Sample records for kill target cells

  1. Imaging burst kinetics and spatial coordination during serial killing by single natural killer cells

    PubMed Central

    Choi, Paul J.; Mitchison, Timothy J.

    2013-01-01

    Cytotoxic lymphocytes eliminate virus-infected and cancerous cells by immune recognition and killing through the perforin-granzyme pathway. Traditional killing assays measure average target cell lysis at fixed times and high effector:target ratios. Such assays obscure kinetic details that might reveal novel physiology. We engineered target cells to report on granzyme activity, used very low effector:target ratios to observe potential serial killing, and performed low magnification time-lapse imaging to reveal time-dependent statistics of natural killer (NK) killing at the single-cell level. Most kills occurred during serial killing, and a single NK cell killed up to 10 targets over a 6-h assay. The first kill was slower than subsequent kills, especially on poor targets, or when NK signaling pathways were partially inhibited. Spatial analysis showed that sequential kills were usually adjacent. We propose that NK cells integrate signals from the previous and current target, possibly by simultaneous contact. The resulting burst kinetics and spatial coordination may control the activity of NK cells in tissues. PMID:23576740

  2. Potassium Channels Mediate Killing by Human Natural Killer Cells

    NASA Astrophysics Data System (ADS)

    Schlichter, Lyanne; Sidell, Neil; Hagiwara, Susumu

    1986-01-01

    Human natural killer (NK) cells in peripheral blood spontaneously recognize and kill a wide variety of target cells. It has been suggested that ion channels are involved in the killing process because there is a Ca-dependent stage and because killing by presensitized cytotoxic T lymphocytes, which in many respects resembles NK killing, is associated with changes in K and Na transport in the target cell. However, no direct evidence exists for ion channels in NK cells or in their target cells. Using the whole-cell variation of the patch-clamp technique, we found a voltage-dependent potassium (K+) current in NK cells. The K+ current was reduced in a dose-dependent manner by the K-channel blockers 4-aminopyridine and quinidine and by the traditional Ca-channel blockers verapamil and Cd2+. We tested the effects of ion-channel blockers on killing of two commonly used target cell lines: K562, which is derived from a human myeloid leukemia, and U937, which is derived from a human histiocytic leukemia. Killing of K562 target cells, determined in a standard 51Cr-release assay, was inhibited in a dose-dependent manner by verapamil, quinidine, Cd2+, and 4-aminopyridine at concentrations comparable to those that blocked the K+ current in NK cells. In K562 target cells only a voltage-dependent Na+ current was found and it was blocked by concentrations of tetrodotoxin that had no effect on killing. Killing of U937 target cells was also inhibited by the two ion-channel blockers tested, quinidine and verapamil. In this cell line only a small K+ current was found that was similar to the one in NK cells. We could not find any evidence of a Ca2+ current in target cells or in NK cells; therefore, our results cannot explain the Ca dependence of killing. Our findings show that there are K channels in NK cells and that these channels play a necessary role in the killing process. In contrast, the endogenous channel type in the target cell is probably not a factor in determining target cell sensitivity to natural killing.

  3. Killing of targets by effector CD8 T cells in the mouse spleen follows the law of mass action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganusov, Vitaly V

    2009-01-01

    In contrast with antibody-based vaccines, it has been difficult to measure the efficacy of T cell-based vaccines and to correlate the efficacy of CD8 T cell responses with protection again viral infections. In part, this difficulty is due to poor understanding of the in vivo efficacy of CD8 T cells produced by vaccination. Using a: recently developed experimental method of in vivo cytotoxicity we have investigated quantitative aspects of killing of peptide-pulsed targets by effector and memory CD8 T cells, specific to three epitopes of lymphocytic choriomeningitis virus (LCMV), in the mouse spleen. By analyzing data on killing of targetsmore » with varying number of epitope-specific effector and memory CD8 T cells, we find that killing of targets by effectors follows the law of mass-action, that is the death rate of peptide-pulsed targets is proportional to the frequency of CTLs in the spleen. In contrast, killing of targets by memory CD8 T cells does not follow the mass action law because the death rate of targets saturates at high frequencies of memory CD8 T cells. For both effector and memory cells, we also find little support for the killing term that includes the decrease of the death rate of targets with target cell density. Interestingly, our analysis suggests that at low CD8 T cell frequencies, memory CD8 T cells on the per capita basis are more efficient at killing peptide-pulsed targets than effectors, but at high frequencies, effectors are more efficient killers than memory T cells. Comparison of the estimated killing efficacy of effector T cells with the value that is predicted from theoretical physics and based on motility of T cells in lymphoid tissues, suggests that limiting step in the killing of peptide-pulsed targets is delivering the lethal hit and not finding the target. Our results thus form a basis for quantitative understanding of the process of killing of virus-infected cells by T cell responses in tissues and can be used to correlate the phenotype of vaccine-induced memory CD8 T cells with their killing efficacy in vivo.« less

  4. CAR-T cells are serial killers

    PubMed Central

    Davenport, Alexander J; Jenkins, Misty R; Ritchie, David S; Prince, H Miles; Trapani, Joseph A; Kershaw, Michael H; Darcy, Phillip K; Neeson, Paul J

    2015-01-01

    Chimeric antigen receptor (CAR) T cells have enjoyed unprecedented clinical success against haematological malignancies in recent years. However, several aspects of CAR T cell biology remain unknown. We recently compared CAR and T cell receptor (TCR)-based killing in the same effector cell and showed that CAR T cells can not only efficiently kill single tumor targets, they can also kill multiple tumor targets in a sequential manner. Single and serial killing events were not sustained long term due to CAR down-regulation after 20 hours. PMID:26587330

  5. CAR-T cells are serial killers.

    PubMed

    Davenport, Alexander J; Jenkins, Misty R; Ritchie, David S; Prince, H Miles; Trapani, Joseph A; Kershaw, Michael H; Darcy, Phillip K; Neeson, Paul J

    2015-12-01

    Chimeric antigen receptor (CAR) T cells have enjoyed unprecedented clinical success against haematological malignancies in recent years. However, several aspects of CAR T cell biology remain unknown. We recently compared CAR and T cell receptor (TCR)-based killing in the same effector cell and showed that CAR T cells can not only efficiently kill single tumor targets, they can also kill multiple tumor targets in a sequential manner. Single and serial killing events were not sustained long term due to CAR down-regulation after 20 hours.

  6. Vesicle-associated membrane protein 7 (VAMP-7) is essential for target cell killing in a natural killer cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcet-Palacios, Marcelo; Odemuyiwa, Solomon O.; Coughlin, Jason J.

    2008-02-15

    Natural killer cells recognize and induce apoptosis in foreign, transformed or virus-infected cells through the release of perforin and granzymes from secretory lysosomes. Clinically, NK-cell mediated killing is a major limitation to successful allo- and xenotransplantation. The molecular mechanisms that regulate the fusion of granzyme B-containing secretory lysosomes to the plasma membrane in activated NK cells, prior to target cell killing, are not fully understood. Using the NK cell line YT-Indy as a model, we have investigated the expression of SNAP REceptors (SNAREs), both target (t-) and vesicular (v-) SNAREs, and their function in granzyme B-mediated target cell killing. Ourmore » data showed that YT-Indy cells express VAMP-7 and SNAP-23, but not VAMP-2. VAMP-7 was associated with granzyme B-containing lysosomal granules. Using VAMP-7 small interfering RNA (siRNA), we successfully knocked down the expression of VAMP-7 protein in YT-Indy to less than 10% of untreated cells in 24 h. VAMP7-deficient YT-Indy cells activated via co-culture with Jurkat cells released <1 ng/mL of granzyme B, compared to 1.5-2.5 {mu}g/mL from controls. Using Jurkat cells as targets, we showed a 7-fold reduction in NK cell-mediated killing by VAMP-7 deficient YT-Indy cells. Our results show that VAMP-7 is a crucial component of granzyme B release and target cell killing in the NK cell line YT-Indy. Thus, targeting VAMP-7 expression specifically with siRNA, following transplantation, may be a viable strategy for preventing NK cell-mediated transplant rejection, in vivo.« less

  7. GENERATION OF CYTOTOXIC LYMPHOCYTES IN MIXED LYMPHOCYTE REACTIONS

    PubMed Central

    Forman, James; Möller, Göran

    1973-01-01

    Generation of cytotoxic effector cells by a unidirectional mixed lymphocyte reaction (MLR) in the mouse H-2 system was studied using labeled YAC (H-2a) leukemia cells as targets. The responding effector cell displayed a specific cytotoxic effect against target cells of the same H-2 genotype as the stimulating cell population. Killing of syngeneic H-2 cells was not observed, even when the labeled target cells were "innocent bystanders" in cultures where specific target cells were reintroduced. Similar results were found with spleen cells taken from mice sensitized in vivo 7 days earlier. The effector cell was not an adherent cell and was not activated by supernatants from MLR. The supernatants were not cytotoxic by themselves. When concanavalin A or phytohemagglutinin was added to the cytotoxic test system, target and effector cells were agglutinated. Under these conditions, killing of H-2a target cells was observed in mixed cultures where H-2a lymphocytes were also the effector cells. These findings indicate that specifically activated, probably thymus-derived lymphocytes, can kill nonspecifically once they have been activated and providing there is close contact between effector and target cells. Thus, specificity of T cell killing appears to be restricted to recognition and subsequent binding to the targets, the actual effector phase being nonspecific. PMID:4269560

  8. Allogeneic killing by earthworm effector cells.

    PubMed

    Suzuki, M M; Cooper, E L

    1995-01-01

    We observed spontaneous allogeneic cytotoxicity by coelomocytes (Lumbricus terrestris) using three assays: trypan blue, lactate dehydrogenase release and chromium-51 release. Cell-cell contact may not be essential to effect cytotoxicity, since killing of allogeneic cells occurred in pooled allogeneic coelomic fluid derived from worms raised in two different geographic locales. We observed no significant spontaneous cytotoxicity against autogeneic target coelomocytes haptenated with 2,4,6-trinitrobenzene sulfonic acid; however, coelomocytes effected significant spontaneous cytotoxicity against haptenated allogeneic targets. These results support the view that earthworm coelomocytes can act as effector cells that can specifically kill nonself target cells.

  9. Antibody-targeted interleukin 2 stimulates T-cell killing of autologous tumor cells.

    PubMed Central

    Gillies, S D; Reilly, E B; Lo, K M; Reisfeld, R A

    1992-01-01

    A genetically engineered fusion protein consisting of a chimeric anti-ganglioside GD2 antibody (ch14.18) and interleukin 2 (IL2) was tested for its ability to enhance the killing of autologous GD2-expressing melanoma target cells by a tumor-infiltrating lymphocyte line (660 TIL). The fusion of IL2 to the carboxyl terminus of the immunoglobulin heavy chain did not reduce IL2 activity as measured in a standard proliferation assay using either mouse or human T-cell lines. Antigen-binding activity was greater than that of the native chimeric antibody. The ability of resting 660 TIL cells to kill their autologous GD2-positive target cells was enhanced if the target cells were first coated with the fusion protein. This stimulation of killing was greater than that of uncoated cells in the presence of equivalent or higher concentrations of free IL2. Such antibody-cytokine fusion proteins may prove useful in targeting the biological effect of IL2 and other cytokines to tumor cells and in this way stimulate their immune destruction. Images PMID:1741398

  10. Many si/shRNAs can kill cancer cells by targeting multiple survival genes through an off-target mechanism

    PubMed Central

    van Dongen, Stijn; Haluck-Kangas, Ashley; Sarshad, Aishe A; Bartom, Elizabeth T; Kim, Kwang-Youn A; Scholtens, Denise M; Hafner, Markus; Zhao, Jonathan C; Murmann, Andrea E

    2017-01-01

    Over 80% of multiple-tested siRNAs and shRNAs targeting CD95 or CD95 ligand (CD95L) induce a form of cell death characterized by simultaneous activation of multiple cell death pathways preferentially killing transformed and cancer stem cells. We now show these si/shRNAs kill cancer cells through canonical RNAi by targeting the 3’UTR of critical survival genes in a unique form of off-target effect we call DISE (death induced by survival gene elimination). Drosha and Dicer-deficient cells, devoid of most miRNAs, are hypersensitive to DISE, suggesting cellular miRNAs protect cells from this form of cell death. By testing 4666 shRNAs derived from the CD95 and CD95L mRNA sequences and an unrelated control gene, Venus, we have identified many toxic sequences - most of them located in the open reading frame of CD95L. We propose that specific toxic RNAi-active sequences present in the genome can kill cancer cells. PMID:29063830

  11. Granzyme B; the chalk-mark of a cytotoxic lymphocyte

    PubMed Central

    Waterhouse, Nigel J; Sedelies, Karin A; Clarke, Chris JP

    2004-01-01

    During cytotoxic lymphocyte (CL) mediated killing of target cells, granzyme B is released from the CL into the immune synapse. Recent studies have found that ELISPOT-detection of granzyme B correlated well with conventional assays for CL mediated killing. In this way, the released granzyme B can be used to mark the spot where a target cell was murdered. We discuss the benefits and potential limitations of using this assay to measure CL mediated killing of target cells. PMID:15500699

  12. Spontaneous cytotoxic earthworm leukocytes kill K562 tumor cells.

    PubMed

    Suzuki, M M; Cooper, E L

    1995-08-01

    Earthworm coelomocytes may act as effector cells which destroy targets in vitro. In a 51Cr release assay, Lumbricus coelomocyte effectors showed lytic activities of 3-14% against K562 human tumor cells when incubated 1-4 hr at 23 degrees C or 37 degrees C. Cytotoxicity was correlated with effector: target ratio. However, targets were not killed by incubating them in cell-free, 0.2 micron filtered coelomic fluid. The supernatant from coelomocytes cultured alone failed to kill K562 targets but coelomocyte lysates were toxic to target cells in a concentration-dependent manner. Coelomocytes were examined using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). When effectors and targets were examined under TEM, we found close apposition of effector granulocytic coelomocytes and target cell membranes but not with coelomocytes nor eleocytes at up to 15 min incubation. By SEM, effector cells appeared not only to be in close contact with targets, but instances of target lysis were observed. These results suggest that effector cell/target cell contact is essential for cytotoxicity to occur.

  13. NK cells converge lytic granules to promote cytotoxicity and prevent bystander killing

    PubMed Central

    Hsu, Hsiang-Ting; Viswanath, Dixita I.; Önfelt, Björn

    2016-01-01

    Natural killer (NK) cell activation triggers sequential cellular events leading to destruction of diseased cells. We previously identified lytic granule convergence, a dynein- and integrin signal–dependent movement of lysosome-related organelles to the microtubule-organizing center, as an early step in the cell biological process underlying NK cell cytotoxicity. Why lytic granules converge during NK cell cytotoxicity, however, remains unclear. We experimentally controlled the availability of human ligands to regulate NK cell signaling and promote granule convergence with either directed or nondirected degranulation. By the use of acoustic trap microscopy, we generated specific effector–target cell arrangements to define the impact of the two modes of degranulation. NK cells with converged granules had greater targeted and less nonspecific “bystander” killing. Additionally, NK cells in which dynein was inhibited or integrin blocked under physiological conditions demonstrated increased nondirected degranulation and bystander killing. Thus, NK cells converge lytic granules and thereby improve the efficiency of targeted killing and prevent collateral damage to neighboring healthy cells. PMID:27903610

  14. In Vivo Killing Capacity of Cytotoxic T Cells Is Limited and Involves Dynamic Interactions and T Cell Cooperativity

    PubMed Central

    Halle, Stephan; Keyser, Kirsten Anja; Stahl, Felix Rolf; Busche, Andreas; Marquardt, Anja; Zheng, Xiang; Galla, Melanie; Heissmeyer, Vigo; Heller, Katrin; Boelter, Jasmin; Wagner, Karen; Bischoff, Yvonne; Martens, Rieke; Braun, Asolina; Werth, Kathrin; Uvarovskii, Alexey; Kempf, Harald; Meyer-Hermann, Michael; Arens, Ramon; Kremer, Melanie; Sutter, Gerd; Messerle, Martin; Förster, Reinhold

    2016-01-01

    Summary According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated killing of virus-infected cells in vivo remains elusive. We used two-photon microscopy to quantify CTL-mediated killing in mice infected with herpesviruses or poxviruses. On average, one CTL killed 2–16 virus-infected cells per day as determined by real-time imaging and by mathematical modeling. In contrast, upon virus-induced MHC class I downmodulation, CTLs failed to destroy their targets. During killing, CTLs remained migratory and formed motile kinapses rather than static synapses with targets. Viruses encoding the calcium sensor GCaMP6s revealed strong heterogeneity in individual CTL functional capacity. Furthermore, the probability of death of infected cells increased for those contacted by more than two CTLs, indicative of CTL cooperation. Thus, direct visualization of CTLs during killing of virus-infected cells reveals crucial parameters of CD8+ T cell immunity. PMID:26872694

  15. Cytotoxic T cells use mechanical force to potentiate target cell killing

    PubMed Central

    Basu, Roshni; Whitlock, Benjamin M.; Husson, Julien; Le Floc’h, Audrey; Jin, Weiyang; Oyler-Yaniv, Alon; Dotiwala, Farokh; Giannone, Gregory; Hivroz, Claire; Biais, Nicolas; Lieberman, Judy; Kam, Lance C.; Huse, Morgan

    2016-01-01

    SUMMARY The immunological synapse formed between a cytotoxic T lymphocyte (CTL) and an infected or transformed target cell is a physically active structure capable of exerting mechanical force. Here, we investigated whether synaptic forces promote the destruction of target cells. CTLs kill by secreting toxic proteases and the pore forming protein perforin into the synapse. Biophysical experiments revealed a striking correlation between the magnitude of force exertion across the synapse and the speed of perforin pore formation on the target cell, implying that force potentiates cytotoxicity by enhancing perforin activity. Consistent with this interpretation, we found that increasing target cell tension augmented pore formation by perforin and killing by CTLs. Our data also indicate that CTLs coordinate perforin release and force exertion in space and time. These results reveal an unappreciated physical dimension to lymphocyte function and demonstrate that cells use mechanical forces to control the activity of outgoing chemical signals. PMID:26924577

  16. Photodynamic cell-kill analysis of breast tumor cells with a tamoxifen-pyropheophorbide conjugate.

    PubMed

    Fernandez Gacio, Ana; Fernandez-Marcos, Carlos; Swamy, Narasimha; Dunn, Darra; Ray, Rahul

    2006-10-15

    We hypothesized that estrogen receptor (ER) in hormone-sensitive breast cancer cells could be targeted for selective photodynamic killing of tumor cell with antiestrogen-porphyrin conjugates by combining the over-expression of ER in hormone-sensitive breast cancer cells and tumor-retention property of porphyrin photosensitizers. In this study we describe that a tamoxifen (TAM)-pyropheophorbide conjugate that specifically binds to ER alpha, caused selective cell-kill in MCF-7 breast cancer cells upon light exposure. Therefore, it is a potential candidate for ER-targeted photodynamic therapy of cancers (PDT) of tissues and organs that respond to estrogens/antiestrogens. 2006 Wiley-Liss, Inc.

  17. Cytotoxic T Cells Use Mechanical Force to Potentiate Target Cell Killing.

    PubMed

    Basu, Roshni; Whitlock, Benjamin M; Husson, Julien; Le Floc'h, Audrey; Jin, Weiyang; Oyler-Yaniv, Alon; Dotiwala, Farokh; Giannone, Gregory; Hivroz, Claire; Biais, Nicolas; Lieberman, Judy; Kam, Lance C; Huse, Morgan

    2016-03-24

    The immunological synapse formed between a cytotoxic T lymphocyte (CTL) and an infected or transformed target cell is a physically active structure capable of exerting mechanical force. Here, we investigated whether synaptic forces promote the destruction of target cells. CTLs kill by secreting toxic proteases and the pore forming protein perforin into the synapse. Biophysical experiments revealed a striking correlation between the magnitude of force exertion across the synapse and the speed of perforin pore formation on the target cell, implying that force potentiates cytotoxicity by enhancing perforin activity. Consistent with this interpretation, we found that increasing target cell tension augmented pore formation by perforin and killing by CTLs. Our data also indicate that CTLs coordinate perforin release and force exertion in space and time. These results reveal an unappreciated physical dimension to lymphocyte function and demonstrate that cells use mechanical forces to control the activity of outgoing chemical signals. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Killing of intrafamilial leukocytes by earthworm effector cells.

    PubMed

    Suzuki, M M; Cooper, E L

    1995-01-01

    When Lumbricus and Eisenia coelomocytes are cultured together in intrafamilial xenogeneic combinations, significant cytotoxicity occurs at 24 h but not at 5 nor 72 h, as shown by trypan blue assay. In a 4.5-h assay, measuring 51Cr release, using an effector/target ratio of 25:1, unpooled cells from a single Lumbricus killed Eisenia cells at levels of 6% and 14%. However, Eisenia coelomocyte survival was high and identical in either cell-free xenogeneic (Lumbricus) coelomic fluid or in artificial medium. In this 1-way assay, earthworm (Lumbricus) coelomocytes act as effector cells that kill non-self target cells, even those of other earthworms. Comparisons with previous results reveal greater reliability and consistently repeatable results when the 51Cr release assay is used to measure cytotoxicity regardless of the targets.

  19. Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Nguyen, Hal X.; Tidball, James G.

    2003-01-01

    Current evidence indicates that the physiological functions of inflammatory cells are highly sensitive to their microenvironment, which is partially determined by the inflammatory cells and their potential targets. In the present investigation, interactions between neutrophils, macrophages and muscle cells that may influence muscle cell death are examined. Findings show that in the absence of macrophages, neutrophils kill muscle cells in vitro by superoxide-dependent mechanisms, and that low concentrations of nitric oxide (NO) protect against neutrophil-mediated killing. In the absence of neutrophils, macrophages kill muscle cells through a NO-dependent mechanism, and the presence of target muscle cells causes a three-fold increase in NO production by macrophages, with no change in the concentration of inducible nitric oxide synthase. Muscle cells that are co-cultured with both neutrophils and macrophages in proportions that are observed in injured muscle show cytotoxicity through a NO-dependent, superoxide-independent mechanism. Furthermore, the concentration of myeloid cells that is necessary for muscle killing is greatly reduced in assays that use mixed myeloid cell populations, rather than uniform populations of neutrophils or macrophages. These findings collectively show that the magnitude and mechanism of muscle cell killing by myeloid cells are modified by interactions between muscle cells and neutrophils, between muscle cells and macrophages and between macrophages and neutrophils.

  20. Antibody Fc engineering improves frequency and promotes kinetic boosting of serial killing mediated by NK cells

    PubMed Central

    Romain, Gabrielle; Senyukov, Vladimir; Rey-Villamizar, Nicolas; Merouane, Amine; Kelton, William; Liadi, Ivan; Mahendra, Ankit; Charab, Wissam; Georgiou, George; Roysam, Badrinath; Lee, Dean A.

    2014-01-01

    The efficacy of most therapeutic monoclonal antibodies (mAbs) targeting tumor antigens results primarily from their ability to elicit potent cytotoxicity through effector-mediated functions. We have engineered the fragment crystallizable (Fc) region of the immunoglobulin G (IgG) mAb, HuM195, targeting the leukemic antigen CD33, by introducing the triple mutation Ser293Asp/Ala330Leu/Ile332Glu (DLE), and developed Time-lapse Imaging Microscopy in Nanowell Grids to analyze antibody-dependent cell-mediated cytotoxicity kinetics of thousands of individual natural killer (NK) cells and mAb-coated target cells. We demonstrate that the DLE-HuM195 antibody increases both the quality and the quantity of NK cell-mediated antibody-dependent cytotoxicity by endowing more NK cells to participate in cytotoxicity via accrued CD16-mediated signaling and by increasing serial killing of target cells. NK cells encountering targets coated with DLE-HuM195 induce rapid target cell apoptosis by promoting simultaneous conjugates to multiple target cells and induce apoptosis in twice the number of target cells within the same period as the wild-type mAb. Enhanced target killing was also associated with increased frequency of NK cells undergoing apoptosis, but this effect was donor-dependent. Antibody-based therapies targeting tumor antigens will benefit from a better understanding of cell-mediated tumor elimination, and our work opens further opportunities for the therapeutic targeting of CD33 in the treatment of acute myeloid leukemia. PMID:25232058

  1. Failed CTL/NK cell killing and cytokine hypersecretion are directly linked through prolonged synapse time

    PubMed Central

    Rudd-Schmidt, Jesse A.; Lopez, Jamie A.; Ramsbottom, Kelly M.; Mannering, Stuart I.; Andrews, Daniel M.; Voskoboinik, Ilia

    2015-01-01

    Failure of cytotoxic T lymphocytes (CTLs) or natural killer (NK) cells to kill target cells by perforin (Prf)/granzyme (Gzm)-induced apoptosis causes severe immune dysregulation. In familial hemophagocytic lymphohistiocytosis, Prf-deficient infants suffer a fatal “cytokine storm” resulting from macrophage overactivation, but the link to failed target cell death is not understood. We show that prolonged target cell survival greatly amplifies the quanta of inflammatory cytokines secreted by CTLs/NK cells and that interferon-γ (IFN-γ) directly invokes the activation and secondary overproduction of proinflammatory IL-6 from naive macrophages. Furthermore, using live cell microscopy to visualize hundreds of synapses formed between wild-type, Prf-null, or GzmA/B-null CTLs/NK cells and their targets in real time, we show that hypersecretion of IL-2, TNF, IFN-γ, and various chemokines is linked to failed disengagement of Prf- or Gzm-deficient lymphocytes from their targets, with mean synapse time increased fivefold, from ∼8 to >40 min. Surprisingly, the signal for detachment arose from the dying target cell and was caspase dependent, as delaying target cell death with various forms of caspase blockade also prevented their disengagement from fully competent CTLs/NK cells and caused cytokine hypersecretion. Our findings provide the cellular mechanism through which failed killing by lymphocytes causes systemic inflammation involving recruitment and activation of myeloid cells. PMID:25732304

  2. Vitamin C, a Multi-Tasking Molecule, Finds a Molecular Target in Killing Cancer Cells.

    PubMed

    Li, Robert

    2016-03-01

    Early work in the 1970s by Linus Pauling, a twice-honored Nobel laureate, led to his proposal of using high-dose vitamin C to treat cancer patients. Over the past several decades, a number of studies in animal models as well as several small-scale clinical studies have provided substantial support of Linus Pauling's early proposal. Production of reactive oxygen species (ROS) via oxidation of vitamin C appears to be a major underlying event, leading to the selective killing of cancer cells. However, it remains unclear how vitamin C selectively kills cancer cells while sparing normal cells and what the molecular targets of high-dose vitamin C are. In a recent article published in Science (2015 December 11; 350(6266):1391-6. doi: 10.1126/science.aaa5004), Yun et al. reported that vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting glyceraldehyde 3-phosphate dehydrogenase (GAPDH) through an ROS-dependent mechanism. This work by Yun et al. along with other findings advances our current understanding of the molecular basis of high-dose vitamin C-mediated cancer cell killing, which will likely give an impetus to the continued research efforts aiming to further decipher the novel biochemistry of vitamin C and its unique role in cancer therapy.

  3. Single-hit mechanism of tumour cell killing by radiation.

    PubMed

    Chapman, J D

    2003-02-01

    To review the relative importance of the single-hit mechanism of radiation killing for tumour response to 1.8-2.0 Gy day(-1) fractions and to low dose-rate brachytherapy. Tumour cell killing by ionizing radiation is well described by the linear-quadratic equation that contains two independent components distinguished by dose kinetics. Analyses of tumour cell survival curves that contain six or more dose points usually provide good estimates of the alpha- and beta-inactivation coefficients. Superior estimates of tumour cell intrinsic radiosensitivity are obtained when synchronized populations are employed. The characteristics of single-hit inactivation of tumour cells are reviewed and compared with the characteristics of beta-inactivation. Potential molecular targets associated with single-hit inactivation are discussed along with strategies for potentiating cell killing by this mechanism. The single-hit mechanism of tumour cell killing shows no dependence on dose-rate and, consequently, no evidence of sublethal damage repair. It is uniquely potentiated by high linear-energy-transfer radiation, exhibits a smaller oxygen enhancement ratio and exhibits a larger indirect effect by hydroxyl radicals than the beta-mechanism. alpha-inactivation coefficients vary slightly throughout interphase but mitotic cells exhibit extremely high alpha-coefficients in the range of those observed for lymphocytes and some repair-deficient cells. Evidence is accumulating to suggest that chromatin in compacted form could be a radiation-hypersensitive target associated with single-hit radiation killing. Analyses of tumour cell survival curves demonstrate that it is the single-hit mechanism (alpha) that determines the majority of cell killing after doses of 2Gy and that this mechanism is highly variable between tumour cell lines. The characteristics of single-hit inactivation are qualitatively and quantitatively distinct from those of beta-inactivation. Compacted chromatin in tumour cells should be further investigated as a radiation-hypersensitive target that could be modulated for therapeutic advantage.

  4. Cytotoxic human peripheral blood-derived γδT cells kill glioblastoma cell lines: implications for cell-based immunotherapy for patients with glioblastoma.

    PubMed

    Nakazawa, Tsutomu; Nakamura, Mitsutoshi; Park, Young Soo; Motoyama, Yasushi; Hironaka, Yasuo; Nishimura, Fumihiko; Nakagawa, Ichiro; Yamada, Shuichi; Matsuda, Ryosuke; Tamura, Kentaro; Sugimoto, Tadashi; Takeshima, Yasuhiro; Marutani, Akiko; Tsujimura, Takahiro; Ouji, Noriko; Ouji, Yukiteru; Yoshikawa, Masahide; Nakase, Hiroyuki

    2014-01-01

    Glioblastoma (GBM) is a highly aggressive brain tumor for which novel therapeutic approaches, such as immunotherapy, are urgently needed. Zoledronate (ZOL), an inhibitor of osteoclastic activity, is known to stimulate peripheral blood-derived γδT cells and sensitize tumors to γδT cell-mediated killing. To investigate the feasibility of γδT cell-based immunotherapy for patients with GBM, we focused on the killing of GBM cell lines by γδT cells and the molecular mechanisms involved in these cell-cell interactions. Peripheral blood mononuclear cells were expanded in ZOL and interleukin (IL)-2 for 14 days, and γδT cells were enriched in the expanded cells by the immunomagnetic depletion of αβT cells. Gliomas are resistant to NK cells but susceptible to lymphokine-activated killer cells and some cytotoxic T lymphocytes. When the γδT cell-mediated killing of three GBM cell lines (U87MG, U138MG and A172 cells) and an NK-sensitive leukemia cell line (K562 cells) were tested, 32% U87MG, 15% U138MG, 1% A172, and 50% K562 cells were killed at an effector:target ratio of 5:1. The γδT cell-mediated killing of all three GBM cell lines was significantly enhanced by ZOL and this ZOL-enhanced killing was blocked by an anti-T cell receptor (TcR) antibody. These results indicated that TcR γδ is crucial for the recognition of ZOL-treated GBM cells by γδT cells. Since the low level killing of GBM cells by the γδT cells was enhanced by ZOL, γδT cell-targeting therapy in combination with ZOL treatment could be effective for patients with GBM.

  5. Microchip Screening Platform for Single Cell Assessment of NK Cell Cytotoxicity

    PubMed Central

    Guldevall, Karolin; Brandt, Ludwig; Forslund, Elin; Olofsson, Karl; Frisk, Thomas W.; Olofsson, Per E.; Gustafsson, Karin; Manneberg, Otto; Vanherberghen, Bruno; Brismar, Hjalmar; Kärre, Klas; Uhlin, Michael; Önfelt, Björn

    2016-01-01

    Here, we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK) cells within larger populations. Human primary NK cells were distributed across a silicon–glass microchip containing 32,400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis, the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75%) were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3) target cells within the 12-h long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors, it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g., in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy. PMID:27092139

  6. Non-Covalent Functionalization of Carbon Nanovectors with an Antibody Enables Targeted Drug Delivery

    PubMed Central

    Berlin, Jacob M.; Pham, Tam T.; Sano, Daisuke; Mohamedali, Khalid A.; Marcano, Daniela C.; Myers, Jeffrey N.; Tour, James M.

    2011-01-01

    Current chemotherapeutics are characterized by efficient tumor cell-killing and severe side effects mostly derived from off target toxicity. Hence targeted delivery of these drugs to tumor cells is actively sought. We previously demonstrated that poly(ethylene glycol)-functionalized carbon nanovectors are able to sequester paclitaxel, a widely used hydrophobic cancer drug, by simple physisorption and deliver the drug for killing of cancer cells. The cell-killing when these drug-loaded carbon nanoparticles were used was equivalent to when a commercial formulation of paclitaxel was used. Here we show that by further mixing the drug-loaded nanoparticles with Cetuximab, a monoclonal antibody that recognizes the epidermal growth factor receptor (EGFR), paclitaxel is preferentially targeted to EGFR+ tumor cells in vitro. This supports progressing to in vivo studies. Moreover, the construct is unusual in that all three components are assembled through non-covalent interactions. Such non-covalent assembly could enable high-throughput screening of drug/antibody combinations. PMID:21736358

  7. Interdisciplinary Studies on the Combat Readiness and Health Issues Faced by Military Personnel

    DTIC Science & Technology

    2008-09-01

    University of Texas T and operational at the University of Texas at Dallas Center for BrainHealth located at 2200 W. Mockingbird Lane, Dallas, Texas...cells), and the targeted cells have been efficiently killed with NIR. This work is now published (Chakravarty et al., 2008) (Appendix B...mononuclear cells bound only to the CNTs coupled to the anti-CD25 mAb. Most importantly, only the specifically targeted cells were killed after exposure to

  8. Gene therapy for human ovarian cancer cells using efficient expression of Fas gene combined with γδT cells.

    PubMed

    Lin, Jiajing; Zeng, Dingyuan; He, Hongying; Tan, Guangping; Lan, Ying; Jiang, Fuyan; Sheng, Shuting

    2017-10-01

    Low tissue specificity and efficiency of exogenous gene expression are the two major obstacles in tumor‑targeted gene therapy. The Fas cell surface death receptor (Fas)/Fas ligand pathway is one of the primary pathways responsible for the regulation of cell apoptosis. The aim of the present study was to explore whether the regulation of tumor specific promoters and a two‑step transcriptional amplification system (TSTA) assured efficient, targeted expression of their downstream Fas gene in human ovarian cancer cells, and to assess the killing effect of γδT cells on these cells with high Fas expression. Three shuttle plasmids containing different control elements of the human telomerase reverse transcriptase (hTERT) promoter and/or TSTA were constructed and packaged into adenovirus 5 (Ad5) vectors for the expression of exogenous Fas gene. The human ovarian cancer cell line SKOV3 and a control human embryonic lung fibroblast cell line were transfected with Ad5‑hTERT‑Fas or Ad5‑hTERT‑TSTA‑Fas. Fas mRNA and protein expression were examined by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. γδT lymphocytes were isolated, cultured and mixed at different ratios with SKOV3 cells with Fas expression in order to assess the killing effect of γδT cells. hTERT promoter induced the specific expression of FAS gene in SKOV3 cells, and the TSTA strategy increased FAS expression by 14.2‑fold. The killing effect of γδT cells increased with the expression level of Fas and the effector‑target cell ratio. The killing rate for SKOV3 cells with high FAS expression was 72.5% at an effector‑target cell ratio of 40:1. The regulators of hTERT promoter and TSTA assure the efficient and targeted expression of their downstream Fas gene in SKOV3 cells. The killing effect of γδT cells for ovarian cancer cells with relatively high Fas expression was improved.

  9. [Construction, expression and characterization of the fusion gene of super-antigen SEA and single chain Fv of the ND-1 monoclonal antibody against human colorectal cancer].

    PubMed

    Chen, Hang; Li, Li; Fang, Jin

    2012-04-01

    To construct and express the recombinant ND-1-scFv/SEA, a fusion protein of superantigen (staphylococcal enterotoxinA, SEA) and single-chain variable fragment of monoclonal antibody ND-1 against human clolorectal carcinoma, and to enhance the targeted killing effect of SEA. The expression of the fusion protein was induced in E.coli M15 by IPTG. Ni-NTA resin affinity chromatography was used to separate and purify the expressed product. The specific binding activity of the purified ND-1-scFv/SEA protein was examined by indirect immunofluorescence assay and the targeted-cytotoxicity was determined using MTT assay. The expressing vector of fusion gene ND-1scFv/SEA was constructed successfully. ND-1-scFv/SEA protein retained a high binding affinity to antigen-positive human colorectal cancer cell CCL-187 and had a stronger capability to activate PBMC and kill the target cells compared to SEA alone, with a killing rate of 91% at 4 μg/mL. ND-1-scFv/SEA fusion protein could specifically target colorectal cancer cell, enhance the activity of kill tumor cell and has potential applications in the targeted therapy of colorectal cancer.

  10. EGFR-targeted granzyme B expressed in NK cells enhances natural cytotoxicity and mediates specific killing of tumor cells.

    PubMed

    Oberoi, Pranav; Jabulowsky, Robert A; Bähr-Mahmud, Hayat; Wels, Winfried S

    2013-01-01

    Natural killer (NK) cells are highly specialized effectors of the innate immune system that hold promise for adoptive cancer immunotherapy. Their cell killing activity is primarily mediated by the pro-apoptotic serine protease granzyme B (GrB), which enters targets cells with the help of the pore-forming protein perforin. We investigated expression of a chimeric GrB fusion protein in NK cells as a means to augment their antitumoral activity. For selective targeting to tumor cells, we fused the epidermal growth factor receptor (EGFR) peptide ligand transforming growth factor α (TGFα) to human pre-pro-GrB. Established human NKL natural killer cells transduced with a lentiviral vector expressed this GrB-TGFα (GrB-T) molecule in amounts comparable to endogenous wildtype GrB. Activation of the genetically modified NK cells by cognate target cells resulted in the release of GrB-T together with endogenous granzymes and perforin, which augmented the effector cells' natural cytotoxicity against NK-sensitive tumor cells. Likewise, GrB-T was released into the extracellular space upon induction of degranulation with PMA and ionomycin. Secreted GrB-T fusion protein displayed specific binding to EGFR-overexpressing tumor cells, enzymatic activity, and selective target cell killing in the presence of an endosomolytic activity. Our data demonstrate that ectopic expression of a targeted GrB fusion protein in NK cells is feasible and can enhance antitumoral activity of the effector cells.

  11. Killing effect of TNF-mediated by conditionally replicating adenovirus on esophageal cancer and lung cancer cell lines.

    PubMed

    Jiang, Yue-Quan; Zhang, Zhi; Cai, Hua-Rong; Zhou, Hong

    2015-01-01

    The killing effect of TNF mediated by conditionally replicating adenovirus SG502 on human cancer cell lines was assessed by in vivo and in vitro experiments. The recombinant adenovirus SG502-TNF was used to infect human lung cancer cell line A549 and human esophageal cancer cell line TE-1. The expression of the exogenous gene and its inhibitory effect on the tumor cell lines were thus detected. Tumor transplantation experiment was performed in mice with the purpose of assessing the inhibitory effect of the adenovirus on tumor cells and tumor formation. The targeting of the adenovirus and the mechanism of tumor inhibition were discussed by in vivo imaging technology, HE staining and TUNEL assay. Recombinant adenovirus SG502-TNF targeted the tumor cells specifically with stable expression of TNF, which produced a killing effect on tumor cells by regulating the apoptotic signaling pathway. Recombinant adenovirus SG502-TNF possessed significant killing effect on TE-1 cells either in vivo or in vitro. This finding demonstrated the potential clinical application of adenovirus SG502.

  12. Endocytosis of Cytotoxic Granules Is Essential for Multiple Killing of Target Cells by T Lymphocytes.

    PubMed

    Chang, Hsin-Fang; Bzeih, Hawraa; Schirra, Claudia; Chitirala, Praneeth; Halimani, Mahantappa; Cordat, Emmanuelle; Krause, Elmar; Rettig, Jens; Pattu, Varsha

    2016-09-15

    CTLs are serial killers that kill multiple target cells via exocytosis of cytotoxic granules (CGs). CG exocytosis is tightly regulated and has been investigated in great detail; however, whether CG proteins are endocytosed following exocytosis and contribute to serial killing remains unknown. By using primary CTLs derived from a knock-in mouse of the CG membrane protein Synaptobrevin2, we show that CGs are endocytosed in a clathrin- and dynamin-dependent manner. Following acidification, endocytosed CGs are recycled through early and late, but not recycling endosomes. CGs are refilled with granzyme B at the late endosome stage and polarize to subsequent synapses formed between the CTL and new target cells. Importantly, inhibiting CG endocytosis in CTLs results in a significant reduction of their cytotoxic activity. Thus, our data demonstrate that continuous endocytosis of CG membrane proteins is a prerequisite for efficient serial killing of CTLs and identify key events in this process. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. Classification of human natural killer cells based on migration behavior and cytotoxic response.

    PubMed

    Vanherberghen, Bruno; Olofsson, Per E; Forslund, Elin; Sternberg-Simon, Michal; Khorshidi, Mohammad Ali; Pacouret, Simon; Guldevall, Karolin; Enqvist, Monika; Malmberg, Karl-Johan; Mehr, Ramit; Önfelt, Björn

    2013-02-21

    Despite intense scrutiny of the molecular interactions between natural killer (NK) and target cells, few studies have been devoted to dissection of the basic functional heterogeneity in individual NK cell behavior. Using a microchip-based, time-lapse imaging approach allowing the entire contact history of each NK cell to be recorded, in the present study, we were able to quantify how the cytotoxic response varied between individual NK cells. Strikingly, approximately half of the NK cells did not kill any target cells at all, whereas a minority of NK cells was responsible for a majority of the target cell deaths. These dynamic cytotoxicity data allowed categorization of NK cells into 5 distinct classes. A small but particularly active subclass of NK cells killed several target cells in a consecutive fashion. These "serial killers" delivered their lytic hits faster and induced faster target cell death than other NK cells. Fast, necrotic target cell death was correlated with the amount of perforin released by the NK cells. Our data are consistent with a model in which a small fraction of NK cells drives tumor elimination and inflammation.

  14. Role of Oxidative Stress in the Suppression of Immune Responses in Peripheral Blood Mononuclear Cells Exposed to Combustible Tobacco Product Preparation.

    PubMed

    Arimilli, Subhashini; Schmidt, Eckhardt; Damratoski, Brad E; Prasad, G L

    2017-10-01

    Cigarette smoking is a major risk factor for several human diseases. Chronic inflammation, resulting from increased oxidative stress, has been suggested as a mechanism that contributes to the increased susceptibility of smokers to cancer and microbial infections. We have previously shown that whole-smoke conditioned medium (WS-CM) and total particulate matter (TPM) prepared from Kentucky 3R4F reference cigarettes [collectively called as combustible tobacco product preparations (TPPs)] potently suppressed agonist-stimulated cytokine secretion and target cell killing in peripheral blood mononuclear cells (PBMCs). Here we have investigated the role of oxidative stress from TPPs, which alters inflammatory responses in vitro. Particularly, we investigated the mechanisms of WS-CM-induced suppression of select cytokine secretions in Toll-like receptor (TLR) agonist-stimulated cells and target cell killing by effector cells in PBMCs. Pretreatment with N-acetyl cysteine (NAC), a precursor of reduced glutathione and an established anti-oxidant, protected against DNA damage and cytotoxicity caused by exposure to WS-CM. Similarly, secretion of tumor necrosis factor (TNF), interleukin (IL)-6, and IL-8 in response to TLR-4 stimulation was restored by pretreatment with NAC. Target cell killing, a functional measure of cytolytic cells in PBMCs, is suppressed by WS-CM. Pretreatment with NAC restored the target cell killing in WS-CM treated PBMCs. This was accompanied by higher perforin levels in the effector cell populations. Collectively, these data suggest that reducing oxidative stress caused by cigarette smoke components restores select immune responses in this ex vivo model.

  15. Cytotoxic cells induced after Chlamydia psittaci infection in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammert, J.K.

    1982-03-01

    The ability of spleen cells from Chlamydia psittaci-infected mice to lyse C. psittaci-infected and uninfected target cell monolayers was studied. The cytotoxicity assay used was a terminal label method in which the number of adherent target cells surviving the interaction with effector cells was determined by measuring the uptake of (3H)uridine by such cells. It was observed that in the first few days postinfection (3 to 5), spleens contained cells that lysed infected and uninfected targets with equal efficiency. Subsequently, infected targets were killed primarily. The activity of effector spleen cells for infected targets continued, although at a reduced level,more » beyond 21 days postinfection. Intact effector cells were required since a disruption by sonication resulted in a loss of cytotoxicity. The enhanced killing observed with infected targets was also observed when target cells were sensitized with heat- or UV-inactivated C. psittaci. This study suggests that the induction of cytotoxic cells after C. psittaci infection may contribute to the ability of the host to control multiplication of the microorganism.« less

  16. Lysis of autologous human macrophages by lymphokine-activated killer cells: interaction of effector cell and target cell conjugates analyzed by scanning electron microscopy.

    PubMed

    Streck, R J; Helinski, E H; Ovak, G M; Pauly, J L

    1990-09-01

    Lymphokine (i.e., interleukin 2; IL-2)-activated killer (LAK) cells derived from normal human blood are known to destroy human tumor target cells. Accordingly, immunotherapy modalities using IL-2, either alone or in combination with LAK cells, have been evaluated for eradicating metastatic cancer. In studies conducted to characterize receptors on LAK cell membrane ultrastructures, we observed that LAK cells kill autologous human monocyte-derived macrophages (M phi). In these experiments, peripheral blood mononuclear cells of a healthy adult donor were cultured to generate LAK cells and autologous non-adherent M phi. Thereafter, conjugates were prepared by incubating for 3 h autologous populations of LAK cells and M phi. Examination of the conjugates by scanning electron microscopy (SEM) identified LAK cell-mediated killing of M phi. Moreover, SEM analysis of the LAK cell membrane architecture identified microvilli-like ultrastructures that provided a physical bridge that joined together the LAK cell and M phi. The immunological mechanism(s) underling LAK cell killing of autologous M phi is not known; nevertheless, these conjugates will provide a useful model to study membrane receptors on ultrastructures that mediate the initial stages of cytolysis that include target cell recognition and cell-to-cell adhesion. The results of our observations and the findings of other investigators who have also demonstrated LAK cell killing of autologous normal human leukocytes are discussed in the context of the association of IL-2 and IL-2-activated killer cells with side effects observed in ongoing clinical trials and with autoimmune disorders.

  17. Engineered T cells for pancreatic cancer treatment

    PubMed Central

    Katari, Usha L; Keirnan, Jacqueline M; Worth, Anna C; Hodges, Sally E; Leen, Ann M; Fisher, William E; Vera, Juan F

    2011-01-01

    Objective Conventional chemotherapy and radiotherapy produce marginal survival benefits in pancreatic cancer, underscoring the need for novel therapies. The aim of this study is to develop an adoptive T cell transfer approach to target tumours expressing prostate stem cell antigen (PSCA), a tumour-associated antigen that is frequently expressed by pancreatic cancer cells. Methods Expression of PSCA on cell lines and primary tumour samples was confirmed by immunohistochemistry. Healthy donor- and patient-derived T cells were isolated, activated in vitro using CD3/CD28, and transduced with a retroviral vector encoding a chimeric antigen receptor (CAR) targeting PSCA. The ability of these cells to kill tumour cells was analysed by chromium-51 (Cr51) release. Results Prostate stem cell antigen was expressed on >70% of the primary tumour samples screened. Activated, CAR-modified T cells could be readily generated in clinically relevant numbers and were specifically able to kill PSCA-expressing pancreatic cancer cell lines with no non-specific killing of PSCA-negative target cells, thus indicating the potential efficacy and safety of this approach. Conclusions Prostate stem cell antigen is frequently expressed on pancreatic cancer cells and can be targeted for immune-mediated destruction using CAR-modified, adoptively transferred T cells. The safety and efficacy of this approach indicate that it deserves further study and may represent a promising novel treatment for patients with pancreatic cancer. PMID:21843265

  18. Cell Death and Cancer Therapy: Don't Forget to Kill the Cancer Cell!

    PubMed

    Letai, Anthony

    2015-11-15

    In our current age of targeted therapies, there is understandably considerable attention paid to the specific molecular targets of pharmaceutical intervention. For a targeted drug to work, it must bind to a target selectively and impair its function. Monitoring biomarkers of the impaired target function can provide vital in vivo pharmacodynamic information. Moreover, genetic changes to the target are often the source of resistance to targeted agents. However, for the treatment of cancer, it is necessary that the therapy not only provide efficient binding and inhibition of the target, but also that this intervention reliably kills the cancer cell. In this CCR Focus section, four articles make the connection between therapies that target T-cell activation, autophagy, IAP proteins, and BCL-2 and the commitment of cancer cells to cell death. Before addressing those exciting classes of targeted therapies, however, an overview is provided to discuss cell death induced by what is arguably still the most successful set of drugs in the history of medical oncology, conventional chemotherapy. See all articles in this CCR Focus section, "Cell Death and Cancer Therapy." ©2015 American Association for Cancer Research.

  19. Combining Heavy Ion Radiation and Artificial MicroRNAs to Target the Homologous Recombination Repair Gene Efficiently Kills Human Tumor Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Zhiming; Department of Radiation Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, Georgia; Wang Ping

    2013-02-01

    Purpose: Previously, we demonstrated that heavy ions kill more cells at the same dose than X-rays because DNA-clustered lesions produced by heavy ions affect nonhomologous end-joining (NHEJ) repair but not homologous recombination repair (HRR). We have also shown that our designed artificial microRNAs (amiRs) could efficiently target XRCC4 (an essential factor for NHEJ) or XRCC2 (an essential factor for HRR) and sensitize human tumor cells to X-rays. Based on these data, we were interested in testing the hypothesis that combining heavy ions and amiRs to target HRR but not NHEJ should more efficiently kill human tumor cells. Methods and Materials:more » Human tumor cell lines (U87MG, a brain tumor cell line, and A549, a lung cancer cell line) and their counterparts, overexpressed with amiR to target XRCC2, XRCC4 or both, were used in this study. Survival sensitivities were examined using a clonogenic assay after these cells were exposed to X-rays or heavy ions. In addition, these cell lines were subcutaneously injected into nude mice to form xenografts and the tumor size was compared after the tumor areas were exposed to X-rays or heavy ions. Results: Although targeting either XRCC4 (NHEJ factor) or XRCC2 (HRR factor) sensitized the human tumor cells to X-rays, in vitro and the xenograft animal model, targeting only XRCC2 but not XRCC4 sensitized the human tumor cells to heavy ions in vitro and in the xenograft animal model. Conclusions: Combining heavy ions with targeting the HRR pathway, but not the NHEJ pathway, could significantly improve the efficiency of tumor cell death.« less

  20. Combining heavy ion radiation and artificial microRNAs to target the homologous recombination repair gene efficiently kills human tumor cells.

    PubMed

    Zheng, Zhiming; Wang, Ping; Wang, Hongyan; Zhang, Xiangming; Wang, Minli; Cucinotta, Francis A; Wang, Ya

    2013-02-01

    Previously, we demonstrated that heavy ions kill more cells at the same dose than X-rays because DNA-clustered lesions produced by heavy ions affect nonhomologous end-joining (NHEJ) repair but not homologous recombination repair (HRR). We have also shown that our designed artificial microRNAs (amiRs) could efficiently target XRCC4 (an essential factor for NHEJ) or XRCC2 (an essential factor for HRR) and sensitize human tumor cells to X-rays. Based on these data, we were interested in testing the hypothesis that combining heavy ions and amiRs to target HRR but not NHEJ should more efficiently kill human tumor cells. Human tumor cell lines (U87MG, a brain tumor cell line, and A549, a lung cancer cell line) and their counterparts, overexpressed with amiR to target XRCC2, XRCC4 or both, were used in this study. Survival sensitivities were examined using a clonogenic assay after these cells were exposed to X-rays or heavy ions. In addition, these cell lines were subcutaneously injected into nude mice to form xenografts and the tumor size was compared after the tumor areas were exposed to X-rays or heavy ions. Although targeting either XRCC4 (NHEJ factor) or XRCC2 (HRR factor) sensitized the human tumor cells to X-rays, in vitro and the xenograft animal model, targeting only XRCC2 but not XRCC4 sensitized the human tumor cells to heavy ions in vitro and in the xenograft animal model. Combining heavy ions with targeting the HRR pathway, but not the NHEJ pathway, could significantly improve the efficiency of tumor cell death. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Hemangiosarcoma and its cancer stem cell subpopulation are effectively killed by a toxin targeted through epidermal growth factor and urokinase receptors.

    PubMed

    Schappa, Jill T; Frantz, Aric M; Gorden, Brandi H; Dickerson, Erin B; Vallera, Daniel A; Modiano, Jaime F

    2013-10-15

    Targeted toxins have the potential to overcome intrinsic or acquired resistance of cancer cells to conventional cytotoxic agents. Here, we hypothesized that EGFuPA-toxin, a bispecific ligand-targeted toxin (BLT) consisting of a deimmunized Pseudomonas exotoxin (PE) conjugated to epidermal growth factor and urokinase, would efficiently target and kill cells derived from canine hemangiosarcoma (HSA), a highly chemotherapy resistant tumor, as well as cultured hemangiospheres, used as a surrogate for cancer stem cells (CSC). EGFuPA-toxin showed cytotoxicity in four HSA cell lines (Emma, Frog, DD-1 and SB) at a concentration of ≤100 nM, and the cytotoxicity was dependent on specific ligand-receptor interactions. Monospecific targeted toxins also killed these chemoresistant cells; in this case, a "threshold" level of EGFR expression appeared to be required to make cells sensitive to the monospecific EGF-toxin, but not to the monospecific uPA-toxin. The IC₅₀ of CSCs was higher by approximately two orders of magnitude as compared to non-CSCs, but these cells were still sensitive to EGFuPA-toxin at nanomolar (i.e., pharmacologically relevant) concentrations, and when targeted by EGFuPA-toxin, resulted in death of the entire cell population. Taken together, our results support the use of these toxins to treat chemoresistant tumors such as sarcomas, including those that conform to the CSC model. Our results also support the use of companion animals with cancer for further translational development of these cytotoxic molecules. Copyright © 2013 UICC.

  2. The mechanism of T-cell mediated cytotoxicity. VI. T-cell projections and their role in target cell killing.

    PubMed Central

    Sanderson, C J; Glauert, A M

    1979-01-01

    Electron micrographs of material fixed during the first 10 min of a T-cell cytotoxic system showed T-cell projections and T-cell burrowing into target cells. These observations were made possible by using a system with a very high rate of killing. The projections vary in shape and size, and can push deeply into the target cell, distorting organelles in their path, including the nucleus. The projections contain fine fibrillar material, to the exclusion of organelles. They push the target cell membrane in front of them to form pockets approximating to the shape of the projection. Areas of close contact occur between the projections and the target cell membrane, particularly at the leading edges. The likelihood that these projections develop as a result of contact with specific antigen, and are involved in the cytotoxic mechanism is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 PMID:311336

  3. Human Monocytes in the Presence of Interferons Alpha2a and Gamma Are Potent Killers of Serous Ovarian Cancer Cell Lines in Combination with Paclitaxel and Carboplatin

    PubMed Central

    Johnson, Chase L.; Zoon, Kathryn C.

    2015-01-01

    Interferons (IFNs) play an important role in immune surveillance of tumors; however, their efficacy in the treatment of malignancies has been limited. Monocytes are mononuclear phagocytes that are critical to the generation of an innate immune response to tumors. The authors and others have shown that treatment of tumor cell lines in vitro and in vivo with human monocytes primed with type I and type II IFNs results in killing. We now expand on this work, in an extended panel of ovarian cancer cell lines. In this study, we hypothesized that there would be variable sensitivity amongst cell lines to the killing properties of monocytes and IFNs. To this end, we explored the interactions of IFN primed monocytes in conjunction with the standard of therapy for ovarian cancer, taxane, and platinum-based chemotherapeutics. Using 6 ovarian cancer cell lines, we demonstrated that there is variation from cell line to cell line in the ability of IFN-α2a and IFN-γ primed monocytes to synergistically kill target tumor cells, and further, there is an additive killing effect when target cells are treated with both IFN primed monocytes and chemotherapy. PMID:25068849

  4. Targeted drug delivery using genetically engineered diatom biosilica.

    PubMed

    Delalat, Bahman; Sheppard, Vonda C; Rasi Ghaemi, Soraya; Rao, Shasha; Prestidge, Clive A; McPhee, Gordon; Rogers, Mary-Louise; Donoghue, Jacqueline F; Pillay, Vinochani; Johns, Terrance G; Kröger, Nils; Voelcker, Nicolas H

    2015-11-10

    The ability to selectively kill cancerous cell populations while leaving healthy cells unaffected is a key goal in anticancer therapeutics. The use of nanoporous silica-based materials as drug-delivery vehicles has recently proven successful, yet production of these materials requires costly and toxic chemicals. Here we use diatom microalgae-derived nanoporous biosilica to deliver chemotherapeutic drugs to cancer cells. The diatom Thalassiosira pseudonana is genetically engineered to display an IgG-binding domain of protein G on the biosilica surface, enabling attachment of cell-targeting antibodies. Neuroblastoma and B-lymphoma cells are selectively targeted and killed by biosilica displaying specific antibodies sorbed with drug-loaded nanoparticles. Treatment with the same biosilica leads to tumour growth regression in a subcutaneous mouse xenograft model of neuroblastoma. These data indicate that genetically engineered biosilica frustules may be used as versatile 'backpacks' for the targeted delivery of poorly water-soluble anticancer drugs to tumour sites.

  5. Stepwise cytoskeletal polarization as a series of checkpoints in innate but not adaptive cytolytic killing

    NASA Astrophysics Data System (ADS)

    Wülfing, Christoph; Purtic, Bozidar; Klem, Jennifer; Schatzle, John D.

    2003-06-01

    Cytolytic killing is a major effector mechanism in the elimination of virally infected and tumor cells. The innate cytolytic effectors, natural killer (NK) cells, and the adaptive effectors, cytotoxic T cells (CTL), despite differential immune recognition, both use the same lytic mechanism, cytolytic granule release. Using live cell video fluorescence microscopy in various primary cell models of NK cell and CTL killing, we show here that on tight target cell contact, a majority of the NK cells established cytoskeletal polarity required for effective lytic function slowly or incompletely. In contrast, CTLs established cytoskeletal polarity rapidly. In addition, NK cell killing was uniquely sensitive to minor interference with cytoskeletal dynamics. We propose that the stepwise NK cell cytoskeletal polarization constitutes a series of checkpoints in NK cell killing. In addition, the use of more deliberate progression to effector function to compensate for inferior immune recognition specificity provides a mechanistic explanation for how the same effector function can be used in the different functional contexts of the innate and adaptive immune response.

  6. Dynamic Analysis of Human Natural Killer Cell Response at Single-Cell Resolution in B-Cell Non-Hodgkin Lymphoma.

    PubMed

    Sarkar, Saheli; Sabhachandani, Pooja; Ravi, Dashnamoorthy; Potdar, Sayalee; Purvey, Sneha; Beheshti, Afshin; Evens, Andrew M; Konry, Tania

    2017-01-01

    Natural killer (NK) cells are phenotypically and functionally diverse lymphocytes that recognize and kill cancer cells. The susceptibility of target cancer cells to NK cell-mediated cytotoxicity depends on the strength and balance of regulatory (activating/inhibitory) ligands expressed on target cell surface. We performed gene expression arrays to determine patterns of NK cell ligands associated with B-cell non-Hodgkin lymphoma (b-NHL). Microarray analyses revealed significant upregulation of a multitude of NK-activating and costimulatory ligands across varied b-NHL cell lines and primary lymphoma cells, including ULBP1, CD72, CD48, and SLAMF6. To correlate genetic signatures with functional anti-lymphoma activity, we developed a dynamic and quantitative cytotoxicity assay in an integrated microfluidic droplet generation and docking array. Individual NK cells and target lymphoma cells were co-encapsulated in picoliter-volume droplets to facilitate monitoring of transient cellular interactions and NK cell effector outcomes at single-cell level. We identified significant variability in NK-lymphoma cell contact duration, frequency, and subsequent cytolysis. Death of lymphoma cells undergoing single contact with NK cells occurred faster than cells that made multiple short contacts. NK cells also killed target cells in droplets via contact-independent mechanisms that partially relied on calcium-dependent processes and perforin secretion, but not on cytokines (interferon-γ or tumor necrosis factor-α). We extended this technique to characterize functional heterogeneity in cytolysis of primary cells from b-NHL patients. Tumor cells from two diffuse large B-cell lymphoma patients showed similar contact durations with NK cells; primary Burkitt lymphoma cells made longer contacts and were lysed at later times. We also tested the cytotoxic efficacy of NK-92, a continuously growing NK cell line being investigated as an antitumor therapy, using our droplet-based bioassay. NK-92 cells were found to be more efficient in killing b-NHL cells compared with primary NK cells, requiring shorter contacts for faster killing activity. Taken together, our combined genetic and microfluidic analysis demonstrate b-NHL cell sensitivity to NK cell-based cytotoxicity, which was associated with significant heterogeneity in the dynamic interaction at single-cell level.

  7. Antibody-peptide-MHC fusion conjugates target non-cognate T cells to kill tumour cells.

    PubMed

    King, Ben C; Hamblin, Angela D; Savage, Philip M; Douglas, Leon R; Hansen, Ted H; French, Ruth R; Johnson, Peter W M; Glennie, Martin J

    2013-06-01

    Attempts to generate robust anti-tumour cytotoxic T lymphocyte (CTL) responses using immunotherapy are frequently thwarted by exhaustion and anergy of CTL recruited to tumour. One strategy to overcome this is to retarget a population of virus-specific CTL to kill tumour cells. Here, we describe a proof-of-principle study using a bispecific conjugate designed to retarget ovalbumin (OVA)-specific CTL to kill tumour cells via CD20. A single-chain trimer (SCT) consisting of MHCI H-2K(b)/SIINFEKL peptide/beta 2 microglobulin/BirA was expressed in bacteria, refolded and chemically conjugated to one (1:1; F2) or two (2:1; F3) anti-hCD20 Fab' fragments. In vitro, the [SCT × Fab'] (F2 and F3) redirected SIINFEKL-specific OT-I CTL to kill CD20(+) target cells, and in the presence of CD20(+) target cells to provide crosslinking, they were also able to induce proliferation of OT-I cells. In vivo, activated OT-I CTL could be retargeted to kill [SCT × Fab']-coated B cells from hCD20 transgenic (hCD20 Tg) mice and also EL4 and B16 mouse tumour cells expressing human CD20 (hCD20). Importantly, in a hCD20 Tg mouse model, [SCT × Fab'] administered systemically were able to retarget activated OT-I cells to deplete normal B cells, and their performance matched that of a bispecific antibody (BsAb) comprising anti-CD3 and anti-CD20. [SCT × Fab'] were also active therapeutically in an EL4 tumour model. Furthermore, measurement of serum cytokine levels suggests that [SCT × Fab'] are associated with a lower level of inflammatory cytokine release than the BsAb and so may be advantageous clinically in terms of reduced toxicity.

  8. E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells

    PubMed Central

    Mitchell, Michael J.; Chen, Christina S.; Ponmudi, Varun; Hughes, Andrew D.; King, Michael R.

    2012-01-01

    The presence of circulating tumor cells (CTCs) is believed to lead to the formation of secondary tumors via an adhesion cascade involving interaction between adhesion receptors of endothelial cells and ligands on CTCs. Many CTCs express sialylated carbohydrate ligands on their surfaces that adhere to selectin protein found on inflamed endothelial cells. We have investigated the feasibility of using immobilized selectin proteins as a targeting mechanism for CTCs under flow. Herein, targeted liposomal doxorubicin (L-DXR) was functionalized with recombinant human E-selectin (ES) and polyethylene glycol (PEG) to target and kill cancer cells under shear flow, both when immobilized along a microtube device or sheared in a cone-and-plate viscometer in a dilute suspension. Healthy circulating cells such as red blood cells were not targeted by this mechanism and were left to freely circulate, and minimal leukocyte death was observed. Halloysite nanotube (HNT)-coated microtube devices immobilized with nanoscale liposomes significantly enhanced the targeting, capture, and killing of cancer cells. This work demonstrates that E-selectin functionalized L-DXR, sheared in suspension or immobilized onto microtube devices, provides a novel approach to selectively target and deliver chemotherapeutics to CTCs in the bloodstream. PMID:22421423

  9. A New Approach for the Discovery of Antibiotics by Targeting Non-Multiplying Bacteria: A Novel Topical Antibiotic for Staphylococcal Infections

    PubMed Central

    Hu, Yanmin; Shamaei-Tousi, Alireza; Liu, Yingjun; Coates, Anthony

    2010-01-01

    In a clinical infection, multiplying and non-multiplying bacteria co-exist. Antibiotics kill multiplying bacteria, but they are very inefficient at killing non-multipliers which leads to slow or partial death of the total target population of microbes in an infected tissue. This prolongs the duration of therapy, increases the emergence of resistance and so contributes to the short life span of antibiotics after they reach the market. Targeting non-multiplying bacteria from the onset of an antibiotic development program is a new concept. This paper describes the proof of principle for this concept, which has resulted in the development of the first antibiotic using this approach. The antibiotic, called HT61, is a small quinolone-derived compound with a molecular mass of about 400 Daltons, and is active against non-multiplying bacteria, including methicillin sensitive and resistant, as well as Panton-Valentine leukocidin-carrying Staphylococcus aureus. It also kills mupirocin resistant MRSA. The mechanism of action of the drug is depolarisation of the cell membrane and destruction of the cell wall. The speed of kill is within two hours. In comparison to the conventional antibiotics, HT61 kills non-multiplying cells more effectively, 6 logs versus less than one log for major marketed antibiotics. HT61 kills methicillin sensitive and resistant S. aureus in the murine skin bacterial colonization and infection models. No resistant phenotype was produced during 50 serial cultures over a one year period. The antibiotic caused no adverse affects after application to the skin of minipigs. Targeting non-multiplying bacteria using this method should be able to yield many new classes of antibiotic. These antibiotics may be able to reduce the rate of emergence of resistance, shorten the duration of therapy, and reduce relapse rates. PMID:20676403

  10. Targeting HIV Reservoir in Infected CD4 T Cells by Dual-Affinity Re-targeting Molecules (DARTs) that Bind HIV Envelope and Recruit Cytotoxic T Cells

    PubMed Central

    Sloan, Derek D.; Lam, Chia-Ying Kao; Irrinki, Alivelu; Liu, Liqin; Tsai, Angela; Pace, Craig S.; Kaur, Jasmine; Murry, Jeffrey P.; Balakrishnan, Mini; Moore, Paul A.; Johnson, Syd; Nordstrom, Jeffrey L.; Cihlar, Tomas; Koenig, Scott

    2015-01-01

    HIV reservoirs and production of viral antigens are not eliminated in chronically infected participants treated with combination antiretroviral therapy (cART). Novel therapeutic strategies aiming at viral reservoir elimination are needed to address chronic immune dysfunction and non-AIDS morbidities that exist despite effective cART. The HIV envelope protein (Env) is emerging as a highly specific viral target for therapeutic elimination of the persistent HIV-infected reservoirs via antibody-mediated cell killing. Dual-Affinity Re-Targeting (DART) molecules exhibit a distinct mechanism of action via binding the cell surface target antigen and simultaneously engaging CD3 on cytotoxic T lymphocytes (CTLs). We designed and evaluated Env-specific DARTs (HIVxCD3 DARTs) derived from known antibodies recognizing diverse Env epitopes with or without broadly neutralizing activity. HIVxCD3 DARTs derived from PGT121, PGT145, A32, and 7B2, but not VRC01 or 10E8 antibodies, mediated potent CTL-dependent killing of quiescent primary CD4 T cells infected with diverse HIV isolates. Similar killing activity was also observed with DARTs structurally modified for in vivo half-life extension. In an ex vivo model using cells isolated from HIV-infected participants on cART, combinations of the most potent HIVxCD3 DARTs reduced HIV expression both in quiescent and activated peripheral blood mononuclear cell cultures isolated from HIV-infected participants on suppressive cART. Importantly, HIVxCD3 DARTs did not induce cell-to-cell virus spread in resting or activated CD4 T cell cultures. Collectively, these results provide support for further development of HIVxCD3 DARTs as a promising therapeutic strategy for targeting HIV reservoirs. PMID:26539983

  11. Hyaluronic Acid-Modified Multifunctional Q-Graphene for Targeted Killing of Drug-Resistant Lung Cancer Cells.

    PubMed

    Luo, Yanan; Cai, Xiaoli; Li, He; Lin, Yuehe; Du, Dan

    2016-02-17

    Considering the urgent need to explore multifunctional drug delivery system for overcoming multidrug resistance, we prepared a new nanocarbon material Q-Graphene as a nanocarrier for killing drug-resistant lung cancer cells. Attributing to the introduction of hyaluronic acid and rhodamine B isothiocyanate (RBITC), the Q-Graphene-based drug delivery system was endowed with dual function of targeted drug delivery and fluorescence imaging. Additionally, doxorubicin (DOX) as a model drug was loaded on the surface of Q-Graphene via π-π stacking. Interestingly, the fluorescence of DOX was quenched by Q-Graphene due to its strong electron-accepting capability, and a significant recovery of fluorescence was observed, while DOX was released from Q-Graphene. Because of the RBITC labeling and the effect of fluorescence quenching/restoring of Q-Graphene, the uptake of nanoparticles and intracellular DOX release can be tracked. Overall, a highly promising multifunctional nanoplatform was developed for tracking and monitoring targeted drug delivery for efficiently killing drug-resistant cancer cells.

  12. Smart Plasmonic Glucose Nanosensors as Generic Theranostic Agents for Targeting-Free Cancer Cell Screening and Killing.

    PubMed

    Chen, Limei; Li, Haijuan; He, Haili; Wu, Haoxi; Jin, Yongdong

    2015-07-07

    Fast and accurate identification of cancer cells from healthy normal cells in a simple, generic way is very crucial for early cancer detection and treatment. Although functional nanoparticles, like fluorescent quantum dots and plasmonic Au nanoparticles (NPs), have been successfully applied for cancer cell imaging and photothermal therapy, they suffer from the main drawback of needing time-consuming targeting preparation for specific cancer cell detection and selective ablation. The lack of a generic and effective method therefore limits their potential high-throughput cancer cell preliminary screening and theranostic applications. We report herein a generic in vitro method for fast, targeting-free (avoiding time-consuming preparations of targeting moiety for specific cancer cells) visual screening and selective killing of cancer cells from normal cells, by using glucose-responsive/-sensitive glucose oxidase-modified Ag/Au nanoshells (Ag/Au-GOx NSs) as a smart plasmonic theranostic agent. The method is generic to some extent since it is based on the distinct localized surface plasmon resonance (LSPR) responses (and colors) of the smart nanoprobe with cancer cells (typically have a higher glucose uptake level) and normal cells.

  13. ESAT-6 Targeting to DEC205+ Antigen Presenting Cells Induces Specific-T Cell Responses against ESAT-6 and Reduces Pulmonary Infection with Virulent Mycobacterium tuberculosis.

    PubMed

    Silva-Sánchez, Aarón; Meza-Pérez, Selene; Flores-Langarica, Adriana; Donis-Maturano, Luis; Estrada-García, Iris; Calderón-Amador, Juana; Hernández-Pando, Rogelio; Idoyaga, Juliana; Steinman, Ralph M; Flores-Romo, Leopoldo

    2015-01-01

    Airways infection with Mycobacterium tuberculosis (Mtb) is contained mostly by T cell responses, however, Mtb has developed evasion mechanisms which affect antigen presenting cell (APC) maturation/recruitment delaying the onset of Ag-specific T cell responses. Hypothetically, bypassing the natural infection routes by delivering antigens directly to APCs may overcome the pathogen's naturally evolved evasion mechanisms, thus facilitating the induction of protective immune responses. We generated a murine monoclonal fusion antibody (α-DEC-ESAT) to deliver Early Secretory Antigen Target (ESAT)-6 directly to DEC205+ APCs and to assess its in vivo effects on protection associated responses (IFN-γ production, in vivo CTL killing, and pulmonary mycobacterial load). Treatment with α-DEC-ESAT alone induced ESAT-6-specific IFN-γ producing CD4+ T cells and prime-boost immunization prior to Mtb infection resulted in early influx (d14 post-infection) and increased IFN-γ+ production by specific T cells in the lungs, compared to scarce IFN-γ production in control mice. In vivo CTL killing was quantified in relevant tissues upon transferring target cells loaded with mycobacterial antigens. During infection, α-DEC-ESAT-treated mice showed increased target cell killing in the lungs, where histology revealed cellular infiltrate and considerably reduced bacterial burden. Targeting the mycobacterial antigen ESAT-6 to DEC205+ APCs before infection expands specific T cell clones responsible for early T cell responses (IFN-γ production and CTL activity) and substantially reduces lung bacterial burden. Delivering mycobacterial antigens directly to APCs provides a unique approach to study in vivo the role of APCs and specific T cell responses to assess their potential anti-mycobacterial functions.

  14. ESAT-6 Targeting to DEC205+ Antigen Presenting Cells Induces Specific-T Cell Responses against ESAT-6 and Reduces Pulmonary Infection with Virulent Mycobacterium tuberculosis

    PubMed Central

    Silva-Sánchez, Aarón; Meza-Pérez, Selene; Flores-Langarica, Adriana; Donis-Maturano, Luis; Estrada-García, Iris; Calderón-Amador, Juana; Hernández-Pando, Rogelio; Idoyaga, Juliana; Flores-Romo, Leopoldo

    2015-01-01

    Airways infection with Mycobacterium tuberculosis (Mtb) is contained mostly by T cell responses, however, Mtb has developed evasion mechanisms which affect antigen presenting cell (APC) maturation/recruitment delaying the onset of Ag-specific T cell responses. Hypothetically, bypassing the natural infection routes by delivering antigens directly to APCs may overcome the pathogen’s naturally evolved evasion mechanisms, thus facilitating the induction of protective immune responses. We generated a murine monoclonal fusion antibody (α-DEC-ESAT) to deliver Early Secretory Antigen Target (ESAT)-6 directly to DEC205+ APCs and to assess its in vivo effects on protection associated responses (IFN-γ production, in vivo CTL killing, and pulmonary mycobacterial load). Treatment with α-DEC-ESAT alone induced ESAT-6-specific IFN-γ producing CD4+ T cells and prime-boost immunization prior to Mtb infection resulted in early influx (d14 post-infection) and increased IFN-γ+ production by specific T cells in the lungs, compared to scarce IFN-γ production in control mice. In vivo CTL killing was quantified in relevant tissues upon transferring target cells loaded with mycobacterial antigens. During infection, α-DEC-ESAT-treated mice showed increased target cell killing in the lungs, where histology revealed cellular infiltrate and considerably reduced bacterial burden. Targeting the mycobacterial antigen ESAT-6 to DEC205+ APCs before infection expands specific T cell clones responsible for early T cell responses (IFN-γ production and CTL activity) and substantially reduces lung bacterial burden. Delivering mycobacterial antigens directly to APCs provides a unique approach to study in vivo the role of APCs and specific T cell responses to assess their potential anti-mycobacterial functions. PMID:25915045

  15. Dynamic visualization the whole process of cytotoxic T lymphocytes killing the B16 tumor cells in vitro

    NASA Astrophysics Data System (ADS)

    Qi, Shuhong; Zhang, Zhihong

    2016-03-01

    Cytotoxic T lymphocytes (CTLs) played a key role in the immune system to destroy the tumor cells. Although some mechanisms of CTLs killing the tumor cells are revealed already, the dynamic information of CTLs interaction with tumor cells are still not known very clearly. Here we used confocal microscopy to visualize the whole process of CTLs killing the tumor cells in vitro. The imaging data showed that CTLs destroyed the target tumor cells rapidly and efficiently. Several CTLs surrounded one or some tumor cells and the average time for CTLs destroying one tumor cell is just a few minutes in vitro. The study displayed the temporal events of CTLs interacting with tumor cells at the beginning and finally killing them and directly presented the efficient tumor cell cytotoxicity of the CTLs. The results helped us to deeply understand the mechanism of the CTLs destroying the tumor cells and to develop the cancer immunotherapy.

  16. Targeting the Circadian Clock to Treat Cancer

    Cancer.gov

    Two compounds that target components of the circadian clock killed several types of cancer cells in the lab and slowed the growth of brain cancer in mice without harming healthy cells, as this Cancer Currents post reports.

  17. The offer of chemistry to targeted therapy in cancer.

    PubMed

    Jemel, Ikram; Jellali, Karim; Elloumi, Jihene; Aifa, Sami

    2011-12-01

    Cancer therapy is facing the big challenge of destroying selectively tumour cells without harming the normal tissues. Chemotherapy was trying from the beginning to kill malignant cells because of their proliferative activity since normal cells are in general quiescent. Meanwhile side effects were produced due to the destruction of some normal cells that need regular proliferation. The discovery of biomarkers led to the identification of molecular targets within tumour cells in order to kill them selectively. Chemistry followed the progress of biomarkers biotechnology by the production of target specific antagonists which were the subject of many patents. Meanwhile novel problems of tumour resistance appeared and made the battle against cancer a non stop development of new strategies and new weapons. As a consequence, paralleled activities of patenting biomarkers and chemical antagonists are continuously generated. The offer of chemistry does not actually limit the efficiency of Targeted therapy but the identification of biomarkers is still missing the exclusive specificity to tumour cells.

  18. Tunable cytotoxic aptamer-drug conjugates for the treatment of prostate cancer.

    PubMed

    Powell Gray, Bethany; Kelly, Linsley; Ahrens, Douglas P; Barry, Ashley P; Kratschmer, Christina; Levy, Matthew; Sullenger, Bruce A

    2018-05-01

    Therapies that can eliminate both local and metastatic prostate tumor lesions while sparing normal organ tissue are desperately needed. With the goal of developing an improved drug-targeting strategy, we turned to a new class of targeted anticancer therapeutics: aptamers conjugated to highly toxic chemotherapeutics. Cell selection for aptamers with prostate cancer specificity yielded the E3 aptamer, which internalizes into prostate cancer cells without targeting normal prostate cells. Chemical conjugation of E3 to the drugs monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF) yields a potent cytotoxic agent that efficiently kills prostate cancer cells in vitro but does not affect normal prostate epithelial cells. Importantly, the E3 aptamer targets tumors in vivo and treatment with the MMAF-E3 conjugate significantly inhibits prostate cancer growth in mice, demonstrating the in vivo utility of aptamer-drug conjugates. Additionally, we report the use of antidotes to block E3 aptamer-drug conjugate cytotoxicity, providing a safety switch in the unexpected event of normal cell killing in vivo.

  19. Enhanced cell killing and apoptosis of oral squamous cell carcinoma cells with ultrasound in combination with cetuximab coated albumin microbubbles.

    PubMed

    Narihira, Kyoichi; Watanabe, Akiko; Sheng, Hong; Endo, Hitomi; Feril, Loreto B; Irie, Yutaka; Ogawa, Koichi; Moosavi-Nejad, Seyedeh; Kondo, Seiji; Kikuta, Toshihiro; Tachibana, Katsuro

    2018-03-01

    Targeted microbubbles have the potential to be used for ultrasound (US) therapy and diagnosis of various cancers. In the present study, US was irradiated to oral squamous cell carcinoma cells (HSC-2) in the presence of cetuximab-coated albumin microbubbles (CCAM). Cell killing rate with US treatment at 0.9 W/cm 2 and 1.0 W/cm 2 in the presence of CCAM was greater compared to non-targeted albumin microbubbles (p < .05). On the other hand, selective cell killing was not observed in human myelomonocytic lymphoma cell line (U937) that had no affinity to cetuximab. Furthermore, US irradiation in the presence of CCAM showed a fivefold increase of cell apoptotic rate for HSC-2 cells (21.0 ± 3.8%) as compared to U937 cells (4.0 ± 0.8%). Time-signal intensity curve in a tissue phantom demonstrated clear visualisation of CCAM with conventional US imaging device. Our experiment verifies the hypothesis that CCAM was selective to HSC-2 cells and may be applied as a novel therapeutic/diagnostic microbubble for oral squamous cell carcinoma.

  20. Immune Interventions to Eliminate the HIV Reservoir.

    PubMed

    Hsu, Denise C; Ananworanich, Jintanat

    2017-10-26

    Inducing HIV remission is a monumental challenge. A potential strategy is the "kick and kill" approach where latently infected cells are first activated to express viral proteins and then eliminated through cytopathic effects of HIV or immune-mediated killing. However, pre-existing immune responses to HIV cannot eradicate HIV infection due to the presence of escape variants, inadequate magnitude, and breadth of responses as well as immune exhaustion. The two major approaches to boost immune-mediated elimination of infected cells include enhancing cytotoxic T lymphocyte mediated killing and harnessing antibodies to eliminate HIV. Specific strategies include increasing the magnitude and breadth of T cell responses through therapeutic vaccinations, reversing the effects of T cell exhaustion using immune checkpoint inhibition, employing bispecific T cell targeting immunomodulatory proteins or dual-affinity re-targeting molecules to direct cytotoxic T lymphocytes to virus-expressing cells and broadly neutralizing antibody infusions. Methods to steer immune responses to tissue sites where latently infected cells are located need to be further explored. Ultimately, strategies to induce HIV remission must be tolerable, safe, and scalable in order to make a global impact.

  1. Enhancement of dendritic cell-based vaccine potency by anti-apoptotic siRNAs targeting key pro-apoptotic proteins in cytotoxic CD8(+) T cell-mediated cell death.

    PubMed

    Kim, Jin Hee; Kang, Tae Heung; Noh, Kyung Hee; Bae, Hyun Cheol; Kim, Seok-Ho; Yoo, Young Do; Seong, Seung-Yong; Kim, Tae Woo

    2009-01-29

    Dendritic cells (DCs) have become an important measure for the treatment of malignancies. Current DC preparations, however, generate short-lived DCs because they are subject to cell death from various apoptotic pressures. Antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) is one of the main obstacles to limit the DC-mediated immune priming since CTLs can recognize the target antigen expressing DCs as target cells and kill the DCs. CTLs secret perforin and serine protease granzymes during CTL killing. Perforin and serine protease granzymes induce the release of a number of mitochondrial pro-apoptotic factors, which are controlled by members of the BCL-2 family, such as BAK, BAX and BIM. FasL linking to Fas on DCs triggers the activation of caspase-8, which eventually leads to mitochondria-mediated apoptosis via truncation of BID. In this study, we tried to enhance the DC priming capacity by prolonging DC survival using anti-apoptotic siRNA targeting these key pro-apoptotic molecules in CTL killing. Human papillomavirus (HPV)-16 E7 antigen presenting DCs that were transfected with these anti-apoptotic siRNAs showed increased resistance to T cell-mediated death, leading to enhanced E7-specific CD8(+) T cell activation in vitro and in vivo. Among them, siRNA targeting BIM (siBIM) generated strongest E7-specific E7-specific CD8(+) T cell immunity. More importantly, vaccination with E7 presenting DCs transfected with siBIM was capable of generating a marked therapeutic effect in vaccinated mice. Our data indicate that ex vivo manipulation of DCs with siBIM may represent a plausible strategy for enhancing dendritic cell-based vaccine potency.

  2. Targeting the latent cytomegalovirus reservoir with an antiviral fusion toxin protein

    PubMed Central

    Krishna, B. A.; Spiess, K.; Poole, E. L.; Lau, B.; Voigt, S.; Kledal, T. N.; Rosenkilde, M. M.; Sinclair, J. H.

    2017-01-01

    Reactivation of human cytomegalovirus (HCMV) in transplant recipients can cause life-threatening disease. Consequently, for transplant recipients, killing latently infected cells could have far-reaching clinical benefits. In vivo, myeloid cells and their progenitors are an important site of HCMV latency, and one viral gene expressed by latently infected myeloid cells is US28. This viral gene encodes a cell surface G protein-coupled receptor (GPCR) that binds chemokines, triggering its endocytosis. We show that the expression of US28 on the surface of latently infected cells allows monocytes and their progenitor CD34+ cells to be targeted and killed by F49A-FTP, a highly specific fusion toxin protein that binds this viral GPCR. As expected, this specific targeting of latently infected cells by F49A-FTP also robustly reduces virus reactivation in vitro. Consequently, such specific fusion toxin proteins could form the basis of a therapeutic strategy for eliminating latently infected cells before haematopoietic stem cell transplantation. PMID:28148951

  3. Converting cancer genes into killer genes.

    PubMed Central

    Da Costa, L T; Jen, J; He, T C; Chan, T A; Kinzler, K W; Vogelstein, B

    1996-01-01

    Over the past decade, it has become clear that tumorigenesis is driven by alterations in genes that control cell growth or cell death. Theoretically, the proteins encoded by these genes provide excellent targets for new therapeutic agents. Here, we describe a gene therapy approach to specifically kill tumor cells expressing such oncoproteins. In outline, the target oncoprotein binds to exogenously introduced gene products, resulting in transcriptional activation of a toxic gene. As an example, we show that this approach can be used to specifically kill cells overexpressing a mutant p53 gene in cell culture. The strategy may be generally applicable to neoplastic diseases in which the underlying patterns of genetic alterations or abnormal gene expression are known. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:8633039

  4. Effects of murine leukemia virus env gene proteins on macrophage-mediated cytotoxicity in vitro

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Takemoto, L. J.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    F5b Tumor cells were incubated with concentrated culture supernatants taken from cells resistant (F5m) or sensitive (F5b) to contact-dependent macrophage cytotoxicity. Macrophage cell line B6MP102 and murine peritoneal macrophages killed targets incubated with supernatants taken from sensitive cells but poorly killed cells incubated in supernatants isolated from resistant cells. Membranes from cells resistant to macrophage killing, F5m, were fused into F5b cells. The fused F5b cells were killed significantly less than F5b cells fused with F5b cell membranes or untreated F5b cells. The decreased killing of F5b cells corresponded to increased concentrations of gp70(a) molecules on F5b cells. Affinity purified gp70(a) was added to cytotoxicity assays but failed to inhibit macrophage cytotoxicity. P15E molecules were detectable on both F5b and F5m cells. In addition, a synthetic peptide found to exhibit the inhibitory properties of p15E was added to cytotoxicity assays. P15E synthetic peptide also did not inhibit macrophage cytotoxicity. Therefore, env gene proteins of murine leukemia virus do not appear responsible for inducing tumor cell resistance to activated macrophage contact-dependent cytotoxicity.

  5. Clinical-scale laser-based scanning and processing of live cells: selective photothermal killing of fluorescent tumor targets for autologous stem cell transplantation

    NASA Astrophysics Data System (ADS)

    Koller, Manfred R.; Hanania, Elie G.; Eisfeld, Timothy; O'Neal, Robert A.; Khovananth, Kevin M.; Palsson, Bernhard O.

    2001-04-01

    High-dose chemotherapy, followed by autologous hematopoietic stem cell (HSC) transplantation, is widely used for the treatment of cancer. However, contaminating tumor cells within HSC harvests continue to be of major concern since re-infused tumor cells have proven to contribute to disease relapse. Many tumor purging methods have been evaluated, but all leave detectable tumor cells in the transplant and result in significant loss of HSCs. These shortcomings cause engraftment delays and compromise the therapeutic value of purging. A novel approach integrating automated scanning cytometry, image analysis, and selective laser-induced killing of labeled cells within a cell mixture is described here. Non-Hodgkin's lymphoma (NHL) cells were spiked into cell mixtures, and fluorochrome-conjugated antibodies were used to label tumor cells within the mixture. Cells were then allowed to settle on a surface, and as the surface was scanned with a fluorescence excitation source, a laser pulse was fired at every detected tumor cell using high-speed beam steering mirrors. Tumor cells were selectively killed with little effect on adjacent non-target cells, demonstrating the feasibility of this automated cell processing approach. This technology has many potential research and clinical applications, one example of which is tumor cell purging for autologous HSC transplantation.

  6. A Drosera-bioinspired hydrogel for catching and killing cancer cells

    PubMed Central

    Li, Shihui; Chen, Niancao; Gaddes, Erin R.; Zhang, Xiaolong; Dong, Cheng; Wang, Yong

    2015-01-01

    A variety of bioinspired materials have been successfully synthesized to mimic the sophisticated structures or functions of biological systems. However, it is still challenging to develop materials with multiple functions that can be performed synergistically or sequentially. The purpose of this work was to demonstrate a novel bioinspired hydrogel that can interact with cancer cells, functionally similar to Drosera in catching and killing prey. This hydrogel had two layers with the top one functionalized with oligonucleotide aptamers and the bottom one functionalized with double-stranded DNA. The results show that the top hydrogel layer was able to catch target cells with high efficiency and specificity, and that the bottom hydrogel layer could sequester doxorubicin (Dox) for sustained drug release. Importantly, the released Dox could kill 90% of the cells after 1-h residence of the cells on the hydrogel. After the cell release, this bifunctional hydrogel could be regenerated for continuous cell catching and killing. Therefore, the data presented in this study has successfully demonstrated the potential of developing a material system with the functions of attracting, catching and killing diseased cells (e.g., circulating tumor cells) or even invading microorganisms (e.g., bacteria). PMID:26396063

  7. Adding Selectivity to Antimicrobial Peptides: Rational Design of a Multidomain Peptide against Pseudomonas spp.

    PubMed Central

    Eckert, Randal; Qi, Fengxia; Yarbrough, Daniel K.; He, Jian; Anderson, Maxwell H.; Shi, Wenyuan

    2006-01-01

    Currently available antimicrobials exhibit broad killing with regard to bacterial genera and species. Indiscriminate killing of microbes by these conventional antibiotics can disrupt the ecological balance of the indigenous microbial flora, often resulting in negative clinical consequences. Species-specific antimicrobials capable of precisely targeting pathogenic bacteria without damaging benign microorganisms provide a means of avoiding this problem. In this communication, we report the successful creation of the first synthetic, target-specific antimicrobial peptide, G10KHc, via addition of a rationally designed Pseudomonas-specific targeting moiety (KH) to a generally killing peptide (novispirin G10). The resulting chimeric peptide showed enhanced bactericidal activity and faster killing kinetics against Pseudomonas spp. than G10 alone. The enhanced killing activities are due to increased binding and penetration of the outer membrane of Pseudomonas sp. cells. These properties were not observed in tests of untargeted bacterial species, and this specificity allowed G10KHc to selectively eliminate Pseudomonas spp. from mixed cultures. This work lays a foundation for generating target-specific “smart” antimicrobials to complement currently available conventional antibiotics. PMID:16569868

  8. Radionuclide therapy using ¹³¹I-labeled anti-epidermal growth factor receptor-targeted nanoparticles suppresses cancer cell growth caused by EGFR overexpression.

    PubMed

    Li, Wei; Liu, Zhongyun; Li, Chengxia; Li, Ning; Fang, Lei; Chang, Jin; Tan, Jian

    2016-03-01

    Anti-epidermal growth factor receptor (EGFR)-targeted nanoparticles can be used to deliver a therapeutic and imaging agent to EGFR-overexpressing tumor cells. (131)I-labeled anti-EGFR nanoparticles derived from cetuximab were used as a tumor-targeting vehicle in radionuclide therapy. This paper describes the construction of the anti-EGFR nanoparticle EGFR-BSA-PCL. This nanoparticle was characterized for EGFR-targeted binding and cellular uptake in EGFR-overexpressing cancer cells by using flow cytometry and confocal microscopy. Anti-EGFR and non-targeted nanoparticles were labeled with (131)I using the chloramine-T method. Analyses of cytotoxicity and targeted cell killing with (131)I were performed using the MTT assay. The time-dependent cellular uptake of (131)I-labeled anti-EGFR nanoparticles proved the slow-release effects of nanoparticles. A radioiodine therapy study was also performed in mice. The EGFR-targeted nanoparticle EGFR-BSA-PCL and the non-targeted nanoparticle BSA-PCL were constructed; the effective diameters were approximately 100 nm. The results from flow cytometry and confocal microscopy revealed significant uptake of EGFR-BSA-PCL in EGFR-overexpressing tumor cells. Compared with EGFR-BSA-PCL, BSA-PCL could also bind to cells, but tumor cell retention was minimal and weak. In MTT assays, the EGFR-targeted radioactive nanoparticle (131)I-EGFR-BSA-PCL showed greater cytotoxicity and targeted cell killing than the non-targeted nanoparticle (131)I-BSA-PCL. The radioiodine uptake of both (131)I-labeled nanoparticles, (131)I-EGFR-BSA-PCL and (131)I-BSA-PCL, was rapid and reached maximal levels 4 h after incubation, but the (131)I uptake of (131)I-EGFR-BSA-PCL was higher than that of (131)I-BSA-PCL. On day 15, the average tumor volumes of the (131)I-EGFR-BSA-PCL and (131)I-BSA-PCL groups showed a slow growth relationship compared with that of the control group. The EGFR-targeted nanoparticle EGFR-BSA-PCL demonstrated superior cellular binding and uptake compared with those of the control BSA-PCL. The EGFR-targeted radioactive nanoparticle (131)I-EGFR-BSA-PCL exhibited favorable intracellular retention of (131)I. Radionuclide therapy using (131)I-EGFR-BSA-PCL, which showed excellent targeted cell killing, suppressed cancer cell growth caused by EGFR overexpression.

  9. Design and In Vivo Characterization of Immunoconjugates Targeting HIV gp160

    PubMed Central

    Song, Kejing; Maresh, Grace A.; Frank, Anderson; Worthylake, David; Chung, Hye-Kyung; Polacino, Patricia; Hamer, Dean H.; Coyne, Cody P.; Rosenblum, Michael G.; Marks, John W.; Chen, Gang; Weiss, Deborah; Ghetie, Victor; Vitetta, Ellen S.; Robinson, James E.; Hu, Shiu-Lok

    2016-01-01

    ABSTRACT The envelope (Env) glycoprotein of HIV is expressed on the surface of productively infected cells and can be used as a target for cytotoxic immunoconjugates (ICs), in which cell-killing moieties, including toxins, drugs, or radionuclides, are chemically or genetically linked to monoclonal antibodies (MAbs) or other targeting ligands. Such ICs could be used to eliminate persistent reservoirs of HIV infection. We have found that MAbs which bind to the external loop of gp41, e.g., MAb 7B2, make highly effective ICs, particularly when used in combination with soluble CD4. We evaluated the toxicity, immunogenicity, and efficacy of the ICs targeted with 7B2 in mice and in simian-human immunodeficiency virus-infected macaques. In the macaques, we tested immunotoxins (ITs), consisting of protein toxins bound to the targeting agent. ITs were well tolerated and initially efficacious but were ultimately limited by their immunogenicity. In an effort to decrease immunogenicity, we tested different toxic moieties, including recombinant toxins, cytotoxic drugs, and tubulin inhibitors. ICs containing deglycosylated ricin A chain prepared from ricin toxin extracted from castor beans were the most effective in killing HIV-infected cells. Having identified immunogenicity as a major concern, we show that conjugation of IT to polyethylene glycol limits immunogenicity. These studies demonstrate that cytotoxic ICs can target virus-infected cells in vivo but also highlight potential problems to be addressed. IMPORTANCE It is not yet possible to cure HIV infection. Even after years of fully effective antiviral therapy, a persistent reservoir of virus-infected cells remains. Here we propose that a targeted conjugate consisting of an anti-HIV antibody bound to a toxic moiety could function to kill the HIV-infected cells that constitute this reservoir. We tested this approach in HIV-infected cells grown in the lab and in animal infections. Our studies demonstrated that these immunoconjugates are effective both in vitro and in test animals. In particular, ITs constructed with the deglycosylated A chain prepared from native ricin were the most effective in killing cells, but their utility was blunted because they provoked immune reactions that interfered with the therapeutic effects. We then demonstrated that coating of the ITs with polyethylene glycol minimized the immunogenicity, as has been demonstrated with other protein therapies. PMID:27795412

  10. Targeted cellular ablation based on the morphology of malignant cells

    NASA Astrophysics Data System (ADS)

    Ivey, Jill W.; Latouche, Eduardo L.; Sano, Michael B.; Rossmeisl, John H.; Davalos, Rafael V.; Verbridge, Scott S.

    2015-11-01

    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors.

  11. Targeted cellular ablation based on the morphology of malignant cells

    PubMed Central

    Ivey, Jill W.; Latouche, Eduardo L.; Sano, Michael B.; Rossmeisl, John H.; Davalos, Rafael V.; Verbridge, Scott S.

    2015-01-01

    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors. PMID:26596248

  12. A CD13-targeting peptide integrated protein inhibits human liver cancer growth by killing cancer stem cells and suppressing angiogenesis.

    PubMed

    Zheng, Yan-Bo; Gong, Jian-Hua; Liu, Xiu-Jun; Li, Yi; Zhen, Yong-Su

    2017-05-01

    CD13 is a marker of angiogenic endothelial cells, and recently it is proved to be a biomarker of human liver cancer stem cells (CSCs). Herein, the therapeutic effects of NGR-LDP-AE, a fusion protein composed of CD13-targeting peptide NGR and antitumor antibiotic lidamycin, on human liver cancer and its mechanism were studied. Western blot and immunofluorescence assay demonstrated that CD13 (WM15 epitope) was expressed in both human liver cancer cell lines and vascular endothelial cells, while absent in normal liver cells. MTT assay showed that NGR-LDP-AE displayed potent cytotoxicity to cultured tumor cell lines with IC 50 values at low nanomolar level. NGR-LDP-AE inhibited tumorsphere formation of liver cancer cells, and the IC 50 values were much lower than that in MTT assay, indicating selectively killing of CSCs. In endothelial tube formation assay, NGR-LDP-AE at low cytotoxic dose significantly inhibited the formation of intact tube networks. Animal experiment demonstrated that NGR-LDP-AE inhibited the growth of human liver cancer xenograft. Immunohistochemical analysis showed that NGR-LDP-AE induced the down-regulation of CD13. In vitro experiment using cultured tumor cells also confirmed this result. NGR-LDP-AE activated both apoptotic and autophagic pathways in cultured tumor cells, while the induced autophagy protected cells from death. Conclusively, NGR-LDP-AE exerts its antitumor activity via killing liver CSCs and inhibiting angiogenesis. With one targeting motif, NGR-LDP-AE acts on both liver CSCs and angiogenic endothelial cells. It is a promising dual targeting fusion protein for liver cancer therapy, especially for advanced or relapsed cancers. © 2017 Wiley Periodicals, Inc.

  13. Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity.

    PubMed

    Ogawa, Mikako; Tomita, Yusuke; Nakamura, Yuko; Lee, Min-Jung; Lee, Sunmin; Tomita, Saori; Nagaya, Tadanobu; Sato, Kazuhide; Yamauchi, Toyohiko; Iwai, Hidenao; Kumar, Abhishek; Haystead, Timothy; Shroff, Hari; Choyke, Peter L; Trepel, Jane B; Kobayashi, Hisataka

    2017-02-07

    Immunogenic cell death (ICD) is a form of cell death that activates an adaptive immune response against dead-cell-associated antigens. Cancer cells killed via ICD can elicit antitumor immunity. ICD is efficiently induced by near-infrared photo-immunotherapy (NIR-PIT) that selectively kills target-cells on which antibody-photoabsorber conjugates bind and are activated by NIR light exposure. Advanced live cell microscopies showed that NIR-PIT caused rapid and irreversible damage to the cell membrane function leading to swelling and bursting, releasing intracellular components due to the influx of water into the cell. The process also induces relocation of ICD bio markers including calreticulin, Hsp70 and Hsp90 to the cell surface and the rapid release of immunogenic signals including ATP and HMGB1 followed by maturation of immature dendritic cells. Thus, NIR-PIT is a therapy that kills tumor cells by ICD, eliciting a host immune response against tumor.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conlon, Brian P.; Nakayasu, Ernesto S.; Fleck, Laura E.

    The current antibiotic crisis stems from two distinct phenomena-drug resistance, and drug tolerance. Resistance mechanisms such as drug efflux or modification prevent antibiotics from binding to their targets 1, allowing pathogens to grow. Antibiotic tolerance is the property of persister cells, phenotypic variants of regular bacteria 2. Antibiotics kill by corrupting targets, but these are inactive in dormant persisters, leading to tolerance. Persisters were first identified by Joseph Bigger in 1944, when he discovered a surviving sub-population of Staphylococcus following treatment with penicillin3. Persisters are largely responsible for recalcitrance of chronic diseases such as tuberculosis, and various infections associated withmore » biofilms - endocarditis, osteomyelitis, infections of catheters and indwelling devices, and deep-seated infections of soft tissues 4. There are a number of redundant pathways involved in persister formation5,6 precluding development of drugs inhibiting their formation. The acyldepsipeptide antibiotic (ADEP 4) has been shown to activate the ClpP protease resulting in death of growing cells 7. Here we show that ADEP4 activated ClpP becomes a fairly non-specific protease and kills persister cells by degradation of over 400 intracellular targets. clpP mutants are resistant to ADEP4 7, but we find that they display increased susceptibility to killing by a range of conventional antibiotics. Combining ADEP4 with rifampicin leads to eradication of persisters, stationary and biofilm populations of Staphylococcus aureus in vitro and in a deep-seated murine infection. Target corruption/activation provides an approach to killing persisters and eradicating chronic infections.« less

  15. Estimation of the bacteriocin ColE7 conjugation-based "kill" - "anti-kill" antimicrobial system by real-time PCR, fluorescence staining and bioluminescence assays.

    PubMed

    Maslennikova, I L; Kuznetsova, M V; Toplak, N; Nekrasova, I V; Žgur Bertok, D; Starčič Erjavec, M

    2018-05-07

    The efficiency of the bacteriocin, colicin ColE7, bacterial conjugation-based "kill" - "anti-kill" antimicrobial system, was assessed using real-time PCR, flow cytometry and bioluminescence. The ColE7 antimicrobial system consists of the genetically modified Escherichia coli strain Nissle 1917 harbouring a conjugative plasmid (derivative of the F-plasmid) encoding the "kill" gene (ColE7 activity gene) and a chromosomally encoded "anti-kill" gene (ColE7 immunity gene). On the basis of traJ gene expression in the killer donor cells, our results showed that the efficiency of the here studied antimicrobial system against target E. coli was higher at 4 than at 24 h. Flow cytometry was used to indirectly estimate DNase activity of the antimicrobial system, as lysis of target E. coli cells in the conjugative mixture with the killer donor strain led to reduction in cell cytosol fluorescence. According to a lux assay, E. coli TG1 (pXen lux + Ap r ) with constitutive luminescence were killed already after 2 h of treatment. Target sensor E. coli C600 with DNA damage SOS-inducible luminescence showed significantly lower SOS induction 6 and 24 h following treatment with the killer donor strain. Our results thus showed that bioluminescent techniques are quick and suitable for estimation of the ColE7 bacterial conjugation-based antimicrobial system antibacterial activity. Bacterial antimicrobial resistance is worldwide rising and causing deaths of thousands of patients infected with multi-drug resistant bacterial strains. In addition, there is a lack of efficient alternative antimicrobial agents. The significance of our research is the use of a number of methods (real-time PCR, flow cytometry and bioluminescence-based technique) to assess the antibacterial activity of the bacteriocin, colicin ColE7, bacterial conjugation-based "kill" - "anti-kill" antimicrobial system. Bioluminescent techniques proved to be rapid and suitable for estimation of antibacterial activity of ColE7 bacterial conjugation-based antimicrobial system and possibly other related systems. © 2018 The Society for Applied Microbiology.

  16. γδ T cells as a potential tool in colon cancer immunotherapy.

    PubMed

    Ramutton, Thiranut; Buccheri, Simona; Dieli, Francesco; Todaro, Matilde; Stassi, Giorgio; Meraviglia, Serena

    2014-01-01

    γδ T cells are capable of recognizing tumor cells and exert potent cellular cytotoxicity against a large range of tumors, including colon cancer. However, tumors utilize numerous strategies to escape recognition or killing by patrolling γδ T cells, such a downregulation of NKG2D ligands, MICA/B and ULBPs. Therefore, the combined upregulation of T-cell receptorand NKG2D ligands on tumor cells and induction of NKG2D expression on γδ T cells may greatly enhance tumor killing and unlock the functions of γδ T cells. Here, we briefly review current data on the mechanisms of γδ T-cell recognition and killing of colon cancer cells and propose that γδ T cells may represent a promising target for the design of novel and highly innovative immunotherapy in patients with colon cancer.

  17. Intravital imaging of CTLs killing islet cells in diabetic mice

    PubMed Central

    Coppieters, Ken; Amirian, Natalie; von Herrath, Matthias

    2011-01-01

    Type 1 diabetes (T1D) is caused by autoimmune destruction of the insulin-producing β cells in the pancreatic islets, which are essentially mini-organs embedded in exocrine tissue. CTLs are considered to have a predominant role in the autoimmune destruction underlying T1D. Visualization of CTL-mediated killing of β cells would provide new insight into the pathogenesis of T1D, but has been technically challenging to achieve. Here, we report our use of intravital 2-photon imaging in mice to visualize the dynamic behavior of a virally expanded, diabetogenic CTL population in the pancreas at cellular resolution. Following vascular arrest and extravasation, CTLs adopted a random motility pattern throughout the compact exocrine tissue and displayed unimpeded yet nonlinear migration between anatomically nearby islets. Upon antigen encounter within islets, a confined motility pattern was acquired that allowed the CTLs to scan the target cell surface. A minority of infiltrating CTLs subsequently arrested at the β cell junction, while duration of stable CTL–target cell contact was on the order of hours. Slow-rate killing occurred in the sustained local presence of substantial numbers of effector cells. Collectively, these data portray the kinetics of CTL homing to and between antigenic target sites as a stochastic process at the sub-organ level and argue against a dominant influence of chemotactic gradients. PMID:22133877

  18. Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with alpha-, beta-, and auger electron-emitting radionuclides.

    PubMed

    Boyd, Marie; Ross, Susan C; Dorrens, Jennifer; Fullerton, Natasha E; Tan, Ker Wei; Zalutsky, Michael R; Mairs, Robert J

    2006-06-01

    Recent studies have shown that indirect effects of ionizing radiation may contribute significantly to the effectiveness of radiotherapy by sterilizing malignant cells that are not directly hit by the radiation. However, there have been few investigations of the importance of indirect effects in targeted radionuclide treatment. Our purpose was to compare the induction of bystander effects by external beam gamma-radiation with those resultant from exposure to 3 radiohaloanalogs of metaiodobenzylguanidine (MIBG): (131)I-MIBG (low-linear-energy-transfer [LET] beta-emitter), (123)I-MIBG (potentially high-LET Auger electron emitter), and meta-(211)At-astatobenzylguanidine ((211)At-MABG) (high-LET alpha-emitter). Two human tumor cell lines-UVW (glioma) and EJ138 (transitional cell carcinoma of bladder)-were transfected with the noradrenaline transporter (NAT) gene to enable active uptake of MIBG. Medium from cells that accumulated the radiopharmaceuticals or were treated with external beam radiation was transferred to cells that had not been exposed to radioactivity, and clonogenic survival was determined in donor and recipient cultures. Over the dose range 0-9 Gy of external beam radiation of donor cells, 2 Gy caused 30%-40% clonogenic cell kill in recipient cultures. This potency was maintained but not increased by higher dosage. In contrast, no corresponding saturation of bystander cell kill was observed after treatment with a range of activity concentrations of (131)I-MIBG, which resulted in up to 97% death of donor cells. Cellular uptake of (123)I-MIBG and (211)At-MABG induced increasing recipient cell kill up to levels that resulted in direct kill of 35%-70% of clonogens. Thereafter, the administration of higher activity concentrations of these high-LET emitters was inversely related to the kill of recipient cells. Over the range of activity concentrations examined, neither direct nor indirect kill was observed in cultures of cells not expressing the NAT and, thus, incapable of active uptake of MIBG. Potent toxins are generated specifically by cells that concentrate radiohalogenated MIBG. These may be LET dependent and distinct from those elicited by conventional radiotherapy.

  19. IgM-mediated opsonization and cytotoxicity in the shark.

    PubMed

    McKinney, E C; Flajnik, M F

    1997-02-01

    Two types of cytotoxic reactions have been observed using cells from the nurse shark: spontaneous cytotoxicity mediated by cells of the macrophage lineage and antibody-dependent killing carried out by a different effector cell population. Previous data showed that removal of phagocytic cells using iron particles abolished macrophage-mediated killing, but not antibody-dependent reactions. The current study used single cell assays and showed that the effector of antibody-driven reactions was the neutrophil. Surprisingly, the mechanism of killing was shown to be phagocytosis mediated by both 7S and 19S immunoglobulin M (IgM). Reactions proceeded with as little as 0.01 microg of purified 19S or 7S IgM and were complete within 4-6 h. In contrast, purified immunoglobulin did not adsorb to macrophages and had no effect on target cell binding or cytotoxicity. Pretreatment of cells with cytochalasin D abolished the phagocytic reaction, but not spontaneous cytotoxicity. These data show that antibody-mediated killing results from opsonization and phagocytosis; the mechanism of macrophage killing is currently unknown. In addition, these data show that the shark neutrophil, not the macrophage lineage, carries a receptor for Fc mu.

  20. Two distinct HLA-A0201-presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL.

    PubMed

    Bellantuono, Ilaria; Gao, Liquan; Parry, Suzanne; Marley, Steve; Dazzi, Francesco; Apperley, Jane; Goldman, John M; Stauss, Hans J

    2002-11-15

    Using the allo-restricted T-cell approach to circumvent tolerance, we have previously identified a cytotoxic T-lymphocyte (CTL) epitope in the transcription factor Wilms tumor antigen 1 (WT1) presented by HLA-A0201 (A2) class I molecules. Here we describe an additional A2-presented epitope and show that CTLs against both epitopes kill WT1-expressing leukemia cell lines. Colony-forming assays demonstrated that both types of CTL killed CD34(+) progenitor cells from A2(+) leukemia patients, but not from A2(+) healthy individuals. The long-term culture-initiating cell (LTC-IC) assay was used to analyze the killing activity of WT1-specific CTLs against the more immature fraction of CD34(+) cells. The CTLs killed LTC-ICs of patients with chronic myelogenous leukemia (CML), whereas the function of normal CD34(+) progenitor/stem cells was not inhibited. Together, the data show that CTLs specific for 2 distinct peptide epitopes of WT1 can discriminate between normal and leukemia LTC-ICs, suggesting that such CTLs have the potential to selectively kill CML progenitor/stem cells.

  1. Liquid crystal nanoparticles for delivery of photosensitizers for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Nag, Okhil K.; Naciri, Jawad; Delehanty, James B.

    2018-02-01

    The main principle of photodynamic therapy (PDT) is to kill malignant cells by generation of reactive oxygen species (ROS). PDT appeared highly effective when ROS can be produced in subcellular location such as plasma membrane. The plasma membrane maintains the structural integrity of the cell and regulates multiple important cellular processes, such as endocytosis, trafficking, and apoptotic pathways, could be one of the best points to kill the cancer cells. Previously, we have developed a plasma membrane-targeted liquid crystal nanoparticle (LCNP) formulation that can be loaded with dyes or drugs. Here we highlight the utility of this LCNP for membrane targeted delivery and imaging for a photosensitizer (PS) for PDT applications.

  2. Lysosomal Signaling Enhances Mitochondria-Mediated Photodynamic Therapy in A431 Cancer Cells: Role of Iron

    PubMed Central

    Saggu, Shalini; Hung, Hsin-I; Quiogue, Geraldine; Lemasters, John J.; Nieminen, Anna-Liisa

    2015-01-01

    In photodynamic therapy (PDT), light activates a photosensitizer added to a tissue, resulting in singlet oxygen formation and cell death. The photosensitizer phthalocyanine 4 (Pc 4) localizes primarily to mitochondrial membranes in cancer cells, resulting in mitochondria-mediated cell death. The aim of this study was to determine how lysosomes contribute to PDT-induced cell killing by mitochondria-targeted photosensitizers such as Pc 4. We monitored cell killing of A431 cells after Pc 4-PDT in the presence and absence of bafilomycin, an inhibitor of the vacuolar proton pump of lysosomes and endosomes. Bafilomycin was not toxic by itself, but greatly enhanced Pc 4-PDT-induced cell killing. To investigate whether iron loading of lysosomes affects bafilomycin-induced killing, cells were incubated with ammonium ferric citrate (30 μm) for 30 h prior to PDT. Ammonium ferric citrate enhanced Pc 4 plus bafilomycin-induced cell killing without having toxicity by itself. Iron chelators (desferrioxamine and starch-desferrioxamine) and the inhibitor of the mitochondrial calcium (and ferrous iron) uniporter, Ru360, protected against Pc 4 plus bafilomycin toxicity. These results support the conclusion that chelatable iron stored in the lysosomes enhances the efficacy of bafilomycin-mediated PDT and that lysosomal disruption augments PDT with Pc 4. PMID:22220628

  3. Poly(lactic-co-glycolic acid) nanoparticles conjugated with CD133 aptamers for targeted salinomycin delivery to CD133+ osteosarcoma cancer stem cells

    PubMed Central

    Ni, Miaozhong; Xiong, Min; Zhang, Xinchao; Cai, Guoping; Chen, Huaiwen; Zeng, Qingmin; Yu, Zuochong

    2015-01-01

    Background Cancer stem cells (CSCs) possess the characteristics associated with normal stem cells and are responsible for cancer initiation, recurrence, and metastasis. CD133 is regarded as a CSCs marker of osteosarcoma, which is the most common primary bone malignancy in childhood and adolescence. Salinomycin, a polyether ionophore antibiotic, has been shown to kill various CSCs, including osteosarcoma CSCs. However, salinomycin displayed poor aqueous solubility that hinders its clinical application. The objective of this study was to develop salinomycin-loaded nanoparticles to eliminate CD133+ osteosarcoma CSCs. Methods The salinomycin-loaded PEGylated poly(lactic-co-glycolic acid) nanoparticles (SAL-NP) conjugated with CD133 aptamers (Ap-SAL-NP) were developed by an emulsion/solvent evaporation method, and the targeting and cytotoxicity of Ap-SAL-NP to CD133+ osteosarcoma CSCs were evaluated. Results The nanoparticles are of desired particle size (~150 nm), drug encapsulation efficiency (~50%), and drug release profile. After 48 hours treatment of the Saos-2 CD133+ osteosarcoma cells with drugs formulated in Ap-SAL-NP, SAL-NP, and salinomycin, the concentrations needed to kill 50% of the incubated cells were found to be 2.18, 10.72, and 5.07 μg/mL, respectively, suggesting that Ap-SAL-NP could be 4.92 or 2.33 fold more effective than SAL-NP or salinomycin, respectively. In contrast, Ap-SAL-NP was as effective as SAL-NP, and less effective than salinomycin in Saos-2 CD133− cells, suggesting that Ap-SAL-NP possess specific cytotoxicity toward Saos-2 CD133+ cells. Ap-SAL-NP showed the best therapeutic effect in Saos-2 osteosarcoma xenograft mice, compared with SAL-NP or salinomycin. Significantly, Ap-SAL-NP could selectively kill CD133+ osteosarcoma CSCs both in vitro and in vivo, as reflected by the tumorsphere formation and proportion of Saos-2 CD133+ cells. Conclusion Our results suggest that CD133 is a potential target for drug delivery to osteosarcoma CSCs and that it is possible to significantly inhibit the osteosarcoma growth by killing CD133+ osteosarcoma CSCs. We demonstrated that Ap-SAL-NP have the potential to target and kill CD133+ osteosarcoma CSCs. PMID:25848270

  4. An Acidic Microenvironment Increases NK Cell Killing of Cryptococcus neoformans and Cryptococcus gattii by Enhancing Perforin Degranulation

    PubMed Central

    Islam, Anowara; Li, Shu Shun; Oykhman, Paul; Timm-McCann, Martina; Huston, Shaunna M.; Stack, Danuta; Xiang, Richard F.; Kelly, Margaret M.; Mody, Christopher H.

    2013-01-01

    Cryptococcus gattii and Cryptococcus neoformans are encapsulated yeasts that can produce a solid tumor-like mass or cryptococcoma. Analogous to malignant tumors, the microenvironment deep within a cryptococcoma is acidic, which presents unique challenges to host defense. Analogous to malignant cells, NK cells kill Cryptococcus. Thus, as in tumor defense, NK cells must kill yeast cells across a gradient from physiologic pH to less than 6 in the center of the cryptococcoma. As acidic pH inhibits anti-tumor activities of NK cells, we sought to determine if there was a similar reduction in the anticryptococcal activity of NK cells. Surprisingly, we found that both primary human NK cells and the human NK cell line, YT, have preserved or even enhanced killing of Cryptococcus in acidic, compared to physiological, pH. Studies to explore the mechanism of enhanced killing revealed that acidic pH does not increase the effector to target ratio, binding of cytolytic cells to Cryptococcus, or the active perforin content in effector cells. By contrast, perforin degranulation was greater at acidic pH, and increased degranulation was preceded by enhanced ERK1/2 phosphorylation, which is essential for killing. Moreover, using a replication defective ras1 knockout strain of Cryptococcus increased degranulation occurred during more rapid replication of the organisms. Finally, NK cells were found intimately associated with C. gattii within the cryptococcoma of a fatal infection. These results suggest that NK cells have amplified signaling, degranulation, and greater killing at low pH and when the organisms are replicating quickly, which would help maintain microbicidal host defense despite an acidic microenvironment. PMID:23853583

  5. The natural dietary genistein boosts bacteriophage-mediated cancer cell killing by improving phage-targeted tumor cell transduction.

    PubMed

    Tsafa, Effrosyni; Al-Bahrani, Mariam; Bentayebi, Kaoutar; Przystal, Justyna; Suwan, Keittisak; Hajitou, Amin

    2016-08-09

    Gene therapy has long been regarded as a promising treatment for cancer. However, cancer gene therapy is still facing the challenge of targeting gene delivery vectors specifically to tumors when administered via clinically acceptable non-invasive systemic routes (i.e. intravenous). The bacteria virus, bacteriophage (phage), represents a new generation of promising vectors in systemic gene delivery since their targeting can be achieved through phage capsid display ligands, which enable them to home to specific tumor receptors without the need to ablate any native eukaryotic tropism. We have previously reported a tumor specific bacteriophage vector named adeno-associated virus/phage, or AAVP, in which gene expression is under a recombinant human rAAV2 virus genome targeted to tumors via a ligand-directed phage capsid. However, cancer gene therapy with this tumor-targeted vector achieved variable outcomes ranging from tumor regression to no effect in both experimental and natural preclinical models. Herein, we hypothesized that combining the natural dietary genistein, with proven anticancer activity, would improve bacteriophage anticancer safe therapy. We show that combination treatment with genistein and AAVP increased targeted cancer cell killing by AAVP carrying the gene for Herpes simplex virus thymidine kinase (HSVtk) in 2D tissue cultures and 3D tumor spheroids. We found this increased tumor cell killing was associated with enhanced AAVP-mediated gene expression. Next, we established that genistein protects AAVP against proteasome degradation and enhances vector genome accumulation in the nucleus. Combination of genistein and phage-guided virotherapy is a safe and promising strategy that should be considered in anticancer therapy with AAVP.

  6. Toxoplasma gondii induces FAK-Src-STAT3 signaling during infection of host cells that prevents parasite targeting by autophagy.

    PubMed

    Portillo, Jose-Andres C; Muniz-Feliciano, Luis; Lopez Corcino, Yalitza; Lee, So Jung; Van Grol, Jennifer; Parsons, Sarah J; Schiemman, William P; Subauste, Carlos S

    2017-10-01

    Targeting of Toxoplasma gondii by autophagy is an effective mechanism by which host cells kill the protozoan. Thus, the parasite must avoid autophagic targeting to survive. Here we show that the mammalian cytoplasmic molecule Focal Adhesion Kinase (FAK) becomes activated during invasion of host cells. Activated FAK appears to accompany the formation of the moving junction (as assessed by expression the parasite protein RON4). FAK activation was inhibited by approaches that impaired β1 and β3 integrin signaling. FAK caused activation of Src that in turn mediated Epidermal Growth Factor Receptor (EGFR) phosphorylation at the unique Y845 residue. Expression of Src-resistant Y845F EGFR mutant markedly inhibited ROP16-independent activation of STAT3 in host cells. Activation of FAK, Y845 EGFR or STAT3 prevented activation of PKR and eIF2α, key stimulators of autophagy. Genetic or pharmacologic inhibition of FAK, Src, EGFR phosphorylation at Y845, or STAT3 caused accumulation of the autophagy protein LC3 and LAMP-1 around the parasite and parasite killing dependent on autophagy proteins (ULK1 and Beclin 1) and lysosomal enzymes. Parasite killing was inhibited by expression of dominant negative PKR. Thus, T. gondii activates a FAK→Src→Y845-EGFR→STAT3 signaling axis within mammalian cells, thereby enabling the parasite to survive by avoiding autophagic targeting through a mechanism likely dependent on preventing activation of PKR and eIF2α.

  7. Virus-Based Cancer Therapeutics for Targeted Photodynamic Therapy.

    PubMed

    Cao, Binrui; Xu, Hong; Yang, Mingying; Mao, Chuanbin

    2018-01-01

    Cancer photodynamic therapy (PDT) involves the absorption of light by photosensitizers (PSs) to generate cytotoxic singlet oxygen for killing cancer cells. The success of this method is usually limited by the lack of selective accumulation of the PS at cancer cells. Bioengineered viruses with cancer cell-targeting peptides fused on their surfaces are great drug carriers that can guide the PS to cancer cells for targeted cancer treatment. Here, we use cell-targeting fd bacteriophages (phages) as an example to describe how to chemically conjugate PSs (e.g., pyropheophorbide-a (PPa)) onto a phage particle to achieve targeted PDT.

  8. Targeted Magnetic Hyperthermia for Lung Cancer

    DTIC Science & Technology

    2012-09-01

    Despite significant advances in diagnostic techniques an d the disco very of new molecularl y targeted therapies , lung cancer (specifically, non-small...vibrating sample magneto metry) and heating rates. The effect of MH on overall tumor cell kill was determined in A549 cells (NSCLCs) based on the amou nt of

  9. Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis.

    PubMed

    Bonne-Année, Sandra; Kerepesi, Laura A; Hess, Jessica A; Wesolowski, Jordan; Paumet, Fabienne; Lok, James B; Nolan, Thomas J; Abraham, David

    2014-06-01

    Neutrophils are multifaceted cells that are often the immune system's first line of defense. Human and murine cells release extracellular DNA traps (ETs) in response to several pathogens and diseases. Neutrophil extracellular trap (NET) formation is crucial to trapping and killing extracellular pathogens. Aside from neutrophils, macrophages and eosinophils also release ETs. We hypothesized that ETs serve as a mechanism of ensnaring the large and highly motile helminth parasite Strongyloides stercoralis thereby providing a static target for the immune response. We demonstrated that S. stercoralis larvae trigger the release of ETs by human neutrophils and macrophages. Analysis of NETs revealed that NETs trapped but did not kill larvae. Induction of NETs was essential for larval killing by human but not murine neutrophils and macrophages in vitro. In mice, extracellular traps were induced following infection with S. stercoralis larvae and were present in the microenvironment of worms being killed in vivo. These findings demonstrate that NETs ensnare the parasite facilitating larval killing by cells of the immune system. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  10. Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis

    PubMed Central

    Bonne-Année, Sandra; Kerepesi, Laura A.; Hess, Jessica A.; Wesolowski, Jordan; Paumet, Fabienne; Lok, James B.; Nolan, Thomas J.; Abraham, David

    2014-01-01

    Neutrophils are multifaceted cells that are often the immune system’s first line of defense. Human and murine cells release extracellular DNA traps (ETs) in response to several pathogens and diseases. Neutrophil extracellular trap (NET) formation is crucial to trapping and killing extracellular pathogens. Aside from neutrophils, macrophages and eosinophils also release ETs. We hypothesized that ETs serve as a mechanism of ensnaring the large and highly motile helminth parasite Strongyloides stercoralis thereby providing a static target for the immune response. We demonstrated that S. stercoralis larvae trigger the release of ETs by human neutrophils and macrophages. Analysis of NETs revealed that NETs trapped but did not kill larvae. Induction of NETs was essential for larval killing by human but not murine neutrophils and macrophages in vitro. In mice, extracellular traps were induced following infection with S. stercoralis larvae and were present in the microenvironment of worms being killed in vivo. These findings demonstrate that NETs ensnare the parasite facilitating larval killing by cells of the immune system. PMID:24642003

  11. Nitric oxide inhibits exocytosis of cytolytic granules from lymphokine-activated killer cells

    PubMed Central

    Ferlito, Marcella; Irani, Kaikobad; Faraday, Nauder; Lowenstein, Charles J.

    2006-01-01

    NO inhibits cytotoxic T lymphocyte killing of target cells, although the precise mechanism is unknown. We hypothesized that NO decreases exocytosis of cytotoxic granules from activated lymphocytes. We now show that NO inhibits lymphokine-activated killer cell killing of K562 target cells. Exogenous and endogenous NO decreases the release of granzyme B, granzyme A, and perforin: all contents of cytotoxic granules. NO inhibits the signal transduction cascade initiated by cross-linking of the T cell receptor that leads to granule exocytosis. In particular, we found that NO decreases the expression of Ras, a critical signaling component within the exocytic pathway. Ectopic expression of Ras prevents NO inhibition of exocytosis. Our data suggest that Ras mediates NO inhibition of lymphocyte cytotoxicity and emphasize that alterations in the cellular redox state may regulate the exocytic signaling pathway. PMID:16857739

  12. Patient-Derived Antibody Targets Tumor Cells

    Cancer.gov

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  13. Simultaneous targeting of prostate stem cell antigen and prostate-specific membrane antigen improves the killing of prostate cancer cells using a novel modular T cell-retargeting system.

    PubMed

    Arndt, Claudia; Feldmann, Anja; Koristka, Stefanie; Cartellieri, Marc; Dimmel, Maria; Ehninger, Armin; Ehninger, Gerhard; Bachmann, Michael

    2014-09-01

    Recently, we described a novel modular platform technology in which T cell-recruitment and tumor-targeting domains of conventional bispecific antibodies are split to independent components, a universal effector module (EM) and replaceable monospecific/monovalent target modules (TMs) that form highly efficient T cell-retargeting complexes. Theoretically, our unique strategy should allow us to simultaneously retarget T cells to different tumor antigens by combining the EM with two or more different monovalent/monospecific TMs or even with bivalent/bispecific TMs, thereby overcoming limitations of a monospecific treatment such as the selection of target-negative tumor escape variants. In order to advance our recently introduced prostate stem cell antigen (PSCA)-specific modular system for a dual-targeting of prostate cancer cells, two additional TMs were constructed: a monovalent/monospecific TM directed against the prostate-specific membrane antigen (PSMA) and a bivalent/bispecific TM (bsTM) with specificity for PSMA and PSCA. The functionality of the novel dual-targeting strategies was analyzed by performing T cell activation and chromium release assays. Similar to the PSCA-specific modular system, the novel PSMA-specific modular system mediates an efficient target-dependent and -specific tumor cell lysis at low E:T ratios and picomolar Ab concentrations. Moreover, by combination of the EM with either the bispecific TM directed to PSMA and PSCA or both monospecifc TMs directed to either PSCA or PSMA, dual-specific targeting complexes were formed which allowed us to kill potential escape variants expressing only one or the other target antigen. Overall, the novel modular system represents a promising tool for multiple tumor targeting. © 2014 Wiley Periodicals, Inc.

  14. Effect of a streptococcal preparation (OK432) on natural killer activity of tumour-associated lymphoid cells in human ovarian carcinoma and on lysis of fresh ovarian tumour cells.

    PubMed Central

    Colotta, F.; Rambaldi, A.; Colombo, N.; Tabacchi, L.; Introna, M.; Mantovani, A.

    1983-01-01

    The streptococcal preparation OK432 was studied for its effects on natural killer (NK) activity of peripheral blood lymphocytes (PBL) from normal donors and from ovarian cancer patients, and of tumour-associated lymphocytes (TAL) from peritoneal effusions. OK432 augmented NK activity against the susceptible K562 line and induced killing of the relatively resistant Raji line. Freshly isolated ovarian carcinoma cells were relatively resistant to killing by unstimulated PBL and TAL. OK432 induced significant, though low, levels of cytotoxicity against 51Cr-labelled ovarian carcinoma cells. Augmentation of killing of fresh tumour cells by OK432 was best observed in a 20 h assay and both autologous and allogeneic targets were lysed. PBL were separated on discontinuous Percoll gradients. Unstimulated and OK432-boosted activity were enriched in the lower density fractions where large granular lymphocytes (LGL) and activity against K562 were found. Thus, OK432 augments NK activity of PBL and TAL in human ovarian carcinomas and induces low, but significant, levels of killing of fresh tumour cells. Effector cells involved in killing of fresh ovarian tumours copurify with LGL on discontinuous gradients of Percoll. PMID:6626452

  15. ONC201 kills breast cancer cells in vitro by targeting mitochondria.

    PubMed

    Greer, Yoshimi Endo; Porat-Shliom, Natalie; Nagashima, Kunio; Stuelten, Christina; Crooks, Dan; Koparde, Vishal N; Gilbert, Samuel F; Islam, Celia; Ubaldini, Ashley; Ji, Yun; Gattinoni, Luca; Soheilian, Ferri; Wang, Xiantao; Hafner, Markus; Shetty, Jyoti; Tran, Bao; Jailwala, Parthav; Cam, Maggie; Lang, Martin; Voeller, Donna; Reinhold, William C; Rajapakse, Vinodh; Pommier, Yves; Weigert, Roberto; Linehan, W Marston; Lipkowitz, Stanley

    2018-04-06

    We report a novel mechanism of action of ONC201 as a mitochondria-targeting drug in cancer cells. ONC201 was originally identified as a small molecule that induces transcription of TNF-related apoptosis-inducing ligand (TRAIL) and subsequently kills cancer cells by activating TRAIL death receptors. In this study, we examined ONC201 toxicity on multiple human breast and endometrial cancer cell lines. ONC201 attenuated cell viability in all cancer cell lines tested. Unexpectedly, ONC201 toxicity was not dependent on either TRAIL receptors nor caspases. Time-lapse live cell imaging revealed that ONC201 induces cell membrane ballooning followed by rupture, distinct from the morphology of cells undergoing apoptosis. Further investigation found that ONC201 induces phosphorylation of AMP-dependent kinase and ATP loss. Cytotoxicity and ATP depletion were significantly enhanced in the absence of glucose, suggesting that ONC201 targets mitochondrial respiration. Further analysis indicated that ONC201 indirectly inhibits mitochondrial respiration. Confocal and electron microscopic analysis demonstrated that ONC201 triggers mitochondrial structural damage and functional impairment. Moreover, ONC201 decreased mitochondrial DNA (mtDNA). RNAseq analysis revealed that ONC201 suppresses expression of multiple mtDNA-encoded genes and nuclear-encoded mitochondrial genes involved in oxidative phosphorylation and other mitochondrial functions. Importantly, fumarate hydratase deficient cancer cells and multiple cancer cell lines with reduced amounts of mtDNA were resistant to ONC201. These results indicate that cells not dependent on mitochondrial respiration are ONC201-resistant. Our data demonstrate that ONC201 kills cancer cells by disrupting mitochondrial function and further suggests that cancer cells that are dependent on glycolysis will be resistant to ONC201.

  16. ONC201 kills breast cancer cells in vitro by targeting mitochondria

    PubMed Central

    Greer, Yoshimi Endo; Porat-Shliom, Natalie; Nagashima, Kunio; Stuelten, Christina; Crooks, Dan; Koparde, Vishal N.; Gilbert, Samuel F.; Islam, Celia; Ubaldini, Ashley; Ji, Yun; Gattinoni, Luca; Soheilian, Ferri; Wang, Xiantao; Hafner, Markus; Shetty, Jyoti; Tran, Bao; Jailwala, Parthav; Cam, Maggie; Lang, Martin; Voeller, Donna; Reinhold, William C.; Rajapakse, Vinodh; Pommier, Yves; Weigert, Roberto; Linehan, W. Marston; Lipkowitz, Stanley

    2018-01-01

    We report a novel mechanism of action of ONC201 as a mitochondria-targeting drug in cancer cells. ONC201 was originally identified as a small molecule that induces transcription of TNF-related apoptosis-inducing ligand (TRAIL) and subsequently kills cancer cells by activating TRAIL death receptors. In this study, we examined ONC201 toxicity on multiple human breast and endometrial cancer cell lines. ONC201 attenuated cell viability in all cancer cell lines tested. Unexpectedly, ONC201 toxicity was not dependent on either TRAIL receptors nor caspases. Time-lapse live cell imaging revealed that ONC201 induces cell membrane ballooning followed by rupture, distinct from the morphology of cells undergoing apoptosis. Further investigation found that ONC201 induces phosphorylation of AMP-dependent kinase and ATP loss. Cytotoxicity and ATP depletion were significantly enhanced in the absence of glucose, suggesting that ONC201 targets mitochondrial respiration. Further analysis indicated that ONC201 indirectly inhibits mitochondrial respiration. Confocal and electron microscopic analysis demonstrated that ONC201 triggers mitochondrial structural damage and functional impairment. Moreover, ONC201 decreased mitochondrial DNA (mtDNA). RNAseq analysis revealed that ONC201 suppresses expression of multiple mtDNA-encoded genes and nuclear-encoded mitochondrial genes involved in oxidative phosphorylation and other mitochondrial functions. Importantly, fumarate hydratase deficient cancer cells and multiple cancer cell lines with reduced amounts of mtDNA were resistant to ONC201. These results indicate that cells not dependent on mitochondrial respiration are ONC201-resistant. Our data demonstrate that ONC201 kills cancer cells by disrupting mitochondrial function and further suggests that cancer cells that are dependent on glycolysis will be resistant to ONC201. PMID:29719618

  17. Constructing TC-1-GLUC-LMP2 Model Tumor Cells to Evaluate the Anti-Tumor Effects of LMP2-Related Vaccines

    PubMed Central

    Sun, Liying; Hao, Yanzhe; Wang, Zhan; Zeng, Yi

    2018-01-01

    Epstein-Barr virus (EBV) is related to a variety of malignant tumors, and its encoded protein, latent membrane protein 2 (LMP2), is an effective target antigen that is widely used to construct vector vaccines. However, the model cells carrying LMP2 have still not been established to assess the oncolytic effect of LMP2-related vaccines at present. In this study, TC-1-GLUC-LMP2 tumor cells were constructed as target cells to evaluate the anti-tumor effects of LMP2-assosiated vaccines. The results showed that both LMP2 and Gaussia luciferase (GLuc) genes could be detected by polymerase chain reaction (PCR) and reverse transcription-polymerase chain reaction (RT-PCR) in TC-1-GLUC-LMP2 cells. Western blot results showed that the LMP2 and Gaussia luciferase proteins were stably expressed in tumor cells for at least 30 generations. We mixed 5 × 104 LMP2-specific mouse splenic lymphocytes with 5 × 103 TC-1-GLUC-LMP2 target cells and found that the target cells were killed as the specific killing effect was obviously enhanced by the increased quantities of LMP2-peptide stimulated spleens. Furthermore, the tumor cells could not be observed in the mice inoculated TC-1-GLUC-LMP2 cells after being immunized with vaccine-LMP2, while the vaccine-NULL immunized mice showed that tumor volume gradually grew with increased inoculation time. These results indicated that the TC-1-GLUC-LMP2 cells stably expressing LMP2 and GLuc produced tumors in mice, and that the LMP2-specific cytotoxic T lymphocyte (CTL) effectively killed the cells in vitro and in vivo, suggesting that TC-1-GLUC-LMP2 cells can be used as model cells to assess the immune and antitumor effects of LMP2-related vaccines. PMID:29570629

  18. Cell-mediated immunity in herpes simplex virus-infected mice: functional analysis of lymph node cells during periods of acute and latent infection, with reference to cytotoxic and memory cells.

    PubMed

    Nash, A A; Quartey-Papafio, R; Wildy, P

    1980-08-01

    The functional characteristics of lymphoid cells were investigated during acute and latent infection of mice with herpes simplex virus (HSV). Cytotoxic T cells were found in the draining lymph node (DLN) 4 days p.i. and had reached maximum activity between 6 and 9 days. After the 12th day and during the period of latent infection (> 20 days) no cytotoxic cell activity was observed. Cytotoxic activity could only be detected when the lymphoid cells had been cultured for a period of 3 days. In general, the cell killing was specific for syngeneic infected target cells, although some killing of uninfected targets was observed. In contrast to the cytotoxic response, DLN cells responding to HSV in a proliferation assay were detected towards the end of the acute phase and at lease up to 9 months thereafter. The significance of these observations for the pathogenesis of HSV is discussed.

  19. Detection of Wilms' tumor antigen--specific CTL in tumor-draining lymph nodes of patients with early breast cancer.

    PubMed

    Gillmore, Roopinder; Xue, Shao-An; Holler, Angelika; Kaeda, Jaspal; Hadjiminas, Dimitri; Healy, Vourneen; Dina, Roberto; Parry, Suzanne C; Bellantuono, Ilaria; Ghani, Yasmeen; Coombes, R Charles; Waxman, Jonathan; Stauss, Hans J

    2006-01-01

    The Wilms' tumor antigen (WT1) is overexpressed in approximately 90% of breast tumors and, thus, is a potential target antigen for the immunotherapy of breast cancer. We have tested the working hypotheses that WT1 can be immunogenic in patients with breast cancer and can stimulate CTL of sufficient avidity to kill tumor cells. Paired tumor-draining lymph node and peripheral blood samples were analyzed from five HLA-A2-positive patients with stage I/II breast cancer. Fluorescent HLA-A*0201/WT1 tetramers were used to quantify WT1-specific CTL and the functional capacity of the CTL was assessed using cytotoxicity assays and intracellular cytokine staining. WT1 tetramer-binding T cells expanded from all lymph node samples but none of the corresponding peripheral blood samples. Functional assays were carried out on T cells from the patient who had yielded the highest frequency of HLA-A*0201/WT1 tetramer-positive cells. The cytotoxicity assays showed WT1 peptide--specific killing activity of the CTL, whereas intracellular cytokine staining confirmed that the tetramer--positive T cells produced IFN-gamma after stimulation with WT1 peptide. These WT1-specific T cells killed HLA-A2-positive breast cancer cell lines treated with IFN-gamma but no killing was observed with untreated tumor cells. These results show that WT1-specific CTL can be expanded from the tumor-draining lymph nodes of breast cancer patients and that they can display peptide-specific effector function. However, the CTL only killed IFN-gamma-treated tumor targets expressing high levels of HLA-A2 and not tumor cells with low HLA expression. This suggests that induction of autologous WT1-specific CTL may offer only limited tumor protection and that strategies that allow a high level of peptide/MHC complex presentation and/or improve CTL avidity may be required.

  20. Selective intracellular vaporisation of antibody-conjugated phase-change nano-droplets in vitro

    NASA Astrophysics Data System (ADS)

    Ishijima, A.; Minamihata, K.; Yamaguchi, S.; Yamahira, S.; Ichikawa, R.; Kobayashi, E.; Iijima, M.; Shibasaki, Y.; Azuma, T.; Nagamune, T.; Sakuma, I.

    2017-03-01

    While chemotherapy is a major mode of cancer therapeutics, its efficacy is limited by systemic toxicities and drug resistance. Recent advances in nanomedicine provide the opportunity to reduce systemic toxicities. However, drug resistance remains a major challenge in cancer treatment research. Here we developed a nanomedicine composed of a phase-change nano-droplet (PCND) and an anti-cancer antibody (9E5), proposing the concept of ultrasound cancer therapy with intracellular vaporisation. PCND is a liquid perfluorocarbon nanoparticle with a liquid-gas phase that is transformable upon exposure to ultrasound. 9E5 is a monoclonal antibody targeting epiregulin (EREG). We found that 9E5-conjugated PCNDs are selectively internalised into targeted cancer cells and kill the cells dynamically by ultrasound-induced intracellular vaporisation. In vitro experiments show that 9E5-conjugated PCND targets 97.8% of high-EREG-expressing cancer cells and kills 57% of those targeted upon exposure to ultrasound. Furthermore, direct observation of the intracellular vaporisation process revealed the significant morphological alterations of cells and the release of intracellular contents.

  1. Role of CD44 in lymphokine-activated killer cell-mediated killing of melanoma.

    PubMed

    Sun, Jingping; Law, Gabriela P; McKallip, Robert J

    2012-03-01

    In the current study, we examined the potential significance of CD44 expression on lymphokine-activated killer (LAK) cells in their interaction and killing of melanoma cells. Stimulation of splenocytes with IL-2 led to a significant increase in the expression of CD44 on T cells, NK cells, and NKT cells. Treatment of melanoma-bearing CD44 WT mice with IL-2 led to a significant reduction in the local tumor growth while treatment of melanoma-bearing CD44 KO mice with IL-2 was ineffective at controlling tumor growth. Furthermore, the ability of splenocytes from IL-2-treated CD44 KO mice to kill melanoma tumor targets was significantly reduced when compared to the anti-tumor activity of splenocytes from IL-2-treated CD44 WT mice. The importance of CD44 expression on the LAK cells was further confirmed by the observation that adoptively transferred CD44 WT LAK cells were significantly more effective than CD44 KO LAK cells at controlling tumor growth in vivo. Next, the significance of the increased expression of CD44 in tumor killing was examined and showed that following stimulation with IL-2, distinct populations of cells with low (CD44(lo)) or elevated (CD44(hi)) expression of CD44 are generated and that the CD44(hi) cells are responsible for killing of the melanoma cells. The reduced killing activity of the CD44 KO LAK cells did not result from reduced activation or expression of effector molecules but was due, at least in part, to a reduced ability to adhere to B16F10 tumor cells.

  2. A chimeric antigen receptor for TRAIL-receptor 1 induces apoptosis in various types of tumor cells.

    PubMed

    Kobayashi, Eiji; Kishi, Hiroyuki; Ozawa, Tatsuhiko; Hamana, Hiroshi; Nakagawa, Hidetoshi; Jin, Aishun; Lin, Zhezhu; Muraguchi, Atsushi

    2014-10-31

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its associated receptors (TRAIL-R/TR) are attractive targets for cancer therapy because TRAIL induces apoptosis in tumor cells through TR while having little cytotoxicity on normal cells. Therefore, many agonistic monoclonal antibodies (mAbs) specific for TR have been produced, and these induce apoptosis in multiple tumor cell types. However, some TR-expressing tumor cells are resistant to TR-specific mAb-induced apoptosis. In this study, we constructed a chimeric antigen receptor (CAR) of a TRAIL-receptor 1 (TR1)-specific single chain variable fragment (scFv) antibody (TR1-scFv-CAR) and expressed it on a Jurkat T cell line, the KHYG-1 NK cell line, and human peripheral blood lymphocytes (PBLs). We found that the TR1-scFv-CAR-expressing Jurkat cells killed target cells via TR1-mediated apoptosis, whereas TR1-scFv-CAR-expressing KHYG-1 cells and PBLs killed target cells not only via TR1-mediated apoptosis but also via CAR signal-induced cytolysis, resulting in cytotoxicity on a broader range if target cells than with TR1-scFv-CAR-expressing Jurkat cells. The results suggest that TR1-scFv-CAR could be a new candidate for cancer gene therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Neutrophils kill the parasite Trichomonas vaginalis using trogocytosis

    PubMed Central

    Mercer, Frances; Ng, Shek Hang; Brown, Taylor M.; Boatman, Grace; Johnson, Patricia J.

    2018-01-01

    T. vaginalis, a human-infective parasite, causes the most common nonviral sexually transmitted infection (STI) worldwide and contributes to adverse inflammatory disorders. The immune response to T. vaginalis is poorly understood. Neutrophils (polymorphonuclear cells [PMNs]) are the major immune cell present at the T. vaginalis–host interface and are thought to clear T. vaginalis. However, the mechanism of PMN clearance of T. vaginalis has not been characterized. We demonstrate that human PMNs rapidly kill T. vaginalis in a dose-dependent, contact-dependent, and neutrophil extracellular trap (NET)-independent manner. In contrast to phagocytosis, we observed that PMN killing of T. vaginalis involves taking “bites” of T. vaginalis prior to parasite death, using trogocytosis to achieve pathogen killing. Both trogocytosis and parasite killing are dependent on the presence of PMN serine proteases and human serum factors. Our analyses provide the first demonstration, to our knowledge, of a mammalian phagocyte using trogocytosis for pathogen clearance and reveal a novel mechanism used by PMNs to kill a large, highly motile target. PMID:29408891

  4. Membrane Lipid Peroxidation in Copper Alloy-Mediated Contact Killing of Escherichia coli

    PubMed Central

    Hong, Robert; Kang, Tae Y.; Michels, Corinne A.

    2012-01-01

    Copper alloy surfaces are passive antimicrobial sanitizing agents that kill bacteria, fungi, and some viruses. Studies of the mechanism of contact killing in Escherichia coli implicate the membrane as the target, yet the specific component and underlying biochemistry remain unknown. This study explores the hypothesis that nonenzymatic peroxidation of membrane phospholipids is responsible for copper alloy-mediated surface killing. Lipid peroxidation was monitored with the thiobarbituric acid-reactive substances (TBARS) assay. Survival, TBARS levels, and DNA degradation were followed in cells exposed to copper alloy surfaces containing 60 to 99.90% copper or in medium containing CuSO4. In all cases, TBARS levels increased with copper exposure levels. Cells exposed to the highest copper content alloys, C11000 and C24000, exhibited novel characteristics. TBARS increased immediately at a very rapid rate but peaked at about 30 min. This peak was associated with the period of most rapid killing, loss in membrane integrity, and DNA degradation. DNA degradation is not the primary cause of copper-mediated surface killing. Cells exposed to the 60% copper alloy for 60 min had fully intact genomic DNA but no viable cells. In a fabR mutant strain with increased levels of unsaturated fatty acids, sensitivity to copper alloy surface-mediated killing increased, TBARS levels peaked earlier, and genomic DNA degradation occurred sooner than in the isogenic parental strain. Taken together, these results suggest that copper alloy surface-mediated killing of E. coli is triggered by nonenzymatic oxidative damage of membrane phospholipids that ultimately results in the loss of membrane integrity and cell death. PMID:22247141

  5. The natural dietary genistein boosts bacteriophage-mediated cancer cell killing by improving phage-targeted tumor cell transduction

    PubMed Central

    Tsafa, Effrosyni; Al-Bahrani, Mariam; Bentayebi, Kaoutar; Przystal, Justyna; Suwan, Keittisak; Hajitou, Amin

    2016-01-01

    Gene therapy has long been regarded as a promising treatment for cancer. However, cancer gene therapy is still facing the challenge of targeting gene delivery vectors specifically to tumors when administered via clinically acceptable non-invasive systemic routes (i.e. intravenous). The bacteria virus, bacteriophage (phage), represents a new generation of promising vectors in systemic gene delivery since their targeting can be achieved through phage capsid display ligands, which enable them to home to specific tumor receptors without the need to ablate any native eukaryotic tropism. We have previously reported a tumor specific bacteriophage vector named adeno-associated virus/phage, or AAVP, in which gene expression is under a recombinant human rAAV2 virus genome targeted to tumors via a ligand-directed phage capsid. However, cancer gene therapy with this tumor-targeted vector achieved variable outcomes ranging from tumor regression to no effect in both experimental and natural preclinical models. Herein, we hypothesized that combining the natural dietary genistein, with proven anticancer activity, would improve bacteriophage anticancer safe therapy. We show that combination treatment with genistein and AAVP increased targeted cancer cell killing by AAVP carrying the gene for Herpes simplex virus thymidine kinase (HSVtk) in 2D tissue cultures and 3D tumor spheroids. We found this increased tumor cell killing was associated with enhanced AAVP-mediated gene expression. Next, we established that genistein protects AAVP against proteasome degradation and enhances vector genome accumulation in the nucleus. Combination of genistein and phage-guided virotherapy is a safe and promising strategy that should be considered in anticancer therapy with AAVP. PMID:27437775

  6. Trichostatin A Sensitizes Hepatocellular Carcinoma Cells to Enhanced NK Cell-mediated Killing by Regulating Immune-related Genes.

    PubMed

    Shin, Sangsu; Kim, Miok; Lee, Seon-Jin; Park, Kang-Seo; Lee, Chang Hoon

    2017-01-01

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. The ability of HCC to avoid immune detection is considered one of the main factors making it difficult to cure. Abnormal histone deacetylation is thought to be one of the mechanisms for HCC immune escape, making histone deacetylases (HDACs) attractive targets for HCC treatment. Here, we investigated the effect of trichostatin A (TSA), a highly potent HDAC inhibitor, on HCC (HepG2) gene expression and function. A genome wide-transcriptional microarray was used to identify genes regulated by TSA in HepG2 cells. Gene Ontology was used to identify pathways regulated by TSA, and these changes were confirmed by qPCR. The effect of TSA on natural killer (NK) cell-mediated killing of HCC cell lines were analyzed by both flow cytometry and LDH cytotoxicity assay. A study was also conducted in a Balb/c nude mice xenograft model to assess the anti-tumor activity of TSA. TSA regulated the transcription of numerous innate immunity & tumor antigen recognition-associated genes, such as ULBP1 and RAET1G, in HCC cells. In vivo, TSA reduced tumor cell growth in an NK cell-dependent manner. In vitro, TSA treatment of HepG2 cells rendered them more susceptible to NK cell-mediated killing while increasing the expression of NKGD2 ligands, including ULBP1/2/3 and MICA/B. TSA also induced direct killing of HCC cells by stimulating apoptosis. TSA likely increases killing of HCC cells indirectly by increasing NK cell-directed killing and directly by increasing apoptosis. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Trichostatin A Sensitizes Hepatocellular Carcinoma Cells to Enhanced NK Cell-mediated Killing by Regulating Immune-related Genes

    PubMed Central

    SHIN, SANGSU; KIM, MIOK; LEE, SEON-JIN; PARK, KANG-SEO

    2017-01-01

    Background/Aim: Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. The ability of HCC to avoid immune detection is considered one of the main factors making it difficult to cure. Abnormal histone deacetylation is thought to be one of the mechanisms for HCC immune escape, making histone deacetylases (HDACs) attractive targets for HCC treatment. Here, we investigated the effect of trichostatin A (TSA), a highly potent HDAC inhibitor, on HCC (HepG2) gene expression and function. Materials and Methods: A genome wide-transcriptional microarray was used to identify genes regulated by TSA in HepG2 cells. Gene Ontology was used to identify pathways regulated by TSA, and these changes were confirmed by qPCR. The effect of TSA on natural killer (NK) cell-mediated killing of HCC cell lines were analyzed by both flow cytometry and LDH cytotoxicity assay. A study was also conducted in a Balb/c nude mice xenograft model to assess the anti-tumor activity of TSA. Results: TSA regulated the transcription of numerous innate immunity & tumor antigen recognition-associated genes, such as ULBP1 and RAET1G, in HCC cells. In vivo, TSA reduced tumor cell growth in an NK cell-dependent manner. In vitro, TSA treatment of HepG2 cells rendered them more susceptible to NK cell-mediated killing while increasing the expression of NKGD2 ligands, including ULBP1/2/3 and MICA/B. TSA also induced direct killing of HCC cells by stimulating apoptosis. Conclusion: TSA likely increases killing of HCC cells indirectly by increasing NK cell-directed killing and directly by increasing apoptosis. PMID:28871002

  8. Mechanistic insights into selective killing of OXPHOS-dependent cancer cells by arctigenin.

    PubMed

    Brecht, Karin; Riebel, Virginie; Couttet, Philippe; Paech, Franziska; Wolf, Armin; Chibout, Salah-Dine; Pognan, Francois; Krähenbühl, Stephan; Uteng, Marianne

    2017-04-01

    Arctigenin has previously been identified as a potential anti-tumor treatment for advanced pancreatic cancer. However, the mechanism of how arctigenin kills cancer cells is not fully understood. In the present work we studied the mechanism of toxicity by arctigenin in the human pancreatic cell line, Panc-1, with special emphasis on the mitochondria. A comparison of Panc-1 cells cultured in glucose versus galactose medium was applied, allowing assessments of effects in glycolytic versus oxidative phosphorylation (OXPHOS)-dependent Panc-1 cells. For control purposes, the mitochondrial toxic response to treatment with arctigenin was compared to the anti-cancer drug, sorafenib, which is a tyrosine kinase inhibitor known for mitochondrial toxic off-target effects (Will et al., 2008). In both Panc-1 OXPHOS-dependent and glycolytic cells, arctigenin dissipated the mitochondrial membrane potential, which was demonstrated to be due to inhibition of the mitochondrial complexes II and IV. However, arctigenin selectively killed only the OXPHOS-dependent Panc-1 cells. This selective killing of OXPHOS-dependent Panc-1 cells was accompanied by generation of ER stress, mitochondrial membrane permeabilization and caspase activation leading to apoptosis and aponecrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Stem-like tumor-initiating cells isolated from IL13Rα2 expressing gliomas are targeted and killed by IL13-zetakine-redirected T Cells.

    PubMed

    Brown, Christine E; Starr, Renate; Aguilar, Brenda; Shami, Andrew F; Martinez, Catalina; D'Apuzzo, Massimo; Barish, Michael E; Forman, Stephen J; Jensen, Michael C

    2012-04-15

    To evaluate IL13Rα2 as an immunotherapeutic target for eliminating glioma stem-like cancer initiating cells (GSC) of high-grade gliomas, with particular focus on the potential of genetically engineered IL13Rα2-specific primary human CD8(+) CTLs (IL13-zetakine(+) CTL) to target this therapeutically resistant glioma subpopulation. A panel of low-passage GSC tumor sphere (TS) and serum-differentiated glioma lines were expanded from patient glioblastoma specimens. These glioblastoma lines were evaluated for expression of IL13Rα2 and for susceptibility to IL13-zetakine(+) CTL-mediated killing in vitro and in vivo. We observed that although glioma IL13Rα2 expression varies between patients, for IL13Rα2(pos) cases this antigen was detected on both GSCs and more differentiated tumor cell populations. IL13-zetakine(+) CTL were capable of efficient recognition and killing of both IL13Rα2(pos) GSCs and IL13Rα2(pos) differentiated cells in vitro, as well as eliminating glioma-initiating activity in an orthotopic mouse tumor model. Furthermore, intracranial administration of IL13-zetakine(+) CTL displayed robust antitumor activity against established IL13Rα2(pos) GSC TS-initiated orthotopic tumors in mice. Within IL13Rα2 expressing high-grade gliomas, this receptor is expressed by GSCs and differentiated tumor populations, rendering both targetable by IL13-zetakine(+) CTLs. Thus, our results support the potential usefullness of IL13Rα2-directed immunotherapeutic approaches for eradicating therapeutically resistant GSC populations. ©2012 AACR.

  10. Cytotoxic Killing and Immune Evasion by Repair

    NASA Astrophysics Data System (ADS)

    Chan, Cliburn; George, Andrew J. T.; Stark, Jaroslav

    2007-07-01

    The interaction between the immune system and pathogens is a complex one, with pathogens constantly developing new ways of evading destruction by the immune system. The immune system's task is made even harder when the pathogen in question is an intra-cellular one (such as a virus or certain bacteria) and it is necessary to kill the infected host cell in order to eliminate the pathogen. This causes damage to the host, and such killing therefore needs to be carefully controlled, particularly in tissues with poor regenerative potential, or those involved in the immune response itself. Host cells therefore possess repair mechanisms which can counteract killing by immune cells. These in turn can be subverted by pathogens which up-regulate the resistance of infected cells to killing. In this paper, we explore the hypothesis that this repair process plays an important role in determining the efficacy of evasion and escape from immune control. We model a situation where cytotoxic T lymphocytes (CTL) and natural killer (NK) cells kill pathogen-infected and tumour cells by directed secretion of preformed granules containing perforin and granzymes. Resistance to such killing can be conferred by the expression of serine protease inhibitors (serpins). These are utilized by several virally infected and tumour cells, as well as playing a role in the protection of host bystander, immune and immuneprivileged cells. We build a simple stochastic model of cytotoxic killing, where serpins can neutralize granzymes stoichiometrically by forming an irreversible complex, and the survival of the cell is determined by the balance between serpin depletion and replenishment, which in its simplest form is equivalent to the well known shot noise process. We use existing analytical results for this process, and additional simulations to analyse the effects of repair on cytotoxic killing. We then extend the model to the case of a replicating target cell population, which gives a branching process coupled to shot noise. We show how the process of repair can have a major impact on the dynamics of pathogen evasion and escape of tumour cells from immune surveillance

  11. Persister eradication: lessons from the world of natural products.

    PubMed

    Keren, Iris; Mulcahy, Lawrence R; Lewis, Kim

    2012-01-01

    Persisters are specialized survivor cells that protect bacterial populations from killing by antibiotics. Persisters are dormant phenotypic variants of regular cells rather than mutants. Bactericidal antibiotics kill by corrupting their targets into producing toxic products; tolerance to antibiotics follows when targets are inactive. Transcriptome analysis of isolated persisters points to toxin/antitoxin modules as a principle component of persister formation. Mechanisms of persister formation are redundant, making it difficult to eradicate these cells. In Escherichia coli, toxins RelE and MazF cause dormancy by degrading mRNA; HipA inhibits translation by phosphorylating Ef-Tu; and TisB forms an anion channel in the membrane, leading to a decrease in pmf and ATP levels. Prolonged treatment of chronic infections with antibiotics selects for hip mutants that produce more persister cells. Eradication of tolerant persisters is a serious challenge. Some of the existing antibiotics are capable of killing persisters, pointing to ways of developing therapeutics to treat chronic infections. Mitomycin is a prodrug which is converted into a reactive compound forming adducts with DNA upon entering the cell. Prolonged treatment with aminoglycosides that cause mistranslation leading to misfolded peptides can sterilize a stationary culture of Pseudomonas aeruginosa, a pathogen responsible for chronic, highly tolerant infections of cystic fibrosis patients. Finally, one of the best bactericidal agents is rifampin, an inhibitor of RNA polymerase, and we suggest that it "kills" by preventing persister resuscitation. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Genetic Manipulation of NK Cells for Cancer Immunotherapy: Techniques and Clinical Implications.

    PubMed

    Carlsten, Mattias; Childs, Richard W

    2015-01-01

    Given their rapid and efficient capacity to recognize and kill tumor cells, natural killer (NK) cells represent a unique immune cell to genetically reprogram in an effort to improve the outcome of cell-based cancer immunotherapy. However, technical and biological challenges associated with gene delivery into NK cells have significantly tempered this approach. Recent advances in viral transduction and electroporation have now allowed detailed characterization of genetically modified NK cells and provided a better understanding for how these cells can be utilized in the clinic to optimize their capacity to induce tumor regression in vivo. Improving NK cell persistence in vivo via autocrine IL-2 and IL-15 stimulation, enhancing tumor targeting by silencing inhibitory NK cell receptors such as NKG2A, and redirecting tumor killing via chimeric antigen receptors, all represent approaches that hold promise in preclinical studies. This review focuses on available methods for genetic reprograming of NK cells and the advantages and challenges associated with each method. It also gives an overview of strategies for genetic reprograming of NK cells that have been evaluated to date and an outlook on how these strategies may be best utilized in clinical protocols. With the recent advances in our understanding of the complex biological networks that regulate the ability of NK cells to target and kill tumors in vivo, we foresee genetic engineering as an obligatory pathway required to exploit the full potential of NK-cell based immunotherapy in the clinic.

  13. Low doses of killed parasite in CpG elicit vigorous CD4+ T cell responses against blood-stage malaria in mice

    PubMed Central

    Pinzon-Charry, Alberto; McPhun, Virginia; Kienzle, Vivian; Hirunpetcharat, Chakrit; Engwerda, Christian; McCarthy, James; Good, Michael F.

    2010-01-01

    Development of a vaccine that targets blood-stage malaria parasites is imperative if we are to sustainably reduce the morbidity and mortality caused by this infection. Such a vaccine should elicit long-lasting immune responses against conserved determinants in the parasite population. Most blood-stage vaccines, however, induce protective antibodies against surface antigens, which tend to be polymorphic. Cell-mediated responses, on the other hand, offer the theoretical advantage of targeting internal antigens that are more likely to be conserved. Nonetheless, few of the current blood-stage vaccine candidates are able to harness vigorous T cell immunity. Here, we present what we believe to be a novel blood-stage whole-organism vaccine that, by combining low doses of killed parasite with CpG-oligodeoxynucleotide (CpG-ODN) adjuvant, was able to elicit strong and cross-reactive T cell responses in mice. Our data demonstrate that immunization of mice with 1,000 killed parasites in CpG-ODN engendered durable and cross-strain protection by inducing a vigorous response that was dependent on CD4+ T cells, IFN-γ, and nitric oxide. If applicable to humans, this approach should facilitate the generation of robust, cross-reactive T cell responses against malaria as well as antigen availability for vaccine manufacture. PMID:20628205

  14. A mathematical model of antibody-dependent cellular cytotoxicity (ADCC).

    PubMed

    Hoffman, F; Gavaghan, D; Osborne, J; Barrett, I P; You, T; Ghadially, H; Sainson, R; Wilkinson, R W; Byrne, H M

    2018-01-07

    Immunotherapies exploit the immune system to target and kill cancer cells, while sparing healthy tissue. Antibody therapies, an important class of immunotherapies, involve the binding to specific antigens on the surface of the tumour cells of antibodies that activate natural killer (NK) cells to kill the tumour cells. Preclinical assessment of molecules that may cause antibody-dependent cellular cytotoxicity (ADCC) involves co-culturing cancer cells, NK cells and antibody in vitro for several hours and measuring subsequent levels of tumour cell lysis. Here we develop a mathematical model of such an in vitro ADCC assay, formulated as a system of time-dependent ordinary differential equations and in which NK cells kill cancer cells at a rate which depends on the amount of antibody bound to each cancer cell. Numerical simulations generated using experimentally-based parameter estimates reveal that the system evolves on two timescales: a fast timescale on which antibodies bind to receptors on the surface of the tumour cells, and NK cells form complexes with the cancer cells, and a longer time-scale on which the NK cells kill the cancer cells. We construct approximate model solutions on each timescale, and show that they are in good agreement with numerical simulations of the full system. Our results show how the processes involved in ADCC change as the initial concentration of antibody and NK-cancer cell ratio are varied. We use these results to explain what information about the tumour cell kill rate can be extracted from the cytotoxicity assays. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. WE-H-BRA-03: Development of a Model to Include the Evolution of Resistant Tumor Subpopulations Into the Treatment Optimization Process for Schedules Involving Targeted Agents in Chemoradiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassberger, C; Paganetti, H

    Purpose: To develop a model that includes the process of resistance development into the treatment optimization process for schedules that include targeted therapies. Further, to validate the approach using clinical data and to apply the model to assess the optimal induction period with targeted agents before curative treatment with chemo-radiation in stage III lung cancer. Methods: Growth of the tumor and its subpopulations is modeled by Gompertzian growth dynamics, resistance induction as a stochastic process. Chemotherapy induced cell kill is modeled by log-cell kill dynamics, targeted agents similarly but restricted to the sensitive population. Radiation induced cell kill is assumedmore » to follow the linear-quadratic model. The validation patient data consist of a cohort of lung cancer patients treated with tyrosine kinase inhibitors that had longitudinal imaging data available. Results: The resistance induction model was successfully validated using clinical trial data from 49 patients treated with targeted agents. The observed recurrence kinetics, with tumors progressing from 1.4–63 months, result in tumor growth equaling a median volume doubling time of 92 days [34–248] and a median fraction of pre-existing resistance of 0.035 [0–0.22], in agreement with previous clinical studies. The model revealed widely varying optimal time points for the use of curative therapy, reaching from ∼1m to >6m depending on the patient’s growth rate and amount of pre-existing resistance. This demonstrates the importance of patient-specific treatment schedules when targeted agents are incorporated into the treatment. Conclusion: We developed a model including evolutionary dynamics of resistant sub-populations with traditional chemotherapy and radiation cell kill models. Fitting to clinical data yielded patient specific growth rates and resistant fraction in agreement with previous studies. Further application of the model demonstrated how proper timing of chemo-radiation could minimize the probability of resistance, increasing tumor control significantly.« less

  16. Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria.

    PubMed

    Luo, Yang; Hossain, Mainul; Wang, Chaoming; Qiao, Yong; An, Jincui; Ma, Liyuan; Su, Ming

    2013-01-21

    This paper describes a nanoparticle enhanced X-ray irradiation based strategy that can be used to kill multidrug resistant (MDR) bacteria. In the proof-of-concept experiment using MDR Pseudomonas aeruginosa (P. aeruginosa) as an example, polyclonal antibody modified bismuth nanoparticles are introduced into bacterial culture to specifically target P. aeruginosa. After washing off uncombined bismuth nanoparticles, the bacteria are irradiated with X-rays, using a setup that mimics a deeply buried wound in humans. Results show that up to 90% of MDR P. aeruginosa are killed in the presence of 200 μg ml(-1) bismuth nanoparticles, whereas only ∼6% are killed in the absence of bismuth nanoparticles when exposed to 40 kVp X-rays for 10 min. The 200 μg ml(-1) bismuth nanoparticles enhance localized X-ray dose by 35 times higher than the control with no nanoparticles. In addition, no significant harmful effects on human cells (HeLa and MG-63 cells) have been observed with 200 μg ml(-1) bismuth nanoparticles and 10 min 40 kVp X-ray irradiation exposures, rendering the potential for future clinical use. Since X-rays can easily penetrate human tissues, this bactericidal strategy has the potential to be used in effectively killing deeply buried MDR bacteria in vivo.

  17. A heterotypic bystander effect for tumor cell killing after adeno-associated virus/phage-mediated, vascular-targeted suicide gene transfer.

    PubMed

    Trepel, Martin; Stoneham, Charlotte A; Eleftherohorinou, Hariklia; Mazarakis, Nicholas D; Pasqualini, Renata; Arap, Wadih; Hajitou, Amin

    2009-08-01

    Suicide gene transfer is the most commonly used cytotoxic approach in cancer gene therapy; however, a successful suicide gene therapy depends on the generation of efficient targeted systemic gene delivery vectors. We recently reported that selective systemic delivery of suicide genes such as herpes simplex virus thymidine kinase (HSVtk) to tumor endothelial cells through a novel targeted adeno-associated virus/phage vector leads to suppression of tumor growth. This marked effect has been postulated to result primarily from the death of cancer cells by hypoxia following the targeted disruption of tumor blood vessels. Here, we investigated whether an additional mechanism of action is involved. We show that there is a heterotypic "bystander" effect between endothelial cells expressing the HSVtk suicide gene and tumor cells. Treatment of cocultures of HSVtk-transduced endothelial cells and non-HSVtk-transduced tumor cells with ganciclovir results in the death of both endothelial and tumor cells. Blocking of this effect by 18alpha-glycyrrhetinic acid indicates that gap junctions between endothelial and tumor cells are largely responsible for this phenomenon. Moreover, the observed bystander killing is mediated by connexins 43 and 26, which are expressed in endothelial and tumor cell types. Finally, this heterotypic bystander effect is accompanied by a suppression of tumor growth in vivo that is independent of primary gene transfer into host-derived tumor vascular endothelium. These findings add an alternative nonmutually exclusive and potentially synergistic cytotoxic mechanism to cancer gene therapy based on targeted adeno-associated virus/phage and further support the promising role of nonmalignant tumor stromal cells as therapeutic targets.

  18. Anti-CD30-targeted gold nanoparticles for photothermal therapy of L-428 Hodgkin’s cell

    PubMed Central

    Qu, Xiaochao; Yao, Cuiping; Wang, Jing; Li, Zheng; Zhang, Zhenxi

    2012-01-01

    Purpose Due to the efficient bioconjugation and highly photothermal effect, gold nanoparticles can stain receptor-overexpressing cancer cells through specific targeting of ligands to receptors, strongly absorb specific light and efficiently convert it into heat based on the property of surface plasmon resonance, and then induce the localized protein denaturation and cell death. Methods Two gold nanoparticle–antibody conjugates, gold-BerH2 antibody (anti-CD30 receptor) and gold-ACT1 antibody (anti-CD25-receptor), were synthesized. Gold-BerH2 conjugates can specifically bind to the surface of L-428 Hodgkin’s cells, and gold-ACT1 conjugates were used for the control. The gold nanoparticle-induced L-428 cell-killing experiments were implemented with different experimental parameters. Results At a relatively low concentration of gold and short incubation time, the influence of cytotoxicity of gold on cell viability can be overlooked. Under laser irradiation at suitable power, the high killing efficiency of gold-targeted L-428 cells was achieved, but little damage was done to nontargeted cancer cells. Conclusion Gold nanoparticle-mediated photothermal therapy provides a relatively safe therapeutic technique for cancer treatment. PMID:23269868

  19. Human CIK Cells Loaded with Au Nanorods as a Theranostic Platform for Targeted Photoacoustic Imaging and Enhanced Immunotherapy and Photothermal Therapy

    NASA Astrophysics Data System (ADS)

    Yang, Yao; Zhang, Jingjing; Xia, Fangfang; Zhang, Chunlei; Qian, Qirong; Zhi, Xiao; Yue, Caixia; Sun, Rongjin; Cheng, Shangli; Fang, Shan; Jin, Weilin; Yang, Yuming; Cui, Daxiang

    2016-06-01

    How to realize targeted photoacoustic imaging, enhanced immunotherapy, and photothermal therapy of gastric cancer has become a great challenge. Herein, we reported for the first time that human cytokine-induced killer cells (CIK) loaded with gold nanorods were used for targeted photoacoustic imaging, enhanced immunotherapy, and photothermal therapy of gastric cancer. Silica-modified gold nanorods were prepared; then incubated with human cytokine-induced killer cells (CIK), resultant human CIK cells loaded with Au nanorods were evaluated for their cytotoxicity, targeted ability of gastric cancer in vitro and in vivo, immunotherapy, and photothermal therapy efficacy. In vitro cell experiment shows that human CIK cells labeled with gold nanorods actively target gastric cancer MGC803 cells, inhibit growth of MGC803 cells by inducing cell apoptosis, and kill MGC803 cells under low power density near-infrared (NIR) laser treatment (808-nm continuous wave laser, 1.5 W/cm2, 3 min). In vivo experiment results showed that human CIK cells labeled with gold nanorods could target actively and image subcutaneous gastric cancer vessels via photoacoustic imaging at 4 h post-injection, could enhance immunotherapy efficacy by up-regulating cytokines such as IL-1, IL-12, IL-2, IL-4, IL-17, and IFN-γ, and kill gastric cancer tissues by photothermal therapy via direct injection into tumor site under near-infrared (NIR) laser irradiation. High-performance human CIK cells labeled with Au nanorods are a good novel theranostic platform to exhibit great potential in applications such as tumor-targeted photoacoustic imaging, enhanced immunotherapy, and photothermal therapy in the near future.

  20. Pathogen-Specific T Cell Polyfunctionality Is a Correlate of T Cell Efficacy and Immune Protection

    PubMed Central

    Boyd, Anders; Almeida, Jorge R.; Darrah, Patricia A.; Sauce, Delphine; Seder, Robert A.; Appay, Victor; Gorochov, Guy; Larsen, Martin

    2015-01-01

    Introduction Understanding the factors that delineate the efficacy of T cell responses towards pathogens is crucial for our ability to develop potent therapies against infectious diseases. Multidimensional evaluation of T cell functionality at the single-cell level enables exhaustive analysis of combinatorial functional properties, hence polyfunctionality. We have recently invented an algorithm that quantifies polyfunctionality, the Polyfunctionality Index (Larsen et al. PLoS One 2012). Here we demonstrate that quantitative assessment of T cell polyfunctionality correlates with T cell efficacy measured as the capacity to kill target cells in vitro and control infection in vivo. Methods We employed the polyfunctionality index on two datasets selected for their unique ability to evaluate the polyfunctional imprint on T cell efficacy. 1) HIV-specific CD8+ T cells and 2) Leishmania major-specific CD4+ T cells were analysed for their capacity to secrete multiple effector molecules, kill target cells and control infection. Briefly, employing the Polyfunctionality Index algorithm we determined the parameter estimates resulting in optimal correlation between T cell polyfunctionality and T cell efficacy. Results T cell polyfunctionality is correlated with T cell efficacy measured as 1) target killing (r=0.807, P<0.0001) and 2) lesion size upon challenge with Leishmania major (r=-0.50, P=0.004). Contrary to an approach relying on the Polyfunctionality Index algorithm, quantitative evaluation of T cell polyfunctionality traditionally ignores the gradual contribution of more or less polyfunctional T cells. Indeed, comparing both approaches we show that optimal description of T cell efficacy is obtained when gradually integrating all levels of polyfunctionality in accordance with the Polyfunctionality Index. Conclusions Our study presents a generalizable methodology to objectively evaluate the impact of polyfunctionality on T cell efficacy. We show that T cell polyfunctionality is a superior correlate of T cell efficacy both in vitro and in vivo as compared with response size. Therefore, future immunotherapies should aim to increase T cell polyfunctionality. PMID:26046523

  1. Apoptin towards safe and efficient anticancer therapies.

    PubMed

    Backendorf, Claude; Noteborn, Mathieu H M

    2014-01-01

    The chicken anemia virus derived protein apoptin harbors cancer-selective cell killing characteristics, essentially based on phosphorylation-mediated nuclear transfer in cancer cells and efficient cytoplasmic degradation in normal cells. Here, we describe a growing set of preclinical experiments underlying the promises of the anti-cancer potential of apoptin. Various non-replicative oncolytic viral vector systems have revealed the safety and efficacy of apoptin. In addition, apoptin enhanced the oncolytic potential of adenovirus, parvovirus and Newcastle disease virus vectors. Intratumoral injection of attenuated Salmonella typhimurium bacterial strains and plasmid-based systems expressing apoptin resulted in significant tumor regression. In-vitro and in-vivo experiments showed that recombinant membrane-transferring PTD4- or TAT-apoptin proteins have potential as a future anticancer therapeutics. In xenografted hepatoma and melanoma mouse models PTD4-apoptin protein entered both cancer and normal cells, but only killed cancer cells. Combinatorial treatment of PTD4-apoptin with various (chemo)therapeutic compounds revealed an additive or even synergistic effect, reducing the side effects of the single (chemo)therapeutic treatment. Degradable polymeric nanocapsules harboring MBP-apoptin fusion-protein induced tumor-selective cell killing in-vitro and in-vivo and revealed the potential of polymer-apoptin protein vehicles as an anticancer agent.Besides its direct use as an anticancer therapeutic, apoptin research has also generated novel possibilities for drug design. The nuclear location domains of apoptin are attractive tools for targeting therapeutic compounds into the nucleus of cancer cells. Identification of cancer-related processes targeted by apoptin can potentially generate novel drug targets. Recent breakthroughs important for clinical applications are reported inferring apoptin-based clinical trials as a feasible reality.

  2. TNF-induced target cell killing by CTL activated through cross-presentation.

    PubMed

    Wohlleber, Dirk; Kashkar, Hamid; Gärtner, Katja; Frings, Marianne K; Odenthal, Margarete; Hegenbarth, Silke; Börner, Carolin; Arnold, Bernd; Hämmerling, Günter; Nieswandt, Bernd; van Rooijen, Nico; Limmer, Andreas; Cederbrant, Karin; Heikenwalder, Mathias; Pasparakis, Manolis; Protzer, Ulrike; Dienes, Hans-Peter; Kurts, Christian; Krönke, Martin; Knolle, Percy A

    2012-09-27

    Viruses can escape cytotoxic T cell (CTL) immunity by avoiding presentation of viral components via endogenous MHC class I antigen presentation in infected cells. Cross-priming of viral antigens circumvents such immune escape by allowing noninfected dendritic cells to activate virus-specific CTLs, but they remain ineffective against infected cells in which immune escape is functional. Here, we show that cross-presentation of antigen released from adenovirus-infected hepatocytes by liver sinusoidal endothelial cells stimulated cross-primed effector CTLs to release tumor necrosis factor (TNF), which killed virus-infected hepatocytes through caspase activation. TNF receptor signaling specifically eliminated infected hepatocytes that showed impaired anti-apoptotic defense. Thus, CTL immune surveillance against infection relies on two similarly important but distinct effector functions that are both MHC restricted, requiring either direct antigen recognition on target cells and canonical CTL effector function or cross-presentation and a noncanonical effector function mediated by TNF. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Envelope-specific antibodies and antibody-derived molecules for treating and curing HIV infection

    PubMed Central

    Ferrari, Guido; Haynes, Barton F.; Koenig, Scott; Nordstrom, Jeffrey L.; Margolis, David M.; Tomaras, Georgia D.

    2017-01-01

    HIV-1 is a retrovirus that integrates into host chromatin and can remain transcriptionally quiescent in a pool of immune cells. This characteristic enables HIV-1 to evade both host immune responses and antiretroviral drugs, leading to persistent infection. Upon reactivation of proviral gene expression, HIV-1 envelope (HIV-1 Env) glycoproteins are expressed on the cell surface, transforming latently infected cells into targets for HIV-1 Env-specific monoclonal antibodies (mAbs), which can engage immune effector cells to kill productively infected CD4+ T cells and thus limit the spread of progeny virus. Recent innovations in antibody engineering have resulted in novel immunotherapeutics such as bispecific dual-affinity re-targeting (DART) molecules and other bi- and trispecific antibody designs that can recognize HIV-1 Env and recruit cytotoxic effector cells to kill CD4+ T cells latently infected with HIV‑1. Here, we review these immunotherapies, which are designed with the goal of curing HIV-1 infection. PMID:27725635

  4. An identical miRNA of the human JC and BK polyoma viruses targets the stress-induced ligand ULBP3 to escape immune elimination.

    PubMed

    Bauman, Yoav; Nachmani, Daphna; Vitenshtein, Alon; Tsukerman, Pinchas; Drayman, Nir; Stern-Ginossar, Noam; Lankry, Dikla; Gruda, Raizy; Mandelboim, Ofer

    2011-02-17

    The human polyoma viruses JCV and BKV establish asymptomatic persistent infection in 65%-90% of humans but can cause severe illness under immunosuppressive conditions. The mechanisms by which these viruses evade immune recognition are unknown. Here we show that a viral miRNA identical in sequence between JCV and BKV targets the stress-induced ligand ULBP3, which is a protein recognized by the killer receptor NKG2D. Consequently, viral miRNA-mediated ULBP3 downregulation results in reduced NKG2D-mediated killing of virus-infected cells by natural killer (NK) cells. Importantly, when the activity of the viral miRNA was inhibited during infection, NK cells killed the infected cells more efficiently. Because NKG2D is also expressed by various T cell subsets, we propose that JCV and BKV use an identical miRNA that targets ULBP3 to escape detection by both the innate and adaptive immune systems, explaining how these viruses remain latent without being eliminated by the immune system. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Silencing expression of the catalytic subunit of DNA-dependent protein kinase by small interfering RNA sensitizes human cells for radiation-induced chromosome damage, cell killing, and mutation

    NASA Technical Reports Server (NTRS)

    Peng, Yuanlin; Zhang, Qinming; Nagasawa, Hatsumi; Okayasu, Ryuichi; Liber, Howard L.; Bedford, Joel S.

    2002-01-01

    Targeted gene silencing in mammalian cells by RNA interference (RNAi) using small interfering RNAs (siRNAs) was recently described by Elbashir et al. (S. M. Elbashir et al., Nature (Lond.), 411: 494-498, 2001). We have used this methodology in several human cell strains to reduce expression of the Prkdc (DNA-PKcs) gene coding for the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) that is involved in the nonhomologous end joining of DNA double-strand breaks. We have also demonstrated a radiosensitization for several phenotypic endpoints of radiation damage. In low-passage normal human fibroblasts, siRNA knock-down of DNA-PKcs resulted in a reduced capacity for restitution of radiation-induced interphase chromosome breaks as measured by premature chromosome condensation, an increased yield of acentric chromosome fragments at the first postirradiation mitosis, and an increased radiosensitivity for cell killing. For three strains of related human lymphoblasts, DNA-PKcs-targeted siRNA transfection resulted in little or no increase in radiosensitivity with respect to cell killing, a 1.5-fold decrease in induced mutant yield in TK6- and p53-null NH32 cells, but about a 2-fold increase in induced mutant yield in p53-mutant WTK1 cells at both the hypoxanthine quanine phosphoribosyl transferase (hprt) and the thymidine kinase loci.

  6. A Lipopeptide Facilitate Induction of Mycobacterium leprae Killing in Host Cells

    PubMed Central

    Maeda, Yumi; Tamura, Toshiki; Fukutomi, Yasuo; Mukai, Tetsu; Kai, Masanori; Makino, Masahiko

    2011-01-01

    Little is known of the direct microbicidal activity of T cells in leprosy, so a lipopeptide consisting of the N-terminal 13 amino acids lipopeptide (LipoK) of a 33-kD lipoprotein of Mycobacterium leprae, was synthesized. LipoK activated M. leprae infected human dendritic cells (DCs) to induce the production of IL-12. These activated DCs stimulated autologous CD4+ or CD8+ T cells towards type 1 immune response by inducing interferon-gamma secretion. T cell proliferation was also evident from the CFSE labeling of target CD4+ or CD8+ T cells. The direct microbicidal activity of T cells in the control of M. leprae multiplication is not well understood. The present study showed significant production of granulysin, granzyme B and perforin from these activated CD4+ and CD8+ T cells when stimulated with LipoK activated, M. leprae infected DCs. Assessment of the viability of M. leprae in DCs indicated LipoK mediated T cell-dependent killing of M. leprae. Remarkably, granulysin as well as granzyme B could directly kill M. leprae in vitro. Our results provide evidence that LipoK could facilitate M. leprae killing through the production of effector molecules granulysin and granzyme B in T cells. PMID:22132248

  7. A Small-Molecule Inhibitor of BCL6 Kills DLBCL Cells In Vitro and In Vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerchietti, L.C.; Ghetu, A.F.; Zhu, X.

    2010-09-22

    The BCL6 transcriptional repressor is the most frequently involved oncogene in diffuse large B cell lymphoma (DLBCL). We combined computer-aided drug design with functional assays to identify low-molecular-weight compounds that bind to the corepressor binding groove of the BCL6 BTB domain. One such compound disrupted BCL6/corepressor complexes in vitro and in vivo, and was observed by X-ray crystallography and NMR to bind the critical site within the BTB groove. This compound could induce expression of BCL6 target genes and kill BCL6-positive DLBCL cell lines. In xenotransplantation experiments, the compound was nontoxic and potently suppressed DLBCL tumors in vivo. The compoundmore » also killed primary DLBCLs from human patients.« less

  8. A novel transferrin receptor-targeted hybrid peptide disintegrates cancer cell membrane to induce rapid killing of cancer cells

    PubMed Central

    2011-01-01

    Background Transferrin receptor (TfR) is a cell membrane-associated glycoprotein involved in the cellular uptake of iron and the regulation of cell growth. Recent studies have shown the elevated expression levels of TfR on cancer cells compared with normal cells. The elevated expression levels of this receptor in malignancies, which is the accessible extracellular protein, can be a fascinating target for the treatment of cancer. We have recently designed novel type of immunotoxin, termed "hybrid peptide", which is chemically synthesized and is composed of target-binding peptide and lytic peptide containing cationic-rich amino acids components that disintegrates the cell membrane for the cancer cell killing. The lytic peptide is newly designed to induce rapid killing of cancer cells due to conformational change. In this study, we designed TfR binding peptide connected with this novel lytic peptide and assessed the cytotoxic activity in vitro and in vivo. Methods In vitro: We assessed the cytotoxicity of TfR-lytic hybrid peptide for 12 cancer and 2 normal cell lines. The specificity for TfR is demonstrated by competitive assay using TfR antibody and siRNA. In addition, we performed analysis of confocal fluorescence microscopy and apoptosis assay by Annexin-V binding, caspase activity, and JC-1 staining to assess the change in mitochondria membrane potential. In vivo: TfR-lytic was administered intravenously in an athymic mice model with MDA-MB-231 cells. After three weeks tumor sections were histologically analyzed. Results The TfR-lytic hybrid peptide showed cytotoxic activity in 12 cancer cell lines, with IC50 values as low as 4.0-9.3 μM. Normal cells were less sensitive to this molecule, with IC50 values > 50 μM. Competition assay using TfR antibody and knockdown of this receptor by siRNA confirmed the specificity of the TfR-lytic hybrid peptide. In addition, it was revealed that this molecule can disintegrate the cell membrane of T47D cancer cells just in 10 min, to effectively kill these cells and induce approximately 80% apoptotic cell death but not in normal cells. The intravenous administration of TfR-lytic peptide in the athymic mice model significantly inhibited tumor progression. Conclusions TfR-lytic peptide might provide a potent and selective anticancer therapy for patients. PMID:21849092

  9. Antitumor activity of cytotoxic T lymphocytes engineered to target vascular endothelial growth factor receptors

    NASA Astrophysics Data System (ADS)

    Niederman, Thomas M. J.; Ghogawala, Zoher; Carter, Bob S.; Tompkins, Hillary S.; Russell, Margaret M.; Mulligan, Richard C.

    2002-05-01

    The demonstration that angiogenesis is required for the growth of solid tumors has fueled an intense interest in the development of new therapeutic strategies that target the tumor vasculature. Here we report the development of an immune-based antiangiogenic strategy that is based on the generation of T lymphocytes that possess a killing specificity for cells expressing vascular endothelial growth factor receptors (VEGFRs). To target VEGFR-expressing cells, recombinant retroviral vectors were generated that encoded a chimeric T cell receptor comprised of VEGF sequences linked to intracellular signaling sequences derived from the chain of the T cell receptor. After transduction of primary murine CD8 lymphocytes by such vectors, the transduced cells were shown to possess an efficient killing specificity for cells expressing the VEGF receptor, Flk-1, as measured by in vitro cytotoxicity assays. After adoptive transfer into tumor-bearing mice, the genetically modified cytotoxic T lymphocytes strongly inhibited the growth of a variety of syngeneic murine tumors and human tumor xenografts. An increased effect on in vivo tumor growth inhibition was seen when this therapy was combined with the systemic administration of TNP-470, a conventional angiogenesis inhibitor. The utilization of the immune system to target angiogenic markers expressed on tumor vasculature may prove to be a powerful means for controlling tumor growth.

  10. PD-L1 Expression on Retrovirus-Infected Cells Mediates Immune Escape from CD8+ T Cell Killing.

    PubMed

    Akhmetzyanova, Ilseyar; Drabczyk, Malgorzata; Neff, C Preston; Gibbert, Kathrin; Dietze, Kirsten K; Werner, Tanja; Liu, Jia; Chen, Lieping; Lang, Karl S; Palmer, Brent E; Dittmer, Ulf; Zelinskyy, Gennadiy

    2015-10-01

    Cytotoxic CD8+ T Lymphocytes (CTL) efficiently control acute virus infections but can become exhausted when a chronic infection develops. Signaling of the inhibitory receptor PD-1 is an important mechanism for the development of virus-specific CD8+ T cell dysfunction. However, it has recently been shown that during the initial phase of infection virus-specific CD8+ T cells express high levels of PD-1, but are fully competent in producing cytokines and killing virus-infected target cells. To better understand the role of the PD-1 signaling pathway in CD8+ T cell cytotoxicity during acute viral infections we analyzed the expression of the ligand on retrovirus-infected cells targeted by CTLs. We observed increased levels of PD-L1 expression after infection of cells with the murine Friend retrovirus (FV) or with HIV. In FV infected mice, virus-specific CTLs efficiently eliminated infected target cells that expressed low levels of PD-L1 or that were deficient for PD-L1 but the population of PD-L1high cells escaped elimination and formed a reservoir for chronic FV replication. Infected cells with high PD-L1 expression mediated a negative feedback on CD8+ T cells and inhibited their expansion and cytotoxic functions. These findings provide evidence for a novel immune escape mechanism during acute retroviral infection based on PD-L1 expression levels on virus infected target cells.

  11. Nanoparticle-neural stem cells for targeted ovarian cancer treatment: optimization of silica nanoparticles for efficient drug loading

    NASA Astrophysics Data System (ADS)

    Patel, Z.; Berlin, J.; Abidi, W.

    2018-02-01

    One of the drugs used to treat ovarian cancer is cisplatin. However, cisplatin kills normal surrounding tissue in addition to cancer cells. To improve tumor targeting efficiency, our lab uses neural stem cells (NSCs), which migrate directly to ovarian tumors. If free cisplatin is loaded into NSCs for targeted drug delivery, it will kill the NSCs. To prevent the drug cisplatin from killing both the NSCs and normal surrounding tissue, our lab synthesizes silica nanoparticles (SiNPs) that act as a protective carrier. The big picture here is to maximize efficiency of tumor targeting using NSCs and minimize toxicity to these NSCs using SiNPs. The goal of this project is to optimize the stability of SiNPs, which is important for efficient drug loading. To do this, the concentration of tetraethyl orthosilicate (TEOS), one of the main components of SiNPs, was varied. We hypothesized that more TEOS equates to more stable SiNPs because TEOS contributes carbon to SiNPs, and thus a tightly-packed chemical structure results in a stable particle. Then, the stability of the SiNPs were checked in cell media and phosphate buffered saline (PBS). Lastly, the SiNPs were analyzed for their porosity using the transmission electron microscope (TEM). TEM imaging showed white spots in the 200-800 μL TEOS batches and no white spots in the 1000-1800 μL TEOS batches. The white spots were pores, which indicate instability. We concluded that the ultimate factor that determines the stability of SiNPs (100 nm) is the concentration of organic substance.

  12. Intracellular delivery of peptide cargos using iron oxide based nanoparticles: studies on antitumor efficacy of a BCL-2 converting peptide, NuBCP-9

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Singh, Gurpal; Sharma, Sapna; Gupta, Dikshi; Bansal, Vivek; Arora, Vikas; Bhat, Madhusudan; Srivastava, Sandeep K.; Sapra, Sameer; Kharbanda, Surender; Dinda, Amit K.; Singh, Harpal

    2014-11-01

    Delivering peptides into cells targeting the undruggable oncoproteins is an emerging area in cancer therapeutics. Here we report a novel nanoparticle-based delivery system that can transport therapeutic cargos to the intracellular sites without the need for a cell transduction or penetration domain (CPP). In the present study, we have used iron oxide nanoparticles to deliver an oncopeptide, NuBCP-9, targeting the BCL-2 BH3 domain. Citric acid/2-bromo 2-methylpropanoic acid (CA/BMPA)-capped SPIONs were used to immobilize and deliver the NuBCP-9 peptide to the cancer cells without any noticeable off-target effects. Our results have demonstrated that NuBCP-9-SPIONs efficiently penetrate into cancer cells and bind to its intracellular target protein BCL-2. Moreover, significant inhibition of proliferation and substantial induction of cell death were observed when cancer cells were treated with NuBCP-9-SPIONs at different time intervals. Importantly, the IC50 values for killing of breast cancer cells with NuBCP-9-SPIONs were much lower compared to cells treated with the NuBCP-9 peptide linked with a CPP (Arg-8; NuBCP-9-R8). Molecular and biochemical analyses further supported that NuBCP-9-SPIONs killed breast cancer cells by apoptosis-mediated mechanisms. Furthermore, our data demonstrated that administration of NuBCP-9-SPIONs to mice bearing Ehrlich ascites tumors (EAT) was associated with loss of tumorigenicity and extensive apoptosis in tumor tissues. Taken together, these findings show that a non-CPP-tagged peptide can be successfully delivered to undruggable intracellular oncotargets using SPIONs.Delivering peptides into cells targeting the undruggable oncoproteins is an emerging area in cancer therapeutics. Here we report a novel nanoparticle-based delivery system that can transport therapeutic cargos to the intracellular sites without the need for a cell transduction or penetration domain (CPP). In the present study, we have used iron oxide nanoparticles to deliver an oncopeptide, NuBCP-9, targeting the BCL-2 BH3 domain. Citric acid/2-bromo 2-methylpropanoic acid (CA/BMPA)-capped SPIONs were used to immobilize and deliver the NuBCP-9 peptide to the cancer cells without any noticeable off-target effects. Our results have demonstrated that NuBCP-9-SPIONs efficiently penetrate into cancer cells and bind to its intracellular target protein BCL-2. Moreover, significant inhibition of proliferation and substantial induction of cell death were observed when cancer cells were treated with NuBCP-9-SPIONs at different time intervals. Importantly, the IC50 values for killing of breast cancer cells with NuBCP-9-SPIONs were much lower compared to cells treated with the NuBCP-9 peptide linked with a CPP (Arg-8; NuBCP-9-R8). Molecular and biochemical analyses further supported that NuBCP-9-SPIONs killed breast cancer cells by apoptosis-mediated mechanisms. Furthermore, our data demonstrated that administration of NuBCP-9-SPIONs to mice bearing Ehrlich ascites tumors (EAT) was associated with loss of tumorigenicity and extensive apoptosis in tumor tissues. Taken together, these findings show that a non-CPP-tagged peptide can be successfully delivered to undruggable intracellular oncotargets using SPIONs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04504a

  13. Killing machines: three pore-forming proteins of the immune system

    PubMed Central

    McCormack, Ryan; de Armas, Lesley; Shiratsuchi, Motoaki

    2014-01-01

    The evolution of early multicellular eukaryotes 400–500 million years ago required a defensive strategy against microbial invasion. Pore-forming proteins containing the membrane-attack-complex-perforin (MACPF) domain were selected as the most efficient means to destroy bacteria or virally infected cells. The mechanism of pore formation by the MACPF domain is distinctive in that pore formation is purely physical and unspecific. The MACPF domain polymerizes, refolds, and inserts itself into bilayer membranes or bacterial outer cell walls. The displacement of surface lipid/carbohydrate molecules by the polymerizing MACPF domain creates clusters of large, water-filled holes that destabilize the barrier function and provide access for additional anti-bacterial or anti-viral effectors to sensitive sites that complete the destruction of the invader via enzymatic or chemical attack. The highly efficient mechanism of anti-microbial defense by a combined physical and chemical strategy using pore-forming MACPF-proteins has been retargeted during evolution of vertebrates and mammals for three purposes: (1) to kill extracellular bacteria C9/polyC9 evolved in conjunction with complement, (2) to kill virus infected and cancer cells perforin-1/polyperforin-1 CTL evolved targeted by NK and CTL, and (3) to kill intracellular bacteria transmembrane perforin-2/putative polyperforin-2 evolved targeted by phagocytic and nonphagocytic cells. Our laboratory has been involved in the discovery and description of each of the three pore-formers that will be reviewed here. PMID:24293008

  14. When No Response Is a Good Thing | Center for Cancer Research

    Cancer.gov

    Custom-designed therapies that target cell-surface antigens or receptors represent a promising immunological approach in cancer therapy. Antibodies that bind these targets are the starting point.  Potent toxins can then be added to them by fusing antibody fragments to powerful bacterial toxins such as Pseudomonas exotoxin (PE). This recombinant immunotoxin combines antibody selectivity with toxin cell-killing potency.

  15. Combined MUC1-specific nanobody-tagged PEG-polyethylenimine polyplex targeting and transcriptional targeting of tBid transgene for directed killing of MUC1 over-expressing tumour cells.

    PubMed

    Sadeqzadeh, Elham; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud; Rasaee, Mohammad J; Parhamifar, Ladan; Moghimi, S Moein

    2011-11-30

    We provide evidence for combining a single domain antibody (nanobody)-based targeting approach with transcriptional targeting as a safe way to deliver lethal transgenes to MUC1 over-expressing cancer cells. From a nanobody immune library, we have isolated an anti-DF3/Mucin1 (MUC1) nanobody with high specificity for the MUC1 antigen, which is an aberrantly glycosylated glycoprotein over-expressed in tumours of epithelial origin. The anti-MUC1 nanobody was covalently linked to the distal end of poly(ethylene glycol)(3500) (PEG(3500)) in PEG(3500)-25kDa polyethylenimine (PEI) conjugates and the resultant macromolecular entity successfully condensed plasmids coding a transcriptionally targeted truncated-Bid (tBid) killer gene under the control of the cancer-specific MUC1 promoter. The engineered polyplexes exhibited favourable physicochemical characteristics for transfection and dramatically elevated the level of Bid/tBid expression in both MUC1 over-expressing caspase 3-deficient (MCF7 cells) and caspase 3-positive (T47D and SKBR3) tumour cell lines and, concomitantly, induced considerable cell death. Neither transgene expression nor cell death occurred when the MUC1 promoter was replaced with the CNS-specific synapsin I promoter. Since PEGylated PEI was only responsible for DNA compaction and played no significant role in direct transfection and cell killing, our attempts overcome previously reported PEI-mediated apoptotic and necrotic cell death, which is advantageous for future in vivo transcriptional targeting as this will minimize (or eliminate) non-targeted cell damage. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Low concentrations of the soy phytoestrogen genistein induce proteinase inhibitor 9 and block killing of breast cancer cells by immune cells.

    PubMed

    Jiang, Xinguo; Patterson, Nicole M; Ling, Yan; Xie, Jianwei; Helferich, William G; Shapiro, David J

    2008-11-01

    The risks and benefits of diets and supplements containing the estrogenic soy isoflavone genistein are not well established. We report that 10 nm genistein potently induces the granzyme B inhibitor, proteinase inhibitor 9 (PI-9) in MCF-7 human breast cancer cells. By inducing PI-9, genistein inhibits the ability of human natural killer (NK) cells to lyse the target breast cancer cells. In ERalphaHA cells, stably transfected MCF-7 cells, which contain elevated levels of estrogen receptor-alpha (ERalpha), 100 pm genistein or 17beta-estradiol potently induce PI-9 and prevent NK cells from killing the target breast cancer cells. The concentrations of genistein that fully induce PI-9 in MCF-7 cells, and in ERalphaHA cells, are far lower than those previously reported to elicit estrogenic responses through ERalpha. Because 4-hydroxytamoxifen, raloxifene, and ICI 182,780/Faslodex all block genistein induction of PI-9 and elevated levels of ERalpha enhance induction of PI-9, genistein acts via ERalpha to induce PI-9. Increasing levels of ERalpha in breast cancer cells results in a progressive increase in induction of PI-9 by genistein and in the cell's ability to evade killing by NK cells. Moderate levels of dietary genistein and soy flour effectively induce PI-9 in human breast cancers grown in ovariectomized athymic mice. A significant population consumes levels of genistein in soy products that may be high enough to induce PI-9, perhaps potentiating the survival of some preexisting breast cancers by enabling them to evade immunosurveillance.

  17. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy.

    PubMed

    Jeyamohan, Prashanti; Hasumura, Takashi; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi

    2013-01-01

    The photothermal effect of single-walled carbon nanotubes (SWCNTs) in combination with the anticancer drug doxorubicin (DOX) for targeting and accelerated destruction of breast cancer cells is demonstrated in this paper. A targeted drug-delivery system was developed for selective killing of breast cancer cells with polyethylene glycol biofunctionalized and DOX-loaded SWCNTs conjugated with folic acid. In our work, in vitro drug-release studies showed that the drug (DOX) binds at physiological pH (pH 7.4) and is released only at a lower pH, ie, lysosomal pH (pH 4.0), which is the characteristic pH of the tumor environment. A sustained release of DOX from the SWCNTs was observed for a period of 3 days. SWCNTs have strong optical absorbance in the near-infrared (NIR) region. In this special spectral window, biological systems are highly transparent. Our study reports that under laser irradiation at 800 nm, SWCNTs exhibited strong light-heat transfer characteristics. These optical properties of SWCNTs open the way for selective photothermal ablation in cancer therapy. It was also observed that internalization and uptake of folate-conjugated NTs into cancer cells was achieved by a receptor-mediated endocytosis mechanism. Results of the in vitro experiments show that laser was effective in destroying the cancer cells, while sparing the normal cells. When the above laser effect was combined with DOX-conjugated SWCNTs, we found enhanced and accelerated killing of breast cancer cells. Thus, this nanodrug-delivery system, consisting of laser, drug, and SWCNTs, looks to be a promising selective modality with high treatment efficacy and low side effects for cancer therapy.

  18. Effect of primycin on growth-arrested cultures and cell integrity of Staphylococcus aureus.

    PubMed

    Feiszt, Péter; Schneider, György; Emődy, Levente

    2017-06-01

    Bactericidal effect against non-dividing bacteria is a very advantageous, but rare characteristic among antimicrobial agents, mostly possessed by those affecting the cell membrane. These kinds of agents can kill bacterial cells without lysis. We assessed these characteristics on primycin, a topical anti-staphylococcal agent highly effective against prevalent multiresistant strains, as it also acts on the cell membrane. In time-kill studies, primycin preserved its bactericidal activity against growth-arrested Staphylococcus aureus cultures. The bactericidal action was slower against growth-arrested cultures compared to the exponentially growing ones to different extents depending on the manner of arrest. The bactericidal effect was less influenced by stringent response and by protein synthesis inhibition, proving that it does not depend on metabolic activity. In contrast, uncoupling of the membrane potential predominantly slowed, and low temperature almost stopped killing of bacteria. In consideration of published data, these facts suggest that the antibacterial action of primycin involves disrupting of the membrane potential, and is predominantly influenced by the membrane fluidity. Optical density measurements and transmission electron microscopy verified that primycin kills bacterial cells without lysis. These results reveal favorable characteristics of primycin and point to, and broaden the knowledge on its membrane-targeted effect.

  19. Tracks to therapy

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.

    1999-01-01

    Studies of the structure of particle tracks have led to models of track effects based on radial dose and radiobiological target theory that have been very successful in describing and predicting track effects in physical, chemical, and biological systems. For describing mammalian cellular inactivation two inactivation modes are required, called gamma-kill and ion-kill, the first due to synergistic effects of delta rays from adjacent ion paths thus resembling the effects from gamma rays, and the second to the effects of single ion transits through a cell nucleus. The ion-kill effect is more severe, where the fraction of cells experiencing ion kill is responsible for a decrease in the oxygen enhancement ratio, and an increase in relative biological effectiveness, but these are accompanied by loss of repair, hence to a reduction in the efficiency of fractionation in high LET therapy, as shown by our calculations for radiobiological effects in the "spread out Bragg Peak".

  20. Targeting of HPV-16+ Epithelial Cancer Cells by TCR Gene Engineered T Cells Directed against E6.

    PubMed

    Draper, Lindsey M; Kwong, Mei Li M; Gros, Alena; Stevanović, Sanja; Tran, Eric; Kerkar, Sid; Raffeld, Mark; Rosenberg, Steven A; Hinrichs, Christian S

    2015-10-01

    The E6 and E7 oncoproteins of HPV-associated epithelial cancers are in principle ideal immunotherapeutic targets, but evidence that T cells specific for these antigens can recognize and kill HPV(+) tumor cells is limited. We sought to determine whether TCR gene engineered T cells directed against an HPV oncoprotein can successfully target HPV(+) tumor cells. T-cell responses against the HPV-16 oncoproteins were investigated in a patient with an ongoing 22-month disease-free interval after her second resection of distant metastatic anal cancer. T cells genetically engineered to express an oncoprotein-specific TCR from this patient's tumor-infiltrating T cells were tested for specific reactivity against HPV(+) epithelial tumor cells. We identified, from an excised metastatic anal cancer tumor, T cells that recognized an HLA-A*02:01-restricted epitope of HPV-16 E6. The frequency of the dominant T-cell clonotype from these cells was approximately 400-fold greater in the patient's tumor than in her peripheral blood. T cells genetically engineered to express the TCR from this clonotype displayed high avidity for an HLA-A*02:01-restricted epitope of HPV-16, and they showed specific recognition and killing of HPV-16(+) cervical, and head and neck cancer cell lines. These findings demonstrate that HPV-16(+) tumors can be targeted by E6-specific TCR gene engineered T cells, and they provide the foundation for a novel cellular therapy directed against HPV-16(+) malignancies, including cervical, oropharyngeal, anal, vulvar, vaginal, and penile cancers. ©2015 American Association for Cancer Research.

  1. The Absence of NOD1 Enhances Killing of Aspergillus fumigatus Through Modulation of Dectin-1 Expression.

    PubMed

    Gresnigt, Mark S; Jaeger, Martin; Subbarao Malireddi, R K; Rasid, Orhan; Jouvion, Grégory; Fitting, Catherine; Melchers, Willem J G; Kanneganti, Thirumala-Devi; Carvalho, Agostinho; Ibrahim-Granet, Oumaima; van de Veerdonk, Frank L

    2017-01-01

    One of the major life-threatening infections for which severely immunocompromised patients are at risk is invasive aspergillosis (IA). Despite the current treatment options, the increasing antifungal resistance and poor outcome highlight the need for novel therapeutic strategies to improve outcome of patients with IA. In the current study, we investigated whether and how the intracellular pattern recognition receptor NOD1 is involved in host defense against Aspergillus fumigatus . When exploring the role of NOD1 in an experimental mouse model, we found that Nod1 -/- mice were protected against IA and demonstrated reduced fungal outgrowth in the lungs. We found that macrophages derived from bone marrow of Nod1 -/- mice were more efficiently inducing reactive oxygen species and cytokines in response to Aspergillus . Most strikingly, these cells were highly potent in killing A. fumigatus compared with wild-type cells. In line, human macrophages in which NOD1 was silenced demonstrated augmented Aspergillus killing and NOD1 stimulation decreased fungal killing. The differentially altered killing capacity of NOD1 silencing versus NOD1 activation was associated with alterations in dectin-1 expression, with activation of NOD1 reducing dectin-1 expression. Furthermore, we were able to demonstrate that Nod1 -/- mice have elevated dectin-1 expression in the lung and bone marrow, and silencing of NOD1 gene expression in human macrophages increases dectin-1 expression. The enhanced dectin-1 expression may be the mechanism of enhanced fungal killing of Nod1 -/- cells and human cells in which NOD1 was silenced, since blockade of dectin-1 reversed the augmented killing in these cells. Collectively, our data demonstrate that NOD1 receptor plays an inhibitory role in the host defense against Aspergillus . This provides a rationale to develop novel immunotherapeutic strategies for treatment of aspergillosis that target the NOD1 receptor, to enhance the efficiency of host immune cells to clear the infection by increasing fungal killing and cytokine responses.

  2. Prodrug strategy for cancer cell-specific targeting: A recent overview.

    PubMed

    Zhang, Xian; Li, Xiang; You, Qidong; Zhang, Xiaojin

    2017-10-20

    The increasing development of targeted cancer therapy provides extensive possibilities in clinical trials, and numerous strategies have been explored. The prodrug is one of the most promising strategies in targeted cancer therapy to improve the selectivity and efficacy of cytotoxic compounds. Compared with normal tissues, cancer cells are characterized by unique aberrant markers, thus inactive prodrugs targeting these markers are excellent therapeutics to release active drugs, killing cancer cells without damaging normal tissues. In this review, we explore an integrated view of potential prodrugs applied in targeted cancer therapy based on aberrant cancer specific markers and some examples are provided for inspiring new ideas of prodrug strategy for cancer cell-specific targeting. Copyright © 2017. Published by Elsevier Masson SAS.

  3. Cross-Priming of Naive Cd8 T Cells against Melanoma Antigens Using Dendritic Cells Loaded with Killed Allogeneic Melanoma Cells

    PubMed Central

    Berard, Frederic; Blanco, Patrick; Davoust, Jean; Neidhart-Berard, Eve-Marie; Nouri-Shirazi, Mahyar; Taquet, Nicolas; Rimoldi, Donata; Cerottini, Jean Charles; Banchereau, Jacques; Palucka, A. Karolina

    2000-01-01

    The goal of tumor immunotherapy is to elicit immune responses against autologous tumors. It would be highly desirable that such responses include multiple T cell clones against multiple tumor antigens. This could be obtained using the antigen presenting capacity of dendritic cells (DCs) and cross-priming. That is, one could load the DC with tumor lines of any human histocompatibility leukocyte antigen (HLA) type to elicit T cell responses against the autologous tumor. In this study, we show that human DCs derived from monocytes and loaded with killed melanoma cells prime naive CD45RA+CD27+CD8+ T cells against the four shared melanoma antigens: MAGE-3, gp100, tyrosinase, and MART-1. HLA-A201+ naive T cells primed by DCs loaded with HLA-A201− melanoma cells are able to kill several HLA-A201+ melanoma targets. Cytotoxic T lymphocyte priming towards melanoma antigens is also obtained with cells from metastatic melanoma patients. This demonstration of cross-priming against shared tumor antigens builds the basis for using allogeneic tumor cell lines to deliver tumor antigens to DCs for vaccination protocols. PMID:11104796

  4. Inhibition of WEE1 kinase and cell cycle checkpoint activation sensitizes head and neck cancers to natural killer cell therapies.

    PubMed

    Friedman, Jay; Morisada, Megan; Sun, Lillian; Moore, Ellen C; Padget, Michelle; Hodge, James W; Schlom, Jeffrey; Gameiro, Sofia R; Allen, Clint T

    2018-06-21

    Natural killer (NK) cells recognize and lyse target tumor cells in an MHC-unrestricted fashion and complement antigen- and MHC-restricted killing by T-lymphocytes. NK cells and T-lymphocytes mediate early killing of targets through a common granzyme B-dependent mechanism. Tumor cell resistance to granzyme B and how this alters NK cell killing is not clearly defined. Tumor cell sensitivity to cultured murine KIL and human high affinity NK (haNK) cells in the presence or absence of AZD1775, a small molecule inhibitor of WEE1 kinase, was assessed via real time impedance analysis. Mechanisms of enhanced sensitivity to NK lysis were determined and in vivo validation via adoptive transfer of KIL cells into syngeneic mice was performed. Cultured murine KIL cells lyse murine oral cancer 2 (MOC2) cell targets more efficiently than freshly isolated peripheral murine NK cells. MOC2 sensitivity to granzyme B-dependent KIL cell lysis was enhanced by inhibition of WEE1 kinase, reversing G2/M cell cycle checkpoint activation and resulting in enhanced DNA damage and apoptosis. Treatment of MOC2 tumor-bearing wild-type C57BL/6 mice with AZD1775 and adoptively transferred KIL cells resulted in enhanced tumor growth control and survival over controls or either treatment alone. Validating these findings in human models, WEE1 kinase inhibition sensitized two human head and neck cancer cell lines to direct lysis by haNK cells. Further, WEE1 kinase inhibition sensitized these cell lines to antibody-dependent cell-mediated cytotoxicity when combined with the anti-PD-L1 IgG1 mAb Avelumab. Tumor cell resistance to granzyme B-induced cell death can be reversed through inhibition of WEE1 kinase as AZD1775 sensitized both murine and human head and neck cancer cells to NK lysis. These data provide the pre-clinical rationale for the combination of small molecules that reverse cell cycle checkpoint activation and NK cellular therapies.

  5. Quantitative modeling of the dynamics and intracellular trafficking of far-red light-activatable prodrugs: implications in stimuli-responsive drug delivery system.

    PubMed

    Li, Mengjie; Thapa, Pritam; Rajaputra, Pallavi; Bio, Moses; Peer, Cody J; Figg, William D; You, Youngjae; Woo, Sukyung

    2017-12-01

    The combination of photodynamic therapy (PDT) with anti-tumor agents is a complimentary strategy to treat local cancers. We developed a unique photosensitizer (PS)-conjugated paclitaxel (PTX) prodrug in which a PS is excited by near-infrared wavelength light to site-specifically release PTX while generating singlet oxygen (SO) to effectively kill cancer cells with both PTX and SO. The aim of the present study was to identify the determinants influencing the combined efficacy of this light-activatable prodrug, especially the bystander killing effects from released PTX. Using PS-conjugated PTX as a model system, we developed a quantitative mathematical model describing the intracellular trafficking. Dynamics of the prodrug and the model predictions were verified with experimental data using human cancer cells in vitro. The sensitivity analysis suggested that parameters related to extracellular concentration of released PTX, prodrug uptake, target engagement, and target abundance are critical in determining the combined killing efficacy of the prodrug. We found that released PTX cytotoxicity was most sensitive to the retention time of the drug in extracellular space. Modulating drug internalization and conjugating the agents targeted to abundant receptors may provide a new strategy for maximizing the killing capacity of the far-red light-activatable prodrug system. These results provide guidance for the design of the PDT combination study in vivo and have implications for other stimuli-responsive drug delivery systems.

  6. Dysregulated humoral immunity to nontyphoidal Salmonella in HIV-infected African adults

    PubMed Central

    MacLennan, Calman A.; Gilchrist, James J.; Gordon, Melita A.; Cunningham, Adam F.; Cobbold, Mark; Goodall, Margaret; Kingsley, Robert A.; van Oosterhout, Joep J. G.; Msefula, Chisomo L.; Mandala, Wilson L.; Leyton, Denisse L.; Marshall, Jennifer L.; Gondwe, Esther N.; Bobat, Saeeda; López-Macías, Constantino; Doffinger, Rainer; Henderson, Ian R.; Zijlstra, Eduard E.; Dougan, Gordon; Drayson, Mark T.; MacLennan, Ian C. M.; Molyneux, Malcolm E.

    2013-01-01

    Nontyphoidal Salmonellae are a major cause of life-threatening bacteremia among HIV-infected individuals. Although cell-mediated immunity controls intracellular infection, antibody protects against Salmonella bacteremia. We report that high titer antibodies specific for Salmonella lipopolysaccharide (LPS) associate with absent Salmonella-killing in HIV-infected African adults. Killing was restored by genetically shortening LPS from target Salmonella, or removing LPS-specific antibodies from serum. Complement-mediated killing of Salmonella by healthy serum is shown to be induced specifically by antibodies against outer membrane proteins. This killing is lost when excess antibody against Salmonella LPS is added. Thus our study indicates impaired immunity against nontyphoidal Salmonella bacteremia in HIV infection results from excess inhibitory antibodies against Salmonella LPS, whilst serum killing of Salmonella is induced by antibodies against outer membrane proteins. PMID:20413503

  7. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors.

    PubMed

    Ahmed, Nabil; Salsman, Vita S; Kew, Yvonne; Shaffer, Donald; Powell, Suzanne; Zhang, Yi J; Grossman, Robert G; Heslop, Helen E; Gottschalk, Stephen

    2010-01-15

    Glioblastoma multiforme (GBM) is the most aggressive human primary brain tumor and is currently incurable. Immunotherapies have the potential to target GBM stem cells, which are resistant to conventional therapies. Human epidermal growth factor receptor 2 (HER2) is a validated immunotherapy target, and we determined if HER2-specific T cells can be generated from GBM patients that will target autologous HER2-positive GBMs and their CD133-positive stem cell compartment. HER2-specific T cells from 10 consecutive GBM patients were generated by transduction with a retroviral vector encoding a HER2-specific chimeric antigen receptor. The effector function of HER2-specific T cells against autologous GBM cells, including CD133-positive stem cells, was evaluated in vitro and in an orthotopic murine xenograft model. Stimulation of HER2-specific T cells with HER2-positive autologous GBM cells resulted in T-cell proliferation and secretion of IFN-gamma and interleukin-2 in a HER2-dependent manner. Patients' HER2-specific T cells killed CD133-positive and CD133-negative cells derived from primary HER2-positive GBMs, whereas HER2-negative tumor cells were not killed. Injection of HER2-specific T cells induced sustained regression of autologous GBM xenografts established in the brain of severe combined immunodeficient mice. Gene transfer allows the reliable generation of HER2-specific T cells from GBM patients, which have potent antitumor activity against autologous HER2-positive tumors including their putative stem cells. Hence, the adoptive transfer of HER2-redirected T cells may be a promising immunotherapeutic approach for GBM.

  8. Simultaneous cytofluorometric measurement of phagocytosis, burst production and killing of human phagocytes using Candida albicans and Staphylococcus aureus as target organisms.

    PubMed

    Salih, H R; Husfeld, L; Adam, D

    2000-05-01

    Polymorphonuclear leukocytes (PMN) play a central role in the elimination of most extracellular pathogens, and an impairment of their functions predisposes an individual towards local and systemic bacterial and fungal infections. Here we describe a rapid and easy-to-perform cytofluorometric assay for investigation of PMN activity using Candida albicans and Staphylococcus aureus as target organisms. Phagocytes were stained with anti-CD13-RPE antibody, and microorganisms were stained with calcein-AM. Oxidative burst production was measured by oxidation of dihydroethidium. The percentage of killed target organisms after ingestion was determined by staining with ethidium-homodimer-1 after lysis of human cells. The dyes and procedures used in this method were chosen after comparison of different stains and cell preparation techniques described in previous assays. Concerning phagocytosis, the percentages of active phagocytes and of ingested microorganisms were determined. Furthermore, the method allowed measurement of the resulting percentage of PMNs producing respiratory burst, and of the percentage of killed microorganisms. We minimized artifactual changes, which might have been the reason for the difficulties and conflicting results of other cytofluorometric methods. The described method provides a new whole blood cytofluorometric assay, which combines rapid and simple handling with high reproducibility of results obtained by investigation of PMN activity using Candida albicans and Staphylococcus aureus as target organisms.

  9. Improved Killing of Ovarian Cancer Stem Cells by Combining a Novel Chimeric Antigen Receptor-Based Immunotherapy and Chemotherapy.

    PubMed

    Klapdor, Rüdiger; Wang, Shuo; Hacker, Ulrich; Büning, Hildegard; Morgan, Michael; Dörk, Thilo; Hillemanns, Peter; Schambach, Axel

    2017-10-01

    Ovarian cancer represents the most lethal gynecological cancer. Although cytoreductive chemotherapy and surgery lead to complete macroscopic tumor removal, most of the patients in advanced stages suffer from recurrent disease and subsequently die. This may be explained by the activity of cancer stem cells (CSC), which are a subpopulation of cells with an elevated chemoresistance and an increased capacity for self-renewal and metastatic spread. Specifically targeting these cells by adoptive immunotherapy represents a promising strategy to reduce the risk for recurrent disease. This study selected the widely accepted CSC marker CD133 as a target for a chimeric antigen receptor (CAR)-based immunotherapeutic approach to treat ovarian cancer. A lentiviral vector was generated encoding a third-generation anti-CD133-CAR, and clinically used NK92 cells were transduced. These engineered natural killer (NK) cells showed specific killing against CD133-positive ovarian cancer cell lines and primary ovarian cancer cells cultured from sequential ascites harvests. Additionally, specific activation of these engineered NK cells was demonstrated via interferon-gamma secretion assays. To improve clinical efficacy of ovarian cancer treatment, the effect of the chemotherapeutic agent cisplatin was evaluated together with CAR-transduced NK cell treatment. It was demonstrated that NK cells remain cytotoxic and active under cisplatin treatment and, importantly, that sequential treatment with cisplatin followed by CAR-NK cells led to the strongest killing effect. The specific eradication of ovarian CSCs by anti-CD133-CAR expressing NK92 cells represents a promising strategy and, when confirmed in vivo, shall be the basis of future clinical studies with the aim to prevent recurrent disease.

  10. Towards an HIV cure based on targeted killing of infected cells: different approaches against acute versus chronic infection.

    PubMed

    Dey, Barna; Berger, Edward A

    2015-05-01

    Current regimens of combination antiretroviral therapy (cART) offer effective control of HIV infection, with maintenance of immune health and near-normal life expectancy. What will it take to progress beyond the status quo, whereby infectious virus can be eradicated (a 'sterilizing cure') or fully controlled without the need for ongoing cART (a 'functional cure')? On the basis of therapeutic advances in the cancer field, we propose that targeted cytotoxic therapy to kill HIV-infected cells represents a logical complement to cART for achieving an HIV cure. This concept is based on the fact that cART effectively blocks replication of the virus, but does not eliminate cells that are already infected; targeted cytotoxic therapy would contribute precisely this missing component. We suggest that different modalities are suited for curing primary acute versus established chronic infection. For acute infection, relatively short-acting potent agents such as recombinant immunotoxins might prove sufficient for HIV eradication, whereas for chronic infection, a long-lasting (lifelong?) modality is required to maintain full virus control, as might be achieved with genetically modified autologous T cells. We present perspectives for complementing cART with targeted cytotoxic therapy, whereby HIV infection is either eradicated or fully controlled, thereby eliminating the need for lifelong cART.

  11. Targeting CD123 in acute myeloid leukemia using a T-cell–directed dual-affinity retargeting platform

    PubMed Central

    Al-Hussaini, Muneera; Rettig, Michael P.; Ritchey, Julie K.; Karpova, Darja; Uy, Geoffrey L.; Eissenberg, Linda G.; Gao, Feng; Eades, William C.; Bonvini, Ezio; Chichili, Gurunadh R.; Moore, Paul A.; Johnson, Syd; Collins, Lynne

    2016-01-01

    T-cell–directed killing of tumor cells using bispecific antibodies is a promising approach for the treatment of hematologic malignancies. Here we describe our preclinical work with a dual-affinity retargeting (DART) molecule generated from antibodies to CD3 and CD123, designed to redirect T cells against acute myeloid leukemia blasts. The CD3×CD123 DART (also referred to as MGD006/S80880) consists of 2 independent polypeptides, each composed of the VH of 1 antibody in tandem with the VL of the other antibody. The target antigen CD123 (interleukin 3RA) is highly and differentially expressed in acute myeloid leukemia (AML) blasts compared with normal hematopoietic stem and progenitor cells. In this study we demonstrate that the CD3×CD123 DART binds to both human CD3 and CD123 to mediate target-effector cell association, T-cell activation, proliferation, and receptor diversification. The CD3×CD123 DART also induces a dose-dependent killing of AML cell lines and primary AML blasts in vitro and in vivo. These results provide the basis for testing the CD3×CD123 DART in the treatment of patients with CD123+ AML. PMID:26531164

  12. Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis

    PubMed Central

    Berney, Michael; Berney-Meyer, Linda; Wong, Ka-Wing; Chen, Bing; Chen, Mei; Kim, John; Wang, Jingxin; Harris, David; Parkhill, Julian; Chan, John; Wang, Feng; Jacobs, William R.

    2015-01-01

    Multidrug resistance, strong side effects, and compliance problems in TB chemotherapy mandate new ways to kill Mycobacterium tuberculosis (Mtb). Here we show that deletion of the gene encoding homoserine transacetylase (metA) inactivates methionine and S-adenosylmethionine (SAM) biosynthesis in Mtb and renders this pathogen exquisitely sensitive to killing in immunocompetent or immunocompromised mice, leading to rapid clearance from host tissues. Mtb ΔmetA is unable to proliferate in primary human macrophages, and in vitro starvation leads to extraordinarily rapid killing with no appearance of suppressor mutants. Cell death of Mtb ΔmetA is faster than that of other auxotrophic mutants (i.e., tryptophan, pantothenate, leucine, biotin), suggesting a particularly potent mechanism of killing. Time-course metabolomics showed complete depletion of intracellular methionine and SAM. SAM depletion was consistent with a significant decrease in methylation at the DNA level (measured by single-molecule real-time sequencing) and with the induction of several essential methyltransferases involved in biotin and menaquinone biosynthesis, both of which are vital biological processes and validated targets of antimycobacterial drugs. Mtb ΔmetA could be partially rescued by biotin supplementation, confirming a multitarget cell death mechanism. The work presented here uncovers a previously unidentified vulnerability of Mtb—the incapacity to scavenge intermediates of SAM and methionine biosynthesis from the host. This vulnerability unveils an entirely new drug target space with the promise of rapid killing of the tubercle bacillus by a new mechanism of action. PMID:26221021

  13. Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis.

    PubMed

    Berney, Michael; Berney-Meyer, Linda; Wong, Ka-Wing; Chen, Bing; Chen, Mei; Kim, John; Wang, Jingxin; Harris, David; Parkhill, Julian; Chan, John; Wang, Feng; Jacobs, William R

    2015-08-11

    Multidrug resistance, strong side effects, and compliance problems in TB chemotherapy mandate new ways to kill Mycobacterium tuberculosis (Mtb). Here we show that deletion of the gene encoding homoserine transacetylase (metA) inactivates methionine and S-adenosylmethionine (SAM) biosynthesis in Mtb and renders this pathogen exquisitely sensitive to killing in immunocompetent or immunocompromised mice, leading to rapid clearance from host tissues. Mtb ΔmetA is unable to proliferate in primary human macrophages, and in vitro starvation leads to extraordinarily rapid killing with no appearance of suppressor mutants. Cell death of Mtb ΔmetA is faster than that of other auxotrophic mutants (i.e., tryptophan, pantothenate, leucine, biotin), suggesting a particularly potent mechanism of killing. Time-course metabolomics showed complete depletion of intracellular methionine and SAM. SAM depletion was consistent with a significant decrease in methylation at the DNA level (measured by single-molecule real-time sequencing) and with the induction of several essential methyltransferases involved in biotin and menaquinone biosynthesis, both of which are vital biological processes and validated targets of antimycobacterial drugs. Mtb ΔmetA could be partially rescued by biotin supplementation, confirming a multitarget cell death mechanism. The work presented here uncovers a previously unidentified vulnerability of Mtb-the incapacity to scavenge intermediates of SAM and methionine biosynthesis from the host. This vulnerability unveils an entirely new drug target space with the promise of rapid killing of the tubercle bacillus by a new mechanism of action.

  14. Macrophage P2X4 receptors augment bacterial killing and protect against sepsis

    PubMed Central

    Csóka, Balázs; Németh, Zoltán H.; Szabó, Ildikó; Davies, Daryl L.; Varga, Zoltán V.; Pálóczi, János; Falzoni, Simonetta; Di Virgilio, Francesco; Muramatsu, Rieko; Pacher, Pál

    2018-01-01

    The macrophage is a major phagocytic cell type, and its impaired function is a primary cause of immune paralysis, organ injury, and death in sepsis. An incomplete understanding of the endogenous molecules that regulate macrophage bactericidal activity is a major barrier for developing effective therapies for sepsis. Using an in vitro killing assay, we report here that the endogenous purine ATP augments the killing of sepsis-causing bacteria by macrophages through P2X4 receptors (P2X4Rs). Using newly developed transgenic mice expressing a bioluminescent ATP probe on the cell surface, we found that extracellular ATP levels increase during sepsis, indicating that ATP may contribute to bacterial killing in vivo. Studies with P2X4R-deficient mice subjected to sepsis confirm the role of extracellular ATP acting on P2X4Rs in killing bacteria and protecting against organ injury and death. Results with adoptive transfer of macrophages, myeloid-specific P2X4R-deficient mice, and P2rx4 tdTomato reporter mice indicate that macrophages are essential for the antibacterial, antiinflammatory, and organ protective effects of P2X4Rs in sepsis. Pharmacological targeting of P2X4Rs with the allosteric activator ivermectin protects against bacterial dissemination and mortality in sepsis. We propose that P2X4Rs represent a promising target for drug development to control bacterial growth in sepsis and other infections. PMID:29875325

  15. Targeting the Human Complement Membrane Attack Complex to Selectively Kill Prostate Cancer Cells

    DTIC Science & Technology

    2014-12-01

    These mutants will be tested for their specificity and potency against PSA positive/negative cells in conjunction with the PSMA binding urea...targeting studies. Second, to achieve cell binding and uptake, we propose to link a PSMA binding urea to the C-terminus of recombinant GZMB. This will be...will be linked to the free amine of the PSMA urea in order to covalently link the compound to the C- terminus of GZMB. The C-terminus was chosen

  16. DNA Double-Strand Break Repair as Determinant of Cellular Radiosensitivity to Killing and Target in Radiation Therapy

    PubMed Central

    Mladenov, Emil; Magin, Simon; Soni, Aashish; Iliakis, George

    2013-01-01

    Radiation therapy plays an important role in the management of a wide range of cancers. Besides innovations in the physical application of radiation dose, radiation therapy is likely to benefit from novel approaches exploiting differences in radiation response between normal and tumor cells. While ionizing radiation induces a variety of DNA lesions, including base damages and single-strand breaks, the DNA double-strand break (DSB) is widely considered as the lesion responsible not only for the aimed cell killing of tumor cells, but also for the general genomic instability that leads to the development of secondary cancers among normal cells. Homologous recombination repair (HRR), non-homologous end-joining (NHEJ), and alternative NHEJ, operating as a backup, are the major pathways utilized by cells for the processing of DSBs. Therefore, their function represents a major mechanism of radiation resistance in tumor cells. HRR is also required to overcome replication stress – a potent contributor to genomic instability that fuels cancer development. HRR and alternative NHEJ show strong cell-cycle dependency and are likely to benefit from radiation therapy mediated redistribution of tumor cells throughout the cell-cycle. Moreover, the synthetic lethality phenotype documented between HRR deficiency and PARP inhibition has opened new avenues for targeted therapies. These observations make HRR a particularly intriguing target for treatments aiming to improve the efficacy of radiation therapy. Here, we briefly describe the major pathways of DSB repair and review their possible contribution to cancer cell radioresistance. Finally, we discuss promising alternatives for targeting DSB repair to improve radiation therapy and cancer treatment. PMID:23675572

  17. Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfaces▿

    PubMed Central

    Quaranta, Davide; Krans, Travis; Santo, Christophe Espírito; Elowsky, Christian G.; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2011-01-01

    Surfaces made of copper or its alloys have strong antimicrobial properties against a wide variety of microorganisms. However, the molecular mode of action responsible for the antimicrobial efficacy of metallic copper is not known. Here, we show that dry copper surfaces inactivate Candida albicans and Saccharomyces cerevisiae within minutes in a process called contact-mediated killing. Cellular copper ion homeostasis systems influenced the kinetics of contact-mediated killing in both organisms. Deregulated copper ion uptake through a hyperactive S. cerevisiae Ctr1p (ScCtr1p) copper uptake transporter in Saccharomyces resulted in faster inactivation of mutant cells than of wild-type cells. Similarly, lack of the C. albicans Crp1p (CaCrp1p) copper-efflux P-type ATPase or the metallothionein CaCup1p caused more-rapid killing of Candida mutant cells than of wild-type cells. Candida and Saccharomyces took up large quantities of copper ions as soon as they were in contact with copper surfaces, as indicated by inductively coupled plasma mass spectroscopy (ICP-MS) analysis and by the intracellular copper ion-reporting dye coppersensor-1. Exposure to metallic copper did not cause lethality through genotoxicity, deleterious action on a cell's genetic material, as indicated by a mutation assay with Saccharomyces. Instead, toxicity mediated by metallic copper surfaces targeted membranes in both yeast species. With the use of Live/Dead staining, onset of rapid and extensive cytoplasmic membrane damage was observed in cells from copper surfaces. Fluorescence microscopy using the indicator dye DiSBaC2(3) indicated that cell membranes were depolarized. Also, during contact-mediated killing, vacuoles first became enlarged and then disappeared from the cells. Lastly, in metallic copper-stressed yeasts, oxidative stress in the cytoplasm and in mitochondria was elevated. PMID:21097600

  18. Synthesis and Evaluation of Folate-Conjugated Phenanthraquinones for Tumor-Targeted Oxidative Chemotherapy

    PubMed Central

    Kumar, Ajay; Chelvam, Venkatesh; Sakkarapalayam, Mahalingam; Li, Guo; Sanchez-Cruz, Pedro; Piñero, Natasha S.; Low, Philip S.; Alegria, Antonio E.

    2016-01-01

    Almost all cells are easily killed by exposure to potent oxidants. Indeed, major pathogen defense mechanisms in both animal and plant kingdoms involve production of an oxidative burst, where host defense cells show an invading pathogen with reactive oxygen species (ROS). Although cancer cells can be similarly killed by ROS, development of oxidant-producing chemotherapies has been limited by their inherent nonspecificity and potential toxicity to healthy cells. In this paper, we describe the targeting of an ROS-generating molecule selectively to tumor cells using folate as the tumor-targeting ligand. For this purpose, we exploit the ability of 9,10-phenanthraquinone (PHQ) to enhance the continuous generation of H2O2 in the presence of ascorbic acid to establish a constitutive source of ROS within the tumor mass. We report here that incubation of folate receptor-expressing KB cells in culture with folate-PHQ plus ascorbate results in the death of the cancer cells with an IC50 of ~10 nM (folate-PHQ). We also demonstrate that a cleavable spacer linking folate to PHQ is significantly inferior to a noncleavable spacer, in contrast to most other folate-targeted therapeutic agents. Unfortunately, no evidence for folate-PHQ mediated tumor regression in murine tumor models is obtained, suggesting that unanticipated impediments to generation of cytotoxic quantities of ROS in vivo are encountered. Possible mechanisms and potential solutions to these unanticipated results are offered. PMID:27066312

  19. Fabrication and characterization of UV-emitting nanoparticles as novel radiation sensitizers targeting hypoxic tumor cells

    NASA Astrophysics Data System (ADS)

    Squillante, Michael R.; Jüstel, Thomas; Anderson, R. Rox; Brecher, Charles; Chartier, Daniel; Christian, James F.; Cicchetti, Nicholas; Espinoza, Sara; McAdams, Daniel R.; Müller, Matthias; Tornifoglio, Brooke; Wang, Yimin; Purschke, Martin

    2018-06-01

    Radiation therapy is one of the primary therapeutic techniques for treating cancer, administered to nearly two-thirds of all cancer patients. Although largely effective in killing cancer cells, radiation therapy, like other forms of cancer treatment, has difficulty dealing with hypoxic regions within solid tumors. The incomplete killing of cancer cells can lead to recurrence and relapse. The research presented here is investigating the enhancement of the efficacy of radiation therapy by using scintillating nanoparticles that emit UV photons. UV photons, with wavelengths between 230 nm and 280 nm, are able to inactivate cells due to their direct interaction with DNA, causing a variety of forms of damage. UV-emitting nanoparticles will enhance the treatment in two ways: first by generating UV photons in the immediate vicinity of cancer cells, leading to direct and oxygen-independent DNA damage, and second by down-converting the applied higher energy X-rays into softer X-rays and particles that are more efficiently absorbed in the targeted tumor region. The end result will be nanoparticles with a higher efficacy in the treatment of hypoxic cells in the tumor, filling an important, unmet clinical need. Our preliminary experiments show an increase in cell death using scintillating LuPO4:Pr nanoparticles over that achieved by the primary radiation alone. This work describes the fabrication of the nanoparticles, their physical characterization, and the spectroscopic characterization of the UV emission. The work also presents in vitro results that demonstrate an enhanced efficacy of cell killing with x-rays and a low unspecific toxicity of the nanoparticles.

  20. Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage.

    PubMed

    Santo, Christophe Espírito; Quaranta, Davide; Grass, Gregor

    2012-03-01

    Recently, copper (Cu) in its metallic form has regained interest for its antimicrobial properties. Use of metallic Cu surfaces in worldwide hospital trials resulted in remarkable reductions in surface contaminations. Yet, our understanding of why microbes are killed upon contact to the metal is still limited and different modes of action have been proposed. This knowledge, however, is crucial for sustained use of such surfaces in hospitals and other hygiene-sensitive areas. Here, we report on the molecular mechanisms by which the Gram-positive Staphylococcus haemolyticus is inactivated by metallic Cu. Staphylococcus haemolyticus was killed within minutes on Cu but not on stainless steel demonstrating the antimicrobial efficacy of metallic Cu. Inductively coupled plasma mass spectroscopy (ICP-MS) analysis and in vivo staining with Coppersensor-1 indicated that cells accumulated large amounts of Cu ions from metallic Cu surfaces contributing to lethal damage. Mutation rates of Cu- or steel-exposed cells were similarly low. Instead, live/dead staining indicated cell membrane damage in Cu- but not steel-exposed cells. These findings support a model of the cellular targets of metallic Cu toxicity in bacteria, which suggests that metallic Cu is not genotoxic and does not kill via DNA damage. In contrast, membranes constitute the likely Achilles' heel of Cu surface-exposed cells.

  1. Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage

    PubMed Central

    Santo, Christophe Espírito; Quaranta, Davide; Grass, Gregor

    2012-01-01

    Recently, copper (Cu) in its metallic form has regained interest for its antimicrobial properties. Use of metallic Cu surfaces in worldwide hospital trials resulted in remarkable reductions in surface contaminations. Yet, our understanding of why microbes are killed upon contact to the metal is still limited and different modes of action have been proposed. This knowledge, however, is crucial for sustained use of such surfaces in hospitals and other hygiene-sensitive areas. Here, we report on the molecular mechanisms by which the Gram-positive Staphylococcus haemolyticus is inactivated by metallic Cu. Staphylococcus haemolyticus was killed within minutes on Cu but not on stainless steel demonstrating the antimicrobial efficacy of metallic Cu. Inductively coupled plasma mass spectroscopy (ICP-MS) analysis and in vivo staining with Coppersensor-1 indicated that cells accumulated large amounts of Cu ions from metallic Cu surfaces contributing to lethal damage. Mutation rates of Cu- or steel-exposed cells were similarly low. Instead, live/dead staining indicated cell membrane damage in Cu- but not steel-exposed cells. These findings support a model of the cellular targets of metallic Cu toxicity in bacteria, which suggests that metallic Cu is not genotoxic and does not kill via DNA damage. In contrast, membranes constitute the likely Achilles’ heel of Cu surface-exposed cells. PMID:22950011

  2. Disulfide bond disrupting agents activate the unfolded protein response in EGFR- and HER2-positive breast tumor cells

    PubMed Central

    Law, Mary E.; Davis, Bradley J.; Bartley, Ashton N.; Higgins, Paul J.; Kilberg, Michael S.; Santostefano, Katherine E.; Terada, Naohiro; Heldermon, Coy D.; Castellano, Ronald K.; Law, Brian K.

    2017-01-01

    Many breast cancer deaths result from tumors acquiring resistance to available therapies. Thus, new therapeutic agents are needed for targeting drug-resistant breast cancers. Drug-refractory breast cancers include HER2+ tumors that have acquired resistance to HER2-targeted antibodies and kinase inhibitors, and “Triple-Negative” Breast Cancers (TNBCs) that lack the therapeutic targets Estrogen Receptor, Progesterone Receptor, and HER2. A significant fraction of TNBCs overexpress the HER2 family member Epidermal Growth Factor Receptor (EGFR). Thus agents that selectively kill EGFR+ and HER2+ tumors would provide new options for breast cancer therapy. We previously identified a class of compounds we termed Disulfide bond Disrupting Agents (DDAs) that selectively kill EGFR+ and HER2+ breast cancer cells in vitro and blocked the growth of HER2+ breast tumors in an animal model. DDA-dependent cytotoxicity was found to correlate with downregulation of HER1-3 and Akt dephosphorylation. Here we demonstrate that DDAs activate the Unfolded Protein Response (UPR) and that this plays a role in their ability to kill EGFR+ and HER2+ cancer cells. The use of breast cancer cell lines ectopically expressing EGFR or HER2 and pharmacological probes of UPR revealed all three DDA responses: HER1-3 downregulation, Akt dephosphorylation, and UPR activation, contribute to DDA-mediated cytotoxicity. Significantly, EGFR overexpression potentiates each of these responses. Combination studies with DDAs suggest that they may be complementary with EGFR/HER2-specific receptor tyrosine kinase inhibitors and mTORC1 inhibitors to overcome drug resistance. PMID:28423644

  3. A novel double-targeted nondrug delivery system for targeting cancer stem cells

    PubMed Central

    Qiao, Shupei; Zhao, Yufang; Geng, Shuai; Li, Yong; Hou, Xiaolu; Liu, Yi; Lin, Feng-Huei; Yao, Lifen; Tian, Weiming

    2016-01-01

    Instead of killing cancer stem cells (CSCs), the conventional chemotherapy used for cancer treatment promotes the enrichment of CSCs, which are responsible for tumor growth, metastasis, and recurrence. However, most therapeutic agents are only able to kill a small proportion of CSCs by targeting one or two cell surface markers or dysregulated CSC pathways, which are usually shared with normal stem cells (NSCs). In this study, we developed a novel nondrug delivery system for the dual targeting of CSCs by conjugating hyaluronic acid (HA) and grafting the doublecortin-like kinase 1 (DCLK1) monoclonal antibody to the surface of poly(ethylene glycol) (PEG)–poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs), which can specifically target CD44 receptors and the DCLK1 surface marker – the latter was shown to possess the capacity to distinguish between CSCSs and NSCs. The size and morphology of these NPs were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). This was followed by studies of NP encapsulation efficiency and in vitro drug release properties. Then, the cytotoxicity of the NPs was tested via Cell Counting Kit-8 assay. Finally, the 4T1 CSCs were obtained from the alginate-based platform, which we developed as an in vitro tumor model. Tumor-bearing nude mice were used as in vivo models to systematically detect the ability of NPs to target CSCs. Our results showed that the DCLK1–HA–PEG–PLGA NPs exhibited a targeting effect toward CSCs both in vitro and in vivo. These findings have important implications for the rational design of drug delivery systems that target CSCs with high efficacy. PMID:27994463

  4. Antibody-functionalized porous silicon nanoparticles for vectorization of hydrophobic drugs.

    PubMed

    Secret, Emilie; Smith, Kevin; Dubljevic, Valentina; Moore, Eli; Macardle, Peter; Delalat, Bahman; Rogers, Mary-Louise; Johns, Terrance G; Durand, Jean-Olivier; Cunin, Frédérique; Voelcker, Nicolas H

    2013-05-01

    We describe the preparation of biodegradable porous silicon nanoparticles (pSiNP) functionalized with cancer cell targeting antibodies and loaded with the hydrophobic anti-cancer drug camptothecin. Orientated immobilization of the antibody on the pSiNP is achieved using novel semicarbazide based bioconjugate chemistry. To demonstrate the generality of this targeting approach, the three antibodies MLR2, mAb528 and Rituximab are used, which target neuroblastoma, glioblastoma and B lymphoma cells, respectively. Successful targeting is demonstrated by means of flow cytometry and immunocytochemistry both with cell lines and primary cells. Cell viability assays after incubation with pSiNPs show selective killing of cells expressing the receptor corresponding to the antibody attached on the pSiNP. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. HER2 monoclonal antibodies that do not interfere with receptor heterodimerization-mediated signaling induce effective internalization and represent valuable components for rational antibody-drug conjugate design.

    PubMed

    de Goeij, Bart E C G; Peipp, Matthias; de Haij, Simone; van den Brink, Edward N; Kellner, Christian; Riedl, Thilo; de Jong, Rob; Vink, Tom; Strumane, Kristin; Bleeker, Wim K; Parren, Paul W H I

    2014-01-01

    The human epidermal growth factor receptor (HER)2 provides an excellent target for selective delivery of cytotoxic drugs to tumor cells by antibody-drug conjugates (ADC) as has been clinically validated by ado-trastuzumab emtansine (Kadcyla(TM)). While selecting a suitable antibody for an ADC approach often takes specificity and efficient antibody-target complex internalization into account, the characteristics of the optimal antibody candidate remain poorly understood. We studied a large panel of human HER2 antibodies to identify the characteristics that make them most suitable for an ADC approach. As a model toxin, amenable to in vitro high-throughput screening, we employed Pseudomonas exotoxin A (ETA') fused to an anti-kappa light chain domain antibody. Cytotoxicity induced by HER2 antibodies, which were thus non-covalently linked to ETA', was assessed for high and low HER2 expressing tumor cell lines and correlated with internalization and downmodulation of HER2 antibody-target complexes. Our results demonstrate that HER2 antibodies that do not inhibit heterodimerization of HER2 with related ErbB receptors internalize more efficiently and show greater ETA'-mediated cytotoxicity than antibodies that do inhibit such heterodimerization. Moreover, stimulation with ErbB ligand significantly enhanced ADC-mediated tumor kill by antibodies that do not inhibit HER2 heterodimerization. This suggests that the formation of HER2/ErbB-heterodimers enhances ADC internalization and subsequent killing of tumor cells. Our study indicates that selecting HER2 ADCs that allow piggybacking of HER2 onto other ErbB receptors provides an attractive strategy for increasing ADC delivery and tumor cell killing capacity to both high and low HER2 expressing tumor cells.

  6. Aptamer Internalization via Endocytosis Inducing S-Phase Arrest and Priming Maver-1 Lymphoma Cells for Cytarabine Chemotherapy.

    PubMed

    Li, Huan; Yang, Shuanghui; Yu, Ge; Shen, Liangfang; Fan, Jia; Xu, Ling; Zhang, Hedong; Zhao, Nianxi; Zeng, Zihua; Hu, Tony; Wen, Jianguo; Zu, Youli

    2017-01-01

    The goal of precision therapy is to efficiently treat cancer without side effects. Aptamers are a class of small ligands composed of single-stranded oligonucleotides that bind to their targets with high affinity and specificity. In this study, we identified an ssDNA aptamer specifically targeting Maver-1 lymphoma cells with high binding affinity (K d = 70±8 pmol/L). Interestingly, cellular cycle studies revealed that exposure of Maver-1 cells to synthetic aptamers triggered S-phase arrest of 40% of the cells (vs. 18% baseline). Confocal microscopy confirmed specific cell binding of aptamers and the resultant endocytosis into Maver-1 cells. Subsequent functional assays validated the fact that aptamer internalization into targeted cells is a prerequisite for Maver-1 cell growth inhibition. Importantly, aptamer-induced S-phase arrest induced enhanced chemotherapeutic results involving cytarabine, which primarily kills lymphoma cells at S-phase. Combination treatments revealed that aptamer re-exposure considerably primed Maver-1 cells for cytarabine chemotherapy, thus achieving a synergistic killing effect by reaching cell death rates as high as 61% (vs. 13% or 14% induced by aptamer or cytarabine treatment alone). These findings demonstrated that aptamers do not only act as molecular ligands but can also function as biotherapeutic agents by inducing S-phase arrest of lymphoma cells. In addition, logical combination of aptamer and cytarabine treatments ushers the way to a unique approach in precision lymphoma chemotherapy.

  7. Aptamer Internalization via Endocytosis Inducing S-Phase Arrest and Priming Maver-1 Lymphoma Cells for Cytarabine Chemotherapy

    PubMed Central

    Li, Huan; Yang, Shuanghui; Yu, Ge; Shen, Liangfang; Fan, Jia; Xu, Ling; Zhang, Hedong; Zhao, Nianxi; Zeng, Zihua; Hu, Tony; Wen, Jianguo; Zu, Youli

    2017-01-01

    The goal of precision therapy is to efficiently treat cancer without side effects. Aptamers are a class of small ligands composed of single-stranded oligonucleotides that bind to their targets with high affinity and specificity. In this study, we identified an ssDNA aptamer specifically targeting Maver-1 lymphoma cells with high binding affinity (Kd = 70±8 pmol/L). Interestingly, cellular cycle studies revealed that exposure of Maver-1 cells to synthetic aptamers triggered S-phase arrest of 40% of the cells (vs. 18% baseline). Confocal microscopy confirmed specific cell binding of aptamers and the resultant endocytosis into Maver-1 cells. Subsequent functional assays validated the fact that aptamer internalization into targeted cells is a prerequisite for Maver-1 cell growth inhibition. Importantly, aptamer-induced S-phase arrest induced enhanced chemotherapeutic results involving cytarabine, which primarily kills lymphoma cells at S-phase. Combination treatments revealed that aptamer re-exposure considerably primed Maver-1 cells for cytarabine chemotherapy, thus achieving a synergistic killing effect by reaching cell death rates as high as 61% (vs. 13% or 14% induced by aptamer or cytarabine treatment alone). These findings demonstrated that aptamers do not only act as molecular ligands but can also function as biotherapeutic agents by inducing S-phase arrest of lymphoma cells. In addition, logical combination of aptamer and cytarabine treatments ushers the way to a unique approach in precision lymphoma chemotherapy. PMID:28435459

  8. MHC class I target recognition, immunophenotypes and proteomic profiles of natural killer cells within the spleens of day-14 chick embryos

    USDA-ARS?s Scientific Manuscript database

    Chicken natural killer (NK) cells are not well defined, so little is known about the molecular interactions controlling their activity. At day 14 of embryonic development, chick spleens are a rich source of T-cellfree CD8aa+, CD3_ cells with natural killing activity. Cell-mediated cytotoxicity assay...

  9. Mechanisms of cell killing by the new anti-cancer drug SR 4233

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.

    SR 4233 (3-amino-1,2,4-benzotriazine, 1,4-dioxide) is a new potential anti-cancer drug which has a highly selective toxicity to hypoxic cells. This study investigated the mechanism of cell killing by this drug. Enzymatic studies have shown that SR 4233 is reductively metabolized to SR 4317 by the tumor cell lines SCVII and HT 1080 under hypoxic conditions. Cytochrome P-450 may play a major role in the reduction in both cell lines. DT diaphorase is the second most important enzyme in reducing SR 4233. In characterizing the major cellular target for SR 4233, the author has shown that damage to cell mitochondria ismore » produced largely under aerobic conditions, whereas DNA is likely to be the major target for cell death under hypoxic conditions. Further experiments demonstrated that DNA damage was similar to that produced by ionizing radiation at equitoxic doses, and chromosome aberrations can entirely account for cell death by SR 4233 under hypoxic conditions in the low dose range. Nevertheless, chromosome breaks produced by SR 4233 are less repairable than those produced by ionizing radiation, suggesting highly localized damage in the DNA by discrete foci of SR 4233 radicals.« less

  10. Selective killing of Kaposi's sarcoma-associated herpesvirus lytically infected cells with a recombinant immunotoxin targeting the viral gpK8.1A envelope glycoprotein

    PubMed Central

    Chatterjee, Deboeeta; Chandran, Bala

    2012-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV, human herpesvirus 8) is etiologically associated with three neoplastic syndromes: Kaposi sarcoma and the uncommon HIV-associated B-cell lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman disease. The incidence of the latter B-cell pathology has been increasing in spite of antiretroviral therapy; its association with lytic virus replication has prompted interest in therapeutic strategies aimed at this phase of the virus life cycle. We designed and expressed a recombinant immunotoxin (2014-PE38) targeting the gpK8.1A viral glycoprotein expressed on the surface of the virion and infected cells. We show that this immunotoxin selectively kills KSHV-infected cells in dose-dependent fashion, resulting in major reductions of infectious virus release. The immunotoxin and ganciclovir, an inhibitor of viral DNA replication, showed marked reciprocal potentiation of antiviral activities. These results suggest that the immunotoxin, alone or in combination, may represent a new approach to treat diseases associated with KSHV lytic replication. PMID:22377676

  11. Selective Destruction Of Cells Infected With The Human Immunodeficiency Virus

    DOEpatents

    Keener, William K.; Ward, Thomas E.

    2006-03-28

    Compositions and methods for selectively killing a cell containing a viral protease are disclosed. The composition is a varient of a protein synthesis inactivating toxin wherein a viral protease cleavage site is interposed between the A and B chains. The variant of the type II ribosome-inactivating protein is activated by digestion of the viral protease cleavage site by the specific viral protease. The activated ribosome-inactivating protein then kills the cell by inactivating cellular ribosomes. A preferred embodiment of the invention is specific for human immunodeficiency virus (HIV) and uses ricin as the ribosome-inactivating protein. In another preferred embodiment of the invention, the variant of the ribosome-inactivating protein is modified by attachment of one or more hydrophobic agents. The hydrophobic agent facilitates entry of the variant of the ribosome-inactivating protein into cells and can lead to incorporation of the ribosome-inactivating protein into viral particles. Still another preferred embodiment of the invention includes a targeting moiety attached to the variants of the ribosome-inactivating protein to target the agent to HIV infectable cells.

  12. Selective destruction of cells infected with human immunodeficiency virus

    DOEpatents

    Keener, William K.; Ward, Thomas E.

    2003-09-30

    Compositions and methods for selectively killing a cell containing a viral protease are disclosed. The composition is a variant of a protein synthesis inactivating toxin wherein a viral protease cleavage site is interposed between the A and B chains. The variant of the type II ribosome-inactivating protein is activated by digestion of the viral protease cleavage site by the specific viral protease. The activated ribosome-inactivating protein then kills the cell by inactivating cellular ribosomes. A preferred embodiment of the invention is specific for human immunodeficiency virus (HIV) and uses ricin as the ribosome-inactivating protein. In another preferred embodiment of the invention, the variant of the ribosome-inactivating protein is modified by attachment of one or more hydrophobic agents. The hydrophobic agent facilitates entry of the variant of the ribosome-inactivating protein into cells and can lead to incorporation of the ribosome-inactivating protein into viral particles. Still another preferred embodiment of the invention includes a targeting moiety attached to the variants of the ribosome-inactivating protein to target the agent to HIV infectable cells.

  13. Neutrophils Kill Antibody-Opsonized Cancer Cells by Trogoptosis.

    PubMed

    Matlung, Hanke L; Babes, Liane; Zhao, Xi Wen; van Houdt, Michel; Treffers, Louise W; van Rees, Dieke J; Franke, Katka; Schornagel, Karin; Verkuijlen, Paul; Janssen, Hans; Halonen, Pasi; Lieftink, Cor; Beijersbergen, Roderick L; Leusen, Jeanette H W; Boelens, Jaap J; Kuhnle, Ingrid; van der Werff Ten Bosch, Jutte; Seeger, Karl; Rutella, Sergio; Pagliara, Daria; Matozaki, Takashi; Suzuki, Eiji; Menke-van der Houven van Oordt, Catharina Willemien; van Bruggen, Robin; Roos, Dirk; van Lier, Rene A W; Kuijpers, Taco W; Kubes, Paul; van den Berg, Timo K

    2018-06-26

    Destruction of cancer cells by therapeutic antibodies occurs, at least in part, through antibody-dependent cellular cytotoxicity (ADCC), and this can be mediated by various Fc-receptor-expressing immune cells, including neutrophils. However, the mechanism(s) by which neutrophils kill antibody-opsonized cancer cells has not been established. Here, we demonstrate that neutrophils can exert a mode of destruction of cancer cells, which involves antibody-mediated trogocytosis by neutrophils. Intimately associated with this is an active mechanical disruption of the cancer cell plasma membrane, leading to a lytic (i.e., necrotic) type of cancer cell death. Furthermore, this mode of destruction of antibody-opsonized cancer cells by neutrophils is potentiated by CD47-SIRPα checkpoint blockade. Collectively, these findings show that neutrophil ADCC toward cancer cells occurs by a mechanism of cytotoxicity called trogoptosis, which can be further improved by targeting CD47-SIRPα interactions. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  14. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria

    PubMed Central

    Uppu, Divakara S. S. M.; Konai, Mohini M.; Sarkar, Paramita; Samaddar, Sandip; Fensterseifer, Isabel C. M.; Farias-Junior, Celio; Krishnamoorthy, Paramanandam; Shome, Bibek R.; Franco, Octávio L.

    2017-01-01

    Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin) to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells). The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC) clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS) of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms) and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections. PMID:28837596

  15. Development and characterization of multifunctional nanoparticles for drug delivery to cancer cells

    NASA Astrophysics Data System (ADS)

    Nahire, Rahul Rajaram

    Lipid and polymeric nanoparticles, although proven to be effective drug delivery systems compared to free drugs, have shown considerable limitations pertaining to their uptake and release at tumor sites. Spatial and temporal control over the delivery of anticancer drugs has always been challenge to drug delivery scientists. Here, we have developed and characterized multifunctional nanoparticles (liposomes and polymersomes) which are targeted specifically to cancer cells, and release their contents with tumor specific internal triggers. To enable these nanoparticles to be tracked in blood circulation, we have imparted them with echogenic characteristic. Echogenicity of nanoparticles is evaluated using ultrasound scattering and imaging experiments. Nanoparticles demonstrated effective release with internal triggers such as elevated levels of MMP-9 enzyme found in the extracellular matrix of tumor cells, decreased pH of lysosome, and differential concentration of reducing agents in cytosol of cancer cells. We have also successfully demonstrated the sensitivity of these particles towards ultrasound to further enhance the release with internal triggers. To ensure the selective uptake by folate receptor- overexpressing cancer cells, we decorated these nanoparticles with folic acid on their surface. Fluorescence microscopic images showed significantly higher uptake of folate-targeted nanoparticles by MCF-7 (breast cancer) and PANC-1 (pancreatic cancer) cells compared to particles without any targeting ligand on their surface. To demonstrate the effectiveness of these nanoparticles to carry the drugs inside and kill cancer cells, we encapsulated doxorubicin and/or gemcitabine employing the pH gradient method. Drug loaded nanoparticles showed significantly higher killing of the cancer cells compared to their non-targeted counterparts and free drugs. With further development, these nanoparticles certainly have potential to be used as a multifunctional nanocarriers for image guided, targeted delivery of anticancer drugs.

  16. Study of Mesoporous Silica Nanoparticles' (MSNs) intracellular trafficking and their application as drug delivery vehicles

    NASA Astrophysics Data System (ADS)

    Yanes, Rolando Eduardo

    Mesoporous silica nanoparticles (MSNs) are attractive drug delivery vehicle candidates due to their biocompatibility, stability, high surface area and efficient cellular uptake. In this dissertation, I discuss three aspects of MSNs' cellular behavior. First, MSNs are targeted to primary and metastatic cancer cell lines, then their exocytosis from cancer cells is studied, and finally they are used to recover intracellular proteins. Targeting of MSNs to primary cancer cells is achieved by conjugating transferrin on the surface of the mesoporous framework, which resulted in enhancement of nanoparticle uptake and drug delivery efficacy in cells that overexpress the transferrin receptor. Similarly, RGD peptides are used to target metastatic cancer cell lines that over-express integrin alphanubeta3. A circular RGD peptide is bound to the surface of MSNs and the endocytosis and cell killing efficacy of camptothecin loaded nanoparticles is significantly improved in cells that express the target receptor. Besides targeting, I studied the ultimate fate of phosphonate coated mesoporous silica nanoparticles inside cells. I discovered that the nanoparticles are exocytosed from cells through lysosomal exocytosis. The nanoparticles are exocytosed in intact form and the time that they remain inside the cells is affected by the surface properties of the nanoparticles and the type of cells. Cells that have a high rate of lysosomal exocytosis excrete the nanoparticles rapidly, which makes them more resistant to drug loaded nanoparticles because the amount of drug that is released inside the cell is limited. When the exocytosis of MSNs is inhibited, the cell killing efficacy of nanoparticles loaded with camptothecin is enhanced. The discovery that MSNs are exocytosed by cells led to a study to determine if proteins could be recovered from the exocytosed nanoparticles. The procedure to isolate exocytosed zinc-doped iron core MSNs and identify the proteins bound to them was developed. This serves as a foundation to use MSNs as protein harvesting tools and investigate protein expression in cancer cells.

  17. Antifungal Activity of Eupolauridine and Its Action on DNA Topoisomerases

    PubMed Central

    Khan, Shabana I.; Nimrod, Alison C.; Mehrpooya, Mohammed; Nitiss, John L.; Walker, Larry A.; Clark, Alice M.

    2002-01-01

    The azafluoranthene alkaloid eupolauridine has previously been shown to have in vitro antifungal activity and selective inhibition of fungal topoisomerase I. The present study was undertaken to examine further its selectivity and mode of action. Eupolauridine completely inhibits the DNA relaxation activity of purified fungal topoisomerase I at 50 μg/ml, but it does not stabilize the cleavage complex of either human or fungal topoisomerase I. Cleavage complex stabilization is the mode of action of topoisomerase I targeting drugs of the camptothecin family. Also, unlike camptothecin, eupolauridine does not cause significant cytotoxicity in mammalian cells. To determine if the inhibition of topoisomerase I is the principal mode of antifungal action of eupolauridine, Saccharomyces cerevisiae strains with alterations in topoisomerase genes were used in clonogenic assays. The antifungal activity of eupolauridine was not diminished in the absence of topoisomerase I; rather, the cells lacking the enzyme were more sensitive to the drug. Cell-killing activity of eupolauridine was also more pronounced in cells that overexpressed topoisomerase II. In vitro assays with the purified yeast enzyme confirmed that eupolauridine stabilized topoisomerase II covalent complexes. These results indicate that a major target for fungal cell killing by eupolauridine is DNA topoisomerase II rather than topoisomerase I, but does not exclude the possibility that the drug also acts against other targets. PMID:12019091

  18. Antifungal activity of eupolauridine and its action on DNA topoisomerases.

    PubMed

    Khan, Shabana I; Nimrod, Alison C; Mehrpooya, Mohammed; Nitiss, John L; Walker, Larry A; Clark, Alice M

    2002-06-01

    The azafluoranthene alkaloid eupolauridine has previously been shown to have in vitro antifungal activity and selective inhibition of fungal topoisomerase I. The present study was undertaken to examine further its selectivity and mode of action. Eupolauridine completely inhibits the DNA relaxation activity of purified fungal topoisomerase I at 50 microg/ml, but it does not stabilize the cleavage complex of either human or fungal topoisomerase I. Cleavage complex stabilization is the mode of action of topoisomerase I targeting drugs of the camptothecin family. Also, unlike camptothecin, eupolauridine does not cause significant cytotoxicity in mammalian cells. To determine if the inhibition of topoisomerase I is the principal mode of antifungal action of eupolauridine, Saccharomyces cerevisiae strains with alterations in topoisomerase genes were used in clonogenic assays. The antifungal activity of eupolauridine was not diminished in the absence of topoisomerase I; rather, the cells lacking the enzyme were more sensitive to the drug. Cell-killing activity of eupolauridine was also more pronounced in cells that overexpressed topoisomerase II. In vitro assays with the purified yeast enzyme confirmed that eupolauridine stabilized topoisomerase II covalent complexes. These results indicate that a major target for fungal cell killing by eupolauridine is DNA topoisomerase II rather than topoisomerase I, but does not exclude the possibility that the drug also acts against other targets.

  19. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma.

    PubMed

    Hassannia, Behrouz; Wiernicki, Bartosz; Ingold, Irina; Qu, Feng; Van Herck, Simon; Tyurina, Yulia Y; Bayır, Hülya; Abhari, Behnaz A; Angeli, Jose Pedro Friedmann; Choi, Sze Men; Meul, Eline; Heyninck, Karen; Declerck, Ken; Chirumamilla, Chandra Sekhar; Lahtela-Kakkonen, Maija; Van Camp, Guy; Krysko, Dmitri V; Ekert, Paul G; Fulda, Simone; De Geest, Bruno G; Conrad, Marcus; Kagan, Valerian E; Berghe, Wim Vanden; Vandenabeele, Peter; Berghe, Tom Vanden

    2018-06-25

    High-risk neuroblastoma is a devastating malignancy with very limited therapeutic options. Here, we identify withaferin A (WA) as a natural ferroptosis-inducing agent in neuroblastoma, which acts through a novel double-edged mechanism. WA dose-dependently either activates the nuclear factor-like 2 pathway through targeting of Kelch-like ECH-associated protein 1 (noncanonical ferroptosis induction) or inactivates glutathione peroxidase 4 (canonical ferroptosis induction). Noncanonical ferroptosis induction is characterized by an increase in intracellular labile Fe(II) upon excessive activation of heme oxygenase-1, which is sufficient to induce ferroptosis. This double-edged mechanism might explain the superior efficacy of WA as compared with etoposide or cisplatin in killing a heterogeneous panel of high-risk neuroblastoma cells, and in suppressing the growth and relapse rate of neuroblastoma xenografts. Nano-targeting of WA allows systemic application and suppressed tumor growth due to an enhanced accumulation at the tumor site. Collectively, our data propose a novel therapeutic strategy to efficiently kill cancer cells by ferroptosis.

  20. The Absence of NOD1 Enhances Killing of Aspergillus fumigatus Through Modulation of Dectin-1 Expression

    PubMed Central

    Gresnigt, Mark S.; Jaeger, Martin; Subbarao Malireddi, R. K.; Rasid, Orhan; Jouvion, Grégory; Fitting, Catherine; Melchers, Willem J. G.; Kanneganti, Thirumala-Devi; Carvalho, Agostinho; Ibrahim-Granet, Oumaima; van de Veerdonk, Frank L.

    2017-01-01

    One of the major life-threatening infections for which severely immunocompromised patients are at risk is invasive aspergillosis (IA). Despite the current treatment options, the increasing antifungal resistance and poor outcome highlight the need for novel therapeutic strategies to improve outcome of patients with IA. In the current study, we investigated whether and how the intracellular pattern recognition receptor NOD1 is involved in host defense against Aspergillus fumigatus. When exploring the role of NOD1 in an experimental mouse model, we found that Nod1−/− mice were protected against IA and demonstrated reduced fungal outgrowth in the lungs. We found that macrophages derived from bone marrow of Nod1−/− mice were more efficiently inducing reactive oxygen species and cytokines in response to Aspergillus. Most strikingly, these cells were highly potent in killing A. fumigatus compared with wild-type cells. In line, human macrophages in which NOD1 was silenced demonstrated augmented Aspergillus killing and NOD1 stimulation decreased fungal killing. The differentially altered killing capacity of NOD1 silencing versus NOD1 activation was associated with alterations in dectin-1 expression, with activation of NOD1 reducing dectin-1 expression. Furthermore, we were able to demonstrate that Nod1−/− mice have elevated dectin-1 expression in the lung and bone marrow, and silencing of NOD1 gene expression in human macrophages increases dectin-1 expression. The enhanced dectin-1 expression may be the mechanism of enhanced fungal killing of Nod1−/− cells and human cells in which NOD1 was silenced, since blockade of dectin-1 reversed the augmented killing in these cells. Collectively, our data demonstrate that NOD1 receptor plays an inhibitory role in the host defense against Aspergillus. This provides a rationale to develop novel immunotherapeutic strategies for treatment of aspergillosis that target the NOD1 receptor, to enhance the efficiency of host immune cells to clear the infection by increasing fungal killing and cytokine responses. PMID:29326692

  1. Evaluation of NK Cell Function by Flowcytometric Measurement and Impedance Based Assay Using Real-Time Cell Electronic Sensing System

    PubMed Central

    Park, Ki-Hyun; Park, Hyesun; Kim, Myungshin; Kim, Yonggoo; Han, Kyungja; Oh, Eun-Jee

    2013-01-01

    Although real-time cell electronic sensing (RT-CES) system-based natural killer (NK) cytotoxicity has been introduced, it has not been evaluated using human blood samples. In present study, we measured flowcytometry based assay (FCA) and RT-CES based NK cytotoxicity and analyzed degranulation activity (CD107a) and cytokine production. In 98 healthy individuals, FCA with peripheral blood mononuclear cells (PBMCs) at effector to target (E/T) ratio of 32 revealed 46.5 ± 2.6% cytolysis of K562 cells, and 23.5 ± 1.1% of NK cells showed increased degranulation. In RT-CES system, adherent NIH3T3 target cells were resistant to basal killing by PBMC or NK cells. NK cell activation by adding IL-2 demonstrated real-time dynamic killing activity, and lymphokine-activated PBMC (E/T ratio of 32) from 15 individuals showed 59.1 ± 6.2% cytotoxicity results after 4 hours incubation in RT-CES system. However, there was no significant correlation between FCA and RT-CES cytotoxicity. After K562 target cell stimulation, PBMC produced profound proinflammatory and immunoregulatory cytokines/chemokines including IL-2, IL-8, IL-10, MIP-1α β, IFN-γ, and TNF-α, and cytokine/chemokine secretion was related to flowcytometry-based NK cytotoxicity. These data suggest that RT-CES and FCA differ in sensitivity, applicability and providing information, and further investigations are necessary in variable clinical conditions. PMID:24236291

  2. Evaluation of NK cell function by flowcytometric measurement and impedance based assay using real-time cell electronic sensing system.

    PubMed

    Park, Ki-Hyun; Park, Hyesun; Kim, Myungshin; Kim, Yonggoo; Han, Kyungja; Oh, Eun-Jee

    2013-01-01

    Although real-time cell electronic sensing (RT-CES) system-based natural killer (NK) cytotoxicity has been introduced, it has not been evaluated using human blood samples. In present study, we measured flowcytometry based assay (FCA) and RT-CES based NK cytotoxicity and analyzed degranulation activity (CD107a) and cytokine production. In 98 healthy individuals, FCA with peripheral blood mononuclear cells (PBMCs) at effector to target (E/T) ratio of 32 revealed 46.5 ± 2.6% cytolysis of K562 cells, and 23.5 ± 1.1% of NK cells showed increased degranulation. In RT-CES system, adherent NIH3T3 target cells were resistant to basal killing by PBMC or NK cells. NK cell activation by adding IL-2 demonstrated real-time dynamic killing activity, and lymphokine-activated PBMC (E/T ratio of 32) from 15 individuals showed 59.1 ± 6.2% cytotoxicity results after 4 hours incubation in RT-CES system. However, there was no significant correlation between FCA and RT-CES cytotoxicity. After K562 target cell stimulation, PBMC produced profound proinflammatory and immunoregulatory cytokines/chemokines including IL-2, IL-8, IL-10, MIP-1 α β , IFN- γ , and TNF- α , and cytokine/chemokine secretion was related to flowcytometry-based NK cytotoxicity. These data suggest that RT-CES and FCA differ in sensitivity, applicability and providing information, and further investigations are necessary in variable clinical conditions.

  3. The multikinase inhibitor Sorafenib enhances glycolysis and synergizes with glycolysis blockade for cancer cell killing.

    PubMed

    Tesori, Valentina; Piscaglia, Anna Chiara; Samengo, Daniela; Barba, Marta; Bernardini, Camilla; Scatena, Roberto; Pontoglio, Alessandro; Castellini, Laura; Spelbrink, Johannes N; Maulucci, Giuseppe; Puglisi, Maria Ausiliatrice; Pani, Giovambattista; Gasbarrini, Antonio

    2015-03-17

    Although the only effective drug against primary hepatocarcinoma, the multikinase inhibitor Sorafenib (SFB) usually fails to eradicate liver cancer. Since SFB targets mitochondria, cell metabolic reprogramming may underlie intrinsic tumor resistance. To characterize cancer cell metabolic response to SFB, we measured oxygen consumption, generation of reactive oxygen species (ROS) and ATP content in rat LCSC (Liver Cancer Stem Cells) -2 cells exposed to the drug. Genome wide analysis of gene expression was performed by Affymetrix technology. SFB cytotoxicity was evaluated by multiple assays in the presence or absence of metabolic inhibitors, or in cells genetically depleted of mitochondria. We found that low concentrations (2.5-5 μM) of SFB had a relatively modest effect on LCSC-2 or 293 T cell growth, but damaged mitochondria and increased intracellular ROS. Gene expression profiling of SFB-treated cells was consistent with a shift toward aerobic glycolysis and, accordingly, SFB cytotoxicity was dramatically increased by glucose withdrawal or the glycolytic inhibitor 2-DG. Under metabolic stress, activation of the AMP dependent Protein Kinase (AMPK), but not ROS blockade, protected cells from death. We conclude that mitochondrial damage and ROS drive cell killing by SFB, while glycolytic cell reprogramming may represent a resistance strategy potentially targetable by combination therapies.

  4. The Chinese Herbal Mixture Tien-Hsien Liquid Augments the Anticancer Immunity in Tumor Cell–Vaccinated Mice

    PubMed Central

    Yang, Pei-Ming; Du, Jia-Ling; Wang, George Nian-Kae; Chia, Jean-San; Hsu, Wei-Bin; Pu, Pin-Ching; Sun, Andy; Chiang, Chun-Pin; Wang, Won-Bo

    2016-01-01

    Background. The Chinese herbal mixture, Tien-Hsien liquid (THL), has been used as an anticancer dietary supplement for more than 20 years. Our previous studies have shown that THL can modulate immune responseand inhibit tumor growth. In this study, we further evaluated the effect of THL on anticancer immune response in mice vaccinated with γ-ray-irradiated tumor cells. Methods. The antitumor effect of THL was determined in mice vaccinated with low-tumorigenic CT-26-low colon cancer cells or γ-ray-irradiated high-tumorigenic CT-26-high colon cancer cells. The number of natural killer (NK) cells and T lymphocytes in the spleen was analyzed by flow cytometry. The tumor-killing activities of NK cells and cytotoxic T lymphocytes (CTLs) were analyzed by flow cytometry using YAC-1 and CT-26-high cells, respectively, as target cells. The levels of IFN-γ, IL-2, and TNF-α were determined by ELISA. Results. THL suppressed the growth of CT-26-high tumor in mice previously vaccinated with low-tumorigenic CT-26-low cells or γ-irradiated CT-26-high cells. THL increased the populations of NK cells and CD4+ T lymphocytes in the spleen and enhanced the tumor-killing activities of NK cells and CTL in mice vaccinated with γ-irradiated CT-26-high cells. THL increased the production of IFN-γ, IL-2, and TNF-α in mice vaccinated with γ-irradiated CT-26-high cells. Conclusion. THL can enhance the antitumor immune responses in mice vaccinated with killed tumor cells. These results suggest that THL may be used as a complementary medicine for cancer patients previously treated with killed tumor cell vaccines, radiotherapy, or chemotherapy. PMID:27252074

  5. Mapping Cancer Cells’ Starting Lines | Center for Cancer Research

    Cancer.gov

    Many of the defective regulatory pathways that lead to aberrant proliferation in cancer converge on DNA replication. So replication regulatory pathways could be targeted to more specifically kill cancer cells.  Unfortunately such targeting would require knowing where and when DNA replication starts in the cancer genome.  In yeast, the locations of replication initiation sites on chromatin have been extensively mapped, but in human cancer cells only a handful of these sites have been identified.

  6. Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Seula; Woo, Jong Kyu; Jung, Yuchae

    In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulkmore » cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer. - Highlights: • Evodiamine selectively kills breast cancer stem like cells at G1 phase. • Evodiamine utilizes different mechanism of cell cycle modulation in CSLC and in bulk cancer cells. • Evodiamine activate the p53, p21 and Rb pathway.« less

  7. Synthetic Lethal Metabolic Targeting of Senescent Cells After Androgen Deprivation Therapy

    DTIC Science & Technology

    2017-07-01

    and improved cell killing. 15. SUBJECT TERMS prostate cancer, androgen deprivation therapy, senescence, proteotoxic stress , xenograft models...these persistent senescent cells is characterized by increased protein synthesis and notably an amplified proteotoxic stress response (PSR), a...experience high levels of proteotoxic stress . In Aim 1 we will examine the activity of metformin in eradicating senescent PCs following ADT in

  8. Bacterial exopolysaccharide based magnetic nanoparticles: a versatile nanotool for cancer cell imaging, targeted drug delivery and synergistic effect of drug and hyperthermia mediated cancer therapy.

    PubMed

    Sivakumar, Balasubramanian; Aswathy, Ravindran Girija; Sreejith, Raveendran; Nagaoka, Yutaka; Iwai, Seiki; Suzuki, Masashi; Fukuda, Takahiro; Hasumura, Takashi; Yoshida, Yasuhiko; Maekawa, Toru; Sakthikumar, Dasappan Nair

    2014-06-01

    Microbial exopolysaccharides (EPSs) are highly heterogeneous polymers produced by fungi and bacteria that have garnered considerable attention and have remarkable potential in various fields, including biomedical research. The necessity of biocompatible materials to coat and stabilize nanoparticles is highly recommended for successful application of the same in biomedical regime. In our study we have coated magnetic nanoparticles (MNPs) with two bacterial EPS-mauran (MR) and gellan gum (GG). The biocompatibility of EPS coated MNPs was enhanced and we have made it multifunctional by attaching targeting moiety, folate and with encapsulation of a potent anticancerous drug, 5FU. We have conjugated an imaging moiety along with nanocomposite to study the effective uptake of nanoparticles. It was also observed that the dye labeled folate targeted nanoparticles could effectively enter into cancer cells and the fate of nanoparticles was tracked with Lysotracker. The biocompatibility of EPS coated MNPs and synergistic effect of magnetic hyperthermia and drug for enhanced antiproliferation of cancer cells was also evaluated. More than 80% of cancer cells was killed within a period of 60 min when magnetic hyperthermia (MHT) was applied along with drug loaded EPS coated MNPs, thus signifying the combined effect of drug loaded MNPs and MHT. Our results suggests that MR and GG coated MNPs exhibited excellent biocompatibility with low cell cytotoxicity, high therapeutic potential, and superparamagnetic behavior that can be employed as prospective candidates for bacterial EPS based targeted drug delivery, cancer cell imaging and for MHT for killing cancer cells within short period of time.

  9. The role of Fas ligand and transforming growth factor beta in tumor progression: molecular mechanisms of immune privilege via Fas-mediated apoptosis and potential targets for cancer therapy.

    PubMed

    Kim, Ryungsa; Emi, Manabu; Tanabe, Kazuaki; Uchida, Yoko; Toge, Tetsuya

    2004-06-01

    Despite the fact that expression of Fas ligand (FasL) in cytotoxic T lymphocytes (CTLs) and in natural killer (NK) cells plays an important role in Fas-mediated tumor killing, During tumor progression FasL-expressing tumor cells are involved in counterattacking to kill tumor-infiltrating lymphocytes (TILs). Soluble FasL levels also increase with tumor progression in solid tumors, and this increase inhibits Fas-mediated tumor killing by CTLs and NK cells. The increased expression of FasL in tumor cells is associated with decreased expression of Fas; and the promoter region of the FASL gene is regulated by transcription factors, such as neuronal factor kappaB (NF-kappaB) and AP-1, in the tumor microenvironment. Although the ratio of FasL expression to Fas expression in tumor cells is not strongly related to the induction of apoptosis in TILs, increased expression of FasL is associated with decreased Fas levels in tumor cells that can escape immune surveillance and facilitate tumor progression and metastasis. Transforming growth factor beta (TGF-beta) is a potent growth inhibitor and has tumor-suppressing activity in the early phases of carcinogenesis. During subsequent tumor progression, the increased secretion of TGF-beta by both tumor cells and, in a paracrine fashion, stromal cells, is involved in the enhancement of tumor invasion and metastasis accompanied by immunosuppression. Herein, the authors review the clinical significance of FasL and TGF-beta expression patterns as features of immune privilege accompanying tumor progression in the tumor microenvironment. Potential strategies for identifying which molecules can serve as targets for effective antitumor therapy also are discussed. Copyright 2004 American Cancer Society.

  10. Immunotherapy for B-Cell Neoplasms using T Cells expressing Chimeric Antigen Receptors

    PubMed Central

    Boulassel, Mohamed-Rachid; Galal, Ahmed

    2012-01-01

    Immunotherapy with T cells expressing chimeric antigen receptors (CAR) is being evaluated as a potential treatment for B-cell neoplasms. In recent clinical trials it has shown promising results. As the number of potential candidate antigens expands, the choice of suitable target antigens becomes more challenging to design studies and to assess optimal efficacy of CAR. Careful evaluation of candidate target antigens is required to ensure that T cells expressing CAR will preferentially kill malignant cells with a minimal toxicity against normal tissues. B cells express specific surface antigens that can theoretically act as targets for CAR design. Although many of these antigens can stimulate effective cellular immune responses in vivo, their implementation in clinical settings remains a challenge. Only targeted B-cell antigens CD19 and CD20 have been tested in clinical trials. This article reviews exploitable B cell surface antigens for CAR design and examines obstacles that could interfere with the identification of potentially useful cellular targets. PMID:23269948

  11. Actinomycin D enhances killing of cancer cells by immunotoxin RG7787 through activation of the extrinsic pathway of apoptosis

    PubMed Central

    Liu, Xiu Fen; Xiang, Laiman; Zhou, Qi; Carralot, Jean-Philippe; Prunotto, Marco; Niederfellner, Gerhard; Pastan, Ira

    2016-01-01

    RG7787 is a mesothelin-targeted immunotoxin designed to have low-immunogenicity, high-cytotoxic activity and fewer side effects. RG7787 kills many types of mesothelin-expressing cancer cells lines and causes tumor regressions in mice. Safety and immunogenicity of RG7787 is now being assessed in a phase I trial. To enhance the antitumor activity of RG7787, we screened for clinically used drugs that can synergize with RG7787. Actinomycin D is a potent transcription inhibitor that is used for treating several cancers. We report here that actinomycin D and RG7787 act synergistically to kill many mesothelin-positive cancer cell lines and produce major regressions of pancreatic and stomach cancer xenografts. Analyses of RNA expression show that RG7787 or actinomycin D alone and together increase levels of TNF/TNFR family members and NF-κB–regulated genes. Western blots revealed the combination changed apoptotic protein levels and enhanced cleavage of Caspases and PARP. PMID:27601652

  12. Biology of cloned cytotoxic T lymphocytes specific for lymphocytic choriomeningitis virus: clearance of virus and in vitro properties.

    PubMed

    Anderson, J; Byrne, J A; Schreiber, R; Patterson, S; Oldstone, M B

    1985-02-01

    We have generated lymphocytic choriomeningitis virus-specific, H-2-restricted cytotoxic thymus-derived lymphocyte (CTL) clones. By using these reagents in several in vitro assays with infected target cells, we show that CTLs by themselves prevent the release of infectious virus into culture fluids and significantly lower the titers of infectious virus previously produced. This ability of cloned CTLs is not influenced by monensin. However, monensin does abrogate the ability of CTLs from spleens of mice primed 6 to 8 days previously with virus to kill virus-infected syngeneic targets. When tested for the participation of lymphokines in this system, the CTLs proliferate when reacted with syngeneic lymphocytic choriomeningitis virus-infected macrophages but fail to make interleukin-2. These CTLs make gamma interferon when reacted with syngeneic virus-infected targets. However, the production of interferon does not directly correlate with CTL-mediated killing. The number of H-2K and D molecules expressed on the target cell surface is not altered during the course of lymphocytic choriomeningitis virus infection. Electron microscopy shows finger-like projections of the CTL clone thrust into the infected cell and lesions bearing an internal diameter of approximately 15 nm in those membranes, illustrating the lytic process.

  13. Laser Microsurgery in Caenorhabditis elegans

    PubMed Central

    Fang-Yen, Christopher; Gabel, Christopher V.; Samuel, Aravinthan D. T.; Bargmann, Cornelia I.; Avery, Leon

    2013-01-01

    Laser killing of cell nuclei has long been a powerful means of examining the roles of individual cells in C. elegans. Advances in genetics, laser technology, and imaging have further expanded the capabilities and usefulness of laser surgery. Here, we review the implementation and application of currently used methods for target edoptical disruption in C. elegans. PMID:22226524

  14. Mapping Cancer Cells’ Starting Lines | Center for Cancer Research

    Cancer.gov

    Many of the defective regulatory pathways that lead to aberrant proliferation in cancer converge on DNA replication. So replication regulatory pathways could be targeted to more specifically kill cancer cells.  Unfortunately such targeting would require knowing where and when DNA replication starts in the cancer genome.  In yeast, the locations of replication initiation sites

  15. Targeted killing of myofibroblasts by biosurfactant di-rhamnolipid suggests a therapy against scar formation

    PubMed Central

    Shen, Chong; Jiang, Lifang; Shao, Huawei; You, Chuangang; Zhang, Guoliang; Ding, Sitong; Bian, Tingwei; Han, Chunmao; Meng, Qin

    2016-01-01

    Pathological myofibroblasts are often involved in skin scarring via generating contractile force and over-expressing collagen fibers, but no compound has been found to inhibit the myofibroblasts without showing severe toxicity to surrounding physiological cells. Here we report that di-rhamnolipid, a biosurfactant secreted by Pseudomonas aeruginosa, showed potent effects on scar therapy via a unique mechanism of targeted killing the myofibroblasts. In cell culture, the fibroblasts-derived myofibroblasts were more sensitive to di-rhamnolipid toxicity than fibroblasts at a concentration-dependent manner, and could be completely inhibited of their specific functions including α-SMA expression and collagen secretion/contraction. The anti-fibrotic function of di-rhamnolipid was further verified in rabbit ear hypertrophic scar models by presenting the significant reduction of scar elevation index, type I collagen fibers and α-SMA expression. In this regard, di-rhamnolipid treatment could be suggested as a therapy against skin scarring. PMID:27901027

  16. Photodynamic therapy with redaporfin targets the endoplasmic reticulum and Golgi apparatus.

    PubMed

    Gomes-da-Silva, Lígia C; Zhao, Liwei; Bezu, Lucillia; Zhou, Heng; Sauvat, Allan; Liu, Peng; Durand, Sylvère; Leduc, Marion; Souquere, Sylvie; Loos, Friedemann; Mondragón, Laura; Sveinbjørnsson, Baldur; Rekdal, Øystein; Boncompain, Gaelle; Perez, Franck; Arnaut, Luis G; Kepp, Oliver; Kroemer, Guido

    2018-05-28

    Preclinical evidence depicts the capacity of redaporfin (Redp) to act as potent photosensitizer, causing direct antineoplastic effects as well as indirect immune-dependent destruction of malignant lesions. Here, we investigated the mechanisms through which photodynamic therapy (PDT) with redaporfin kills cancer cells. Subcellular localization and fractionation studies based on the physicochemical properties of redaporfin revealed its selective tropism for the endoplasmic reticulum (ER) and the Golgi apparatus (GA). When activated, redaporfin caused rapid reactive oxygen species-dependent perturbation of ER/GA compartments, coupled to ER stress and an inhibition of the GA-dependent secretory pathway. This led to a general inhibition of protein secretion by PDT-treated cancer cells. The ER/GA play a role upstream of mitochondria in the lethal signaling pathway triggered by redaporfin-based PDT Pharmacological perturbation of GA function or homeostasis reduces mitochondrial permeabilization. In contrast, removal of the pro-apoptotic multidomain proteins BAX and BAK or pretreatment with protease inhibitors reduced cell killing, yet left the GA perturbation unaffected. Altogether, these results point to the capacity of redaporfin to kill tumor cells via destroying ER/GA function. © 2018 The Authors.

  17. NK sensitivity of neuroblastoma cells determined by a highly sensitive coupled luminescent method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogbomo, Henry; Hahn, Anke; Geiler, Janina

    2006-01-06

    The measurement of natural killer (NK) cells toxicity against tumor or virus-infected cells especially in cases with small blood samples requires highly sensitive methods. Here, a coupled luminescent method (CLM) based on glyceraldehyde-3-phosphate dehydrogenase release from injured target cells was used to evaluate the cytotoxicity of interleukin-2 activated NK cells against neuroblastoma cell lines. In contrast to most other methods, CLM does not require the pretreatment of target cells with labeling substances which could be toxic or radioactive. The effective killing of tumor cells was achieved by low effector/target ratios ranging from 0.5:1 to 4:1. CLM provides highly sensitive, safe,more » and fast procedure for measurement of NK cell activity with small blood samples such as those obtained from pediatric patients.« less

  18. Validation of the proteasome as a therapeutic target in Plasmodium using an epoxyketone inhibitor with parasite-specific toxicity

    PubMed Central

    Li, Hao; Ponder, Elizabeth L.; Verdoes, Martijn; Asbjornsdottir, Kristijana H.; Deu, Edgar; Edgington, Laura E.; Lee, Jeong Tae; Kirk, Christopher J.; Demo, Susan D.; Williamson, Kim C.; Bogyo, Matthew

    2012-01-01

    Summary The Plasmodium proteasome has been suggested to be a potential anti-malarial drug target, however toxicity of inhibitors has prevented validation of this enzyme in vivo. We report here a screen of a library of 670 analogs of the recently FDA approved inhibitor, carfilzomib, to identify compounds that selectively kill parasites. We identified one compound, PR3, that has significant parasite killing activity in vitro but dramatically reduced toxicity in host cells. We found that this parasite-specific toxicity is not due to selective targeting of the Plasmodium proteasome over the host proteasome, but instead is due to a lack of activity against one of the human proteasome subunits. Subsequently, we used PR3 to significantly reduce parasite load in P. berghei infected mice without host toxicity, thus validating the proteasome as a viable anti-malarial drug target. PMID:23142757

  19. Stochastic Threshold Microdose Model for Cell Killing by Insoluble Metallic Nanomaterial Particles

    PubMed Central

    Scott, Bobby R.

    2010-01-01

    This paper introduces a novel microdosimetric model for metallic nanomaterial-particles (MENAP)-induced cytotoxicity. The focus is on the engineered insoluble MENAP which represent a significant breakthrough in the design and development of new products for consumers, industry, and medicine. Increased production is rapidly occurring and may cause currently unrecognized health effects (e.g., nervous system dysfunction, heart disease, cancer); thus, dose-response models for MENAP-induced biological effects are needed to facilitate health risk assessment. The stochastic threshold microdose (STM) model presented introduces novel stochastic microdose metrics for use in constructing dose-response relationships for the frequency of specific cellular (e.g., cell killing, mutations, neoplastic transformation) or subcellular (e.g., mitochondria dysfunction) effects. A key metric is the exposure-time-dependent, specific burden (MENAP count) for a given critical target (e.g., mitochondria, nucleus). Exceeding a stochastic threshold specific burden triggers cell death. For critical targets in the cytoplasm, the autophagic mode of death is triggered. For the nuclear target, the apoptotic mode of death is triggered. Overall cell survival is evaluated for the indicated competing modes of death when both apply. The STM model can be applied to cytotoxicity data using Bayesian methods implemented via Markov chain Monte Carlo. PMID:21191483

  20. Zika virus has oncolytic activity against glioblastoma stem cells

    PubMed Central

    Gorman, Matthew J.; McKenzie, Lisa D.; Hubert, Christopher G.; Prager, Briana C.; Fernandez, Estefania; Richner, Justin M.; Zhang, Rong; Shan, Chao; Tycksen, Eric; Shi, Pei-Yong

    2017-01-01

    Glioblastoma is a highly lethal brain cancer that frequently recurs in proximity to the original resection cavity. We explored the use of oncolytic virus therapy against glioblastoma with Zika virus (ZIKV), a flavivirus that induces cell death and differentiation of neural precursor cells in the developing fetus. ZIKV preferentially infected and killed glioblastoma stem cells (GSCs) relative to differentiated tumor progeny or normal neuronal cells. The effects against GSCs were not a general property of neurotropic flaviviruses, as West Nile virus indiscriminately killed both tumor and normal neural cells. ZIKV potently depleted patient-derived GSCs grown in culture and in organoids. Moreover, mice with glioblastoma survived substantially longer and at greater rates when the tumor was inoculated with a mouse-adapted strain of ZIKV. Our results suggest that ZIKV is an oncolytic virus that can preferentially target GSCs; thus, genetically modified strains that further optimize safety could have therapeutic efficacy for adult glioblastoma patients. PMID:28874392

  1. Casp8p41 generated by HIV protease kills CD4 T cells through direct Bak activation

    PubMed Central

    Sainski, Amy M.; Dai, Haiming; Natesampillai, Sekar; Pang, Yuan-Ping; Bren, Gary D.; Cummins, Nathan W.; Correia, Cristina; Meng, X. Wei; Tarara, James E.; Ramirez-Alvarado, Marina; Katzmann, David J.; Ochsenbauer, Christina; Kappes, John C.

    2014-01-01

    Previous studies have shown that human immunodeficiency virus (HIV) protease cleaves procaspase 8 to a fragment, termed Casp8p41, that lacks caspase activity but nonetheless contributes to T cell apoptosis. Herein, we show that Casp8p41 contains a domain that interacts with the BH3-binding groove of pro-apoptotic Bak to cause Bak oligomerization, Bak-mediated membrane permeabilization, and cell death. Levels of active Bak are higher in HIV-infected T cells that express Casp8p41. Conversely, targeted mutations in the Bak-interacting domain diminish Bak binding and Casp8p41-mediated cell death. Similar mutations in procaspase 8 impair the ability of HIV to kill infected T cells. These observations support a novel paradigm in which HIV converts a normal cellular constituent into a direct activator that functions like a BH3-only protein. PMID:25246614

  2. Extract of Pelargonium sidoides (EPs 7630) improves phagocytosis, oxidative burst, and intracellular killing of human peripheral blood phagocytes in vitro.

    PubMed

    Conrad, Andreas; Hansmann, Cathrin; Engels, Inge; Daschner, Franz D; Frank, Uwe

    2007-01-01

    Clinical data show that EPs 7630, an aqueous ethanolic extract from the roots of Pelargonium sidoides, can be used for the treatment of upper respiratory tract infections (URTI). The biological effects of the preparation have not been fully investigated. The objective of this study was to examine the impact of EPs 7630 on the activity of human peripheral blood phagocytes (PBP). A whole blood-based, flow cytometric assay was used to simultaneously assess phagocytosis and oxidative burst. Calcein-AM stained Candida albicans (DSM 1386) were used as target organisms. Oxidative burst was measured by addition of dihydroethidium (DHE). Target organisms and whole blood were co-incubated and analyzed after 0, 2, 4, 6, 10, and 30 min. Intracellular killing of the target organisms was evaluated by determining the number of surviving yeast cells after co-incubation of C. albicans and human whole blood. EPs 7630 was applied in therapeutically relevant concentrations between 0 and 30 microg/ml. Compared with controls EPs 7630 increased the number of phagocytosing PBP during the observed time points between 2 and 10 min in a concentration-dependent manner, with a maximum enhancement of 56% at 2 min (p=0.002). The application of EPs 7630 also led to a significant increase in the number of burst-active PBP for all time points observed beyond 2 min (p<0.001). The maximum augmentation was 120% after application of 30 microg/ml EPs 7630 at 4 min. Using a microbiological assay, intracellular killing was also enhanced by EPs 7630. This was expressed by a significant reduction in the number of surviving target organisms (p<0.001). The maximum reduction in viable yeast cells (-31%) was observed after co-incubation for 120 min with the highest concentration of EPs 7630 (30 microg/ml). In conclusion, the positive effects of EPs 7630 on phagocytosis, oxidative burst, and intracellular killing of yeast cells as test organisms are important components of the compound's biological activity. Our findings constitute a valuable contribution to understanding the clinical effects of EPs 7630.

  3. Antitumor Effects of Chimeric Receptor Engineered Human T Cells Directed to Tumor Stroma

    PubMed Central

    Kakarla, Sunitha; Chow, Kevin KH; Mata, Melinda; Shaffer, Donald R; Song, Xiao-Tong; Wu, Meng-Fen; Liu, Hao; Wang, Lisa L; Rowley, David R; Pfizenmaier, Klaus; Gottschalk, Stephen

    2013-01-01

    Cancer-associated fibroblasts (CAFs), the principle component of the tumor-associated stroma, form a highly protumorigenic and immunosuppressive microenvironment that mediates therapeutic resistance. Co-targeting CAFs in addition to cancer cells may therefore augment the antitumor response. Fibroblast activation protein-α (FAP), a type 2 dipeptidyl peptidase, is expressed on CAFs in a majority of solid tumors making it an attractive immunotherapeutic target. To target FAP-positive CAFs in the tumor-associated stroma, we genetically modified T cells to express a FAP-specific chimeric antigen receptor (CAR). The resulting FAP-specific T cells recognized and killed FAP-positive target cells as determined by proinflammatory cytokine release and target cell lysis. In an established A549 lung cancer model, adoptive transfer of FAP-specific T cells significantly reduced FAP-positive stromal cells, with a concomitant decrease in tumor growth. Combining these FAP-specific T cells with T cells that targeted the EphA2 antigen on the A549 cancer cells themselves significantly enhanced overall antitumor activity and conferred a survival advantage compared to either alone. Our study underscores the value of co-targeting both CAFs and cancer cells to increase the benefits of T-cell immunotherapy for solid tumors. PMID:23732988

  4. Human lactoferricin derived di-peptides deploying loop structures induce apoptosis specifically in cancer cells through targeting membranous phosphatidylserine.

    PubMed

    Riedl, Sabrina; Leber, Regina; Rinner, Beate; Schaider, Helmut; Lohner, Karl; Zweytick, Dagmar

    2015-11-01

    Host defense-derived peptides have emerged as a novel strategy for the development of alternative anticancer therapies. In this study we report on characteristic features of human lactoferricin (hLFcin) derivatives which facilitate specific killing of cancer cells of melanoma, glioblastoma and rhabdomyosarcoma compared with non-specific derivatives and the synthetic peptide RW-AH. Changes in amino acid sequence of hLFcin providing 9-11 amino acids stretched derivatives LF11-316, -318 and -322 only yielded low antitumor activity. However, the addition of the repeat (di-peptide) and the retro-repeat (di-retro-peptide) sequences highly improved cancer cell toxicity up to 100% at 20 μM peptide concentration. Compared to the complete parent sequence hLFcin the derivatives showed toxicity on the melanoma cell line A375 increased by 10-fold and on the glioblastoma cell line U-87mg by 2-3-fold. Reduced killing velocity, apoptotic blebbing, activation of caspase 3/7 and formation of apoptotic DNA fragments proved that the active and cancer selective peptides, e.g. R-DIM-P-LF11-322, trigger apoptosis, whereas highly active, though non-selective peptides, such as DIM-LF11-318 and RW-AH seem to kill rapidly via necrosis inducing membrane lyses. Structural studies revealed specific toxicity on cancer cells by peptide derivatives with loop structures, whereas non-specific peptides comprised α-helical structures without loop. Model studies with the cancer membrane mimic phosphatidylserine (PS) gave strong evidence that PS only exposed by cancer cells is an important target for specific hLFcin derivatives. Other negatively charged membrane exposed molecules as sialic acid, heparan and chondroitin sulfate were shown to have minor impact on peptide activity. Copyright © 2015. Published by Elsevier B.V.

  5. Selective killing of human immunodeficiency virus infected cells by non-nucleoside reverse transcriptase inhibitor-induced activation of HIV protease.

    PubMed

    Jochmans, Dirk; Anders, Maria; Keuleers, Inge; Smeulders, Liesbeth; Kräusslich, Hans-Georg; Kraus, Günter; Müller, Barbara

    2010-10-15

    Current antiretroviral therapy against human immunodeficiency virus (HIV-1) reduces viral load and thereby prevents viral spread, but it cannot eradicate proviral genomes from infected cells. Cells in immunological sanctuaries as well as cells producing low levels of virus apparently contribute to a reservoir that maintains HIV persistence in the presence of highly active antiretroviral therapy. Thus, accelerated elimination of virus producing cells may represent a complementary strategy to control HIV infection. Here we sought to exploit HIV protease (PR) related cytotoxicity in order to develop a strategy for drug induced killing of HIV producing cells. PR processes the viral Gag and Gag-Pol polyproteins during virus maturation, but is also implicated in killing of virus producing cells through off-target cleavage of host proteins. It has been observed previously that micromolar concentrations of certain non-nucleoside reverse transcriptase inhibitors (NNRTIs) can stimulate intracellular PR activity, presumably by enhancing Gag-Pol dimerization. Using a newly developed cell-based assay we compared the degree of PR activation displayed by various NNRTIs. We identified inhibitors showing higher potency with respect to PR activation than previously described for NNRTIs, with the most potent compounds resulting in ~2-fold increase of the Gag processing signal at 250 nM. The degree of enhancement of intracellular Gag processing correlated with the compound's ability to enhance RT dimerization in a mammalian two-hybrid assay. Compounds were analyzed for their potential to mediate specific killing of chronically infected MT-4 cells. Levels of cytotoxicity on HIV infected cells determined for the different NNRTIs corresponded to the relative degree of drug induced intracellular PR activation, with CC50 values ranging from ~0.3 μM to above the tested concentration range (10 μM). Specific cytotoxicity was reverted by addition of PR inhibitors. Two of the most active compounds, VRX-480773 and GW-678248, were also tested in primary human cells and mediated cytotoxicity on HIV-1 infected peripheral blood mononuclear cells. These data present proof of concept for targeted drug induced elimination of HIV producing cells. While NNRTIs themselves may not be sufficiently potent for therapeutic application, the results provide a basis for the development of drugs exploiting this mechanism of action.

  6. Selective killing of human immunodeficiency virus infected cells by non-nucleoside reverse transcriptase inhibitor-induced activation of HIV protease

    PubMed Central

    2010-01-01

    Background Current antiretroviral therapy against human immunodeficiency virus (HIV-1) reduces viral load and thereby prevents viral spread, but it cannot eradicate proviral genomes from infected cells. Cells in immunological sanctuaries as well as cells producing low levels of virus apparently contribute to a reservoir that maintains HIV persistence in the presence of highly active antiretroviral therapy. Thus, accelerated elimination of virus producing cells may represent a complementary strategy to control HIV infection. Here we sought to exploit HIV protease (PR) related cytotoxicity in order to develop a strategy for drug induced killing of HIV producing cells. PR processes the viral Gag and Gag-Pol polyproteins during virus maturation, but is also implicated in killing of virus producing cells through off-target cleavage of host proteins. It has been observed previously that micromolar concentrations of certain non-nucleoside reverse transcriptase inhibitors (NNRTIs) can stimulate intracellular PR activity, presumably by enhancing Gag-Pol dimerization. Results Using a newly developed cell-based assay we compared the degree of PR activation displayed by various NNRTIs. We identified inhibitors showing higher potency with respect to PR activation than previously described for NNRTIs, with the most potent compounds resulting in ~2-fold increase of the Gag processing signal at 250 nM. The degree of enhancement of intracellular Gag processing correlated with the compound's ability to enhance RT dimerization in a mammalian two-hybrid assay. Compounds were analyzed for their potential to mediate specific killing of chronically infected MT-4 cells. Levels of cytotoxicity on HIV infected cells determined for the different NNRTIs corresponded to the relative degree of drug induced intracellular PR activation, with CC50 values ranging from ~0.3 μM to above the tested concentration range (10 μM). Specific cytotoxicity was reverted by addition of PR inhibitors. Two of the most active compounds, VRX-480773 and GW-678248, were also tested in primary human cells and mediated cytotoxicity on HIV-1 infected peripheral blood mononuclear cells. Conclusion These data present proof of concept for targeted drug induced elimination of HIV producing cells. While NNRTIs themselves may not be sufficiently potent for therapeutic application, the results provide a basis for the development of drugs exploiting this mechanism of action. PMID:20950436

  7. Can Nanomedicines Kill Cancer Stem Cells?

    PubMed Central

    Zhao, Yi; Alakhova, Daria Y.; Kabanov, Alexander V.

    2014-01-01

    Most tumors are heterogeneous and many cancers contain small population of highly tumorigenic and intrinsically drug resistant cancer stem cells (CSCs). Like normal stem cell, CSCs have ability to self-renew and differentiate to other tumor cell types. They are believed to be a source for drug resistance, tumor recurrence and metastasis. CSCs often overexpress drug efflux transporters, spend most of their time in non-dividing G0 cell cycle state, and therefore, can escape the conventional chemotherapies. Thus, targeting CSCs is essential for developing novel therapies to prevent cancer relapse and emerging of drug resistance. Nanocarrier-based therapeutic agents (nanomedicines) have been used to achieve longer circulation times, better stability and bioavailability over current therapeutics. Recently, some groups have successfully applied nanomedicines to target CSCs to eliminate the tumor and prevent its recurrence. These approaches include 1) delivery of therapeutic agents (small molecules, siRNA, antibodies) that affect embryonic signaling pathways implicated in self-renewal and differentiation in CSCs, 2) inhibiting drug efflux transporters in an attempt to sensitize CSCs to therapy, 3) targeting metabolism in CSCs through nanoformulated chemicals and field-responsive magnetic nanoparticles and carbon nanotubes, and 4) disruption of multiple pathways in drug resistant cells using combination of chemotherapeutic drugs with amphiphilic Pluronic block copolymers. Despite clear progress of these studies the challenges of targeting CSCs by nanomedicines still exist and leave plenty of room for improvement and development. This review summarizes biological processes that are related to CSCs, overviews the current state of anti-CSCs therapies, and discusses state-of-the-art nanomedicine approaches developed to kill CSCs. PMID:24120657

  8. Targeting the membrane-anchored serine protease testisin with a novel engineered anthrax toxin prodrug to kill tumor cells and reduce tumor burden

    PubMed Central

    Martin, Erik W.; Buzza, Marguerite S.; Driesbaugh, Kathryn H.; Liu, Shihui; Fortenberry, Yolanda M.; Leppla, Stephen H.; Antalis, Toni M.

    2015-01-01

    The membrane-anchored serine proteases are a unique group of trypsin-like serine proteases that are tethered to the cell surface via transmembrane domains or glycosyl-phosphatidylinositol-anchors. Overexpressed in tumors, with pro-tumorigenic properties, they are attractive targets for protease-activated prodrug-like anti-tumor therapies. Here, we sought to engineer anthrax toxin protective antigen (PrAg), which is proteolytically activated on the cell surface by the proprotein convertase furin to instead be activated by tumor cell-expressed membrane-anchored serine proteases to function as a tumoricidal agent. PrAg's native activation sequence was mutated to a sequence derived from protein C inhibitor (PCI) that can be cleaved by membrane-anchored serine proteases, to generate the mutant protein PrAg-PCIS. PrAg-PCIS was resistant to furin cleavage in vitro, yet cytotoxic to multiple human tumor cell lines when combined with FP59, a chimeric anthrax toxin lethal factor-Pseudomonas exotoxin fusion protein. Molecular analyses showed that PrAg-PCIS can be cleaved in vitro by several serine proteases including the membrane-anchored serine protease testisin, and mediates increased killing of testisin-expressing tumor cells. Treatment with PrAg-PCIS also potently attenuated the growth of testisin-expressing xenograft tumors in mice. The data indicates PrAg can be engineered to target tumor cell-expressed membrane-anchored serine proteases to function as a potent tumoricidal agent. PMID:26392335

  9. 1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine: An anticancer agent targeting hypoxic cells

    PubMed Central

    Seow, Helen A.; Penketh, Philip G.; Shyam, Krishnamurthy; Rockwell, Sara; Sartorelli, Alan C.

    2005-01-01

    To target malignant cells residing in hypoxic regions of solid tumors, we have designed and synthesized prodrugs generating the cytotoxic alkylating species 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) after bioreductive activation. We postulate that one of these agents, 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine (KS119), requires enzymatic nitro reduction to produce 90CE, whereas another agent, 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(4-nitrobenzyloxy)carbonyl]hydrazine (PNBC), can also be activated by nucleophilic attack by thiols such as glutathione (GSH)/GST. We demonstrated that these agents selectively kill hypoxic EMT6 mouse mammary carcinoma and CHO cells. In hypoxia, 50 μM KS119 produced 5 logs of kill of EMT6 cells without discernable cytotoxicity in air; similar effects were observed with CHO cells. PNBC was less efficacious against hypoxic tumor cells and also had some toxicity to aerobic cells, presumably because of GST/thiol activation, making PNBC less interesting as a selective hypoxic-cell cytotoxin. BALB/c mice with established EMT6 solid tumors were used to demonstrate that KS119 could reach and kill hypoxic cells in solid tumors. To gain information on bioreductive enzymes involved in the activation of KS119, cytotoxicity was measured in CHO cell lines overexpressing NADH:cytochrome b5 reductase (NBR), NADPH:cytochrome P450 reductase (NPR), or NAD(P)H: quinone oxidoreductase 1 (NQO1). Increased cytotoxicity occurred in cells overexpressing NBR and NPR, whereas overexpressed NQO1 had no effect. These findings were supported by enzymatic studies using purified NPR and xanthine oxidase to activate KS119. KS119 has significant potential as a hypoxia-selective tumor-cell cytotoxin and is unlikely to cause major toxicity to well oxygenated normal tissues. PMID:15964988

  10. Susceptibility to cytotoxic T cell lysis of cancer stem cells derived from cervical and head and neck tumor cell lines.

    PubMed

    Liao, Tian; Kaufmann, Andreas M; Qian, Xu; Sangvatanakul, Voramon; Chen, Chao; Kube, Tina; Zhang, Guoyou; Albers, Andreas E

    2013-01-01

    To explore cancer stem cell susceptibility to a host's cytotoxic T lymphocyte (CTL)-mediated immune response. We compared the susceptibility of putative CSC generated from cancer cell lines to immunologic recognition and killing by alloantigen-specific CD8(+) CTL. CSC-enriched spheroid culture-derived cells (SDC) exhibited higher expression of ALDH, ICAM1 and of stem/progenitor cell markers on all 3 tumor cell lines investigated and lower MHC class I on the cervical cancer cell line as compared to their monolayer-derived cells (MDC). The expression of ICAM1 and MHCI was upregulated by IFN-γ treatment. CSC populations were less sensitive to MHC class I-restricted alloantigen-specific CD8(+) CTL lysis as compared to matched MDC. IFN-γ pretreatment resulted in over-proportionally enhanced lysis of SDC. Finally, the subset of ALDH(high) expressing SDC presented more sensitivity toward CD8(+) CTL killing than the ALDH(low) SDC. Tumor therapy resistance has been attributed to cancer stem cells (CSC). We show in vitro susceptibility of CSC to CTL-mediated lysis. Immunotherapy targeting of ALDH(+) CSC may therefore be a promising approach. Our results and method may be helpful for the development and optimization of adjuvants, as here exemplified for INF-γ, for CSC-targeted vaccines, independent of the availability of CSC-specific antigens.

  11. A photosensitizer delivered by bispecific antibody redirected T lymphocytes enhances cytotoxicity against EpCAM-expressing carcinoma cells upon light irradiation.

    PubMed

    Blaudszun, André-René; Moldenhauer, Gerhard; Schneider, Marc; Philippi, Anja

    2015-01-10

    Recently conducted clinical trials have provided impressive evidence that chemotherapy resistant metastatic melanoma and several hematological malignancies can be cured using adoptive T cell therapy or T cell-recruiting bispecific antibodies. However, a significant fraction of patients did not benefit from these treatments. Here we have evaluated the feasibility of a novel combination therapy which aims to further enhance the killing potential of bispecific antibody-redirected T lymphocytes by using these cells as targeted delivery system for photosensitizing agents. For a first in vitro proof-of-concept study, ex vivo activated human donor T cells were loaded with a poly(styrene sulfonate) (PSS)-complex of the model photosensitizer 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (mTHPP). In the absence of light and when loading with the water-soluble PSS/mTHPP-complex occurred at a tolerable concentration, viability and cytotoxic function of loaded T lymphocytes were not impaired. When "drug-enhanced" T cells were co-cultivated with EpCAM-expressing human carcinoma cells, mTHPP was transferred to target cells. Notably, in the presence of a bispecific antibody, which cross-links effector and target cells thereby inducing the cytolytic activity of cytotoxic T lymphocytes, significantly more photosensitizer was transferred. Consequently, upon irradiation of co-cultures, redirected drug-loaded T cells were more effective in killing A549 lung and SKOV-3 ovarian carcinoma cells than retargeted unloaded T lymphocytes. Particularly, the additive approach using redirected unloaded T cells in combination with appropriate amounts of separately applied PSS/mTHPP was less efficient as well. Thus, by loading T lymphocytes with a stimulus-sensitive anti-cancer drug, we were able to enhance the cytotoxic capacity of carrier cells. Photosensitizer boosted T cells could open new perspectives for adoptive T cell therapy as well as targeted photodynamic therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Lentiviral vectors in cancer immunotherapy.

    PubMed

    Oldham, Robyn Aa; Berinstein, Elliot M; Medin, Jeffrey A

    2015-01-01

    Basic science advances in cancer immunotherapy have resulted in various treatments that have recently shown success in the clinic. Many of these therapies require the insertion of genes into cells to directly kill them or to redirect the host's cells to induce potent immune responses. Other analogous therapies work by modifying effector cells for improved targeting and enhanced killing of tumor cells. Initial studies done using γ-retroviruses were promising, but safety concerns centered on the potential for insertional mutagenesis have highlighted the desire to develop other options for gene delivery. Lentiviral vectors (LVs) have been identified as potentially more effective and safer alternative delivery vehicles. LVs are now in use in clinical trials for many different types of inherited and acquired disorders, including cancer. This review will discuss current knowledge of LVs and the applications of this viral vector-based delivery vehicle to cancer immunotherapy.

  13. Applications of biological pores in nanomedicine, sensing, and nanoelectronics

    PubMed Central

    Majd, Sheereen; Yusko, Erik C; Billeh, Yazan N; Macrae, Michael X; Yang, Jerry; Mayer, Michael

    2011-01-01

    Biological protein pores and pore-forming peptides can generate a pathway for the flux of ions and other charged or polar molecules across cellular membranes. In nature, these nanopores have diverse and essential functions that range from maintaining cell homeostasis and participating in cell signaling to activating or killing cells. The combination of the nanoscale dimensions and sophisticated – often regulated – functionality of these biological pores make them particularly attractive for the growing field of nanobiotechnology. Applications range from single-molecule sensing to drug delivery and targeted killing of malignant cells. Potential future applications may include the use of nanopores for single strand DNA sequencing and for generating bio-inspired, and possibly, biocompatible visual detection systems and batteries. This article reviews the current state of applications of pore-forming peptides and proteins in nanomedicine, sensing, and nanoelectronics. PMID:20561776

  14. Mitochondrial control of cell death induced by hyperosmotic stress.

    PubMed

    Criollo, Alfredo; Galluzzi, Lorenzo; Maiuri, M Chiara; Tasdemir, Ezgi; Lavandero, Sergio; Kroemer, Guido

    2007-01-01

    HeLa and HCT116 cells respond differentially to sorbitol, an osmolyte able to induce hypertonic stress. In these models, sorbitol promoted the phenotypic manifestations of early apoptosis followed by complete loss of viability in a time-, dose-, and cell type-specific fashion, by eliciting distinct yet partially overlapping molecular pathways. In HCT116 but not in HeLa cells, sorbitol caused the mitochondrial release of the caspase-independent death effector AIF, whereas in both cell lines cytochrome c was retained in mitochondria. Despite cytochrome c retention, HeLa cells exhibited the progressive activation of caspase-3, presumably due to the prior activation of caspase-8. Accordingly, caspase inhibition prevented sorbitol-induced killing in HeLa, but only partially in HCT116 cells. Both the knock-out of Bax in HCT116 cells and the knock-down of Bax in A549 cells by RNA interference reduced the AIF release and/or the mitochondrial alterations. While the knock-down of Bcl-2/Bcl-X(L) sensitized to sorbitol-induced killing, overexpression of a Bcl-2 variant that specifically localizes to mitochondria (but not of the wild-type nor of a endoplasmic reticulum-targeted form) strongly inhibited sorbitol effects. Thus, hyperosmotic stress kills cells by triggering different molecular pathways, which converge at mitochondria where pro- and anti-apoptotic members of the Bcl-2 family exert their control.

  15. Imaging immune surveillance of individual natural killer cells confined in microwell arrays.

    PubMed

    Guldevall, Karolin; Vanherberghen, Bruno; Frisk, Thomas; Hurtig, Johan; Christakou, Athanasia E; Manneberg, Otto; Lindström, Sara; Andersson-Svahn, Helene; Wiklund, Martin; Önfelt, Björn

    2010-11-12

    New markers are constantly emerging that identify smaller and smaller subpopulations of immune cells. However, there is a growing awareness that even within very small populations, there is a marked functional heterogeneity and that measurements at the population level only gives an average estimate of the behaviour of that pool of cells. New techniques to analyze single immune cells over time are needed to overcome this limitation. For that purpose, we have designed and evaluated microwell array systems made from two materials, polydimethylsiloxane (PDMS) and silicon, for high-resolution imaging of individual natural killer (NK) cell responses. Both materials were suitable for short-term studies (<4 hours) but only silicon wells allowed long-term studies (several days). Time-lapse imaging of NK cell cytotoxicity in these microwell arrays revealed that roughly 30% of the target cells died much more rapidly than the rest upon NK cell encounter. This unexpected heterogeneity may reflect either separate mechanisms of killing or different killing efficiency by individual NK cells. Furthermore, we show that high-resolution imaging of inhibitory synapse formation, defined by clustering of MHC class I at the interface between NK and target cells, is possible in these microwells. We conclude that live cell imaging of NK-target cell interactions in multi-well microstructures are possible. The technique enables novel types of assays and allow data collection at a level of resolution not previously obtained. Furthermore, due to the large number of wells that can be simultaneously imaged, new statistical information is obtained that will lead to a better understanding of the function and regulation of the immune system at the single cell level.

  16. Toxin Kid uncouples DNA replication and cell division to enforce retention of plasmid R1 in Escherichia coli cells.

    PubMed

    Pimentel, Belén; Nair, Radhika; Bermejo-Rodríguez, Camino; Preston, Mark A; Agu, Chukwuma A; Wang, Xindan; Bernal, Juan A; Sherratt, David J; de la Cueva-Méndez, Guillermo

    2014-02-18

    Worldwide dissemination of antibiotic resistance in bacteria is facilitated by plasmids that encode postsegregational killing (PSK) systems. These produce a stable toxin (T) and a labile antitoxin (A) conditioning cell survival to plasmid maintenance, because only this ensures neutralization of toxicity. Shortage of antibiotic alternatives and the link of TA pairs to PSK have stimulated the opinion that premature toxin activation could be used to kill these recalcitrant organisms in the clinic. However, validation of TA pairs as therapeutic targets requires unambiguous understanding of their mode of action, consequences for cell viability, and function in plasmids. Conflicting with widespread notions concerning these issues, we had proposed that the TA pair kis-kid (killing suppressor-killing determinant) might function as a plasmid rescue system and not as a PSK system, but this remained to be validated. Here, we aimed to clarify unsettled mechanistic aspects of Kid activation, and of the effects of this for kis-kid-bearing plasmids and their host cells. We confirm that activation of Kid occurs in cells that are about to lose the toxin-encoding plasmid, and we show that this provokes highly selective restriction of protein outputs that inhibits cell division temporarily, avoiding plasmid loss, and stimulates DNA replication, promoting plasmid rescue. Kis and Kid are conserved in plasmids encoding multiple antibiotic resistance genes, including extended spectrum β-lactamases, for which therapeutic options are scarce, and our findings advise against the activation of this TA pair to fight pathogens carrying these extrachromosomal DNAs.

  17. Toxin Kid uncouples DNA replication and cell division to enforce retention of plasmid R1 in Escherichia coli cells

    PubMed Central

    Pimentel, Belén; Nair, Radhika; Bermejo-Rodríguez, Camino; Preston, Mark A.; Agu, Chukwuma A.; Wang, Xindan; Bernal, Juan A.; Sherratt, David J.; de la Cueva-Méndez, Guillermo

    2014-01-01

    Worldwide dissemination of antibiotic resistance in bacteria is facilitated by plasmids that encode postsegregational killing (PSK) systems. These produce a stable toxin (T) and a labile antitoxin (A) conditioning cell survival to plasmid maintenance, because only this ensures neutralization of toxicity. Shortage of antibiotic alternatives and the link of TA pairs to PSK have stimulated the opinion that premature toxin activation could be used to kill these recalcitrant organisms in the clinic. However, validation of TA pairs as therapeutic targets requires unambiguous understanding of their mode of action, consequences for cell viability, and function in plasmids. Conflicting with widespread notions concerning these issues, we had proposed that the TA pair kis-kid (killing suppressor-killing determinant) might function as a plasmid rescue system and not as a PSK system, but this remained to be validated. Here, we aimed to clarify unsettled mechanistic aspects of Kid activation, and of the effects of this for kis-kid–bearing plasmids and their host cells. We confirm that activation of Kid occurs in cells that are about to lose the toxin-encoding plasmid, and we show that this provokes highly selective restriction of protein outputs that inhibits cell division temporarily, avoiding plasmid loss, and stimulates DNA replication, promoting plasmid rescue. Kis and Kid are conserved in plasmids encoding multiple antibiotic resistance genes, including extended spectrum β-lactamases, for which therapeutic options are scarce, and our findings advise against the activation of this TA pair to fight pathogens carrying these extrachromosomal DNAs. PMID:24449860

  18. Inhibiting Mitophagy as a Novel Mechanism to Kill Prostate Cancer Cells

    DTIC Science & Technology

    2014-10-01

    cells. Key mediators of the mitophagic process, specifically Parkin , dynamin- related protein-1 (Drp1), fission-1 (Fis1), and cyclophilin-D (CypD...production and was protective against chemotherapeutic-induced cell death. In contrast, Fis1 and Parkin knockdown was sufficient to sensitize LNCaP...targeting of Fis1 and Parkin may have therapeutic value as they both sensitized prostate cancer cells to the necrotic effects of doxorubicin. Finally

  19. Non-Covalent Assembly of Targeted Carbon Nanovectors Enables Synergistic Drug and Radiation Cancer Therapy In Vivo

    PubMed Central

    Sano, Daisuke; Berlin, Jacob M.; Pham, Tam T.; Marcano, Daniela C.; Valdecanas, David R.; Zhou, Ge; Milas, Luka; Myers, Jeffrey N.; Tour, James M.

    2012-01-01

    Current chemotherapeutics are characterized by efficient tumor cell-killing and severe side effects mostly derived from off target toxicity. Hence targeted delivery of these drugs to tumor cells is actively sought. In an in vitro system, we previously demonstrated that targeted drug delivery to cancer cells overexpressing epidermal growth factor receptor (EGFR+) can be achieved by poly(ethylene glycol)-functionalized carbon nanovectors simply mixed with a drug, paclitaxel, and an antibody that binds to the epidermal growth factor receptor, Cetuximab. This construct is unusual in that all three components are assembled through non-covalent interactions. Here we show that this same construct is effective in vivo, enhancing radiotherapy of EGFR+ tumors. This targeted nanovector system has the potential to be a new therapy for head and neck squamous cell carcinomas, deserving of further preclinical development. PMID:22316245

  20. Protein-Based Therapeutic Killing for Cancer Therapies.

    PubMed

    Serna, Naroa; Sánchez-García, Laura; Unzueta, Ugutz; Díaz, Raquel; Vázquez, Esther; Mangues, Ramón; Villaverde, Antonio

    2018-03-01

    The treatment of some high-incidence human diseases is based on therapeutic cell killing. In cancer this is mainly achieved by chemical drugs that are systemically administered to reach effective toxic doses. As an innovative alternative, cytotoxic proteins identified in nature can be adapted as precise therapeutic agents. For example, individual toxins and venom components, proapoptotic factors, and antimicrobial peptides from bacteria, animals, plants, and humans have been engineered as highly potent drugs. In addition to the intrinsic cytotoxic activities of these constructs, their biological fabrication by DNA recombination allows the recruitment, in single pharmacological entities, of diverse functions of clinical interest such as specific cell-surface receptor binding, self-activation, and self-assembling as nanoparticulate materials, with wide applicability in cell-targeted oncotherapy and theragnosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Targeting B lymphoma with nanoparticles bearing glycan ligands of CD22.

    PubMed

    Chen, Weihsu C; Sigal, Darren S; Saven, Alan; Paulson, James C

    2012-02-01

    CD22 is a member of the siglec (sialic acid-binding immunoglobulin-like lectin) family expressed on B cells that recognizes glycans of glycoproteins as ligands. Because siglecs exhibit restricted expression on one or a few leukocyte cell types, they have gained attention as attractive targets for cell-directed therapies. Several antibody-based therapies targeting CD22 (Siglec-2) are currently in clinical trials for the treatment of hairy cell leukemia and other B cell lymphomas. As an alternative to antibodies we have developed liposomal nanoparticles decorated with glycan ligands of CD22 that selectively target B cells. Because CD22 is an endocytic receptor, ligand-decorated liposomes are bound by CD22 and rapidly internalized by the cell. When loaded with a toxic cargo such as doxorubicin, they are efficacious in prolonging life in a Daudi B cell lymphoma model. These B cell targeted nanoparticles have been demonstrated to bind and kill malignant B cells from patients with hairy cell leukemia, marginal zone lymphoma and chronic lymphocytic leukemia. The results demonstrate the potential of using CD22 ligand-targeted liposomal nanoparticles as an alternative approach for the treatment of B cell malignancies.

  2. Non-immune cells equipped with T cell receptor-like signaling for cancer cell ablation

    PubMed Central

    Kojima, Ryosuke; Scheller, Leo; Fussenegger, Martin

    2017-01-01

    The ability to engineer custom cell-contact-sensing output devices into human non-immune cells would be useful for extending the applicability of cell-based cancer therapies and avoiding risks associated with engineered immune cells. Here, we have developed a new class of synthetic T-cell receptor-like signal-transduction device that functions efficiently in human non-immune cells and triggers release of output molecules specifically upon sensing contact with a target cell. This device employs an interleukin signaling cascade, whose OFF/ON switching is controlled by biophysical segregation of a transmembrane signal-inhibitory protein from the sensor cell/target cell interface. We further showed that designer non-immune cells equipped with this device driving expression of a membrane-penetrator/prodrug-activating enzyme construct could specifically kill target cells in the presence of the prodrug, indicating its potential usefulness for target-cell-specific, cell-based enzyme-prodrug cancer therapy. Our study also contributes to advancement of synthetic biology by extending available design principles to transmit extracellular information to cells. PMID:29131143

  3. In vitro cytotoxicity of galvanically coupled magnesium-titanium particles on human osteosarcoma SAOS2 cells: A potential cancer therapy.

    PubMed

    Kim, Jua; Gilbert, Jeremy L

    2018-04-10

    Osteosarcoma is a malignant bone cancer that occurs mostly in children and young adults. This study investigated the cytotoxicity of Mg and Mg-Ti microparticles to human osteosarcoma cells. Osteosarcoma cells were killed in a dosage-dependent manner when cells, with a cell seeding density of 30,000 cells/cm 2 , were cultured with 0 to 2500 µg/mL of Mg or Mg-Ti in cell culture media for 24-72 h. Mg-Ti killed cells more effectively, where 1250 µg/mL of Mg-Ti killed cells completely by 24 h, while 2500 µg/mL of Mg killed nearly all cells, but not all. Killing due to particle corrosion occurred mostly during the first 24 h, and so the percent cell viability between 24 and 72 h showed not much variability. However, the measurement of live and dead cell numbers, over the timeframe of 24-72 h, showed more insight, such as cell recovery. If particle concentrations were low, the number of live cells increased after 24 h, indicating cell proliferation. If particle concentrations were high, the number of live cells either remained steady or decreased, indicating cell quiescence or continued killing, respectively. Increase in the number of dead cells also indicated killing, while plateau meant discontinued killing. In addition, repeated killing of recovered cells exhibited the same dose-dependent killing profile as the initial experiment, implying little development of cell resistance to treatment. These results, together, show that osteosarcoma cells are susceptible to killing by way of exposure to corroding particles, showing highly effective killing using the galvanic couple of Mg-Ti. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  4. Chinese Medicine Amygdalin and β-Glucosidase Combined with Antibody Enzymatic Prodrug System As A Feasible Antitumor Therapy.

    PubMed

    Li, Yun-Long; Li, Qiao-Xing; Liu, Rui-Jiang; Shen, Xiang-Qian

    2018-03-01

    Amarogentin is an efficacious Chinese herbal medicine and a component of the bitter apricot kernel. It is commonly used as an expectorant and supplementary anti-cancer drug. β-Glucosidase is an enzyme that hydrolyzes the glycosidic bond between aryl and saccharide groups to release glucose. Upon their interaction, β-glucosidase catalyzes amarogentin to produce considerable amounts of hydrocyanic acid, which inhibits cytochrome C oxidase, the terminal enzyme in the mitochondrial respiration chain, and suspends adenosine triphosphate synthesis, resulting in cell death. Hydrocyanic acid is a cell-cycle-stage-nonspecific agent that kills cancer cells. Thus, β-glucosidase can be coupled with a tumor-specific monoclonal antibody. β-Glucosidase can combine with cancer-cell-surface antigens and specifically convert amarogentin to an active drug that acts on cancer cells and the surrounding antibodies to achieve a killing effect. β-Glucosidase is injected intravenously and recognizes cancer-cell-surface antigens with the help of an antibody. The prodrug amarogentin is infused after β-glucosidase has reached the target position. Coupling of cell membrane peptides with β-glucosidase allows the enzyme to penetrate capillary endothelial cells and clear extracellular deep solid tumors to kill the cells therein. The Chinese medicine amarogentin and β-glucosidase will become an important treatment for various tumors when an appropriate monoclonal antibody is developed.

  5. Off to the Organelles - Killing Cancer Cells with Targeted Gold Nanoparticles

    PubMed Central

    Kodiha, Mohamed; Wang, Yi Meng; Hutter, Eliza; Maysinger, Dusica; Stochaj, Ursula

    2015-01-01

    Gold nanoparticles (AuNPs) are excellent tools for cancer cell imaging and basic research. However, they have yet to reach their full potential in the clinic. At present, we are only beginning to understand the molecular mechanisms that underlie the biological effects of AuNPs, including the structural and functional changes of cancer cells. This knowledge is critical for two aspects of nanomedicine. First, it will define the AuNP-induced events at the subcellular and molecular level, thereby possibly identifying new targets for cancer treatment. Second, it could provide new strategies to improve AuNP-dependent cancer diagnosis and treatment. Our review summarizes the impact of AuNPs on selected subcellular organelles that are relevant to cancer therapy. We focus on the nucleus, its subcompartments, and mitochondria, because they are intimately linked to cancer cell survival, growth, proliferation and death. While non-targeted AuNPs can damage tumor cells, concentrating AuNPs in particular subcellular locations will likely improve tumor cell killing. Thus, it will increase cancer cell damage by photothermal ablation, mechanical injury or localized drug delivery. This concept is promising, but AuNPs have to overcome multiple hurdles to perform these tasks. AuNP size, morphology and surface modification are critical parameters for their delivery to organelles. Recent strategies explored all of these variables, and surface functionalization has become crucial to concentrate AuNPs in subcellular compartments. Here, we highlight the use of AuNPs to damage cancer cells and their organelles. We discuss current limitations of AuNP-based cancer research and conclude with future directions for AuNP-dependent cancer treatment. PMID:25699096

  6. Pathogen response-like recruitment and activation of neutrophils by sterile immunogenic dying cells drives neutrophil-mediated residual cell killing

    PubMed Central

    Garg, Abhishek D; Vandenberk, Lien; Fang, Shentong; Fasche, Tekele; Van Eygen, Sofie; Maes, Jan; Van Woensel, Matthias; Koks, Carolien; Vanthillo, Niels; Graf, Norbert; de Witte, Peter; Van Gool, Stefaan; Salven, Petri; Agostinis, Patrizia

    2017-01-01

    Innate immune sensing of dying cells is modulated by several signals. Inflammatory chemokines-guided early recruitment, and pathogen-associated molecular patterns-triggered activation, of major anti-pathogenic innate immune cells like neutrophils distinguishes pathogen-infected stressed/dying cells from sterile dying cells. However, whether certain sterile dying cells stimulate innate immunity by partially mimicking pathogen response-like recruitment/activation of neutrophils remains poorly understood. We reveal that sterile immunogenic dying cancer cells trigger (a cell autonomous) pathogen response-like chemokine (PARC) signature, hallmarked by co-release of CXCL1, CCL2 and CXCL10 (similar to cells infected with bacteria or viruses). This PARC signature recruits preferentially neutrophils as first innate immune responders in vivo (in a cross-species, evolutionarily conserved manner; in mice and zebrafish). Furthermore, key danger signals emanating from these dying cells, that is, surface calreticulin, ATP and nucleic acids stimulate phagocytosis, purinergic receptors and toll-like receptors (TLR) i.e. TLR7/8/9-MyD88 signaling on neutrophil level, respectively. Engagement of purinergic receptors and TLR7/8/9-MyD88 signaling evokes neutrophil activation, which culminates into H2O2 and NO-driven respiratory burst-mediated killing of viable residual cancer cells. Thus sterile immunogenic dying cells perform 'altered-self mimicry' in certain contexts to exploit neutrophils for phagocytic targeting of dead/dying cancer cells and cytotoxic targeting of residual cancer cells. PMID:28234357

  7. Whole-genome duplication increases tumor cell sensitivity to MPS1 inhibition.

    PubMed

    Jemaà, Mohamed; Manic, Gwenola; Lledo, Gwendaline; Lissa, Delphine; Reynes, Christelle; Morin, Nathalie; Chibon, Frédéric; Sistigu, Antonella; Castedo, Maria; Vitale, Ilio; Kroemer, Guido; Abrieu, Ariane

    2016-01-05

    Several lines of evidence indicate that whole-genome duplication resulting in tetraploidy facilitates carcinogenesis by providing an intermediate and metastable state more prone to generate oncogenic aneuploidy. Here, we report a novel strategy to preferentially kill tetraploid cells based on the abrogation of the spindle assembly checkpoint (SAC) via the targeting of TTK protein kinase (better known as monopolar spindle 1, MPS1). The pharmacological inhibition as well as the knockdown of MPS1 kills more efficiently tetraploid cells than their diploid counterparts. By using time-lapse videomicroscopy, we show that tetraploid cells do not survive the aborted mitosis due to SAC abrogation upon MPS1 depletion. On the contrary diploid cells are able to survive up to at least two more cell cycles upon the same treatment. This effect might reflect the enhanced difficulty of cells with whole-genome doubling to tolerate a further increase in ploidy and/or an elevated level of chromosome instability in the absence of SAC functions. We further show that MPS1-inhibited tetraploid cells promote mitotic catastrophe executed by the intrinsic pathway of apoptosis, as indicated by the loss of mitochondrial potential, the release of the pro-apoptotic cytochrome c from mitochondria, and the activation of caspases. Altogether, our results suggest that MPS1 inhibition could be used as a therapeutic strategy for targeting tetraploid cancer cells.

  8. The transformation of targeted killing and international order.

    PubMed

    Senn, Martin; Troy, Jodok

    2017-05-04

    This article introduces the special issue's question of whether and how the current transformation of targeted killing is transforming the global international order and provides the conceptual ground for the individual contributions to the special issue. It develops a two-dimensional concept of political order and introduces a theoretical framework that conceives the maintenance and transformation of international order as a dynamic interplay between its behavioral dimension in the form of violence and discursive processes and its institutional dimension in the form of ideas, norms, and rules. The article also conceptualizes targeted killing and introduces a typology of targeted-killing acts on the basis of their legal and moral legitimacy. Building on this conceptual groundwork, the article takes stock of the current transformation of targeted killing and summarizes the individual contributions to this special issue.

  9. In vitro immunotherapy potency assays using real-time cell analysis

    PubMed Central

    Cerignoli, Fabio; Abassi, Yama A.; Lamarche, Brandon J.; Guenther, Garret; Santa Ana, David; Guimet, Diana; Zhang, Wen; Zhang, Jing

    2018-01-01

    A growing understanding of the molecular interactions between immune effector cells and target tumor cells, coupled with refined gene therapy approaches, are giving rise to novel cancer immunotherapeutics with remarkable efficacy in the clinic against both solid and liquid tumors. While immunotherapy holds tremendous promise for treatment of certain cancers, significant challenges remain in the clinical translation to many other types of cancers and also in minimizing adverse effects. Therefore, there is an urgent need for functional potency assays, in vitro and in vivo, that could model the complex interaction of immune cells with tumor cells and can be used to rapidly test the efficacy of different immunotherapy approaches, whether it is small molecule, biologics, cell therapies or combinations thereof. Herein we report the development of an xCELLigence real-time cytolytic in vitro potency assay that uses cellular impedance to continuously monitor the viability of target tumor cells while they are being subjected to different types of treatments. Specialized microtiter plates containing integrated gold microelectrodes enable the number, size, and surface attachment strength of adherent target tumor cells to be selectively monitored within a heterogeneous mixture that includes effector cells, antibodies, small molecules, etc. Through surface-tethering approach, the killing of liquid cancers can also be monitored. Using NK92 effector cells as example, results from RTCA potency assay are very well correlated with end point data from image-based assays as well as flow cytometry. Several effector cells, i.e., PBMC, NK, CAR-T were tested and validated as well as biological molecules such as Bi-specific T cell Engagers (BiTEs) targeting the EpCAM protein expressed on tumor cells and blocking antibodies against the immune checkpoint inhibitor PD-1. Using the specifically designed xCELLigence immunotherapy software, quantitative parameters such as KT50 (the amount of time it takes to kill 50% of the target tumor cells) and % cytolysis are calculated and used for comparing the relative efficacy of different reagents. In summary, our results demonstrate the xCELLigence platform to be well suited for potency assays, providing quantitative assessment with high reproducibility and a greatly simplified work flow. PMID:29499048

  10. Repurposing a Prokaryotic Toxin-Antitoxin System for the Selective Killing of Oncogenically Stressed Human Cells.

    PubMed

    Preston, Mark A; Pimentel, Belén; Bermejo-Rodríguez, Camino; Dionne, Isabelle; Turnbull, Alice; de la Cueva-Méndez, Guillermo

    2016-07-15

    Prokaryotes express intracellular toxins that pass unnoticed to carrying cells until coexpressed antitoxin partners are degraded in response to stress. Although not evolved to function in eukaryotes, one of these toxins, Kid, induces apoptosis in mammalian cells, an effect that is neutralized by its cognate antitoxin, Kis. Here we engineered this toxin-antitoxin pair to create a synthetic system that becomes active in human cells suffering a specific oncogenic stress. Inspired by the way Kid becomes active in bacterial cells, we produced a Kis variant that is selectively degraded in human cells expressing oncoprotein E6. The resulting toxin-antitoxin system functions autonomously in human cells, distinguishing those that suffer the oncogenic insult, which are killed by Kid, from those that do not, which remain protected by Kis. Our results provide a framework for developing personalized anticancer strategies avoiding off-target effects, a challenge that has been hardly tractable by other means thus far.

  11. Abrogation of TNF-mediated cytotoxicity by space flight involves protein kinase C

    NASA Technical Reports Server (NTRS)

    Woods, K. M.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Experiments conducted on STS-50 indicated that space flight significantly inhibited tumor necrosis factor (TNF)-mediated killing of LM929 cells compared to ground controls. In ground-based studies, activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA) also inhibited TNF-mediated killing of LM929 cells. Therefore, we used PKC inhibitors to determine if the inhibitory effects of spaceflight on TNF-mediated cytotoxicity involved the activation of PKC. In experiments conducted onboard space shuttle mission STS-54, we saw that in the presence of the protein kinase C inhibitors H7 and H8, TNF-mediated cytotoxicity was restored to levels of those observed in the ground controls. Subsequent experiments done during the STS-57 mission tested the dose response of two protein kinase inhibitors, H7 and HA1004. We again saw that killing was restored in a dose-dependent manner, with inhibitor concentrations known to inhibit PKC being most effective. These data suggest that space flight ameliorates the action of TNF by affecting PKC in target cells.

  12. Synergistic Photothermal and Antibiotic Killing of Biofilm-Associated Staphylococcus aureus Using Targeted Antibiotic-Loaded Gold Nanoconstructs.

    PubMed

    Meeker, Daniel G; Jenkins, Samir V; Miller, Emily K; Beenken, Karen E; Loughran, Allister J; Powless, Amy; Muldoon, Timothy J; Galanzha, Ekaterina I; Zharov, Vladimir P; Smeltzer, Mark S; Chen, Jingyi

    2016-04-08

    Resistance to conventional antibiotics is a growing public health concern that is quickly outpacing the development of new antibiotics. This has led the Infectious Diseases Society of America (IDSA) to designate Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumannii , Pseudomonas aeruginosa , and Enterobacter species as "ESKAPE pathogens" on the basis of the rapidly decreasing availability of useful antibiotics. This emphasizes the urgent need for alternative therapeutic strategies to combat infections caused by these and other bacterial pathogens. In this study, we used Staphylococcus aureus ( S. aureus ) as a proof-of-principle ESKAPE pathogen to demonstrate that an appropriate antibiotic (daptomycin) can be incorporated into polydopamine-coated gold nanocages (AuNC@PDA) and that daptomycin-loaded AuNC@PDA can be conjugated to antibodies targeting a species-specific surface protein (staphylococcal protein A; Spa) as a means of achieving selective delivery of the nanoconstructs directly to the bacterial cell surface. Targeting specificity was confirmed by demonstrating a lack of binding to mammalian cells, reduced photothermal and antibiotic killing of the Spa-negative species Staphylococcus epidermidis , and reduced killing of S. aureus in the presence of unconjugated anti-Spa antibodies. We demonstrate that laser irradiation at levels within the current safety standard for use in humans can be used to achieve both a lethal photothermal effect and controlled release of the antibiotic, thus resulting in a degree of therapeutic synergy capable of eradicating viable S. aureus cells. The system was validated using planktonic bacterial cultures of both methicillin-sensitive and methicillin-resistant S. aureus strains and subsequently shown to be effective in the context of an established biofilm, thus indicating that this approach could be used to facilitate the effective treatment of intrinsically resistant biofilm infections.

  13. The TAT-RasGAP317-326 anti-cancer peptide can kill in a caspase-, apoptosis-, and necroptosis-independent manner

    PubMed Central

    Puyal, Julien; Margue, Christiane; Michel, Sébastien; Kreis, Stephanie; Kulms, Dagmar; Barras, David; Nahimana, Aimable; Widmann, Christian

    2016-01-01

    Tumor cell resistance to apoptosis, which is triggered by many anti-tumor therapies, remains a major clinical problem. Therefore, development of more efficient therapies is a priority to improve cancer prognosis. We have previously shown that a cell-permeable peptide derived from the p120 Ras GTPase-activating protein (RasGAP), called TAT-RasGAP317-326, bears anti-malignant activities in vitro and in vivo, such as inhibition of metastatic progression and tumor cell sensitization to cell death induced by various anti-cancer treatments. Recently, we discovered that this RasGAP-derived peptide possesses the ability to directly kill some cancer cells. TAT-RasGAP317-326 can cause cell death in a manner that can be either partially caspase-dependent or fully caspase-independent. Indeed, TAT-RasGAP317-326-induced toxicity was not or only partially prevented when apoptosis was inhibited. Moreover, blocking other forms of cell death, such as necroptosis, parthanatos, pyroptosis and autophagy did not hamper the killing activity of the peptide. The death induced by TAT-RasGAP317-326 can therefore proceed independently from these modes of death. Our finding has potentially interesting clinical relevance because activation of a death pathway that is distinct from apoptosis and necroptosis in tumor cells could lead to the generation of anti-cancer drugs that target pathways not yet considered for cancer treatment. PMID:27602963

  14. Antibody-Dependent Cellular Cytotoxicity against Reactivated HIV-1-Infected Cells

    PubMed Central

    Lee, Wen Shi; Richard, Jonathan; Lichtfuss, Marit; Smith, Amos B.; Park, Jongwoo; Courter, Joel R.; Melillo, Bruno N.; Sodroski, Joseph G.; Kaufmann, Daniel E.; Parsons, Matthew S.

    2015-01-01

    ABSTRACT Lifelong antiretroviral therapy (ART) for HIV-1 does not diminish the established latent reservoir. A possible cure approach is to reactivate the quiescent genome from latency and utilize immune responses to eliminate cells harboring reactivated HIV-1. It is not known whether antibodies within HIV-1-infected individuals can recognize and eliminate cells reactivated from latency through antibody-dependent cellular cytotoxicity (ADCC). We found that reactivation of HIV-1 expression in the latently infected ACH-2 cell line elicited antibody-mediated NK cell activation but did not result in antibody-mediated killing. The lack of CD4 expression on these HIV-1 envelope (Env)-expressing cells likely resulted in poor recognition of CD4-induced antibody epitopes on Env. To examine this further, cultured primary CD4+ T cells from HIV-1+ subjects were used as targets for ADCC. These ex vivo-expanded primary cells were modestly susceptible to ADCC mediated by autologous or heterologous HIV-1+ serum antibodies. Importantly, ADCC mediated against these primary cells could be enhanced following incubation with a CD4-mimetic compound (JP-III-48) that exposes CD4-induced antibody epitopes on Env. Our studies suggest that with sufficient reactivation and expression of appropriate Env epitopes, primary HIV-1-infected cells can be targets for ADCC mediated by autologous serum antibodies and innate effector cells. The results of this study suggest that further investigation into the potential of ADCC to eliminate reactivated latently infected cells is warranted. IMPORTANCE An HIV-1 cure remains elusive due to the persistence of long-lived latently infected cells. An HIV-1 cure strategy, termed “shock and kill,” aims to reactivate HIV-1 expression in latently infected cells and subsequently eliminate the reactivated cells through immune-mediated killing. While recent research efforts have focused on reversing HIV-1 latency, it remains unclear whether preexisting immune responses within HIV-1+ individuals can efficiently eliminate the reactivated cells. HIV-1-specific antibodies can potentially eliminate cells reactivated from latency via Fc effector functions by recruiting innate immune cells. Our study highlights the potential role that antibody-dependent cellular cytotoxicity might play in antilatency cure approaches. PMID:26656700

  15. Radiogenetic therapy: strategies to overcome tumor resistance.

    PubMed

    Marples, B; Greco, O; Joiner, M C; Scott, S D

    2003-01-01

    The aim of cancer gene therapy is to selectively kill malignant cells at the tumor site, by exploiting traits specific to cancer cells and/or solid tumors. Strategies that take advantage of biological features common to different tumor types are particularly promising, since they have wide clinical applicability. Much attention has focused on genetic methods that complement radiotherapy, the principal treatment modality, or that exploit hypoxia, the most ubiquitous characteristic of most solid cancers. The goal of this review is to highlight two promising gene therapy methods developed specifically to target the tumor volume that can be readily used in combination with radiotherapy. The first approach uses radiation-responsive gene promoters to control the selective expression of a suicide gene (e.g., herpes simplex virus thymidine kinase) to irradiated tissue only, leading to targeted cell killing in the presence of a prodrug (e.g., ganciclovir). The second method utilizes oxygen-dependent promoters to produce selective therapeutic gene expression and prodrug activation in hypoxic cells, which are refractive to conventional radiotherapy. Further refining of tumor targeting can be achieved by combining radiation and hypoxia responsive elements in chimeric promoters activated by either and dual stimuli. The in vitro and in vivo studies described in this review suggest that the combination of gene therapy and radiotherapy protocols has potential for use in cancer care, particularly in cases currently refractory to treatment as a result of inherent or hypoxia-mediated radioresistance.

  16. Targeting inflammation in pancreatic cancer: Clinical translation

    PubMed Central

    Steele, Colin William; Kaur Gill, Nina Angharad; Jamieson, Nigel Balfour; Carter, Christopher Ross

    2016-01-01

    Preclinical modelling studies are beginning to aid development of therapies targeted against key regulators of pancreatic cancer progression. Pancreatic cancer is an aggressive, stromally-rich tumor, from which few people survive. Within the tumor microenvironment cellular and extracellular components exist, shielding tumor cells from immune cell clearance, and chemotherapy, enhancing progression of the disease. The cellular component of this microenvironment consists mainly of stellate cells and inflammatory cells. New findings suggest that manipulation of the cellular component of the tumor microenvironment is possible to promote immune cell killing of tumor cells. Here we explore possible immunogenic therapeutic strategies. Additionally extracellular stromal elements play a key role in protecting tumor cells from chemotherapies targeted at the pancreas. We describe the experimental findings and the pitfalls associated with translation of stromally targeted therapies to clinical trial. Finally, we discuss the key inflammatory signal transducers activated subsequent to driver mutations in oncogenic Kras in pancreatic cancer. We present the preclinical findings that have led to successful early trials of STAT3 inhibitors in pancreatic adenocarcinoma. PMID:27096033

  17. Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma.

    PubMed

    Oelsner, Sarah; Friede, Miriam E; Zhang, Congcong; Wagner, Juliane; Badura, Susanne; Bader, Peter; Ullrich, Evelyn; Ottmann, Oliver G; Klingemann, Hans; Tonn, Torsten; Wels, Winfried S

    2017-02-01

    Natural killer (NK) cells can rapidly respond to transformed and stressed cells and represent an important effector cell type for adoptive immunotherapy. In addition to donor-derived primary NK cells, continuously expanding cytotoxic cell lines such as NK-92 are being developed for clinical applications. To enhance their therapeutic utility for the treatment of B-cell malignancies, we engineered NK-92 cells by lentiviral gene transfer to express chimeric antigen receptors (CARs) that target CD19 and contain human CD3ζ (CAR 63.z), composite CD28-CD3ζ or CD137-CD3ζ signaling domains (CARs 63.28.z and 63.137.z). Exposure of CD19-positive targets to CAR NK-92 cells resulted in formation of conjugates between NK and cancer cells, NK-cell degranulation and selective cytotoxicity toward established B-cell leukemia and lymphoma cells. Likewise, the CAR NK cells displayed targeted cell killing of primary pre-B-ALL blasts that were resistant to parental NK-92. Although all three CAR NK-92 cell variants were functionally active, NK-92/63.137.z cells were less effective than NK-92/63.z and NK-92/63.28.z in cell killing and cytokine production, pointing to differential effects of the costimulatory CD28 and CD137 domains. In a Raji B-cell lymphoma model in NOD-SCID IL2R γ null mice, treatment with NK-92/63.z cells, but not parental NK-92 cells, inhibited disease progression, indicating that selective cytotoxicity was retained in vivo. Our data demonstrate that it is feasible to generate CAR-engineered NK-92 cells with potent and selective antitumor activity. These cells may become clinically useful as a continuously expandable off-the-shelf cell therapeutic agent. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. Applications of biological pores in nanomedicine, sensing, and nanoelectronics.

    PubMed

    Majd, Sheereen; Yusko, Erik C; Billeh, Yazan N; Macrae, Michael X; Yang, Jerry; Mayer, Michael

    2010-08-01

    Biological protein pores and pore-forming peptides can generate a pathway for the flux of ions and other charged or polar molecules across cellular membranes. In nature, these nanopores have diverse and essential functions that range from maintaining cell homeostasis and participating in cell signaling to activating or killing cells. The combination of the nanoscale dimensions and sophisticated - often regulated - functionality of these biological pores make them particularly attractive for the growing field of nanobiotechnology. Applications range from single-molecule sensing to drug delivery and targeted killing of malignant cells. Potential future applications may include the use of nanopores for single strand DNA sequencing and for generating bio-inspired, and possibly, biocompatible visual detection systems and batteries. This article reviews the current state of applications of pore-forming peptides and proteins in nanomedicine, sensing, and nanoelectronics. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model.

    PubMed

    Swift, Brenna E; Williams, Brent A; Kosaka, Yoko; Wang, Xing-Hua; Medin, Jeffrey A; Viswanathan, Sowmya; Martinez-Lopez, Joaquin; Keating, Armand

    2012-07-01

    Novel therapies capable of targeting drug resistant clonogenic MM cells are required for more effective treatment of multiple myeloma. This study investigates the cytotoxicity of natural killer cell lines against bulk and clonogenic multiple myeloma and evaluates the tumor burden after NK cell therapy in a bioluminescent xenograft mouse model. The cytotoxicity of natural killer cell lines was evaluated against bulk multiple myeloma cell lines using chromium release and flow cytometry cytotoxicity assays. Selected activating receptors on natural killer cells were blocked to determine their role in multiple myeloma recognition. Growth inhibition of clonogenic multiple myeloma cells was assessed in a methylcellulose clonogenic assay in combination with secondary replating to evaluate the self-renewal of residual progenitors after natural killer cell treatment. A bioluminescent mouse model was developed using the human U266 cell line transduced to express green fluorescent protein and luciferase (U266eGFPluc) to monitor disease progression in vivo and assess bone marrow engraftment after intravenous NK-92 cell therapy. Three multiple myeloma cell lines were sensitive to NK-92 and KHYG-1 cytotoxicity mediated by NKp30, NKp46, NKG2D and DNAM-1 activating receptors. NK-92 and KHYG-1 demonstrated 2- to 3-fold greater inhibition of clonogenic multiple myeloma growth, compared with killing of the bulk tumor population. In addition, the residual colonies after treatment formed significantly fewer colonies compared to the control in a secondary replating for a cumulative clonogenic inhibition of 89-99% at the 20:1 effector to target ratio. Multiple myeloma tumor burden was reduced by NK-92 in a xenograft mouse model as measured by bioluminescence imaging and reduction in bone marrow engraftment of U266eGFPluc cells by flow cytometry. This study demonstrates that NK-92 and KHYG-1 are capable of killing clonogenic and bulk multiple myeloma cells. In addition, multiple myeloma tumor burden in a xenograft mouse model was reduced by intravenous NK-92 cell therapy. Since multiple myeloma colony frequency correlates with survival, our observations have important clinical implications and suggest that clinical studies of NK cell lines to treat MM are warranted.

  20. Hierarchy for targeting prosurvival BCL2 family proteins in multiple myeloma: pivotal role of MCL1.

    PubMed

    Gong, Jia-Nan; Khong, Tiffany; Segal, David; Yao, Yuan; Riffkin, Chris D; Garnier, Jean-Marc; Khaw, Seong Lin; Lessene, Guillaume; Spencer, Andrew; Herold, Marco J; Roberts, Andrew W; Huang, David C S

    2016-10-06

    New therapeutic targets are needed to address the poor prognosis of patients with high-risk multiple myeloma. Myeloma cells usually express a range of the prosurvival BCL2 proteins. To define the hierarchy of their relative importance for maintaining the survival of myeloma cells, we targeted each of them in a large panel of cell lines, using pharmacological inhibitors or gene editing or by peptide-based approaches, alone or in combination. The majority of well-established immortalized cell lines (17/25) or low-passage myeloma cell lines (5/7) are readily killed when MCL1 is targeted, even including those cell lines sensitive to BCL2 inhibition. Targeting MCL1 also constrained the growth of myeloma in vivo. We also identified a previously unrecognized subset of myeloma that is highly BCLXL-dependent, and has the potential for cotargeting MCL1 and BCLXL. As MCL1 is pivotal for maintaining survival of most myelomas, it should be prioritized for targeting in the clinic once high-quality, validated inhibitors become available. © 2016 by The American Society of Hematology.

  1. Development and Testing of a 212Pb/212Bi Peptide for Targeting Metastatic Melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Darrell R.

    2012-10-25

    The purpose of this project is to develop a new radiolabeled peptide for imaging and treating metastatic melanoma. The immunoconjugate consists of a receptor-specific peptide that targets melanoma cells. The beta-emitter lead-212 (half-life = 10.4 hours) is linked by coordination chemistry to the peptide. After injection, the peptide targets melanoma receptors on the surfaces of melanoma cells. Lead-212 decays to the alpha-emitter bismuth-212 (half-life = 60 minutes). Alpha-particles that hit melanoma cell nuclei are likely to kill the melanoma cell. For cancer cell imaging, the lead-212 is replaced by lead-203 (half-life = 52 hours). Lead-203 emits 279 keV photons (80.1%more » abundance) that can be imaged and measured for biodistribution analysis, cancer imaging, and quantitative dosimetry.« less

  2. Trastuzumab- and Fab' fragment-modified curcumin PEG-PLGA nanoparticles: preparation and evaluation in vitro and in vivo.

    PubMed

    Duan, Dongyu; Wang, Aiping; Ni, Ling; Zhang, Liping; Yan, Xiuju; Jiang, Ying; Mu, Hongjie; Wu, Zimei; Sun, Kaoxiang; Li, Youxin

    2018-01-01

    Nanoparticles (NPs) modified with bio-ligands represent a promising strategy for active targeted drug delivery to tumour. However, many targeted ligands, such as trastuzumab (TMAB), have high molecular weight, limiting their application for targeting. In this study, we prepared Fab' (antigen-binding fragments cut from TMAB)-modified NPs (Fab'-NPs) with curcumin (Cur) as a model drug for more effective targeting of human epidermal growth factor receptor 2 (HER2/ErbB2/Neu), which is overexpressed on breast cancer cells. The release kinetics was conducted by dialysis bags. The ability to kill HER2-overexpressing BT-474 cells of Fab'-Cur-NPs compared with TMAB-Cur-NPs was conducted by cytotoxicity experiments. Qualitative and quantitative cell uptake studies using coumarin-6 (fluorescent probe)-loaded NPs were performed by fluorescence microscopy and flow cytometry. Pharmacokinetics and biodistribution experiments in vivo were assessed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The release kinetics showed that both Fab'-Cur-NPs and TMAB-Cur-NPs provided continuous, slow release of curcumin for 72 h, with no significant difference. In vitro cytotoxicity experiments showed that Fab'-Cur-NPs manifested prominent ability to kill HER2-overexpressing BT-474 cells compared with TMAB-Cur-NPs. Qualitative and quantitative cell uptake studies indicated that the accumulation of Fab'-NPs was greater than that of TMAB-NPs in BT-474 (HER2+) cells; However, there was no significant difference in MDA-MB-231 (HER2-) cells. Pharmacokinetics and biodistribution experiments in vivo demonstrated that the half-life (t1/2) and area under the blood concentration-time curve (AUC0-t) of Fab'-Cur-NPs increased 5.30-fold and 1.76-fold relative to those of TMAB-Cur-NPs, respectively. Furthermore, the tumor accumulation of Fab'-Cur-NPs was higher than that of TMAB-Cur-NPs. Fab' fragment has greater capacity than the intact antibody to achieve tumor targeting through NP-based delivery.

  3. Enhancing the Oncolytic Activity of CD133-Targeted Measles Virus: Receptor Extension or Chimerism with Vesicular Stomatitis Virus Are Most Effective

    PubMed Central

    Kleinlützum, Dina; Hanauer, Julia D. S.; Muik, Alexander; Hanschmann, Kay-Martin; Kays, Sarah-Katharina; Ayala-Breton, Camilo; Peng, Kah-Whye; Mühlebach, Michael D.; Abel, Tobias; Buchholz, Christian J.

    2017-01-01

    Therapy resistance and tumor recurrence are often linked to a small refractory and highly tumorigenic subpopulation of neoplastic cells, known as cancer stem cells (CSCs). A putative marker of CSCs is CD133 (prominin-1). We have previously described a CD133-targeted oncolytic measles virus (MV-CD133) as a promising approach to specifically eliminate CD133-positive tumor cells. Selectivity was introduced at the level of cell entry by an engineered MV hemagglutinin (H). The H protein was blinded for its native receptors and displayed a CD133-specific single-chain antibody fragment (scFv) as targeting domain. Interestingly, MV-CD133 was more active in killing CD133-positive tumors than the unmodified MV-NSe despite being highly selective for its target cells. To further enhance the antitumoral activity of MV-CD133, we here pursued arming technologies, receptor extension, and chimeras between MV-CD133 and vesicular stomatitis virus (VSV). All newly generated viruses including VSV-CD133 were highly selective in eliminating CD133-positive cells. MV-CD46/CD133 killed in addition CD133-negative cells being positive for the MV receptors. In an orthotopic glioma model, MV-CD46/CD133 and MVSCD-CD133, which encodes the super cytosine deaminase, were most effective. Notably, VSV-CD133 caused fatal neurotoxicity in this tumor model. Use of CD133 as receptor could be excluded as being causative. In a subcutaneous tumor model of hepatocellular cancer, VSV-CD133 revealed the most potent oncolytic activity and also significantly prolonged survival of the mice when injected intravenously. Compared to MV-CD133, VSV-CD133 infected a more than 104-fold larger area of the tumor within the same time period. Our data not only suggest new concepts and approaches toward enhancing the oncolytic activity of CD133-targeted oncolytic viruses but also raise awareness about careful toxicity testing of novel virus types. PMID:28695108

  4. Multipotent adult germ-line stem cells, like other pluripotent stem cells, can be killed by cytotoxic T lymphocytes despite low expression of major histocompatibility complex class I molecules

    PubMed Central

    Dressel, Ralf; Guan, Kaomei; Nolte, Jessica; Elsner, Leslie; Monecke, Sebastian; Nayernia, Karim; Hasenfuss, Gerd; Engel, Wolfgang

    2009-01-01

    Background Multipotent adult germ-line stem cells (maGSCs) represent a new pluripotent cell type that can be derived without genetic manipulation from spermatogonial stem cells (SSCs) present in adult testis. Similarly to induced pluripotent stem cells (iPSCs), they could provide a source of cellular grafts for new transplantation therapies of a broad variety of diseases. To test whether these stem cells can be rejected by the recipients, we have analyzed whether maGSCs and iPSCs can become targets for cytotoxic T lymphocytes (CTL) or whether they are protected, as previously proposed for embryonic stem cells (ESCs). Results We have observed that maGSCs can be maintained in prolonged culture with or without leukemia inhibitory factor and/or feeder cells and still retain the capacity to form teratomas in immunodeficient recipients. They were, however, rejected in immunocompetent allogeneic recipients, and the immune response controlled teratoma growth. We analyzed the susceptibility of three maGSC lines to CTL in comparison to ESCs, iPSCs, and F9 teratocarcinoma cells. Major histocompatibility complex (MHC) class I molecules were not detectable by flow cytometry on these stem cell lines, apart from low levels on one maGSC line (maGSC Stra8 SSC5). However, using a quantitative real time PCR analysis H2K and B2m transcripts were detected in all pluripotent stem cell lines. All pluripotent stem cell lines were killed in a peptide-dependent manner by activated CTLs derived from T cell receptor transgenic OT-I mice after pulsing of the targets with the SIINFEKL peptide. Conclusion Pluripotent stem cells, including maGSCs, ESCs, and iPSCs can become targets for CTLs, even if the expression level of MHC class I molecules is below the detection limit of flow cytometry. Thus they are not protected against CTL-mediated cytotoxicity. Therefore, pluripotent cells might be rejected after transplantation by this mechanism if specific antigens are presented and if specific activated CTLs are present. Our results show that the adaptive immune system has in principle the capacity to kill pluripotent and teratoma forming stem cells. This finding might help to develop new strategies to increase the safety of future transplantations of in vitro differentiated cells by exploiting a selective immune response against contaminating undifferentiated cells. Reviewers This article was reviewed by Bhagirath Singh, Etienne Joly and Lutz Walter. PMID:19715575

  5. The transformation of targeted killing and international order

    PubMed Central

    Senn, Martin; Troy, Jodok

    2017-01-01

    ABSTRACT This article introduces the special issue’s question of whether and how the current transformation of targeted killing is transforming the global international order and provides the conceptual ground for the individual contributions to the special issue. It develops a two-dimensional concept of political order and introduces a theoretical framework that conceives the maintenance and transformation of international order as a dynamic interplay between its behavioral dimension in the form of violence and discursive processes and its institutional dimension in the form of ideas, norms, and rules. The article also conceptualizes targeted killing and introduces a typology of targeted-killing acts on the basis of their legal and moral legitimacy. Building on this conceptual groundwork, the article takes stock of the current transformation of targeted killing and summarizes the individual contributions to this special issue. PMID:29097903

  6. Ionizing radiation delivered by specific antibody is therapeutic against a fungal infection

    PubMed Central

    Dadachova, Ekaterina; Nakouzi, Antonio; Bryan, Ruth A.; Casadevall, Arturo

    2003-01-01

    There is an urgent need for new antimicrobial therapies to combat drug resistance, new pathogens, and the relative inefficacy of current therapy in compromised hosts. Ionizing radiation can kill microorganisms quickly and efficiently, but this modality has not been exploited as a therapeutic antimicrobial strategy. We have developed methods to target ionizing radiation to a fungal cell by labeling a specific mAb with the therapeutic radioisotopes Rhenium-188 and Bismuth-213. Radiolabeled antibody killed cells of human pathogenic fungus Cryptococcus neoformans in vitro, thus converting an antibody with no inherent antifungal activity into a microbicidal molecule. Administration of radiolabeled antibody to mice with C. neoformans infection delivered 213Bi and 188Re to the sites of infection, reduced their organ fungal burden, and significantly prolonged their survival without apparent toxicity. This study establishes the principle that targeted radiation can be used for the therapy of an infectious disease, and suggests that it may have wide applicability as an antimicrobial strategy. PMID:12930899

  7. Ionizing radiation delivered by specific antibody is therapeutic against a fungal infection

    NASA Astrophysics Data System (ADS)

    Dadachova, Ekaterina; Nakouzi, Antonio; Bryan, Ruth A.; Casadevall, Arturo

    2003-09-01

    There is an urgent need for new antimicrobial therapies to combat drug resistance, new pathogens, and the relative inefficacy of current therapy in compromised hosts. Ionizing radiation can kill microorganisms quickly and efficiently, but this modality has not been exploited as a therapeutic antimicrobial strategy. We have developed methods to target ionizing radiation to a fungal cell by labeling a specific mAb with the therapeutic radioisotopes Rhenium-188 and Bismuth-213. Radiolabeled antibody killed cells of human pathogenic fungus Cryptococcus neoformans in vitro, thus converting an antibody with no inherent antifungal activity into a microbicidal molecule. Administration of radiolabeled antibody to mice with C. neoformans infection delivered 213Bi and 188Re to the sites of infection, reduced their organ fungal burden, and significantly prolonged their survival without apparent toxicity. This study establishes the principle that targeted radiation can be used for the therapy of an infectious disease, and suggests that it may have wide applicability as an antimicrobial strategy.

  8. Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy.

    PubMed

    Gaipl, Udo S; Multhoff, Gabriele; Scheithauer, Heike; Lauber, Kirsten; Hehlgans, Stefanie; Frey, Benjamin; Rödel, Franz

    2014-01-01

    Besides the direct, targeted effects of ionizing irradiation (x-ray) on cancer cells, namely DNA damage and cell death induction, indirect, nontargeted ones exist, which are mediated in large part by the immune system. Immunogenic forms of tumor cell death induced by x-ray, including immune modulating danger signals like the heat shock protein 70, adenosine triphosphate, and high-mobility group box 1 protein are presented. Further, antitumor effects exerted by cells of the innate (natural killer cells) as well as adaptive immune system (T cells activated by dendritic cells) are outlined. Tumor cell death inhibiting molecules such as survivin are introduced as suitable target for molecularly tailored therapies in combination with x-ray. Finally, reasonable combinations of immune therapies with radiotherapy are discussed.

  9. HIV-I Nef inhibitors: a novel class of HIV-specific immune adjuvants in support of a cure.

    PubMed

    Dekaban, Gregory A; Dikeakos, Jimmy D

    2017-09-12

    The success of many current vaccines relies on a formulation that incorporates an immune activating adjuvant. This will hold true for the design of a successful therapeutic HIV vaccine targeted at controlling reactivated virus following cessation of combined antiretroviral therapy (cART). The HIV accessory protein Nef functions by interfering with HIV antigen presentation through the major histocompatibility complex I (MHC-I) pathway thereby suppressing CD8 + cytotoxic T cell (CTL)-mediated killing of HIV infected cells. Thus, this important impediment to HIV vaccine success must be circumvented. This review covers our current knowledge of Nef inhibitors that may serve as immune adjuvants that will specifically restore and enhance CTL-mediated killing of reactivated HIV infected cells as part of an overall vaccine strategy to affect a cure for HIV infection.

  10. Engineering a Cell-surface Aptamer Circuit for Targeted and Amplified Photodynamic Cancer Therapy

    PubMed Central

    Han, Da; Zhu, Guizhi; Wu, Cuichen; Zhu, Zhi; Chen, Tao; Zhang, Xiaobing

    2013-01-01

    Photodynamic therapy (PDT) is one of the most promising and noninvasive methods for clinical treatment of different malignant diseases. Here, we present a novel strategy of designing an aptamer-based DNA nanocircuit capable of the selective recognition of cancer cells, controllable activation of photosensitizer and amplification of photodynamic therapeutic effect. The aptamers can selectively recognize target cancer cells and bind to the specific proteins on cell membranes. Then the overhanging catalyst sequence on aptamer can trigger a toehold-mediated catalytic strand displacement to activate photosensitizer and achieve amplified therapeutic effect. The specific binding-induced activation allows the DNA circuit to distinguish diseased cells from healthy cells, reducing damage to nearby healthy cells. Moreover, the catalytic amplification reaction will only take place close to the target cancer cells, resulting in a high local concentration of singlet oxygen to selectively kill the target cells. The principle employed in this study demonstrated the feasibility of assembling a DNA circuit on cell membranes and could further broaden the utility of DNA circuits for applications in biology, biotechnology, and biomedicine. PMID:23397942

  11. A cyclic-RGD-BioShuttle functionalized with TMZ by DARinv “Click Chemistry” targeted to αvβ3 integrin for therapy

    PubMed Central

    Braun, Klaus; Wiessler, Manfred; Pipkorn, Rüdiger; Ehemann, Volker; Bäuerle, Tobias; Fleischhacker, Heinz; Müller, Gabriele; Lorenz, Peter; Waldeck, Waldemar

    2010-01-01

    Clinical experiences often document, that a successful tumor control requires high doses of drug applications. It is widely believed that unavoidable adverse reactions could be minimized by using gene-therapeutic strategies protecting the tumor-surrounding healthy tissue as well as the bone-marrow. One new approach in this direction is the use of “Targeted Therapies” realizing a selective drug targeting to gain effectual amounts at the target site, even with drastically reduced application doses. MCF-7 breast cancer cells expressing the αvβ3 [alpha(v)beta(3)] integrin receptor are considered as appropriate candidates for such a targeted therapy. The modularly composed BioShuttle carrier consisting of different units designed to facilitate the passage across the cell membranes and for subcellular addressing of diagnostic and/or therapeutic molecules could be considered as an eligible delivery platform. Here we used the cyclic RGD-BioShuttle as a carrier for temozolomide (TMZ) at the αvβ3 integrin receptor realizing local TMZ concentrations sufficient for cell killing. The IC50 values are 12 µMol/L in the case of cRGD-BioShuttle-TMZ and 100 µMol/L for underivatized TMZ, which confirms the advantage of TMZ reformulation to realize local concentrations sufficient for cell killing. Our paper focuses on the design, synthesis and application of the cRGD-BioShuttle conjugate composed of the cyclic RGD, a αvβ3 integrin-ligand, ligated to the cytotoxic drug TMZ. The ligation was carried out by the Diels Alder Reaction with inverse electron demand (DARinv). PMID:20922134

  12. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy

    PubMed Central

    Zhou, Jiehua; Rossi, John J.

    2014-01-01

    One hundred years ago, Dr. Paul Ehrlich popularized the “magic bullet” concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, “targeted therapy” that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges. PMID:24936916

  13. Yeast β-1,6-Glucan Is a Primary Target for the Saccharomyces cerevisiae K2 Toxin

    PubMed Central

    Lukša, Juliana; Podoliankaitė, Monika; Vepštaitė, Iglė; Strazdaitė-Žielienė, Živilė; Urbonavičius, Jaunius

    2015-01-01

    Certain Saccharomyces cerevisiae strains secrete different killer proteins of double-stranded-RNA origin. These proteins confer a growth advantage to their host by increasing its survival. K2 toxin affects the target cell by binding to the cell surface, disrupting the plasma membrane integrity, and inducing ion leakage. In this study, we determined that K2 toxin saturates the yeast cell surface receptors in 10 min. The apparent amount of K2 toxin, bound to a single cell of wild type yeast under saturating conditions, was estimated to be 435 to 460 molecules. It was found that an increased level of β-1,6-glucan directly correlates with the number of toxin molecules bound, thereby impacting the morphology and determining the fate of the yeast cell. We observed that the binding of K2 toxin to the yeast surface receptors proceeds in a similar manner as in case of the related K1 killer protein. It was demonstrated that the externally supplied pustulan, a poly-β-1,6-glucan, but not the glucans bearing other linkage types (such as laminarin, chitin, and pullulan) efficiently inhibits the K2 toxin killing activity. In addition, the analysis of toxin binding to the intact cells and spheroplasts confirmed that majority of K2 protein molecules attach to the β-1,6-glucan, rather than the plasma membrane-localized receptors. Taken together, our results reveal that β-1,6-glucan is a primary target of K2 toxin and is important for the execution of its killing property. PMID:25710965

  14. Aggressive Peripheral CD70-positive T-cell Lymphoma Associated with Severe Chronic Active EBV Infection

    PubMed Central

    Shaffer, Donald R.; Sheehan, Andrea M.; Yi, Zhongzhen; Rodgers, Cheryl C; Bollard, Catherine M; Brenner, Malcolm K; Rooney, Cliona M; Heslop, Helen E; Gottschalk, Stephen

    2011-01-01

    Severe chronic active Epstein-Barr virus infection (CAEBV) in T or NK cells is a rare complication of latent EBV infection. CAEBV associated T-cell lymphoproliferative disease (LPD) consists of polyclonal lesions as well as aggressive lymphomas. Here we report such a patient. In addition, we show that this primary CAEBV associated T-cell lymphoma expresses CD70 and is sensitive to killing by CD70-specific T cells, identifying CD70 as a potential immunotherapeutic target for CAEBV-associated T-cell lymphoma. PMID:21994111

  15. HER2-Targeted Polyinosine/Polycytosine Therapy Inhibits Tumor Growth and Modulates the Tumor Immune Microenvironment.

    PubMed

    Zigler, Maya; Shir, Alexei; Joubran, Salim; Sagalov, Anna; Klein, Shoshana; Edinger, Nufar; Lau, Jeffrey; Yu, Shang-Fan; Mizraji, Gabriel; Globerson Levin, Anat; Sliwkowski, Mark X; Levitzki, Alexander

    2016-08-01

    The development of targeted therapies that affect multiple signaling pathways and stimulate antitumor immunity is greatly needed. About 20% of patients with breast cancer overexpress HER2. Small molecules and antibodies targeting HER2 convey some survival benefits; however, patients with advanced disease succumb to the disease under these treatment regimens, possibly because HER2 is not completely necessary for the survival of the targeted cancer cells. In the present study, we show that a polyinosine/polycytosine (pIC) HER2-homing chemical vector induced the demise of HER2-overexpressing breast cancer cells, including trastuzumab-resistant cells. Targeting pIC to the tumor evoked a number of cell-killing mechanisms, as well as strong bystander effects. These bystander mechanisms included type I IFN induction, immune cell recruitment, and activation. The HER2-targeted pIC strongly inhibited the growth of HER2-overexpressing tumors in immunocompetent mice. The data presented here could open additional avenues in the treatment of HER2-positive breast cancer. Cancer Immunol Res; 4(8); 688-97. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Targeting malignant mitochondria with therapeutic peptides

    PubMed Central

    Constance, Jonathan E; Lim, Carol S

    2013-01-01

    The current status of peptides that target the mitochondria in the context of cancer is the focus of this review. Chemotherapy and radiotherapy used to kill tumor cells are principally mediated by the process of apoptosis that is governed by the mitochondria. The failure of anticancer therapy often resides at the level of the mitochondria. Therefore, the mitochondrion is a key pharmacological target in cancer due to many of the differences that arise between malignant and healthy cells at the level of this ubiquitous organelle. Additionally, targeting the characteristics of malignant mitochondria often rely on disruption of protein–protein interactions that are not generally amenable to small molecules. We discuss anticancer peptides that intersect with pathological changes in the mitochondrion. PMID:22946430

  17. Pediatric medulloblastoma xenografts including molecular subgroup 3 and CD133+ and CD15+ cells are sensitive to killing by oncolytic herpes simplex viruses.

    PubMed

    Friedman, Gregory K; Moore, Blake P; Nan, Li; Kelly, Virginia M; Etminan, Tina; Langford, Catherine P; Xu, Hui; Han, Xiaosi; Markert, James M; Beierle, Elizabeth A; Gillespie, G Yancey

    2016-02-01

    Childhood medulloblastoma is associated with significant morbidity and mortality that is compounded by neurotoxicity for the developing brain caused by current therapies, including surgery, craniospinal radiation, and chemotherapy. Innate therapeutic resistance of some aggressive pediatric medulloblastoma has been attributed to a subpopulation of cells, termed cancer-initiating cells or cancer stemlike cells (CSCs), marked by the surface protein CD133 or CD15. Brain tumors characteristically contain areas of pathophysiologic hypoxia, which has been shown to drive the CSC phenotype leading to heightened invasiveness, angiogenesis, and metastasis. Novel therapies that target medulloblastoma CSCs are needed to improve outcomes and decrease toxicity. We hypothesized that oncolytic engineered herpes simplex virus (oHSV) therapy could effectively infect and kill pediatric medulloblastoma cells, including CSCs marked by CD133 or CD15. Using 4 human pediatric medulloblastoma xenografts, including 3 molecular subgroup 3 tumors, which portend worse patient outcomes, we determined the expression of CD133, CD15, and the primary HSV-1 entry molecule nectin-1 (CD111) by fluorescence activated cell sorting (FACS) analysis. Infectability and cytotoxicity of clinically relevant oHSVs (G207 and M002) were determined in vitro and in vivo by FACS, immunofluorescent staining, cytotoxicity assays, and murine survival studies. We demonstrate that hypoxia increased the CD133+ cell fraction, while having the opposite effect on CD15 expression. We established that all 4 xenografts, including the CSCs, expressed CD111 and were highly sensitive to killing by G207 or M002. Pediatric medulloblastoma, including Group 3 tumors, may be an excellent target for oHSV virotherapy, and a clinical trial in medulloblastoma is warranted. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. BIM mediates synergistic killing of B-cell acute lymphoblastic leukemia cells by BCL-2 and MEK inhibitors.

    PubMed

    Korfi, K; Smith, M; Swan, J; Somervaille, T C P; Dhomen, N; Marais, R

    2016-04-07

    B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive hematological disease that kills ~50% of adult patients. With the exception of some BCR-ABL1(+) patients who benefit from tyrosine kinase inhibitors, there are no effective targeted therapies for adult B-ALL patients and chemotherapy remains first-line therapy despite adverse side effects and poor efficacy. We show that, although the MEK/ERK pathway is activated in B-ALL cells driven by different oncogenes, MEK inhibition does not suppress B-ALL cell growth. However, MEK inhibition synergized with BCL-2/BCL-XL family inhibitors to suppress proliferation and induce apoptosis in B-ALL cells. We show that this synergism is mediated by the pro-apoptotic factor BIM, which is dephosphorylated as a result of MEK inhibition, allowing it to bind to and neutralize MCL-1, thereby enhancing BCL-2/BCL-XL inhibitor-induced cell death. This cooperative effect is observed in B-ALL cells driven by a range of genetic abnormalities and therefore has significant therapeutic potential.

  19. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells

    PubMed Central

    Spiess, Katja; Jeppesen, Mads G.; Malmgaard-Clausen, Mikkel; Krzywkowski, Karen

    2017-01-01

    Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment of human cytomegalovirus (HCMV) infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP) consisted of a variant (F49A) of CX3CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin A (PE). Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1) altered chemokine sequence (K14A, F49L, and F49E), (2) shortened and elongated linker region, and (3) modified toxin domain. Only F49L-FTP displayed higher selectivity in its binding to US28 versus CX3CR1, the endogenous receptor for CX3CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate for HCMV treatment. Many viruses encode internalizing receptors suggesting that not only HCMV but also, for instance, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus may be targeted by FTPs. PMID:28251165

  20. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells.

    PubMed

    Spiess, Katja; Jeppesen, Mads G; Malmgaard-Clausen, Mikkel; Krzywkowski, Karen; Kledal, Thomas N; Rosenkilde, Mette M

    2017-01-01

    Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment of human cytomegalovirus (HCMV) infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP) consisted of a variant (F49A) of CX 3 CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin A (PE). Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1) altered chemokine sequence (K14A, F49L, and F49E), (2) shortened and elongated linker region, and (3) modified toxin domain. Only F49L-FTP displayed higher selectivity in its binding to US28 versus CX 3 CR1, the endogenous receptor for CX 3 CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate for HCMV treatment. Many viruses encode internalizing receptors suggesting that not only HCMV but also, for instance, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus may be targeted by FTPs.

  1. Grantee Spotlight: Manuel L. Penichet, M.D., Ph.D. - Reprogramming the Immune System to Kill Cancer

    Cancer.gov

    Dr. Manuel L. Penichet, former CURE K01 trainee and NCI R01 grantee, aims to genetically engineer antibodies that can be used to directly target and eliminate cancer cells and also stimulate the body’s immune system to fight and destroy cancer.

  2. Determination of synthetic lethal interactions in KRAS oncogene-dependent cancer cells reveals novel therapeutic targeting strategies

    PubMed Central

    Steckel, Michael; Molina-Arcas, Miriam; Weigelt, Britta; Marani, Michaela; Warne, Patricia H; Kuznetsov, Hanna; Kelly, Gavin; Saunders, Becky; Howell, Michael; Downward, Julian; Hancock, David C

    2012-01-01

    Oncogenic mutations in RAS genes are very common in human cancer, resulting in cells with well-characterized selective advantages, but also less well-understood vulnerabilities. We have carried out a large-scale loss-of-function screen to identify genes that are required by KRAS-transformed colon cancer cells, but not by derivatives lacking this oncogene. Top-scoring genes were then tested in a larger panel of KRAS mutant and wild-type cancer cells. Cancer cells expressing oncogenic KRAS were found to be highly dependent on the transcription factor GATA2 and the DNA replication initiation regulator CDC6. Extending this analysis using a collection of drugs with known targets, we found that cancer cells with mutant KRAS showed selective addiction to proteasome function, as well as synthetic lethality with topoisomerase inhibition. Combination targeting of these functions caused improved killing of KRAS mutant cells relative to wild-type cells. These observations suggest novel targets and new ways of combining existing therapies for optimal effect in RAS mutant cancers, which are traditionally seen as being highly refractory to therapy. PMID:22613949

  3. Mouse Cytotoxic T Cell-derived Granzyme B Activates the Mitochondrial Cell Death Pathway in a Bim-dependent Fashion*

    PubMed Central

    Catalán, Elena; Jaime-Sánchez, Paula; Aguiló, Nacho; Simon, Markus M.; Froelich, Christopher J.; Pardo, Julián

    2015-01-01

    Cytotoxic T cells (Tc) use perforin and granzyme B (gzmB) to kill virus-infected cells and cancer cells. Recent evidence suggests that human gzmB primarily induces apoptosis via the intrinsic mitochondrial pathway by either cleaving Bid or activating Bim leading to the activation of Bak/Bax and subsequent generation of active caspase-3. In contrast, mouse gzmB is thought to predominantly induce apoptosis by directly processing pro-caspase-3. However, in certain mouse cell types gzmB-mediated apoptosis mainly occurs via the mitochondrial pathway. To investigate whether Bim is involved under the latter conditions, we have now employed ex vivo virus-immune mouse Tc that selectively kill by using perforin and gzmB (gzmB+Tc) as effector cells and wild type as well as Bim- or Bak/Bax-deficient spontaneously (3T9) or virus-(SV40) transformed mouse embryonic fibroblast cells as targets. We show that gzmB+Tc-mediated apoptosis (phosphatidylserine translocation, mitochondrial depolarization, cytochrome c release, and caspase-3 activation) was severely reduced in 3T9 cells lacking either Bim or both Bak and Bax. This outcome was related to the ability of Tc cells to induce the degradation of Mcl-1 and Bcl-XL, the anti-apoptotic counterparts of Bim. In contrast, gzmB+Tc-mediated apoptosis was not affected in SV40-transformed mouse embryonic fibroblast cells lacking Bak/Bax. The data provide evidence that Bim participates in mouse gzmB+Tc-mediated apoptosis of certain targets by activating the mitochondrial pathway and suggest that the mode of cell death depends on the target cell. Our results suggest that the various molecular events leading to transformation and/or immortalization of cells have an impact on their relative resistance to the multiple gzmB+Tc-induced death pathways. PMID:25605735

  4. CD22 Ligands on a Natural N-Glycan Scaffold Efficiently Deliver Toxins to B-Lymphoma Cells.

    PubMed

    Peng, Wenjie; Paulson, James C

    2017-09-13

    CD22 is a sialic acid-binding immunoglobulin-like lectin (Siglec) that is highly expressed on B-cells and B cell lymphomas, and is a validated target for antibody and nanoparticle based therapeutics. However, cell targeted therapeutics are limited by their complexity, heterogeneity, and difficulties in production. We describe here a chemically defined natural N-linked glycan scaffold that displays high affinity CD22 glycan ligands and outcompetes the natural ligand for the receptor, resulting in single molecule binding to CD22 and endocytosis into cells. Binding affinity is increased by up to 1500-fold compared to the monovalent ligand, while maintaining the selectivity for hCD22 over other Siglecs. Conjugates of these multivalent ligands with auristatin and saporin toxins are efficiently internalized via hCD22 resulting in killing of B-cell lymphoma cells. This single molecule ligand targeting strategy represents an alternative to antibody- and nanoparticle-mediated approaches for delivery of agents to cells expressing CD22 and other Siglecs.

  5. Photoacoustically-guided photothermal killing of mosquitoes targeted by nanoparticles.

    PubMed

    Foster, Stephen R; Galanzha, Ekaterina I; Totten, Daniel C; Beneš, Helen; Shmookler Reis, Robert J; Zharov, Vladimir P

    2014-07-01

    In biomedical applications, nanoparticles have demonstrated the potential to eradicate abnormal cells in small localized pathological zones associated with cancer or infections. Here, we introduce a method for nanotechnology-based photothermal (PT) killing of whole organisms considered harmful to humans or the environment. We demonstrate that laser-induced thermal, and accompanying nano- and microbubble phenomena, can injure or kill C. elegans and mosquitoes fed carbon nanotubes, gold nanospheres, gold nanoshells, or magnetic nanoparticles at laser energies that are safe for humans. In addition, a photoacoustic (PA) effect was used to control nanoparticle delivery. Through the integration of this technique with molecular targeting, nanoparticle clustering, magnetic capturing and spectral sharpening of PA and PT plasmonic resonances, our laser-based PA-PT nano-theranostic platform can be applied to detection and the physical destruction of small organisms and carriers of pathogens, such as malaria vectors, spiders, bed bugs, fleas, ants, locusts, grasshoppers, phytophagous mites, or other arthropod pests, irrespective of their resistance to conventional treatments. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Circumvention of Mcl-1-dependent drug resistance by simultaneous Chk1 and MEK1/2 inhibition in human multiple myeloma cells.

    PubMed

    Pei, Xin-Yan; Dai, Yun; Felthousen, Jessica; Chen, Shuang; Takabatake, Yukie; Zhou, Liang; Youssefian, Leena E; Sanderson, Michael W; Bodie, Wesley W; Kramer, Lora B; Orlowski, Robert Z; Grant, Steven

    2014-01-01

    The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM) cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM.

  7. Circumvention of Mcl-1-Dependent Drug Resistance by Simultaneous Chk1 and MEK1/2 Inhibition in Human Multiple Myeloma Cells

    PubMed Central

    Pei, Xin-Yan; Dai, Yun; Felthousen, Jessica; Chen, Shuang; Takabatake, Yukie; Zhou, Liang; Youssefian, Leena E.; Sanderson, Michael W.; Bodie, Wesley W.; Kramer, Lora B.; Orlowski, Robert Z.; Grant, Steven

    2014-01-01

    The anti-apoptotic protein Mcl-1 plays a major role in multiple myeloma (MM) cell survival as well as bortezomib- and microenvironmental forms of drug resistance in this disease. Consequently, there is a critical need for strategies capable of targeting Mcl-1-dependent drug resistance in MM. The present results indicate that a regimen combining Chk1 with MEK1/2 inhibitors effectively kills cells displaying multiple forms of drug resistance stemming from Mcl-1 up-regulation in association with direct transcriptional Mcl-1 down-regulation and indirect disabling of Mcl-1 anti-apoptotic function through Bim up-regulation and increased Bim/Mcl-1 binding. These actions release Bak from Mcl-1, accompanied by Bak/Bax activation. Analogous events were observed in both drug-naïve and acquired bortezomib-resistant MM cells displaying increased Mcl-1 but diminished Bim expression, or cells ectopically expressing Mcl-1. Moreover, concomitant Chk1 and MEK1/2 inhibition blocked Mcl-1 up-regulation induced by IL-6/IGF-1 or co-culture with stromal cells, effectively overcoming microenvironment-related drug resistance. Finally, this regimen down-regulated Mcl-1 and robustly killed primary CD138+ MM cells, but not normal hematopoietic cells. Together, these findings provide novel evidence that this targeted combination strategy could be effective in the setting of multiple forms of Mcl-1-related drug resistance in MM. PMID:24594907

  8. Radio-sensitization of Prostate Cancer Cells by Monensin Treatment and its associated Gene Expression Profiling Changes

    NASA Technical Reports Server (NTRS)

    Zhang Ye; Rohde, Larry H.; Wu, Honglu

    2008-01-01

    Radio-resistant or recurrent prostate cancer represents a serious health risk for approximately 20%-30% of patients treated with primary radiation therapy for clinically localized prostate cancer. Here, we investigated the effect of monensin on sensitizing radiation mediated cell killing of two radio-resistant prostate cell lines Lncap (P53+ and AR+) and PC3 (P53- and AR-). Treatment with monensin alone (5 micromoles-20 micromoles) showed a significant direct cell killing of Lncap (10-30%), but not PC3 cells. Monensin was also shown to successfully sensitize Lncap cells to X-ray radiation (2Gy-10Gy) mediated cell death, up to 50% of killing with the combined treatment. To better understand the mechanisms of radio-resistance of these two cell lines and their different response to monensin, the apoptosis related gene expression profiles in both cell lines were analyzed using cDNA PCR array. Without any treatment, PC3 showed a much higher expression level of antiapoptosis genes than Lncap in the BCL2 family, the caspase/card family and the TNF ligand/receptor family. At 2 hr after 20 micormolar monensin treatment alone, only the TRAF and CIDE family showed a greater induction in Lncap cells than in PC3. Exposures to 10 Gy X-rays alone of Lncap cells significantly induced gene expression levels in the death and death receptor domain family, the TNF ligand and receptor family, and apoptotic group of BCL2 family; whereas exposures of PC3 induced only the expression of genes in the anti-apoptosis group of CASP and CARD family. Furthermore, we selectively suppressed the expression of several anti-apoptosis genes (BCL-xl, Bcl2A1, BIRC2, BIRC3 and CASP2) in PC3 cells by using the siRNA treatment. Exposure to 10Gy X-rays alone showed an enhanced cell killing (about 15%) in BCL-x1 silenced cells, but not in cells with siRNA treatment targeting other anti-apoptosis genes. We also exposed PC3 cells to protons in the Bragg peak region to compare the effectiveness of cell killing of X-rays. Interestingly, in comparison to X-rays, protons significantly reduced the gene expression in the anti-apoptosis family, suggesting that proton treatment may be more effective for PC3 cells. As a conclusion, monensin was found to sensitize Lncap cells, but not PC3, and over-expression of Bcl-xl cells may be responsible for the radio- or chemo-resistance characteristics of PC3 cells.

  9. CPTAC Develops Fit-for-Purpose Multiplex Immuno-MRM Assay for Profiling the DNA Damage Response Pathway | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Ionizing radiation (IR) is a commonly employed cancer treatment that kills cancer cells by damaging their DNA. While the DNA damage response (DDR) pathway may be key to determining tumor responses, radiochemical damage due to IR can target the patients’ healthy dividing cells, leading to the formation of secondary hematologic and solid tumors after DNA-damaging therapy.

  10. Inhibition of Hsp90 acts synergistically with topoisomerase II poisons to increase the apoptotic killing of cells due to an increase in topoisomerase II mediated DNA damage.

    PubMed

    Barker, Catherine R; McNamara, Anne V; Rackstraw, Stephen A; Nelson, David E; White, Mike R; Watson, Alastair J M; Jenkins, John R

    2006-01-01

    Topoisomerase II plays a crucial role during chromosome condensation and segregation in mitosis and meiosis and is a highly attractive target for chemotherapeutic agents. We have identified previously topoisomerase II and heat shock protein 90 (Hsp90) as part of a complex. In this paper we demonstrate that drug combinations targeting these two enzymes cause a synergistic increase in apoptosis. The objective of our study was to identify the mode of cell killing and the mechanism behind the increase in topoisomerase II mediated DNA damage. Importantly we demonstrate that Hsp90 inhibition results in an increased topoiosmerase II activity but not degradation of topoisomerase II and it is this, in the presence of a topoisomerase II poison that causes the increase in cell death. Our results suggest a novel mechanism of action where the inhibition of Hsp90 disrupts the Hsp90-topoisomerase II interaction leading to an increase in and activation of unbound topoisomerase II, which, in the presence of a topoisomerase II poison leads to the formation of an increased number of cleavable complexes ultimately resulting in rise in DNA damage and a subsequent increase cell death.

  11. Inhibition of Hsp90 acts synergistically with topoisomerase II poisons to increase the apoptotic killing of cells due to an increase in topoisomerase II mediated DNA damage

    PubMed Central

    Barker, Catherine R.; McNamara, Anne V.; Rackstraw, Stephen A.; Nelson, David E.; White, Mike R.; Watson, Alastair J. M.; Jenkins, John R.

    2006-01-01

    Topoisomerase II plays a crucial role during chromosome condensation and segregation in mitosis and meiosis and is a highly attractive target for chemotherapeutic agents. We have identified previously topoisomerase II and heat shock protein 90 (Hsp90) as part of a complex. In this paper we demonstrate that drug combinations targeting these two enzymes cause a synergistic increase in apoptosis. The objective of our study was to identify the mode of cell killing and the mechanism behind the increase in topoisomerase II mediated DNA damage. Importantly we demonstrate that Hsp90 inhibition results in an increased topoiosmerase II activity but not degradation of topoisomerase II and it is this, in the presence of a topoisomerase II poison that causes the increase in cell death. Our results suggest a novel mechanism of action where the inhibition of Hsp90 disrupts the Hsp90–topoisomerase II interaction leading to an increase in and activation of unbound topoisomerase II, which, in the presence of a topoisomerase II poison leads to the formation of an increased number of cleavable complexes ultimately resulting in rise in DNA damage and a subsequent increase cell death. PMID:16504968

  12. Phytochemicals as Innovative Therapeutic Tools against Cancer Stem Cells.

    PubMed

    Scarpa, Emanuele-Salvatore; Ninfali, Paolino

    2015-07-10

    The theory that several carcinogenetic processes are initiated and sustained by cancer stem cells (CSCs) has been validated, and specific methods to identify the CSCs in the entire population of cancer cells have also proven to be effective. This review aims to provide an overview of recently acquired scientific knowledge regarding phytochemicals and herbal extracts, which have been shown to be able to target and kill CSCs. Many genes and proteins that sustain the CSCs' self-renewal capacity and drug resistance have been described and applications of phytochemicals able to interfere with these signaling systems have been shown to be operatively efficient both in vitro and in vivo. Identification of specific surface antigens, mammosphere formation assays, serial colony-forming unit assays, xenograft transplantation and label-retention assays coupled with Aldehyde dehydrogenase 1 (ALDH1) activity evaluation are the most frequently used techniques for measuring phytochemical efficiency in killing CSCs. Moreover, it has been demonstrated that EGCG, curcumin, piperine, sulforaphane, β-carotene, genistein and the whole extract of some plants are able to kill CSCs. Most of these phytochemicals act by interfering with the canonical Wnt (β-catenin/T cell factor-lymphoid enhancer factor (TCF-LEF)) pathway implicated in the pathogenesis of several cancers. Therefore, the use of phytochemicals may be a true therapeutic strategy for eradicating cancer through the elimination of CSCs.

  13. Tracking in vivo migration and distribution of antigen-specific cytotoxic T lymphocytes by 5,6-carboxyfluorescein diacetate succinimidyl ester staining during cancer immunotherapy.

    PubMed

    Xu, Wei-li; Li, Suo-lin; Wen, Ming; Wen, Jun-ye; Han, Jie; Zhang, Hong-zhen; Gao, Fei; Cai, Jian-hui

    2013-08-01

    Killing of targeted tumors during adoptive cell transfer therapy is associated with cytotoxic T lymphocyte (CTL) numbers, immunophenotype, tumor-specificity, and in vivo residence time, migration, and distribution. Therefore, tracing in vivo persistence, migration, and distribution of CTLs is important for cancer immunotherapy. Optimal staining concentration for CTL proliferation was determined by cell counting kit-8 (CCK-8) assay and killing efficiencies of CTLs or carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled melanoma antigen-specific cytotoxic T lymphocytes (CFSE-CTLs) for malignant melanoma cells in vitro were compared. Additionally, CFSE-CTLs were intravenously transfused to mice receiving B16 melanoma, and their residence time, migration, and distribution in vivo were observed by measuring fluorescence intensities of CFSE-CTLs per gram of tissue (%FI/g) in various tissues and analyzing tumor/non-tumor (T/NT) values. Anti-tumor effects of transferred CTLs and correlation between %FI/g and D-value of tumor size were analyzed. Five-micromolar CFSE was optimal for labeling CTLs with minimal cytotoxicity. No significant difference occurred between CTLs and CFSE-CTLs for tumor cell killing (P = 0.849) or interleukin-2 (P = 0.318) and interferon-γ (P = 0.201) levels. Distribution of CTLs in vivo varied with time. A negative correlation between %FI/g in tumors and D-value of tumor sizes by Spearman correlation analysis was observed. CTLs were recruited to and killed tumors from 6 hours to 3 days after cell infusion. CTLs were observed up to three weeks later in the tumor, liver, kidneys, and spleen; this was related to the abundant blood supply or the nature of immune organs. CCK-8 assay is a novel method to select optimal CFSE staining concentrations. Fluorescence intensity of transferred CTLs reflects their killing efficiency of tumors. CFSE fluorescent markers can trace in vivo CTL persistence, migration, and distribution because of its stability, long half-life, and low toxicity.

  14. A repetitive mutation and selection system for bacterial evolution to increase the specific affinity to pancreatic cancer cells.

    PubMed

    Osawa, Masaki

    2018-01-01

    It is difficult to target and kill cancer cells. One possible approach is to mutate bacteria to enhance their binding to cancer cells. In the present study, Gram-negative Escherichia coli and Gram-positive Bacillus subtilis were randomly mutated, and then were positively and negatively selected for binding cancer vs normal cells. With repetitive mutation and selection both bacteria successfully evolved to increase affinity to the pancreatic cancer cell line (Mia PaCa-2) but not normal cells (HPDE: immortalized human pancreatic ductal epithelial cells). The mutant E. coli and B. subtilis strains bound to Mia PaCa-2 cells about 10 and 25 times more than to HPDE cells. The selected E. coli strain had mutations in biofilm-related genes and the regulatory region for a type I pilus gene. Consistent with type I pili involvement, mannose could inhibit the binding to cells. The results suggest that weak but specific binding is involved in the initial step of adhesion. To test their ability to kill Mia PaCa-2 cells, hemolysin was expressed in the mutant strain. The hemolysin released from the mutant strain was active and could kill Mia PaCa-2 cells. In the case of B. subtilis, the initial binding to the cells was a weak interaction of the leading pole of the motile bacteria. The frequency of this interaction to Mia PaCa-2 cells dramatically increased in the evolved mutant strain. This mutant strain could also specifically invade beneath Mia PaCa-2 cells and settle there. This type of mutation/selection strategy may be applicable to other combinations of cancer cells and bacterial species.

  15. Irradiated KHYG-1 retains cytotoxicity: potential for adoptive immunotherapy with a natural killer cell line.

    PubMed

    Suck, G; Branch, D R; Keating, A

    2006-05-01

    To evaluate gamma-irradiation on KHYG-1, a highly cytotoxic natural killer (NK) cell line and potential candidate for cancer immunotherapy. The NK cell line KHYG-1 was irradiated at 1 gray (Gy) to 50 Gy with gamma-irradiation, and evaluated for cell proliferation, cell survival, and cytotoxicity against tumor targets. We showed that a dose of at least 10 Gy was sufficient to inhibit proliferation of KHYG-1 within the first day but not its cytolytic activity. While 50 Gy had an apoptotic effect in the first hours after irradiation, the killing of K562 and HL60 targets was not different from non-irradiated cells but was reduced for the Ph + myeloid leukemia lines, EM-2 and EM-3. gamma-irradiation (at least 10 Gy) of KHYG-1 inhibits cell proliferation but does not diminish its enhanced cytolytic activity against several tumor targets. This study suggests that KHYG-1 may be a feasible immunotherapeutic agent in the treatment of cancers.

  16. Macrophage-mediated trogocytosis leads to death of antibody-opsonized tumor cells

    PubMed Central

    Velmurugan, Ramraj; Challa, Dilip K.; Ram, Sripad; Ober, Raimund J.; Ward, E. Sally

    2016-01-01

    Understanding the complex behavior of effector cells such as monocytes or macrophages in regulating cancerous growth is of central importance for cancer immunotherapy. Earlier studies using CD20-specific antibodies have demonstrated that the Fcγ receptor (FcγR)-mediated transfer of the targeted receptors from tumor cells to these effector cells through trogocytosis can enable escape from antibody therapy, leading to the viewpoint that this process is pro-tumorigenic. In the current study we demonstrate that persistent trogocytic attack results in the killing of HER2-overexpressing breast cancer cells. Further, antibody engineering to increase FcγR interactions enhances this tumoricidal activity. These studies extend the complex repertoire of activities of macrophages to trogocytic-mediated cell death of HER2-overexpressing target cells and have implications for the development of effective antibody-based therapies. PMID:27226489

  17. Irreversible EGFR Inhibitor EKB-569 Targets Low-LET γ-Radiation-Triggered Rel Orchestration and Potentiates Cell Death in Squamous Cell Carcinoma

    PubMed Central

    Aravindan, Natarajan; Thomas, Charles R.; Aravindan, Sheeja; Mohan, Aswathi S.; Veeraraghavan, Jamunarani; Natarajan, Mohan

    2011-01-01

    EKB-569 (Pelitinib), an irreversible EGFR tyrosine kinase inhibitor has shown potential therapeutic efficiency in solid tumors. However, cell-killing potential in combination with radiotherapy and its underlying molecular orchestration remain to be explored. The objective of this study was to determine the effect of EKB-569 on ionizing radiation (IR)-associated NFκB-dependent cell death. SCC-4 and SCC-9 cells exposed to IR (2Gy) with and without EKB-569 treatment were analyzed for transactivation of 88 NFκB pathway molecules, NFκB DNA-binding activity, translation of the NFκB downstream mediators, Birc1, 2 and 5, cell viability, metabolic activity and apoptosis. Selective targeting of IR-induced NFκB by EKB-569 and its influence on cell-fate were assessed by overexpressing (p50/p65) and silencing (ΔIκBα) NFκB. QPCR profiling after IR exposure revealed a significant induction of 74 NFκB signal transduction molecules. Of those, 72 were suppressed with EKB-569. EMSA revealed a dose dependent inhibition of NFκB by EKB-569. More importantly, EKB-569 inhibited IR-induced NFκB in a dose-dependent manner, and this inhibition was sustained up to at least 72 h. Immunoblotting revealed a significant suppression of IR-induced Birc1, 2 and 5 by EKB-569. We observed a dose-dependent inhibition of cell viability, metabolic activity and apoptosis with EKB-569. EKB-569 significantly enhanced IR-induced cell death and apoptosis. Blocking NFκB improved IR-induced cell death. Conversely, NFκB overexpression negates EKB-569 -induced cell-killing. Together, these pre-clinical data suggest that EKB-569 is a radiosensitizer of squamous cell carcinoma and may mechanistically involve selective targeting of IR-induced NFκB-dependent survival signaling. Further pre-clinical in-vivo studies are warranted. PMID:22242139

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Seong-Su, E-mail: seong-su-han@uiowa.edu; Han, Sangwoo; Kamberos, Natalie L.

    Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL onmore » the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL.« less

  19. Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Bret D.; Wang, Hongwei; Lane, Kimberly T.

    2011-08-12

    The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial {beta}-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial {beta}-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial {beta}-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally,more » oral administration of an inhibitor protected mice from CPT-11-induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy.« less

  20. Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme

    PubMed Central

    Wallace, Bret D.; Wang, Hongwei; Lane, Kimberly T.; Scott, John E.; Orans, Jillian; Koo, Ja Seol; Venkatesh, Madhukumar; Jobin, Christian; Yeh, Li-An; Mani, Sridhar; Redinbo, Matthew R.

    2011-01-01

    The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial β-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial β-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial β-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally, oral administration of an inhibitor protected mice from CPT-11–induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy. PMID:21051639

  1. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme.

    PubMed

    Wallace, Bret D; Wang, Hongwei; Lane, Kimberly T; Scott, John E; Orans, Jillian; Koo, Ja Seol; Venkatesh, Madhukumar; Jobin, Christian; Yeh, Li-An; Mani, Sridhar; Redinbo, Matthew R

    2010-11-05

    The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial β-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial β-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial β-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally, oral administration of an inhibitor protected mice from CPT-11-induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy.

  2. Acid ceramidase and its inhibitors: a de novo drug target and a new class of drugs for killing glioblastoma cancer stem cells with high efficiency.

    PubMed

    Doan, Ninh B; Alhajala, Hisham; Al-Gizawiy, Mona M; Mueller, Wade M; Rand, Scott D; Connelly, Jennifer M; Cochran, Elizabeth J; Chitambar, Christopher R; Clark, Paul; Kuo, John; Schmainda, Kathleen M; Mirza, Shama P

    2017-12-22

    Glioblastoma remains the most common, malignant primary cancer of the central nervous system with a low life expectancy and an overall survival of less than 1.5 years. The treatment options are limited and there is no cure. Moreover, almost all patients develop recurrent tumors, which typically are more aggressive. Therapeutically resistant glioblastoma or glioblastoma stem-like cells (GSCs) are hypothesized to cause this inevitable recurrence. Identifying prognostic biomarkers of glioblastoma will potentially advance knowledge about glioblastoma tumorigenesis and enable discovery of more effective therapies. Proteomic analysis of more than 600 glioblastoma-specific proteins revealed, for the first time, that expression of acid ceramidase (ASAH1) is associated with poor glioblastoma survival. CD133+ GSCs express significantly higher ASAH1 compared to CD133- GSCs and serum-cultured glioblastoma cell lines, such as U87MG. These findings implicate ASAH1 as a plausible independent prognostic marker, providing a target for a therapy tailored toward GSCs. We further demonstrate that ASAH1 inhibition increases cellular ceramide level and induces apoptosis. Strikingly, U87MG cells, and three different patient-derived glioblastoma stem-like cancer cell lines were efficiently killed, through apoptosis, by three different known ASAH1 inhibitors with IC50's ranging from 11-104 μM. In comparison, the standard glioblastoma chemotherapy agent, temozolomide, had minimal GSC-targeted effects at comparable or even higher concentrations (IC50 > 750 μM against GSCs). ASAH1 is identified as a de novo glioblastoma drug target, and ASAH1 inhibitors, such as carmofur, are shown to be highly effective and to specifically target glioblastoma GSCs. Carmofur is an ASAH1 inhibitor that crosses the blood-brain barrier, a major bottleneck in glioblastoma treatment. It has been approved in Japan since 1981 for colorectal cancer therapy. Therefore, it is poised for repurposing and translation to glioblastoma clinical trials.

  3. Granzyme B Disrupts Central Metabolism and Protein Synthesis in Bacteria to Promote an Immune Cell Death Program.

    PubMed

    Dotiwala, Farokh; Sen Santara, Sumit; Binker-Cosen, Andres Ariel; Li, Bo; Chandrasekaran, Sriram; Lieberman, Judy

    2017-11-16

    Human cytotoxic lymphocytes kill intracellular microbes. The cytotoxic granule granzyme proteases released by cytotoxic lymphocytes trigger oxidative bacterial death by disrupting electron transport, generating superoxide anion and inactivating bacterial oxidative defenses. However, they also cause non-oxidative cell death because anaerobic bacteria are also killed. Here, we use differential proteomics to identify granzyme B substrates in three unrelated bacteria: Escherichia coli, Listeria monocytogenes, and Mycobacteria tuberculosis. Granzyme B cleaves a highly conserved set of proteins in all three bacteria, which function in vital biosynthetic and metabolic pathways that are critical for bacterial survival under diverse environmental conditions. Key proteins required for protein synthesis, folding, and degradation are also substrates, including multiple aminoacyl tRNA synthetases, ribosomal proteins, protein chaperones, and the Clp system. Because killer cells use a multipronged strategy to target vital pathways, bacteria may not easily become resistant to killer cell attack. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Treatment of colon cancer with oncolytic herpes simplex virus in preclinical models.

    PubMed

    Yang, H; Peng, T; Li, J; Wang, Y; Zhang, W; Zhang, P; Peng, S; Du, T; Li, Y; Yan, Q; Liu, B

    2016-05-01

    Cancer stem cells (CSCs), which are a rare population in any type of cancer, including colon cancer, are tumorigenic and responsible for cancer recurrence and metastasis. CSCs have been isolated from a number of different solid tumors recently, although the isolation of CSCs in colon cancer is still challenging. We cultured colon cancer cells in stem cell medium to obtain colonosphere cells. These cells possessed the characteristics of CSCs, with a high capacity of tumorigenicity, migration and invasion in vitro and in vivo. The isolation and identification of CSCs have provided new targets for the therapeutics. Oncolytic herpes simplex viruses (oHSV) are an effective strategy for killing colon cancer cells in preclinical models. Here, we examined the efficacy of an oncolytic herpes simplex virus type 2 (oHSV2) in killing colon cancer cells and colon cancer stem-like cells (CSLCs). oHSV2 was found to be highly cytotoxic to the adherent and sphere cells in vitro, and oHSV2 treatment in vivo significantly inhibited tumor growth. This study demonstrates that oHSV2 is effective against colon cancer cells and colon CSLCs and could be a promising strategy for treating colon cancer patients.

  5. Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model

    PubMed Central

    Swift, Brenna E.; Williams, Brent A.; Kosaka, Yoko; Wang, Xing-Hua; Medin, Jeffrey A.; Viswanathan, Sowmya; Martinez-Lopez, Joaquin; Keating, Armand

    2012-01-01

    Background Novel therapies capable of targeting drug resistant clonogenic MM cells are required for more effective treatment of multiple myeloma. This study investigates the cytotoxicity of natural killer cell lines against bulk and clonogenic multiple myeloma and evaluates the tumor burden after NK cell therapy in a bioluminescent xenograft mouse model. Design and Methods The cytotoxicity of natural killer cell lines was evaluated against bulk multiple myeloma cell lines using chromium release and flow cytometry cytotoxicity assays. Selected activating receptors on natural killer cells were blocked to determine their role in multiple myeloma recognition. Growth inhibition of clonogenic multiple myeloma cells was assessed in a methylcellulose clonogenic assay in combination with secondary replating to evaluate the self-renewal of residual progenitors after natural killer cell treatment. A bioluminescent mouse model was developed using the human U266 cell line transduced to express green fluorescent protein and luciferase (U266eGFPluc) to monitor disease progression in vivo and assess bone marrow engraftment after intravenous NK-92 cell therapy. Results Three multiple myeloma cell lines were sensitive to NK-92 and KHYG-1 cytotoxicity mediated by NKp30, NKp46, NKG2D and DNAM-1 activating receptors. NK-92 and KHYG-1 demonstrated 2- to 3-fold greater inhibition of clonogenic multiple myeloma growth, compared with killing of the bulk tumor population. In addition, the residual colonies after treatment formed significantly fewer colonies compared to the control in a secondary replating for a cumulative clonogenic inhibition of 89–99% at the 20:1 effector to target ratio. Multiple myeloma tumor burden was reduced by NK-92 in a xenograft mouse model as measured by bioluminescence imaging and reduction in bone marrow engraftment of U266eGFPluc cells by flow cytometry. Conclusions This study demonstrates that NK-92 and KHYG-1 are capable of killing clonogenic and bulk multiple myeloma cells. In addition, multiple myeloma tumor burden in a xenograft mouse model was reduced by intravenous NK-92 cell therapy. Since multiple myeloma colony frequency correlates with survival, our observations have important clinical implications and suggest that clinical studies of NK cell lines to treat MM are warranted. PMID:22271890

  6. Oligo-branched peptides for tumor targeting: from magic bullets to magic forks.

    PubMed

    Falciani, Chiara; Pini, Alessandro; Bracci, Luisa

    2009-02-01

    Selective targeting of tumor cells is the final goal of research and drug discovery for cancer diagnosis, imaging and therapy. After the invention of hybridoma technology, the concept of magic bullet was introduced into the field of oncology, referring to selective killing of tumor cells, by specific antibodies. More recently, small molecules and peptides have also been proposed as selective targeting agents. We analyze the state of the art of tumor-selective agents that are presently available and tested in clinical settings. A novel approach based on 'armed' oligo-branched peptides as tumor targeting agents, is discussed and compared with existing tumor-selective therapies mediated by antibodies, small molecules or monomeric peptides. Oligo-branched peptides could be novel drugs that combine the advantages of antibodies and small molecules.

  7. Aggressive peripheral CD70-positive T-cell lymphoma associated with severe chronic active EBV infection.

    PubMed

    Shaffer, Donald R; Sheehan, Andrea M; Yi, Zhongzhen; Rodgers, Cheryl C; Bollard, Catherine M; Brenner, Malcolm K; Rooney, Cliona M; Heslop, Helen E; Gottschalk, Stephen

    2012-10-01

    Severe chronic active Epstein-Barr virus infection (CAEBV) in T or NK cells is a rare complication of latent EBV infection. CAEBV associated T-cell lymphoproliferative disease (LPD) consists of polyclonal lesions as well as aggressive lymphomas. Here, we report such a patient. In addition, we show that this primary CAEBV associated T-cell lymphoma expresses CD70 and is sensitive to killing by CD70-specific T cells, identifying CD70 as a potential immunotherapeutic target for CAEBV-associated T-cell lymphoma. Copyright © 2011 Wiley Periodicals, Inc.

  8. Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells

    PubMed Central

    Janssen, Aniek; Kops, Geert J. P. L.; Medema, René H.

    2009-01-01

    The mitotic checkpoint has evolved to prevent chromosome mis-segregations by delaying mitosis when unattached chromosomes are present. Inducing severe chromosome segregation errors by ablating the mitotic checkpoint causes cell death. Here we have analyzed the consequences of gradual increases in chromosome segregation errors on the viability of tumor cells and normal human fibroblasts. Partial reduction of essential mitotic checkpoint components in four tumor cell lines caused mild chromosome mis-segregations, but no lethality. These cells were, however, remarkably more sensitive to low doses of taxol, which enhanced the amount and severity of chromosome segregation errors. Sensitization to taxol was achieved by reducing levels of Mps1 or BubR1, proteins having dual roles in checkpoint activation and chromosome alignment, but not by reducing Mad2, functioning solely in the mitotic checkpoint. Moreover, we find that untransformed human fibroblasts with reduced Mps1 levels could not be sensitized to sublethal doses of taxol. Thus, targeting the mitotic checkpoint and chromosome alignment simultaneously may selectively kill tumor cells by enhancing chromosome mis-segregations. PMID:19855003

  9. Heterodimeric bispecific single chain variable fragments (scFv) killer engagers (BiKEs) enhance NK-cell activity against CD133+ colorectal cancer cells

    PubMed Central

    JU, Schmohl; MK, Gleason; PR, Dougherty; JS, Miller; DA, Vallera

    2015-01-01

    Background Natural killer (NK) cells are potent cytotoxic lymphocytes that play a critical role in tumor immunosurveillance and control. Cancer stem cells (CSC) initiate and sustain tumor cell growth, mediate drug refractory cancer relapse and express the well-known surface marker CD133. Methods DNA fragments from two fully humanized single chain fragment variable (scFv) antibody recognizing CD16 on NK-cells and CD133 on CSC were genetically spliced forming a novel drug, 16 × 133 BiKE that simultaneously recognizes these antigen to facilitate an immunologic synapse. The anti-CD133 was created using a fusion protein prepared by fusing DNA fragments encoding the two extracellular domains of CD133. Immunization of mice with the resulting fusion protein generated an unique antibody that recognized the molecular framework and was species cross-reactive. Results In vitro 51chromium release cytotoxicity assays at both high and low effector:target ratios demonstrated the ability of the heterodimeric biological drug to greatly enhance NK-cell killing of human Caco-2 colorectal carcinoma cells known to overexpress CD133. The tumor associated antigen specificity of the drug for CD133 even enhanced NK-cell cytotoxicity against the NK-resistant human Burkitt's lymphoma Daudi cell line, which has less than 5% CD133 surface expression. Flow cytometry analysis revealed increases in NK-cell degranulation and Interferon-γ production upon co-culture with Caco-2 targets in the presence of the drug. Conclusion These studies demonstrate that the innate immune system can be effectively recruited to kill CSC using bispecific antibodies targeting CD133, and that this anti-CD133 scFv may be useful in this bispecific platform or, perhaps, in the design of more complex trispecific molecules for carcinoma therapy. PMID:26566946

  10. Yeast β-1,6-glucan is a primary target for the Saccharomyces cerevisiae K2 toxin.

    PubMed

    Lukša, Juliana; Podoliankaitė, Monika; Vepštaitė, Iglė; Strazdaitė-Žielienė, Živilė; Urbonavičius, Jaunius; Servienė, Elena

    2015-04-01

    Certain Saccharomyces cerevisiae strains secrete different killer proteins of double-stranded-RNA origin. These proteins confer a growth advantage to their host by increasing its survival. K2 toxin affects the target cell by binding to the cell surface, disrupting the plasma membrane integrity, and inducing ion leakage. In this study, we determined that K2 toxin saturates the yeast cell surface receptors in 10 min. The apparent amount of K2 toxin, bound to a single cell of wild type yeast under saturating conditions, was estimated to be 435 to 460 molecules. It was found that an increased level of β-1,6-glucan directly correlates with the number of toxin molecules bound, thereby impacting the morphology and determining the fate of the yeast cell. We observed that the binding of K2 toxin to the yeast surface receptors proceeds in a similar manner as in case of the related K1 killer protein. It was demonstrated that the externally supplied pustulan, a poly-β-1,6-glucan, but not the glucans bearing other linkage types (such as laminarin, chitin, and pullulan) efficiently inhibits the K2 toxin killing activity. In addition, the analysis of toxin binding to the intact cells and spheroplasts confirmed that majority of K2 protein molecules attach to the β-1,6-glucan, rather than the plasma membrane-localized receptors. Taken together, our results reveal that β-1,6-glucan is a primary target of K2 toxin and is important for the execution of its killing property. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. The Trojan Horse of the microbiological arms race: phage-encoded toxins as a defence against eukaryotic predators.

    PubMed

    Arnold, Jason W; Koudelka, Gerald B

    2014-02-01

    Phage-encoded Shiga toxin (Stx) acts as a bacterial defence against the eukaryotic predator Tetrahymena. To function as an effective bacterial anti-predator defence, Stx must kill a broad spectrum of predators. Consistent with that assertion, we show here that bacterially encoded Stx efficiently kills the bacteriovore Acanthamoeba castellanii in co-culture. We also show that, in addition to Stx, the phage-encoded exotoxin, diphtheria toxin (Dtx) expressed by Corynebacterium diphtheriae also can function as part of an anti-predator strategy; it kills Acanthamoeba in co-culture. Interestingly, only exotoxins produced by bacteria internalized by the Acanthamoeba predator are cytolethal; the presence of purified Dtx or Stx in culture medium has no effect on predator viability. This finding is consistent with our results indicating that intoxication of Acanthamoeba by these exotoxins does not require a receptor. Thus bacteria, in the disguise of a food source, function as a 'Trojan Horse', carrying genes encoding an exotoxin into target organisms. This 'Trojan Horse' mechanism of exotoxin delivery into predator cells allows intoxication of predators that lack a cell surface receptor for the particular toxin, allowing bacteria-bearing exotoxins to kill a broader spectrum of predators, increasing the fitness of the otherwise 'defenceless' prey bacteria. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Synthesis and application of magnetite dextran-spermine nanoparticles in breast cancer hyperthermia.

    PubMed

    Avazzadeh, Reza; Vasheghani-Farahani, Ebrahim; Soleimani, Masoud; Amanpour, Saeid; Sadeghi, Mohsen

    2017-09-01

    Cancer treatment has been very challenging in recent decades. One of the most promising cancer treatment methods is hyperthermia, which increases the tumor temperature (41-45 °C). Magnetic nanoparticles have been widely used for selective targeting of cancer cells. In the present study, magnetic dextran-spermine nanoparticles, conjugated with Anti-HER2 antibody to target breast cancer cells were developed. The magnetic dextran-spermine nanoparticles (DMNPs) were prepared by ionic gelation, followed by conjugation of antibody to them using EDC-NHS method. Then the Prussian blue method was used to estimate the targeting ability and cellular uptake. Cytotoxicity assay by MTT showed that antibody-conjugated MNPs (ADMNPs) have no toxic effect on SKBR3 and human fibroblast cells. Finally, the hyperthermia was applied to show that synthesized ADMNPs, could increase the cancer cells temperature up to 45 °C and kill most of them without affecting normal cells. These observations proved that Anti-HER2 conjugated magnetic dextran-spermine nanoparticles can target and destroy cancer cells and are potentially suitable for cancer treatment.

  13. Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene Delivery

    PubMed Central

    Yata, Teerapong; Lee, Koon-Yang; Dharakul, Tararaj; Songsivilai, Sirirurg; Bismarck, Alexander; Mintz, Paul J; Hajitou, Amin

    2014-01-01

    Developing nanomaterials that are effective, safe, and selective for gene transfer applications is challenging. Bacteriophages (phage), viruses that infect bacteria only, have shown promise for targeted gene transfer applications. Unfortunately, limited progress has been achieved in improving their potential to overcome mammalian cellular barriers. We hypothesized that chemical modification of the bacteriophage capsid could be applied to improve targeted gene delivery by phage vectors into mammalian cells. Here, we introduce a novel hybrid system consisting of two classes of nanomaterial systems, cationic polymers and M13 bacteriophage virus particles genetically engineered to display a tumor-targeting ligand and carry a transgene cassette. We demonstrate that the phage complex with cationic polymers generates positively charged phage and large aggregates that show enhanced cell surface attachment, buffering capacity, and improved transgene expression while retaining cell type specificity. Moreover, phage/polymer complexes carrying a therapeutic gene achieve greater cancer cell killing than phage alone. This new class of hybrid nanomaterial platform can advance targeted gene delivery applications by bacteriophage. PMID:25118171

  14. Therapeutic Targeting of Alternative Translation Initiation in Breast Cancer

    DTIC Science & Technology

    2009-04-01

    investigation within the next 6 months. Cell type specific cancer cell killing of the prototype oncolytic poliovirus , PVS-RIPO, depends on selective...demanded by FDA. 15. SUBJECT TERMS Translation, eIF4E, eIF4G, IRES, Cancer, Poliovirus 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...genetically recombinant poliovirus . Moreover, my work has laid the groundwork for correlative testing and efficacy studies of a vast array of protein kinase

  15. Acute myeloid leukemia-targeted toxin activates both apoptotic and necroptotic death mechanisms.

    PubMed

    Horita, Henrick; Frankel, Arthur E; Thorburn, Andrew

    2008-01-01

    Acute myelogenous leukemia (AML) is the second most common leukemia with approximately 13,410 new cases and 8,990 deaths annually in the United States. A novel fusion toxin treatment, diphtheria toxin GM-CSF (DT-GMCSF) has been shown to selectively eliminate leukemic repopulating cells that are critical for the formation of AML. We previously showed that DT-GMCSF treatment of U937 cells, an AML cell line, causes activation of caspases and the induction of apoptosis. In this study we further investigate the mechanisms of cell death induced by DT-GMCSF and show that, in addition to the activation of caspase-dependent apoptosis, DT-GMCSF also kills AML cells by simultaneously activating caspase-independent necroptosis. These mechanisms depend on the ability of the targeted toxin to inhibit protein synthesis, and are not affected by the receptor that is targeted or the mechanism through which protein synthesis is blocked. We conclude that fusion toxin proteins may be effective for treating AML cells whether or not they are defective in apoptosis.

  16. Trastuzumab- and Fab′ fragment-modified curcumin PEG-PLGA nanoparticles: preparation and evaluation in vitro and in vivo

    PubMed Central

    Ni, Ling; Zhang, Liping; Yan, Xiuju; Jiang, Ying; Mu, Hongjie; Wu, Zimei; Sun, Kaoxiang; Li, Youxin

    2018-01-01

    Introduction Nanoparticles (NPs) modified with bio-ligands represent a promising strategy for active targeted drug delivery to tumour. However, many targeted ligands, such as trastuzumab (TMAB), have high molecular weight, limiting their application for targeting. In this study, we prepared Fab’ (antigen-binding fragments cut from TMAB)-modified NPs (Fab′-NPs) with curcumin (Cur) as a model drug for more effective targeting of human epidermal growth factor receptor 2 (HER2/ErbB2/Neu), which is overexpressed on breast cancer cells. Material and methods The release kinetics was conducted by dialysis bags. The ability to kill HER2-overexpressing BT-474 cells of Fab′-Cur-NPs compared with TMAB-Cur-NPs was conducted by cytotoxicity experiments. Qualitative and quantitative cell uptake studies using coumarin-6 (fluorescent probe)-loaded NPs were performed by fluorescence microscopy and flow cytometry. Pharmacokinetics and biodistribution experiments in vivo were assessed by liquid chromatography–tandem mass spectrometry (LC-MS/MS). Results The release kinetics showed that both Fab′-Cur-NPs and TMAB-Cur-NPs provided continuous, slow release of curcumin for 72 h, with no significant difference. In vitro cytotoxicity experiments showed that Fab′-Cur-NPs manifested prominent ability to kill HER2-overexpressing BT-474 cells compared with TMAB-Cur-NPs. Qualitative and quantitative cell uptake studies indicated that the accumulation of Fab′-NPs was greater than that of TMAB-NPs in BT-474 (HER2+) cells; However, there was no significant difference in MDA-MB-231 (HER2−) cells. Pharmacokinetics and biodistribution experiments in vivo demonstrated that the half-life (t1/2) and area under the blood concentration-time curve (AUC0-t) of Fab′-Cur-NPs increased 5.30-fold and 1.76-fold relative to those of TMAB-Cur-NPs, respectively. Furthermore, the tumor accumulation of Fab′-Cur-NPs was higher than that of TMAB-Cur-NPs. Conclusion Fab′ fragment has greater capacity than the intact antibody to achieve tumor targeting through NP-based delivery. PMID:29606874

  17. Complement activation on B lymphocytes opsonized with rituximab or ofatumumab produces substantial changes in membrane structure preceding cell lysis.

    PubMed

    Beum, Paul V; Lindorfer, Margaret A; Beurskens, Frank; Stukenberg, P Todd; Lokhorst, Henk M; Pawluczkowycz, Andrew W; Parren, Paul W H I; van de Winkel, Jan G J; Taylor, Ronald P

    2008-07-01

    Binding of the CD20 mAb rituximab (RTX) to B lymphocytes in normal human serum (NHS) activates complement (C) and promotes C3b deposition on or in close proximity to cell-bound RTX. Based on spinning disk confocal microscopy analyses, we report the first real-time visualization of C3b deposition and C-mediated killing of RTX-opsonized B cells. C activation by RTX-opsonized Daudi B cells induces rapid membrane blebbing and generation of long, thin structures protruding from cell surfaces, which we call streamers. Ofatumumab, a unique mAb that targets a distinct binding site (the small loop epitope) of the CD20 Ag, induces more rapid killing and streaming on Daudi cells than RTX. In contrast to RTX, ofatumumab promotes streamer formation and killing of ARH77 cells and primary B cells from patients with chronic lymphocytic leukemia. Generation of streamers requires C activation; no streaming occurs in media, NHS-EDTA, or in sera depleted of C5 or C9. Streamers can be visualized in bright field by phase imaging, and fluorescence-staining patterns indicate they contain membrane lipids and polymerized actin. Streaming also occurs if cells are reacted in medium with bee venom melittin, which penetrates cells and forms membrane pores in a manner similar to the membrane-attack complex of C. Structures similar to streamers are demonstrable when Ab-opsonized sheep erythrocytes (non-nucleated cells) are reacted with NHS. Taken together, our findings indicate that the membrane-attack complex is a key mediator of streaming. Streamer formation may, thus, represent a membrane structural change that can occur shortly before complement-induced cell death.

  18. Cytotoxic T lymphocyte-dependent tumor growth inhibition by a vascular endothelial growth factor-superantigen conjugate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Qingwen; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433; Jiang, Songmin

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer We construct and purify a fusion protein VEGF-SEA. Black-Right-Pointing-Pointer VEGF-SEA strongly repressed the growth of murine solid sarcoma 180 (S180) tumors. Black-Right-Pointing-Pointer T cells driven by VEGF-SEA were accumulated around tumor cells bearing VEGFR by mice image model. Black-Right-Pointing-Pointer VEGF-SEA can serve as a tumor targeting agent and sequester CTLs into the tumor site. Black-Right-Pointing-Pointer The induced CTLs could release the cytokines, perforins and granzyme B to kill the tumor cells. -- Abstract: T cells are major lymphocytes in the blood and passengers across the tumor vasculature. If these T cells are retained in the tumor site, amore » therapeutic potential will be gained by turning them into tumor-reactive cytotoxic T lymphocytes (CTLs). A fusion protein composed of human vascular endothelial growth factor (VEGF) and staphylococcal enterotoxin A (SEA) with a D227A mutation strongly repressed the growth of murine solid sarcoma 180 (S180) tumors (control versus VEGF-SEA treated with 15 {mu}g, mean tumor weight: 1.128 g versus 0.252 g, difference = 0.876 g). CD4{sup +} and CD8{sup +} T cells driven by VEGF-SEA were accumulated around VEGFR expressing tumor cells and the induced CTLs could release the tumoricidal cytokines, such as interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). Meanwhile, intratumoral CTLs secreted cytolytic pore-forming perforin and granzyme B proteins around tumor cells, leading to the death of tumor cells. The labeled fusion proteins were gradually targeted to the tumor site in an imaging mice model. These results show that VEGF-SEA can serve as a tumor targeting agent and sequester active infiltrating CTLs into the tumor site to kill tumor cells, and could therefore be a potential therapeutical drug for a variety of cancers.« less

  19. NAADP Activates Two-Pore Channels on T Cell Cytolytic Granules to Stimulate Exocytosis and Killing

    PubMed Central

    Davis, Lianne C.; Morgan, Anthony J.; Chen, Ji-Li; Snead, Charlotte M.; Bloor-Young, Duncan; Shenderov, Eugene; Stanton-Humphreys, Megan N.; Conway, Stuart J.; Churchill, Grant C.; Parrington, John; Cerundolo, Vincenzo; Galione, Antony

    2012-01-01

    Summary A cytotoxic T lymphocyte (CTL) kills an infected or tumorigenic cell by Ca2+-dependent exocytosis of cytolytic granules at the immunological synapse formed between the two cells. Although inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release from the endoplasmic reticulum activates the store-operated Ca2+-influx pathway that is necessary for exocytosis, it is not a sufficient stimulus [1–4]. Here we identify the Ca2+-mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) and its recently identified molecular target, two-pore channels (TPCs) [5–7], as being important for T cell receptor signaling in CTLs. We demonstrate that cytolytic granules are not only reservoirs of cytolytic proteins but are also the acidic Ca2+ stores mobilized by NAADP via TPC channels on the granules themselves, so that TPCs migrate to the immunological synapse upon CTL activation. Moreover, NAADP activates TPCs to drive exocytosis in a way that is not mimicked by global Ca2+ signals induced by IP3 or ionomycin, suggesting that critical, local Ca2+ nanodomains around TPCs stimulate granule exocytosis. Hence, by virtue of the NAADP/TPC pathway, cytolytic granules generate Ca2+ signals that lead to their own exocytosis and to cell killing. This study highlights a selective role for NAADP in stimulating exocytosis crucial for immune cell function and may impact on stimulus-secretion coupling in wider cellular contexts. PMID:23177477

  20. Cytotoxic effect of galvanically coupled magnesium-titanium particles.

    PubMed

    Kim, Jua; Gilbert, Jeremy L

    2016-01-01

    Recent work has shown that reduction reactions at metallic biomaterial surfaces can induce significant killing of cells in proximity to the surface. To exploit this phenomenon for therapeutic purposes, for example, for cancer tumor killing or antibacterial effects (amongst other applications), magnesium metal particles, galvanically coupled to titanium by sputtering, have been evaluated for their cell-killing capability (i.e. cytotoxicity). Magnesium (Mg) particles large enough to prevent particle phagocytosis were investigated, so that only electrochemical reactions, and not particle toxicity per se, caused cytotoxic effects. Titanium (Ti) coated magnesium particles, as well as magnesium-only particles were introduced into MC3T3-E1 mouse pre-osteoblast cell cultures over a range of particle concentrations, and cells were observed to die in a dosage-dependent manner. Ti-coated magnesium particles killed more cells at lower particle concentration than magnesium alone (P<0.05), although the pH measured for magnesium and magnesium-titanium had no significant difference at similar particle concentrations. Complete cell killing occurred at 750μg/ml and 1500μg/ml for Mg-Ti and Mg, respectively. Thus, this work demonstrates that galvanically coupled Mg-Ti particles have a significant cell killing capability greater than Mg alone. In addition, when the pH associated with complete killing with particles was created using NaOH only (no particles), then the percentage of cells killed was significantly less (P<0.05). Together, these findings show that pH is not the sole factor associated with cell killing and that the electrochemical reactions, including the reduction reactions, play an important role. Reduction reactions on galvanically coupled Mg-Ti and Mg particles may generate reactive oxygen intermediates that are able to kill cells in close proximity to the particles and this approach may lead to potential therapies for infection and cancer. This paper demonstrates that during active corrosion of both Mg and Mg-Ti particles cells cultured with the particles are killed in a dose-dependent particle concentration fashion. Additionally, galvanically-coupled magnesium-titanium microparticles kill cells more effectively than magnesium particles alone. The killing effect was shown to not be due to pH shifts since no differences were seen for different particle types and pH adjusted medium without particles did not exhibit the same level of killing. The significance of this work is the recognition of this killing effect with Mg particles and the potential therapeutic applications in infection control and cancer treatment that this process may provide. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Escape of HIV-1-infected dendritic cells from TRAIL-mediated NK cell cytotoxicity during NK-DC cross-talk--a pivotal role of HMGB1.

    PubMed

    Melki, Marie-Thérèse; Saïdi, Héla; Dufour, Alexandre; Olivo-Marin, Jean-Christophe; Gougeon, Marie-Lise

    2010-04-15

    Early stages of Human Immunodeficiency Virus-1 (HIV-1) infection are associated with local recruitment and activation of important effectors of innate immunity, i.e. natural killer (NK) cells and dendritic cells (DCs). Immature DCs (iDCs) capture HIV-1 through specific receptors and can disseminate the infection to lymphoid tissues following their migration, which is associated to a maturation process. This process is dependent on NK cells, whose role is to keep in check the quality and the quantity of DCs undergoing maturation. If DC maturation is inappropriate, NK cells will kill them ("editing process") at sites of tissue inflammation, thus optimizing the adaptive immunity. In the context of a viral infection, NK-dependent killing of infected-DCs is a crucial event required for early elimination of infected target cells. Here, we report that NK-mediated editing of iDCs is impaired if DCs are infected with HIV-1. We first addressed the question of the mechanisms involved in iDC editing, and we show that cognate NK-iDC interaction triggers apoptosis via the TNF-related apoptosis-inducing ligand (TRAIL)-Death Receptor 4 (DR4) pathway and not via the perforin pathway. Nevertheless, once infected with HIV-1, DC(HIV) become resistant to NK-induced TRAIL-mediated apoptosis. This resistance occurs despite normal amounts of TRAIL released by NK cells and comparable DR4 expression on DC(HIV). The escape of DC(HIV) from NK killing is due to the upregulation of two anti-apoptotic molecules, the cellular-Flice like inhibitory protein (c-FLIP) and the cellular inhibitor of apoptosis 2 (c-IAP2), induced by NK-DC(HIV) cognate interaction. High-mobility group box 1 (HMGB1), an alarmin and a key mediator of NK-DC cross-talk, was found to play a pivotal role in NK-dependent upregulation of c-FLIP and c-IAP2 in DC(HIV). Finally, we demonstrate that restoration of DC(HIV) susceptibility to NK-induced TRAIL killing can be obtained either by silencing c-FLIP and c-IAP2 by specific siRNA, or by inhibiting HMGB1 with blocking antibodies or glycyrrhizin, arguing for a key role of HMGB1 in TRAIL resistance and DC(HIV) survival. These findings provide evidence for a new strategy developed by HIV to escape immune attack, they challenge the question of the involvement of HMGB1 in the establishment of viral reservoirs in DCs, and they identify potential therapeutic targets to eliminate infected DCs.

  2. Effective elimination of liver cancer stem-like cells by CD90 antibody targeted thermosensitive magnetoliposomes

    PubMed Central

    Yang, Rui; An, Li Y.; Miao, Qin F.; Li, Feng M.; Han, Yong; Wang, Hui X.; Liu, Dang P.; Chen, Rong; Tang, Sha Q.

    2016-01-01

    Aim To investigate the use of thermosensitive magnetoliposomes (TMs) loaded with magnetic iron oxide (Fe3O4) and the anti-cancer stem cell marker CD90 (CD90@TMs) to target and kill CD90+ liver cancer stem cells (LCSCs). Methods The hepatocellular carcinoma cell line Huh7 was used to separate CD90+ LCSCs by magnetic-activated cell sorting. CD90@TMs was characterized and their ability to target CD90+ LCSCs was determined. Experiments were used to investigate whether CD90@TMs combined with magnetic hyperthermia could effectively eliminate CD90+ LCSCs. Results The present study demonstrated that CD90+ LCSCs with stem cells properties were successfully isolated. We also successfully prepared CD90@TMs that was almost spherical and uniform with an average diameter of 130±4.6 nm and determined that magnetic iron oxide could be incorporated and retained a superparamagnetic response. CD90@TMs showed good targeting and increased inhibition of CD90+ LCSCs in vitro and in vivo compared to TMs. Conclusion CD90@TMs can be used for controlled and targeted delivery of anticancer drugs, which may offer a promising alternative for HCC therapy. PMID:27145285

  3. Synergistic killing effect of chloroquine and androgen deprivation in LNCaP cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaini, Ramesh R.; Hu, Chien-An A., E-mail: AHu@salud.unm.edu

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Chloroquine synergistically killed LNCaP cells during androgen deprivation treatment. Black-Right-Pointing-Pointer Chloroquine inhibited the function of autolysosomes and decreases the cytosolic ATP. Black-Right-Pointing-Pointer Chloroquine induced nuclear and DNA fragmentation in androgen deprived LNCaP. Black-Right-Pointing-Pointer Chloroquine may be an useful adjuvant in hormone ablation therapy in PCa patients. -- Abstract: Modulation of autophagy is a new paradigm in cancer therapeutics. Recently a novel function of chloroquine (CLQ) in inhibiting degradation of autophagic vesicles has been revealed, which raises the question whether CLQ can be used as an adjuvant in targeting autophagic pro-survival mechanism in prostate cancer (PCa). We previously showedmore » that autophagy played a protective role during hormone ablation therapy, in part, by consuming lipid droplets in PCa cells. In addition, blocking autophagy by genetic and pharmacological means in the presence of androgen deprivation caused cell death in PCa cells. To further investigate the importance of autophagy in PCa survival and dissect the role of CLQ in PCa death, we treated hormone responsive LNCaP cells with CLQ in combination with androgen deprivation. We observed that CLQ synergistically killed LNCaP cells during androgen deprivation in a dose- and time-dependent manner. We further confirmed that CLQ inhibited the maturation of autophagic vesicles and decreased the cytosolic ATP. Moreover, CLQ induced nuclear condensation and DNA fragmentation, a hallmark of apoptosis, in androgen deprived LNCaP cells. Taken together, our finding suggests that CLQ may be an useful adjuvant in hormone ablation therapy to improve the therapeutic efficacy.« less

  4. Bispecific antibody targets multiple Pseudomonas aeruginosa evasion mechanisms in the lung vasculature.

    PubMed

    Thanabalasuriar, Ajitha; Surewaard, Bas Gj; Willson, Michelle E; Neupane, Arpan S; Stover, Charles K; Warrener, Paul; Wilson, George; Keller, Ashley E; Sellman, Bret R; DiGiandomenico, Antonio; Kubes, Paul

    2017-06-01

    Pseudomonas aeruginosa is a major cause of severe infections that lead to bacteremia and high patient mortality. P. aeruginosa has evolved numerous evasion and subversion mechanisms that work in concert to overcome immune recognition and effector functions in hospitalized and immunosuppressed individuals. Here, we have used multilaser spinning-disk intravital microscopy to monitor the blood-borne stage in a murine bacteremic model of P. aeruginosa infection. P. aeruginosa adhered avidly to lung vasculature, where patrolling neutrophils and other immune cells were virtually blind to the pathogen's presence. This cloaking phenomenon was attributed to expression of Psl exopolysaccharide. Although an anti-Psl mAb activated complement and enhanced neutrophil recognition of P. aeruginosa, neutrophil-mediated clearance of the pathogen was suboptimal owing to a second subversion mechanism, namely the type 3 secretion (T3S) injectisome. Indeed, T3S prevented phagosome acidification and resisted killing inside these compartments. Antibody-mediated inhibition of the T3S protein PcrV did not enhance bacterial phagocytosis but did enhance killing of the few bacteria ingested by neutrophils. A bispecific mAb targeting both Psl and PcrV enhanced neutrophil uptake of P. aeruginosa and also greatly increased inhibition of T3S function, allowing for phagosome acidification and bacterial killing. These data highlight the need to block multiple evasion and subversion mechanisms in tandem to kill P. aeruginosa.

  5. Cell cycle perturbation induced by gemcitabine in human tumor cells in cell culture, xenografts and bladder cancer patients: implications for clinical trial designs combining gemcitabine with a Chk1 inhibitor.

    PubMed

    Montano, Ryan; Khan, Nadeem; Hou, Huagang; Seigne, John; Ernstoff, Marc S; Lewis, Lionel D; Eastman, Alan

    2017-09-15

    Gemcitabine irreversibly inhibits ribonucleotide reductase and induces S phase arrest but whether this occurs in tumors in mice or patients has not been established. Tumor cells in culture were incubated with gemcitabine for 6 h to approximate the administration schedule in a patient. Concentrations that induced persistent S phase arrest thereafter correlated with cell killing. Administration of gemcitabine to mice also demonstrated a persistent S phase arrest in their tumor. The minimum dose that induced almost complete S phase arrest after 24 h (40 mg/kg) was well below the maximum tolerated dose in mice. S phase arrest was also observed in tumors of bladder cancer patients receiving gemcitabine. The Chk1 inhibitor MK-8776 sensitized cells to gemcitabine with the greatest cell killing when added 18 h after gemcitabine. In mice, the administration of MK-8776 18 h after gemcitabine elicited positivity for the DNA damage marker γH2AX; this also occurred at relatively low dose (40 mg/kg) gemcitabine. Hence, in both cell culture and xenografts, MK-8776 can markedly enhance cell killing of cells reversibly arrested in S phase by gemcitabine. Some cell lines are hypersensitive to MK-8776 as monotherapy, but this was not observed in xenograft models. Effective monotherapy requires a higher dose of Chk1 inhibitor, and target inhibition over a longer time period as compared to its use in combination. These results have important implications for combining Chk1 inhibitors with gemcitabine and suggest that Chk1 inhibitors with increased bioavailability may have improved efficacy both in combination and as monotherapy.

  6. Dual pharmacological inhibition of glutathione and thioredoxin systems synergizes to kill colorectal carcinoma stem cells.

    PubMed

    Tanaka, Genki; Inoue, Ken-Ichi; Shimizu, Takayuki; Akimoto, Kazumi; Kubota, Keiichi

    2016-09-01

    NRF2 stabilizes redox potential through genes for glutathione and thioredoxin antioxidant systems. Whether blockade of glutathione and thioredoxin is useful in eliminating cancer stem cells remain unknown. We used xenografts derived from colorectal carcinoma patients to investigate the pharmacological inhibition of glutathione and thioredoxin systems. Higher expression of five glutathione S-transferase isoforms (GSTA1, A2, M4, O2, and P1) was observed in xenograft-derived spheroids than in fibroblasts. Piperlongumine (2.5-10 μmol/L) and auranofin (0.25-4 μmol/L) were used to inhibit glutathione S-transferase π and thioredoxin reductase, respectively. Piperlongumine or auranofin alone up-regulated the expression of NRF2 target genes, but not TP53 targets. While piperlongumine showed modest cancer-specific cell killing (IC50 difference between cancer spheroids and fibroblasts: P = 0.052), auranofin appeared more toxic to fibroblasts (IC50 difference between cancer spheroids and fibroblasts: P = 0.002). The synergism of dual inhibition was evaluated by determining the Combination Index, based on the number of surviving cells with combination treatments. Molar ratios indicated synergism in cancer spheroids, but not in fibroblasts: (auranofin:piperlongumine) = 2:5, 1:5, 1:10, and 1:20. Cancer-specific cell killing was achieved at the following drug concentrations (auranofin:piperlongumine): 0.25:2.5 μmol/L, 0.5:2.5 μmol/L, or 0.25:5 μmol/L. The dual inhibition successfully decreased CD44v9 surface presentation and delayed tumor emergence in nude mouse. However, a small subpopulation persistently survived and accumulated phosphorylated histone H2A. Such "persisters" still retained lesser but significant tumorigenicity. Thus, dual inhibition of glutathione S-transferase π and thioredoxin reductase could be a feasible option for decreasing the tumor mass and CD44v9-positive fraction by disrupting redox regulation. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  7. Trogocytosis by Entamoeba histolytica contributes to cell killing and tissue invasion

    PubMed Central

    Ralston, Katherine S.; Solga, Michael D.; Mackey-Lawrence, Nicole M.; Somlata; Bhattacharya, Alok; Petri, William A.

    2014-01-01

    Summary paragraph Entamoeba histolytica is the causative agent of amoebiasis, a potentially fatal diarrheal disease in the developing world. The parasite was named “histolytica” for its ability to destroy host tissues, which is most likely driven by direct killing of human cells. The mechanism of human cell killing has been unclear, though the accepted model was that the parasites use secreted toxic effectors to kill cells prior to ingestion1. Here we report the surprising discovery that amoebae kill by biting off and ingesting distinct pieces of living human cells, resulting in intracellular calcium elevation and eventual cell death. After cell killing, amoebae detach and cease ingestion. Ingestion of bites is required for cell killing, and also contributes to invasion of intestinal tissue. The internalization of bites of living human cells is reminiscent of trogocytosis (Greek trogo–, nibble) observed between immune cells2–6, but amoebic trogocytosis differs since it results in death. The ingestion of live cell material and the rejection of corpses illuminate a stark contrast to the established model of dead cell clearance in multicellular organisms7. These findings change the paradigm for tissue destruction in amoebiasis and suggest an ancient origin of trogocytosis as a form of intercellular exchange. PMID:24717428

  8. A generalized target theory and its applications.

    PubMed

    Zhao, Lei; Mi, Dong; Hu, Bei; Sun, Yeqing

    2015-09-28

    Different radiobiological models have been proposed to estimate the cell-killing effects, which are very important in radiotherapy and radiation risk assessment. However, most applied models have their own scopes of application. In this work, by generalizing the relationship between "hit" and "survival" in traditional target theory with Yager negation operator in Fuzzy mathematics, we propose a generalized target model of radiation-induced cell inactivation that takes into account both cellular repair effects and indirect effects of radiation. The simulation results of the model and the rethinking of "the number of targets in a cell" and "the number of hits per target" suggest that it is only necessary to investigate the generalized single-hit single-target (GSHST) in the present theoretical frame. Analysis shows that the GSHST model can be reduced to the linear quadratic model and multitarget model in the low-dose and high-dose regions, respectively. The fitting results show that the GSHST model agrees well with the usual experimental observations. In addition, the present model can be used to effectively predict cellular repair capacity, radiosensitivity, target size, especially the biologically effective dose for the treatment planning in clinical applications.

  9. Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis

    PubMed Central

    Kovács, Dávid; Igaz, Nóra; Keskeny, Csilla; Bélteky, Péter; Tóth, Tímea; Gáspár, Renáta; Madarász, Dániel; Rázga, Zsolt; Kónya, Zoltán; Boros, Imre M.; Kiricsi, Mónika

    2016-01-01

    Loss of function of the tumour suppressor p53 observed frequently in human cancers challenges the drug-induced apoptotic elimination of cancer cells from the body. This phenomenon is a major concern and provides much of the impetus for current attempts to develop a new generation of anticancer drugs capable of provoking apoptosis in a p53-independent manner. Since silver nanoparticles (AgNPs) possess unique cytotoxic features, we examined, whether their activity could be exploited to kill tumour suppressor-deficient cancer cells. Therefore, we investigated the effects of AgNPs on osteosarcoma cells of different p53 genetic backgrounds. As particle diameters might influence the molecular mechanisms leading to AgNP-induced cell death we applied 5 nm and 35 nm sized citrate-coated AgNPs. We found that both sized AgNPs targeted mitochondria and induced apoptosis in wild-type p53-containing U2Os and p53-deficient Saos-2 cells. According to our findings AgNPs are able to kill osteosarcoma cells independently from their actual p53 status and induce p53-independent cancer cell apoptosis. This feature renders AgNPs attractive candidates for novel chemotherapeutic approaches. PMID:27291325

  10. Application of multifunctional targeting epirubicin liposomes in the treatment of non-small-cell lung cancer

    PubMed Central

    Song, Xiao-li; Ju, Rui-jun; Xiao, Yao; Wang, Xin; Liu, Shuang; Fu, Min; Liu, Jing-jing; Gu, Li-yan; Li, Xue-tao; Cheng, Lan

    2017-01-01

    Chemotherapy for aggressive non-small-cell lung cancer (NSCLC) usually results in a poor prognosis due to tumor metastasis, vasculogenic mimicry (VM) channels, limited killing of tumor cells, and severe systemic toxicity. Herein, we developed a kind of multifunctional targeting epirubicin liposomes to enhance antitumor efficacy for NSCLC. In the liposomes, octreotide was modified on liposomal surface for obtaining a receptor-mediated targeting effect, and honokiol was incorporated into the lipid bilayer for inhibiting tumor metastasis and eliminating VM channels. In vitro cellular assays showed that multifunctional targeting epirubicin liposomes not only exhibited the strongest cytotoxic effect on Lewis lung tumor cells but also showed the most efficient inhibition on VM channels. Action mechanism studies showed that multifunctional targeting epirubicin liposomes could downregulate PI3K, MMP-2, MMP-9, VE-Cadherin, and FAK and activate apoptotic enzyme caspase 3. In vivo results exhibited that multifunctional targeting epirubicin liposomes could accumulate selectively in tumor site and display an obvious antitumor efficacy. In addition, no significant toxicity of blood system and major organs was observed at a test dose. Therefore, multifunctional targeting epirubicin liposomes may provide a safe and efficient therapy strategy for NSCLC. PMID:29066893

  11. A nanostructure of functional targeting epirubicin liposomes dually modified with aminophenyl glucose and cyclic pentapeptide used for brain glioblastoma treatment

    PubMed Central

    Zhang, Cheng-Xiang; Zhao, Wei-Yu; Liu, Lei; Ju, Rui-Jun; Mu, Li-Min; Zhao, Yao; Zeng, Fan; Xie, Hong-Jun; Yan, Yan; Lu, Wan-Liang

    2015-01-01

    The objectives of the present study were to develop functional targeting epirubicin liposomes for transferring drugs across the blood-brain barrier (BBB), treating glioblastoma, and disabling neovascularization. The studies were performed on glioblastoma cells in vitro and on glioblastoma-bearing mice. The results showed that the constructed liposomes had a high encapsulation efficiency for drugs (>95%), suitable particle size (109 nm), and less leakage in the blood component-containing system; were significantly able to be transported across the BBB; and exhibited efficacies in killing glioblastoma cells and in destroying glioblastoma neovasculature in vitro and in glioblastoma-bearing mice. The action mechanisms of functional targeting epirubicin liposomes correlated with the following features: the long circulation in the blood system, the ability to be transported across the BBB via glucose transporter-1, and the targeting effects on glioblastoma cells and on the endothelial cells of the glioblastoma neovasculature via the integrin β3 receptor. In conclusion, functional targeting epirubicin liposomes could be used as a potential therapy for treating brain glioblastoma and disabling neovascularization in brain glioblastomas. PMID:26418720

  12. Enhancement of Thermal Damage to Adenocarcinoma Cells by Iron Nanoparticles Modified with MUC1 Aptamer.

    PubMed

    Guo, Fangqin; Hu, Yan; Yu, Lianyuan; Deng, Xiaoyuan; Meng, Jie; Wang, Chen; Yang, Xian-Da

    2016-03-01

    Hyperthermia cancer treatment is an adjunctive therapy that aims at killing the tumor cells with excessive heat that is usually generated by metal contrasts exposed to alternating magnetic field. The efficacy of hyperthermia is often limited by the heat damage to normal tissue due to indiscriminate distribution of the metal contrasts within the body. Tumor-targeting metal contrasts may reduce the toxicity of hyperthermia and improve the efficacy of thermotherapy against cancer. MUC1 is a glycoprotein over expressed in most adenocarcinomas, and represents an attractive therapeutic target. In this study, a MUC1 aptamer is conjugated with iron nanoparticles to construct adenocarcinoma-targeting metal contrasts. DNA hybridization studies confirmed that the aptamers were conjugated to the iron nanoparticles. Importantly, more aptamer-modified nanoparticles attached to the MUC1-positive cancer cells compared with the unmodified nanoparticles. Moreover, aptamer-modified nanoparticles significantly enhanced the targeted hyperthermia damage to MUC1-positive cancer cells in vitro (p < 0.05). The results suggest that MUC1 aptamer-modified metal particles may have potential in development of targeted hyperthermia therapy against adenocarcinomas.

  13. Near infrared photoimmunotherapy rapidly elicits specific host immunity against cancer cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hisataka

    2017-02-01

    Near infrared photoimmunotherapy (NIR-PIT) is a new molecularly-targeted cancer photo-therapy based on conjugating a near infrared silica-phthalocyanine dye, IR700, to a monoclonal antibody (mAb) targeting cell-surface molecules. When exposed to NIR light, the conjugate induces a highly-selective necrotic/immunogenic cell death (ICD) only in target-positive, mAb-IR700-bound cancer cells. This cell death occurs as early as 1 minute after exposure to NIR light. Meanwhile, immediately adjacent target-negative cells are unharmed. Dynamic 3D-microscopy of live tumor cells undergoing NIR-PIT showed rapid swelling in treated cells immediately after light exposure, followed by irreversible morphologic changes such as bleb formation, and rupture of vesicles within several minutes. Furthermore, biological markers of ICD including relocation of HSP70/90 and calreticulin, and release of ATP and High Mobility Group Box 1 (HMGB1), were clearly detected immediately after NIR-PIT. When NIR-PIT was performed in a mixture of cancer cells and immature dendritic cells, maturation of immature dendritic cells was strongly induced rapidly after NIR-PIT. Alternatively, NIR-PIT can also target negative regulatory immune cells such as Treg only in the tumor bed. Treg targeting NIR-PIT against CD25 can deplete >80% of Treg in tumor bed within 20 min that induces activation of tumor cell-specific CD8+-T and NK cells within 1.5 hour, and then these activated cells killed cancer cells in local tumor within 1 day and also in distant tumors of the same cell origin within 2 days. In summary, cancer cell-targeting and immuno-suppressor cell-targeting NIR-PITs effectively induce innate and acquired immunity specifically against cancer cells growing in patients, respectively.

  14. Natural killing and antibody-dependent cellular cytotoxicity are independent immune functions in the Minnesota miniature swine.

    PubMed

    Koren, H S; Amos, D B; Kim, Y B

    1978-10-01

    Peripheral blood lymphocytes from Minnesota miniature pigs were tested for natural killing (NK) and antibody-dependent cellular cytotoxicity (ADCC) in a 2- to 4-hr 51Cr release assay against human myeloid and lymphoid tumor target cells. Adult specific pathogen-free and germfree animals exhibited normal levels of activity in both assays. In addition, the NK and ADCC activities of peripheral blood lymphocytes from colostrum-deprived newborn piglets were examined. These animals were obtained by hysterectomy and previously shown to be immunologically "virgin." We found that these newborn piglets exhibited normal ADCC but lacked NK activity. The differences in the ontogeny of the two activities suggest that they are distinct. Preliminary effector cell characterization studies suggest that: (i) NK and ADCC in the pig are physically not separable; (ii) the majority of the cytotoxic activity on a cell-per-cell basis is mediated by the non-T lymphocyte fraction; and (iii) the rosetted T cells, which account for about 60% of the total pig peripheral blood lymphocytes, have low but demonstrable cytotoxic activity as well.

  15. Re-engineering and evaluation of anti-DNA autoantibody 3E10 for therapeutic applications.

    PubMed

    Rattray, Zahra; Dubljevic, Valentina; Rattray, Nicholas J W; Greenwood, Deanne L; Johnson, Caroline H; Campbell, James A; Hansen, James E

    2018-02-12

    A key challenge in the development of novel chemotherapeutics is the design of molecules capable of selective toxicity to cancer cells. Antibodies have greater target specificity compared to small molecule drugs, but most are unable to penetrate cells, and predominantly target extracellular antigens. A nuclear-penetrating anti-DNA autoantibody isolated from the MRL/lpr lupus mouse model, 3E10, preferentially localizes to tumors, inhibits DNA repair, and selectively kills cancer cells with defects in DNA repair. A murine divalent single chain variable fragment of 3E10 with mutations for improved DNA binding affinity, 3E10 (D31N) di-scFv, has previously been produced in P. pastoris and yielded promising pre-clinical findings, but is unsuitable for clinical testing. The present study reports the design, expression and testing of a panel of humanized 3E10 (D31N) di-scFvs, some of which contain CDR substitution. These variants were expressed in a modified CHO system and evaluated for their physicochemical attributes and ability to penetrate nuclei to selectively cause DNA damage accumulation in and kill cancer cells with DNA repair defects. Secondary structure was conserved and most variants retained the key characteristics of the murine 3E10 (D31N) di-scFv produced in P. pastoris. Moreover, several variants with CDR substitutions outperformed the murine prototype. In conclusion, we have designed several humanized variants of 3E10 (D31N) di-scFv that have potential for application as monotherapy or conjugates for targeted nuclear drug delivery. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. High vancomycin MICs within the susceptible range in Staphylococcus aureus bacteraemia isolates are associated with increased cell wall thickness and reduced intracellular killing by human phagocytes.

    PubMed

    Falcón, Rocío; Martínez, Alba; Albert, Eliseo; Madrid, Silvia; Oltra, Rosa; Giménez, Estela; Soriano, Mario; Vinuesa, Víctor; Gozalbo, Daniel; Gil, María Luisa; Navarro, David

    2016-05-01

    Vancomycin minimum inhibitory concentrations (MICs) at the upper end of the susceptible range for Staphylococcus aureus have been associated with poor clinical outcomes of bloodstream infections. We tested the hypothesis that high vancomycin MICs in S. aureus bacteraemia isolates are associated with increased cell wall thickness and suboptimal bacterial internalisation or lysis by human phagocytes. In total, 95 isolates were evaluated. Original vancomycin MICs were determined by Etest. The susceptibility of S. aureus isolates to killing by phagocytes was assessed in a human whole blood assay. Internalisation of bacterial cells by phagocytes was investigated by flow cytometry. Cell wall thickness was evaluated by transmission electron microscopy. Genotypic analysis of S. aureus isolates was performed using a DNA microarray system. Vancomycin MICs were significantly higher (P=0.006) in isolates that were killed suboptimally (killing index <60%) compared with those killed efficiently (killing index >70%) and tended to correlate inversely (P=0.08) with the killing indices. Isolates in both killing groups were internalised by human neutrophils and monocytes with comparable efficiency. The cell wall was significantly thicker (P=0.03) in isolates in the low killing group. No genotypic differences were found between the isolates in both killing groups. In summary, high vancomycin MICs in S. aureus bacteraemia isolates were associated with increased cell wall thickness and reduced intracellular killing by phagocytes. Copyright © 2016 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  17. mTORC1 Inhibition Induces Resistance to Methotrexate and 6-Mercaptopurine in Ph+ and Ph-like B-ALL.

    PubMed

    Vo, Thanh-Trang T; Lee, J Scott; Nguyen, Duc; Lui, Brandon; Pandori, William; Khaw, Andrew; Mallya, Sharmila; Lu, Mengrou; Müschen, Markus; Konopleva, Marina; Fruman, David A

    2017-09-01

    Elevated activity of mTOR is associated with poor prognosis and higher incidence of relapse in B-cell acute lymphoblastic leukemia (B-ALL). Thus, ongoing clinical trials are testing mTOR inhibitors in combination with chemotherapy in B-ALL. However, the combination of mTOR inhibitors with standard of care chemotherapy drugs has not been studied extensively in high-risk B-ALL subtypes. Therefore, we tested whether mTOR inhibition can augment the efficacy of current chemotherapy agents in Ph + and Ph-like B-ALL models. Surprisingly, inhibiting mTOR complex 1 (mTORC1) protected B-ALL cells from killing by methotrexate and 6-mercaptopurine, two antimetabolite drugs used in maintenance chemotherapy. The cytoprotective effects correlated with decreased cell-cycle progression and were recapitulated using cell-cycle inhibitors, palbociclib or aphidicolin. Dasatinib, a tyrosine kinase inhibitor currently used in Ph + patients, inhibits ABL kinase upstream of mTOR. Dasatinib resistance is mainly caused by ABL kinase mutations, but is also observed in a subset of ABL unmutated cases. We identified dasatinib-resistant Ph+ cell lines and patient samples in which dasatinib can effectively reduce ABL kinase activity and mTORC1 signaling without causing cell death. In these cases, dasatinib protected leukemia cells from killing by 6-mercaptopurine. Using xenograft models, we observed that mTOR inhibition or dasatinib increased the numbers of leukemia cells that emerge after cessation of chemotherapy treatment. These results demonstrate that inhibitors targeting mTOR or upstream signaling nodes should be used with caution when combined with chemotherapeutic agents that rely on cell-cycle progression to kill B-ALL cells. Mol Cancer Ther; 16(9); 1942-53. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. America’s Targeted Killing Policy: Is it Right? Is it Working?

    DTIC Science & Technology

    2013-03-01

    Targeted Killing Policy: Is it Right? Is it Working? If another nation cannot or will not take action , we will. And it is an unfortunate fact that...to save many innocent lives we are sometimes obliged to take lives − the lives of terrorists who seek to murder fellow citizens. —John O. Brennan1...setting precedent for making targeted killing a routine tool of warfare and it should set a worthy example in order to prevent abuse by others. 2

  19. Selenium and Iron Oxide Nanocomposites for Magnetically-Targeted Anti-Cancer Applications.

    PubMed

    Hauksdóttir, Halla Laufey; Webster, Thomas J

    2018-03-01

    Iron oxide nanoparticles (IONP) are already well-established in the medical field due to their ability to improve contrast in magnetic resonance imaging (MRI) and for their external magnetic control in the body. Moreover, selenium has been shown to kill numerous cancer cells at lower concentrations that IONP (e.g., 1 μg/ml). Selenium is a trace mineral of growing interest in cancer treatment since it is an essential nutrient in the human body and can interfere with thiolcontaining proteins necessary for cancer cells to function. For the above reasons, the goal of this in vitro study was to combine the above chemistries for the first time to develop composite nano-vehicles for magnetically targeted cancer therapy. The suggested design was an IONP core, stabilized by chitosan and decorated with selenium. Two different types of IONP cores were produced. This was followed by different chitosan and selenium coating methods. The particles were characterized for size, shape, zeta potential and magnetic properties. Finally, the most promising products were tested for cancer killing properties on MB-231 breast cancer cells. Results of this pioneering study showed that the most promising iron-selenium nanocomposites consisted of an iron oxide core produced by thermal decomposition, followed by a silane ligand exchange, a chitosan coating and selenium decoration. The particles were 5-9 nm in diameter, with a zeta potential of 29.59 mV and magnetic properties of 35.932 emu/g. Moreover, the novel nanoparticles had concentration dependent cancer killing properties. Specifically, after just 1 day of incubation, breast cancer cell viability was reduced to 40.5% in the presence of 1 μg/ml of these composite nanoparticles (and statistically reduced at even 0.1 μg/ml), without using a chemotherapeutic pharmaceutical drug. This is a significant finding since neither chemotherapeutic pharmaceutical drugs, infrared stimulation, nor magnetism were used. In this manner, this study introduces a brand new composite nanoparticle consisting of iron oxide and selenium which should be further studied for a wide range of magnetically targeted anticancer applications.

  20. Science to Practice: Killing Dormant Cells-Is Targeting Autophagy the Key to Complete Tumor Response in Transarterial Chemoembolization?

    PubMed

    Savic, Lynn Jeanette; Chapiro, Julius; Geschwind, Jean-François

    2017-06-01

    In this issue of Radiology, Gade et al ( 1 ) describe a unique mechanism of hepatocellular carcinoma (HCC) cells for surviving ischemia induced by transarterial embolization (TAE)/transarterial chemoembolization (TACE) in a state of cell cycle arrest-a function that may serve as a defensive shield against conventional chemotherapeutic agents. This finding adds to our knowledge and establishes a previously poorly understood mechanism of chemoresistance in HCC. As the Achilles heel in terms of this process, a concurrent upregulation of autophagic flux as an adaptive response to TAE-like ischemia was found by the authors. This is a targetable mechanism that can potentially be exploited for combined therapeutic approaches of embolotherapy and autophagy inhibition in HCC.

  1. ROS-activated anticancer prodrugs: a new strategy for tumor-specific damage

    PubMed Central

    Peng, Xiaohua; Gandhi, Varsha

    2013-01-01

    Targeting tumor cells is an important strategy to improve the selectivity of cancer therapies. With the advanced studies in cancer biology, we know that cancer cells are usually under increased oxidative stress. The high level of reactive oxygen species in cancer cells has been exploited for developing novel therapeutic strategies to preferentially kill cancer cells. Our group, amongst others, have used boronic acids/esters as triggers for developing ROS-activated anticancer prodrugs that target cancer cells. The selectivity was achieved by combining a specific reaction between boronates and H2O2 with the efficient masking of drug toxicity in the prodrug via boronates. Prodrugs activated via ferrocene-mediated oxidation have also been developed to improve the selectivity of anticancer drugs. We describe how the strategies of ROS-activation can be used for further development of new ROS-targeting prodrugs, eventually leading to novel approaches and/or combined technology for more efficient and selective treatment of cancers. PMID:22900465

  2. Anti-H-Y responses of H-2b mutant mice.

    PubMed

    Simpson, E; Gordon, R D; Chandler, P R; Bailey, D

    1978-10-01

    Two strains of H-2b mutant mice, H-2ba and H-2bf, in which the mutational event took place at H-2K, make anti-H-Y cytotoxic T cell responses which are H-2-restricted, Db-associated and indistinguishable in target cell specificity from those of H-2b mice. Thus, alteration of the H-2K molecule affects neither the Ir gene controlling the response, nor the associative antigen. On the other hand, one H-2Db mutant strain, H-2bo, although it makes a good anti-H-Y cytotoxic response, shows target cell specificity restricted to its own Dbo antigen(s), and neither H-2b, H-2ba or H-2bf anti-H-Y cytotoxic cells kill H-2bo male target cells. Thus, the alteration of the H-2Db molecule does not affect the Ir gene of H-2b mice, but it does alter the H-2Db-associative antigen.

  3. Phytochemicals as Innovative Therapeutic Tools against Cancer Stem Cells

    PubMed Central

    Scarpa, Emanuele-Salvatore; Ninfali, Paolino

    2015-01-01

    The theory that several carcinogenetic processes are initiated and sustained by cancer stem cells (CSCs) has been validated, and specific methods to identify the CSCs in the entire population of cancer cells have also proven to be effective. This review aims to provide an overview of recently acquired scientific knowledge regarding phytochemicals and herbal extracts, which have been shown to be able to target and kill CSCs. Many genes and proteins that sustain the CSCs’ self-renewal capacity and drug resistance have been described and applications of phytochemicals able to interfere with these signaling systems have been shown to be operatively efficient both in vitro and in vivo. Identification of specific surface antigens, mammosphere formation assays, serial colony-forming unit assays, xenograft transplantation and label-retention assays coupled with Aldehyde dehydrogenase 1 (ALDH1) activity evaluation are the most frequently used techniques for measuring phytochemical efficiency in killing CSCs. Moreover, it has been demonstrated that EGCG, curcumin, piperine, sulforaphane, β-carotene, genistein and the whole extract of some plants are able to kill CSCs. Most of these phytochemicals act by interfering with the canonical Wnt (β-catenin/T cell factor-lymphoid enhancer factor (TCF-LEF)) pathway implicated in the pathogenesis of several cancers. Therefore, the use of phytochemicals may be a true therapeutic strategy for eradicating cancer through the elimination of CSCs. PMID:26184171

  4. The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals.

    PubMed

    Wang, Yahua; Ying, Xue; Xu, Haolun; Yan, Helu; Li, Xia; Tang, Hui

    2017-01-01

    Glioblastoma is a kind of malignant gliomas that is almost impossible to cure due to the poor drug transportation across the blood-brain barrier and the existence of glioma stem cells. We prepared a new kind of targeted liposomes in order to improve the drug delivery system onto the glioma cells and induce the apoptosis of glioma stem cells afterward. In this experiment, curcumin was chosen to kill gliomas, while quinacrine was used to induce apoptosis of the glioma stem cells. Also, p -aminophenyl-α-D-mannopyranoside could facilitate the transport of liposomes across the blood-brain barrier and finally target the brain glioma cells. The cell experiments in vitro indicated that the targeted liposomes could significantly improve the anti-tumor effects of the drugs, while enhancing the uptake effects, apoptosis effects, and endocytic effects of C6 glioma cells and C6 glioma stem cells. Given the animal experiments in vivo, we discovered that the targeted liposomes could obviously increase the survival period of brain glioma-bearing mice and inhibit the growth of gliomas. In summary, curcumin and quinacrine liposomes modified with p -aminophenyl-α-D-mannopyranoside is a potential preparation to treat brain glioma cells and brain glioma stem cells.

  5. The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals

    PubMed Central

    Wang, Yahua; Ying, Xue; Xu, Haolun; Yan, Helu; Li, Xia; Tang, Hui

    2017-01-01

    Glioblastoma is a kind of malignant gliomas that is almost impossible to cure due to the poor drug transportation across the blood–brain barrier and the existence of glioma stem cells. We prepared a new kind of targeted liposomes in order to improve the drug delivery system onto the glioma cells and induce the apoptosis of glioma stem cells afterward. In this experiment, curcumin was chosen to kill gliomas, while quinacrine was used to induce apoptosis of the glioma stem cells. Also, p-aminophenyl-α-D-mannopyranoside could facilitate the transport of liposomes across the blood–brain barrier and finally target the brain glioma cells. The cell experiments in vitro indicated that the targeted liposomes could significantly improve the anti-tumor effects of the drugs, while enhancing the uptake effects, apoptosis effects, and endocytic effects of C6 glioma cells and C6 glioma stem cells. Given the animal experiments in vivo, we discovered that the targeted liposomes could obviously increase the survival period of brain glioma-bearing mice and inhibit the growth of gliomas. In summary, curcumin and quinacrine liposomes modified with p-aminophenyl-α-D-mannopyranoside is a potential preparation to treat brain glioma cells and brain glioma stem cells. PMID:28260885

  6. Insufficient natural killer cell responses against retroviruses: how to improve NK cell killing of retrovirus-infected cells.

    PubMed

    Littwitz-Salomon, Elisabeth; Dittmer, Ulf; Sutter, Kathrin

    2016-11-08

    Natural killer (NK) cells belong to the innate immune system and protect against cancers and a variety of viruses including retroviruses by killing transformed or infected cells. They express activating and inhibitory receptors on their cell surface and often become activated after recognizing virus-infected cells. They have diverse antiviral effector functions like the release of cytotoxic granules, cytokine production and antibody dependent cellular cytotoxicity. The importance of NK cell activity in retroviral infections became evident due to the discovery of several viral strategies to escape recognition and elimination by NK cells. Mutational sequence polymorphisms as well as modulation of surface receptors and their ligands are mechanisms of the human immunodeficiency virus-1 to evade NK cell-mediated immune pressure. In Friend retrovirus infected mice the virus can manipulate molecular or cellular immune factors that in turn suppress the NK cell response. In this model NK cells lack cytokines for optimal activation and can be functionally suppressed by regulatory T cells. However, these inhibitory pathways can be overcome therapeutically to achieve full activation of NK cell responses and ultimately control dissemination of retroviral infection. One effective approach is to modulate the crosstalk between NK cells and dendritic cells, which produce NK cell-stimulating cytokines like type I interferons (IFN), IL-12, IL-15, and IL-18 upon retrovirus sensing or infection. Therapeutic administration of IFNα directly increases NK cell killing of retrovirus-infected cells. In addition, IL-2/anti-IL-2 complexes that direct IL-2 to NK cells have been shown to significantly improve control of retroviral infection by NK cells in vivo. In this review, we describe novel approaches to improve NK cell effector functions in retroviral infections. Immunotherapies that target NK cells of patients suffering from viral infections might be a promising treatment option for the future.

  7. Syngeneic syrian hamster tumors feature tumor-infiltrating lymphocytes allowing adoptive cell therapy enhanced by oncolytic adenovirus in a replication permissive setting.

    PubMed

    Siurala, Mikko; Vähä-Koskela, Markus; Havunen, Riikka; Tähtinen, Siri; Bramante, Simona; Parviainen, Suvi; Mathis, J Michael; Kanerva, Anna; Hemminki, Akseli

    2016-05-01

    Adoptive transfer of tumor-infiltrating lymphocytes (TIL) has shown promising yet sometimes suboptimal results in clinical trials for advanced cancer, underscoring the need for approaches improving efficacy and safety. Six implantable syngeneic tumor cell lines of the Syrian hamster were used to initiate TIL cultures. TIL generated from tumor fragments cultured in human interleukin-2 (IL-2) for 10 d were adoptively transferred into tumor-bearing hamsters with concomitant intratumoral injections of oncolytic adenovirus (Ad5-D24) for the assessment of antitumor efficacy. Pancreatic cancer (HapT1) and melanoma (RPMI 1846) TIL exhibited potent and tumor-specific cytotoxicity in effector-to-target (E/T) assays. MHC Class I blocking abrogated the cell killing of RPMI 1846 TIL, indicating cytotoxic CD8(+) T-cell activity. When TIL were combined with Ad5-D24 in vitro, HapT1 tumor cell killing was significantly enhanced over single agents. In vivo, the intratumoral administration of HapT1 TIL and Ad5-D24 resulted in improved tumor growth control compared with either treatment alone. Additionally, splenocytes derived from animals treated with the combination of Ad5-D24 and TIL killed autologous tumor cells more efficiently than monotherapy-derived splenocytes, suggesting that systemic antitumor immunity was induced. For the first time, TIL of the Syrian hamster have been cultured, characterized and used therapeutically together with oncolytic adenovirus for enhancing the efficacy of TIL therapy. Our results support human translation of oncolytic adenovirus as an enabling technology for adoptive T-cell therapy of solid tumors.

  8. Syngeneic syrian hamster tumors feature tumor-infiltrating lymphocytes allowing adoptive cell therapy enhanced by oncolytic adenovirus in a replication permissive setting

    PubMed Central

    Siurala, Mikko; Vähä-Koskela, Markus; Havunen, Riikka; Tähtinen, Siri; Bramante, Simona; Parviainen, Suvi; Mathis, J. Michael; Kanerva, Anna; Hemminki, Akseli

    2016-01-01

    ABSTRACT Adoptive transfer of tumor-infiltrating lymphocytes (TIL) has shown promising yet sometimes suboptimal results in clinical trials for advanced cancer, underscoring the need for approaches improving efficacy and safety. Six implantable syngeneic tumor cell lines of the Syrian hamster were used to initiate TIL cultures. TIL generated from tumor fragments cultured in human interleukin-2 (IL-2) for 10 d were adoptively transferred into tumor-bearing hamsters with concomitant intratumoral injections of oncolytic adenovirus (Ad5-D24) for the assessment of antitumor efficacy. Pancreatic cancer (HapT1) and melanoma (RPMI 1846) TIL exhibited potent and tumor-specific cytotoxicity in effector-to-target (E/T) assays. MHC Class I blocking abrogated the cell killing of RPMI 1846 TIL, indicating cytotoxic CD8+ T-cell activity. When TIL were combined with Ad5-D24 in vitro, HapT1 tumor cell killing was significantly enhanced over single agents. In vivo, the intratumoral administration of HapT1 TIL and Ad5-D24 resulted in improved tumor growth control compared with either treatment alone. Additionally, splenocytes derived from animals treated with the combination of Ad5-D24 and TIL killed autologous tumor cells more efficiently than monotherapy-derived splenocytes, suggesting that systemic antitumor immunity was induced. For the first time, TIL of the Syrian hamster have been cultured, characterized and used therapeutically together with oncolytic adenovirus for enhancing the efficacy of TIL therapy. Our results support human translation of oncolytic adenovirus as an enabling technology for adoptive T-cell therapy of solid tumors. PMID:27467954

  9. Methods to Evaluate Cytotoxicity and Immunosuppression of Combustible Tobacco Product Preparations

    PubMed Central

    Arimilli, Subhashini; Damratoski, Brad E.; G.L., Prasad

    2015-01-01

    Among other pathophysiological changes, chronic exposure to cigarette smoke causes inflammation and immune suppression, which have been linked to increased susceptibility of smokers to microbial infections and tumor incidence. Ex vivo suppression of receptor-mediated immune responses in human peripheral blood mononuclear cells (PBMCs) treated with smoke constituents is an attractive approach to study mechanisms and evaluate the likely long-term effects of exposure to tobacco products. Here, we optimized methods to perform ex vivo assays using PBMCs stimulated by bacterial lipopolysaccharide, a Toll-like receptor-4 ligand. The effects of whole smoke-conditioned medium (WS-CM), a combustible tobacco product preparation (TPP), and nicotine were investigated on cytokine secretion and target cell killing by PBMCs in the ex vivo assays. We show that secreted cytokines IFN-γ, TNF, IL-10, IL-6, and IL-8 and intracellular cytokines IFN-γ, TNF-α, and MIP-1α were suppressed in WS-CM-exposed PBMCs. The cytolytic function of effector PBMCs, as determined by a K562 target cell killing assay was also reduced by exposure to WS-CM; nicotine was minimally effective in these assays. In summary, we present a set of improved assays to evaluate the effects of TPPs in ex vivo assays, and these methods could be readily adapted for testing other products of interest. PMID:25650834

  10. Methods to evaluate cytotoxicity and immunosuppression of combustible tobacco product preparations.

    PubMed

    Arimilli, Subhashini; Damratoski, Brad E; G L, Prasad

    2015-01-10

    Among other pathophysiological changes, chronic exposure to cigarette smoke causes inflammation and immune suppression, which have been linked to increased susceptibility of smokers to microbial infections and tumor incidence. Ex vivo suppression of receptor-mediated immune responses in human peripheral blood mononuclear cells (PBMCs) treated with smoke constituents is an attractive approach to study mechanisms and evaluate the likely long-term effects of exposure to tobacco products. Here, we optimized methods to perform ex vivo assays using PBMCs stimulated by bacterial lipopolysaccharide, a Toll-like receptor-4 ligand. The effects of whole smoke-conditioned medium (WS-CM), a combustible tobacco product preparation (TPP), and nicotine were investigated on cytokine secretion and target cell killing by PBMCs in the ex vivo assays. We show that secreted cytokines IFN-γ, TNF, IL-10, IL-6, and IL-8 and intracellular cytokines IFN-γ, TNF-α, and MIP-1α were suppressed in WS-CM-exposed PBMCs. The cytolytic function of effector PBMCs, as determined by a K562 target cell killing assay was also reduced by exposure to WS-CM; nicotine was minimally effective in these assays. In summary, we present a set of improved assays to evaluate the effects of TPPs in ex vivo assays, and these methods could be readily adapted for testing other products of interest.

  11. DISE: A Seed-Dependent RNAi Off-Target Effect That Kills Cancer Cells.

    PubMed

    Putzbach, William; Gao, Quan Q; Patel, Monal; Haluck-Kangas, Ashley; Murmann, Andrea E; Peter, Marcus E

    2018-01-01

    Off-target effects (OTEs) represent a significant caveat for RNAi caused by substantial complementarity between siRNAs and unintended mRNAs. We now discuss the existence of three types of seed-dependent OTEs (sOTEs). Type I involves unintended targeting through the guide strand seed of an siRNA. Type II is caused by the activity of the seed on the designated siRNA passenger strand when loaded into the RNA-induced silencing complex (RISC). Both type I and II sOTEs will elicit unpredictable cellular responses. By contrast, in sOTE type III the guide strand seed preferentially targets essential survival genes resulting in death induced by survival gene elimination (DISE). In this Opinion article, we discuss DISE as a consequence of RNAi that may preferentially affect cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Targeted Disruption of the β2-Microglobulin Gene Minimizes the Immunogenicity of Human Embryonic Stem Cells.

    PubMed

    Wang, Dachun; Quan, Yuan; Yan, Qing; Morales, John E; Wetsel, Rick A

    2015-10-01

    Human embryonic stem cells (hESCs) are a promising source of cells for tissue regeneration, yet histoincompatibility remains a major challenge to their clinical application. Because the human leukocyte antigen class I (HLA-I) molecules are the primary mediators of immune rejection, we hypothesized that cells derived from a hESC line lacking HLA-I expression could be transplanted without evoking a robust immune response from allogeneic recipients. In the present study, we used the replacement targeting strategy to delete exons 2 and 3 of β2-microglobulin on both gene alleles in hESCs. Because β2-microglobulin serves as the HLA-I light chain, disruption of the β2-microglobulin gene led to complete HLA-I deficiency on the cell surface of hESCs and their derivatives. Therefore, these cells were resistant to CD8+ T-cell-mediated destruction. Although interferon-γ (IFN-γ) treatment significantly induced β2-microglobulin expression, promoting CD8+ T cell-mediated killing of control hESCs and their derivatives, CD8+ T-cell-mediated cytotoxicity was barely observed with β2-microglobulin-null hESCs and their derivatives treated with IFN-γ. This genetic manipulation to disrupt HLA-I expression did not affect the self-renewal capacity, genomic stability, or pluripotency of hESCs. Despite being relatively sensitive to natural killer (NK) cell-mediated killing due to the lack of HLA-I expression, when transplanted into NK cell-depleted immunocompetent mice, β2-microglobulin-null hESCs developed into tumors resembling those derived from control hESCs in severe combined immunodeficiency mice. These results demonstrate that β2-microglobulin-null hESCs significantly reduce immunogenicity to CD8+ T cells and might provide a renewable source of cells for tissue regeneration without the need for HLA matching in the future. This study reports the generation of a novel β2-microglobulin (B2M)-/- human embryonic stem cell (hESC) line. Differentiated mature cells from this line do not express cell surface human leukocyte antigen molecules even after interferon-γ stimulation and are resistant to alloreactive CD8+ T cells. Moreover, this B2M-/- hESC line contains no off-target integration or cleavage events, is devoid of stable B2M mRNA, exhibits a normal karyotype, and retains its self-renewal capacity, genomic stability, and pluripotency. Although B2M-/- hESC-derived cells are more susceptible to natural killer (NK) cells, murine transplantation studies have indicated that they are, overall, much less immunogenic than normal hESCs. Thus, these data show for the first time that, in vivo, the advantages provided by B2M-/- hESC-derived cells in avoiding CD8+ T-cell killing appear significantly greater than any disadvantage caused by increased susceptibility to NK cells. ©AlphaMed Press.

  13. Targeted Disruption of the β2-Microglobulin Gene Minimizes the Immunogenicity of Human Embryonic Stem Cells

    PubMed Central

    Quan, Yuan; Yan, Qing; Morales, John E.

    2015-01-01

    Human embryonic stem cells (hESCs) are a promising source of cells for tissue regeneration, yet histoincompatibility remains a major challenge to their clinical application. Because the human leukocyte antigen class I (HLA-I) molecules are the primary mediators of immune rejection, we hypothesized that cells derived from a hESC line lacking HLA-I expression could be transplanted without evoking a robust immune response from allogeneic recipients. In the present study, we used the replacement targeting strategy to delete exons 2 and 3 of β2-microglobulin on both gene alleles in hESCs. Because β2-microglobulin serves as the HLA-I light chain, disruption of the β2-microglobulin gene led to complete HLA-I deficiency on the cell surface of hESCs and their derivatives. Therefore, these cells were resistant to CD8+ T-cell-mediated destruction. Although interferon-γ (IFN-γ) treatment significantly induced β2-microglobulin expression, promoting CD8+ T cell-mediated killing of control hESCs and their derivatives, CD8+ T-cell-mediated cytotoxicity was barely observed with β2-microglobulin-null hESCs and their derivatives treated with IFN-γ. This genetic manipulation to disrupt HLA-I expression did not affect the self-renewal capacity, genomic stability, or pluripotency of hESCs. Despite being relatively sensitive to natural killer (NK) cell-mediated killing due to the lack of HLA-I expression, when transplanted into NK cell-depleted immunocompetent mice, β2-microglobulin-null hESCs developed into tumors resembling those derived from control hESCs in severe combined immunodeficiency mice. These results demonstrate that β2-microglobulin-null hESCs significantly reduce immunogenicity to CD8+ T cells and might provide a renewable source of cells for tissue regeneration without the need for HLA matching in the future. Significance This study reports the generation of a novel β2-microglobulin (B2M)−/− human embryonic stem cell (hESC) line. Differentiated mature cells from this line do not express cell surface human leukocyte antigen molecules even after interferon-γ stimulation and are resistant to alloreactive CD8+ T cells. Moreover, this B2M−/− hESC line contains no off-target integration or cleavage events, is devoid of stable B2M mRNA, exhibits a normal karyotype, and retains its self-renewal capacity, genomic stability, and pluripotency. Although B2M−/− hESC-derived cells are more susceptible to natural killer (NK) cells, murine transplantation studies have indicated that they are, overall, much less immunogenic than normal hESCs. Thus, these data show for the first time that, in vivo, the advantages provided by B2M−/− hESC-derived cells in avoiding CD8+ T-cell killing appear significantly greater than any disadvantage caused by increased susceptibility to NK cells. PMID:26285657

  14. Hypoxia Induced Impairment of NK Cell Cytotoxicity against Multiple Myeloma Can Be Overcome by IL-2 Activation of the NK Cells

    PubMed Central

    Sarkar, Subhashis; Germeraad, Wilfred T. V.; Rouschop, Kasper M. A.; Steeghs, Elisabeth M. P.; van Gelder, Michel; Bos, Gerard M. J.; Wieten, Lotte

    2013-01-01

    Background Multiple Myeloma (MM) is an incurable plasma cell malignancy residing within the bone marrow (BM). We aim to develop allogeneic Natural Killer (NK) cell immunotherapy for MM. As the BM contains hypoxic regions and the tumor environment can be immunosuppressive, we hypothesized that hypoxia inhibits NK cell anti-MM responses. Methods NK cells were isolated from healthy donors by negative selection and NK cell function and phenotype were examined at oxygen levels representative of hypoxic BM using flowcytometry. Additionally, NK cells were activated with IL-2 to enhance NK cell cytotoxicity under hypoxia. Results Hypoxia reduced NK cell killing of MM cell lines in an oxygen dependent manner. Under hypoxia, NK cells maintained their ability to degranulate in response to target cells, though, the percentage of degranulating NK cells was slightly reduced. Adaptation of NK- or MM cells to hypoxia was not required, hence, the oxygen level during the killing process was critical. Hypoxia did not alter surface expression of NK cell ligands (HLA-ABC, -E, MICA/B and ULBP1-2) and receptors (KIR, NKG2A/C, DNAM-1, NCRs and 2B4). It did, however, decrease expression of the activating NKG2D receptor and of intracellular perforin and granzyme B. Pre-activation of NK cells by IL-2 abrogated the detrimental effects of hypoxia and increased NKG2D expression. This emphasized that activated NK cells can mediate anti-MM effects, even under hypoxic conditions. Conclusions Hypoxia abolishes the killing potential of NK cells against multiple myeloma, which can be restored by IL-2 activation. Our study shows that for the design of NK cell-based immunotherapy it is necessary to study biological interactions between NK- and tumor cells also under hypoxic conditions. PMID:23724099

  15. Silibinin inhibits aberrant lipid metabolism, proliferation and emergence of androgen-independence in prostate cancer cells via primarily targeting the sterol response element binding protein 1

    PubMed Central

    Nambiar, Dhanya K.; Deep, Gagan; Singh, Rana P.; Agarwal, Chapla; Agarwal, Rajesh

    2014-01-01

    Prostate cancer (PCA) kills thousands of men every year, demanding additional approaches to better understand and target this malignancy. Recently, critical role of aberrant lipogenesis is highlighted in prostate carcinogenesis, offering a unique opportunity to target it to reduce PCA. Here, we evaluated efficacy and associated mechanisms of silibinin in inhibiting lipid metabolism in PCA cells. At physiologically achievable levels in human, silibinin strongly reduced lipid and cholesterol accumulation specifically in human PCA cells but not in non-neoplastic prostate epithelial PWR-1E cells. Silibinin also decreased nuclear protein levels of sterol regulatory element binding protein 1 and 2 (SREBP1/2) and their target genes only in PCA cells. Mechanistically, silibinin activated AMPK, thereby increasing SREBP1 phosphorylation and inhibiting its nuclear translocation; AMPK inhibition reversed silibinin-mediated decrease in nuclear SREBP1 and lipid accumulation. Additionally, specific SREBP inhibitor fatostatin and stable overexpression of SREBP1 further confirmed the central role of SREBP1 in silibinin-mediated inhibition of PCA cell proliferation and lipid accumulation and cell cycle arrest. Importantly, silibinin also inhibited synthetic androgen R1881-induced lipid accumulation and completely abrogated the development of androgen-independent LNCaP cell clones via targeting SREBP1/2. Together, these mechanistic studies suggest that silibinin would be effective against PCA by targeting critical aberrant lipogenesis. PMID:25294820

  16. Silibinin inhibits aberrant lipid metabolism, proliferation and emergence of androgen-independence in prostate cancer cells via primarily targeting the sterol response element binding protein 1.

    PubMed

    Nambiar, Dhanya K; Deep, Gagan; Singh, Rana P; Agarwal, Chapla; Agarwal, Rajesh

    2014-10-30

    Prostate cancer (PCA) kills thousands of men every year, demanding additional approaches to better understand and target this malignancy. Recently, critical role of aberrant lipogenesis is highlighted in prostate carcinogenesis, offering a unique opportunity to target it to reduce PCA. Here, we evaluated efficacy and associated mechanisms of silibinin in inhibiting lipid metabolism in PCA cells. At physiologically achievable levels in human, silibinin strongly reduced lipid and cholesterol accumulation specifically in human PCA cells but not in non-neoplastic prostate epithelial PWR-1E cells. Silibinin also decreased nuclear protein levels of sterol regulatory element binding protein 1 and 2 (SREBP1/2) and their target genes only in PCA cells. Mechanistically, silibinin activated AMPK, thereby increasing SREBP1 phosphorylation and inhibiting its nuclear translocation; AMPK inhibition reversed silibinin-mediated decrease in nuclear SREBP1 and lipid accumulation. Additionally, specific SREBP inhibitor fatostatin and stable overexpression of SREBP1 further confirmed the central role of SREBP1 in silibinin-mediated inhibition of PCA cell proliferation and lipid accumulation and cell cycle arrest. Importantly, silibinin also inhibited synthetic androgen R1881-induced lipid accumulation and completely abrogated the development of androgen-independent LNCaP cell clones via targeting SREBP1/2. Together, these mechanistic studies suggest that silibinin would be effective against PCA by targeting critical aberrant lipogenesis.

  17. Genetically engineered T cells to target EGFRvIII expressing glioblastoma.

    PubMed

    Bullain, Szofia S; Sahin, Ayguen; Szentirmai, Oszkar; Sanchez, Carlos; Lin, Ning; Baratta, Elizabeth; Waterman, Peter; Weissleder, Ralph; Mulligan, Richard C; Carter, Bob S

    2009-09-01

    Glioblastoma remains a significant therapeutic challenge, warranting further investigation of novel therapies. We describe an immunotherapeutic strategy to treat glioblastoma based on adoptive transfer of genetically modified T-lymphocytes (T cells) redirected to kill EGFRvIII expressing gliomas. We constructed a chimeric immune receptor (CIR) specific to EGFRvIII, (MR1-zeta). After in vitro selection and expansion, MR1-zeta genetically modified primary human T-cells specifically recognized EGFRvIII-positive tumor cells as demonstrated by IFN-gamma secretion and efficient tumor lysis compared to control CIRs defective in EGFRvIII binding (MRB-zeta) or signaling (MR1-delzeta). MR1-zeta expressing T cells also inhibited EGFRvIII-positive tumor growth in vivo in a xenografted mouse model. Successful targeting of EGFRvIII-positive tumors via adoptive transfer of genetically modified T cells may represent a new immunotherapy strategy with great potential for clinical applications.

  18. Both p53-PUMA/NOXA-Bax-mitochondrion and p53-p21cip1 pathways are involved in the CDglyTK-mediated tumor cell suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhendong, E-mail: zdyu@hotmail.com; Wang, Hao; Zhang, Libin

    CDglyTK fusion suicide gene has been well characterized to effectively kill tumor cells. However, the exact mechanism and downstream target genes are not fully understood. In our study, we found that CDglyTK/prodrug treatment works more efficiently in p53 wild-type (HONE1) cells than in p53 mutant (CNE1) cells. We then used adenovirus-mediated gene delivery system to either knockdown or overexpress p53 and its target genes in these cells. Consistent results showed that both p53-PUMA/NOXA/Bcl2-Bax and p53-p21 pathways contribute to the CDglyTK induced tumor cell suppression. Our work for the first time addressed the role of p53 related genes in the CDglyTK/prodrugmore » system.« less

  19. Broad T Cell Immunity to the LcrV Virulence Protein is Induced by Targeted Delivery to DEC-205/CD205-Positive Mouse Dendritic Cells

    DTIC Science & Technology

    2007-08-13

    to its potential use as a biological weapon [1, 2]. Bubonic plague is the most common clinical form of disease and is characterized by swollen lymph...naive mice. Prior plague vaccines, such as killed whole-cell vaccine and attenuated vaccine, induce protection against bubonic plague , but the...R. W. and Williamson, E. D., Vaccination against bubonic and pneumonic plague . Vaccine 2001. 19: 4175–4184. 5 Du, Y., Rosqvist, R. and Forsberg, A

  20. Neutrophils kill pulmonary endothelial cells by a hydrogen-peroxide-dependent pathway. An in vitro model of neutrophil-mediated lung injury.

    PubMed

    Martin, W J

    1984-08-01

    Neutrophil-mediated injury to lung parenchymal cells has been proposed as an important step in the pathogenesis of many acute and chronic lung disorders. As an in vitro model of neutrophil-mediated injury, this study used activated human neutrophils as effector cells in an 18-h cytotoxicity assay with 51Cr-labeled bovine pulmonary artery endothelial cells serving as target cells. Neutrophils effectively injured pulmonary endothelial cells, expressed as cytotoxic index (CI), of 63.8 +/- 5.4, and this injury could be significantly reduced by several agents, including 1% dimethyl sulfoxide (CI, 51.3 +/- 3.7), 50 micrograms/ml ascorbic acid (CI, 40.8 +/- 4.7), and especially 1,100 U/ml catalase (CI, 14.3 +/- 4.1). As cell-free models of neutrophil-mediated endothelial cell injury, H2O2 (30 microM), O2- (generated by 0.5 mU xanthine oxidase), and the myeloperoxidase-dependent (0.32 U) hypohalite ion were each capable of injuring the target cells with CI of 6.21 +/- 2.8, 53.6 +/- 5.3, and 21.2 +/- 1.5, respectively. Catalase was effective in reducing the injurious effect of each of these oxidant-generating systems (p less than 0.01, all comparisons), confirming the important role for H2O2 in the mediation of this injury. The data indicate that neutrophils are capable of killing pulmonary endothelial cells by a pathway largely dependent on the generation of H2O2, and suggest the possibility that removal of H2O2 from the alveolar structures in subjects with these disorder might be an effective future therapeutic approach.

  1. MTH1 deficiency selectively increases non-cytotoxic oxidative DNA damage in lung cancer cells: more bad news than good?

    PubMed

    Abbas, Hussein H K; Alhamoudi, Kheloud M H; Evans, Mark D; Jones, George D D; Foster, Steven S

    2018-04-16

    Targeted therapies are based on exploiting cancer-cell-specific genetic features or phenotypic traits to selectively kill cancer cells while leaving normal cells unaffected. Oxidative stress is a cancer hallmark phenotype. Given that free nucleotide pools are particularly vulnerable to oxidation, the nucleotide pool sanitising enzyme, MTH1, is potentially conditionally essential in cancer cells. However, findings from previous MTH1 studies have been contradictory, meaning the relevance of MTH1 in cancer is still to be determined. Here we ascertained the role of MTH1 specifically in lung cancer cell maintenance, and the potential of MTH1 inhibition as a targeted therapy strategy to improve lung cancer treatments. Using siRNA-mediated knockdown or small-molecule inhibition, we tested the genotoxic and cytotoxic effects of MTH1 deficiency on H23 (p53-mutated), H522 (p53-mutated) and A549 (wildtype p53) non-small cell lung cancer cell lines relative to normal MRC-5 lung fibroblasts. We also assessed if MTH1 inhibition augments current therapies. MTH1 knockdown increased levels of oxidatively damaged DNA and DNA damage signaling alterations in all lung cancer cell lines but not normal fibroblasts, despite no detectable differences in reactive oxygen species levels between any cell lines. Furthermore, MTH1 knockdown reduced H23 cell proliferation. However, unexpectedly, it did not induce apoptosis in any cell line or enhance the effects of gemcitabine, cisplatin or radiation in combination treatments. Contrastingly, TH287 and TH588 MTH1 inhibitors induced apoptosis in H23 and H522 cells, but only increased oxidative DNA damage levels in H23, indicating that they kill cells independently of DNA oxidation and seemingly via MTH1-distinct mechanisms. MTH1 has a NSCLC-specific p53-independent role for suppressing DNA oxidation and genomic instability, though surprisingly the basis of this may not be reactive-oxygen-species-associated oxidative stress. Despite this, overall our cell viability data indicates that targeting MTH1 will likely not be an across-the-board effective NSCLC therapeutic strategy; rather it induces non-cytotoxic DNA damage that could promote cancer heterogeneity and evolution.

  2. Multiepitope HER2 targeting enhances photoimmunotherapy of HER2-overexpressing cancer cells with pyropheophorbide-a immunoconjugates.

    PubMed

    Savellano, Mark D; Pogue, Brian W; Hoopes, P Jack; Vitetta, Ellen S; Paulsen, Keith D

    2005-07-15

    Multi-targeting strategies improve the efficacy of antibody and immunotoxin therapies but have not yet been thoroughly explored for HER2-based cancer treatments. We investigated multi-epitope HER2 targeting to boost photosensitizer immunoconjugate uptake as a way of enhancing photoimmunotherapy. Photoimmunotherapy may allow targeted photodynamic destruction of malignancies and may also potentiate anticancer antibodies. However, one obstacle preventing its clinical use is the delivery of enough photosensitizer immunoconjugates to target cells. Anti-HER2 photosensitizer immunoconjugates were constructed from two monoclonal antibodies (mAb), HER50 and HER66, using a novel method originally developed to label photosensitizer immunoconjugates with the photosensitizer, benzoporphyrin derivative verteporfin. Photosensitizer immunoconjugates were labeled instead with a promising alternative photosensitizer, pyropheophorbide-a (PPa), which required only minor changes to the conjugation procedure. Uptake and phototoxicity experiments using human cancer cells were conducted with the photosensitizer immunoconjugates and, for comparison, with free PPa. SK-BR-3 and SK-OV-3 cells served as HER2-overexpressing target cells. MDA-MB-468 cells served as HER2-nonexpressing control cells. Photosensitizer immunoconjugates with PPa/mAb molar ratios up to approximately 10 specifically targeted and photodynamically killed HER2-overexpressing cells. On a per mole basis, photosensitizer immunoconjugates were less phototoxic than free PPa, but photosensitizer immunoconjugates were selective for target cells whereas free PPa was not. Multiepitope targeted photoimmunotherapy with a HER50 and HER66 photosensitizer immunoconjugate mixture was significantly more effective than single-epitope targeted photoimmunotherapy with a single anti-HER2 photosensitizer immunoconjugate, provided photosensitizer immunoconjugate binding was saturated. This study shows that multiepitope targeting enhances HER2-targeted photoimmunotherapy and maintains a high degree of specificity. Consequently, it seems that multitargeted photoimmunotherapy should also be useful against cancers that overexpress other receptors.

  3. Cooperative therapeutic effects of herpes simplex virus thymidine kinase gene/ganciclovir system and chemotherapeutic agents on prostate cancer in vitro.

    PubMed

    Xing, Yifei; Xiao, Yajun; Lu, Gongcheng; Zeng, Fuqing; Zhao, Jun; Xiong, Ping; Feng, Wei

    2006-01-01

    The killing effects of herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) approach by the addition of several commonly clinical chemotherapeutic agents on hormone refractory prostate cancer (HRPC) cells PC-3m were investigated. After transferring of the HSV-tk gene into PC-3m cells, mRNA and protein expression of HSV-tk was detected by reverse-transcript polymerase chain reaction (RT-PCR) and strept avidin-biotin complex (SABC) immunohistochemical method. The killing effect of GCV, cisplatin (CDDP), etoposide (VP-16), vincristine (VCR), methotrexate (MTX), 5-fluorouracil (5-Fu), and suramin on PC-3m cells was evaluated by morphological assessment analysis, trypan blue exclusion assay and MTT assay respectively. Additionally, the cooperative effect of HSV-tk/GCV system combined with the above agents on the target cancer cells was determined by MTT. Furthermore, apoptosis and necrosis induced by GCV plus 5-Fu or suramin was analyzed by flow cytometry (FCM). The results showed that that there was HSV-tk mRNA and protein expression in pDR2-tk plasmid transduced PC-3m cell. Combination of GCV with VP-16, VCR, 5-Fu or suramin led to an enhanced cellular killing effect, but with CDDP resulted in a reduced one and with MTX in an approximate one. FCM revealed that synergistic use of GCV and 5-fu or suramin resulted in a rather large proportion of apoptosis and necrosis with the apoptosis index being 36.38% and 35.51%, and the proportion of necrosis being 33.05% and 28.87%, respectively. In conclusion, HSV-tk/CGV approach by addition of certain clinical available chemotherapeutic drugs brings on statistically significant enhanced cell killing over single-agent treatment. Our results highlight the potential for such new combination therapies for future treatments of HRPC.

  4. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy

    PubMed Central

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F.; Tang, Jen-Yang

    2017-01-01

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer. PMID:28708091

  5. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and miRNA Signalings Are Potential Targets for Oral Cancer Therapy.

    PubMed

    Farooqi, Ammad Ahmad; Shu, Chih-Wen; Huang, Hurng-Wern; Wang, Hui-Ru; Chang, Yung-Ting; Fayyaz, Sundas; Yuan, Shyng-Shiou F; Tang, Jen-Yang; Chang, Hsueh-Wei

    2017-07-14

    Clinical studies and cancer cell models emphasize the importance of targeting therapies for oral cancer. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is highly expressed in cancer, and is a selective killing ligand for oral cancer. Signaling proteins in the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt), Sonic hedgehog (SHH), and transforming growth factor β (TGFβ) pathways may regulate cell proliferation, migration, and apoptosis. Accordingly, the genes encoding these signaling proteins are potential targets for oral cancer therapy. In this review, we focus on recent advances in targeting therapies for oral cancer and discuss the gene targets within TRAIL, Wnt, SHH, and TGFβ signaling for oral cancer therapies. Oncogenic microRNAs (miRNAs) and tumor suppressor miRNAs targeting the genes encoding these signaling proteins are summarized, and the interactions between Wnt, SHH, TGFβ, and miRNAs are interpreted. With suitable combination treatments, synergistic effects are expected to improve targeting therapies for oral cancer.

  6. CD19xCD3 DART protein mediates human B-cell depletion in vivo in humanized BLT mice

    PubMed Central

    Tsai, Perry; Thayer, William O; Liu, Liqin; Silvestri, Guido; Nordstrom, Jeffrey L; Garcia, J Victor

    2016-01-01

    Novel therapeutic strategies are needed for the treatment of hematologic malignancies; and bispecific antibody-derived molecules, such as dual-affinity re-targeting (DART) proteins, are being developed to redirect T cells to kill target cells expressing tumor or viral antigens. Here we present our findings of specific and systemic human B-cell depletion by a CD19xCD3 DART protein in humanized BLT mice. Administration of the CD19xCD3 DART protein resulted in a dramatic sustained depletion of human CD19+ B cells from the peripheral blood, as well as a dramatic systemic reduction of human CD19+ B-cell levels in all tissues (bone marrow, spleen, liver, lung) analyzed. When human CD8+ T cells were depleted from the mice, no significant B-cell depletion was observed in response to CD19xCD3 DART protein treatment, confirming that human CD8+ T cells are the primary effector cells in this in vivo model. These studies validate the use of BLT humanized mice for the in vivo evaluation and preclinical development of bispecific molecules that redirect human T cells to selectively deplete target cells. PMID:27119115

  7. Escherichia coli Free Radical-Based Killing Mechanism Driven by a Unique Combination of Iron Restriction and Certain Antibiotics

    PubMed Central

    Ma, Li; Gao, Yongjun

    2015-01-01

    ABSTRACT Bacterial resistance to antibiotics is precipitating a medical crisis, and new antibacterial strategies are being sought. Hypothesizing that a growth-restricting strategy could be used to enhance the efficacy of antibiotics, we determined the effect of FDA-approved iron chelators and various antibiotic combinations on invasive and multidrug-resistant extraintestinal pathogenic Escherichia coli (ExPEC), the Gram-negative bacterium most frequently isolated from the bloodstreams of hospitalized patients. We report that certain antibiotics used at sublethal concentrations display enhanced growth inhibition and/or killing when combined with the iron chelator deferiprone (DFP). Inductively coupled plasma optical emission spectrometry reveals abnormally high levels of cell-associated iron under these conditions, a response that correlates with an iron starvation response and supraphysiologic levels of reactive oxygen species (ROS). The high ROS level is reversed upon the addition of antioxidants, which restores bacterial growth, suggesting that the cells are inhibited or killed by excessive free radicals. A model is proposed in which peptidoglycan-targeting antibiotics facilitate the entry of lethal levels of iron-complexed DFP into the bacterial cytoplasm, a process that drives the generation of ROS. This new finding suggests that, in addition to restriction of access to iron as a general growth-restricting strategy, targeting of cellular pathways or networks that selectively disrupt normal iron homeostasis can have potent bactericidal outcomes. IMPORTANCE The prospect that common bacteria will become resistant to all antibiotics is challenging the medical community. In addition to the development of next-generation antibiotics, new bacterial targets that display cytotoxic properties when altered need to be identified. Data presented here demonstrate that combining subinhibitory levels of both iron chelators and certain antibiotics kills pathogenic Escherichia coli. The mechanism of this effect is the production of supraphysiologic levels of reactive oxygen species, likely powered by the excessive import of iron. These findings were consistent for both clinically relevant and no longer clinically used antibiotics and may extend to Staphylococcus aureus as well. PMID:26391205

  8. Individual motile CD4+ T cells can participate in efficient multi-killing through conjugation to multiple tumor cells

    PubMed Central

    Liadi, Ivan; Singh, Harjeet; Romain, Gabrielle; Rey-Villamizar, Nicolas; Merouane, Amine; Adolacion, Jay R T.; Kebriaei, Partow; Huls, Helen; Qiu, Peng; Roysam, Badrinath; Cooper, Laurence J.N.; Varadarajan, Navin

    2015-01-01

    T cells genetically modified to express a CD19-specific chimeric antigen receptor (CAR) for the investigational treatment of B-cell malignancies comprise a heterogeneous population, and their ability to persist and participate in serial killing of tumor cells is a predictor of therapeutic success. We implemented Timelapse Imaging Microscopy In Nanowell Grids (TIMING) to provide direct evidence that CD4+CAR+ T cells (CAR4 cells) can engage in multi-killing via simultaneous conjugation to multiple tumor cells. Comparisons of the CAR4 cells and CD8+CAR+ T cells (CAR8 cells) demonstrate that while CAR4 cells can participate in killing and multi-killing, they do so at slower rates, likely due to the lower Granzyme B content. Significantly, in both sets of T cells, a minor sub-population of individual T cells identified by their high motility, demonstrated efficient killing of single tumor cells. By comparing both the multi-killer and single killer CAR+ T cells it appears that the propensity and kinetics of T-cell apoptosis was modulated by the number of functional conjugations. T cells underwent rapid apoptosis, and at higher frequencies, when conjugated to single tumor cells in isolation and this effect was more pronounced on CAR8 cells. Our results suggest that the ability of CAR+ T cells to participate in multi-killing should be evaluated in the context of their ability to resist activation induced cell death (AICD). We anticipate that TIMING may be utilized to rapidly determine the potency of T-cell populations and may facilitate the design and manufacture of next-generation CAR+ T cells with improved efficacy. PMID:25711538

  9. Extinction models for cancer stem cell therapy

    PubMed Central

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S.; Lange, Kenneth L.

    2012-01-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth–death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives. PMID:22001354

  10. Extinction models for cancer stem cell therapy.

    PubMed

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S; Lange, Kenneth L

    2011-12-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth-death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Galectin-3 Inhibits Galectin-8/Parkin-Mediated Ubiquitination of Group A Streptococcus.

    PubMed

    Cheng, Yi-Lin; Wu, Yan-Wei; Kuo, Chih-Feng; Lu, Shiou-Ling; Liu, Fu-Tong; Anderson, Robert; Lin, Chiou-Feng; Liu, Yi-Ling; Wang, Wan-Yu; Chen, Ying-Da; Zheng, Po-Xing; Wu, Jiunn-Jong; Lin, Yee-Shin

    2017-07-25

    Group A streptococcus (GAS) is an important human pathogen that causes a wide variety of cutaneous and systemic infections. Although originally thought to be an extracellular bacterium, numerous studies have demonstrated that GAS can trigger internalization into nonimmune cells to escape from immune surveillance or antibiotic-mediated killing. Epithelial cells possess a defense mechanism involving autophagy-mediated targeting and killing of GAS within lysosome-fused autophagosomes. In endothelial cells, in contrast, we previously showed that autophagy is not sufficient for GAS killing. In the present study, we showed higher galectin-3 (Gal-3) expression and lower Gal-8 expression in endothelial cells than in epithelial cells. The recruitment of Gal-3 to GAS is higher and the recruitment of Gal-8 to GAS is lower in endothelial cells than in epithelial cells. We further showed that Gal-3 promotes GAS replication and diminishes the recruitment of Gal-8 and ubiquitin, the latter of which is a critical protein for autophagy sequestration. After knockdown of Gal-3 in endothelial cells, the colocalization of Gal-8, parkin, and ubiquitin-decorated GAS is significantly increased, as is the interaction of Gal-8 and parkin, an E3 ligase. Furthermore, inhibition of Gal-8 in epithelial cells attenuates recruitment of parkin; both Gal-8 and parkin contribute to ubiquitin recruitment and GAS elimination. Animal studies confirmed that Gal-3-knockout mice develop less-severe skin damage and that GAS replication can be detected only in the air pouch and not in organs and endothelial cells. These results demonstrate that Gal-3 inhibits ubiquitin recruitment by blocking Gal-8 and parkin recruitment, resulting in GAS replication in endothelial cells. IMPORTANCE In epithelial cells, GAS can be efficiently killed within the lysosome-fused autophaosome compartment. However, we previously showed that, in spite of LC-3 recruitment, the autophagic machinery is not sufficient for GAS killing in endothelial cells. In this report, we provide the first evidence that Gal-3, highly expressed in endothelial cells, blocks the tagging of ubiquitin to GAS by inhibiting recruitment of Gal-8 and parkin, leading to an enhancement of GAS replication. We also provide the first demonstration that Gal-8 can interact with parkin, the critical E3 ligase, for resistance to intracellular bacteria by facilitating the decoration of bacteria with ubiquitin chains. Our findings reveal that differential levels of Gal-3 and Gal-8 expression and recruitment to GAS between epithelial cells and endothelial cells may contribute to the different outcomes of GAS elimination or survival and growth of GAS in these two types of cells. Copyright © 2017 Cheng et al.

  12. Consequences of Decapitation Policies

    DTIC Science & Technology

    2013-04-04

    must not execute the targeted killing. • The targeted killing must not be conducted with “ poison , expanding bullets, or other prohibited weapons” under...responded with a never-ending string of poisonings , bombings, kidnappings, and shootings. Chechen militants continue to replace lost leaders. Over the...34 Aaron Mannes, “Testing the Snake Head Strategy: Does Killing or Capturing Its Leaders Reduce a Terrorist Group’s Activity?” Journal of

  13. Cancer microenvironment, inflammation and cancer stem cells: A hypothesis for a paradigm change and new targets in cancer control

    PubMed Central

    Blaylock, Russell L.

    2015-01-01

    Since President Nixon officially declared a war on cancer with the National Cancer Act, billions of dollars have been spent on research in hopes of finding a cure for cancer. Recent reviews have pointed out that over the ensuing 42 years, cancer death rates have barely changed for the major cancers. Recently, several researchers have questioned the prevailing cancer paradigm based on recent discoveries concerning the mechanism of carcinogenesis and the origins of cancer. Over the past decade we have learned a great deal concerning both of these central issues. Cell signaling has taken center stage, particularly as regards the links between chronic inflammation and cancer development. It is now evident that the common factor among a great number of carcinogenic agents is activation of genes controlling inflammation cell-signaling pathways and that these signals control all aspects of the cancer process. Of these pathways, the most important and common to all cancers is the NFκB and STAT3 pathways. The second discovery of critical importance is that mutated stem cells appear to be in charge of the cancer process. Most chemotherapy agents and radiotherapy kill daughter cells of the cancer stem cell, many of which are not tumorigenic themselves. Most cancer stem cells are completely resistant to conventional treatments, which explain dormancy and the poor cure rate with metastatic tumors. A growing number of studies are finding that several polyphenol extracts can kill cancer stem cells as well as daughter cells and can enhance the effectiveness and safety of conventional treatments. These new discoveries provide the clinician with a whole new set of targets for cancer control and cure. PMID:26097771

  14. Atomic Force Microscopy Study of the Interactions of Indolicidin with Model Membranes and DNA.

    PubMed

    Fojan, Peter; Gurevich, Leonid

    2017-01-01

    The cell membrane is the first barrier and quite often the primary target that antimicrobial peptides (AMPs) have to destroy or penetrate to fulfill their mission. Upon penetrating through the membrane, the peptides can further attack intracellular targets, in particular DNA. Studying the interaction of an antimicrobial peptide with a cell membrane and DNA holds keys to understanding its killing mechanisms. Commonly, these interactions are studied by using optical or scanning electron microscopy and appropriately labeled peptides. However, labeling can significantly affect the hydrophobicity, conformation, and size of the peptide, hence altering the interaction significantly. Here, we describe the use of atomic force microscopy (AFM) for a label-free study of the interactions of peptides with model membranes under physiological conditions and DNA as a possible intracellular target.

  15. Adoptive immunotherapy using PRAME-specific T cells in medulloblastoma.

    PubMed

    Orlando, Domenico; Miele, Evelina; De Angelis, Biagio; Guercio, Marika; Boffa, Iolanda; Sinibaldi, Matilde; Po, Agnese; Caruana, Ignazio; Abballe, Luana; Carai, Andrea; Caruso, Simona; Camera, Antonio; Moseley, Annemarie; Hagedoorn, Renate S; Heemskerk, Mirjam H M; Giangaspero, Felice; Mastronuzzi, Angela; Ferretti, Elisabetta; Locatelli, Franco; Quintarelli, Concetta

    2018-04-03

    Medulloblastoma is the most frequent malignant childhood brain tumor with a high morbidity. Identification of new therapeutic targets would be instrumental in improving patient outcomes. We evaluated the expression of the tumor-associated antigen PRAME in biopsies from 60 medulloblastoma patients. PRAME expression was detectable in 82% of tissues independent of molecular and histopathologic subgroups. High PRAME expression also correlated with worse overall survival. We next investigated the relevance of PRAME as a target for immunotherapy. Medulloblastoma cells were targeted using genetically modified T cells with a PRAME-specific TCR (SLL TCR T cells). SLL TCR T cells efficiently killed medulloblastoma HLA-A*02+ DAOY cells as well as primary HLA-A*02+ medulloblastoma cells. Moreover, SLL TCR T cells controlled tumor growth in an orthotopic mouse model of medulloblastoma. To prevent unexpected T cell-related toxicity,an inducible caspase 9 (iC9) gene was introduced in frame with the SLL TCR; this safety switch triggered prompt elimination of genetically-modified T cells. Altogether, these data indicate that T cells genetically modified with a high-affinity, PRAME-specific TCR and iC9 may represent a promising innovative approach for treating HLA-A*02+ medulloblastoma patients. Copyright ©2018, American Association for Cancer Research.

  16. Tetracyclines function as dual-action light-activated antibiotics.

    PubMed

    He, Ya; Huang, Ying-Ying; Xi, Liyan; Gelfand, Jeffrey A; Hamblin, Michael R

    2018-01-01

    Antimicrobial photodynamic inactivation (aPDI) employs photosensitizing dyes activated by visible light to produce reactive oxygen species. aPDI is independent of the antibiotic resistance status of the target cells, and is thought unlikely to produce resistance itself. Among many PS that have been investigated, tetracyclines occupy a unique niche. They are potentially dual-action compounds that can both kill bacteria under illumination, and prevent bacterial regrowth by inhibiting ribosomes. Tetracycline antibiotics are regarded as bacteriostatic rather than bactericidal. Doxycycline (DOTC) is excited best by UVA light (365 nm) while demeclocycline (DMCT) can be efficiently activated by blue light (415 nm) as well as UVA. Both compounds were able to eradicate Gram-positive (methicillin-resistant Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria (>6 log(10) steps of killing) at concentrations (10-50μM) and fluences (10-20J/cm2). In contrast to methylene blue, MB plus red light, tetracyclines photoinactivated bacteria in rich growth medium. When ~3 logs of bacteria were killed with DMCT/DOTC+light and the surviving cells were added to growth medium, further bacterial killing was observed, while the same experiment with MB allowed complete regrowth. MIC studies were carried out either in the dark or exposed to 0.5mW/cm2 blue light. Up to three extra steps (8-fold) increased antibiotic activity was found with light compared to dark, with MRSA and tetracycline-resistant strains of E. coli. Tetracyclines can accumulate in bacterial ribosomes, where they could be photoactivated with blue/UVA light producing microbial killing via ROS generation.

  17. A Sequential Model of Host Cell Killing and Phagocytosis by Entamoeba histolytica

    PubMed Central

    Sateriale, Adam; Huston, Christopher D.

    2011-01-01

    The protozoan parasite Entamoeba histolytica is responsible for invasive intestinal and extraintestinal amebiasis. The virulence of Entamoeba histolytica is strongly correlated with the parasite's capacity to effectively kill and phagocytose host cells. The process by which host cells are killed and phagocytosed follows a sequential model of adherence, cell killing, initiation of phagocytosis, and engulfment. This paper presents recent advances in the cytolytic and phagocytic processes of Entamoeba histolytica in context of the sequential model. PMID:21331284

  18. Prolonged early G1 arrest by selective CDK4/CDK6 inhibition sensitizes myeloma cells to cytotoxic killing through cell cycle–coupled loss of IRF4

    PubMed Central

    Huang, Xiangao; Di Liberto, Maurizio; Jayabalan, David; Liang, Jun; Ely, Scott; Bretz, Jamieson; Shaffer, Arthur L.; Louie, Tracey; Chen, Isan; Randolph, Sophia; Hahn, William C.; Staudt, Louis M.; Niesvizky, Ruben; Moore, Malcolm A. S.

    2012-01-01

    Dysregulation of cyclin-dependent kinase 4 (CDK4) and CDK6 by gain of function or loss of inhibition is common in human cancer, including multiple myeloma, but success in targeting CDK with broad-spectrum inhibitors has been modest. By selective and reversible inhibition of CDK4/CDK6, we have developed a strategy to both inhibit proliferation and enhance cytotoxic killing of cancer cells. We show that induction of prolonged early-G1 arrest (pG1) by CDK4/CDK6 inhibition halts gene expression in early-G1 and prevents expression of genes programmed for other cell-cycle phases. Removal of the early-G1 block leads to S-phase synchronization (pG1-S) but fails to completely restore scheduled gene expression. Consequently, the IRF4 protein required to protect myeloma cells from apoptosis is markedly reduced in pG1 and further in pG1-S in response to cytotoxic agents, such as the proteasome inhibitor bortezomib. The coordinated loss of IRF4 and gain of Bim sensitize myeloma tumor cells to bortezomib-induced apoptosis in pG1 in the absence of Noxa and more profoundly in pG1-S in cooperation with Noxa in vitro. Induction of pG1 and pG1-S by reversible CDK4/CDK6 inhibition further augments tumor-specific bortezomib killing in myeloma xenografts. Reversible inhibition of CDK4/CDK6 in sequential combination therapy thus represents a novel mechanism-based cancer therapy. PMID:22718837

  19. Prolonged early G(1) arrest by selective CDK4/CDK6 inhibition sensitizes myeloma cells to cytotoxic killing through cell cycle-coupled loss of IRF4.

    PubMed

    Huang, Xiangao; Di Liberto, Maurizio; Jayabalan, David; Liang, Jun; Ely, Scott; Bretz, Jamieson; Shaffer, Arthur L; Louie, Tracey; Chen, Isan; Randolph, Sophia; Hahn, William C; Staudt, Louis M; Niesvizky, Ruben; Moore, Malcolm A S; Chen-Kiang, Selina

    2012-08-02

    Dysregulation of cyclin-dependent kinase 4 (CDK4) and CDK6 by gain of function or loss of inhibition is common in human cancer, including multiple myeloma, but success in targeting CDK with broad-spectrum inhibitors has been modest. By selective and reversible inhibition of CDK4/CDK6, we have developed a strategy to both inhibit proliferation and enhance cytotoxic killing of cancer cells. We show that induction of prolonged early-G(1) arrest (pG1) by CDK4/CDK6 inhibition halts gene expression in early-G(1) and prevents expression of genes programmed for other cell-cycle phases. Removal of the early-G(1) block leads to S-phase synchronization (pG1-S) but fails to completely restore scheduled gene expression. Consequently, the IRF4 protein required to protect myeloma cells from apoptosis is markedly reduced in pG1 and further in pG1-S in response to cytotoxic agents, such as the proteasome inhibitor bortezomib. The coordinated loss of IRF4 and gain of Bim sensitize myeloma tumor cells to bortezomib-induced apoptosis in pG1 in the absence of Noxa and more profoundly in pG1-S in cooperation with Noxa in vitro. Induction of pG1 and pG1-S by reversible CDK4/CDK6 inhibition further augments tumor-specific bortezomib killing in myeloma xenografts. Reversible inhibition of CDK4/CDK6 in sequential combination therapy thus represents a novel mechanism-based cancer therapy.

  20. Gold Nano Popcorn Attached SWCNT Hybrid Nanomaterial for Targeted Diagnosis and Photothermal Therapy of Human Breast Cancer Cells

    PubMed Central

    Beqa, Lule; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Ray, Paresh Chandra

    2011-01-01

    Breast cancer presents greatest challenge in health care in today’s world. The key to ultimately successful treatment of breast cancer disease is an early and accurate diagnosis. Current breast cancer treatments are often associated with severe side effects. Driven by the need, we report the design of novel hybrid nanomaterial using gold nano popcorn-attached single wall carbon nanotube for targeted diagnosis and selective photothermal treatment. Targeted SK-BR-3 human breast cancer cell sensing have been performed in 10 cancer cells/mL level, using surface enhanced Raman scattering of single walls carbon nanotube’s D and G bands. Our data show that S6 aptamer attached hybrid nanomaterial based SERS assay is highly sensitive to targeted human breast cancer SK-BR-3 cell line and it will be able to distinguish it from other non targeted MDA-MB breast cancer cell line and HaCaT normal skin cell line. Our results also show that 10 minutes of photothermal therapy treatment by 1.5 W/cm2 power, 785 nm laser is enough to kill cancer cells very effectively using S6 aptamer attached hybrid nanomaterials. Possible mechanisms for targeted sensing and operating principle for highly efficient photothermal therapy have been discussed. Our experimental results reported here open up a new possibility for using aptamers modified hybrid nanomaterial for reliable diagnosis and targeted therapy of cancer cell lines quickly. PMID:21842867

  1. Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells.

    PubMed

    Beqa, Lule; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Ray, Paresh Chandra

    2011-09-01

    Breast cancer presents greatest challenge in health care in today's world. The key to ultimately successful treatment of breast cancer disease is an early and accurate diagnosis. Current breast cancer treatments are often associated with severe side effects. Driven by the need, we report the design of novel hybrid nanomaterial using gold nano popcorn-attached single wall carbon nanotube for targeted diagnosis and selective photothermal treatment. Targeted SK-BR-3 human breast cancer cell sensing have been performed in 10 cancer cells/mL level, using surface enhanced Raman scattering of single walls carbon nanotube's D and G bands. Our data show that S6 aptamer attached hybrid nanomaterial based SERS assay is highly sensitive to targeted human breast cancer SK-BR-3 cell line and it will be able to distinguish it from other non targeted MDA-MB breast cancer cell line and HaCaT normal skin cell line. Our results also show that 10 min of photothermal therapy treatment by 1.5 W/cm(2) power, 785 nm laser is enough to kill cancer cells very effectively using S6 aptamer attached hybrid nanomaterials. Possible mechanisms for targeted sensing and operating principle for highly efficient photothermal therapy have been discussed. Our experimental results reported here open up a new possibility for using aptamers modified hybrid nanomaterial for reliable diagnosis and targeted therapy of cancer cell lines quickly.

  2. Truncated Autoinducing Peptide Conjugates Selectively Recognize and Kill Staphylococcus aureus.

    PubMed

    Tsuchikama, Kyoji; Shimamoto, Yasuhiro; Anami, Yasuaki

    2017-06-09

    The accessory gene regulator (agr) of Staphylococcus aureus coordinates various pathogenic events and is recognized as a promising therapeutic target for virulence control. S. aureus utilizes autoinducing peptides (AIPs), cyclic-peptide signaling molecules, to mediate the agr system. Despite the high potency of synthetic AIP analogues in agr inhibition, the potential of AIP molecules as a delivery vehicle for antibacterial agents remains unexplored. Herein, we report that truncated AIP scaffolds can be fused with fluorophore and cytotoxic photosensitizer molecules without compromising their high agr inhibitory activity, binding affinity to the receptor AgrC, or cell specificity. Strikingly, a photosensitizer-AIP conjugate exhibited 16-fold greater efficacy in a S. aureus cell-killing assay than a nontargeting analogue. These findings highlight the potential of truncated AIP conjugates as useful chemical tools for in-depth biological studies and as effective anti-S. aureus agents.

  3. Influence of anaesthetics on tumour-cell kill and repopulation in B16 melanoma treated with melphalan.

    PubMed Central

    Peacock, J. H.; Stephens, T. C.

    1978-01-01

    The influence of anaesthetics on the in vivo response of B16 melanoma to melphalan was studied using an in vitro cell-survival assay. Three anaesthetics were used, Saffan (Althesin) Sagatal (Nembutal) and Hypnorm. When Saffan was administered to tumour-bearing animals before melphalan there was a significant increase in tumour-cell kill. This effect was not observed with Sagatal or Hypnorm. Maximum increase in tumour-cell kill was achieved when Saffan was administered about 1 h before melphalan, and was dependent on Saffan dose. Clonogenic tumour-cell repopulation after melphalan was rapid (TD - 1 day) and the rate was similar from 2 levels of cell kill. When Saffan was combined with melphalan the repopulation rate was the same as with melphalan alone, and the increased cell kill was reflected in increased growth delay. The in vitro response of B16 melanoma cells to melphalan was unaltered by pretreatment with, or simultaneous exposure to Saffan. The results suggest that the mechanism of the enhanced cell kill in vivo is probably due to an indirect systemic effect, rather than a direct effect on the tumour cells. PMID:743490

  4. Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer

    NASA Astrophysics Data System (ADS)

    Kopelman, Raoul; Lee Koo, Yong-Eun; Philbert, Martin; Moffat, Bradford A.; Ramachandra Reddy, G.; McConville, Patrick; Hall, Daniel E.; Chenevert, Thomas L.; Bhojani, Mahaveer Swaroop; Buck, Sarah M.; Rehemtulla, Alnawaz; Ross, Brian D.

    2005-05-01

    A paradigm for brain cancer detection, treatment, and monitoring is established. Multifunctional biomedical nanoparticles (30-60 nm) containing photosensitizer externally deliver reactive oxygen species (ROS) to cancer cells while simultaneously enhancing magnetic resonance imaging (MRI) contrast providing real-time tumor kill measurement. Plasma residence time control and specific cell targeting are achieved. A 5 min treatment in rats halted and even reversed in vivo tumor growth after 3-4 days post-treatment.

  5. Targeting the Human Complement Membrane Attack Complex to Selectively Kill Prostate Cancer Cells

    DTIC Science & Technology

    2013-10-01

    prostate cancer cells in vitro . Evaluate CD59 expression in human prostate cancer microarrays. Aim 4: Evaluate toxicity and efficacy of the lead PAC5...fragment in vitro . Since PSA is the major chymotrypsin-like serine protease in the seminal plasma and prostatic fluid, we hypothesized that PSA was...that the evolution -related complement protein C5, but not C4, is a substrate of PSA as well. *Department of Pharmacology and Molecular Sciences, The

  6. Targeting the Human Complement Membrane Attack Complex to Selectively Kill Prostate Cancer Cells

    DTIC Science & Technology

    2012-10-01

    prostate cancer cells in vitro . Evaluate CD59 expression in human prostate cancer microarrays. Aim 4: Evaluate toxicity and efficacy of the lead...findings suggest PSA may also have immunoregulatory activity in the seminal plasma to aid in normal fertility that may have been co-opted by prostate...cleavage fragments have not been described. PSA can cleave C3 and generate the 37 kDa fragment in vitro . PSA is the major chymotrypsin-like serine

  7. Targeted Therapy of Fn14-Positive Breast Tumors Using a TWEAK-Cytotoxin Fusion Protein or Noncovalent Complex

    DTIC Science & Technology

    2010-09-01

    Task Summary: Construct expression plasmids, purify proteins, test proteins for cytotoxic effects on breast cancer cell lines. Progress: The majority...either Pseudomonas exotoxin PE38 protein or a recombinant form of a plant toxin named gelonin (denoted rGel) act as the cytotoxic cargo. We found that...ability to kill Fn14-positive breast cancer cells the cytotoxic effect was not impressive (see Annual Report). Another approach listed in this Aim was

  8. Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova, Ekaterina; Shnip, Alexander; Zheltov, George; Potapnev, Michail; Savitsky, Valeriy; Klimovich, Olga; Oraevsky, Alexander

    2005-04-01

    We are developing new diagnostic and therapeutic technologies for leukemia based on selective targeting of leukemia cells with gold nanoparticles and thermomechanical destruction of the tumor cells with laser-induced microbubbles. Clusters of spherical gold nanoparticles that have strong optical absorption of laser pulses at 532 nm served as nucleation sites of vapor microbubbles. The nanoparticles were targeted selectively to leukemia cells using leukemia-specific surface receptors and a set of two monoclonal antibodies. Application of a primary myeloid-specific antibody to tumor cells followed by targeting the cells with 30-nm nanoparticles conjugated with a secondary antibody (IgG) resulted in formation of nanoparticulate clusters due to aggregation of IgGs. Formation of clusters resulted in substantial decrease of the damage threshold for target cells. The results encourage development of Laser Activated Nanothermolysis as a Cell Elimination Therapy (LANCET) for leukemia. The proposed technology can be applied separately or in combination with chemotherapy for killing leukemia cells without damage to other blood cells. Potential applications include initial reduction of concentration of leukemia cells in blood prior to chemotherapy and treatment of residual tumor cells after the chemotherapy. Laser-induced bubbles in individual cells and cell damage were monitored by analyzing profile of photothermal response signals over the entire cell after irradiation with a single 10-ns long laser pulse. Photothermal microscopy was utilized for imaging formation of microbubbles around nanoparticulate clusters.

  9. Gene expression profiling for nitric oxide prodrug JS-K to kill HL-60 myeloid leukemia cells.

    PubMed

    Liu, Jie; Malavya, Swati; Wang, Xueqian; Saavedra, Joseph E; Keefer, Larry K; Tokar, Erik; Qu, Wei; Waalkes, Michael P; Shami, Paul J

    2009-07-01

    The nitric oxide (NO) prodrug JS-K is shown to have anticancer activity. To profile the molecular events associated with the anticancer effects of JS-K, HL-60 leukemia cells were treated with JS-K and subjected to microarray and real-time RT-PCR analysis. JS-K induced concentration- and time-dependent gene expression changes in HL-60 cells corresponding to the cytolethality effects. The apoptotic genes (caspases, Bax, and TNF-alpha) were induced, and differentiation-related genes (CD14, ITGAM, and VIM) were increased. For acute phase protein genes, some were increased (TP53, JUN) while others were suppressed (c-myc, cyclin E). The expression of anti-angiogenesis genes THBS1 and CD36 and genes involved in tumor cell migration such as tissue inhibitors of metalloproteinases, were also increased by JS-K. Confocal analysis confirmed key gene changes at the protein levels. Thus, multiple molecular events are associated with JS-K effects in killing HL-60, which could be molecular targets for this novel anticancer NO prodrug.

  10. Methods for generation of reporter phages and immobilization of active bacteriophages on a polymer surface

    NASA Technical Reports Server (NTRS)

    Morgan, Mark Thomas (Inventor); Kothapalli, Aparna (Inventor); Applegate, Bruce Michael (Inventor); Perry, Lynda Louise (Inventor)

    2012-01-01

    Novel reporter bacteriophages are provided. Provided are compositions and methods that allow bacteriophages that are used for specific detection or killing of E. coli 0157:H7 to be propagated in nonpathogenic E. coli, thereby eliminating the safety and security risks of propagation in E. coli 0157:H7. Provided are compositions and methods for attaching active bacteriophages to the surface of a polymer in order to kill target bacteria with which the phage comes into contact. Provided are modified bacteriophages immobilized to a surface, which capture E. coli 0157:H7 and cause the captured cells to emit light or fluorescence, allowing detection of the bacteria in a sample.

  11. Zika Virus Escapes NK Cell Detection by Upregulating Major Histocompatibility Complex Class I Molecules.

    PubMed

    Glasner, Ariella; Oiknine-Djian, Esther; Weisblum, Yiska; Diab, Mohammad; Panet, Amos; Wolf, Dana G; Mandelboim, Ofer

    2017-11-15

    NK cells are innate lymphocytes that participate in many immune processes encompassing cancer, bacterial and fungal infection, autoimmunity, and even pregnancy and that specialize in antiviral defense. NK cells express inhibitory and activating receptors and kill their targets when activating signals overpower inhibitory signals. The NK cell inhibitory receptors include a uniquely diverse array of proteins named killer cell immunoglobulin-like receptors (KIRs), the CD94 family, and the leukocyte immunoglobulin-like receptor (LIR) family. The NK cell inhibitory receptors recognize mostly major histocompatibility complex (MHC) class I (MHC-I) proteins. Zika virus has recently emerged as a major threat due to its association with birth defects and its pandemic potential. How Zika virus interacts with the immune system, and especially with NK cells, is unclear. Here we show that Zika virus infection is barely sensed by NK cells, since little or no increase in the expression of activating NK cell ligands was observed following Zika infection. In contrast, we demonstrate that Zika virus infection leads to the upregulation of MHC class I proteins and consequently to the inhibition of NK cell killing. Mechanistically, we show that MHC class I proteins are upregulated via the RIGI-IRF3 pathway and that this upregulation is mediated via beta interferon (IFN-β). Potentially, countering MHC class I upregulation during Zika virus infection could be used as a prophylactic treatment against Zika virus. IMPORTANCE NK cells are innate lymphocytes that recognize and eliminate various pathogens and are known mostly for their role in controlling viral infections. NK cells express inhibitory and activating receptors, and they kill or spare their targets based on the integration of inhibitory and activating signals. Zika virus has recently emerged as a major threat to humans due to its pandemic potential and its association with birth defects. The role of NK cells in Zika virus infection is largely unknown. Here we demonstrate that Zika virus infection is almost undetected by NK cells, as evidenced by the fact that the expression of activating ligands for NK cells is not induced following Zika infection. We identified a mechanism whereby Zika virus sensing via the RIGI-IRF3 pathway resulted in IFN-β-mediated upregulation of MHC-I molecules and inhibition of NK cell activity. Countering MHC class I upregulation and boosting NK cell activity may be employed as prophylactic measures to combat Zika virus infection. Copyright © 2017 American Society for Microbiology.

  12. Zika Virus Escapes NK Cell Detection by Upregulating Major Histocompatibility Complex Class I Molecules

    PubMed Central

    Glasner, Ariella; Oiknine-Djian, Esther; Weisblum, Yiska; Diab, Mohammad; Panet, Amos; Wolf, Dana G.

    2017-01-01

    ABSTRACT NK cells are innate lymphocytes that participate in many immune processes encompassing cancer, bacterial and fungal infection, autoimmunity, and even pregnancy and that specialize in antiviral defense. NK cells express inhibitory and activating receptors and kill their targets when activating signals overpower inhibitory signals. The NK cell inhibitory receptors include a uniquely diverse array of proteins named killer cell immunoglobulin-like receptors (KIRs), the CD94 family, and the leukocyte immunoglobulin-like receptor (LIR) family. The NK cell inhibitory receptors recognize mostly major histocompatibility complex (MHC) class I (MHC-I) proteins. Zika virus has recently emerged as a major threat due to its association with birth defects and its pandemic potential. How Zika virus interacts with the immune system, and especially with NK cells, is unclear. Here we show that Zika virus infection is barely sensed by NK cells, since little or no increase in the expression of activating NK cell ligands was observed following Zika infection. In contrast, we demonstrate that Zika virus infection leads to the upregulation of MHC class I proteins and consequently to the inhibition of NK cell killing. Mechanistically, we show that MHC class I proteins are upregulated via the RIGI-IRF3 pathway and that this upregulation is mediated via beta interferon (IFN-β). Potentially, countering MHC class I upregulation during Zika virus infection could be used as a prophylactic treatment against Zika virus. IMPORTANCE NK cells are innate lymphocytes that recognize and eliminate various pathogens and are known mostly for their role in controlling viral infections. NK cells express inhibitory and activating receptors, and they kill or spare their targets based on the integration of inhibitory and activating signals. Zika virus has recently emerged as a major threat to humans due to its pandemic potential and its association with birth defects. The role of NK cells in Zika virus infection is largely unknown. Here we demonstrate that Zika virus infection is almost undetected by NK cells, as evidenced by the fact that the expression of activating ligands for NK cells is not induced following Zika infection. We identified a mechanism whereby Zika virus sensing via the RIGI-IRF3 pathway resulted in IFN-β-mediated upregulation of MHC-I molecules and inhibition of NK cell activity. Countering MHC class I upregulation and boosting NK cell activity may be employed as prophylactic measures to combat Zika virus infection. PMID:28878071

  13. Human cytomegalovirus microRNA miR-US4-1 inhibits CD8+ T cell response by targeting the aminopeptidase ERAP1

    PubMed Central

    Kim, Sungchul; Lee, Sanghyun; Shin, Jinwook; Kim, Youngkyun; Evnouchidou, Irini; Kim, Donghyun; Kim, Young-Kook; Kim, Young-Eui; Ahn, Jin-Hyun; Riddell, Stanley R.; Stratikos, Efstratios; Kim, V. Narry; Ahn, Kwangseog

    2012-01-01

    The major histocompatibility complex (MHC) class I molecules present peptides on the cell surface by CD8+ T cells, which is critical for killing of virally infected or transformed cells. Precursors of MHC class I-presented peptides are trimmed to mature epitopes by endoplasmic reticulum aminopeptidase 1 (ERAP1). The US2-US11 genomic region of human cytomegalovirus (HCMV) is dispensable for viral replication and harbors 3 microRNAs (miRNAs). We show here the HCMV miR-US4-1 specifically down-regulates ERAP1 expression during viral infection. Accordingly, the trimming of HCMV-derived peptides is inhibited, leading to reduced susceptibility of infected cells to HCMV-specific cytotoxic T lymphocytes (CTLs). Our findings reveal a novel viral miRNA-based CTL evasion mechanism that targets a key step in the MHC class I antigen-processing pathway. PMID:21892175

  14. Theranostic Imaging of Cancer Gene Therapy.

    PubMed

    Sekar, Thillai V; Paulmurugan, Ramasamy

    2016-01-01

    Gene-directed enzyme prodrug therapy (GDEPT) is a promising therapeutic approach for treating cancers of various phenotypes. This strategy is independent of various other chemotherapeutic drugs used for treating cancers where the drugs are mainly designed to target endogenous cellular mechanisms, which are different in various cancer subtypes. In GDEPT an external enzyme, which is different from the cellular proteins, is expressed to convert the injected prodrug in to a toxic metabolite, that normally kill cancer cells express this protein. Theranostic imaging is an approach used to directly monitor the expression of these gene therapy enzymes while evaluating therapeutic effect. We recently developed a dual-GDEPT system where we combined mutant human herpes simplex thymidine kinase (HSV1sr39TK) and E. coli nitroreductase (NTR) enzyme, to improve therapeutic efficiency of cancer gene therapy by simultaneously injecting two prodrugs at a lower dose. In this approach we use two different prodrugs such as ganciclovir (GCV) and CB1954 to target two different cellular mechanisms to kill cancer cells. The developed dual GDEPT system was highly efficacious than that of either of the system used independently. In this chapter, we describe the complete protocol involved for in vitro and in vivo imaging of therapeutic cancer gene therapy evaluation.

  15. Effects of Corynebacterium parvum treatment and Toxoplasma gondii infection on macrophage-mediated cytostasis of tumour target cells.

    PubMed Central

    Krahenbuhl, J L; Lambert, L H; Remington, J S

    1976-01-01

    Injection of mice with Corynebacterium parvum or living or killed Toxoplasma gondii was studied to determine the efficacy of these treatments in activating peritoneal macrophages to inhibit the uptake of [3H]TdR (cytostasis) by tumour target cells in vitro. In the presence of activated macrophages from mice treated i.p. with a wide dose range of either C. parvum or living Toxoplasma, cytostasis was usually greater than 99%. This population of activated macrophages was transient in C. parvum-treated mice, but persists, probably for life, in Toxoplasma-infected mice. Whereas the i.p. route of administration of C. parvum was more efficient in activating macrophages than the i.v. route, the s.c. route appeared to be relatively ineffective. Treatment with killed Toxoplasma by any route was also relatively ineffective in activating macrophages. In contrast Toxoplasma infection resulted in highly activated peritoneal macrophages, regardless of the route of administration. Depending upon the route of initial treatment, the route of readministration of C. parvum had either no appreciable effect or resulted in a marked alteration in the cytostatic capacity of peritoneal macrophages. PMID:992714

  16. Novel method for in vitro depletion of T cells by monoclonal antibody-targeted photosensitization.

    PubMed

    Berki, T; Németh, P

    1998-02-01

    An immunotargeting method (called photo-immunotargeting) has been developed for selective in vitro cell destruction. The procedure combines the photosensitizing (toxic) effect of light-induced dye-molecules, e.g., hematoporphyrin (HP) and the selective binding ability of monoclonal antibodies (mAb) to cell surface molecules. The photosensitizer HP molecules were covalently attached to monoclonal antibodies (a-Thy-1) recognizing an antigen on the surface of T lymphocytes, and used for T cell destruction. To increase the selectivity of the conventional targeting methods, a physical activation step (local light irradiation) as a second degree of specificity was employed. The HP in conjugated form was sufficient to induce T cell (thymocytes, EL-4 cell line) death after irradiation at 400 nm, at tenfold lower concentration compared to the photosensitizing effect of unbound HP. The selective killing of T lymphocytes (bearing the Thy-1 antigen) in a mixed cell population was demonstrated after a treatment with the phototoxic conjugate and light irradiation. This method can be useful for selective destruction of one population (target cell) in an in vitro heterogeneous cell mixture, e.g., in bone marrow transplants for T cell depletion to avoid graft vs. host reaction.

  17. Testing protozoacidal activity of ligand-lytic peptides against termite gut protozoa in vitro (protozoa culture) and in vivo (microinjection into termite hindgut).

    PubMed

    Husseneder, Claudia; Sethi, Amit; Foil, Lane; Delatte, Jennifer

    2010-12-29

    We are developing a novel approach to subterranean termite control that would lead to reduced reliance on the use of chemical pesticides. Subterranean termites are dependent on protozoa in the hindguts of workers to efficiently digest wood. Lytic peptides have been shown to kill a variety of protozoan parasites (Mutwiri et al. 2000) and also protozoa in the gut of the Formosan subterranean termite, Coptotermes formosanus (Husseneder and Collier 2009). Lytic peptides are part of the nonspecific immune system of eukaryotes, and destroy the membranes of microorganisms (Leuschner and Hansel 2004). Most lytic peptides are not likely to harm higher eukaryotes, because they do not affect the electrically neutral cholesterol-containing cell membranes of higher eukaryotes (Javadpour et al. 1996). Lytic peptide action can be targeted to specific cell types by the addition of a ligand. For example, Hansel et al. (2007) reported that lytic peptides conjugated with cancer cell membrane receptor ligands could be used to destroy breast cancer cells, while lytic peptides alone or conjugated with non-specific peptides were not effective. Lytic peptides also have been conjugated to human hormones that bind to receptors on tumor cells for targeted destruction of prostate and testicular cancer cells (Leuschner and Hansel 2004). In this article we present techniques used to demonstrate the protozoacidal activity of a lytic peptide (Hecate) coupled to a heptapeptide ligand that binds to the surface membrane of protozoa from the gut of the Formosan subterranean termite. These techniques include extirpation of the gut from termite workers, anaerobic culture of gut protozoa (Pseudotrichonympha grassii, Holomastigotoides hartmanni,Spirotrichonympha leidyi), microscopic confirmation that the ligand marked with a fluorescent dye binds to the termite gut protozoa and other free-living protozoa but not to bacteria or gut tissue. We also demonstrate that the same ligand coupled to a lytic peptide efficiently kills termite gut protozoa in vitro (protozoa culture) and in vivo (microinjection into hindgut of workers), but is less bacteriacidal than the lytic peptide alone. The loss of protozoa leads to the death of the termites in less than two weeks. In the future, we will genetically engineer microorganisms that can survive in the termite hindgut and spread through a termite colony as "Trojan Horses" to express ligand-lytic peptides that would kill the protozoa in the termite gut and subsequently kill the termites in the colony. Ligand-lytic peptides also could be useful for drug development against protozoan parasites.

  18. Synthetic lethality in DNA repair network: A novel avenue in targeted cancer therapy and combination therapeutics.

    PubMed

    Bhattacharjee, Sonali; Nandi, Saikat

    2017-12-01

    Synthetic lethality refers to a lethal phenotype that results from the simultaneous disruptions of two genes, while the disruption of either gene alone is viable. Many DNA double strand break repair (DSBR) genes have synthetic lethal relationships with oncogenes and tumor suppressor genes, which can be exploited for targeted cancer therapy, an approach referred to as combination therapy. DNA double-strand breaks (DSBs) are one of the most toxic lesions to a cell and can be repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). HR and NHEJ genes are particularly attractive targets for cancer therapy because these genes have altered expression patterns in cancer cells when compared with normal cells and these genetic abnormalities can be targeted for selectively killing cancer cells. Here, we review recent advances in the development of small molecule inhibitors against HR and NHEJ genes to induce synthetic lethality and address the future directions and clinical relevance of this approach. © 2017 IUBMB Life, 69(12):929-937, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  19. Nanobiotechnology for the Therapeutic Targeting of Cancer Cells in Blood.

    PubMed

    Li, Jiahe; Sharkey, Charles C; Huang, Dantong; King, Michael R

    During metastasis, circulating tumor cells migrate away from a primary tumor via the blood circulation to form secondary tumors in distant organs. Mounting evidence from clinical observations indicates that the number of circulating tumor cells (CTCs) in the blood correlates with the progression of solid tumors before and during chemotherapy. Beyond the well-established role of CTCs as a fluid biopsy, however, the field of targeting CTCs for the prevention or reduction of metastases has just emerged. Conventional cancer therapeutics have a relatively short circulation time in the blood which may render the killing of CTCs inefficient due to reduced exposure of CTCs to drugs. Nevertheless, over the past few decades, the development of nanoparticles and nanoformulations to improve the half-life and release profile of drugs in circulation has rejuvenated certain traditional medicines in the emerging field of CTC neutralization. This review focuses on how the principles of nanomedicine may be applied to target CTCs. Moreover, inspired by the interactions between CTCs and host cells in the blood circulation, novel biomimetic approaches for targeted drug delivery are presented.

  20. Overcoming Multidrug Resistance via Photodestruction of ABCG2-Rich Extracellular Vesicles Sequestering Photosensitive Chemotherapeutics

    PubMed Central

    Goler-Baron, Vicky; Assaraf, Yehuda G.

    2012-01-01

    Multidrug resistance (MDR) remains a dominant impediment to curative cancer chemotherapy. Efflux transporters of the ATP-binding cassette (ABC) superfamily including ABCG2, ABCB1 and ABCC1 mediate MDR to multiple structurally and functionally distinct antitumor agents. Recently we identified a novel mechanism of MDR in which ABCG2-rich extracellular vesicles (EVs) form in between attached neighbor breast cancer cells and highly concentrate various chemotherapeutics in an ABCG2-dependent manner, thereby sequestering them away from their intracellular targets. Hence, development of novel strategies to overcome MDR modalities is a major goal of cancer research. Towards this end, we here developed a novel approach to selectively target and kill MDR cancer cells. We show that illumination of EVs that accumulated photosensitive cytotoxic drugs including imidazoacridinones (IAs) and topotecan resulted in intravesicular formation of reactive oxygen species (ROS) and severe damage to the EVs membrane that is shared by EVs-forming cells, thereby leading to tumor cell lysis and the overcoming of MDR. Furthermore, consistent with the weak base nature of IAs, MDR cells that are devoid of EVs but contained an increased number of lysosomes, highly accumulated IAs in lysosomes and upon photosensitization were efficiently killed via ROS-dependent lysosomal rupture. Combining targeted lysis of IAs-loaded EVs and lysosomes elicited a synergistic cytotoxic effect resulting in MDR reversal. In contrast, topotecan, a bona fide transport substrate of ABCG2, accumulated exclusively in EVs of MDR cells but was neither detected in lysosomes of normal breast epithelial cells nor in non-MDR breast cancer cells. This exclusive accumulation in EVs enhanced the selectivity of the cytotoxic effect exerted by photodynamic therapy to MDR cells without harming normal cells. Moreover, lysosomal alkalinization with bafilomycin A1 abrogated lysosomal accumulation of IAs, consequently preventing lysosomal photodestruction of normal breast epithelial cells. Thus, MDR modalities including ABCG2-dependent drug sequestration within EVs can be rationally converted to a pharmacologically lethal Trojan horse to selectively eradicate MDR cancer cells. PMID:22530032

  1. Autophagy induction by histone deacetylase inhibitors inhibits HIV type 1.

    PubMed

    Campbell, Grant R; Bruckman, Rachel S; Chu, Yen-Lin; Spector, Stephen A

    2015-02-20

    Histone deacetylase inhibitors (HDACi) are being evaluated in a "shock-and-kill" therapeutic approach to reverse human immunodeficiency virus type-1 (HIV) latency from CD4(+) T cells. Using this approach, HDACi have induced HIV RNA synthesis in latently infected cells from some patients. The hope is that the increase in viral production will lead to killing of the infected cell either by the virus itself or by the patient's immune system, a "sterilizing cure." Although administered within the context of combination antiretroviral therapy, the infection of bystander cells remains a concern. In this study, we investigated the effect of HDACi (belinostat, givinostat, panobinostat, romidepsin, and vorinostat) on the productive infection of macrophages. We demonstrate that the HDACi tested do not alter the initial susceptibility of macrophages to HIV infection. However, we demonstrate that HDACi decrease HIV release from macrophages in a dose-dependent manner (belinostat < givinostat < vorinostat < panobinostat < romidepsin) via degradation of intracellular HIV through the canonical autophagy pathway. This mechanism involves unc-51-like autophagy-activating kinase 1 (ULK1) and the inhibition of the mammalian target of rapamycin and requires the formation of autophagosomes and their maturation into autolysosomes in the absence of increased cell death. These data provide further evidence in support of a role for autophagy in the control of HIV infection and suggest that careful consideration of off-target effects will be essential if HDACi are to be a component of a multipronged approach to eliminate latently infected cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Current views on HIV-1 latency, persistence, and cure.

    PubMed

    Melkova, Zora; Shankaran, Prakash; Madlenakova, Michaela; Bodor, Josef

    2017-01-01

    HIV-1 infection cannot be cured as it persists in latently infected cells that are targeted neither by the immune system nor by available therapeutic approaches. Consequently, a lifelong therapy suppressing only the actively replicating virus is necessary. The latent reservoir has been defined and characterized in various experimental models and in human patients, allowing research and development of approaches targeting individual steps critical for HIV-1 latency establishment, maintenance, and reactivation. However, additional mechanisms and processes driving the remaining low-level HIV-1 replication in the presence of the suppressive therapy still remain to be identified and targeted. Current approaches toward HIV-1 cure involve namely attempts to reactivate and purge HIV latently infected cells (so-called "shock and kill" strategy), as well as approaches involving gene therapy and/or gene editing and stem cell transplantation aiming at generation of cells resistant to HIV-1. This review summarizes current views and concepts underlying different approaches aiming at functional or sterilizing cure of HIV-1 infection.

  3. Electricity and disinfectant production from wastewater: Microbial Fuel Cell as a self-powered electrolyser

    NASA Astrophysics Data System (ADS)

    Gajda, Iwona; Greenman, John; Melhuish, Chris; Ieropoulos, Ioannis A.

    2016-05-01

    This study presents a simple and sustainable Microbial Fuel Cell as a standalone, self-powered reactor for in situ wastewater electrolysis, recovering nitrogen from wastewater. A process is proposed whereby the MFC electrical performance drives the electrolysis of wastewater towards the self-generation of catholyte within the same reactor. The MFCs were designed to harvest the generated catholyte in the internal chamber, which showed that liquid production rates are largely proportional to electrical current generation. The catholyte demonstrated bactericidal properties, compared to the control (open-circuit) diffusate, and reduced observable biofilm formation on the cathode electrode. Killing effects were confirmed using bacterial kill curves constructed by exposing a bioluminescent Escherichia coli target, as a surrogate coliform, to catholyte where a rapid kill rate was observed. Therefore, MFCs could serve as a water recovery system, a disinfectant/cleaner generator that limits undesired biofilm formation and as a washing agent in waterless urinals to improve sanitation. This simple and ready to implement MFC system can convert organic waste directly into electricity and self-driven nitrogen along with water recovery. This could lead to the development of energy positive bioprocesses for sustainable wastewater treatment.

  4. Electricity and disinfectant production from wastewater: Microbial Fuel Cell as a self-powered electrolyser

    PubMed Central

    Gajda, Iwona; Greenman, John; Melhuish, Chris; Ieropoulos, Ioannis A.

    2016-01-01

    This study presents a simple and sustainable Microbial Fuel Cell as a standalone, self-powered reactor for in situ wastewater electrolysis, recovering nitrogen from wastewater. A process is proposed whereby the MFC electrical performance drives the electrolysis of wastewater towards the self-generation of catholyte within the same reactor. The MFCs were designed to harvest the generated catholyte in the internal chamber, which showed that liquid production rates are largely proportional to electrical current generation. The catholyte demonstrated bactericidal properties, compared to the control (open-circuit) diffusate, and reduced observable biofilm formation on the cathode electrode. Killing effects were confirmed using bacterial kill curves constructed by exposing a bioluminescent Escherichia coli target, as a surrogate coliform, to catholyte where a rapid kill rate was observed. Therefore, MFCs could serve as a water recovery system, a disinfectant/cleaner generator that limits undesired biofilm formation and as a washing agent in waterless urinals to improve sanitation. This simple and ready to implement MFC system can convert organic waste directly into electricity and self-driven nitrogen along with water recovery. This could lead to the development of energy positive bioprocesses for sustainable wastewater treatment. PMID:27172836

  5. Analyze the Impact of Habitat Patches on Wildlife Road-Kill

    NASA Astrophysics Data System (ADS)

    Seok, S.; Lee, J.

    2015-10-01

    The ecosystem fragmentation due to transportation infrastructure causes a road-kill phenomenon. When making policies for mitigating road-kill it is important to select target-species in order to enhance its efficiency. However, many wildlife crossing structures have been questioned regarding their effectiveness due to lack of considerations such as target-species selection, site selection, management, etc. The purpose of this study is to analyse the impact of habitat patches on wildlife road-kill and to suggest that spatial location of habitat patches should be considered as one of the important factors when making policies for mitigating road-kill. Habitat patches were presumed from habitat variables and a suitability index on target-species that was chosen by literature review. The road-kill hotspot was calculated using Getis-Ord Gi*. After that, we performed a correlation analysis between Gi Z-score and the distance from habitat patches to the roads. As a result, there is a low negative correlation between two variables and it increases the Gi Z-score if the habitat patches and the roads become closer.

  6. Gold nanorods coupled with upconverting nanophosphors for targeted thermal ablation and imaging of bladder cancer cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cho, Suehyun K.; Su, Lih-Jen; Flaig, Thomas W.; Park, Wounjhang

    2016-09-01

    NaYF4:Yb3+,Er3+ upconverting nanophosphors (UCNPs) are robust and stable nanoparticles that absorb near-infrared (NIR) photons and emit green and red visible photons through energy transfer upconversion. This mechanism provides UCNPs several advantages as a bioimaging agent over traditional fluorescence imaging agent in that NIR excitation allows high-contrast imaging without autofluorescence and that they can be used for deep-tissue imaging. However, additional surface modification of UCNPs is necessary for them to be biocompatible. We use an amphiphilic polymer (poly(maleic anhydride-alt-octadecene) (PMAO) and a hetero-functional polyethylene glycol with amine and thiol ends (NH2-PEG-SH)) to make the UCNPs water-soluble. This reaction yields a carboxylic group that allows functionalization with anti-epidermal growth factor receptor (aEGFR), which provides specific binding of UCNPs to EGFR-expressing bladder cancer cells. Additionally, the thiol ends of the PEGylated UCNPs are able to bind with gold nanorods (AuNRs) to create UCNP-AuNR complexes. The localized surface plasmon of the AuNR then allow localized heating of HTB9 bladder cancer cells, enabling in situ cell killing upon detection by UCNP fluorescence. Here, we report a successful synthesis, surface modification and conjugation of aEGFR functionalized UCNP-AuNR complexes and in vitro imaging and thermal ablation studies using them. Synthesis and surface modification of UCNP-AuNR complexes are confirmed by electron microscopy. Then, a combination of brightfield, NIR confocal fluorescence, and darkfield microscopy on the UCNP-AuNR treated bladder cancer cells revealed successful cancer targeting and imaging capabilities of the complex. Finally, cell viability assay showed that NIR irradiation of UCNP-AuNR conjugated cells resulted highly selective cell killing.

  7. Bactericidal effects of various concentrations of enrofloxacin, florfenicol, tilmicosin phosphate, and tulathromycin on clinical isolates of Mannheimia haemolytica.

    PubMed

    Blondeau, Joseph M; Shebelski, Shantelle D; Hesje, Christine K

    2015-10-01

    To determine bactericidal effects of enrofloxacin, florfenicol, tilmicosin, and tulathromycin on clinical isolates of Mannheimia haemolytica at various bacterial densities and drug concentrations. 4 unique isolates of M haemolytica recovered from clinically infected cattle. Minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) were determined for each drug and isolate. Mannheimia haemolytica suspensions (10(6) to 10(9) CFUs/mL) were exposed to the determined MIC and MPC and preestablished maximum serum and tissue concentrations of each drug. Log10 reduction in viable cells (percentage of cells killed) was measured at various points. Bacterial killing at the MIC was slow and incomplete. After 2 hours of isolate exposure to the MPC and maximum serum and tissue concentrations of the tested drugs, 91% to almost 100% cell killing was achieved with enrofloxacin, compared with 8% growth to 93% cell killing with florfenicol, 199% growth to 63% cell killing with tilmicosin, and 128% growth to 43% cell killing with tulathromycin over the range of inoculum tested. For all drugs, killing of viable organisms was evident at all bacterial densities tested; however, killing was more substantial at the MPC and maximum serum and tissue drug concentrations than at the MIC and increased with duration of drug exposure. Rank order of drugs by killing potency was enrofloxacin, florfenicol, tilmicosin, and tulathromycin. Findings suggested that antimicrobial doses that equaled or exceeded the MPC provided rapid killing of M haemolytica by the tested drugs, decreasing opportunities for antimicrobial-resistant subpopulations of bacteria to develop during drug exposure.

  8. Targeting the cell cycle and the PI3K pathway: a possible universal strategy to reactivate innate tumor suppressor programmes in cancer cells.

    PubMed

    David-Pfeuty, Thérèse; Legraverend, Michel; Ludwig, Odile; Grierson, David S

    2010-04-01

    Corruption of the Rb and p53 pathways occurs in virtually all human cancers. This could be because it lends oncogene-bearing cells a surfeit of Cdk activity and growth, enabling them to elaborate strategies to evade tumor-suppressive mechanisms and divide inappropriately. Targeting both Cdk activities and the PI3K pathway might be therefore a potentially universal means to palliate their deficiency in cancer cells. We showed that the killing efficacy of roscovitine and 16 other purines and potentiation of roscovitine-induced apoptosis by the PI3K inhibitor, LY294002, decreased with increasing corruption of the Rb and p53 pathways. Further, we showed that purines differing by a single substitution, which exerted little lethal effect on distant cell types in rich medium, could display widely-differing cytotoxicity profiles toward the same cell types in poor medium. Thus, closely-related compounds targeting similar Cdks may interact with different targets that could compete for their interaction with therapeutically-relevant Cdk targets. In the perspective of clinical development in association with the PI3K pathway inhibitors, it might thus be advisable to select tumor cell type-specific Cdk inhibitors on the basis of their toxicity in cell-culture-based assays performed at a limiting serum concentration sufficient to suppress their interaction with undesirable crossreacting targets whose range and concentration would depend on the cell genotype.

  9. Latency-Associated Expression of Human Cytomegalovirus US28 Attenuates Cell Signaling Pathways To Maintain Latent Infection

    PubMed Central

    Krishna, Benjamin A.; Poole, Emma L.; Smit, Martine J.; Wills, Mark R.

    2017-01-01

    ABSTRACT Reactivation of human cytomegalovirus (HCMV) latent infection from early myeloid lineage cells constitutes a threat to immunocompromised or immune-suppressed individuals. Consequently, understanding the control of latency and reactivation to allow targeting and killing of latently infected cells could have far-reaching clinical benefits. US28 is one of the few viral genes that is expressed during latency and encodes a cell surface G protein-coupled receptor (GPCR), which, during lytic infection, is a constitutive cell-signaling activator. Here we now show that in monocytes, which are recognized sites of HCMV latency in vivo, US28 attenuates multiple cell signaling pathways, including mitogen-activated protein (MAP) kinase and NF-κB, and that this is required to establish a latent infection; viruses deleted for US28 initiate a lytic infection in infected monocytes. We also show that these monocytes then become potent targets for the HCMV-specific host immune response and that latently infected cells treated with an inverse agonist of US28 also reactivate lytic infection and similarly become immune targets. Consequently, we suggest that the use of inhibitors of US28 could be a novel immunotherapeutic strategy to reactivate the latent viral reservoir, allowing it to be targeted by preexisting HCMV-specific T cells. PMID:29208743

  10. CD83 is a new potential biomarker and therapeutic target for Hodgkin lymphoma.

    PubMed

    Li, Ziduo; Ju, Xinsheng; Lee, Kenneth; Clarke, Candice; Hsu, Jennifer L; Abadir, Edward; Bryant, Christian E; Pears, Suzanne; Sunderland, Neroli; Heffernan, Scott; Hennessy, Annemarie; Lo, Tsun-Ho; Pietersz, Geoffrey A; Kupresanin, Fiona; Fromm, Phillip D; Silveira, Pablo A; Tsonis, Con; Cooper, Wendy A; Cunningham, Ilona; Brown, Christina; Clark, Georgina J; Hart, Derek N J

    2018-04-01

    Chemotherapy and hematopoietic stem cell transplantation are effective treatments for most Hodgkin lymphoma patients, however there remains a need for better tumor-specific target therapy in Hodgkin lymphoma patients with refractory or relapsed disease. Herein, we demonstrate that membrane CD83 is a diagnostic and therapeutic target, highly expressed in Hodgkin lymphoma cell lines and Hodgkin and Reed-Sternberg cells in 29/35 (82.9%) Hodgkin lymphoma patient lymph node biopsies. CD83 from Hodgkin lymphoma tumor cells was able to trogocytose to surrounding T cells and, interestingly, the trogocytosing CD83 + T cells expressed significantly more programmed death-1 compared to CD83 - T cells. Hodgkin lymphoma tumor cells secreted soluble CD83 that inhibited T-cell proliferation, and anti-CD83 antibody partially reversed the inhibitory effect. High levels of soluble CD83 were detected in Hodgkin lymphoma patient sera, which returned to normal in patients who had good clinical responses to chemotherapy confirmed by positron emission tomography scans. We generated a human anti-human CD83 antibody, 3C12C, and its toxin monomethyl auristatin E conjugate, that killed CD83 positive Hodgkin lymphoma cells but not CD83 negative cells. The 3C12C antibody was tested in dose escalation studies in non-human primates. No toxicity was observed, but there was evidence of CD83 positive target cell depletion. These data establish CD83 as a potential biomarker and therapeutic target in Hodgkin lymphoma. Copyright© 2018 Ferrata Storti Foundation.

  11. Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells.

    PubMed

    Chang, Hsueh-Wei; Li, Ruei-Nian; Wang, Hui-Ru; Liu, Jing-Ru; Tang, Jen-Yang; Huang, Hurng-Wern; Chan, Yu-Hsuan; Yen, Ching-Yu

    2017-01-01

    Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N -acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells.

  12. Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells

    PubMed Central

    Chang, Hsueh-Wei; Li, Ruei-Nian; Wang, Hui-Ru; Liu, Jing-Ru; Tang, Jen-Yang; Huang, Hurng-Wern; Chan, Yu-Hsuan; Yen, Ching-Yu

    2017-01-01

    Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells. PMID:28936177

  13. ERAP1 regulates natural killer cell function by controlling the engagement of inhibitory receptors.

    PubMed

    Cifaldi, Loredana; Romania, Paolo; Falco, Michela; Lorenzi, Silvia; Meazza, Raffaella; Petrini, Stefania; Andreani, Marco; Pende, Daniela; Locatelli, Franco; Fruci, Doriana

    2015-03-01

    The endoplasmic reticulum aminopeptidase ERAP1 regulates innate and adaptive immune responses by trimming peptides for presentation by MHC class I (MHC-I) molecules. Herein, we demonstrate that genetic or pharmacological inhibition of ERAP1 on human tumor cell lines perturbs their ability to engage several classes of inhibitory receptors by their specific ligands, including killer cell Ig-like receptors (KIR) by classical MHC-I-peptide (pMHC-I) complexes and the lectin-like receptor CD94-NKG2A by nonclassical pMHC-I complexes, in each case leading to natural killer (NK) cell killing. The protective effect of pMHC-I complexes could be restored in ERAP1-deficient settings by the addition of known high-affinity peptides, suggesting that ERAP1 was needed to positively modify the affinity of natural ligands. Notably, ERAP1 inhibition enhanced the ability of NK cells to kill freshly established human lymphoblastoid cell lines from autologous or allogeneic sources, thereby promoting NK cytotoxic activity against target cells that would not be expected because of KIR-KIR ligand matching. Overall, our results identify ERAP1 as a modifier to leverage immune functions that may improve the efficacy of NK cell-based approaches for cancer immunotherapy. ©2015 American Association for Cancer Research.

  14. The Efficacy of Dandelion Root Extract in Inducing Apoptosis in Drug-Resistant Human Melanoma Cells

    PubMed Central

    Chatterjee, S. J.; Ovadje, P.; Mousa, M.; Hamm, C.; Pandey, S.

    2011-01-01

    Notoriously chemoresistant melanoma has become the most prevalent form of cancer for the 25–29 North American age demographic. Standard treatment after early detection involves surgical excision (recurrence is possible), and metastatic melanoma is refractory to immuno-, radio-, and most harmful chemotherapies. Various natural compounds have shown efficacy in killing different cancers, albeit not always specifically. In this study, we show that dandelion root extract (DRE) specifically and effectively induces apoptosis in human melanoma cells without inducing toxicity in noncancerous cells. Characteristic apoptotic morphology of nuclear condensation and phosphatidylserine flipping to the outer leaflet of the plasma membrane of A375 human melanoma cells was observed within 48 hours. DRE-induced apoptosis activates caspase-8 in A375 cells early on, demonstrating employment of an extrinsic apoptotic pathway to kill A375 cells. Reactive Oxygen Species (ROS) generated from DRE-treated isolated mitochondria indicates that natural compounds in DRE can also directly target mitochondria. Interestingly, the relatively resistant G361 human melanoma cell line responded to DRE when combined with the metabolism interfering antitype II diabetic drug metformin. Therefore, treatment with this common, yet potent extract of natural compounds has proven novel in specifically inducing apoptosis in chemoresistant melanoma, without toxicity to healthy cells. PMID:21234313

  15. Differential sensitivity of Glioma stem cells to Aurora kinase A inhibitors: implications for stem cell mitosis and centrosome dynamics.

    PubMed

    Mannino, Mariella; Gomez-Roman, Natividad; Hochegger, Helfrid; Chalmers, Anthony J

    2014-07-01

    Glioma stem-cell-like cells are considered to be responsible for treatment resistance and tumour recurrence following chemo-radiation in glioblastoma patients, but specific targets by which to kill the cancer stem cell population remain elusive. A characteristic feature of stem cells is their ability to undergo both symmetric and asymmetric cell divisions. In this study we have analysed specific features of glioma stem cell mitosis. We found that glioma stem cells appear to be highly prone to undergo aberrant cell division and polyploidization. Moreover, we discovered a pronounced change in the dynamic of mitotic centrosome maturation in these cells. Accordingly, glioma stem cell survival appeared to be strongly dependent on Aurora A activity. Unlike differentiated cells, glioma stem cells responded to moderate Aurora A inhibition with spindle defects, polyploidization and a dramatic increase in cellular senescence, and were selectively sensitive to Aurora A and Plk1 inhibitor treatment. Our study proposes inhibition of centrosomal kinases as a novel strategy to selectively target glioma stem cells. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis

    PubMed Central

    Ouellet, Hugues; Johnston, Jonathan B.; Ortiz de Montellano, Paul R.

    2011-01-01

    Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that infects 10 million worldwide and kills 2 million people every year. The uptake and utilization of nutrients by Mtb within the host cell is still poorly understood, although lipids play an important role in Mtb persistence. The recent identification of a large regulon of cholesterol catabolic genes suggests that Mtb can use host sterol for infection and persistence. In this review, we report on recent progress in elucidation of the Mtb cholesterol catabolic reactions and their potential utility as targets for tuberculosis therapeutic agents. PMID:21924910

  17. GEM-loaded magnetic albumin nanospheres modified with cetuximab for simultaneous targeting, magnetic resonance imaging, and double-targeted thermochemotherapy of pancreatic cancer cells.

    PubMed

    Wang, Ling; An, Yanli; Yuan, Chenyan; Zhang, Hao; Liang, Chen; Ding, Fengan; Gao, Qi; Zhang, Dongsheng

    2015-01-01

    Targeted delivery is a promising strategy to improve the diagnostic imaging and therapeutic effect of cancers. In this paper, novel cetuximab (C225)-conjugated, gemcitabine (GEM)-containing magnetic albumin nanospheres (C225-GEM/MANs) were fabricated and applied as a theranostic nanocarrier to conduct simultaneous targeting, magnetic resonance imaging (MRI), and double-targeted thermochemotherapy against pancreatic cancer cells. Fe3O4 nanoparticles (NPs) and GEM co-loaded albumin nanospheres (GEM/MANs) were prepared, and then C225 was further conjugated to synthesize C225-GEM/MANs. Their morphology, mean particle size, GEM encapsulation ratio, specific cell-binding ability, and thermal dynamic profiles were characterized. The effects of discriminating different EGFR-expressing pancreatic cancer cells (AsPC-1 and MIA PaCa-2) and monitoring cellular targeting effects were assessed by targeted MRI. Lastly, the antitumor efficiency of double/C225/magnetic-targeted and nontargeted thermochemotherapy was compared with chemotherapy alone using 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and flow cytometry (FCM) assay. When treated with targeted nanospheres, AsPC-1 cells showed a significantly less intense MRI T2 signal than MIA PaCa-2 cells, while both cells had similar signal strength when incubated with nontargeted nanospheres. T2 signal intensity was significantly lower when magnetic and C225 targeting were combined, rather than used alone. The inhibitory and apoptotic rates of each thermochemotherapy group were significantly higher than those of the chemotherapy-alone groups. Additionally, both MTT and FCM analysis verified that double-targeted thermochemotherapy had the highest targeted killing efficiency among all groups. The C225-GEM/MANs can distinguish various EGFR-expressing live pancreatic cancer cells, monitor diverse cellular targeting effects using targeted MRI imaging, and efficiently mediate double-targeted thermochemotherapy against pancreatic cancer cells.

  18. 40 CFR 180.1325 - Heat-killed Burkholderia spp. strain A396 cells and spent fermentation media exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... A396 cells and spent fermentation media exemption from the requirement of a tolerance. 180.1325 Section...-killed Burkholderia spp. strain A396 cells and spent fermentation media exemption from the requirement of...-killed Burkholderia spp. strain A396 cells and spent fermentation media in or on all food commodities...

  19. Use of a SQUID array to detect T-cells with magnetic nanoparticles in determining transplant rejection

    NASA Astrophysics Data System (ADS)

    Flynn, Edward R.; Bryant, H. C.; Bergemann, Christian; Larson, Richard S.; Lovato, Debbie; Sergatskov, Dmitri A.

    2007-04-01

    Acute rejection in organ transplant is signaled by the proliferation of T-cells that target and kill the donor cells requiring painful biopsies to detect rejection onset. An alternative non-invasive technique is proposed using a multi-channel superconducting quantum interference device (SQUID) magnetometer to detect T-cell lymphocytes in the transplanted organ labeled with magnetic nanoparticles conjugated to antibodies specifically attached to lymphocytic ligand receptors. After a magnetic field pulse, the T-cells produce a decaying magnetic signal with a characteristic time of the order of a second. The extreme sensitivity of this technique, 10 5 cells, can provide early warning of impending transplant rejection and monitor immune-suppressive chemotherapy.

  20. Translocation of iron from lysosomes to mitochondria during acetaminophen-induced hepatocellular injury: Protection by starch-desferal and minocycline.

    PubMed

    Hu, Jiangting; Kholmukhamedov, Andaleb; Lindsey, Christopher C; Beeson, Craig C; Jaeschke, Hartmut; Lemasters, John J

    2016-08-01

    Acetaminophen (APAP) overdose causes hepatotoxicity involving mitochondrial dysfunction and the mitochondrial permeability transition (MPT). Iron is a critical catalyst for ROS formation, and reactive oxygen species (ROS) play an important role in APAP-induced hepatotoxicity. Previous studies show that APAP disrupts lysosomes, which release ferrous iron (Fe(2+)) into the cytosol to trigger the MPT and cell killing. Here, our aim was to investigate whether iron released from lysosomes after APAP is then taken up into mitochondria via the mitochondrial electrogenic Ca(2+), Fe(2+) uniporter (MCFU) to cause mitochondrial dysfunction and cell death. Hepatocytes were isolated from fasted male C57BL/6 mice. Necrotic cell killing was assessed by propidium iodide fluorimetry. Mitochondrial membrane potential (ΔΨ) was visualized by confocal microscopy of rhodamine 123 (Rh123) and tetramethylrhodamine methylester (TMRM). Chelatable Fe(2+) was monitored by quenching of calcein (cytosol) and mitoferrofluor (MFF, mitochondria). ROS generation was monitored by confocal microscopy of MitoSox Red and plate reader fluorimetry of chloromethyldihydrodichlorofluorescein diacetate (cmH2DCF-DA). Administered 1h before APAP (10mM), the lysosomally targeted iron chelator, starch-desferal (1mM), and the MCFU inhibitors, Ru360 (100nM) and minocycline (4µM), decreased cell killing from 83% to 41%, 57% and 53%, respectively, after 10h. Progressive quenching of calcein and MFF began after ~4h, signifying increased cytosolic and mitochondrial chelatable Fe(2+). Mitochondria then depolarized after ~10h. Dipyridyl, a membrane-permeable iron chelator, dequenched calcein and MFF fluorescence after APAP. Starch-desferal, but not Ru360 and minocycline, suppressed cytosolic calcein quenching, whereas starch-desferal, Ru360 and minocycline all suppressed mitochondrial MFF quenching and mitochondrial depolarization. Starch-desferal, Ru360 and minocycline also each decreased ROS formation. Moreover, minocycline 1h after APAP decreased cell killing by half. In conclusion, release of Fe(2+) from lysosomes followed by uptake into mitochondria via MCFU occurs during APAP hepatotoxicity. Mitochondrial iron then catalyzes toxic hydroxyl radical formation, which triggers the MPT and cell killing. The efficacy of minocycline post-treatment shows minocycline as a possible therapeutic agent against APAP hepatotoxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Targeting SOD1 induces synthetic lethal killing in BLM- and CHEK2-deficient colorectal cancer cells

    PubMed Central

    Sajesh, Babu V.; McManus, Kirk J.

    2015-01-01

    Cancer is a major cause of death throughout the world, and there is a large need for better and more personalized approaches to combat the disease. Over the past decade, synthetic lethal approaches have been developed that are designed to exploit the aberrant molecular origins (i.e. defective genes) that underlie tumorigenesis. BLM and CHEK2 are two evolutionarily conserved genes that are somatically altered in a number of tumor types. Both proteins normally function in preserving genome stability through facilitating the accurate repair of DNA double strand breaks. Thus, uncovering synthetic lethal interactors of BLM and CHEK2 will identify novel candidate drug targets and lead chemical compounds. Here we identify an evolutionarily conserved synthetic lethal interaction between SOD1 and both BLM and CHEK2 in two distinct cell models. Using quantitative imaging microscopy, real-time cellular analyses, colony formation and tumor spheroid models we show that SOD1 silencing and inhibition (ATTM and LCS-1 treatments), or the induction of reactive oxygen species (2ME2 treatment) induces selective killing within BLM- and CHEK2-deficient cells relative to controls. We further show that increases in reactive oxygen species follow SOD1 silencing and inhibition that are associated with the persistence of DNA double strand breaks, and increases in apoptosis. Collectively, these data identify SOD1 as a novel candidate drug target in BLM and CHEK2 cancer contexts, and further suggest that 2ME2, ATTM and LCS-1 are lead therapeutic compounds warranting further pre-clinical study. PMID:26318585

  2. Targeting SOD1 induces synthetic lethal killing in BLM- and CHEK2-deficient colorectal cancer cells.

    PubMed

    Sajesh, Babu V; McManus, Kirk J

    2015-09-29

    Cancer is a major cause of death throughout the world, and there is a large need for better and more personalized approaches to combat the disease. Over the past decade, synthetic lethal approaches have been developed that are designed to exploit the aberrant molecular origins (i.e. defective genes) that underlie tumorigenesis. BLM and CHEK2 are two evolutionarily conserved genes that are somatically altered in a number of tumor types. Both proteins normally function in preserving genome stability through facilitating the accurate repair of DNA double strand breaks. Thus, uncovering synthetic lethal interactors of BLM and CHEK2 will identify novel candidate drug targets and lead chemical compounds. Here we identify an evolutionarily conserved synthetic lethal interaction between SOD1 and both BLM and CHEK2 in two distinct cell models. Using quantitative imaging microscopy, real-time cellular analyses, colony formation and tumor spheroid models we show that SOD1 silencing and inhibition (ATTM and LCS-1 treatments), or the induction of reactive oxygen species (2ME2 treatment) induces selective killing within BLM- and CHEK2-deficient cells relative to controls. We further show that increases in reactive oxygen species follow SOD1 silencing and inhibition that are associated with the persistence of DNA double strand breaks, and increases in apoptosis. Collectively, these data identify SOD1 as a novel candidate drug target in BLM and CHEK2 cancer contexts, and further suggest that 2ME2, ATTM and LCS-1 are lead therapeutic compounds warranting further pre-clinical study.

  3. The nucleus is the target for radiation-induced chromosomal instability

    NASA Technical Reports Server (NTRS)

    Kaplan, M. I.; Morgan, W. F.

    1998-01-01

    We have previously described chromosomal instability in cells of a human-hamster hybrid cell line after exposure to X rays. Chromosomal instability in these cells is characterized by the appearance of novel chromosomal rearrangements multiple generations after exposure to ionizing radiation. To identify the cellular target(s) for radiation-induced chromosomal instability, cells were treated with 125I-labeled compounds and frozen. Radioactive decays from 125I cause damage to the cell primarily at the site of their decay, and freezing the cells allows damage to accumulate in the absence of other cellular processes. We found that the decay of 125I-iododeoxyuridine, which is incorporated into the DNA, caused chromosomal instability. While cell killing and first-division chromosomal rearrangements increased with increasing numbers of 125I decays, the frequency of chromosomal instability was independent of dose. Chromosomal instability could also be induced from incorporation of 125I-iododeoxyuridine without freezing the cells for accumulation of decays. This indicates that DNA double-strand breaks in frozen cells resulting from 125I decays failed to lead to instability. Incorporation of an 125I-labeled protein (125I-succinyl-concanavalin A), which was internalized into the cell and/or bound to the plasma membrane, neither caused chromosomal instability nor potentiated chromosomal instability induced by 125I-iododeoxyuridine. These results show that the target for radiation-induced chromosomal instability in these cells is the nucleus.

  4. A novel multiparametric flow cytometry-based cytotoxicity assay simultaneously immunophenotypes effector cells: Comparisons to a 4 h 51Cr-release assay

    PubMed Central

    Kim, GG; Donnenberg, VS; Donnenberg, AD; Gooding, W; Whiteside, TL

    2007-01-01

    Natural killer (NK) cell- or T cell-mediated cytotoxicity traditionally is measured in 4-16h 51Cr-release assays (CRA). A new four-color flow cytometry-based cytotoxicity assay (FCC) was developed to simultaneously measure NK cell cytotoxicity and NK cell phenotype (CD3−CD16+CD56+). Target cells, K562 or Daudi, were labeled with Cell Tracker Orange (CTO) prior to the addition of effector cells. Following co-incubation, 7 amino-actinomycin D (7-AAD) was added to measure death of target cells. The phenotype of effectors, viability of targets, the formation of tumor-effector cell conjugates and absolute numbers of all cells were measured based on light scatter (FSC/SSC), double discrimination of the fluorescence peak integral and height, and fluorescence intensity. Kinetic studies (0.5 and 1 to 4h) at different effector to target (E:T) cell ratios (50, 25, 12, and 6) confirmed that the 3h incubation was optimal. The FCC assay is more sensitive than the CRA, has a coefficient of variation (CV) 8–13% and reliably measures NK cell- or lymphokine-activated killer (LAK) cell-mediated killing of target cells in normal controls and subjects with cancer. The FCC assay can be used to study a range of phenotypic attributes, in addition to lytic activity of various subsets of effector cells, without radioactive tracers and thus, it is relatively inexpensive. The FCC assay has a potential for providing information about molecular interactions underlying target cell lysis and thus becoming a major tool for studies of disease pathogenesis as well as development of novel immune therapies. PMID:17617419

  5. A novel multiparametric flow cytometry-based cytotoxicity assay simultaneously immunophenotypes effector cells: comparisons to a 4 h 51Cr-release assay.

    PubMed

    Kim, G G; Donnenberg, V S; Donnenberg, A D; Gooding, W; Whiteside, T L

    2007-08-31

    Natural killer (NK) cell-or T cell-mediated cytotoxicity traditionally is measured in 4-16 h (51)Cr-release assays (CRA). A new four-color flow cytometry-based cytotoxicity assay (FCC) was developed to simultaneously measure NK cell cytotoxicity and NK cell phenotype (CD3(-)CD16(+)CD56(+)). Target cells, K562 or Daudi, were labeled with Cell Tracker Orange (CTO) prior to the addition of effector cells. Following co-incubation, 7 amino-actinomycin D (7-AAD) was added to measure death of target cells. The phenotype of effectors, viability of targets, the formation of tumor-effector cell conjugates and absolute numbers of all cells were measured based on light scatter (FSC/SSC), double discrimination of the fluorescence peak integral and height, and fluorescence intensity. Kinetic studies (0.5 and 1 to 4 h) at different effector to target (E:T) cell ratios (50, 25, 12, and 6) confirmed that the 3 h incubation was optimal. The FCC assay is more sensitive than the CRA, has a coefficient of variation (CV) 8-13% and reliably measures NK cell-or lymphokine-activated killer (LAK) cell-mediated killing of target cells in normal controls and subjects with cancer. The FCC assay can be used to study a range of phenotypic attributes, in addition to lytic activity of various subsets of effector cells, without radioactive tracers and thus, it is relatively inexpensive. The FCC assay has a potential for providing information about molecular interactions underlying target cell lysis and thus becoming a major tool for studies of disease pathogenesis as well as development of novel immune therapies.

  6. Apoptotic effect of α-Fe2O3 and SiO2 nanoparticles in human rhabdomyosarcoma cell line

    NASA Astrophysics Data System (ADS)

    Fatima, Mahvish; Fakhar-e-Alam, Muhammad; Atif, M.; Nadeem Shakoor, Muhammad; Afzal, Muhammad; Waseem, Muhammad; Hammad Aziz, Muhammad

    2014-12-01

    Nanotechnology provides the opportunity for the development of new materials in the nanometer size range, with many potential applications in biological sciences and clinical medicine. It has been reported that RD (muscle cancer cell line) is the most common soft tissue sarcoma in children originating from immature cells, comprising 2.9% of all malignancies in patients younger than 20 years old, with 350 cases diagnosed annually in the United States. Soft tissue is the most common target organ for nanoparticles after they gain significant entry into the target site through any of the possible routes. RD cell lines have been used as an experimental biological model in this article. A suitable environment was provided until 75% of RD cell confluence was reached. Prior to determination of toxicity of hematite (α-Fe2O3) and SiO2 nanoparticles, the sizes and shapes were confirmed using scanning electron microscopy (SEM), and the sizes were about 66 and 250 nm respectively. Moreover, 10-80 μg ml-1 of α-Fe2O3 and SiO2 nanoparticles dispersed in solution were labeled for each row of 96 well plates. The present study evaluates the suppression factor of the said particles, which leads to cell killing phenomena. After successful measurements in the above mentioned experiment, the author will be able to give the actual cause of cell killing effects. The given study has provided valuable insights into a feasible mechanism of apoptosis caused by α-Fe2O3 and SiO2 nanoparticles. An underlying promising mechanism of apoptosis due to α-Fe2O3 and SiO2 nanoparticle exposure should be further investigated at the in vivo level.

  7. Reciprocal sensitivity of diffuse large B-cell lymphoma cells to Bcl-2 inhibitors BIRD-2 versus venetoclax

    PubMed Central

    Vervloessem, Tamara; Akl, Haidar; Tousseyn, Thomas; De Smedt, Humbert; Parys, Jan B.; Bultynck, Geert

    2017-01-01

    Bcl-2 is often upregulated in cancers to neutralize the BH3-only protein Bim at the mitochondria. BH3 mimetics (e.g. ABT-199 (venetoclax)) kill cancer cells by targeting Bcl-2’s hydrophobic cleft and disrupting Bcl-2/Bim complexes. Some cancers with elevated Bcl-2 display poor responses towards BH3 mimetics, suggesting an additional function for anti-apoptotic Bcl-2 in these cancers. Indeed, Bcl-2 via its BH4 domain prevents cytotoxic Ca2+ release from the endoplasmic reticulum (ER) by directly inhibiting the inositol 1,4,5-trisphosphate receptor (IP3R). The cell-permeable Bcl-2/IP3R disruptor-2 (BIRD-2) peptide can kill these Bcl-2-dependent cancers by targeting Bcl-2’s BH4 domain, unleashing pro-apoptotic Ca2+-release events. We compared eight “primed to death” diffuse large B-cell lymphoma cell lines (DLBCL) for their apoptotic sensitivity towards BIRD-2 and venetoclax. By determining their IC50 using cytometric cell-death analysis, we discovered a reciprocal sensitivity towards venetoclax versus BIRD-2. Using immunoblotting, we quantified the expression levels of IP3R2 and Bim in DLBCL cell lysates, revealing that BIRD-2 sensitivity correlated with IP3R2 levels but not with Bim levels. Moreover, the requirement of intracellular Ca2+ for BIRD-2- versus venetoclax-induced cell death was different. Indeed, BAPTA-AM suppressed BIRD-2-induced cell death, but promoted venetoclax-induced cell death in DLBCL cells. Finally, compared to single-agent treatments, combining BIRD-2 with venetoclax synergistically enhanced cell-death induction, correlating with a Ca2+-dependent upregulation of Bim after BIRD-2 treatment. Our findings suggest that some cancer cells require Bcl-2 proteins at the mitochondria, preventing Bax activation via its hydrophobic cleft, while others require Bcl-2 proteins at the ER, preventing cytotoxic Ca2+-signaling events via its BH4 domain. PMID:29340082

  8. Reciprocal sensitivity of diffuse large B-cell lymphoma cells to Bcl-2 inhibitors BIRD-2 versus venetoclax.

    PubMed

    Vervloessem, Tamara; Akl, Haidar; Tousseyn, Thomas; De Smedt, Humbert; Parys, Jan B; Bultynck, Geert

    2017-12-19

    Bcl-2 is often upregulated in cancers to neutralize the BH3-only protein Bim at the mitochondria. BH3 mimetics (e.g. ABT-199 (venetoclax)) kill cancer cells by targeting Bcl-2's hydrophobic cleft and disrupting Bcl-2/Bim complexes. Some cancers with elevated Bcl-2 display poor responses towards BH3 mimetics, suggesting an additional function for anti-apoptotic Bcl-2 in these cancers. Indeed, Bcl-2 via its BH4 domain prevents cytotoxic Ca 2+ release from the endoplasmic reticulum (ER) by directly inhibiting the inositol 1,4,5-trisphosphate receptor (IP 3 R). The cell-permeable Bcl-2/IP 3 R disruptor-2 (BIRD-2) peptide can kill these Bcl-2-dependent cancers by targeting Bcl-2's BH4 domain, unleashing pro-apoptotic Ca 2+ -release events. We compared eight "primed to death" diffuse large B-cell lymphoma cell lines (DLBCL) for their apoptotic sensitivity towards BIRD-2 and venetoclax. By determining their IC 50 using cytometric cell-death analysis, we discovered a reciprocal sensitivity towards venetoclax versus BIRD-2. Using immunoblotting, we quantified the expression levels of IP 3 R2 and Bim in DLBCL cell lysates, revealing that BIRD-2 sensitivity correlated with IP 3 R2 levels but not with Bim levels. Moreover, the requirement of intracellular Ca 2+ for BIRD-2- versus venetoclax-induced cell death was different. Indeed, BAPTA-AM suppressed BIRD-2-induced cell death, but promoted venetoclax-induced cell death in DLBCL cells. Finally, compared to single-agent treatments, combining BIRD-2 with venetoclax synergistically enhanced cell-death induction, correlating with a Ca 2+ -dependent upregulation of Bim after BIRD-2 treatment. Our findings suggest that some cancer cells require Bcl-2 proteins at the mitochondria, preventing Bax activation via its hydrophobic cleft, while others require Bcl-2 proteins at the ER, preventing cytotoxic Ca 2+ -signaling events via its BH4 domain.

  9. A novel method for measuring cellular antibody uptake using imaging flow cytometry reveals distinct uptake rates for two different monoclonal antibodies targeting L1.

    PubMed

    Hazin, John; Moldenhauer, Gerhard; Altevogt, Peter; Brady, Nathan R

    2015-08-01

    Monoclonal antibodies (mAbs) have emerged as a promising tool for cancer therapy. Differing approaches utilize mAbs to either deliver a drug to the tumor cells or to modulate the host's immune system to mediate tumor kill. The rate by which a therapeutic antibody is being internalized by tumor cells is a decisive feature for choosing the appropriate treatment strategy. We herein present a novel method to effectively quantitate antibody uptake of tumor cells by using image-based flow cytometry, which combines image analysis with high throughput of sample numbers and sample size. The use of this method is established by determining uptake rate of an anti-EpCAM antibody (HEA125), from single cell measurements of plasma membrane versus internalized antibody, in conjunction with inhibitors of endocytosis. The method is then applied to two mAbs (L1-9.3, L1-OV52.24) targeting the neural cell adhesion molecule L1 (L1CAM) at two different epitopes. Based on median cell population responses, we find that mAb L1-OV52.24 is rapidly internalized by the ovarian carcinoma cell line SKOV3ip while L1 mAb 9.3 is mainly retained at the cell surface. These findings suggest the L1 mAb OV52.24 as a candidate to be further developed for drug-delivery to cancer cells, while L1-9.3 may be optimized to tag the tumor cells and stimulate immunogenic cancer cell killing. Furthermore, when analyzing cell-to-cell variability, we observed L1 mAb OV52.24 rapidly transition into a subpopulation with high-internalization capacity. In summary, this novel high-content method for measuring antibody internalization rate provides a high level of accuracy and sensitivity for cell population measurements and reveals further biologically relevant information when taking into account cellular heterogeneity. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. MHC class-I associated phosphopeptides are the targets of memory-like immunity in leukemia

    PubMed Central

    Cobbold, Mark; De La Peña, Hugo; Norris, Andrew; Polefrone, Joy; Qian, Jie; English, A. Michelle; Cummings, Kara; Penny, Sarah; Turner, James E.; Cottine, Jennifer; Abelin, Jennifer G; Malaker, Stacy A; Zarling, Angela L; Huang, Hsing-Wen; Goodyear, Oliver; Freeman, Sylvie; Shabanowitz, Jeffrey; Pratt, Guy; Craddock, Charles; Williams, Michael E; Hunt, Donald F; Engelhard, Victor H

    2014-01-01

    Deregulation of signaling pathways involving phosphorylation is a hallmark of malignant transformation. Degradation of phosphoproteins generates cancer-specific phosphopeptides that are associated with MHC-I and II molecules and recognized by T-cells. We identified 95 phosphopeptides presented on the surface of primary hematological tumors and normal tissues, including 61 that were tumor-specific. Phosphopeptides were more prevalent on more aggressive and malignant samples. CD8 T-cell lines specific for these phosphopeptides recognized and killed both leukemia cell lines and HLA-matched primary leukemia cells ex vivo. Healthy individuals showed surprisingly high levels of CD8 T-cell responses against many of these phosphopeptides within the circulating memory compartment. This immunity was significantly reduced or absent in some leukemia patients, which correlated with clinical outcome, and was restored following allogeneic stem cell transplantation. These results suggest that phosphopeptides may be targets of cancer immune surveillance in humans, and point to their importance for development of vaccine-based and T-cell adoptive transfer immunotherapies.. PMID:24048523

  11. Cryptococcus Neoformans Modulates Extracellular Killing by Neutrophils

    PubMed Central

    Qureshi, Asfia; Grey, Angus; Rose, Kristie L.; Schey, Kevin L.; Del Poeta, Maurizio

    2011-01-01

    We recently established a key role for host sphingomyelin synthase (SMS) in regulating the killing activity of neutrophils against Cryptococcus neoformans. In this paper, we studied the effect of C. neoformans on the killing activity of neutrophils and whether SMS would still be a player against C. neoformans in immunocompromised mice lacking T and natural killer (NK) cells (Tgε26 mice). To this end, we analyzed whether C. neoformans would have any effect on neutrophil survival and killing in vitro and in vivo. We show that unlike Candida albicans, neither the presence nor the capsule size of C. neoformans cells have any effect on neutrophil viability. Interestingly, melanized C. neoformans cells totally abrogated the killing activity of neutrophils. We monitored how exposure of neutrophils to C. neoformans cells would interfere with any further killing activity of the conditioned medium and found that pre-incubation with live but not “heat-killed” fungal cells significantly inhibits further killing activity of the medium. We then studied whether activation of SMS at the site of C. neoformans infection is dependent on T and NK cells. Using matrix-assisted laser desorption–ionization tissue imaging in infected lung we found that similar to previous observations in the isogenic wild-type CBA/J mice, SM 16:0 levels are significantly elevated at the site of infection in mice lacking T and NK cells, but only at early time points. This study highlights that C. neoformans may negatively regulate the killing activity of neutrophils and that SMS activation in neutrophils appears to be partially independent of T and/or NK cells. PMID:21960987

  12. Cell wall glycans and soluble factors determine the interactions between the hyphae of Candida albicans and Pseudomonas aeruginosa.

    PubMed

    Brand, Alexandra; Barnes, Julia D; Mackenzie, Kevin S; Odds, Frank C; Gow, Neil A R

    2008-10-01

    The fungus, Candida albicans, and the bacterium, Pseudomonas aeruginosa, are opportunistic human pathogens that have been coisolated from diverse body sites. Pseudomonas aeruginosa suppresses C. albicans proliferation in vitro and potentially in vivo but it is the C. albicans hyphae that are killed while yeast cells are not. We show that hyphal killing involves both contact-mediated and soluble factors. Bacterial culture filtrates contained heat-labile soluble factors that killed C. albicans hyphae. In cocultures, localized points of hyphal lysis were observed, suggesting that adhesion and subsequent bacteria-mediated cell wall lysis is involved in the killing of C. albicans hyphae. The glycosylation status of the C. albicans cell wall affected the rate of contact-dependent killing because mutants with severely truncated O-linked, but not N-linked, glycans were hypersensitive to Pseudomonas-mediated killing. Deletion of HWP1, ALS3 or HYR1, which encode major hypha-associated cell wall proteins, had no effect on fungal susceptibility.

  13. Membrane oxidation in cell delivery and cell killing applications

    PubMed Central

    Wang, Ting-Yi; Libardo, M. Daben J.; Angeles-Boza, Alfredo M.; Pellois, Jean-Philippe

    2018-01-01

    Cell delivery or cell killing processes often involve the crossing or disruption of cellular membranes. We review how, by modifying the composition and properties of membranes, membrane oxidation can be exploited to enhance the delivery of macromolecular cargos into live human cells. We also describe how membrane oxidation can be utilized to achieve efficient killing of bacteria by antimicrobial peptides. Finally, we present recent evidence highlighting how membrane oxidation is intimately engaged in natural biological processes such as antigen delivery in dendritic cells and in the killing of bacteria by human macrophages. Overall, the insights that have been recently gained in this area should facilitate the development of more effective delivery technologies and antimicrobial therapeutic approaches. PMID:28355059

  14. Tumor vessel-injuring ability improves antitumor effect of cytotoxic T lymphocytes in adoptive immunotherapy.

    PubMed

    Kanagawa, N; Yanagawa, T; Nakagawa, T; Okada, N; Nakagawa, S

    2013-01-01

    Angiogenesis is required for normal physiologic processes, but it is also involved in tumor growth, progression and metastasis. Here, we report the development of an immune-based antiangiogenic strategy based on the generation of T lymphocytes that possess killing specificity for cells expressing vascular endothelial growth factor receptor 2 (VEGFR2). To target VEGFR2-expressing cells, we engineered cytotoxic T lymphocyte (CTL) expressing chimeric T-cell receptors (cTCR-CTL) comprised of a single-chain variable fragment (scFv) against VEGFR2 linked to an intracellular signaling sequence derived from the CD3ζ chain of the TCR and CD28 by retroviral gene transduction methods. The cTCR-CTL exhibited efficient killing specificity against VEGFR2 and a tumor-targeting function in vitro and in vivo. Reflecting such abilities, we confirmed that the cTCR-CTL strongly inhibited the growth of a variety of syngeneic tumors after adoptive transfer into tumor-bearing mice without consequent damage to normal tissue. In addition, CTL expressing both cTCR and tumor-specific TCR induced complete tumor regression due to enhanced tumor infiltration by the CTL and long-term antigen-specific function. These findings provide evidence that the tumor vessel-injuring ability improved the antitumor effect of CTLs in adoptive immunotherapy for a broad range of cancers by inducing immune-mediated destruction of the tumor neovasculature.

  15. Reovirus-Mediated Cytotoxicity and Enhancement of Innate Immune Responses Against Acute Myeloid Leukemia

    PubMed Central

    Hall, Kathryn; Scott, Karen J.; Rose, Ailsa; Desborough, Michael; Harrington, Kevin; Pandha, Hardev; Parrish, Christopher; Vile, Richard; Coffey, Matt; Bowen, David; Errington-Mais, Fiona

    2012-01-01

    Abstract Reovirus is a naturally occurring oncolytic virus that has shown preclinical efficacy in the treatment of a wide range of tumor types and has now reached phase III testing in clinical trials. The anti-cancer activity of reovirus has been attributed to both its direct oncolytic activity and the enhancement of anti-tumor immune responses. In this study, we have investigated the direct effect of reovirus on acute myeloid leukemia (AML) cells and its potential to enhance innate immune responses against AML, including the testing of primary samples from patients. Reovirus was found to replicate in and kill AML cell lines, and to reduce cell viability in primary AML samples. The pro-inflammatory cytokine interferon alpha (IFNα) and the chemokine (C-C motif) ligand 5 (known as RANTES [regulated upon activation, normal T-cell expressed, and secreted]) were also secreted from AML cells in response to virus treatment. In addition, reovirus-mediated activation of natural killer (NK) cells, within the context of peripheral blood mononuclear cells, stimulated their anti-leukemia response, with increased NK degranulation and IFNγ production and enhanced killing of AML targets. These data suggest that reovirus has the potential as both a direct cytotoxic and an immunotherapeutic agent for the treatment of AML. PMID:23515241

  16. Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression.

    PubMed

    Ahmed, Nabil; Salsman, Vita S; Yvon, Eric; Louis, Chrystal U; Perlaky, Laszlo; Wels, Winfried S; Dishop, Meghan K; Kleinerman, Eugenie E; Pule, Martin; Rooney, Cliona M; Heslop, Helen E; Gottschalk, Stephen

    2009-10-01

    Human epidermal growth factor receptor 2 (HER2) is expressed by the majority of human osteosarcomas and is a risk factor for poor outcome. Unlike breast cancer, osteosarcoma cells express HER2 at too low, a level for patients to benefit from HER2 monoclonal antibodies. We reasoned that this limitation might be overcome by genetically modifying T cells with HER2-specific chimeric antigen receptors (CARs), because even a low frequency of receptor engagement could be sufficient to induce effector cell killing of the tumor. HER2-specific T cells were generated by retroviral transduction with a HER2-specific CAR containing a CD28.zeta signaling domain. HER2-specific T cells recognized HER2-positive osteosarcoma cells as judged by their ability to proliferate, produce immunostimulatory T helper 1 cytokines, and kill HER2-positive osteosarcoma cell lines in vitro. The adoptive transfer of HER2-specific T cells caused regression of established osteosarcoma xenografts in locoregional as well as metastatic mouse models. In contrast, delivery of nontransduced (NT) T cells did not change the tumor growth pattern. Genetic modification of T cells with CARs specific for target antigens, expressed at too low a level to be effectively recognized by monoclonal antibodies, may allow immunotherapy to be more broadly applicable for human cancer therapy.

  17. Ablation of breast cancer cells using trastuzumab-functionalized multi-walled carbon nanotubes and trastuzumab-diphtheria toxin conjugate.

    PubMed

    Oraki Kohshour, Mojtaba; Mirzaie, Sako; Zeinali, Majid; Amin, Mansour; Said Hakhamaneshi, Mohammad; Jalili, Ali; Mosaveri, Nader; Jamalan, Mostafa

    2014-03-01

    Trastuzumab (Herceptin(®) ) is a monoclonal antibody (mAb) for specific ablation of HER2-overexpressing malignant breast cancer cells. Intensification of antiproliferative activity of trastuzumab through construction of immunotoxins and nano-immunoconjugates is a promising approach for treatment of cancer. In this study, trastuzumab was directly conjugated to diphtheria toxin (DT). Also, conjugates of trastuzumab and multiwalled carbon nanotubes (MWCNT) were constructed by covalent immobilization of trastuzumab onto MWCNTs. Then, antiproliferative activity of the fusion constructs against HER2-overexpressing SK-BR-3 and also HER2-negative MCF-7 cancer cell lines were examined. Cells treated with trastuzumab-MWCNT conjugates were irradiated with near-infrared (NIR) light. Efficient absorption of NIR radiation and its conversion to heat by MWCNTs can be resulted to thermal ablation of cancerous cells. Our results strongly showed that both trastuzumab-MWCNT and trastuzumab-DT conjugates were significantly efficient in the specific killing of SK-BR-3 cells. Targeting of MWCNTs to cancerous cells using trastuzumab followed by exposure of cells to NIR radiation was more efficient in repression of cell proliferation than treatment for cancer cells with trastuzumab-DT. Our results also showed that conjugation linkers can significantly affect the cytotoxicity of MWCNT-immunoconjugates. In conclusion, our data demonstrated that trastuzumab-MWCNT is a promising nano-immunoconjugate for killing of HER2-overexpressing cancerous cells. © 2013 John Wiley & Sons A/S.

  18. The effect of cell density, proximity, and time on the cytotoxicity of magnesium and galvanically coupled magnesium-titanium particles in vitro.

    PubMed

    Kim, Jua; Gilbert, Jeremy L

    2018-05-01

    Magnesium (Mg) and galvanically coupled magnesium-titanium (Mg-Ti) particles in vitro have been reported previously to kill cells in a dosage-dependent manner. Mg-Ti particles kill cells more effectively than Mg alone, due to the galvanic effect of Mg and Ti. This study further investigated the in vitro cytotoxicity of Mg and Mg-Ti in terms of particle concentration, cell density, time, and proximity. Cell density has an effect on cell viability only at low particle concentrations (below 250 µg/mL), where cell viability dropped only for lower cell densities (5000-10,000 cells/cm 2 ) and not for higher cell densities (20,000-30,000 cells/cm 2 ), showing that the particles cannot kill if there are more cells present. Cytotoxicity of Mg and Mg-Ti particles is quick and temporary, where the particles kill cells only during particle corrosion (first 24 h). Depending on the percentage of surviving cells, particle concentrations, and ongoing corrosion activity, the remaining live cells either proliferated and recovered, or just remained viable and quiescent. The particle killing is also proximity-dependent, where cell viability was significantly higher for cells far away from the particles (greater than ∼1 mm) compared to those close to the particles (less than ∼1 mm). Although the increase of pH does affect cell viability negatively, it is not the sole killing factor since cell viability is significantly dependent on particle type and proximity but not pH. Mg and Mg-Ti particles used in this study are large enough to prevent direct cell phagocytosis so that the cell killing effect may be attributed to solely electrochemical reactions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1428-1439, 2018. © 2018 Wiley Periodicals, Inc.

  19. Disposable, Autonomic, Energy-Converting Ion Channel Sensor Materials

    DTIC Science & Technology

    2018-07-02

    variant forms well-defined pores _____________________________ 26 4.2. Another pore-forming peptide, Ceratotoxin A, displays alamethicin-like activity ...bilayer recordings to examine the activity of these compounds on the single-pore level. We plan to use modified CtxA for targeted cell killing...strongly dependent on entropy of activation . Tethering is one strategy towards achieving this goal. A manuscript regarding this work is currently in

  20. Targeting Btk/Etk of prostate cancer cells by a novel dual inhibitor

    PubMed Central

    Guo, W; Liu, R; Bhardwaj, G; Yang, J C; Changou, C; Ma, A-H; Mazloom, A; Chintapalli, S; Xiao, K; Xiao, W; Kumaresan, P; Sanchez, E; Yeh, C-T; Evans, C P; Patterson, R; Lam, K S; Kung, H-J

    2014-01-01

    Btk and Etk/BMX are Tec-family non-receptor tyrosine kinases. Btk has previously been reported to be expressed primarily in B cells and has an important role in immune responses and B-cell malignancies. Etk has been shown previously to provide a strong survival and metastasis signal in human prostate cancer cells, and to confer androgen independence and drug resistance. While the role of Etk in prostate carcinogenesis is well established, the functions of Btk in prostate cancer have never been investigated, likely due to the perception that Btk is a hematopoietic, but not epithelial, kinase. Herein, we found that Btk is overexpressed in prostate cancer tissues and prostate cancer cells. The level of Btk in prostate cancer tissues correlates with cancer grades. Knockdown of Btk expression selectively inhibits the growth of prostate cancer cells, but not that of the normal prostate epithelial cells, which express very little Btk. Dual inhibition of Btk and Etk has an additive inhibitory effect on prostate cancer cell growth. To explore Btk and Etk as targets for prostate cancer, we developed a small molecule dual inhibitor of Btk and Etk, CTN06. Treatment of PC3 and other prostate cancer cells, but not immortalized prostate epithelial cells with CTN06 resulted in effective cell killing, accompanied by the attenuation of Btk/Etk signals. The killing effect of CTN06 is more potent than that of commonly used inhibitors against Src, Raf/VEGFR and EGFR. CTN06 induces apoptosis as well as autophagy in human prostate cancer cells, and is a chemo-sensitizer for docetaxel (DTX), a standard of care for metastatic prostate cancer patients. CTN06 also impeded the migration of human prostate cancer cells based on a ‘wound healing' assay. The anti-cancer effect of CTN06 was further validated in vivo in a PC3 xenograft mouse model. PMID:25188519

  1. Targeting Btk/Etk of prostate cancer cells by a novel dual inhibitor.

    PubMed

    Guo, W; Liu, R; Bhardwaj, G; Yang, J C; Changou, C; Ma, A-H; Mazloom, A; Chintapalli, S; Xiao, K; Xiao, W; Kumaresan, P; Sanchez, E; Yeh, C-T; Evans, C P; Patterson, R; Lam, K S; Kung, H-J

    2014-09-04

    Btk and Etk/BMX are Tec-family non-receptor tyrosine kinases. Btk has previously been reported to be expressed primarily in B cells and has an important role in immune responses and B-cell malignancies. Etk has been shown previously to provide a strong survival and metastasis signal in human prostate cancer cells, and to confer androgen independence and drug resistance. While the role of Etk in prostate carcinogenesis is well established, the functions of Btk in prostate cancer have never been investigated, likely due to the perception that Btk is a hematopoietic, but not epithelial, kinase. Herein, we found that Btk is overexpressed in prostate cancer tissues and prostate cancer cells. The level of Btk in prostate cancer tissues correlates with cancer grades. Knockdown of Btk expression selectively inhibits the growth of prostate cancer cells, but not that of the normal prostate epithelial cells, which express very little Btk. Dual inhibition of Btk and Etk has an additive inhibitory effect on prostate cancer cell growth. To explore Btk and Etk as targets for prostate cancer, we developed a small molecule dual inhibitor of Btk and Etk, CTN06. Treatment of PC3 and other prostate cancer cells, but not immortalized prostate epithelial cells with CTN06 resulted in effective cell killing, accompanied by the attenuation of Btk/Etk signals. The killing effect of CTN06 is more potent than that of commonly used inhibitors against Src, Raf/VEGFR and EGFR. CTN06 induces apoptosis as well as autophagy in human prostate cancer cells, and is a chemo-sensitizer for docetaxel (DTX), a standard of care for metastatic prostate cancer patients. CTN06 also impeded the migration of human prostate cancer cells based on a 'wound healing' assay. The anti-cancer effect of CTN06 was further validated in vivo in a PC3 xenograft mouse model.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Šefl, Martin, E-mail: martin.sefl@gmail.com; Kyriakou, Ioanna; Emfietzoglou, Dimitris, E-mail: demfietz@cc.uoi.gr

    Purpose: To study theoretically the impact on cell survival of the radionuclide uptake rate inside tumor cells for a single administration of a radiopharmaceutical. Methods: The instantaneous-uptake model of O’Donoghue [“The impact of tumor cell proliferation in radioimmunotherapy,” Cancer 73, 974–980 (1994)] for a proliferating cell population irradiated by an exponentially decreasing dose-rate is here extended to allow for the monoexponential uptake of the radiopharmaceutical by the targeted cells. The time derivative of the survival curve is studied in detail deducing an expression for the minimum of the surviving fraction and the biologically effective dose (BED). Results: Surviving fractions aremore » calculated over a parameter range that is clinically relevant and broad enough to establish general trends. Specifically, results are presented for the therapy radionuclides Y-90, I-131, and P-32, assuming uptake half-times 1–24 h, extrapolated initial dose-rates 0.5–1 Gy h{sup −1}, and a biological clearance half-life of seven days. Representative radiobiological parameters for radiosensitive and rapidly proliferating tumor cells are used, with cell doubling time equal to 2 days and α-coefficient equal to 0.3 and 0.5 Gy{sup −1}. It is shown that neglecting the uptake phase of the radiopharmaceutical (i.e., assuming instantaneous-uptake) results in a sizeable over-estimation of cell-kill (i.e., under-estimation of cell survival) even for uptake half-times of only a few hours. The differences between the exponential-uptake model and the instantaneous-uptake model become larger for high peak dose-rates, slow uptakes, and (slightly) for long-lived radionuclides. Moreover, the sensitivity of the survival curve on the uptake model was found to be higher for the tumor cells with the larger α-coefficient. Conclusions: The exponential-uptake rate of the radiopharmaceutical inside targeted cells appears to have a considerable effect on the survival of a proliferating cell population and might need to be considered in radiobiological models of tumor cell-kill in radionuclide therapy.« less

  3. Structure of solid tumors and their vasculature: Implications for therapy with monoclonal antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvorak, H.F.; Nagy, J.A.; Dvorak, A.M.

    Delivery of monoclonal antibodies to solid tumors is a vexing problem that must be solved if these antibodies are to realize their promise in therapy. Such success as has been achieved with monoclonal antibodies is attributable to the local hyperpermeability of the tumor vasculature, a property that favors antibody extravasation at tumor sites and that is mediated by a tumor-secreted vascular permeability factor. However, leaky tumor blood vessels are generally some distance removed from target tumor cells, separated by stroma and by other tumor cells that together represent significant barriers to penetration by extravasated monoclonal antibodies. For this reason, alternativemore » approaches may be attractive. These include the use of antibody-linked cytotoxins, which are able to kill tumor cells without immediate contact, and direction of antibodies against nontumor cell targets, for example, antigens unique to the tumor vascular endothelium or to tumor stroma. 50 refs.« less

  4. Solitomab, an epithelial cell adhesion molecule/CD3 bispecific antibody (BiTE), is highly active against primary chemotherapy-resistant ovarian cancer cell lines in vitro and fresh tumor cells ex vivo.

    PubMed

    English, Diana P; Bellone, Stefania; Schwab, Carlton L; Roque, Dana M; Lopez, Salvatore; Bortolomai, Ileana; Cocco, Emiliano; Bonazzoli, Elena; Chatterjee, Sudeshna; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Rutherford, Thomas J; Santin, Alessandro D

    2015-02-01

    Solitomab is a novel, bispecific, single-chain antibody that targets epithelial cell adhesion molecule (EpCAM) on tumor cells and also contains a cluster of differentiation 3 (CD3) (T-cell coreceptor) binding region. The authors evaluated the in vitro activity of solitomab against primary chemotherapy-resistant epithelial ovarian carcinoma cell lines as well as malignant cells in ascites. EpCAM expression was evaluated by flow cytometry in 5 primary ovarian cancer cell lines and in 42 fresh ovarian tumor cell cultures in ascites from patients with mainly advanced or recurrent, chemotherapy-resistant disease. The potential activity of solitomab against EpCAM-positive tumor cells was evaluated by flow cytometry, proliferation, and 4-hour chromium-release, cell-mediated cytotoxicity assays. EpCAM expression was detected by flow cytometry in approximately 80% of the fresh ovarian tumors and primary ovarian tumor cell lines tested. EpCAM-positive, chemotherapy-resistant cell lines were identified as resistant to natural killer cell-mediated or T-cell-mediated killing after exposure to peripheral blood lymphocytes in 4-hour chromium-release assays (mean±standard error of the mean, 3.6%±0.7% of cells killed after incubation of EpCAM-positive cell lines with control bispecific antibody). In contrast, after incubation with solitomab, EpCAM-positive, chemotherapy-resistant cells became highly sensitive to T-cell cytotoxicity (mean±standard error of the mean, 28.2%±2.05% of cells killed; P<.0001) after exposure to peripheral blood lymphocytes. Ex vivo incubation of autologous tumor-associated lymphocytes with EpCAM-expressing malignant cells in ascites with solitomab resulted in a significant increase in T-cell activation markers and a reduction in the number of viable ovarian tumor cells in ascites (P<.001). Solitomab may represent a novel, potentially effective agent for the treatment of chemotherapy-resistant ovarian cancers that overexpress EpCAM. © 2014 American Cancer Society.

  5. Molecular imaging for theranostics in gastroenterology: one stone to kill two birds.

    PubMed

    Ko, Kwang Hyun; Kown, Chang-Il; Park, Jong Min; Lee, Hoo Geun; Han, Na Young; Hahm, Ki Baik

    2014-09-01

    Molecular imaging in gastroenterology has become more feasible with recent advances in imaging technology, molecular genetics, and next-generation biochemistry, in addition to advances in endoscopic imaging techniques including magnified high-resolution endoscopy, narrow band imaging or autofluorescence imaging, flexible spectral imaging color enhancement, and confocal laser endomicroscopy. These developments have the potential to serve as "red flag" techniques enabling the earlier and accurate detection of mucosal abnormalities (such as precancerous lesions) beyond biomarkers, virtual histology of detected lesions, and molecular targeted therapy-the strategy of "one stone to kill two or three birds"; however, more effort should be done to be "blue ocean" benefit. This review deals with the introduction of Raman spectroscopy endoscopy, imaging mass spectroscopy, and nanomolecule development for theranostics. Imaging of molecular pathological changes in cells/tissues/organs might open the "royal road" to either convincing diagnosis of diseases that otherwise would only be detected in the advanced stages or novel therapeutic methods targeted to personalized medicine.

  6. Prostate-specific membrane antigen targeted imaging and therapy of prostate cancer using a PSMA inhibitor as a homing ligand.

    PubMed

    Kularatne, Sumith A; Wang, Kevin; Santhapuram, Hari-Krishna R; Low, Philip S

    2009-01-01

    Prostate cancer (PCa) is a major cause of mortality and morbidity in Western society today. Current methods for detecting PCa are limited, leaving most early malignancies undiagnosed and sites of metastasis in advanced disease undetected. Major deficiencies also exist in the treatment of PCa, especially metastatic disease. In an effort to improve both detection and therapy of PCa, we have developed a PSMA-targeted ligand that delivers attached imaging and therapeutic agents selectively to PCa cells without targeting normal cells. The PSMA-targeted radioimaging agent (DUPA-(99m)Tc) was found to bind PSMA-positive human PCa cells (LNCaP cell line) with nanomolar affinity (K(D) = 14 nM). Imaging and biodistribution studies revealed that DUPA-(99m)Tc localizes primarily to LNCaP cell tumor xenografts in nu/nu mice (% injected dose/gram = 11.3 at 4 h postinjection; tumor-to-muscle ratio = 75:1). Two PSMA-targeted optical imaging agents (DUPA-FITC and DUPA-rhodamine B) were also shown to efficiently label PCa cells and to internalize and traffic to intracellular endosomes. A PSMA-targeted chemotherapeutic agent (DUPA-TubH) was demonstrated to kill PSMA-positive LNCaP cells in culture (IC(50) = 3 nM) and to eliminate established tumor xenografts in nu/nu mice with no detectable weight loss. Blockade of tumor targeting upon administration of excess PSMA inhibitor (PMPA) and the absence of targeting to PSMA-negative tumors confirmed the specificity of each of the above targeted reagents for PSMA. Tandem use of the imaging and therapeutic agents targeted to the same receptor could allow detection, staging, monitoring, and treatment of PCa with improved accuracy and efficacy.

  7. AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery.

    PubMed

    Aravind, Athulya; Jeyamohan, Prashanti; Nair, Remya; Veeranarayanan, Srivani; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi

    2012-11-01

    Liposomes and polymers are widely used drug carriers for controlled release since they offer many advantages like increased treatment effectiveness, reduced toxicity and are of biodegradable nature. In this work, anticancer drug-loaded PLGA-lecithin-PEG nanoparticles (NPs) were synthesized and were functionalized with AS1411 anti-nucleolin aptamers for site-specific targeting against tumor cells which over expresses nucleolin receptors. The particles were characterized by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The drug-loading efficiency, encapsulation efficiency and in vitro drug release studies were conducted using UV spectroscopy. Cytotoxicity studies were carried out in two different cancer cell lines, MCF-7 and GI-1 cells and two different normal cells, L929 cells and HMEC cells. Confocal microscopy and flowcytometry confirmed the cellular uptake of particles and targeted drug delivery. The morphology analysis of the NPs proved that the particles were smooth and spherical in shape with a size ranging from 60 to 110 nm. Drug-loading studies indicated that under the same drug loading, the aptamer-targeted NPs show enhanced cancer killing effect compared to the corresponding non-targeted NPs. In addition, the PLGA-lecithin-PEG NPs exhibited high encapsulation efficiency and superior sustained drug release than the drug loaded in plain PLGA NPs. The results confirmed that AS1411 aptamer-PLGA-lecithin-PEG NPs are potential carrier candidates for differential targeted drug delivery. Copyright © 2012 Wiley Periodicals, Inc.

  8. RNA Structure Design Improves Activity and Specificity of trans-Splicing-Triggered Cell Death in a Suicide Gene Therapy Approach.

    PubMed

    Poddar, Sushmita; Loh, Pei She; Ooi, Zi Hao; Osman, Farhana; Eul, Joachim; Patzel, Volker

    2018-06-01

    Spliceosome-mediated RNA trans-splicing enables correction or labeling of pre-mRNA, but therapeutic applications are hampered by issues related to the activity and target specificity of trans-splicing RNA (tsRNA). We employed computational RNA structure design to improve both on-target activity and specificity of tsRNA in a herpes simplex virus thymidine kinase/ganciclovir suicide gene therapy approach targeting alpha fetoprotein (AFP), a marker of hepatocellular carcinoma (HCC) or human papillomavirus type 16 (HPV-16) pre-mRNA. While unstructured, mismatched target binding domains significantly improved 3' exon replacement (3'ER), 5' exon replacement (5'ER) correlated with the thermodynamic stability of the tsRNA 3' end. Alternative on-target trans-splicing was found to be a prevalent event. The specificity of trans-splicing with the intended target splice site was improved 10-fold by designing tsRNA that harbors secondary target binding domains shielding alternative on-target and blinding off-target splicing events. Such rationally designed suicide RNAs efficiently triggered death of HPV-16-transduced or hepatoblastoma-derived human tissue culture cells without evidence for off-target cell killing. Highest cell death activities were observed with novel dual-targeting tsRNAs programmed for trans-splicing toward AFP and a second HCC pre-mRNA biomarker. Our observations suggest trans-splicing represents a promising approach to suicide gene therapy. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. DNA Duplex-Based Photodynamic Molecular Beacon for Targeted Killing of Retinoblastoma Cell.

    PubMed

    Wei, Yanchun; Lu, Cuixia; Chen, Qun; Xing, Da

    2016-11-01

    Retinoblastoma (RB) is the most common primary intraocular malignancy of infancy. An alternative RB treatment protocol is proposed and tested. It is based on a photodynamic therapy (PDT) with a designed molecular beacon that specifically targets the murine double minute x (MDMX) high-expressed RB cells. A MDMX mRNA triggered photodynamic molecular beacon is designed by binding a photosensitizer molecule (pyropheophorbide-a, or PPa) and a black hole quencher-3 (BHQ3) through a complementary oligonucleotide sequence. Cells with and without MDMX high-expression are incubated with the beacon and then irradiated with a laser. The fluorescence and reactive oxygen species are detected in solution to verify the specific activation of PPa by the perfectly matched DNA targets. The cell viabilities are evaluated with CCK-8 and flow cytometry assay. The fluorescence and photo-cytoxicity of PPa is recovered and significantly higher in the MDMX high-expressed Y79 and WERI-Rb1 cells, compared to that with the MDMX low-expressed cells. The synthesized beacon exhibits high PDT efficiency toward MDMX high-expressed RB cells. The data suggest that the designed beacon may provide a potential alternative for RB therapy and secures the ground for future investigation.

  10. A novel HLA-A*0201 restricted peptide derived from cathepsin G is an effective immunotherapeutic target in acute myeloid leukemia.

    PubMed

    Zhang, Mao; Sukhumalchandra, Pariya; Enyenihi, Atim A; St John, Lisa S; Hunsucker, Sally A; Mittendorf, Elizabeth A; Sergeeva, Anna; Ruisaard, Kathryn; Al-Atrache, Zein; Ropp, Patricia A; Jakher, Haroon; Rodriguez-Cruz, Tania; Lizee, Gregory; Clise-Dwyer, Karen; Lu, Sijie; Molldrem, Jeffrey J; Glish, Gary L; Armistead, Paul M; Alatrash, Gheath

    2013-01-01

    Immunotherapy targeting aberrantly expressed leukemia-associated antigens has shown promise in the management of acute myeloid leukemia (AML). However, because of the heterogeneity and clonal evolution that is a feature of myeloid leukemia, targeting single peptide epitopes has had limited success, highlighting the need for novel antigen discovery. In this study, we characterize the role of the myeloid azurophil granule protease cathepsin G (CG) as a novel target for AML immunotherapy. We used Immune Epitope Database and in vitro binding assays to identify immunogenic epitopes derived from CG. Flow cytometry, immunoblotting, and confocal microscopy were used to characterize the expression and processing of CG in AML patient samples, leukemia stem cells, and normal neutrophils. Cytotoxicity assays determined the susceptibility of AML to CG-specific cytotoxic T lymphocytes (CTL). Dextramer staining and cytokine flow cytometry were conducted to characterize the immune response to CG in patients. CG was highly expressed and ubiquitinated in AML blasts, and was localized outside granules in compartments that facilitate antigen presentation. We identified five HLA-A*0201 binding nonameric peptides (CG1-CG5) derived from CG, and showed immunogenicity of the highest HLA-A*0201 binding peptide, CG1. We showed killing of primary AML by CG1-CTL, but not normal bone marrow. Blocking HLA-A*0201 abrogated CG1-CTL-mediated cytotoxicity, further confirming HLA-A*0201-dependent killing. Finally, we showed functional CG1-CTLs in peripheral blood from AML patients following allogeneic stem cell transplantation. CG is aberrantly expressed and processed in AML and is a novel immunotherapeutic target that warrants further development.

  11. A Natural Chimeric Pseudomonas Bacteriocin with Novel Pore-Forming Activity Parasitizes the Ferrichrome Transporter.

    PubMed

    Ghequire, Maarten G K; Kemland, Lieselore; Anoz-Carbonell, Ernesto; Buchanan, Susan K; De Mot, René

    2017-02-21

    Modular bacteriocins represent a major group of secreted protein toxins with a narrow spectrum of activity, involved in interference competition between Gram-negative bacteria. These antibacterial proteins include a domain for binding to the target cell and a toxin module at the carboxy terminus. Self-inhibition of producers is provided by coexpression of linked immunity genes that transiently inhibit the toxin's activity through formation of bacteriocin-immunity complexes or by insertion in the inner membrane, depending on the type of toxin module. We demonstrate strain-specific inhibitory activity for PmnH, a Pseudomonas bacteriocin with an unprecedented dual-toxin architecture, hosting both a colicin M domain, potentially interfering with peptidoglycan synthesis, and a novel colicin N-type domain, a pore-forming module distinct from the colicin Ia-type domain in Pseudomonas aeruginosa pyocin S5. A downstream-linked gene product confers PmnH immunity upon susceptible strains. This protein, ImnH, has a transmembrane topology similar to that of Pseudomonas colicin M-like and pore-forming immunity proteins, although homology with either of these is essentially absent. The enhanced killing activity of PmnH under iron-limited growth conditions reflects parasitism of the ferrichrome-type transporter for entry into target cells, a strategy shown here to be used as well by monodomain colicin M-like bacteriocins from pseudomonads. The integration of a second type of toxin module in a bacteriocin gene could offer a competitive advantage against bacteria displaying immunity against only one of both toxic activities. IMPORTANCE In their continuous struggle for ecological space, bacteria face a huge load of contenders, including phylogenetically related strains that compete for the same niche. One important group of secreted antibacterial proteins assisting in eliminating these rivals are modular bacteriocins of Gram-negative bacteria, comprising a domain for docking onto the cell envelope of a target cell, a translocation domain enabling subsequent cellular entry, and a toxin module that kills target cells via enzymatic or pore-forming activity. We here demonstrate the antagonistic function of a Pseudomonas bacteriocin with unique architecture that combines a putative enzymatic colicin M-like domain and a novel pore-forming toxin module. For target cell recognition and entry, this bacteriocin hybrid takes advantage of the ferrichrome transporter, also parasitized by enzymatic Pseudomonas bacteriocins devoid of the pore-forming module. Bacteriocins with an expanded toxin potential may represent an inventive bacterial strategy to alleviate immunity in target cells. Copyright © 2017 Ghequire et al.

  12. Development and Function of CD94-Deficient Natural Killer Cells

    PubMed Central

    Orr, Mark T.; Wu, Jun; Fang, Min; Sigal, Luis J.; Spee, Pieter; Egebjerg, Thomas; Dissen, Erik; Fossum, Sigbjørn; Phillips, Joseph H.; Lanier, Lewis L.

    2010-01-01

    The CD94 transmembrane-anchored glycoprotein forms disulfide-bonded heterodimers with the NKG2A subunit to form an inhibitory receptor or with the NKG2C or NKG2E subunits to assemble a receptor complex with activating DAP12 signaling proteins. CD94 receptors expressed on human and mouse NK cells and T cells have been proposed to be important in NK cell tolerance to self, play an important role in NK cell development, and contribute to NK cell-mediated immunity to certain infections including human cytomegalovirus. We generated a gene-targeted CD94-deficient mouse to understand the role of CD94 receptors in NK cell biology. CD94-deficient NK cells develop normally and efficiently kill NK cell-susceptible targets. Lack of these CD94 receptors does not alter control of mouse cytomegalovirus, lymphocytic choriomeningitis virus, vaccinia virus, or Listeria monocytogenes. Thus, the expression of CD94 and its associated NKG2A, NKG2C, and NKG2E subunits is dispensable for NK cell development, education, and many NK cell functions. PMID:21151939

  13. Development and function of CD94-deficient natural killer cells.

    PubMed

    Orr, Mark T; Wu, Jun; Fang, Min; Sigal, Luis J; Spee, Pieter; Egebjerg, Thomas; Dissen, Erik; Fossum, Sigbjørn; Phillips, Joseph H; Lanier, Lewis L

    2010-12-03

    The CD94 transmembrane-anchored glycoprotein forms disulfide-bonded heterodimers with the NKG2A subunit to form an inhibitory receptor or with the NKG2C or NKG2E subunits to assemble a receptor complex with activating DAP12 signaling proteins. CD94 receptors expressed on human and mouse NK cells and T cells have been proposed to be important in NK cell tolerance to self, play an important role in NK cell development, and contribute to NK cell-mediated immunity to certain infections including human cytomegalovirus. We generated a gene-targeted CD94-deficient mouse to understand the role of CD94 receptors in NK cell biology. CD94-deficient NK cells develop normally and efficiently kill NK cell-susceptible targets. Lack of these CD94 receptors does not alter control of mouse cytomegalovirus, lymphocytic choriomeningitis virus, vaccinia virus, or Listeria monocytogenes. Thus, the expression of CD94 and its associated NKG2A, NKG2C, and NKG2E subunits is dispensable for NK cell development, education, and many NK cell functions.

  14. Therapeutic Potential and Challenges of Natural Killer Cells in Treatment of Solid Tumors

    PubMed Central

    Gras Navarro, Andrea; Björklund, Andreas T.; Chekenya, Martha

    2015-01-01

    Natural killer (NK) cells are innate lymphoid cells that hold tremendous potential for effective immunotherapy for a broad range of cancers. Due to the mode of NK cell killing, requiring one-to-one target engagement and site-directed release of cytolytic granules, the therapeutic potential of NK cells has been most extensively explored in hematological malignancies. However, their ability to precisely kill antibody coated cells, cancer stem cells, and genotoxically altered cells, while maintaining tolerance to healthy cells makes them appealing therapeutic effectors for all cancer forms, including metastases. Due to their release of pro-inflammatory cytokines, NK cells may potently reverse the anti-inflammatory tumor microenvironment (TME) and augment adaptive immune responses by promoting differentiation, activation, and/or recruitment of accessory immune cells to sites of malignancy. Nevertheless, integrated and coordinated mechanisms of subversion of NK cell activity against the tumor and its microenvironment exist. Although our understanding of the receptor ligand interactions that regulate NK cell functionality has evolved remarkably, the diversity of ligands and receptors is complex, as is their mechanistic foundations in regulating NK cell function. In this article, we review the literature and highlight how the TME manipulates the NK cell phenotypes, genotypes, and tropism to evade tumor recognition and elimination. We discuss counter strategies that may be adopted to augment the efficacy of NK cell anti-tumor surveillance, the clinical trials that have been undertaken so far in solid malignancies, critically weighing the challenges and opportunities with this approach. PMID:25972872

  15. A graphene oxide based smart drug delivery system for tumor mitochondria-targeting photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Wei, Yanchun; Zhou, Feifan; Zhang, Da; Chen, Qun; Xing, Da

    2016-02-01

    Subcellular organelles play critical roles in cell survival. In this work, a novel photodynamic therapy (PDT) drug delivery and phototoxicity on/off nano-system based on graphene oxide (NGO) as the carrier is developed to implement subcellular targeting and attacking. To construct the nanodrug (PPa-NGO-mAb), NGO is modified with the integrin αvβ3 monoclonal antibody (mAb) for tumor targeting. Pyropheophorbide-a (PPa) conjugated with polyethylene-glycol is used to cover the surface of the NGO to induce phototoxicity. Polyethylene-glycol phospholipid is loaded to enhance water solubility. The results show that the phototoxicity of PPa on NGO can be switched on and off in organic and aqueous environments, respectively. The PPa-NGO-mAb assembly is able to effectively target the αvβ3-positive tumor cells with surface ligand and receptor recognition; once endocytosized by the cells, they are observed escaping from lysosomes and subsequently transferring to the mitochondria. In the mitochondria, the `on' state PPa-NGO-mAb performs its effective phototoxicity to kill cells. The biological and physical dual selections and on/off control of PPa-NGO-mAb significantly enhance mitochondria-mediated apoptosis of PDT. This smart system offers a potential alternative to drug delivery systems for cancer therapy.Subcellular organelles play critical roles in cell survival. In this work, a novel photodynamic therapy (PDT) drug delivery and phototoxicity on/off nano-system based on graphene oxide (NGO) as the carrier is developed to implement subcellular targeting and attacking. To construct the nanodrug (PPa-NGO-mAb), NGO is modified with the integrin αvβ3 monoclonal antibody (mAb) for tumor targeting. Pyropheophorbide-a (PPa) conjugated with polyethylene-glycol is used to cover the surface of the NGO to induce phototoxicity. Polyethylene-glycol phospholipid is loaded to enhance water solubility. The results show that the phototoxicity of PPa on NGO can be switched on and off in organic and aqueous environments, respectively. The PPa-NGO-mAb assembly is able to effectively target the αvβ3-positive tumor cells with surface ligand and receptor recognition; once endocytosized by the cells, they are observed escaping from lysosomes and subsequently transferring to the mitochondria. In the mitochondria, the `on' state PPa-NGO-mAb performs its effective phototoxicity to kill cells. The biological and physical dual selections and on/off control of PPa-NGO-mAb significantly enhance mitochondria-mediated apoptosis of PDT. This smart system offers a potential alternative to drug delivery systems for cancer therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07785k

  16. Podoplanin emerges as a functionally relevant oral cancer biomarker and therapeutic target.

    PubMed

    Retzbach, Edward P; Sheehan, Stephanie A; Nevel, Evan M; Batra, Amber; Phi, Tran; Nguyen, Angels T P; Kato, Yukinari; Baredes, Soly; Fatahzadeh, Mahnaz; Shienbaum, Alan J; Goldberg, Gary S

    2018-03-01

    Oral cancer has become one of the most aggressive types of cancer, killing 140,000 people worldwide every year. Current treatments for oral cancer include surgery and radiation therapies. These procedures can be very effective; however, they can also drastically decrease the quality of life for survivors. New chemotherapeutic treatments are needed to more effectively combat oral cancer. The transmembrane receptor podoplanin (PDPN) has emerged as a functionally relevant oral cancer biomarker and chemotherapeutic target. PDPN expression promotes tumor cell migration leading to oral cancer invasion and metastasis. Here, we describe the role of PDPN in oral squamous cell carcinoma progression, and how it may be exploited to prevent and treat oral cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. CAR-Engineered NK Cells Targeting Wild-Type EGFR and EGFRvIII Enhance Killing of Glioblastoma and Patient-Derived Glioblastoma Stem Cells.

    PubMed

    Han, Jianfeng; Chu, Jianhong; Keung Chan, Wing; Zhang, Jianying; Wang, Youwei; Cohen, Justus B; Victor, Aaron; Meisen, Walter H; Kim, Sung-hak; Grandi, Paola; Wang, Qi-En; He, Xiaoming; Nakano, Ichiro; Chiocca, E Antonio; Glorioso, Joseph C; Kaur, Balveen; Caligiuri, Michael A; Yu, Jianhua

    2015-07-09

    Glioblastoma (GB) remains the most aggressive primary brain malignancy. Adoptive transfer of chimeric antigen receptor (CAR)-modified immune cells has emerged as a promising anti-cancer approach, yet the potential utility of CAR-engineered natural killer (NK) cells to treat GB has not been explored. Tumors from approximately 50% of GB patients express wild-type EGFR (wtEGFR) and in fewer cases express both wtEGFR and the mutant form EGFRvIII; however, previously reported CAR T cell studies only focus on targeting EGFRvIII. Here we explore whether both wtEGFR and EGFRvIII can be effectively targeted by CAR-redirected NK cells to treat GB. We transduced human NK cell lines NK-92 and NKL, and primary NK cells with a lentiviral construct harboring a second generation CAR targeting both wtEGFR and EGFRvIII and evaluated the anti-GB efficacy of EGFR-CAR-modified NK cells. EGFR-CAR-engineered NK cells displayed enhanced cytolytic capability and IFN-γ production when co-cultured with GB cells or patient-derived GB stem cells in an EGFR-dependent manner. In two orthotopic GB xenograft mouse models, intracranial administration of NK-92-EGFR-CAR cells resulted in efficient suppression of tumor growth and significantly prolonged the tumor-bearing mice survival. These findings support intracranial administration of NK-92-EGFR-CAR cells represents a promising clinical strategy to treat GB.

  18. An in vitro investigation of immunomodulatory properties of Lactobacillus plantarum and L. delbrueckii cells and their extracellular polysaccharides

    PubMed Central

    KISHIMOTO, Mana; NOMOTO, Ryohei; MIZUNO, Masashi; OSAWA, Ro

    2017-01-01

    Many probiotic lactobacilli and their extracellular polysaccharides (EPS) have beneficial immunological properties. However, it is unclear how they elicit the host immune response. We thus investigated the immunological properties of UV-killed Lactobacillus delbrueckii TU-1 and L. plantarum KM-9 cells as well as their extracellular polysaccharides (EPSs). High-performance liquid chromatography and ion exchange chromatography analyses showed that their EPSs differ in sugar composition and sugar fractionation. The immunological properties were evaluated in a semi-intestinal model using a Transwell co-culture system that employed human intestinal epithelial (Caco-2) cells on the apical side and murine macrophage (RAW264.7) cells on the basolateral side. The UV-killed cells and EPSs were added to the apical side to allow direct contact with Caco-2 cells and incubated for 6 hr. After incubation, the amounts of tumor necrosis factor-α and several cytokines released by RAW264.7 or Caco-2 cells were quantified by cytotoxic activity on L929 cells (murine fibrosarcoma cell line) and quantitative reverse-transcriptase PCR. We found that the UV-killed cells and their EPSs had immunological effects on RAW264.7 cells via Caco-2 cells. The RAW264.7 cells showed different cytokine production profiles when treated with UV-killed cells and EPSs. The UV-killed cells and EPSs promoted a Th1-type cellular response. Furthermore, we found that the UV-killed cells sent positive signals through Toll-like receptor (TLR) 2. Meanwhile, neither EPS sent a positive signal through TLR4 and TLR2. This evidence suggests that both UV-killed cells of the lactobacillus strains and their EPSs trigger a Th1-type immune response in a human host, with the former triggering the response via the TLRs expressed on its epithelium and the latter employing a mechanism yet to be determined, possibly involving a novel receptor that is designed to recognize specific patterns of repeating sugar in the EPSs. PMID:28748131

  19. An in vitro investigation of immunomodulatory properties of Lactobacillus plantarum and L. delbrueckii cells and their extracellular polysaccharides.

    PubMed

    Kishimoto, Mana; Nomoto, Ryohei; Mizuno, Masashi; Osawa, Ro

    2017-01-01

    Many probiotic lactobacilli and their extracellular polysaccharides (EPS) have beneficial immunological properties. However, it is unclear how they elicit the host immune response. We thus investigated the immunological properties of UV-killed Lactobacillus delbrueckii TU-1 and L. plantarum KM-9 cells as well as their extracellular polysaccharides (EPSs). High-performance liquid chromatography and ion exchange chromatography analyses showed that their EPSs differ in sugar composition and sugar fractionation. The immunological properties were evaluated in a semi-intestinal model using a Transwell co-culture system that employed human intestinal epithelial (Caco-2) cells on the apical side and murine macrophage (RAW264.7) cells on the basolateral side. The UV-killed cells and EPSs were added to the apical side to allow direct contact with Caco-2 cells and incubated for 6 hr. After incubation, the amounts of tumor necrosis factor-α and several cytokines released by RAW264.7 or Caco-2 cells were quantified by cytotoxic activity on L929 cells (murine fibrosarcoma cell line) and quantitative reverse-transcriptase PCR. We found that the UV-killed cells and their EPSs had immunological effects on RAW264.7 cells via Caco-2 cells. The RAW264.7 cells showed different cytokine production profiles when treated with UV-killed cells and EPSs. The UV-killed cells and EPSs promoted a Th1-type cellular response. Furthermore, we found that the UV-killed cells sent positive signals through Toll-like receptor (TLR) 2. Meanwhile, neither EPS sent a positive signal through TLR4 and TLR2. This evidence suggests that both UV-killed cells of the lactobacillus strains and their EPSs trigger a Th1-type immune response in a human host, with the former triggering the response via the TLRs expressed on its epithelium and the latter employing a mechanism yet to be determined, possibly involving a novel receptor that is designed to recognize specific patterns of repeating sugar in the EPSs.

  20. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer

    PubMed Central

    Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B.; Kim, Jung-Hyun; Ang, J. Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P.; Andrews, Brenda; Boerkoel, Cornelius F.; Hieter, Philip

    2016-01-01

    Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1. Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064

  1. Discovery of NKT cells and development of NKT cell-targeted anti-tumor immunotherapy

    PubMed Central

    TANIGUCHI, Masaru; HARADA, Michishige; DASHTSOODOL, Nyambayar; KOJO, Satoshi

    2015-01-01

    Natural Killer T (NKT) cells are unique lymphocytes characterized by their expression of a single invariant antigen receptor encoded by Vα14Jα18 in mice and Vα24Jα18 in humans, which recognizes glycolipid antigens in association with the monomorphic CD1d molecule. NKT cells mediate adjuvant activity to activate both CD8T cells to kill MHC-positive tumor cells and NK cells to eliminate MHC-negative tumor at the same time in patients, resulting in the complete eradication of tumors without relapse. Therefore, the NKT cell-targeted therapy can be applied to any type of tumor and also to anyone individual, regardless of HLA type. Phase IIa clinical trials on advanced lung cancers and head and neck tumors have been completed and showed significantly prolonged median survival times with only the primary treatment. Another potential treatment option for the future is to use induced pluripotent stem cell (iPS)-derived NKT cells, which induced adjuvant effects on anti-tumor responses, inhibiting in vivo tumor growth in a mouse model. PMID:26194854

  2. Efficient killing of CD22{sup +} tumor cells by a humanized diabody-RNase fusion protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, Juergen; Arndt, Michaela A.E.; Vu, Bang K.

    2005-06-03

    We report on the generation of a dimeric immunoenzyme capable of simultaneously delivering two ribonuclease (RNase) effector domains on one molecule to CD22{sup +} tumor cells. As targeting moiety a diabody derived from the previously humanized scFv SGIII with grafted specificity of the murine anti-CD22 mAb RFB4 was constructed. Further engineering the interface of this construct (V{sub L}36{sub Leu{yields}}{sub Tyr}) resulted in a highly robust bivalent molecule that retained the same high affinity as the murine mAb RFB4 (K{sub D} 0.2 nM). A dimeric immunoenzyme comprising this diabody and Rana pipiens liver ribonuclease I (rapLRI) was generated, expressed as solublemore » protein in bacteria, and purified to homogeneity. The dimeric fusion protein killed several CD22{sup +} tumor cell lines with high efficacy (IC{sub 50} = 3-20 nM) and exhibited 9- to 48-fold stronger cytotoxicity than a monovalent rapLRI-scFv counterpart. Our results demonstrate that engineering of dimeric antibody-ribonuclease fusion proteins can markedly enhance their biological efficacy.« less

  3. Dimethyl sulfoxide (DMSO) exacerbates cisplatin-induced sensory hair cell death in zebrafish (Danio rerio).

    PubMed

    Uribe, Phillip M; Mueller, Melissa A; Gleichman, Julia S; Kramer, Matthew D; Wang, Qi; Sibrian-Vazquez, Martha; Strongin, Robert M; Steyger, Peter S; Cotanche, Douglas A; Matsui, Jonathan I

    2013-01-01

    Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens since many compounds are dissolved in DMSO.

  4. Dimethyl Sulfoxide (DMSO) Exacerbates Cisplatin-induced Sensory Hair Cell Death in Zebrafish (Danio rerio)

    PubMed Central

    Gleichman, Julia S.; Kramer, Matthew D.; Wang, Qi; Sibrian-Vazquez, Martha; Strongin, Robert M.; Steyger, Peter S.; Cotanche, Douglas A.; Matsui, Jonathan I.

    2013-01-01

    Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens since many compounds are dissolved in DMSO. PMID:23383324

  5. Evaluation of RGD-targeted albumin carriers for specific delivery of auristatin E to tumor blood vessels.

    PubMed

    Temming, Kai; Meyer, Damon L; Zabinski, Roger; Dijkers, Eli C F; Poelstra, Klaas; Molema, Grietje; Kok, Robbert J

    2006-01-01

    Induction of apoptosis in endothelial cells is considered an attractive strategy to therapeutically interfere with a solid tumor's blood supply. In the present paper, we constructed cytotoxic conjugates that specifically target angiogenic endothelial cells, thus preventing typical side effects of apoptosis-inducing drugs. For this purpose, we conjugated the potent antimitotic agent monomethyl-auristatin-E (MMAE) via a lysosomal cleavable linker to human serum albumin (HSA) and further equipped this drug-albumin conjugate with cyclic c(RGDfK) peptides for multivalent interaction with alphavbeta3-integrin. The RGD-peptides were conjugated via either an extended poly(ethylene glycol) linker or a short alkyl linker. The resulting drug-targeting conjugates RGDPEG-MMAE-HSA and RGD-MMAE-HSA demonstrated high binding affinity and specificity for alphavbeta3-integrin expressing human umbilical vein endothelial cells (HUVEC). Both types of conjugates were internalized by endothelial cells and killed the target cells at low nM concentrations. Furthermore, we observed RGD-dependent binding of the conjugates to C26 carcinoma. Upon i.v. administration to C26-tumor bearing mice, both drug-targeting conjugates displayed excellent tumor homing properties. Our results demonstrate that RGD-modified albumins are suitable carriers for cell selective intracellular delivery of cytotoxic compounds, and further studies will be conducted to assess the antivascular and tumor inhibitory potential of RGDPEG-MMAE-HSA and RGD-MMAE-HSA.

  6. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy.

    PubMed

    Fry, Terry J; Shah, Nirali N; Orentas, Rimas J; Stetler-Stevenson, Maryalice; Yuan, Constance M; Ramakrishna, Sneha; Wolters, Pamela; Martin, Staci; Delbrook, Cindy; Yates, Bonnie; Shalabi, Haneen; Fountaine, Thomas J; Shern, Jack F; Majzner, Robbie G; Stroncek, David F; Sabatino, Marianna; Feng, Yang; Dimitrov, Dimiter S; Zhang, Ling; Nguyen, Sang; Qin, Haiying; Dropulic, Boro; Lee, Daniel W; Mackall, Crystal L

    2018-01-01

    Chimeric antigen receptor (CAR) T cells targeting CD19 mediate potent effects in relapsed and/or refractory pre-B cell acute lymphoblastic leukemia (B-ALL), but antigen loss is a frequent cause of resistance to CD19-targeted immunotherapy. CD22 is also expressed in most cases of B-ALL and is usually retained following CD19 loss. We report results from a phase 1 trial testing a new CD22-targeted CAR (CD22-CAR) in 21 children and adults, including 17 who were previously treated with CD19-directed immunotherapy. Dose-dependent antileukemic activity was observed, with complete remission obtained in 73% (11/15) of patients receiving ≥1 × 10 6 CD22-CAR T cells per kg body weight, including 5 of 5 patients with CD19 dim or CD19 - B-ALL. Median remission duration was 6 months. Relapses were associated with diminished CD22 site density that likely permitted CD22 + cell escape from killing by CD22-CAR T cells. These results are the first to establish the clinical activity of a CD22-CAR in B-ALL, including leukemia resistant to anti-CD19 immunotherapy, demonstrating potency against B-ALL comparable to that of CD19-CAR at biologically active doses. Our results also highlight the critical role played by antigen density in regulating CAR function.

  7. An Hsp70 peptide initiates NK cell killing of leukemic blasts after stem cell transplantation.

    PubMed

    Gross, Catharina; Holler, Ernst; Stangl, Stefan; Dickinson, Anne; Pockley, A Graham; Asea, Alexzander A; Mallappa, Nagaraja; Multhoff, Gabriele

    2008-04-01

    In contrast to solid tumors, leukemic blasts frequently present both Hsp70 and HLA-E on their cell surface and thereby present activating and inhibitory signals to CD94(+) NK cells. In the first 12 months after stem cell transplantation (SCT) CD94(+) NK cells clearly dominate over CD3(+)/CD16(-)/56(-) T and CD3(+)/CD16(+)/56(+) NK-like T cells. An incubation of post-SCT-derived peripheral blood lymphocytes with the Hsp70 peptide TKD and IL-15 enhances the cell surface density of CD56/CD94 and initiates the cytolytic activity of NK cells against Hsp70/HLA-E double-positive autologous and allogeneic leukemic blasts. Hsp70 was identified as the target structure for TKD-activated NK cells.

  8. Aurora A kinase RNAi and small molecule inhibition of Aurora kinases with VE-465 induce apoptotic death in multiple myeloma cells.

    PubMed

    Evans, Robert; Naber, Claudia; Steffler, Tara; Checkland, Tamara; Keats, Jonathan; Maxwell, Christopher; Perry, Troy; Chau, Heidi; Belch, Andrew; Pilarski, Linda; Reiman, Tony

    2008-03-01

    The expression of RHAMM and other centrosome-associated genes are known to correlate with the extent of centrosome amplification in multiple myeloma, and with poor prognosis. RHAMM has a significant interaction with TPX2, a protein which regulates the localization and action of Aurora A kinase (AURKA) at the spindle poles. AURKA is known to be a central determinant of centrosome and spindle function and is a target for cancer therapy. Given these observations, we investigated the role of Aurora kinases as therapeutic targets in myeloma. Here we report that AURKA is expressed ubiquitously in myeloma, to varying degrees, in both cell lines and patients' bone marrow plasma cells. siRNA targeting AURKA induces apoptotic cell death in myeloma cell lines. The Aurora kinase inhibitor VE-465 also induces apoptosis and death in myeloma cell lines and primary myeloma plasma cells. The combination of VE-465 and dexamethasone improves cell killing compared with the use of either agent alone, even in cells resistant to the single agents. The phenotype of myeloma cells treated with VE-465 is consistent with published reports on the effects of Aurora kinase inhibition. Aurora kinase inhibitors should be pursued as potential treatments for myeloma.

  9. Targeting of CD22-positive B-cell lymphoma cells by synthetic divalent sialic acid analogues.

    PubMed

    Schweizer, Astrid; Wöhner, Miriam; Prescher, Horst; Brossmer, Reinhard; Nitschke, Lars

    2012-10-01

    CD22 is an inhibitory co-receptor of the B-cell receptor (BCR) on B cells. Since CD22 is ubiquitously expressed in the B-cell lineage and CD22 endocytosis can be triggered efficiently, antibodies and antibody-based immunotoxins against CD22 are used to target B cells both in B-cell lymphomas and leukemias, as well as in autoimmune diseases. CD22 recognizes α2,6-linked sialic acids as endogenous ligands. We have developed new synthetic sialosides as ligands for human CD22. These sialosides bind CD22 on human B cells with high affinity and can efficiently enhance IgM-triggered Ca(2+) signaling. We coupled these sialosides to Pseudomonas exotoxin A to generate a novel CD22 ligand-based immunotoxin. This sialoside-exotoxin-A construct can specifically kill CD22-positive B-cell lymphoma cells. It binds specifically to CD22-positive B-cell lymphoma cells and is dominant over endogenous cis-ligands on the B-cell surface. The sialoside-exotoxin-A construct is efficiently internalized by endocytosis into B-cell lymphoma cell lines. Thus we show the development of a new therapeutic compound for targeting CD22 on human B cells, both for B-cell lymphoma, as well as for B-cell-mediated autoimmune diseases. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Most Do, but Some Do Not: CD4+CD25− T Cells, but Not CD4+CD25+ Treg Cells, Are Cytolytic When Redirected by a Chimeric Antigen Receptor (CAR)

    PubMed Central

    Hombach, Andreas A.; Abken, Hinrich

    2017-01-01

    Evidences are accumulating that CD4+ T cells can physiologically mediate antigen specific target cell lysis. By circumventing major histocompatibility complex (MHC)-restrictions through an engineered chimeric antigen receptor (CAR), CD4+ T cells lyse defined target cells as efficiently as do CD8+ T cells. However, the cytolytic capacity of redirected CD4+CD25− T cells, in comparison with CD4+CD25+ regulatory T (Treg) cells was so far not thoroughly defined. Treg cells require a strong CD28 signal together with CD3ζ for activation. We consequently used a CAR with combined CD28­CD3ζ signalling for redirecting CD4+CD25− T cells and CD4+CD25+ Treg cells from the same donor. CAR redirected activation of these T cell subsets and induced a distinct cytokine pattern with high IL-10 and a lack of IL-2 release by Treg cells. Despite strong antigen-specific activation, CAR Treg cells produced only weak target cell lysis, whereas CD4+CD25− CAR T cells were potent killers. Cytolysis did not correlate with the target cell sensitivity to Fas/FasL mediated killing; CD4+CD25− T cells upregulated perforin and granzyme B upon CAR activation, whereas Treg cells did less. The different cytolytic capacities of CAR redirected conventional CD4+ cells and Treg cells imply their use for different purposes in cell therapy. PMID:28850063

  11. Antibiotics induce redox-related physiological alterations as part of their lethality

    PubMed Central

    Dwyer, Daniel J.; Belenky, Peter A.; Yang, Jason H.; MacDonald, I. Cody; Martell, Jeffrey D.; Takahashi, Noriko; Chan, Clement T. Y.; Lobritz, Michael A.; Braff, Dana; Schwarz, Eric G.; Ye, Jonathan D.; Pati, Mekhala; Vercruysse, Maarten; Ralifo, Paul S.; Allison, Kyle R.; Khalil, Ahmad S.; Ting, Alice Y.; Walker, Graham C.; Collins, James J.

    2014-01-01

    Deeper understanding of antibiotic-induced physiological responses is critical to identifying means for enhancing our current antibiotic arsenal. Bactericidal antibiotics with diverse targets have been hypothesized to kill bacteria, in part by inducing production of damaging reactive species. This notion has been supported by many groups but has been challenged recently. Here we robustly test the hypothesis using biochemical, enzymatic, and biophysical assays along with genetic and phenotypic experiments. We first used a novel intracellular H2O2 sensor, together with a chemically diverse panel of fluorescent dyes sensitive to an array of reactive species to demonstrate that antibiotics broadly induce redox stress. Subsequent gene-expression analyses reveal that complex antibiotic-induced oxidative stress responses are distinct from canonical responses generated by supraphysiological levels of H2O2. We next developed a method to quantify cellular respiration dynamically and found that bactericidal antibiotics elevate oxygen consumption, indicating significant alterations to bacterial redox physiology. We further show that overexpression of catalase or DNA mismatch repair enzyme, MutS, and antioxidant pretreatment limit antibiotic lethality, indicating that reactive oxygen species causatively contribute to antibiotic killing. Critically, the killing efficacy of antibiotics was diminished under strict anaerobic conditions but could be enhanced by exposure to molecular oxygen or by the addition of alternative electron acceptors, indicating that environmental factors play a role in killing cells physiologically primed for death. This work provides direct evidence that, downstream of their target-specific interactions, bactericidal antibiotics induce complex redox alterations that contribute to cellular damage and death, thus supporting an evolving, expanded model of antibiotic lethality. PMID:24803433

  12. Powerful bacterial killing by buckwheat honeys is concentration-dependent, involves complete DNA degradation and requires hydrogen peroxide.

    PubMed

    Brudzynski, Katrina; Abubaker, Kamal; Wang, Tony

    2012-01-01

    Exposure of bacterial cells to honey inhibits their growth and may cause cell death. Our previous studies showed a cause-effect relationship between hydroxyl radical generated from honey hydrogen peroxide and growth arrest. Here we explored the role of hydroxyl radicals as inducers of bacterial cells death. The bactericidal effect of ·OH on antibiotic-resistant clinical isolates of MRSA and VRE and standard bacterial strains of E. coli and B. subtiles was examined using a broth microdilution assay supplemented with 3'-(p-aminophenyl) fluorescein (APF) as the ·OH trap, followed by colony enumeration. Bactericidal activities of eight honeys (six varieties of buckwheat, blueberry and manuka honeys) were analyzed. The MBC/MIC ratio ≤4 and the killing curves indicated that honeys exhibited powerful, concentration-dependent bactericidal effect. The extent of killing depended on the ratio of honey concentration to bacterial load, indicating that honey dose was critical for its bactericidal efficacy. The killing rate and potency varied between honeys and ranged from over a 6-log(10) to 4-log(10) CFU/ml reduction of viable cells, equivalent to complete bacterial eradication. The maximal killing was associated with the extensive degradation of bacterial DNA. Honey concentration at which DNA degradation occurred correlated with cell death observed in the concentration-dependent cell-kill on agar plates. There was no quantitative relationship between the ·OH generation by honey and bactericidal effect. At the MBC, where there was no surviving cells and no DNA was visible on agarose gels, the ·OH levels were on average 2-3x lower than at Minimum Inhibitory Concentration (MICs) (p < 0.0001). Pre-treatment of honey with catalase, abolished the bactericidal effect. This raised possibilities that either the abrupt killing prevented accumulation of ·OH (dead cells did not generate ·OH) or that DNA degradation and killing is the actual footprint of ·OH action. In conclusion, honeys of buckwheat origin exhibited powerful, concentration-dependent bactericidal effect. The killing and DNA degradation showed a cause-effect relationship. Hydrogen peroxide was an active part of honey killing mechanism.

  13. Comparison of human chordoma cell-kill for 290 MeV/n carbon ions versus 70 MeV protons in vitro

    PubMed Central

    2013-01-01

    Background While the pace of commissioning of new charged particle radiation therapy facilities is accelerating worldwide, biological data pertaining to chordomas, theoretically and clinically optimally suited targets for particle radiotherapy, are still lacking. In spite of the numerous clinical reports of successful treatment of these malignancies with this modality, the characterization of this malignancy remains hampered by its characteristic slow cell growth, particularly in vitro. Methods Cellular lethality of U-CH1-N cells in response to different qualities of radiation was compared with immediate plating after radiation or as previously reported using the multilayered OptiCell™ system. The OptiCell™ system was used to evaluate cellular lethality over a broad dose-depth deposition range of particle radiation to anatomically mimic the clinical setting. Cells were irradiated with either 290 MeV/n accelerated carbon ions or 70 MeV accelerated protons and photons and evaluated through colony formation assays at a single position or at each depth, depending on the system. Results There was a cell killing of approximately 20–40% for all radiation qualities in the OptiCell™ system in which chordoma cells are herein described as more radiation sensitive than regular colony formation assay. The relative biological effectiveness values were, however, similar in both in vitro systems for any given radiation quality. Relative biological effectiveness values of proton was 0.89, of 13–20 keV/μm carbon ions was 0.85, of 20–30 keV/μm carbon ions was 1.27, and >30 keV/μm carbon ions was 1.69. Carbon-ions killed cells depending on both the dose and the LET, while protons depended on the dose alone in the condition of our study. This is the first report and characterization of a direct comparison between the effects of charged particle carbon ions versus protons for a chordoma cell line in vitro. Our results support a potentially superior therapeutic value of carbon particle irradiation in chordoma patients. Conclusion Carbon ion therapy may have an advantage for chordoma radiotherapy because of higher cell-killing effect with high LET doses from biological observation in this study. PMID:23587329

  14. Leukocyte function-associated antigen-1-dependent lysis of Fas+ (CD95+/Apo-1+) innocent bystanders by antigen-specific CD8+ CTL.

    PubMed

    Kojima, H; Eshima, K; Takayama, H; Sitkovsky, M V

    1997-09-15

    Exquisite specificity toward Ag-bearing cells (cognate targets) is one of the most important properties of CD8+ CTL-mediated cytotoxicity. Using highly Ag-specific CD8+ CTL lines and clones, which spare noncognate, Ag-free targets, we found that in the presence of Ag-bearing targets the CTL acquire the ability to lyse noncognate target cells (bystanders). It is shown that the unexpectedly rapid and efficient lysis of bystanders by Ag-activated CTL is mediated by a Fas ligand (FasL)/Fas-based mechanism and does not depend on perforin. The CTL lysed Fas-expressing bystanders, but spared the Fas-negative or anti-Fas mAb-resistant bystander cells. Accordingly, the FasL-deficient gld/gld CTL did not kill bystanders, while perforin-deficient CTL did. Unlike anti-Fas mAb-induced cell death, the lysis of bystanders was not only FasL/Fas dependent but also required adhesion molecule LFA-1 on the surface of the activated CTL. Lysis of bystanders is viewed as acceptable "collateral" damage, but the persistent presence of activated CTL could result in immunopathologies involving functional Fas-expressing tissues.

  15. PDE5 Inhibitors Enhance Celecoxib Killing in Multiple Tumor Types

    PubMed Central

    BOOTH, LAURENCE; ROBERTS, JANE L.; CRUICKSHANKS, NICHOLA; TAVALLAI, SEYEDMEHRAD; WEBB, TIMOTHY; SAMUEL, PETER; CONLEY, ADAM; BINION, BRITTANY; YOUNG, HAROLD F.; POKLEPOVIC, ANDREW; SPIEGEL, SARAH; DENT, PAUL

    2015-01-01

    The present studies determined whether clinically relevant phosphodiesterase 5 (PDE5) inhibitors interacted with a clinically relevant NSAID, celecoxib, to kill tumor cells. Celecoxib and PDE5 inhibitors interacted in a greater than additive fashion to kill multiple tumor cell types. Celecoxib and sildenafil killed ex vivo primary human glioma cells as well as their associated activated microglia. Knock down of PDE5 recapitulated the effects of PDE5 inhibitor treatment; the nitric oxide synthase inhibitor L-NAME suppressed drug combination toxicity. The effects of celecoxib were COX2 independent. Over-expression of c-FLIP-s or knock down of CD95/FADD significantly reduced killing by the drug combination. CD95 activation was dependent on nitric oxide and ceramide signaling. CD95 signaling activated the JNK pathway and inhibition of JNK suppressed cell killing. The drug combination inactivated mTOR and increased the levels of autophagy and knock down of Beclin1 or ATG5 strongly suppressed killing by the drug combination. The drug combination caused an ER stress response; knock down of IRE1α/XBP1 enhanced killing whereas knock down of eIF2α/ATF4/CHOP suppressed killing. Sildenafil and celecoxib treatment suppressed the growth of mammary tumors in vivo. Collectively our data demonstrate that clinically achievable concentrations of celecoxib and sildenafil have the potential to be a new therapeutic approach for cancer. PMID:25303541

  16. Liposomes loaded with bioactive lipids enhance antibacterial innate immunity irrespective of drug resistance.

    PubMed

    Poerio, Noemi; Bugli, Francesca; Taus, Francesco; Santucci, Marilina B; Rodolfo, Carlo; Cecconi, Francesco; Torelli, Riccardo; Varone, Francesco; Inchingolo, Riccardo; Majo, Fabio; Lucidi, Vincenzina; Mariotti, Sabrina; Nisini, Roberto; Sanguinetti, Maurizio; Fraziano, Maurizio

    2017-03-27

    Phagocytosis is a key mechanism of innate immunity, and promotion of phagosome maturation may represent a therapeutic target to enhance antibacterial host response. Phagosome maturation is favored by the timely and coordinated intervention of lipids and may be altered in infections. Here we used apoptotic body-like liposomes (ABL) to selectively deliver bioactive lipids to innate cells, and then tested their function in models of pathogen-inhibited and host-impaired phagosome maturation. Stimulation of macrophages with ABLs carrying phosphatidic acid (PA), phosphatidylinositol 3-phosphate (PI3P) or PI5P increased intracellular killing of BCG, by inducing phagosome acidification and ROS generation. Moreover, ABLs carrying PA or PI5P enhanced ROS-mediated intracellular killing of Pseudomonas aeruginosa, in macrophages expressing a pharmacologically-inhibited or a naturally-mutated cystic fibrosis transmembrane conductance regulator. Finally, we show that bronchoalveolar lavage cells from patients with drug-resistant pulmonary infections increased significantly their capacity to kill in vivo acquired bacterial pathogens when ex vivo stimulated with PA- or PI5P-loaded ABLs. Altogether, these results provide the proof of concept of the efficacy of bioactive lipids delivered by ABL to enhance phagosome maturation dependent antimicrobial response, as an additional host-directed strategy aimed at the control of chronic, recurrent or drug-resistant infections.

  17. LET and ion-species dependence for cell killing and mutation induction in normal human fibroblasts.

    PubMed

    Tsuruoka, Chizuru; Suzuki, Masao; Fujitaka, Kazunobu

    2003-10-01

    We have been studying LET and ion species dependence of RBE values in cell killing and mutation induction. Normal human skin fibroblasts were irradiated with heavy-ion beams such as carbon (290 Mev/u and 135 Mev/u), neon (230 Mev/u and 400 Mev/u), silicon (490 Mev/u) and iron (500 Mev/u) ion beams, generated by Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences (NIRS). Cell killing effect was detected as reproductive cell death using a colony formation assay. Mutation induction in hprt locus was detected to measure 6-thioguanine resistant colonies. The RBE-LET curves of cell killing and mutation induction were different each ion beam. So, we plotted RBE for cell killing and mutation induction as function of Z*2/beta2 instead of LET. RBE-Z*2/beta2 curves of cell killing indicated that the discrepancy of RBE-LET curves was reconciled each ion species. But RBE-Z*2/beta2 curves of mutation induction didn't corresponded between carbon- and silicon-ion beams. These results suggested that different biological endpoints may be suitable for different physical parameter, which represent the track structure of energy deposition of ion beams.

  18. Mitochondrial Delivery of Doxorubicin Using MITO-Porter Kills Drug-Resistant Renal Cancer Cells via Mitochondrial Toxicity.

    PubMed

    Yamada, Yuma; Munechika, Reina; Kawamura, Eriko; Sakurai, Yu; Sato, Yusuke; Harashima, Hideyoshi

    2017-09-01

    Most anticancer drugs are intended to function in the nuclei of cancer cells. If an anticancer drug could be delivered to mitochondria, the source of cellular energy, this organelle would be destroyed, resulting in the arrest of the energy supply and the killing of the cancer cells. To achieve such an innovative strategy, a mitochondrial drug delivery system targeted to cancer cells will be required. We recently reported on the development of a MITO-Porter, a liposome for mitochondrial delivery. In this study, we validated the utility of such a cancer therapeutic strategy by delivering anticancer drugs directly to mitochondria. We succeeded in packaging doxorubicin (DOX) as a model cargo in MITO-Porter to produce a DOX-MITO-Porter. We evaluated cellular toxicity of OS-RC-2 cell, a type of DOX-resistant cancer cell, after delivering DOX to mitochondria using the MITO-Porter system. Cell viability was decreased by the DOX-MITO-Porter treatment, while cell viability was not decreased in the case of naked DOX and a conventional DOX liposomal formulation. We also found a relationship between cellular toxicity and mitochondrial toxicity. The use of a MITO-Porter system for mitochondrial delivery of a toxic agent represents a possible therapeutic strategy for treating drug-resistant cancers. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Formation and Cytotoxicity of Nanoparticles and Nanocubes Prepared from Gold and Silver Salts

    NASA Astrophysics Data System (ADS)

    Banker, Daniel; Dorrell, Skyler; Ivey, Prescott; Scurti, Joseph; Dobbins, Tabbetha

    Photothermal therapy is the use of electromagnetic radiation as the treatment for medical conditions such as cancer. Noble metal nanoparticles and nanocubes are brought to an excited state with laser light and as a result they release vibrational energy in the form of heat, which can be used to kill targeted cancer cells. Wet chemistry gives the basics for the preparation of nanoparticles and nanocubes. Using HAuCl4, AgNO3, tri-sodium citrate and other chemicals, we were able to successfully create gold and silver nanoparticles and nanocubes. The goal is to make sure that 3T3 cells can survive in a nanoparticle or nanocube doped medium so that we can then observe their reaction to photothermal effects. Cell culture techniques were done to 3T3 cells to keep them alive before the testing of cytotoxicity. Photothermal effect refers to the way that our nanoparticles or nanocubes can be photoexcited to release enough heat to kill the cells. We used a UV-Vis spectrophotometer to ensure that the correct wavelength laser. Assuming that the cells will survive living in the doped medium, a medium that has had nanomaterials introduced into it, we will use a high powered laser to observe what the excitation does to the cells since the photothermal effect should result in dead cells.

  20. IGF-1 receptor targeted nanoparticles for image-guided therapy of stroma-rich and drug resistant human cancer

    NASA Astrophysics Data System (ADS)

    Zhou, Hongyu; Qian, Weiping; Uckun, Fatih M.; Zhou, Zhiyang; Wang, Liya; Wang, Andrew; Mao, Hui; Yang, Lily

    2016-05-01

    Low drug delivery efficiency and drug resistance from highly heterogeneous cancer cells and tumor microenvironment represent major challenges in clinical oncology. Growth factor receptor, IGF-1R, is overexpressed in both human tumor cells and tumor associated stromal cells. The level of IGF-1R expression is further up-regulated in drug resistant tumor cells. We have developed IGF-1R targeted magnetic iron oxide nanoparticles (IONPs) carrying multiple anticancer drugs into human tumors. This IGF-1R targeted theranostic nanoparticle delivery system has an iron core for non-invasive MR imaging, amphiphilic polymer coating to ensure the biocompatibility as well as for drug loading and conjugation of recombinant human IGF-1 as targeting molecules. Chemotherapy drugs, Doxorubicin (Dox), was encapsulated into the polymer coating and/or conjugated to the IONP surface by coupling with the carboxyl groups. The ability of IGF1R targeted theranostic nanoparticles to penetrate tumor stromal barrier and enhance tumor cell killing has been demonstrated in human pancreatic cancer patient tissue derived xenograft (PDX) models. Repeated systemic administrations of those IGF-1R targeted theranostic IONP carrying Dox led to breaking the tumor stromal barrier and improved therapeutic effect. Near infrared (NIR) optical and MR imaging enabled noninvasive monitoring of nanoparticle-drug delivery and therapeutic responses. Our results demonstrated that IGF-1R targeted nanoparticles carrying multiple drugs are promising combination therapy approaches for image-guided therapy of stroma-rich and drug resistant human cancer, such as pancreatic cancer.

  1. Radiolabeled cycloSaligenyl Monophosphates of 5-Iodo-2′-deoxyuridine, 5-Iodo-3′-fluoro-2′, 3′-dideoxyuridine, and 3′-Fluorothymidine for Molecular Radiotherapy of Cancer: Synthesis and Biological Evaluation

    PubMed Central

    Kortylewicz, Zbigniew P.; Kimura, Yu; Inoue, Kotaro; Mack, Elizabeth; Baranowska-Kortylewicz, Janina

    2012-01-01

    Targeted molecular radiotherapy opens unprecedented opportunities to eradicate cancer cells with minimal irradiation of normal tissues. Described in this study are radioactive cycloSaligenyl monophosphates designed to deliver lethal doses of radiation to cancer cells. These compounds can be radiolabeled with SPECT- and PET-compatible radionuclides as well as radionuclides suitable for Auger electron therapies. This characteristic provides an avenue for the personalized and comprehensive treatment strategy that comprises diagnostic imaging to identify sites of disease, followed by the targeted molecular radiotherapy based on the imaging results. The developed radiosynthetic methods produce no-carrier-added products with high radiochemical yield and purity. The interaction of these compounds with their target, butyrylcholinesterase, depends on the stereochemistry around the P atom. IC50 values are in the nM range. In vitro studies indicate that radiation doses delivered to the cell nucleus are sufficient to kill cells of several difficult to treat malignancies including glioblastoma, and ovarian and colorectal cancers. PMID:22339166

  2. Genome-wide protective response used by group A Streptococcus to evade destruction by human polymorphonuclear leukocytes.

    PubMed

    Voyich, Jovanka M; Sturdevant, Daniel E; Braughton, Kevin R; Kobayashi, Scott D; Lei, Benfang; Virtaneva, Kimmo; Dorward, David W; Musser, James M; DeLeo, Frank R

    2003-02-18

    Group A Streptococcus (GAS) evades polymorphonuclear leukocyte (PMN) phagocytosis and killing to cause human disease, including pharyngitis and necrotizing fasciitis (flesh-eating syndrome). We show that GAS genes differentially regulated during phagocytic interaction with human PMNs comprise a global pathogen-protective response to innate immunity. GAS prophage genes and genes involved in virulence, oxidative stress, cell wall biosynthesis, and gene regulation were up-regulated during PMN phagocytosis. Genes encoding novel secreted proteins were up-regulated, and the proteins were produced during human GAS infections. We discovered an essential role for the Ihk-Irr two-component regulatory system in evading PMN-mediated killing and promoting host-cell lysis, processes that would facilitate GAS pathogenesis. Importantly, the irr gene was highly expressed during human GAS pharyngitis. We conclude that a complex pathogen genetic program circumvents human innate immunity to promote disease. The gene regulatory program revealed by our studies identifies previously undescribed potential vaccine antigens and targets for therapeutic interventions designed to control GAS infections.

  3. Cancer Stem Cells and Chemoresistance: The Smartest Survives the Raid

    PubMed Central

    Zhao, Jihe

    2016-01-01

    Chemoresistant metastatic relapse of minimal residual disease plays a significant role for poor prognosis of cancer. Growing evidence supports a critical role of cancer stem cell (CSC) behind the mechanisms for this deadly disease. This review briefly introduces the basics of the conventional chemotherapies, updates the CSC theories, highlights the molecular and cellular mechanisms by which CSC smartly designs and utilizes multiple lines of self-defense to avoid being killed by chemotherapy, and concisely summarizes recent progress in studies on CSC-targeted therapies in the end, with the hope to help guide future research towards developing more effective therapeutic strategies to eradicate tumor cells in the patients. PMID:26899500

  4. Cyclin-Dependent Kinase Inhibitor AT7519 as a Potential Drug for MYCN-Dependent Neuroblastoma.

    PubMed

    Dolman, M Emmy M; Poon, Evon; Ebus, Marli E; den Hartog, Ilona J M; van Noesel, Carel J M; Jamin, Yann; Hallsworth, Albert; Robinson, Simon P; Petrie, Kevin; Sparidans, Rolf W; Kok, Robbert J; Versteeg, Rogier; Caron, Huib N; Chesler, Louis; Molenaar, Jan J

    2015-11-15

    MYCN-dependent neuroblastomas have low cure rates with current multimodal treatment regimens and novel therapeutic drugs are therefore urgently needed. In previous preclinical studies, we have shown that targeted inhibition of cyclin-dependent kinase 2 (CDK2) resulted in specific killing of MYCN-amplified neuroblastoma cells. This study describes the in vivo preclinical evaluation of the CDK inhibitor AT7519. Preclinical drug testing was performed using a panel of MYCN-amplified and MYCN single copy neuroblastoma cell lines and different MYCN-dependent mouse models of neuroblastoma. AT7519 killed MYCN-amplified neuroblastoma cell lines more potently than MYCN single copy cell lines with a median LC50 value of 1.7 compared to 8.1 μmol/L (P = 0.0053) and a significantly stronger induction of apoptosis. Preclinical studies in female NMRI homozygous (nu/nu) mice with neuroblastoma patient-derived MYCN-amplified AMC711T xenografts revealed dose-dependent growth inhibition, which correlated with intratumoral AT7519 levels. CDK2 target inhibition by AT7519 was confirmed by significant reductions in levels of phosphorylated retinoblastoma (p-Rb) and nucleophosmin (p-NPM). AT7519 treatment of Th-MYCN transgenic mice resulted in improved survival and clinically significant tumor regression (average tumor size reduction of 86% at day 7 after treatment initiation). The improved efficacy of AT7519 observed in Th-MYCN mice correlated with higher tumor exposure to the drug. This study strongly suggests that AT7519 is a promising drug for the treatment of high-risk neuroblastoma patients with MYCN amplification. ©2015 American Association for Cancer Research.

  5. A Cell-targeted Photodynamic Nanomedicine Strategy for Head & Neck Cancers

    PubMed Central

    Master, Alyssa; Malamas, Anthony; Solanki, Rachna; Clausen, Dana M.; Eiseman, Julie L.; Gupta, Anirban Sen

    2013-01-01

    Photodynamic Therapy (PDT) holds great promise for the treatment of head and neck (H&N) carcinomas where repeated loco-regional therapy often becomes necessary due to the highly aggressive and recurrent nature of the cancers. While interstitial light delivery technologies are being refined for PDT of H&N and other cancers, a parallel clinically relevant research area is the formulation of photosensitizers in nanovehicles that allow systemic administration yet preferential enhanced uptake in the tumor. This approach can render dual-selectivity of PDT, by harnessing both the drug and the light delivery within the tumor. To this end, we report on a cell-targeted nanomedicine approach for the photosensitizer silicon phthalocyanine-4 (Pc 4), by packaging it within polymeric micelles that are surface-decorated with GE11-peptides to promote enhanced cell-selective binding and receptor-mediated internalization in EGFR-overexpressing H&N cancer cells. Using fluorescence spectroscopy and confocal microscopy, we demonstrate in vitro that the EGFR-targeted Pc 4-nanoformulation undergoes faster and higher uptake in EGFR-overexpressing H&N SCC-15 cells. We further demonstrate that this enhanced Pc 4 uptake results in significant cell-killing and drastically reduced post-PDT clonogenicity. Building on this in vitro data, we demonstrate that the EGFR-targeted Pc 4-nanoformulation results in significant intra-tumoral drug uptake and subsequent enhanced PDT response, in vivo, in SCC-15 xenografts in mice. Altogether our results show significant promise towards a cell-targeted photodynamic nanomedicine for effective treatment of H&N carcinomas. PMID:23531079

  6. Antimicrobial Peptides Targeting Gram-Positive Bacteria

    PubMed Central

    Malanovic, Nermina; Lohner, Karl

    2016-01-01

    Antimicrobial peptides (AMPs) have remarkably different structures as well as biological activity profiles, whereupon most of these peptides are supposed to kill bacteria via membrane damage. In order to understand their molecular mechanism and target cell specificity for Gram-positive bacteria, it is essential to consider the architecture of their cell envelopes. Before AMPs can interact with the cytoplasmic membrane of Gram-positive bacteria, they have to traverse the cell wall composed of wall- and lipoteichoic acids and peptidoglycan. While interaction of AMPs with peptidoglycan might rather facilitate penetration, interaction with anionic teichoic acids may act as either a trap for AMPs or a ladder for a route to the cytoplasmic membrane. Interaction with the cytoplasmic membrane frequently leads to lipid segregation affecting membrane domain organization, which affects membrane permeability, inhibits cell division processes or leads to delocalization of essential peripheral membrane proteins. Further, precursors of cell wall components, especially the highly conserved lipid II, are directly targeted by AMPs. Thereby, the peptides do not inhibit peptidoglycan synthesis via binding to proteins like common antibiotics, but form a complex with the precursor molecule, which in addition can promote pore formation and membrane disruption. Thus, the multifaceted mode of actions will make AMPs superior to antibiotics that act only on one specific target. PMID:27657092

  7. Phosphatidylserine-selective targeting and anticancer effects of SapC-DOPS nanovesicles on brain tumors.

    PubMed

    Blanco, Víctor M; Chu, Zhengtao; Vallabhapurapu, Subrahmanya D; Sulaiman, Mahaboob K; Kendler, Ady; Rixe, Olivier; Warnick, Ronald E; Franco, Robert S; Qi, Xiaoyang

    2014-08-30

    Brain tumors, either primary (e.g., glioblastoma multiforme) or secondary (metastatic), remain among the most intractable and fatal of all cancers. We have shown that nanovesicles consisting of Saposin C (SapC) and dioleylphosphatidylserine (DOPS) are able to effectively target and kill cancer cells both in vitro and in vivo. These actions are a consequence of the affinity of SapC-DOPS for phosphatidylserine, an acidic phospholipid abundantly present in the outer membrane of a variety of tumor cells and tumor-associated vasculature. In this study, we first characterize SapC-DOPS bioavailability and antitumor effects on human glioblastoma xenografts, and confirm SapC-DOPS specificity towards phosphatidylserine by showing that glioblastoma targeting is abrogated after in vivo exposure to lactadherin, which binds phosphatidylserine with high affinity. Second, we demonstrate that SapC-DOPS selectively targets brain metastases-forming cancer cells both in vitro, in co-cultures with human astrocytes, and in vivo, in mouse models of brain metastases derived from human breast or lung cancer cells. Third, we demonstrate that SapC-DOPS have cytotoxic activity against metastatic breast cancer cells in vitro, and prolong the survival of mice harboring brain metastases. Taken together, these results support the potential of SapC-DOPS for the diagnosis and therapy of primary and metastatic brain tumors.

  8. Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells

    PubMed Central

    Hall, Brandon M.; Balan, Vitaly; Gleiberman, Anatoli S.; Strom, Evguenia; Krasnov, Peter; Virtuoso, Lauren P.; Rydkina, Elena; Vujcic, Slavoljub; Balan, Karina; Gitlin, Ilya; Leonova, Katerina; Polinsky, Alexander; Chernova, Olga B.; Gudkov, Andrei V.

    2016-01-01

    Senescent cells (SCs) have been considered a source of age-related chronic sterile systemic inflammation and a target for anti-aging therapies. To understand mechanisms controlling the amount of SCs, we analyzed the phenomenon of rapid clearance of human senescent fibroblasts implanted into SCID mice, which can be overcome when SCs were embedded into alginate beads preventing them from immunocyte attack. To identify putative SC killers, we analyzed the content of cell populations in lavage and capsules formed around the SC-containing beads. One of the major cell types attracted by secretory factors of SCs was a subpopulation of macrophages characterized by p16(Ink4a) gene expression and β-galactosidase activity at pH6.0 (β-galpH6), thus resembling SCs. Consistently, mice with p16(Ink4a) promoter-driven luciferase, developed bright luminescence of their peritoneal cavity within two weeks following implantation of SCs embedded in alginate beads. p16(Ink4a)/β-galpH6-expressing cells had surface biomarkers of macrophages F4/80 and were sensitive to liposomal clodronate used for the selective killing of cells capable of phagocytosis. At the same time, clodronate failed to kill bona fide SCs generated in vitro by genotoxic stress. Old mice with elevated proportion of p16(Ink4a)/β-galpH6-positive cells in their tissues demonstrated reduction of both following systemic clodronate treatment, indicating that a significant proportion of cells previously considered to be SCs are actually a subclass of macrophages. These observations point at a significant role of p16(Ink4a)/β-galpH6-positive macrophages in aging, which previously was attributed solely to SCs. They require re-interpretation of the mechanisms underlying rejuvenating effects following eradication of p16(Ink4a)/β-galpH6-positive cells and reconsideration of potential cellular target for anti-aging treatment. PMID:27391570

  9. Multiple factors and processes involved in host cell killing by bacteriophage Mu: characterization and mapping.

    PubMed

    Waggoner, B T; Marrs, C F; Howe, M M; Pato, M L

    1984-07-15

    The regions of bacteriophage Mu involved in host cell killing were determined by infection of a lambda-immune host with 12 lambda pMu-transducing phages carrying different amounts of Mu DNA beginning at the left end. Infecting lambda pMu phages containing 5.0 (+/- 0.2) kb or less of the left end of Mu DNA did not kill the lambda-immune host, whereas lambda pMu containing 5.1 kb did kill, thus locating the right end of the kil gene between approximately 5.0 and 5.1 kb. For the Kil+ phages the extent of killing increased as the multiplicity of infection (m.o.i.) increased. In addition, killing was also affected by the presence of at least two other regions of Mu DNA: one, located between 5.1 and 5.8 kb, decreased the extent of killing; the other, located between 6.3 and 7.9 kb, greatly increased host cell killing. Killing was also assayed after lambda pMu infection of a lambda-immune host carrying a mini-Mu deleted for most of the B gene and the middle region of Mu DNA. Complementation of mini-Mu replication by infecting B+ lambda pMu phages resulted in killing of the lambda-immune, mini-Mu-containing host, regardless of the presence or absence of the Mu kil gene. The extent of host cell killing increased as the m.o.i. of the infecting lambda pMu increased, and was further enhanced by both the presence of the kil gene and the region located between 6.3 and 7.9 kb. These distinct processes of kil-mediated killing in the absence of replication and non-kil-mediated killing in the presence of replication were also observed after induction of replication-deficient and kil mutant prophages, respectively.

  10. CancerDR: cancer drug resistance database.

    PubMed

    Kumar, Rahul; Chaudhary, Kumardeep; Gupta, Sudheer; Singh, Harinder; Kumar, Shailesh; Gautam, Ankur; Kapoor, Pallavi; Raghava, Gajendra P S

    2013-01-01

    Cancer therapies are limited by the development of drug resistance, and mutations in drug targets is one of the main reasons for developing acquired resistance. The adequate knowledge of these mutations in drug targets would help to design effective personalized therapies. Keeping this in mind, we have developed a database "CancerDR", which provides information of 148 anti-cancer drugs, and their pharmacological profiling across 952 cancer cell lines. CancerDR provides comprehensive information about each drug target that includes; (i) sequence of natural variants, (ii) mutations, (iii) tertiary structure, and (iv) alignment profile of mutants/variants. A number of web-based tools have been integrated in CancerDR. This database will be very useful for identification of genetic alterations in genes encoding drug targets, and in turn the residues responsible for drug resistance. CancerDR allows user to identify promiscuous drug molecules that can kill wide range of cancer cells. CancerDR is freely accessible at http://crdd.osdd.net/raghava/cancerdr/

  11. Repression of tax expression is associated both with resistance of human T-cell leukemia virus type 1-infected T cells to killing by tax-specific cytotoxic T lymphocytes and with impaired tumorigenicity in a rat model.

    PubMed

    Nomura, Machiko; Ohashi, Takashi; Nishikawa, Keiko; Nishitsuji, Hironori; Kurihara, Kiyoshi; Hasegawa, Atsuhiko; Furuta, Rika A; Fujisawa, Jun-ichi; Tanaka, Yuetsu; Hanabuchi, Shino; Harashima, Nanae; Masuda, Takao; Kannagi, Mari

    2004-04-01

    Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL). Although the viral transactivation factor, Tax, has been known to have apparent transforming ability, the exact function of Tax in ATL development is still not clear. To understand the role of Tax in ATL development, we introduced short-interfering RNAs (siRNAs) against Tax in a rat HTLV-1-infected T-cell line. Our results demonstrated that expression of siRNA targeting Tax successfully downregulated Tax expression. Repression of Tax expression was associated with resistance of the HTLV-1-infected T cells to Tax-specific cytotoxic-T-lymphocyte killing. This may be due to the direct effect of decreased Tax expression, because the Tax siRNA did not alter the expression of MHC-I, CD80, or CD86. Furthermore, T cells with Tax downregulation appeared to lose the ability to develop tumors in T-cell-deficient nude rats, in which the parental HTLV-1-infected cells induce ATL-like lymphoproliferative disease. These results indicated the importance of Tax both for activating host immune response against the virus and for maintaining the growth ability of infected cells in vivo. Our results provide insights into the mechanisms how the host immune system can survey and inhibit the growth of HTLV-1-infected cells during the long latent period before the onset of ATL.

  12. Using natural products to promote caspase-8-dependent cancer cell death.

    PubMed

    Tewary, Poonam; Gunatilaka, A A Leslie; Sayers, Thomas J

    2017-02-01

    The selective killing of cancer cells without toxicity to normal nontransformed cells is an idealized goal of cancer therapy. Thus, there has been much interest in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a protein that appears to selectively kill cancer cells. TRAIL has been reported to trigger apoptosis and under some circumstances, an alternate death signaling pathway termed necroptosis. The relative importance of necroptosis for cell death induction in vivo is under intensive investigation. Nonetheless, many cancer cells (particularly those freshly isolated from cancer patients) are highly resistant to TRAIL-mediated cell death. Therefore, there is an underlying interest in identifying agents that can be combined with TRAIL to improve its efficacy. There are numerous reports in which combination of TRAIL with standard antineoplastic drugs has resulted in enhanced cancer cell death in vitro. However, many of these chemotherapeutic drugs are nonspecific and associated with adverse effects, which raise serious concerns for cancer therapy in patients. By contrast, natural products have been shown to be safer and efficacious alternatives. Recently, a number of studies have suggested that certain natural products when combined with TRAIL can enhance cancer cell death. In this review, we highlight molecular pathways that might be targeted by various natural products to promote cell death, and focus on our recent work with withanolides as TRAIL sensitizers. Finally, we will suggest synergistic approaches for combining active withanolides with various forms of immunotherapy to promote cancer cell death and an effective antitumor immune response.

  13. Mechanisms of Dendritic Cell Lysosomal Killing of Cryptococcus

    NASA Astrophysics Data System (ADS)

    Hole, Camaron R.; Bui, Hoang; Wormley, Floyd L.; Wozniak, Karen L.

    2012-10-01

    Cryptococcus neoformans is an opportunistic pulmonary fungal pathogen that disseminates to the CNS causing fatal meningitis in immunocompromised patients. Dendritic cells (DCs) phagocytose C. neoformans following inhalation. Following uptake, cryptococci translocate to the DC lysosomal compartment and are killed by oxidative and non-oxidative mechanisms. DC lysosomal extracts kill cryptococci in vitro; however, the means of antifungal activity remain unknown. Our studies determined non-oxidative antifungal activity by DC lysosomal extract. We examined DC lysosomal killing of cryptococcal strains, anti-fungal activity of purified lysosomal enzymes, and mechanisms of killing against C. neoformans. Results confirmed DC lysosome fungicidal activity against all cryptococcal serotypes. Purified lysosomal enzymes, specifically cathepsin B, inhibited cryptococcal growth. Interestingly, cathepsin B combined with its enzymatic inhibitors led to enhanced cryptococcal killing. Electron microscopy revealed structural changes and ruptured cryptococcal cell walls following treatment. Finally, additional studies demonstrated that osmotic lysis was responsible for cryptococcal death.

  14. Targeted light-inactivation of the Ki-67 protein using theranostic liposomes leads to death of proliferating cells

    NASA Astrophysics Data System (ADS)

    Rahmanzadeh, Ramtin; Rai, Prakash; Gerdes, Johannes; Hasan, Tayyaba

    2010-02-01

    Nanomedicine is beginning to impact the treatment of several diseases and current research efforts include development of integrated nano-constructs (theranostics) which serve as probes for imaging and therapy in addition to delivering macromolecules intracellularly. In cancer, there is a vital unmet need for effective alternative treatments with high specificity and low systemic toxicity. This can be achieved by targeting key molecular markers associated with cancer cells with reduced effective drug doses. Here, we show an innovative proof-of-principle approach for efficient killing of proliferating ovarian cancer cells by inactivating a protein associated with cell proliferation namely, the nuclear Ki-67 protein (pKi-67), using nanotechnology-based photodynamic therapy (PDT). Antibodies against pKi-67 are widely used as prognostic tools for tumor diagnosis. In this work, anti pKi-67 antibodies were first conjugated to fluorescein isothiocyanate (FITC) and then encapsulated inside liposomes. After incubation of OVCAR-5 ovarian cancer cells with these liposomes, confocal microscopy confirmed the localization of the antibodies to the nucleoli of the cells. Irradiation with a 488 nm laser led to a significant loss of cell viability. The specificity of this approach for pKi-67 positive cells was demonstrated in confluent human lung fibroblasts (MRC-5) where only a small population of cells stain positive for pKi-67 and only minimal cell death was observed. Taken together, our findings suggest that pKi-67 targeted with nano-platform is an attractive therapeutic target in cancer therapy.

  15. T cells bearing a chimeric antigen receptor against prostate-specific membrane antigen mediate vascular disruption and result in tumor regression

    PubMed Central

    Santoro, Stephen P.; Kim, Soorin; Motz, Gregory T.; Alatzoglou, Dimitrios; Li, Chunsheng; Irving, Melita; Powell, Daniel J.; Coukos, George

    2014-01-01

    Aberrant blood vessels enable tumor growth, provide a barrier to immune infiltration, and serve as a source of pro-tumorigenic signals. Targeting tumor blood vessels for destruction, or tumor vascular disruption therapy, can therefore provide significant therapeutic benefit. Here we describe the ability of chimeric antigen receptor (CAR)-bearing T cells to recognize human prostate-specific membrane antigen (hPSMA) on endothelial targets in vitro as well as in vivo. CAR T cells were generated using the anti-PSMA scFv, J591, and the intracellular signaling domains: CD3ζ, CD28, and/or CD137/4-1BB. We found that all anti-hPSMA CAR T cells recognized and eliminated PSMA+ endothelial targets in vitro, regardless of the signaling domain. T cells bearing the 3rd generation anti-hPSMA CAR, P28BBζ, were able to recognize and kill primary human endothelial cells isolated from gynecologic cancers. In addition, the P28BBζ CAR T cells mediated regression of hPSMA-expressing vascular neoplasms in mice. Finally, in murine models of ovarian cancers populated by murine vessels expressing hPSMA, the P28BBζ CAR T cells were able to ablate PSMA+ vessels, cause secondary depletion of tumor cells, and reduce tumor burden. Taken together, these results provide strong rationale for the use of CAR T cells as agents of tumor vascular disruption, specifically those targeting PSMA. PMID:25358763

  16. Boosting Natural Killer Cell-Based Immunotherapy with Anticancer Drugs: a Perspective.

    PubMed

    Cifaldi, Loredana; Locatelli, Franco; Marasco, Emiliano; Moretta, Lorenzo; Pistoia, Vito

    2017-12-01

    Natural killer (NK) cells efficiently recognize and kill tumor cells through several mechanisms including the expression of ligands for NK cell-activating receptors on target cells. Different clinical trials indicate that NK cell-based immunotherapy represents a promising antitumor treatment. However, tumors develop immune-evasion strategies, including downregulation of ligands for NK cell-activating receptors, that can negatively affect antitumor activity of NK cells, which either reside endogenously, or are adoptively transferred. Thus, restoration of the expression of NK cell-activating ligands on tumor cells represents a strategic therapeutic goal. As discussed here, various anticancer drugs can fulfill this task via different mechanisms. We envision that the combination of selected chemotherapeutic agents with NK cell adoptive transfer may represent a novel strategy for cancer immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Detection of viable Salmonella in ice cream by TaqMan real-time polymerase chain reaction assay combining propidium monoazide.

    PubMed

    Wang, Yuexia; Yang, Ming; Liu, Shuchun; Chen, Wanyi; Suo, Biao

    2015-09-01

    Real-time polymerase chain reaction (PCR) allows rapid detection of Salmonella in frozen dairy products, but it might cause a false positive detection result because it might amplify DNA from dead target cells as well. In this study, Salmonella-free frozen ice cream was initially inoculated with heat-killed Salmonella Typhimurium cells and stored at -18°C. Bacterial DNA extracted from the sample was amplified using TaqMan probe-based real-time PCR targeting the invA gene. Our results indicated that DNA from the dead cells remained stable in frozen ice cream for at least 20 days, and could produce fluorescence signal for real-time PCR as well. To overcome this limitation, propidium monoazide (PMA) was combined with real-time PCR. PMA treatment can effectively prevent PCR amplification from heat-killed Salmonella cells in frozen ice cream. The PMA real-time PCR assay can selectively detect viable Salmonella at as low as 10 3  CFU/mL. Combining 18 hours of pre-enrichment with the assay allows for the detection of viable Salmonella at 10 0  CFU/mL and avoiding the false-positive result of dead cells. The PMA real-time PCR assay provides an alternative specifically for detection of viable Salmonella in ice cream. However, when the PMA real-time PCR assay was evaluated in ice cream subjected to frozen storage, it obviously underestimated the contamination situation of viable Salmonella, which might lead to a false negative result. According to this result, the use of enrichment prior to PMA real-time PCR analysis remains as the more appropriate approach. Copyright © 2015. Published by Elsevier B.V.

  18. Oxacillin sensitization of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus pseudintermedius by antisense peptide nucleic acids in vitro.

    PubMed

    Goh, Shan; Loeffler, Anette; Lloyd, David H; Nair, Sean P; Good, Liam

    2015-11-11

    Antibiotic resistance genes can be targeted by antisense agents, which can reduce their expression and thus restore cellular susceptibility to existing antibiotics. Antisense inhibitors can be gene and pathogen specific, or designed to inhibit a group of bacteria having conserved sequences within resistance genes. Here, we aimed to develop antisense peptide nucleic acids (PNAs) that could be used to effectively restore susceptibility to β-lactams in methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP). Antisense PNAs specific for conserved regions of the mobilisable gene mecA, and the growth essential gene, ftsZ, were designed. Clinical MRSA and MRSP strains of high oxacillin resistance were treated with PNAs and assayed for reduction in colony forming units on oxacillin plates, reduction in target gene mRNA levels, and cell size. Anti-mecA PNA at 7.5 and 2.5 μM reduced mecA mRNA in MRSA and MRSP (p < 0.05). At these PNA concentrations, 66 % of MRSA and 92 % of MRSP cells were killed by oxacillin (p < 0.01). Anti-ftsZ PNA at 7.5 and 2.5 μM reduced ftsZ mRNA in MRSA and MRSP, respectively (p ≤ 0.05). At these PNA concentrations, 86 % of MRSA cells and 95 % of MRSP cells were killed by oxacillin (p < 0.05). Anti-ftsZ PNAs resulted in swelling of bacterial cells. Scrambled PNA controls did not affect MRSA but sensitized MRSP moderately to oxacillin without affecting mRNA levels. The antisense PNAs effects observed provide in vitro proof of concept that this approach can be used to reverse β-lactam resistance in staphylococci. Further studies are warranted as clinical treatment alternatives are needed.

  19. Effects of Surotomycin on Clostridium difficile Viability and Toxin Production In Vitro

    PubMed Central

    Bouillaut, Laurent; McBride, Shonna; Schmidt, Diane J.; Suarez, José M.; Tzipori, Saul; Mascio, Carmela; Chesnel, Laurent

    2015-01-01

    The increasing incidence and severity of infection by Clostridium difficile have stimulated attempts to develop new antimicrobial therapies. We report here the relative abilities of two antibiotics (metronidazole and vancomycin) in current use for treating C. difficile infection and of a third antimicrobial, surotomycin, to kill C. difficile cells at various stages of development and to inhibit the production of the toxin proteins that are the major virulence factors. The results indicate that none of the drugs affects the viability of spores at 8× MIC or 80× MIC and that all of the drugs kill exponential-phase cells when provided at 8× MIC. In contrast, none of the drugs killed stationary-phase cells or inhibited toxin production when provided at 8× MIC and neither vancomycin nor metronidazole killed stationary-phase cells when provided at 80× MIC. Surotomycin, on the other hand, did kill stationary-phase cells when provided at 80× MIC but did so without inducing lysis. PMID:25941230

  20. Penile cancer

    MedlinePlus

    Cancer - penis; Squamous cell cancer - penis; Glansectomy; Partial penectomy ... cancer may include: Chemotherapy -- uses medicines to kill cancer cells Radiation -- uses high-powered x-rays to kill ...

  1. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  2. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  3. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  4. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  5. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Feline Rhinotracheitis Vaccine, Killed... REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline Rhinotracheitis Vaccine, Killed Virus, shall be prepared from virus-bearing cell culture fluids. Only Master Seed...

  6. Targeting of the Glutathione, Thioredoxin, and Nrf2 Antioxidant Systems in Head and Neck Cancer.

    PubMed

    Roh, Jong-Lyel; Jang, Hyejin; Kim, Eun Hye; Shin, Daiha

    2017-07-10

    The glutathione (GSH), thioredoxin (Trx), and Nrf2 systems represent a major defense against reactive oxygen species (ROS), the cellular imbalance of which in cancer promotes growth and therapeutic resistance. This study investigated whether targeting the GSH, Trx, and Nrf2 antioxidant systems effectively eliminated head and neck cancer (HNC). At high concentrations, auranofin, but not buthionine sulfoximine (BSO) alone, decreased the viability of HNC, whereas even at low concentrations, auranofin plus BSO synergized to kill HNC cells. Dual silencing of the genes for GCLM and TrxR1 induced GSH depletion, Trx activity inhibition, and ROS accumulation, synergistically killing HNC cells. Inhibition of the GSH and Trx systems resulted in activation of the Nrf2-antioxidant response element (ARE) pathway, which may result in suboptimal GSH and Trx inhibition where HNC is resistant. Genetic inhibition of Nrf2 and/or HO-1 or trigonelline enhanced growth suppression, ROS accumulation, and cell death from GSH and Trx inhibition. The in vivo effects of GSH, Trx, and Nrf2 system inhibition were confirmed in a mouse HNC xenograft model by achieving growth inhibition >60% compared with those of control. Innovations: This study is the first to show that triple inhibition of GSH, Trx, and Nrf2 pathways could be an effective method to overcome the resistance of HNC. Inhibition of the Nrf2-ARE pathway in addition to dual inhibition of the GSH and Trx antioxidant systems can effectively eliminate resistant HNC. Antioxid. Redox Signal. 27, 106-114.

  7. PTEN Is a Negative Regulator of NK Cell Cytolytic Function

    PubMed Central

    Briercheck, Edward L.; Trotta, Rossana; Chen, Li; Hartlage, Alex S.; Cole, Jordan P.; Cole, Tyler D.; Mao, Charlene; Banerjee, Pinaki P.; Hsu, Hsiang-Ting; Mace, Emily M.; Ciarlariello, David; Mundy-Bosse, Bethany L.; Garcia-Cao, Isabel; Scoville, Steven D.; Yu, Lianbo; Pilarski, Robert; Carson, William E.; Leone, Gustavo; Pandolfi, Pier Paolo; Yu, Jianhua; Orange, Jordan S.; Caligiuri, Michael A.

    2015-01-01

    Human NK cells are characterized by their ability to initiate an immediate and direct cytolytic response to virally infected or malignantly transformed cells. Within human peripheral blood, the more mature CD56dim NK cell efficiently kills malignant targets at rest, whereas the less mature CD56bright NK cells cannot. In this study, we show that resting CD56bright NK cells express significantly more phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein when compared with CD56dim NK cells. Consistent with this, forced overexpression of PTEN in NK cells resulted in decreased cytolytic activity, and loss of PTEN in CD56bright NK cells resulted in elevated cytolytic activity. Comparable studies in mice showed PTEN overexpression did not alter NK cell development or NK cell–activating and inhibitory receptor expression yet, as in humans, did decrease expression of downstream NK activation targets MAPK and AKT during early cytolysis of tumor target cells. Confocal microscopy revealed that PTEN overexpression disrupts the NK cell’s ability to organize immunological synapse components including decreases in actin accumulation, polarization of the microtubule organizing center, and the convergence of cytolytic granules. In summary, our data suggest that PTEN normally works to limit the NK cell’s PI3K/AKT and MAPK pathway activation and the consequent mobilization of cytolytic mediators toward the target cell and suggest that PTEN is among the active regulatory components prior to human NK cells transitioning from the noncytolytic CD56bright NK cell to the cytolytic CD56dim NK cells. PMID:25595786

  8. Targeting Fibroblast Activation Protein in Tumor Stroma with Chimeric Antigen Receptor T Cells Can Inhibit Tumor Growth and Augment Host Immunity Without Severe Toxicity

    PubMed Central

    Wang, Liang-Chuan S; Lo, Albert; Scholler, John; Sun, Jing; Majumdar, Rajrupa S; Kapoor, Veena; Antzis, Michael; Cotner, Cody E.; Johnson, Laura A; Durham, Amy C; Solomides, Charalambos C.; June, Carl H; Puré, Ellen; Albelda, Steven M

    2013-01-01

    The majority of chimeric antigen receptor (CAR) T cell research has focused on attacking cancer cells. Here we show that targeting the tumor-promoting, non-transformed stromal cells using CAR T cells may offer several advantages. We developed a retroviral CAR construct specific for the mouse fibroblast activation protein (FAP), comprising a single chain Fv FAP (mAb 73.3) with the CD8α hinge and transmembrane regions, and the human CD3ζ and 4-1BB activation domains. The transduced muFAP-CAR mouse T cells secreted IFNγ and killed FAP-expressing 3T3 target cells specifically. Adoptively transferred 73.3-FAP-CAR mouse T cells selectively reduced FAPhi stromal cells and inhibited the growth of multiple types of subcutaneously transplanted tumors in wild-type, but not FAP-null immune-competent syngeneic mice. The antitumor effects could be augmented by multiple injections of the CAR T cells, by using CAR T cells with a deficiency in diacylglycerol kinase, or by combination with a vaccine. A major mechanism of action of the muFAP-CAR T cells was the augmentation of the endogenous CD8+ T cell antitumor responses. Off-tumor toxicity in our models was minimal following muFAP-CAR T cell therapy. In summary, inhibiting tumor growth by targeting tumor stroma with adoptively transferred CAR T cells directed to FAP can be safe and effective suggesting that further clinical development of anti-human FAP-CAR is warranted. PMID:24778279

  9. Mertk on tumor macrophages is a therapeutic target to prevent tumor recurrence following radiation therapy

    PubMed Central

    Crittenden, Marka R.; Baird, Jason; Friedman, David; Savage, Talicia; Uhde, Lauren; Alice, Alejandro; Cottam, Benjamin; Young, Kristina; Newell, Pippa; Nguyen, Cynthia; Bambina, Shelly; Kramer, Gwen; Akporiaye, Emmanuel; Malecka, Anna; Jackson, Andrew; Gough, Michael J.

    2016-01-01

    Radiation therapy provides a means to kill large numbers of cancer cells in a controlled location resulting in the release of tumor-specific antigens and endogenous adjuvants. However, by activating pathways involved in apoptotic cell recognition and phagocytosis, irradiated cancer cells engender suppressive phenotypes in macrophages. We demonstrate that the macrophage-specific phagocytic receptor, Mertk is upregulated in macrophages in the tumor following radiation therapy. Ligation of Mertk on macrophages results in anti-inflammatory cytokine responses via NF-kB p50 upregulation, which in turn limits tumor control following radiation therapy. We demonstrate that in immunogenic tumors, loss of Mertk is sufficient to permit tumor cure following radiation therapy. However, in poorly immunogenic tumors, TGFb inhibition is also required to result in tumor cure following radiation therapy. These data demonstrate that Mertk is a highly specific target whose absence permits tumor control in combination with radiation therapy. PMID:27602953

  10. Helicases as Prospective Targets for Anti-Cancer Therapy

    PubMed Central

    Gupta, Rigu; Brosh, Robert M.

    2008-01-01

    It has been proposed that selective inactivation of a DNA repair pathway may enhance anti-cancer therapies that eliminate cancerous cells through the cytotoxic effects of DNA damaging agents or radiation. Given the unique and critically important roles of DNA helicases in the DNA damage response, DNA repair, and maintenance of genomic stability, a number of strategies currently being explored or in use to combat cancer may be either mediated or enhanced through the modulation of helicase function. The focus of this review will be to examine the roles of helicases in DNA repair that might be suitably targeted by cancer therapeutic approaches. Treatment of cancers with anti-cancer drugs such as small molecule compounds that modulate helicase expression or function is a viable approach to selectively kill cancer cells through the inactivation of helicase-dependent DNA repair pathways, particularly those associated with DNA recombination, replication restart, and cell cycle checkpoint. PMID:18473724

  11. Melanin targets LC3-associated phagocytosis (LAP): A novel pathogenetic mechanism in fungal disease.

    PubMed

    Chamilos, Georgios; Akoumianaki, Tonia; Kyrmizi, Irene; Brakhage, Axel; Beauvais, Anne; Latge, Jean-Paul

    2016-05-03

    Intracellular swelling of conidia of the major human airborne fungal pathogen Aspergillus fumigatus results in surface exposure of immunostimulatory pathogen-associated molecular patterns (PAMPs) and triggers activation of a specialized autophagy pathway called LC3-associated phagocytosis (LAP) to promote fungal killing. We have recently discovered that, apart from PAMPs exposure, cell wall melanin removal during germination of A. fumigatus is a prerequisite for activation of LAP. Importantly, melanin promotes fungal pathogenicity via targeting LAP, as a melanin-deficient A. fumigatus mutant restores its virulence upon conditional inactivation of Atg5 in hematopoietic cells of mice. Mechanistically, fungal cell wall melanin selectively excludes the CYBA/p22phox subunit of NADPH oxidase from the phagosome to inhibit LAP, without interfering with signaling regulating cytokine responses. Notably, inhibition of LAP is a general property of melanin pigments, a finding with broad physiological implications.

  12. Fluorescence-guided surgery of a highly-metastatic variant of human triple-negative breast cancer targeted with a cancer-specific GFP adenovirus prevents recurrence

    PubMed Central

    Yano, Shuya; Takehara, Kiyoto; Miwa, Shinji; Kishimoto, Hiroyuki; Tazawa, Hiroshi; Urata, Yasuo; Kagawa, Shunsuke; Bouvet, Michael; Fujiwara, Toshiyoshi; Hoffman, Robert M.

    2016-01-01

    We have previously developed a genetically-engineered GFP-expressing telomerase-dependent adenovirus, OBP-401, which can selectively illuminate cancer cells. In the present report, we demonstrate that targeting a triple-negative high-invasive human breast cancer, orthotopically-growing in nude mice, with OBP-401 enables curative fluorescence-guided surgery (FGS). OBP-401 enabled complete resection and prevented local recurrence and greatly inhibited lymph-node metastasis due to the ability of the virus to selectively label and subsequently kill cancer cells. In contrast, residual breast cancer cells become more aggressive after bright (white)-light surgery (BLS). OBP-401-based FGS also improved the overall survival compared with conventional BLS. Thus, metastasis from a highly-aggressive triple-negative breast cancer can be prevented by FGS in a clinically-relevant mouse model. PMID:27689331

  13. Contact Killing of Bacteria on Copper Is Suppressed if Bacterial-Metal Contact Is Prevented and Is Induced on Iron by Copper Ions

    PubMed Central

    Mathews, Salima; Hans, Michael

    2013-01-01

    Bacteria are rapidly killed on copper surfaces, and copper ions released from the surface have been proposed to play a major role in the killing process. However, it has remained unclear whether contact of the bacteria with the copper surface is also an important factor. Using laser interference lithography, we engineered copper surfaces which were covered with a grid of an inert polymer which prevented contact of the bacteria with the surface. Using Enterococcus hirae as a model organism, we showed that the release of ionic copper from these modified surfaces was not significantly reduced. In contrast, killing of bacteria was strongly attenuated. When E. hirae cells were exposed to a solid iron surface, the loss of cell viability was the same as on glass. However, exposing cells to iron in the presence of 4 mM CuSO4 led to complete killing in 100 min. These experiments suggest that contact killing proceeds by a mechanism whereby the metal-bacterial contact damages the cell envelope, which, in turn, makes the cells susceptible to further damage by copper ions. PMID:23396344

  14. Overexpression of LLT1 (OCIL, CLEC2D) on prostate cancer cells inhibits NK cell-mediated killing through LLT1-NKRP1A (CD161) interaction.

    PubMed

    Mathew, Stephen O; Chaudhary, Pankaj; Powers, Sheila B; Vishwanatha, Jamboor K; Mathew, Porunelloor A

    2016-10-18

    Prostate cancer is the most common type of cancer diagnosed and the second leading cause of cancer-related death in American men. Natural Killer (NK) cells are the first line of defense against cancer and infections. NK cell function is regulated by a delicate balance between signals received through activating and inhibitory receptors. Previously, we identified Lectin-like transcript-1 (LLT1/OCIL/CLEC2D) as a counter-receptor for the NK cell inhibitory receptor NKRP1A (CD161). Interaction of LLT1 expressed on target cells with NKRP1A inhibits NK cell activation. In this study, we have found that LLT1 was overexpressed on prostate cancer cell lines (DU145, LNCaP, 22Rv1 and PC3) and in primary prostate cancer tissues both at the mRNA and protein level. We further showed that LLT1 is retained intracellularly in normal prostate cells with minimal cell surface expression. Blocking LLT1 interaction with NKRP1A by anti-LLT1 mAb on prostate cancer cells increased the NK-mediated cytotoxicity of prostate cancer cells. The results indicate that prostate cancer cells may evade immune attack by NK cells by expressing LLT1 to inhibit NK cell-mediated cytolytic activity through LLT1-NKRP1A interaction. Blocking LLT1-NKRP1A interaction will make prostate cancer cells susceptible to killing by NK cells and therefore may be a new therapeutic option for treatment of prostate cancer.

  15. Bcl-2 antagonists kill plasmacytoid dendritic cells from lupus-prone mice and dampen interferon-α production.

    PubMed

    Zhan, Yifan; Carrington, Emma M; Ko, Hyun-Ja; Vikstrom, Ingela B; Oon, Shereen; Zhang, Jian-Guo; Vremec, David; Brady, Jamie L; Bouillet, Philippe; Wu, Li; Huang, David C S; Wicks, Ian P; Morand, Eric F; Strasser, Andreas; Lew, Andrew M

    2015-03-01

    Interferon-α (IFNα)-producing plasmacytoid dendritic cells (PDCs) are implicated in the pathogenesis of systemic lupus erythematosus (SLE). IFNα-related genes are highlighted among SLE susceptibility alleles and are characteristically expressed in the blood of patients with SLE, while in mouse models of lupus, PDC numbers and IFNα production are increased. This study was undertaken to investigate the effects of inhibitors that selectively target different antiapoptotic molecules on the survival of PDCs. PDC numbers, in vitro survival, and expression of antiapoptotic molecules were evaluated in lupus-prone (NZB × NZW)F1 (NZB/NZW) mice. The impact of Bcl-2 antagonists and glucocorticoids on PDCs was evaluated in vitro and in vivo. IFNα production by NZB/NZW mice was evaluated before and after treatment with Bcl-2 antagonists. PDCs, but not lymphoid tissue-resident conventional DCs, largely relied on the antiapoptotic protein Bcl-2 for survival. The enlarged PDC compartment in NZB/NZW mice was associated with selectively prolonged survival and increased Bcl-2 transcription. Functionally, this resulted in enhanced production of IFNα. Bcl-2 inhibitors selectively killed mouse and human PDCs, including PDCs from SLE patients, but not conventional DCs, dampened IFNα production by PDCs, and synergized with glucocorticoids to kill activated PDCs. Enhanced PDC survival is a likely contributing factor to enhanced IFNα production by lupus PDCs. Bcl-2 antagonists potently and selectively kill PDCs and reduce IFNα production. Thus, we believe that they are attractive candidates for treating PDC-associated diseases. Copyright © 2015 by the American College of Rheumatology.

  16. OH radicals from the indirect actions of X-rays induce cell lethality and mediate the majority of the oxygen enhancement effect.

    PubMed

    Hirayama, Ryoichi; Ito, Atsushi; Noguchi, Miho; Matsumoto, Yoshitaka; Uzawa, Akiko; Kobashi, Gen; Okayasu, Ryuichi; Furusawa, Yoshiya

    2013-11-01

    We examined OH radical-mediated indirect actions from X irradiation on cell killing in wild-type Chinese hamster ovary cell lines (CHO and AA8) under oxic and hypoxic conditions, and compared the contribution of direct and indirect actions under both conditions. The contribution of indirect action on cell killing can be estimated from the maximum degree of protection by dimethylsulfoxide, which suppresses indirect action by quenching OH radicals without affecting the direct action of X rays on cell killing. The contributions of indirect action on cell killing of CHO cells were 76% and 50% under oxic and hypoxic conditions, respectively, and those for AA8 cells were 85% and 47%, respectively. Therefore, the indirect action on cell killing was enhanced by oxygen during X irradiation in both cell lines tested. Oxygen enhancement ratios (OERs) at the 10% survival level (D10 or LD90) for CHO and AA8 cells were 2.68 ± 0.15 and 2.76 ± 0.08, respectively. OERs were evaluated separately for indirect and direct actions, which gave the values of 3.75 and 2.01 for CHO, and 4.11 and 1.32 for AA8 cells, respectively. Thus the generally accepted OER value of ∼3 is best understood as the average of the OER values for both indirect and direct actions. These results imply that both indirect and direct actions on cell killing require oxygen for the majority of lethal DNA damage, however, oxygen plays a larger role in indirect than for direct effects. Conversely, the lethal damage induced by the direct action of X rays are less affected by oxygen concentration.

  17. 5-Benzylglycinyl-Amiloride Kills Proliferating and Nonproliferating Malignant Glioma Cells through Caspase-Independent Necroptosis Mediated by Apoptosis-Inducing Factor

    PubMed Central

    Pasupuleti, Nagarekha; Leon, Leonardo; Carraway, Kermit L.

    2013-01-01

    5′–Βenzylglycinyl-amiloride (UCD38B) and glycinyl-amiloride (UCD74A) are cell-permeant and cell-impermeant derivatives of amiloride, respectively, and used here to identify the cellular mechanisms of action underlying their antiglioma effects. UCD38B comparably kills proliferating and nonproliferating gliomas cells when cell cycle progression is arrested either by cyclin D1 siRNA or by acidification. Cell impermeant UCD74A inhibits plasmalemmal urokinase plasminogen activator (uPA) and the type 1 sodium-proton exchanger with potencies analogous to UCD38B, but is cytostatic. In contrast, UCD38B targets intracellular uPA causing mistrafficking of uPA into perinuclear mitochondria, reducing the mitochondrial membrane potential, and followed by the release of apoptotic inducible factor (AIF). AIF nuclear translocation is followed by a caspase-independent necroptotic cell death. Reduction in AIF expression by siRNA reduces the antiglioma cytotoxic effects of UCD38B, while not activating the caspase pathway. Ultrastructural changes shortly following treatment with UCD38B demonstrate dilation of endoplasmic reticulum (ER) and mitochondrial swelling followed by nuclear condensation within hours consistent with a necroptotic cell death differing from apoptosis and from autophagy. These drug mechanism of action studies demonstrate that UCD38B induces a cell cycle-independent, caspase-independent necroptotic glioma cell death that is mediated by AIF and independent of poly (ADP-ribose) polymerase and H2AX activation. PMID:23241369

  18. A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy.

    PubMed

    Qiu, Liping; Chen, Tao; Öçsoy, Ismail; Yasun, Emir; Wu, Cuichen; Zhu, Guizhi; You, Mingxu; Han, Da; Jiang, Jianhui; Yu, Ruqin; Tan, Weihong

    2015-01-14

    The development of multidrug resistance (MDR) has become an increasingly serious problem in cancer therapy. The cell-membrane overexpression of P-glycoprotein (P-gp), which can actively efflux various anticancer drugs from the cell, is a major mechanism of MDR. Nuclear-uptake nanodrug delivery systems, which enable intranuclear release of anticancer drugs, are expected to address this challenge by bypassing P-gp. However, before entering the nucleus, the nanocarrier must pass through the cell membrane, necessitating coordination between intracellular and intranuclear delivery. To accommodate this requirement, we have used DNA self-assembly to develop a nuclear-uptake nanodrug system carried by a cell-targeted near-infrared (NIR)-responsive nanotruck for drug-resistant cancer therapy. Via DNA hybridization, small drug-loaded gold nanoparticles (termed nanodrugs) can self-assemble onto the side face of a silver-gold nanorod (NR, termed nanotruck) whose end faces were modified with a cell type-specific internalizing aptamer. By using this size-photocontrollable nanodrug delivery system, anticancer drugs can be efficiently accumulated in the nuclei to effectively kill the cancer cells.

  19. Improving anticancer drug development begins with cell culture: misinformation perpetrated by the misuse of cytotoxicity assays.

    PubMed

    Eastman, Alan

    2017-01-31

    The high failure rate of anticancer drug discovery and development has consumed billions of dollars annually. While many explanations have been provided, I believe that misinformation arising from inappropriate cell-based screens has been completely over-looked. Most cell culture experiments are irrelevant to how drugs are subsequently administered to patients. Usually, drug development focuses on growth inhibition rather than cell killing. Drugs are selected based on continuous incubation of cells, then frequently administered to the patient as a bolus. Target identification and validation is often performed by gene suppression that inevitably mimics continuous target inhibition. Drug concentrations in vitro frequently far exceed in vivo concentrations. Studies of drug synergy are performed at sub-optimal concentrations. And the focus on a limited number of cell lines can misrepresent the potential efficacy in a patient population. The intent of this review is to encourage more appropriate experimental design and data interpretation, and to improve drug development in the area of cell-based assays. Application of these principles should greatly enhance the successful translation of novel drugs to the patient.

  20. Surface Functionalization of Polymeric Nanoparticles with Umbilical Cord-Derived Mesenchymal Stem Cell Membrane for Tumor-Targeted Therapy.

    PubMed

    Yang, Na; Ding, Yanping; Zhang, Yinlong; Wang, Bin; Zhao, Xiao; Cheng, Keman; Huang, Yixin; Taleb, Mohammad; Zhao, Jing; Dong, Wen-Fei; Zhang, Lirong; Nie, Guangjun

    2018-06-15

    Multiple cell plasma membranes have been utilized for surface functionalization of synthetic nanomaterials and construction of biomimetic drug delivery systems for cancer treatment. The natural characters and facile isolation of original cells facilitate the biomedical applications of plasma membranes in functionalizing nanocarriers. Human umbilical cord-derived mesenchymal stem cells (MSC) have been identified to show tropism towards malignant lesions and have great advantages in ease of acquisition, low immunogenicity, and high proliferative ability. Here we developed a poly(lactic-co-glycolic acid) (PLGA) nanoparticle with a layer of plasma membrane from umbilical cord MSC coating on the surface for tumor-targeted delivery of chemotherapy. Functionalization of MSC plasma membrane significantly enhanced the cellular uptake efficiency of PLGA nanoparticles, the tumor cell killing efficacy of PLGA-encapsulated doxorubicin, and most importantly the tumor-targeting and accumulation of the nanoparticles. As a result, this MSC-mimicking nanoformulation led to remarkable tumor growth inhibition and induced obvious apoptosis within tumor lesions. This study for the first time demonstrated the great potential of umbilical cord MSC plasma membranes in functionalizing nanocarriers with inherent tumor-homing features, and the high feasibility of such biomimetic nanoformulations in cancer therapy.

Top