Science.gov

Sample records for kinase cgamma leads

  1. Activation of mutant protein kinase C{gamma} leads to aberrant sequestration and impairment of its cellular function

    SciTech Connect

    Doran, Graeme; Davies, Kay E.; Talbot, Kevin

    2008-08-01

    Mutations in protein kinase C{gamma} (PKC{gamma}) cause the neurodegenerative disease spinocerebellar ataxia type 14 (SCA14). In this study, expression of an extensive panel of known SCA14-associated PKC{gamma} mutations as fusion proteins in cell culture led to the consistent formation of cytoplasmic aggregates in response to purinoceptor stimulation. Aggregates co-stained with antibodies to phosphorylated PKC{gamma} and the early endosome marker EEA1 but failed to redistribute to the cell membrane under conditions of oxidative stress. These studies suggest that Purkinje cell damage in SCA14 may result from a reduction of PKC{gamma} activity due its aberrant sequestration in the early endosome compartment.

  2. Characterization and cDNA cloning of phospholipase C-gamma, a major substrate for heparin-binding growth factor 1 (acidic fibroblast growth factor)-activated tyrosine kinase.

    PubMed Central

    Burgess, W H; Dionne, C A; Kaplow, J; Mudd, R; Friesel, R; Zilberstein, A; Schlessinger, J; Jaye, M

    1990-01-01

    Heparin-binding growth factors (HBGFs) bind to high-affinity cell surface receptors which possess intrinsic tyrosine kinase activity. A Mr 150,000 protein phosphorylated on tyrosine in response to class 1 HBGF (HBGF-1) was purified and partially sequenced. On the basis of this sequence, cDNA clones were isolated from a human endothelial cell library and identified as encoding phospholipase C-gamma. Phosphorylation of phospholipase C-gamma in intact cells treated with HBGF-1 was directly demonstrated by using antiphospholipase C-gamma antibodies. Thus, HBGF-1 joins epidermal growth factor and platelet-derived growth factor, whose receptor activation leads to tyrosine phosphorylation and probable activation of phospholipase C-gamma. Images PMID:2167438

  3. Platelet-derived growth factor-dependent cellular transformation requires either phospholipase Cgamma or phosphatidylinositol 3 kinase.

    PubMed

    DeMali, K A; Whiteford, C C; Ulug, E T; Kazlauskas, A

    1997-04-04

    Although it has been well established that constitutive activation of receptor tyrosine kinases leads to cellular transformation, the signal relay pathways involved have not been systematically investigated. In this study we used a panel of platelet-derived growth factor (PDGF) beta receptor mutants (beta-PDGFR), which selectively activate various signal relay enzymes to define which signaling pathways are required for PDGF-dependent growth of cells in soft agar. The host cell line for these studies was Ph cells, a 3T3-like cell that expresses normal levels of the beta-PDGFR but no PDGF-alpha receptor (alpha-PDGFR). Hence, this cell system can be used to study signaling of mutant alphaPDGFRs or alpha/beta chimeras. We constructed chimeric receptors containing the alphaPDGFR extracellular domain and the betaPDGFR cytoplasmic domain harboring various phosphorylation site mutations. The mutants were expressed in Ph cells, and their ability to drive PDGF-dependent cellular transformation (growth in soft agar) was assayed. Cells infected with an empty expression vector failed to grow in soft agar, whereas introduction of the chimera with a wild-type beta-PDGFR cytoplasmic domain gave rise to a large number of colonies. In contrast, the N2F5 chimera, in which the binding sites for phospholipase Cgamma (PLC-gamma), RasGTPase-activating protein, phosphatidylinositol 3 kinase (PI3K), and SHP-2 were eliminated, failed to trigger proliferation. Restoring the binding sites for RasGTPase-activating protein or SHP-2 did not rescue the PDGF-dependent response. In contrast, receptors capable of associating with either PLC-gamma or PI3K relayed a growth signal that was comparable to wild-type receptors in the soft agar growth assay. These findings indicate that the PDGF receptor activates multiple signaling pathways that lead to cellular transformation, and that either PI3K or PLC-gamma are key initiators of such signal relay cascades.

  4. Tyrosine kinase activity is essential for the association of phospholipase C-gamma with the epidermal growth factor receptor.

    PubMed Central

    Margolis, B; Bellot, F; Honegger, A M; Ullrich, A; Schlessinger, J; Zilberstein, A

    1990-01-01

    Epidermal growth factor (EGF) treatment of NIH 3T3 cells transfected with wild-type EGF receptor induced tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma). The EGF receptor and PLC-gamma were found to be physically associated such that antibodies directed against PLC-gamma or the EGF receptor coimmunoprecipitated both proteins. The association between PLC-gamma and wild-type EGF receptor was dependent on the concentration of EGF, but EGF did not enhance the association between PLC-gamma and a kinase-negative mutant of the EGF receptor. Oligomerization of the EGF receptor was not sufficient to induce association of the EGF receptor with PLC-gamma, since the kinase-negative mutant receptor underwent normal dimerization in response to EGF yet did not associate with PLC-gamma. The form of PLC-gamma associated with the EGF receptor appeared to be primarily the non-tyrosine-phosphorylated form. It is concluded that the kinase activity of the EGF receptor is essential for association of PLC-gamma with the EGF receptor, possibly by stimulating receptor autophosphorylation. Images PMID:2153914

  5. Stimulation of Src family protein-tyrosine kinases as a proximal and mandatory step for SYK kinase-dependent phospholipase Cgamma2 activation in lymphoma B cells exposed to low energy electromagnetic fields.

    PubMed

    Dibirdik, I; Kristupaitis, D; Kurosaki, T; Tuel-Ahlgren, L; Chu, A; Pond, D; Tuong, D; Luben, R; Uckun, F M

    1998-02-13

    Here, we present evidence that exposure of DT40 lymphoma B cells to low energy electromagnetic field (EMF) results in a tyrosine kinase-dependent activation of phospholipase Cgamma2 (PLC-gamma2) leading to increased inositol phospholipid turnover. B cells rendered PLC-gamma2-deficient by targeted disruption of the PLC-gamma2 gene as well as PLC-gamma2-deficient cells reconstituted with Src homology domain 2 (SH2) domain mutant PLC-gamma2 did not show any increase in inositol-1,4,5-trisphosphate levels after EMF exposure, providing direct evidence that PLC-gamma2 is responsible for EMF-induced stimulation of inositol phospholipid turnover, and its SH2 domains are essential for this function. B cells rendered SYK-deficient by targeted disruption of the syk gene did not show PLC-gamma2 activation in response to EMF exposure. The C-terminal SH2 domain of SYK kinase is essential for its ability to activate PLC-gamma2. SYK-deficient cells reconstituted with a C-terminal SH2 domain mutant syk gene failed to elicit increased inositol phospholipid turnover after EMF exposure, whereas SYK-deficient cells reconstituted with an N-terminal SH2 domain mutant syk gene showed a normal EMF response. LYN kinase is essential for the initiation of this biochemical signaling cascade. Lymphoma B cells rendered LYN-deficient through targeted disruption of the lyn gene did not elicit enhanced inositol phospholipid turnover after EMF exposure. Introduction of the wild-type (but not a kinase domain mutant) mouse fyn gene into LYN-deficient B cells restored their EMF responsiveness. B cells reconstituted with a SH2 domain mutant fyn gene showed a normal EMF response, whereas no increase in inositol phospholipid turnover in response to EMF was noticed in LYN-deficient cells reconstituted with a SH3 domain mutant fyn gene. Taken together, these results indicate that EMF-induced PLC-gamma2 activation is mediated by LYN-regulated stimulation of SYK, which acts downstream of LYN kinase and

  6. Nerve growth factor rapidly stimulates tyrosine phosphorylation of phospholipase C-gamma 1 by a kinase activity associated with the product of the trk protooncogene.

    PubMed

    Vetter, M L; Martin-Zanca, D; Parada, L F; Bishop, J M; Kaplan, D R

    1991-07-01

    Nerve growth factor (NGF) promotes the survival and differentiation of specific populations of neurons. The molecular mechanisms by which cells respond to NGF are poorly understood, but two clues have emerged recently. First, NGF rapidly stimulates tyrosine phosphorylation of several unidentified proteins in the NGF-responsive pheochromocytoma cell line PC12 [Maher, P. (1988) Proc. Natl. Acad. Sci. USA 85, 6788-6791]. Second, the protein-tyrosine kinase encoded by the protooncogene trk (p140trk), a member of the receptor class of tyrosine kinases, becomes activated and phosphorylated on tyrosine after NGF treatment of PC12 cells [Kaplan, D. R., Martin-Zanca, D. & Parada, L. F. (1991) Nature (London) 350, 158-160]. We now report that NGF rapidly induces tyrosine phosphorylation of phospholipase C-gamma 1 (PLC-gamma 1), and we present evidence that the responsible tyrosine kinase is either p140trk or a closely associated protein. Treatment of responsive cells with NGF elicited phosphorylation of PLC-gamma 1 on tyrosine and serine. PLC-gamma 1 immunoprecipitated from NGF-stimulated cells was phosphorylated in vitro by coprecipitating protein kinase activity, and the phosphorylations occurred principally on tyrosine. The responsible kinase could be depleted from cellular lysates by antibodies specific for p140trk. This procedure also depleted a 140-kDa protein that normally coprecipitated with PLC-gamma 1 and became phosphorylated on tyrosine in vivo in response to NGF. Analysis of tryptic peptides from PLC-gamma 1 indicated that the residues phosphorylated in vitro by p140trk-associated kinase activity were largely congruent with those phosphorylated in vivo after NGF treatment. Our findings identify PLC-gamma 1 as a likely substrate for the trk-encoded tyrosine kinase, and they provide a link between NGF-dependent activation of p140trk and the stimulation of intracellular second messenger pathways.

  7. Vav1 transduces T cell receptor signals to the activation of phospholipase C-gamma1 via phosphoinositide 3-kinase-dependent and -independent pathways.

    PubMed

    Reynolds, Lucinda F; Smyth, Lesley A; Norton, Trisha; Freshney, Norman; Downward, Julian; Kioussis, Dimitris; Tybulewicz, Victor L J

    2002-05-06

    Vav1 is a signal transducing protein required for T cell receptor (TCR) signals that drive positive and negative selection in the thymus. Furthermore, Vav1-deficient thymocytes show greatly reduced TCR-induced intracellular calcium flux. Using a novel genetic system which allows the study of signaling in highly enriched populations of CD4(+)CD8(+) double positive thymocytes, we have studied the mechanism by which Vav1 regulates TCR-induced calcium flux. We show that in Vav1-deficient double positive thymocytes, phosphorylation, and activation of phospholipase C-gamma1 (PLCgamma1) is defective. Furthermore, we demonstrate that Vav1 regulates PLCgamma1 phosphorylation by at least two distinct pathways. First, in the absence of Vav1 the Tec-family kinases Itk and Tec are no longer activated, most likely as a result of a defect in phosphoinositide 3-kinase (PI3K) activation. Second, Vav1-deficient thymocytes show defective assembly of a signaling complex containing PLCgamma1 and the adaptor molecule Src homology 2 domain-containing leukocyte phosphoprotein 76. We show that this latter function is independent of PI3K.

  8. Phospholipase C{gamma}1 stimulates transcriptional activation of the matrix metalloproteinase-3 gene via the protein kinase C/Raf/ERK cascade

    SciTech Connect

    Shin, Soon Young; Choi, Ha Young; Ahn, Bong-Hyun; Son, Sang Wook; Lee, Young Han . E-mail: younghan@hanyang.ac.kr

    2007-02-16

    The phospholipid hydrolase phospholipase C{gamma}1 (PLC{gamma}1) plays a major role in regulation of cell proliferation, development, and cell motility. Overexpression of PLC{gamma}1 is associated with tumor development, and it is overexpressed in some tumors. Matrix metalloproteinase-3 (MMP-3) is a protein involved in tumor invasion and metastasis. Here, we demonstrate that overexpression of PLC{gamma}1 stimulates MMP-3 expression at the transcriptional level via the PKC-mediated Raf/MEK1/ERK signaling cascade. We propose that modulation of PLC{gamma}1 activity might be of value in controlling the activity of MMPs, which are important regulators of invasion and metastasis in malignant tumors.

  9. Mevalonate kinase deficiency leads to decreased prenylation of Rab GTPases

    PubMed Central

    Jurczyluk, Julie; Munoz, Marcia A; Skinner, Oliver P; Chai, Ryan C; Ali, Naveid; Palendira, Umaimainthan; Quinn, Julian MW; Preston, Alexandra; Tangye, Stuart G; Brown, Andrew J; Argent, Elizabeth; Ziegler, John B; Mehr, Sam; Rogers, Michael J

    2016-01-01

    Mevalonate kinase deficiency (MKD) is caused by mutations in a key enzyme of the mevalonate–cholesterol biosynthesis pathway, leading to recurrent autoinflammatory disease characterised by enhanced release of interleukin-1β (IL-1β). It is currently believed that the inflammatory phenotype of MKD is triggered by temperature-sensitive loss of mevalonate kinase activity and reduced biosynthesis of isoprenoid lipids required for the prenylation of small GTPase proteins. However, previous studies have not clearly shown any change in protein prenylation in patient cells under normal conditions. With lymphoblast cell lines from two compound heterozygous MKD patients, we used a highly sensitive in vitro prenylation assay, together with quantitative mass spectrometry, to reveal a subtle accumulation of unprenylated Rab GTPases in cells cultured for 3 days or more at 40 °C compared with 37 °C. This included a 200% increase in unprenylated Rab7A, Rab14 and Rab1A. Inhibition of sterol regulatory element-binding protein (SREBP) activation by fatostatin led to more pronounced accumulation of unprenylated Rab proteins in MKD cells but not parent cells, suggesting that cultured MKD cells may partially overcome the loss of isoprenoid lipids by SREBP-mediated upregulation of enzymes required for isoprenoid biosynthesis. Furthermore, while inhibition of Rho/Rac/Rap prenylation promoted the release of IL-1β, specific inhibition of Rab prenylation by NE10790 had no effect in human peripheral blood mononuclear cells or human THP-1 monocytic cells. These studies demonstrate for the first time that mutations in mevalonate kinase can lead to a mild, temperature-induced defect in the prenylation of small GTPases, but that loss of prenylated Rab GTPases is not the cause of enhanced IL-1β release in MKD. PMID:27377765

  10. Mevalonate kinase deficiency leads to decreased prenylation of Rab GTPases.

    PubMed

    Jurczyluk, Julie; Munoz, Marcia A; Skinner, Oliver P; Chai, Ryan C; Ali, Naveid; Palendira, Umaimainthan; Quinn, Julian Mw; Preston, Alexandra; Tangye, Stuart G; Brown, Andrew J; Argent, Elizabeth; Ziegler, John B; Mehr, Sam; Rogers, Michael J

    2016-11-01

    Mevalonate kinase deficiency (MKD) is caused by mutations in a key enzyme of the mevalonate-cholesterol biosynthesis pathway, leading to recurrent autoinflammatory disease characterised by enhanced release of interleukin-1β (IL-1β). It is currently believed that the inflammatory phenotype of MKD is triggered by temperature-sensitive loss of mevalonate kinase activity and reduced biosynthesis of isoprenoid lipids required for the prenylation of small GTPase proteins. However, previous studies have not clearly shown any change in protein prenylation in patient cells under normal conditions. With lymphoblast cell lines from two compound heterozygous MKD patients, we used a highly sensitive in vitro prenylation assay, together with quantitative mass spectrometry, to reveal a subtle accumulation of unprenylated Rab GTPases in cells cultured for 3 days or more at 40 °C compared with 37 °C. This included a 200% increase in unprenylated Rab7A, Rab14 and Rab1A. Inhibition of sterol regulatory element-binding protein (SREBP) activation by fatostatin led to more pronounced accumulation of unprenylated Rab proteins in MKD cells but not parent cells, suggesting that cultured MKD cells may partially overcome the loss of isoprenoid lipids by SREBP-mediated upregulation of enzymes required for isoprenoid biosynthesis. Furthermore, while inhibition of Rho/Rac/Rap prenylation promoted the release of IL-1β, specific inhibition of Rab prenylation by NE10790 had no effect in human peripheral blood mononuclear cells or human THP-1 monocytic cells. These studies demonstrate for the first time that mutations in mevalonate kinase can lead to a mild, temperature-induced defect in the prenylation of small GTPases, but that loss of prenylated Rab GTPases is not the cause of enhanced IL-1β release in MKD.

  11. Corticotropin-releasing factor induces phosphorylation of phospholipase C-gamma at tyrosine residues via its receptor 2beta in human epidermoid A-431 cells.

    PubMed

    Kiang, J G; Ding, X Z; Gist, I D; Jones, R R; Tsokos, G C

    1998-12-18

    This laboratory previously reported that corticotropin-releasing factor (CRF) increased intracellular free calcium concentrations, cellular cAMP, inositol 1,4,5-trisphosphate, protein kinase C activity, and protein phosphorylation in human A-431 cells. The increase was blocked by CRF receptor antagonist. In this study, we identified the type of CRF receptors present and investigated whether CRF induced tyrosine phosphorylation of phospholipase C-gamma via CRF receptors. Using novel primers in reverse transcriptase-polymerase chain reaction, we determined the CRF receptor type to be that of 2beta. The levels of the CRF receptor type 2beta were not altered in cells treated with activators of protein kinase C, Ca2+ ionophore, or cells overexpressing heat shock protein 70 kDa. Cells treated with CRF displayed increases in protein tyrosine phosphorylation approximately at 150 kDa as detected by immunoblotting using an antibody against phosphotyrosine. Immunoprecipitation with antibodies directed against phospholipase C-beta3, -gamma1, or -gamma2 isoforms (which have molecular weights around 150 kDa) followed by Western blotting using an anti-phosphotyrosine antibody showed that only phospholipase C-gamma1 and -gamma2 were phosphorylated. The increase in phospholipase C-gamma phosphorylation was concentration-dependent with an EC50 of 4.2+/-0.1 pM. The maximal phosphorylation by CRF at 1 nM occurred by 5 min. The CRF-induced phosphorylation was inhibited by the protein tyrosine kinase inhibitors genistein and herbimycin A, suggesting that CRF activates protein tyrosine kinases. Treatment of cells with CRF receptor antagonist, but not pertussis toxin, prior to treatment with CRF inhibited the CRF-induced phosphorylation, suggesting it is mediated by the CRF receptor type 2beta that is not coupled to pertussis toxin-sensitive G-proteins. Treatment with 1,2-bis(2iminophenoxy)ethane-N,N,N',N'-tetraacetic acid attenuated the phospholipase C-gamma phosphorylation. In summary

  12. Electromagnetic field-induced stimulation of Bruton's tyrosine kinase.

    PubMed

    Kristupaitis, D; Dibirdik, I; Vassilev, A; Mahajan, S; Kurosaki, T; Chu, A; Tuel-Ahlgren, L; Tuong, D; Pond, D; Luben, R; Uckun, F M

    1998-05-15

    Here we present evidence that exposure of DT40 lymphoma B-cells to low energy electromagnetic fields (EMF) results in activation of phospholipase C-gamma 2 (PLC-gamma2), leading to increased inositol phospholipid turnover. PLC-gamma2 activation in EMF-stimulated cells is mediated by stimulation of the Bruton's tyrosine kinase (BTK), a member of the Src-related TEC family of protein tyrosine kinases, which acts downstream of LYN kinase and upstream of PLC-gamma2. B-cells rendered BTK-deficient by targeted disruption of the btk gene did not show enhanced PLC-gamma2 activation in response to EMF exposure. Introduction of the wild-type (but not a kinase domain mutant) human btk gene into BTK-deficient B-cells restored their EMF responsiveness. Thus, BTK exerts a pivotal and mandatory function in initiation of EMF-induced signaling cascades in B-cells.

  13. Protein kinase C activity and the relations between blood lead and neurobehavioral function in lead workers.

    PubMed Central

    Hwang, Kyu-Yoon; Lee, Byung-Kook; Bressler, Joseph P; Bolla, Karen I; Stewart, Walter F; Schwartz, Brian S

    2002-01-01

    At picomolar concentrations, lead activates protein kinase C (PKC). This activation has been implicated in the neurotoxicity of lead. No prior study has evaluated the association of PKC activity with neurobehavioral function in humans. The purpose of this study was to determine whether PKC activity is associated with neurobehavioral function or modifies the relationship between blood lead levels and neurobehavioral test scores. In this cross-sectional study of 212 current lead workers in the Republic of Korea, we assessed blood lead levels, neurobehavioral test scores, and PKC activity. PKC activity was determined by measuring the levels of phosphorylation of three erythrocyte membrane proteins (spectrin and the 52-kDa and 48-kDa subunits of band 4.9), using an in vitro back-phosphorylation assay. When linear regression was used to control for confounding variables, blood lead was a significant predictor of decrements in performance on tests of psychomotor function, manual dexterity, and executive ability. In linear regression models, back-phosphorylation levels were not associated with neurobehavioral test scores, but when dichotomized at the median, back-phosphorylation levels modified the relationship between blood lead and test scores. For spectrin and the 52-kDa and 48-kDa subunits of band 4.9, 5, 2, and 5 of 14 interaction terms, respectively, had associated p-values less than 0.10, all with positive signs, indicating that blood lead was associated with worse test scores only in subjects with lower back-phosphorylation levels. These data indicate that blood lead levels are associated with decrements in neurobehavioral test scores, mainly in the domains of manual dexterity and psychomotor function, but only in subjects with lower in vitro back-phosphorylation levels, which is equivalent to higher in vivo PKC activity. We hypothesize that subjects with higher PKC activity in the presence of lead may be more susceptible to the health effects of lead. PMID

  14. Protein kinase C activity and the relations between blood lead and neurobehavioral function in lead workers.

    PubMed

    Hwang, Kyu-Yoon; Lee, Byung-Kook; Bressler, Joseph P; Bolla, Karen I; Stewart, Walter F; Schwartz, Brian S

    2002-02-01

    At picomolar concentrations, lead activates protein kinase C (PKC). This activation has been implicated in the neurotoxicity of lead. No prior study has evaluated the association of PKC activity with neurobehavioral function in humans. The purpose of this study was to determine whether PKC activity is associated with neurobehavioral function or modifies the relationship between blood lead levels and neurobehavioral test scores. In this cross-sectional study of 212 current lead workers in the Republic of Korea, we assessed blood lead levels, neurobehavioral test scores, and PKC activity. PKC activity was determined by measuring the levels of phosphorylation of three erythrocyte membrane proteins (spectrin and the 52-kDa and 48-kDa subunits of band 4.9), using an in vitro back-phosphorylation assay. When linear regression was used to control for confounding variables, blood lead was a significant predictor of decrements in performance on tests of psychomotor function, manual dexterity, and executive ability. In linear regression models, back-phosphorylation levels were not associated with neurobehavioral test scores, but when dichotomized at the median, back-phosphorylation levels modified the relationship between blood lead and test scores. For spectrin and the 52-kDa and 48-kDa subunits of band 4.9, 5, 2, and 5 of 14 interaction terms, respectively, had associated p-values less than 0.10, all with positive signs, indicating that blood lead was associated with worse test scores only in subjects with lower back-phosphorylation levels. These data indicate that blood lead levels are associated with decrements in neurobehavioral test scores, mainly in the domains of manual dexterity and psychomotor function, but only in subjects with lower in vitro back-phosphorylation levels, which is equivalent to higher in vivo PKC activity. We hypothesize that subjects with higher PKC activity in the presence of lead may be more susceptible to the health effects of lead.

  15. Polo-like kinases: structural variations lead to multiple functions.

    PubMed

    Zitouni, Sihem; Nabais, Catarina; Jana, Swadhin Chandra; Guerrero, Adán; Bettencourt-Dias, Mónica

    2014-07-01

    Members of the polo-like kinase (PLK) family are crucial regulators of cell cycle progression, centriole duplication, mitosis, cytokinesis and the DNA damage response. PLKs undergo major changes in abundance, activity, localization and structure at different stages of the cell cycle. They interact with other proteins in a tightly controlled spatiotemporal manner as part of a network that coordinates key cell cycle events. Their essential roles are highlighted by the fact that alterations in PLK function are associated with cancers and other diseases. Recent knowledge gained from PLK crystal structures, evolution and interacting molecules offers important insights into the mechanisms that underlie their regulation and activity, and suggests novel functions unrelated to cell cycle control for this family of kinases.

  16. Leads for antitubercular compounds from kinase inhibitor library screens.

    PubMed

    Magnet, Sophie; Hartkoorn, Ruben C; Székely, Rita; Pató, János; Triccas, James A; Schneider, Patricia; Szántai-Kis, Csaba; Orfi, László; Chambon, Marc; Banfi, Damiano; Bueno, Manuel; Turcatti, Gerardo; Kéri, György; Cole, Stewart T

    2010-11-01

    Discovering new drugs to treat tuberculosis more efficiently and to overcome multidrug resistance is a world health priority. To find antimycobacterial scaffolds, we screened a kinase inhibitor library of more than 12,000 compounds using an integrated strategy involving whole cell-based assays with Corynebacterium glutamicum and Mycobacterium tuberculosis, and a target-based assay with the protein kinase PknA. Seventeen "hits" came from the whole cell-based screening approach, from which three displayed minimal inhibitory concentrations (MIC) against M. tuberculosis below 10μM and were non-mutagenic and non-cytotoxic. Two of these hits were specific for M. tuberculosis versus C. glutamicum and none of them was found to inhibit the essential serine/threonine protein kinases, PknA and PknB present in both bacteria. One of the most active hits, VI-18469, had a benzoquinoxaline pharmacophore while another, VI-9376, is structurally related to a new class of antimycobacterial agents, the benzothiazinones (BTZ). Like the BTZ, VI-9376 was shown to act on the essential enzyme decaprenylphosphoryl-β-D-ribose 2'-epimerase, DprE1, required for arabinan synthesis.

  17. Requirements for distinct steps of phospholipase Cgamma2 regulation, membrane-raft-dependent targeting and subsequent enzyme activation in B-cell signalling.

    PubMed Central

    Rodriguez, Rosie; Matsuda, Miho; Storey, Amy; Katan, Matilda

    2003-01-01

    Studies of PLCgamma (phospholipase Cgamma) have identified a number of regulatory components required for signalling; however, molecular mechanisms and the relationship between events leading to translocation and an increase of substrate hydrolysis have not been well defined. The addition of a membrane-targeting tag to many signal transducers results in constitutive activation, suggesting that these processes could be closely linked and difficult to dissect. The present study of PLCgamma2 regulation by cross-linking of the BCR (B-cell antigen receptor) or H2O2 stress in DT40 B-cells, demonstrated that the membrane targeting is a separate step from further changes that result in enzyme activation and substrate hydrolysis. Furthermore, we have defined the roles of different domains of PLCgamma2 and, using a panel of cell lines deficient in components linked to PLCgamma2 regulation, the involvement of signalling molecules with respect to each of the steps. We have found that only the lipid-raft-targeted Lyn-PLCgamma2 construct, unlike non-specific membrane targeting, overcame the requirement for the adapter protein BLNK (B-cell linker). The stable expression of Lyn-PLCgamma2 was not accompanied by an increase in substrate hydrolysis in resting cells, which followed stimulation and specifically required the presence and/or activation of Syk, Btk, phosphoinositide 3-kinase but not BLNK, as established using deficient cell lines or specific inhibitors. Based on mutational analysis of the specific tyrosine residues [Tyr753-->Phe (Y753F)/Y759F] and SH2 (Src homology 2) domains (R564A/R672A) in the context of Lyn-PLCgamma2, we found that Tyr753/Tyr759 were essential, whereas the PLCgamma2 SH2 domains did not have an important role in the transient activation of Lyn-PLCgamma2 but may serve to stabilize an activated form in sustained activation. PMID:12780340

  18. A novel mutation leading to a deletion in the SH3 domain of Bruton's tyrosine kinase.

    PubMed

    Mesci, Lütfiye; Ozdag, Hilal; Turul, Tuba; Ersoy, Fügen; Tezcan, Ilhan; Sanal, Ozden

    2006-01-01

    X-linked agammaglobulinemia (XLA) is a primary B cell immunodeficiency disorder, caused by a defect in the Bruton tyrosine kinase (BTK) gene. Here, we describe a novel four base pair mutation (838delGAGT) in intron 9 of the BTK gene leading to the skipping of exon 9 in a 2.5-year-old boy with this disorder.

  19. Plasmodium falciparum Choline Kinase Inhibition Leads to a Major Decrease in Phosphatidylethanolamine Causing Parasite Death

    PubMed Central

    Serrán-Aguilera, Lucía; Denton, Helen; Rubio-Ruiz, Belén; López-Gutiérrez, Borja; Entrena, Antonio; Izquierdo, Luis; Smith, Terry K.; Conejo-García, Ana; Hurtado-Guerrero, Ramon

    2016-01-01

    Malaria is a life-threatening disease caused by different species of the protozoan parasite Plasmodium, with P. falciparum being the deadliest. Increasing parasitic resistance to existing antimalarials makes the necessity of novel avenues to treat this disease an urgent priority. The enzymes responsible for the synthesis of phosphatidylcholine and phosphatidylethanolamine are attractive drug targets to treat malaria as their selective inhibition leads to an arrest of the parasite’s growth and cures malaria in a mouse model. We present here a detailed study that reveals a mode of action for two P. falciparum choline kinase inhibitors both in vitro and in vivo. The compounds present distinct binding modes to the choline/ethanolamine-binding site of P. falciparum choline kinase, reflecting different types of inhibition. Strikingly, these compounds primarily inhibit the ethanolamine kinase activity of the P. falciparum choline kinase, leading to a severe decrease in the phosphatidylethanolamine levels within P. falciparum, which explains the resulting growth phenotype and the parasites death. These studies provide an understanding of the mode of action, and act as a springboard for continued antimalarial development efforts selectively targeting P. falciparum choline kinase. PMID:27616047

  20. Dual role of SLP-76 in mediating T cell receptor-induced activation of phospholipase C-gamma1.

    PubMed

    Beach, Dvora; Gonen, Ronnie; Bogin, Yaron; Reischl, Ilona G; Yablonski, Deborah

    2007-02-02

    Phospholipase C-gamma1 (PLC-gamma1) activation depends on a heterotrimeric complex of adaptor proteins composed of LAT, Gads, and SLP-76. Upon T cell receptor stimulation, a portion of PLC-gamma1 is recruited to a detergent-resistant membrane fraction known as the glycosphingolipid-enriched membrane microdomains (GEMs), or lipid rafts, to which LAT is constitutively localized. In addition to LAT, PLC-gamma1 GEM recruitment depended on SLP-76, and, in particular, required the Gads-binding domain of SLP-76. The N-terminal tyrosine phosphorylation sites and P-I region of SLP-76 were not required for PLC-gamma1 GEM recruitment, but were required for PLC-gamma1 phosphorylation at Tyr(783). Thus, GEM recruitment can be insufficient for full activation of PLC-gamma1 in the absence of a second SLP-76-mediated event. Indeed, a GEM-targeted derivative of PLC-gamma1 depended on SLP-76 for T cell receptor-induced phosphorylation at Tyr783 and subsequent NFAT activation. On a biochemical level, SLP-76 inducibly associated with both Vav and catalytically active ITK, which efficiently phosphorylated a PLC-gamma1 fragment at Tyr783 in vitro. Both associations were disrupted upon mutation of the N-terminal tyrosine phosphorylation sites of SLP-76. The P-I region deletion disrupted Vav association and reduced SLP-76-associated kinase activity. A smaller deletion within the P-I region, which does not impair PLC-gamma1 activation, did not impair the association with Vav, but reduced SLP-76-associated kinase activity. These results provide new insight into the multiple roles of SLP-76 and the functional importance of its interactions with other signaling proteins.

  1. Identification of “Preferred” Human Kinase Inhibitors for Sleeping Sickness Lead Discovery. Are Some Kinases Better than Others for Inhibitor Repurposing?

    PubMed Central

    2016-01-01

    A kinase-targeting cell-based high-throughput screen (HTS) against Trypanosoma brucei was recently reported, and this screening set included the Published Kinase Inhibitor Set (PKIS). From the PKIS was identified 53 compounds with pEC50 ≥ 6. Utilizing the published data available for the PKIS, a statistical analysis of these active antiparasitic compounds was performed, allowing identification of a set of human kinases having inhibitors that show a high likelihood for blocking T. brucei cellular proliferation in vitro. This observation was confirmed by testing other established inhibitors of these human kinases and by mining past screening campaigns at GlaxoSmithKline. Overall, although the parasite targets of action are not known, inhibitors of this set of human kinases displayed an enhanced hit rate relative to a random kinase-targeting HTS campaign, suggesting that repurposing efforts should focus primarily on inhibitors of these specific human kinases. We therefore term this statistical analysis-driven approach “preferred lead repurposing”. PMID:26998514

  2. Inhibition of astroglia-induced endothelial differentiation by inorganic lead: a role for protein kinase C.

    PubMed Central

    Laterra, J; Bressler, J P; Indurti, R R; Belloni-Olivi, L; Goldstein, G W

    1992-01-01

    Microvascular endothelial function in developing brain is particularly sensitive to lead toxicity, and it has been hypothesized that this results from the modulation of protein kinase C (PKC) by lead. We examined the effects of inorganic lead on an in vitro model of central nervous system endothelial differentiation in which astroglial cells induce central nervous system endothelial cells to form capillary-like structures. Capillary-like structure formation within C6 astroglial-endothelial cocultures was inhibited by lead acetate with 50% maximal inhibition at 0.5 microM total lead. Inhibition was independent of effects on cell viability or growth. Under conditions that inhibited capillary-like structure formation, we found that lead increased membrane-associated PKC in both C6 astroglial and endothelial cells. Prolonged exposure of C6 cells to 5 microM lead for up to 16 h resulted in a time-dependent increase in membranous PKC as determined by immunoblot analysis. Membranous PKC increased after 5-h exposures to as little as 50 nM lead and was maximal at approximately 1 microM. Phorbol esters were used to determine whether PKC modulation was causally related to the inhibition of endothelial differentiation by lead. Phorbol 12-myristate 13-acetate (10 nM) inhibited capillary-like structure formation by 65 +/- 5%, whereas 4 alpha-phorbol 12,13-didecanoate was without effect. These findings suggest that inorganic lead induces cerebral microvessel dysfunction by interfering with PKC modulation in microvascular endothelial or perivascular astroglial cells. Images PMID:1438272

  3. Grb2 negatively regulates epidermal growth factor-induced phospholipase C-gamma1 activity through the direct interaction with tyrosine-phosphorylated phospholipase C-gamma1.

    PubMed

    Choi, Jang Hyun; Hong, Won-Pyo; Yun, Sanguk; Kim, Hyeon Soo; Lee, Jong-Ryul; Park, Jong Bae; Bae, Yun Soo; Ryu, Sung Ho; Suh, Pann-Ghill

    2005-10-01

    Phospholipase C-gamma1 (PLC-gamma1) plays pivotal roles in cellular growth and proliferation. Upon the stimulation of growth factors and hormones, PLC-gamma1 is rapidly phosphorylated at three known sites; Tyr771, Tyr783 and Tyr1254 and its enzymatic activity is up-regulated. In this study, we demonstrate for the first time that Grb2, an adaptor protein, specifically interacts with tyrosine-phosphorylated PLC-gamma1 at Tyr783. The association of Grb2 with PLC-gamma1 was induced by the treatment with epidermal growth factor (EGF). Replacement of Tyr783 with Phe completely blocked EGF-induced interaction of PLC-gamma1 with Grb2, indicating that tyrosine phosphorylation of PLC-gamma1 at Tyr783 is essential for the interaction with Grb2. Interestingly, the depletion of Grb2 from HEK-293 cells by RNA interference significantly enhanced increased EGF-induced PLC-gamma1 enzymatic activity and mobilization of the intracellular Ca2+, while it did not affect EGF-induced tyrosine phosphorylation of PLC-gamma1. Furthermore, overexpression of Grb2 inhibited PLC-gamma1 enzymatic activity. Taken together, these results suggest Grb2, in addition to its key function in signaling through Ras, may have a negatively regulatory role on EGF-induced PLC-gamma1 activation.

  4. Novel mutation in the PANK2 gene leads to pantothenate kinase-associated neurodegeneration in a Pakistani family.

    PubMed

    Saleheen, Danish; Ali, Tuba; Aly, Zarmeneh; Khealani, Bhojo; Frossard, Philippe M

    2007-10-01

    Pantothenate kinase-associated neurodegeneration is an autosomal-recessive disorder associated with the accumulation of iron in the basal ganglia. The disease presents with dystonia, rigidity, and gait impairment, leading to restriction of activities and loss of ambulation. The disorder is caused by defective iron metabolism associated with mutations in the PANK2 gene, which codes for the pantothenate kinase enzyme. We report on a mutation screen conducted in two siblings to establish a molecular diagnosis of the disease and a genetic test for the family.

  5. Identification of lead small molecule inhibitors of glycogen synthase kinase-3 beta using a fragment-linking strategy.

    PubMed

    Kim, Jinhee; Moon, Yonghoon; Hong, Sungwoo

    2016-12-01

    Glycogen synthase kinase-3 beta (GSK3β) kinase serves as a promising therapeutic target for the treatment of various human diseases, such as diabetes, obesity, and Alzheimer's disease. In this study, we report lead GSK3β inhibitors identified using a fragment-linking strategy. Through the systematic exploration, a six-atom chain unit bearing the rigid double bond was found to be a suitable linker connecting two fragments, which enables favorable contacts with backbone groups of residues in the pockets. As a consequence, potent GSK3β inhibitor 9i was found with IC50 values of 19nM. The binding mode analysis indicates that the activities of the inhibitors appear to be achieved by the establishment of multiple hydrogen bonds and hydrophobic interactions in the ATP-binding site of GSK3β. The good biochemical potencies and structural uniqueness of the inhibitors support consideration in the further study to optimize the biological activity.

  6. Disruption of TrkB-mediated phospholipase Cgamma signaling inhibits limbic epileptogenesis.

    PubMed

    He, Xiao Ping; Pan, Enhui; Sciarretta, Carla; Minichiello, Liliana; McNamara, James O

    2010-05-05

    The BDNF receptor, TrkB, is critical to limbic epileptogenesis, but the responsible downstream signaling pathways are unknown. We hypothesized that TrkB-dependent activation of phospholipase Cgamma1 (PLCgamma1) signaling is the key pathway and tested this in trkB(PLC/PLC) mice carrying a mutation (Y816F) that uncouples TrkB from PLCgamma1. Biochemical measures revealed activation of both TrkB and PLCgamma1 in hippocampi in the pilocarpine and kindling models in wild-type mice. PLCgamma1 activation was decreased in hippocampi isolated from trkB(PLC/PLC) compared with control mice. Epileptogenesis assessed by development of kindling was inhibited in trkB(PLC/PLC) compared with control mice. Long-term potentiation of the mossy fiber-CA3 pyramid synapse was impaired in slices of trkB(PLC/PLC) mice. We conclude that TrkB-dependent activation of PLCgamma1 signaling is an important molecular mechanism of limbic epileptogenesis. Elucidating signaling pathways activated by a cell membrane receptor in animal models of CNS disorders promises to reveal novel targets for specific and effective therapeutic intervention.

  7. Cbl competitively inhibits epidermal growth factor-induced activation of phospholipase C-gamma1.

    PubMed

    Choi, Jang Hyun; Bae, Sun Sik; Park, Jong Bae; Ha, Sang Hoon; Song, Hebok; Kim, Jae-Ho; Cocco, Lucio; Ryu, Sung Ho; Suh, Pann-Ghill

    2003-04-30

    Phospholipase C-gamma1 (PLC-gamma1) plays pivotal roles in cellular growth and proliferation through its two Src homology (SH) 2 domains and its single SH3 domain, which interact with signaling molecules in response to various growth factors and hormones. However, the role of the SH domains in the growth factor-induced regulation of PLC-gamma1 is unclear. By peptide-mass fingerprinting analysis we have identified Cbl as a binding protein for the SH3 domain of PLC-gamma1 from rat pheochromatocyte PC12 cells. Association of Cbl with PLC-gamma1 was induced by epidermal growth factor (EGF) but not by nerve growth factor (NGF). Upon EGF stimulation, both Cbl and PLC-gamma1 were recruited to the activated EGF receptor through their SH2 domains. Mutation of the SH2 domains of either Cbl or PLC-gamma1 abrogated the EGF-induced interaction of PLC-gamma1 with Cbl, indicating that SH2-mediated translocation is essential for the association of PLC-gamma1 and Cbl. Overexpression of Cbl attenuated EGF-induced tyrosine phosphorylation and the subsequent activation of PLC-gamma1 by interfering competitively with the interaction between PLC-gamma1 and EGFR. Taken together, these results provide the first indications that Cbl may be a negative regulator of intracellular signaling following EGF-induced PLC-gamma1 activation.

  8. Decay strength distributions in {sup 12}C({sup 12}C,{gamma}) radiative capture

    SciTech Connect

    Jenkins, D. G.; Fulton, B. R.; Marley, P.; Fox, S. P.; Glover, R.; Wadsworth, R.; Watson, D. L.; Courtin, S.; Haas, F.; Lebhertz, D.; Beck, C.; Papka, P.; Rousseau, M.; Sanchez i Zafra, A.; Hutcheon, D. A.; Davis, C.; Ottewell, D.; Pavan, M. M.; Pearson, J.; Ruiz, C.

    2007-10-15

    The heavy-ion radiative capture reaction, {sup 12}C({sup 12}C,{gamma}), has been investigated at energies both on- and off-resonance, with a particular focus on known resonances at E{sub c.m.}=6.0, 6.8, 7.5, and 8.0 MeV. Gamma rays detected in a BGO scintillator array were recorded in coincidence with {sup 24}Mg residues at the focal plane of the DRAGON recoil separator at TRIUMF. In this manner, the relative strength of all decay pathways through excited states up to the particle threshold could be examined for the first time. Isovector M1 transitions are found to be a important component of the radiative capture from the E{sub c.m.}=6.0 and 6.8 MeV resonances. Comparison with Monte Carlo simulations suggests that these resonances may have either J=0 or 2, with a preference for J=2. The higher energy resonances at E{sub c.m.}=7.5 and 8.0 MeV have a rather different decay pattern. The former is a clear candidate for a J=4 resonance, whereas the latter has a dominant J=4 character superposed on a J=2 resonant component underneath. The relationship between these resonances and the well-known quasimolecular resonances as well as resonances in breakup and electrofission of {sup 24}Mg into two {sup 12}C nuclei are discussed.

  9. Plesiomonas shigelloides Septic Shock Leading to Death of Postsplenectomy Patient with Pyruvate Kinase Deficiency and Hemochromatosis

    PubMed Central

    2016-01-01

    Although Plesiomonas shigelloides, a water-borne bacterium of the Enterobacteriaceae family, usually causes self-limiting gastroenteritis with diarrhea, several cases of sepsis have been reported. We report the case of a 43-year-old male patient with hemochromatosis, pyruvate kinase deficiency, and asplenia via splenectomy who developed septic shock caused by P. shigelloides complicated by respiratory failure, renal failure, liver failure, and disseminated intravascular coagulation. Early aggressive antimicrobial therapy and resuscitation measures were unsuccessful and the patient passed away. We kindly suggest clinicians to implement early diagnosis of septic shock, empirical coverage with antibiotics, and prompt volume resuscitation based on the high mortality rate of P. shigelloides bacteremia. PMID:27610253

  10. Homocysteine-NMDA receptor mediated activation of extracellular-signal regulated kinase leads to neuronal cell death

    PubMed Central

    Poddar, Ranjana; Paul, Surojit

    2009-01-01

    Hyper-homocysteinemia is an independent risk factor for stroke and neurological abnormalities. However the underlying cellular mechanisms by which elevated homocysteine can promote neuronal death is not clear. In the present study we have examined the role of NMDA receptor mediated activation of the extracellular-signal regulated mitogen activated protein (ERK MAP) kinase pathway in homocysteine-dependent neurotoxicity. The study demonstrates that in neurons L-homocysteine-induced cell death is mediated through activation of NMDA receptors. The study also shows that homocysteine-dependent NMDA receptor stimulation and resultant Ca2+ influx leads to rapid and sustained phosphorylation of ERK MAP kinase. Inhibition of ERK phosphorylation attenuates homocysteine mediated neuronal cell death thereby demonstrating that activation of ERK MAP kinase signaling pathway is an intermediate step that couples homocysteine mediated NMDA receptor stimulation to neuronal death. The findings also show that cAMP response-element binding protein (CREB), a pro-survival transcription factor and a downstream target of ERK, is only transiently activated following homocysteine exposure. The sustained activation of ERK but a transient activation of CREB together suggest that exposure to homocysteine initiates a feedback loop that shuts off CREB signaling without affecting ERK phosphorylation and thereby facilitates homocysteine mediated neurotoxicity. PMID:19508427

  11. Contrasting role of phospholipase C-{gamma}1 in the expression of immediate early genes induced by epidermal or platelet-derived growth factors

    SciTech Connect

    Liao Hongjun; Santos, Josue de los; Carpenter, Graham . E-mail: graham.carpenter@vanderbilt.edu

    2006-04-01

    While significant progress has been achieved in identifying the signal transduction elements that operate downstream of activated receptor tyrosine kinases, it remains unclear how different receptors utilize these signaling elements to achieve a common response. This study compares the capacity of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) to elicit the induction of immediate early gene (IEG) mRNAs in the presence or absence of phospholipase C-{gamma}1 (PLC-{gamma}1). The results show that while PDGF induction of nearly all IEG mRNAs is abrogated in plcg1 null cells, EGF induction of the same genes is variable in the null cells and exhibits three distinct responses. Five IEG mRNAs (Nup475, Cyr61, TF, Gly, TS7) are completely inducible by EGF in the presence or absence of PLC-{gamma}1, while three others (JE, KC, FIC) exhibit a stringent requirement for the presence of PLC-{gamma}1. The third type of response is exhibited by c-fos and COX-2. While these mRNAs are completely induced by EGF in the absence of PLC-{gamma}1, the time course of their accumulation is significantly delayed. No IEG was identified as completely inducible by EGF and PDGF in the absence of PLC-{gamma}1. Electrophoretic mobility shift assays (EMSA) demonstrate that PLC-{gamma}1 is necessary for nuclear extracts from PDGF-treated cells, but not EGF-treated cells, to interact with probes for AP-1 or NF-{kappa}B.

  12. The haem-regulated eukaryotic initiation factor 2alpha kinase: a molecular indicator of lead-toxicity anaemia in rabbits.

    PubMed

    Anand, Sanjay; Pal, Jayanta K

    2002-08-01

    The haem-regulated eukaryotic initiation factor 2alpha kinase, also called the haem-regulated inhibitor (HRI), has been shown to increase in the peripheral blood cells as a function of drug-induced anaemia in rabbits, suggesting that it could be a molecular indicator of drug-induced anaemia [Anand and Pal (1997) J. Biosci. 22, 287-298]. In the present investigation, we have determined the expression of HRI during lead-induced anaemia in rabbits. The level of anaemia has been determined by routine procedures such as reticulocyte count, haemoglobin content and packed cell volume. These values were compared with the results obtained for a quantitative Western blot of HRI in the blood cell lysates of drug- and lead-induced anaemic rabbits. These results indicate that HRI could be used as a molecular marker for lead-induced anaemia since a progressive increase in HRI levels could be detected as a function of the time of lead exposure. In order to understand the role of stress proteins, heat-shock protein (Hsp) 70 and Hsp90, in inducing anaemia during lead exposure, levels of Hsp70 and Hsp90, and their interaction with HRI, have been determined. Increased levels of these proteins and their intermolecular complexes with HRI suggest their role in regulating protein synthesis during lead-induced anaemia. These observations further reiterate the use of HRI as a potential indicator for drug- and heavy-metal-induced anaemia in humans.

  13. Mutations in BCKD-kinase Lead to a Potentially Treatable Form of Autism with Epilepsy

    PubMed Central

    Novarino, Gaia; El-Fishawy, Paul; Kayserili, Hulya; Meguid, Nagwa A.; Scott, Eric M.; Schroth, Jana; Silhavy, Jennifer L.; Kara, Majdi; Khalil, Rehab O.; Ben-Omran, Tawfeg; Ercan-Sencicek, A. Gulhan; Hashish, Adel F.; Sanders, Stephan J.; Gupta, Abha R.; Hashem, Hebatalla S.; Matern, Dietrich; Gabriel, Stacey; Sweetman, Larry; Rahimi, Yasmeen; Harris, Robert A.; State, Matthew W.; Gleeson, Joseph G.

    2013-01-01

    Autism spectrum disorders are a genetically heterogeneous constellation of syndromes characterized by impairments in reciprocal social interaction. Available somatic treatments have limited efficacy. We have identified inactivating mutations in the gene BCKDK (Branched Chain Ketoacid Dehydrogenase Kinase) in consanguineous families with autism, epilepsy, and intellectual disability. The encoded protein is responsible for phosphorylation-mediated inactivation of the E1α subunit of branched-chain ketoacid dehydrogenase (BCKDH). Patients with homozygous BCKDK mutations display reductions in BCKDK messenger RNA and protein, E1α phosphorylation, and plasma branched-chain amino acids. Bckdk knockout mice show abnormal brain amino acid profiles and neurobehavioral deficits that respond to dietary supplementation. Thus, autism presenting with intellectual disability and epilepsy caused by BCKDK mutations represents a potentially treatable syndrome. PMID:22956686

  14. A genetic variant of Aurora Kinase A promotes genomic instability leading to highly malignant skin tumors

    PubMed Central

    Torchia, Enrique C.; Chen, Yiyun; Sheng, Hong; Katayama, Hiroshi; Fitzpatrick, James; Brinkley, William R.; Sen, Subrata; Roop, Dennis R.

    2009-01-01

    Aurora Kinase A (Aurora-A) belongs to a highly conserved family of mitotis-regulating serine/threonine kinases implicated in epithelial cancers. Initially we examined Aurora-A expression levels at different stages of human skin cancer. Nuclear Aurora-A was detected in benign lesions, and became more diffused but broadly expressed in well and poorly differentiated SCC, indicating that Aurora-A deregulation may contribute to SCC development. To mimic the overexpression of Aurora-A observed in human skin cancers, we established a gene-switch (GS) mouse model in which the human variant of Aurora-A (Phe31Ile) was expressed in the epidermis upon topical application of the inducer, RU486 (Aurora-AGS). Overexpression of Aurora-A alone or in combination with the tumor promoter, TPA, did not result in SCC formation in Aurora-AGS mice. Moreover, Aurora-A overexpression in naive keratinocytes resulted in spindle defects in vitro and marked cell death in vivo, suggesting that the failure of Aurora-A to initiate tumorigenesis was due to induction of catastrophic cell death. However, Aurora-A overexpression combined with exposure to TPA and the mutagen, DMBA, accelerated SCC development with greater metastastic activity than control mice, indicating that Aurora-A cannot initiate skin carcinogenesis, but rather promotes the malignant conversion of skin papillomas. Further characterization of SCCs revealed centrosome amplification and genomic alterations by array CGH analysis, indicating that Aurora-A overexpression induces a high level of genomic instability that favors the development of aggressive and metastatic tumors. Our findings strongly implicate Aurora-A overexpression in the malignant progression of skin tumors and suggest that Aurora-Amay be an important therapeutic target. PMID:19738056

  15. Deficiency of pantothenate kinase 2 (Pank2) in mice leads to retinal degeneration and azoospermia.

    PubMed

    Kuo, Yien-Ming; Duncan, Jacque L; Westaway, Shawn K; Yang, Haidong; Nune, George; Xu, Eugene Yujun; Hayflick, Susan J; Gitschier, Jane

    2005-01-01

    Pantothenate kinase-associated neurodegeneration (PKAN, formerly known as Hallervorden-Spatz syndrome) is a rare but devastating neurodegenerative disorder, resulting from an inherited defect in coenzyme A biosynthesis. As pathology in the human condition is limited to the central nervous system, specifically the retina and globus pallidus, we have generated a mouse knock-out of the orthologous murine gene (Pank2) to enhance our understanding of the mechanisms of disease and to serve as a testing ground for therapies. Over time, the homozygous null mice manifest retinal degeneration, as evidenced by electroretinography, light microscopy and pupillometry response. Specifically, Pank2 mice show progressive photoreceptor decline, with significantly lower scotopic a- and b-wave amplitudes, decreased cell number and disruption of the outer segment and reduced pupillary constriction response when compared with those of wild-type littermates. Additionally, the homozygous male mutants are infertile due to azoospermia, a condition that was not appreciated in the human. Arrest occurs in spermiogenesis, with complete absence of elongated and mature spermatids. In contrast to the human, however, no changes were observed in the basal ganglia by MRI or by histological exam, nor were there signs of dystonia, even after following the mice for one year. Pank2 mice are 20% decreased in weight when compared with their wild-type littermates; however, dysphagia was not apparent. Immunohistochemistry shows staining consistent with localization of Pank2 to the mitochondria in both the retina and the spermatozoa.

  16. Disruption of glycogen synthase kinase-3-beta activity leads to abnormalities in physiological measures in mice.

    PubMed

    Ahnaou, A; Drinkenburg, W H I M

    2011-08-01

    Dysregulation of glycogen synthase kinase-3-beta (GSK-3β) signaling pathways is thought to underlie the pathophysiology of mood disorders. In order to demonstrate that the loss of normal GSK-3β activity results in disturbances of physiological measures, we attempted to determine whether sleep-wake architecture, circadian rhythms of core body temperature and activity were altered in transgenic mice overexpressing GSK-3β activity specifically in the brain. Cortical electroencephalographic activity, body temperature (BT) and body locomotor activity (LMA) were continuously monitored using a biopotential telemetry probe. Normal circadian patterns were maintained for different measurements in both genotypes. No differences were found in total time spent asleep and waking over the 24-h recording session. However, transgenic animals overexpressing GSK-3β showed alteration in sleep continuity characterized by an increases in number of non rapid eye movement (NREM) sleep episodes (GSK-3β, 227.2 ± 1.7 vs. WT, 172.6 ± 1.4, p < 0.05) and decreases in mean episode duration (GSK-3β, 3.0 ± 0.1 vs. WT, 4.4 ± 0.2, p < 0.05). Additionally, transgenic animals exhibited marked enhancement of basal LMA and BT levels during the first part of the dark period, under both light-dark and free running dark-dark circadian cycles. Our findings indicate that transgenic mice overexpressing GSK-3β activity exhibit severe fragmentation of sleep-wake cycle during both the light and dark periods, without showing deviancy in total durations of vigilance states. The results strongly suggest that GSK-3β activity is elemental for the maintenance of circadian motor behavior levels required for proper regulation of BT and sleep-wake organization.

  17. Phosphorylation of TRPV1 by cyclin-dependent kinase 5 promotes TRPV1 surface localization, leading to inflammatory thermal hyperalgesia.

    PubMed

    Liu, Jiao; Du, Junxie; Yang, Yanrui; Wang, Yun

    2015-11-01

    Cyclin-dependent kinase 5 (Cdk5) is an important serine/threonine kinase that plays critical roles in many physiological processes. Recently, Cdk5 has been reported to phosphorylate TRPV1 at threonine 407 (Thr-407) in humans (Thr-406 in rats), which enhances the function of TRPV1 channel and promotes thermal hyperalgesia in the complete Freund's adjuvant (CFA)-induced inflammatory pain rats. However, the underlying mechanisms are still unknown. Here, we demonstrate that Cdk5 phosphorylates TRPV1 at Threonine 406 and promotes the surface localization of TRPV1, leading to inflammatory thermal hyperalgesia. The mutation of Thr-406 of TRPV1 to alanine reduced the interaction of TRPV1 with the cytoskeletal elements and decreased the binding of TRPV1 with the motor protein KIF13B, which led to reduced surface distribution of TRPV1. Disrupting the phosphorylation of TRPV1 at Thr-406 dramatically reduced the surface level of TRPV1 in HEK 293 cells after transient expression and the channel function in cultured dorsal root ganglion (DRG) neurons. Notably, intrathecal administration of the interfering peptide against the phosphorylation of Thr-406 alleviated heat hyperalgesia and reduced the surface level of TRPV1 in inflammatory pain rats. Together, these results demonstrate that Cdk5-mediated phosphorylation of TRPV1 at Thr-406 increases the surface level and the function of TRPV1, while the TAT-T406 peptide can effectively attenuate thermal hyperalgesia. Our studies provide a potential therapy for inflammatory pain.

  18. 1,25 dihydroxyvitamin D3 stimulates phospholipase C-gamma in rat colonocytes: role of c-Src in PLC-gamma activation.

    PubMed Central

    Khare, S; Bolt, M J; Wali, R K; Skarosi, S F; Roy, H K; Niedziela, S; Scaglione-Sewell, B; Aquino, B; Abraham, C; Sitrin, M D; Brasitus, T A; Bissonnette, M

    1997-01-01

    Our laboratory has previously demonstrated that 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) rapidly stimulated polyphosphoinositide (PI) hydrolysis, raised intracellular Ca2+, and activated two Ca2+-dependent protein kinase C (PKC) isoforms, PKC-alpha and -betaII in the rat large intestine. We also showed that the direct addition of 1,25(OH)2D3 to isolated colonic membranes failed to stimulate PI hydrolysis, but required secosteroid treatment of intact colonocytes, suggesting the involvement of a soluble factor. Furthermore, this PI hydrolysis was restricted to the basal lateral plasma membrane of these cells. In the present studies, therefore, we examined whether polyphosphoinositide-phospholipase C-gamma (PI-PLC-gamma), a predominantly cytosolic isoform of PI-PLC, was involved in the hydrolysis of colonic membrane PI by 1,25(OH)2D3. This isoform has been shown to be activated and membrane-associated by tyrosine phosphorylation. We found that 1,25(OH)2D3 caused a significant increase in the biochemical activity, particulate association, and the tyrosine phosphorylation of PLC-gamma, specifically in the basal lateral membranes. This secosteroid also induced a twofold increase in the activity of Src, a proximate activator of PLC-gamma in other cells, with peaks at 1 and 9 min in association with Src tyrosine dephosphorylation. 1,25(OH)2D3 also increased the physical association of activated c-Src with PLC-gamma. In addition, Src isolated from colonocytes treated with 1,25(OH)2D3, demonstrated an increased ability to phosphorylate exogenous PLC-gamma in vitro. Inhibition of 1,25(OH)2D3-induced Src activation by PP1, a specific Src family protein tyrosine kinase inhibitor, blocked the ability of this secosteroid to stimulate the translocation and tyrosine phosphorylation of PLC-gamma in the basolateral membrane (BLM). Src activation was lost in D deficiency, and was reversibly restored with the in vivo repletion of 1,25(OH)2D3. These studies demonstrate for the first time

  19. Loss of cyclin-dependent kinase 5 from parvalbumin interneurons leads to hyperinhibition, decreased anxiety, and memory impairment.

    PubMed

    Rudenko, Andrii; Seo, Jinsoo; Hu, Ji; Su, Susan C; de Anda, Froylan Calderon; Durak, Omer; Ericsson, Maria; Carlén, Marie; Tsai, Li-Huei

    2015-02-11

    Perturbations in fast-spiking parvalbumin (PV) interneurons are hypothesized to be a major component of various neuropsychiatric disorders; however, the mechanisms regulating PV interneurons remain mostly unknown. Recently, cyclin-dependent kinase 5 (Cdk5) has been shown to function as a major regulator of synaptic plasticity. Here, we demonstrate that genetic ablation of Cdk5 in PV interneurons in mouse brain leads to an increase in GABAergic neurotransmission and impaired synaptic plasticity. PVCre;fCdk5 mice display a range of behavioral abnormalities, including decreased anxiety and memory impairment. Our results reveal a central role of Cdk5 expressed in PV interneurons in gating inhibitory neurotransmission and underscore the importance of such regulation during behavioral tasks. Our findings suggest that Cdk5 can be considered a promising therapeutic target in a variety of conditions attributed to inhibitory interneuronal dysfunction, such as epilepsy, anxiety disorders, and schizophrenia.

  20. New Chemical Scaffolds for Human African Trypanosomiasis Lead Discovery from a Screen of Tyrosine Kinase Inhibitor Drugs

    PubMed Central

    Behera, Ranjan; Thomas, Sarah M.

    2014-01-01

    Human African trypanosomiasis (HAT) is caused by the protozoan Trypanosoma brucei. New drugs are needed to treat HAT because of undesirable side effects and difficulties in the administration of the antiquated drugs that are currently used. In human proliferative diseases, protein tyrosine kinase (PTK) inhibitors (PTKIs) have been developed into drugs (e.g., lapatinib and erlotinib) by optimization of a 4-anilinoquinazoline scaffold. Two sets of facts raise a possibility that drugs targeted against human PTKs could be “hits” for antitrypanosomal lead discoveries. First, trypanosome protein kinases bind some drugs, namely, lapatinib, CI-1033, and AEE788. Second, the pan-PTK inhibitor tyrphostin A47 blocks the endocytosis of transferrin and inhibits trypanosome replication. Following up on these concepts, we performed a focused screen of various PTKI drugs as possible antitrypanosomal hits. Lapatinib, CI-1033, erlotinib, axitinib, sunitinib, PKI-166, and AEE788 inhibited the replication of bloodstream T. brucei, with a 50% growth inhibitory concentration (GI50) between 1.3 μM and 2.5 μM. Imatinib had no effect (i.e., GI50 > 10 μM). To discover leads among the drugs, a mouse model of HAT was used in a proof-of-concept study. Orally administered lapatinib reduced parasitemia, extended the survival of all treated mice, and cured the trypanosomal infection in 25% of the mice. CI-1033 and AEE788 reduced parasitemia and extended the survival of the infected mice. On the strength of these data and noting their oral bioavailabilities, we propose that the 4-anilinoquinazoline and pyrrolopyrimidine scaffolds of lapatinib, CI-1033, and AEE788 are worth optimizing against T. brucei in medicinal chemistry campaigns (i.e., scaffold repurposing) to discover new drugs against HAT. PMID:24468788

  1. New chemical scaffolds for human african trypanosomiasis lead discovery from a screen of tyrosine kinase inhibitor drugs.

    PubMed

    Behera, Ranjan; Thomas, Sarah M; Mensa-Wilmot, Kojo

    2014-01-01

    Human African trypanosomiasis (HAT) is caused by the protozoan Trypanosoma brucei. New drugs are needed to treat HAT because of undesirable side effects and difficulties in the administration of the antiquated drugs that are currently used. In human proliferative diseases, protein tyrosine kinase (PTK) inhibitors (PTKIs) have been developed into drugs (e.g., lapatinib and erlotinib) by optimization of a 4-anilinoquinazoline scaffold. Two sets of facts raise a possibility that drugs targeted against human PTKs could be "hits" for antitrypanosomal lead discoveries. First, trypanosome protein kinases bind some drugs, namely, lapatinib, CI-1033, and AEE788. Second, the pan-PTK inhibitor tyrphostin A47 blocks the endocytosis of transferrin and inhibits trypanosome replication. Following up on these concepts, we performed a focused screen of various PTKI drugs as possible antitrypanosomal hits. Lapatinib, CI-1033, erlotinib, axitinib, sunitinib, PKI-166, and AEE788 inhibited the replication of bloodstream T. brucei, with a 50% growth inhibitory concentration (GI50) between 1.3 μM and 2.5 μM. Imatinib had no effect (i.e., GI50>10 μM). To discover leads among the drugs, a mouse model of HAT was used in a proof-of-concept study. Orally administered lapatinib reduced parasitemia, extended the survival of all treated mice, and cured the trypanosomal infection in 25% of the mice. CI-1033 and AEE788 reduced parasitemia and extended the survival of the infected mice. On the strength of these data and noting their oral bioavailabilities, we propose that the 4-anilinoquinazoline and pyrrolopyrimidine scaffolds of lapatinib, CI-1033, and AEE788 are worth optimizing against T. brucei in medicinal chemistry campaigns (i.e., scaffold repurposing) to discover new drugs against HAT.

  2. Multitargeted drug development: Discovery and profiling of dihydroxy substituted 1-aza-9-oxafluorenes as lead compounds targeting Alzheimer disease relevant kinases.

    PubMed

    Tell, Volkmar; Holzer, Max; Herrmann, Lydia; Mahmoud, Kazem Ahmed; Schächtele, Christoph; Totzke, Frank; Hilgeroth, Andreas

    2012-11-15

    Alzheimer disease (AD) turned out to be a multifactorial process leading to neuronal decay. So far merely single target structures which attribute to the AD progression have been considered to develop specific drugs. However, such drug developments have been disappointing in clinical stages. Multitargeting of more than one target structure determines recent studies of developing novel lead compounds. Protein kinases have been identified to contribute to the neuronal decay with CDK1, GSK-3β and CDK5/p25 being involved in a pathological tau protein hyperphosphorylation. We discovered novel lead structures of the dihydroxy-1-aza-9-oxafluorene type with nanomolar activities against CDK1, GSK-3β and CDK5/p25. Structure-activity relationships (SAR) of the protein kinase inhibition are discussed within our first compound series. One nanomolar active compound profiled as selective protein kinase inhibitor. Bioanalysis of a harmless cellular toxicity and of the inhibition of tau protein phosphorylation qualifies the compound for further studies.

  3. Pressure overload stimulated cardiac hypertrophy leads to a rapid decrease in the mRNA for creatine kinase

    SciTech Connect

    Boheler, K.; Popovich, B.; Dillmann, W.H.

    1987-05-01

    Cardiac hypertrophy (CH) leads to a decrease in creatine kinase (CK) enzymatic activity. To determine if the mRNA for CK also decreases with CH, they performed the following studies. Cardiac RNA was isolated from rats subjected to either abdominal aortic stenosis (AS) or sham surgery. Through Northern blot analysis, total cardiac RNA was quantitated with a CK specific /sup 32/P-labelled cDNA clone. At 3 and 8 days post-constriction, the mRNA for CK decreases by 54.6 +/- 7% and 65.3 +/- 18% respectively, whereas the heart weight increases by 19% and 37% relative to controls. Further studies indicate that CK mRNA also decreases by 41.8% in hypothyroid rats (Tx) but decreases by a total of 68.1% in Tx rats subjected to 8 days of AS. Pressure overload stimulated CH leads to a rapid decrease in CK mRNA in normal and Tx rats. This CK mRNA decrease may account for the decreased efficiency of contraction seen in CH.

  4. Lead

    MedlinePlus

    ... Worker, or other abatement discipline Lead in drinking water Lead air pollution Test your child Check and maintain your home Find a Lead-Safe Certified firm Before you renovate Before you buy or rent a home built before 1978 Test your home's drinking water Test for lead in paint, dust or soil ...

  5. Inositol 5'-phosphatase, SHIP1 interacts with phospholipase C-gamma1 and modulates EGF-induced PLC activity.

    PubMed

    Song, Minseok; Kim, Myung Jong; Ha, Sanghoon; Park, Jong Bae; Ryu, Sung Ho; Suh, Pann-Ghill

    2005-06-30

    Phospholipase C-gamma1, containing two SH2 and one SH3 domains which participate in the interaction between signaling molecules, plays a significant role in the growth factor-induced signal transduction. However, the role of the SH domains in the growth factor-induced PLC-gamma1 regulation is unclear. By peptide-mass fingerprinting analysis, we have identified SHIP1 as the binding protein for the SH3 domain of PLC-gamma1. SHIP1 was co-immunoprecipitated with PLC-gamma1 and potentiated EGF-induced PLC-gamma1 activation. However, inositol 5'-phosphatase activity of SHIP1 was not required for the potentiation of EGF-induced PLC-gamma1 activation. Taken together, these results suggest that SHIP1 may function as an adaptor protein which can potentiate EGF-induced PLC-gamma1 activation without regards to its inositol 5'-phosphatase activity.

  6. Structure-based lead discovery for protein kinase C zeta inhibitor design by exploiting kinase-inhibitor complex crystal structure data and potential therapeutics for preterm labour.

    PubMed

    Shao, Qing-Chun; Zhang, Cui-Juan; Li, Jie

    2014-10-14

    The protein kinase C (PKC) is a family of serine/threonine kinases with a broad range of cellular targets. Members of the PKC family participate at the diverse biological events involved in cellular proliferation, differentiation and survival. The PKC isoform zeta (PKCζ) is an atypical member that has recently been found to play an essential role in promoting human uterine contractility and thus been raised as a new target for treating preterm labour and other tocolytic diseases. In this study, an integrative protocol was described to graft hundreds of inhibitor ligands from their complex crystal structures with cognate kinases into the active pocket of PKCζ and, based on the modeled structures, to evaluate the binding strength of these inhibitors to the non-cognate PKCζ receptor by using a consensus scoring strategy. A total of 32 inhibitors with top score were compiled, and eight out of them were tested for inhibitory potency against PKCζ. Consequently, five compounds, i.e. CDK6 inhibitor fisetin, PIM1 inhibitor myricetin, CDK9 inhibitor flavopiridol and PknB inhibitor mitoxantrone as well as the promiscuous kinase inhibitor staurosporine showed high or moderate inhibitory activity on PKCζ, with IC50 values of 58 ± 9, 1.7 ± 0.4, 108 ± 17, 280 ± 47 and 0.019 ± 0.004 μM, respectively, while other three compounds, including two marketed drugs dasatinib and sunitinib as well as the Rho inhibitor fasudil, have not been detected to possess observable activity. Next, based on the modeled structure data we modified three flavonoid kinase inhibitors, i.e. fisetin, myricetin and flavopiridol, to generate a number of more potential molecular entities, two of which were found to have a moderately improved activity as compared to their parent compounds.

  7. Phosphofructo-1-Kinase Deficiency Leads to a Severe Cardiac and Hematological Disorder in Addition to Skeletal Muscle Glycogenosis

    PubMed Central

    García, Miguel; Pujol, Anna; Ruzo, Albert; Riu, Efrén; Ruberte, Jesús; Arbós, Anna; Serafín, Anna; Albella, Beatriz; Felíu, Juan Emilio; Bosch, Fátima

    2009-01-01

    Mutations in the gene for muscle phosphofructo-1-kinase (PFKM), a key regulatory enzyme of glycolysis, cause Type VII glycogen storage disease (GSDVII). Clinical manifestations of the disease span from the severe infantile form, leading to death during childhood, to the classical form, which presents mainly with exercise intolerance. PFKM deficiency is considered as a skeletal muscle glycogenosis, but the relative contribution of altered glucose metabolism in other tissues to the pathogenesis of the disease is not fully understood. To elucidate this issue, we have generated mice deficient for PFKM (Pfkm−/−). Here, we show that Pfkm−/− mice had high lethality around weaning and reduced lifespan, because of the metabolic alterations. In skeletal muscle, including respiratory muscles, the lack of PFK activity blocked glycolysis and resulted in considerable glycogen storage and low ATP content. Although erythrocytes of Pfkm−/− mice preserved 50% of PFK activity, they showed strong reduction of 2,3-biphosphoglycerate concentrations and hemolysis, which was associated with compensatory reticulocytosis and splenomegaly. As a consequence of these haematological alterations, and of reduced PFK activity in the heart, Pfkm−/− mice developed cardiac hypertrophy with age. Taken together, these alterations resulted in muscle hypoxia and hypervascularization, impaired oxidative metabolism, fiber necrosis, and exercise intolerance. These results indicate that, in GSDVII, marked alterations in muscle bioenergetics and erythrocyte metabolism interact to produce a complex systemic disorder. Therefore, GSDVII is not simply a muscle glycogenosis, and Pfkm−/− mice constitute a unique model of GSDVII which may be useful for the design and assessment of new therapies. PMID:19696889

  8. Lead

    MedlinePlus

    ... ATSDR Board of Scientific Counselors Lead in the environment: Agency for Toxic Substances and Disease Registry (ATSDR) Federal partner agencies: Department of Housing and Urban Development (HUD) and U.S. Environmental Protection Agency (EPA) Data, ...

  9. Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen-activated protein kinase signalling pathway.

    PubMed Central

    Schulte, T W; Blagosklonny, M V; Romanova, L; Mushinski, J F; Monia, B P; Johnston, J F; Nguyen, P; Trepel, J; Neckers, L M

    1996-01-01

    The serine/threonine kinase Raf-1 functions downstream of Rats in a signal transduction cascade which transmits mitogenic stimuli from the plasma membrane to the nucleus. Raf-1 integrates signals coming from extracellular factors and, in turn, activates its substrate, MEK kinase. MEK activates mitogen-activated protein kinase (MAPK), which phosphorylates other kinases as well as transcription factors. Raf-1 exists in a complex with HSP90 and other proteins. The benzoquinone ansamycin geldanamycin (GA) binds to HSP90 and disrupts the Raf-1-HSP90 multimolecular complex, leading to destabilization of Raf-1. In this study, we examined whether Raf-1 destabilization is sufficient to block the Raf-1-MEK-MAPK signalling pathway and whether GA specifically inactivates the Raf-1 component of this pathway. Using the model system of NIH 3T3 cells stimulated with phorbol 12-myristate 13-acetate (PMA), we show that GA does not affect the ability of protein kinase C alpha to be activated by phorbol esters, but it does block activation of MEK and MAPK. Further, GA does not decrease the activity of constitutively active MEK in transiently transfected cells. Finally, disruption of the Raf-1-MEK-MAPK signalling pathway by GA prevents both the PMA-induced proliferative response and PMA-induced activation of a MAPK-sensitive nuclear transcription factor. Thus, we demonstrate that interaction between HSP90 and Raf-1 is a sine qua non for Raf stability and function as a signal transducer and that the effects observed cannot be attributed to a general impairment of protein kinase function. PMID:8816498

  10. The phosphoinositide 3-kinase inhibitor PI-103 downregulates choline kinase alpha leading to phosphocholine and total choline decrease detected by magnetic resonance spectroscopy.

    PubMed

    Al-Saffar, Nada M S; Jackson, L Elizabeth; Raynaud, Florence I; Clarke, Paul A; Ramírez de Molina, Ana; Lacal, Juan C; Workman, Paul; Leach, Martin O

    2010-07-01

    The phosphoinositide 3-kinase (PI3K) pathway is a major target for cancer drug development. PI-103 is an isoform-selective class I PI3K and mammalian target of rapamycin inhibitor. The aims of this work were as follows: first, to use magnetic resonance spectroscopy (MRS) to identify and develop a robust pharmacodynamic (PD) biomarker for target inhibition and potentially tumor response following PI3K inhibition; second, to evaluate mechanisms underlying the MRS-detected changes. Treatment of human PTEN null PC3 prostate and PIK3CA mutant HCT116 colon carcinoma cells with PI-103 resulted in a concentration- and time-dependent decrease in phosphocholine (PC) and total choline (tCho) levels (P < 0.05) detected by phosphorus ((31)P)- and proton ((1)H)-MRS. In contrast, the cytotoxic microtubule inhibitor docetaxel increased glycerophosphocholine and tCho levels in PC3 cells. PI-103-induced MRS changes were associated with alterations in the protein expression levels of regulatory enzymes involved in lipid metabolism, including choline kinase alpha (ChoK(alpha)), fatty acid synthase (FAS), and phosphorylated ATP-citrate lyase (pACL). However, a strong correlation (r(2) = 0.9, P = 0.009) was found only between PC concentrations and ChoK(alpha) expression but not with FAS or pACL. This study identified inhibition of ChoK(alpha) as a major cause of the observed change in PC levels following PI-103 treatment. We also showed the capacity of (1)H-MRS, a clinically well-established technique with higher sensitivity and wider applicability compared with (31)P-MRS, to assess response to PI-103. Our results show that monitoring the effects of PI3K inhibitors by MRS may provide a noninvasive PD biomarker for PI3K inhibition and potentially of tumor response during early-stage clinical trials with PI3K inhibitors.

  11. Discovery and optimization of pyrrolo[1,2-a]pyrazinones leads to novel and selective inhibitors of PIM kinases.

    PubMed

    Casuscelli, Francesco; Ardini, Elena; Avanzi, Nilla; Casale, Elena; Cervi, Giovanni; D'Anello, Matteo; Donati, Daniele; Faiardi, Daniela; Ferguson, Ronald D; Fogliatto, Gianpaolo; Galvani, Arturo; Marsiglio, Aurelio; Mirizzi, Danilo G; Montemartini, Marisa; Orrenius, Christian; Papeo, Gianluca; Piutti, Claudia; Salom, Barbara; Felder, Eduard R

    2013-12-01

    A novel series of PIM inhibitors was derived from a combined effort in natural product-inspired library generation and screening. The novel pyrrolo[1,2-a]pyrazinones initial hits are inhibitors of PIM isoforms with IC50 values in the low micromolar range. The application of a rational optimization strategy, guided by the determination of the crystal structure of the complex in the kinase domain of PIM1 with compound 1, led to the discovery of compound 15a, which is a potent PIM kinases inhibitor exhibiting excellent selectivity against a large panel of kinases, representative of each family. The synthesis, structure-activity relationship studies, and pharmacokinetic data of compounds from this inhibitor class are presented herein. Furthermore, the cellular activities including inhibition of cell growth and modulation of downstream targets are also described.

  12. The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Necrotrophic pathogens live and feed on dying tissue, but their interactions with plants are not well understood compared to biotrophic and hemibiotrophic pathogens. Here, we report the positional cloning of the wheat gene, Snn1, a member of the wall-associated kinase class of receptors, which are ...

  13. Phospholipase C-gamma1 potentiates integrin-dependent cell spreading and migration through Pyk2/paxillin activation.

    PubMed

    Choi, Jang Hyun; Yang, Yong-Ryoul; Lee, Seul Ki; Kim, Il-Shin; Ha, Sang Hoon; Kim, Eung-Kyun; Bae, Yun Soo; Ryu, Sung Ho; Suh, Pann-Ghill

    2007-08-01

    Phospholipase C-gamma1 (PLC-gamma1), which generates two second messengers, namely, inositol-1, 4, 5-trisphosphate and diacylglycerol, is implicated in growth factor-mediated chemotaxis. However, the exact role of PLC-gamma1 in integrin-mediated cell adhesion and migration remains poorly understood. In this study, we demonstrate that PLC-gamma1 is required for actin cytoskeletal organization and cell motility through the regulation of Pyk2 and paxillin activation. After fibronectin stimulation, PLC-gamma1 directly interacted with the cytoplasmic tail of integrin beta1. In PLC-gamma1-silenced cells, integrin-induced Pyk2 and paxillin phosphorylation were significantly reduced and PLC-gamma1 potentiated the integrin-induced Pyk2/paxillin activation in its enzymatic activity-dependent manner. In addition, specific knock-down of PLC-gamma1 resulted in a failure to form focal adhesions dependent on fibronectin stimulation, which appeared to be caused by the suppression of Pyk2 and paxillin phosphorylation. Interestingly, PLC-gamma1 potentiated the activations of Rac, thus integrin-induced lamellipodia formation was up-regulated. Consequently, the strength of cell-substratum interaction and cell motility were profoundly up-regulated by PLC-gamma1. Taken together, these results suggest that PLC-gamma1 is a key player in integrin-mediated cell spreading and motility achieved by the activation of Pyk2/paxillin/Rac signaling.

  14. Lead decreases cell survival, proliferation, and neuronal differentiation of primary cultured adult neural precursor cells through activation of the JNK and p38 MAP kinases

    PubMed Central

    Engstrom, Anna; Wang, Hao; Xia, Zhengui

    2015-01-01

    Adult hippocampal neurogenesis is the process whereby adult neural precursor cells (aNPCs) in the subgranular zone (SGZ) of the dentate gyrus (DG) generate adult-born, functional neurons in the hippocampus. This process is modulated by various extracellular and intracellular stimuli, and the adult-born neurons have been implicated in hippocampus-dependent learning and memory. However, studies on how neurotoxic agents affect this process and the underlying mechanisms are limited. The goal of this study was to determine whether lead, a heavy metal, directly impairs critical processes in adult neurogenesis and to characterize the underlying signaling pathways using primary cultured SGZ-aNPCs isolated from adult mice. We report here that lead significantly increases apoptosis and inhibits proliferation in SGZ-aNPCs. In addition, lead significantly impairs spontaneous neuronal differentiation and maturation. Furthermore, we found that activation of the c-Jun NH2-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase signaling pathways are important for lead cytotoxicity. Our data suggest that lead can directly act on adult neural stem cells and impair critical processes in adult hippocampal neurogenesis, which may contribute to its neurotoxicity and adverse effects on cognition in adults. PMID:25967738

  15. Screening and in situ synthesis using crystals of a NAD kinase lead to a potent antistaphylococcal compound.

    PubMed

    Gelin, Muriel; Poncet-Montange, Guillaume; Assairi, Liliane; Morellato, Laurence; Huteau, Valérie; Dugué, Laurence; Dussurget, Olivier; Pochet, Sylvie; Labesse, Gilles

    2012-06-06

    Making new ligands for a given protein by in situ ligation of building blocks (or fragments) is an attractive method. However, it suffers from inherent limitations, such as the limited number of available chemical reactions and the low information content of usual chemical library deconvolution. Here, we describe a focused screening of adenosine derivatives using X-ray crystallography. We discovered an unexpected and biocompatible chemical reactivity and have simultaneously identified the mode of binding of the resulting products. We observed that the NAD kinase from Listeria monocytogenes (LmNADK1) can promote amide formation between 5'-amino-5'-deoxyadenosine and carboxylic acid groups. This unexpected reactivity allowed us to bridge in situ two adenosine derivatives to fully occupy the active NAD site. This guided the design of a close analog showing micromolar inhibition of two human pathogenic NAD kinases and potent bactericidal activity against Staphylococcus aureus in vitro.

  16. p38 mitogen-activated protein kinase-dependent and -independent intracellular signal transduction pathways leading to apoptosis in human neutrophils.

    PubMed

    Frasch, S C; Nick, J A; Fadok, V A; Bratton, D L; Worthen, G S; Henson, P M

    1998-04-03

    Human neutrophils undergo apoptosis spontaneously when cultured in vitro; however, the signal transduction pathways involved remain largely unknown. In some cell types, c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase (MAPK) have been implicated in the pathways leading to stress-induced apoptosis. In this study, we begin to define two pathways leading to apoptosis in the neutrophil induced either by stress stimuli (UV, hyperosmolarity, sphingosine) or by anti-Fas antibody or overnight culture in vitro (spontaneous apoptosis). Apoptosis induced by stress stimuli activated p38 MAPK, and apoptosis was inhibited by the specific p38 MAPK inhibitor, 6-(4-Fluorophenyl)-2.3-dihydro-5-(4-puridinyl)imidazo(2, 1-beta)thiazole dihydrochloride. Furthermore, differentiation of HL-60 cells toward the neutrophil phenotype resulted in a loss in c-Jun NH2-terminal kinase activation with concomitant acquisition of formylmethionylleucylphenylalanine-stimulatable and stress-inducible p38 MAPK activity as well as apoptosis blockade by the p38 MAPK inhibitor. In contrast, anti-Fas-induced or spontaneous apoptosis occurred independent of p38 MAPK activation and was not blocked by the inhibitor. Both pathways appear to utilize member(s) of the caspase family, since pretreatment with either Val-Ala-Asp-fluoromethyl ketone or Asp-Glu-Val-Asp-fluoromethyl ketone inhibited apoptosis induced by each of the stimuli. We propose the presence of at least two pathways leading to apoptosis in human neutrophils, a stress-activated pathway that is dependent on p38 MAPK activation and an anti-FAS/spontaneous pathway that is p38 MAPK-independent.

  17. Altered Expression of PERK Receptor Kinases in Arabidopsis Leads to Changes in Growth and Floral Organ Formation

    PubMed Central

    Haffani, Yosr Z; Silva-Gagliardi, Nancy F; Sewter, Sarah K; Grace Aldea, May; Zhao, Zhiying; Nakhamchik, Alina; Cameron, Robin K

    2006-01-01

    The proline-rich, extensin-like receptor kinase (PERK) family is characterized by a putative extracellular domain related to cell wall proteins, followed by a transmembrane domain and kinase domain. The original member, PERK1, was isolated from Brassica napus (BnPERK1) and 15 PERK1-related members were subsequently identified in the Arabidopsis thaliana genome. Ectopic expression and antisense suppression studies were performed using the BnPERK1 cDNA under the control of the 35S CaMV constitutive promoter and introduced into Arabidopsis. In the case of antisense suppression, the BnPERK1 cDNA shared sufficient sequence similarity to suppress several members of the At PERK family. In both sets of transgenic Arabidopsis, several heritable changes in growth and development were observed. Antisense BnPERK1 transgenic Arabidopsis showed various growth defects including loss of apical dominance, increased secondary branching, and floral organ defects. In contrast, Arabidopsis plants ectopically expressing BnPERK1 displayed a prolonged lifespan with increased lateral shoot production and seed set. Along with these phenotypic changes, aberrant deposits of callose and cellulose were also observed, suggestive of cell wall changes as a consequence of altered PERK expression. PMID:19516986

  18. Glucose Starvation Alters Heat Shock Response, Leading to Death of Wild Type Cells and Survival of MAP Kinase Signaling Mutant.

    PubMed

    Plesofsky, Nora; Higgins, LeeAnn; Markowski, Todd; Brambl, Robert

    2016-01-01

    A moderate heat shock induces Neurospora crassa to synthesize large quantities of heat shock proteins that are protective against higher, otherwise lethal temperatures. However, wild type cells do not survive when carbohydrate deprivation is added to heat shock. In contrast, a mutant strain defective in a stress-activated protein kinase does survive the combined stresses. In order to understand the basis for this difference in survival, we have determined the relative levels of detected proteins in the mutant and wild type strain during dual stress, and we have identified gene transcripts in both strains whose quantities change in response to heat shock or dual stress. These data and supportive experimental evidence point to reasons for survival of the mutant strain. By using alternative respiratory mechanisms, these cells experience less of the oxidative stress that proves damaging to wild type cells. Of central importance, mutant cells recycle limited resources during dual stress by undergoing autophagy, a process that we find utilized by both wild type and mutant cells during heat shock. Evidence points to inappropriate activation of TORC1, the central metabolic regulator, in wild type cells during dual stress, based upon behavior of an additional signaling mutant and inhibitor studies.

  19. Glucose Starvation Alters Heat Shock Response, Leading to Death of Wild Type Cells and Survival of MAP Kinase Signaling Mutant

    PubMed Central

    Higgins, LeeAnn; Markowski, Todd; Brambl, Robert

    2016-01-01

    A moderate heat shock induces Neurospora crassa to synthesize large quantities of heat shock proteins that are protective against higher, otherwise lethal temperatures. However, wild type cells do not survive when carbohydrate deprivation is added to heat shock. In contrast, a mutant strain defective in a stress-activated protein kinase does survive the combined stresses. In order to understand the basis for this difference in survival, we have determined the relative levels of detected proteins in the mutant and wild type strain during dual stress, and we have identified gene transcripts in both strains whose quantities change in response to heat shock or dual stress. These data and supportive experimental evidence point to reasons for survival of the mutant strain. By using alternative respiratory mechanisms, these cells experience less of the oxidative stress that proves damaging to wild type cells. Of central importance, mutant cells recycle limited resources during dual stress by undergoing autophagy, a process that we find utilized by both wild type and mutant cells during heat shock. Evidence points to inappropriate activation of TORC1, the central metabolic regulator, in wild type cells during dual stress, based upon behavior of an additional signaling mutant and inhibitor studies. PMID:27870869

  20. Mutations in TBCK, Encoding TBC1-Domain-Containing Kinase, Lead to a Recognizable Syndrome of Intellectual Disability and Hypotonia

    PubMed Central

    Bhoj, Elizabeth J.; Li, Dong; Harr, Margaret; Edvardson, Shimon; Elpeleg, Orly; Chisholm, Elizabeth; Juusola, Jane; Douglas, Ganka; Guillen Sacoto, Maria J.; Siquier-Pernet, Karine; Saadi, Abdelkrim; Bole-Feysot, Christine; Nitschke, Patrick; Narravula, Alekhya; Walke, Maria; Horner, Michele B.; Day-Salvatore, Debra-Lynn; Jayakar, Parul; Vergano, Samantha A. Schrier; Tarnopolsky, Mark A.; Hegde, Madhuri; Colleaux, Laurence; Crino, Peter; Hakonarson, Hakon

    2016-01-01

    Through an international multi-center collaboration, 13 individuals from nine unrelated families and affected by likely pathogenic biallelic variants in TBC1-domain-containing kinase (TBCK) were identified through whole-exome sequencing. All affected individuals were found to share a core phenotype of intellectual disability and hypotonia, and many had seizures and showed brain atrophy and white-matter changes on neuroimaging. Minor non-specific facial dysmorphism was also noted in some individuals, including multiple older children who developed coarse features similar to those of storage disorders. TBCK has been shown to regulate the mammalian target of rapamycin (mTOR) signaling pathway, which is also stimulated by exogenous leucine supplementation. TBCK was absent in cells from affected individuals, and decreased phosphorylation of phospho-ribosomal protein S6 was also observed, a finding suggestive of downregulation of mTOR signaling. Lastly, we demonstrated that activation of the mTOR pathway in response to L-leucine supplementation was retained, suggesting a possible avenue for directed therapies for this condition. PMID:27040691

  1. Identification and in vitro evaluation of new leads as selective and competitive glycogen synthase kinase-3β inhibitors through ligand and structure based drug design.

    PubMed

    Darshit, B S; Balaji, B; Rani, P; Ramanathan, M

    2014-09-01

    Glycogen synthase kinase-3β elicits multi-functional effects on intracellular signaling pathways, thereby making the kinase a therapeutic target in multiple pathologies. Hence, it is important to selectively inhibit GSK-3β over structurally and biologically similar targets, such as CDK5. The current study was designed to identify and evaluate novel ATP-competitive GSK-3β inhibitors. The study was designed to identify new leads by ligand based drug design, structure based drug design and in vitro evaluation. The best validated pharmacophore model (AADRRR) identified using LBDD was derived from a dataset of 135 molecules. There were 357 primary hits within the SPECS database using this pharmacophore model. A SBDD approach to the GSK-3β and CDK5 proteins was applied to all primary hits, and 5 selective inhibitors were identified for GSK-3β. GSK-3β and CDK5 in vitro kinase inhibition assays were performed with these molecules to confirm their selectivity for GSK-3β. The molecules showed IC50 values ranging from 0.825μM to 1.116μM and were 23- to 57-fold selective for GSK-3β. Of all the molecules, molecule 3 had the lowest IC50 value of 0.825μM. Our research identified molecules possessing benzothiophene, isoquinoline, thiazolidinedione imidazo-isoquinoline and quinazolinone scaffolds. Potency of these molecules may be due to H-bond interaction with backbone residues of Val135, Asp133 and side chain interaction with Tyr134. Selectivity over CDK5 may be due to side chain interactions with Asp200, backbone of Val61, ionic interaction with Lys60 and π-cationic interaction with Arg141. These selective molecules were also exhibited small atom hydrophobicity and H-bond interaction with water molecule.

  2. Deregulation of vital mitotic kinase-phosphatase signaling in hematopoietic stem/progenitor compartment leads to cellular catastrophe in experimental aplastic anemia.

    PubMed

    Chatterjee, Ritam; Chattopadhyay, Sukalpa; Law, Sujata

    2016-11-01

    Aplastic anemia, the paradigm of bone marrow failure, is characterized by pancytopenic peripheral blood and hypoplastic bone marrow. Among various etiologies, inappropriate use of DNA alkylating drugs like cyclophosphamide and busulfan often causes the manifestation of the dreadful disease. Cell cycle impairment in marrow hematopoietic stem/progenitor compartment together with cellular apoptosis has been recognized as culpable factors behind aplastic pathophysiologies. However, the intricate molecular mechanisms remain unrevealed till date. In the present study, we have dealt with the mechanistic intervention of the disease by peripheral blood hemogram, bone marrow histopathology, cytopathology, hematopoietic kinetic study, scanning electron microscopy, DNA damage assessment and flowcytometric analysis of cellular proliferation and apoptosis in hematopoietic stem/progenitor cell (HSPC) rich marrow compartment using busulfan and cyclophosphamidemediated mouse model. To unveil the molecular mechanisms behind aplastic pathophysiology, we further investigated the role of some crucial mitotic and apoptotic regulators like Protein kinase-B (PKB), Gsk-3β, Cyclin-D1, PP2A, Cdc25c, Plk-1, Aurora kinase-A, Chk-1 regarding the hematopoietic catastrophe. Our observations revealed that the alteration of PKB-GSK-3β axis, Plk-1, and Aurora kinase-A expressions in HSPC compartment due to DNA damage response was associated with the proliferative impairment and apoptosis during aplastic anemia. The study established the correlation between the accumulation of DNA damage and alteration of the mentioned molecules in aplastic HSPCs that lead to the hematopoietic catastrophe. We anticipate that our findings will be beneficial for developing better therapeutic strategies for the dreadful disease concerned.

  3. High CO2 Leads to Na,K-ATPase Endocytosis via c-Jun Amino-Terminal Kinase-Induced LMO7b Phosphorylation

    PubMed Central

    Trejo Bittar, Humberto E.; Welch, Lynn C.; Vagin, Olga; Deiss-Yehiely, Nimrod; Kelly, Aileen M.; Baker, Mairead R.; Capri, Joseph; Cohn, Whitaker; Whitelegge, Julian P.; Vadász, István; Gruenbaum, Yosef; Sznajder, Jacob I.

    2015-01-01

    The c-Jun amino-terminal kinase (JNK) plays a role in inflammation, proliferation, apoptosis, and cell adhesion and cell migration by phosphorylating paxillin and β-catenin. JNK phosphorylation downstream of AMP-activated protein kinase (AMPK) activation is required for high CO2 (hypercapnia)-induced Na,K-ATPase endocytosis in alveolar epithelial cells. Here, we provide evidence that during hypercapnia, JNK promotes the phosphorylation of LMO7b, a scaffolding protein, in vitro and in intact cells. LMO7b phosphorylation was blocked by exposing the cells to the JNK inhibitor SP600125 and by infecting cells with dominant-negative JNK or AMPK adenovirus. The knockdown of the endogenous LMO7b or overexpression of mutated LMO7b with alanine substitutions of five potential JNK phosphorylation sites (LMO7b-5SA) or only Ser-1295 rescued both LMO7b phosphorylation and the hypercapnia-induced Na,K-ATPase endocytosis. Moreover, high CO2 promoted the colocalization and interaction of LMO7b and the Na,K-ATPase α1 subunit at the plasma membrane, which were prevented by SP600125 or by transfecting cells with LMO7b-5SA. Collectively, our data suggest that hypercapnia leads to JNK-induced LMO7b phosphorylation at Ser-1295, which facilitates the interaction of LMO7b with Na,K-ATPase at the plasma membrane promoting the endocytosis of Na,K-ATPase in alveolar epithelial cells. PMID:26370512

  4. High CO2 Leads to Na,K-ATPase Endocytosis via c-Jun Amino-Terminal Kinase-Induced LMO7b Phosphorylation.

    PubMed

    Dada, Laura A; Trejo Bittar, Humberto E; Welch, Lynn C; Vagin, Olga; Deiss-Yehiely, Nimrod; Kelly, Aileen M; Baker, Mairead R; Capri, Joseph; Cohn, Whitaker; Whitelegge, Julian P; Vadász, István; Gruenbaum, Yosef; Sznajder, Jacob I

    2015-12-01

    The c-Jun amino-terminal kinase (JNK) plays a role in inflammation, proliferation, apoptosis, and cell adhesion and cell migration by phosphorylating paxillin and β-catenin. JNK phosphorylation downstream of AMP-activated protein kinase (AMPK) activation is required for high CO2 (hypercapnia)-induced Na,K-ATPase endocytosis in alveolar epithelial cells. Here, we provide evidence that during hypercapnia, JNK promotes the phosphorylation of LMO7b, a scaffolding protein, in vitro and in intact cells. LMO7b phosphorylation was blocked by exposing the cells to the JNK inhibitor SP600125 and by infecting cells with dominant-negative JNK or AMPK adenovirus. The knockdown of the endogenous LMO7b or overexpression of mutated LMO7b with alanine substitutions of five potential JNK phosphorylation sites (LMO7b-5SA) or only Ser-1295 rescued both LMO7b phosphorylation and the hypercapnia-induced Na,K-ATPase endocytosis. Moreover, high CO2 promoted the colocalization and interaction of LMO7b and the Na,K-ATPase α1 subunit at the plasma membrane, which were prevented by SP600125 or by transfecting cells with LMO7b-5SA. Collectively, our data suggest that hypercapnia leads to JNK-induced LMO7b phosphorylation at Ser-1295, which facilitates the interaction of LMO7b with Na,K-ATPase at the plasma membrane promoting the endocytosis of Na,K-ATPase in alveolar epithelial cells.

  5. Structure-based discovery of inhibitors of the YycG histidine kinase: New chemical leads to combat Staphylococcus epidermidis infections

    PubMed Central

    Qin, Zhiqiang; Zhang, Jian; Xu, Bin; Chen, Lili; Wu, Yang; Yang, Xiaomei; Shen, Xu; Molin, Soeren; Danchin, Antoine; Jiang, Hualiang; Qu, Di

    2006-01-01

    Background Coagulase-negative Staphylococcus epidermidis has become a major frequent cause of infections in relation to the use of implanted medical devices. The pathogenicity of S. epidermidis has been attributed to its capacity to form biofilms on surfaces of medical devices, which greatly increases its resistance to many conventional antibiotics and often results in chronic infection. It has an urgent need to design novel antibiotics against staphylococci infections, especially those can kill cells embedded in biofilm. Results In this report, a series of novel inhibitors of the histidine kinase (HK) YycG protein of S. epidermidis were discovered first using structure-based virtual screening (SBVS) from a small molecular lead-compound library, followed by experimental validation. Of the 76 candidates derived by SBVS targeting of the homolog model of the YycG HATPase_c domain of S. epidermidis, seven compounds displayed significant activity in inhibiting S. epidermidis growth. Furthermore, five of them displayed bactericidal effects on both planktonic and biofilm cells of S. epidermidis. Except for one, the compounds were found to bind to the YycG protein and to inhibit its auto-phosphorylation in vitro, indicating that they are potential inhibitors of the YycG/YycF two-component system (TCS), which is essential in S. epidermidis. Importantly, all these compounds did not affect the stability of mammalian cells nor hemolytic activities at the concentrations used in our study. Conclusion These novel inhibitors of YycG histidine kinase thus are of potential value as leads for developing new antibiotics against infecting staphylococci. The structure-based virtual screening (SBVS) technology can be widely used in screening potential inhibitors of other bacterial TCSs, since it is more rapid and efficacious than traditional screening technology. PMID:17094812

  6. Kinase scaffold repurposing for neglected disease drug discovery: Discovery of an efficacious, lapatanib-derived lead compound for trypanosomiasis

    PubMed Central

    Patel, Gautam; Karver, Caitlin E.; Behera, Ranjan; Guyett, Paul; Sullenberger, Catherine; Edwards, Peter; Roncal, Norma E.; Mensa-Wilmot, Kojo; Pollastri, Michael P.

    2013-01-01

    Human African trypanosomiasis (HAT) is a neglected tropical disease caused by the protozoan parasite Trypanosoma brucei. Since drugs in use against HAT are toxic and require intravenous dosing, new drugs are needed. Initiating lead discovery campaigns by using chemical scaffolds from drugs approved for other indications can speed up drug discovery for neglected diseases. We demonstrated recently that the 4-anilinoquinazolines lapatinib (GW572016, 1) and canertinib (CI-1033) kill T. brucei with low micromolar EC50 values. We now report promising activity of analogs of 1, which provided an excellent starting point for optimization of the chemotype. We report our compound optimization that has led to synthesis of several potent 4-anilinoquinazolines, including NEU621, 23a, a highly potent, orally bioavailable inhibitor of trypanosome replication. At the cellular level, 23a blocks duplication of the kinetoplast and arrests cytokinesis, making it a new tool for studying regulation of the trypanosome cell cycle. PMID:23597080

  7. Kinase scaffold repurposing for neglected disease drug discovery: discovery of an efficacious, lapatinib-derived lead compound for trypanosomiasis.

    PubMed

    Patel, Gautam; Karver, Caitlin E; Behera, Ranjan; Guyett, Paul J; Sullenberger, Catherine; Edwards, Peter; Roncal, Norma E; Mensa-Wilmot, Kojo; Pollastri, Michael P

    2013-05-23

    Human African trypanosomiasis (HAT) is a neglected tropical disease caused by the protozoan parasite Trypanosoma brucei . Because drugs in use against HAT are toxic and require intravenous dosing, new drugs are needed. Initiating lead discovery campaigns by using chemical scaffolds from drugs approved for other indications can speed up drug discovery for neglected diseases. We demonstrated recently that the 4-anilinoquinazolines lapatinib (GW572016, 1) and canertinib (CI-1033) kill T. brucei with low micromolar EC50 values. We now report promising activity of analogues of 1, which provided an excellent starting point for optimization of the chemotype. Our compound optimization that has led to synthesis of several potent 4-anilinoquinazolines, including NEU617, 23a, a highly potent, orally bioavailable inhibitor of trypanosome replication. At the cellular level, 23a blocks duplication of the kinetoplast and arrests cytokinesis, making it a new chemical tool for studying regulation of the trypanosome cell cycle.

  8. Phospholipase Cgamma2 is critical for Dectin-1-mediated Ca2+ flux and cytokine production in dendritic cells.

    PubMed

    Xu, Shengli; Huo, Jianxin; Lee, Koon-Guan; Kurosaki, Tomohiro; Lam, Kong-Peng

    2009-03-13

    Dectin-1 is a C-type lectin that recognizes beta-glucan in the cell walls of fungi and plays an important role in anti-fungal immunity. It signals via tyrosine kinase Syk and adaptor protein Card9 to activate NF-kappaB leading to proinflammatory cytokine production in dendritic cells (DCs). Other than this, not much else is known of the mechanism of Dectin-1 signaling. We demonstrate here that stimulation of DCs with zymosan triggers an intracellular Ca2+ flux that can be attenuated by a blocking anti-Dectin-1 antibody or by pre-treatment of cells with the phospholipase C (PLC) gamma-inhibitor U73122, suggesting that Dectin-1 signals via a PLCgamma pathway to induce Ca2+ flux in DCs. Interestingly, treatment of DCs with particulate curdlan, which specifically engages Dectin-1, results in the phosphorylation of both PLCgamma1 and PLCgamma2. However, we show that PLCgamma2 is the critical enzyme for Dectin-1 signaling in DCs. PLCgamma2-deficient DCs have drastic impairment of Ca2+ signaling and are defective in their secretion of interleukin 2 (IL-2), IL-6, IL-10, IL-12, IL-23, and tumor necrosis factor alpha. PLCgamma2-deficient DCs also exhibit impaired activation of ERK and JNK MAPKs and AP-1 and NFAT transcription factors in response to Dectin-1 stimulation. In addition, PLCgamma2-deficient DCs are also impaired in their activation of NF-kappaB upon Dectin-1 engagement due to defective assembly of the Card9-Bcl10-Malt1 complex and impaired IKKalpha/beta activation and IkappaBalpha degradation. Thus, our data indicate that pattern recognition receptors such as Dectin-1 could elicit Ca2+ signaling and that PLCgamma2 is a critical player in the Dectin-1 signal transduction pathway.

  9. Reduction of brain barrier tight junctional proteins by lead exposure: role of activation of nonreceptor tyrosine kinase Src via chaperon GRP78.

    PubMed

    Song, Han; Zheng, Gang; Shen, Xue-Feng; Liu, Xin-Qin; Luo, Wen-Jing; Chen, Jing-Yuan

    2014-04-01

    Lead (Pb) has long been recognized as a neurodevelopmental toxin. Developing blood-brain barrier (BBB) is known to be a target of Pb neurotoxicity; however, the underlying mechanisms are still unclear. Recent evidence suggests that intracellular nonreceptor protein tyrosine kinase Src regulates tight junctional proteins (TJPs). This study was designed to investigate whether Pb acted on the Src-mediated cascade event leading to an altered TJP expression at BBB. Rats aged 20-22 days were exposed to Pb in drinking water (0, 100, 200, and 300 ppm Pb) for eight weeks. Electron microscopic and Western blot analyses revealed a severe leakage of BBB and significantly decreased expressions of TJP occludin and ZO-1. When cultured brain endothelial RBE4 cells were exposed to 10μM Pb for 24 h, expressions of phosphor-Src and an upstream regulator GRP78 were significantly increased by 6.42-fold and 8.29-fold (p < 0.01), respectively. Inactivation of Src pathway by a Src-specific inhibitor reversed Pb-induced downregulation of occludin, but not ZO-1; small interfering RNA knockdown of GRP78 attenuated Pb-induced Src phosphorylation and occludin reduction. Furthermore, Pb exposure caused redistribution of GRP78 from endoplasmic reticulum to cytosol and toward cell member. However, the data from immunoneutralization studies did not show the involvement of cell-surface GRP78 in regulating Src phosphorylation upon Pb exposure, suggesting that the cytosolic GRP78, rather than cell-surface GRP78, was responsible to Pb-induced Src activation and ensuing occludin reduction. Taken together, this study provides the evidence of a novel linkage of GRP78, Src activation to downregulation of occludin, and BBB disruption during Pb exposure.

  10. Establishment of a Structure–Activity Relationship of 1H-Imidazo[4,5-c]quinoline-Based Kinase Inhibitor NVP-BEZ235 as a Lead for African Sleeping Sickness

    PubMed Central

    2014-01-01

    Compound NVP-BEZ235 (1) is a potent inhibitor of human phospoinositide-3-kinases and mammalian target of rapamycin (mTOR) that also showed high inhibitory potency against Trypanosoma brucei cultures. With an eye toward using 1 as a starting point for anti-trypanosomal drug discovery, we report efforts to reduce host cell toxicity, to improve the physicochemical properties, and to improve the selectivity profile over human kinases. In this work, we have developed structure–activity relationships for analogues of 1 and have prepared analogues of 1 with improved solubility properties and good predicted central nervous system exposure. In this way, we have identified 4e, 9, 16e, and 16g as the most promising leads to date. We also report cell phenotype and phospholipidomic studies that suggest that these compounds exert their anti-trypanosomal effects, at least in part, by inhibition of lipid kinases. PMID:24805946

  11. Sustained Receptor Stimulation Leads to Sequestration of Recycling Endosomes in a Classical Protein Kinase C- and Phospholipase D-dependent Manner*

    PubMed Central

    Idkowiak-Baldys, Jolanta; Baldys, Aleksander; Raymond, John R.; Hannun, Yusuf A.

    2009-01-01

    Considerable insight has been garnered on initial mechanisms of endocytosis of plasma membrane proteins and their subsequent trafficking through the endosomal compartment. It is also well established that ligand stimulation of many plasma membrane receptors leads to their internalization. However, stimulus-induced regulation of endosomal trafficking has not received much attention. In previous studies, we showed that sustained stimulation of protein kinase C (PKC) with phorbol esters led to sequestration of recycling endosomes in a juxtanuclear region. In this study, we investigated whether G-protein-coupled receptors that activate PKC exerted effects on endosomal trafficking. Stimulation of cells with serotonin (5-hydroxytryptamine (5-HT)) led to sequestration of the 5-HT receptor (5-HT2AR) into a Rab11-positive juxtanuclear compartment. This sequestration coincided with translocation of PKC as shown by confocal microscopy. Mechanistically the observed sequestration of 5-HT2AR was shown to require continuous PKC activity because it was inhibited by pretreatment with classical PKC inhibitor Gö6976 and could be reversed by posttreatment with this inhibitor. In addition, classical PKC autophosphorylation was necessary for receptor sequestration. Moreover inhibition of phospholipase D (PLD) activity and inhibition of PLD1 and PLD2 using dominant negative constructs also prevented this process. Functionally this sequestration did not affect receptor desensitization or resensitization as measured by intracellular calcium increase. However, the PKC- and PLD-dependent sequestration of receptors resulted in co-sequestration of other plasma membrane proteins and receptors as shown for epidermal growth factor receptor and protease activated receptor-1. This led to heterologous desensitization of those receptors and diverted their cellular fate by protecting them from agonist-induced degradation. Taken together, these results demonstrate a novel role for sustained receptor

  12. Lead exposure and heat shock inhibit cell proliferation in human HeLa and K562 cells by inducing expression and activity of the heme-regulated eIF-2alpha kinase.

    PubMed

    Sarkar, Angshuman; Chattopadhyay, Samit; Kaul, Ruchika; Pal, Jayanta K

    2002-12-01

    We have used human cell lines, namely, K562 and HeLa cells as model systems in understanding the mechanism of lead toxicity and heat shock, that may be mediated by the heme-regulated eIF-2alpha kinase which is also called the heme-regulated inhibitor (HRI). RT-PCR analysis using HRI-specific primers indicated a two- to three-fold increase in HRI expression in K562 and HeLa cells exposed to lead acetate and heat shock, respectively. Further, in vitro eIF-2alpha kinase assay indicated a two- to three-fold increase in HRI kinase activity during lead toxicity in K562 cells. This increase in HRI expression and its activity was accompanied by a significant decrease in cell proliferation and cell viability. This is therefore, the first report indicating that both heavy metal exposure and heat shock cause inhibition of protein synthesis not by activation of HRI alone but by its over-expression as well as activation. Our data indicate further that lead-induced inhibition of cell proliferation may be caused due to inhibition of protein synthesis resulted due to induced expression and activity of HRI.

  13. Phospholipase C-gamma1 is a guanine nucleotide exchange factor for dynamin-1 and enhances dynamin-1-dependent epidermal growth factor receptor endocytosis.

    PubMed

    Choi, Jang Hyun; Park, Jong Bae; Bae, Sun Sik; Yun, Sanguk; Kim, Hyeon Soo; Hong, Won-Pyo; Kim, Il-Shin; Kim, Jae Ho; Han, Mi Young; Ryu, Sung Ho; Patterson, Randen L; Snyder, Solomon H; Suh, Pann-Ghill

    2004-08-01

    Phospholipase C-gamma1 (PLC-gamma1), which interacts with a variety of signaling molecules through its two Src homology (SH) 2 domains and a single SH3 domain has been implicated in the regulation of many cellular functions. We demonstrate that PLC-gamma1 acts as a guanine nucleotide exchange factor (GEF) of dynamin-1, a 100 kDa GTPase protein, which is involved in clathrin-mediated endocytosis of epidermal growth factor (EGF) receptor. Overexpression of PLC-gamma1 increases endocytosis of the EGF receptor by increasing guanine nucleotide exchange activity of dynamin-1. The GEF activity of PLC-gamma1 is mediated by the direct interaction of its SH3 domain with dynamin-1. EGF-dependent activation of ERK and serum response element (SRE) are both up-regulated in PC12 cells stably overexpressing PLC-gamma1, but knockdown of PLC-gamma1 by siRNA significantly reduces ERK activation. These results establish a new role for PLC-gamma1 in the regulation of endocytosis and suggest that endocytosis of activated EGF receptors may mediate PLC-gamma1-dependent proliferation.

  14. Mutation of the PDK1 PH Domain Inhibits Protein Kinase B/Akt, Leading to Small Size and Insulin Resistance▿ †

    PubMed Central

    Bayascas, Jose R.; Wullschleger, Stephan; Sakamoto, Kei; García-Martínez, Juan M.; Clacher, Carol; Komander, David; van Aalten, Daan M. F.; Boini, Krishna M.; Lang, Florian; Lipina, Christopher; Logie, Lisa; Sutherland, Calum; Chudek, John A.; van Diepen, Janna A.; Voshol, Peter J.; Lucocq, John M.; Alessi, Dario R.

    2008-01-01

    PDK1 activates a group of kinases, including protein kinase B (PKB)/Akt, p70 ribosomal S6 kinase (S6K), and serum and glucocorticoid-induced protein kinase (SGK), that mediate many of the effects of insulin as well as other agonists. PDK1 interacts with phosphoinositides through a pleckstrin homology (PH) domain. To study the role of this interaction, we generated knock-in mice expressing a mutant of PDK1 incapable of binding phosphoinositides. The knock-in mice are significantly small, insulin resistant, and hyperinsulinemic. Activation of PKB is markedly reduced in knock-in mice as a result of lower phosphorylation of PKB at Thr308, the residue phosphorylated by PDK1. This results in the inhibition of the downstream mTOR complex 1 and S6K1 signaling pathways. In contrast, activation of SGK1 or p90 ribosomal S6 kinase or stimulation of S6K1 induced by feeding is unaffected by the PDK1 PH domain mutation. These observations establish the importance of the PDK1-phosphoinositide interaction in enabling PKB to be efficiently activated with an animal model. Our findings reveal how reduced activation of PKB isoforms impinges on downstream signaling pathways, causing diminution of size as well as insulin resistance. PMID:18347057

  15. Inhibition of the focal adhesion kinase and vascular endothelial growth factor receptor-3 interaction leads to decreased survival in human neuroblastoma cell lines.

    PubMed

    Beierle, Elizabeth A; Ma, Xiaojie; Stewart, Jerry E; Megison, Michael; Cance, William G; Kurenova, Elena V

    2014-03-01

    Neuroblastoma continues to be a devastating childhood solid tumor and is responsible for over 15% of all childhood cancer-related deaths. Focal adhesion kinase (FAK) and vascular endothelial growth factor receptor-3 (VEGFR-3) are protein tyrosine kinases that are overexpressed in a number of human cancers, including neuroblastoma. These two kinases can directly interact and provide survival signals to cancer cells. In this study, we utilized siRNA to VEGFR-3 to demonstrate the biologic importance of this kinase in neuroblastoma cell survival. We also used confocal microscopy and immunoprecipitation to show that FAK and VEGFR-3 bind in neuroblastoma. Finally, employing a 12-amino-acid peptide (AV3) specific to VEGFR-3, we showed that the colocalization between FAK and VEGFR-3 could be disrupted, and that disruption resulted in decreased neuroblastoma cell survival. These studies provide insight to the FAK-VEGFR-3 interaction in neuroblastoma and demonstrate its importance in this tumor type. Focusing upon the FAK-VEGFR-3 interaction may provide a novel therapeutic target for the development of new strategies for treatment of neuroblastoma.

  16. Smad7 knockdown activates protein kinase RNA-associated eIF2α pathway leading to colon cancer cell death.

    PubMed

    De Simone, Veronica; Bevivino, Gerolamo; Sedda, Silvia; Izzo, Roberta; Laudisi, Federica; Dinallo, Vincenzo; Franzè, Eleonora; Colantoni, Alfredo; Ortenzi, Angela; Salvatori, Silvia; Rossi, Piero; Sica, Giuseppe S; Fantini, Massimo C; Stolfi, Carmine; Monteleone, Giovanni

    2017-03-16

    Upregulation of Smad7, an inhibitor of transforming growth factor-β1 (TGF-β1), occurs in sporadic colorectal cancer (CRC) and knockdown of Smad7 inhibits CRC cell growth, a phenomenon that associates with decreased expression of cell division cycle 25 homolog A and arrest of cells in the S phase of the cell cycle. These findings occur in CRC cells unresponsive to TGF-β1, thus suggesting the existence of a Smad7-mediated TGF-β1-independent mechanism that controls CRC cell behavior. Here we show that Smad7 inhibition with a specific Smad7 antisense oligonucleotide upregulates eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, a transcription factor involved in the regulation of cell cycle arrest and induction of cell death, and induces activating transcription factor 4 (ATF4) and CCAAT/enhancer binding protein homology protein (CHOP), two downstream targets of eIF2α. Among the upstream kinases that control eIF2α phosphorylation, the serine-threonine protein kinase RNA (PKR), but not general control non-derepressible 2 (GCN2) and protein kinase RNA-like endoplasmic reticulum kinase (PERK), is activated by Smad7 knockdown. PKR silencing abolishes Smad7 antisense-induced eIF2α phosphorylation and ATF4/CHOP induction, thereby preventing Smad7 antisense-driven cell death. Smad7 inhibition diminishes interaction of PKR with protein kinase inhibitor p58 (p58(IPK)), a cellular inhibitor of PKR, but does not change the expression and/or activity of other factors involved in the control of PKR activation. These findings delineate a novel mechanism by which Smad7 knockdown promotes CRC cell death.

  17. Restoration of SHIP activity in a human leukemia cell line downregulates constitutively activated phosphatidylinositol 3-kinase/Akt/GSK-3beta signaling and leads to an increased transit time through the G1 phase of the cell cycle.

    PubMed

    Horn, S; Endl, E; Fehse, B; Weck, M M; Mayr, G W; Jücker, M

    2004-11-01

    The inositol 5-phosphatase SHIP (SHIP-1) is a negative regulator of signal transduction in hematopoietic cells and targeted disruption of SHIP in mice leads to a myeloproliferative disorder. We analyzed the effects of SHIP on the human leukemia cell line Jurkat in which expression of endogenous SHIP protein is not detectable. Restoration of SHIP expression in Jurkat cells with an inducible expression system caused a 69% reduction of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) and a 65% reduction of Akt kinase activity, which was associated with reduced phosphorylation of glycogen synthase kinase 3beta (GSK-3beta) (Ser-9) without changing the phosphorylation of Bad (Ser-136), FKHR (Ser-256) or MAPK (Thr-202/Tyr-204). SHIP-expressing Jurkat cells showed an increased transit time through the G1 phase of the cell cycle, but SHIP did not cause a complete cell cycle arrest or apoptosis. Extension of the G1 phase was associated with an increased stability of the cell cycle inhibitor p27(Kip1) and reduced phosphorylation of the retinoblastoma protein Rb at serine residue 780. Our data indicate that restoration of SHIP activity in a human leukemia cell line, which has lost expression of endogenous SHIP, downregulates constitutively activated phosphatidylinositol 3-kinase/Akt/GSK-3beta signaling and leads to an increased transit time through the G1 phase of the cell cycle.

  18. T cell receptor-induced activation of phospholipase C-gamma1 depends on a sequence-independent function of the P-I region of SLP-76.

    PubMed

    Gonen, Ronnie; Beach, Dvora; Ainey, Carmit; Yablonski, Deborah

    2005-03-04

    SLP-76 forms part of a hematopoietic-specific adaptor protein complex, and is absolutely required for T cell development and activation. T cell receptor (TCR)-induced activation of phospholipase C-gamma1 (PLC-gamma1) depends on three features of SLP-76: the N-terminal tyrosine phosphorylation sites, the Gads-binding site, and an intervening sequence, denoted the P-I region, which binds to the SH3 domain of PLC-gamma1 (SH3(PLC)) via a low affinity interaction. Despite extensive research, the mechanism whereby SLP-76 regulates PLC-gamma1 remains uncertain. In this study, we uncover and explore an apparent paradox: whereas the P-I region as a whole is essential for TCR-induced activation of PLC-gamma1 and nuclear factor of activated T cells (NFAT), no particular part of this region is absolutely required. To better understand the contribution of the P-I region to PLC-gamma1 activation, we mapped the PLC-gamma1-binding site within the region, and created a SLP-76 mutant that fails to bind SH3(PLC), but is fully functional, mediating TCR-induced phosphorylation of PLC-gamma1 at tyrosine 783, calcium flux, and nuclear factor of activated T cells activation. Unexpectedly, full functionality of this mutant was maintained even under less than optimal stimulation conditions, such as a low concentration of the anti-TCR antibody. Another SLP-76 mutant, in which the P-I region was scrambled to abolish any sequence-dependent protein-binding motifs, also retained significant functionality. Our results demonstrate that SLP-76 need not interact with SH3(PLC) to activate PLC-gamma1, and further suggest that the P-I region of SLP-76 serves a structural role that is sequence-independent and is not directly related to protein-protein interactions.

  19. Regulation of CD3-induced phospholipase C-gamma 1 (PLC gamma 1) tyrosine phosphorylation by CD4 and CD45 receptors.

    PubMed Central

    Kanner, S B; Deans, J P; Ledbetter, J A

    1992-01-01

    Stimulation of the signal transduction cascade in T cells through the T-cell receptor (CD3) coincides with activation of the phosphatidylinositol-phospholipase C (PI-PLC) pathway. activation of phospholipase C-gamma 1 (PLC gamma 1) occurs through tyrosine phosphorylation in T cells following surface ligation of CD3 receptors with CD3-specific monoclonal antibodies (mAb). Here we show that cross-linking of CD4 molecules with CD3 augments the tyrosine phosphorylation of PLC gamma 1, while co-ligation of CD3 with CD45 (a receptor tyrosine phosphatase) results in reduced PLC gamma 1 tyrosine phosphorylation. Mobilization of intracellular calcium correlated with the extent of PLC gamma 1 tyrosine phosphorylation, indicating that PLC gamma 1 enzymatic activity in T cells may be regulated by its phosphorylation state. The time-course of PLC gamma 1 tyrosine phosphorylation in cells stimulated by soluble anti-CD3 was transient and closely paralleled that of calcium mobilization, while the kinetics in cells stimulated by immobilized anti-CD3 were prolonged. The PI-PLC pathway in T cells was not stimulated by tyrosine phosphorylation of PLC gamma 2, a homologue of PLC gamma 1, demonstrating the strict regulation of PLC gamma isoform usage in CD3-stimulated T cells. A 35,000/36,000 MW tyrosine phosphorylated protein in T cells formed stable complexes with PLC gamma 1, and its tyrosine phosphorylation was co-regulated with that of PLC gamma 1 by CD4 and CD45 receptors. Enzymatic activation and tyrosine phosphorylation of PLC gamma 1 occurs during growth factor stimulation of fibroblasts, where PLC gamma 1 exists in multi-component complexes. The observation that PLC gamma 1 exists in complexes with unique tyrosine phosphorylated proteins in T cells suggests that haematopoietic lineage-specific proteins associated with PLC gamma 1 may play roles in cellular signalling. Images Figure 1 Figure 4 PMID:1533389

  20. Ultra-deep sequencing leads to earlier and more sensitive detection of the tyrosine kinase inhibitor resistance mutation T315I in chronic myeloid leukemia

    PubMed Central

    Baer, Constance; Kern, Wolfgang; Koch, Sarah; Nadarajah, Niroshan; Schindela, Sonja; Meggendorfer, Manja; Haferlach, Claudia; Haferlach, Torsten

    2016-01-01

    Chronic myeloid leukemia cells acquire resistance to tyrosine kinase inhibitors through mutations in the ABL1 kinase domain. The T315I mutation mediates resistance to imatinib, dasatinib, nilotinib and bosutinib, whereas sensitivity to ponatinib remains. Mutation detection by conventional Sanger sequencing requires 10%–20% expansion of the mutated subclone. We studied the T315I mutation development by ultra-deep sequencing on the 454 XL+ platform (Roche) in comparison to Sanger sequencing. By ultra-deep sequencing, mutations were detected at loads of 1%–2%. We selected 40 patients who had failed first-line to third-line treatment (imatinib, dasatinib, nilotinib) and had high loads of the T315I mutation detected by Sanger sequencing. We confirmed T315I mutations by ultra-deep sequencing and investigated the mutation dynamics by backtracking earlier samples. In 20 of 40 patients, we identified the T315I three months (median) before Sanger sequencing detection limits were reached. To exclude sporadic low percentage mutation development without subsequent mutation outgrowth, we selected 42 patients without resistance mutations detected by Sanger sequencing but loss of major molecular response. Here, no mutation was detected by ultradeep sequencing. Additional non-T315I resistance mutations were found in 20 of 40 patients. Only 15% had two mutations per cell; the other cases showed multiple independently mutated clones and the T315I clone demonstrated a rapid outgrowth. In conclusion, T315I mutations could be detected earlier by ultra-deep sequencing compared to Sanger sequencing in a selected group of cases. Earlier mutation detection by ultra-deep sequencing might allow treatment to be changed before clonal increase of cells with the T315I mutation. PMID:27102501

  1. Ultra-deep sequencing leads to earlier and more sensitive detection of the tyrosine kinase inhibitor resistance mutation T315I in chronic myeloid leukemia.

    PubMed

    Baer, Constance; Kern, Wolfgang; Koch, Sarah; Nadarajah, Niroshan; Schindela, Sonja; Meggendorfer, Manja; Haferlach, Claudia; Haferlach, Torsten

    2016-07-01

    Chronic myeloid leukemia cells acquire resistance to tyrosine kinase inhibitors through mutations in the ABL1 kinase domain. The T315I mutation mediates resistance to imatinib, dasatinib, nilotinib and bosutinib, whereas sensitivity to ponatinib remains. Mutation detection by conventional Sanger sequencing requires 10%-20% expansion of the mutated subclone. We studied the T315I mutation development by ultra-deep sequencing on the 454 XL+ platform (Roche) in comparison to Sanger sequencing. By ultra-deep sequencing, mutations were detected at loads of 1%-2%. We selected 40 patients who had failed first-line to third-line treatment (imatinib, dasatinib, nilotinib) and had high loads of the T315I mutation detected by Sanger sequencing. We confirmed T315I mutations by ultra-deep sequencing and investigated the mutation dynamics by backtracking earlier samples. In 20 of 40 patients, we identified the T315I three months (median) before Sanger sequencing detection limits were reached. To exclude sporadic low percentage mutation development without subsequent mutation outgrowth, we selected 42 patients without resistance mutations detected by Sanger sequencing but loss of major molecular response. Here, no mutation was detected by ultradeep sequencing. Additional non-T315I resistance mutations were found in 20 of 40 patients. Only 15% had two mutations per cell; the other cases showed multiple independently mutated clones and the T315I clone demonstrated a rapid outgrowth. In conclusion, T315I mutations could be detected earlier by ultra-deep sequencing compared to Sanger sequencing in a selected group of cases. Earlier mutation detection by ultra-deep sequencing might allow treatment to be changed before clonal increase of cells with the T315I mutation.

  2. Genetics Home Reference: mevalonate kinase deficiency

    MedlinePlus

    ... shape, leading to a reduction of mevalonate kinase enzyme activity. Despite this shortage (deficiency) of mevalonate kinase activity, ... who have less than 1 percent of normal enzyme activity usually develop MVA. Learn more about the gene ...

  3. AMP-activated protein kinase activation leads to lysome-mediated NA(+)/I(-)-symporter protein degradation in rat thyroid cells.

    PubMed

    Cazarin, J M; Andrade, B M; Carvalho, D P

    2014-05-01

    Iodide uptake by thyroid cells is mediated by a transmembrane glycoprotein known as the Na+/I--symporter (NIS). NIS-mediated iodide uptake plays important physiological role in thyroid gland function, as well as in diagnostic and treatment of Graves' disease and thyroid cancer. Although different studies investigated the transcriptional mechanisms of NIS expression, there is no report on the NIS post-translational regulation related to NIS protein degradation in thyroid cells. Recently, our group showed that AMP-activated protein kinase (AMPK) plays a pivotal role in the rat thyroid gland, downregulating iodide uptake, NIS protein, and mRNA content. Since several studies demonstrated that AMPK regulates post-transcriptional mechanisms, such as autophagy-mediated processes in different tissues, we hypothesized that AMPK activation could also regulate NIS protein degradation through the lysosome pathway in thyroid cells. Rat follicular thyroid PCCL3 cells cultivated in Ham's F12 supplemented with 5% calf serum and hormones were exposed to the AMPK pharmacological activator 5-aminoimidazole-4 carboxamide ribonucleoside (AICAR), in the presence or absence of Bafilomycin A1 or MG132 for 24 h. Treatment of PCCL3 cells with Bafilomycin A1 fully prevented the decrease of iodide uptake and NIS protein content mediated by AMPK activation. In contrast, the treatment with MG132 was unable to prevent the effects of AMPK activation on NIS. Our results show that AMPK activation significantly induces NIS protein degradation through a lysosome-mediated mechanism.

  4. Tat engagement of p38 MAP kinase and IRF7 pathways leads to activation of interferon-stimulated genes in antigen-presenting cells.

    PubMed

    Kim, Nayoung; Kukkonen, Sami; Martinez-Viedma, Maria Del Pilar; Gupta, Sumeet; Aldovini, Anna

    2013-05-16

    As a result of its interaction with transcription factors, HIV type 1 (HIV-1) Tat can modulate the expression of both HIV and cellular genes. In antigen-presenting cells Tat induces the expression of a subset of interferon (IFN)-stimulated genes (ISGs) in the absence of IFNs. We investigated the genome-wide Tat association with promoters in immature dendritic cells and in monocyte-derived macrophages. Among others, Tat associated with the MAP2K6, MAP2K3, and IRF7 promoters that are functionally part of IL-1 and p38 mitogen-activated protein kinase (MAPK) signaling pathways. The association correlated with their increased gene expression, increased activation of p38 MAPK and of phosphorylated signal transducer and activator of transcription 1 (STAT1), and consequent induction of ISGs. Probing these pathways with RNA interference, pharmacological p38 MAPK inhibition, and in cell lines lacking STAT1s or the type I IFN receptor chain confirmed the role of MAPKKs and IRF7 in Tat-mediated modulation of ISGs and excluded the involvement of IFNs in this modulation. Tat interaction with the 2 MAPKK and IRF7 promoters in HIV-1-infected cells and the resulting persistent activation of ISGs, which include inflammatory cytokines and chemokines, can contribute to the increased immune activation that characterizes HIV infection.

  5. Phosphoinositide 3-kinase targeting by the β galactoside binding protein cytokine negates akt gene expression and leads aggressive breast cancer cells to apoptotic death

    PubMed Central

    Wells, Valerie; Mallucci, Livio

    2009-01-01

    Introduction Phosphoinositide 3-kinase (PI3K)-activated signalling has a critical role in the evolution of aggressive tumourigenesis and is therefore a prime target for anticancer therapy. Previously we have shown that the β galactoside binding protein (βGBP) cytokine, an antiproliferative molecule, induces functional inhibition of class 1A and class 1B PI3K. Here, we have investigated whether, by targeting PI3K, βGBP has therapeutic efficacy in aggressive breast cancer cells where strong mitogenic input is fuelled by overexpression of the ErbB2 (also known as HER/neu, for human epidermal growth factor receptor 2) oncoprotein receptor and have used immortalised ductal cells and non-aggressive mammary cancer cells, which express ErbB2 at low levels, as controls. Methods Aggressive BT474 and SKBR3 cancer cells where ErbB2 is overexpressed, MCF10A immortalised ductal cells and non-invasive MCF-7 cancer cells which express low levels of ErbB2, both in their naive state and when forced to mimic aggressive behaviour, were used. Class IA PI3K was immunoprecipitated and the conversion of phosphatidylinositol (4,5)-biphosphate (PIP2) to phosphatidylinositol (3,4,5)-trisphosphate (PIP3) assessed by ELISA. The consequences of PI3K inhibition by βGBP were analysed at proliferation level, by extracellular signal-regulated kinase (ERK) activation, by akt gene expression and by apoptosis. Apoptosis was documented by changes in mitochondrial membrane potential, alteration of the plasma membrane, caspase 3 activation and DNA fragmentation. Phosphorylated and total ERK were measured by Western blot analysis and akt mRNA levels by Northern blot analysis. The results obtained with the BT474 and SKBR3 cells were validated in the MCF10A ductal cells and in non-invasive MCF-7 breast cancer cells forced into mimicking the in vitro behaviour of the BT474 and SKBR3 cells. Results In aggressive breast cancer cells, where mitogenic signalling is enforced by the ErbB2 oncoprotein receptor

  6. Targeting mixed lineage kinases in ER-positive breast cancer cells leads to G2/M cell cycle arrest and apoptosis.

    PubMed

    Wang, Limin; Gallo, Kathleen A; Conrad, Susan E

    2013-08-01

    Estrogen receptor (ER)-positive tumors represent the most common type of breast cancer, and ER-targeted therapies such as antiestrogens and aromatase inhibitors have therefore been widely used in breast cancer treatment. While many patients have benefited from these therapies, both innate and acquired resistance continue to be causes of treatment failure. Novel targeted therapeutics that could be used alone or in combination with endocrine agents to treat resistant tumors or to prevent their development are therefore needed. In this report, we examined the effects of inhibiting mixed-lineage kinase (MLK) activity on ER-positive breast cancer cells and non-tumorigenic mammary epithelial cells. Inhibition of MLK activity with the pan-MLK inhibitor CEP-1347 blocked cell cycle progression in G2 and early M phase, and induced apoptosis in three ER-positive breast cancer cell lines, including one with acquired antiestrogen resistance. In contrast, it had no effect on the cell cycle or apoptosis in two non-tumorigenic mammary epithelial cell lines. CEP-1347 treatment did not decrease the level of active ERK or p38 in any of the cell lines tested. However, it resulted in decreased JNK and NF-κB activity in the breast cancer cell lines. A JNK inhibitor mimicked the effects of CEP-1347 in breast cancer cells, and overexpression of c-Jun rescued CEP-1347-induced Bax expression. These results indicate that proliferation and survival of ER-positive breast cancer cells are highly dependent on MLK activity, and suggest that MLK inhibitors may have therapeutic efficacy for ER-positive breast tumors, including ones that are resistant to current endocrine therapies.

  7. Dectin-1-mediated Signaling Leads to Characteristic Gene Expressions and Cytokine Secretion via Spleen Tyrosine Kinase (Syk) in Rat Mast Cells*

    PubMed Central

    Kimura, Yukihiro; Chihara, Kazuyasu; Honjoh, Chisato; Takeuchi, Kenji; Yamauchi, Shota; Yoshiki, Hatsumi; Fujieda, Shigeharu; Sada, Kiyonao

    2014-01-01

    Dectin-1 recognizes β-glucan and plays important roles for the antifungal immunity through the activation of spleen tyrosine kinase (Syk) in dendritic cells or macrophages. Recently, expression of Dectin-1 was also identified in human and mouse mast cells, although its physiological roles were largely unknown. In this report, rat mast cell line RBL-2H3 was analyzed to investigate the molecular mechanism of Dectin-1-mediated activation and responses of mast cells. Treatment of cells with Dectin-1-specific agonist curdlan induced tyrosine phosphorylation of cellular proteins and the interaction of Dectin-1 with the Src homology 2 domain of Syk. These responses depended on tyrosine phosphorylation of the hemi-immunoreceptor tyrosine-based activation motif in the cytoplasmic tail of Dectin-1, whereas they were independent of the γ-subunit of high-affinity IgE receptor. DNA microarray and real-time PCR analyses showed that Dectin-1-mediated signaling stimulated gene expression of transcription factor Nfkbiz and inflammatory cytokines, such as monocyte chemoattractant protein-1, IL-3, IL-4, IL-13, and tumor necrosis factor (TNF)-α. The response was abrogated by pretreatment with Syk inhibitor R406. These results suggest that Syk is critical for Dectin-1-mediated activation of mast cells, although the signaling differs from that triggered by FcϵRI activation. In addition, these gene expressions induced by curdlan stimulation were specifically observed in mast cells, suggesting that Dectin-1-mediated signaling of mast cells offers new insight into the antifungal immunity. PMID:25246527

  8. Chronic exposure to cigarette smoke leads to activation of p21 (RAC1)-activated kinase 6 (PAK6) in non-small cell lung cancer cells

    PubMed Central

    Syed, Nazia; Solanki, Hitendra S.; Puttamallesh, Vinuth N.; Balaji, Sai A.; Nanjappa, Vishalakshi; Datta, Keshava K.; Babu, Niraj; Renuse, Santosh; Patil, Arun H.; Izumchenko, Evgeny; Prasad, T.S. Keshava; Chang, Xiaofei; Rangarajan, Annapoorni; Sidransky, David; Pandey, Akhilesh; Gowda, Harsha; Chatterjee, Aditi

    2016-01-01

    Epidemiological data clearly establishes cigarette smoking as one of the major cause for lung cancer worldwide. Recently, targeted therapy has become one of the most preferred modes of treatment for cancer. Though certain targeted therapies such as anti-EGFR are in clinical practice, they have shown limited success in lung cancer patients who are smokers. This demands discovery of alternative drug targets through systematic investigation of cigarette smoke-induced signaling mechanisms. To study the signaling events activated in response to cigarette smoke, we carried out SILAC-based phosphoproteomic analysis of H358 lung cancer cells chronically exposed to cigarette smoke. We identified 1,812 phosphosites, of which 278 phosphosites were hyperphosphorylated (≥ 3-fold) in H358 cells chronically exposed to cigarette smoke. Our data revealed hyperphosphorylation of S560 within the conserved kinase domain of PAK6. Activation of PAK6 is associated with various processes in cancer including metastasis. Mechanistic studies revealed that inhibition of PAK6 led to reduction in cell proliferation, migration and invasion of the cigarette smoke treated cells. Further, siRNA mediated silencing of PAK6 resulted in decreased invasive abilities in a panel of non-small cell lung cancer (NSCLC) cells. Consistently, mice bearing tumor xenograft showed reduced tumor growth upon treatment with PF-3758309 (group II PAK inhibitor). Immunohistochemical analysis revealed overexpression of PAK6 in 66.6% (52/78) of NSCLC cases in tissue microarrays. Taken together, our study indicates that PAK6 is a promising novel therapeutic target for NSCLC, especially in smokers. PMID:27542207

  9. From a natural product lead to the identification of potent and selective benzofuran-3-yl-(indol-3-yl)maleimides as glycogen synthase kinase 3beta inhibitors that suppress proliferation and survival of pancreatic cancer cells.

    PubMed

    Gaisina, Irina N; Gallier, Franck; Ougolkov, Andrei V; Kim, Ki H; Kurome, Toru; Guo, Songpo; Holzle, Denise; Luchini, Doris N; Blond, Sylvie Y; Billadeau, Daniel D; Kozikowski, Alan P

    2009-04-09

    Recent studies have demonstrated that glycogen synthase kinase 3beta (GSK-3beta) is overexpressed in human colon and pancreatic carcinomas, contributing to cancer cell proliferation and survival. Here, we report the design, synthesis, and biological evaluation of benzofuran-3-yl-(indol-3-yl)maleimides, potent GSK-3beta inhibitors. Some of these compounds show picomolar inhibitory activity toward GSK-3beta and an enhanced selectivity against cyclin-dependent kinase 2 (CDK-2). Selected GSK-3beta inhibitors were tested in the pancreatic cancer cell lines MiaPaCa-2, BXPC-3, and HupT3. We determined that some of these compounds, namely compounds 5, 6, 11, 20, and 26, demonstrate antiproliferative activity against some or all of the pancreatic cancer cells at low micromolar to nanomolar concentrations. We found that the treatment of pancreatic cancer cells with GSK-3beta inhibitors 5 and 26 resulted in suppression of GSK-3beta activity and a distinct decrease of the X-linked inhibitor of apoptosis (XIAP) expression, leading to significant apoptosis. The present data suggest a possible role for GSK-3beta inhibitors in cancer therapy, in addition to their more prominent applications in CNS disorders.

  10. Redox Regulation of Protein Kinases

    PubMed Central

    Truong, Thu H.; Carroll, Kate S.

    2015-01-01

    Protein kinases represent one of the largest families of genes found in eukaryotes. Kinases mediate distinct cellular processes ranging from proliferation, differentiation, survival, and apoptosis. Ligand-mediated activation of receptor kinases can lead to the production of endogenous H2O2 by membrane-bound NADPH oxidases. In turn, H2O2 can be utilized as a secondary messenger in signal transduction pathways. This review presents an overview of the molecular mechanisms involved in redox regulation of protein kinases and its effects on signaling cascades. In the first half, we will focus primarily on receptor tyrosine kinases (RTKs), whereas the latter will concentrate on downstream non-receptor kinases involved in relaying stimulant response. Select examples from the literature are used to highlight the functional role of H2O2 regarding kinase activity, as well as the components involved in H2O2 production and regulation during cellular signaling. In addition, studies demonstrating direct modulation of protein kinases by H2O2 through cysteine oxidation will be emphasized. Identification of these redox-sensitive residues may help uncover signaling mechanisms conserved within kinase subfamilies. In some cases, these residues can even be exploited as targets for the development of new therapeutics. Continued efforts in this field will further basic understanding of kinase redox regulation, and delineate the mechanisms involved in physiologic and pathological H2O2 responses. PMID:23639002

  11. Structure based design of novel 6,5 heterobicyclic mitogen-activated protein kinase kinase (MEK) inhibitors leading to the discovery of imidazo[1,5-a] pyrazine G-479.

    PubMed

    Robarge, Kirk D; Lee, Wendy; Eigenbrot, Charles; Ultsch, Mark; Wiesmann, Christian; Heald, Robert; Price, Steve; Hewitt, Joanne; Jackson, Philip; Savy, Pascal; Burton, Brenda; Choo, Edna F; Pang, Jodie; Boggs, Jason; Yang, April; Yang, Xioaye; Baumgardner, Matthew

    2014-10-01

    Use of the tools of SBDD including crystallography led to the discovery of novel and potent 6,5 heterobicyclic MEKi's [J. Med. Chem.2012, 55, 4594]. The core change from a 5,6 heterobicycle to a 6,5 heterobicycle was driven by the desire for increased structural diversity and aided by the co-crystal structure of G-925 [J. Med. Chem.2012, 55, 4594]. The key design feature was the shift of the attachment of the five-membered heterocyclic ring towards the B ring while maintaining the key hydroxamate and anilino pharamcophoric elements in a remarkably similar position as in G-925. From modelling, changing the connection point of the five membered ring heterocycle placed the H-bond accepting nitrogen within a good distance and angle to the Ser212 [J. Med. Chem.2012, 55, 4594]. The resulting novel 6,5 benzoisothiazole MEKi G-155 exhibited improved potency versus aza-benzofurans G-925 and G-963 but was a potent inhibitor of cytochrome P450's 2C9 and 2C19. Lowering the logD by switching to the more polar imidazo[1,5-a] pyridine core significantly diminished 2C9/2C19 inhibition while retaining potency. The imidazo[1,5-a] pyridine G-868 exhibited increased potency versus the starting point for this work (aza-benzofuran G-925) leading to deprioritization of the azabenzofurans. The 6,5-imidazo[1,5-a] pyridine scaffold was further diversified by incorporating a nitrogen at the 7 position to give the imidazo[1,5-a] pyrazine scaffold. The introduction of the C7 nitrogen was driven by the desire to improve metabolic stability by blocking metabolism at the C7 and C8 positions (particularly the HLM stability). It was found that improving on G-868 (later renamed GDC-0623) required combining C7 nitrogen with a diol hydroxamate to give G-479. G-479 with polarity distributed throughout the molecule was improved over G-868 in many aspects.

  12. In Vitro Treatment of Human Monocytes/Macrophages with Myristoylated Recombinant Nef of Human Immunodeficiency Virus Type 1 Leads to the Activation of Mitogen-Activated Protein Kinases, IκB Kinases, and Interferon Regulatory Factor 3 and to the Release of Beta Interferon▿

    PubMed Central

    Mangino, Giorgio; Percario, Zulema A.; Fiorucci, Gianna; Vaccari, Gabriele; Manrique, Santiago; Romeo, Giovanna; Federico, Maurizio; Geyer, Matthias; Affabris, Elisabetta

    2007-01-01

    The viral protein Nef is a virulence factor that plays multiple roles during the early and late phases of human immunodeficiency virus (HIV) replication. Nef regulates the cell surface expression of critical proteins (including down-regulation of CD4 and major histocompatibility complex class I), T-cell receptor signaling, and apoptosis, inducing proapoptotic effects in uninfected bystander cells and antiapoptotic effects in infected cells. It has been proposed that Nef intersects the CD40 ligand signaling pathway in macrophages, leading to modification in the pattern of secreted factors that appear able to recruit and activate T lymphocytes, rendering them susceptible to HIV infection. There is also increasing evidence that in vitro cell treatment with Nef induces signaling effects. Exogenous Nef treatment is able to induce apoptosis in uninfected T cells, maturation in dendritic cells, and suppression of CD40-dependent immunoglobulin class switching in B cells. Previously, we reported that Nef treatment of primary human monocyte-derived macrophages (MDMs) induces a cycloheximide-independent activation of NF-κB and the synthesis and secretion of a set of chemokines/cytokines that activate STAT1 and STAT3. Here, we show that Nef treatment is capable of hijacking cellular signaling pathways, inducing a very rapid regulatory response in MDMs that is characterized by the rapid and transient phosphorylation of the α and β subunits of the IκB kinase complex and of JNK, ERK1/2, and p38 mitogen-activated protein kinase family members. In addition, we have observed the activation of interferon regulatory factor 3, leading to the synthesis of beta interferon mRNA and protein, which in turn induces STAT2 phosphorylation. All of these effects require Nef myristoylation. PMID:17182689

  13. Oncoprotein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2001-02-27

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  14. Platelet-derived growth factor triggers translocation of the insulin-regulatable glucose transporter (type 4) predominantly through phosphatidylinositol 3-kinase binding sites on the receptor.

    PubMed Central

    Kamohara, S; Hayashi, H; Todaka, M; Kanai, F; Ishii, K; Imanaka, T; Escobedo, J A; Williams, L T; Ebina, Y

    1995-01-01

    Insulin is the only known hormone which rapidly stimulates glucose uptake in target tissues, mainly by translocation to the cell surface of the intracellular insulin-regulatable glucose transporter (glucose transporter type 4, GLUT4). We have developed a cell line for direct, sensitive detection of GLUT4 on the cell surface. We have suggested that insulin-activated phosphatidylinositol (PI) 3-kinase may be involved in the signaling pathway of insulin-stimulated GLUT4 translocation. We report that platelet-derived growth factor (PDGF), which stimulates PI 3-kinase activity, triggers GLUT4 translocation in Chinese hamster ovary (CHO) cells stably overexpressing the PDGF receptor and in 3T3-L1 mouse adipocytes. Using mutant PDGF receptors that cannot bind to Ras-GTPase-activating protein, phospholipase C-gamma, and PI 3-kinase, respectively, we obtained evidence that PI 3-kinase binding sites play a key role in the signaling pathway of PDGF-stimulated GLUT4 translocation in the CHO cell system. Images Fig. 1 Fig. 4 PMID:7862637

  15. Small Molecule Reversible Inhibitors of Bruton’s Tyrosine Kinase (BTK): Structure–Activity Relationships Leading to the Identification of 7-(2-Hydroxypropan-2-yl)-4-[2-methyl-3-(4-oxo-3,4-dihydroquinazolin-3-yl)phenyl]-9 H -carbazole-1-carboxamide (BMS-935177)

    SciTech Connect

    De Lucca, George V.; Shi, Qing; Liu, Qingjie; Batt, Douglas G.; Beaudoin Bertrand, Myra; Rampulla, Rick; Mathur, Arvind; Discenza, Lorell; D’Arienzo, Celia; Dai, Jun; Obermeier, Mary; Vickery, Rodney; Zhang, Yingru; Yang, Zheng; Marathe, Punit; Tebben, Andrew J.; Muckelbauer, Jodi K.; Chang, ChiehYing J.; Zhang, Huiping; Gillooly, Kathleen; Taylor, Tracy; Pattoli, Mark A.; Skala, Stacey; Kukral, Daniel W.; McIntyre, Kim W.; Salter-Cid, Luisa; Fura, Aberra; Burke, James R.; Barrish, Joel C.; Carter, Percy H.; Tino, Joseph A.

    2016-09-08

    Bruton’s tyrosine kinase (BTK) belongs to the TEC family of nonreceptor tyrosine kinases and plays a critical role in multiple cell types responsible for numerous autoimmune diseases. This article will detail the structure–activity relationships (SARs) leading to a novel second generation series of potent and selective reversible carbazole inhibitors of BTK. With an excellent pharmacokinetic profile as well as demonstrated in vivo activity and an acceptable safety profile, 7-(2-hydroxypropan-2-yl)-4-[2-methyl-3-(4-oxo-3,4-dihydroquinazolin-3-yl)phenyl]-9H-carbazole-1-carboxamide 6 (BMS-935177) was selected to advance into clinical development.

  16. Aurora kinases: novel therapy targets in cancers.

    PubMed

    Tang, Anqun; Gao, Keyu; Chu, Laili; Zhang, Rui; Yang, Jing; Zheng, Junnian

    2017-01-29

    Aurora kinases, a family of serine/threonine kinases, consisting of Aurora A (AURKA), Aurora B (AURKB) and Aurora C (AURKC), are essential kinases for cell division via regulating mitosis especially the process of chromosomal segregation. Besides regulating mitosis, Aurora kinases have been implicated in regulating meiosis. The deletion of Aurora kinases could lead to failure of cell division and impair the embryonic development. Overexpression or gene amplification of Aurora kinases has been clarified in a number of cancers. And a growing number of studies have demonstrated that inhibition of Aurora kinases could potentiate the effect of chemotherapies. For the past decades, a series of Aurora kinases inhibitors (AKIs) developed effectively repress the progression and growth of many cancers both in vivo and in vitro, suggesting that Aurora kinases could be a novel therapeutic target. In this review, we'll first briefly present the structure, localization and physiological functions of Aurora kinases in mitosis, then describe the oncogenic role of Aurora kinases in tumorigenesis, we shall finally discuss the outcomes of AKIs combination with conventional therapy.

  17. Novel role for mitochondria: protein kinase Ctheta-dependent oxidative signaling organelles in activation-induced T-cell death.

    PubMed

    Kaminski, Marcin; Kiessling, Michael; Süss, Dorothee; Krammer, Peter H; Gülow, Karsten

    2007-05-01

    Reactive oxygen species (ROS) play a key role in regulation of activation-induced T-cell death (AICD) by induction of CD95L expression. However, the molecular source and the signaling steps necessary for ROS production are largely unknown. Here, we show that the proximal T-cell receptor-signaling machinery, including ZAP70 (zeta chain-associated protein kinase 70), LAT (linker of activated T cells), SLP76 (SH2 domain-containing leukocyte protein of 76 kDa), PLCgamma1 (phospholipase Cgamma1), and PKCtheta (protein kinase Ctheta), are crucial for ROS production. PKCtheta is translocated to the mitochondria. By using cells depleted of mitochondrial DNA, we identified the mitochondria as the source of activation-induced ROS. Inhibition of mitochondrial electron transport complex I assembly by small interfering RNA (siRNA)-mediated knockdown of the chaperone NDUFAF1 resulted in a block of ROS production. Complex I-derived ROS are converted into a hydrogen peroxide signal by the mitochondrial superoxide dismutase. This signal is essential for CD95L expression, as inhibition of complex I assembly by NDUFAF1-specific siRNA prevents AICD. Similar results were obtained when metformin, an antidiabetic drug and mild complex I inhibitor, was used. Thus, we demonstrate for the first time that PKCtheta-dependent ROS generation by mitochondrial complex I is essential for AICD.

  18. Intracellular signaling of the Ufo/Axl receptor tyrosine kinase is mediated mainly by a multi-substrate docking-site.

    PubMed

    Braunger, J; Schleithoff, L; Schulz, A S; Kessler, H; Lammers, R; Ullrich, A; Bartram, C R; Janssen, J W

    1997-06-05

    Ufo/Axl belongs to a new family of receptor tyrosine kinases with an extracellular structure similar to that of neural cell adhesion molecules. In order to elucidate intracellular signaling, the cytoplasmic moiety of Ufo/Axl was used to screen an expression library according to the CORT (cloning of receptor targets) method. Three putative Ufo substrates were identified: phospholipase Cgamma1 (PLCgamma), as well as p85alpha and p85beta subunits of phosphatidylinositol 3'-kinase (PI3-kinase). Subsequently, chimeric EGFR/Ufo receptors consisting of the extracellular domains of the epidermal growth factor receptor (EGFR) and the transmembrane and intracellular moiety of Ufo were engineered. Using different far-Western blot analyses and coimmunoprecipitation assays, receptor binding of PLCgamma and p85 proteins as well as GRB2, c-src and lck was examined in vitro and in vivo. Competitive inhibition of substrate binding and mutagenesis experiments with EGFR/Ufo constructs revealed C-terminal tyrosine 821 (EILpYVNMDEG) as a docking site for multiple effectors, namely PLCgamma, p85 proteins, GRB2, c-src and lck. Tyrosine 779 (DGLpYALMSRC) demonstrated an additional, but lower binding affinity for the p85 proteins in vitro. In addition, binding of PLCgamma occurred through tyrosine 866 (AGRpYVLCPST). Moreover, our in vivo data indicate that further direct or indirect binding sites for PLCgamma, GRB2, c-src and lck on the human Ufo receptor may exist.

  19. Identification of a phospholipase C-gamma1 (PLC-gamma1) SH3 domain-binding site in SLP-76 required for T-cell receptor-mediated activation of PLC-gamma1 and NFAT.

    PubMed

    Yablonski, D; Kadlecek, T; Weiss, A

    2001-07-01

    SLP-76 is an adapter protein required for T-cell receptor (TCR) signaling. In particular, TCR-induced tyrosine phosphorylation and activation of phospholipase C-gamma1 (PLC-gamma1), and the resultant TCR-inducible gene expression, depend on SLP-76. Nonetheless, the mechanisms by which SLP-76 mediates PLC-gamma1 activation are not well understood. We now demonstrate that SLP-76 directly interacts with the Src homology 3 (SH3) domain of PLC-gamma1. Structure-function analysis of SLP-76 revealed that each of the previously defined protein-protein interaction domains can be individually deleted without completely disrupting SLP-76 function. Additional deletion mutations revealed a new, 67-amino-acid functional domain within the proline-rich region of SLP-76, which we have termed the P-1 domain. The P-1 domain mediates a constitutive interaction of SLP-76 with the SH3 domain of PLC-gamma1 and is required for TCR-mediated activation of Erk, PLC-gamma1, and NFAT (nuclear factor of activated T cells). The adjacent Gads-binding domain of SLP-76, also within the proline-rich region, mediates inducible recruitment of SLP-76 to a PLC-gamma1-containing complex via the recruitment of both PLC-gamma1 and Gads to another cell-type-specific adapter, LAT. Thus, TCR-induced activation of PLC-gamma1 entails the binding of PLC-gamma1 to both LAT and SLP-76, a finding that may underlie the requirement for both LAT and SLP-76 to mediate the optimal activation of PLC-gamma1.

  20. Aurora kinase inhibitors as anticancer molecules.

    PubMed

    Katayama, Hiroshi; Sen, Subrata

    2010-01-01

    Aurora kinase family of serine/threonine kinases are important regulators of mitosis that are frequently over expressed in human cancers and have been implicated in oncogenic transformation including development of chromosomal instability in cancer cells. In humans, among the three members of the kinase family, Aurora-A, -B and -C, only Aurora-A and -B are expressed at detectable levels in all somatic cells undergoing mitotic cell division and have been characterized in greater detail for their involvement in cellular pathways relevant to the development of cancer associated phenotypes. Aurora-A and -B are being investigated as potential targets for anticancer therapy. Development of inhibitors against Aurora kinases as anticancer molecules gained attention because of the facts that aberrant expression of these kinases leads to chromosomal instability and derangement of multiple tumor suppressor and oncoprotein regulated pathways. Preclinical studies and early phase I and II clinical trials of multiple Aurora kinase inhibitors as targeted anticancer drugs have provided encouraging results. This article discusses functional involvement of Aurora kinase-A and -B in the regulation of cancer relevant cellular phenotypes together with findings on some of the better characterized Aurora kinase inhibitors in modulating the functional interactions of Aurora kinases. Future possibilities about developing next generation Aurora kinase inhibitors and their clinical utility as anticancer therapeutic drugs are also discussed.

  1. Aurora Kinase inhibitors as Anticancer Molecules

    PubMed Central

    Katayama, Hiroshi; Sen, Subrata

    2015-01-01

    Aurora kinase family of serine/threonine kinases are important regulators of mitosis that are frequently over expressed in human cancers and have been implicated in oncogenic transformation including development of chromosomal instability in cancer cells. In humans, among the three members of the kinase family, Aurora-A, -B and -C, only Aurora-A and -B are expressed in detectable levels in somatic cells undergoing mitotic cell division and have been characterized in greater detail for their involvement in cellular pathways relevant to the development of cancer associated phenotypes. Aurora-A and -B are being investigated as potential targets for anticancer therapy. Development of inhibitors against Aurora kinases as anticancer molecules gained attention because of the facts that aberrant expression of these kinases lead to chromosomal instability and derangement of multiple tumor suppressor and oncoprotein regulated pathways. Pre-clinical studies and early phase I and II clinical trials of multiple Aurora kinase inhibitors as targeted anticancer drugs have provided encouraging results. This article discusses functional involvement of Aurora kinase-A and -B in the regulation of cancer relevant cellular phenotypes together with findings on some of the better characterized Aurora kinase inhibitors in modulating the functional interactions of Aurora kinases. Future possibilities about developing next generation Aurora kinase inhibitors and their clinical utility as anticancer therapeutic drugs are also discussed. PMID:20863917

  2. The carboxy-terminal domains of erbB-2 and epidermal growth factor receptor exert different regulatory effects on intrinsic receptor tyrosine kinase function and transforming activity.

    PubMed Central

    Di Fiore, P P; Segatto, O; Lonardo, F; Fazioli, F; Pierce, J H; Aaronson, S A

    1990-01-01

    The erbB-2 gene product, gp185erbB-2, displays a potent transforming effect when overexpressed in NIH 3T3 cells. In addition, it possesses constitutively high levels of tyrosine kinase activity in the absence of exogenously added ligand. In this study, we demonstrate that its carboxy-terminal domain exerts an enhancing effect on erbB-2 kinase and transforming activities. A premature termination mutant of the erbB-2 protein, lacking the entire carboxy-terminal domain (erbB-2 delta 1050), showed a 40-fold reduction in transforming ability and a lowered in vivo kinase activity for intracellular substrates. When the carboxy-terminal domain of erbB-2 was substituted for its analogous region in the epidermal growth factor receptor (EGFR) (EGFR/erbB-2COOH chimera), it conferred erbB-2-like properties to the EGFR, including transforming ability in the absence of epidermal growth factor, elevated constitutive autokinase activity in vivo and in vitro, and constitutive ability to phosphorylate phospholipase C-gamma. Conversely, a chimeric erbB-2 molecule bearing an EGFR carboxy-terminal domain (erbB-2/EGFRCOOH chimera) showed reduced transforming and kinase activity with respect to the wild-type erbB-2 and was only slightly more efficient than the erbB-2 delta 1050 mutant. Thus, we conclude that the carboxy-terminal domains of erbB-2 and EGFR exert different regulatory effects on receptor kinase function and biological activity. The up regulation of gp185erbB-2 enzymatic activity exerted by its carboxy-terminal domain can explain, at least in part, its constitutive level of kinase activity. Images PMID:2188097

  3. LEADING WITH LEADING INDICATORS

    SciTech Connect

    PREVETTE, S.S.

    2005-01-27

    This paper documents Fluor Hanford's use of Leading Indicators, management leadership, and statistical methodology in order to improve safe performance of work. By applying these methods, Fluor Hanford achieved a significant reduction in injury rates in 2003 and 2004, and the improvement continues today. The integration of data, leadership, and teamwork pays off with improved safety performance and credibility with the customer. The use of Statistical Process Control, Pareto Charts, and Systems Thinking and their effect on management decisions and employee involvement are discussed. Included are practical examples of choosing leading indicators. A statistically based color coded dashboard presentation system methodology is provided. These tools, management theories and methods, coupled with involved leadership and employee efforts, directly led to significant improvements in worker safety and health, and environmental protection and restoration at one of the nation's largest nuclear cleanup sites.

  4. Kinase inhibitor profiling reveals unexpected opportunities to inhibit disease-associated mutant kinases

    PubMed Central

    Duong-Ly, Krisna C.; Devarajan, Karthik; Liang, Shuguang; Horiuchi, Kurumi Y.; Wang, Yuren; Ma, Haiching; Peterson, Jeffrey R.

    2016-01-01

    Summary Small-molecule kinase inhibitors have typically been designed to inhibit wild-type kinases rather than the mutant forms that frequently arise in diseases such as cancer. Mutations can have serious clinical implications by increasing kinase catalytic activity or conferring therapeutic resistance. To identify opportunities to repurpose inhibitors against disease-associated mutant kinases, we conducted a large-scale functional screen of 183 known kinase inhibitors against 76 recombinant, mutant kinases. The results revealed lead compounds with activity against clinically important mutant kinases including ALK, LRRK2, RET, and EGFR as well as unexpected opportunities for repurposing FDA-approved kinase inhibitors as leads for additional indications. Furthermore, using T674I PDGFRα as an example, we show how single-dose screening data can provide predictive structure-activity data to guide subsequent inhibitor optimization. This study provides a resource for the development of inhibitors against numerous disease-associated mutant kinases and illustrates the potential of unbiased profiling as an approach to compound-centric inhibitor development. PMID:26776524

  5. Palmitate-induced interleukin 6 production is mediated by protein kinase C and nuclear-factor kappaB activation and leads to glucose transporter 4 down-regulation in skeletal muscle cells.

    PubMed

    Jové, Mireia; Planavila, Anna; Laguna, Juan Carlos; Vázquez-Carrera, Manuel

    2005-07-01

    The mechanisms by which elevated levels of free fatty acids cause insulin resistance are not well understood. In addition, accumulating evidence suggests a link between inflammation and type 2 diabetes. Here, we report that exposure of C2C12 skeletal muscle cells to 0.5 mm palmitate results in increased mRNA levels (3.5-fold induction; P < 0.05) and secretion (control 375 +/- 57 vs. palmitate 1129 +/- 177 pg/ml; P < 0.001) of the proinflammatory cytokine IL-6. Palmitate increased nuclear factor-kappaB activation and coincubation of the cells with palmitate and the nuclear factor-kappaB inhibitor pyrrolidine dithiocarbamate prevented both IL-6 expression and secretion. Furthermore, incubation of palmitate-treated cells with calphostin C, a strong and specific inhibitor of protein kinase C, and phorbol myristate acetate, that down-regulates protein kinase C in long-term incubations, abolished induction of IL-6 production. Finally, exposure of skeletal muscle cells to palmitate caused a fall in the mRNA levels of glucose transporter 4 and insulin-stimulated glucose uptake, whereas in the presence of anti-IL-6 antibody, which neutralizes the biological activity of mouse IL-6 in cell culture, these reductions were prevented. These findings suggest that IL-6 may mediate several of the prodiabetic effects of palmitate.

  6. Bacteroides fragilis Enterotoxin Upregulates Heme Oxygenase-1 in Intestinal Epithelial Cells via a Mitogen-Activated Protein Kinase- and NF-κB-Dependent Pathway, Leading to Modulation of Apoptosis

    PubMed Central

    Ko, Su Hyuk; Rho, Da Jeong; Jeon, Jong Ik; Kim, Young-Jeon; Woo, Hyun Ae; Lee, Yun Kyung

    2016-01-01

    The Bacteroides fragilis enterotoxin (BFT), a virulence factor of enterotoxigenic B. fragilis (ETBF), interacts with intestinal epithelial cells and can provoke signals that induce mucosal inflammation. Although expression of heme oxygenase-1 (HO-1) is associated with regulation of inflammatory responses, little is known about HO-1 induction in ETBF infection. This study was conducted to investigate the effect of BFT on HO-1 expression in intestinal epithelial cells. Stimulation of intestinal epithelial cells with BFT resulted in upregulated expression of HO-1. BFT activated transcription factors such as NF-κB, AP-1, and Nrf2 in intestinal epithelial cells. Upregulation of HO-1 in intestinal epithelial cells was dependent on activated IκB kinase (IKK)–NF-κB signals. However, suppression of Nrf2 or AP-1 signals in intestinal epithelial cells did not result in significant attenuation of BFT-induced HO-1 expression. HO-1 induction via IKK–NF-κB in intestinal epithelial cells was regulated by p38 mitogen-activated protein kinases (MAPKs). Furthermore, suppression of HO-1 activity led to increased apoptosis in BFT-stimulated epithelial cells. These results suggest that a signaling pathway involving p38 MAPK–IKK–NF-κB in intestinal epithelial cells is required for HO-1 induction during exposure to BFT. Following this induction, increased HO-1 expression may regulate the apoptotic process in responses to BFT stimulation. PMID:27324483

  7. Teaching resources. Protein kinases.

    PubMed

    Caplan, Avrom

    2005-02-22

    This Teaching Resource provides lecture notes and slides for a class covering the structure and function of protein kinases and is part of the course "Cell Signaling Systems: A Course for Graduate Students." The lecture begins with a discussion of the genomics and evolutionary relationships among kinases and then proceeds to describe the structure-function relationships of specific kinases, the molecular mechanisms underlying substrate specificity, and selected issues in regulation of kinase activity.

  8. Two Kinase Family Dramas

    PubMed Central

    Leonard, Thomas A.; Hurley, James H.

    2007-01-01

    In this issue, Lietha and colleagues (2007) report the structure of focal adhesion kinase (FAK) and reveal how FAK maintains an autoinhibited state. Together with the structure of another tyrosine kinase, ZAP-70 (Deindl et al., 2007), this work highlights the diversity of mechanisms that nature has evolved within the kinase superfamily to regulate their activity through autoinhibition. PMID:17574014

  9. Targeting cancer with small-molecular-weight kinase inhibitors.

    PubMed

    Fabbro, Doriano; Cowan-Jacob, Sandra W; Möbitz, Henrik; Martiny-Baron, Georg

    2012-01-01

    Protein and lipid kinases fulfill essential roles in many signaling pathways that regulate normal cell functions. Deregulation of these kinase activities lead to a variety of pathologies ranging from cancer to inflammatory diseases, diabetes, infectious diseases, cardiovascular disorders, cell growth and survival. 518 protein kinases and about 20 lipid-modifying kinases are encoded by the human genome, and a much larger proportion of additional kinases are present in parasite, bacterial, fungal, and viral genomes that are susceptible to exploitation as drug targets. Since many human diseases result from overactivation of protein and lipid kinases due to mutations and/or overexpression, this enzyme class represents an important target for the pharmaceutical industry. Approximately one third of all protein targets under investigation in the pharmaceutical industry are protein or lipid kinases.The kinase inhibitors that have been launched, thus far, are mainly in oncology indications and are directed against a handful of protein and lipid kinases. With one exception, all of these registered kinase inhibitors are directed toward the ATP-site and display different selectivities, potencies, and pharmacokinetic properties. At present, about 150 kinase-targeted drugs are in clinical development and many more in various stages of preclinical development. Kinase inhibitor drugs that are in clinical trials target all stages of signal transduction from the receptor protein tyrosine kinases that initiate intracellular signaling, through second-messenger-dependent lipid and protein kinases, and protein kinases that regulate the cell cycle.This review provides an insight into protein and lipid kinase drug discovery with respect to achievements, binding modes of inhibitors, and novel avenues for the generation of second-generation kinase inhibitors to treat cancers.

  10. Mnk kinase pathway: Cellular functions and biological outcomes

    PubMed Central

    Joshi, Sonali; Platanias, Leonidas C

    2014-01-01

    The mitogen-activated protein kinase (MAPK) interacting protein kinases 1 and 2 (Mnk1 and Mnk2) play important roles in controlling signals involved in mRNA translation. In addition to the MAPKs (p38 or Erk), multiple studies suggest that the Mnk kinases can be regulated by other known kinases such as Pak2 and/or other unidentified kinases by phosphorylation of residues distinct from the sites phosphorylated by the MAPKs. Several studies have established multiple Mnk protein targets, including PSF, heterogenous nuclear ribonucleoprotein A1, Sprouty 2 and have lead to the identification of distinct biological functions and substrate specificity for the Mnk kinases. In this review we discuss the pathways regulating the Mnk kinases, their known substrates as well as the functional consequences of engagement of pathways controlled by Mnk kinases. These kinases play an important role in mRNA translation via their regulation of eukaryotic initiation factor 4E (eIF4E) and their functions have important implications in tumor biology as well as the regulation of drug resistance to anti-oncogenic therapies. Other studies have identified a role for the Mnk kinases in cap-independent mRNA translation, suggesting that the Mnk kinases can exert important functional effects independently of the phosphorylation of eIF4E. The role of Mnk kinases in inflammation and inflammation-induced malignancies is also discussed. PMID:25225600

  11. Protein Kinases and Addiction

    PubMed Central

    Lee, Anna M.; Messing, Robert O.

    2011-01-01

    Although drugs of abuse have different chemical structures and interact with different protein targets, all appear to usurp common neuronal systems that regulate reward and motivation. Addiction is a complex disease that is thought to involve drug-induced changes in synaptic plasticity due to alterations in cell signaling, gene transcription, and protein synthesis. Recent evidence suggests that drugs of abuse interact with and change a common network of signaling pathways that include a subset of specific protein kinases. The best studied of these kinases are reviewed here and include extracellular signal-regulated kinase, cAMP-dependent protein kinase, cyclin-dependent protein kinase 5, protein kinase C, calcium/calmodulin-dependent protein kinase II, and Fyn tyrosine kinase. These kinases have been implicated in various aspects of drug addiction including acute drug effects, drug self-administration, withdrawal, reinforcement, sensitization, and tolerance. Identifying protein kinase substrates and signaling pathways that contribute to the addicted state may provide novel approaches for new pharma-cotherapies to treat drug addiction. PMID:18991950

  12. The Effects of Early Life Lead Exposure on the Expression of Glycogen Synthase Kinase-3β and Insulin-like Growth Factor 1 Receptor in the Hippocampus of Mouse Pups.

    PubMed

    Li, Ning; Qiao, MingWu; Zhang, PingAn; Li, Xing; Li, Li; Yu, ZengLi

    2016-01-01

    The present study was undertaken to investigate the effects of maternal lead exposure on expression of GSK-3β and IGF1R in the hippocampus of mice offspring. Lead exposure initiated from beginning of gestation to weaning. Lead acetate administered in drinking solutions was dissolved in distilled deionized water at the concentrations of 0.1, 0.5, and 1%, respectively. On the 21st postnatal day, the Pb levels were determined by graphite furnace atomic absorption spectrometry. The expression of GSK-3β and IGF1R in hippocampus was examined by immunohistochemistry and Western blotting. The lead levels in blood and hippocampus of all lead exposure groups were significantly higher than those of the control group (P < 0.05). Compared with the control group, the expression of GSK-3β was increased in lead-exposed groups (P < 0.05), but the expression of IGF1R was decreased (P < 0.05). The high expression of GSK-3β and low expression of IGF1R in the hippocampus of pups may contribute to the neurotoxicity associated with maternal Pb exposure.

  13. NDP kinase reactivity towards 3TC nucleotides.

    PubMed

    Kreimeyer, A; Schneider, B; Sarfati, R; Faraj, A; Sommadossi, J P; Veron, M; Deville-Bonne, D

    2001-05-01

    Nucleoside diphosphate (NDP) kinase is usually considered as the enzyme responsible for the last step of the cellular phosphorylation pathway leading to the synthesis of biologically active triphospho-derivatives of nucleoside analogs used in antiviral therapies and in particular in the treatment of AIDS. NDP kinase lacks specificity for the nucleobase and can use as substrate both ribo- or 2'-deoxyribonucleotides. However, only nucleoside analogs with a sugar moiety in the D-configuration (e.g. 3'-deoxy-3'-azidothymidine (AZT), 2',3'-didehydro-2',3'-dideoxythymidine (d4T)) have so far been analyzed as substrates of NDP kinase. In contrast, beta-L-2',3'-dideoxy-3'-thiacytidine (3TC), also called lamivudine, is a nucleoside analog that is now widely used in AIDS therapy and has a sugar moiety in the L-configuration. Using protein fluorescence to monitor the phosphotransfer between the enzyme and the nucleotide derivative at the presteady state, we have studied the reactivity of 3TC triphosphate and of other L-dideoxynucleotides with NDP kinase. We found that L-dideoxynucleoside triphosphates have a poor affinity for NDP kinase and that the catalytic efficiency of the phosphorylation of L-dideoxyderivatives is very low as compared with their D-enantiomers. We discuss these results using a computer model of 3TC diphosphate bound to the NDP kinase active site. NDP kinase may not seem to be the major enzyme phosphorylating 3TC-DP, in contrast to current opinion.

  14. Cyclin-Dependent Kinase 7 Controls mRNA Synthesis by Affecting Stability of Preinitiation Complexes, Leading to Altered Gene Expression, Cell Cycle Progression, and Survival of Tumor Cells

    PubMed Central

    Kelso, Timothy W. R.; Baumgart, Karen; Eickhoff, Jan; Albert, Thomas; Antrecht, Claudia; Lemcke, Sarah; Klebl, Bert

    2014-01-01

    Cyclin-dependent kinase 7 (CDK7) activates cell cycle CDKs and is a member of the general transcription factor TFIIH. Although there is substantial evidence for an active role of CDK7 in mRNA synthesis and associated processes, the degree of its influence on global and gene-specific transcription in mammalian species is unclear. In the current study, we utilize two novel inhibitors with high specificity for CDK7 to demonstrate a restricted but robust impact of CDK7 on gene transcription in vivo and in in vitro-reconstituted reactions. We distinguish between relative low- and high-dose responses and relate them to distinct molecular mechanisms and altered physiological responses. Low inhibitor doses cause rapid clearance of paused RNA polymerase II (RNAPII) molecules and sufficed to cause genome-wide alterations in gene expression, delays in cell cycle progression at both the G1/S and G2/M checkpoints, and diminished survival of human tumor cells. Higher doses and prolonged inhibition led to strong reductions in RNAPII carboxyl-terminal domain (CTD) phosphorylation, eventual activation of the p53 program, and increased cell death. Together, our data reason for a quantitative contribution of CDK7 to mRNA synthesis, which is critical for cellular homeostasis. PMID:25047832

  15. Modeled Microgravity-Induced Protein Kinase C Isoform Expression in Human Lymphocytes

    NASA Technical Reports Server (NTRS)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    2003-01-01

    In long-term space travel, the crew is exposed to microgravity and radiation that invoke potential hazards to the immune system. T cell activation is a critical step in the immune response. Receptor-mediated signaling is inhibited both in microgravity and modeled microgravity (MMG) as reflected in diminished DNA synthess in peripheral blood lymphocytes and their locomotion through gelled type 1 collagen. Direct activation of Protein Kinase C (PKC) bypassing cell surface events using the phorbol ester PMA rescues MMG-inhibited lymphocyte activation and locomotion, whereas calcium ionophore ionomycin had no rescue effect. Thus calcium-independent PKC isoforms may be affected in MMG-induced locomotion inhibition and rescue. Both calcium-dependent isoforms and calcium-independent PKC isoforms were investigated to assess their expression in lymphocytes in 19 and MMG-culture. Human lymphocytes were cultured and harvested at 24, 48, 72 and 96 hours and serial samples assessed for locomotion using type I collagen and expression of PKC isoforms. Expression of PKC-alpha, -delta and -epsilon was assessed by RT-PCR, flow cytometry and immunoblotting. Results indicated that PKC isoforms delta and epsilon were down-regulated by more than 50% at the transcriptional and translational levels in MMG-cultured lymphocytes compared with 19 controls. Events upstream of PKC such as phosphorylation of Phospholipase C(gamma) (PLC-gamma) in MMG, revealed accumulation of inactive enzyme. Depressed Ca++ -independent PKC isoforms may be a consequence of an upstream lesion in the signal transduction pathway. The differential response among calcium-dependent and calcium-independent isoforms may actually result from MMG intrusion events earlier than, but after ligand-receptor interaction. Keywords: Signal transduction, locomotion, immunity

  16. Modeled microgravity-induced protein kinase C isoform expression in human lymphocytes

    NASA Technical Reports Server (NTRS)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    2004-01-01

    In long-term space travel, the crew is exposed to microgravity and radiation that invoke potential hazards to the immune system. T cell activation is a critical step in the immune response. Receptor-mediated signaling is inhibited in both microgravity and modeled microgravity (MMG) as reflected by diminished DNA synthesis in peripheral blood lymphocytes and their locomotion through gelled type I collagen. Direct activation of protein kinase C (PKC) bypassing cell surface events using the phorbol ester PMA rescues MMG-inhibited lymphocyte activation and locomotion, whereas the calcium ionophore ionomycin had no rescue effect. Thus calcium-independent PKC isoforms may be affected in MMG-induced locomotion inhibition and rescue. Both calcium-dependent isoforms and calcium-independent PKC isoforms were investigated to assess their expression in lymphocytes in 1 g and MMG culture. Human lymphocytes were cultured and harvested at 24, 48, 72, and 96 h, and serial samples were assessed for locomotion by using type I collagen and expression of PKC isoforms. Expression of PKC-alpha, -delta, and -epsilon was assessed by RT-PCR, flow cytometry, and immunoblotting. Results indicated that PKC isoforms delta and epsilon were downregulated by >50% at the transcriptional and translational levels in MMG-cultured lymphocytes compared with 1-g controls. Events upstream of PKC, such as phosphorylation of phospholipase Cgamma in MMG, revealed accumulation of inactive enzyme. Depressed calcium-independent PKC isoforms may be a consequence of an upstream lesion in the signal transduction pathway. The differential response among calcium-dependent and calcium-independent isoforms may actually result from MMG intrusion events earlier than PKC, but after ligand-receptor interaction.

  17. Lead Poisoning

    MedlinePlus

    ... be exposed to lead by Eating food or drinking water that contains lead. Water pipes in older homes ... herbs or foods that contain lead Breathing air, drinking water, eating food, or swallowing or touching dirt that ...

  18. Suppression of extracellular signal-related kinase and activation of p38 MAPK are two critical events leading to caspase-8- and mitochondria-mediated cell death in phytosphingosine-treated human cancer cells.

    PubMed

    Park, Moon-Taek; Choi, Jung-A; Kim, Min-Jeong; Um, Hong-Duck; Bae, Sangwoo; Kang, Chang-Mo; Cho, Chul-Koo; Kang, Seongman; Chung, Hee Yong; Lee, Yun-Sil; Lee, Su-Jae

    2003-12-12

    We previously demonstrated that the phytosphingosine-induced apoptosis was accompanied by the concomitant induction of both the caspase-8-mediated and mitochondrial activation-mediated apoptosis pathways. In the present study, we investigated the role of mitogen-activated protein kinases (MAPKs) in the activation of these two distinct cell death pathways induced by phytosphingosine in human cancer cells. Phytosphingosine caused strong induction of caspase-8 activity and caspase-independent Bax translocation to the mitochondria. A rapid decrease of phosphorylated ERK1/2 and a marked increase of p38 MAPK phosphorylation were observed within 10 min after phytosphingosine treatment. Activation of ERK1/2 by pretreatment with phorbol 12-myristate 13-acetate or forced expression of ERK1/2 attenuated phytosphingosine-induced caspase-8 activation. However, Bax translocation and caspase-9 activation was unaffected, indicating that down-regulation of the ERK activity is specifically required for the phytosphingosine-induced caspase-8-dependent cell death pathway. On the other hand, treatment with SB203580, a p38 MAPK-specific inhibitor, or expression of a dominant negative form of p38 MAPK suppressed phytosphingosine-induced translocation of the proapoptotic protein, Bax, from the cytosol to mitochondria, cytochrome c release, and subsequent caspase-9 activation but did not affect caspase-8 activation, indicating that activation of p38 MAPK is involved in the mitochondrial activation-mediated cell death pathway. Our results suggest that phytosphingosine can utilize two different MAPK signaling pathways for amplifying the apoptosis cascade, enhancing the understanding of the molecular mechanisms utilized by naturally occurring metabolites to regulate cell death. Molecular dissection of the signaling pathways that activate the apoptotic cell death machinery is critical for both our understanding of cell death events and development of cancer therapeutic agents.

  19. let-7 Overexpression Leads to an Increased Fraction of Cells in G2/M, Direct Down-regulation of Cdc34, and Stabilization of Wee1 Kinase in Primary Fibroblasts*S⃞

    PubMed Central

    Legesse-Miller, Aster; Elemento, Olivier; Pfau, Sarah J.; Forman, Joshua J.; Tavazoie, Saeed; Coller, Hilary A.

    2009-01-01

    microRNAs play a critically important role in a wide array of biological processes including those implicated in cancer, neuro-degenerative and metabolic disorders, and viral infection. Although we have begun to understand microRNA biogenesis and function, experimental demonstration of their functional effects and the molecular mechanisms by which they function remains a challenge. Members of the let-7/miR-98 family play a critical role in cell cycle control with respect to differentiation and tumorigenesis. In this study, we show that exogenous addition of pre-let-7 in primary human fibroblasts results in a decrease in cell number and an increased fraction of cells in the G2/M cell cycle phase. Combining microarray techniques with DNA sequence analysis to identify potential let-7 targets, we discovered 838 genes with a let-7 binding site in their 3′-untranslated region that were down-regulated upon overexpression of let-7b. Among these genes is cdc34, the ubiquitin-conjugating enzyme of the Skp1/cullin/F-box (SCF) complex. Cdc34 protein levels are strongly down-regulated by let-7 overexpression. Reporter assays demonstrated direct regulation of the cdc34 3′-untranslated region by let-7. We hypothesized that low Cdc34 levels would result in decreased SCF activity, stabilization of the SCF target Wee1, and G2/M accumulation. Consistent with this hypothesis, small interfering RNA-mediated down-regulation of Wee1 reversed the G2/M phenotype induced by let-7 overexpression. We conclude that Cdc34 is a functional target of let-7 and that let-7 induces down-regulation of Cdc34, stabilization of the Wee1 kinase, and an increased fraction of cells in G2/M in primary fibroblasts. PMID:19126550

  20. Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment.

    PubMed

    Klein, Christian L; Rovelli, Giorgio; Springer, Wolfdieter; Schall, Christoph; Gasser, Thomas; Kahle, Philipp J

    2009-11-01

    Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are the most common cause of autosomal-dominant familial and late-onset sporadic Parkinson's disease (PD). LRRK2 is a large multi-domain protein featuring a GTP-binding C-terminal of Ras of complex proteins (ROC) (ROCO) domain combination unique for the ROCO protein family, directly followed by a kinase domain. Dimerization is a well-established phenomenon among protein kinases. Here, we confirm LRRK2 self-interaction, and provide evidence for general homo- and heterodimerization potential among the ROCO kinase family (LRRK2, LRRK1, and death-associated protein kinase 1). The ROCO domain was critically, though not exclusively involved in dimerization, as a LRRK2 deletion mutant lacking the ROCO domain retained dimeric properties. GTP binding did not appear to influence ROCO(LRRK2) self-interaction. Interestingly, ROCO(LRRK2) fragments exerted an inhibitory effect on both wild-type and the elevated G2019S LRRK2 autophosphorylation activity. Insertion of PD mutations into ROCO(LRRK2) reduced self-interaction and led to a reduction of LRRK2 kinase inhibition. Collectively, these results suggest a functional link between ROCO interactions and kinase activity of wild-type and mutant LRRK2. Importantly, our finding of ROCO(LRRK2) fragment-mediated LRRK2 kinase inhibition offers a novel lead for drug design and thus might have important implications for new therapeutic avenues in PD.

  1. Lead Toxicity

    MedlinePlus

    ... including some imported jewelry. What are the health effects of lead? • More commonly, lower levels of lead in children over time may lead to reduced IQ, slow learning, Attention Deficit Hyperactivity Disorder (ADHD), or behavioral issues. • Lead also affects other ...

  2. Lead poisoning

    SciTech Connect

    Rekus, J.F.

    1992-08-01

    Construction workers who weld, cut or blast structural steel coated with lead-based paint are at significant risk of lead poisoning. Although technology to control these exposures may not have existed when the lead standard was promulgated, it is available today. Employers who do not take steps to protect their employees from lead exposure may be cited and fined severely for their failure.

  3. Mevalonate kinase deficiency: current perspectives

    PubMed Central

    Favier, Leslie A; Schulert, Grant S

    2016-01-01

    Mevalonate kinase deficiency (MKD) is a recessively inherited autoinflammatory disorder with a spectrum of manifestations, including the well-defined clinical phenotypes of hyperimmunoglobulinemia D and periodic fever syndrome and mevalonic aciduria. Patients with MKD have recurrent attacks of hyperinflammation associated with fever, abdominal pain, arthralgias, and mucocutaneous lesions, and more severely affected patients also have dysmorphisms and central nervous system anomalies. MKD is caused by mutations in the gene encoding mevalonate kinase, with the degree of residual enzyme activity largely determining disease severity. Mevalonate kinase is essential for the biosynthesis of nonsterol isoprenoids, which mediate protein prenylation. Although the precise pathogenesis of MKD remains unclear, increasing evidence suggests that deficiency in protein prenylation leads to innate immune activation and systemic hyperinflammation. Given the emerging understanding of MKD as an autoinflammatory disorder, recent treatment approaches have largely focused on cytokine-directed biologic therapy. Herein, we review the current genetic and pathologic understanding of MKD, its various clinical phenotypes, and the evolving treatment approach for this multifaceted disorder. PMID:27499643

  4. The C-terminus of the kinase-defective neuregulin receptor ErbB-3 confers mitogenic superiority and dictates endocytic routing.

    PubMed Central

    Waterman, H; Alroy, I; Strano, S; Seger, R; Yarden, Y

    1999-01-01

    Signaling by the epidermal growth factor (EGF) family and the neuregulin group of ligands is mediated by four ErbB receptor tyrosine kinases, that form homo- and heterodimeric complexes. Paradoxically, the neuregulin receptor ErbB-3 is devoid of catalytic activity, but its heterodimerization with other ErbBs, particularly the ligand-less ErbB-2 oncoprotein of carcinomas, reconstitutes superior mitogenic and transforming activities. To understand the underlying mechanism we constructed a chimeric EGF-receptor (ErbB-1) whose autophosphorylation C-terminal domain was replaced by the corresponding portion of ErbB-3. Consistent with the possibility that this domain recruits a relatively potent signaling pathway(s), the mitogenic signals generated by the recombinant fusion protein were superior to those generated by ErbB-1 homodimers and comparable to the proliferative activity of ErbB-2/ErbB-3 heterodimers. Upon ligand binding, the chimeric receptor recruited an ErbB-3-specific repertoire of signaling proteins, including Shc and the phosphatidylinositol 3-kinase, but excluding the ErbB-1-specific substrate, phospholipase Cgamma1. Unlike ErbB-1, which is destined to lysosomal degradation through a mechanism that includes recruitment of c-Cbl and receptor poly-ubiquitination, the C-terminal tail of ErbB-3 shunted the chimeric protein to the ErbB-3-characteristic recycling pathway. These observations attribute the mitogenic superiority of ErbB-3 to its C-terminal tail and imply that the flanking kinase domain has lost catalytic activity in order to restrain the relatively potent signaling capability of the C-terminus. PMID:10369675

  5. Novel pathway in Bcr-Abl signal transduction involves Akt-independent, PLC-gamma1-driven activation of mTOR/p70S6-kinase pathway.

    PubMed

    Markova, B; Albers, C; Breitenbuecher, F; Melo, J V; Brümmendorf, T H; Heidel, F; Lipka, D; Duyster, J; Huber, C; Fischer, T

    2010-02-04

    In chronic myeloid leukemia, activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway is crucial for survival and proliferation of leukemic cells. Essential downstream molecules involve mammalian target of rapamycin (mTOR) and S6-kinase. Here, we present a comprehensive analysis of the molecular events involved in activation of these key signaling pathways. We provide evidence for a previously unrecognized phospholipase C-gamma1 (PLC-gamma1)-controlled mechanism of mTOR/p70S6-kinase activation, which operates in parallel to the classical Akt-dependent machinery. Short-term imatinib treatment of Bcr-Abl-positive cells caused dephosphorylation of p70S6-K and S6-protein without inactivation of Akt. Suppression of Akt activity alone did not affect phosphorylation of p70-S6K and S6. These results suggested the existence of an alternative mechanism for mTOR/p70S6-K activation. In Bcr-Abl-expressing cells, we detected strong PLC-gamma1 activation, which was suppressed by imatinib. Pharmacological inhibition and siRNA knockdown of PLC-gamma1 blocked p70S6-K and S6 phosphorylation. By inhibiting the Ca-signaling, CaMK and PKCs we demonstrated participation of these molecules in the pathway. Suppression of PLC-gamma1 led to inhibition of cell proliferation and enhanced apoptosis. The novel pathway proved to be essential for survival and proliferation of leukemic cells and almost complete cell death was observed upon combined PLC-gamma1 and Bcr-Abl inhibition. The pivotal role of PLC-gamma1 was further confirmed in a mouse leukemogenesis model.

  6. Tyrosine Kinase Inhibition: An Approach to Drug Development

    NASA Astrophysics Data System (ADS)

    Levitzki, Alexander; Gazit, Aviv

    1995-03-01

    Protein tyrosine kinases (PTKs) regulate cell proliferation, cell differentiation, and signaling processes in the cells of the immune system. Uncontrolled signaling from receptor tyrosine kinases and intracellular tyrosine kinases can lead to inflammatory responses and to diseases such as cancer, atherosclerosis, and psoriasis. Thus, inhibitors that block the activity of tyrosine kinases and the signaling pathways they activate may provide a useful basis for drug development. This article summarizes recent progress in the development of PTK inhibitors and demonstrates their potential use in the treatment of disease.

  7. Lead Poisoning

    MedlinePlus

    ... from lead poisoning in New Hampshire and in Alabama. Lead poisoning has also been associated with juvenile ... for decades—after it first enters the blood stream. (The same process can occur with the onset ...

  8. Lead poisoning

    MedlinePlus

    ... Failure at school Hearing problems Kidney damage Reduced IQ Slowed body growth The symptoms of lead poisoning ... can have a permanent impact on attention and IQ. People with higher lead levels have a greater ...

  9. [Tyrosine kinase inhibitors].

    PubMed

    Robert, Jacques

    2011-11-01

    Membrane receptors with tyrosine kinase activity and cytoplasmic tyrosine kinases have emerged as important potential targets in oncology. Starting from basic structures such as anilino-quinazoline, numerous compounds have been synthesised, with the help of tyrosine kinase crystallography, which has allowed to optimise protein-ligand interactions. The catalytic domains of all kinases present similar three-dimensional structures, which explains that it may be difficult to identify molecules having a high specificity for a given tyrosine kinase. Some tyrosine kinase inhibitors are relatively specific for epidermal growth factor receptor (EGFR) such as géfitinib and erlotinib; other are mainly active against platelet-derived growth factor receptor (PDGFR) and the receptor KIT, such as imatinib or nilotinib, and other against vascular endothelial growth factor (VEGF) receptors involved in angiogenesis, such as sunitinib and sorafenib. The oral formulation of tyrosine kinase inhibitors is well accepted by the patients but may generate sometimes compliance problems requiring pharmacokinetic monitoring. This chemical family is in full expansion and several dozens of compounds have entered clinical trials.

  10. Exploring Missense Mutations in Tyrosine Kinases Implicated with Neurodegeneration.

    PubMed

    Sami, Neha; Kumar, Vijay; Islam, Asimul; Ali, Sher; Ahmad, Faizan; Hassan, Imtaiyaz

    2016-08-20

    Protein kinases are one of the largest families of evolutionarily related proteins and the third most common protein class of human genome. All the protein kinases share the same structural organization. They are made up of an extracellular domain, transmembrane domain and an intra cellular kinase domain. Missense mutations in these kinases have been studied extensively and correlated with various neurological disorders. Individual mutations in the kinase domain affect the functions of protein. The enhanced or reduced expression of protein leads to hyperactivation or inactivation of the signalling pathways, resulting in neurodegeneration. Here, we present extensive analyses of missense mutations in the tyrosine kinase focussing on the neurodegenerative diseases encompassing structure function relationship. This is envisaged to enhance our understanding about the neurodegeneration and possible therapeutic measures.

  11. AKAP-Lbc nucleates a protein kinase D activation scaffold.

    PubMed

    Carnegie, Graeme K; Smith, F Donelson; McConnachie, George; Langeberg, Lorene K; Scott, John D

    2004-09-24

    The transmission of cellular signals often proceeds through multiprotein complexes where enzymes are positioned in proximity to their upstream activators and downstream substrates. In this report we demonstrate that the A-kinase anchoring protein AKAP-Lbc assembles an activation complex for the lipid-dependent enzyme protein kinase D (PKD). Using a combination of biochemical, enzymatic, and immunofluorescence techniques, we show that the anchoring protein contributes to PKD activation in two ways: it recruits an upstream kinase PKCeta and coordinates PKA phosphorylation events that release activated protein kinase D. Thus, AKAP-Lbc synchronizes PKA and PKC activities in a manner that leads to the activation of a third kinase. This configuration illustrates the utility of kinase anchoring as a mechanism to constrain the action of broad-spectrum enzymes.

  12. Kinase active Misshapen regulates Notch signaling in Drosophila melanogaster.

    PubMed

    Mishra, Abhinava K; Sachan, Nalani; Mutsuddi, Mousumi; Mukherjee, Ashim

    2015-11-15

    Notch signaling pathway represents a principal cellular communication system that plays a pivotal role during development of metazoans. Drosophila misshapen (msn) encodes a protein kinase, which is related to the budding yeast Ste20p (sterile 20 protein) kinase. In a genetic screen, using candidate gene approach to identify novel kinases involved in Notch signaling, we identified msn as a novel regulator of Notch signaling. Data presented here suggest that overexpression of kinase active form of Msn exhibits phenotypes similar to Notch loss-of-function condition and msn genetically interacts with components of Notch signaling pathway. Kinase active form of Msn associates with Notch receptor and regulate its signaling activity. We further show that kinase active Misshapen leads to accumulation of membrane-tethered form of Notch. Moreover, activated Msn also depletes Armadillo and DE-Cadherin from adherens junctions. Thus, this study provides a yet unknown mode of regulation of Notch signaling by Misshapen.

  13. RAF protein-serine/threonine kinases: Structure and regulation

    SciTech Connect

    Roskoski, Robert

    2010-08-27

    Research highlights: {yields} The formation of unique side-to-side RAF dimers is required for full kinase activity. {yields} RAF kinase inhibitors block MEK activation in cells containing oncogenic B-RAF. {yields} RAF kinase inhibitors can lead to the paradoxical increase in RAF kinase activity. -- Abstract: A-RAF, B-RAF, and C-RAF are a family of three protein-serine/threonine kinases that participate in the RAS-RAF-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large variety of processes including apoptosis, cell cycle progression, differentiation, proliferation, and transformation to the cancerous state. RAS mutations occur in 15-30% of all human cancers, and B-RAF mutations occur in 30-60% of melanomas, 30-50% of thyroid cancers, and 5-20% of colorectal cancers. Activation of the RAF kinases requires their interaction with RAS-GTP along with dephosphorylation and also phosphorylation by SRC family protein-tyrosine kinases and other protein-serine/threonine kinases. The formation of unique side-to-side RAF dimers is required for full kinase activity. RAF kinase inhibitors are effective in blocking MEK1/2 and ERK1/2 activation in cells containing the oncogenic B-RAF Val600Glu activating mutation. RAF kinase inhibitors lead to the paradoxical increase in RAF kinase activity in cells containing wild-type B-RAF and wild-type or activated mutant RAS. C-RAF plays a key role in this paradoxical increase in downstream MEK-ERK activation.

  14. MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase.

    PubMed Central

    Stokoe, D; Campbell, D G; Nakielny, S; Hidaka, H; Leevers, S J; Marshall, C; Cohen, P

    1992-01-01

    A novel protein kinase, which was only active when phosphorylated by the mitogen-activated protein kinase (MAP kinase), has been purified 85,000-fold to homogeneity from rabbit skeletal muscle. This MAP kinase activated protein kinase, termed MAPKAP kinase-2, was distinguished from S6 kinase-II (MAPKAP kinase-1) by its response to inhibitors, lack of phosphorylation of S6 peptides and amino acid sequence. MAPKAP kinase-2 phosphorylated glycogen synthase at Ser7 and the equivalent serine (*) in the peptide KKPLNRTLS*VASLPGLamide whose sequence is similar to the N terminus of glycogen synthase. MAPKAP kinase-2 was resolved into two monomeric species of apparent molecular mass 60 and 53 kDa that had similar specific activities and substrate specificities. Peptide sequences of the 60 and 53 kDa species were identical, indicating that they are either closely related isoforms or derived from the same gene. MAP kinase activated the 60 and 53 kDa forms of MAPKAP kinase-2 by phosphorylating the first threonine residue in the sequence VPQTPLHTSR. Furthermore, Mono Q chromatography of extracts from rat phaeochromocytoma and skeletal muscle demonstrated that two MAP kinase isoforms (p42mapk and p44mapk) were the only enzymes in these cells that were capable of reactivating MAPKAP kinase-2. These results indicate that MAP kinase activates at least two distinct protein kinases, suggesting that it represents a point at which the growth factor-stimulated protein kinase cascade bifurcates. Images PMID:1327754

  15. The erbB-2 mitogenic signaling pathway: tyrosine phosphorylation of phospholipase C-gamma and GTPase-activating protein does not correlate with erbB-2 mitogenic potency.

    PubMed Central

    Fazioli, F; Kim, U H; Rhee, S G; Molloy, C J; Segatto, O; Di Fiore, P P

    1991-01-01

    The erbB-2 gene product, gp185erbB-2, unlike the structurally related epidermal growth factor (EGF) receptor (EGFR), exhibits constitutive kinase and transforming activity. We used a chimeric EGFR/erbB-2 expression vector to compare the mitogenic signaling pathway of the erbB-2 kinase with that of the EGFR, at similar levels of expression, in response to EGF stimulation. The EGFR/erbB-2 chimera was significantly more active in inducing DNA synthesis than the EGFR when either was expressed in NIH 3T3 cells. Analysis of biochemical pathways implicated in signal transduction by growth factor receptors indicated that both phospholipase C type gamma (PLC-gamma) and the p21ras GTPase-activating protein (GAP) are substrates for the erbB-2 kinase in NIH 3T3 fibroblasts. However, under conditions in which activation of the erbB-2 kinase induced DNA synthesis at least fivefold more efficiently than the EGFR, the levels of erbB-2- or EGFR-induced tyrosine phosphorylation of PLC-gamma and GAP were comparable. In addition, the stoichiometry of tyrosine phosphorylation of these putative substrates by erbB-2 appeared to be at least an order of magnitude lower than that induced by platelet-derived growth factor receptors at comparable levels of mitogenic potency. Thus, our results indicate that differences in tyrosine phosphorylation of PLC-gamma and GAP do not account for the differences in mitogenic activity of the erbB-2 kinase compared with either the EGFR or platelet-derived growth factor receptor in NIH 3T3 fibroblasts. Images PMID:1672440

  16. Design, synthesis and structure-activity relationships of novel biarylamine-based Met kinase inhibitors

    SciTech Connect

    Williams, David K; Chen, Xiao-Tao; Tarby, Christine; Kaltenbach, Robert; Cai, Zhen-Wei; Tokarski, John S; An, Yongmi; Sack, John S; Wautlet, Barri; Gullo-Brown, Johnni; Henley, Benjamin J; Jeyaseelan, Robert; Kellar, Kristen; Manne, Veeraswamy; Trainor, George L; Lombardo, Louis J; Fargnoli, Joseph; Borzilleri, Robert M

    2010-09-03

    Biarylamine-based inhibitors of Met kinase have been identified. Lead compounds demonstrate nanomolar potency in Met kinase biochemical assays and significant activity in the Met-driven GTL-16 human gastric carcinoma cell line. X-ray crystallography revealed that these compounds adopt a bioactive conformation, in the kinase domain, consistent with that previously seen with 2-pyridone-based Met kinase inhibitors. Compound 9b demonstrated potent in vivo antitumor activity in the GTL-16 human tumor xenograft model.

  17. Leading Democratically

    ERIC Educational Resources Information Center

    Brookfield, Stephen

    2010-01-01

    Democracy is the most venerated of American ideas, the one for which wars are fought and people die. So most people would probably agree that leaders should be able to lead well in a democratic society. Yet, genuinely democratic leadership is a relative rarity. Leading democratically means viewing leadership as a function or process, rather than…

  18. Non-degradative Ubiquitination of Protein Kinases

    PubMed Central

    Ball, K. Aurelia; Johnson, Jeffrey R.; Lewinski, Mary K.; Guatelli, John; Verschueren, Erik; Krogan, Nevan J.; Jacobson, Matthew P.

    2016-01-01

    Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well. PMID:27253329

  19. Kinase cascades regulating entry into apoptosis.

    PubMed Central

    Anderson, P

    1997-01-01

    All cells are constantly exposed to conflicting environment cues that signal cell survival or cell death. Survival signals are delivered by autocrine or paracrine factors that actively suppress a default death pathway. In addition to survival factor withdrawal, cell death can be triggered by environmental stresses such as heat, UV light, and hyperosmolarity or by dedicated death receptors (e.g., FAS/APO-1 and tumor necrosis factor [TNF] receptors) that are counterparts of growth factor or survival receptors at the cell surface. One of the ways that cells integrate conflicting exogenous stimuli is by phosphorylation (or dephosphorylation) of cellular constituents by interacting cascades of serine/threonine and tyrosine protein kinases (and phosphatases). Survival factors (e.g., growth factors and mitogens) activate receptor tyrosine kinases and selected mitogen-activated, cyclin-dependent, lipid-activated, nucleic acid-dependent, and cyclic AMP-dependent kinases to promote cell survival and proliferation, whereas environmental stress (or death factors such as FAS/APO-1 ligand and TNF-alpha) activates different members of these kinase families to inhibit cell growth and, under some circumstances, promote apoptotic cell death. Because individual kinase cascades can interact with one another, they are able to integrate conflicting exogenous stimuli and provide a link between cell surface receptors and the biochemical pathways leading to cell proliferation or cell death. PMID:9106363

  20. Salicylic acid activates a 48-kD MAP kinase in tobacco.

    PubMed Central

    Zhang, S; Klessig, D F

    1997-01-01

    The involvement of phosphorylation/dephosphorylation in the salicylic acid (SA) signal transduction pathway leading to pathogenesis-related gene induction has previously been demonstrated using kinase and phosphatase inhibitors. Here, we show that in tobacco suspension cells, SA induced a rapid and transient activation of a 48-kD kinase that uses myelin basic protein as a substrate. This kinase is called the p48 SIP kinase (for SA-Induced Protein kinase). Biologically active analogs of SA, which induce pathogenesis-related genes and enhanced resistance, also activated this kinase, whereas inactive analogs did not. Phosphorylation of a tyrosine residue(s) in the SIP kinase was associated with its activation. The SIP kinase was purified to homogeneity from SA-treated tobacco suspension culture cells. The purified SIP kinase is strongly phosphorylated on a tyrosine residue(s), and treatment with either protein tyrosine or serine/threonine phosphatases abolished its activity. Using primers corresponding to the sequences of internal tryptic peptides, we cloned the SIP kinase gene. Analysis of the SIP kinase sequence indicates that it belongs to the MAP kinase family and that it is distinct from the other plant MAP kinases previously implicated in stress responses, suggesting that different members of the MAP kinase family are activated by different stresses. PMID:9165755

  1. Conserved herpesvirus protein kinases

    PubMed Central

    Gershburg, Edward; Pagano, Joseph S.

    2008-01-01

    Conserved herpesviral protein kinases (CHPKs) are a group of enzymes conserved throughout all subfamilies of Herpesviridae. Members of this group are serine/threonine protein kinases that are likely to play a conserved role in viral infection by interacting with common host cellular and viral factors; however along with a conserved role, individual kinases may have unique functions in the context of viral infection in such a way that they are only partially replaceable even by close homologues. Recent studies demonstrated that CHPKs are crucial for viral infection and suggested their involvement in regulation of numerous processes at various infection steps (primary infection, nuclear egress, tegumentation), although the mechanisms of this regulation remain unknown. Notwithstanding, recent advances in discovery of new CHPK targets, and studies of CHPK knockout phenotypes have raised their attractiveness as targets for antiviral therapy. A number of compounds have been shown to inhibit the activity of human cytomegalovirus (HCMV)-encoded UL97 protein kinase and exhibit a pronounced antiviral effect, although the same compounds are inactive against Epstein-Barr Virus (EBV)-encoded protein kinase BGLF4, illustrating the fact that low homology between the members of this group complicates development of compounds targeting the whole group, and suggesting that individualized, structure-based inhibitor design will be more effective. Determination of CHPK structures will greatly facilitate this task. PMID:17881303

  2. Orphan kinases turn eccentric

    PubMed Central

    Mikolcevic, Petra; Rainer, Johannes; Geley, Stephan

    2012-01-01

    PCTAIRE kinases (PCTK) are a highly conserved, but poorly characterized, subgroup of cyclin-dependent kinases (CDK). They are characterized by a conserved catalytic domain flanked by N- and C-terminal extensions that are involved in cyclin binding. Vertebrate genomes contain three highly similar PCTAIRE kinases (PCTK1,2,3, a.k.a., CDK16,17,18), which are most abundant in post-mitotic cells in brain and testis. Consistent with this restricted expression pattern, PCTK1 (CDK16) has recently been shown to be essential for spermatogenesis. PCTAIREs are activated by cyclin Y (CCNY), a highly conserved single cyclin fold protein. By binding to N-myristoylated CCNY, CDK16 is targeted to the plasma membrane. Unlike conventional cyclin-CDK interactions, binding of CCNY to CDK16 not only requires the catalytic domain, but also domains within the N-terminal extension. Interestingly, phosphorylation within this domain blocks CCNY binding, providing a novel means of cyclin-CDK regulation. By using these functional characteristics, we analyzed “PCTAIRE” sequence containing protein kinase genes in genomes of various organisms and found that CCNY and CCNY-dependent kinases are restricted to eumetazoa and possibly evolved along with development of a central nervous system. Here, we focus on the structure and regulation of PCTAIREs and discuss their established functions. PMID:22895054

  3. PAK family kinases

    PubMed Central

    Zhao, Zhuo-shen; Manser, Ed

    2012-01-01

    The p21-activated kinases (PAKs) are a family of Ser/Thr protein kinases that are represented by six genes in humans (PAK 1–6), and are found in all eukaryotes sequenced to date. Genetic and knockdown experiments in frogs, fish and mice indicate group I PAKs are widely expressed, required for multiple tissue development, and particularly important for immune and nervous system function in the adult. The group II PAKs (human PAKs 4–6) are more enigmatic, but their restriction to metazoans and presence at cell-cell junctions suggests these kinases emerged to regulate junctional signaling. Studies of protozoa and fungal PAKs show that they regulate cell shape and polarity through phosphorylation of multiple cytoskeletal proteins, including microtubule binding proteins, myosins and septins. This chapter discusses what we know about the regulation of PAKs and their physiological role in different model organisms, based primarily on gene knockout studies. PMID:23162738

  4. Ecotoxicology: Lead

    USGS Publications Warehouse

    Scheuhammer, A.M.; Beyer, W.N.; Schmitt, C.J.; Jorgensen, Sven Erik; Fath, Brian D.

    2008-01-01

    Lead (Pb) is a naturally occurring metallic element; trace concentrations are found in all environmental media and in all living things. However, certain human activities, especially base metal mining and smelting; combustion of leaded gasoline; the use of Pb in hunting, target shooting, and recreational angling; the use of Pb-based paints; and the uncontrolled disposal of Pb-containing products such as old vehicle batteries and electronic devices have resulted in increased environmental levels of Pb, and have created risks for Pb exposure and toxicity in invertebrates, fish, and wildlife in some ecosystems.

  5. Visualizing autophosphorylation in histidine kinases.

    PubMed

    Casino, Patricia; Miguel-Romero, Laura; Marina, Alberto

    2014-01-01

    Reversible protein phosphorylation is the most widespread regulatory mechanism in signal transduction. Autophosphorylation in a dimeric sensor histidine kinase is the first step in two-component signalling, the predominant signal-transduction device in bacteria. Despite being the most abundant sensor kinases in nature, the molecular bases of the histidine kinase autophosphorylation mechanism are still unknown. Furthermore, it has been demonstrated that autophosphorylation can occur in two directions, cis (intrasubunit) or trans (intersubunit) within the dimeric histidine kinase. Here, we present the crystal structure of the complete catalytic machinery of a chimeric histidine kinase. The structure shows an asymmetric histidine kinase dimer where one subunit is caught performing the autophosphorylation reaction. A structure-guided functional analysis on HK853 and EnvZ, two prototypical cis- and trans-phosphorylating histidine kinases, has allowed us to decipher the catalytic mechanism of histidine kinase autophosphorylation, which seems to be common independently of the reaction directionality.

  6. Tetraethyl lead

    Integrated Risk Information System (IRIS)

    Tetraethyl lead ; CASRN 78 - 00 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  7. Kinase Inhibitors from Marine Sponges

    PubMed Central

    Skropeta, Danielle; Pastro, Natalie; Zivanovic, Ana

    2011-01-01

    Protein kinases play a critical role in cell regulation and their deregulation is a contributing factor in an increasing list of diseases including cancer. Marine sponges have yielded over 70 novel compounds to date that exhibit significant inhibitory activity towards a range of protein kinases. These compounds, which belong to diverse structural classes, are reviewed herein, and ordered based upon the kinase that they inhibit. Relevant synthetic studies on the marine natural product kinase inhibitors have also been included. PMID:22073013

  8. Kinases as Novel Therapeutic Targets in Asthma and Chronic Obstructive Pulmonary Disease.

    PubMed

    Barnes, Peter J

    2016-07-01

    Multiple kinases play a critical role in orchestrating the chronic inflammation and structural changes in the respiratory tract of patients with asthma and chronic obstructive pulmonary disease (COPD). Kinases activate signaling pathways that lead to contraction of airway smooth muscle and release of inflammatory mediators (such as cytokines, chemokines, growth factors) as well as cell migration, activation, and proliferation. For this reason there has been great interest in the development of kinase inhibitors as anti-inflammatory therapies, particular where corticosteroids are less effective, as in severe asthma and COPD. However, it has proven difficult to develop selective kinase inhibitors that are both effective and safe after oral administration and this has led to a search for inhaled kinase inhibitors, which would reduce systemic exposure. Although many kinases have been implicated in inflammation and remodeling of airway disease, very few classes of drug have reached the stage of clinical studies in these diseases. The most promising drugs are p38 MAP kinases, isoenzyme-selective PI3-kinases, Janus-activated kinases, and Syk-kinases, and inhaled formulations of these drugs are now in development. There has also been interest in developing inhibitors that block more than one kinase, because these drugs may be more effective and with less risk of losing efficacy with time. No kinase inhibitors are yet on the market for the treatment of airway diseases, but as kinase inhibitors are improved from other therapeutic areas there is hope that these drugs may eventually prove useful in treating refractory asthma and COPD.

  9. Ancestral resurrection reveals evolutionary mechanisms of kinase plasticity

    PubMed Central

    Howard, Conor J; Hanson-Smith, Victor; Kennedy, Kristopher J; Miller, Chad J; Lou, Hua Jane; Johnson, Alexander D; Turk, Benjamin E; Holt, Liam J

    2014-01-01

    Protein kinases have evolved diverse specificities to enable cellular information processing. To gain insight into the mechanisms underlying kinase diversification, we studied the CMGC protein kinases using ancestral reconstruction. Within this group, the cyclin dependent kinases (CDKs) and mitogen activated protein kinases (MAPKs) require proline at the +1 position of their substrates, while Ime2 prefers arginine. The resurrected common ancestor of CDKs, MAPKs, and Ime2 could phosphorylate substrates with +1 proline or arginine, with preference for proline. This specificity changed to a strong preference for +1 arginine in the lineage leading to Ime2 via an intermediate with equal specificity for proline and arginine. Mutant analysis revealed that a variable residue within the kinase catalytic cleft, DFGx, modulates +1 specificity. Expansion of Ime2 kinase specificity by mutation of this residue did not cause dominant deleterious effects in vivo. Tolerance of cells to new specificities likely enabled the evolutionary divergence of kinases. DOI: http://dx.doi.org/10.7554/eLife.04126.001 PMID:25310241

  10. Molecular and structural insight into plasmodium falciparum RIO2 kinase.

    PubMed

    Chouhan, Devendra K; Sharon, Ashoke; Bal, Chandralata

    2013-02-01

    Among approximately 65 kinases of the malarial genome, RIO2 (right open reading frame) kinase belonging to the atypical class of kinase is unique because along with a kinase domain, it has a highly conserved N-terminal winged helix (wHTH) domain. The wHTH domain resembles the wing like domain found in DNA binding proteins and is situated near to the kinase domain. Ligand binding to this domain may reposition the kinase domain leading to inhibition of enzyme function and could be utilized as a novel allosteric site to design inhibitor. In the present study, we have generated a model of RIO2 kinase from Plasmodium falciparum utilizing multiple modeling, simulation approach. A novel putative DNA-binding site is identified for the first time in PfRIO2 kinase to understand the DNA binding events involving wHTH domain and flexible loop. Induced fit DNA docking followed by minimization, molecular dynamics simulation, energetic scoring and binding mode studies are used to reveal the structural basis of PfRIO2-ATP-DNA complex. Ser105 as a potential site of phosphorylation is revealed through the structural studies of ATP binding in PfRIO2. Overall the present study discloses the structural facets of unknown PfRIO2 complex and opens an avenue toward exploration of novel drug target.

  11. Rho kinase as a target for cerebral vascular disorders

    PubMed Central

    Bond, Lisa M; Sellers, James R; McKerracher, Lisa

    2015-01-01

    The development of novel pharmaceutical treatments for disorders of the cerebral vasculature is a serious unmet medical need. These vascular disorders are typified by a disruption in the delicate Rho signaling equilibrium within the blood vessel wall. In particular, Rho kinase overactivation in the smooth muscle and endothelial layers of the vessel wall results in cytoskeletal modifications that lead to reduced vascular integrity and abnormal vascular growth. Rho kinase is thus a promising target for the treatment of cerebral vascular disorders. Indeed, preclinical studies indicate that Rho kinase inhibition may reduce the formation/growth/rupture of both intracranial aneurysms and cerebral cavernous malformations. PMID:26062400

  12. Secondary kinase reactions catalyzed by yeast pyruvate kinase.

    PubMed

    Leblond, D J; Robinson, J L

    1976-06-07

    1. Yeast pyruvate kinase (EC 2.7.1.40) catalyzes, in addition to the primary, physiologically important reaction, three secondary kinase reactions, the ATP-dependent phosphorylations of fluoride (fluorokinase), hydroxylamine (hydroxylamine kinase) and glycolate (glycolate kinase). 2. These reactions are accelerated by fructose-1,6-bisphosphate, the allosteric activator of the primary reaction. Wth Mg2+ as the required divalent cation, none of these reactions are observed in the absence of fructose-biphosphate. With Mn2+, fructose-bisphosphate is required for the glycolate kinase reaction, but merely stimulates the other reactions. 3. The effect of other divalent cations and pH on three secondary kinase reactions was also examined. 4. Results are compared with those obtained from muscle pyruvate kinase and the implications of the results for the mechanism of the yeast enzyme are discussed.

  13. Protein Kinases in Mammary Gland Development and Carcinogenesis

    DTIC Science & Technology

    1998-10-01

    cellular process including cell motility, metabolism, proliferation and differentiation. Aberrant expression or mutations in kinases has been shown to...transduction cascades leading to differentiation in normal breast tissue. Carcinogenic transformation often results from mutations or aberrant...expression of molecules such as c- erbB2 /HER2/neu, the EGF receptor, the FGF receptor family, and Met(I-4).1-4 The aforementioned kinases are examples of the

  14. Who Leads China's Leading Universities?

    ERIC Educational Resources Information Center

    Huang, Futao

    2017-01-01

    This study attempts to identify the major characteristics of two different groups of institutional leaders in China's leading universities. The study begins with a review of relevant literature and theory. Then, there is a brief introduction to the selection of party secretaries, deputy secretaries, presidents and vice presidents in leading…

  15. The association of phosphoinositide 3-kinase enhancer A with hepatic insulin receptor enhances its kinase activity.

    PubMed

    Chan, Chi Bun; Liu, Xia; He, Kunyan; Qi, Qi; Jung, Dae Y; Kim, Jason K; Ye, Keqiang

    2011-07-01

    Dysfunction of hepatic insulin receptor tyrosine kinase (IRTK) causes the development of type 2 diabetes. However, the molecular mechanism regulating IRTK activity in the liver remains poorly understood. Here, we show that phosphoinositide 3-kinase enhancer A (PIKE-A) is a new insulin-dependent enhancer of hepatic IRTK. Liver-specific Pike-knockout (LPKO) mice display glucose intolerance with impaired hepatic insulin sensitivity. Specifically, insulin-provoked phosphoinositide 3-kinase/Akt signalling is diminished in the liver of LPKO mice, leading to the failure of insulin-suppressed gluconeogenesis and hyperglycaemia. Thus, hepatic PIKE-A has a key role in mediating insulin signal transduction and regulating glucose homeostasis in the liver.

  16. Mycobacterium tuberculosis Serine/Threonine Protein Kinases

    PubMed Central

    PRISIC, SLADJANA; HUSSON, ROBERT N.

    2014-01-01

    The Mycobacterium tuberculosis genome encodes 11 serine/threonine protein kinases (STPKs). A similar number of two-component systems are also present, indicating that these two signal transduction mechanisms are both important in the adaptation of this bacterial pathogen to its environment. The M. tuberculosis phosphoproteome includes hundreds of Ser- and Thr-phosphorylated proteins that participate in all aspects of M. tuberculosis biology, supporting a critical role for the STPKs in regulating M. tuberculosis physiology. Nine of the STPKs are receptor type kinases, with an extracytoplasmic sensor domain and an intracellular kinase domain, indicating that these kinases transduce external signals. Two other STPKs are cytoplasmic and have regulatory domains that sense changes within the cell. Structural analysis of some of the STPKs has led to advances in our understanding of the mechanisms by which these STPKs are activated and regulated. Functional analysis has provided insights into the effects of phosphorylation on the activity of several proteins, but for most phosphoproteins the role of phosphorylation in regulating function is unknown. Major future challenges include characterizing the functional effects of phosphorylation for this large number of phosphoproteins, identifying the cognate STPKs for these phosphoproteins, and determining the signals that the STPKs sense. Ultimately, combining these STPK-regulated processes into larger, integrated regulatory networks will provide deeper insight into M. tuberculosis adaptive mechanisms that contribute to tuberculosis pathogenesis. Finally, the STPKs offer attractive targets for inhibitor development that may lead to new therapies for drug-susceptible and drug-resistant tuberculosis. PMID:25429354

  17. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1999-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  18. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  19. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Lin, Anning

    1999-11-30

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  20. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2004-03-16

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  1. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit

    2003-02-04

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  2. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit

    2005-03-08

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  3. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  4. Oncoprotein protein kinase

    DOEpatents

    Davis, Roger; Derijard, Benoit; Karin, Michael; Hibi, Masahiko; Lin, Anning

    2005-01-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  5. Oncoprotein protein kinase

    DOEpatents

    Karin, M.; Hibi, M.; Lin, A.

    1997-02-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE is disclosed. The polypeptide has serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences. The method of detection of JNK is also provided. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites. 44 figs.

  6. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1998-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  7. Cyclin-dependent kinases

    PubMed Central

    2014-01-01

    Summary Cyclin-dependent kinases (CDKs) are protein kinases characterized by needing a separate subunit - a cyclin - that provides domains essential for enzymatic activity. CDKs play important roles in the control of cell division and modulate transcription in response to several extra- and intracellular cues. The evolutionary expansion of the CDK family in mammals led to the division of CDKs into three cell-cycle-related subfamilies (Cdk1, Cdk4 and Cdk5) and five transcriptional subfamilies (Cdk7, Cdk8, Cdk9, Cdk11 and Cdk20). Unlike the prototypical Cdc28 kinase of budding yeast, most of these CDKs bind one or a few cyclins, consistent with functional specialization during evolution. This review summarizes how, although CDKs are traditionally separated into cell-cycle or transcriptional CDKs, these activities are frequently combined in many family members. Not surprisingly, deregulation of this family of proteins is a hallmark of several diseases, including cancer, and drug-targeted inhibition of specific members has generated very encouraging results in clinical trials. PMID:25180339

  8. Mechanism of activation and functional role of protein kinase Ceta in human platelets.

    PubMed

    Bynagari, Yamini S; Nagy, Bela; Tuluc, Florin; Bhavaraju, Kamala; Kim, Soochong; Vijayan, K Vinod; Kunapuli, Satya P

    2009-05-15

    The novel class of protein kinase C (nPKC) isoform eta is expressed in platelets, but not much is known about its activation and function. In this study, we investigated the mechanism of activation and functional implications of nPKCeta using pharmacological and gene knock-out approaches. nPKCeta was phosphorylated (at Thr-512) in a time- and concentration-dependent manner by 2MeSADP. Pretreatment of platelets with MRS-2179, a P2Y1 receptor antagonist, or YM-254890, a G(q) blocker, abolished 2MeSADP-induced phosphorylation of nPKCeta. Similarly, ADP failed to activate nPKCeta in platelets isolated from P2Y1 and G(q) knock-out mice. However, pretreatment of platelets with P2Y12 receptor antagonist, AR-C69331MX did not interfere with ADP-induced nPKCeta phosphorylation. In addition, when platelets were activated with 2MeSADP under stirring conditions, although nPKCeta was phosphorylated within 30 s by ADP receptors, it was also dephosphorylated by activated integrin alpha(IIb)beta3 mediated outside-in signaling. Moreover, in the presence of SC-57101, a alpha(IIb)beta3 receptor antagonist, nPKCeta dephosphorylation was inhibited. Furthermore, in murine platelets lacking PP1cgamma, a catalytic subunit of serine/threonine phosphatase, alpha(IIb)beta3 failed to dephosphorylate nPKCeta. Thus, we conclude that ADP activates nPKCeta via P2Y1 receptor and is subsequently dephosphorylated by PP1gamma phosphatase activated by alpha(IIb)beta3 integrin. In addition, pretreatment of platelets with eta-RACK antagonistic peptides, a specific inhibitor of nPKCeta, inhibited ADP-induced thromboxane generation. However, these peptides had no affect on ADP-induced aggregation when thromboxane generation was blocked. In summary, nPKCeta positively regulates agonist-induced thromboxane generation with no effects on platelet aggregation.

  9. The molecular basis of targeting protein kinases in cancer therapeutics.

    PubMed

    Tsai, Chung-Jung; Nussinov, Ruth

    2013-08-01

    In this paper, we provide an overview of targeted anticancer therapies with small molecule kinase inhibitors. First, we discuss why a single constitutively active kinase emanating from a variety of aberrant genetic alterations is capable of transforming a normal cell, leading it to acquire the hallmarks of a cancer cell. To draw attention to the fact that kinase inhibition in targeted cancer therapeutics differs from conventional cytotoxic chemotherapy, we exploit a conceptual framework explaining why suppressed kinase activity will selectively kill only the so-called oncogene 'addicted' cancer cell, while sparing the healthy cell. Second, we introduce the protein kinase superfamily in light of its common active conformation with precisely positioned structural elements, and the diversified auto-inhibitory conformations among the kinase families. Understanding the detailed activation mechanism of individual kinases is essential to relate the observed oncogenic alterations to the elevated constitutively active state, to identify the mechanism of consequent drug resistance, and to guide the development of the next-generation inhibitors. To clarify the vital importance of structural guidelines in studies of oncogenesis, we explain how somatic mutations in EGFR result in kinase constitutive activation. Third, in addition to the common theme of secondary (acquired) mutations that prevent drug binding from blocking a signaling pathway which is hijacked by the aberrant activated kinase, we discuss scenarios of drug resistance and relapse by compensating lesions that bypass the inactivated pathway in a vertical or horizontal fashion. Collectively, these suggest that the future challenge of cancer therapy with small molecule kinase inhibitors will rely on the discovery of distinct combinations of optimized drugs to target individual subtypes of different cancers.

  10. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia*

    PubMed Central

    Roth Flach, Rachel J.; Danai, Laura V.; DiStefano, Marina T.; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B.; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K.; Bortell, Rita; Alonso, Laura C.; Czech, Michael P.

    2016-01-01

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo. After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. PMID:27226575

  11. A high-throughput radiometric kinase assay

    PubMed Central

    Duong-Ly, Krisna C.; Peterson, Jeffrey R.

    2016-01-01

    Aberrant kinase signaling has been implicated in a number of diseases. While kinases have become attractive drug targets, only a small fraction of human protein kinases have validated inhibitors. Screening libraries of compounds against a kinase or kinases of interest is routinely performed during kinase inhibitor development to identify promising scaffolds for a particular target and to identify kinase targets for compounds of interest. Screening of more focused compound libraries may also be conducted in the later stages of inhibitor development to improve potency and optimize selectivity. The dot blot kinase assay is a robust, high-throughput kinase assay that can be used to screen a number of small molecule compounds against one kinase of interest or several kinases. Here, a protocol for a dot blot kinase assay used for measuring insulin receptor kinase activity is presented. This protocol can be readily adapted for use with other protein kinases. PMID:26501904

  12. Comprehensive characterization of the Published Kinase Inhibitor Set.

    PubMed

    Elkins, Jonathan M; Fedele, Vita; Szklarz, Marta; Abdul Azeez, Kamal R; Salah, Eidarus; Mikolajczyk, Jowita; Romanov, Sergei; Sepetov, Nikolai; Huang, Xi-Ping; Roth, Bryan L; Al Haj Zen, Ayman; Fourches, Denis; Muratov, Eugene; Tropsha, Alex; Morris, Joel; Teicher, Beverly A; Kunkel, Mark; Polley, Eric; Lackey, Karen E; Atkinson, Francis L; Overington, John P; Bamborough, Paul; Müller, Susanne; Price, Daniel J; Willson, Timothy M; Drewry, David H; Knapp, Stefan; Zuercher, William J

    2016-01-01

    Despite the success of protein kinase inhibitors as approved therapeutics, drug discovery has focused on a small subset of kinase targets. Here we provide a thorough characterization of the Published Kinase Inhibitor Set (PKIS), a set of 367 small-molecule ATP-competitive kinase inhibitors that was recently made freely available with the aim of expanding research in this field and as an experiment in open-source target validation. We screen the set in activity assays with 224 recombinant kinases and 24 G protein-coupled receptors and in cellular assays of cancer cell proliferation and angiogenesis. We identify chemical starting points for designing new chemical probes of orphan kinases and illustrate the utility of these leads by developing a selective inhibitor for the previously untargeted kinases LOK and SLK. Our cellular screens reveal compounds that modulate cancer cell growth and angiogenesis in vitro. These reagents and associated data illustrate an efficient way forward to increasing understanding of the historically untargeted kinome.

  13. Targeting checkpoint kinase 1 in cancer therapeutics.

    PubMed

    Tse, Archie N; Carvajal, Richard; Schwartz, Gary K

    2007-04-01

    Progression through the cell cycle is monitored by surveillance mechanisms known as cell cycle checkpoints. Our knowledge of the biochemical nature of checkpoint regulation during an unperturbed cell cycle and following DNA damage has expanded tremendously over the past decade. We now know that dysfunction in cell cycle checkpoints leads to genomic instability and contributes to tumor progression, and most agents used for cancer therapy, such as cytotoxic chemotherapy and ionizing radiation, also activate cell cycle checkpoints. Understanding how checkpoints are regulated is therefore important from the points of view of both tumorigenesis and cancer treatment. In this review, we present an overview of the molecular hierarchy of the checkpoint signaling network and the emerging role of checkpoint targets, especially checkpoint kinase 1, in cancer therapy. Further, we discuss the results of recent clinical trials involving the nonspecific checkpoint kinase 1 inhibitor, UCN-01, and the challenges we face with this new therapeutic approach.

  14. Aurora Kinases Throughout Plant Development.

    PubMed

    Weimer, Annika K; Demidov, Dmitri; Lermontova, Inna; Beeckman, Tom; Van Damme, Daniël

    2016-01-01

    Aurora kinases are evolutionarily conserved key mitotic determinants in all eukaryotes. Yeasts contain a single Aurora kinase, whereas multicellular eukaryotes have at least two functionally diverged members. The involvement of Aurora kinases in human cancers has provided an in-depth mechanistic understanding of their roles throughout cell division in animal and yeast models. By contrast, understanding Aurora kinase function in plants is only starting to emerge. Nevertheless, genetic, cell biological, and biochemical approaches have revealed functional diversification between the plant Aurora kinases and suggest a role in formative (asymmetric) divisions, chromatin modification, and genome stability. This review provides an overview of the accumulated knowledge on the function of plant Aurora kinases as well as some major challenges for the future.

  15. Tyrosine kinase inhibitors - small molecular weight compounds inhibiting EGFR.

    PubMed

    Hegymegi-Barakonyi, Bálint; Eros, Dániel; Szántai-Kis, Csaba; Breza, Nóra; Bánhegyi, Péter; Szabó, Gábor Viktor; Várkondi, Edit; Peták, István; Orfi, László; Kéri, György

    2009-06-01

    Abnormally elevated EGFR kinase activity can lead to various pathological states, including proliferative diseases such as cancer. The development of selective protein kinase inhibitors has become an important area of drug discovery for the potential treatment of a variety of solid tumors such as breast, ovarian and colorectal cancers, NSCLC, and carcinoma of the head and neck. There are three small molecule EGFR kinase inhibitor drugs in clinical use (gefitinib, erlotinib and lapatinib), and several others are currently undergoing clinical development. This review summarizes the development of EGFR kinase inhibitors, and includes descriptions of the binding modes, the importance of a multiple-targets strategy, the effects of sensitizing and resistance mutations in the EGFR, and molecular diagnostic approaches. In addition, the use of target fishing for selectivity profiling, off-target identification and quantitative structure-activity relationship modeling for the prediction of EGFR inhibition is discussed.

  16. An X-ray structural study of pyruvate dehydrogenase kinase: A eukaryotic serine kinase with a prokaryotic histidine-kinase fold

    NASA Astrophysics Data System (ADS)

    Steussy, Calvin Nicklaus, Jr.

    2001-07-01

    Pyruvate Dehydrogenase Kinase is an enzyme that controls the flow of glucose through the eukaryotic cell and contributes to the pathology of diabetes mellitus. Early work on this kinase demonstrated that it has an amino acid sequence much like bacterial histidine kinases, but an activity similar to that of modern serine/threonine kinases. This project utilized the techniques of X-ray crystallography to determine molecular structure of pyruvate dehydrogenase kinase, isozyme 2. The structure was phased using selenium substituted for sulfur in methionine residues, and data at multiple wavelengths was collected at the National Synchrotron Light Source, Brookhaven National Laboratories. PDK 2 was found to fold into a two-domain monomer that forms a dimer through two beta sheets in the C-terminal domain. The N-terminal domain is an alpha-helical bundle while the C-terminal domain is an alpha/beta sandwich. The fold of the C-terminal domain is very similar to that of the prokaryotic histidine kinases, indicating that they share a common ancestor. The catalytic mechanism, however, has evolved to use general base catalysis to activate the serine substrate, rather than the direct nucleophilic attack by the imidazole sidechain used in the prokaryotic kinases. Thus, the structure of the protein echoes its prokaryotic ancestor, while the chemical mechanism has adapted to a serine substrate. The electrostatic surface of PDK2 leads to the suggestion that the lipoyl domain of the pyruvate dehydrogenase kinase, an important associated structure, may bind in the cleft formed between the N- and C-terminal domains. In addition, a network of hydrogen bonds directly connects the nucleotide binding pocket to the dimer interface, suggesting that there may be some interaction between dimer formation and ATP binding or ADP release.

  17. Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase.

    PubMed

    Qian, Kevin C; Wang, Lian; Hickey, Eugene R; Studts, Joey; Barringer, Kevin; Peng, Charline; Kronkaitis, Anthony; Li, Jun; White, Andre; Mische, Sheenah; Farmer, Bennett

    2005-02-18

    Pim-1 kinase is a member of a distinct class of serine/threonine kinases consisting of Pim-1, Pim-2, and Pim-3. Pim kinases are highly homologous to one another and share a unique consensus hinge region sequence, ER-PXPX, with its two proline residues separated by a non-conserved residue, but they (Pim kinases) have <30% sequence identity with other kinases. Pim-1 has been implicated in both cytokine-induced signal transduction and the development of lymphoid malignancies. We have determined the crystal structures of apo Pim-1 kinase and its AMP-PNP (5'-adenylyl-beta,gamma-imidodiphosphate) complex to 2.1-angstroms resolutions. The structures reveal the following. 1) The kinase adopts a constitutively active conformation, and extensive hydrophobic and hydrogen bond interactions between the activation loop and the catalytic loop might be the structural basis for maintaining such a conformation. 2) The hinge region has a novel architecture and hydrogen-bonding pattern, which not only expand the ATP pocket but also serve to establish unambiguously the alignment of the Pim-1 hinge region with that of other kinases. 3) The binding mode of AMP-PNP to Pim-1 kinase is unique and does not involve a critical hinge region hydrogen bond interaction. Analysis of the reported Pim-1 kinase-domain structures leads to a hypothesis as to how Pim kinase activity might be regulated in vivo.

  18. Effects of butyltins on mitogen-activated-protein kinase kinase kinase and Ras activity in human natural killer cells.

    PubMed

    Celada, Lindsay J; Whalen, Margaret M

    2014-09-01

    Butyltins (BTs) contaminate the environment and are found in human blood. BTs, tributyltin (TBT) and dibutyltin (DBT) diminish the cytotoxic function and levels of key proteins of human natural killer (NK) cells. NK cells are an initial immune defense against tumors, virally infected cells and antibody-coated cells and thus critical to human health. The signaling pathways that regulate NK cell functions include mitogen-activated protein kinases (MAPKs). Studies have shown that exposure to BTs leads to activation of specific MAPKs and MAPK kinases (MAP2Ks) in human NK cells. MAP2K kinases (MAP3Ks) are upstream activators of MAP2Ks, which then activate MAPKs. The current study examined if BT-induced activation of MAP3Ks was responsible for MAP2K and thus, MAPK activation. This study examines the effects of TBT and DBT on the total levels of two MAP3Ks, c-Raf and ASK1, as well as activating and inhibitory phosphorylation sites on these MAP3Ks. In addition, the immediate upstream activator of c-Raf, Ras, was examined for BT-induced alterations. Our results show significant activation of the MAP3K, c-Raf, in human NK cells within 10 min of TBT exposure and the MAP3K, ASK1, after 1 h exposures to TBT. In addition, our results suggest that both TBT and DBT affect the regulation of c-Raf.

  19. Phosphatidylinositol 3'-kinase associates with an insulin receptor substrate-1 serine kinase distinct from its intrinsic serine kinase.

    PubMed Central

    Cengel, K A; Kason, R E; Freund, G G

    1998-01-01

    Serine phosphorylation of insulin receptor substrate-1 (IRS-1) has been proposed as a counter-regulatory mechanism in insulin and cytokine signalling. Here we report that IRS-1 is phosphorylated by a wortmannin insensitive phosphatidylinositol 3'-kinase (PI 3-kinase)-associated serine kinase (PAS kinase) distinct from PI 3-kinase serine kinase. We found that PI 3-kinase immune complexes contain 5-fold more wortmannin-insensitive serine kinase activity than SH2-containing protein tyrosine phosphatase-2 (SHP2) and IRS-1 immune complexes. Affinity chromatography of cell lysates with a glutathione S-transferase fusion protein for the p85 subunit of PI 3-kinase showed that PAS kinase associated with the p85 subunit of PI 3-kinase. This interaction required unoccupied SH2 domain(s) but did not require the PI 3-kinase p110 subunit binding domain. In terms of function, PAS kinase phosphorylated IRS-1 and, after insulin stimulation, PAS kinase phosphorylated IRS-1 in PI 3-kinase-IRS-1 complexes. Phosphopeptide mapping showed that insulin-dependent in vivo sites of IRS-1 serine phosphorylation were comparable to those of PAS kinase phosphorylated IRS-1. More importantly, PAS kinase-dependent phosphorylation of IRS-1 reduced by 4-fold the ability of IRS-1 to act as an insulin receptor substrate. Taken together, these findings indicate that: (a) PAS kinase is distinct from the intrinsic serine kinase activity of PI 3-kinase, (b) PAS kinase associates with the p85 subunit of PI 3-kinase through SH2 domain interactions, and (c) PAS kinase is an IRS-1 serine kinase that can reduce the ability of IRS-1 to serve as an insulin receptor substrate. PMID:9761740

  20. Understanding the Polo Kinase machine.

    PubMed

    Archambault, V; Lépine, G; Kachaner, D

    2015-09-10

    The Polo Kinase is a central regulator of cell division required for several events of mitosis and cytokinesis. In addition to a kinase domain (KD), Polo-like kinases (Plks) comprise a Polo-Box domain (PBD), which mediates protein interactions with targets and regulators of Plks. In all organisms that contain Plks, one Plk family member fulfills several essential functions in the regulation of cell division, and here we refer to this conserved protein as Polo Kinase (Plk1 in humans). The PBD and the KD are capable of both cooperation and mutual inhibition in their functions. Crystal structures of the PBD, the KD and, recently, a PBD-KD complex have helped understanding the inner workings of the Polo Kinase. In parallel, an impressive array of molecular mechanisms has been found to mediate the regulation of the protein. Moreover, the targeting of Polo Kinase in the development of anti-cancer drugs has yielded several molecules with which to chemically modulate Polo Kinase to study its biological functions. Here we review our current understanding of the protein function and regulation of Polo Kinase as a fascinating molecular device in control of cell division.

  1. A Novel Calcium-Dependent Kinase Inhibitor, Bumped Kinase Inhibitor 1517, Cures Cryptosporidiosis in Immunosuppressed Mice.

    PubMed

    Castellanos-Gonzalez, Alejandro; Sparks, Hayley; Nava, Samantha; Huang, Wenlin; Zhang, Zhongsheng; Rivas, Kasey; Hulverson, Matthew A; Barrett, Lynn K; Ojo, Kayode K; Fan, Erkang; Van Voorhis, Wesley C; White, Arthur Clinton

    2016-12-15

    Cryptosporidium is recognized as one of the main causes of childhood diarrhea worldwide. However, the current treatment for cryptosporidiosis is suboptimal. Calcium flux is essential for entry in apicomplexan parasites. Calcium-dependent protein kinases (CDPKs) are distinct from protein kinases of mammals, and the CDPK1 of the apicomplexan Cryptosporidium lack side chains that typically block a hydrophobic pocket in protein kinases. We exploited this to develop bumped kinase inhibitors (BKIs) that selectively target CDPK1. We have shown that several BKIs of Cryptosporidium CDPK1 potently reduce enzymatic activity and decrease parasite numbers when tested in vitro. In the present work, we studied the anticryptosporidial activity of BKI-1517, a novel BKI. The half maximal effective concentration for Cryptosporidium parvum in HCT-8 cells was determined to be approximately 50 nM. Silencing experiments of CDPK1 suggest that BKI-1517 acts on CDPK1 as its primary target. In a mouse model of chronic infection, 5 of 6 SCID/beige mice (83.3%) were cured after treatment with a single daily dose of 120 mg/kg BKI-1517. No side effects were observed. These data support advancing BKI-1517 as a lead compound for drug development for cryptosporidiosis.

  2. P21 activated kinases

    PubMed Central

    Rane, Chetan K; Minden, Audrey

    2014-01-01

    The p21 activated kinases (Paks) are well known effector proteins for the Rho GTPases Cdc42 and Rac. The Paks contain 6 members, which fall into 2 families of proteins. The first family consists of Paks 1, 2, and 3, and the second consists of Paks 4, 5, and 6. While some of the Paks are ubiquitously expressed, others have more restrictive tissue specificity. All of them are found in the nervous system. Studies using cell culture, transgenic mice, and knockout mice, have revealed important roles for the Paks in cytoskeletal organization and in many aspects of cell growth and development. This review discusses the basic structures of the Paks, and their roles in cell growth, development, and in cancer. PMID:24658305

  3. Purification and characterization of a cytosolic insulin-stimulated serine kinase from rat liver.

    PubMed

    Wolfe, L; Bradford, A P; Klarlund, J K; Czech, M P

    1992-05-15

    A cytosolic insulin-sensitive serine kinase has been purified to apparent homogeneity in parallel from livers of control or acutely insulin-treated rats. The kinase is labile and requires rapid purification for stability. The kinase migrates as a band of apparent Mr = 90,000 on denaturing gels and elutes as a monomer on Superose 12 gel filtration. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis and renaturation, the 90-kDa band presumed to be the kinase shows kinase activity toward myelin basic protein in situ. Substrates of the kinase include Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide), ribosomal protein S6, S6 peptide, a proline-rich peptide substrate, microtubule-associated protein 2, and myelin basic protein. The kinase also phosphorylates histones H1 and H2B, but does not autophosphorylate to a significant stoichiometry. The activity of the kinase is inhibited by fluoride, glycerophosphate, p-nitrophenyl phosphate, p-nitrophenol, heparin, quercetin, poly-L-lysine, and potassium phosphate, but is unaffected by calcium, cAMP, spermine, protein kinase inhibitor peptide, phorbol myristate acetate, calcium plus phosphatidylserine, or vanadate. The kinase will utilize magnesium (10 mM) as well as manganese (1 mM) as a cofactor for maximal phosphotransferase activity. The kinase is not detected by immunoblotting with antibodies directed against protein kinase C or type II S6 kinase. Taken together, these properties distinguish this kinase from other insulin-sensitive kinases that have been described previously. The purified kinase from livers of insulin-treated rats shows a 5-20-fold higher specific activity compared to enzyme prepared from control rats, suggesting a covalent modification as the mechanism of activation. Incubation of purified, insulin-stimulated kinase with purified phosphatase 2A leads to deactivation of the kinase activity, and the phosphatase inhibitor nitrophenyl phosphate blocks this deactivation. The insulin-activated kinase fails to

  4. ERK kinases modulate the activation of PI3 kinase related kinases (PIKKs) in DNA damage response.

    PubMed

    Lin, Xiaozeng; Yan, Judy; Tang, Damu

    2013-12-01

    DNA damage response (DDR) is the critical surveillance mechanism in maintaining genome integrity. The mechanism activates checkpoints to prevent cell cycle progression in the presence of DNA lesions, and mediates lesion repair. DDR is coordinated by three apical PI3 kinase related kinases (PIKKs), including ataxia-telangiectasia mutated (ATM), ATM- and Rad3-related (ATR), and DNA-PKcs (the catalytic subunit of the DNA dependent protein kinase). These kinases are activated in response to specific DNA damage or lesions, resulting in checkpoint activation and DNA lesion repair. While it is clear that the pathways of ATM, ATR, and DNA-PK are the core components of DDR, there is accumulating evidence revealing the involvement of other cellular pathways in regulating DDR; this is in line with the concept that in addition to being a nuclear event DDR is also a cellular process. One of these pathways is the extracellular signal-regulated kinase (ERK) MAPK (mitogen-activated protein kinase) pathway. ERK is a converging point of multiple signal transduction pathways involved in cell proliferation, differentiation, and apoptosis. Adding to this list of pathways is the recent development of ERK in DDR. The ERK kinases (ERK1 and ERK2) contribute to the proper execution of DDR in terms of checkpoint activation and the repair of DNA lesions. This review summarizes the contributions of ERK to DDR with emphasis on the relationship of ERK kinases with the activation of ATM, ATR, and DNA-PKcs.

  5. Discovery and Characterization of Allosteric WNK Kinase Inhibitors.

    PubMed

    Yamada, Ken; Zhang, Ji-Hu; Xie, Xiaoling; Reinhardt, Juergen; Xie, Amy Qiongshu; LaSala, Daniel; Kohls, Darcy; Yowe, David; Burdick, Debra; Yoshisue, Hajime; Wakai, Hiromichi; Schmidt, Isabel; Gunawan, Jason; Yasoshima, Kayo; Yue, Q Kimberley; Kato, Mitsunori; Mogi, Muneto; Idamakanti, Neeraja; Kreder, Natasha; Drueckes, Peter; Pandey, Pramod; Kawanami, Toshio; Huang, Waanjeng; Yagi, Yukiko I; Deng, Zhan; Park, Hyi-Man

    2016-12-16

    Protein kinases are known for their highly conserved adenosine triphosphate (ATP)-binding site, rendering the discovery of selective inhibitors a major challenge. In theory, allosteric inhibitors can achieve high selectivity by targeting less conserved regions of the kinases, often with an added benefit of retaining efficacy under high physiological ATP concentration. Although often overlooked in favor of ATP-site directed approaches, performing a screen at high ATP concentration or stringent hit triaging with high ATP concentration offers conceptually simple methods of identifying inhibitors that bind outside the ATP pocket. Here, we applied the latter approach to the With-No-Lysine (K) (WNK) kinases to discover lead molecules for a next-generation antihypertensive that requires a stringent safety profile. This strategy yielded several ATP noncompetitive WNK1-4 kinase inhibitors, the optimization of which enabled cocrystallization with WNK1, revealing an allosteric binding mode consistent with the observed exquisite specificity for WNK1-4 kinases. The optimized compound inhibited rubidium uptake by sodium chloride cotransporter 1 (NKCC1) in HT29 cells, consistent with the reported physiology of WNK kinases in renal electrolyte handling.

  6. Scaffold mining of kinase hinge binders in crystal structure database

    NASA Astrophysics Data System (ADS)

    Xing, Li; Rai, Brajesh; Lunney, Elizabeth A.

    2014-01-01

    Protein kinases are the second most prominent group of drug targets, after G-protein-coupled receptors. Despite their distinct inhibition mechanisms, the majority of kinase inhibitors engage the conserved hydrogen bond interactions with the backbone of hinge residues. We mined Pfizer internal crystal structure database (CSDb) comprising of several thousand of public as well as internal X-ray binary complexes to compile an inclusive list of hinge binding scaffolds. The minimum ring scaffolds with directly attached hetero-atoms and functional groups were extracted from the full compounds by applying a rule-based filtering procedure employing a comprehensive annotation of ATP-binding site of the human kinase complements. The results indicated large number of kinase inhibitors of diverse chemical structures are derived from a relatively small number of common scaffolds, which serve as the critical recognition elements for protein kinase interaction. Out of the nearly 4,000 kinase-inhibitor complexes in the CSDb we identified approximately 600 unique scaffolds. Hinge scaffolds are overwhelmingly flat with very little sp3 characteristics, and are less lipophilic than their corresponding parent compounds. Examples of the most common as well as the uncommon hinge scaffolds are presented. Although the most common scaffolds are found in complex with multiple kinase targets, a large number of them are uniquely bound to a specific kinase, suggesting certain scaffolds could be more promiscuous than the others. The compiled collection of hinge scaffolds along with their three-dimensional binding coordinates could serve as basis set for hinge hopping, a practice frequently employed to generate novel invention as well as to optimize existing leads in medicinal chemistry.

  7. The Src family kinases: distinct functions of c-Src, Yes, and Fyn in the liver.

    PubMed

    Reinehr, Roland; Sommerfeld, Annika; Häussinger, Dieter

    2013-04-01

    The Src family kinases Yes, Fyn, and c-Src play a pivotal role in regulating diverse liver functions such as bile flow, proteolysis, apoptosis, and proliferation and are regulated by anisoosmotic cell volume changes, death receptor ligands, and bile acids. For example, cell swelling leads to an integrin-sensed and focal adhesion kinase-mediated activation of c-Src-triggering choleresis, proteolysis inhibition, regulatory volume decrease via p38MAPK and proliferation via the activation of the epidermal growth factor receptor and extracellular regulated kinases 1 and 2. In contrast, hepatocyte shrinkage generates an almost instantaneous oxidative stress response that triggers the activation of c-Jun N-terminal kinase and the Src family kinases Fyn and Yes. Whereas Fyn activation mediates cholestasis, Yes triggers CD95 activation and apoptosis. This review will discuss the role of Src family kinases in the regulation of liver function with emphasis on their role in osmo-signaling and bile acid signaling.

  8. Activity and regulation by growth factors of calmodulin-dependent protein kinase III (elongation factor 2-kinase) in human breast cancer

    PubMed Central

    Parmer, T G; Ward, M D; Yurkow, E J; Vyas, V H; Kearney, T J; Hait, W N

    1999-01-01

    Calmodulin-dependent protein kinase III (CaM kinase III, elongation factor-2 kinase) is a unique member of the Ca2+/CaM-dependent protein kinase family. Activation of CaM kinase III leads to the selective phosphorylation of elongation factor 2 (eEF-2) and transient inhibition of protein synthesis. Recent cloning and sequencing of CaM kinase III revealed that this enzyme represents a new superfamily of protein kinases. The activity of CaM kinase III is selectively activated in proliferating cells; inhibition of the kinase blocked cells in G0/G1-S and decreased viability. To determine the significance of CaM kinase III in breast cancer, we measured the activity of the kinase in human breast cancer cell lines as well as in fresh surgical specimens. The specific activity of CaM kinase III in human breast cancer cell lines was equal to or greater than that seen in a variety of cell lines with similar rates of proliferation. The specific activity of CaM kinase III was markedly increased in human breast tumour specimens compared with that of normal adjacent breast tissue. The activity of this enzyme was regulated by breast cancer mitogens. In serum-deprived MDA-MB-231 cells, the combination of insulin-like growth factor I (IGF-I) and epidermal growth factor (EGF) stimulated cell proliferation and activated CaM kinase III to activities observed in the presence of 10% serum. Inhibition of enzyme activity blocked cell proliferation induced by growth factors. In MCF-7 cells separated by fluorescence-activated cell sorting, CaM kinase III was increased in S-phase over that of other phases of the cell cycle. In summary, the activity of Ca2+/CaM-dependent protein kinase III is controlled by breast cancer mitogens and appears to be constitutively activated in human breast cancer. These results suggest that CaM kinase III may contribute an important link between growth factor/receptor interactions, protein synthesis and the induction of cellular proliferation in human breast

  9. Small molecule modulators of eukaryotic initiation factor 2α kinases, the key regulators of protein synthesis.

    PubMed

    Joshi, Manali; Kulkarni, Abhijeet; Pal, Jayanta K

    2013-11-01

    Eukaryotic initiation factor 2 alpha kinases (eIF-2α kinases) are key mediators of stress response in cells. In mammalian cells, there are four eIF-2α kinases, namely HRI (Heme-Regulated Inhibitor), PKR (RNA-dependent Protein Kinase), PERK (PKR-like ER Kinase) and GCN2 (General Control Non-derepressible 2). These kinases get activated during diverse cytoplasmic stress conditions and phosphorylate the alpha-subunit of eIF2, leading to global protein synthesis inhibition. Therefore, eIF-2α kinases play a vital role in various cellular processes such as proliferation, differentiation, apoptosis and cell signaling. Deregulation of eIF-2α kinases and protein synthesis has been linked to numerous pathological conditions such as certain cancers, anemia and neurodegenerative disorders. Thus, modulation of these kinases by small molecules holds a great therapeutic promise. In this review we have compiled the available information on inhibitors and activators of these four eIF-2α kinases. The review concludes with a note on the selectivity issue of currently available modulators and future perspectives for the design of specific small molecule probes.

  10. Isolation of chloroplastic phosphoglycerate kinase

    SciTech Connect

    Macioszek, J.; Anderson, L.E. ); Anderson, J.B. )

    1990-09-01

    We report here a method for the isolation of high specific activity phosphoglycerate kinase (EC 2.7.2.3) from chloroplasts. The enzyme has been purified over 200-fold from pea (Pisum sativum L.) stromal extracts to apparent homogeneity with 23% recovery. Negative cooperativity is observed with the two enzyme phosphoglycerate kinase/glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13) couple restored from the purified enzymes when NADPH is the reducing pyridine nucleotide, consistent with earlier results obtained with crude chloroplastic extracts. Michaelis Menten kinetics are observed when 3-phosphoglycerate is held constant and phosphoglycerate kinase is varied, which suggests that phosphoglycerate kinase-bound 1,3-bisphosphoglycerate may be the preferred substrate for glyceraldehyde-3-P dehydrogenase in the chloroplast.

  11. Neuronal migration and protein kinases

    PubMed Central

    Ohshima, Toshio

    2015-01-01

    The formation of the six-layered structure of the mammalian cortex via the inside-out pattern of neuronal migration is fundamental to neocortical functions. Extracellular cues such as Reelin induce intracellular signaling cascades through the protein phosphorylation. Migrating neurons also have intrinsic machineries to regulate cytoskeletal proteins and adhesion properties. Protein phosphorylation regulates these processes. Moreover, the balance between phosphorylation and dephosphorylation is modified by extracellular cues. Multipolar-bipolar transition, radial glia-guided locomotion and terminal translocation are critical steps of radial migration of cortical pyramidal neurons. Protein kinases such as Cyclin-dependent kinase 5 (Cdk5) and c-Jun N-terminal kinases (JNKs) involve these steps. In this review, I shall give an overview the roles of protein kinases in neuronal migration. PMID:25628530

  12. PREX1 Protein Function Is Negatively Regulated Downstream of Receptor Tyrosine Kinase Activation by p21-activated Kinases (PAKs).

    PubMed

    Barrows, Douglas; He, John Z; Parsons, Ramon

    2016-09-16

    Downstream of receptor tyrosine kinase and G protein-coupled receptor (GPCR) stimulation, the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchange factor (PREX) family of guanine nucleotide exchange factors (GEFs) activates Rho GTPases, leading to important roles for PREX proteins in numerous cellular processes and diseases, including cancer. PREX1 and PREX2 GEF activity is activated by the second messengers PIP3 and Gβγ, and further regulation of PREX GEF activity occurs by phosphorylation. Stimulation of receptor tyrosine kinases by neuregulin and insulin-like growth factor 1 (IGF1) leads to the phosphorylation of PREX1; however, the kinases that phosphorylate PREX1 downstream of these ligands are not known. We recently reported that the p21-activated kinases (PAKs), which are activated by GTP-bound Ras-related C3 botulinum toxin substrate 1 (Rac1), mediate the phosphorylation of PREX2 after insulin receptor activation. Here we show that certain phosphorylation events on PREX1 after insulin, neuregulin, and IGF1 treatment are PAK-dependent and lead to a reduction in PREX1 binding to PIP3 Like PREX2, PAK-mediated phosphorylation also negatively regulates PREX1 GEF activity. Furthermore, the onset of PREX1 phosphorylation was delayed compared with the phosphorylation of AKT, supporting a model of negative feedback downstream of PREX1 activation. We also found that the phosphorylation of PREX1 after isoproterenol and prostaglandin E2-mediated GPCR activation is partially PAK-dependent and likely also involves protein kinase A, which is known to reduce PREX1 function. Our data point to multiple mechanisms of PREX1 negative regulation by PAKs within receptor tyrosine kinase and GPCR-stimulated signaling pathways that have important roles in diseases such as diabetes and cancer.

  13. Benzimidazole derivatives as kinase inhibitors.

    PubMed

    Garuti, Laura; Roberti, Marinella; Bottegoni, Giovanni

    2014-01-01

    Benzimidazole is a common kinase inhibitor scaffold and benzimidazole-based compounds interact with enzymes by multiple binding modes. In some cases, the benzimidazole acts as part of the hinge-binding motif, in others it has a scaffolding role without evidence for direct hinge binding. Several of these compounds are ATP-competitive inhibitors and show high selectivity by exploiting unique structural properties that distinguish one kinase from the majority of other kinases. However, the high specificity for a single target is not always sufficient. Thus another approach, called multi-target therapy, has been developed over the last few years. The simultaneous inhibition of various kinases may be useful because the disease is attacked at several relevant targets. Moreover, if a kinase becomes drug-resistant, a multitargeted drug can act on the other kinases. Some benzimidazole derivatives are multi-target inhibitors. In this article benzimidazole inhibitors are reported with their mechanisms of action, structure-activity relationship (SAR) and biological properties.

  14. CUL3 and protein kinases

    PubMed Central

    Metzger, Thibaud; Kleiss, Charlotte; Sumara, Izabela

    2013-01-01

    Posttranslational mechanisms drive fidelity of cellular processes. Phosphorylation and ubiquitination of substrates represent very common, covalent, posttranslational modifications and are often co-regulated. Phosphorylation may play a critical role both by directly regulating E3-ubiquitin ligases and/or by ensuring specificity of the ubiquitination substrate. Importantly, many kinases are not only critical regulatory components of these pathways but also represent themselves the direct ubiquitination substrates. Recent data suggest the role of CUL3-based ligases in both proteolytic and non-proteolytic regulation of protein kinases. Our own recent study identified the mitotic kinase PLK1 as a direct target of the CUL3 E3-ligase complex containing BTB-KELCH adaptor protein KLHL22.1 In this study, we aim at gaining mechanistic insights into CUL3-mediated regulation of the substrates, in particular protein kinases, by analyzing mechanisms of interaction between KLHL22 and PLK1. We find that kinase activity of PLK1 is redundant for its targeting for CUL3-ubiquitination. Moreover, CUL3/KLHL22 may contact 2 distinct motifs within PLK1 protein, consistent with the bivalent mode of substrate targeting found in other CUL3-based complexes. We discuss these findings in the context of the existing knowledge on other protein kinases and substrates targeted by CUL3-based E3-ligases. PMID:24067371

  15. TNF and MAP kinase signaling pathways

    PubMed Central

    Sabio, Guadalupe; Davis, Roger J.

    2014-01-01

    The binding of tumor necrosis factor α (TNFα) to cell surface receptors engages multiple signal transduction pathways, including three groups of mitogen-activated protein (MAP) kinases: extracellular-signal-regulated kinases (ERKs); the cJun NH2-terminal kinases (JNKs); and the p38 MAP kinases. These MAP kinase signalling pathways induce a secondary response by increasing the expression of several inflammatory cytokines (including TNFα) that contribute to the biological activity of TNFα. MAP kinases therefore function both upstream and down-stream of signalling by TNFα receptors. Here we review mechanisms that mediate these actions of MAP kinases during the response to TNFα. PMID:24647229

  16. Overcoming Resistance to Inhibitors of the Akt Protein Kinase by Modulation of the Pim Kinase Pathway

    DTIC Science & Technology

    2014-10-01

    kinase . This grant proposal will explore the resistance to small molecule AKT protein kinase inhibitors mediated by the... molecule AKT protein kinase inhibitors is potentially mediated by the Pim-1 protein kinase , and that unique Pim protein kinase inhibitors that can in...application is essential for the development of this combined chemotherapeutic strategy. 15. SUBJECT TERMS Small Molecule AKT Inhibitors ,

  17. Tyrosine Kinase Inhibitors and Diabetes: A Novel Treatment Paradigm?

    PubMed

    Fountas, Athanasios; Diamantopoulos, Leonidas-Nikolaos; Tsatsoulis, Agathocles

    2015-11-01

    Deregulation of protein tyrosine kinase (PTK) activity is implicated in various proliferative conditions. Multi-target tyrosine kinase inhibitors (TKIs) are increasingly used for the treatment of different malignancies. Recently, several clinical cases of the reversal of both type 1 and 2 diabetes mellitus (T1DM, T2DM) during TKI administration have been reported. Experimental in vivo and in vitro studies have elucidated some of the mechanisms behind this effect. For example, inhibition of Abelson tyrosine kinase (c-Abl) results in β cell survival and enhanced insulin secretion, while platelet-derived growth factor receptor (PDGFR) and epidermal growth factor receptor (EGFR) inhibition leads to improvement in insulin sensitivity. In addition, inhibition of vascular endothelial growth factor receptor 2 (VEGFR2) reduces the degree of islet cell inflammation (insulitis). Therefore, targeting several PTKs may provide a novel approach for correcting the pathophysiologic disturbances of diabetes.

  18. Src-family-tyrosine kinase Lyn is critical for TLR2-mediated NF-κB activation through the PI 3-kinase signaling pathway.

    PubMed

    Toubiana, Julie; Rossi, Anne-Lise; Belaidouni, Nadia; Grimaldi, David; Pene, Frederic; Chafey, Philippe; Comba, Béatrice; Camoin, Luc; Bismuth, Georges; Claessens, Yann-Erick; Mira, Jean-Paul; Chiche, Jean-Daniel

    2015-10-01

    TLR2 has a prominent role in host defense against a wide variety of pathogens. Stimulation of TLR2 triggers MyD88-dependent signaling to induce NF-κB translocation, and activates a Rac1-PI 3-kinase dependent pathway that leads to transactivation of NF-κB through phosphorylation of the P65 NF-κB subunit. This transactivation pathway involves tyrosine phosphorylations. The role of the tyrosine kinases in TLR signaling is controversial, with discrepancies between studies using only chemical inhibitors and knockout mice. Here, we show the involvement of the tyrosine-kinase Lyn in TLR2-dependent activation of NF-κB in human cellular models, by using complementary inhibition strategies. Stimulation of TLR2 induces the formation of an activation cluster involving TLR2, CD14, PI 3-kinase and Lyn, and leads to the activation of AKT. Lyn-dependent phosphorylation of the p110 catalytic subunit of PI 3-kinase is essential to the control of PI 3-kinase biological activity upstream of AKT and thereby to the transactivation of NF-κB. Thus, Lyn kinase activity is crucial in TLR2-mediated activation of the innate immune response in human mononuclear cells.

  19. Simultaneous inhibition assay for human and microbial kinases via MALDI-MS/MS.

    PubMed

    Smith, Anne Marie E; Brennan, John D

    2014-03-03

    Selective inhibition of one kinase over another is a critical issue in drug development. For antimicrobial development, it is particularly important to selectively inhibit bacterial kinases, which can phosphorylate antimicrobial compounds such as aminoglycosides, without affecting human kinases. Previous work from our group showed the development of a MALDI-MS/MS assay for the detection of small molecule modulators of the bacterial aminoglycoside kinase APH3'IIIa. Herein, we demonstrate the development of an enhanced kinase MALDI-MS/MS assay involving simultaneous assaying of two kinase reactions, one for APH3'IIIa, and the other for human protein kinase A (PKA), which leads to an output that provides direct information on selectivity and mechanism of action. Specificity of the respective enzyme substrates were verified, and the assay was validated through generation of Z'-factors of 0.55 for APH3'IIIa with kanamycin and 0.60 for PKA with kemptide. The assay was used to simultaneously screen a kinase-directed library of mixtures of ten compounds each against both enzymes, leading to the identification of selective inhibitors for each enzyme as well as one non-selective inhibitor following mixture deconvolution.

  20. Improving nucleoside diphosphate kinase for antiviral nucleotide analogs activation.

    PubMed

    Gallois-Montbrun, Sarah; Schneider, Benoit; Chen, Yuxing; Giacomoni-Fernandes, Veronique; Mulard, Laurence; Morera, Solange; Janin, Joel; Deville-Bonne, Dominique; Veron, Michel

    2002-10-18

    Antiviral nucleoside analog therapies rely on their incorporation by viral DNA polymerases/reverse transcriptase leading to chain termination. The analogs (3'-deoxy-3'-azidothymidine (AZT), 2',3'-didehydro-2',3'-dideoxythymidine (d4T), and other dideoxynucleosides) are sequentially converted into triphosphate by cellular kinases of the nucleoside salvage pathway and are often poor substrates of these enzymes. Nucleoside diphosphate (NDP) kinase phosphorylates the diphosphate derivatives of the analogs with an efficiency some 10(4) lower than for its natural substrates. Kinetic and structural studies of Dictyostelium and human NDP kinases show that the sugar 3'-OH, absent from all antiviral analogs, is required for catalysis. To improve the catalytic efficiency of NDP kinase on the analogs, we engineered several mutants with a protein OH group replacing the sugar 3'-OH. The substitution of Asn-115 in Ser and Leu-55 in His results in an NDP kinase mutant with an enhanced ability to phosphorylate antiviral derivatives. Transfection of the mutant enzyme in Escherichia coli results in an increased sensitivity to AZT. An x-ray structure at 2.15-A resolution of the Dictyostelium enzyme bearing the serine substitution in complex with the R(p)-alpha-borano-triphosphate derivative of AZT shows that the enhanced activity reflects an improved geometry of binding and a favorable interaction of the 3'-azido group with the engineered serine.

  1. Casein Kinase 1 Functions as both Penultimate and Ultimate Kinase in Regulating Cdc25A Destruction

    PubMed Central

    Honaker, Yuchi; Piwnica-Worms, Helen

    2010-01-01

    The Cdc25A protein phosphatase drives cell cycle transitions by activating cyclin-dependent protein kinases. Failure to regulate Cdc25A leads to deregulated cell cycle progression, bypass of cell cycle checkpoints and genome instability. Ubiquitin-mediated proteolysis plays an important role in balancing Cdc25A levels. Cdc25A contains a DS82G motif whose phosphorylation is targeted by β-TrCP E3 ligase during interphase. Targeting of β-TrCP to Cdc25A requires phosphorylation of serines 79 (S79) and 82 (S82). Here, we report that casein kinase 1 alpha (CK1α) phosphorylates Cdc25A on both S79 and S82 in a hierarchical manner requiring prior phosphorylation of serine 76 by Chk1 or GSK-3β. This facilitates β-TrCP binding and ubiquitin-mediated proteolysis of Cdc25A throughout interphase and following exposure to genotoxic stress. The priming of Cdc25A by at least three kinases (Chk1, GSK-3β, CK1α), some of which also require priming, ensures diverse extra- and intra-cellular signals interface with Cdc25A to precisely control cell division. PMID:20348946

  2. Lead - nutritional considerations

    MedlinePlus

    Lead poisoning - nutritional considerations; Toxic metal - nutritional considerations ... utensils . Old paint poses the greatest danger for lead poisoning , especially in young children. Tap water from lead ...

  3. Aurora kinase A is a possible target of OSU‑03012 to destabilize MYC family proteins.

    PubMed

    Silva, Andres; Wang, Jennie; Lomahan, Sarah; Tran, Tuan-Anh; Grenlin, Laura; Suganami, Akiko; Tamura, Yutaka; Ikegaki, Naohiko

    2014-09-01

    OSU-03012, a 3-phosphoinositide-dependent kinase-1 (PDK1) inhibitor, destabilizes MYCN and MYC proteins in neuroblastoma cells. However, AKT phosphorylation is barely detectable in neuroblastoma cells under normal culture conditions whether treated with OSU-03012 or not. This observation suggests that PDK1 is not the main target of OSU-03012 to destabilize MYC and MYCN in neuroblastoma cells. In the present study, we explored one of the possible mechanisms by which OSU-03012 destabilizes MYC and MYCN. Since Aurora kinase A is reported to phosphorylate GSK3β, leading to its inactivation, we hypothesized that one of the targets of OSU-03012 is Aurora kinase A. Comparative analysis of OSU-03012 and VX-680, a potent and specific inhibitor of Aurora kinases, showed that both inhibitors destabilized MYC and MYCN and were significantly growth suppressive to neuroblastoma cell lines. In silico molecular docking analysis further showed that the calculated interaction energy between Aurora kinase A and OSU-03012 was -109.901 kcal/mol, which was lower than that (-89.273 kcal/mol) between Aurora kinase A and FXG, an Aurora kinase-specific inhibitor. Finally, an in vitro Aurora kinase A inhibition assay using a recombinant Aurora kinase A showed that OSU-03012 significantly inhibited Aurora kinase A, although it was weaker in potency than that of VX-680. Thus, OSU-03012 has a likelihood of binding to and inhibiting Aurora kinase A in vivo. These results suggest that OSU-03012 affects multiple cellular targets, including Aurora kinase A, to exhibit its growth suppressive and MYC and MYCN-destabilizing effects on neuroblastoma and other cancer cells.

  4. Discovering the first tyrosine kinase.

    PubMed

    Hunter, Tony

    2015-06-30

    In the middle of the 20th century, animal tumor viruses were heralded as possible models for understanding human cancer. By the mid-1970s, the molecular basis by which tumor viruses transform cells into a malignant state was beginning to emerge as the first viral genomic sequences were reported and the proteins encoded by their transforming genes were identified and characterized. This was a time of great excitement and rapid progress. In 1978, prompted by the discovery from Ray Erikson's group that the Rous sarcoma virus (RSV) v-Src-transforming protein had an associated protein kinase activity specific for threonine, my group at the Salk Institute set out to determine whether the polyomavirus middle T-transforming protein had a similar kinase activity. Here, I describe the experiments that led to the identification of a kinase activity associated with middle T antigen and our serendipitous discovery that this activity was specific for tyrosine in vitro, and how this in turn led to the fortuitous observation that the v-Src-associated kinase activity was also specific for tyrosine. Our finding that v-Src increased the level of phosphotyrosine in cellular proteins in RSV-transformed cells confirmed that v-Src is a tyrosine kinase and transforms cells by phosphorylating proteins on tyrosine. My colleague Bart Sefton and I reported these findings in the March issue of PNAS in 1980. Remarkably, all of the experiments in this paper were accomplished in less than one month.

  5. Discovering the first tyrosine kinase

    PubMed Central

    Hunter, Tony

    2015-01-01

    In the middle of the 20th century, animal tumor viruses were heralded as possible models for understanding human cancer. By the mid-1970s, the molecular basis by which tumor viruses transform cells into a malignant state was beginning to emerge as the first viral genomic sequences were reported and the proteins encoded by their transforming genes were identified and characterized. This was a time of great excitement and rapid progress. In 1978, prompted by the discovery from Ray Erikson’s group that the Rous sarcoma virus (RSV) v-Src–transforming protein had an associated protein kinase activity specific for threonine, my group at the Salk Institute set out to determine whether the polyomavirus middle T-transforming protein had a similar kinase activity. Here, I describe the experiments that led to the identification of a kinase activity associated with middle T antigen and our serendipitous discovery that this activity was specific for tyrosine in vitro, and how this in turn led to the fortuitous observation that the v-Src–associated kinase activity was also specific for tyrosine. Our finding that v-Src increased the level of phosphotyrosine in cellular proteins in RSV-transformed cells confirmed that v-Src is a tyrosine kinase and transforms cells by phosphorylating proteins on tyrosine. My colleague Bart Sefton and I reported these findings in the March issue of PNAS in 1980. Remarkably, all of the experiments in this paper were accomplished in less than one month. PMID:26130799

  6. Endothelial Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 Is Critical for Lymphatic Vascular Development and Function

    PubMed Central

    Guo, Chang-An; Danai, Laura V.; Yawe, Joseph C.; Gujja, Sharvari; Edwards, Yvonne J. K.

    2016-01-01

    The molecular mechanisms underlying lymphatic vascular development and function are not well understood. Recent studies have suggested a role for endothelial cell (EC) mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) in developmental angiogenesis and atherosclerosis. Here, we show that constitutive loss of EC Map4k4 in mice causes postnatal lethality due to chylothorax, suggesting that Map4k4 is required for normal lymphatic vascular function. Mice constitutively lacking EC Map4k4 displayed dilated lymphatic capillaries, insufficient lymphatic valves, and impaired lymphatic flow; furthermore, primary ECs derived from these animals displayed enhanced proliferation compared with controls. Yeast 2-hybrid analyses identified the Ras GTPase-activating protein Rasa1, a known regulator of lymphatic development and lymphatic endothelial cell fate, as a direct interacting partner for Map4k4. Map4k4 silencing in ECs enhanced basal Ras and extracellular signal-regulated kinase (Erk) activities, and primary ECs lacking Map4k4 displayed enhanced lymphatic EC marker expression. Taken together, these results reveal that EC Map4k4 is critical for lymphatic vascular development by regulating EC quiescence and lymphatic EC fate. PMID:27044870

  7. Tyrosine Kinase Inhibitors in Lung Cancer

    PubMed Central

    Thomas, Anish; Rajan, Arun; Giaccone, Giuseppe

    2012-01-01

    SYNOPSIS ‘Driver mutations’ are essential for carcinogenesis as well as tumor progression as they confer a selective growth advantage to cancer cells. Identification of driver mutations in growth related protein kinases, especially tyrosine kinases have led to clinical development of an array of tyrosine kinase inhibitors in various malignancies, including lung cancer. Inhibition of epidermal growth factor receptor and anaplastic lymphoma kinase tyrosine kinases have proven to be of meaningful clinical benefit, while inhibition of several other tyrosine kinases have been of limited clinical benefit, thus far. An improved understanding of tyrosine kinase biology has also led to faster drug development, identification of resistance mechanisms and ways to overcome resistance. In this review, we discuss the clinical data supporting the use and practical aspects of management of patients on epidermal growth factor receptor and anaplastic lymphoma kinase tyrosine kinase inhibitors. PMID:22520981

  8. Effect of Flos carthami on stress-activated protein kinase activity in the isolated reperfused rat heart.

    PubMed

    Siow, Y L; Choy, P C; Leung, W M; O, K

    2000-04-01

    The apoptotic death of cardiomyocytes due to ischemia/reperfusion is one of the major complications of heart disease. Ischemia/reperfusion has been shown to lead to the activation of the stress-activated protein (SAP) kinases and the p38/reactivating kinase (p38/RK). In this study, the direct effect of an aqueous Flos carthami (FC) extract on SAP kinases was investigated. When isolated rat hearts were perfused by Langendorff mode with media containing FC extract prior to the induction of global ischemia and the subsequent reperfusion, SAP kinase activity was inhibited 95%. Untreated ischemic/reperfused hearts showed a 57% elevation in the activity of SAP kinase. The in vitro effect of these FC extracts on SAP kinase was also tested. At a concentration of 10 microg/ml, the aqueous FC extract resulted in 50% inhibition of SAP kinase activity in ischemic heart tissue. Our results showed that FC affected both the interaction of SAP kinase with c-jun as well as the phosphotransferase reaction. These results clearly demonstrate that extracts from Flos carthami exerted inhibitory effects on SAP kinase. The administration of the FC extract may lead to a modulation of the apoptotic effect of SAP kinase activation induced during ischemia/reperfusion.

  9. The discovery of novel vascular endothelial growth factor receptor tyrosine kinases inhibitors: pharmacophore modeling, virtual screening and docking studies.

    PubMed

    Yu, Hui; Wang, Zhanli; Zhang, Liangren; Zhang, Jufeng; Huang, Qian

    2007-03-01

    We have applied pharmacophore generation, database searching and docking methodologies to discover new structures for the design of vascular endothelial growth factor receptors, the tyrosine kinase insert domain-containing receptor kinase inhibitors. The chemical function based pharmacophore models were built for kinase insert domain-containing receptor kinase inhibitors from a set of 10 known inhibitors using the algorithm HipHop, which is implemented in the CATALYST software. The highest scoring HipHop model consists of four features: one hydrophobic, one hydrogen bond acceptor, one hydrogen bond donor and one ring aromatic function. Using the algorithm CatShape within CATALYST, the bound conformation of 4-amino-furo [2, 3-d] pyrimidine binding to kinase insert domain-containing receptor kinase was used to generate a shape query. A merged shape and hypothesis query that is in an appropriate alignment was then built. The combined shape and hypothesis model was used as a query to search Maybridge database for other potential lead compounds. A total of 39 compounds were retrieved as hits. The hits obtained were docked into kinase insert domain-containing receptor kinase active site. One novel potential lead was proposed based on CATALYST fit value, LigandFit docking scores, and examination of how the hit retain key interactions known to be required for kinase binding. This compound inhibited vascular endothelial growth factor stimulated kinase insert domain-containing receptor phosphorylation in human umbilical vein endothelial cells.

  10. Rho-kinase mediated cytoskeletal stiffness in skinned smooth muscle

    PubMed Central

    Lan, Bo; Wang, Lu; Zhang, Jenny; Pascoe, Chris D.; Norris, Brandon A.; Liu, Jeffrey C.-Y.; Solomon, Dennis; Paré, Peter D.; Deng, Linhong

    2013-01-01

    The structurally dynamic cytoskeleton is important in many cell functions. Large gaps still exist in our knowledge regarding what regulates cytoskeletal dynamics and what underlies the structural plasticity. Because Rho-kinase is an upstream regulator of signaling events leading to phosphorylation of many cytoskeletal proteins in many cell types, we have chosen this kinase as the focus of the present study. In detergent skinned tracheal smooth muscle preparations, we quantified the proteins eluted from the muscle cells over time and monitored the muscle's ability to respond to acetylcholine (ACh) stimulation to produce force and stiffness. In a partially skinned preparation not able to generate active force but could still stiffen upon ACh stimulation, we found that the ACh-induced stiffness was independent of calcium and myosin light chain phosphorylation. This indicates that the myosin light chain-dependent actively cycling crossbridges are not likely the source of the stiffness. The results also indicate that Rho-kinase is central to the ACh-induced stiffness, because inhibition of the kinase by H1152 (1 μM) abolished the stiffening. Furthermore, the rate of relaxation of calcium-induced stiffness in the skinned preparation was faster than that of ACh-induced stiffness, with or without calcium, suggesting that different signaling pathways lead to different means of maintenance of stiffness in the skinned preparation. PMID:24072407

  11. Protein kinase C activity in boar sperm.

    PubMed

    Teijeiro, J M; Marini, P E; Bragado, M J; Garcia-Marin, L J

    2017-03-01

    Male germ cells undergo different processes within the female reproductive tract to successfully fertilize the oocyte. These processes are triggered by different extracellular stimuli leading to activation of protein phosphorylation. Protein kinase C (PKC) is a key regulatory enzyme in signal transduction mechanisms involved in many cellular processes. Studies in boar sperm demonstrated a role for PKC in the intracellular signaling involved in motility and cellular volume regulation. Experiments using phorbol 12-myristate 13-acetate (PMA) showed increases in the Serine/Threonine phosphorylation of substrates downstream of PKC in boar sperm. In order to gain knowledge about those cellular processes regulated by PKC, we evaluate the effects of PMA on boar sperm motility, lipid organization of plasma membrane, integrity of acrosome membrane and sperm agglutination. Also, we investigate the crosstalk between PKA and PKC intracellular pathways in spermatozoa from this species. The results presented here reveal a participation of PKC in sperm motility regulation and membrane fluidity changes, which is probably associated to acrosome reaction and to agglutination. Also, we show the existence of a hierarchy in the kinases pathway. Previous works on boar sperm suggest a pathway in which PKA is positioned upstream to PKC and this new results support such model.

  12. Bimodal lipid substrate dependence of phosphatidylinositol kinase.

    PubMed

    Ganong, B R

    1990-07-24

    Phosphatidylinositol (PI) kinase activity was solubilized from rat liver microsomes and partially purified by chromatography on hydroxyapatite and Reactive Green 19-Superose. Examination of the ATP dependence using a mixed micellar assay gave a Km of 120 microM. The dependence of reaction rate on PI was more complicated. PI kinase bound a large amount of Triton X-100, and as expected for a micelle-associated enzyme utilizing a micelle-associated lipid substrate, the reaction rate was dependent on the micellar mole fraction, PI/(PI + Triton X-100), with a Km of 0.02 (unitless). Activity showed an additional dependence on bulk PI concentration at high micelle dilution. These results demonstrated two kinetically distinguishable steps leading to formation of a productive PI/enzyme(/ATP) complex. The rate of the first step, which probably represents exchange of PI from the bulk micellar pool into enzyme-containing micelles, depends on bulk PI concentration. The rate of the second step, association of PI with enzyme within a single micelle, depends on the micellar mole fraction of PI. Depression of the apparent Vmax at low ionic strength suggested that electrostatic repulsion between negatively charged PI/Triton X-100 mixed micelles inhibits PI exchange, consistent with a model in which intermicellar PI exchange depends on micellar collisions.

  13. Evolutionary hypothesis of the Mevalonate Kinase Deficiency.

    PubMed

    Vuch, J; Marcuzzi, A; Bianco, A M; Tommasini, A; Zanin, V; Crovella, S

    2013-01-01

    Mevalonate Kinase Deficiency (MKD) is an autosomal-recessively inherited disorder of cholesterol biosynthesis with higher prevalence in the Netherlands and other North European countries. MKD is due to mutations in the second enzyme of mevalonate pathway (mevalonate kinase, MK/MVK) which results in reduced enzymatic activity and in the consequent shortage of downstream compounds. In most severe cases the deregulation of mevalonate pathway is associated with a decrease in serum cholesterol. More than 100 pathological mutations have been described in the MVK gene so far, and a founder effect has been hypothesized as responsible for the diffusion of the most frequent disease-associated mutations. In the acute phase of disease, patients affected with MKD present low cholesterol levels comparable to their basal physiologic conditions, already characterized by lower cholesterol levels when compared to healthy individuals. Low cholesterol levels are widely known to correlate with the reduction of cardiovascular events. We hypothesize a selective advantage for heterozygote carriers of the most frequent MVK mutations in those countries where the diet is characterized by high consumption of saturated animal fats rich in cholesterol. This could explain the maintenance in North European population of the main mutations leading to MKD and the distribution world-wide of these mutations that followed the migrations of North European populations.

  14. Lead and Your Baby

    MedlinePlus

    ... yourself and your family from lead in drinking water? Drinking water may contain lead if you have ... yourself and your family from lead in drinking water? Drinking water may contain lead if you have ...

  15. Cyclic-GMP-dependent protein kinase inhibits the Ras/Mitogen-activated protein kinase pathway.

    PubMed

    Suhasini, M; Li, H; Lohmann, S M; Boss, G R; Pilz, R B

    1998-12-01

    Agents which increase the intracellular cyclic GMP (cGMP) concentration and cGMP analogs inhibit cell growth in several different cell types, but it is not known which of the intracellular target proteins of cGMP is (are) responsible for the growth-suppressive effects of cGMP. Using baby hamster kidney (BHK) cells, which are deficient in cGMP-dependent protein kinase (G-kinase), we show that 8-(4-chlorophenylthio)guanosine-3', 5'-cyclic monophosphate and 8-bromoguanosine-3',5'-cyclic monophosphate inhibit cell growth in cells stably transfected with a G-kinase Ibeta expression vector but not in untransfected cells or in cells transfected with a catalytically inactive G-kinase. We found that the cGMP analogs inhibited epidermal growth factor (EGF)-induced activation of mitogen-activated protein (MAP) kinase and nuclear translocation of MAP kinase in G-kinase-expressing cells but not in G-kinase-deficient cells. Ras activation by EGF was not impaired in G-kinase-expressing cells treated with cGMP analogs. We show that activation of G-kinase inhibited c-Raf kinase activation and that G-kinase phosphorylated c-Raf kinase on Ser43, both in vitro and in vivo; phosphorylation of c-Raf kinase on Ser43 uncouples the Ras-Raf kinase interaction. A mutant c-Raf kinase with an Ala substitution for Ser43 was insensitive to inhibition by cGMP and G-kinase, and expression of this mutant kinase protected cells from inhibition of EGF-induced MAP kinase activity by cGMP and G-kinase, suggesting that Ser43 in c-Raf is the major target for regulation by G-kinase. Similarly, B-Raf kinase was not inhibited by G-kinase; the Ser43 phosphorylation site of c-Raf is not conserved in B-Raf. Activation of G-kinase induced MAP kinase phosphatase 1 expression, but this occurred later than the inhibition of MAP kinase activation. Thus, in BHK cells, inhibition of cell growth by cGMP analogs is strictly dependent on G-kinase and G-kinase activation inhibits the Ras/MAP kinase pathway (i) by

  16. [Kinase inhibitors against hematological malignancies].

    PubMed

    Tojo, Arinobu

    2014-06-01

    Dysregulation of protein phosphorylation, especially on tyrosine residues, plays a crucial role in development and progression of hematological malignancies. Since remarkable success in imatinib therapy of CML and Ph+ALL, extensive efforts have made to explore candidate molecular targets and next breakthrough drugs. Now that next generation ABL kinase inhibitors are available for CML, the therapeutic algorithm has been revolutionized. As for AML and lymphoid malignancies, many kinase inhibitors targeting FLT3, BTK and aurora-A are on early and late clinical trials, and a number of promising drugs including ibrutinib are picked up for further evaluation.

  17. The FRK1 mitogen-activated protein kinase kinase kinase (MAPKKK) from Solanum chacoense is involved in embryo sac and pollen development.

    PubMed

    Lafleur, Edith; Kapfer, Christelle; Joly, Valentin; Liu, Yang; Tebbji, Faiza; Daigle, Caroline; Gray-Mitsumune, Madoka; Cappadocia, Mario; Nantel, André; Matton, Daniel P

    2015-04-01

    The fertilization-related kinase 1 (ScFRK1), a nuclear-localized mitogen-activated protein kinase kinase kinase (MAPKKK) from the wild potato species Solanum chacoense, belongs to a small group of pMEKKs that do not possess an extended N- or C-terminal regulatory domain. Initially selected based on its highly specific expression profile following fertilization, in situ expression analyses revealed that the ScFRK1 gene is also expressed early on during female gametophyte development in the integument and megaspore mother cell and, later, in the synergid and egg cells of the embryo sac. ScFRK1 mRNAs are also detected in pollen mother cells. Transgenic plants with lower or barely detectable levels of ScFRK1 mRNAs lead to the production of small fruits with severely reduced seed set, resulting from a concomitant decline in the number of normal embryo sacs produced. Megagametogenesis and microgametogenesis were affected, as megaspores did not progress beyond the functional megaspore (FG1) stage and the microspore collapsed around the first pollen mitosis. As for other mutants that affect embryo sac development, pollen tube guidance was severely affected in the ScFRK1 transgenic lines. Gametophyte to sporophyte communication was also affected, as observed from a marked change in the transcriptomic profiles of the sporophytic tissues of the ovule. The ScFRK1 MAPKKK is thus involved in a signalling cascade that regulates both male and female gamete development.

  18. Evolutionary Ancestry of Eukaryotic Protein Kinases and Choline Kinases*

    PubMed Central

    Lai, Shenshen; Safaei, Javad

    2016-01-01

    The reversible phosphorylation of proteins catalyzed by protein kinases in eukaryotes supports an important role for eukaryotic protein kinases (ePKs) in the emergence of nucleated cells in the third superkingdom of life. Choline kinases (ChKs) could also be critical in the early evolution of eukaryotes, because of their function in the biosynthesis of phosphatidylcholine, which is unique to eukaryotic membranes. However, the genomic origins of ePKs and ChKs are unclear. The high degeneracy of protein sequences and broad expansion of ePK families have made this fundamental question difficult to answer. In this study, we identified two class-I aminoacyl-tRNA synthetases with high similarities to consensus amino acid sequences of human protein-serine/threonine kinases. Comparisons of primary and tertiary structures supported that ePKs and ChKs evolved from a common ancestor related to glutaminyl aminoacyl-tRNA synthetases, which may have been one of the key factors in the successful of emergence of ancient eukaryotic cells from bacterial colonies. PMID:26742849

  19. Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition.

    PubMed

    Lupardus, Patrick J; Ultsch, Mark; Wallweber, Heidi; Bir Kohli, Pawan; Johnson, Adam R; Eigenbrot, Charles

    2014-06-03

    Janus kinases (JAKs) are receptor-associated multidomain tyrosine kinases that act downstream of many cytokines and interferons. JAK kinase activity is regulated by the adjacent pseudokinase domain via an unknown mechanism. Here, we report the 2.8-Å structure of the two-domain pseudokinase-kinase module from the JAK family member TYK2 in its autoinhibited form. We find that the pseudokinase and kinase interact near the kinase active site and that most reported mutations in cancer-associated JAK alleles cluster in or near this interface. Mutation of residues near the TYK2 interface that are analogous to those in cancer-associated JAK alleles, including the V617F and "exon 12" JAK2 mutations, results in increased kinase activity in vitro. These data indicate that JAK pseudokinases are autoinhibitory domains that hold the kinase domain inactive until receptor dimerization stimulates transition to an active state.

  20. Spatial distribution of protein kinase A activity during cell migration is mediated by A-kinase anchoring protein AKAP Lbc.

    PubMed

    Paulucci-Holthauzen, Adriana A; Vergara, Leoncio A; Bellot, Larry J; Canton, David; Scott, John D; O'Connor, Kathleen L

    2009-02-27

    Protein kinase A (PKA) has been suggested to be spatially regulated in migrating cells due to its ability to control signaling events that are critical for polarized actin cytoskeletal dynamics. Here, using the fluorescence resonance energy transfer-based A-kinase activity reporter (AKAR1), we find that PKA activity gradients form with the strongest activity at the leading edge and are restricted to the basal surface in migrating cells. The existence of these gradients was confirmed using immunocytochemistry using phospho-PKA substrate antibodies. This observation holds true for carcinoma cells migrating randomly on laminin-1 or stimulated to migrate on collagen I with lysophosphatidic acid. Phosphodiesterase inhibition allows the formation of PKA activity gradients; however, these gradients are no longer polarized. PKA activity gradients are not detected when a non-phosphorylatable mutant of AKAR1 is used, if PKA activity is inhibited with H-89 or protein kinase inhibitor, or when PKA anchoring is perturbed. We further find that a specific A-kinase anchoring protein, AKAP-Lbc, is a major contributor to the formation of these gradients. In summary, our data show that PKA activity gradients are generated at the leading edge of migrating cells and provide additional insight into the mechanisms of PKA regulation of cell motility.

  1. Cyclin-Dependent Kinase Suppression by WEE1 Kinase Protects the Genome through Control of Replication Initiation and Nucleotide Consumption

    PubMed Central

    Beck, Halfdan; Nähse-Kumpf, Viola; Larsen, Marie Sofie Yoo; O'Hanlon, Karen A.; Patzke, Sebastian; Holmberg, Christian; Mejlvang, Jakob; Groth, Anja; Nielsen, Olaf

    2012-01-01

    Activation of oncogenes or inhibition of WEE1 kinase deregulates cyclin-dependent kinase (CDK) activity and leads to replication stress; however, the underlying mechanism is not understood. We now show that elevation of CDK activity by inhibition of WEE1 kinase rapidly increases initiation of replication. This leads to nucleotide shortage and reduces replication fork speed, which is followed by SLX4/MUS81-mediated DNA double-strand breakage. Fork speed is normalized and DNA double-strand break (DSB) formation is suppressed when CDT1, a key factor for replication initiation, is depleted. Furthermore, addition of nucleosides counteracts the effects of unscheduled CDK activity on fork speed and DNA DSB formation. Finally, we show that WEE1 regulates the ionizing radiation (IR)-induced S-phase checkpoint, consistent with its role in control of replication initiation. In conclusion, these results suggest that deregulated CDK activity, such as that occurring following inhibition of WEE1 kinase or activation of oncogenes, induces replication stress and loss of genomic integrity through increased firing of replication origins and subsequent nucleotide shortage. PMID:22907750

  2. Spatial Distribution of Protein Kinase A Activity during Cell Migration Is Mediated by A-kinase Anchoring Protein AKAP Lbc*

    PubMed Central

    Paulucci-Holthauzen, Adriana A.; Vergara, Leoncio A.; Bellot, Larry J.; Canton, David; Scott, John D.; O'Connor, Kathleen L.

    2009-01-01

    Protein kinase A (PKA) has been suggested to be spatially regulated in migrating cells due to its ability to control signaling events that are critical for polarized actin cytoskeletal dynamics. Here, using the fluorescence resonance energy transfer-based A-kinase activity reporter (AKAR1), we find that PKA activity gradients form with the strongest activity at the leading edge and are restricted to the basal surface in migrating cells. The existence of these gradients was confirmed using immunocytochemistry using phospho-PKA substrate antibodies. This observation holds true for carcinoma cells migrating randomly on laminin-1 or stimulated to migrate on collagen I with lysophosphatidic acid. Phosphodiesterase inhibition allows the formation of PKA activity gradients; however, these gradients are no longer polarized. PKA activity gradients are not detected when a non-phosphorylatable mutant of AKAR1 is used, if PKA activity is inhibited with H-89 or protein kinase inhibitor, or when PKA anchoring is perturbed. We further find that a specific A-kinase anchoring protein, AKAP-Lbc, is a major contributor to the formation of these gradients. In summary, our data show that PKA activity gradients are generated at the leading edge of migrating cells and provide additional insight into the mechanisms of PKA regulation of cell motility. PMID:19106088

  3. A chemoproteomic method for identifying cellular targets of covalent kinase inhibitors

    PubMed Central

    Chen, Ying-Chu; Zhang, Chao

    2016-01-01

    Protein kinases are attractive drug targets for numerous human diseases including cancers, diabetes and neurodegeneration. A number of kinase inhibitors that covalently target a cysteine residue in their target kinases have recently entered use in the cancer clinic. Despite the advantages of covalent kinases inhibitors, their inherent reactivity can lead to non-specific binding to other cellular proteins and cause off- target effects in cells. It is thus essential to determine the identity of these off targets in order to fully account for the phenotype and to improve the selectivity and efficacy of covalent inhibitors. Herein we present a detailed protocol for a chemoproteomic method to enrich and identify cellular targets of covalent kinase inhibitors. PMID:27551330

  4. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    SciTech Connect

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  5. Bisubstrate fluorescent probes and biosensors in binding assays for HTS of protein kinase inhibitors.

    PubMed

    Uri, Asko; Lust, Marje; Vaasa, Angela; Lavogina, Darja; Viht, Kaido; Enkvist, Erki

    2010-03-01

    Conjugates of adenosine mimics and d-arginine-rich peptides (ARCs) are potent inhibitors of protein kinases (PKs) from the AGC group. Labeling ARCs with fluorescent dyes or immobilizing on chip surfaces gives fluorescent probes (ARC-Photo) and biosensors that can be used for high-throughput screening (HTS) of inhibitors of protein kinases. The bisubstrate character (simultaneous association with both binding sites of the kinase) and high affinity of ARCs allow ARC-based probes and sensors to be used for characterization of inhibitors targeted to either binding site of the kinase with affinities in whole nanomolar to micromolar range. The ability to penetrate cell plasma membrane and bind to the target kinase fused with a fluorescent protein leads to the possibility to use ARC-Photo probes for high content screening (HCS) of inhibitors in cellular milieu with detection of intensity of Förster resonance energy transfer (FRET) between two fluorophores.

  6. Lead in petrol. The isotopic lead experiment

    SciTech Connect

    Facchetti, S. )

    1989-10-01

    Many studies were dedicated to the evaluation of the impact of automotive lead on the environment and to the assessment of its absorption in the human population. They can be subdivided into two groups, those based on changes of air and blood lead concentrations and those based on changes of air and blood lead isotopic compositions. According to various authors, 50-66% of the lead added to petrol is mobilized in the atmosphere, while most of the remainder adheres to the walls of the exhaust system from which it is expelled by mechanical and thermal shocks in the forms of easily sedimented particles. The fraction directly emitted by engine exhaust fumes is found in the form of fine particles, which can be transferred a long way from the emitting sources. However important the contribution of petrol lead to the total airborne lead may be, our knowledge does not permit a straightforward calculation of the percentage of petrol lead in total blood lead, which of course can also originate from other sources (e.g., industrial, natural). To evaluate this percentage in 1973, the idea of the Isotopic Lead Experiment (ILE project) was conceived to label, on a regional scale, petrol with a nonradioactive lead of an isotopic composition sufficiently different from that of background lead and sufficiently stable in time. This Account summarizes the main results obtained by the ILE project.

  7. Contraction inhibits insulin-stimulated insulin receptor substrate-1/2-associated phosphoinositide 3-kinase activity, but not protein kinase B activation or glucose uptake, in rat muscle.

    PubMed Central

    Whitehead, J P; Soos, M A; Aslesen, R; O'rahilly, S; Jensen, J

    2000-01-01

    The initial stages of insulin-stimulated glucose uptake are thought to involve tyrosine phosphorylation of insulin receptor substrates (IRSs), which recruit and activate phosphoinositide 3-kinase (PI 3-kinase), leading to the activation of protein kinase B (PKB) and other downstream effectors. In contrast, contraction stimulates glucose uptake via a PI 3-kinase-independent mechanism. The combined effects of insulin and contraction on glucose uptake are additive. However, it has been reported that contraction causes a decrease in insulin-stimulated IRS-1-associated PI 3-kinase activity. To investigate this paradox, we have examined the effects of contraction on insulin-stimulated glucose uptake and proximal insulin-signalling events in isolated rat epitrochlearis muscle. Stimulation by insulin or contraction produced a 3-fold increase in glucose uptake, with the effects of simultaneous treatment by insulin and contraction being additive. Wortmannin completely blocked the additive effect of insulin in contracting skeletal muscle, indicating that this is a PI 3-kinase-dependent effect. Insulin-stimulated recruitment of PI 3-kinase to IRS-1 was unaffected by contraction; however, insulin produced no discernible increase in PI 3-kinase activity in IRS-1 or IRS-2 immunocomplexes in contracting skeletal muscle. Consistent with this, contraction inhibited insulin-stimulated p70(S6K) activation. In contrast, insulin-stimulated activation of PKB was unaffected by contraction. Thus, in contracting skeletal muscle, insulin stimulates glucose uptake and activates PKB, but not p70(S6K), by a PI 3-kinase-dependent mechanism that is independent of changes in IRS-1- and IRS-2-associated PI 3-kinase activity. PMID:10903138

  8. Bone lead, hypertension, and lead nephropathy

    SciTech Connect

    Wedeen, R.P.

    1988-06-01

    There is considerable clinical evidence that excessive lead absorption causes renal failure with hypertension and predisposes individuals to hypertension even in the absence of detectable renal failure. Recent analyses of transiliac bone biopsies indicate that unsuspected elevated bone leads may reflect the cause (or contributing cause) of end-stage renal disease in 5% of the European dialysis population. In these patients, bone lead levels were four times higher than in unexposed cadavers (6 micrograms/g wet weight) and approximated levels found in lead workers (30 micrograms/g). At present, the most reliable index of the body lead burden is the CaNa2 EDTA lead mobilization test. In vivo tibial X-ray-induced X-ray fluorescence (XRF) is a more practical noninvasive technique for assessing bone lead, which should find widespread application as a diagnostic tool and for epidemiologic studies.

  9. Signal transduction at fertilization: the Ca2+ release pathway in echinoderms and other invertebrate deuterostomes.

    PubMed

    Townley, Ian K; Roux, Michelle M; Foltz, Kathy R

    2006-04-01

    Gamete interaction and fusion triggers a number of events that lead to egg activation and development of a new organism. A key event at fertilization is the rise in intracellular calcium. In deuterostomes, this calcium is released from the egg's endoplasmic reticulum and is necessary for proper activation. This article reviews recent data regarding how gamete interaction triggers the initial calcium release, focusing on the echinoderms (invertebrate deuterostomes) as model systems. In eggs of these animals, Src-type kinases and phospholipase C-gamma are required components of the initial calcium trigger pathway in eggs.

  10. AXL kinase as a novel target for cancer therapy

    PubMed Central

    Lee, Chang Youl; Zhang, Zhenfeng; Halmos, Balazs

    2014-01-01

    The AXL receptor tyrosine kinase and its major ligand, GAS6 have been demonstrated to be overexpressed and activated in many human cancers (such as lung, breast, and pancreatic cancer) and have been correlated with poor prognosis, promotion of increased invasiveness/metastasis, the EMT phenotype and drug resistance. Targeting AXL in different model systems with specific small molecule kinase inhibitors or antibodies alone or in combination with other drugs can lead to inactivation of AXL-mediated signaling pathways and can lead to regained drug sensitivity and improved therapeutic efficacy, defining AXL as a promising novel target for cancer therapeutics. This review highlights the data supporting AXL as a novel treatment candidate in a variety of cancers as well as the current status of drug development targeting the AXL/GAS6 axis and future perspectives in this emerging field. PMID:25337673

  11. Kinase signalling in Huntington's disease.

    PubMed

    Bowles, Kathryn R; Jones, Lesley

    2014-01-01

    Alterations in numerous signal transduction pathways and aberrant activity of specific kinases have been identified in multiple cell and mouse models of Huntington's disease (HD), as well as in human HD brain. The balance and integration of a network of kinase signalling pathways is paramount for the regulation of a wide range of cellular and physiological processes, such as proliferation, differentiation, inflammation, neuronal plasticity and apoptosis. Unbalanced activity within these pathways provides a potential mechanism for many of the pathological phenotypes associated with HD, such as transcriptional dysregulation, inflammation and ultimately neurodegeneration. The characterisation of aberrant kinase signalling regulation in HD has been inconsistent and may be a result of failure to consider integration between multiple signalling pathways, as well as alterations that may occur over time with both age and disease progression. Collating the information about the effect of mHTT on signalling pathways demonstrates that it has wide ranging effects on multiple pro- and anti-apoptotic kinases, resulting in the dysregulation of numerous complex interactions within a dynamic network.

  12. Case report: pyruvate kinase deficiency.

    PubMed

    Rothman, J M

    1995-09-01

    Pyruvate kinase deficiency is a rare cause of congenital hemolytic anemia. Despite a paucity of reports, splenectomy resulted in successful outcomes for two siblings with this disorder. The sisters were diagnosed at birth with profound jaundice and congenital nonspherocytic hemolytic anemia.

  13. Degradation of Activated Protein Kinases by Ubiquitination

    PubMed Central

    Lu, Zhimin; Hunter, Tony

    2009-01-01

    Protein kinases are important regulators of intracellular signal transduction pathways and play critical roles in diverse cellular functions. Once a protein kinase is activated, its activity is subsequently downregulated through a variety of mechanisms. Accumulating evidence indicates that the activation of protein kinases commonly initiates their downregulation via the ubiquitin/proteasome pathway. Failure to regulate protein kinase activity or expression levels can cause human diseases. PMID:19489726

  14. Discovery of Small Molecule Mer Kinase Inhibitors for the Treatment of Pediatric Acute Lymphoblastic Leukemia

    PubMed Central

    2012-01-01

    Ectopic Mer expression promotes pro-survival signaling and contributes to leukemogenesis and chemoresistance in childhood acute lymphoblastic leukemia (ALL). Consequently, Mer kinase inhibitors may promote leukemic cell death and further act as chemosensitizers increasing efficacy and reducing toxicities of current ALL regimens. We have applied a structure-based design approach to discover novel small molecule Mer kinase inhibitors. Several pyrazolopyrimidine derivatives effectively inhibit Mer kinase activity at subnanomolar concentrations. Furthermore, the lead compound shows a promising selectivity profile against a panel of 72 kinases and has excellent pharmacokinetic properties. We also describe the crystal structure of the complex between the lead compound and Mer, opening new opportunities for further optimization and new template design. PMID:22662287

  15. Discovery of Novel Small Molecule Mer Kinase Inhibitors for the Treatment of Pediatric Acute Lymphoblastic Leukemia.

    PubMed

    Liu, Jing; Yang, Chao; Simpson, Catherine; Deryckere, Deborah; Van Deusen, Amy; Miley, Michael J; Kireev, Dmitri; Norris-Drouin, Jacqueline; Sather, Susan; Hunter, Debra; Korboukh, Victoria K; Patel, Hari S; Janzen, William P; Machius, Mischa; Johnson, Gary L; Earp, H Shelton; Graham, Douglas K; Frye, Stephen V; Wang, Xiaodong

    2012-02-09

    Ectopic Mer expression promotes pro-survival signaling and contributes to leukemogenesis and chemoresistance in childhood acute lymphoblastic leukemia (ALL). Consequently, Mer kinase inhibitors may promote leukemic cell death and further act as chemosensitizers increasing efficacy and reducing toxicities of current ALL regimens. We have applied a structure-based design approach to discover novel small molecule Mer kinase inhibitors. Several pyrazolopyrimidine derivatives effectively inhibit Mer kinase activity at sub-nanomolar concentrations. Furthermore, the lead compound shows a promising selectivity profile against a panel of 72 kinases and has excellent pharmacokinetic properties. We also describe the crystal structure of the complex between the lead compound and Mer, opening new opportunities for further optimization and new template design.

  16. Small molecule kinase inhibitor LRRK2-IN-1 demonstrates potent activity against colorectal and pancreatic cancer through inhibition of doublecortin-like kinase 1

    PubMed Central

    2014-01-01

    Background Doublecortin-like kinase 1 (DCLK1) is emerging as a tumor specific stem cell marker in colorectal and pancreatic cancer. Previous in vitro and in vivo studies have demonstrated the therapeutic effects of inhibiting DCLK1 with small interfering RNA (siRNA) as well as genetically targeting the DCLK1+ cell for deletion. However, the effects of inhibiting DCLK1 kinase activity have not been studied directly. Therefore, we assessed the effects of inhibiting DCLK1 kinase activity using the novel small molecule kinase inhibitor, LRRK2-IN-1, which demonstrates significant affinity for DCLK1. Results Here we report that LRRK2-IN-1 demonstrates potent anti-cancer activity including inhibition of cancer cell proliferation, migration, and invasion as well as induction of apoptosis and cell cycle arrest. Additionally we found that it regulates stemness, epithelial-mesenchymal transition, and oncogenic targets on the molecular level. Moreover, we show that LRRK2-IN-1 suppresses DCLK1 kinase activity and downstream DCLK1 effector c-MYC, and demonstrate that DCLK1 kinase activity is a significant factor in resistance to LRRK2-IN-1. Conclusions Given DCLK1’s tumor stem cell marker status, a strong understanding of its biological role and interactions in gastrointestinal tumors may lead to discoveries that improve patient outcomes. The results of this study suggest that small molecule inhibitors of DCLK1 kinase should be further investigated as they may hold promise as anti-tumor stem cell drugs. PMID:24885928

  17. Lead and the Romans

    ERIC Educational Resources Information Center

    Reddy, Aravind; Braun, Charles L.

    2010-01-01

    Lead poisoning has been a problem since early history and continues into modern times. An appealing characteristic of lead is that many lead salts are sweet. In the absence of cane and beet sugars, early Romans used "sugar of lead" (lead acetate) to sweeten desserts, fruits, and sour wine. People most at risk would have been those who…

  18. Mutations in Myosin Light Chain Kinase Cause Familial Aortic Dissections

    PubMed Central

    Wang, Li; Guo, Dong-chuan; Cao, Jiumei; Gong, Limin; Kamm, Kristine E.; Regalado, Ellen; Li, Li; Shete, Sanjay; He, Wei-Qi; Zhu, Min-Sheng; Offermanns, Stephan; Gilchrist, Dawna; Elefteriades, John; Stull, James T.; Milewicz, Dianna M.

    2010-01-01

    Mutations in smooth muscle cell (SMC)-specific isoforms of α-actin and β-myosin heavy chain, two major components of the SMC contractile unit, cause familial thoracic aortic aneurysms leading to acute aortic dissections (FTAAD). To investigate whether mutations in the kinase that controls SMC contractile function (myosin light chain kinase [MYLK]) cause FTAAD, we sequenced MYLK by using DNA from 193 affected probands from unrelated FTAAD families. One nonsense and four missense variants were identified in MYLK and were not present in matched controls. Two variants, p.R1480X (c.4438C>T) and p.S1759P (c.5275T>C), segregated with aortic dissections in two families with a maximum LOD score of 2.1, providing evidence of linkage of these rare variants to the disease (p = 0.0009). Both families demonstrated a similar phenotype characterized by presentation with an acute aortic dissection with little to no enlargement of the aorta. The p.R1480X mutation leads to a truncated protein lacking the kinase and calmodulin binding domains, and p.S1759P alters amino acids in the α-helix of the calmodulin binding sequence, which disrupts kinase binding to calmodulin and reduces kinase activity in vitro. Furthermore, mice with SMC-specific knockdown of Mylk demonstrate altered gene expression and pathology consistent with medial degeneration of the aorta. Thus, genetic and functional studies support the conclusion that heterozygous loss-of-function mutations in MYLK are associated with aortic dissections. PMID:21055718

  19. Tyrosine kinase, aurora kinase and leucine aminopeptidase as attractive drug targets in anticancer therapy - characterisation of their inhibitors.

    PubMed

    Ziemska, Joanna; Solecka, Jolanta

    Cancers are the leading cause of deaths all over the world. Available anticancer agents used in clinics exhibit low therapeutic index and usually high toxicity. Wide spreading drug resistance of cancer cells induce a demanding need to search for new drug targets. Currently, many on-going studies on novel compounds with potent anticancer activity, high selectivity as well as new modes of action are conducted. In this work, we describe in details three enzyme groups, which are at present of extensive interest to medical researchers and pharmaceutical companies. These include receptor tyrosine kinases (e.g. EGFR enzymes) and non-receptor tyrosine kinases (Src enzymes), type A, B and C Aurora kinases and aminopeptidases, especially leucine aminopeptidase. We discuss classification of these enzymes, biochemistry as well as their role in the cell cycle under normal conditions and during cancerogenesis. Further on, the work describes enzyme inhibitors that are under in vitro, preclinical, clinical studies as well as drugs available on the market. Both, chemical structures of discovered inhibitors and the role of chemical moieties in novel drug design are discussed. Described enzymes play essential role in cell cycle, especially in mitosis (Aurora kinases), cell differentiation, growth and apoptosis (tyrosine kinases) as well as G1/S transition (leucine aminopeptidase). In cancer cells, they are overexpressed and only their inhibition may stop tumor progression. This review presents the clinical outcomes of selected inhibitors and argues the safety of drug usage in human volunteers. Clinical studies of EGFR and Src kinase inhibitors in different tumors clearly show the need for molecular selection of patients (to those with mutations in genes coding EGFR and Src) to achieve positive clinical response. Current data indicates the great necessity for new anticancer treatment and actions to limit off-target activity.

  20. The receptor kinase family: primary structure of rhodopsin kinase reveals similarities to the beta-adrenergic receptor kinase.

    PubMed Central

    Lorenz, W; Inglese, J; Palczewski, K; Onorato, J J; Caron, M G; Lefkowitz, R J

    1991-01-01

    Light-dependent deactivation of rhodopsin as well as homologous desensitization of beta-adrenergic receptors involves receptor phosphorylation that is mediated by the highly specific protein kinases rhodopsin kinase (RK) and beta-adrenergic receptor kinase (beta ARK), respectively. We report here the cloning of a complementary DNA for RK. The deduced amino acid sequence shows a high degree of homology to beta ARK. In a phylogenetic tree constructed by comparing the catalytic domains of several protein kinases, RK and beta ARK are located on a branch close to, but separate from the cyclic nucleotide-dependent protein kinase and protein kinase C subfamilies. From the common structural features we conclude that both RK and beta ARK are members of a newly delineated gene family of guanine nucleotide-binding protein (G protein)-coupled receptor kinases that may function in diverse pathways to regulate the function of such receptors. Images PMID:1656454

  1. Lead levels - blood

    MedlinePlus

    ... is used to screen people at risk for lead poisoning. This may include industrial workers and children who ... also used to measure how well treatment for lead poisoning is working. Lead is common in the environment, ...

  2. Protein Kinase A: A Master Kinase of Granulosa Cell Differentiation

    PubMed Central

    Puri, Pawan; Little-Ihrig, Lynda; Chandran, Uma; Law, Nathan C.; Hunzicker-Dunn, Mary; Zeleznik, Anthony J.

    2016-01-01

    Activation of protein kinase A (PKA) by follicle stimulating hormone (FSH) transduces the signal that drives differentiation of ovarian granulosa cells (GCs). An unresolved question is whether PKA is sufficient to initiate the complex program of GC responses to FSH. We compared signaling pathways and gene expression profiles of GCs stimulated with FSH or expressing PKA-CQR, a constitutively active mutant of PKA. Both FSH and PKA-CQR stimulated the phosphorylation of proteins known to be involved in GC differentiation including CREB, ß-catenin, AKT, p42/44 MAPK, GAB2, GSK-3ß, FOXO1, and YAP. In contrast, FSH stimulated the phosphorylation of p38 MAP kinase but PKA-CQR did not. Microarray analysis revealed that 85% of transcripts that were up-regulated by FSH were increased to a comparable extent by PKA-CQR and of the transcripts that were down-regulated by FSH, 76% were also down-regulated by PKA-CQR. Transcripts regulated similarly by FSH and PKA-CQR are involved in steroidogenesis and differentiation, while transcripts more robustly up-regulated by PKA-CQR are involved in ovulation. Thus, PKA, under the conditions of our experimental approach appears to function as a master upstream kinase that is sufficient to initiate the complex pattern of intracellular signaling pathway and gene expression profiles that accompany GC differentiation. PMID:27324437

  3. Targeting Protein Kinases to Reverse Multidrug Resistance in Sarcoma

    PubMed Central

    Chen, Hua; Shen, Jacson; Choy, Edwin; Hornicek, Francis J.; Duan, Zhenfeng

    2015-01-01

    Sarcomas are a group of cancers that arise from transformed cells of mesenchymal origin. They can be classified into over 50 subtypes, accounting for approximately 1% of adult and 15% of pediatric cancers. Wide surgical resection, radiotherapy, and chemotherapy are the most common treatments for the majority of sarcomas. Among these therapies, chemotherapy can palliate symptoms and prolong life for some sarcoma patients. However, sarcoma cells can have intrinsic or acquired resistance after treatment with chemotherapeutics drugs, leading to the development of multidrug resistance (MDR). MDR attenuates the efficacy of anticancer drugs and results in treatment failure for sarcomas. Therefore, overcoming MDR is an unmet need for sarcoma therapy. Certain protein kinases demonstrate aberrant expression and/or activity in sarcoma cells, which have been found to be involved in the regulation of sarcoma cell progression, such as cell cycle, apoptosis, and survival. Inhibiting these protein kinases may not only decrease the proliferation and growth of sarcoma cells, but also reverse their resistance to chemotherapeutic drugs to subsequently reduce the doses of anticancer drugs and decrease drug side-effects. The discovery of novel strategies targeting protein kinases opens a door to a new area of sarcoma research and provides insight into the mechanisms of MDR in chemotherapy. This review will focus on the recent studies in targeting protein kinase to reverse chemotherapeutic drug resistance in sarcoma. PMID:26827688

  4. Implications of mitogen-activated protein kinase signaling in glioma.

    PubMed

    Pandey, Vimal; Bhaskara, Vasantha Kumar; Babu, Phanithi Prakash

    2016-02-01

    Gliomas are the most common primary central nervous system tumors. Gliomas originate from astrocytes, oligodendrocytes, and neural stem cells or their precursors. According to WHO classification, gliomas are classified into four different malignant grades ranging from grade I to grade IV based on histopathological features and related molecular aberrations. The induction and maintenance of these tumors can be attributed largely to aberrant signaling networks. In this regard, the mitogen-activated protein kinase (MAPK) network has been widely studied and is reported to be severely altered in glial tumors. Mutations in MAPK pathways most frequently affect RAS and B-RAF in the ERK, c-Jun N-terminal kinase (JNK), and p38 pathways leading to malignant transformation. Also, it is linked to both inherited and sequential accumulations of mutations that control receptor tyrosine kinase (RTK)-activated signal transduction pathways, cell cycle growth arrest pathways, and nonresponsive cell death pathways. Genetic alterations that modulate RTK signaling can also alter several downstream pathways, including RAS-mediated MAP kinases along with JNK pathways, which ultimately regulate cell proliferation and cell death. The present review focuses on recent literature regarding important deregulations in the RTK-activated MAPK pathway during gliomagenesis and progression.

  5. Dynamic Clustering of the Bacterial Sensory Kinase BaeS

    PubMed Central

    Koler, Moriah; Frank, Vered; Amartely, Hadar; Friedler, Assaf; Vaknin, Ady

    2016-01-01

    Several bacterial sensory-kinase receptors form clusters on the cell membrane. However, the dynamics of sensory-kinase clustering are largely unclear. Using measurements of fluorescence anisotropy and time-lapse imaging of Escherichia coli cells, we demonstrate that copper ions trigger self-association of BaeS receptors and lead to rapid formation of clusters, which can be reversibly dispersed by a metal chelator. Copper ions did not trigger self-association of other fluorescently tagged sensory kinases, and other divalent metal ions could not elicit self-association of BaeS. The histidine residues in the BaeS periplasmic domain are essential for copper binding in vitro and are important for the copper-induced BaeS responses in vivo. BaeS clustering was triggered also under conditions that directly triggered BaeS-dependent transcriptional responses. Thus, clustering of sensory kinase receptors can be dynamic and context dependent and can be triggered by specific environmental cues. PMID:26950881

  6. Receptor tyrosine kinases in carcinogenesis.

    PubMed

    Zhang, Xiao-Ying; Zhang, Pei-Ying

    2016-11-01

    Receptor tyrosine kinases (RTKs) are cell surface glycoproteins with enzymatic activity involved in the regulation of various important functions. In all-important physiological functions including differentiation, cell-cell interactions, survival, proliferation, metabolism, migration and signaling these receptors are the key players of regulation. Additionally, mutations of RTKs or their overexpression have been described in many human cancers and are being explored as a novel avenue for a new therapeutic approach. Some of the deregulated RTKs observed to be significantly affected in cancers included vascular endothelial growth factor receptor, epidermal growth factor receptor, fibroblast growth factor receptor, RTK-like orphan receptor 1 (ROR1) and the platelet-derived growth factor receptor. These deregulated RTKs offer attractive possibilities for the new anticancer therapeutic approach involving specific targeting by monoclonal antibodies as well as kinase. The present review aimed to highlight recent perspectives of RTK ROR1 in cancer.

  7. Oncoprotein protein kinase antibody kit

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2008-12-23

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  8. Antihypertensive action of 2-hydroxyoleic acid in SHRs via modulation of the protein kinase A pathway and Rho kinase.

    PubMed

    Alemany, Regina; Vögler, Oliver; Terés, Silvia; Egea, Carolina; Baamonde, Carmela; Barceló, Francisca; Delgado, Carlos; Jakobs, Karl H; Escribá, Pablo V

    2006-08-01

    Olive oil consumption leads to high monounsaturated fatty acid intake, especially oleic acid, and has been associated with a reduced risk of hypertension. However, the molecular mechanisms and contribution of its different components to lower blood pressure (BP) require further evaluation. Here, we examined whether a synthetic, non-beta-oxidation-metabolizable derivative of oleic acid, 2-hydroxyoleic acid (2-OHOA), can normalize BP in adult spontaneously hypertensive rats (SHRs) and whether its antihypertensive action involves cAMP-dependent protein kinase A (PKA) and Rho kinase, two major regulators of vascular smooth muscle contraction. Oral administration of 2-OHOA to SHRs induced sustained systolic BP decreases in a time-dependent (1-7 days) and dose-dependent (100-900 mg/kg every 12 h) manner. After 7 days of treatment with 2-OHOA (600 mg/kg), the systolic BP of SHRs was similar to that of normotensive Wistar Kyoto rats, returning to its initial hypertensive level after withdrawal of 2-OHOA. This treatment strongly increased the protein expression of the catalytic and regulatory RIalpha and RIIalpha PKA subunits as well as PKA activity in aortas from SHRs. Consistently, administration of the PKA inhibitor 8-bromo adenosine-3',5'-cyclic monophosphorothioate, Rp isomer, to 2-OHOA-treated SHRs induced a pronounced reversal (up to 59%) of the antihypertensive effect of 2-OHOA. Additionally, 2-OHOA completely reversed the pathological overexpression of aortic Rho kinase found in SHRs, suppressing the vasoconstrictory Rho kinase pathway.

  9. Evolution of breast cancer therapeutics: Breast tumour kinase's role in breast cancer and hope for breast tumour kinase targeted therapy.

    PubMed

    Hussain, Haroon A; Harvey, Amanda J

    2014-08-10

    There have been significant improvements in the detection and treatment of breast cancer in recent decades. However, there is still a need to develop more effective therapeutic techniques that are patient specific with reduced toxicity leading to further increases in patients' overall survival; the ongoing progress in understanding recurrence, resistant and spread also needs to be maintained. Better understanding of breast cancer pathology, molecular biology and progression as well as identification of some of the underlying factors involved in breast cancer tumourgenesis and metastasis has led to the identification of novel therapeutic targets. Over a number of years interest has risen in breast tumour kinase (Brk) also known as protein tyrosine kinase 6; the research field has grown and Brk has been described as a desirable therapeutic target in relation to tyrosine kinase inhibition as well as disruption of its kinase independent activity. This review will outline the current "state of play" with respect to targeted therapy for breast cancer, as well as discussing Brk's role in the processes underlying tumour development and metastasis and its potential as a therapeutic target in breast cancer.

  10. Nucleotide selectivity of antibiotic kinases.

    PubMed

    Shakya, Tushar; Wright, Gerard D

    2010-05-01

    Antibiotic kinases, which include aminoglycoside and macrolide phosphotransferases (APHs and MPHs), pose a serious threat to currently used antimicrobial therapies. These enzymes show structural and functional homology with Ser/Thr/Tyr kinases, which is suggestive of a common ancestor. Surprisingly, recent in vitro studies using purified antibiotic kinase enzymes have revealed that a number are able to utilize GTP as the antibiotic phospho donor, either preferentially or exclusively compared to ATP, the canonical phosphate donor in most biochemical reactions. To further explore this phenomenon, we examined three enzymes, APH(3')-IIIa, APH(2'')-Ib, and MPH(2')-I, using a competitive assay that mimics in vivo nucleotide triphosphate (NTP) concentrations and usage by each enzyme. Downstream analysis of reaction products by high-performance liquid chromatography enabled the determination of partitioning of phosphate flux from NTP donors to antibiotics. Using this ratio along with support from kinetic analysis and inhibitor studies, we find that under physiologic concentrations of NTPs, APH(3')-IIIa exclusively uses ATP, MPH(2')-I exclusively uses GTP, and APH(2'')-Ib is able to use both species with a preference for GTP. These differences reveal likely different pathways in antibiotic resistance enzyme evolution and can be exploited in selective inhibitor design to counteract resistance.

  11. Lead Surveillance Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background on lead exposure is presented including forms of lead, sources, hematologic effects, neurologic effects, endocrine effects, renal effects, and reproductive and developmental effects. The purpose of the Lead Surveillance Program at LeRC is outlined, and the specifics of the Medical Surveillance Program for Lead Exposure at LeRC are discussed.

  12. The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation

    PubMed Central

    Moens, Ugo; Kostenko, Sergiy; Sveinbjørnsson, Baldur

    2013-01-01

    Mitogen-activated protein kinase (MAPK) pathways are implicated in several cellular processes including proliferation, differentiation, apoptosis, cell survival, cell motility, metabolism, stress response and inflammation. MAPK pathways transmit and convert a plethora of extracellular signals by three consecutive phosphorylation events involving a MAPK kinase kinase, a MAPK kinase, and a MAPK. In turn MAPKs phosphorylate substrates, including other protein kinases referred to as MAPK-activated protein kinases (MAPKAPKs). Eleven mammalian MAPKAPKs have been identified: ribosomal-S6-kinases (RSK1-4), mitogen- and stress-activated kinases (MSK1-2), MAPK-interacting kinases (MNK1-2), MAPKAPK-2 (MK2), MAPKAPK-3 (MK3), and MAPKAPK-5 (MK5). The role of these MAPKAPKs in inflammation will be reviewed. PMID:24705157

  13. Glucose regulates diacylglycerol intracellular levels and protein kinase C activity by modulating diacylglycerol kinase subcellular localization.

    PubMed

    Miele, Claudia; Paturzo, Flora; Teperino, Raffaele; Sakane, Fumio; Fiory, Francesca; Oriente, Francesco; Ungaro, Paola; Valentino, Rossella; Beguinot, Francesco; Formisano, Pietro

    2007-11-02

    Although chronic hyperglycemia reduces insulin sensitivity and leads to impaired glucose utilization, short term exposure to high glucose causes cellular responses positively regulating its own metabolism. We show that exposure of L6 myotubes overexpressing human insulin receptors to 25 mm glucose for 5 min decreased the intracellular levels of diacylglycerol (DAG). This was paralleled by transient activation of diacylglycerol kinase (DGK) and of insulin receptor signaling. Following 30-min exposure, however, both DAG levels and DGK activity returned close to basal levels. Moreover, the acute effect of glucose on DAG removal was inhibited by >85% by the DGK inhibitor R59949. DGK inhibition was also accompanied by increased protein kinase C-alpha (PKCalpha) activity, reduced glucose-induced insulin receptor activation, and GLUT4 translocation. Glucose exposure transiently redistributed DGK isoforms alpha and delta, from the prevalent cytosolic localization to the plasma membrane fraction. However, antisense silencing of DGKdelta, but not of DGKalpha expression, was sufficient to prevent the effect of high glucose on PKCalpha activity, insulin receptor signaling, and glucose uptake. Thus, the short term exposure of skeletal muscle cells to glucose causes a rapid induction of DGK, followed by a reduction of PKCalpha activity and transactivation of the insulin receptor signaling. The latter may mediate, at least in part, glucose induction of its own metabolism.

  14. Aurora kinase inhibition overcomes cetuximab resistance in squamous cell cancer of the head and neck.

    PubMed

    Hoellein, Alexander; Pickhard, Anja; von Keitz, Fabienne; Schoeffmann, Stephanie; Piontek, Guido; Rudelius, Martina; Baumgart, Anja; Wagenpfeil, Stefan; Peschel, Christian; Dechow, Tobias; Bier, Henning; Keller, Ulrich

    2011-08-01

    Squamous cell cancer of the head and neck (SCCHN) is the sixth leading cause for cancer deaths worldwide. Despite extense knowledge of risk factors and pathogenesis about 50 percent of all patients and essentially every patient with metastatic SCCHN eventually die from this disease. We analyzed the clinical data and performed immunohistochemistry for Epidermal growth factor receptor (EGFR) and Aurora kinase A (Aurora-A) expression in 180 SCCHN patients. Patients characterized by elevated EGFR and elevated Aurora-A protein expression in tumor tissue represent a risk group with poor disease-free and overall survival (EGFR(low)Aurora-A(low) versus EGFR(high)Aurora-A(high), p = 0.024). Treating SCCHN cell lines with a pan-Aurora kinase inhibitor resulted in defective cytokinesis, polyploidy and apoptosis, which was effective irrespective of the EGFR status. Combined Aurora kinase and EGFR targeting using a monoclonal anti-EGFR antibody was more effective compared to single EGFR and Aurora kinase inhibition. Comparing pan-Aurora kinase and Aurora-A targeting hints towards a strong and clinically relevant biological effect mediated via Aurora kinase B. Taken together, our findings characterize a new poor risk group in SCCHN patients defined by elevated EGFR and Aurora-A protein expression. Our results demonstrate that combined targeting of EGFR and Aurora kinases represents a therapeutic means to activate cell cycle checkpoints and apoptosis in SCCHN.

  15. Selective inhibition of the kinase DYRK1A by targeting its folding process

    PubMed Central

    Kii, Isao; Sumida, Yuto; Goto, Toshiyasu; Sonamoto, Rie; Okuno, Yukiko; Yoshida, Suguru; Kato-Sumida, Tomoe; Koike, Yuka; Abe, Minako; Nonaka, Yosuke; Ikura, Teikichi; Ito, Nobutoshi; Shibuya, Hiroshi; Hosoya, Takamitsu; Hagiwara, Masatoshi

    2016-01-01

    Autophosphorylation of amino-acid residues is part of the folding process of various protein kinases. Conventional chemical screening of mature kinases has missed inhibitors that selectively interfere with the folding process. Here we report a cell-based assay that evaluates inhibition of a kinase at a transitional state during the folding process and identify a folding intermediate-selective inhibitor of dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), which we refer to as FINDY. FINDY suppresses intramolecular autophosphorylation of Ser97 in DYRK1A in cultured cells, leading to its degradation, but does not inhibit substrate phosphorylation catalysed by the mature kinase. FINDY also suppresses Ser97 autophosphorylation of recombinant DYRK1A, suggesting direct inhibition, and shows high selectivity for DYRK1A over other DYRK family members. In addition, FINDY rescues DYRK1A-induced developmental malformations in Xenopus laevis embryos. Our study demonstrates that transitional folding intermediates of protein kinases can be targeted by small molecules, and paves the way for developing novel types of kinase inhibitors. PMID:27102360

  16. Selective inhibition of the kinase DYRK1A by targeting its folding process.

    PubMed

    Kii, Isao; Sumida, Yuto; Goto, Toshiyasu; Sonamoto, Rie; Okuno, Yukiko; Yoshida, Suguru; Kato-Sumida, Tomoe; Koike, Yuka; Abe, Minako; Nonaka, Yosuke; Ikura, Teikichi; Ito, Nobutoshi; Shibuya, Hiroshi; Hosoya, Takamitsu; Hagiwara, Masatoshi

    2016-04-22

    Autophosphorylation of amino-acid residues is part of the folding process of various protein kinases. Conventional chemical screening of mature kinases has missed inhibitors that selectively interfere with the folding process. Here we report a cell-based assay that evaluates inhibition of a kinase at a transitional state during the folding process and identify a folding intermediate-selective inhibitor of dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), which we refer to as FINDY. FINDY suppresses intramolecular autophosphorylation of Ser97 in DYRK1A in cultured cells, leading to its degradation, but does not inhibit substrate phosphorylation catalysed by the mature kinase. FINDY also suppresses Ser97 autophosphorylation of recombinant DYRK1A, suggesting direct inhibition, and shows high selectivity for DYRK1A over other DYRK family members. In addition, FINDY rescues DYRK1A-induced developmental malformations in Xenopus laevis embryos. Our study demonstrates that transitional folding intermediates of protein kinases can be targeted by small molecules, and paves the way for developing novel types of kinase inhibitors.

  17. Investigation of potential glycogen synthase kinase 3 inhibitors using pharmacophore mapping and virtual screening.

    PubMed

    Dessalew, Nigus; Bharatam, Prasad V

    2006-09-01

    Glycogen synthase kinase-3 is a serine/threonine kinase that has attracted significant drug discovery attention in recent years. To investigate the identification of new potential glycogen synthase kinase-3 inhibitors, a pharmacophore mapping study was carried out using a set of 21 structurally diverse glycogen synthase kinase-3 inhibitors. A hypothesis containing four features: two hydrophobic, one hydrogen bond donor and another hydrogen bond acceptor was found to be the best from the 10 common feature hypotheses produced by HipHop module of Catalyst. The best hypothesis has a high cost of 156.592 and higher best fit values were obtained for the 21 inhibitors using this best hypothesis than the other HipHop hypotheses. The best hypothesis was then used to screen electronically the NCI2000 database. The hits obtained were docked into glycogen synthase kinase-3beta active site. A total of five novel potential leads were proposed after: (i) visual examination of how well they dock into the glycogen synthase kinase-3beta-binding site, (ii) comparative analysis of their FlexX, G-Score, PMF-Score, ChemScore and D-Scores values, (iii) comparison of their best fit value with the known inhibitors and (iv) examination of the how the hits retain interactions with the important amino acid residues of glycogen synthase kinase-3beta-binding site.

  18. Feasibility of using molecular docking-based virtual screening for searching dual target kinase inhibitors.

    PubMed

    Zhou, Shunye; Li, Youyong; Hou, Tingjun

    2013-04-22

    Multitarget agents have been extensively explored for solving limited efficacies, poor safety, and resistant profiles of an individual target. Theoretical approaches for searching and designing multitarget agents are critically useful. Here, the performance of molecular docking to search dual-target inhibitors for four kinase pairs (CDK2-GSK3B, EGFR-Src, Lck-Src, and Lck-VEGFR2) was assessed. First, the representative structures for each kinase target were chosen by structural clustering of available crystal structures. Next, the performance of molecular docking to distinguish inhibitors from noninhibitors for each individual kinase target was evaluated. The results show that molecular docking-based virtual screening illustrates good capability to find known inhibitors for individual targets, but the prediction accuracy is structurally dependent. Finally, the performance of molecular docking to identify the dual-target kinase inhibitors for four kinase pairs was evaluated. The analyses show that molecular docking successfully filters out most noninhibitors and achieves promising performance for identifying dual-kinase inhibitors for CDK2-GSK3B and Lck-VEGFR2. But a high false-positive rate leads to low enrichment of true dual-target inhibitors in the final list. This study suggests that molecular docking serves as a useful tool in searching inhibitors against dual or even multiple kinase targets, but integration with other virtual screening tools is necessary for achieving better predictions.

  19. Association of protein kinase Cmu with type II phosphatidylinositol 4-kinase and type I phosphatidylinositol-4-phosphate 5-kinase.

    PubMed

    Nishikawa, K; Toker, A; Wong, K; Marignani, P A; Johannes, F J; Cantley, L C

    1998-09-04

    Protein kinase Cmu (PKCmu), also named protein kinase D, is an unusual member of the PKC family that has a putative transmembrane domain and pleckstrin homology domain. This enzyme has a substrate specificity distinct from other PKC isoforms (Nishikawa, K., Toker, A., Johannes, F. J., Songyang, Z., and Cantley, L. C. (1997) J. Biol. Chem. 272, 952-960), and its mechanism of regulation is not yet clear. Here we show that PKCmu forms a complex in vivo with a phosphatidylinositol 4-kinase and a phosphatidylinositol-4-phosphate 5-kinase. A region of PKCmu between the amino-terminal transmembrane domain and the pleckstrin homology domain is shown to be involved in the association with the lipid kinases. Interestingly, a kinase-dead point mutant of PKCmu failed to associate with either lipid kinase activity, indicating that autophosphorylation may be required to expose the lipid kinase interaction domain. Furthermore, the subcellular distribution of the PKCmu-associated lipid kinases to the particulate fraction depends on the presence of the amino-terminal region of PKCmu including the predicted transmembrane region. These results suggest a novel model in which the non-catalytic region of PKCmu acts as a scaffold for assembly of enzymes involved in phosphoinositide synthesis at specific membrane locations.

  20. Complex Glycerol Kinase Deficiency and Adrenocortical Insufficiency in Two Neonates

    PubMed Central

    Korkut, Sabriye; Baştuğ, Osman; Raygada, Margarita; Hatipoğlu, Nihal; Kurtoğlu, Selim; Kendirci, Mustafa; Lyssikatos, Charalampos; Stratakis, Constantine A.

    2016-01-01

    Contiguous gene deletions of chromosome Xp21 can lead to glycerol kinase deficiency and severe adrenocortical insufficiency (AI) in a male newborn among other problems. We describe our experience with two such patients who presented with dysmorphic facies, AI, and pseudo-hypertriglyceridemia. Both infants had normal serum 17-hidroxyprogesterone levels, and adrenal glands could not be observed with ultrasonography. Creatine kinase and triglyceride levels were measured to elucidate the etiology of adrenal hypoplasia and were above normal limits in both cases. Both patients required steroid and salt supplementation. They were both found to have Xp21.2 deletions (DMD, NR0B1, GK, IL1RAPL1). We conclude that AI in the context of other genetic abnormalities should prompt chromosomal investigations in the absence of another unifying explanation. PMID:27087023

  1. Complex Glycerol Kinase Deficiency and Adrenocortical Insufficiency in Two Neonates.

    PubMed

    Korkut, Sabriye; Baştuğ, Osman; Raygada, Margarita; Hatipoğlu, Nihal; Kurtoğlu, Selim; Kendirci, Mustafa; Lyssikatos, Charalampos; Stratakis, Constantine A

    2016-12-01

    Contiguous gene deletions of chromosome Xp21 can lead to glycerol kinase deficiency and severe adrenocortical insufficiency (AI) in a male newborn among other problems. We describe our experience with two such patients who presented with dysmorphic facies, AI, and pseudo-hypertriglyceridemia. Both infants had normal serum 17-hidroxyprogesterone levels, and adrenal glands could not be observed with ultrasonography. Creatine kinase and triglyceride levels were measured to elucidate the etiology of adrenal hypoplasia and were above normal limits in both cases. Both patients required steroid and salt supplementation. They were both found to have Xp21.2 deletions (DMD, NR0B1, GK, IL1RAPL1). We conclude that AI in the context of other genetic abnormalities should prompt chromosomal investigations in the absence of another unifying explanation.

  2. Focal adhesion kinase and its role in skeletal muscle

    PubMed Central

    Graham, Zachary A.; Gallagher, Philip M.; Cardozo, Christopher P.

    2015-01-01

    Skeletal muscle has a remarkable ability to respond to different physical stresses. Loading muscle through exercise, either anaerobic or aerobic, can lead to increases in muscle size and function while, conversely, the absence of muscle loading stimulates rapid decreases in size and function. A principal mediator of this load-induced change is focal adhesion kinase (FAK), a downstream non-receptor tyrosine kinase that translates the cytoskeletal stress and strain signals transmitted across the cytoplasmic membrane by integrins to activate multiple anti-apoptotic and cell growth pathways. Changes in FAK expression and phosphorylation have been found to correlate to specific developmental states in myoblast differentiation, muscle fiber formation and muscle size in response to loading and unloading. With the capability to regulate costamere formation, hypertrophy and glucose metabolism, FAK is a molecule with diverse functions that are important in regulating muscle cell health. PMID:26142360

  3. Focal adhesion kinase and its role in skeletal muscle.

    PubMed

    Graham, Zachary A; Gallagher, Philip M; Cardozo, Christopher P

    2015-10-01

    Skeletal muscle has a remarkable ability to respond to different physical stresses. Loading muscle through exercise, either anaerobic or aerobic, can lead to increases in muscle size and function while, conversely, the absence of muscle loading stimulates rapid decreases in size and function. A principal mediator of this load-induced change is focal adhesion kinase (FAK), a downstream non-receptor tyrosine kinase that translates the cytoskeletal stress and strain signals transmitted across the cytoplasmic membrane by integrins to activate multiple anti-apoptotic and cell growth pathways. Changes in FAK expression and phosphorylation have been found to correlate to specific developmental states in myoblast differentiation, muscle fiber formation and muscle size in response to loading and unloading. With the capability to regulate costamere formation, hypertrophy and glucose metabolism, FAK is a molecule with diverse functions that are important in regulating muscle cell health.

  4. Role of LRRK2 kinase dysfunction in Parkinson disease.

    PubMed

    Kumar, Azad; Cookson, Mark R

    2011-06-13

    Parkinson disease is a common and usually sporadic neurodegenerative disorder. However, a subset of cases are inherited and, of these, mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are the most frequent genetic cause of disease. Here, we will discuss recent progress in understanding how LRRK2 mutations lead to disease and how this might have therapeutic implications. The effect of mutations on LRRK2 enzyme function provides clues as to which functions of the protein are important to disease. Recent work has focused on the kinase and GTP-binding domains of LRRK2, and it is assumed that these will be therapeutically important, although there is a substantial amount of work to be done to address this hypothesis.

  5. Transboundary atmospheric lead pollution.

    PubMed

    Erel, Yigal; Axelrod, Tamar; Veron, Alain; Mahrer, Yitzak; Katsafados, Petros; Dayan, Uri

    2002-08-01

    A high-temporal resolution collection technique was applied to refine aerosol sampling in Jerusalem, Israel. Using stable lead isotopes, lead concentrations, synoptic data, and atmospheric modeling, we demonstrate that lead detected in the atmosphere of Jerusalem is not only anthropogenic lead of local origin but also lead emitted in other countries. Fifty-seven percent of the collected samples contained a nontrivial fraction of foreign atmospheric lead and had 206Pb/207Pb values which deviated from the local petrol-lead value (206Pb/207Pb = 1.113) by more than two standard deviations (0.016). Foreign 206Pb/207Pb values were recorded in Jerusalem on several occasions. The synoptic conditions on these dates and reported values of the isotopic composition of lead emitted in various countries around Israel suggest that the foreign lead was transported to Jerusalem from Egypt, Turkey, and East Europe. The average concentration of foreign atmospheric lead in Jerusalem was 23 +/- 17 ng/m3, similar to the average concentration of local atmospheric lead, 21 +/- 18 ng/ m3. Hence, the load of foreign atmospheric lead is similar to the load of local atmospheric lead in Jerusalem.

  6. MAP kinase activator from insulin-stimulated skeletal muscle is a protein threonine/tyrosine kinase.

    PubMed Central

    Nakielny, S; Cohen, P; Wu, J; Sturgill, T

    1992-01-01

    A 'MAP kinase activator' was purified several thousand-fold from insulin-stimulated rabbit skeletal muscle, which resembled the 'activator' from nerve growth factor-stimulated PC12 cells in that it could be inactivated by incubation with protein phosphatase 2A, but not by protein tyrosine phosphatases and its apparent molecular mass was 45-50 kDa. In the presence of MgATP, 'MAP kinase activator' converted the normal 'wild-type' 42 kDa MAP kinase from an inactive dephosphorylated form to the fully active diphosphorylated species. Phosphorylation occurred on the same threonine and tyrosine residues which are phosphorylated in vivo in response to growth factors or phorbol esters. A mutant MAP kinase produced by changing a lysine at the active centre to arginine was phosphorylated in an identical manner by the 'MAP kinase activator', but no activity was generated. The results demonstrate that 'MAP kinase activator' is a protein kinase (MAP kinase kinase) and not a protein that stimulates the autophosphorylation of MAP kinase. MAP kinase kinase is the first established example of a protein kinase that can phosphorylate an exogenous protein on threonine as well as tyrosine residues. Images PMID:1318193

  7. Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7.

    PubMed

    Taylor, Kathryn M; Hiscox, Stephen; Nicholson, Robert I; Hogstrand, Christer; Kille, Peter

    2012-02-07

    The transition element zinc, which has recently been identified as an intracellular second messenger, has been implicated in various signaling pathways, including those leading to cell proliferation. Zinc channels of the ZIP (ZRT1- and IRT1-like protein) family [also known as solute carrier family 39A (SLC39A)] transiently increase the cytosolic free zinc (Zn(2+)) concentration in response to extracellular signals. We show that phosphorylation of evolutionarily conserved residues in endoplasmic reticulum zinc channel ZIP7 is associated with the gated release of Zn(2+) from intracellular stores, leading to activation of tyrosine kinases and the phosphorylation of AKT and extracellular signal-regulated kinases 1 and 2. Through pharmacological manipulation, proximity ligation assay, and mutagenesis, we identified protein kinase CK2 as the kinase responsible for ZIP7 activation. Together, the present results show that transition element channels in eukaryotes can be activated posttranslationally by phosphorylation, as part of a cell signaling cascade. Our study links the regulated release of zinc from intracellular stores to phosphorylation of kinases involved in proliferative responses and cell migration, suggesting a functional role for ZIP7 and zinc signals in these events. The connection with proliferation and migration, as well as the activation of ZIP7 by CK2, a kinase that is antiapoptotic and promotes cell division, suggests that ZIP7 may provide a target for anticancer drug development.

  8. Mitogen Activated Protein Kinase Activated Protein Kinase 2 Regulates Actin Polymerization and Vascular Leak in Ventilator Associated Lung Injury

    PubMed Central

    Damarla, Mahendra; Hasan, Emile; Boueiz, Adel; Le, Anne; Pae, Hyun Hae; Montouchet, Calypso; Kolb, Todd; Simms, Tiffany; Myers, Allen; Kayyali, Usamah S.; Gaestel, Matthias; Peng, Xinqi; Reddy, Sekhar P.; Damico, Rachel; Hassoun, Paul M.

    2009-01-01

    Mechanical ventilation, a fundamental therapy for acute lung injury, worsens pulmonary vascular permeability by exacting mechanical stress on various components of the respiratory system causing ventilator associated lung injury. We postulated that MK2 activation via p38 MAP kinase induced HSP25 phosphorylation, in response to mechanical stress, leading to actin stress fiber formation and endothelial barrier dysfunction. We sought to determine the role of p38 MAP kinase and its downstream effector MK2 on HSP25 phosphorylation and actin stress fiber formation in ventilator associated lung injury. Wild type and MK2−/− mice received mechanical ventilation with high (20 ml/kg) or low (7 ml/kg) tidal volumes up to 4 hrs, after which lungs were harvested for immunohistochemistry, immunoblotting and lung permeability assays. High tidal volume mechanical ventilation resulted in significant phosphorylation of p38 MAP kinase, MK2, HSP25, actin polymerization, and an increase in pulmonary vascular permeability in wild type mice as compared to spontaneous breathing or low tidal volume mechanical ventilation. However, pretreatment of wild type mice with specific p38 MAP kinase or MK2 inhibitors abrogated HSP25 phosphorylation and actin polymerization, and protected against increased lung permeability. Finally, MK2−/− mice were unable to phosphorylate HSP25 or increase actin polymerization from baseline, and were resistant to increases in lung permeability in response to HVT MV. Our results suggest that p38 MAP kinase and its downstream effector MK2 mediate lung permeability in ventilator associated lung injury by regulating HSP25 phosphorylation and actin cytoskeletal remodeling. PMID:19240800

  9. Receptor Tyrosine Kinases in Drosophila Development

    PubMed Central

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  10. Pathway illuminated: visualizing protein kinase C signaling.

    PubMed

    Violin, Jonathan D; Newton, Alexandra C

    2003-12-01

    Protein kinase C has been at the center of cell signaling since the discovery 25 years ago that it transduces signals that promote phospholipid hydrolysis. In recent years, the use of genetically encoded fluorescent reporters has enabled studies of the regulation of protein kinase C signaling in living cells. Advances in imaging techniques have unveiled unprecedented detail of the signal processing mechanics of protein kinase C, from the second messengers calcium and diacylglycerol that regulate protein kinase C activity, to the locations and kinetics of different protein kinase C isozymes, to the spatial and temporal dynamics of substrate phosphorylation by this key enzyme. This review discusses how fluorescence imaging studies have illuminated the fidelity with which protein kinase C transduces rapidly changing extracellular information into intracellular phosphorylation signals.

  11. Lead (Pb) Air Pollution

    MedlinePlus

    ... and 2014. In 2008, EPA significantly strengthened the air quality standards for lead to provide health protection for ... time? Setting and Reviewing Standards What are lead air quality standards? How are they developed and reviewed? What ...

  12. Lead Poisoning (For Parents)

    MedlinePlus

    ... metal used in everything from construction materials to batteries, can cause serious health problems, particularly in young ... introduce lead dust into the home. water that flows through old lead pipes or faucets, if the ...

  13. Lead Content of Foodstuffs

    PubMed Central

    Mitchell, Douglas G.; Aldous, Kenneth M.

    1974-01-01

    The lead content of a number of foodstuffs, particularly baby fruit juices and milk, is reported. Samples were analyzed in quadruplicate by using an automated Delves cup atomic absorption procedure. A large proportion of the products examined contained significant amounts of lead. Of 256 metal can examined, the contents of 62% contained a lead level of 100 μg/l. or more, 37% contained 200 μg/l. or more and 12% contained 400 μg/l. lead or more. Of products in glass and aluminum containers, only 1% had lead levels in excess of 200 μg/l. Lead levels of contents also correlate with the seam length/volume ratio of the leaded seam can. A survey of bulk milk showed a mean lead level of 40 μg/l. for 270 samples; for canned evaporated milk the mean level was 202 μg/l. These data indicate a potential health hazard. PMID:4406645

  14. VOLUMETRIC LEAD ASSAY

    SciTech Connect

    M.A. Ebadian, Ph.D.; S.K. Dua; David Roelant; Sachin Kumar

    2001-01-01

    This report describes a system for handling and radioassay of lead, consisting of a robot, a conveyor, and a gamma spectrometer. The report also presents a cost-benefit analysis of options: radioassay and recycling lead vs. disposal as waste.

  15. Lead and tap water

    MedlinePlus

    Water contaminated with lead ... The Environmental Protection Agency (EPA) monitors drinking water in the United States. It requires water suppliers to produce annual water quality reports. These reports include information about lead amounts, and they ...

  16. Transplacental transport of lead

    SciTech Connect

    Goyer, R.A. )

    1990-11-01

    Neurotoxicity is the major health effect from exposure to lead for infants and young children, and there is current concern regarding possible toxic effects of lead on the child while in utero. there is no placental-fetal barrier to lead transport. Maternal and fetal blood lead levels are nearly identical, so lead passes through the placenta unencumbered. Lead has been measured in the fetal brain as early as the end of the first trimester (13 weeks). There is a similar rate of increase in brain size and lead content throughout pregnancy in the fetus of mothers in the general population, so concentration of lead probably does not differ greatly during gestation unless exposure of the mother changes. Cell-specific sensitivity to the toxic effects of lead, however, may be greater the younger the fetus. Lead toxicity to the nervous system is characterized by edema or swelling of the brain due to altered permeability of capillary endothelial cells. Experimental studies suggest that immature endothelial cells forming the capillaries of the developing brain are less resistant to the effects of lead, permitting fluid and cations including lead to reach newly formed components of the brain, particularly astrocytes and neurons. Also, the ability of astrocytes and neurons to sequester lead in the form of lead protein complexes occurs only in the later stages of fetal development, permitting lead in maturing brain cells to interact with vital subcellular organelles, particularly mitochondria, which are the major cellular energy source. Intracellular lead also affects binding sites for calcium which, in turn, may affect numerous cell functions including neurotransmitter release.

  17. Spatial gradients in kinase cascade regulation.

    PubMed

    Kazmierczak, B; Lipniacki, T

    2010-11-01

    The spatiotemporal kinetics of proteins and other substrates regulate cell fate and signaling. In this study, we consider a reaction-diffusion model of interaction of membrane receptors with a two-step kinase cascade. The receptors activate the 'up-stream' kinase, which may diffuse over cell volume and activate the 'down-stream' kinase, which is also diffusing. Both kinase species and receptors are inactivated by uniformly distributed phosphatases. The positive feedback, key to the considered dynamics, arises since the up-stream kinase activates the receptors. Such a mutual interaction is characteristic for immune cell receptors. Based on the proposed model, we demonstrated that cell sensitivity (measured as a critical value of phosphatase activity at which cell maybe activated) increases with decreasing motility of receptor-interacting kinases and with increasing polarity of receptors distribution. These two effects are cooperating, the effect of receptors localisation close to one pole of the cell grows with the decreasing kinase diffusion and vanishes in the infinite diffusion limit. As the cell sensitivity increases with decreasing diffusion of receptor-interacting kinase, the overall activity of the down-stream kinase increases with its diffusion. In conclusion, the analysis of the proposed model shows that, for the fixed substrate interaction rates, spatial distribution of the surface receptors together with the motility of intracellular kinases control cell signalling and sensitivity to extracellular signals. The increase of the cell sensitivity can be achieved by (i) localisation of receptors in a small subdomain of the cell membrane, (ii) lowering the motility of receptor-interacting kinase, (iii) increasing the motility of down-stream kinases which distribute the signal over the whole cell.

  18. The phosphoinositide 3-kinase pathway.

    PubMed

    Cantley, Lewis C

    2002-05-31

    Phosphorylated lipids are produced at cellular membranes during signaling events and contribute to the recruitment and activation of various signaling components. The role of phosphoinositide 3-kinase (PI3K), which catalyzes the production of phosphatidylinositol-3,4,5-trisphosphate, in cell survival pathways; the regulation of gene expression and cell metabolism; and cytoskeletal rearrangements are highlighted. The PI3K pathway is implicated in human diseases including diabetes and cancer, and understanding the intricacies of this pathway may provide new avenues for therapuetic intervention.

  19. Activation pathway of Src kinase reveals intermediate states as targets for drug design

    NASA Astrophysics Data System (ADS)

    Shukla, Diwakar; Meng, Yilin; Roux, Benoît; Pande, Vijay S.

    2014-03-01

    Unregulated activation of Src kinases leads to aberrant signalling, uncontrolled growth and differentiation of cancerous cells. Reaching a complete mechanistic understanding of large-scale conformational transformations underlying the activation of kinases could greatly help in the development of therapeutic drugs for the treatment of these pathologies. In principle, the nature of conformational transition could be modelled in silico via atomistic molecular dynamics simulations, although this is very challenging because of the long activation timescales. Here we employ a computational paradigm that couples transition pathway techniques and Markov state model-based massively distributed simulations for mapping the conformational landscape of c-src tyrosine kinase. The computations provide the thermodynamics and kinetics of kinase activation for the first time, and help identify key structural intermediates. Furthermore, the presence of a novel allosteric site in an intermediate state of c-src that could be potentially used for drug design is predicted.

  20. The role and targeting of Aurora kinases in head and neck cancer

    PubMed Central

    Mehra, Ranee; Serebriiskii, Ilya G.; Burtness, Barbara; Astsaturov, Igor; Golemis, Erica A.

    2014-01-01

    Summary Controlled activation of the Aurora kinases regulates mitotic progression in normal cells. Overexpression and hyperactivation of the Aurora-A and -B kinases play a leading role in tumorigenesis, inducing aneuploidy and genomic instability. In squamous cell carcinomas of the head and neck (SCCHN), overexpression of Aurora-A is associated with decreased survival, and reduction of Aurora-A and -B expression inhibits SCCHN cell growth and increases apoptosis. In this article, we provide a basic overview of the biological functions of Aurora kinases in normal cells and in cancer, and review both small studies and high throughput datasets that implicate Aurora-A, particularly, in the pathogenesis of SCCHN. Early phase clinical trials are beginning to evaluate the activity of small molecule inhibitors of the Aurora kinases. We summarize the state of current trials evaluating Aurora inhibitors in SCCHN, and discuss rational directions for future drug combination trials and biomarkers for use with Aurora-inhibiting agents. PMID:23993387

  1. Targeting the DFG-in kinase conformation: a new trend emerging from a patent analysis.

    PubMed

    Angiolini, Mauro

    2011-03-01

    Aberrant kinase signaling leads to a multitude of disease states. The clinical and commercial success of agents typified by imatinib or dasatinib in the treatment of hematological malignancies has further validated kinase inhibition as a useful clinical strategy. This increased interest in kinases as therapeutic targets is evidenced by the rapidly increasing number of patent applications and peer-reviewed articles. This article discusses recent Patent that describe small molecules targeting the DFG-in active kinase conformation, by the so-called 'Type I½' inhibitor, against a small set of clinically relevant targets such as B-Raf, p38α, Jak2 and EphB4. Preclinical and clinical data are also highlighted for the most promising new molecular entities.

  2. Detecting kinase activities from single cell lysate using concentration-enhanced mobility shift assay.

    PubMed

    Cheow, Lih Feng; Sarkar, Aniruddh; Kolitz, Sarah; Lauffenburger, Douglas; Han, Jongyoon

    2014-08-05

    Electrokinetic preconcentration coupled with mobility shift assays can give rise to very high detection sensitivities. We describe a microfluidic device that utilizes this principle to detect cellular kinase activities by simultaneously concentrating and separating substrate peptides with different phosphorylation states. This platform is capable of reliably measuring kinase activities of single adherent cells cultured in nanoliter volume microwells. We also describe a novel method utilizing spacer peptides that significantly increase separation resolution while maintaining high concentration factors in this device. Thus, multiplexed kinase measurements can be implemented with single cell sensitivity. Multiple kinase activity profiling from single cell lysate could potentially allow us to study heterogeneous activation of signaling pathways that can lead to multiple cell fates.

  3. Lead Poisoning in Schools.

    ERIC Educational Resources Information Center

    Guyaux, Susan

    1990-01-01

    Overexposure to lead can permanently impair a child's mental and physical development. This article discusses sources of lead paint, survey and testing methods, management and abatement plans, drinking water contamination, and associated federal standards. Although lead is present in soil and in art, theater, and vocational programs, no federal…

  4. Lead Poisoning in Childhood.

    ERIC Educational Resources Information Center

    Pueschel, Siegfried M., Ed.; Linakis, James G., Ed.; Anderson, Angela C., Ed.

    The magnitude of childhood lead poisoning has been inexplicably neglected by modern medicine and by legislators. However, since the 1970s, increased attention has been focused on lead poisoning, and advances have been made in several areas, including understanding of the neurodevelopmental and behavioral ramifications of lead poisoning, and…

  5. Lead Poisoning in Children.

    ERIC Educational Resources Information Center

    Drummond, A. H., Jr.

    1981-01-01

    Early symptoms of lead poisoning in children are often overlooked. Lead poisoning has its greatest effects on the brain and nervous system. The obvious long-term solution to the lead poisoning problem is removal of harmful forms of the metal from the environment. (JN)

  6. Lead Poisoning in Children.

    ERIC Educational Resources Information Center

    Boeckx, Roger L.

    1986-01-01

    Urban children are exposed to lead through the air they breathe, the water they drink, and the food and nonfood substances they ingest. The history, diagnosis, and treatment of lead poisoning in these children are discussed. Includes information on the toxicology of lead and the various risk classes. (JN)

  7. Lead poisoning: An overview

    NASA Technical Reports Server (NTRS)

    Gendel, Neil

    1993-01-01

    A problem that should be of great concern to all of us is the lead poisoning of children. First, I would like to present a short overview concerning the reasons everyone should care about lead poisoning, then discuss the history of lead poisoning, what is happening today across the country, and the future.

  8. Pivotal Role of Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 in Inflammatory Pulmonary Diseases

    PubMed Central

    Qian, Feng; Deng, Jing; Wang, Gang; Ye, Richard D.; Christman, John W.

    2016-01-01

    Mitogen-activated protein kinase (MAPK)-activated protein kinase (MK2) is exclusively regulated by p38 MAPK in vivo. Upon activation of p38 MAPK, MK2 binds with p38 MAPK, leading to phosphorylation of TTP, Hsp27, Akt and Cdc25 that are involved in regulation of various essential cellular functions. In this review, we discuss current knowledge about molecular mechanisms of MK2 in regulation of TNF-α production, NADPH oxidase activation, neutrophil migration, and DNA-damage-induced cell cycle arrest which are involved in the molecular pathogenesis of acute lung injury, pulmonary fibrosis, and non-small-cell lung cancer. Collectively current and emerging new information indicate that developing MK2 inhibitors and blocking MK2-mediated signal pathways is a potential therapeutic strategy for treatment of inflammatory and fibrotic lung diseases and lung cancer. PMID:26119506

  9. Functional Significance of Aurora Kinases-p53 Protein Family Interactions in Cancer.

    PubMed

    Sasai, Kaori; Treekitkarnmongkol, Warapen; Kai, Kazuharu; Katayama, Hiroshi; Sen, Subrata

    2016-01-01

    Aurora kinases play critical roles in regulating spindle assembly, chromosome segregation, and cytokinesis to ensure faithful segregation of chromosomes during mitotic cell division cycle. Molecular and cell biological studies have revealed that Aurora kinases, at physiological levels, orchestrate complex sequential cellular processes at distinct subcellular locations through functional interactions with its various substrates. Aberrant expression of Aurora kinases, on the other hand, cause defects in mitotic spindle assembly, checkpoint response activation, and chromosome segregation leading to chromosomal instability. Elevated expression of Aurora kinases correlating with chromosomal instability is frequently detected in human cancers. Recent genomic profiling of about 3000 human cancer tissue specimens to identify various oncogenic signatures in The Cancer Genome Atlas project has reported that recurrent amplification and overexpression of Aurora kinase-A characterize distinct subsets of human tumors across multiple cancer types. Besides the well-characterized canonical pathway interactions of Aurora kinases in regulating assembly of the mitotic apparatus and chromosome segregation, growing evidence also supports the notion that deregulated expression of Aurora kinases in non-canonical pathways drive transformation and genomic instability by antagonizing tumor suppressor and exacerbating oncogenic signaling through direct interactions with critical proteins. Aberrant expression of the Aurora kinases-p53 protein family signaling axes appears to be critical in the abrogation of p53 protein family mediated tumor suppressor pathways frequently deregulated during oncogenic transformation process. Recent findings reveal the existence of feedback regulatory loops in mRNA expression and protein stability of these protein families and their consequences on downstream effectors involved in diverse physiological functions, such as mitotic progression, checkpoint response

  10. Interferon-gamma expression by Th1 effector T cells mediated by the p38 MAP kinase signaling pathway.

    PubMed Central

    Rincón, M; Enslen, H; Raingeaud, J; Recht, M; Zapton, T; Su, M S; Penix, L A; Davis, R J; Flavell, R A

    1998-01-01

    Signal transduction via MAP kinase pathways plays a key role in a variety of cellular responses, including growth factor-induced proliferation, differentiation and cell death. In mammalian cells, p38 MAP kinase can be activated by multiple stimuli, such as pro-inflammatory cytokines and environmental stress. Although p38 MAP kinase is implicated in the control of inflammatory responses, the molecular mechanisms remain unclear. Upon activation, CD4+ T cells differentiate into Th2 cells, which potentiate the humoral immune response or pro-inflammatory Th1 cells. Here, we show that pyridinyl imidazole compounds (specific inhibitors of p38 MAP kinase) block the production of interferon-gamma (IFNgamma) by Th1 cells without affecting IL-4 production by Th2 cells. These drugs also inhibit transcription driven by the IFNgamma promoter. In transgenic mice, inhibition of the p38 MAP kinase pathway by the expression of dominant-negative p38 MAP kinase results in selective impairment of Th1 responses. In contrast, activation of the p38 MAP kinase pathway by the expression of constitutivelyactivated MAP kinase kinase 6 in transgenic mice caused increased production of IFNgamma during the differentiation and activation of Th1 cells. Together, these data demonstrate that the p38 MAP kinase is relevant for Th1 cells, not Th2 cells, and that inhibition of p38 MAP kinase represents a possible site of therapeutic intervention in diseases where a predominant Th1 immune response leads to a pathological outcome. Moreover, our study provides an additional mechanism by which the p38 MAP kinase pathway controls inflammatory responses. PMID:9582275

  11. Tyrosine kinases in inflammatory dermatologic disease

    PubMed Central

    Paniagua, Ricardo T.; Fiorentino, David; Chung, Lorinda; Robinson, William H.

    2010-01-01

    Tyrosine kinases are enzymes that catalyze the phosphorylation of tyrosine residues on protein substrates. They are key components of signaling pathways that drive an array of cellular responses including proliferation, differentiation, migration, and survival. Specific tyrosine kinases have recently been identified as critical to the pathogenesis of several autoimmune and inflammatory diseases. Small-molecule inhibitors of tyrosine kinases are emerging as a novel class of therapy that may provide benefit in certain patient subsets. In this review, we highlight tyrosine kinase signaling implicated in inflammatory dermatologic diseases, evaluate strategies aimed at inhibiting these aberrant signaling pathways, and discuss prospects for future drug development. PMID:20584561

  12. MST kinases in development and disease

    PubMed Central

    2015-01-01

    The mammalian MST kinase family, which is related to the Hippo kinase in Drosophila melanogaster, includes five related proteins: MST1 (also called STK4), MST2 (also called STK3), MST3 (also called STK24), MST4, and YSK1 (also called STK25 or SOK1). MST kinases are emerging as key signaling molecules that influence cell proliferation, organ size, cell migration, and cell polarity. Here we review the regulation and function of these kinases in normal physiology and pathologies, including cancer, endothelial malformations, and autoimmune disease. PMID:26370497

  13. Lead in the environment

    USGS Publications Warehouse

    Pattee, O.H.; Pain, D.J.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John=

    2003-01-01

    Anthropogenic uses of lead have probably altered its availability and environmental distribution more than any other toxic element. Consequently, lead concentrations in many living organisms may be approaching thresholds of toxicity for the adverse effects of lead. Such thresholds are difficult to define, as they vary with the chemical and physical form of lead, exposure regime, other elements present and also vary both within and between species. The technological capability to accurately quantify low lead concentrations has increased over the last decade, and physiological and behavioral effects have been measured in wildlife with tissue lead concentrations below those previously considered safe for humans.s.236 Consequently. lead criteria for the protection of wildlife and human health are frequently under review, and 'thresholds' of lead toxicity are being reconsidered. Proposed lead criteria for the protection of natural resources have been reviewed by Eisler. Uptake of lead by plants is limited by its generally low availability in soils and sediments, and toxicity may be limited by storage mechanisms and its apparently limited translocation within most plants. Lead does not generally accumulate within the foliar parts of plants, which limits its transfer to higher trophic levels. Although lead may concentrate in plant and animal tissues, no evidence of biomagnification exists. Acid deposition onto surface waters and soils with low buffering capacity may influence the availability of lead for uptake by plants and animals, and this may merit investigation at susceptible sites. The biological significance of chronic low-level lead exposure to wildlife is sometimes difficult to quantify. Animals living in urban environments or near point sources of lead emission are inevitably subject to greater exposure to lead and enhanced risk of lead poisoning. Increasingly strict controls on lead emissions in many countries have reduced exposure to lead from some sources

  14. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo.

    PubMed

    Kawano, Y; Fukata, Y; Oshiro, N; Amano, M; Nakamura, T; Ito, M; Matsumura, F; Inagaki, M; Kaibuchi, K

    1999-11-29

    Rho-associated kinase (Rho-kinase), which is activated by the small GTPase Rho, phosphorylates myosin-binding subunit (MBS) of myosin phosphatase and thereby inactivates the phosphatase activity in vitro. Rho-kinase is thought to regulate the phosphorylation state of the substrates including myosin light chain (MLC), ERM (ezrin/radixin/moesin) family proteins and adducin by their direct phosphorylation and by the inactivation of myosin phosphatase. Here we identified the sites of phosphorylation of MBS by Rho-kinase as Thr-697, Ser-854 and several residues, and prepared antibody that specifically recognized MBS phosphorylated at Ser-854. We found by use of this antibody that the stimulation of MDCK epithelial cells with tetradecanoylphorbol-13-acetate (TPA) or hepatocyte growth factor (HGF) induced the phosphorylation of MBS at Ser-854 under the conditions in which membrane ruffling and cell migration were induced. Pretreatment of the cells with Botulinum C3 ADP-ribosyltransferase (C3), which is thought to interfere with Rho functions, or Rho-kinase inhibitors inhibited the TPA- or HGF-induced MBS phosphorylation. The TPA stimulation enhanced the immunoreactivity of phosphorylated MBS in the cytoplasm and membrane ruffling area of MDCK cells. In migrating MDCK cells, phosphorylated MBS as well as phosphorylated MLC at Ser-19 were localized in the leading edge and posterior region. Phosphorylated MBS was localized on actin stress fibers in REF52 fibroblasts. The microinjection of C3 or dominant negative Rho-kinase disrupted stress fibers and weakened the accumulation of phosphorylated MBS in REF52 cells. During cytokinesis, phosphorylated MBS, MLC and ERM family proteins accumulated at the cleavage furrow, and the phosphorylation level of MBS at Ser-854 was increased. Taken together, these results indicate that MBS is phosphorylated by Rho-kinase downstream of Rho in vivo, and suggest that myosin phosphatase and Rho-kinase spatiotemporally regulate the

  15. Diacylglycerol kinases in membrane trafficking

    PubMed Central

    Xie, Shuwei; Naslavsky, Naava; Caplan, Steve

    2015-01-01

    Diacylglycerol kinases (DGKs) belong to a family of cytosolic kinases that regulate the phosphorylation of diacylglycerol (DAG), converting it into phosphatidic acid (PA). There are 10 known mammalian DGK isoforms, each with a different tissue distribution and substrate specificity. These differences allow regulation of cellular responses by fine-tuning the delicate balance of cellular DAG and PA. DGK isoforms are best characterized as mediators of signal transduction and immune function. However, since recent studies reveal that DAG and PA are also involved in the regulation of endocytic trafficking, it is therefore anticipated that DGKs also plays an important role in membrane trafficking. In this review, we summarize the literature discussing the role of DGK isoforms at different stages of endocytic trafficking, including endocytosis, exocytosis, endocytic recycling, and transport from/to the Golgi apparatus. Overall, these studies contribute to our understanding of the involvement of PA and DAG in endocytic trafficking, an area of research that is drawing increasing attention in recent years. PMID:27057419

  16. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases

    PubMed Central

    Shiu, Shin-Han; Bleecker, Anthony B.

    2001-01-01

    Plant receptor-like kinases (RLKs) are proteins with a predicted signal sequence, single transmembrane region, and cytoplasmic kinase domain. Receptor-like kinases belong to a large gene family with at least 610 members that represent nearly 2.5% of Arabidopsis protein coding genes. We have categorized members of this family into subfamilies based on both the identity of the extracellular domains and the phylogenetic relationships between the kinase domains of subfamily members. Surprisingly, this structurally defined group of genes is monophyletic with respect to kinase domains when compared with the other eukaryotic kinase families. In an extended analysis, animal receptor kinases, Raf kinases, plant RLKs, and animal receptor tyrosine kinases form a well supported group sharing a common origin within the superfamily of serine/threonine/tyrosine kinases. Among animal kinase sequences, Drosophila Pelle and related cytoplasmic kinases fall within the plant RLK clade, which we now define as the RLK/Pelle family. A survey of expressed sequence tag records for land plants reveals that mosses, ferns, conifers, and flowering plants have similar percentages of expressed sequence tags representing RLK/Pelle homologs, suggesting that the size of this gene family may have been close to the present-day level before the diversification of land plant lineages. The distribution pattern of four RLK subfamilies on Arabidopsis chromosomes indicates that the expansion of this gene family is partly a consequence of duplication and reshuffling of the Arabidopsis genome and of the generation of tandem repeats. PMID:11526204

  17. Dominant Mutations of Drosophila Map Kinase Kinase and Their Activities in Drosophila and Yeast Map Kinase Cascades

    PubMed Central

    Lim, Y. M.; Tsuda, L.; Inoue, Y. H.; Irie, K.; Adachi-Yamada, T.; Hata, M.; Nishi, Y.; Matsumoto, K.; Nishida, Y.

    1997-01-01

    Eight alleles of Dsor1 encoding a Drosophila homologue of mitogen-activated protein (MAP) kinase kinase were obtained as dominant suppressors of the MAP kinase kinase kinase D-raf. These Dsor1 alleles themselves showed no obvious phenotypic consequences nor any effect on the viability of the flies, although they were highly sensitive to upstream signals and strongly interacted with gain-of-function mutations of upstream factors. They suppressed mutations for receptor tyrosine kinases (RTKs); torso (tor), sevenless (sev) and to a lesser extent Drosophila EGF receptor (DER). Furthermore, the Dsor1 alleles showed no significant interaction with gain-of-function mutations of DER. The observed difference in activity of the Dsor1 alleles among the RTK pathways suggests Dsor1 is one of the components of the pathway that regulates signal specificity. Expression of Dsor1 in budding yeast demonstrated that Dsor1 can activate yeast MAP kinase homologues if a proper activator of Dsor1 is coexpressed. Nucleotide sequencing of the Dsor1 mutant genes revealed that most of the mutations are associated with amino acid changes at highly conserved residues in the kinase domain. The results suggest that they function as suppressors due to increased reactivity to upstream factors. PMID:9136016

  18. The adenosine kinase hypothesis of epileptogenesis

    PubMed Central

    Boison, Detlev

    2008-01-01

    Current therapies for epilepsy are largely symptomatic and do not affect the underlying mechanisms of disease progression, i.e. epileptogenesis. Given the large percentage of pharmacoresistant chronic epilepsies, novel approaches are needed to understand and modify the underlying pathogenetic mechanisms. Although different types of brain injury (e.g. status epilepticus, traumatic brain injury, stroke) can trigger epileptogenesis, astrogliosis appears to be a homotypic response and hallmark of epilepsy. Indeed, recent findings indicate that epilepsy might be a disease of astrocyte dysfunction. This review focuses on the inhibitory neuromodulator and endogenous anticonvulsant adenosine, which is largely regulated by astrocytes and its key metabolic enzyme adenosine kinase (ADK). Recent findings support the “ADK hypothesis of epileptogenesis”: (i) Mouse models of epileptogenesis suggest a sequence of events leading from initial downregulation of ADK and elevation of ambient adenosine as an acute protective response, to changes in astrocytic adenosine receptor expression, to astrocyte proliferation and hypertrophy (i.e. astrogliosis), to consequential overexpression of ADK, reduced adenosine and – finally – to spontaneous focal seizure activity restricted to regions of astrogliotic overexpression of ADK. (ii) Transgenic mice overexpressing ADK display increased sensitivity to brain injury and seizures. (iii) Inhibition of ADK prevents seizures in a mouse model of pharmacoresistant epilepsy. (iv) Intrahippocampal implants of stem cells engineered to lack ADK prevent epileptogenesis. Thus, ADK emerges both as a diagnostic marker to predict, as well as a prime therapeutic target to prevent, epileptogenesis. PMID:18249058

  19. Aurora kinase A in Barrett's carcinogenesis.

    PubMed

    Rugge, Massimo; Fassan, Matteo; Zaninotto, Giovanni; Pizzi, Marco; Giacomelli, Luciano; Battaglia, Giorgio; Rizzetto, Christian; Parente, Paola; Ancona, Ermanno

    2010-10-01

    In Barrett's mucosa, both aneuploidy and TP53 mutations are consistently recognized as markers of an increased risk of Barrett's adenocarcinoma. Overexpression of the mitotic kinase encoding gene (AURKA) results in chromosome instability (assessed from the micronuclei count) and ultimately in aneuploidy. Eighty-seven esophageal biopsy samples representative of all the phenotypic lesions occurring in the multistep process of Barrett's carcinogenesis (gastric metaplasia in 25, intestinal metaplasia in 25, low-grade intraepithelial neoplasia in 16, high-grade intraepithelial neoplasia in 11, and Barrett's adenocarcinoma in 10) were obtained from long segments of Barrett's mucosa. Twenty-five additional biopsy samples of native esophageal mucosa were used for control purposes. In all tissue samples, the immunohistochemical expression of both AURKA and TP53 gene products was scored; and the micronuclei index was calculated. AURKA immunostaining increased progressively and significantly along with dedifferentiation of the histologic phenotype (P < .001). Nine of 10 Barrett's adenocarcinomas showed AURKA immunostaining. AURKA expression correlated significantly with p53 expression and the micronuclei index (both Ps < .001). AURKA overexpression is significantly associated with Barrett's mucosa progressing to Barrett's adenocarcinoma and contributes to esophageal carcinogenesis via chromosome instability. The identification of AURKA as a novel molecular target of cancer progression in Barrett's mucosa provides a lead for the development of new therapeutic approaches in Barrett's mucosa patients.

  20. Lead Poison Detection

    NASA Technical Reports Server (NTRS)

    1976-01-01

    With NASA contracts, Whittaker Corporations Space Science division has developed an electro-optical instrument to mass screen for lead poisoning. Device is portable and detects protoporphyrin in whole blood. Free corpuscular porphyrins occur as an early effect of lead ingestion. Also detects lead in urine used to confirm blood tests. Test is inexpensive and can be applied by relatively unskilled personnel. Similar Whittaker fluorometry device called "drug screen" can measure morphine and quinine in urine much faster and cheaper than other methods.

  1. Measuring the Activity of Leucine-Rich Repeat Kinase 2: A Kinase Involved in Parkinson's Disease

    PubMed Central

    Lee, Byoung Dae; Li, Xiaojie; Dawson, Ted M.; Dawson, Valina L.

    2015-01-01

    Mutations in the LRRK2 (Leucine-Rich Repeat Kinase 2) gene are the most common cause of autosomal dominant Parkinson's disease. LRRK2 has multiple functional domains including a kinase domain. The kinase activity of LRRK2 is implicated in the pathogenesis of Parkinson's disease. Developing an assay to understand the mechanisms of LRRK2 kinase activity is important for the development of pharmacologic and therapeutic applications. Here, we describe how to measure in vitro LRRK2 kinase activity and its inhibition. PMID:21960214

  2. Fetal anaemia due to pyruvate kinase deficiency.

    PubMed Central

    Gilsanz, F; Vega, M A; Gómez-Castillo, E; Ruiz-Balda, J A; Omeñaca, F

    1993-01-01

    Pyruvate kinase deficiency was diagnosed in an infant by umbilical vessel sampling at 30 weeks' gestation. Although three previous hydropic siblings had been stillborn or died in the neonatal period, this infant survived with transfusion dependent haemolytic anaemia. Prompt fetal diagnosis of pyruvate kinase deficiency is feasible and allows better management of hydrops fetalis due to this disorder. PMID:8285758

  3. Protein kinase biochemistry and drug discovery.

    PubMed

    Schwartz, Phillip A; Murray, Brion W

    2011-12-01

    Protein kinases are fascinating biological catalysts with a rapidly expanding knowledge base, a growing appreciation in cell regulatory control, and an ascendant role in successful therapeutic intervention. To better understand protein kinases, the molecular underpinnings of phosphoryl group transfer, protein phosphorylation, and inhibitor interactions are examined. This analysis begins with a survey of phosphate group and phosphoprotein properties which provide context to the evolutionary selection of phosphorylation as a central mechanism for biological regulation of most cellular processes. Next, the kinetic and catalytic mechanisms of protein kinases are examined with respect to model aqueous systems to define the elements of catalysis. A brief structural biology overview further delves into the molecular basis of catalysis and regulation of catalytic activity. Concomitant with a prominent role in normal physiology, protein kinases have important roles in the disease state. To facilitate effective kinase drug discovery, classic and emerging approaches for characterizing kinase inhibitors are evaluated including biochemical assay design, inhibitor mechanism of action analysis, and proper kinetic treatment of irreversible inhibitors. As the resulting protein kinase inhibitors can modulate intended and unintended targets, profiling methods are discussed which can illuminate a more complete range of an inhibitor's biological activities to enable more meaningful cellular studies and more effective clinical studies. Taken as a whole, a wealth of protein kinase biochemistry knowledge is available, yet it is clear that a substantial extent of our understanding in this field remains to be discovered which should yield many new opportunities for therapeutic intervention.

  4. Lead poisoning: case studies.

    PubMed

    Gordon, J N; Taylor, A; Bennett, P N

    2002-05-01

    Early clinical features of lead toxicity are non-specific and an occupational history is particularly valuable. Lead in the body comprises 2% in the blood (t1/2 35 days) and 95% in bone and dentine (t1/2 20-30 years). Blood lead may remain elevated for years after cessation from long exposure, due to redistribution from bone. Blood lead concentration is the most widely used marker for inorganic lead exposure. Zinc protoporphyrin (ZPP) concentration in blood usefully reflects lead exposure over the prior 3 months. Symptomatic patients with blood lead concentration >2.4 micromol l-1 (50 microg dl-1) or in any event >3.8 micromol l-1 (80 microg dl-1) should receive sodium calciumedetate i.v., followed by succimer by mouth for 19 days. Asymptomatic patients with blood lead concentration >2.4 micromol l-1 (50 microg dl-1) may be treated with succimer alone. Sodium calciumedetate should be given with dimercaprol to treat lead encephalopathy.

  5. Immunosuppressive effects of lead

    USGS Publications Warehouse

    Franson, J. Christian; Feierabend, J.Scott; Russell, A.Brooke

    1986-01-01

    Immunosuppressive effects of lead were reported as early as 1966, when it was noted that lead increased the sensitivity of rats to bacterial endotoxins (Selye et al. 1966). Since then a substantial body of literature has demonstrated adverse effects of lead on the immune system in a variety of laboratory animals, but very little has been done in this area with avian species. Such immunosuppressive effects could be of significance to waterfowl populations, considering the potential for lead ingestion by waterfowl and subsequent exposure of these birds to disease agents.

  6. Sequential Transphosphorylation of the BRI1/BAK1 Receptor Kinase Pair Regulates Early Events of the Brassinosteriod Signaling Pathway Promoting Plant Growth and Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassinosteroids (BRs) regulate multiple aspects of plant growth and development through a signal transduction pathway that is initiated by BR binding to the transmembrane receptor kinase BRI1. Activated BRI1 heterodimerizes with a second receptor kinase, BAK1, leading to enhanced signaling output. ...

  7. Targeting lung cancer through inhibition of checkpoint kinases

    PubMed Central

    Syljuåsen, Randi G.; Hasvold, Grete; Hauge, Sissel; Helland, Åslaug

    2015-01-01

    Inhibitors of checkpoint kinases ATR, Chk1, and Wee1 are currently being tested in preclinical and clinical trials. Here, we review the basic principles behind the use of such inhibitors as anticancer agents, and particularly discuss their potential for treatment of lung cancer. As lung cancer is one of the most deadly cancers, new treatment strategies are highly needed. We discuss how checkpoint kinase inhibition in principle can lead to selective killing of lung cancer cells while sparing the surrounding normal tissues. Several features of lung cancer may potentially be exploited for targeting through inhibition of checkpoint kinases, including mutated p53, low ERCC1 levels, amplified Myc, tumor hypoxia and presence of lung cancer stem cells. Synergistic effects have also been reported between inhibitors of ATR/Chk1/Wee1 and conventional lung cancer treatments, such as gemcitabine, cisplatin, or radiation. Altogether, inhibitors of ATR, Chk1, and Wee1 are emerging as new cancer treatment agents, likely to be useful in lung cancer treatment. However, as lung tumors are very diverse, the inhibitors are unlikely to be effective in all patients, and more work is needed to determine how such inhibitors can be utilized in the most optimal ways. PMID:25774168

  8. Protein kinase CK2: a newcomer in the 'druggable kinome'.

    PubMed

    Pagano, M A; Cesaro, L; Meggio, F; Pinna, L A

    2006-12-01

    The acronym CK2 (derived from the misnomer 'casein kinase' 2) denotes one of the most pleiotropic members of the eukaryotic protein kinase superfamily, characterized by an acidic consensus sequence in which a carboxylic acid (or pre-phosphorylated) side chain at position n+3 relative to the target serine/threonine residue plays a crucial role. The latest repertoire of CK2 substrates includes approx. 300 proteins, but the analysis of available phosphopeptide databases from different sources suggests that CK2 alone may be responsible for the generation of a much larger proportion (10-20%) of the eukaryotic phosphoproteome. Although for the time being CK2 is not included among protein kinases whose inhibitors are in clinical practice or in advanced clinical trials, evidence is accumulating that elevated CK2 constitutive activity co-operates to induce a number of pathological conditions, including cancer, infectious diseases, neurodegeneration and cardiovascular pathologies. The development and usage of cell-permeant, selective inhibitors discloses a scenario whereby CK2 plays a global anti-apoptotic role, which under special circumstances may lead to untimely and pathogenic cell survival.

  9. Crosstalk between kinases, phosphatases and miRNAs in cancer.

    PubMed

    Abrantes, Júlia L F; Tornatore, Thaís F; Pelizzaro-Rocha, Karin J; de Jesus, Marcelo B; Cartaxo, Rodrigo T; Milani, Renato; Ferreira-Halder, Carmen V

    2014-12-01

    Reversible phosphorylation of proteins, performed by kinases and phosphatases, is the major post translational protein modification in eukaryotic cells. This intracellular event represents a critical regulatory mechanism of several signaling pathways and can be related to a vast array of diseases, including cancer. Cancer research has produced increasing evidence that kinase and phosphatase activity can be compromised by mutations and also by miRNA silencing, performed by small non-coding and endogenously produced RNA molecules that lead to translational repression. miRNAs are believed to target about one-third of human mRNAs while a single miRNA may target about 200 transcripts simultaneously. Regulation of the phosphorylation balance by miRNAs has been a topic of intense research over the last years, spanning topics going as far as cancer aggressiveness and chemotherapy resistance. By addressing recent studies that have shown miRNA expression patterns as phenotypic signatures of cancers and how miRNA influence cellular processes such as apoptosis, cell cycle control, angiogenesis, inflammation and DNA repair, we discuss how kinases, phosphatases and miRNAs cooperatively act in cancer biology.

  10. Eph-mediated tyrosine phosphorylation of citron kinase controls abscission

    PubMed Central

    Jungas, Thomas; Perchey, Renaud T.; Fawal, Mohamad; Callot, Caroline; Froment, Carine; Burlet-Schiltz, Odile; Besson, Arnaud

    2016-01-01

    Cytokinesis is the last step of cell division, culminating in the physical separation of daughter cells at the end of mitosis. Cytokinesis is a tightly regulated process that until recently was mostly viewed as a cell-autonomous event. Here, we investigated the role of Ephrin/Eph signaling, a well-known local cell-to-cell communication pathway, in cell division. We show that activation of Eph signaling in vitro leads to multinucleation and polyploidy, and we demonstrate that this is caused by alteration of the ultimate step of cytokinesis, abscission. Control of abscission requires Eph kinase activity, and Src and citron kinase (CitK) are downstream effectors in the Eph-induced signal transduction cascade. CitK is phosphorylated on tyrosines in neural progenitors in vivo, and Src kinase directly phosphorylates CitK. We have identified the specific tyrosine residues of CitK that are phosphorylated and show that tyrosine phosphorylation of CitK impairs cytokinesis. Finally, we show that, similar to CitK, Ephrin/Eph signaling controls neuronal ploidy in the developing neocortex. Our study indicates that CitK integrates intracellular and extracellular signals provided by the local environment to coordinate completion of cytokinesis. PMID:27551053

  11. Anaplastic lymphoma kinase: signalling in development and disease

    PubMed Central

    Palmer, Ruth H.; Vernersson, Emma; Grabbe, Caroline; Hallberg, Bengt

    2009-01-01

    RTKs (receptor tyrosine kinases) play important roles in cellular proliferation and differentiation. In addition, RTKs reveal oncogenic potential when their kinase activities are constitutively enhanced by point mutation, amplification or rearrangement of the corresponding genes. The ALK (anaplastic lymphoma kinase) RTK was originally identified as a member of the insulin receptor subfamily of RTKs that acquires transforming capability when truncated and fused to NPM (nucleophosmin) in the t(2;5) chromosomal rearrangement associated with ALCL (anaplastic large cell lymphoma). To date, many chromosomal rearrangements leading to enhanced ALK activity have been described and are implicated in a number of cancer types. Recent reports of the EML4 (echinoderm microtubule-associated protein like 4)–ALK oncoprotein in NSCLC (non-small cell lung cancer), together with the identification of activating point mutations in neuroblastoma, have highlighted ALK as a significant player and target for drug development in cancer. In the present review we address the role of ALK in development and disease and discuss implications for the future. PMID:19459784

  12. Phosphoglycerate Kinase 1 Phosphorylates Beclin1 to Induce Autophagy.

    PubMed

    Qian, Xu; Li, Xinjian; Cai, Qingsong; Zhang, Chuanbao; Yu, Qiujing; Jiang, Yuhui; Lee, Jong-Ho; Hawke, David; Wang, Yugang; Xia, Yan; Zheng, Yanhua; Jiang, Bing-Hua; Liu, David X; Jiang, Tao; Lu, Zhimin

    2017-03-02

    Autophagy is crucial for maintaining cell homeostasis. However, the precise mechanism underlying autophagy initiation remains to be defined. Here, we demonstrate that glutamine deprivation and hypoxia result in inhibition of mTOR-mediated acetyl-transferase ARD1 S228 phosphorylation, leading to ARD1-dependent phosphoglycerate kinase 1 (PGK1) K388 acetylation and subsequent PGK1-mediated Beclin1 S30 phosphorylation. This phosphorylation enhances ATG14L-associated class III phosphatidylinositol 3-kinase VPS34 activity by increasing the binding of phosphatidylinositol to VPS34. ARD1-dependent PGK1 acetylation and PGK1-mediated Beclin1 S30 phosphorylation are required for glutamine deprivation- and hypoxia-induced autophagy and brain tumorigenesis. Furthermore, PGK1 K388 acetylation levels correlate with Beclin1 S30 phosphorylation levels and poor prognosis in glioblastoma patients. Our study unearths an important mechanism underlying cellular-stress-induced autophagy initiation in which the protein kinase activity of the metabolic enzyme PGK1 plays an instrumental role and reveals the significance of the mutual regulation of autophagy and cell metabolism in maintaining cell homeostasis.

  13. Aurora Kinase Inhibitors: Current Status and Outlook.

    PubMed

    Bavetsias, Vassilios; Linardopoulos, Spiros

    2015-01-01

    The Aurora kinase family comprises of cell cycle-regulated serine/threonine kinases important for mitosis. Their activity and protein expression are cell cycle regulated, peaking during mitosis to orchestrate important mitotic processes including centrosome maturation, chromosome alignment, chromosome segregation, and cytokinesis. In humans, the Aurora kinase family consists of three members; Aurora-A, Aurora-B, and Aurora-C, which each share a conserved C-terminal catalytic domain but differ in their sub-cellular localization, substrate specificity, and function during mitosis. In addition, Aurora-A and Aurora-B have been found to be overexpressed in a wide variety of human tumors. These observations led to a number of programs among academic and pharmaceutical organizations to discovering small molecule Aurora kinase inhibitors as anti-cancer drugs. This review will summarize the known Aurora kinase inhibitors currently in the clinic, and discuss the current and future directions.

  14. Aurora Kinase Inhibitors: Current Status and Outlook

    PubMed Central

    Bavetsias, Vassilios; Linardopoulos, Spiros

    2015-01-01

    The Aurora kinase family comprises of cell cycle-regulated serine/threonine kinases important for mitosis. Their activity and protein expression are cell cycle regulated, peaking during mitosis to orchestrate important mitotic processes including centrosome maturation, chromosome alignment, chromosome segregation, and cytokinesis. In humans, the Aurora kinase family consists of three members; Aurora-A, Aurora-B, and Aurora-C, which each share a conserved C-terminal catalytic domain but differ in their sub-cellular localization, substrate specificity, and function during mitosis. In addition, Aurora-A and Aurora-B have been found to be overexpressed in a wide variety of human tumors. These observations led to a number of programs among academic and pharmaceutical organizations to discovering small molecule Aurora kinase inhibitors as anti-cancer drugs. This review will summarize the known Aurora kinase inhibitors currently in the clinic, and discuss the current and future directions. PMID:26734566

  15. Protein Kinases in Zucchini (Characterization of Calcium-Requiring Plasma Membrane Kinases).

    PubMed Central

    Verhey, S. D.; Gaiser, J. C.; Lomax, T. L.

    1993-01-01

    Using an in situ phosphorylation assay with zucchini (Cucurbita pepo L. cv Dark Green) seedling tissue, we have identified numerous polypeptides that are capable of acting as protein kinases. Total protein preparations from different organs contain different kinase profiles, but all are within the range of 55 to 70 kD. At least four kinases are associated with highly purified plasma membranes from etiolated zucchini hypocotyls. The major phosphorylated polypeptides from plasma membranes range in apparent molecular mass from 58 to 68 kD. The plasma membrane kinases are activated by micromolar concentrations of calcium and phosphorylate serine, and, to a lesser extent, threonine residues. These characteristics are similar to those of a soluble calcium-dependent protein kinase that has been purified to homogeneity from soybean suspension cultures. Three of the zucchini plasma membrane kinases share antigenic epitopes with the soluble soybean kinase. The presence of kinase activity at different apparent molecular masses may be indicative of separate kinases with similar characteristics. The zucchini hypocotyl protein kinases are not removed from plasma membrane vesicles by 0.5 M NaCl/5 mM ethylenediaminetetraacetate or by detergent concentrations below the critical micelle concentration of two types of detergent. This indicates that the plasma membrane protein kinases are tightly associated with the membrane in zucchini seedlings. PMID:12231949

  16. KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites.

    PubMed

    Huang, Hsien-Da; Lee, Tzong-Yi; Tzeng, Shih-Wei; Horng, Jorng-Tzong

    2005-07-01

    KinasePhos is a novel web server for computationally identifying catalytic kinase-specific phosphorylation sites. The known phosphorylation sites from public domain data sources are categorized by their annotated protein kinases. Based on the profile hidden Markov model, computational models are learned from the kinase-specific groups of the phosphorylation sites. After evaluating the learned models, the model with highest accuracy was selected from each kinase-specific group, for use in a web-based prediction tool for identifying protein phosphorylation sites. Therefore, this work developed a kinase-specific phosphorylation site prediction tool with both high sensitivity and specificity. The prediction tool is freely available at http://KinasePhos.mbc.nctu.edu.tw/.

  17. Childhood lead poisoning.

    PubMed

    Linakis, J G

    1995-01-01

    Lead poisoning has been referred to as the most important environmental health hazard for children in New England. Medical professionals are in a unique position to perform a number of interventions that could make a lasting impact. First, physicians and nurses, particularly in the areas of pediatrics and family medicine, can provide anticipatory guidance to all families with young children. Lead poisoning, in contrast to long held beliefs, is an affliction that affects all socioeconomic groups. Parents should thus be informed regarding sources of lead, including occupational and hobby sources, and basic nutritional and abatement information should be provided. Second, health care workers should encourage lead screening in appropriately aged children at recommended intervals based on known risk factors. Once a blood lead concentration greater than 20[symbol: see text]g/dl has been obtained in a child, treatment or referral to an established lead clinic should be undertaken in a timely fashion. For children with low or moderate lead levels, many pediatricians or family physicians prefer to supervise their patients' treatment, including chelation therapy. For children with higher levels or in instances when the health care professional elects to refer, there are several lead clinics throughout New England whose clinicians are experienced in the treatment of childhood lead poisoning. Finally the medical profession needs to publicly recognize, as child advocates, that lead poisoning is one of the most common pediatric health problems in the United States and that it is entirely preventable. Fortunately, after many years and much hard work, Rhode Island finally has laws that start to deal with the lead problem in an appropriately aggressive fashion.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling.

    PubMed

    Christensen, Søren T; Clement, Christian A; Satir, Peter; Pedersen, Lotte B

    2012-01-01

    Primary cilia are microtubule-based sensory organelles that coordinate signalling pathways in cell-cycle control, migration, differentiation and other cellular processes critical during development and for tissue homeostasis. Accordingly, defects in assembly or function of primary cilia lead to a plethora of developmental disorders and pathological conditions now known as ciliopathies. In this review, we summarize the current status of the role of primary cilia in coordinating receptor tyrosine kinase (RTK) signalling pathways. Further, we present potential mechanisms of signalling crosstalk and networking in the primary cilium and discuss how defects in ciliary RTK signalling are linked to human diseases and disorders.

  19. Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling

    PubMed Central

    Christensen, Søren T; Clement, Christian A; Satir, Peter; Pedersen, Lotte B

    2015-01-01

    Primary cilia are microtubule-based sensory organelles that coordinate signalling pathways in cell-cycle control, migration, differentiation and other cellular processes critical during development and for tissue homeostasis. Accordingly, defects in assembly or function of primary cilia lead to a plethora of developmental disorders and pathological conditions now known as ciliopathies. In this review, we summarize the current status of the role of primary cilia in coordinating receptor tyrosine kinase (RTK) signalling pathways. Further, we present potential mechanisms of signalling crosstalk and networking in the primary cilium and discuss how defects in ciliary RTK signalling are linked to human diseases and disorders. PMID:21956154

  20. Protein Kinase C: An Attractive Target for Cancer Therapy

    PubMed Central

    Marengo, Barbara; De Ciucis, Chiara; Ricciarelli, Roberta; Pronzato, Maria A.; Marinari, Umberto M.; Domenicotti, Cinzia

    2011-01-01

    Apoptosis plays an important role during all stages of carcinogenesis and the development of chemoresistance in tumor cells may be due to their selective defects in the intracellular signaling proteins, central to apoptotic pathways. Consequently, many studies have focused on rendering the chemotherapy more effective in order to prevent chemoresistance and pre-clinical and clinical data has suggested that protein kinase C (PKC) may represent an attractive target for cancer therapy. Therefore, a complete understanding of how PKC regulates apoptosis and chemoresistance may lead to obtaining a PKC-based therapy that is able to reduce drug dosages and to prevent the development of chemoresistance. PMID:24212628

  1. Drug discovery in the kinase inhibitory field using the Nested Chemical Library technology.

    PubMed

    Kéri, György; Székelyhidi, Zsolt; Bánhegyi, Péter; Varga, Zoltán; Hegymegi-Barakonyi, Bálint; Szántai-Kis, Csaba; Hafenbradl, Doris; Klebl, Bert; Muller, Gerhard; Ullrich, Axel; Erös, Dániel; Horváth, Zoltán; Greff, Zoltán; Marosfalvi, Jenö; Pató, János; Szabadkai, István; Szilágyi, Ildikó; Szegedi, Zsolt; Varga, István; Wáczek, Frigyes; Orfi, László

    2005-10-01

    Kinase inhibitors are at the forefront of modern drug research, where mostly three technologies are used for hit-and-lead finding: high throughput screening of random libraries, three-dimensional structure-based drug design based on X-ray data, and focused libraries around limited number of new cores. Our novel Nested Chemical Library (NCL) (Vichem Chemie Research Ltd., Budapest, Hungary) technology is based on a knowledge base approach, where focused libraries around selected cores are used to generate pharmacophore models. NCL was designed on the platform of a diverse kinase inhibitory library organized around 97 core structures. We have established a unique, proprietary kinase inhibitory chemistry around these core structures with small focused sublibraries around each core. All the compounds in our NCL library are stored in a big unified Structured Query Language database along with their measured and calculated physicochemical and ADME/toxicity (ADMET) properties, together with thousands of molecular descriptors calculated for each compound. Biochemical kinase inhibitory assays on selected, cloned kinase enzymes for a few hundred NCL compound sets can provide sufficient biological data for rational computerized design of new analogues, based on our pharmacophore model-generating 3DNET4W QSPAR (quantitative structure-property/activity relationships) approach. Using this pharmacophore modeling approach and the ADMET filters, we can preselect synthesizable compounds for hit-and-lead optimization. Starting from this point and integrating the information from QSPAR, high-quality leads can be generated within a small number of optimization cycles. Applying NCL technology we have developed lead compounds for several validated kinase targets.

  2. Lead toxicity: a review.

    PubMed

    Wani, Ab Latif; Ara, Anjum; Usmani, Jawed Ahmad

    2015-06-01

    Lead toxicity is an important environmental disease and its effects on the human body are devastating. There is almost no function in the human body which is not affected by lead toxicity. Though in countries like US and Canada the use of lead has been controlled up to a certain extent, it is still used vehemently in the developing countries. This is primarily because lead bears unique physical and chemical properties that make it suitable for a large number of applications for which humans have exploited its benefits from historical times and thus it has become a common environmental pollutant. Lead is highly persistent in the environment and because of its continuous use its levels rise in almost every country, posing serious threats. This article reviews the works listed in the literature with recent updates regarding the toxicity of lead. Focus is also on toxic effects of lead on the renal, reproductive and nervous system. Finally the techniques available for treating lead toxicity are presented with some recent updates.

  3. Lead toxicity: a review

    PubMed Central

    Ara, Anjum; Usmani, Jawed Ahmad

    2015-01-01

    Lead toxicity is an important environmental disease and its effects on the human body are devastating. There is almost no function in the human body which is not affected by lead toxicity. Though in countries like US and Canada the use of lead has been controlled up to a certain extent, it is still used vehemently in the developing countries. This is primarily because lead bears unique physical and chemical properties that make it suitable for a large number of applications for which humans have exploited its benefits from historical times and thus it has become a common environmental pollutant. Lead is highly persistent in the environment and because of its continuous use its levels rise in almost every country, posing serious threats. This article reviews the works listed in the literature with recent updates regarding the toxicity of lead. Focus is also on toxic effects of lead on the renal, reproductive and nervous system. Finally the techniques available for treating lead toxicity are presented with some recent updates. PMID:27486361

  4. Rapid Lead Screening Test

    MedlinePlus

    ... and treated earlier before the damaging effects of lead poisoning occur. U.S. Department of Health and Human Services ... exceed 10μg/dL, the threshold used to indicate lead poisoning. The American Academy of Pediatrics (AAP) estimates one ...

  5. Lead Poisoning in Children.

    ERIC Educational Resources Information Center

    Lin-Fu, Jane S.

    This publication is a guide to help social and health workers plan a preventive campaign against lead poisoning, a cause of mental retardation other neurological handicaps, and death among children. The main victims are 1- to 6-year-olds living in areas where deteriorating housing prevails. Among the causes of lead poisoning are: ingestion of…

  6. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, Stephen E.; Moses, William W.

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  7. Bonding aluminum beam leads

    NASA Technical Reports Server (NTRS)

    Burkett, F. S.

    1978-01-01

    Report makes it relatively easy for hybrid-circuit manufacturers to convert integrated circuit chips with aluminum bead leads. Report covers: techniques for handling tiny chips; proper geometries for ultrasonic bonding tips; best combinations of pressure, pulse time, and ultrasonic energy for bonding; and best thickness for metal films to which beam leads are bonded.

  8. Supersonic Leading Edge Receptivity

    NASA Technical Reports Server (NTRS)

    Maslov, Anatoly A.

    1998-01-01

    This paper describes experimental studies of leading edge boundary layer receptivity for imposed stream disturbances. Studies were conducted in the supersonic T-325 facility at ITAM and include data for both sharp and blunt leading edges. The data are in agreement with existing theory and should provide guidance for the development of more complete theories and numerical computations of this phenomena.

  9. LEAD IN CANDLE EMISSIONS

    EPA Science Inventory

    The candle-using public should be made aware that the core of candle wicks may contain lead. Used as a stiffening agent to keep the wick out of the molten wax, lead can be emitted as particulate to the air and then deposited on indoor surfaces. To define the problem, 100 sets of ...

  10. Inorganic lead may inhibit neurite development in cultured rat hippocampal neurons through hyperphosphorylation.

    PubMed

    Kern, M; Audesirk, G

    1995-09-01

    Inorganic lead inhibits neurite initiation in cultured rat hippocampal neurons at concentrations as low as 100 nM. Conflicting reports suggest that Pb2+ may stimulate or inhibit protein kinase C, adenylyl cyclase, phosphodiesterase, and calmodulin, or increase intracellular free Ca2+ concentrations. Therefore, Pb2+ may alter the activities of Ca2+/calmodulin-dependent protein kinase (CaM kinase) or protein kinases C or A. We cultured rat hippocampal neurons in 100 nM PbCI2 alone or in combination with kinase or calmodulin inhibitors. Inhibiting protein kinase C with calphostin C exacerbated the inhibition of neurite initiation caused by PbCI2, but inhibiting protein kinase A with KT5720, CaM kinase with KN62, or calmodulin with calmidazolium completely reversed the effects of PbCI2. These results indicate that Pb2+ may inhibit neurite initiation by inappropriately stimulating protein phosphorylation by CaM kinase or cyclic AMP-dependent protein kinase (PKA), possibly by stimulating calmodulin. This hypothesis is supported by findings that other treatments that should increase protein phosphorylation (okadaic acid, a protein phosphatase inhibitor, and Sp-cAMPS, a PKA activator) also reduced neurite initiation. Whole-cell intracellular free Ca2+ ion concentrations were not significantly altered by 100 nM PbCI2 at 4, 12, 24, or 48 hr. Therefore, the hypothesized stimulatory effects of Pb2+ exposure on calmodulin, CaM kinase, or PKA are probably not caused by increases in whole-cell intracellular free Ca2+, but may be attributable either to intracellular Pb2+ or to localized increases in [Ca2+]in that are not reflected in whole-cell measurements.

  11. Phosphorylase kinase isoenzymes in deficient ICR/IAn mice.

    PubMed

    Daegelen-Proux, D; Alexandre, Y; Dreyfus, J C

    1978-10-01

    ICR/IAn mice present a deficiency in phosphorylase kinase activity; the extent of this deficiency is less in some tissues [Lyon, S.B. Biochem. Genet. 4, 169--185 (1970)] than in skeletal muscle, where enzyme activity is 0.3% of normal [Cohen, P.T. W & Cohen, P. FEBS Lett. 29, 113--115 (1973)]. New-born mice of this strain were also reported (Lyon, 1970) to reveal a small amount of skeletal muscle enzyme activity. The properties of these residual phosphorylase kinases were compared to those of control C57 BL mice, with reference to control muscle and liver enzymes which were shown to be of different molecular species [Daegelen-Proux et al. Biochim. Biophys Acta, 452, 398--405 (1976)]. The properties investigated were the immunological reactivity against an antiserum raised against muscle phosphorylase kinase, the thermal stability and the Ca2+ dependency. The results suggest that the muscle enzyme from the new-born ICR/IAn mice and the heart enzyme from adult deficient mice are different to the muscle enzyme from adult normal mice, but they have properties in common with normal adult liver enzyme. These results lead to the conclusion that there exists in the muscle of I strain a "foetal form" of phosphorylase kinase, the activity of which decreases progressively after birth. Out work also confirmed the observations made by Cohen et al. [Eur. J. Biochem. 66, 347--356 (1976)] which showed that there is no evidence for the existence of a cross-reacting material in the muscle of adult deficient mice.

  12. Aurora kinase family: a new target for anticancer drug.

    PubMed

    Macarulla, Teresa; Ramos, Francisco Javier; Tabernero, Josep

    2008-06-01

    Aurora kinases (AK) are the name given to a family of Serine/threonine (Ser/Thr) protein kinases. These proteins represent a novel family of kinases crucial for cell cycle control. The cell division process is one of the hallmarks of every living organism. Within the complete cell-cycle process, mitosis constitutes one of the most critical steps. The main purpose of mitosis is to segregate sister chromatics into two daughters cells. It is a complex biologic process, and errors in this mechanism can lead to genomic instability, a condition associated with tumorigenesis. This process is tightly regulated by several proteins, some of them acting as check-points that ultimately ensure the correct temporal and spatial coordination of this critical biologic process. Among this network of mitotic regulators, AK play a critical role in cellular division by controlling chromatid segregation. Three AK family members have been identified in mammalian cells: A, B, and C. These proteins are implicated in several vital events in mitosis. In experimental models, overexpression of AK can induce spindle defects, chromosome mis-segregation, and malignant transformation. Conversely, downregulation of AK expression cause mitotic arrest and apoptosis in tumor cell lines. The expression levels of human AK are increased in certain types of cancer including breast, colon, pancreatic, ovarian, and gastric tumors. This observation has lent an interest to this family of kinases as potential drug targets for development of new anticancer therapies. This review focuses in recent progress in the role of AK in tumorogenesis and the development of new anticancer drug against AK proteins. This manuscript also includes some relevant patents as well.

  13. Apoptosis and melanogenesis in human melanoma cells induced by anthrax lethal factor inactivation of mitogen-activated protein kinase kinase

    NASA Astrophysics Data System (ADS)

    Koo, Han-Mo; Vanbrocklin, Matt; McWilliams, Mary Jane; Leppla, Stephan H.; Duesbery, Nicholas S.; Vande Woude, George F.

    2002-03-01

    Lethal factor, the principal virulence factor of Bacillus anthracis, inhibits mitogen-activated protein kinase (MAPK) signaling by proteolytically cleaving MAPK kinases. Edema factor, another component of anthrax toxin, is an adenylate cyclase, which increases intracellular cAMP. Inhibition of MAPK signaling with either anthrax lethal toxin (LeTx) or small molecule MAPK kinase inhibitors triggers apoptosis in human melanoma cells. Normal melanocytes do not undergo apoptosis in response to MAPK inhibition but arrest in the G1 phase of the cell cycle. Importantly, in vivo treatment of human melanoma xenograft tumors in athymic nude mice with LeTx results in significant or complete tumor regression without apparent side effects, suggesting that inhibiting the MAPK signaling pathway may be a useful strategy for treating melanoma. Additionally, interrupting MAPK signaling with LeTx and elevating cAMP with anthrax edema toxin in both melanoma cells and melanocytes lead to dramatic melanin production, perhaps explaining the formation of blackened eschars in cutaneous anthrax.

  14. Lead toxicity: current concerns.

    PubMed Central

    Goyer, R A

    1993-01-01

    Over the 20-year period since the first issue of Environmental Health Perspectives was published, there has been considerable progress in the understanding of the potential toxicity of exposure to lead. Many of these advances have been reviewed in published symposia, conferences, and review papers in EHP. This brief review identifies major advances as well as a number of current concerns that present opportunities for prevention and intervention strategies. The major scientific advance has been the demonstration that blood lead (PbB) levels of 10-15 micrograms/dL in newborn and very young infants result in cognitive and behavioral deficits. Further support for this observation is being obtained by prospective or longitudinal studies presently in progress. The mechanism(s) for the central nervous system effects of lead is unclear but involve lead interactions within calcium-mediated intracellular messenger systems and neurotransmission. Effects of low-level lead exposure on blood pressure, particularly in adult men, may be related to the effect of lead on calcium-mediated control of vascular smooth muscle contraction and on the renin-angiotensin system. Reproductive effects of lead have long been suspected, but low-level effects have not been well studied. Whether lead is a carcinogen or its association with renal adenocarcinoma is a consequence of cystic nephropathy is uncertain. Major risk factors for lead toxicity in children in the United States include nutrition, particularly deficiencies of essential metals, calcium, iron, and zinc, and housing and socioeconomic status. A goal for the year 2000 is to reduce prevalence of blood lead levels exceeding 15 micrograms/dL. Images FIGURE 2. PMID:8354166

  15. Lead toxicity: Current concerns

    SciTech Connect

    Goyer, R.A. )

    1993-04-01

    Over the 20-year period since the first issue of Environmental Health Perspectives was published, there has been considerable progress in the understanding of the potential toxicity of exposure to lead. Many of these advances have been reviewed in published symposia, conferences, and review papers in EHP. This brief review identifies major advances as well as a number of current concerns that present opportunities for prevention and intervention strategies. The major scientific advance has been the demonstration that blood lead (PbB) levels of 10-15 micrograms/dL in newborn and very young infants result in cognitive and behavioral deficits. Further support for this observation is being obtained by prospective or longitudinal studies presently in progress. The mechanism(s) for the central nervous system effects of lead is unclear but involve lead interactions within calcium-mediated intracellular messenger systems and neurotransmission. Effects of low-level lead exposure on blood pressure, particularly in adult men, may be related to the effect of lead on calcium-mediated control of vascular smooth muscle contraction and on the renin-angiotensin system. Reproductive effects of lead have long been suspected, but low-level effects have not been well studied. Whether lead is a carcinogen or its association with renal adenocarcinoma is a consequence of cystic nephropathy is uncertain. Major risk factors for lead toxicity in children in the United States include nutrition, particularly deficiencies of essential metals, calcium, iron, and zinc, and housing and socioeconomic status. A goal for the year 2000 is to reduce prevalence of blood lead levels exceeding 15 micrograms/dL. 97 refs.

  16. Discovery of novel inhibitors of Aurora kinases with indazole scaffold: In silico fragment-based and knowledge-based drug design.

    PubMed

    Chang, Chun-Feng; Lin, Wen-Hsing; Ke, Yi-Yu; Lin, Yih-Shyan; Wang, Wen-Chieh; Chen, Chun-Hwa; Kuo, Po-Chu; Hsu, John T A; Uang, Biing-Jiun; Hsieh, Hsing-Pang

    2016-11-29

    Aurora kinases have emerged as important anticancer targets so that there are several inhibitors have advanced into clinical study. Herein, we identified novel indazole derivatives as potent Aurora kinases inhibitors by utilizing in silico fragment-based approach and knowledge-based drug design. After intensive hit-to-lead optimization, compounds 17 (dual Aurora A and B), 21 (Aurora B selective) and 30 (Aurora A selective) possessed indazole privileged scaffold with different substituents, which provide sub-type kinase selectivity. Computational modeling helps in understanding that the isoform selectivity could be targeted specific residue in the Aurora kinase binding pocket in particular targeting residues Arg220, Thr217 or Glu177.

  17. Mitochondrial localization of human PANK2 and hypotheses of secondary iron accumulation in pantothenate kinase-associated neurodegeneration.

    PubMed

    Johnson, Monique A; Kuo, Yien Ming; Westaway, Shawn K; Parker, Susan M; Ching, Katherine H L; Gitschier, Jane; Hayflick, Susan J

    2004-03-01

    Mutations in the pantothenate kinase 2 gene (PANK2) lead to pantothenate kinase-associated neurodegeneration (PKAN, formerly Hallervorden-Spatz syndrome). This neurodegenerative disorder is characterized by iron accumulation in the basal ganglia. Pantothenate kinase is the first enzyme in the biosynthesis of coenzyme A from pantothenate (vitamin B(5)). PANK2, one of four human pantothenate kinase genes, is uniquely predicted to be targeted to mitochondria. We demonstrate mitochondrial localization of PANK2 and speculate on mechanisms of secondary iron accumulation in PKAN. Furthermore, PANK2 uses an unconventional translational start codon, CUG, which is polymorphic in the general population. The variant sequence, CAG (allele frequency: 0.05), leads to skipping of the mitochondrial targeting signal and cytosolic localization of PANK2. This common variant may cause mitochondrial dysfunction and impart susceptibility to late-onset neurodegenerative disorders with brain iron accumulation, including Parkinson's disease.

  18. Cell cycle-dependent regulation of Aurora kinase B mRNA by the Microprocessor complex.

    PubMed

    Jung, Eunsun; Seong, Youngmo; Seo, Jae Hong; Kwon, Young-Soo; Song, Hoseok

    2014-03-28

    Aurora kinase B regulates the segregation of chromosomes and the spindle checkpoint during mitosis. In this study, we showed that the Microprocessor complex, which is responsible for the processing of the primary transcripts during the generation of microRNAs, destabilizes the mRNA of Aurora kinase B in human cells. The Microprocessor-mediated cleavage kept Aurora kinase B at a low level and prevented premature entrance into mitosis. The cleavage was reduced during mitosis leading to the accumulation of Aurora kinase B mRNA and protein. In addition to Aurora kinase B mRNA, the processing of other primary transcripts of miRNAs were also decreased during mitosis. We found that the cleavage was dependent on an RNA helicase, DDX5, and the association of DDX5 and DDX17 with the Microprocessor was reduced during mitosis. Thus, we propose a novel mechanism by which the Microprocessor complex regulates stability of Aurora kinase B mRNA and cell cycle progression.

  19. PSM/SH2-B distributes selected mitogenic receptor signals to distinct components in the PI3-kinase and MAP kinase signaling pathways.

    PubMed

    Deng, Youping; Xu, Hu; Riedel, Heimo

    2007-02-15

    The Pro-rich, PH, and SH2 domain containing mitogenic signaling adapter PSM/SH2-B has been implicated as a cellular partner of various mitogenic receptor tyrosine kinases and related signaling mechanisms. Here, we report in a direct comparison of three peptide hormones, that PSM participates in the assembly of distinct mitogenic signaling complexes in response to insulin or IGF-I when compared to PDGF in cultured normal fibroblasts. The complex formed in response to insulin or IGF-I involves the respective peptide hormone receptor and presumably the established components leading to MAP kinase activation. However, our data suggest an alternative link from the PDGF receptor via PSM directly to MEK1/2 and consequently also to p44/42 activation, possibly through a scaffold protein. At least two PSM domains participate, the SH2 domain anticipated to link PSM to the respective receptor and the Pro-rich region in an association with an unidentified downstream component resulting in direct MEK1/2 and p44/42 regulation. The PDGF receptor signaling complex formed in response to PDGF involves PI 3-kinase in addition to the same components and interactions as described for insulin or IGF-I. PSM associates with PI 3-kinase via p85 and in addition the PSM PH domain participates in the regulation of PI 3-kinase activity, presumably through membrane interaction. In contrast, the PSM Pro-rich region appears to participate only in the MAP kinase signal. Both pathways contribute to the mitogenic response as shown by cell proliferation, survival, and focus formation. PSM regulates p38 MAP kinase activity in a pathway unrelated to the mitogenic response.

  20. Diacylglycerol kinase is phosphorylated in vivo upon stimulation of the epidermal growth factor receptor and serine/threonine kinases, including protein kinase C-epsilon.

    PubMed Central

    Schaap, D; van der Wal, J; van Blitterswijk, W J; van der Bend, R L; Ploegh, H L

    1993-01-01

    In signal transduction, diacylglycerol (DG) kinase attenuates levels of the second messenger DG by converting it to phosphatidic acid. A previously cloned full-length human 86 kDa DG kinase cDNA was expressed as fusion protein in Escherichia coli, to aid in the generation of DG-kinase-specific monoclonal antibodies suitable for immunoprecipitation experiments. To investigate whether phosphorylation of DG kinase is a possible mechanism for its regulation, COS-7 cells were transiently transfected with the DG kinase cDNA and phosphorylation of the expressed DG kinase was induced by various stimuli. Activation of both cyclic AMP-dependent protein kinase and protein kinase C (PKC) resulted in phosphorylation of DG kinase on serine residues in vivo, and both kinases induced this phosphorylation within the same tryptic phosphopeptide, suggesting that they may exert similar control over DG kinase. No phosphorylation was observed upon ionomycin treatment, intended to activate Ca2+/calmodulin-dependent kinases. Co-transfections of DG kinase with either PKC-alpha or PKC-epsilon cDNA revealed that both protein kinases, when stimulated, are able to phosphorylate DG kinase. For PKC-epsilon, DG kinase is the first in vivo substrate identified. Stimulation with epidermal growth factor (EGF) of COS-7 cells transfected with both DG kinase and EGF-receptor cDNA results mainly in phosphorylation of DG kinase on tyrosine. Since the EGF receptor has an intrinsic tyrosine kinase activity, this finding implies that DG kinase may be a direct substrate for the activated EGF receptor. Images Figure 2 Figure 3 Figure 4 PMID:7679574

  1. Evaluation of RET Tyrosine Kinase as a Novel Driver of Prostatic Small Cell Neuroendocrine Carcinoma

    DTIC Science & Technology

    2015-08-01

    neuroendocrine carcinoma (SCNC) accounts for only 1% of diagnosed prostate cancers prior to aggressive therapy. However, after administration of... aggressive therapy, tumor resistance is inevitable resulting in the acquisition of SCNC tumors in well over 20% of patients. SCNC tumors are highly... aggressive , metastasize readily, and often lead to death of the patient within months after diagnosis. Tyrosine kinases represent an untapped area for

  2. The discovery of novel 3-(pyrazin-2-yl)-1H-indazoles as potent pan-Pim kinase inhibitors.

    PubMed

    Wang, Hui-Ling; Cee, Victor J; Chavez, Frank; Lanman, Brian A; Reed, Anthony B; Wu, Bin; Guerrero, Nadia; Lipford, J Russell; Sastri, Christine; Winston, Jeff; Andrews, Kristin L; Huang, Xin; Lee, Matthew R; Mohr, Christopher; Xu, Yang; Zhou, Yihong; Tasker, Andrew S

    2015-02-15

    The three Pim kinases are a small family of serine/threonine kinases regulating several signaling pathways that are fundamental to tumorigenesis. As such, the Pim kinases are a very attractive target for pharmacological inhibition in cancer therapy. Herein, we describe our efforts toward the development of a potent, pan-Pim inhibitor. The synthesis and hit-to-lead SAR development from a 3-(pyrazin-2-yl)-1H-indazole derived hit 2 to the identification of a series of potent, pan-Pim inhibitors such as 13o are described.

  3. Protein kinase CK2 activates the atypical Rio1p kinase and promotes its cell-cycle phase-dependent degradation in yeast.

    PubMed

    Angermayr, Michaela; Hochleitner, Elisabeth; Lottspeich, Friedrich; Bandlow, Wolfhard

    2007-09-01

    Using co-immunoprecipitation combined with MS analysis, we identified the alpha' subunit of casein kinase 2 (CK2) as an interaction partner of the atypical Rio1 protein kinase in yeast. Co-purification of Rio1p with CK2 from Deltacka1 or Deltacka2 mutant extracts shows that Rio1p preferentially interacts with Cka2p in vitro. The C-terminal domain of Rio1p is essential and sufficient for this interaction. Six C-terminally located clustered serines were identified as the only CK2 sites present in Rio1p. Replacement of all six serine residues by aspartate, mimicking constitutive phosphorylation, stimulates Rio1p kinase activity about twofold in vitro compared with wild-type or the corresponding (S > A)(6) mutant proteins. Both mutant alleles (S > A)(6) or (S > D)(6) complement in vivo, however, growth of the RIO1 (S > A)(6) mutant is greatly retarded and shows a cell-cycle phenotype, whereas the behaviour of the RIO1 (S > D)(6) mutant is indistinguishable from wild-type. This suggests that phosphorylation by protein kinase CK2 leads to moderate activation of Rio1p in vivo and promotes cell proliferation. Physiological studies indicate that phosphorylation by CK2 renders the Rio1 protein kinase susceptible to proteolytic degradation at the G(1)/S transition in the cell-division cycle, whereas the non-phosphorylated version is resistant.

  4. Structure-Based Design of an Organoruthenium Phosphatidyl-inositol-3-Kinase Inhibitor Reveals a Switch Governing Lipid Kinase Potency and Selectivity

    SciTech Connect

    Xie,P.; Williams, D.; Atilla-Gokcumen, G.; Milk, L.; Xiao, M.; Smalley, K.; Herlyn, M.; Meggers, E.; Marmorstein, R.

    2008-01-01

    Mutations that constitutively activate the phosphatidyl-inositol-3-kinase (PI3K) signaling pathway, including alterations in PI3K, PTEN, and AKT, are found in a variety of human cancers, implicating the PI3K lipid kinase as an attractive target for the development of therapeutic agents to treat cancer and other related diseases. In this study, we report on the combination of a novel organometallic kinase inhibitor scaffold with structure-based design to develop a PI3K inhibitor, called E5E2, with an IC50 potency in the mid-low-nanomolar range and selectivity against a panel of protein kinases. We also show that E5E2 inhibits phospho-AKT in human melanoma cells and leads to growth inhibition. Consistent with a role for the PI3K pathway in tumor cell invasion, E5E2 treatment also inhibits the migration of melanoma cells in a 3D spheroid assay. The structure of the PI3K?/E5E2 complex reveals the molecular features that give rise to this potency and selectivity toward lipid kinases with implications for the design of a subsequent generation of PI3K-isoform-specific organometallic inhibitors.

  5. Substrate-Specific Reorganization of the Conformational Ensemble of CSK Implicates Novel Modes of Kinase Function

    PubMed Central

    Jamros, Michael A.; Oliveira, Leandro C.; Whitford, Paul C.; Onuchic, José N.; Adams, Joseph A.; Jennings, Patricia A.

    2012-01-01

    Protein kinases use ATP as a phosphoryl donor for the posttranslational modification of signaling targets. It is generally thought that the binding of this nucleotide induces conformational changes leading to closed, more compact forms of the kinase domain that ideally orient active-site residues for efficient catalysis. The kinase domain is oftentimes flanked by additional ligand binding domains that up- or down-regulate catalytic function. C-terminal Src kinase (Csk) is a multidomain tyrosine kinase that is up-regulated by N-terminal SH2 and SH3 domains. Although the X-ray structure of Csk suggests the enzyme is compact, X-ray scattering studies indicate that the enzyme possesses both compact and open conformational forms in solution. Here, we investigated whether interactions with the ATP analog AMP-PNP and ADP can shift the conformational ensemble of Csk in solution using a combination of small angle x-ray scattering and molecular dynamics simulations. We find that binding of AMP-PNP shifts the ensemble towards more extended rather than more compact conformations. Binding of ADP further shifts the ensemble towards extended conformations, including highly extended conformations not adopted by the apo protein, nor by the AMP-PNP bound protein. These ensembles indicate that any compaction of the kinase domain induced by nucleotide binding does not extend to the overall multi-domain architecture. Instead, assembly of an ATP-bound kinase domain generates further extended forms of Csk that may have relevance for kinase scaffolding and Src regulation in the cell. PMID:23028292

  6. Coordinated cell motility is regulated by a combination of LKB1 farnesylation and kinase activity

    PubMed Central

    Wilkinson, S.; Hou, Y.; Zoine, J. T.; Saltz, J.; Zhang, C.; Chen, Z.; Cooper, L. A. D.; Marcus, A. I.

    2017-01-01

    Cell motility requires the precise coordination of cell polarization, lamellipodia formation, adhesion, and force generation. LKB1 is a multi-functional serine/threonine kinase that associates with actin at the cellular leading edge of motile cells and suppresses FAK. We sought to understand how LKB1 coordinates these multiple events by systematically dissecting LKB1 protein domain function in combination with live cell imaging and computational approaches. We show that LKB1-actin colocalization is dependent upon LKB1 farnesylation leading to RhoA-ROCK-mediated stress fiber formation, but membrane dynamics is reliant on LKB1 kinase activity. We propose that LKB1 kinase activity controls membrane dynamics through FAK since loss of LKB1 kinase activity results in morphologically defective nascent adhesion sites. In contrast, defective farnesylation mislocalizes nascent adhesion sites, suggesting that LKB1 farnesylation serves as a targeting mechanism for properly localizing adhesion sites during cell motility. Together, we propose a model where coordination of LKB1 farnesylation and kinase activity serve as a multi-step mechanism to coordinate cell motility during migration. PMID:28102310

  7. Structural characterization of nonactive site, TrkA-selective kinase inhibitors

    SciTech Connect

    Su, Hua-Poo; Rickert, Keith; Burlein, Christine; Narayan, Kartik; Bukhtiyarova, Marina; Hurzy, Danielle M.; Stump, Craig A.; Zhang, Xufang; Reid, John; Krasowska-Zoladek, Alicja; Tummala, Srivanya; Shipman, Jennifer M.; Kornienko, Maria; Lemaire, Peter A.; Krosky, Daniel; Heller, Amanda; Achab, Abdelghani; Chamberlin, Chad; Saradjian, Peter; Sauvagnat, Berengere; Yang, Xianshu; Ziebell, Michael R.; Nickbarg, Elliott; Sanders, John M.; Bilodeau, Mark T.; Carroll, Steven S.; Lumb, Kevin J.; Soisson, Stephen M.; Henze, Darrell A.; Cooke, Andrew J.

    2016-12-30

    Current therapies for chronic pain can have insufficient efficacy and lead to side effects, necessitating research of novel targets against pain. Although originally identified as an oncogene, Tropomyosin-related kinase A (TrkA) is linked to pain and elevated levels of NGF (the ligand for TrkA) are associated with chronic pain. Antibodies that block TrkA interaction with its ligand, NGF, are in clinical trials for pain relief. Here, we describe the identification of TrkA-specific inhibitors and the structural basis for their selectivity over other Trk family kinases. The X-ray structures reveal a binding site outside the kinase active site that uses residues from the kinase domain and the juxtamembrane region. Three modes of binding with the juxtamembrane region are characterized through a series of ligand-bound complexes. The structures indicate a critical pharmacophore on the compounds that leads to the distinct binding modes. The mode of interaction can allow TrkA selectivity over TrkB and TrkC or promiscuous, pan-Trk inhibition. This finding highlights the difficulty in characterizing the structure-activity relationship of a chemical series in the absence of structural information because of substantial differences in the interacting residues. These structures illustrate the flexibility of binding to sequences outside of—but adjacent to—the kinase domain of TrkA. This knowledge allows development of compounds with specificity for TrkA or the family of Trk proteins.

  8. Human Gastric Cancer Kinase Profile and Prognostic Significance of MKK4 Kinase

    PubMed Central

    Wu, Chew-Wun; Li, Anna F.-Y.; Chi, Chin-Wen; Huang, Chen Lung; Shen, King-Han; Liu, Wing-Yiu; Lin, Wen-chang

    2000-01-01

    Alterations of protein tyrosine kinase are often associated with uncontrolled cell growth and tumor progression. Knowledge of the overall expression pattern of tyrosine kinases should prove beneficial in understanding the signaling pathways involved in gastric cancer oncogenesis and in providing possible biomarkers for gastric cancer progression. To establish a general tyrosine-kinase expression profile, degenerated polymerase chain reaction primers designed from the consensus catalytic kinase motifs were used to amplify protein tyrosine kinase molecules from gastric cancer tissues. We observed more than 50 tyrosine and serine/threonine kinases from matching pairs of gastric cancer tissue and normal mucosa. Based on this new kinase profile information, we selected the MKK4 gene for further immunohistochemical studies. Statistical analysis of MKK4 protein expression and clinicopathological features indicated that MKK4 kinase expression could serve as a significant prognostic factor for relapse-free survival and for overall survival. We demonstrated a simple and sensitive method for establishing protein tyrosine-kinase expression profiles of human gastric cancer tissues as well as for discovering novel and useful clinical biomarkers from such kinase expression profiles. PMID:10854223

  9. Polo-like kinase-activating kinases: Aurora A, Aurora B and what else?

    PubMed

    Archambault, Vincent; Carmena, Mar

    2012-04-15

    The events of cell division are regulated by a complex interplay between kinases and phosphatases. Cyclin-dependent kinases (Cdks), polo-like kinases (Plks) and Aurora kinases play central roles in this process. Polo kinase (Plk1 in humans) regulates a wide range of events in mitosis and cytokinesis. To ensure the accuracy of these processes, polo activity itself is subject to complex regulation. Phosphorylation of polo in its T loop (or activation loop) increases its kinase activity several-fold. It has been shown that Aurora A kinase, with its co-factor Bora, activates Plk1 in G(2), and that this is essential for recovery from cell cycle arrest induced by DNA damage. In a recent article published in PLoS Biology, we report that Drosophila polo is activated by Aurora B kinase at centromeres, and that this is crucial for polo function in regulating chromosome dynamics in prometaphase. Our results suggest that this regulatory pathway is conserved in humans. Here, we propose a model for the collaboration between Aurora B and polo in the regulation of kinetochore attachment to microtubules in early mitosis. Moreover, we suggest that Aurora B could also function to activate Polo/Plk1 in cytokinesis. Finally, we discuss recent findings and open questions regarding the activation of polo and polo-like kinases by different kinases in mitosis, cytokinesis and other processes.

  10. American Lead Action Memorandum

    EPA Pesticide Factsheets

    ACTION MEMORANDUM— Request for a Time-Critical Removal Action andExemption from the $2 Million and 12-Month Statutory Limits at the AmericanLead Site, Indianapolis, Marion County, Indiana (Site ID #B56J)

  11. Leading Causes of Blindness

    MedlinePlus

    ... Cataract. Photo courtesy of National Eye Institute, NIH Cataracts Cataracts are a clouding of the lenses in your ... older people. More than 22 million Americans have cataracts. They are the leading cause of blindness in ...

  12. Learn about Lead

    MedlinePlus

    Jump to main content US EPA United States Environmental Protection Agency Search Search Lead Share Facebook Twitter Google+ ... 2 pp, 291 K, About PDF ) The most important step parents, doctors, and others can take is ...

  13. Lead Poisoning Prevention Tips

    MedlinePlus

    ... North Dakota Ohio Oklahoma Oregon Pennsylvania Philadelphia Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont ... up paint debris after work is completed. Create barriers between living/play areas and lead sources. Until ...

  14. Feature Leads That Work.

    ERIC Educational Resources Information Center

    Konkle, Bruce E.

    1999-01-01

    Presents advice to scholastic journalists on writing leads for feature stories. Discusses using a summary, a question, a direct quote, a first-person account, alliteration, a shocking statement, contrast, historical reference, descriptions, narratives, metaphors, and similes. (RS)

  15. Functional analysis of anomeric sugar kinases.

    PubMed

    Conway, Louis P; Voglmeir, Josef

    2016-09-02

    Anomeric sugar kinases perform fundamental roles in the metabolism of carbohydrates. Under- or overexpression of these enzymes, or mutations causing functional impairments can give rise to diseases such as galactosaemia and so the study of this class of kinase is of critical importance. In addition, anomeric sugar kinases which are naturally promiscuous, or have been artificially made so, may find application in the synthesis of libraries of drug candidates (for example, antibiotics), and natural or unnatural oligosaccharides and glycoconjugates. In this review, we provide an overview of the biological functions of these enzymes, the tools which have been developed to investigate them, and the current frontiers in their study.

  16. Differential AMP-activated Protein Kinase (AMPK) Recognition Mechanism of Ca2+/Calmodulin-dependent Protein Kinase Kinase Isoforms.

    PubMed

    Fujiwara, Yuya; Kawaguchi, Yoshinori; Fujimoto, Tomohito; Kanayama, Naoki; Magari, Masaki; Tokumitsu, Hiroshi

    2016-06-24

    Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) is a known activating kinase for AMP-activated protein kinase (AMPK). In vitro, CaMKKβ phosphorylates Thr(172) in the AMPKα subunit more efficiently than CaMKKα, with a lower Km (∼2 μm) for AMPK, whereas the CaMKIα phosphorylation efficiencies by both CaMKKs are indistinguishable. Here we found that subdomain VIII of CaMKK is involved in the discrimination of AMPK as a native substrate by measuring the activities of various CaMKKα/CaMKKβ chimera mutants. Site-directed mutagenesis analysis revealed that Leu(358) in CaMKKβ/Ile(322) in CaMKKα confer, at least in part, a distinct recognition of AMPK but not of CaMKIα.

  17. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  18. Ground-based experiments complement microgravity flight opportunities in the investigation of the effects of space flight on the immune response: is protein kinase C gravity sensitive?

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Woods, K. M.; Armstrong, J. W.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    This manuscript briefly reviews ground-based and flight experiments, discusses how those experiments complement each other, and details how those experiments lead us to speculate about the gravity-sensitive nature of protein kinase C.

  19. Lead-210 contamination

    SciTech Connect

    Gray, P.

    1997-12-31

    Nearly all scrap dealers, smelters and other recyclers routinely monitor for radioactivity in shipments entering their facility. These sensitive radiation gate monitors easily detect radium-226 and most other radioactive nuclides. However, the type of detector normally used, sodium iodide scintillation crystals, will not detect the low energy gamma radiation emitted by lead-210 and its progeny. Since lead-210 is a common radioactive contaminant in certain industries, contaminated scrap metal from these industries may avoid detection at the recycler. Lead-210 is a decay product of radon-222 which is produced in small concentrations with natural gas. As the natural gas liquids, particularly ethane and propane, are separated from the natural gas, the radon concentrates in the ethane/propane fraction. The natural gas industry, particularly gas processing facilities and industries using ethane and propane as feed stocks can be significantly contaminated with the radon decay products, especially lead-210, bismuth-210 and polonium-210. Unless the scrap metal is decontaminated before sending to the recycler, the lead-210 contaminated scrap may be processed, resulting in some degree of radioactive contamination of the recycling facilities. Methods of detecting the low energy gamma radiation associated with lead-210 include the pancake G-M detector and the thin crystal-thin window scintillation detector.

  20. Magnesium Diboride Current Leads

    NASA Technical Reports Server (NTRS)

    Panek, John

    2010-01-01

    A recently discovered superconductor, magnesium diboride (MgB2), can be used to fabricate conducting leads used in cryogenic applications. Dis covered to be superconducting in 2001, MgB2 has the advantage of remaining superconducting at higher temperatures than the previously used material, NbTi. The purpose of these leads is to provide 2 A of electricity to motors located in a 1.3 K environment. The providing environment is a relatively warm 17 K. Requirements for these leads are to survive temperature fluctuations in the 5 K and 11 K heat sinks, and not conduct excessive heat into the 1.3 K environment. Test data showed that each lead in the assembly could conduct 5 A at 4 K, which, when scaled to 17 K, still provided more than the required 2 A. The lead assembly consists of 12 steelclad MgB2 wires, a tensioned Kevlar support, a thermal heat sink interface at 4 K, and base plates. The wires are soldered to heavy copper leads at the 17 K end, and to thin copper-clad NbTi leads at the 1.3 K end. The leads were designed, fabricated, and tested at the Forschungszentrum Karlsruhe - Institut foer Technische Physik before inclusion in Goddard's XRS (X-Ray Spectrometer) instrument onboard the Astro-E2 spacecraft. A key factor is that MgB2 remains superconducting up to 30 K, which means that it does not introduce joule heating as a resistive wire would. Because the required temperature ranges are 1.3-17 K, this provides a large margin of safety. Previous designs lost superconductivity at around 8 K. The disadvantage to MgB2 is that it is a brittle ceramic, and making thin wires from it is challenging. The solution was to encase the leads in thin steel tubes for strength. Previous designs were so brittle as to risk instrument survival. MgB2 leads can be used in any cryogenic application where small currents need to be conducted at below 30 K. Because previous designs would superconduct only at up to 8 K, this new design would be ideal for the 8-30 K range.

  1. Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase

    NASA Technical Reports Server (NTRS)

    Shimizu, M.; Wang, W.; Walch, E. T.; Dunne, P. W.; Epstein, H. F.

    2000-01-01

    Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.

  2. Pantothenate kinase-associated neurodegeneration.

    PubMed

    Hartig, Monika B; Prokisch, Holger; Meitinger, Thomas; Klopstock, Thomas

    2012-08-01

    Pantothenate kinase-associated neurodegeneration (PKAN) is a hereditary progressive disorder and the most frequent form of neurodegeneration with brain iron accumulation (NBIA). PKAN patients present with a progressive movement disorder, dysarthria, cognitive impairment and retinitis pigmentosa. In magnetic resonance imaging, PKAN patients exhibit the pathognonomic "eye of the tiger" sign in the globus pallidus which corresponds to iron accumulation and gliosis as shown in neuropathological examinations. The discovery of the disease causing mutations in PANK2 has linked the disorder to coenzyme A (CoA) metabolism. PANK2 is the only one out of four PANK genes encoding an isoform which localizes to mitochondria. At least two other NBIA genes (PLA2G6, C19orf12) encode proteins that share with PANK2 a mitochondrial localization and all are suggested to play a role in lipid homeostasis. With no causal therapy available for PKAN until now, only symptomatic treatment is possible. A multi-centre retrospective study with bilateral pallidal deep brain stimulation in patients with NBIA revealed a significant improvement of dystonia. Recently, studies in the PANK Drosophila model "fumble" revealed improvement by the compound pantethine which is hypothesized to feed an alternate CoA biosynthesis pathway. In addition, pilot studies with the iron chelator deferiprone that crosses the blood brain barrier showed a good safety profile and some indication of efficacy. An adequately powered randomized clinical trial will start in 2012. This review summarizes clinical presentation, neuropathology and pathogenesis of PKAN.

  3. Cellular response to low dose radiation: Role of phosphatidylinositol-3 kinase like kinases

    SciTech Connect

    Balajee, A.S.; Meador, J.A.; Su, Y.

    2011-03-24

    It is increasingly realized that human exposure either to an acute low dose or multiple chronic low doses of low LET radiation has the potential to cause different types of cancer. Therefore, the central theme of research for DOE and NASA is focused on understanding the molecular mechanisms and pathways responsible for the cellular response to low dose radiation which would not only improve the accuracy of estimating health risks but also help in the development of predictive assays for low dose radiation risks associated with tissue degeneration and cancer. The working hypothesis for this proposal is that the cellular mechanisms in terms of DNA damage signaling, repair and cell cycle checkpoint regulation are different for low and high doses of low LET radiation and that the mode of action of phosphatidylinositol-3 kinase like kinases (PIKK: ATM, ATR and DNA-PK) determines the dose dependent cellular responses. The hypothesis will be tested at two levels: (I) Evaluation of the role of ATM, ATR and DNA-PK in cellular response to low and high doses of low LET radiation in simple in vitro human cell systems and (II) Determination of radiation responses in complex cell microenvironments such as human EpiDerm tissue constructs. Cellular responses to low and high doses of low LET radiation will be assessed from the view points of DNA damage signaling, DNA double strand break repair and cell cycle checkpoint regulation by analyzing the activities (i.e. post-translational modifications and kinetics of protein-protein interactions) of the key target proteins for PI-3 kinase like kinases both at the intra-cellular and molecular levels. The proteins chosen for this proposal are placed under three categories: (I) sensors/initiators include ATM ser1981, ATR, 53BP1, gamma-H2AX, MDC1, MRE11, Rad50 and Nbs1; (II) signal transducers include Chk1, Chk2, FANCD2 and SMC1; and (III) effectors include p53, CDC25A and CDC25C. The primary goal of this proposal is to elucidate the

  4. Myosin, Transgelin, and Myosin Light Chain Kinase

    PubMed Central

    Léguillette, Renaud; Laviolette, Michel; Bergeron, Celine; Zitouni, Nedjma; Kogut, Paul; Solway, Julian; Kachmar, Linda; Hamid, Qutayba; Lauzon, Anne-Marie

    2009-01-01

    Rationale: Airway smooth muscle (SM) of patients with asthma exhibits a greater velocity of shortening (Vmax) than that of normal subjects, and this is thought to contribute to airway hyperresponsiveness. A greater Vmax can result from increased myosin activation. This has been reported in sensitized human airway SM and in models of asthma. A faster Vmax can also result from the expression of specific contractile proteins that promote faster cross-bridge cycling. This possibility has never been addressed in asthma. Objectives: We tested the hypothesis that the expression of genes coding for SM contractile proteins is altered in asthmatic airways and contributes to their increased Vmax. Methods: We quantified the expression of several genes that code for SM contractile proteins in mild allergic asthmatic and control human airway endobronchial biopsies. The function of these contractile proteins was tested using the in vitro motility assay. Measurements and Main Results: We observed an increased expression of the fast myosin heavy chain isoform, transgelin, and myosin light chain kinase in patients with asthma. Immunohistochemistry demonstrated the expression of these genes at the protein level. To address the functional significance of this overexpression, we purified tracheal myosin from the hyperresponsive Fisher rats, which also overexpress the fast myosin heavy chain isoform as compared with the normoresponsive Lewis rats, and found a faster rate of actin filament propulsion. Conversely, transgelin did not alter the rate of actin filament propulsion. Conclusions: Selective overexpression of airway smooth muscle genes in asthmatic airways leads to increased Vmax, thus contributing to the airway hyperresponsiveness observed in asthma. PMID:19011151

  5. Contribution of PIP-5 kinase I{alpha} to raft-based Fc{gamma}RIIA signaling

    SciTech Connect

    Szymanska, Ewelina; Korzeniowski, Marek; Raynal, Patrick; Sobota, Andrzej; Kwiatkowska, Katarzyna

    2009-04-01

    Receptor Fc{gamma}IIA (Fc{gamma}RIIA) associates with plasma membrane rafts upon activation to trigger signaling cascades leading to actin polymerization. We examined whether compartmentalization of PI(4,5)P{sub 2} and PI(4,5)P{sub 2}-synthesizing PIP5-kinase I{alpha} to rafts contributes to Fc{gamma}RIIA signaling. A fraction of PIP5-kinase I{alpha} was detected in raft-originating detergent-resistant membranes (DRM) isolated from U937 monocytes and other cells. The DRM of U937 monocytes contained also a major fraction of PI(4,5)P{sub 2}. PIP5-kinase I{alpha} bound PI(4,5)P{sub 2}, and depletion of the lipid displaced PIP5-kinase I{alpha} from the DRM. Activation of Fc{gamma}RIIA in BHK transfectants led to recruitment of the kinase to the plasma membrane and enrichment of DRM in PI(4,5)P{sub 2}. Immunofluorescence studies revealed that in resting cells the kinase was associated with the plasma membrane, cytoplasmic vesicles and the nucleus. After Fc{gamma}RIIA activation, PIP5-kinase I{alpha} and PI(4,5)P{sub 2} co-localized transiently with the activated receptor at distinct cellular locations. Immunoelectron microscopy studies revealed that PIP5-kinase I{alpha} and PI(4,5)P{sub 2} were present at the edges of electron-dense assemblies containing activated Fc{gamma}RIIA in their core. The data suggest that activation of Fc{gamma}RIIA leads to membrane rafts coalescing into signaling platforms containing PIP5-kinase I{alpha} and PI(4,5)P{sub 2}.

  6. Dynamics driven allostery in protein kinases

    PubMed Central

    Kornev, Alexandr P.; Taylor, Susan S.

    2015-01-01

    Protein kinases have very dynamic structures and their functionality strongly depends on their dynamic state. Active kinases reveal a dynamic pattern with residues clustering into semirigid communities that move in µs-ms timescale. Previously detected hydrophobic spines serve as connectors between communities. Communities do not follow the traditional subdomain structure of the kinase core or its secondary structure elements. Instead they are organized around main functional units. Integration of the communities depends on the assembly of the hydrophobic spine and phosphorylation of the activation loop. Single mutations can significantly disrupt the dynamic infrastructure and thereby interfere with long distance allosteric signaling that propagates throughout the whole molecule. Dynamics is proposed to be the underlying mechanism for allosteric regulation in protein kinases. PMID:26481499

  7. Ocular Toxicity of Tyrosine Kinase Inhibitors

    PubMed Central

    Davis, Mary Elizabeth

    2016-01-01

    Purpose/Objectives To review common tyrosine kinase inhibitors, as well as their ocular side effects and management. Data Sources A comprehensive literature search was conducted using cINahl®, Pubmed, and cochrane databases for articles published since 2004 with the following search terms: ocular toxicities, tyrosine kinase inhibitors, ophthalmology, adverse events, eye, and vision. Data Synthesis Tyrosine kinase inhibitors can cause significant eye toxicity. Conclusions Given the prevalence of new tyrosine kinase inhibitor therapies and the complexity of possible pathogenesis of ocular pathology, oncology nurses can appreciate the occurrence of ocular toxicities and the role of nursing in the management of these problems. Implications for Nursing Knowledge of the risk factors and etiology of ocular toxicity of targeted cancer therapies can guide nursing assessment, enhance patient education, and improve care management. Including a review of eye symptoms and vision issues in nursing assessment can enhance early detection and treatment of ocular toxicity. PMID:26906134

  8. Genetics Home Reference: pyruvate kinase deficiency

    MedlinePlus

    ... Hemolytic Anemia? Educational Resources (7 links) CLIMB National (UK) Information Centre for Metabolic Diseases: Pyruvate Kinase Deficiency ( ... Support and Advocacy Resources (2 links) CLIMB National (UK) Information Centre for Metabolic Diseases National Organization for ...

  9. Food Exposures to Lead

    PubMed Central

    Kolbye, Albert C.; Mahaffey, Kathryn R.; Fiorino, John A.; Corneliussen, Paul C.; Jelinek, Charles F.

    1974-01-01

    Exposures to lead have emanated from various sources, including food, throughout human history. Occupational and environmental exposures (especially pica) appear to account for much of the identified human disease, however, food-borne exposures deserve further investigation. Lead residues in food can result from: biological uptake from soils into plants consumed by food animals or man, usage of lead arsenate pesticides, inadvertent addition during food processing, and by leaching them improperly glazed pottery used as food storage or dining utensils. Estimates of total dietary exposure should reflect frequency distribution data on lead levels in specific food commodities in relation to the quantities actually ingested by various sample populations to distinguish degrees of risk associated with particular dietary habits. Earlier estimates of average total dietary intake of lead by adults have been reported to range from above 500 μg/day downward with more recent estimates suggesting averages of 200 μg/day or lower. The strengths and weaknesses of these data are discussed along with analytical and sampling considerations. FDA programs related to food surveillance, epidemiology, and toxicological investigation are briefly described. PMID:4406646

  10. Mutations in the pantothenate kinase gene PANK2 are not associated with Parkinson disease.

    PubMed

    Klopstock, Thomas; Elstner, Matthias; Lücking, Christoph B; Müller-Myhsok, Bertram; Gasser, Thomas; Botz, Evelyn; Lichtner, Peter; Hörtnagel, Konstanze

    2005-05-13

    Pantothenate kinase-associated neurodegeneration (PKAN) may serve as a model for Parkinson disease (PD) since many PKAN patients suffer from parkinsonism and both conditions lead to iron accumulation in the basal ganglia. We screened the gene coding for pantothenate kinase 2 (PANK2) for sequence variants in PD. We found no mutations in 67 PD patients with affected sibs or early-onset disease. Moreover, PANK2 polymorphisms were not associated with late-onset idiopathic PD in 339 patients. We conclude that PANK2 variants exert, if any, only a very small effect in the genetic risk of PD.

  11. Identifying Kinase Substrates via a Heavy ATP Kinase Assay and Quantitative Mass Spectrometry

    PubMed Central

    Müller, André C.; Giambruno, Roberto; Weißer, Juliane; Májek, Peter; Hofer, Alexandre; Bigenzahn, Johannes W.; Superti-Furga, Giulio; Jessen, Henning J.; Bennett, Keiryn L.

    2016-01-01

    Mass spectrometry-based in vitro kinase screens play an essential role in the discovery of kinase substrates, however, many suffer from biological and technical noise or necessitate genetically-altered enzyme-cofactor systems. We describe a method that combines stable γ-[18O2]-ATP with classical in vitro kinase assays within a contemporary quantitative proteomic workflow. Our approach improved detection of known substrates of the non-receptor tyrosine kinase ABL1; and identified potential, new in vitro substrates. PMID:27346722

  12. Kinase-interacting substrate screening is a novel method to identify kinase substrates

    PubMed Central

    Amano, Mutsuki; Hamaguchi, Tomonari; Shohag, Md. Hasanuzzaman; Kozawa, Kei; Kato, Katsuhiro; Zhang, Xinjian; Yura, Yoshimitsu; Matsuura, Yoshiharu; Kataoka, Chikako; Nishioka, Tomoki

    2015-01-01

    Protein kinases play pivotal roles in numerous cellular functions; however, the specific substrates of each protein kinase have not been fully elucidated. We have developed a novel method called kinase-interacting substrate screening (KISS). Using this method, 356 phosphorylation sites of 140 proteins were identified as candidate substrates for Rho-associated kinase (Rho-kinase/ROCK2), including known substrates. The KISS method was also applied to additional kinases, including PKA, MAPK1, CDK5, CaMK1, PAK7, PKN, LYN, and FYN, and a lot of candidate substrates and their phosphorylation sites were determined, most of which have not been reported previously. Among the candidate substrates for Rho-kinase, several functional clusters were identified, including the polarity-associated proteins, such as Scrib. We found that Scrib plays a crucial role in the regulation of subcellular contractility by assembling into a ternary complex with Rho-kinase and Shroom2 in a phosphorylation-dependent manner. We propose that the KISS method is a comprehensive and useful substrate screen for various kinases. PMID:26101221

  13. Human cervical cancer cells use Ca2+ signalling, protein tyrosine phosphorylation and MAP kinase in regulatory volume decrease

    PubMed Central

    Shen, Meng-Ru; Chou, Cheng-Yang; Browning, Joseph A; Wilkins, Robert J; Ellory, J Clive

    2001-01-01

    This study was aimed at identifying the signalling pathways involved in the activation of volume-regulatory mechanisms of human cervical cancer cells. Osmotic swelling of human cervical cancer cells induced a substantial increase in intracellular Ca2+ ([Ca2+]i) by the activation of Ca2+ entry across the cell membrane, as well as Ca2+ release from intracellular stores. This Ca2+ signalling was critical for the normal regulatory volume decrease (RVD) response. The activation of swelling-activated ion and taurine transport was significantly inhibited by tyrosine kinase inhibitors (genistein and tyrphostin AG 1478) and potentiated by the tyrosine phosphatase inhibitor Na3VO4. However, the Src family of tyrosine kinases was not involved in regulation of the swelling-activated Cl− channel. Cell swelling triggered mitogen-activated protein (MAP) kinase cascades leading to the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/ERK2) and p38 kinase. The volume-responsive ERK1/ERK2 signalling pathway linked with the activation of K+ and Cl− channels, and taurine transport. However, the volume-regulatory mechanism was independent of the activation of p38 MAP kinase. The phosphorylated ERK1/ERK2 expression following a hypotonic shock was up-regulated by protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) and down-regulated by PKC inhibitor staurosporine. The response of ERK activation to hypotonicity also required Ca2+ entry and depended on tyrosine kinase and mitogen-activated/ERK-activating kinase (MEK) activity. Considering the results overall, osmotic swelling promotes the activation of tyrosine kinase and ERK1/ERK2 and raises intracellular Ca2+, all of which play a crucial role in the volume-regulatory mechanism of human cervical cancer cells. PMID:11731569

  14. Effect of Narrow Spectrum Versus Selective Kinase Inhibitors on the Intestinal Proinflammatory Immune Response in Ulcerative Colitis

    PubMed Central

    Biancheri, Paolo; Foster, Martyn R.; Fyfe, Matthew C. T.; MacDonald, Thomas T.; Sirohi, Sameer; Solanke, Yemisi; Wood, Eleanor; Rowley, Adele; Webber, Steve

    2016-01-01

    Background: Kinases are key mediators of inflammation, highlighting the potential of kinase inhibitors as treatments for inflammatory disorders. Selective kinase inhibitors, however, have proved disappointing, particularly in the treatment of rheumatoid arthritis and inflammatory bowel disease. Consequently, to improve efficacy, attention has turned to multikinase inhibition. Methods: The activity of a narrow spectrum kinase inhibitor, TOP1210, has been compared with selective kinase inhibitors (BIRB-796, dasatinib and BAY-61-3606) in a range of kinase assays, inflammatory cell assays, and in inflamed biopsies from patients with ulcerative colitis (UC). Effects on recombinant P38α, Src, and Syk kinase activities were assessed using Z-lyte assays (Invitrogen, Paisley, United Kingdom). Anti-inflammatory effects were assessed by measurement of proinflammatory cytokine release from peripheral blood mononuclear cells, primary macrophages, HT29 cells, inflamed colonic UC biopsies, and myofibroblasts isolated from inflamed colonic UC mucosa. Results: TOP1210 potently inhibits P38α, Src, and Syk kinase activities. Similarly, TOP1210 demonstrates potent inhibitory activity against proinflammatory cytokine release in each of the cellular assays and the inflamed colonic UC biopsies and myofibroblasts isolated from inflamed colonic UC mucosa. Generally, the selective kinase inhibitors showed limited and weaker activity in the cellular assays compared with the broad inhibitory profile of TOP1210. However, combination of the selective inhibitors led to improved efficacy and potency in both cellular and UC biopsy assays. Conclusions: Targeted, multikinase inhibition with TOP1210 leads to a broad efficacy profile in both the innate and adaptive immune responses, with significant advantages over existing selective kinase approaches, and potentially offers a much improved therapeutic benefit in inflammatory bowel disease. PMID:27104822

  15. Novel protein kinase C inhibitors: alpha-terthiophene derivatives.

    PubMed

    Kim, D S; Ashendel, C L; Zhou, Q; Chang, C T; Lee, E S; Chang, C J

    1998-10-06

    A series of alpha-terthiophene derivatives were prepared and their protein kinase C inhibitory activity were evaluated. The aldehyde derivatives were most potent inhibitors (IC50 < 1 microM). alpha-Terthiophene monoaldehyde was inactive in the inhibitions of protein kinase A, mitogen activated protein kinase and protein tyrosine kinase.

  16. Integration of Apoptosis Signal-Regulating Kinase 1-Mediated Stress Signaling with the Akt/Protein Kinase B-IκB Kinase Cascade

    PubMed Central

    Puckett, Mary C.; Goldman, Erinn H.; Cockrell, Lisa M.; Huang, Bei; Kasinski, Andrea L.; Du, Yuhong; Wang, Cun-Yu; Lin, Anning; Ichijo, Hidenori; Khuri, Fadlo

    2013-01-01

    Cellular processes are tightly controlled through well-coordinated signaling networks that respond to conflicting cues, such as reactive oxygen species (ROS), endoplasmic reticulum (ER) stress signals, and survival factors to ensure proper cell function. We report here a direct interaction between inhibitor of κB kinase (IKK) and apoptosis signal-regulating kinase 1 (ASK1), unveiling a critical node at the junction of survival, inflammation, and stress signaling networks. IKK can be activated by growth factor stimulation or tumor necrosis factor alpha engagement. IKK forms a complex with and phosphorylates ASK1 at a sensor site, Ser967, leading to the recruitment of 14-3-3, counteracts stress signal-triggered ASK1 activation, and suppresses ASK1-mediated functions. An inhibitory role of IKK in JNK signaling has been previously reported to depend on NF-κB-mediated gene expression. Our data suggest that IKK has a dual role: a transcription-dependent and a transcription-independent action in controlling the ASK1-JNK axis, coupling IKK to ROS and ER stress response. Direct phosphorylation of ASK1 by IKK also defines a novel IKK phosphorylation motif. Because of the intimate involvement of ASK1 in diverse diseases, the IKK/ASK1 interface offers a promising target for therapeutic development. PMID:23530055

  17. Lead zirconate titanate ceramics

    SciTech Connect

    Walker, B.E. Jr.

    1986-12-02

    This patent describes a lead zirconate titanate (PZT) piezoelectric ceramic composition which, based on total composition weight, consists essentially of a solid solution of lead zirconate and lead titanate in a PbZrO/sub 3/:PbTiO/sub 3/ ratio from about 0.505:0.495 to about 0.54:0.46; a halide salt selected from the group consisting of fluorides and chlorides of alkali metal and alkaline earth elements and mixtures thereof except for francium and radium in an amount from about 0.5 to 2 weight percent; and an oxide selected from the group consisting of magnesium, barium, scandium, aluminum, lanthanum, praesodynium, neodymium, samarium, and mixtures thereof in an amount from about 0.5 to about 6 weight percent, the relative amount of oxide being from about 1 to about 4 times that of the halide.

  18. Pacemaker lead endocarditis

    PubMed Central

    Scheffer, M.; van der Linden, E.; van Mechelen, R.

    2003-01-01

    We present a patient with a pacemaker lead endocarditis who showed no signs of pocket infection but with high fever and signs of infection in the routine laboratory tests. A diagnosis of pacemaker lead endocarditis must be considered in all patients with fever and infection parameters who have a pacemaker inserted, not only in the first weeks after implantation but also late after implantation, as long as no other cause of infection has been found. Transthoracal echocardiography alone is not sensitive enough to establish the correct diagnosis. Transoesophageal echocardiography (TEE) is mandatory to demonstrate the presence or absence of a vegetation on a pacemaker lead. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:25696204

  19. Placental Permeability of Lead

    PubMed Central

    Carpenter, Stanley J.

    1974-01-01

    The detection of lead in fetal tissues by chemical analysis has long been accepted as prima facie evidence for the permeability of the placenta to this nonessential trace metal. However, only a few investigations, all on lower mammalian species, have contributed any direct experimental data bearing on this physiological process. Recent radioactive tracer and radioautographic studies on rodents have shown that lead crosses the placental membranes rapidly and in significant amounts even at relatively low maternal blood levels. While it is not possible to extrapolate directly the results of these experiments to humans because of differences in placental structure and other factors, the results do serve as a warning of the possible hazard to the human embryo and fetus of even low levels of lead in the maternal system. PMID:4857497

  20. Disease Phenotypes in a Mouse Model of RNA Toxicity Are Independent of Protein Kinase Cα and Protein Kinase

    PubMed Central

    Kim, Yun K.; Yadava, Ramesh S.; Mandal, Mahua; Mahadevan, Karunasai; Yu, Qing; Leitges, Michael; Mahadevan, Mani S.

    2016-01-01

    Myotonic dystrophy type 1(DM1) is the prototype for diseases caused by RNA toxicity. RNAs from the mutant allele contain an expanded (CUG)n tract within the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. The toxic RNAs affect the function of RNA binding proteins leading to sequestration of muscleblind-like (MBNL) proteins and increased levels of CELF1 (CUGBP, Elav-like family member 1). The mechanism for increased CELF1 is not very clear. One favored proposition is hyper-phosphorylation of CELF1 by Protein Kinase C alpha (PKCα) leading to increased CELF1 stability. However, most of the evidence supporting a role for PKC-α relies on pharmacological inhibition of PKC. To further investigate the role of PKCs in the pathogenesis of RNA toxicity, we generated transgenic mice with RNA toxicity that lacked both the PKCα and PKCβ isoforms. We find that these mice show similar disease progression as mice wildtype for the PKC isoforms. Additionally, the expression of CELF1 is also not affected by deficiency of PKCα and PKCβ in these RNA toxicity mice. These data suggest that disease phenotypes of these RNA toxicity mice are independent of PKCα and PKCβ. PMID:27657532

  1. Glycolate kinase activity in human red cells.

    PubMed

    Fujii, S; Beutler, E

    1985-02-01

    Human red cells manifest glycolate kinase activity. This activity copurifies with pyruvate kinase and is decreased in the red cells of subjects with hereditary pyruvate kinase deficiency. Glycolate kinase activity was detected in the presence of FDP or glucose-1,6-P2. In the presence of 1 mmol/L FDP, the Km for adenosine triphosphate (ATP) was 0.28 mmol/L and a half maximum velocity for glycolate was obtained at 40 mmol/L. The pH optimum of the reaction was over 10.5 With 10 mumol/L FDP, 500 mumol/L glucose-1,6-P2, 2 mmol/L ATP, 5 mmol/L MgCl2, and 50 mmol/L glycolate at pH 7.5, glycolate kinase activity was calculated to be approximately 0.0013 U/mL RBC. In view of this low activity even in the presence of massive amounts of glycolate, the glycolate kinase reaction cannot account for the maintenance of the reported phosphoglycolate level in human red cells.

  2. Environmental lead in Mexico.

    PubMed

    Albert, L A; Badillo, F

    1991-01-01

    From the data presented here, it can be concluded that environmental exposure to lead is a particularly severe problem in Mexico. As has been shown, there are very important sources of exposure to this metal: (a) for rural populations who manufacture and/or utilize lead-glazed pottery, (b) for urban populations who are exposed to high air lead concentrations due to the continued use of lead fuel additives, (c) for workers of several industries, mainly those of batteries and pigments, (d) for consumers who routinely eat canned foods such as hot peppers and fruit products, and (e) for the general population living in the vicinity of smelters, refineries and other industries that emit lead. Therefore, in Mexico only those native populations living in very primitive communities, far away from all civilized life, could be expected to be free from this exposure. At the same time, and despite the relatively few data available, it can be stated that the exposure to lead of populations in Mexico could be approaching levels that might be highly hazardous, in particular for the neuropsychological health of children. Regarding the presence of lead in the environment, despite the fact that the available studies are not enough, it is evident that pollution by this metal is widespread and that there is a serious lack of studies for most regions of the country, including several that might be expected to be highly polluted. At the same time, it is evident that the official attention paid to the problem, either in regulations, support of further studies, or implementation of effective control measures has been far from the level needed according to the available data. Lead in gasoline is still used at very high concentrations in all the country, with the exception of Mexico City and its surrounding area, while no studies have been carried out to determine the potential health and environmental impact of this practice in regions outside Mexico City. Despite the fact that the Torre

  3. Thrombus on pacemaker lead.

    PubMed

    Raut, Monish S; Maheshwari, Arun; Dubey, Sumir

    2015-12-01

    A 58-year-old male was admitted with history of shortness of breath and recurrent fever since two months. He had undergone permanent pacemaker implantation six years back for complete heart block. The patient was persistently having thrombocytopenia. Echocardiographic examination revealed mass (size 4.28 cm(2)) attached to pacemaker lead in right atrium. The patient was scheduled for open-heart surgery for removal of right atrial mass. During surgery, pacemaker leads and pulse generator were also removed along with mass considering the possible source of infection.

  4. Compartmentalization of mammalian pantothenate kinases.

    PubMed

    Alfonso-Pecchio, Adolfo; Garcia, Matthew; Leonardi, Roberta; Jackowski, Suzanne

    2012-01-01

    The pantothenate kinases (PanK) catalyze the first and the rate-limiting step in coenzyme A (CoA) biosynthesis and regulate the amount of CoA in tissues by differential isoform expression and allosteric interaction with metabolic ligands. The four human and mouse PanK proteins share a homologous carboxy-terminal catalytic domain, but differ in their amino-termini. These unique termini direct the isoforms to different subcellular compartments. PanK1α isoforms were exclusively nuclear, with preferential association with the granular component of the nucleolus during interphase. PanK1α also associated with the perichromosomal region in condensing chromosomes during mitosis. The PanK1β and PanK3 isoforms were cytosolic, with a portion of PanK1β associated with clathrin-associated vesicles and recycling endosomes. Human PanK2, known to associate with mitochondria, was specifically localized to the intermembrane space. Human PanK2 was also detected in the nucleus, and functional nuclear localization and export signals were identified and experimentally confirmed. Nuclear PanK2 trafficked from the nucleus to the mitochondria, but not in the other direction, and was absent from the nucleus during G2 phase of the cell cycle. The localization of human PanK2 in these two compartments was in sharp contrast to mouse PanK2, which was exclusively cytosolic. These data demonstrate that PanK isoforms are differentially compartmentalized allowing them to sense CoA homeostasis in different cellular compartments and enable interaction with regulatory ligands produced in these same locations.

  5. Change, Lead, Succeed

    ERIC Educational Resources Information Center

    Munger, Linda; von Frank, Valerie

    2010-01-01

    Redefine leadership in your school, and create capacity through school leadership teams that successfully coordinate professional learning. "Change, Lead, Succeed" shows school leaders and teachers in leadership roles what they need to know to effectively create a culture for change. Find out what distinguishes a school leadership team from other…

  6. Girls Leading Outward

    ERIC Educational Resources Information Center

    Hamed, Heather; Reyes, Jazmin; Moceri, Dominic C.; Morana, Laura; Elias, Maurice J.

    2011-01-01

    The authors describe a program implemented in Red Bank Middle School in New Jersey to help at-risk, minority middle school girls realize their leadership potential. The GLO (Girls Leading Outward) program was developed by the Developing Safe and Civil Schools Project at Rutgers University and is facilitated by university students. Selected middle…

  7. Beam lead forming tool

    NASA Technical Reports Server (NTRS)

    Clemons, P. W.

    1973-01-01

    Tool was designed for table-top manual operation that can bend leads to any desired angle up to 90 degrees. It can be readily adapted to electrical, hydraulic, or pneumatic operation. This innovation may be of interest to electronics, sheet metal, and appliance industries.

  8. Lead Thickness Measurements

    SciTech Connect

    Rucinski, R.; /Fermilab

    1998-02-16

    The preshower lead thickness applied to the outside of D-Zero's superconducting solenoid vacuum shell was measured at the time of application. This engineering documents those thickness measurements. The lead was ordered in sheets 0.09375-inch and 0.0625-inch thick. The tolerance on thickness was specified to be +/- 0.003-inch. The sheets all were within that thickness tolerance. The nomenclature for each sheet was designated 1T, 1B, 2T, 2B where the numeral designates it's location in the wrap and 'T' or 'B' is short for 'top' or 'bottom' half of the solenoid. Micrometer measurements were taken at six locations around the perimeter of each sheet. The width,length, and weight of each piece was then measured. Using an assumed pure lead density of 0.40974 lb/in{sup 3}, an average sheet thickness was calculated and compared to the perimeter thickness measurements. In every case, the calculated average thickness was a few mils thinner than the perimeter measurements. The ratio was constant, 0.98. This discrepancy is likely due to the assumed pure lead density. It is not felt that the perimeter is thicker than the center regions. The data suggests that the physical thickness of the sheets is uniform to +/- 0.0015-inch.

  9. Lead Poisoning in Children.

    ERIC Educational Resources Information Center

    Lin-Fu, Jane S.

    Designed as a public information pamphlet, the text discusses the problem of lead poisoning in children. The preventable nature of the problem is stressed as well as needed action on the part of the public, physicians and other health workers, and the legislators. The pamphlet emphasizes that each of these areas is essential in preventing death or…

  10. Lead and compounds (inorganic)

    Integrated Risk Information System (IRIS)

    Lead and compounds ( inorganic ) ; CASRN 7439 - 92 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  11. ALL AGES LEAD MODEL

    EPA Science Inventory

    The Integrated Exposure Uptake Biokinetic (IEUBK) Model for Lead in Children (version 0.99d) was released in March 1994, and has been widely accepted in the risk assessment community as a tool for implementing the site specific risk assessment process when the issue is childhood...

  12. Interaction of phospholipase D1 with a casein-kinase-2-like serine kinase.

    PubMed Central

    Ganley, I G; Walker, S J; Manifava, M; Li, D; Brown, H A; Ktistakis, N T

    2001-01-01

    Phospholipase D (PLD)1 was phosphorylated in vivo and by an associated kinase in vitro following immunoprecipitation. Both phosphorylation events were greatly reduced in a catalytically inactive point mutant in which the serine residue at position 911 was converted into alanine (S911A). The kinase could be enriched from detergent-extracted brain membranes and bind and phosphorylate PLD1 that was immunoprecipitated from COS-7 cells. Using in-gel kinase assays we determined that the size of the kinase is approximately 40 kDa and that PLD1 is more effective than S911A in binding the kinase. Preliminary analysis of the phosphorylation sites on PLD1 suggested that the kinase belongs to the casein kinase 2 (CK2) family. Consistent with this, we found that the kinase could utilize GTP, and could be inhibited by heparin and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). Membrane fractions from Chinese hamster ovary (CHO) cell lines that inducibly express PLD1 contained an endogenous kinase activity that phosphorylated PLD1 using GTP and was inhibited by DRB. Direct evidence that the kinase is CK2 came from observations that immunoprecipitates using PLD1 antibodies contained immunoreactive CK2alpha, and immunoprecipitates using CK2alpha antibodies contained immunoreactive PLD1. Co-expression of PLD1 in COS-7 cells with the two recombinant CK2 subunits, alpha or beta, suggests that the association of PLD1 with the kinase is through the beta subunit. Supporting this, phosphorylation of PLD1 by purified recombinant CK2alpha was enhanced by purified recombinant CK2beta. Assays measuring PLD1 catalytic activity following phosphorylation by CK2 suggest that this phosphorylation event does not influence PLD1-mediated hydrolysis of phosphatidylcholine in vitro. PMID:11171116

  13. Ubiquitin-Mediated Degradation of Aurora Kinases.

    PubMed

    Lindon, Catherine; Grant, Rhys; Min, Mingwei

    2015-01-01

    The Aurora kinases are essential regulators of mitosis in eukaryotes. In somatic cell divisions of higher eukaryotes, the paralogs Aurora kinase A (AurA) and Aurora kinase B (AurB) play non-overlapping roles that depend on their distinct spatiotemporal activities. These mitotic roles of Aurora kinases depend on their interactions with different partners that direct them to different mitotic destinations and different substrates: AurB is a component of the chromosome passenger complex that orchestrates the tasks of chromosome segregation and cytokinesis, while AurA has many known binding partners and mitotic roles, including a well-characterized interaction with TPX2 that mediates its role in mitotic spindle assembly. Beyond the spatial control conferred by different binding partners, Aurora kinases are subject to temporal control of their activation and inactivation. Ubiquitin-mediated proteolysis is a critical route to irreversible inactivation of these kinases, which must occur for ordered transition from mitosis back to interphase. Both AurA and AurB undergo targeted proteolysis after anaphase onset as substrates of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase, even while they continue to regulate steps during mitotic exit. Temporal control of Aurora kinase destruction ensures that AurB remains active at the midbody during cytokinesis long after AurA activity has been largely eliminated from the cell. Differential destruction of Aurora kinases is achieved despite the fact that they are targeted at the same time and by the same ubiquitin ligase, making these substrates an interesting case study for investigating molecular determinants of ubiquitin-mediated proteolysis in higher eukaryotes. The prevalence of Aurora overexpression in cancers and their potential as therapeutic targets add importance to the task of understanding the molecular determinants of Aurora kinase stability. Here, we review what is known about ubiquitin-mediated targeting

  14. Ubiquitin-Mediated Degradation of Aurora Kinases

    PubMed Central

    Lindon, Catherine; Grant, Rhys; Min, Mingwei

    2016-01-01

    The Aurora kinases are essential regulators of mitosis in eukaryotes. In somatic cell divisions of higher eukaryotes, the paralogs Aurora kinase A (AurA) and Aurora kinase B (AurB) play non-overlapping roles that depend on their distinct spatiotemporal activities. These mitotic roles of Aurora kinases depend on their interactions with different partners that direct them to different mitotic destinations and different substrates: AurB is a component of the chromosome passenger complex that orchestrates the tasks of chromosome segregation and cytokinesis, while AurA has many known binding partners and mitotic roles, including a well-characterized interaction with TPX2 that mediates its role in mitotic spindle assembly. Beyond the spatial control conferred by different binding partners, Aurora kinases are subject to temporal control of their activation and inactivation. Ubiquitin-mediated proteolysis is a critical route to irreversible inactivation of these kinases, which must occur for ordered transition from mitosis back to interphase. Both AurA and AurB undergo targeted proteolysis after anaphase onset as substrates of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase, even while they continue to regulate steps during mitotic exit. Temporal control of Aurora kinase destruction ensures that AurB remains active at the midbody during cytokinesis long after AurA activity has been largely eliminated from the cell. Differential destruction of Aurora kinases is achieved despite the fact that they are targeted at the same time and by the same ubiquitin ligase, making these substrates an interesting case study for investigating molecular determinants of ubiquitin-mediated proteolysis in higher eukaryotes. The prevalence of Aurora overexpression in cancers and their potential as therapeutic targets add importance to the task of understanding the molecular determinants of Aurora kinase stability. Here, we review what is known about ubiquitin-mediated targeting

  15. A novel lead compound CM-118

    PubMed Central

    Meng, Lanfang; Shu, Mengjun; Chen, Yaqing; Yang, Dexiao; He, Qun; Zhao, Hui; Feng, Zhiyong; Liang, Chris; Yu, Ker

    2014-01-01

    The anaplastic lymphoma kinase (ALK) and the c-Met receptor tyrosine kinase play essential roles in the pathogenesis in multiple human cancers and present emerging targets for cancer treatment. Here, we describe CM-118, a novel lead compound displaying low nanomolar biochemical potency against both ALK and c-Met with selectivity over >90 human kinases. CM-118 potently abrogated hepatocyte growth factor (HGF)-induced c-Met phosphorylation and cell migration, phosphorylation of ALK, EML4-ALK, and ALK resistance mutants in transfected cells. CM-118 inhibited proliferation and/or induced apoptosis in multiple c-Met- and ALK-addicted cancer lines with dose response profile correlating target blockade. We show that the CM-118-induced apoptosis in c-Met-amplified H1993 NSCLC cells involved a rapid suppression of c-Met activity and c-Met-to-EGFR cross-talk, and was profoundly potentiated by EGFR inhibitors as shown by the increased levels of apoptotic proteins cleaved-PARP and Bim as well as reduction of the survival protein Mcl-1. Bim-knockdown or Mcl-1 overexpression each significantly attenuated apoptosis. We also revealed a key role by mTOR in mediating CM-118 action against the EML4-ALK-dependent NSCLC cells. Abrogation of EML4-ALK in H2228 cells profoundly reduced signaling capacity of the rapamycin-sensitive mTOR pathway leading to G1 cell cycle arrest and mitochondrial hyperpolarization, a metabolic perturbation linked to mTOR inhibition. Depletion of mTOR or mTORC1 inhibited H2228 cell growth, and mTOR inhibitors potentiated CM-118’s antitumor activity in vitro and in vivo. Oral administration of CM-118 at a wide range of well tolerated dosages diminished c-Met- and ALK phosphorylation in vivo, and caused tumor regression or growth inhibition in multiple c-Met- and ALK-dependent tumor xenografts in mice. CM-118 exhibits favorable pharmacokinetic and drug metabolism properties hence presents a candidate for clinical evaluation. PMID:24618813

  16. Virtual screening of selective multitarget kinase inhibitors by combinatorial support vector machines.

    PubMed

    Ma, X H; Wang, R; Tan, C Y; Jiang, Y Y; Lu, T; Rao, H B; Li, X Y; Go, M L; Low, B C; Chen, Y Z

    2010-10-04

    Multitarget agents have been increasingly explored for enhancing efficacy and reducing countertarget activities and toxicities. Efficient virtual screening (VS) tools for searching selective multitarget agents are desired. Combinatorial support vector machines (C-SVM) were tested as VS tools for searching dual-inhibitors of 11 combinations of 9 anticancer kinase targets (EGFR, VEGFR, PDGFR, Src, FGFR, Lck, CDK1, CDK2, GSK3). C-SVM trained on 233-1,316 non-dual-inhibitors correctly identified 26.8%-57.3% (majority >36%) of the 56-230 intra-kinase-group dual-inhibitors (equivalent to the 50-70% yields of two independent individual target VS tools), and 12.2% of the 41 inter-kinase-group dual-inhibitors. C-SVM were fairly selective in misidentifying as dual-inhibitors 3.7%-48.1% (majority <20%) of the 233-1,316 non-dual-inhibitors of the same kinase pairs and 0.98%-4.77% of the 3,971-5,180 inhibitors of other kinases. C-SVM produced low false-hit rates in misidentifying as dual-inhibitors 1,746-4,817 (0.013%-0.036%) of the 13.56 M PubChem compounds, 12-175 (0.007%-0.104%) of the 168 K MDDR compounds, and 0-84 (0.0%-2.9%) of the 19,495-38,483 MDDR compounds similar to the known dual-inhibitors. C-SVM was compared to other VS methods Surflex-Dock, DOCK Blaster, kNN and PNN against the same sets of kinase inhibitors and the full set or subset of the 1.02 M Zinc clean-leads data set. C-SVM produced comparable dual-inhibitor yields, slightly better false-hit rates for kinase inhibitors, and significantly lower false-hit rates for the Zinc clean-leads data set. Combinatorial SVM showed promising potential for searching selective multitarget agents against intra-kinase-group kinases without explicit knowledge of multitarget agents.

  17. Inhibition of an Erythrocyte Tyrosine Kinase with Imatinib Prevents Plasmodium falciparum Egress and Terminates Parasitemia

    PubMed Central

    Kesely, Kristina R.; Pantaleo, Antonella; Turrini, Francesco M.; Olupot-Olupot, Peter

    2016-01-01

    With half of the world’s population at risk for malaria infection and with drug resistance on the rise, the search for mutation-resistant therapies has intensified. We report here a therapy for Plasmodium falciparum malaria that acts by inhibiting the phosphorylation of erythrocyte membrane band 3 by an erythrocyte tyrosine kinase. Because tyrosine phosphorylation of band 3 causes a destabilization of the erythrocyte membrane required for parasite egress, inhibition of the erythrocyte tyrosine kinase leads to parasite entrapment and termination of the infection. Moreover, because one of the kinase inhibitors to demonstrate antimalarial activity is imatinib, i.e. an FDA-approved drug authorized for use in children, translation of the therapy into the clinic will be facilitated. At a time when drug resistant strains of P. falciparum are emerging, a strategy that targets a host enzyme that cannot be mutated by the parasite should constitute a therapeutic mechanism that will retard evolution of resistance. PMID:27768734

  18. Systematic functional analysis of kinases in the fungal pathogen Cryptococcus neoformans

    PubMed Central

    Lee, Kyung-Tae; So, Yee-Seul; Yang, Dong-Hoon; Jung, Kwang-Woo; Choi, Jaeyoung; Lee, Dong-Gi; Kwon, Hyojeong; Jang, Juyeong; Wang, Li Li; Cha, Soohyun; Meyers, Gena Lee; Jeong, Eunji; Jin, Jae-Hyung; Lee, Yeonseon; Hong, Joohyeon; Bang, Soohyun; Ji, Je-Hyun; Park, Goun; Byun, Hyo-Jeong; Park, Sung Woo; Park, Young-Min; Adedoyin, Gloria; Kim, Taeyup; Averette, Anna F.; Choi, Jong-Soon; Heitman, Joseph; Cheong, Eunji; Lee, Yong-Hwan; Bahn, Yong-Sun

    2016-01-01

    Cryptococcus neoformans is the leading cause of death by fungal meningoencephalitis; however, treatment options remain limited. Here we report the construction of 264 signature-tagged gene-deletion strains for 129 putative kinases, and examine their phenotypic traits under 30 distinct in vitro growth conditions and in two different hosts (insect larvae and mice). Clustering analysis of in vitro phenotypic traits indicates that several of these kinases have roles in known signalling pathways, and identifies hitherto uncharacterized signalling cascades. Virulence assays in the insect and mouse models provide evidence of pathogenicity-related roles for 63 kinases involved in the following biological categories: growth and cell cycle, nutrient metabolism, stress response and adaptation, cell signalling, cell polarity and morphology, vacuole trafficking, transfer RNA (tRNA) modification and other functions. Our study provides insights into the pathobiological signalling circuitry of C. neoformans and identifies potential anticryptococcal or antifungal drug targets. PMID:27677328

  19. Zn(II)-Coordinated Quantum Dot-FRET Nanosensors for the Detection of Protein Kinase Activity

    PubMed Central

    Lim, Butaek; Park, Ji-In; Lee, Kyung Jin; Lee, Jin-Won; Kim, Tae-Wuk; Kim, Young-Pil

    2015-01-01

    We report a simple detection of protein kinase activity using Zn(II)-mediated fluorescent resonance energy transfer (FRET) between quantum dots (QDs) and dye-tethered peptides. With neither complex chemical ligands nor surface modification of QDs, Zn(II) was the only metal ion that enabled the phosphorylated peptides to be strongly attached on the carboxyl groups of the QD surface via metal coordination, thus leading to a significant FRET efficiency. As a result, protein kinase activity in intermixed solution was efficiently detected by QD-FRET via Zn(II) coordination, especially when the peptide substrate was combined with affinity-based purification. We also found that mono- and di-phosphorylation in the peptide substrate could be discriminated by the Zn(II)-mediated QD-FRET. Our approach is expected to find applications for studying physiological function and signal transduction with respect to protein kinase activity. PMID:26213934

  20. Discovery of 4-aminoquinazoline--urea derivatives as Aurora kinase inhibitors with antiproliferative activity.

    PubMed

    Cai, Jin; Li, Lili; Hong, Kwon Ho; Wu, Xiaoqing; Chen, Junqing; Wang, Peng; Cao, Meng; Zong, Xi; Ji, Min

    2014-11-01

    Two series of 20 novel 4-aminoquinazoline-urea derivatives have been designed and synthesized. The entire target compounds were investigated for their in vitro antiproliferative activity against six human cancer cell lines (K562, U937, A549, NCI-H661, HT29 and LoVo) using the MTT-based assay. Most compounds showed significant antiproliferative activities against four solid tumor cell lines, but no or poor activities against two leukemia cell lines. Furthermore, the target compounds were screened for Aurora A/B kinases inhibitory activity. Among them, 7c, 7d, 8c, and 8d are more potent against Aurora A kinase than ZM447439. Docking study of compounds 7d and ZM447439 revealed that they bound strongly to the ATP-binding sites of Aurora A and B. Thus, they may be promising lead compounds for the development of novel anti-tumor drug potentially via inhibiting Aurora kinases.

  1. Inhibition of an Erythrocyte Tyrosine Kinase with Imatinib Prevents Plasmodium falciparum Egress and Terminates Parasitemia.

    PubMed

    Kesely, Kristina R; Pantaleo, Antonella; Turrini, Francesco M; Olupot-Olupot, Peter; Low, Philip S

    2016-01-01

    With half of the world's population at risk for malaria infection and with drug resistance on the rise, the search for mutation-resistant therapies has intensified. We report here a therapy for Plasmodium falciparum malaria that acts by inhibiting the phosphorylation of erythrocyte membrane band 3 by an erythrocyte tyrosine kinase. Because tyrosine phosphorylation of band 3 causes a destabilization of the erythrocyte membrane required for parasite egress, inhibition of the erythrocyte tyrosine kinase leads to parasite entrapment and termination of the infection. Moreover, because one of the kinase inhibitors to demonstrate antimalarial activity is imatinib, i.e. an FDA-approved drug authorized for use in children, translation of the therapy into the clinic will be facilitated. At a time when drug resistant strains of P. falciparum are emerging, a strategy that targets a host enzyme that cannot be mutated by the parasite should constitute a therapeutic mechanism that will retard evolution of resistance.

  2. Reconstitution of LHC phosphorylation by a protein kinase isolated from spinach thylakoids

    SciTech Connect

    Hind, G.; Coughlan, S.

    1986-01-01

    Protein kinase activity is responsible for phosphorylating the (LHC) light-harvesting chlorophyll a/b protein complex of photosystem II, leading to its migration in the thylakoid membrane, the fractional redistribution of excitation energy between photosystems II and I, and the phenomenon of state transition. Previous work from this laboratory described the purification to homogeneity of a thylakoid protein kinase which catalyzes the phosphorylation of isolated LHC at 1-10% of a rate estimated for this enzyme and substrate when resident together in the thylakoid membrane. In this communication, we report rates of LHC phosphorylation that are close to physiological, in a system comprised of isolated purified protein kinase (LHCK) and native LHC. 9 refs., 1 fig., 2 tabs.

  3. Molecular pathways: targeting the kinase effectors of RHO-family GTPases.

    PubMed

    Prudnikova, Tatiana Y; Rawat, Sonali J; Chernoff, Jonathan

    2015-01-01

    RHO GTPases, members of the RAS superfamily of small GTPases, are adhesion and growth factor-activated molecular switches that play important roles in tumor development and progression. When activated, RHO-family GTPases such as RAC1, CDC42, and RHOA, transmit signals by recruiting a variety of effector proteins, including the protein kinases PAK, ACK, MLK, MRCK, and ROCK. Genetically induced loss of RHO function impedes transformation by a number of oncogenic stimuli, leading to an interest in developing small-molecule inhibitors that either target RHO GTPases directly, or that target their downstream protein kinase effectors. Although inhibitors of RHO GTPases and their downstream signaling kinases have not yet been widely adopted for clinical use, their potential value as cancer therapeutics continues to facilitate pharmaceutical research and development and is a promising therapeutic strategy.

  4. Pro-Apoptotic Kinase Levels in Cerebrospinal Fluid as Potential Future Biomarkers in Alzheimer’s Disease

    PubMed Central

    Paquet, Claire; Dumurgier, Julien; Hugon, Jacques

    2015-01-01

    Alzheimer’s disease (AD) is characterized by the accumulation of Aβ peptides, hyperphosphorylated tau proteins, and neuronal loss in the brain of affected patients. The causes of neurodegeneration in AD are not clear, but apoptosis could be one of the cell death mechanisms. According to the amyloid hypothesis, abnormal aggregation of Aβ leads to altered kinase activities inducing tau phosphorylation and neuronal degeneration. Several studies have shown that pro-apoptotic kinases could be a link between Aβ and tau anomalies. Here, we present recent evidences from AD experimental models and human studies that three pro-apoptotic kinases (double-stranded RNA kinase (PKR), glycogen synthase kinase-3β, and C-Jun terminal kinase (JNK) could be implicated in AD physiopathology. These kinases are detectable in human fluids and the analysis of their levels could be used as potential surrogate markers to evaluate cell death and clinical prognosis. In addition to current biomarkers (Aβ1–42, tau, and phosphorylated tau), these new evaluations could bring about valuable information on potential innovative therapeutic targets to alter the clinical evolution. PMID:26300842

  5. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    PubMed

    Bretaña, Neil Arvin; Lu, Cheng-Tsung; Chiang, Chiu-Yun; Su, Min-Gang; Huang, Kai-Yao; Lee, Tzong-Yi; Weng, Shun-Long

    2012-01-01

    Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site

  6. Identification of direct target engagement biomarkers for kinase-targeted therapeutics.

    PubMed

    Paweletz, Cloud P; Andersen, Jannik N; Pollock, Roy; Nagashima, Kumiko; Hayashi, Mansuo L; Yu, Shangshuan U; Guo, Hongbo; Bobkova, Ekaterina V; Xu, Zangwei; Northrup, Alan; Blume-Jensen, Peter; Hendrickson, Ronald C; Chi, An

    2011-01-01

    Pharmacodynamic (PD) biomarkers are an increasingly valuable tool for decision-making and prioritization of lead compounds during preclinical and clinical studies as they link drug-target inhibition in cells with biological activity. They are of particular importance for novel, first-in-class mechanisms, where the ability of a targeted therapeutic to impact disease outcome is often unknown. By definition, proximal PD biomarkers aim to measure the interaction of a drug with its biological target. For kinase drug discovery, protein substrate phosphorylation sites represent candidate PD biomarkers. However, substrate phosphorylation is often controlled by input from multiple converging pathways complicating assessment of how potently a small molecule drug hits its target based on substrate phoshorylation measurements alone. Here, we report the use of quantitative, differential mass-spectrometry to identify and monitor novel drug-regulated phosphorylation sites on target kinases. Autophosphorylation sites constitute clinically validated biomarkers for select protein tyrosine kinase inhibitors. The present study extends this principle to phosphorylation sites in serine/threonine kinases looking beyond the T-loop autophosphorylation site. Specifically, for the 3'-phosphoinositide-dependent protein kinase 1 (PDK1), two phospho-residues p-PDK1(Ser410) and p-PDK1(Thr513) are modulated by small-molecule PDK1 inhibitors, and their degree of dephosphorylation correlates with inhibitor potency. We note that classical, ATP-competitive PDK1 inhibitors do not modulate PDK1 T-loop phosphorylation (p-PDK1(Ser241)), highlighting the value of an unbiased approach to identify drug target-regulated phosphorylation sites as these are complementary to pathway PD biomarkers. Finally, we extend our analysis to another protein Ser/Thr kinase, highlighting a broader utility of our approach for identification of kinase drug-target engagement biomarkers.

  7. Discovery of a 3-(4-Pyrimidinyl) Indazole (MLi-2), an Orally Available and Selective Leucine-Rich Repeat Kinase 2 (LRRK2) Inhibitor that Reduces Brain Kinase Activity.

    PubMed

    Scott, Jack D; DeMong, Duane E; Greshock, Thomas J; Basu, Kallol; Dai, Xing; Harris, Joel; Hruza, Alan; Li, Sarah W; Lin, Sue-Ing; Liu, Hong; Macala, Megan K; Hu, Zhiyong; Mei, Hong; Zhang, Honglu; Walsh, Paul; Poirier, Marc; Shi, Zhi-Cai; Xiao, Li; Agnihotri, Gautam; Baptista, Marco A S; Columbus, John; Fell, Matthew J; Hyde, Lynn A; Kuvelkar, Reshma; Lin, Yinghui; Mirescu, Christian; Morrow, John A; Yin, Zhizhang; Zhang, Xiaoping; Zhou, Xiaoping; Chang, Ronald K; Embrey, Mark W; Sanders, John M; Tiscia, Heather E; Drolet, Robert E; Kern, Jonathan T; Sur, Sylvie M; Renger, John J; Bilodeau, Mark T; Kennedy, Matthew E; Parker, Eric M; Stamford, Andrew W; Nargund, Ravi; McCauley, John A; Miller, Michael W

    2017-03-16

    Leucine-rich repeat kinase 2 (LRRK2) is a large, multidomain protein which contains a kinase domain and GTPase domain among other regions. Individuals possessing gain of function mutations in the kinase domain such as the most prevalent G2019S mutation have been associated with an increased risk for the development of Parkinson's disease (PD). Given this genetic validation for inhibition of LRRK2 kinase activity as a potential means of affecting disease progression, our team set out to develop LRRK2 inhibitors to test this hypothesis. A high throughput screen of our compound collection afforded a number of promising indazole leads which were truncated in order to identify a minimum pharmacophore. Further optimization of these indazoles led to the development of MLi-2 (1): a potent, highly selective, orally available, brain-penetrant inhibitor of LRRK2.

  8. Mediator kinase module and human tumorigenesis

    PubMed Central

    Clark, Alison D.; Oldenbroek, Marieke; Boyer, Thomas G.

    2016-01-01

    Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit “kinase” module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways. PMID:26182352

  9. Lead poisoning: The invisible disease

    USGS Publications Warehouse

    Friend, Milton

    1989-01-01

    Lead poisoning is an intoxication resulting from absorption of hazardous levels of lead into body tissues. Lead pellets from shot shells, when ingested, are the most common source of lead poisoning in migratory birds. Other far less common sources include lead fishing sinkers, mine wastes, paint pigments, bullets, and other lead objects that are swallowed.

  10. Molecular docking studies of banana flower flavonoids as insulin receptor tyrosine kinase activators as a cure for diabetes mellitus.

    PubMed

    Ganugapati, Jayasree; Baldwa, Aashish; Lalani, Sarfaraz

    2012-01-01

    Diabetes mellitus is a metabolic disorder caused due to insulin deficiency. Banana flower is a rich source of flavonoids that exhibit anti diabetic activity. Insulin receptor is a tetramer that belongs to a family of receptor tyrosine kinases. It contains two alpha subunits that form the extracellular domain and two beta subunits that constitute the intracellular tyrosine kinase domain. Insulin binds to the extracellular region of the receptor and causes conformational changes that lead to the activation of the tyrosine kinase. This leads to autophosphorylation, a step that is crucial in insulin signaling pathway. Hence, compounds that augment insulin receptor tyrosine kinase activity would be useful in the treatment of diabetes mellitus. The 3D structure of IR tyrosine kinase was obtained from PDB database. The list of flavonoids found in banana flower was obtained from USDA database. The structures of the flavonoids were obtained from NCBI Pubchem. Docking analysis of the flavonoids was performed using Autodock 4.0 and Autodock Vina. The results indicate that few of the flavonoids may be potential activators of IR tyrosine kinase.

  11. Interaction of SNF1 Protein Kinase with Its Activating Kinase Sak1▿

    PubMed Central

    Liu, Yang; Xu, Xinjing; Carlson, Marian

    2011-01-01

    The Saccharomyces cerevisiae SNF1 protein kinase, a member of the SNF1/AMP-activated protein kinase (AMPK) family, is activated by three kinases, Sak1, Tos3, and Elm1, which phosphorylate the Snf1 catalytic subunit on Thr-210 in response to glucose limitation and other stresses. Sak1 is the primary Snf1-activating kinase and is associated with Snf1 in a complex. Here we examine the interaction of Sak1 with SNF1. We report that Sak1 coimmunopurifies with the Snf1 catalytic subunit from extracts of both glucose-replete and glucose-limited cultures and that interaction occurs independently of the phosphorylation state of Snf1 Thr-210, Snf1 catalytic activity, and other SNF1 subunits. Sak1 interacts with the Snf1 kinase domain, and nonconserved sequences C terminal to the Sak1 kinase domain mediate interaction with Snf1 and augment the phosphorylation and activation of Snf1. The Sak1 C terminus is modified in response to glucose depletion, dependent on SNF1 activity. Replacement of the C terminus of Elm1 (or Tos3) with that of Sak1 enhanced the ability of the Elm1 kinase domain to interact with and phosphorylate Snf1. These findings indicate that the C terminus of Sak1 confers its function as the primary Snf1-activating kinase and suggest that the physical association of Sak1 with SNF1 facilitates responses to environmental change. PMID:21216941

  12. The ErbB Kinase Domain: Structural Perspectives into Kinase Activation and Inhibition

    PubMed Central

    Bose, Ron; Zhang, Xuewu

    2009-01-01

    Epidermal growth factor receptor (EGFR) and its family members, ErbB2, ErB3 and ErB4, are receptor tyrosine kinases which send signals into the cell to regulate many critical processes including development, tissue homeostasis, and tumorigenesis. Central to the signaling of these receptors is their intracellular kinase domain, which is activated by ligand-induced dimerization of the receptor and phosphorylates several tyrosine residues in the C-terminal tail. The phosphorylated tail then recruits other signaling molecules and relays the signal to downstream pathways. A model of the autoinhibition, activation and feedback inhibition mechanisms for the ErbB kinase domain has emerged from a number of recent structural studies. Meanwhile, recent clinical studies have revealed the relationship between specific ErbB kinase mutations and the responsiveness to kinase inhibitor drugs. We will review these regulation mechanisms of the ErbB kinase domain, and discuss the binding specificity of kinase inhibitors and the effects of kinase domain mutations found in cancer patients from a structural perspective. PMID:18761339

  13. CDPKs are dual-specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium-dependent protein kinases (CDPKs or CPKs) are classified as serine/threonine protein kinases but we made the surprising observation that soybean CDPK' and several Arabidopsis isoforms (AtCPK4 and AtCPK34) could also autophosphorylate on tyrosine residues. In studies with His6-GmCDPK', we ide...

  14. The SH2 domain of Abl kinases regulates kinase autophosphorylation by controlling activation loop accessibility

    NASA Astrophysics Data System (ADS)

    Lamontanara, Allan Joaquim; Georgeon, Sandrine; Tria, Giancarlo; Svergun, Dmitri I.; Hantschel, Oliver

    2014-11-01

    The activity of protein kinases is regulated by multiple molecular mechanisms, and their disruption is a common driver of oncogenesis. A central and almost universal control element of protein kinase activity is the activation loop that utilizes both conformation and phosphorylation status to determine substrate access. In this study, we use recombinant Abl tyrosine kinases and conformation-specific kinase inhibitors to quantitatively analyse structural changes that occur after Abl activation. Allosteric SH2-kinase domain interactions were previously shown to be essential for the leukemogenesis caused by the Bcr-Abl oncoprotein. We find that these allosteric interactions switch the Abl activation loop from a closed to a fully open conformation. This enables the trans-autophosphorylation of the activation loop and requires prior phosphorylation of the SH2-kinase linker. Disruption of the SH2-kinase interaction abolishes activation loop phosphorylation. Our analysis provides a molecular mechanism for the SH2 domain-dependent activation of Abl that may also regulate other tyrosine kinases.

  15. Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice.

    PubMed

    Yeh, Chuan-Ming; Hsiao, Lin-June; Huang, Hao-Jen

    2004-09-01

    Mitogen-activated protein kinase (MAPK) pathways are modules involved in the transduction of extracellular signals to intracellular targets in all eukaryotes. In plants, it has been evidenced that MAPKs play a role in the signaling of biotic and abiotic stresses, plant hormones, and cell cycle cues. However, the effect of heavy metals on plant MAPKs has not been well examined. The Northern blot analysis of OsMAPK mRNA levels has shown that only OsMAPK2, but not OsMAPK3 and OsMAPK4, expressed in suspension-cultured cells in response to 100-400 microM Cd treatments. The OsMAPK2 transcripts increased within 12 h upon 400 microM Cd treatment. In addition, we found that 42- and 50-kDa MBP kinases were significantly activated by Cd treatment in rice suspension-cultured cells. And 40-, 42-, 50- and 64-kDa MBP kinases were activated in rice roots. Furthermore, GSH inhibits Cd-induced 40-kDa MBP kinase activation. By immunoblot analysis and immunoprecipitation followed by in-gel kinase assay, we confirmed that Cd-activated 42-kDa MBP kinase is a MAP kinase. Our results suggest that a MAP kinase cascade may function in the Cd-signalling pathway in rice.

  16. Low salt concentrations activate AMP-activated protein kinase in mouse macula densa cells.

    PubMed

    Cook, Natasha; Fraser, Scott A; Katerelos, Marina; Katsis, Frosa; Gleich, Kurt; Mount, Peter F; Steinberg, Gregory R; Levidiotis, Vicki; Kemp, Bruce E; Power, David A

    2009-04-01

    The energy-sensing kinase AMP-activated protein kinase (AMPK) is associated with the sodium-potassium-chloride cotransporter NKCC2 in the kidney and phosphorylates it on a regulatory site in vitro. To identify a potential role for AMPK in salt sensing at the macula densa, we have used the murine macula densa cell line MMDD1. In this cell line, AMPK was rapidly activated by isosmolar low-salt conditions. In contrast to the known salt-sensing pathway in the macula densa, AMPK activation occurred in the presence of either low sodium or low chloride and was unaffected by inhibition of NKCC2 with bumetanide. Assays using recombinant AMPK demonstrated activation of an upstream kinase by isosmolar low salt. The specific calcium/calmodulin-dependent kinase kinase inhibitor STO-609 failed to suppress AMPK activation, suggesting that it was not part of the signal pathway. AMPK activation was associated with increased phosphorylation of the specific substrate acetyl-CoA carboxylase (ACC) at Ser(79), as well as increased NKCC2 phosphorylation at Ser(126). AMPK activation due to low salt concentrations was inhibited by an adenovirus construct encoding a kinase dead mutant of AMPK, leading to reduced ACC Ser(79) and NKCC2 Ser(126) phosphorylation. This work demonstrates that AMPK activation in macula densa-like cells occurs via isosmolar changes in sodium or chloride concentration, leading to phosphorylation of ACC and NKCC2. Phosphorylation of these substrates in vivo is predicted to increase intracellular chloride and so reduce the effect of salt restriction on tubuloglomerular feedback and renin secretion.

  17. Kinase Inhibition Leads to Hormesis in a Dual Phosphorylation-Dephosphorylation Cycle.

    PubMed

    Rashkov, Peter; Barrett, Ian P; Beardmore, Robert E; Bendtsen, Claus; Gudelj, Ivana

    2016-11-01

    Many antimicrobial and anti-tumour drugs elicit hormetic responses characterised by low-dose stimulation and high-dose inhibition. While this can have profound consequences for human health, with low drug concentrations actually stimulating pathogen or tumour growth, the mechanistic understanding behind such responses is still lacking. We propose a novel, simple but general mechanism that could give rise to hormesis in systems where an inhibitor acts on an enzyme. At its core is one of the basic building blocks in intracellular signalling, the dual phosphorylation-dephosphorylation motif, found in diverse regulatory processes including control of cell proliferation and programmed cell death. Our analytically-derived conditions for observing hormesis provide clues as to why this mechanism has not been previously identified. Current mathematical models regularly make simplifying assumptions that lack empirical support but inadvertently preclude the observation of hormesis. In addition, due to the inherent population heterogeneities, the presence of hormesis is likely to be masked in empirical population-level studies. Therefore, examining hormetic responses at single-cell level coupled with improved mathematical models could substantially enhance detection and mechanistic understanding of hormesis.

  18. Kinase Inhibition Leads to Hormesis in a Dual Phosphorylation-Dephosphorylation Cycle

    PubMed Central

    Rashkov, Peter; Barrett, Ian P.; Beardmore, Robert E.; Bendtsen, Claus

    2016-01-01

    Many antimicrobial and anti-tumour drugs elicit hormetic responses characterised by low-dose stimulation and high-dose inhibition. While this can have profound consequences for human health, with low drug concentrations actually stimulating pathogen or tumour growth, the mechanistic understanding behind such responses is still lacking. We propose a novel, simple but general mechanism that could give rise to hormesis in systems where an inhibitor acts on an enzyme. At its core is one of the basic building blocks in intracellular signalling, the dual phosphorylation-dephosphorylation motif, found in diverse regulatory processes including control of cell proliferation and programmed cell death. Our analytically-derived conditions for observing hormesis provide clues as to why this mechanism has not been previously identified. Current mathematical models regularly make simplifying assumptions that lack empirical support but inadvertently preclude the observation of hormesis. In addition, due to the inherent population heterogeneities, the presence of hormesis is likely to be masked in empirical population-level studies. Therefore, examining hormetic responses at single-cell level coupled with improved mathematical models could substantially enhance detection and mechanistic understanding of hormesis. PMID:27898662

  19. LEAD SEVERING CONTRIVANCE

    DOEpatents

    Widmaier, W.

    1958-04-01

    A means for breaking an electrical circuit within an electronic tube during the process of manufacture is described. Frequently such circuits must be employed for gettering or vapor coating purposes, however, since an external pair of corector pins having no use after manufacture, is undesirable, this invention permits the use of existing leads to form a temporary circuit during manufacture, and severing it thereafter. One portion of the temporary circuit, made from a springy material such as tungsten, is spot welded to a fusable member. To cut the circuit an external radiant heat source melts the fusable member, allowing the tensed tungsten spring to contract and break the circuit. This inexpensive arrangement is particularly useful when the tube has a great many external leads crowded into the tube base.

  20. Lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Bullock, Kathryn R.

    Lead/acid batteries are produced in sizes from less than 1 to 3000 Ah for a wide variety of portable, industrial and automotive applications. Designs include Planté, Fauré or pasted, and tubular electrodes. In addition to the traditional designs which are flooded with sulfuric acid, newer 'valve-regulated" designs have the acid immolibized in a silica gel or absorbed in a porous glass separator. Development is ongoing worldwide to increase the specific power, energy and deep discharge cycle life of this commercially successful system to meet the needs of new applications such as electric vehicles, load leveling, and solar energy storage. The operating principles, current status, technical challenges and commercial impact of the lead/acid battery are reviewed.

  1. Molecular Mechanism of Selectivity among G Protein-Coupled Receptor Kinase 2 Inhibitors

    SciTech Connect

    Thal, David M.; Yeow, Raymond Y.; Schoenau, Christian; Huber, Jochen; Tesmer, John J.G.

    2012-07-11

    G protein-coupled receptors (GPCRs) are key regulators of cell physiology and control processes ranging from glucose homeostasis to contractility of the heart. A major mechanism for the desensitization of activated GPCRs is their phosphorylation by GPCR kinases (GRKs). Overexpression of GRK2 is strongly linked to heart failure, and GRK2 has long been considered a pharmaceutical target for the treatment of cardiovascular disease. Several lead compounds developed by Takeda Pharmaceuticals show high selectivity for GRK2 and therapeutic potential for the treatment of heart failure. To understand how these drugs achieve their selectivity, we determined crystal structures of the bovine GRK2-G{beta}{gamma} complex in the presence of two of these inhibitors. Comparison with the apoGRK2-G{beta}{gamma} structure demonstrates that the compounds bind in the kinase active site in a manner similar to that of the AGC kinase inhibitor balanol. Both balanol and the Takeda compounds induce a slight closure of the kinase domain, the degree of which correlates with the potencies of the inhibitors. Based on our crystal structures and homology modeling, we identified five amino acids surrounding the inhibitor binding site that we hypothesized could contribute to inhibitor selectivity. However, our results indicate that these residues are not major determinants of selectivity among GRK subfamilies. Rather, selectivity is achieved by the stabilization of a unique inactive conformation of the GRK2 kinase domain.

  2. A lipid-regulated docking site on vinculin for protein kinase C.

    PubMed

    Ziegler, Wolfgang H; Tigges, Ulrich; Zieseniss, Anke; Jockusch, Brigitte M

    2002-03-01

    During cell spreading, binding of actin-organizing proteins to acidic phospholipids and phosphorylation are important for localization and activity of these proteins at nascent cell-matrix adhesion sites. Here, we report on a transient interaction between the lipid-dependent protein kinase Calpha and vinculin, an early component of these sites, during spreading of HeLa cells on collagen. In vitro binding of protein kinase Calpha to vinculin tail was found dependent on free calcium and acidic phospholipids but independent of a functional kinase domain. The interaction was enhanced by conditions that favor the oligomerization of vinculin. Phosphorylation by protein kinase Calpha reached 1.5 mol of phosphate/mol of vinculin tail and required the C-terminal hydrophobic hairpin, a putative phosphatidylinositol 4,5-bisphosphate-binding site. Mass spectroscopy of peptides derived from in vitro phosphorylated vinculin tail identified phosphorylation of serines 1033 and 1045. Inhibition of C-terminal phospholipid binding at the vinculin tail by mutagenesis or deletion reduced the rate of phosphorylation to < or =50%. We suggest a possible mechanism whereby phospholipid-regulated conformational changes in vinculin may lead to exposure of a docking site for protein kinase Calpha and subsequent phosphorylation of vinculin and/or vinculin interaction partners, thereby affecting the formation of cell adhesion complexes.

  3. AMP-activated protein kinase--an archetypal protein kinase cascade?

    PubMed

    Hardie, D G; MacKintosh, R W

    1992-10-01

    Mammalian AMP-activated protein kinase is the central component of a protein kinase cascade which inactivates three key enzymes involved in the synthesis or release of free fatty acids and cholesterol inside the cell. The kinase cascade is activated by elevation of AMP, and perhaps also by fatty acid and cholesterol metabolites. The system may fulfil a protective function, preventing damage caused by depletion of ATP or excessive intracellular release of free lipids, a type of stress response. Recent evidence suggests that it may have been in existence for at least a billion years, since a very similar protein kinase cascade is present in higher plants. This system therefore represents an early eukaryotic protein kinase cascade, which is unique in that it is regulated by intracellular metabolites rather than extracellular signals or cell cycle events.

  4. The Link between Protein Kinase CK2 and Atypical Kinase Rio1

    PubMed Central

    Kubiński, Konrad; Masłyk, Maciej

    2017-01-01

    The atypical kinase Rio1 is widespread in many organisms, ranging from Archaebacteria to humans, and is an essential factor in ribosome biogenesis. Little is known about the protein substrates of the enzyme and small-molecule inhibitors of the kinase. Protein kinase CK2 was the first interaction partner of Rio1, identified in yeast cells. The enzyme from various sources undergoes CK2-mediated phosphorylation at several sites and this modification regulates the activity of Rio1. The aim of this review is to present studies of the relationship between the two different kinases, with respect to CK2-mediated phosphorylation of Rio1, regulation of Rio1 activity, and similar susceptibility of the kinases to benzimidazole inhibitors. PMID:28178206

  5. Focal adhesion kinase negatively regulates neuronal insulin resistance.

    PubMed

    Gupta, Amit; Bisht, Bharti; Dey, Chinmoy Sankar

    2012-06-01

    Focal adhesion kinase (FAK), a non-receptor protein kinase, is known to be a phosphatidyl inositol 3-kinase (PI3K) pathway activator and thus widely implicated in regulation of cell survival and cancer. In recent years FAK has also been strongly implicated as a crucial regulator of insulin resistance in peripheral tissues like skeletal muscle and liver, where decrease in its expression/activity has been shown to lead to insulin resistance. However, in the present study we report an altogether different role of FAK in regulation of insulin/PI3K signaling in neurons, the post-mitotic cells. An aberrant increase in FAK tyrosine phosphorylation was observed in insulin resistant Neuro-2a (N2A) cells. Downregulation of FAK expression utilizing RNAi mediated gene silencing in insulin resistant N2A cells completely ameliorated the impaired insulin/PI3K signaling and glucose uptake. FAK silencing in primary cortical neurons also showed marked enhancement in glucose uptake. The results thus suggest that in neurons FAK acts as a negative regulator of insulin/PI3K signaling. Interestingly, the available literature also demonstrates cell-type specific functions of FAK in neurons. FAK that is well known for its cell survival effects has been shown to be involved in neurodegeneration. Along with these previous reports, present findings highlight a novel and critical role of FAK in neurons. Moreover, as this implicates differential regulation of insulin/PI3K pathway by FAK in peripheral tissues and neuronal cells, it strongly suggests precaution while considering FAK modulators as possible therapeutics.

  6. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase.

    PubMed

    Moccia, Marialuisa; Liu, Qingsong; Guida, Teresa; Federico, Giorgia; Brescia, Annalisa; Zhao, Zheng; Choi, Hwan Geun; Deng, Xianming; Tan, Li; Wang, Jinhua; Billaud, Marc; Gray, Nathanael S; Carlomagno, Francesca; Santoro, Massimo

    2015-01-01

    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the 'DFG-out' inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the 'gatekeeper' V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET.

  7. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase

    PubMed Central

    Moccia, Marialuisa; Liu, Qingsong; Guida, Teresa; Federico, Giorgia; Brescia, Annalisa; Zhao, Zheng; Choi, Hwan Geun; Deng, Xianming; Tan, Li; Wang, Jinhua; Billaud, Marc; Gray, Nathanael S.

    2015-01-01

    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the ‘DFG-out’ inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the ‘gatekeeper’ V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET. PMID:26046350

  8. Regulation of heart muscle pyruvate dehydrogenase kinase

    PubMed Central

    Cooper, Ronald H.; Randle, Philip J.; Denton, Richard M.

    1974-01-01

    1. The activity of pig heart pyruvate dehydrogenase kinase was assayed by the incorporation of [32P]phosphate from [γ-32P]ATP into the dehydrogenase complex. There was a very close correlation between this incorporation and the loss of pyruvate dehydrogenase activity with all preparations studied. 2. Nucleoside triphosphates other than ATP (at 100μm) and cyclic 3′:5′-nucleotides (at 10μm) had no significant effect on kinase activity. 3. The Km for thiamin pyrophosphate in the pyruvate dehydrogenase reaction was 0.76μm. Sodium pyrophosphate, adenylyl imidodiphosphate, ADP and GTP were competitive inhibitors against thiamin pyrophosphate in the dehydrogenase reaction. 4. The Km for ATP of the intrinsic kinase assayed in three preparations of pig heart pyruvate dehydrogenase was in the range 13.9–25.4μm. Inhibition by ADP and adenylyl imidodiphosphate was predominantly competitive, but there was nevertheless a definite non-competitive element. Thiamin pyrophosphate and sodium pyrophosphate were uncompetitive inhibitors against ATP. It is suggested that ADP and adenylyl imidodiphosphate inhibit the kinase mainly by binding to the ATP site and that the adenosine moiety may be involved in this binding. It is suggested that thiamin pyrophosphate, sodium pyrophosphate, adenylyl imidodiphosphate and ADP may inhibit the kinase by binding through pyrophosphate or imidodiphosphate moieties at some site other than the ATP site. It is not known whether this is the coenzyme-binding site in the pyruvate dehydrogenase reaction. 5. The Km for pyruvate in the pyruvate dehydrogenase reaction was 35.5μm. 2-Oxobutyrate and 3-hydroxypyruvate but not glyoxylate were also substrates; all three compounds inhibited pyruvate oxidation. 6. In preparations of pig heart pyruvate dehydrogenase free of thiamin pyrophosphate, pyruvate inhibited the kinase reaction at all concentrations in the range 25–500μm. The inhibition was uncompetitive. In the presence of thiamin pyrophosphate

  9. Myosin 3A Kinase Activity Is Regulated by Phosphorylation of the Kinase Domain Activation Loop*

    PubMed Central

    Quintero, Omar A.; Unrath, William C.; Stevens, Stanley M.; Manor, Uri; Kachar, Bechara; Yengo, Christopher M.

    2013-01-01

    Class III myosins are unique members of the myosin superfamily in that they contain both a motor and kinase domain. We have found that motor activity is decreased by autophosphorylation, although little is known about the regulation of the kinase domain. We demonstrate by mass spectrometry that Thr-178 and Thr-184 in the kinase domain activation loop and two threonines in the loop 2 region of the motor domain are autophosphorylated (Thr-908 and Thr-919). The kinase activity of MYO3A 2IQ with the phosphomimic (T184E) or phosphoblock (T184A) mutations demonstrates that kinase activity is reduced 30-fold as a result of the T184A mutation, although the Thr-178 site only had a minor impact on kinase activity. Interestingly, the actin-activated ATPase activity of MYO3A 2IQ is slightly reduced as a result of the T178A and T184A mutations suggesting coupling between motor and kinase domains. Full-length GFP-tagged T184A and T184E MYO3A constructs transfected into COS7 cells do not disrupt the ability of MYO3A to localize to filopodia structures. In addition, we demonstrate that T184E MYO3A reduces filopodia elongation in the presence of espin-1, whereas T184A enhances filopodia elongation in a similar fashion to kinase-dead MYO3A. Our results suggest that as MYO3A accumulates at the tips of actin protrusions, autophosphorylation of Thr-184 enhances kinase activity resulting in phosphorylation of the MYO3A motor and reducing motor activity. The differential regulation of the kinase and motor activities allows for MYO3A to precisely self-regulate its concentration in the actin bundle-based structures of cells. PMID:24214986

  10. RTKdb: database of receptor tyrosine kinase

    PubMed Central

    Grassot, Julien; Mouchiroud, Guy; Perrière, Guy

    2003-01-01

    Receptor Tyrosine Kinases (RTK) are transmembrane receptors specifically found in metazoans. They represent an excellent model for studying evolution of cellular processes in metazoans because they encompass large families of modular proteins and belong to a major family of contingency generating molecules in eukaryotic cells: the protein kinases. Because tyrosine kinases have been under close scrutiny for many years in various species, they are associated with a wealth of information, mainly in mammals. Presently, most categories of RTK were identified in mammals, but in a near future other model species will be sequenced, and will bring us RTKs from other metazoan clades. Thus, collecting RTK sequences would provide a good starting point as a new model for comparative and evolutionary studies applying to multigene families. In this context, we are developing the Receptor Tyrosine Kinase database (RTKdb), which is the only database on tyrosine kinase receptors presently available. In this database, protein sequences from eight model metazoan species are organized under the format previously used for the HOVERGEN, HOBACGEN and NUREBASE systems. RTKdb can be accessed through the PBIL (Pôle Bioinformatique Lyonnais) World Wide Web server at http://pbil.univ-lyon1.fr/RTKdb/, or through the FamFetch graphical user interface available at the same address. PMID:12520021

  11. Mining protein kinases regulation using graphical models.

    PubMed

    Chen, Qingfeng; Chen, Yi-Ping Phoebe

    2011-03-01

    Abnormal kinase activity is a frequent cause of diseases, which makes kinases a promising pharmacological target. Thus, it is critical to identify the characteristics of protein kinases regulation by studying the activation and inhibition of kinase subunits in response to varied stimuli. Bayesian network (BN) is a formalism for probabilistic reasoning that has been widely used for learning dependency models. However, for high-dimensional discrete random vectors the set of plausible models becomes large and a full comparison of all the posterior probabilities related to the competing models becomes infeasible. A solution to this problem is based on the Markov Chain Monte Carlo (MCMC) method. This paper proposes a BN-based framework to discover the dependency correlations of kinase regulation. Our approach is to apply the MCMC method to generate a sequence of samples from a probability distribution, by which to approximate the distribution. The frequent connections (edges) are identified from the obtained sampling graphical models. Our results point to a number of novel candidate regulation patterns that are interesting in biology and include inferred associations that were unknown.

  12. The protein interaction landscape of the human CMGC kinase group.

    PubMed

    Varjosalo, Markku; Keskitalo, Salla; Van Drogen, Audrey; Nurkkala, Helka; Vichalkovski, Anton; Aebersold, Ruedi; Gstaiger, Matthias

    2013-04-25

    Cellular information processing via reversible protein phosphorylation requires tight control of the localization, activity, and substrate specificity of protein kinases, which to a large extent is accomplished by complex formation with other proteins. Despite their critical role in cellular regulation and pathogenesis, protein interaction information is available for only a subset of the 518 human protein kinases. Here we present a global proteomic analysis of complexes of the human CMGC kinase group. In addition to subgroup-specific functional enrichment and modularity, the identified 652 high-confidence kinase-protein interactions provide a specific biochemical context for many poorly studied CMGC kinases. Furthermore, the analysis revealed a kinase-kinase subnetwork and candidate substrates for CMGC kinases. Finally, the presented interaction proteome uncovered a large set of interactions with proteins genetically linked to a range of human diseases, including cancer, suggesting additional routes for analyzing the role of CMGC kinases in controlling human disease pathways.

  13. Virtual screening filters for the design of type II p38 MAP kinase inhibitors: a fragment based library generation approach.

    PubMed

    Badrinarayan, Preethi; Sastry, G Narahari

    2012-04-01

    In this work, we introduce the development and application of a three-step scoring and filtering procedure for the design of type II p38 MAP kinase leads using allosteric fragments extracted from virtual screening hits. The design of the virtual screening filters is based on a thorough evaluation of docking methods, DFG-loop conformation, binding interactions and chemotype specificity of the 138 p38 MAP kinase inhibitors from Protein Data Bank bound to DFG-in and DFG-out conformations using Glide, GOLD and CDOCKER. A 40 ns molecular dynamics simulation with the apo, type I with DFG-in and type II with DFG-out forms was carried out to delineate the effects of structural variations on inhibitor binding. The designed docking-score and sub-structure filters were first tested on a dataset of 249 potent p38 MAP kinase inhibitors from seven diverse series and 18,842 kinase inhibitors from PDB, to gauge their capacity to discriminate between kinase and non-kinase inhibitors and likewise to selectively filter-in target-specific inhibitors. The designed filters were then applied in the virtual screening of a database of ten million (10⁷) compounds resulting in the identification of 100 hits. Based on their binding modes, 98 allosteric fragments were extracted from the hits and a fragment library was generated. New type II p38 MAP kinase leads were designed by tailoring the existing type I ATP site binders with allosteric fragments using a common urea linker. Target specific virtual screening filters can thus be easily developed for other kinases based on this strategy to retrieve target selective compounds.

  14. Kinase-Dependent and -Independent Roles of EphA2 in the Regulation of Prostate Cancer Invasion and Metastasis

    PubMed Central

    Taddei, Maria Letizia; Parri, Matteo; Angelucci, Adriano; Onnis, Barbara; Bianchini, Francesca; Giannoni, Elisa; Raugei, Giovanni; Calorini, Lido; Rucci, Nadia; Teti, Anna; Bologna, Mauro; Chiarugi, Paola

    2009-01-01

    Ligand-activated Eph tyrosine kinases regulate cellular repulsion, morphology, adhesion, and motility. EphA2 kinase is frequently up-regulated in several different types of cancers, including prostate, breast, colon, and lung carcinomas, as well as in melanoma. The existing data do not clarify whether EphA2 receptor phosphorylation or its simple overexpression, which likely leads to Eph kinase-independent responses, plays a role in the progression of malignant prostate cancer. In this study, we address the role of EphA2 tyrosine phosphorylation in prostate carcinoma cell adhesion, motility, invasion, and formation of metastases. Tumor cells expressing kinase-deficient EphA2 mutants, as well as an EphA2 variant lacking the cytoplasmic domain, are defective in ephrinA1-mediated cell rounding, retraction fiber formation, de-adhesion from the extracellular matrix, RhoA and Rac1 GTPase regulation, three-dimensional matrix invasion, and in vivo metastasis, suggesting a key role for EphA2 kinase activity. Nevertheless, EphA2 regulation of cell motility and invasion, as well as the formation of bone and visceral tumor colonies, reveals a component of both EphA2 kinase-dependent and -independent features. These results uncover a differential requirement for EphA2 kinase activity in the regulation of prostate carcinoma metastasis outcome, suggesting that although the kinase activity of EphA2 is required for the regulation of cell adhesion and cytoskeletal rearrangement, some distinct kinase-dependent and -independent pathways likely cooperate to drive cancer cell migration, invasion, and metastasis outcome. PMID:19264906

  15. Interaction between protein kinase C and protein kinase A can modulate transmitter release at the rat neuromuscular synapse.

    PubMed

    Santafé, M M; Garcia, N; Lanuza, M A; Tomàs, M; Tomàs, J

    2009-02-15

    We used intracellular recording to investigate the functional interaction between protein kinase C (PKC) and protein kinase A (PKA) signal transduction cascades in the control of transmitter release in the neuromuscular synapses from adult rats. Our results indicate that: 1) PKA and PKC are independently involved in asynchronous release. 2) Evoked acetylcholine (ACh) release is enhanced with the PKA agonist Sp-8-BrcAMP and the PKC agonist phorbol ester (PMA). 3) PKA has a constitutive role in promoting a component of normal evoked transmitter release because, when the kinase is inhibited with H-89, the release diminishes. However, the PKC inhibitor calphostin C (CaC) does not affect ACh release. 4) PKA regulates neurotransmission without PKC involvement because, after PMA or CaC modulation of the PKC activity, coupling to the ACh release of PKA can normally be stimulated with Sp-8-BrcAMP or inhibited with H-89. 5) After PKA inhibition with H-89, PKC stimulation with PMA (or inhibition with CaC) does not lead to any change in evoked ACh release. However, in PKA-stimulated preparations with Sp-8-BrcAMP, PKC becomes tonically active, thus potentiating a component of release that can now be blocked with CaC. In normal conditions, therefore, PKA was able to modulate ACh release independently of PKC activity, whereas PKA stimulation caused the PKC coupling to evoked release. In contrast, PKA inhibition prevent PKC stimulation (with the phorbol ester) and coupling to ACh output. There was therefore some dependence of PKC on PKA activity in the fine control of the neuromuscular synaptic functionalism and ACh release.

  16. Rapid Discovery and Structure–Activity Relationships of Pyrazolopyrimidines That Potently Suppress Breast Cancer Cell Growth via SRC Kinase Inhibition with Exceptional Selectivity over ABL Kinase

    PubMed Central

    2016-01-01

    Novel pyrazolopyrimidines displaying high potency and selectivity toward SRC family kinases have been developed by combining ligand-based design and phenotypic screening in an iterative manner. Compounds were derived from the promiscuous kinase inhibitor PP1 to search for analogs that could potentially target a broad spectrum of kinases involved in cancer. Phenotypic screening against MCF7 mammary adenocarcinoma cells generated target-agnostic structure–activity relationships that biased subsequent designs toward breast cancer treatment rather than to a particular target. This strategy led to the discovery of two potent antiproliferative leads with phenotypically distinct anticancer mode of actions. Kinase profiling and further optimization resulted in eCF506, the first small molecule with subnanomolar IC50 for SRC that requires 3 orders of magnitude greater concentration to inhibit ABL. eCF506 exhibits excellent water solubility, an optimal DMPK profile and oral bioavailability, halts SRC-associated neuromast migration in zebrafish embryos without inducing life-threatening heart defects, and inhibits SRC phosphorylation in tumor xenografts in mice. PMID:27115835

  17. Modulation of Brahma expression by the mitogen-activated protein kinase/extracellular signal regulated kinase pathway is associated with changes in melanoma proliferation.

    PubMed

    Mehrotra, Aanchal; Saladi, Srinivas Vinod; Trivedi, Archit R; Aras, Shweta; Qi, Huiling; Jayanthy, Ashika; Setaluri, Vijayasaradhi; de la Serna, Ivana L

    2014-12-01

    Brahma (BRM) and Brahma-related gene 1(BRG1) are catalytic subunits of SWItch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes. BRM is epigenetically silenced in a wide-range of tumors. Mutations in the v-raf murine sarcoma viral oncogene homolog B1 (BRAF) gene occur frequently in melanoma and lead to constitutive activation of the mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK1/2) pathway. We tested the hypothesis that BRM expression is modulated by oncogenic BRAF and phosphorylation of ERK1/2 in melanocytes and melanoma cells. Expression of oncogenic BRAF in melanocytes and melanoma cells that are wild-type for BRAF decreased BRM expression and increased BRG1 expression. Inhibition of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) or selective inhibition of BRAF in melanoma cells that harbor oncogenic BRAF increased BRM expression and decreased BRG1 expression. Increased BRM expression was associated with increased histone acetylation on the BRM promoter. Over-expression of BRM in melanoma cells that harbor oncogenic BRAF promoted changes in cell cycle progression and apoptosis consistent with a tumor suppressive role. Upon inhibition of BRAF(V600E) with PLX4032, BRM promoted survival. PLX4032 induced changes in BRM function were correlated with increased acetylation of the BRM protein. This study provides insights into the epigenetic consequences of inhibiting oncogenic BRAF in melanoma through modulation of SWI/SNF subunit expression and function.

  18. Cell division cycle 6, a mitotic substrate of polo-like kinase 1, regulates chromosomal segregation mediated by cyclin-dependent kinase 1 and separase.

    PubMed

    Yim, Hyungshin; Erikson, Raymond L

    2010-11-16

    Defining the links between cell division and DNA replication is essential for understanding normal cell cycle progression and tumorigenesis. In this report we explore the effect of phosphorylation of cell division cycle 6 (Cdc6), a DNA replication initiation factor, by polo-like kinase 1 (Plk1) on the regulation of chromosomal segregation. In mitosis, the phosphorylation of Cdc6 was highly increased, in correlation with the level of Plk1, and conversely, Cdc6 is hypophosphorylated in Plk1-depleted cells, although cyclin A- and cyclin B1-dependent kinases are active. Binding between Cdc6 and Plk1 occurs through the polo-box domain of Plk1, and Cdc6 is phosphorylated by Plk1 on T37. Immunohistochemistry studies reveal that Cdc6 and Plk1 colocalize to the central spindle in anaphase. Expression of T37V mutant of Cdc6 (Cdc6-TV) induces binucleated cells and incompletely separated nuclei. Wild-type Cdc6 but not Cdc6-TV binds cyclin-dependent kinase 1 (Cdk1). Expression of wild-type Plk1 but not kinase-defective mutant promotes the binding of Cdc6 to Cdk1. Cells expressing wild-type Cdc6 display lower Cdk1 activity and higher separase activity than cells expressing Cdc6-TV. These results suggest that Plk1-mediated phosphorylation of Cdc6 promotes the interaction of Cdc6 and Cdk1, leading to the attenuation of Cdk1 activity, release of separase, and subsequent anaphase progression.

  19. Helicobacter pylori cell translocating kinase (CtkA/JHP0940) is pro-apoptotic in mouse macrophages and acts as auto-phosphorylating tyrosine kinase.

    PubMed

    Tenguria, Shivendra; Ansari, Suhail A; Khan, Nooruddin; Ranjan, Amit; Devi, Savita; Tegtmeyer, Nicole; Lind, Judith; Backert, Steffen; Ahmed, Niyaz

    2014-11-01

    The Helicobacter pylori gene JHP0940 has been shown to encode a serine/threonine kinase which can induce cytokines in gastric epithelial cells relevant to chronic gastric inflammation. Here we demonstrate that JHP0940 can be secreted by the bacteria, triggers apoptosis in cultured mouse macrophages and acts as an auto-phosphorylating tyrosine kinase. Recombinant JHP0940 protein was found to decrease the viability of RAW264.7 cells (a mouse macrophage cell line) up to 55% within 24h of co-incubation. The decreased cellular viability was due to apoptosis, which was confirmed by TUNEL assay and Fas expression analysis by flow-cytometry. Further, we found that caspase-1 and IL-1beta were activated upon treatment with JHP0940. These results point towards possible action through the host inflammasome. Our in vitro studies using tyrosine kinase assays further demonstrated that JHP0940 acts as auto-phosphorylating tyrosine kinase and induces pro-inflammatory cytokines in RAW264.7 cells. Upon exposure with JHP0940, these cells secreted IL-1beta, TNF-alpha and IL-6, in a dose- and time-dependent manner, as detected by ELISA and transcript profiling by q-RT-PCR. The pro-inflammatory, pro-apoptotic and other regulatory responses triggered by JHP0940 lead to the assumption of its possible role in inducing chronic inflammation for enhanced bacterial persistence and escape from host innate immune responses by apoptosis of macrophages.

  20. Leading change: 2--planning.

    PubMed

    Kerridge, Joanna

    National initiatives have outlined the importance of involving frontline staff in service improvement, and the ability to influence and manage change has been identified as an essential skill for delivering new models of care. Nurses often have to take the lead in managing change in clinical practice. The second in a three-part series is designed to help nurses at all levels develop the knowledge and skills to function as change agents within their organisations. This article focuses on planning the change and dealing with resistance.

  1. High-content screen using zebrafish (Danio rerio) embryos identifies a novel kinase activator and inhibitor.

    PubMed

    Geldenhuys, Werner J; Bergeron, Sadie A; Mullins, Jackie E; Aljammal, Rowaa; Gaasch, Briah L; Chen, Wei-Chi; Yun, June; Hazlehurst, Lori A

    2017-02-28

    In this report we utilized zebrafish (Danio rerio) embryos in a phenotypical high-content screen (HCS) to identify novel leads in a cancer drug discovery program. We initially validated our HCS model using the flavin adenosine dinucleotide (FAD) containing endoplasmic reticulum (ER) enzyme, endoplasmic reticulum oxidoreductase (ERO1) inhibitor EN460. EN460 showed a dose response effect on the embryos with a dose of 10μM being significantly lethal during early embryonic development. The HCS campaign which employed a small library identified a promising lead compound, a naphthyl-benzoic acid derivative coined compound 1 which had significant dosage and temporally dependent effects on notochord and muscle development in zebrafish embryos. Screening a 369 kinase member panel we show that compound 1 is a PIM3 kinase inhibitor (IC50=4.078μM) and surprisingly a DAPK1 kinase agonist/activator (EC50=39.525μM). To our knowledge this is the first example of a small molecule activating DAPK1 kinase. We provide a putative model for increased phosphate transfer in the ATP binding domain when compound 1 is virtually docked with DAPK1. Our data indicate that observable phenotypical changes can be used in future zebrafish screens to identify compounds acting via similar molecular signaling pathways.

  2. Pyruvate kinase M2 is a phosphotyrosine-binding protein

    SciTech Connect

    Christofk, H.R.; Vander Heiden, M.G.; Wu, N.; Asara, J.M.; Cantley, L.C.

    2008-06-03

    Growth factors stimulate cells to take up excess nutrients and to use them for anabolic processes. The biochemical mechanism by which this is accomplished is not fully understood but it is initiated by phosphorylation of signalling proteins on tyrosine residues. Using a novel proteomic screen for phosphotyrosine-binding proteins, we have made the observation that an enzyme involved in glycolysis, the human M2 (fetal) isoform of pyruvate kinase (PKM2), binds directly and selectively to tyrosine-phosphorylated peptides. We show that binding of phosphotyrosine peptides to PKM2 results in release of the allosteric activator fructose-1,6-bisphosphate, leading to inhibition of PKM2 enzymatic activity. We also provide evidence that this regulation of PKM2 by phosphotyrosine signalling diverts glucose metabolites from energy production to anabolic processes when cells are stimulated by certain growth factors. Collectively, our results indicate that expression of this phosphotyrosine-binding form of pyruvate kinase is critical for rapid growth in cancer cells.

  3. Identification of Ski as a target for Aurora A kinase.

    PubMed

    Mosquera, Jocelyn; Armisen, Ricardo; Zhao, Hongling; Rojas, Diego A; Maldonado, Edio; Tapia, Julio C; Colombo, Alicia; Hayman, Michael J; Marcelain, Katherine

    2011-06-10

    Ski is a negative regulator of the transforming growth factor-β and other signalling pathways. The absence of SKI in mouse fibroblasts leads to chromosome segregation defects and genomic instability, suggesting a role for Ski during mitosis. At this stage, Ski is phosphorylated but to date little is known about the kinases involved in this process. Here, we show that Aurora A kinase is able to phosphorylate Ski in vitro. In vivo, Aurora A and Ski co-localized at the centrosomes and co-immunoprecipitated. Conversely, a C-terminal truncation mutant of Ski (SkiΔ491-728) lacking a coiled-coil domain, displayed decreased centrosomal localization. This mutant no longer co-immunoprecipitated with Aurora-A in vivo, but was still phosphorylated in vitro, indicating that the Ski-Aurora A interaction takes place at the centrosomes. These data identify Ski as a novel target of Aurora A and contribute to an understanding of the role of these proteins in the mitotic process.

  4. Signalling to cancer cell invasion through PAK family kinases.

    PubMed

    Whale, Andrew; Hashim, Fariesha Nur; Fram, Sally; Jones, Gareth E; Wells, Claire M

    2011-01-01

    Cancer cell metastasis involves a series of changes in cell behaviour, driven by oncogenic transformation, that leads to local tissue invasion, migration through extracellular matrix, entry into the vascular or lymphatic system and colonisation of distant sites. It is well established that the Rho family GTPases Rho, Rac and Cdc42 orchestrate many of the processes required during metastasis. The Rho family GTPases regulate cellular behaviour through their interaction with downstream effector proteins. The p-21 activated kinases (PAKs), effector proteins for Rac and Cdc42, are known to be important regulators of cell migration and invasion. There are six mammalian PAKs which can be divided into two groups: group I PAKs (PAK1-3) and group II PAKs (PAK4-6). Although the two PAK groups are architecturally similar there are differences in their mode of regulation suggesting their cellular functions are likely to be different. This review will focus on the latest evidence relating to the role of PAK family kinases in the cell signalling pathways that drive cancer cell migration and invasion.

  5. Protein kinase A signaling as an anti-aging target.

    PubMed

    Enns, Linda C; Ladiges, Warren

    2010-07-01

    Protein kinase A (PKA) is a multi-unit protein kinase that mediates signal transduction of G-protein-coupled receptors through its activation by adenyl cyclase (AC)-mediated cAMP. The vital importance of PKA signaling to cellular function is reflected in the widespread expression of PKA subunit genes. As one of its many functions, PKA plays a key role in the regulation of metabolism and triglyceride storage. The PKA pathway has become of great interest to the study of aging, since mutations that cause a reduction in PKA signaling have been shown to extend lifespan in yeast, and to both delay the incidence and severity of age-related disease, and to promote leanness and longevity, in mice. There is increasing interest in the potential for the inhibition or redistribution of adiposity to attenuate aging, since obesity is associated with impaired function of most organ systems, and is a strong risk factor for shortened life span. Its association with coronary heart disease, hypertension, type 2 diabetes, cancer, sleep apnea and osteoarthritis is leading to its accession as a major cause of global ill health. Therefore, gene signaling pathways such as PKA that promote adiposity are potential inhibitory targets for aging intervention. Since numerous plant compounds have been found that both prevent adipogenesis and inhibit PKA signaling, a focused investigation into their effects on biological systems and the corresponding molecular mechanisms would be of high relevance to the discovery of novel and non-toxic compounds that promote healthy aging.

  6. Crystal structure of inhibitor of ;#954;B kinase [beta

    SciTech Connect

    Xu, Guozhou; Lo, Yu-Chih; Li, Qiubai; Napolitano, Gennaro; Wu, Xuefeng; Jiang, Xuliang; Dreano, Michel; Karin, Michael; Wu, Hao

    2011-07-26

    Inhibitor of {kappa}B (I{kappa}B) kinase (IKK) phosphorylates I{kappa}B proteins, leading to their degradation and the liberation of nuclear factor {kappa}B for gene transcription. Here we report the crystal structure of IKK{beta} in complex with an inhibitor, at a resolution of 3.6 {angstrom}. The structure reveals a trimodular architecture comprising the kinase domain, a ubiquitin-like domain (ULD) and an elongated, {alpha}-helical scaffold/dimerization domain (SDD). Unexpectedly, the predicted leucine zipper and helix-loop-helix motifs do not form these structures but are part of the SDD. The ULD and SDD mediate a critical interaction with I{kappa}B{alpha} that restricts substrate specificity, and the ULD is also required for catalytic activity. The SDD mediates IKK{beta} dimerization, but dimerization per se is not important for maintaining IKK{beta} activity and instead is required for IKK{beta} activation. Other IKK family members, IKK{alpha}, TBK1 and IKK-i, may have a similar trimodular architecture and function.

  7. TRPM7 is regulated by halides through its kinase domain

    PubMed Central

    Yu, Haijie; Zhang, Zheng; Lis, Annette; Penner, Reinhold; Fleig, Andrea

    2013-01-01

    Transient receptor potential melastatin 7 (TRPM7) is a divalent-selective cation channel fused to an atypical α-kinase. TRPM7 is a key regulator of cell growth and proliferation, processes accompanied by mandatory cell volume changes. Osmolarity-induced cell volume alterations regulate TRPM7 through molecular crowding of solutes that affect channel activity, including magnesium (Mg2+), Mg-nucleotides and a further unidentified factor. Here, we assess whether chloride and related halides can act as negative feedback regulators of TRPM7. We find that chloride and bromide inhibit heterologously expressed TRPM7 in synergy with intracellular Mg2+ ([Mg2+]i) and this is facilitated through the ATP-binding site of the channel’s kinase domain. The synergistic block of TRPM7 by chloride and Mg2+ is not reversed during divalent-free or acidic conditions, indicating a change in protein conformation that leads to channel inactivation. Iodide has the strongest inhibitory effect on TRPM7 at physiological [Mg2+]i. Iodide also inhibits endogenous TRPM7-like currents as assessed in MCF-7 breast cancer cells, where upregulation of SLC5A5 sodium-iodide symporter enhances iodide uptake and inhibits cell proliferation. These results indicate that chloride could be an important factor in modulating TRPM7 during osmotic stress and implicate TRPM7 as a possible molecular mechanism contributing to the anti-proliferative characteristics of intracellular iodide accumulation in cancer cells. PMID:23471296

  8. Phosphoinositide 3-kinase p85beta regulates invadopodium formation

    PubMed Central

    Cariaga-Martínez, Ariel E.; Cortés, Isabel; García, Esther; Pérez-García, Vicente; Pajares, María J.; Idoate, Miguel A.; Redondo-Muñóz, Javier; Antón, Inés M.; Carrera, Ana C.

    2014-01-01

    ABSTRACT The acquisition of invasiveness is characteristic of tumor progression. Numerous genetic changes are associated with metastasis, but the mechanism by which a cell becomes invasive remains unclear. Expression of p85β, a regulatory subunit of phosphoinositide-3-kinase, markedly increases in advanced carcinoma, but its mode of action is unknown. We postulated that p85β might facilitate cell invasion. We show that p85β localized at cell adhesions in complex with focal adhesion kinase and enhanced stability and maturation of cell adhesions. In addition, p85β induced development at cell adhesions of an F-actin core that extended several microns into the cell z-axis resembling the skeleton of invadopodia. p85β lead to F-actin polymerization at cell adhesions by recruiting active Cdc42/Rac at these structures. In accordance with p85β function in invadopodium-like formation, p85β levels increased in metastatic melanoma and p85β depletion reduced invadopodium formation and invasion. These results show that p85β enhances invasion by inducing cell adhesion development into invadopodia-like structures explaining the metastatic potential of tumors with increased p85β levels. PMID:25217619

  9. PI3 kinase enzymology on fluid lipid bilayers.

    PubMed

    Dutta, Debjit; Pulsipher, Abigail; Luo, Wei; Yousaf, Muhammad N

    2014-10-21

    We report the use of fluid lipid bilayer membrane as a model platform to study the influence of the bilayer microenvironment and composition on the enzymology in membrane. As a model system we determined the enzyme kinetics on membranes for the transformation of bilayers containing phosphoinositol(4,5)-bisphosphate (PI(4,5)P2) to phosphoinositol(3,4,5)-trisphosphate (PI(3,4,5)P3) by the enzyme phosphoinositol-3-kinase (PI3K) using radiolabeled ATP. The activity of the enzyme was monitored as a function of the radioactivity incorporated within the bilayer. The transformation of PI(4,5)P2 to PI(3,4,5)P3 was determined using a mass strip assay. The fluidity of the bilayer was confirmed by Fluorescence Recovery After Photobleaching (FRAP) experiments. Kinetic simulations were performed based on Langmuir adsorption and Michaelis-Menton kinetics equations to generate the rate constants for the enzymatic reaction. The effect of cholesterol on the enzyme kinetics was studied by doping the bilayer with 1% cholesterol. This leads to significant reduction in reaction rate due to change in membrane microenvironment. This strategy provides a method to study the enzymology of various kinases and phosphatases occurring at the membrane and also how these reactions are affected by the membrane composition and surface microenvironment.

  10. Galectin-3: a novel substrate for c-Abl kinase

    PubMed Central

    Balan, Vitaly; Nangia-Makker, Pratima; Jung, Young Suk; Wang, Yi; Raz, Avraham

    2010-01-01

    Galectin-3, a ß-galactoside-binding lectin, is found in cellular and extracellular location of the cell and has pleiotropic biological functions such as cell growth, cell adhesion and cell-cell interaction. It may exhibit anti or pro-apoptotic activity depending on its localization and post-translational modifications. Two important post-translational modifications of galectin-3 have been reported: its cleavage and phosphorylation. Cleavage of galectin-3 was reported to be involved with angiogenic potential and apoptotic resistance. Phosphorylation of galectin-3 regulates its sugar-binding ability. In this report we have identified novel tyrosine phosphorylation sites in galectin-3 as well as the kinase responsible for its phosphorylation. Our results demonstrate that tyrosines at position 79, 107 and 118 can be phosphorylated in vitro and in vivo by c-Abl kinase. Tyrosine 107 is the main target of c-Abl. Expression of galectin-3 Y107F mutant in galectin-3 null SK-Br-3 cells leads to morphological changes and increased motility compared to wild type galectin-3. Further investigation is needed to better understand the functional significance of the novel tyrosine phosphorylated sites of galectin-3. PMID:20600357

  11. Identification of Ski as a target for Aurora A kinase

    PubMed Central

    Mosquera, Jocelyn; Armisen, Ricardo; Zhao, Hong Ling; Rojas, Diego A.; Maldonado, Edio; Tapia, Julio C; Colombo, Alicia; Hayman, Michael J; Marcelain, Katherine

    2011-01-01

    Ski is a negative regulator of the transforming growth factor-β and other signalling pathways. The absence of SKI in mouse fibroblasts leads to chromosome segregation defects and genomic instability, suggesting a role for Ski during mitosis. At this stage, Ski is phosphorylated but to date little is known about the kinases involved in this process. Here, we show that Aurora A kinase is able to phosphorylate Ski in vitro. In vivo, Aurora A and Ski co-localized at the centrosomes and co-immunoprecipitated. Conversely, a C-terminal truncation mutant of Ski (SkiΔ491–728) lacking a coiled-coil domain, displayed decreased centrosomal localization. This mutant no longer co-immunoprecipitated with Aurora-A in vivo, but was still phosphorylated in vitro, indicating that the Ski-Aurora A interaction takes place at the centrosomes. These data identify Ski as a novel target of Aurora A and contribute to an understanding of the role of these proteins in the mitotic process. PMID:21600873

  12. Crystal structure of human nicotinamide riboside kinase.

    PubMed

    Khan, Javed A; Xiang, Song; Tong, Liang

    2007-08-01

    Nicotinamide riboside kinase (NRK) has an important role in the biosynthesis of NAD(+) as well as the activation of tiazofurin and other NR analogs for anticancer therapy. NRK belongs to the deoxynucleoside kinase and nucleoside monophosphate (NMP) kinase superfamily, although the degree of sequence conservation is very low. We report here the crystal structures of human NRK1 in a binary complex with the reaction product nicotinamide mononucleotide (NMN) at 1.5 A resolution and in a ternary complex with ADP and tiazofurin at 2.7 A resolution. The active site is located in a groove between the central parallel beta sheet core and the LID and NMP-binding domains. The hydroxyl groups on the ribose of NR are recognized by Asp56 and Arg129, and Asp36 is the general base of the enzyme. Mutation of residues in the active site can abolish the catalytic activity of the enzyme, confirming the structural observations.

  13. Tyrosine kinase inhibitors in preclinical development.

    PubMed

    Levitt, M L; Koty, P P

    1999-01-01

    Due to the limited efficacy of cytotoxic chemotherapy in the treatment of advanced malignancy and its excessive toxicity precluding its use in chemoprevention, new therapeutic and preventive strategies have been sought. One of the most interesting of these new approaches is the manipulation of signal transduction pathways. Among the approaches being considered to eventuate such a strategy is the inhibition of autophosphorylation, a critical first step in the signal transduction pathways of many cell surface receptor tyrosine kinases, as well as of non-receptor tyrosine kinases. This article is intended to review those tyrosine kinase inhibitors that are currently in preclinical development, for which there are data to support consideration for their use in chemoprevention or cancer treatment. We will focus upon those agents that have received attention in the past several years.

  14. Exploring the scaffold universe of kinase inhibitors.

    PubMed

    Hu, Ye; Bajorath, Jürgen

    2015-01-08

    The scaffold concept was applied to systematically determine, analyze, and compare core structures of kinase inhibitors. From publicly available inhibitors of the human kinome, scaffolds and cyclic skeletons were systematically extracted and organized taking activity data, structural relationships, and retrosynthetic criteria into account. Scaffold coverage varied greatly across the kinome, and many scaffolds representing compounds with different activity profiles were identified. The majority of kinase inhibitor scaffolds were involved in well-defined yet distinct structural relationships, which had different consequences on compound activity. Scaffolds exclusively representing highly potent compounds were identified as well as structurally analogous scaffolds with very different degrees of promiscuity. Scaffold relationships presented herein suggest a variety of hypotheses for inhibitor design. Our detailed organization of the kinase inhibitor scaffold universe with respect to different activity and structural criteria, all scaffolds, and the original compound data assembled for our analysis are made freely available.

  15. Crystal Structure of Human Nicotinamide Riboside Kinase

    SciTech Connect

    Khan,J.; Xiang, S.; Tong, L.

    2007-01-01

    Nicotinamide riboside kinase (NRK) has an important role in the biosynthesis of NAD{sup +} as well as the activation of tiazofurin and other NR analogs for anticancer therapy. NRK belongs to the deoxynucleoside kinase and nucleoside monophosphate (NMP) kinase superfamily, although the degree of sequence conservation is very low. We report here the crystal structures of human NRK1 in a binary complex with the reaction product nicotinamide mononucleotide (NMN) at 1.5 {angstrom} resolution and in a ternary complex with ADP and tiazofurin at 2.7 {angstrom} resolution. The active site is located in a groove between the central parallel {beta} sheet core and the LID and NMP-binding domains. The hydroxyl groups on the ribose of NR are recognized by Asp56 and Arg129, and Asp36 is the general base of the enzyme. Mutation of residues in the active site can abolish the catalytic activity of the enzyme, confirming the structural observations.

  16. Protein Kinases and Parkinson’s Disease

    PubMed Central

    Mehdi, Syed Jafar; Rosas-Hernandez, Hector; Cuevas, Elvis; Lantz, Susan M.; Barger, Steven W.; Sarkar, Sumit; Paule, Merle G.; Ali, Syed F.; Imam, Syed Z.

    2016-01-01

    Currently, the lack of new drug candidates for the treatment of major neurological disorders such as Parkinson’s disease has intensified the search for drugs that can be repurposed or repositioned for such treatment. Typically, the search focuses on drugs that have been approved and are used clinically for other indications. Kinase inhibitors represent a family of popular molecules for the treatment and prevention of various cancers, and have emerged as strong candidates for such repurposing because numerous serine/threonine and tyrosine kinases have been implicated in the pathobiology of Parkinson’s disease. This review focuses on various kinase-dependent pathways associated with the expression of Parkinson’s disease pathology, and evaluates how inhibitors of these pathways might play a major role as effective therapeutic molecules. PMID:27657053

  17. PAS kinase: a nutrient sensing regulator of glucose homeostasis.

    PubMed

    DeMille, Desiree; Grose, Julianne H

    2013-11-01

    Per-Arnt-Sim (PAS) kinase (PASK, PASKIN, and PSK) is a member of the group of nutrient sensing protein kinases. These protein kinases sense the energy or nutrient status of the cell and regulate cellular metabolism appropriately. PAS kinase responds to glucose availability and regulates glucose homeostasis in yeast, mice, and man. Despite this pivotal role, the molecular mechanisms of PAS kinase regulation and function are largely unknown. This review focuses on what is known about PAS kinase, including its conservation from yeast to man, identified substrates, associated phenotypes and role in metabolic disease.

  18. Phosphorylation of the Kinase Interaction Motif in Mitogen-activated Protein (MAP) Kinase Phosphatase-4 Mediates Cross-talk between Protein Kinase A and MAP Kinase Signaling Pathways*

    PubMed Central

    Dickinson, Robin J.; Delavaine, Laurent; Cejudo-Marín, Rocío; Stewart, Graeme; Staples, Christopher J.; Didmon, Mark P.; Trinidad, Antonio Garcia; Alonso, Andrés; Pulido, Rafael; Keyse, Stephen M.

    2011-01-01

    MAP kinase phosphatase 4 (DUSP9/MKP-4) plays an essential role during placental development and is one of a subfamily of three closely related cytoplasmic dual-specificity MAPK phosphatases, which includes the ERK-specific enzymes DUSP6/MKP-3 and DUSP7/MKP-X. However, unlike DUSP6/MKP-3, DUSP9/MKP-4 also inactivates the p38α MAP kinase both in vitro and in vivo. Here we demonstrate that inactivation of both ERK1/2 and p38α by DUSP9/MKP-4 is mediated by a conserved arginine-rich kinase interaction motif located within the amino-terminal non-catalytic domain of the protein. Furthermore, DUSP9/MKP-4 is unique among these cytoplasmic MKPs in containing a conserved PKA consensus phosphorylation site 55RRXSer-58 immediately adjacent to the kinase interaction motif. DUSP9/MKP-4 is phosphorylated on Ser-58 by PKA in vitro, and phosphorylation abrogates the binding of DUSP9/MKP-4 to both ERK2 and p38α MAP kinases. In addition, although mutation of Ser-58 to either alanine or glutamic acid does not affect the intrinsic catalytic activity of DUSP9/MKP-4, phospho-mimetic (Ser-58 to Glu) substitution inhibits both the interaction of DUSP9/MKP-4 with ERK2 and p38α in vivo and its ability to dephosphorylate and inactivate these MAP kinases. Finally, the use of a phospho-specific antibody demonstrates that endogenous DUSP9/MKP-4 is phosphorylated on Ser-58 in response to the PKA agonist forskolin and is also modified in placental tissue. We conclude that DUSP9/MKP-4 is a bona fide target of PKA signaling and that attenuation of DUSP9/MKP-4 function can mediate cross-talk between the PKA pathway and MAPK signaling through both ERK1/2 and p38α in vivo. PMID:21908610

  19. X-Ray Crystal Structure of Bone Marrow Kinase in the X Chromosome: A Tec Family Kinase

    SciTech Connect

    Muckelbauer, Jodi; Sack, John S.; Ahmed, Nazia; Burke, James; Chang, ChiehYing Y.; Gao, Mian; Tino, Joseph; Xie, Dianlin; Tebben, Andrew J.

    2012-06-27

    Bone marrow kinase in the X chromosome, a member of the Tec family of tyrosine kinases, plays a role in both monocyte/macrophage trafficking as well as cytokine secretion. Although the structures of Tec family kinases Bruton's tyrosine kinase and IL-2-inducible T-cell kinase are known, the crystal structures of other Tec family kinases have remained elusive. We report the X-ray crystal structures of bone marrow kinase in the X chromosome in complex with dasatinib at 2.4 {angstrom} resolution and PP2 at 1.9 {angstrom} resolution. The bone marrow kinase in the X chromosome structures reveal a typical kinase protein fold; with well-ordered protein conformation that includes an open/extended activation loop and a stabilized DFG-motif rendering the kinase in an inactive conformation. Dasatinib and PP2 bind to bone marrow kinase in the X chromosome in the ATP binding pocket and display similar binding modes to that observed in other Tec and Src protein kinases. The bone marrow kinase in the X chromosome structures identify conformational elements of the DFG-motif that could potentially be utilized to design potent and/or selective bone marrow kinase in the X chromosome inhibitors.

  20. Phosphorylation of varicella-zoster virus glycoprotein gpI by mammalian casein kinase II and casein kinase I

    SciTech Connect

    Grose, C.; Jackson, W. ); Traugh, J.A. )

    1989-09-01

    Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, the authors investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an in vitro assay containing ({gamma}-{sup 32}P)ATP. The same glycoprotein was phosphorylated when ({sup 32}P)GTP was substituted for ({sup 32}P)ATP in the protein kinase assay. They also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein.

  1. Musk Kinase Activity is Modulated By A Serine Phosphorylation Site in The Kinase Loop.

    PubMed

    Camurdanoglu, B Z; Hrovat, C; Dürnberger, G; Madalinski, M; Mechtler, K; Herbst, R

    2016-09-26

    The neuromuscular junction (NMJ) forms when a motor neuron contacts a muscle fibre. A reciprocal exchange of signals initiates a cascade of signalling events that result in pre- and postsynaptic differentiation. At the centre of these signalling events stands muscle specific kinase (MuSK). MuSK activation, kinase activity and subsequent downstream signalling are crucial for NMJ formation as well as maintenance. Therefore MuSK kinase activity is tightly regulated to ensure proper NMJ development. We have identified a novel serine phosphorylation site at position 751 in MuSK that is increasingly phosphorylated upon agrin stimulation. S751 is also phosphorylated in muscle tissue and its phosphorylation depends on MuSK kinase activity. A phosphomimetic mutant of S751 increases MuSK kinase activity in response to non-saturating agrin concentrations . In addition, basal MuSK and AChR phosphorylation as well as AChR cluster size are increased. We believe that the phosphorylation of S751 provides a novel mechanism to relief the autoinhibition of the MuSK activation loop. Such a lower autoinhibition could foster or stabilize MuSK kinase activation, especially during stages when no or low level of agrin are present. Phosphorylation of S751 might therefore represent a novel mechanism to modulate MuSK kinase activity during prepatterning or NMJ maintenance.

  2. Measuring protein kinase and sugar kinase activity in plant pathogenic fusarium species.

    PubMed

    Bluhm, Burton H; Zhao, Xinhua

    2010-01-01

    As ubiquitous metabolic and signaling intermediaries, kinases regulate innumerable aspects of fungal growth and development. At its simplest, the enzymatic function of a kinase is to transfer a phosphate from a donor molecule (such as adenosine triphosphate) to an acceptor molecule, such as a protein, carbohydrate, or lipid. Kinase activity is intricately interwoven into signal transduction, and ultimately modulates gene expression, downstream phosphorylation events, and other mechanisms of posttranslational modification. Therefore, sensitive and reproducible techniques to measure kinase activity are crucial to elucidate cellular signaling and for fungal functional genomics.Protein and sugar kinases regulate multiple aspects of pathogenesis in the mycotoxigenic, plant pathogenic fungi Fusarium graminearum, and Fusarium verticillioides. Here, we present protocols to (1) quantify phosphorylation of mitogen-activated protein kinases in F. graminearum, and (2) determine glucokinase activity in F. verticillioides. The mitogen-activated protein kinase phosphorylation assay utilizes immunological methods to quantify substrate phosphorylation, whereas the glucokinase assay is a coupled enzyme assay, in which phosphorylation of glucose by glucokinase is measured indirectly through the subsequent reduction of NADP+ to NADPH, a substrate more amenable for spectrophotometric detection.

  3. Screening of kinase inhibitors targeting BRAF for regulating autophagy based on kinase pathways.

    PubMed

    Zhang, Yingmei; Xue, Dongbo; Wang, Xiaochun; Lu, Ming; Gao, Bo; Qiao, Xin

    2014-01-01

    The aim of this study was to identify agents that regulate autophagy. A total of 544 differentially expressed genes were screened from the intersection set of GSE2435 and GSE31040, which was obtained from the Gene Expression Omnibus database and 19 differentially expressed kinases were selected according to a 'protein kinase database'. Gene ontology‑biological process (GO-BP) enrichment analysis revealed that the 19 kinases were mainly associated with phosphorylation. The protein-protein interaction network exhibited 30 differentially expressed genes that interacted with BRAF, and GO-BP enrichment analysis showed the function of these genes were mainly involved in cell death and apoptosis. The kinase-kinase inhibitor regulatory network identified16 kinase inhibitors that specifically inhibited BRAF. Previous studies indicated that sorafenib is capable of regulating autophagy and regorafenib has also been reported; however, there have been no studies regarding the regulation of autophagy by afatinib, selumetinib, PD318088, axitinib, TAK-733, GDC-0980, GSK2126458, PLX-4720, AS703026, trametinib, GDC-0941 and PF-04217903. Thus, these kinase inhibitors are potential targets for further study on the regulation of autophagy in the future.

  4. CMP kinase from Escherichia coli is structurally related to other nucleoside monophosphate kinases.

    PubMed

    Bucurenci, N; Sakamoto, H; Briozzo, P; Palibroda, N; Serina, L; Sarfati, R S; Labesse, G; Briand, G; Danchin, A; Bărzu, O; Gilles, A M

    1996-02-02

    CMP kinase from Escherichia coli is a monomeric protein of 225 amino acid residues. The protein exhibits little overall sequence similarities with other known NMP kinases. However, residues involved in binding of substrates and/or in catalysis were found conserved, and sequence comparison suggested conservation of the global fold found in adenylate kinases or in several CMP/UMP kinases. The enzyme was purified to homogeneity, crystallized, and analyzed for its structural and catalytic properties. The crystals belong to the hexagonal space group P6(3), have unit cell parameters a = b = 82.3 A and c = 60.7 A, and diffract x-rays to a 1.9 A resolution. The bacterial enzyme exhibits a fluorescence emission spectrum with maximum at 328 nm upon excitation at 295 nm, which suggests that the single tryptophan residue (Trp30) is located in a hydrophobic environment. Substrate specificity studies showed that CMP kinase from E. coli is active with ATP, dATP, or GTP as donors and with CMP, dCMP, and arabinofuranosyl-CMP as acceptors. This is in contrast with CMP/UMP kinase from Dictyostelium discoideum, an enzyme active on CMP or UMP but much less active on the corresponding deoxynucleotides. Binding of CMP enhanced the affinity of E. coli CMP kinase for ATP or ADP, a particularity never described in this family of proteins that might explain inhibition of enzyme activity by excess of nucleoside monophosphate.

  5. Purification and characterization of a casein kinase 2-type protein kinase from pea nuclei

    NASA Technical Reports Server (NTRS)

    Li, H.; Roux, S. J.

    1992-01-01

    Almost all the polyamine-stimulated protein kinase activity associated with the chromatin fraction of nuclei purified from etiolated pea (Pisum sativum L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.35 molar NaCl. This protein kinase can be further purified over 2000-fold by salt fractionation and anion-exchange and casein-agarose column chromatography, after which it is more than 90% pure. The purified kinase has a specific activity of about 650 nanomoles per minute per milligram protein in the absence of polyamines, with either ATP or GTP as phosphoryl donor. Spermidine can stimulate its activity fourfold, with half-maximal activation at about 2 millimolar. Spermine and putrescine also stimulate activity, although somewhat less effectively. This kinase has a tetrameric alpha 2 beta 2 structure with a native molecular weight of 130,000, and subunit molecular weights of 36,000 for the catalytic subunit (alpha) and 29,000 for the regulatory subunit (beta). In western blot analyses, only the alpha subunit reacts strongly with polyclonal antibodies to a Drosophila casein kinase II. The pea kinase can use casein and phosvitin as artificial substrates, phosphorylating both the serine and threonine residues of casein. It has a pH optimum near 8.0, a Vmax of 1.5 micromoles per minute per milligram protein, and a Km for ATP of approximately 75 micromolar. Its activity can be almost completely inhibited by heparin at 5 micrograms per milliliter, but is relatively insensitive to concentrations of staurosporine, K252a, and chlorpromazine that strongly antagonize Ca(2+) -regulated protein kinases. These results are discussed in relation to recent findings that casein kinase 2-type kinases may phosphorylate trans-acting factors that bind to light-regulated promoters in plants.

  6. CZK3, a MAP kinase kinase kinase homolog in Cercospora zeae-maydis, regulates cercosporin biosynthesis, fungal development, and pathogenesis.

    PubMed

    Shim, Won-Bo; Dunkle, Larry D

    2003-09-01

    The fungus Cercospora zeae-maydis causes gray leaf spot of maize and produces cercosporin, a photosensitizing perylenequinone with toxic activity against a broad spectrum of organisms. However, little is known about the biosynthetic pathway or factors that regulate cercosporin production. Analysis of a cDNA subtraction library comprised of genes that are up-regulated during cercosporin synthesis revealed a sequence highly similar to mitogen-activated protein (MAP) kinases in other fungi. Sequencing and conceptual translation of the full-length genomic sequence indicated that the gene, which we designated CZK3, contains a 4,119-bp open reading frame devoid of introns and encodes a 1,373-amino acid sequence that is highly similar to Wis4, a MAP kinase kinase kinase in Schizosaccharomyces pombe. Targeted disruption of CZK3 suppressed expression of genes predicted to participate in cercosporin biosynthesis and abolished cercosporin production. The disrupted mutants grew faster on agar media than the wild type but were deficient in conidiation and elicited only small chlorotic spots on inoculated maize leaves compared with rectangular necrotic lesions incited by the wild type. Complementation of disruptants with the CZK3 open reading frame and flanking sequences restored wild-type levels of conidiation, growth rate, and virulence as well as the ability to produce cercosporin. The results suggest that cercosporin is a virulence factor in C. zeae-maydis during maize pathogenesis, but the pleiotropic effects of CZK3 disruption precluded definitive conclusions.

  7. A semisynthetic Eph receptor tyrosine kinase provides insight into ligand-induced kinase activation

    PubMed Central

    Singla, Nikhil; Erdjument-Bromage, Hediye; Himanen, Juha P.; Muir, Tom W.; Nikolov, Dimitar B.

    2011-01-01

    SUMMARY We have developed a methodology for generating milligram amounts of functional Eph tyrosine kinase receptor using the protein engineering approach of expressed protein ligation. Stimulation with ligand induces efficient autophosphorylation of the semisynthetic Eph construct. The in vitro phosphorylation of key Eph tyrosine residues upon ligand-induced activation was monitored via time-resolved, quantitative phosphoproteomics, suggesting a precise and unique order of phosphorylation of the Eph tyrosines in the kinase activation process. To our knowledge, this work represents the first reported semisynthesis of a receptor tyrosine kinase and provides a potentially general method for producing single-pass membrane proteins for structural and biochemical characterization. PMID:21439481

  8. Role of Protein Kinase C, PI3-kinase and Tyrosine Kinase in Activation of MAP Kinase by Glucose and Agonists of G-protein Coupled Receptors in INS-1 Cells

    PubMed Central

    Böcker, Dietmar

    2001-01-01

    MAP (mitogen-activated protein) kinase (also called Erk 1/2) plays a crucial role in cell proliferation and differentiation. Its impact on secretory events is less well established. The interplay of protein kinase C (PKC), PI3-kinase nd cellular tyrosine kinase with MAP kinase activity using inhibitors and compounds such as glucose, phorbol 12-myristate 13-acetate (PMA) and agonists of G-protein coupled receptors like gastrin releasing peptide (GRP), oxytocin (OT) and glucose-dependent insulinotropic peptide (GIP) was investigated in INS-1 cells, an insulin secreting cell line. MAP kinase activity was determined by using a peptide derived from the EGF receptor as a MAP kinase substrate and [ P 32 ]ATP. Glucose as well as GRP, OT and GIP exhibited a time-dependent increase in MAP kinase activity with a maximum at time point 2.5 min. All further experiments were performed using 2.5 min incubations. The flavone PD 098059 is known to bind to the inactive forms of MEK1 (MAPK/ERK-Kinase) thus preventing activation by upstream activators. 20 μM PD 098059 ( IC 50 =51 μM) inhibited MAP kinase stimulated by either glucose, GRP, OT, GIP or PMA. Inhibiton (“downregulation”) of PKC by a long term (22h) pretreatment with 1 μM PMA did not influence MAP kinase activity when augmented by either of the above mentioned compound. To investigate whether PI3-kinase and cellular tyrosine kinase are involved in G-protein mediated effects on MAP kinase, inhibitors were used: 100 nM wortmannin (PI3-kinase inhibitor) reduced the effects of GRP, OT and GIP but not that of PMA; 100 μM genistein (tyrosine kinase inhibitor) inhibited the stimulatory effect of either above mentioned compound on MAP kinase activation. Inhibition of MAP kinase by 20 μM PD 098059 did not influence insulin secretion modulated by either compound (glucose, GRP, OT or GIP). [ H 3 ]Thymidine incorporation, however, was severely inhibited by PD 098059. Thus MAP kinase is important for INS-1 cell proliferation but

  9. Who will lead?

    PubMed

    Gustafson, R P; Schlosser, J R

    1997-01-01

    A recent survey conducted by the UCLA Center for Health Services Management and the Physician Executive Practice of Heidrick & Struggles, an executive search firm, sheds light on the emerging physician executive's role. The goal of the research was to identify success factors as a means of evaluating and developing effective industry leaders. Respondents were asked to look at specific skills in relation to nine categories: Communication, leadership, interpersonal skills, self-motivation/management, organizational knowledge, organizational strategy, administrative skills, and thinking. Communication, leadership, and self-motivation/management emerged, in that order, as the three most important success factors for physician executives. An individual's general competencies, work styles, and ability to lead others through organizational restructuring defines his or her appropriateness for managerial positions in the health care industry.

  10. Cofilin takes the lead.

    PubMed

    DesMarais, Vera; Ghosh, Mousumi; Eddy, Robert; Condeelis, John

    2005-01-01

    Cofilin has emerged as a key regulator of actin dynamics at the leading edge of motile cells. Through its actin-severing activity, it creates new actin barbed ends for polymerization and also depolymerizes old actin filaments. Its function is tightly regulated in the cell. Spatially, its activity is restricted by other actin-binding proteins, such as tropomyosin, which compete for accessibility of actin filament populations in different regions of the cell. At the molecular level, it is regulated by phosphorylation, pH and phosphatidylinositol (4,5)-bisphosphate binding downstream of signaling cascades. In addition, it also appears to be regulated by interactions with 14-3-3zeta and cyclase-associated protein. In vivo, cofilin acts synergistically with the Arp2/3 complex to amplify local actin polymerization responses upon cell stimulation, which gives it a central role in setting the direction of motility in crawling cells.

  11. Blood Test: Lead (For Parents)

    MedlinePlus

    ... and when based on a child's risk for lead poisoning. Those who are considered at risk — such as ... How Do I Get My Child Tested for Lead Poisoning? Lead Poisoning Pica Getting a Blood Test (Video) ...

  12. Antiferroelectricity in lead zirconate

    NASA Astrophysics Data System (ADS)

    Tagantsev, Alexander K.

    2014-03-01

    Antiferroelectrics are essential ingredients for widely applied piezoelectric and ferroelectric materials. Despite their technological importance, the reason why materials become antiferroelectric has remained allusive since their first discovery. Experimentally, antiferroelectrics can be recognized as materials that exhibit a structural phase transition between two non-polar phases with a strong dielectric anomaly at the high temperature side of the transition. Despite a widely spread opinion that these materials can be viewed as direct analogues of antiferromagnetics, the so-called anti-polar ionic displacements at the transition do not guaranty the antiferroelectric behavior of the material while the interpretation of such behavior does not require the incorporation of the anti-polar ionic displacements in the scenario. To get insight in the true origin of antiferroelectricity, we studied the lattice dynamics of the antiferroelectric lead zirconate using inelastic and diffuse X-ray scattering techniques and the Brillouin light scattering. Based on our experimental data, we showed that the driving force for antiferroelectricity is a ferroelectric instability. Through flexoelectric coupling, it drives the system to a state, which is virtually unstable against incommensurate modulations. However, the Umklapp interaction allows the system to go directly to the commensurate lock-in phase, leaving the incommensurate phase as a ``missed'' opportunity. By this mechanism the ferroelectric softening is transformed into an antiferroelectric transition. The remaining key parts of the whole scenario are repulsive and attractive biquadratic couplings that suppress the appearance of the spontaneous polarization and induce the anti-phase octahedral rotations in the low-temperature phase. The analysis of the results reveals that the antiferroelectric state is a ``missed'' incommensurate phase, and that the paraelectric to antiferroelectric phase transition is driven by the

  13. Leading from the boardroom.

    PubMed

    Lorsch, Jay W; Clark, Robert C

    2008-04-01

    These days, boards are working overtime to comply with Sarbanes-Oxley and other governance requirements meant to protect shareholders from executive wrongdoing. But as directors have become more hands-on with compliance, they've become more hands-off with long-range planning. That exposes corporations and their shareholders to another--perhaps even greater--risk, say professors Lorsch, of Harvard Business School, and Clark, of Harvard Law School. Boards are giving the long term short shrift for a number of reasons. Despite much heavier workloads, directors haven't rethought their patterns of operating - their meetings, committees, and other interactions. Compliance has changed their relationship with executives, however, turning directors into micromanagers who closely probe executives' actions instead of providing high-level guidance. Meanwhile, the pressure to meet quarterly expectations intensifies. Directors need to do a better job of balancing compliance with forward thinking. Boardroom effectiveness hinges most on the quality of directors and their interactions, the authors' research shows. Directors must apply their wisdom broadly, handling compliance work more efficiently and staying out of the weeds on strategic issues. Using their power with management to evangelize for long-term planning, they must take the lead on discussions about financial infrastructure, talent development, and strategy. Reserving sacrosanct time for such discussions, as Philips Electronics' board does at annual retreats, is an effective practice: After one recent retreat, Philips decided to exit the semiconductor business, where it was losing ground. Individual directors also must not shy away from asking tough questions and acting as catalysts on critical issues, such as grooming a successor to the CEO. In short, directors must learn to lead from the boardroom.

  14. The unique protein kinase Cη: implications for breast cancer (review).

    PubMed

    Pal, Deepanwita; Basu, Alakananda

    2014-08-01

    Deregulation of key signal transduction pathways that govern important cellular processes leads to cancer. The development of effective therapeutics for cancer warrants a comprehensive understanding of the signaling pathways that are deregulated in cancer. The protein kinase C (PKC) family has served as an attractive target for cancer therapy for decades owing to its crucial roles in several cellular processes. PKCη is a novel member of the PKC family that plays critical roles in various cellular processes such as growth, proliferation, differentiation and cell death. The regulation of PKCη appears to be unique compared to other PKC isozymes, and there are conflicting reports regarding its role in cancer. This review focuses on the unique aspects of PKCη in terms of its structure, regulation and subcellular distribution and speculates on how these features could account for its distinct functions. We have also discussed the functional implications of PKCη in cancer with particular emphasis on breast cancer.

  15. Design and Synthesis of Novel Macrocyclic Mer Tyrosine Kinase Inhibitors.

    PubMed

    Wang, Xiaodong; Liu, Jing; Zhang, Weihe; Stashko, Michael A; Nichols, James; Miley, Michael J; Norris-Drouin, Jacqueline; Chen, Zhilong; Machius, Mischa; DeRyckere, Deborah; Wood, Edgar; Graham, Douglas K; Earp, H Shelton; Kireev, Dmitri; Frye, Stephen V

    2016-12-08

    Mer tyrosine kinase (MerTK) is aberrantly elevated in various tumor cells and has a normal anti-inflammatory role in the innate immune system. Inhibition of MerTK may provide dual effects against these MerTK-expressing tumors through reducing cancer cell survival and redirecting the innate immune response. Recently, we have designed novel and potent macrocyclic pyrrolopyrimidines as MerTK inhibitors using a structure-based approach. The most active macrocycles had an EC50 below 40 nM in a cell-based MerTK phosphor-protein ELISA assay. The X-ray structure of macrocyclic analogue 3 complexed with MerTK was also resolved and demonstrated macrocycles binding in the ATP binding pocket of the MerTK protein as anticipated. In addition, the lead compound 16 (UNC3133) had a 1.6 h half-life and 16% oral bioavailability in a mouse PK study.

  16. Polynucleotide Kinase-Phosphatase (PNKP) Mutations and Neurologic Disease

    PubMed Central

    Dumitrache, Lavinia C.; McKinnon, Peter J.

    2016-01-01

    A variety of human neurologic diseases are caused by inherited defects in DNA repair. In many cases, these syndromes almost exclusively impact the nervous system, underscoring the critical requirement for genome stability in this tissue. A striking example of this is defective enzymatic activity of polynucleotide kinase-phosphatase (PNKP), leading to microcephaly or neurodegeneration. Notably, the broad neural impact of mutations in PNKP can result in markedly different disease entities, even when the inherited mutation is the same. For example microcephaly with seizures (MCSZ) results from various hypomorphic PNKP mutations, as does ataxia with oculomotor apraxia 4 (AOA4). Thus, other contributing factors influence the neural phenotype when PNKP is disabled. Here we consider the role for PNKP in maintaining brain function and how perturbation in its activity can account for the varied pathology of neurodegeneration or microcephaly present in MCSZ and AOA4 respectively. PMID:27125728

  17. Phosphoinositide kinase signaling controls ER-PM cross-talk

    PubMed Central

    Omnus, Deike J.; Manford, Andrew G.; Bader, Jakob M.; Emr, Scott D.; Stefan, Christopher J.

    2016-01-01

    Membrane lipid dynamics must be precisely regulated for normal cellular function, and disruptions in lipid homeostasis are linked to the progression of several diseases. However, little is known about the sensory mechanisms for detecting membrane composition and how lipid metabolism is regulated in response to membrane stress. We find that phosphoinositide (PI) kinase signaling controls a conserved PDK-TORC2-Akt signaling cascade as part of a homeostasis network that allows the endoplasmic reticulum (ER) to modulate essential responses, including Ca2+-regulated lipid biogenesis, upon plasma membrane (PM) stress. Furthermore, loss of ER-PM junctions impairs this protective response, leading to PM integrity defects upon heat stress. Thus PI kinase–mediated ER-PM cross-talk comprises a regulatory system that ensures cellular integrity under membrane stress conditions. PMID:26864629

  18. Dual activators of Protein Kinase R (PKR) and Protein Kinase R Like Kinase (PERK) Identify Common and Divergent Catalytic Targets

    PubMed Central

    Ming, Jie; Sun, Hong; Cao, Peng; Fusco, Dahlene N.; Chung, Raymond T.; Chorev, Michael; Jin, Qi; Aktas, Bertal H.

    2013-01-01

    Chemical genetics has evolved into a powerful tool for studying gene function in normal- and patho-biology. PKR and PERK, two eukaryotic translation initiation factor 2 alpha (eIF2α) kinases, play critical roles in maintenance of cellular hemostasis, metabolic stability, and anti-viral defenses. Both kinases interact with and phosphorylate additional substrates including tumor suppressor p53 and nuclear protein 90. Loss of function of both kinases has been studied by reverse genetics and recently identified inhibitors. In contrast, activating probes for studying the role of catalytic activity of these kinases are not available. We identified a 3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-5,7-dihydroxy-4H-chromen-4-one (DHBDC) as specific dual activator of PKR and PERK by screening a chemical library of 20,000 small molecules in a dual luciferase surrogate eIF2α phosphorylation assay. We present here extensive biological characterization and preliminary structure-activity relationship of DHBDC, which phosphorylate eIF2α by activating PKR and PERK but no other eIF2α kinases. These agents also activate downstream effectors of eIF2α phosphorylation; inducing CHOP and suppressing cyclin D1 expression and inhibiting cancer cell proliferation, all in a manner dependent on PKR and PERK. Consistent with the role of eIF2α phosphorylation in viral infection, DHBDC inhibits proliferation of human hepatitis C virus. Finally, DHBDC induces phosphorylation of Ikβα, and activates NF-κB pathway. Surprisingly, activation of NF-κB pathway is dependent on PERK but independent of PKR activity. These data indicate that DHBDC is an invaluable probe for elucidating the role of PKR and PERK in normal- and patho-biology. PMID:23784735

  19. Novel bone-targeted Src tyrosine kinase inhibitor drug discovery.

    PubMed

    Shakespeare, William C; Metcalf, Chester A; Wang, Yihan; Sundaramoorthi, Raji; Keenan, Terence; Weigele, Manfred; Bohacek, Regine S; Dalgarno, David C; Sawyer, Tomi K

    2003-09-01

    Bone-targeted Src tyrosine kinase (STK) inhibitors have recently been developed for the treatment of osteoporosis and cancer-related bone diseases. The concept of bone targeting derives from bisphosphonates, and from the evolution of such molecules in terms of therapeutic efficacy for the treatment of bone disorders. Interestingly, some of the earliest bisphosphonates were recognized for their ability to inhibit calcium carbonate precipitation (scaling) by virtue of their affinity to chelate calcium. This chelating property was subsequently exploited in the development of bisphosphonate analogs as inhibitors of the bone-resorbing cells known as osteoclasts, giving rise to breakthrough medicines, such as Fosamax (for the treatment of osteoporosis) and Zometa (for the treatment of osteoporosis and bone metastases). Relative to these milestone achievements, there is a tremendous opportunity to explore beyond the limited chemical space (functional group diversity) of such bisphosphonates to design novel bone-targeting moieties, which may be used to develop other classes of promising small-molecule drugs affecting different biological pathways. Here, we review studies focused on bone-targeted inhibitors of STK, a key enzyme in osteoclast-dependent bone resorption. Two strategies are described relative to bone-targeted STK inhibitor drug discovery: (i) the development of novel Src homology (SH)-2 inhibitors incorporating non-hydrolyzable phosphotyrosine mimics and exhibiting molecular recognition and bone-targeting properties, leading to the in vivo-effective lead compound AP-22408; and (ii) the development of novel ATP-based Src kinase inhibitors incorporating bone-targeting moieties, leading to the in vivo-effective lead compound AP-23236. In summary, AP-22408 and AP-23236, which differ mechanistically by virtue of blocking Src-dependent non-catalytic or catalytic activities in osteoclasts, exemplify ARIAD Pharmaceuticals' structure-based design of novel bone

  20. Mechanisms of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Resistance and Strategies to Overcome Resistance in Lung Adenocarcinoma

    PubMed Central

    Chang, Yoon Soo; Choi, Chang-Min

    2016-01-01

    Somatic mutations that lead to hyperactivation of epidermal growth factor receptor (EGFR) signaling are detected in approximately 50% of lung adenocarcinoma in people from the Far East population and tyrosine kinase inhibitors are now the standard first line treatment for advanced disease. They have led to a doubling of progression-free survival and an increase in overall survival by more than 2 years. However, emergence of resistant clones has become the primary cause for treatment failure, and has created a new challenge in the daily management of patients with EGFR mutations. Identification of mechanisms leading to inhibitor resistance has led to new therapeutic modalities, some of which have now been adapted for patients with unsuccessful tyrosine kinase inhibitor treatment. In this review, we describe mechanisms of tyrosine kinase inhibitor resistance and the available strategies to overcoming resistance. PMID:27790276

  1. Phosphoinositide phosphatases: just as important as the kinases.

    PubMed

    Dyson, Jennifer M; Fedele, Clare G; Davies, Elizabeth M; Becanovic, Jelena; Mitchell, Christina A

    2012-01-01

    Phosphoinositide phosphatases comprise several large enzyme families with over 35 mammalian enzymes identified to date that degrade many phosphoinositide signals. Growth factor or insulin stimulation activates the phosphoinositide 3-kinase that phosphorylates phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] to form phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)], which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) to PtdIns(4,5)P(2), or by the 5-phosphatases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). 5-phosphatases also hydrolyze PtdIns(4,5)P(2) forming PtdIns(4)P. Ten mammalian 5-phosphatases have been identified, which regulate hematopoietic cell proliferation, synaptic vesicle recycling, insulin signaling, and embryonic development. Two 5-phosphatase genes, OCRL and INPP5E are mutated in Lowe and Joubert syndrome respectively. SHIP [SH2 (Src homology 2)-domain inositol phosphatase] 2, and SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) negatively regulate insulin signaling and glucose homeostasis. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. SHIP1 controls hematopoietic cell proliferation and is mutated in some leukemias. The inositol polyphosphate 4-phosphatases, INPP4A and INPP4B degrade PtdIns(3,4)P(2) to PtdIns(3)P and regulate neuroexcitatory cell death, or act as a tumor suppressor in breast cancer respectively. The Sac phosphatases degrade multiple phosphoinositides, such as PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P(2) to form PtdIns. Mutation in the Sac phosphatase gene, FIG4, leads to a degenerative neuropathy. Therefore the phosphatases, like the lipid kinases, play major roles in regulating cellular functions and their mutation or altered expression leads to many human diseases.

  2. Chlamydia trachomatis tarp is phosphorylated by src family tyrosine kinases.

    PubMed

    Jewett, Travis J; Dooley, Cheryl A; Mead, David J; Hackstadt, Ted

    2008-06-27

    The translocated actin recruiting phosphoprotein (Tarp) is injected into the cytosol shortly after Chlamydia trachomatis attachment to a target cell and subsequently phosphorylated by an unidentified tyrosine kinase. A role for Tarp phosphorylation in bacterial entry is unknown. In this study, recombinant C. trachomatis Tarp was employed to identify the host cell kinase(s) required for phosphorylation. Each tyrosine rich repeat of L2 Tarp harbors a sequence similar to a Src and Abl kinase consensus target. Furthermore, purified p60-src, Yes, Fyn, and Abl kinases were able to phosphorylate Tarp. Mutagenesis of potential tyrosines within a single tyrosine rich repeat peptide indicated that both Src and Abl kinases phosphorylate the same residues suggesting that C. trachomatis Tarp may serve as a substrate for multiple host cell kinases. Surprisingly, chemical inhibition of Src and Abl kinases prevented Tarp phosphorylation in culture and had no measurable effect on bacterial entry into host cells.

  3. AGCVIII Kinases: at the crossroads of cellular signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AGCVIII kinases regulate diverse developmental and cellular processes in plants. As putative mediators of secondary messengers, AGCVIII kinases potentially integrate developmental and environmental cues into specific cellular responses through substrate phosphorylation. Here we discuss the functiona...

  4. Monoclonal Antibodies Against Xenopus Greatwall Kinase

    PubMed Central

    Wang, Ling; Fisher, Laura A.; Wahl, James K.

    2011-01-01

    Mitosis is known to be regulated by protein kinases, including MPF, Plk1, Aurora kinases, and so on, which become active in M-phase and phosphorylate a wide range of substrates to control multiple aspects of mitotic entry, progression, and exit. Mechanistic investigations of these kinases not only provide key insights into cell cycle regulation, but also hold great promise for cancer therapy. Recent studies, largely in Xenopus, characterized a new mitotic kinase named Greatwall (Gwl) that plays essential roles in both mitotic entry and maintenance. In this study, we generated a panel of mouse monoclonal antibodies (MAbs) specific for Xenopus Gwl and characterized these antibodies for their utility in immunoblotting, immunoprecipitation, and immunodepletion in Xenopus egg extracts. Importantly, we generated an MAb that is capable of neutralizing endogenous Gwl. The addition of this antibody into M-phase extracts results in loss of mitotic phosphorylation of Gwl, Plk1, and Cdk1 substrates. These results illustrate a new tool to study loss-of-function of Gwl, and support its essential role in mitosis. Finally, we demonstrated the usefulness of the MAb against human Gwl/MASTL. PMID:22008075

  5. 3-phosphoglycerate kinase from Hydrogenomonas facilis.

    NASA Technical Reports Server (NTRS)

    Mcfadden, B. A.; Schuster, E.

    1972-01-01

    Description of studies of the kinetics of heat inactivation of phosphoglycerate kinase in the soluble fraction from Hydrogenomonas facilis, its extensive purification, and inhibition by adenosine monophosphate (AMP). No evidence was found for an enzyme which catalyzes adenosine-triphosphate-dependent conversion of 3-phosphoglycerate to 1,3-diphosphoglycerate, AMP, and phosphate.

  6. Lead absorption in cows: biological indicators of ambient lead exposure

    SciTech Connect

    Karacic, V.; Prpic-Majic, D.; Skender, L.

    1984-03-01

    In order to determine actual lead exposure from residual amounts of lead in the environmental soil following the introduction of effective engineering emission controls in a lead smeltery, the absorption of lead in cows grazing in the vicinity was investigated. Four groups of cows were examined: two groups of cows exposed to different ambient lead concentration, compared with two normal groups of cows. In each cow aminolevulinic acid dehydratase (ALAD), erythrocyte protoporphyrin (EP) and blood lead (Pb-B) were determined, two years prior to and four years after the technical sanitation of the lead emission source. The results demonstrated normalization of ALAD, EP and Pb-B after the technical sanitation. In spite of normalization, biological indicators ALAD and Pb-B determined four years after the technical sanitation showed increased lead absorption in comparison with the results of the control group. This indirectly indicates lead contamination of the environment from residual amounts of lead in the soil.

  7. Luteolin Suppresses Cancer Cell Proliferation by Targeting Vaccinia-Related Kinase 1

    PubMed Central

    Shin, Joon; Harikishore, Amaravadhi; Lim, Jong-Kwan; Jung, Youngseob; Lyu, Ha-Na; Baek, Nam-In; Choi, Kwan Yong; Yoon, Ho Sup; Kim, Kyong-Tai

    2014-01-01

    Uncontrolled proliferation, a major feature of cancer cells, is often triggered by the malfunction of cell cycle regulators such as protein kinases. Recently, cell cycle-related protein kinases have become attractive targets for anti-cancer therapy, because they play fundamental roles in cellular proliferation. However, the protein kinase-targeted drugs that have been developed so far do not show impressive clinical results and also display severe side effects; therefore, there is undoubtedly a need to investigate new drugs targeting other protein kinases that are critical in cell cycle progression. Vaccinia-related kinase 1 (VRK1) is a mitotic kinase that functions in cell cycle regulation by phosphorylating cell cycle-related substrates such as barrier-to-autointegration factor (BAF), histone H3, and the cAMP response element (CRE)-binding protein (CREB). In our study, we identified luteolin as the inhibitor of VRK1 by screening a small-molecule natural compound library. Here, we evaluated the efficacy of luteolin as a VRK1-targeted inhibitor for developing an effective anti-cancer strategy. We confirmed that luteolin significantly reduces VRK1-mediated phosphorylation of the cell cycle-related substrates BAF and histone H3, and directly interacts with the catalytic domain of VRK1. In addition, luteolin regulates cell cycle progression by modulating VRK1 activity, leading to the suppression of cancer cell proliferation and the induction of apoptosis. Therefore, our study suggests that luteolin-induced VRK1 inhibition may contribute to establish a novel cell cycle-targeted strategy for anti-cancer therapy. PMID:25310002

  8. How do kinases contribute to tonicity-dependent regulation of the transcription factor NFAT5?

    PubMed Central

    Zhou, Xiaoming

    2016-01-01

    NFAT5 plays a critical role in maintaining the renal functions. Its dis-regulation in the kidney leads to or is associated with certain renal diseases or disorders, most notably the urinary concentration defect. Hypertonicity, which the kidney medulla is normally exposed to, activates NFAT5 through phosphorylation of a signaling molecule or NFAT5 itself. Hypotonicity inhibits NFAT5 through a similar mechanism. More than a dozen of protein and lipid kinases have been identified to contribute to tonicity-dependent regulation of NFAT5. Hypertonicity activates NFAT5 by increasing its nuclear localization and transactivating activity in the early phase and protein abundance in the late phase. The known mechanism for inhibition of NFAT5 by hypotonicity is a decrease of nuclear NFAT5. The present article reviews the effect of each kinase on NFAT5 nuclear localization, transactivation and protein abundance, and the relationship among these kinases, if known. Cyclosporine A and tacrolimus suppress immune reactions by inhibiting the phosphatase calcineurin-dependent activation of NFAT1. It is hoped that this review would stimulate the interest to seek explanations from the NFAT5 regulatory pathways for certain clinical presentations and to explore novel therapeutic approaches based on the pathways. On the basic science front, this review raises two interesting questions. The first one is how these kinases can specifically signal to NFAT5 in the context of hypertonicity or hypotonicity, because they also regulate other cellular activities and even opposite activities in some cases. The second one is why these many kinases, some of which might have redundant functions, are needed to regulate NFAT5 activity. This review reiterates the concept of signaling through cooperation. Cells need these kinases working in a coordinated way to provide the signaling specificity that is lacking in the individual one. Redundancy in regulation of NFAT5 is a critical strategy for cells to

  9. CAST AWAY, a membrane-associated receptor-like kinase, inhibits organ abscission in Arabidopsis.

    PubMed

    Burr, Christian A; Leslie, Michelle E; Orlowski, Sara K; Chen, Iris; Wright, Catherine E; Daniels, Mark J; Liljegren, Sarah J

    2011-08-01

    Receptor-like kinase-mediated cell signaling pathways play fundamental roles in many aspects of plant growth and development. A pair of Arabidopsis (Arabidopsis thaliana) leucine-rich repeat receptor-like kinases (LRR-RLKs), HAESA (HAE) and HAESA-LIKE2 (HSL2), have been shown to activate the cell separation process that leads to organ abscission. Another pair of LRR-RLKs, EVERSHED (EVR) and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1, act as inhibitors of abscission, potentially by modulating HAE/HSL2 activity. Cycling of these RLKs to and from the cell surface may be regulated by NEVERSHED (NEV), a membrane trafficking regulator that is essential for organ abscission. We report here the characterization of CAST AWAY (CST), a receptor-like cytoplasmic kinase that acts as a spatial inhibitor of cell separation. Disruption of CST suppresses the abscission defects of nev mutant flowers and restores the discrete identity of the trans-Golgi network in nev abscission zones. After organ shedding, enlarged abscission zones with obscured boundaries are found in nev cst flowers. We show that CST is a dual-specificity kinase in vitro and that myristoylation at its amino terminus promotes association with the plasma membrane. Using the bimolecular fluorescence complementation assay, we have detected interactions of CST with HAE and EVR at the plasma membrane of Arabidopsis protoplasts and hypothesize that CST negatively regulates cell separation signaling directly and indirectly. A model integrating the potential roles of receptor-like kinase signaling and membrane trafficking during organ separation is presented.

  10. Elm1 kinase activates the spindle position checkpoint kinase Kin4

    PubMed Central

    Caydasi, Ayse Koca; Kurtulmus, Bahtiyar; Orrico, Maria I.L.; Hofmann, Astrid; Ibrahim, Bashar

    2010-01-01

    Budding yeast asymmetric cell division relies upon the precise coordination of spindle orientation and cell cycle progression. The spindle position checkpoint (SPOC) is a surveillance mechanism that prevents cells with misoriented spindles from exiting mitosis. The cortical kinase Kin4 acts near the top of this network. How Kin4 kinase activity is regulated and maintained in respect to spindle positional cues remains to be established. Here, we show that the bud neck–associated kinase Elm1 participates in Kin4 activation and SPOC signaling by phosphorylating a conserved residue within the activation loop of Kin4. Blocking Elm1 function abolishes Kin4 kinase activity in vivo and eliminates the SPOC response to spindle misalignment. These findings establish a novel function for Elm1 in the coordination of spindle positioning with cell cycle progression via its control of Kin4. PMID:20855503

  11. Toxoplasma gondii calcium-dependent protein kinase 1 is a target for selective kinase inhibitors

    PubMed Central

    Ojo, Kayode K; Larson, Eric T; Keyloun, Katelyn R; Castaneda, Lisa J; DeRocher, Amy E; Inampudi, Krishna K; Kim, Jessica E; Arakaki, Tracy L; Murphy, Ryan C; Zhang, Li; Napuli, Alberto J; Maly, Dustin J; Verlinde, Christophe LMJ; Buckner, Frederick S; Parsons, Marilyn; Hol, Wim GJ; Merritt, Ethan A; Van Voorhis, Wesley C

    2010-01-01

    New drugs are needed to treat toxoplasmosis. Toxoplasma gondii calcium-dependent protein kinases (TgCDPKs) are attractive targets because they are absent in mammals. We show that TgCDPK1 is inhibited by low nanomolar levels of bumped kinase inhibitors (BKIs), compounds designed to be inactive against mammalian kinases. Cocrystal structures of TgCDPK1 with BKIs confirm that the structural basis for selectivity is due to the unique glycine gatekeeper residue in the ATP-binding site at residue 128. We show that BKIs interfere with an early step in T. gondii infection of human cells in culture. Furthermore, we show that TgCDPK1 is the in vivo target of BKIs because T. gondii cells expressing a glycine to methionine gatekeeper mutant enzyme show significantly decreased sensitivity to this class of selective kinase inhibitors. Thus, design of selective TgCDPK1 inhibitors with low host toxicity may be achievable. PMID:20436472

  12. Elm1 kinase activates the spindle position checkpoint kinase Kin4.

    PubMed

    Caydasi, Ayse Koca; Kurtulmus, Bahtiyar; Orrico, Maria I L; Hofmann, Astrid; Ibrahim, Bashar; Pereira, Gislene

    2010-09-20

    Budding yeast asymmetric cell division relies upon the precise coordination of spindle orientation and cell cycle progression. The spindle position checkpoint (SPOC) is a surveillance mechanism that prevents cells with misoriented spindles from exiting mitosis. The cortical kinase Kin4 acts near the top of this network. How Kin4 kinase activity is regulated and maintained in respect to spindle positional cues remains to be established. Here, we show that the bud neck-associated kinase Elm1 participates in Kin4 activation and SPOC signaling by phosphorylating a conserved residue within the activation loop of Kin4. Blocking Elm1 function abolishes Kin4 kinase activity in vivo and eliminates the SPOC response to spindle misalignment. These findings establish a novel function for Elm1 in the coordination of spindle positioning with cell cycle progression via its control of Kin4.

  13. Pyrrolopyridine inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2).

    PubMed

    Anderson, David R; Meyers, Marvin J; Vernier, William F; Mahoney, Matthew W; Kurumbail, Ravi G; Caspers, Nicole; Poda, Gennadiy I; Schindler, John F; Reitz, David B; Mourey, Robert J

    2007-05-31

    A new class of potent kinase inhibitors selective for mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2 or MK-2) for the treatment of rheumatoid arthritis has been prepared and evaluated. These inhibitors have IC50 values as low as 10 nM against the target and have good selectivity profiles against a number of kinases including CDK2, ERK, JNK, and p38. These MK-2 inhibitors have been shown to suppress TNFalpha production in U397 cells and to be efficacious in an acute inflammation model. The structure-activity relationships of this series, the selectivity for MK-2 and their activity in both in vitro and in vivo models are discussed. The observed selectivity is discussed with the aid of an MK-2/inhibitor crystal structure.

  14. Crystal Structure of the Protein Kinase Domain of Yeast AMP-Activated Protein Kinase Snf1

    SciTech Connect

    Rudolph,M.; Amodeo, G.; Bai, Y.; Tong, L.

    2005-01-01

    AMP-activated protein kinase (AMPK) is a master metabolic regulator, and is an important target for drug development against diabetes, obesity, and other diseases. AMPK is a hetero-trimeric enzyme, with a catalytic ({alpha}) subunit, and two regulatory ({beta} and {gamma}) subunits. Here we report the crystal structure at 2.2 Angstrom resolution of the protein kinase domain (KD) of the catalytic subunit of yeast AMPK (commonly known as SNF1). The Snf1-KD structure shares strong similarity to other protein kinases, with a small N-terminal lobe and a large C-terminal lobe. Two negative surface patches in the structure may be important for the recognition of the substrates of this kinase.

  15. Protein Kinases in Mammary Gland Development and Carcinogenesis

    DTIC Science & Technology

    1999-09-01

    differ among CaM kinase family members include their subcellular localization , regulation by autophosphorylation, and regulation by other proteins. In...addition, CaM kinases have unique amino- and carboxyl- terminal domains that contribute to kinase-specific differences in subcellular localization ...chromosomal localization of Punc, a calcium/calmodulin-dependent protein kinase, (Submitted). 14. Hennings, H., Glick, A., Lowry, D., Krsmanovic, L

  16. Kinase detection with gallium nitride based high electron mobility transistors.

    PubMed

    Makowski, Matthew S; Bryan, Isaac; Sitar, Zlatko; Arellano, Consuelo; Xie, Jinqiao; Collazo, Ramon; Ivanisevic, Albena

    2013-07-01

    A label-free kinase detection system was fabricated by the adsorption of gold nanoparticles functionalized with kinase inhibitor onto AlGaN/GaN high electron mobility transistors (HEMTs). The HEMTs were operated near threshold voltage due to the greatest sensitivity in this operational region. The Au NP/HEMT biosensor system electrically detected 1 pM SRC kinase in ionic solutions. These results are pertinent to drug development applications associated with kinase sensing.

  17. Kinase activity profiling of gram-negative pneumonia.

    PubMed

    Hoogendijk, Arie J; Diks, Sander H; Peppelenbosch, Maikel P; Van Der Poll, Tom; Wieland, Catharina W

    2011-01-01

    Pneumonia is a severe disease with high morbidity and mortality. A major causative pathogen is the Gram-negative bacterium Klebsiella (K.) pneumoniae. Kinases play an integral role in the transduction of intracellular signaling cascades and regulate a diverse array of biological processes essential to immune cells. The current study explored signal transduction events during murine Gram-negative pneumonia using a systems biology approach. Kinase activity arrays enable the analysis of 1,024 consensus sequences of protein kinase substrates. Using a kinase activity array on whole lung lysates, cellular kinase activities were determined in a mouse model of K. pneumoniae pneumonia. Notable kinase activities also were validated with phospho-specific Western blots. On the basis of the profiling data, mitogen-activated protein kinase (MAPK) signaling via p42 mitogen-activated protein kinase (p42) and p38 mitogen-activated protein kinase (p38) and transforming growth factor β (TGFβ) activity were reduced during infection, whereas v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) (SRC) activity generally was enhanced. AKT signaling was represented in both metabolic and inflammatory (mitogen-activated protein kinase kinase 2 [MKK], apoptosis signal-regulating kinase/mitogen-activated protein kinase kinase kinase 5 [ASK] and v-raf murine sarcoma viral oncogene homolog B1 [b-RAF]) context. This study reaffirms the importance of classic inflammation pathways, such as MAPK and TGFβ signaling and reveals less known involvement of glycogen synthase kinase 3β (GSK-3β), AKT and SRC signaling cassettes in pneumonia.

  18. An Evolutionary View of the Arms Race between Protein Kinase R and Large DNA Viruses

    PubMed Central

    Carpentier, Kathryn S.

    2016-01-01

    To establish productive infections, viruses must counteract numerous cellular defenses that are poised to recognize viruses as nonself and to activate antiviral pathways. The opposing goals of host and viral factors lead to evolutionary arms races that can be illuminated by evolutionary and computational methods and tested in experimental models. Here we illustrate how this perspective has been contributing to our understanding of the interactions of the protein kinase R pathway with large DNA viruses. PMID:26792736

  19. Lead-acid battery

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1983-01-01

    A light weight lead-acid battery (30) having a positive terminal (36) and a negative terminal (34) and including one or more cells or grid stacks having a plurality of vertically stacked conductive monoplates (10, 20) with positive active material and negative active material deposited on alternating plates in the cell or grid stack. Electrolyte layers (26, 28) positioned between each monoplate are included to provide a battery cell having four sides which is capable of being electrically charged and discharged. Two vertical positive bus bars (42, 43) are provided on opposite sides of the battery cell for connecting the monoplates (10) with positive active material together in parallel current conducting relation. In addition, two negative bus bars (38, 39) on opposite sides of the battery cell each being adjacent the positive bus bars are provided for connecting the monoplates (20) with negative active material together in parallel current conducting relation. The positive (42, 43) and negative (38, 39) bus bars not only provide a low resistance method for connecting the plurality of conductive monoplates of their respective battery terminals (36, 34) but also provides support and structural strength to the battery cell structure. In addition, horizontal orientation of monoplates (10, 20) is provided in a vertical stacking arrangement to reduce electrolyte stratification and short circuiting due to flaking of positive and negative active materials from the monoplates.

  20. Europa's Leading Hemisphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of Europa's leading hemisphere was obtained by the solid state imaging (CCD) system on board NASA's Galileo spacecraft during its seventh orbit of Jupiter. In the upper left part of the image is Tyre, a multi-ringed structure that may have formed as a result of an ancient impact. Also visible are numerous lineaments that extend for over 1000 kilometers. The limb, or edge, of Europa in this image can be used by scientists to constrain the radius and shape of the satellite. North is to the top of the picture and the sun illuminates the surface from the right. The image, centered at -40 latitude and 180 longitude, covers an area approximately 2000 by 1300 kilometers. The finest details that can be discerned in this picture are about 6.6 kilometers across. The images were taken on April 3, 1997 at 17 hours, 42 minutes, 19 seconds Universal Time when the spacecraft was at a range of 31,8628 kilometers.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo