipients in comparison with the general population (1091 ± 63 vs 823 ± 94; P = .0024). The number of genes with altered expression decreased after the induction of mechanistic target of rapamycin (mTOR) inhibitor (1484 ± 227 vs 883 ± 154; P = .0439). No cases of possible digestive cancer were detected in this study period. The gene expression profiling of peripheral blood samples may be a useful and noninvasive diagnostic tool that allows for the early detection of cancer of the digestive system. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Increased bone morphogenetic protein 7 signalling in the kidneys of dogs affected with a congenital portosystemic shunt.

    PubMed

    van Dongen, Astrid M; Heuving, Susanne M; Tryfonidou, Marianna A; van Steenbeek, Frank G; Rothuizen, Jan; Penning, Louis C

    2015-05-01

    Dogs with a congenital portosystemic shunt (CPSS) often have enlarged and hyper-filtrating kidneys. Although expression of different growth factors has been well-described in the livers of dogs affected with a CPSS, their expression in the kidneys has yet to be determined. Bone morphogenetic protein 7 (BMP-7), hepatocyte growth factor (HGF) and transforming growth factor (TGF)-β have been implicated in renal development (BMP-7, HGF) or the onset of renal fibrosis (TGF-β). Moreover, BMP-7 and HGF have protective properties in renal fibrosis. In this study, the expression and activity of BMP-7 were investigated in renal biopsies obtained from 13 dogs affected with a CPSS and compared to similar samples from age-matched healthy control dogs. Both quantitative reverse-transcriptase PCR and Western blotting showed up-regulated BMP-7 signalling in kidneys of CPPS-affected dogs. These research findings may help to explain the renal pathology/dysfunction in dogs affected with a CPSS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Expression of the Wilms' tumor gene WT1 in the murine urogenital system.

    PubMed

    Pelletier, J; Schalling, M; Buckler, A J; Rogers, A; Haber, D A; Housman, D

    1991-08-01

    The Wilms' tumor gene WT1 is a recessive oncogene that encodes a putative transcription factor implicated in nephrogenesis during kidney development. In this report we analyze expression of WT1 in the murine urogenital system. WT1 is expressed in non-germ-cell components of the testis and ovaries in both young and adult mice. In situ mRNA hybridization studies demonstrate that WT1 is expressed in the granulosa and epithelial cells of ovaries, the Sertoli cells of the testis, and in the uterine wall. In addition to the 3.1-kb WT1 transcript detected by Northern blotting of RNA from kidney, uterus, and gonads, there is an approximately 2.5-kb WT1-related mRNA species in testis. The levels of WT1 mRNA in the gonads are among the highest observed, surpassing amounts detected in the embryonic kidney. During development, these levels are differentially regulated, depending on the sexual differentiation of the gonad. Expression of WT1 mRNA in the female reproductive system does not fluctuate significantly from days 4 to 40 postpartum. In contrast, WT1 mRNA levels in the tesis increase steadily after birth, reaching their highest expression levels at day 8 postpartum and decreasing slightly as the animal matures. Expression of WT1 in the gonads is detectable as early as 12.5 days postcoitum (p.c.). As an initial step toward exploring the tissue-specific expression of WT1, DNA elements upstream of WT1 were cloned and sequenced. Three putative transcription initiation sites, utilized in testis, ovaries, and uterus, were mapped by S1 nuclease protection assays. The sequences surrounding these sites have a high G + C content, and typical upstream CCAAT and TATAA boxes are not present. These studies allowed us to identify the translation initiation site for WT1 protein synthesis. We have also used an epitope-tagging protocol to demonstrate that WT1 is a nuclear protein, consistent with its role as a transcription factor. Our results demonstrate regulation of WT1 expression during development of the gonads, implicate WT1 in genitourinary development, and provide a molecular framework toward understanding genitourinary defects observed among hereditary cases of Wilms' tumor.

  20. Activation of Nrf2 by cadmium and its role in protection against cadmium-induced apoptosis in rat kidney cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Jun; Shaikh, Zahir A., E-mail: ZShaikh@uri.ed

    Kidney is the primary target organ in chronic cadmium (Cd) toxicity, and oxidative stress plays an important role in this process. The nuclear transcription factor Nrf2 binds to antioxidant response elements (AREs) and regulates genes involved in protecting cells from oxidative damage. Whether kidney cells respond to Cd by activating Nrf2 is unknown. This study was designed to examine the Cd-induced activation of Nrf2 transcriptional activity in a stable rat kidney cell line, NRK-52E, and to investigate the protection this might offer against apoptosis. The cells were treated with 5-20 muM CdCl{sub 2} for 5 h, followed by a recoverymore » period of up to 24 h. A concentration-dependent increase (up to 2.9-fold) in the level of reactive oxygen species was noted upon termination of 5-h Cd treatment. The Nrf2-ARE binding activity also increased and peaked (6.1-fold) at 10 muM Cd concentration. Time-course study revealed that the binding activity increased at 1 h of Cd treatment and peaked 2 h post Cd treatment. Apoptosis was detected 6 h post treatment with Cd and a concentration- and time-dependent increase in the apoptotic cell population occurred during the next 18 h. Over-expression of Nrf2 by transient transfection conferred resistance against Cd-induced apoptosis. Conversely, suppression of Nrf2 expression by specific siRNA resulted in greater sensitivity of the cells to Cd by decreasing the levels of two antioxidant enzymes, hemeoxygenase-1 and glutamate-cysteine ligase. Taken together, these results suggest that in kidney cells the activation of Nrf2 is an adaptive intracellular response to Cd-induced oxidative stress, and that Nrf2 is protective against Cd-induced apoptosis.« less

  1. Kidney Disease and the Nexus of Chronic Kidney Disease and Acute Kidney Injury: The Role of Novel Biomarkers as Early and Accurate Diagnostics.

    PubMed

    Yerramilli, Murthy; Farace, Giosi; Quinn, John; Yerramilli, Maha

    2016-11-01

    Chronic kidney disease (CKD) and acute kidney injury (AKI) are interconnected and the presence of one is a risk for the other. CKD is an important predictor of AKI after exposure to nephrotoxic drugs or major surgery, whereas persistent or repetitive injury could result in the progression of CKD. This brings new perspectives to the diagnosis and monitoring of kidney diseases highlighting the need for a panel of kidney-specific biomarkers that reflect functional as well as structural damage and recovery, predict potential risk and provide prognosis. This article discusses the kidney-specific biomarkers, symmetric dimethylarginine (SDMA), clusterin, cystatin B, and inosine. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Renal papillary tip extract stimulates BNP production and excretion from cardiomyocytes

    PubMed Central

    Hashizume, Ryotaro; Suzuki, Noboru; Ito, Rie; Yamanaka, Keiichi; Saito, Hiromitsu; Kiyonari, Hiroshi; Tawara, Isao; Kageyama, Yuki; Ogihara, Yoshito; Ali, Yusuf; Yamada, Norikazu; Katayama, Naoyuki; Ito, Masaaki

    2018-01-01

    Background Brain natriuretic peptide (BNP) is an important biomarker for patients with cardiovascular diseases, including heart failure, hypertension and cardiac hypertrophy. It is also known that BNP levels are relatively higher in patients with chronic kidney disease and no heart disease; however, the mechanism remains unclear. Methods and results We developed a BNP reporter mouse and occasionally found that this promoter was activated specifically in the papillary tip of the kidneys, and its activation was not accompanied by BNP mRNA expression. No evidence was found to support the existence of BNP isoforms or other nucleotide expression apart from BNP and tdTomato. The pBNP-tdTomato-positive cells were interstitial cells and were not proliferative. Unexpectedly, both the expression and secretion of BNP increased in primary cultured neonatal cardiomyocytes after their treatment with an extract of the renal papillary tip. Intraperitoneal injection of the extract of the papillary tips reduced blood pressure from 210 mmHg to 165 mmHg, the decrease being accompanied by an increase in serum BNP and urinary cGMP production in stroke-prone spontaneously hypertensive (SHR-SP) rats. Furthermore the induction of BNP by the papillary extract from rats with heart failure due to myocardial infarction was increased in cardiomyocytes. Conclusions These results suggested that the papillary tip express a substance that can stimulate BNP production and secretion from cardiomyocytes. PMID:29734386

  3. Expression of peroxisomal proliferator-activated receptors and retinoid X receptors in the kidney.

    PubMed

    Yang, T; Michele, D E; Park, J; Smart, A M; Lin, Z; Brosius, F C; Schnermann, J B; Briggs, J P

    1999-12-01

    The discovery that 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) is a ligand for the gamma-isoform of peroxisome proliferator-activated receptor (PPAR) suggests nuclear signaling by prostaglandins. Studies were undertaken to determine the nephron localization of PPAR isoforms and their heterodimer partners, retinoid X receptors (RXR), and to evaluate the function of this system in the kidney. PPARalpha mRNA, determined by RT-PCR, was found predominately in cortex and further localized to proximal convoluted tubule (PCT); PPARgamma was abundant in renal inner medulla, localized to inner medullary collecting duct (IMCD) and renal medullary interstitial cells (RMIC); PPARbeta, the ubiquitous form of PPAR, was abundant in all nephron segments examined. RXRalpha was localized to PCT and IMCD, whereas RXRbeta was expressed in almost all nephron segments examined. mRNA expression of acyl-CoA synthase (ACS), a known PPAR target gene, was stimulated in renal cortex of rats fed with fenofibrate, but the expression was not significantly altered in either cortex or inner medulla of rats fed with troglitazone. In cultured RMIC cells, both troglitazone and 15d-PGJ2 significantly inhibited cell proliferation and dramatically altered cell shape by induction of cell process formation. We conclude that PPAR and RXR isoforms are expressed in a nephron segment-specific manner, suggesting distinct functions, with PPARalpha being involved in energy metabolism through regulating ACS in PCT and with PPARgamma being involved in modulating RMIC growth and differentiation.

  4. Overexpression of heterogeneous nuclear ribonucleoprotein F stimulates renal Ace-2 gene expression and prevents TGF-β1-induced kidney injury in a mouse model of diabetes.

    PubMed

    Lo, Chao-Sheng; Shi, Yixuan; Chang, Shiao-Ying; Abdo, Shaaban; Chenier, Isabelle; Filep, Janos G; Ingelfinger, Julie R; Zhang, Shao-Ling; Chan, John S D

    2015-10-01

    We investigated whether heterogeneous nuclear ribonucleoprotein F (hnRNP F) stimulates renal ACE-2 expression and prevents TGF-β1 signalling, TGF-β1 inhibition of Ace-2 gene expression and induction of tubulo-fibrosis in an Akita mouse model of type 1 diabetes. Adult male Akita transgenic (Tg) mice overexpressing specifically hnRNP F in their renal proximal tubular cells (RPTCs) were studied. Non-Akita littermates and Akita mice served as controls. Immortalised rat RPTCs stably transfected with plasmid containing either rat Hnrnpf cDNA or rat Ace-2 gene promoter were also studied. Overexpression of hnRNP F attenuated systemic hypertension, glomerular filtration rate, albumin/creatinine ratio, urinary angiotensinogen (AGT) and angiotensin (Ang) II levels, renal fibrosis and profibrotic gene (Agt, Tgf-β1, TGF-β receptor II [Tgf-βrII]) expression, stimulated anti-profibrotic gene (Ace-2 and Ang 1-7 receptor [MasR]) expression, and normalised urinary Ang 1-7 level in Akita Hnrnpf-Tg mice as compared with Akita mice. In vitro, hnRNP F overexpression stimulated Ace-2 gene promoter activity, mRNA and protein expression, and attenuated Agt, Tgf-β1 and Tgf-βrII gene expression. Furthermore, hnRNP F overexpression prevented TGF-β1 signalling and TGF-β1 inhibition of Ace-2 gene expression. These data demonstrate that hnRNP F stimulates Ace-2 gene transcription, prevents TGF-β1 inhibition of Ace-2 gene transcription and induction of kidney injury in diabetes. HnRNP F may be a potential target for treating hypertension and renal fibrosis in diabetes.

  5. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jiao; Shetty, Sreerama; Zhang, Ping

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1 h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reductionmore » in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia.« less

  6. The Leaf of Diospyros kaki Thumb Ameliorates Renal Oxidative Damage in Mice with Type 2 Diabetes

    PubMed Central

    Choi, Myung-Sook; Jeong, Mi Ji; Park, Yong Bok; Kim, Sang Ryong; Jung, Un Ju

    2016-01-01

    Diabetic kidney disease is the most common and severe chronic complication of diabetes. The leaf of Diospyros kaki Thumb (persimmon) has been commonly used for herbal tea and medicinal purposes to treat a variety of conditions, including hypertension and atherosclerosis. However, the effect of persimmon leaf on kidney failure has not been investigated. This study aimed to examine the role of persimmon leaf in protecting the diabetes-associated kidney damage in a mouse model of type 2 diabetes. Mice were fed either a normal chow diet with or without powered persimmon leaf (5%, w/w) for 5 weeks. In addition to kidney morphology and blood markers of kidney function, we assessed levels of oxidative stress markers as well as antioxidant enzymes activities and mRNA expression in the kidney. Supplementation of the diet with powered persimmon leaf not only decreased the concentration of blood urea nitrogen in the plasma but also improved glomerular hypertrophy. Furthermore, the persimmon leaf significantly decreased the levels of hydrogen peroxide and lipid peroxide in the kidney. The activities of superoxide dismutase, catalase, and glutathione peroxidase and the mRNA expression of their respective genes were also increased in the kidney of persimmon leaf-supplemented db/db mice. Taken together, these results suggest that supplementation with the persimmon leaf may have protective effects against type 2 diabetes-induced kidney dysfunction and oxidative stress. PMID:28078262

  7. Cloning and mRNA expression of guanylin, uroguanylin, and guanylyl cyclase C in the Spinifex hopping mouse, Notomys alexis.

    PubMed

    Donald, John A; Bartolo, Ray C

    2003-06-01

    Guanylin and uroguanylin are peptides that activate guanylyl cyclase C (GC-C) receptors in the intestine and kidney, which causes an increase in the excretion of salt and water. The Spinifex hopping mouse, Notomys alexis, is a desert rodent that can survive for extended periods without free access to water and it was hypothesised that to conserve water, the expression of guanylin, uroguanylin, and GC-C would be down-regulated to reduce the excretion of water in urine and faeces. Accordingly, this study examined the expression of guanylin, uroguanylin, and GC-C mRNA in Notomys under normal (access to water) and water-deprived conditions. Initially, guanylin and uroguanylin cDNAs encoding the full open reading frame were cloned and sequenced. A PCR analysis showed guanylin and uroguanylin mRNA expression in the small intestine, caecum, proximal and distal colon, heart, and kidney. In addition, a partial GC-C cDNA was obtained and GC-C mRNA expression was demonstrated in the proximal and distal colon, but not the kidney. Subsequently, a semi-quantitative PCR method showed that water deprivation in Notomys caused a significant increase in guanylin and uroguanylin mRNA expression in the distal colon, and in guanylin and GC-C mRNA expression in the proximal colon. No significant difference in guanylin and uroguanylin mRNA expression was observed in the kidney. The results of this study indicate that there is, in fact, an up-regulation of the colonic guanylin system in Notomys after 7 days of water deprivation.

  8. Differential modulation of host genes in the kidney of brown trout Salmo trutta during sporogenesis of Tetracapsuloides bryosalmonae (Myxozoa).

    PubMed

    Kumar, Gokhlesh; Abd-Elfattah, Ahmed; El-Matbouli, Mansour

    2014-10-04

    Tetracapsuloides bryosalmonae (Myxozoa) is the causative agent of proliferative kidney disease in various species of salmonids in Europe and North America. In Europe, spores of T. bryosalmonae develop in the kidney of infected brown trout Salmo trutta and are released via urine to infect the freshwater bryozoan Fredericella sultana. The transcriptomes of kidneys of infected and non-infected brown trout were compared by suppressive subtractive hybridization. Differential screening and a subsequent NCBI BLAST analysis of expressed sequence tags revealed 21 transcripts with functions that included cell stress and cell growth, ribonucleoprotein, signal transduction, ion transporter, immune response, hemoglobin and calcium metabolisms. Quantitative real time PCR was used to verify the presence of these selected transcripts in brown trout kidney at sporogonic stages of T. bryosalmonae development. Expression of cold-inducible RNA-binding protein, cyclin-dependent kinase inhibitor 2A, prothymosin alpha, transforming protein RhoA, immunoglobulin light chain and major histocompatibility complex class I were up-regulated significantly in infected brown trout. Expression of both the hemoglobin subunit beta and stanniocalcin precursor were down-regulated significantly in infected brown trout. This study suggests that cell stress and cell growth processes, signal transduction activities, erythropoiesis and calcium homeostasis of the host are modulated during sporogonic stages of parasite development, which may support the sporogenesis of T. bryosalmonae in the kidney of brown trout.

  9. Stevia and stevioside protect against cisplatin nephrotoxicity through inhibition of ERK1/2, STAT3, and NF-κB activation.

    PubMed

    Potočnjak, Iva; Broznić, Dalibor; Kindl, Marija; Kropek, Matija; Vladimir-Knežević, Sanda; Domitrović, Robert

    2017-09-01

    We investigated the effect of natural sweetener Stevia rebaudiana and its constituent stevioside in cisplatin (CP)-induced kidney injury. Male BALB/cN mice were orally administered 10, 20, and 50 mg/kg body weight of Stevia rebaudiana ethanol extract (SE) or stevioside 50 mg/kg, 48 h after intraperitoneal administration of CP (13 mg/kg). Two days later, CP treatment resulted in histopathological changes showing kidney injury. Increased expression of 4-hydroxynonenal (4-HNE), 3-nitrotyrosine (3-NT), and heme oxygenase-1 (HO-1) in mice kidneys suggested oxidative stress. CP treatment also increased renal expression of nuclear factor-kappaB (NF-κB) p65 subunit and phosphorylated inhibitor of NF-κB (IκBα), as well as expression of pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α). Induction of apoptosis and inhibition of the cell cycle in kidneys was evidenced by increased expression of p53, Bax, caspase-9, and p21, proteolytic cleavage of poly (ADP-ribose) polymerase (PARP), with concomitant suppression of Bcl-2 and cyclin D1 expression. The number of apoptotic cells in kidneys was also assessed. CP administration resulted in activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and signal transducer and activator of transcription 3 (STAT3). Both SE and stevioside attenuated CP nephrotoxicity by suppressing oxidative stress, inflammation, and apoptosis through mechanism involving ERK1/2, STAT3, and NF-κB suppression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Expression pattern of aquaporins in patients with primary nephrotic syndrome with edema

    PubMed Central

    WANG, YU; BU, JIMEI; ZHANG, QING; CHEN, KAI; ZHANG, JIHONG; BAO, XIAORONG

    2015-01-01

    The association between the expression of aquaporins (AQPs) in kidney tissues and the occurrence of edema in nephrotic syndrome (NS) remains unclear. The current study aimed to investigate this association. A total of 54 patients with primary glomerular disease, diagnosed by renal biopsy, were divided into three groups: Control, NS without edema and NS with edema. The expression of AQP1, AQP2, AQP3 and AQP4 in kidney tissues from these patients was assessed using immunohistochemistry, and urinary AQP concentrations were quantified by ELISA. Comparison of the three groups was conducted using one way analysis of variance, independent samples t-test or the Chi-square test. AQP1 was strongly expressed in the proximal tubules. The proportion of the AQP1-positive area in kidney tissues from patients with NS with edema was significantly reduced, in comparison with the other two groups. By contrast, the proportion of the AQP2-positive area in the NS with edema group was significantly higher than that of the other two groups; significant differences were also observed between the control and NS without edema groups for this parameter. Urinary AQP2 concentrations in patients with NS (with and without edema) were significantly higher than that of the control group, and exhibited a significant positive correlation with kidney tissue AQP2 concentrations. The present study demonstrated the abnormal expression pattern of AQP1-AQP4 in the kidney tissues of patients with NS, providing a basis for an improved understanding of the role of AQP in the pathogenesis of NS. PMID:26261083

  11. Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney.

    PubMed

    Wain, Louise V; Vaez, Ahmad; Jansen, Rick; Joehanes, Roby; van der Most, Peter J; Erzurumluoglu, A Mesut; O'Reilly, Paul F; Cabrera, Claudia P; Warren, Helen R; Rose, Lynda M; Verwoert, Germaine C; Hottenga, Jouke-Jan; Strawbridge, Rona J; Esko, Tonu; Arking, Dan E; Hwang, Shih-Jen; Guo, Xiuqing; Kutalik, Zoltan; Trompet, Stella; Shrine, Nick; Teumer, Alexander; Ried, Janina S; Bis, Joshua C; Smith, Albert V; Amin, Najaf; Nolte, Ilja M; Lyytikäinen, Leo-Pekka; Mahajan, Anubha; Wareham, Nicholas J; Hofer, Edith; Joshi, Peter K; Kristiansson, Kati; Traglia, Michela; Havulinna, Aki S; Goel, Anuj; Nalls, Mike A; Sõber, Siim; Vuckovic, Dragana; Luan, Jian'an; Del Greco M, Fabiola; Ayers, Kristin L; Marrugat, Jaume; Ruggiero, Daniela; Lopez, Lorna M; Niiranen, Teemu; Enroth, Stefan; Jackson, Anne U; Nelson, Christopher P; Huffman, Jennifer E; Zhang, Weihua; Marten, Jonathan; Gandin, Ilaria; Harris, Sarah E; Zemunik, Tatijana; Lu, Yingchang; Evangelou, Evangelos; Shah, Nabi; de Borst, Martin H; Mangino, Massimo; Prins, Bram P; Campbell, Archie; Li-Gao, Ruifang; Chauhan, Ganesh; Oldmeadow, Christopher; Abecasis, Gonçalo; Abedi, Maryam; Barbieri, Caterina M; Barnes, Michael R; Batini, Chiara; Beilby, John; Blake, Tineka; Boehnke, Michael; Bottinger, Erwin P; Braund, Peter S; Brown, Morris; Brumat, Marco; Campbell, Harry; Chambers, John C; Cocca, Massimiliano; Collins, Francis; Connell, John; Cordell, Heather J; Damman, Jeffrey J; Davies, Gail; de Geus, Eco J; de Mutsert, Renée; Deelen, Joris; Demirkale, Yusuf; Doney, Alex S F; Dörr, Marcus; Farrall, Martin; Ferreira, Teresa; Frånberg, Mattias; Gao, He; Giedraitis, Vilmantas; Gieger, Christian; Giulianini, Franco; Gow, Alan J; Hamsten, Anders; Harris, Tamara B; Hofman, Albert; Holliday, Elizabeth G; Hui, Jennie; Jarvelin, Marjo-Riitta; Johansson, Åsa; Johnson, Andrew D; Jousilahti, Pekka; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Khaw, Kay-Tee; Kolcic, Ivana; Koskinen, Seppo; Langenberg, Claudia; Larson, Marty; Launer, Lenore J; Lehne, Benjamin; Liewald, David C M; Lin, Li; Lind, Lars; Mach, François; Mamasoula, Chrysovalanto; Menni, Cristina; Mifsud, Borbala; Milaneschi, Yuri; Morgan, Anna; Morris, Andrew D; Morrison, Alanna C; Munson, Peter J; Nandakumar, Priyanka; Nguyen, Quang Tri; Nutile, Teresa; Oldehinkel, Albertine J; Oostra, Ben A; Org, Elin; Padmanabhan, Sandosh; Palotie, Aarno; Paré, Guillaume; Pattie, Alison; Penninx, Brenda W J H; Poulter, Neil; Pramstaller, Peter P; Raitakari, Olli T; Ren, Meixia; Rice, Kenneth; Ridker, Paul M; Riese, Harriëtte; Ripatti, Samuli; Robino, Antonietta; Rotter, Jerome I; Rudan, Igor; Saba, Yasaman; Saint Pierre, Aude; Sala, Cinzia F; Sarin, Antti-Pekka; Schmidt, Reinhold; Scott, Rodney; Seelen, Marc A; Shields, Denis C; Siscovick, David; Sorice, Rossella; Stanton, Alice; Stott, David J; Sundström, Johan; Swertz, Morris; Taylor, Kent D; Thom, Simon; Tzoulaki, Ioanna; Tzourio, Christophe; Uitterlinden, André G; Völker, Uwe; Vollenweider, Peter; Wild, Sarah; Willemsen, Gonneke; Wright, Alan F; Yao, Jie; Thériault, Sébastien; Conen, David; Attia, John; Sever, Peter; Debette, Stéphanie; Mook-Kanamori, Dennis O; Zeggini, Eleftheria; Spector, Tim D; van der Harst, Pim; Palmer, Colin N A; Vergnaud, Anne-Claire; Loos, Ruth J F; Polasek, Ozren; Starr, John M; Girotto, Giorgia; Hayward, Caroline; Kooner, Jaspal S; Lindgren, Cecila M; Vitart, Veronique; Samani, Nilesh J; Tuomilehto, Jaakko; Gyllensten, Ulf; Knekt, Paul; Deary, Ian J; Ciullo, Marina; Elosua, Roberto; Keavney, Bernard D; Hicks, Andrew A; Scott, Robert A; Gasparini, Paolo; Laan, Maris; Liu, YongMei; Watkins, Hugh; Hartman, Catharina A; Salomaa, Veikko; Toniolo, Daniela; Perola, Markus; Wilson, James F; Schmidt, Helena; Zhao, Jing Hua; Lehtimäki, Terho; van Duijn, Cornelia M; Gudnason, Vilmundur; Psaty, Bruce M; Peters, Annette; Rettig, Rainer; James, Alan; Jukema, J Wouter; Strachan, David P; Palmas, Walter; Metspalu, Andres; Ingelsson, Erik; Boomsma, Dorret I; Franco, Oscar H; Bochud, Murielle; Newton-Cheh, Christopher; Munroe, Patricia B; Elliott, Paul; Chasman, Daniel I; Chakravarti, Aravinda; Knight, Joanne; Morris, Andrew P; Levy, Daniel; Tobin, Martin D; Snieder, Harold; Caulfield, Mark J; Ehret, Georg B

    2017-07-24

    Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7 , TNXB , LRP12 , LOC283335 , SEPT9 , and AKT2 , and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation. © 2017 American Heart Association, Inc.

  12. Analysis of DNA-vaccinated fish reveals viral antigen in muscle, kidney, and thymus, and transient histopathologic changes

    USGS Publications Warehouse

    Garver, K.A.; Conway, C.M.; Elliott, D.G.; Kurath, G.

    2005-01-01

    A highly efficacious DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was used in a systematic study to analyze vaccine tissue distribution, persistence, expression patterns, and histopathologic effects. Vaccine plasmid pIHNw-G, containing the gene for the viral glycoprotein, was detected immediately after intramuscular injection in all tissues analyzed, including blood, but at later time points was found primarily in muscle tissue, where it persisted to 90 days. Glycoprotein expression was detected in muscle, kidney, and thymus tissues, with levels peaking at 14 days and becoming undetectable by 28 days. Histologic examination revealed no vaccine-specific pathologic changes at the standard effective dose of 0.1 ??g DNA per fish, but at a high dose of 50 ??g an increased inflammatory response was evident. Transient damage associated with needle injection was localized in muscle tissue, but by 90 days after vaccination no damage was detected in any tissue, indicating the vaccine to be safe and well tolerated. ?? Springer Science+Business Media, Inc. 2005.

  13. Validation of endogenous internal real-time PCR controls in renal tissues.

    PubMed

    Cui, Xiangqin; Zhou, Juling; Qiu, Jing; Johnson, Martin R; Mrug, Michal

    2009-01-01

    Endogenous internal controls ('reference' or 'housekeeping' genes) are widely used in real-time PCR (RT-PCR) analyses. Their use relies on the premise of consistently stable expression across studied experimental conditions. Unfortunately, none of these controls fulfills this premise across a wide range of experimental conditions; consequently, none of them can be recommended for universal use. To determine which endogenous RT-PCR controls are suitable for analyses of renal tissues altered by kidney disease, we studied the expression of 16 commonly used 'reference genes' in 7 mildly and 7 severely affected whole kidney tissues from a well-characterized cystic kidney disease model. Expression levels of these 16 genes, determined by TaqMan RT-PCR analyses and Affymetrix GeneChip arrays, were normalized and tested for overall variance and equivalence of the means. Both statistical approaches and both TaqMan- and GeneChip-based methods converged on 3 out of the 4 top-ranked genes (Ppia, Gapdh and Pgk1) that had the most constant expression levels across the studied phenotypes. A combination of the top-ranked genes will provide a suitable endogenous internal control for similar studies of kidney tissues across a wide range of disease severity. Copyright 2009 S. Karger AG, Basel.

  14. Nephron-Specific Deletion of Circadian Clock Gene Bmal1 Alters the Plasma and Renal Metabolome and Impairs Drug Disposition.

    PubMed

    Nikolaeva, Svetlana; Ansermet, Camille; Centeno, Gabriel; Pradervand, Sylvain; Bize, Vincent; Mordasini, David; Henry, Hugues; Koesters, Robert; Maillard, Marc; Bonny, Olivier; Tokonami, Natsuko; Firsov, Dmitri

    2016-10-01

    The circadian clock controls a wide variety of metabolic and homeostatic processes in a number of tissues, including the kidney. However, the role of the renal circadian clocks remains largely unknown. To address this question, we performed a combined functional, transcriptomic, and metabolomic analysis in mice with inducible conditional knockout (cKO) of BMAL1, which is critically involved in the circadian clock system, in renal tubular cells (Bmal1 lox/lox /Pax8-rtTA/LC1 mice). Induction of cKO in adult mice did not produce obvious abnormalities in renal sodium, potassium, or water handling. Deep sequencing of the renal transcriptome revealed significant changes in the expression of genes related to metabolic pathways and organic anion transport in cKO mice compared with control littermates. Furthermore, kidneys from cKO mice exhibited a significant decrease in the NAD + -to-NADH ratio, which reflects the oxidative phosphorylation-to-glycolysis ratio and/or the status of mitochondrial function. Metabolome profiling showed significant changes in plasma levels of amino acids, biogenic amines, acylcarnitines, and lipids. In-depth analysis of two selected pathways revealed a significant increase in plasma urea level correlating with increased renal Arginase II activity, hyperargininemia, and increased kidney arginine content as well as a significant increase in plasma creatinine concentration and a reduced capacity of the kidney to secrete anionic drugs (furosemide) paralleled by an approximate 80% decrease in the expression level of organic anion transporter 3 (SLC22a8). Collectively, these results indicate that the renal circadian clocks control a variety of metabolic/homeostatic processes at the intrarenal and systemic levels and are involved in drug disposition. Copyright © 2016 by the American Society of Nephrology.

  15. Expression of Glutamine Transporter Slc38a3 (SNAT3) During Acidosis is Mediated by a Different Mechanism than Tissue-Specific Expression

    PubMed Central

    Balkrishna, Sarojini; Bröer, Angelika; Welford, Scott M.; Hatzoglou, Maria; Bröer, Stefan

    2015-01-01

    Background Despite homeostatic pH regulation, systemic and cellular pH changes take place and strongly influence metabolic processes. Transcription of the glutamine transporter SNAT3 (Slc38a3) for instance is highly up-regulated in the kidney during metabolic acidosis to provide glutamine for ammonia production. Methods Slc38a3 promoter activity and messenger RNA stability were measured in cultured cells in response to different extracellular pH values. Results Up-regulation of SNAT3 mRNA was mediated both by the stabilization of its mRNA and by the up-regulation of gene transcription. Stabilisation of the mRNA involved a pH-response element, while enhanced transcription made use of a second pH-sensitive Sp1 binding site in addition to a constitutive Sp1 binding site. Transcriptional regulation dominated the early response to acidosis, while mRNA stability was more important for chronic adaptation. Tissue-specific expression of SNAT3, by contrast, appeared to be controlled by promoter methylation and histone modifications. Conclusions Regulation of SNAT3 gene expression by extracellular pH involves post-transcriptional and transcriptional mechanisms, the latter being distinct from the mechanisms that control the tissue-specific expression of the gene. PMID:24854847

  16. The Terminator mouse is a diphtheria toxin-receptor knock-in mouse strain for rapid and efficient enrichment of desired cell lineages.

    PubMed

    Guo, Jian-Kan; Shi, Hongmei; Koraishy, Farrukh; Marlier, Arnaud; Ding, Zhaowei; Shan, Alan; Cantley, Lloyd G

    2013-11-01

    Biomedical research often requires primary cultures of specific cell types, which are challenging to obtain at high purity in a reproducible manner. Here we engineered the murine Rosa26 locus by introducing the diphtheria toxin receptor flanked by loxP sites. The resultant strain was nicknamed the Terminator mouse. This approach results in diphtheria toxin-receptor expression in all non-Cre expressing cell types, making these cells susceptible to diphtheria toxin exposure. In primary cultures of kidney cells derived from the Terminator mouse, over 99.99% of cells were dead within 72 h of diphtheria toxin treatment. After crossing the Terminator with the podocin-Cre (podocyte specific) mouse or the Ggt-Cre (proximal tubule specific) mouse, diphtheria toxin treatment killed non-Cre expressing cells but spared podocytes and proximal tubule cells, respectively, enriching the primary cultures to over 99% purity, based on both western blotting and immunostaining of marker proteins. Thus, the Terminator mouse can be a useful tool to selectively and reproducibly obtain even low-abundant cell types at high quantity and purity.

  17. Identification of rat lung-specific microRNAs by micoRNA microarray: valuable discoveries for the facilitation of lung research.

    PubMed

    Wang, Yang; Weng, Tingting; Gou, Deming; Chen, Zhongming; Chintagari, Narendranath Reddy; Liu, Lin

    2007-01-24

    An important mechanism for gene regulation utilizes small non-coding RNAs called microRNAs (miRNAs). These small RNAs play important roles in tissue development, cell differentiation and proliferation, lipid and fat metabolism, stem cells, exocytosis, diseases and cancers. To date, relatively little is known about functions of miRNAs in the lung except lung cancer. In this study, we utilized a rat miRNA microarray containing 216 miRNA probes, printed in-house, to detect the expression of miRNAs in the rat lung compared to the rat heart, brain, liver, kidney and spleen. Statistical analysis using Significant Analysis of Microarray (SAM) and Tukey Honestly Significant Difference (HSD) revealed 2 miRNAs (miR-195 and miR-200c) expressed specifically in the lung and 9 miRNAs co-expressed in the lung and another organ. 12 selected miRNAs were verified by Northern blot analysis. The identified lung-specific miRNAs from this work will facilitate functional studies of miRNAs during normal physiological and pathophysiological processes of the lung.

  18. Normal distribution and medullary-to-cortical shift of Nestin-expressing cells in acute renal ischemia.

    PubMed

    Patschan, D; Michurina, T; Shi, H K; Dolff, S; Brodsky, S V; Vasilieva, T; Cohen-Gould, L; Winaver, J; Chander, P N; Enikolopov, G; Goligorsky, M S

    2007-04-01

    Nestin, a marker of multi-lineage stem and progenitor cells, is a member of intermediate filament family, which is expressed in neuroepithelial stem cells, several embryonic cell types, including mesonephric mesenchyme, endothelial cells of developing blood vessels, and in the adult kidney. We used Nestin-green fluorescent protein (GFP) transgenic mice to characterize its expression in normal and post-ischemic kidneys. Nestin-GFP-expressing cells were detected in large clusters within the papilla, along the vasa rectae, and, less prominently, in the glomeruli and juxta-glomerular arterioles. In mice subjected to 30 min bilateral renal ischemia, glomerular, endothelial, and perivascular cells showed increased Nestin expression. In the post-ischemic period, there was an increase in fluorescence intensity with no significant changes in the total number of Nestin-GFP-expressing cells. Time-lapse fluorescence microscopy performed before and after ischemia ruled out the possibility of engraftment by the circulating Nestin-expressing cells, at least within the first 3 h post-ischemia. Incubation of non-perfused kidney sections resulted in a medullary-to-cortical migration of Nestin-GFP-positive cells with the rate of expansion of their front averaging 40 microm/30 min during the first 3 h and was detectable already after 30 min of incubation. Explant matrigel cultures of the kidney and aorta exhibited sprouting angiogenesis with cells co-expressing Nestin and endothelial marker, Tie-2. In conclusion, several lines of circumstantial evidence identify a sub-population of Nestin-expressing cells with the mural cells, which are recruited in the post-ischemic period to migrate from the medulla toward the renal cortex. These migrating Nestin-positive cells may be involved in the process of post-ischemic tissue regeneration.

  19. Expression of cytochrome P-450 4 enzymes in the kidney and liver: regulation by PPAR and species-difference between rat and human.

    PubMed

    Ito, Osamu; Nakamura, Yasuhiro; Tan, Liping; Ishizuka, Tsuneo; Sasaki, Yuko; Minami, Naoyoshi; Kanazawa, Masayuki; Ito, Sadayoshi; Sasano, Hironobu; Kohzuki, Masahiro

    2006-03-01

    Members of the cytochrome P-450 4 (CYP4) family catalyze the omega-hydroxylation of fatty acids, and some of them have the PPAR response element in the promoter area of the genes. The localization of CYP4A and PPAR isoforms and the effect of PPAR agonists on CYP4A protein level and activity were determined in rat kidney and liver. Immunoblot analysis showed that CYP4A was expressed in the liver and proximal tubule, with lower expression in the preglomerular microvessel, glomerulus and thick ascending limb (TAL), but the expression was not detected in the collecting duct. PPARalpha was expressed in the liver, proximal tubule and TAL. PPARgamma was expressed in the collecting duct, with lower expression in the TAL, but no expression in the proximal tubule and liver. The PPARalpha agonist clofibrate induced CYP4A protein levels and activity in the renal cortex and liver. The PPARgamma agonist pioglitazone did not modulate them in these tissues. The localization of CYP4A and CYP4F were further determined in human kidney and liver by immunohistochemical technique. Immunostainings for CYP4A and CYP4F were observed in the hepatocytes of the liver lobule and the proximal tubules, with lower stainings in the TALs and collecting ducts, but no staining in the glomeruli or renal vasculatures. These results indicate that the inducibility of CYP4A by PPAR agonists in the rat tissues correlates with the expression of the respective PPAR isoforms, and that the localization of CYP4 in the kidney has a species-difference between rat and human.

  20. Identification of differentially expressed genes of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in response to Tetracapsuloides bryosalmonae (Myxozoa).

    PubMed

    Kumar, Gokhlesh; Abd-Elfattah, Ahmed; El-Matbouli, Mansour

    2015-03-01

    Tetracapsuloides bryosalmonae Canning et al., 1999 (Myxozoa) is the causative agent of proliferative kidney disease in various species of salmonids in Europe and North America. We have shown previously that the development and distribution of the European strain of T. bryosalmonae differs in the kidney of brown trout (Salmo trutta) Linnaeus, 1758 and rainbow trout (Oncorhynchus mykiss) Walbaum, 1792, and that intra-luminal sporogonic stages were found in brown trout but not in rainbow trout. We have now compared transcriptomes from kidneys of brown trout and rainbow trout infected with T. bryosalmonae using suppressive subtractive hybridization (SSH). The differentially expressed transcripts produced by SSH were cloned, transformed, and tested by colony PCR. Differential expression screening of PCR products was validated using dot blot, and positive clones having different signal intensities were sequenced. Differential screening and a subsequent NCBI-BLAST analysis of expressed sequence tags revealed nine clones expressed differently between both fish species. These differentially expressed genes were validated by quantitative real-time PCR of kidney samples from both fish species at different time points of infection. Expression of anti-inflammatory (TSC22 domain family protein 3) and cell proliferation (Prothymin alpha) genes were upregulated significantly in brown trout but downregulated in rainbow trout. The expression of humoral immune response (immunoglobulin mu) and endocytic pathway (Ras-related protein Rab-11b) genes were significantly upregulated in rainbow trout but downregulated in brown trout. This study suggests that differential expression of host anti-inflammatory, humoral immune and endocytic pathway responses, cell proliferation, and cell growth processes do not inhibit the development of intra-luminal sporogonic stages of the European strain of T. bryosalmonae in brown trout but may suppress it in rainbow trout.

  1. Role of mechanistic target of rapamycin (mTOR) in renal function and ischaemia-reperfusion induced kidney injury.

    PubMed

    Alshaman, Reem; Truong, Luan; Oyekan, Adebayo

    2016-11-01

    Despite the presence of many studies on the role of mechanistic target of rapamycin (mTOR) in cardiorenal tissues, the definitive role of mTOR in the pathogenesis of renal injury subsequent to ischaemia-reperfusion (IR) remains unclear. The aims of the current study were to characterize the role of mTOR in normal kidney function and to investigate the role of mTOR activation in IR-induced kidney injury. In euvolemic anaesthetized rats, treatment with the mTOR inhibitor rapamycin increased blood pressure (121 ± 2 to 144 ± 3 mmHg; P<.05), decreased glomerular filtration rate (GFR; 1.6 ± 0.3 to 0.5 ± 0.2 mL/min; P<.05) and increased urinary sodium excretion (UNaV; 14 ± 1 to 109 ± 25 mmol/L per hour; P<.05). In rats subjected to IR, autophagy induction, p-mTOR expression and serum creatinine increased (1.9 ± 0.2 to 3 ± 0.3 mg/dL; P<.05); treatment with rapamycin blunted p-mTOR expression but further increased autophagy induction and serum creatinine (3 ± 0.3 to 5 ± 0.6 mg/dL; P<.05). In contrast, clenbuterol, an mTOR activator, blunted the effect of rapamycin on serum creatinine (4 ± 0.6 vs 2.3 ± 0.3 mg/dL; P<.05), autophagy induction and p-mTOR expression. IR also increased 24 hour protein excretion (9 ± 3 to 17 ± 2 mg/day; P<.05) and kidney injury molecule-1 (KIM-1) expression, and rapamycin treatment further increased KIM-1 expression. Clenbuterol exacerbated protein excretion (13 ± 2 to 26 ± 4 mg/day; P<.05) and antagonized the effect of rapamycin on KIM-1 expression. Histopathological data demonstrated kidney injury in IR rats that was worsened by rapamycin treatment but attenuated by clenbuterol treatment. Thus, mTOR signalling is crucial for normal kidney function and protecting the kidney against IR injury through autophagy suppression. © 2016 John Wiley & Sons Australia, Ltd.

  2. High phosphorus diet-induced changes in NaPi-IIb phosphate transporter expression in the rat kidney: DNA microarray analysis.

    PubMed

    Suyama, Tatsuya; Okada, Shinji; Ishijima, Tomoko; Iida, Kota; Abe, Keiko; Nakai, Yuji

    2012-01-01

    The mechanism by which phosphorus levels are maintained in the body was investigated by analyzing changes in gene expression in the rat kidney following administration of a high phosphorus (HP) diet. Male Wistar rats were divided into two groups and fed a diet containing 0.3% (control) or 1.2% (HP) phosphorous for 24 days. Phosphorous retention was not significantly increased in HP rats, but fractional excretion of phosphorus was significantly increased in the HP group compared to controls, with an excessive amount of the ingested phosphorus being passed through the body. DNA microarray analysis of kidney tissue from both groups revealed changes in gene expression profile induced by a HP diet. Among the genes that were upregulated, Gene Ontology (GO) terms related to ossification, collagen fibril organization, and inflammation and immune response were significantly enriched. In particular, there was significant upregulation of type IIb sodium-dependent phosphate transporter (NaPi-IIb) in the HP rat kidney compared to control rats. This upregulation was confirmed by in situ hybridization. Distinct signals for NaPi-IIb in both the cortex and medulla of the kidney were apparent in the HP group, while the corresponding signals were much weaker in the control group. Immunohistochemical analysis showed that NaPi-IIb localized to the basolateral side of kidney epithelial cells surrounding the urinary duct in HP rats but not in control animals. These data suggest that NaPi-IIb is upregulated in the kidney in response to the active excretion of phosphate in HP diet-fed rats.

  3. Enhanced homing permeability and retention of bone marrow stromal cells (BMSC) by non-invasive pulsed focused ultrasound

    PubMed Central

    Ziadloo, Ali; Burks, Scott R.; Gold, Eric M.; Lewis, Bobbi K.; Chaudhry, Aneeka; Merino, Maria J.; Frenkel, Victor; Frank, Joseph A.

    2012-01-01

    Bone marrow stromal cells (BMSC) have shown significant promise in the treatment of disease, but their therapeutic efficacy is often limited by inefficient homing of systemically-administered cells, which results in low numbers of cells accumulating at sites of pathology. BMSC home to areas of inflammation where local expression of integrins and chemokine gradients are present. We demonstrated that non-destructive pulsed focused ultrasound (pFUS) exposures that emphasize the mechanical effects of ultrasound-tissue interactions induced local and transient elevations of chemoattractants (i.e., cytokines, integrins, and growth factors) in the murine kidney. pFUS-induced upregulation of cytokines occurred through approximately 1 day post-treatment and returned to contralateral kidney levels by day 3. This window of significant increases in cytokine expression was accompanied by local increases of other trophic factors and integrins that have been shown to promote BMSC homing. When BMSC were administered intravenously following pFUS treatment to a single kidney, enhanced homing, permeability, and retention of BMSC was observed in the treated kidney versus the contralateral kidney. Histological analysis revealed up to 8 times more BMSC in the peritubular regions of the treated kidneys on days 1 and 3 post-treatment. Furthermore, cytokine levels in pFUS-treated kidneys following BMSC administration were found to be similar to controls, suggesting modulation of cytokine levels by BMSC. pFUS could potentially improve cell-based therapies as a noninvasive modality to target BMSC homing by establishing local chemoattractant gradients and increasing expression of integrins to enhance tropism of BMSC toward treated tissues. PMID:22593018

  4. Antioxidant and molecular chaperone defences during estivation and arousal in the South American apple snail Pomacea canaliculata.

    PubMed

    Giraud-Billoud, Maximiliano; Vega, Israel A; Tosi, Martín E Rinaldi; Abud, María A; Calderón, María L; Castro-Vazquez, Alfredo

    2013-02-15

    The invasive Pomacea canaliculata estivates during periods of drought and should cope with harmful effects of reoxygenation during arousal. We studied thiobarbituric acid reactive substances (TBARS), enzymatic (superoxide dismutase, SOD and catalase, CAT) and non-enzymatic antioxidants (uric acid and reduced glutathione), and heat shock protein expression (Hsc70, Hsp70 and Hsp90) in (1) active control snails, (2) snails after 45 days of estivation, and (3) aroused snails 20 min and (4) 24 h after water exposure, in midgut gland, kidney and foot. Both kidney and foot (but not the midgut gland) showed a TBARS increase during estivation and a decrease after arousal. Tissue SOD and CAT did not change in any experimental groups. Uric acid increased during estivation in all tissues, and it decreased after arousal in the kidney. Allantoin, the oxidation product of uric acid, remained constant in the midgut gland but it decreased in the kidney until 20 min after arousal; however, allantoin levels rose in both kidney and foot 24 h after arousal. Reduced glutathione decreased during estivation and arousal, in both midgut gland and kidney, and it remained constant in the foot. Hsc70 and Hsp70 kidney levels were stable during the activity-estivation cycle and Hsp90 expression decreases during estivation and recovers in the early arousal. In foot, the expression of Hsp70 and Hsp90 was high during activity and estivation periods and disminished after arousal. Results indicate that a panoply of antioxidant and molecular chaperone defences may be involved during the activity-estivation cycle in this freshwater gastropod.

  5. Expression of renin-angiotensin system signalling compounds in maternal protein-restricted rats: effect on renal sodium excretion and blood pressure.

    PubMed

    Mesquita, Flávia Fernandes; Gontijo, José Antonio Rocha; Boer, Patrícia Aline

    2010-02-01

    Intrauterine growth restriction due to low maternal dietary protein during pregnancy is associated with retardation of foetal growth, renal alterations and adult hypertension. The renin-angiotensin system (RAS) is a coordinated hormonal cascade in the control of cardiovascular, renal and adrenal function that governs body fluid and electrolyte balance, as well as arterial pressure. In the kidney, all the components of the renin-angiotensin system including angiotensin II type 1 (AT1) and type 2 (AT2) receptors are expressed locally during nephrogenesis. Hence, we investigated whether low protein diet intake during pregnancy altered kidney and adrenal expression of AT1(R) and AT2(R) receptors, their pathways and if the modified expression of the RAS compounds occurs associated with changes in urinary sodium and in arterial blood pressure in sixteen-week-old males' offspring of the underfed group. The pregnancy dams were divided in two groups: with normal protein diet (pups named NP) (17% protein) or low protein diet (pups LP) (6% protein) during all pregnancy. The present data confirm a significant enhancement in arterial pressure in the LP group. Furthermore, the study showed a significantly decreased expression of RAS pathway protein and Ang II receptors in the kidney and an increased expression in the adrenal of LP rats. The detailed immunohistochemical analysis of RAS signalling proteins in the kidney confirm the immunoblotting results for both groups. The present investigation also showed a pronounced decrease in fractional urinary sodium excretion in maternal protein-restricted offspring, compared with the NP age-matched group. This occurred despite unchanged creatinine clearance. The current data led us to hypothesize that foetal undernutrition could be associated with decreased kidney expression of AT(R) resulting in the inability of renal tubules to handle the hydro-electrolyte balance, consequently causing arterial hypertension.

  6. Recipient Myd88 Deficiency Promotes Spontaneous Resolution of Kidney Allograft Rejection

    PubMed Central

    Lerret, Nadine M.; Li, Ting; Wang, Jiao-Jing; Kang, Hee-Kap; Wang, Sheng; Wang, Xueqiong; Jie, Chunfa; Kanwar, Yashpal S.; Abecassis, Michael M.

    2015-01-01

    The myeloid differentiation protein 88 (MyD88) adapter protein is an important mediator of kidney allograft rejection, yet the precise role of MyD88 signaling in directing the host immune response toward the development of kidney allograft rejection remains unclear. Using a stringent mouse model of allogeneic kidney transplantation, we demonstrated that acute allograft rejection occurred equally in MyD88-sufficient (wild-type [WT]) and MyD88−/− recipients. However, MyD88 deficiency resulted in spontaneous diminution of graft infiltrating effector cells, including CD11b−Gr-1+ cells and activated CD8 T cells, as well as subsequent restoration of near-normal renal graft function, leading to long-term kidney allograft acceptance. Compared with T cells from WT recipients, T cells from MyD88−/− recipients failed to mount a robust recall response upon donor antigen restimulation in mixed lymphocyte cultures ex vivo. Notably, exogenous IL-6 restored the proliferation rate of T cells, particularly CD8 T cells, from MyD88−/− recipients to the proliferation rate of cells from WT recipients. Furthermore, MyD88−/− T cells exhibited diminished expression of chemokine receptors, specifically CCR4 and CXCR3, and the impaired ability to accumulate in the kidney allografts despite an otherwise MyD88-sufficient environment. These results provide a mechanism linking the lack of intrinsic MyD88 signaling in T cells to the effective control of the rejection response that results in spontaneous resolution of acute rejection and long-term graft protection. PMID:25788530

  7. Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury

    PubMed Central

    Zarjou, Abolfazl; Bolisetty, Subhashini; Joseph, Reny; Traylor, Amie; Apostolov, Eugene O.; Arosio, Paolo; Balla, Jozsef; Verlander, Jill; Darshan, Deepak; Kuhn, Lukas C.; Agarwal, Anupam

    2013-01-01

    Ferritin plays a central role in iron metabolism and is made of 24 subunits of 2 types: heavy chain and light chain. The ferritin heavy chain (FtH) has ferroxidase activity that is required for iron incorporation and limiting toxicity. The purpose of this study was to investigate the role of FtH in acute kidney injury (AKI) and renal iron handling by using proximal tubule–specific FtH-knockout mice (FtHPT–/– mice). FtHPT–/– mice had significant mortality, worse structural and functional renal injury, and increased levels of apoptosis in rhabdomyolysis and cisplatin-induced AKI, despite significantly higher expression of heme oxygenase-1, an antioxidant and cytoprotective enzyme. While expression of divalent metal transporter-1 was unaffected, expression of ferroportin (FPN) was significantly lower under both basal and rhabdomyolysis-induced AKI in FtHPT–/– mice. Apical localization of FPN was disrupted after AKI to a diffuse cytosolic and basolateral pattern. FtH, regardless of iron content and ferroxidase activity, induced FPN. Interestingly, urinary levels of the iron acceptor proteins neutrophil gelatinase–associated lipocalin, hemopexin, and transferrin were increased in FtHPT–/– mice after AKI. These results underscore the protective role of FtH and reveal the critical role of proximal tubule FtH in iron trafficking in AKI. PMID:24018561

  8. An extract of Pueraria tuberosa tubers attenuates diabetic nephropathy by upregulating matrix metalloproteinase-9 expression in the kidney of diabetic rats.

    PubMed

    Tripathi, Yamini B; Shukla, Rashmi; Pandey, Nidhi; Pandey, Vivek; Kumar, Mohan

    2017-02-01

    Currently, no drug is available to directly target the signaling molecules involved in the pathogenesis of diabetic nephropathy (DN); only antihypertensive and antidiabetic drugs are in clinical use. In the present study, the therapeutic effects of a active fraction of tubers from Pueraria tuberosa (hereafter referred to as PTY-2) were investigated in streptozotocin (STZ)-diabetic rats with DN, with particular emphasis on its effects on extracellular matrix (ECM) accumulation and matrix metalloproteinase (Mmp)-9 expression in kidney tissue. Rats were injected with 55 mg/kg, i.p., STZ. After 40 days, rats were divided into groups as follows (n = 6 per group): Group 1, age-matched rats not injected with STZ (non-diabetic control); Group 2, STZ-diabetic DN rats; and Group 3, PTY-2 (30 mg/100 g, p.o.)-treated DN rats. After 20 days treatment, the effects of PTY-2 on serum urea and creatinine concentrations, urinary levels of glucose, creatinine, protein, and ketone bodies, and urine pH were determined. Kidney tissue was evaluated for Mmp-9 expression and histological changes. Blood glucose, serum urea, creatinine, and urine protein levels were significantly higher, and creatinine clearance was significantly lower, in Group 2 versus Group 1 rats. There was a higher degree of glomerulosclerosis, expansion of the mesangial matrix, and excess ECM deposition and eosinophilic casts in kidneys from Group 2 versus Group 1 rats. Furthermore, Mmp-9 activity and expression were significantly reduced in kidney homogenate of Group 2 versus Group 1 rats. Interestingly, PTY-2 treatment significantly reversed all these changes in DN rats. Treatment of DN rats with PTY-2 significantly attenuated the severity of DN by increasing the expression and activity of Mmp-9, consequently degrading the ECM accumulated in kidney tissue. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  9. Iron-Hepcidin Dysmetabolism, Anemia and Renal Hypoxia, Inflammation and Fibrosis in the Remnant Kidney Rat Model

    PubMed Central

    Garrido, Patrícia; Ribeiro, Sandra; Fernandes, João; Vala, Helena; Bronze-da-Rocha, Elsa; Rocha-Pereira, Petronila; Belo, Luís; Costa, Elísio; Santos-Silva, Alice; Reis, Flávio

    2015-01-01

    Anemia is a common complication of chronic kidney disease (CKD) that develops early and its severity increases as renal function declines. It is mainly due to a reduced production of erythropoietin (EPO) by the kidneys; however, there are evidences that iron metabolism disturbances increase as CKD progresses. Our aim was to study the mechanisms underlying the development of anemia of CKD, as well as renal damage, in the remnant kidney rat model of CKD induced by 5/6 nephrectomy. This model of CKD presented a sustained degree of renal dysfunction, with mild and advanced glomerular and tubulointerstitial lesions. Anemia developed 3 weeks after nephrectomy and persisted throughout the protocol. The remnant kidney was still able to produce EPO and the liver showed an increased EPO gene expression. In spite of the increased EPO blood levels, anemia persisted and was linked to low serum iron and transferrin levels, while serum interleukin (IL)-6 and high sensitivity C-reactive protein (hs-CRP) levels showed the absence of systemic inflammation. The increased expression of duodenal ferroportin favours iron absorption; however, serum iron is reduced which might be due to iron leakage through advanced kidney lesions, as showed by tubular iron accumulation. Our data suggest that the persistence of anemia may result from disturbances in iron metabolism and by an altered activity/function of EPO as a result of kidney cell damage and a local inflammatory milieu, as showed by the increased gene expression of different inflammatory proteins in the remnant kidney. In addition, this anemia and the associated kidney hypoxia favour the development of fibrosis, angiogenesis and inflammation that may underlie a resistance to EPO stimuli and reduced iron availability. These findings might contribute to open new windows to identify putative therapeutic targets for this condition, as well as for recombinant human EPO (rHuEPO) resistance, which occurs in a considerable percentage of CKD patients. PMID:25867633

  10. Bardoxolone methyl modulates efflux transporter and detoxifying enzyme expression in cisplatin-induced kidney cell injury.

    PubMed

    Atilano-Roque, Amandla; Aleksunes, Lauren M; Joy, Melanie S

    2016-09-30

    Cisplatin is prescribed for the treatment of solid tumors and elicits toxicity to kidney tubules, which limits its clinical use. Nuclear factor erythroid 2-related factor 2 (Nrf2, NFE2L2) is a critical transcription factor that has been shown to protect against kidney injury through activation of antioxidant mechanisms. We aimed to evaluate the ability of short-term treatment with the Nrf2 activator bardoxolone methyl (CDDO-Me) to protect against cisplatin-induced kidney cell toxicity. Cell viability was assessed in human kidney proximal tubule epithelial cells (hPTCs) exposed to low, intermediate, and high cisplatin concentrations in the presence and absence of CDDO-Me, administered either prior to or after cisplatin. Treatment with cisplatin alone resulted in reductions in hPTC viability, while CDDO-Me administered prior to or after cisplatin exposure yielded significantly higher cell viability (17%-71%). Gene regulation (mRNA expression) studies revealed the ability of CDDO-Me to modify protective pathways including Nrf2 induced detoxifying genes [GCLC (increased 1.9-fold), NQO1 (increased 9.3-fold)], and an efflux transporter [SLC47A1 (increased 4.5-fold)] at 12h. Protein assessments were in agreement with gene expression. Immunofluorescence revealed localization of GCLC and NQO1 to the nucleus and cytosol, respectively, with CDDO-Me administered prior to or after cisplatin exposure. The findings of enhanced cell viability and increased expression of detoxifying enzymes (GCLC and NQO1) and the multidrug and toxin extrusion protein 1 (MATE1) efflux transporter (SLC47A1) in hPTCs exposed to CDDO-Me, suggest that intermittent treatment with CDDO-Me prior to or after cisplatin exposure may be a promising approach to mitigate acute kidney injury. Copyright © 2016. Published by Elsevier Ireland Ltd.

  11. Different Modulatory Mechanisms of Renal FXYD12 for Na+-K+-ATPase between Two Closely Related Medakas upon Salinity Challenge

    PubMed Central

    Yang, Wen-Kai; Kang, Chao-Kai; Hsu, An-Di; Lin, Chia-Hao; Lee, Tsung-Han

    2016-01-01

    Upon salinity challenge, the Na+-K+-ATPase (NKA) of fish kidney plays a crucial role in maintaining ion and water balance. Moreover, the FXYD protein family was found to be a regulator of NKA. Our preliminary results revealed that fxyd12 was highly expressed in the kidneys of the two closely related euryhaline medaka species (Oryzias dancena and O. latipes) from different natural habitats (brackish water and fresh water). In this study, we investigated the expression and association of renal FXYD12 and NKA α-subunit as well as potential functions of FXYD12 in the two medakas. These findings illustrated and compared the regulatory roles of FXYD12 for NKA in kidneys of the two medakas in response to salinity changes. In this study, at the mRNA and/or protein level, the expression patterns were similar for renal FXYD12 and NKA in the two medakas. However, different patterns of NKA activities and different interaction levels between FXYD12 and NKA were found in the kidneys of these two medakas. The results revealed that different strategies were used in the kidneys of the two medaka species upon salinity challenge. On the other hand, gene knockdown experiments demonstrated that the function of O. dancena FXYD12 allowed maintenance of a high level of NKA activity. The results of the present study indicated that the kidneys of the examined euryhaline medakas originating from brackish water and fresh water exhibited different modulatory mechanisms through which renal FXYD12 enhanced NKA activity to maintain internal homeostasis. Our findings broadened the knowledge of expression and functions of FXYD proteins, the modulators of NKA, in vertebrates. PMID:27194950

  12. Nebivolol ameliorated kidney damage in Zucker diabetic fatty rats by regulation of oxidative stress/NO pathway: comparison with captopril.

    PubMed

    Wang, Yan; An, Wenjing; Zhang, Fei; Niu, Mengzhen; Liu, Yu; Shi, Ruizan

    2018-06-23

    The aim was to evaluate the effects and mechanisms of nebivolol on renal damage in Zucker diabetic fatty (ZDF) rats, in comparison with those of atenolol and captopril. Animals were divided into: control lean Zucker rats, ZDF rats, ZDF rats orally treated with nebivolol (10 mg/kg), atenolol (100 mg/kg) or captopril (40 mg/kg) for 6 months. Systolic blood pressure (SBP), blood glucose, kidney structure and function, plasma and kidney levels of nitric oxide (NO) and asymmetric dimethylarginine (ADMA), and oxidant status were evaluated. Kidney expressions of AMP-activated protein kinase (AMPK), NADPH oxidase (NOX) isoforms 2 and 4 and subunit p22 phox , nitric oxide synthase (NOS) isoforms, eNOS uncoupling, protein arginine N-methyltransferase (PRMT) 1, and dimethylarginine dimethylaminohydrolase (DDAH) 1 and 2 were tested. All drugs induced a similar control of SBP. Nebivolol did not affect the increased plasma glucose. Unlike atenolol, nebivolol prevented the decrease in plasma insulin, and, like captopril, it reduced plasma lipid contents. Nebivolol ameliorated, to a greater extent than captopril, damages to renal structure and function, which were associated with an improvement in interlobular artery dysfunction. Nebivolol elevated kidney phosphorylation of AMPK, attenuated NOX4 and p22 phox expression and oxidative stress marker levels. Nebivolol increased plasma and renal NO, enhanced expressions of eNOS, p-eNOS and nNOS, and suppressed eNOS uncoupling and iNOS expression. High ADMA in plasma and kidney were decreased by nebivolol through increasing DDAH2 and decreasing PRMT1. Long-term treatment of nebivolol ameliorated diabetic nephropathy, at least in part, via regulation of renal oxidative stress/NO pathway. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Endothelial marker-expressing stromal cells are critical for kidney formation.

    PubMed

    Mukherjee, Elina; Maringer, Katherine; Papke, Emily; Bushnell, Daniel; Schaefer, Caitlin; Kramann, Rafael; Ho, Jacqueline; Humphreys, Benjamin D; Bates, Carlton; Sims-Lucas, Sunder

    2017-09-01

    Kidneys are highly vascularized and contain many distinct vascular beds. However, the origins of renal endothelial cells and roles of the developing endothelia in the formation of the kidney are unclear. We have shown that the Foxd1-positive renal stroma gives rise to endothelial marker-expressing progenitors that are incorporated within a subset of peritubular capillaries; however, the significance of these cells is unclear. The purpose of this study was to determine whether deletion of Flk1 in the Foxd1 stroma was important for renal development. To that end, we conditionally deleted Flk1 (critical for endothelial cell development) in the renal stroma by breeding-floxed Flk1 mice ( Flk1 fl/fl ) with Foxd1cre mice to generate Foxd1cre; Flk1 fl/fl ( Flk1 ST-/- ) mice. We then performed FACsorting, histological, morphometric, and metabolic analyses of Flk1 ST-/- vs. control mice. We confirmed decreased expression of endothelial markers in the renal stroma of Flk1 ST-/- kidneys via flow sorting and immunostaining, and upon interrogation of embryonic and postnatal Flk1 ST-/- mice, we found they had dilated peritubular capillaries. Three-dimensional reconstructions showed reduced ureteric branching and fewer nephrons in developing Flk1 ST-/- kidneys vs. Juvenile Flk1 ST-/- kidneys displayed renal papillary hypoplasia and a paucity of collecting ducts. Twenty-four-hour urine collections revealed that postnatal Flk1 ST-/- mice had urinary-concentrating defects. Thus, while lineage-tracing revealed that the renal cortical stroma gave rise to a small subset of endothelial progenitors, these Flk1-expressing stromal cells are critical for patterning the peritubular capillaries. Also, loss of Flk1 in the renal stroma leads to nonautonomous-patterning defects in ureteric lineages. Copyright © 2017 the American Physiological Society.

  14. Localization and regulation of a facilitative urea transporter in the kidney of the red-eared slider turtle (Trachemys scripta elegans).

    PubMed

    Uchiyama, Minoru; Kikuchi, Ryosuke; Konno, Norifumi; Wakasugi, Tatsuya; Matsuda, Kouhei

    2009-01-01

    Urea is the major excretory end product of nitrogen metabolism in most chelonian reptiles. In the present study, we report the isolation of a 1632 base pair cDNA from turtle kidney with one open reading frame putatively encoding a 403-residue protein, the turtle urea transporter (turtle UT). The first cloned reptilian UT has high homology with UTs (facilitated urea transporters) cloned from vertebrates, and most closely resembles the UT-A subfamily. Injection of turtle UT cRNA into Xenopus oocytes induced a 6-fold increase in [(14)C]urea uptake that was inhibited by phloretin. The turtle UT mRNA expression and tissue distribution were examined by RT-PCR with total RNA from various tissues. Expression of turtle UT mRNA was restricted to the kidney, and no signal was detected in the other tissues, such as brain, heart, alimentary tract and urinary bladder. An approximately 58 kDa protein band was detected in membrane fractions of the kidney by western blot using an affinity-purified antibody that recognized turtle UT expressed in Xenopus oocytes. In an immunohistochemical study using the anti-turtle UT antibody, UT-immunopositive cells were observed along the distal tubule but not in the collecting duct. In turtles under dry conditions, plasma osmolality and urea concentration increased, and using semi-quantitative RT-PCR the UT mRNA expression level in the kidney was found to increase 2-fold compared with control. The present results, taken together, suggest that the turtle UT probably contributes to urea transport in the distal tubule segments of the kidney in response to hyperosmotic stress under dry conditions.

  15. A dual agonist of farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5, INT-767, reverses age-related kidney disease in mice.

    PubMed

    Wang, Xiaoxin X; Luo, Yuhuan; Wang, Dong; Adorini, Luciano; Pruzanski, Mark; Dobrinskikh, Evgenia; Levi, Moshe

    2017-07-21

    Even in healthy individuals, renal function gradually declines during aging. However, an observed variation in the rate of this decline has raised the possibility of slowing or delaying age-related kidney disease. One of the most successful interventional measures that slows down and delays age-related kidney disease is caloric restriction. We undertook the present studies to search for potential factors that are regulated by caloric restriction and act as caloric restriction mimetics. Based on our prior studies with the bile acid-activated nuclear hormone receptor farnesoid X receptor (FXR) and G protein-coupled membrane receptor TGR5 that demonstrated beneficial effects of FXR and TGR5 activation in the kidney, we reasoned that FXR and TGR5 could be excellent candidates. We therefore determined the effects of aging and caloric restriction on the expression of FXR and TGR5 in the kidney. We found that FXR and TGR5 expression levels are decreased in the aging kidney and that caloric restriction prevents these age-related decreases. Interestingly, in long-lived Ames dwarf mice, renal FXR and TGR5 expression levels were also increased. A 2-month treatment of 22-month-old C57BL/6J mice with the FXR-TGR5 dual agonist INT-767 induced caloric restriction-like effects and reversed age-related increases in proteinuria, podocyte injury, fibronectin accumulation, TGF-β expression, and, most notably, age-related impairments in mitochondrial biogenesis and mitochondrial function. Furthermore, in podocytes cultured in serum obtained from old mice, INT-767 prevented the increases in the proinflammatory markers TNF-α, toll-like receptor 2 (TLR2), and TLR4. In summary, our results indicate that FXR and TGR5 may play an important role in modulation of age-related kidney disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Periconceptional undernutrition and being a twin each alter kidney development in the sheep fetus during early gestation.

    PubMed

    MacLaughlin, Severence M; Walker, Simon K; Kleemann, David O; Tosh, Darran N; McMillen, I Caroline

    2010-03-01

    Adaptive growth responses of the embryo and fetus to nutritional restraint are important in ensuring early survival, but they are implicated in the programming of hypertension. It has been demonstrated that kidney growth and nephrogenesis are each regulated by intrarenal factors, including the insulin-like growth factors, glucocorticoids, and the renin-angiotensin system. Therefore, we have investigated the impact of periconceptional undernutrition (PCUN; from approximately 6 wk before to 7 days after conception) in singleton (control, n = 18; PCUN, n = 16) and twin pregnancies (control, n = 6; PCUN, n = 5) on the renal mRNA expression of 11beta- hydroxysteroid dehydrogensase type 1 and type 2 (11beta-HSD-1 and -2), the glucocorticoid (GR), and mineralocorticoid receptors, angiotensinogen, angiotensin receptor type 1 (AT1R) and 2 (AT2R), IGF-1 and IGF-2, and IGF1R and IGF2R at approximately 55 days gestation. There was no effect of PCUN or fetal number on fetal weight on relative kidney weight at approximately day 55 of gestation. There was an inverse relationship between the relative weight of the fetal kidney at approximately day 55 and maternal weight loss during the periconceptional period in fetuses exposed to PCUN. Exposure to PCUN resulted in a higher expression of IGF1 in the fetal kidney in singleton and twin pregnancies. Being a twin resulted in higher intrarenal expression of IGF-1 and IGF-2, GR, angiotensinogen, AT1R, and AT2R mRNA at 55 days gestation. Renal 11beta-HSD-2 mRNA expression was higher in PCUN singletons, but not PCUN twins, compared with controls. Thus, there may be an adaptive response in the kidney to the early environment of a twin pregnancy, which precedes the fetal growth restriction that occurs later in pregnancy. The kidney of the twin fetus exposed to periconceptional undernutrition may also be less protected from the consequences of glucocorticoid exposure.

  17. Graft Growth and Podocyte Dedifferentiation in Donor-Recipient Size Mismatch Kidney Transplants.

    PubMed

    Müller-Deile, Janina; Bräsen, Jan Hinrich; Pollheimer, Marion; Ratschek, Manfred; Haller, Hermann; Pape, Lars; Schiffer, Mario

    2017-10-01

    Kidney transplantation is the treatment choice for patients with end-stage renal diseases. Because of good long-term outcome, pediatric kidney grafts are also accepted for transplantation in adult recipients despite a significant mismatch in body size and age between donor and recipient. These grafts show a remarkable ability of adaptation to the recipient body and increase in size in a very short period, presumably as an adaptation to hyperfiltration. We investigated renal graft growth as well as glomerular proliferation and differentiation markers Kiel-67, paired box gene 2 and Wilms tumor protein (WT1) expression in control biopsies from different transplant constellations: infant donor for infant recipient, infant donor for child recipient, infant donor for adult recipient, child donor for child recipient, child donor for adult recipient, and adult donor for an adult recipient. We detected a significant increase in kidney graft size after transplantation in all conditions with a body size mismatch, which was most prominent when an infant donated for a child. Podocyte WT1 expression was comparable in different transplant conditions, whereas a significant increase in WT1 expression could be detected in parietal epithelial cells, when a kidney graft from a child was transplanted into an adult. In kidney grafts that were relatively small for the recipients, we could detect reexpression of podocyte paired box gene 2. Moreover, the proliferation marker Kiel-67 was expressed in glomerular cells in grafts that increased in size after transplantation. Kidney grafts rapidly adapt to the recipient size after transplantation if they are transplanted in a body size mismatch constellation. The increase in transplant size is accompanied by an upregulation of proliferation and dedifferentiation markers in podocytes. The different examined conditions exclude hormonal factors as the key trigger for this growth so that most likely hyperfiltration is the key trigger inducing the rapid growth response.

  18. [Gene transfer-induced human heme oxygenase-1 over-expression protects kidney from ischemia-reperfusion injury in rats].

    PubMed

    Lü, Jin-xing; Yan, Chun-yin; Pu, Jin-xian; Hou, Jian-quan; Yuan, He-xing; Ping, Ji-gen

    2010-12-14

    To study the protection of gene transfer-induced human heme oxygenase-1 over-expression against renal ischemia reperfusion injury in rats. The model of kidney ischemia-reperfusion injury was established with Sprague-Dawley rats. In the therapy group (n=18), the left kidney was perfused and preserved with Ad-hHO-1 at 2.5×10(9) pfu/1.0 ml after flushed with 0-4°C HC-A organ storage solution via donor renal aorta. The rats in control groups were perfused with 0.9% saline solution (n=12) or the vector carrying no interest gene Ad-EGFP 2.5×10(9) pfu/1.0 ml (n=18) instead of Ad-hHO-1. BUN and Cr in serum were measured by slide chemical methods. The kidney samples of rats were harvested for assay of histology, immunohistochemistry and quantification of HO enzymatic activity. Apoptosis cells in the kidney were measured by TUNEL. Ad-hHO-1 via donor renal aorta could transfect renal cells of rats effectively, enzymatic activity of HO in treated group [(1.62±0.07) nmol×mg(-1)×min(-1)] is higher than in control groups treated with saline solution team [(1.27±0.07) nmol×mg(-1)×min(-1)] and vector EGFP team [(1.22±0.06) nmol×mg(-1)×min(-1)] (P<0.01). Immunohistochemically, we found that the rats treated with Ad-hHO-1 expressed hHO-1 in kidneys at a high level. Corresponding to this, the level of BUN and Cr, as well as the number of apoptosis cells, were decreased, and the damage in histology by HE staining was ameliorated. Over-expression of human HO-1 can protect the kidney from ischemia/reperfusion injury in rats.

  19. Graft Growth and Podocyte Dedifferentiation in Donor-Recipient Size Mismatch Kidney Transplants

    PubMed Central

    Müller-Deile, Janina; Bräsen, Jan Hinrich; Pollheimer, Marion; Ratschek, Manfred; Haller, Hermann; Pape, Lars; Schiffer, Mario

    2017-01-01

    Background Kidney transplantation is the treatment choice for patients with end-stage renal diseases. Because of good long-term outcome, pediatric kidney grafts are also accepted for transplantation in adult recipients despite a significant mismatch in body size and age between donor and recipient. These grafts show a remarkable ability of adaptation to the recipient body and increase in size in a very short period, presumably as an adaptation to hyperfiltration. Methods We investigated renal graft growth as well as glomerular proliferation and differentiation markers Kiel-67, paired box gene 2 and Wilms tumor protein (WT1) expression in control biopsies from different transplant constellations: infant donor for infant recipient, infant donor for child recipient, infant donor for adult recipient, child donor for child recipient, child donor for adult recipient, and adult donor for an adult recipient. Results We detected a significant increase in kidney graft size after transplantation in all conditions with a body size mismatch, which was most prominent when an infant donated for a child. Podocyte WT1 expression was comparable in different transplant conditions, whereas a significant increase in WT1 expression could be detected in parietal epithelial cells, when a kidney graft from a child was transplanted into an adult. In kidney grafts that were relatively small for the recipients, we could detect reexpression of podocyte paired box gene 2. Moreover, the proliferation marker Kiel-67 was expressed in glomerular cells in grafts that increased in size after transplantation. Conclusions Kidney grafts rapidly adapt to the recipient size after transplantation if they are transplanted in a body size mismatch constellation. The increase in transplant size is accompanied by an upregulation of proliferation and dedifferentiation markers in podocytes. The different examined conditions exclude hormonal factors as the key trigger for this growth so that most likely hyperfiltration is the key trigger inducing the rapid growth response. PMID:29026873

  20. Regulation of renal amino acid transporters during metabolic acidosis.

    PubMed

    Moret, Caroline; Dave, Mital H; Schulz, Nicole; Jiang, Jean X; Verrey, Francois; Wagner, Carsten A

    2007-02-01

    The kidney plays a major role in acid-base homeostasis by adapting the excretion of acid equivalents to dietary intake and metabolism. Urinary acid excretion is mediated by the secretion of protons and titratable acids, particularly ammonia. NH(3) is synthesized in proximal tubule cells from glutamine taken up via specific amino acid transporters. We tested whether kidney amino acid transporters are regulated in mice in which metabolic acidosis was induced with NH(4)Cl. Blood gas and urine analysis confirmed metabolic acidosis. Real-time RT-PCR was performed to quantify the mRNAs of 16 amino acid transporters. The mRNA of phosphoenolpyruvate carboxykinase (PEPCK) was quantified as positive control for the regulation and that of GAPDH, as internal standard. In acidosis, the mRNA of kidney system N amino acid transporter SNAT3 (SLC38A3/SN1) showed a strong induction similar to that of PEPCK, whereas all other tested mRNAs encoding glutamine or glutamate transporters were unchanged or reduced in abundance. At the protein level, Western blotting and immunohistochemistry demonstrated an increased abundance of SNAT3 and reduced expression of the basolateral cationic amino acid/neutral amino acid exchanger subunit y(+)-LAT1 (SLC7A7). SNAT3 was localized to the basolateral membrane of the late proximal tubule S3 segment in control animals, whereas its expression was extended to the earlier S2 segment of the proximal tubule during acidosis. Our results suggest that the selective regulation of SNAT3 and y(+)LAT1 expression may serve a major role in the renal adaptation to acid secretion and thus for systemic acid-base balance.

Top