Sample records for kinematic reference frame

  1. Physics of Non-Inertial Reference Frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamalov, Timur F.

    2010-12-22

    Physics of non-inertial reference frames is a generalizing of Newton's laws to any reference frames. It is the system of general axioms for classical and quantum mechanics. The first, Kinematics Principle reads: the kinematic state of a body free of forces conserves and equal in absolute value to an invariant of the observer's reference frame. The second, Dynamics Principle extended Newton's second law to non-inertial reference frames and also contains additional variables there are higher derivatives of coordinates. Dynamics Principle reads: a force induces a change in the kinematic state of the body and is proportional to the rate ofmore » its change. It is mean that if the kinematic invariant of the reference frame is n-th derivative with respect the time, then the dynamics of a body being affected by the force F is described by the 2n-th differential equation. The third, Statics Principle reads: the sum of all forces acting a body at rest is equal to zero.« less

  2. Connecting kinematic and dynamic reference frames by D-VLBI

    NASA Astrophysics Data System (ADS)

    Schuh, Harald; Plank, Lucia; Madzak, Matthias; Böhm, Johannes

    2012-08-01

    In geodetic and astrometric practice, terrestrial station coordinates are usually provided in the kinematic International Terrestrial Reference Frame (ITRF) and radio source coordinates in the International Celestial Reference Frame (ICRF), whereas measurements of space probes such as satellites and spacecrafts, or planetary ephemerides rest upon dynamical theories. To avoid inconsistencies and errors during measurement and calculation procedures, exact frame ties between quasi - inertial, kinematic and dynamic reference frames have to be secured. While the Earth Orientation Parameters (EOP), e.g. measured by VLBI, link the ITRF to the ICRF, the ties with the dynamic frames can be established with the differential Very Long Baseline Interferometry (D - VLBI) method. By observing space probes alternately t o radio sources, the relative position of the targets to each other on the sky can be determined with high accuracy. While D - VLBI is a common technique in astrophysics (source imaging) and deep space navigation, just recently there have been several effort s to use it for geodetic purposes. We present investigations concerning possible VLBI observations to satellites. This includes the potential usage of available GNNS satellites as well as specifically designed missions, as e.g. the GRASP mission proposed b y JPL/NASA and an international consortium, where the aspect of co - location in space of various techniques (VLBI, SLR, GNSS, DORIS) is the main focus.

  3. Overall properties of the Gaia DR1 reference frame

    NASA Astrophysics Data System (ADS)

    Liu, N.; Zhu, Z.; Liu, J.-C.; Ding, C.-Y.

    2017-03-01

    Aims: The first Gaia data release (Gaia DR1) provides 2191 ICRF2 sources with their positions in the auxiliary quasar solution and five astrometric parameters - positions, parallaxes, and proper motions - for stars in common between the Tycho-2 catalogue and Gaia in the joint Tycho-Gaia astrometric solution (TGAS). We aim to analyze the overall properties of Gaia DR1 reference frame. Methods: We compare quasar positions of the auxiliary quasar solution with ICRF2 sources using different samples and evaluate the influence on the Gaia DR1 reference frame owing to the Galactic aberration effect over the J2000.0-J2015.0 period. Then we estimate the global rotation between TGAS with Tycho-2 proper motion systems to investigate the property of the Gaia DR1 reference frame. Finally, the Galactic kinematics analysis using the K-M giant proper motions is performed to understand the property of Gaia DR1 reference frame. Results: The positional comparison between the auxiliary quasar solution and ICRF2 shows negligible orientation and validates the declination bias of -0.1mas in Gaia quasar positions with respect to ICRF2. Galactic aberration effect is thought to cause an offset 0.01mas of the Z axis direction of Gaia DR1 reference frame. The global rotation between TGAS and Tycho-2 proper motion systems, obtained by different samples, shows a much smaller value than the claimed value 0.24mas yr-1. For the Galactic kinematics analysis of the TGAS K-M giants, we find possible non-zero Galactic rotation components beyond the classical Oort constants: the rigid part ωYG = -0.38±0.15mas yr-1 and the differential part ω^primeYG = -0.29±0.19mas yr-1 around the YG axis of Galactic coordinates, which indicates possible residual rotation in Gaia DR1 reference frame or problems in the current Galactic kinematical model. Conclusions: The Gaia DR1 reference frame is well aligned to ICRF2, and the possible influence of the Galactic aberration effect should be taken into consideration for the future Gaia-ICRF link. The cause of the rather small global rotation between TGAS and Tycho-2 proper motion systems is unclear and needs further investigation. The possible residual rotation in Gaia DR1 reference frame inferred from the Galactic kinematic analysis should be noted and examined in future data release.

  4. Spatial visualization in physics problem solving.

    PubMed

    Kozhevnikov, Maria; Motes, Michael A; Hegarty, Mary

    2007-07-08

    Three studies were conducted to examine the relation of spatial visualization to solving kinematics problems that involved either predicting the two-dimensional motion of an object, translating from one frame of reference to another, or interpreting kinematics graphs. In Study 1, 60 physics-naíve students were administered kinematics problems and spatial visualization ability tests. In Study 2, 17 (8 high- and 9 low-spatial ability) additional students completed think-aloud protocols while they solved the kinematics problems. In Study 3, the eye movements of fifteen (9 high- and 6 low-spatial ability) students were recorded while the students solved kinematics problems. In contrast to high-spatial students, most low-spatial students did not combine two motion vectors, were unable to switch frames of reference, and tended to interpret graphs literally. The results of the study suggest an important relationship between spatial visualization ability and solving kinematics problems with multiple spatial parameters. 2007 Cognitive Science Society, Inc.

  5. Kinematics of Laying an Automated Weapon System

    DTIC Science & Technology

    2017-07-19

    mathematical transformation is required to move the firing solution from its reference frame to a reference frame that is meaningful to the weapon system. This...Procedures 2 Conventions and Variable Definitions 2 Rotation Matrices 5 Transformation of a Vector 5 Conversion Between Cartestian and Spherical...Coordinate Systems 6 Transformation of Earth Referenced Lay to Platform Reference Frame 6 Results and Discussions 7 Conclusions 8 Bibliography 9

  6. Mapping From an Instrumented Glove to a Robot Hand

    NASA Technical Reports Server (NTRS)

    Goza, Michael

    2005-01-01

    An algorithm has been developed to solve the problem of mapping from (1) a glove instrumented with joint-angle sensors to (2) an anthropomorphic robot hand. Such a mapping is needed to generate control signals to make the robot hand mimic the configuration of the hand of a human attempting to control the robot. The mapping problem is complicated by uncertainties in sensor locations caused by variations in sizes and shapes of hands and variations in the fit of the glove. The present mapping algorithm is robust in the face of these uncertainties, largely because it includes a calibration sub-algorithm that inherently adapts the mapping to the specific hand and glove, without need for measuring the hand and without regard for goodness of fit. The algorithm utilizes a forward-kinematics model of the glove derived from documentation provided by the manufacturer of the glove. In this case, forward-kinematics model signifies a mathematical model of the glove fingertip positions as functions of the sensor readings. More specifically, given the sensor readings, the forward-kinematics model calculates the glove fingertip positions in a Cartesian reference frame nominally attached to the palm. The algorithm also utilizes an inverse-kinematics model of the robot hand. In this case, inverse-kinematics model signifies a mathematical model of the robot finger-joint angles as functions of the robot fingertip positions. Again, more specifically, the inverse-kinematics model calculates the finger-joint commands needed to place the fingertips at specified positions in a Cartesian reference frame that is attached to the palm of the robot hand and that nominally corresponds to the Cartesian reference frame attached to the palm of the glove. Initially, because of the aforementioned uncertainties, the glove fingertip positions calculated by the forwardkinematics model in the glove Cartesian reference frame cannot be expected to match the robot fingertip positions in the robot-hand Cartesian reference frame. A calibration must be performed to make the glove and robot-hand fingertip positions correspond more precisely. The calibration procedure involves a few simple hand poses designed to provide well-defined fingertip positions. One of the poses is a fist. In each of the other poses, a finger touches the thumb. The calibration subalgorithm uses the sensor readings from these poses to modify the kinematical models to make the two sets of fingertip positions agree more closely.

  7. Design of a Two-Step Calibration Method of Kinematic Parameters for Serial Robots

    NASA Astrophysics Data System (ADS)

    WANG, Wei; WANG, Lei; YUN, Chao

    2017-03-01

    Serial robots are used to handle workpieces with large dimensions, and calibrating kinematic parameters is one of the most efficient ways to upgrade their accuracy. Many models are set up to investigate how many kinematic parameters can be identified to meet the minimal principle, but the base frame and the kinematic parameter are indistinctly calibrated in a one-step way. A two-step method of calibrating kinematic parameters is proposed to improve the accuracy of the robot's base frame and kinematic parameters. The forward kinematics described with respect to the measuring coordinate frame are established based on the product-of-exponential (POE) formula. In the first step the robot's base coordinate frame is calibrated by the unit quaternion form. The errors of both the robot's reference configuration and the base coordinate frame's pose are equivalently transformed to the zero-position errors of the robot's joints. The simplified model of the robot's positioning error is established in second-power explicit expressions. Then the identification model is finished by the least square method, requiring measuring position coordinates only. The complete subtasks of calibrating the robot's 39 kinematic parameters are finished in the second step. It's proved by a group of calibration experiments that by the proposed two-step calibration method the average absolute accuracy of industrial robots is updated to 0.23 mm. This paper presents that the robot's base frame should be calibrated before its kinematic parameters in order to upgrade its absolute positioning accuracy.

  8. Spatial Visualization in Physics Problem Solving

    ERIC Educational Resources Information Center

    Kozhevnikov, Maria; Motes, Michael A.; Hegarty, Mary

    2007-01-01

    Three studies were conducted to examine the relation of spatial visualization to solving kinematics problems that involved either predicting the two-dimensional motion of an object, translating from one frame of reference to another, or interpreting kinematics graphs. In Study 1, 60 physics-naive students were administered kinematics problems and…

  9. The error of L5/S1 joint moment calculation in a body-centered non-inertial reference frame when the fictitious force is ignored.

    PubMed

    Xu, Xu; Faber, Gert S; Kingma, Idsart; Chang, Chien-Chi; Hsiang, Simon M

    2013-07-26

    In ergonomics studies, linked segment models are commonly used for estimating dynamic L5/S1 joint moments during lifting tasks. The kinematics data input to these models are with respect to an arbitrary stationary reference frame. However, a body-centered reference frame, which is defined using the position and the orientation of human body segments, is sometimes used to conveniently identify the location of the load relative to the body. When a body-centered reference frame is moving with the body, it is a non-inertial reference frame and fictitious force exists. Directly applying a linked segment model to the kinematics data with respect to a body-centered non-inertial reference frame will ignore the effect of this fictitious force and introduce errors during L5/S1 moment estimation. In the current study, various lifting tasks were performed in the laboratory environment. The L5/S1 joint moments during the lifting tasks were calculated by a linked segment model with respect to a stationary reference frame and to a body-centered non-inertial reference frame. The results indicate that applying a linked segment model with respect to a body-centered non-inertial reference frame will result in overestimating the peak L5/S1 joint moments of the coronal plane, sagittal plane, and transverse plane during lifting tasks by 78%, 2%, and 59% on average, respectively. The instant when the peak moment occurred was delayed by 0.13, 0.03, and 0.09s on average, correspondingly for the three planes. The root-mean-square errors of the L5/S1 joint moment for the three planes are 21Nm, 19Nm, and 9Nm, correspondingly. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Left-lateral transtension along the Ethiopian Rift and constrains on the mantle-reference plate motions

    NASA Astrophysics Data System (ADS)

    Muluneh, Ameha A.; Cuffaro, Marco; Doglioni, Carlo

    2014-09-01

    We present the kinematics of the Ethiopian Rift, in the northern part of East African Rift System, derived from compilation of geodetic velocities, focal mechanism inversions, structural data analysis and geological profiles. In the central Ethiopian Rift, the GPS velocity field shows a systematic magnitude increase in ENE direction, and the incremental extensional strain axes recorded by earthquake focal mechanisms and fault slip inversion show ≈ N100°E orientation. This deviation between direction of GPS velocity vectors and orientation of incremental extensional strain is developed due to left lateral transtensional deformation along the NE-SW trending segment of the rift. This interpretation is consistent with the en-échelon pattern of tensional and transtensional faults, plus the distribution of the volcanic centers, and the asymmetry of the rift itself. We analyzed the kinematics of the Ethiopian Rift also relative to the mantle comparing the results in the deep and shallow hotspot reference frames. While the oblique orientation of the rift was controlled by the pre-existing lithospheric fabric, the two reference frames predict different kinematics of Africa and Somalia plates along the rift itself, both in magnitude and direction, and with respect to the mantle. However, the observed kinematics and tectonics along the rift are more consistent with a faster WSW-ward motion of Africa than Somalia observed in the shallow hotspot framework. The faster WSW motion of Africa with respect to Somalia plate is inferred to be due to the lower viscosity in the top asthenosphere (LVZ-low-velocity zone) beneath Africa. These findings have significant implication for the evolution of continental rifting in transtensional settings and provide evidence for the kinematics of the Ethiopian Rift in the context of the Africa-Somalia plate interaction in the mantle reference frame.

  11. Kinematics of the Ethiopian Rift and Absolute motion of Africa and Somalia Plates

    NASA Astrophysics Data System (ADS)

    Muluneh, A. A.; Cuffaro, M.; Doglioni, C.

    2013-12-01

    The Ethiopian Rift (ER), in the northern part of East African Rift System (EARS), forms a boundary zone accommodating differential motion between Africa and Somalia Plates. Its orientation was influenced by the inherited Pan-African collisional system and related lithospheric fabric. We present the kinematics of ER derived from compilation of geodetic velocities, focal mechanism inversions, structural data analysis, and construction of geological profiles. GPS velocity field shows a systematic eastward magnitude increase in NE direction in the central ER. In the same region, incremental extensional strain axes recorded by earthquake focal mechanism and fault slip inversion show ≈N1000E orientation. This deviation between GPS velocity trajectories and orientation of incremental extensional strain is developed due to left lateral transtensional deformation. This interpretation is consistent with the en-échelon pattern of tensional and transtensional faults, the distribution of the volcanic centers, and the asymmetry of the rift itself. Small amount of vertical axis blocks rotation, sinistral strike slip faults and dyke intrusions in the rift accommodate the transtensional deformation. We analyzed the kinematics of ER relative to Deep and Shallow Hot Spot Reference Frames (HSRF). Comparison between the two reference frames shows different kinematics in ER and also Africa and Somalia plate motion both in magnitude and direction. Plate spreading direction in shallow HSRF (i.e. the source of the plumes locates in the asthenosphere) and the trend of ER deviate by about 27°. Shearing and extension across the plate boundary zone contribute both to the style of deformation and overall kinematics in the rift. We conclude that the observed long wavelength kinematics and tectonics are consequences of faster SW ward motion of Africa than Somalia in the shallow HSRF. This reference frame seems more consistent with the geophysical and geological constraints in the Rift. The faster SW motion of Africa with respect to Somalia plate is due to a possibly lower viscosity in the top asthenosphere (Low-Velocity Zone) beneath Africa. These findings have significant implications for the evolution of continental rifting in transtensional settings and provide evidence for the kinematics and tectonics of the Ethiopian rift in the context of the Africa-Somalia plate interaction in the mantle reference frame.

  12. Transformative Relation of Kinematical Descriptive Quantities Defined by Different Spatial Referential Frame, Its Property and Application

    NASA Astrophysics Data System (ADS)

    Luo, Ji

    2012-08-01

    Quantitative transformations between corresponding kinetic quantities defined by any two spatial referential frames, whose relative kinematics relations (purely rotational and translational movement) are known, are presented based on necessarily descriptive definitions of the fundamental concepts (instant, time, spatial referential frame that distinguishes from Maths. Coordination, physical point) had being clarified by directly empirical observation with artificially descriptive purpose. Inductive investigation of the transformation reveals that all physical quantities such as charge, temperature, time, volume, length, temporal rate of the quantities and relations like temporal relation between signal source and observer as such are independent to spatial frames transformation except above kinematical quantities transformations, kinematics related dynamics such as Newton ’ s second law existing only in inertial frames and exchange of kinetic energy of mass being valid only in a selected inertial frame. From above bas is, we demonstrate a series of inferences and applications such as phase velocity of light being direct respect to medium (including vacuum) rather than to the frame, using spatial referential frame to describe any measurable field (electric field, magnetic field, gravitational field) and the field ’ s variation; and have tables to contrast and evaluate all aspects of those hypotheses related with spacetime such as distorted spacetime around massive stellar, four dimension spacetime, gravitational time dilation and non - Euclid geometry with new one. The demonstration strongly suggests all the hypotheses are invalid in capable tested concepts ’ meaning and relations. The conventional work on frame transformation and its property, hypothesized by Voigt, Heaviside, Lorentz, Poincare and Einstein a century ago with some mathematical speculation lacking rigorous definition of the fundamental concepts such as instant, time, spatial reference, straight line, plane area, merely good in building up patchwork to do self p referred explanation by making up derivative concepts or accumulating new hypothesis, has disturbed people to describe the physical nature by setting up the sound basis of concept and relations with capable tested method, it’s time to be replaced by empirically effective alternative.

  13. Coordination of multiple robot arms

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Soloway, D.

    1987-01-01

    Kinematic resolved-rate control from one robot arm is extended to the coordinated control of multiple robot arms in the movement of an object. The structure supports the general movement of one axis system (moving reference frame) with respect to another axis system (control reference frame) by one or more robot arms. The grippers of the robot arms do not have to be parallel or at any pre-disposed positions on the object. For multiarm control, the operator chooses the same moving and control reference frames for each of the robot arms. Consequently, each arm then moves as though it were carrying out the commanded motions by itself.

  14. Recovery of a geocentric reference frame using the present-day GPS system

    NASA Technical Reports Server (NTRS)

    Malla, Rajendra P.; Wu, Sien-Chong

    1990-01-01

    A geocentric reference frame adopts the center of mass of the earth as the origin of the coordinate axes. The center of mass of the earth is the natural and unambiguous origin of a geocentric satellite dynamical system. But in practice a kinematically obtained terrestrial reference frame may assume an origin other than the geocenter. The establishment of a geocentric reference frame, to which all relevant observations and results can be referred and in which geodynamic theories or models for the dynamic behavior of earth can be formulated, requires the ability to accurately recover a given coordinate frame origin offset from the geocenter. GPS measurements, because of their abundance and broad distribution, provide a powerful tool to obtain this origin offset in a short period of time. Two effective strategies have been devised. Data from the First Central And South America (Casa Uno) geodynamics experiment has been studied, in order to demonstrate the ability of recovering the geocenter location with present day GPS satellites and receivers.

  15. Effect of Load Carriage on Lumbar Spine Kinematics

    DTIC Science & Technology

    2013-01-01

    reference frame and lordosis was reduced during all tasks with load. Superior levels became more lordotic, whereas inferior levels became more... lordosis , and IVD compressibility have been measured in both young 17 and adult 13 populations using upright MRI. However, these data cannot be...the kinematic behavior of the overall lumbar spine and func- tional spinal units. We hypothesized that IVD compression and lumbar lordosis increased

  16. A decoupled recursive approach for constrained flexible multibody system dynamics

    NASA Technical Reports Server (NTRS)

    Lai, Hao-Jan; Kim, Sung-Soo; Haug, Edward J.; Bae, Dae-Sung

    1989-01-01

    A variational-vector calculus approach is employed to derive a recursive formulation for dynamic analysis of flexible multibody systems. Kinematic relationships for adjacent flexible bodies are derived in a companion paper, using a state vector notation that represents translational and rotational components simultaneously. Cartesian generalized coordinates are assigned for all body and joint reference frames, to explicitly formulate deformation kinematics under small deformation kinematics and an efficient flexible dynamics recursive algorithm is developed. Dynamic analysis of a closed loop robot is performed to illustrate efficiency of the algorithm.

  17. Long-Term Variations of the EOP and ICRF2

    NASA Technical Reports Server (NTRS)

    Zharov, Vladimir; Sazhin, Mikhail; Sementsov, Valerian; Sazhina, Olga

    2010-01-01

    We analyzed the time series of the coordinates of the ICRF radio sources. We show that part of the radio sources, including the defining sources, shows a significant apparent motion. The stability of the celestial reference frame is provided by a no-net-rotation condition applied to the defining sources. In our case this condition leads to a rotation of the frame axes with time. We calculated the effect of this rotation on the Earth orientation parameters (EOP). In order to improve the stability of the celestial reference frame we suggest a new method for the selection of the defining sources. The method consists of two criteria: the first one we call cosmological and the second one kinematical. It is shown that a subset of the ICRF sources selected according to cosmological criteria provides the most stable reference frame for the next decade.

  18. Whisking mechanics and active sensing

    PubMed Central

    Bush, Nicholas E; Solla, Sara A

    2017-01-01

    We describe recent advances in quantifying the three-dimensional (3D) geometry and mechanics of whisking. Careful delineation of relevant 3D reference frames reveals important geometric and mechanical distinctions between the localization problem (‘where’ is an object) and the feature extraction problem (‘what’ is an object). Head-centered and resting-whisker reference frames lend themselves to quantifying temporal and kinematic cues used for object localization. The whisking-centered reference frame lends itself to quantifying the contact mechanics likely associated with feature extraction. We offer the ‘windowed sampling’ hypothesis for active sensing: that rats can estimate an object’s spatial features by integrating mechanical information across whiskers during brief (25–60 ms) windows of ‘haptic enclosure’ with the whiskers, a motion that resembles a hand grasp. PMID:27632212

  19. Whisking mechanics and active sensing.

    PubMed

    Bush, Nicholas E; Solla, Sara A; Hartmann, Mitra Jz

    2016-10-01

    We describe recent advances in quantifying the three-dimensional (3D) geometry and mechanics of whisking. Careful delineation of relevant 3D reference frames reveals important geometric and mechanical distinctions between the localization problem ('where' is an object) and the feature extraction problem ('what' is an object). Head-centered and resting-whisker reference frames lend themselves to quantifying temporal and kinematic cues used for object localization. The whisking-centered reference frame lends itself to quantifying the contact mechanics likely associated with feature extraction. We offer the 'windowed sampling' hypothesis for active sensing: that rats can estimate an object's spatial features by integrating mechanical information across whiskers during brief (25-60ms) windows of 'haptic enclosure' with the whiskers, a motion that resembles a hand grasp. Copyright © 2016. Published by Elsevier Ltd.

  20. A new calibration methodology for thorax and upper limbs motion capture in children using magneto and inertial sensors.

    PubMed

    Ricci, Luca; Formica, Domenico; Sparaci, Laura; Lasorsa, Francesca Romana; Taffoni, Fabrizio; Tamilia, Eleonora; Guglielmelli, Eugenio

    2014-01-09

    Recent advances in wearable sensor technologies for motion capture have produced devices, mainly based on magneto and inertial measurement units (M-IMU), that are now suitable for out-of-the-lab use with children. In fact, the reduced size, weight and the wireless connectivity meet the requirement of minimum obtrusivity and give scientists the possibility to analyze children's motion in daily life contexts. Typical use of magneto and inertial measurement units (M-IMU) motion capture systems is based on attaching a sensing unit to each body segment of interest. The correct use of this setup requires a specific calibration methodology that allows mapping measurements from the sensors' frames of reference into useful kinematic information in the human limbs' frames of reference. The present work addresses this specific issue, presenting a calibration protocol to capture the kinematics of the upper limbs and thorax in typically developing (TD) children. The proposed method allows the construction, on each body segment, of a meaningful system of coordinates that are representative of real physiological motions and that are referred to as functional frames (FFs). We will also present a novel cost function for the Levenberg-Marquardt algorithm, to retrieve the rotation matrices between each sensor frame (SF) and the corresponding FF. Reported results on a group of 40 children suggest that the method is repeatable and reliable, opening the way to the extensive use of this technology for out-of-the-lab motion capture in children.

  1. Cerebellar re-encoding of self-generated head movements

    PubMed Central

    Dugué, Guillaume P; Tihy, Matthieu; Gourévitch, Boris; Léna, Clément

    2017-01-01

    Head movements are primarily sensed in a reference frame tied to the head, yet they are used to calculate self-orientation relative to the world. This requires to re-encode head kinematic signals into a reference frame anchored to earth-centered landmarks such as gravity, through computations whose neuronal substrate remains to be determined. Here, we studied the encoding of self-generated head movements in the rat caudal cerebellar vermis, an area essential for graviceptive functions. We found that, contrarily to peripheral vestibular inputs, most Purkinje cells exhibited a mixed sensitivity to head rotational and gravitational information and were differentially modulated by active and passive movements. In a subpopulation of cells, this mixed sensitivity underlay a tuning to rotations about an axis defined relative to gravity. Therefore, we show that the caudal vermis hosts a re-encoded, gravitationally polarized representation of self-generated head kinematics in freely moving rats. DOI: http://dx.doi.org/10.7554/eLife.26179.001 PMID:28608779

  2. Global and regional kinematics with GPS

    NASA Technical Reports Server (NTRS)

    King, Robert W.

    1994-01-01

    The inherent precision of the doubly differenced phase measurement and the low cost of instrumentation made GPS the space geodetic technique of choice for regional surveys as soon as the constellation reached acceptable geometry in the area of interest: 1985 in western North America, the early 1990's in most of the world. Instrument and site-related errors for horizontal positioning are usually less than 3 mm, so that the dominant source of error is uncertainty in the reference frame defined by the satellites orbits and the tracking stations used to determine them. Prior to about 1992, when the tracking network for most experiments was globally sparse, the number of fiducial sites or the level at which they could be tied to an SLR or VLBI reference frame usually, set the accuracy limit. Recently, with a global network of over 30 stations, the limit is set more often by deficiencies in models for non-gravitational forces acting on the satellites. For regional networks in the northern hemisphere, reference frame errors are currently about 3 parts per billion (ppb) in horizontal position, allowing centimeter-level accuracies over intercontinental distances and less than 1 mm for a 100 km baseline. The accuracy of GPS measurements for monitoring height variations is generally 2-3 times worse than for horizontal motions. As for VLBI, the primary source of error is unmodeled fluctuations in atmospheric water vapor, but both reference frame uncertainties and some instrument errors are more serious for vertical than horizontal measurements. Under good conditions, daily repeatabilities at the level of 10 mm rms were achieved. This paper will summarize the current accuracy of GPS measurements and their implication for the use of SLR to study regional kinematics.

  3. Implications of an Absolute Simultaneity Theory for Cosmology and Universe Acceleration

    PubMed Central

    Kipreos, Edward T.

    2014-01-01

    An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift–distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe. PMID:25536116

  4. Implications of an absolute simultaneity theory for cosmology and universe acceleration.

    PubMed

    Kipreos, Edward T

    2014-01-01

    An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift-distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe.

  5. Celestial reference frames and the gauge freedom in the post-Newtonian mechanics of the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei; Xie, Yi

    2010-11-01

    We introduce the Jacobi coordinates adopted to the advanced theoretical analysis of the relativistic Celestial Mechanics of the Earth-Moon system. Theoretical derivation utilizes the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. The resolutions assume that the Solar System is isolated and space-time is asymptotically flat at infinity and the primary reference frame covers the entire space-time, has its origin at the Solar System barycenter (SSB) with spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are assumed to be at rest on the sky forming the International Celestial Reference Frame (ICRF). The second reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames—geocentric and selenocentric—have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description of the metric tensor and relative equations of motion of the Moon with respect to Earth. Each local frame can be converted to kinematically non-rotating one after alignment with the axes of ICRF by applying the matrix of the relativistic precession as recommended by the IAU resolutions. The set of one global and three local frames is introduced in order to decouple physical effects of gravity from the gauge-dependent effects in the equations of relative motion of the Moon with respect to Earth.

  6. J/ψ Polarization in pp Collisions at s=7TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Abrahantes Quintana, A.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahn, S. U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaromolina, R.; Alici, A.; Alkin, A.; Almaráz Aviña, E.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bailhache, R.; Bala, R.; Baldini Ferroli, R.; Baldisseri, A.; Baldit, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Beck, H.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergmann, C.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bianchi, N.; Bianchi, L.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bortolin, C.; Bose, S.; Bossú, F.; Botje, M.; Böttger, S.; Boyer, B.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Bugaiev, K.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, W.; Carena, F.; Carlin Filho, N.; Carminati, F.; Carrillo Montoya, C. A.; Casanova Díaz, A.; Caselle, M.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chiavassa, E.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalò, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Coffin, J.-P.; Colamaria, F.; Colella, D.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cruz Alaniz, E.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, D.; Das, I.; Das, K.; Dash, S.; Dash, A.; de, S.; de Azevedo Moregula, A.; de Barros, G. O. V.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; Delagrange, H.; Del Castillo Sanchez, E.; Deloff, A.; Demanov, V.; de Marco, N.; Dénes, E.; de Pasquale, S.; Deppman, A.; D'Erasmo, G.; de Rooij, R.; di Bari, D.; Dietel, T.; di Giglio, C.; di Liberto, S.; di Mauro, A.; di Nezza, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domínguez, I.; Dönigus, B.; Dordic, O.; Driga, O.; Dubey, A. K.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, M. R.; Dutta Majumdar, A. K.; Elia, D.; Emschermann, D.; Engel, H.; Erdal, H. A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feofilov, G.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Ferretti, R.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Fini, R.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Fragkiadakis, M.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Girard, M. R.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, S.; Grigoryan, A.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerra Gutierrez, C.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Gutbrod, H.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Han, B. H.; Hanratty, L. D.; Hansen, A.; Harmanova, Z.; Harris, J. W.; Hartig, M.; Hasegan, D.; Hatzifotiadou, D.; Hayrapetyan, A.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, N.; Hetland, K. F.; Hicks, B.; Hille, P. T.; Hippolyte, B.; Horaguchi, T.; Hori, Y.; Hristov, P.; Hřivnáčová, I.; Huang, M.; Huber, S.; Humanic, T. J.; Hwang, D. S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, P. G.; Innocenti, G. M.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Ivanytskyi, O.; Jachołkowski, A.; Jacobs, P. M.; Jancurová, L.; Jangal, S.; Janik, M. A.; Janik, R.; Jayarathna, P. H. S. Y.; Jena, S.; Jimenez Bustamante, R. T.; Jirden, L.; Jones, P. G.; Jung, H.; Jung, W.; Jusko, A.; Kaidalov, A. B.; Kakoyan, V.; Kalcher, S.; Kaliňák, P.; Kalisky, M.; Kalliokoski, T.; Kalweit, A.; Kanaki, K.; Kang, J. H.; Kaplin, V.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Khan, M. M.; Khan, S. A.; Khan, P.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, S.; Kim, D. W.; Kim, J. H.; Kim, J. S.; Kim, M.; Kim, S. H.; Kim, T.; Kim, B.; Kim, D. J.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kliemant, M.; Kluge, A.; Knichel, M. L.; Koch, K.; Köhler, M. K.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kottachchi Kankanamge Don, C.; Kour, R.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kraus, I.; Krawutschke, T.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucheriaev, Y.; Kuhn, C.; Kuijer, P. G.; Kurashvili, P.; Kurepin, A. B.; Kurepin, A.; Kuryakin, A.; Kushpil, V.; Kushpil, S.; Kvaerno, H.; Kweon, M. J.; Kwon, Y.; Ladrón de Guevara, P.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; La Rocca, P.; Larsen, D. T.; Lazzeroni, C.; Lea, R.; Le Bornec, Y.; Lee, S. C.; Lee, K. S.; Lefèvre, F.; Lehnert, J.; Leistam, L.; Lenhardt, M.; Lenti, V.; León, H.; León Monzón, I.; León Vargas, H.; Lévai, P.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Liu, L.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohn, S.; Lohner, D.; Loizides, C.; Loo, K. K.; Lopez, X.; López Torres, E.; Løvhøiden, G.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luquin, L.; Luzzi, C.; Ma, R.; Ma, K.; Madagodahettige-Don, D. M.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Martashvili, I.; Martinengo, P.; Martínez, M. I.; Martínez Davalos, A.; Martínez García, G.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastromarco, M.; Mastroserio, A.; Matthews, Z. L.; Matyja, A.; Mayani, D.; Mayer, C.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Michalon, A.; Midori, J.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitu, C.; Mlynarz, J.; Mohanty, A. K.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Monteno, M.; Montes, E.; Moon, T.; Morando, M.; Moreira de Godoy, D. A.; Moretto, S.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Müller, H.; Munhoz, M. G.; Musa, L.; Musso, A.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Naumov, N. P.; Navin, S.; Nayak, T. K.; Nazarenko, S.; Nazarov, G.; Nedosekin, A.; Nicassio, M.; Nielsen, B. S.; Niida, T.; Nikolaev, S.; Nikolic, V.; Nikulin, V.; Nikulin, S.; Nilsen, B. S.; Nilsson, M. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Novitzky, N.; Nyanin, A.; Nyatha, A.; Nygaard, C.; Nystrand, J.; Obayashi, H.; Ochirov, A.; Oeschler, H.; Oh, S. K.; Oleniacz, J.; Oppedisano, C.; Ortiz Velasquez, A.; Ortona, G.; Oskarsson, A.; Ostrowski, P.; Otterlund, I.; Otwinowski, J.; Øvrebekk, G.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S.; Pal, S. K.; Palaha, A.; Palmeri, A.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Pastirčák, B.; Patalakha, D. I.; Paticchio, V.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Perales, M.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Piano, S.; Piccotti, A.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piuz, F.; Piyarathna, D. B.; Płoskoń, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polák, K.; Polichtchouk, B.; Pop, A.; Porteboeuf-Houssais, S.; Pospíšil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Pulvirenti, A.; Punin, V.; Putiš, M.; Putschke, J.; Quercigh, E.; Qvigstad, H.; Rachevski, A.; Rademakers, A.; Radomski, S.; Räihä, T. S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Ramírez Reyes, A.; Raniwala, S.; Raniwala, R.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reichelt, P.; Reicher, M.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R. A.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rodríguez Cahuantzi, M.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahu, P. K.; Saini, J.; Sakaguchi, H.; Sakai, S.; Sakata, D.; Salgado, C. A.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Sano, S.; Santo, R.; Santoro, R.; Sarkamo, J.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, H. R.; Schmidt, C.; Schreiner, S.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Scott, P. A.; Segato, G.; Selyuzhenkov, I.; Senyukov, S.; Seo, J.; Serci, S.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabratova, G.; Shahoyan, R.; Sharma, N.; Sharma, S.; Shigaki, K.; Shimomura, M.; Shtejer, K.; Sibiriak, Y.; Siciliano, M.; Sicking, E.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Sinha, T.; Sinha, B. C.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R.; Søgaard, C.; Soltz, R.; Son, H.; Song, J.; Song, M.; Soos, C.; Soramel, F.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stan, I.; Stefanek, G.; Stefanini, G.; Steinbeck, T.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Subieta Vásquez, M. A.; Sugitate, T.; Suire, C.; Sukhorukov, M.; Sultanov, R.; Šumbera, M.; Susa, T.; Szanto de Toledo, A.; Szarka, I.; Szostak, A.; Tagridis, C.; Takahashi, J.; Tapia Takaki, J. D.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Thomas, J. H.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Tlusty, D.; Toia, A.; Torii, H.; Toscano, L.; Tosello, F.; Traczyk, T.; Truesdale, D.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Ulrich, J.; Uras, A.; Urbán, J.; Urciuoli, G. M.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Kolk, N.; Vande Vyvre, P.; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernekohl, D. C.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Voloshin, K.; Voloshin, S.; Volpe, G.; von Haller, B.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, V.; Wagner, B.; Wan, R.; Wang, Y.; Wang, D.; Wang, Y.; Wang, M.; Watanabe, K.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilk, A.; Williams, M. C. S.; Windelband, B.; Xaplanteris Karampatsos, L.; Yang, H.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J.; Yu, W.; Yuan, X.; Yushmanov, I.; Zach, C.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zelnicek, P.; Zgura, I.; Zhalov, M.; Zhang, X.; Zhou, F.; Zhou, D.; Zhou, Y.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.

    2012-02-01

    The ALICE Collaboration has studied J/ψ production in pp collisions at s=7TeV at the LHC through its muon pair decay. The polar and azimuthal angle distributions of the decay muons were measured, and results on the J/ψ polarization parameters λθ and λϕ were obtained. The study was performed in the kinematic region 2.5

  7. Kinematic performance of a six degree-of-freedom hand model (6DHand) for use in occupational biomechanics.

    PubMed

    Buczek, Frank L; Sinsel, Erik W; Gloekler, Daniel S; Wimer, Bryan M; Warren, Christopher M; Wu, John Z

    2011-06-03

    Upper extremity musculoskeletal disorders represent an important health issue across all industry sectors; as such, the need exists to develop models of the hand that provide comprehensive biomechanics during occupational tasks. Previous optical motion capture studies used a single marker on the dorsal aspect of finger joints, allowing calculation of one and two degree-of-freedom (DOF) joint angles; additional algorithms were needed to define joint centers and the palmar surface of fingers. We developed a 6DOF model (6DHand) to obtain unconstrained kinematics of finger segments, modeled as frusta of right circular cones that approximate the palmar surface. To evaluate kinematic performance, twenty subjects gripped a cylindrical handle as a surrogate for a powered hand tool. We hypothesized that accessory motions (metacarpophalangeal pronation/supination; proximal and distal interphalangeal radial/ulnar deviation and pronation/supination; all joint translations) would be small (less than 5° rotations, less than 2mm translations) if segment anatomical reference frames were aligned correctly, and skin movement artifacts were negligible. For the gripping task, 93 of 112 accessory motions were small by our definition, suggesting this 6DOF approach appropriately models joints of the fingers. Metacarpophalangeal supination was larger than expected (approximately 10°), and may be adjusted through local reference frame optimization procedures previously developed for knee kinematics in gait analysis. Proximal translations at the metacarpophalangeal joints (approximately 10mm) were explained by skin movement across the metacarpals, but would not corrupt inverse dynamics calculated for the phalanges. We assessed performance in this study; a more rigorous validation would likely require medical imaging. Published by Elsevier Ltd.

  8. Modeling moving systems with RELAP5-3D

    DOE PAGES

    Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; ...

    2015-12-04

    RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the acceleratingmore » frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.« less

  9. The first geocenter estimation results using GPS measurements

    NASA Technical Reports Server (NTRS)

    Malla, R. P.; Wu, S. C.

    1990-01-01

    The center of mass of the Earth is the natural and unambiguous origin of a geocentric satellite dynamical system. A geocentric reference frame assumes that the origin of its coordinate axes is at the geocenter, in which all relevant observations and results can be referred and in which geodynamic theories or models for the dynamic behavior of Earth can be formulated. In practice, however, a kinematically obtained terrestrial reference frame may assume an origin other than the geocenter. A fast and accurate method of determining origin offset from the geocenter is highly desirable. Global Positioning System (GPS) measurements, because of their abundance and broad distribution, provide a powerful tool to obtain this origin offset in a short period of time. Two effective strategies have been devised. Data from the first Central and South America (Casa Uno) global GPS experiment were studied to demonstrate the ability of recovering the geocenter location with present-day GPS satellites and receivers.

  10. J/psi Polarization in pp collisions at s = 7 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abelev, B.; Awes, Terry C; Ganoti, P.

    The ALICE Collaboration has studied J/{Psi} production in pp collisions at {radical}s = 7 TeV at the LHC through its muon pair decay. The polar and azimuthal angle distributions of the decay muons were measured, and results on the J/{Psi} polarization parameters {lambda}{sub {theta}} and {lambda}{sub {phi}} were obtained. The study was performed in the kinematic region 2.5 < y < 4, 2 < p{sub t} < 8 GeV/c, in the helicity and Collins-Soper reference frames. In both frames, the polarization parameters are compatible with zero, within uncertainties.

  11. Methodologies to determine forces on bones and muscles of body segments during exercise, employing compact sensors suitable for use in crowded space vehicles

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    1994-01-01

    A complete description of an instrumented ergometer system, including the sensors, the data acquisition system, and the methodologies to calculate the kinematic parameters were initially developed at Tulane University. This work was continued by the PI at NASA Johnson Space Center, where a flight ergometer was instrumented and tested during a KC-135 Zero-Gravity flight. The sensors that form part of the system include EMG probes and accelerometers mounted on the subject using the ergometer, load cells to measure pedal forces, and encoders to measure position and orientation of the pedal (foot). Currently, data from the flight test is being analyzed and processed to calculate the kinematic parameters of the individual. The formulation developed during the initial months of the grant will be used for this purpose. The system's components are compact (all sensors are very small). A salient feature of the system and associated methodology to determine the kinematics is that although it uses accelerometers, position is not determined by integration. Position is determined by determining the angle of two frames of reference for which acceleration at one point is known in coordinates of both frames.

  12. Forward and inverse kinematics of double universal joint robot wrists

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., II

    1991-01-01

    A robot wrist consisting of two universal joints can eliminate the wrist singularity problem found on many individual robots. Forward and inverse position and velocity kinematics are presented for such a wrist having three degrees of freedom. Denavit-Hartenberg parameters are derived to find the transforms required for the kinematic equations. The Omni-Wrist, a commercial double universal joint robot wrist, is studied in detail. There are four levels of kinematic parameters identified for this wrist; three forward and three inverse maps are presented for both position and velocity. These equations relate the hand coordinate frame to the wrist base frame. They are sufficient for control of the wrist standing alone. When the wrist is attached to a manipulator arm; the offset between the two universal joints complicates the solution of the overall kinematics problem. All wrist coordinate frame origins are not coincident, which prevents decoupling of position and orientation for manipulator inverse kinematics.

  13. A variational approach to dynamics of flexible multibody systems

    NASA Technical Reports Server (NTRS)

    Wu, Shih-Chin; Haug, Edward J.; Kim, Sung-Soo

    1989-01-01

    This paper presents a variational formulation of constrained dynamics of flexible multibody systems, using a vector-variational calculus approach. Body reference frames are used to define global position and orientation of individual bodies in the system, located and oriented by position of its origin and Euler parameters, respectively. Small strain linear elastic deformation of individual components, relative to their body references frames, is defined by linear combinations of deformation modes that are induced by constraint reaction forces and normal modes of vibration. A library of kinematic couplings between flexible and/or rigid bodies is defined and analyzed. Variational equations of motion for multibody systems are obtained and reduced to mixed differential-algebraic equations of motion. A space structure that must deform during deployment is analyzed, to illustrate use of the methods developed.

  14. The Gaia inertial reference frame and the tilting of the Milky Way disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perryman, Michael; Spergel, David N.; Lindegren, Lennart, E-mail: mac.perryman@gmail.com

    2014-07-10

    While the precise relationship between the Milky Way disk and the symmetry planes of the dark matter halo remains somewhat uncertain, a time-varying disk orientation with respect to an inertial reference frame seems probable. Hierarchical structure formation models predict that the dark matter halo is triaxial and tumbles with a characteristic rate of ∼2 rad H{sub 0}{sup −1} (∼30 μas yr{sup –1}). These models also predict a time-dependent accretion of gas, such that the angular momentum vector of the disk should be misaligned with that of the halo. These effects, as well as tidal effects of the LMC, will resultmore » in the rotation of the angular momentum vector of the disk population with respect to the quasar reference frame. We assess the accuracy with which the positions and proper motions from Gaia can be referred to a kinematically non-rotating system, and show that the spin vector of the transformation from any rigid self-consistent catalog frame to the quasi-inertial system defined by quasars should be defined to better than 1 μas yr{sup –1}. Determination of this inertial frame by Gaia will reveal any signature of the disk orientation varying with time, improve models of the potential and dynamics of the Milky Way, test theories of gravity, and provide new insights into the orbital evolution of the Sagittarius dwarf galaxy and the Magellanic Clouds.« less

  15. The Controllable Ball Joint Mechanism

    NASA Astrophysics Data System (ADS)

    Tung, Yung Cheng; Chieng, Wei-Hua; Ho, Shrwai

    A controllable ball joint mechanism with three rotational degrees of freedom is proposed in this paper. The mechanism is composed of three bevel gears, one of which rotates with respect to a fixed frame and the others rotate with respect to individual floating frames. The output is the resultant motion of the differential motions by the motors that rotates the bevel gears at the fixed frame and the floating frames. The mechanism is capable of a large rotation, and the structure is potentially compact. The necessary inverse and forward kinematic analyses as well as the derivation of kinematic singularity are provided according to the kinematical equivalent structure described in this paper.

  16. In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency.

    PubMed

    Tashman, Scott; Anderst, William

    2003-04-01

    Dynamic assessment of three-dimensional (3D) skeletal kinematics is essential for understanding normal joint function as well as the effects of injury or disease. This paper presents a novel technique for measuring in-vivo skeletal kinematics that combines data collected from high-speed biplane radiography and static computed tomography (CT). The goals of the present study were to demonstrate that highly precise measurements can be obtained during dynamic movement studies employing high frame-rate biplane video-radiography, to develop a method for expressing joint kinematics in an anatomically relevant coordinate system and to demonstrate the application of this technique by calculating canine tibio-femoral kinematics during dynamic motion. The method consists of four components: the generation and acquisition of high frame rate biplane radiographs, identification and 3D tracking of implanted bone markers, CT-based coordinate system determination, and kinematic analysis routines for determining joint motion in anatomically based coordinates. Results from dynamic tracking of markers inserted in a phantom object showed the system bias was insignificant (-0.02 mm). The average precision in tracking implanted markers in-vivo was 0.064 mm for the distance between markers and 0.31 degree for the angles between markers. Across-trial standard deviations for tibio-femoral translations were similar for all three motion directions, averaging 0.14 mm (range 0.08 to 0.20 mm). Variability in tibio-femoral rotations was more dependent on rotation axis, with across-trial standard deviations averaging 1.71 degrees for flexion/extension, 0.90 degree for internal/external rotation, and 0.40 degree for varus/valgus rotation. Advantages of this technique over traditional motion analysis methods include the elimination of skin motion artifacts, improved tracking precision and the ability to present results in a consistent anatomical reference frame.

  17. An elementary approach to the gravitational Doppler shift

    NASA Astrophysics Data System (ADS)

    Wörner, C. H.; Rojas, Roberto

    2017-01-01

    In college physics courses, treatment of the Doppler effect is usually done far from the first introduction to kinematics. This paper aims to apply a graphical treatment to describe the gravitational redshift, by considering the Doppler effect in two accelerated reference frames and exercising the equivalence principle. This approach seems appropriate to discuss with beginner students and could serve to enrich the didactic processes.

  18. A new velocity field for Africa from combined GPS and DORIS space geodetic Solutions: Contribution to the definition of the African reference frame (AFREF)

    NASA Astrophysics Data System (ADS)

    Saria, E.; Calais, E.; Altamimi, Z.; Willis, P.; Farah, H.

    2013-04-01

    We analyzed 16 years of GPS and 17 years of Doppler orbitography and radiopositioning integrated by satellite (DORIS) data at continuously operating geodetic sites in Africa and surroundings to describe the present-day kinematics of the Nubian and Somalian plates and constrain relative motions across the East African Rift. The resulting velocity field describes horizontal and vertical motion at 133 GPS sites and 9 DORIS sites. Horizontal velocities at sites located on stable Nubia fit a single plate model with a weighted root mean square residual of 0.6 mm/yr (maximum residual 1 mm/yr), an upper bound for plate-wide motions and for regional-scale deformation in the seismically active southern Africa and Cameroon volcanic line. We confirm significant southward motion ( ˜ 1.5 mm/yr) in Morocco with respect to Nubia, consistent with earlier findings. We propose an updated angular velocity for the divergence between Nubia and Somalia, which provides the kinematic boundary conditions to rifting in East Africa. We update a plate motion model for the East African Rift and revise the counterclockwise rotation of the Victoria plate and clockwise rotation of the Rovuma plate with respect to Nubia. Vertical velocities range from - 2 to +2 mm/yr, close to their uncertainties, with no clear geographic pattern. This study provides the first continent-wide position/velocity solution for Africa, expressed in International Terrestrial Reference Frame (ITRF2008), a contribution to the upcoming African Reference Frame (AFREF). Except for a few regions, the African continent remains largely under-sampled by continuous space geodetic data. Efforts are needed to augment the geodetic infrastructure and openly share existing data sets so that the objectives of AFREF can be fully reached.

  19. A computational procedure for multibody systems including flexible beam dynamics

    NASA Technical Reports Server (NTRS)

    Downer, J. D.; Park, K. C.; Chiou, J. C.

    1990-01-01

    A computational procedure suitable for the solution of equations of motions for flexible multibody systems has been developed. A fully nonlinear continuum approach capable of accounting for both finite rotations and large deformations has been used to model a flexible beam component. The beam kinematics are referred directly to an inertial reference frame such that the degrees of freedom embody both the rigid and flexible deformation motions. As such, the beam inertia expression is identical to that of rigid body dynamics. The nonlinear coupling between gross body motion and elastic deformation is contained in the internal force expression. Numerical solution procedures for the integration of spatial kinematic systems can be directily applied to the generalized coordinates of both the rigid and flexible components. An accurate computation of the internal force term which is invariant to rigid motions is incorporated into the general solution procedure.

  20. Star Pattern Recognition and Spacecraft Attitude Determination.

    DTIC Science & Technology

    1978-10-01

    Mr. Lawrence D. Ziems, Computer Programuer Prepared For: ,ti U.S. Army Engineer Topographic Laboratories Fort Belvoir, Virginia 22060 Contract No...CONTENTS PORIVAD i SIMARY iii 1.0 Introduction and System Overviev 1 2.0 Reference Frames Geometry and Kinematics 9 3.0 Star Pattern Recognition/Attitude...Laboratories (USAETL). The authors appreciate the capable guidance of Mr. L. A. Gambino, Director of the Computer Science Laboratory (USAETL), who served as

  1. Prisms to Shift Pain Away: Pathophysiological and Therapeutic Exploration of CRPS with Prism Adaptation.

    PubMed

    Christophe, Laure; Chabanat, Eric; Delporte, Ludovic; Revol, Patrice; Volckmann, Pierre; Jacquin-Courtois, Sophie; Rossetti, Yves

    Complex Regional Pain Syndrome (CRPS) is an invalidating chronic condition subsequent to peripheral lesions. There is growing consensus for a central contribution to CRPS. However, the nature of this central body representation disorder is increasingly debated. Although it has been repeatedly argued that CRPS results in motor neglect of the affected side, visual egocentric reference frame was found to be deviated toward the pain, that is, neglect of the healthy side. Accordingly, prism adaptation has been successfully used to normalize this deviation. This study aimed at clarifying whether 7 CRPS patients exhibited neglect as well as exploring the pathophysiological mechanisms of this manifestation and of the therapeutic effects of prism adaptation. Pain and quality of life, egocentric reference frames (visual and proprioceptive straight-ahead), and neglect tests (line bisection, kinematic analyses of motor neglect and motor extinction) were repeatedly assessed prior to, during, and following a one-week intense prism adaptation intervention. First, our results provide no support for visual and motor neglect in CRPS. Second, reference frames for body representations were not systematically deviated. Third, intensive prism adaptation intervention durably ameliorated pain and quality of life. As for spatial neglect, understanding the therapeutic effects of prism adaptation deserves further investigations.

  2. Selected Gravity Models in Terms of the fit to the GOCE Kinematic Orbit in the Dynamic Orbit Determination Process

    NASA Astrophysics Data System (ADS)

    Bobojć, Andrzej; Drożyner, Andrzej; Rzepecka, Zofia

    2017-04-01

    The work includes the comparison of performance of selected geopotential models in the dynamic orbit estimation of the satellite of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission. This was realized by fitting estimated orbital arcs to the official centimeter-accuracy GOCE kinematic orbit which is provided by the European Space Agency. The Cartesian coordinates of kinematic orbit were treated as observations in the orbit estimation. The initial satellite state vector components were corrected in an iterative process with respect to the J2000.0 inertial reference frame using the given geopotential model, the models describing the remaining gravitational perturbations and the solar radiation pressure. Taking the obtained solutions into account, the RMS values of orbital residuals were computed. These residuals result from the difference between the determined orbit and the reference one - the GOCE kinematic orbit. The performance of selected gravity models was also determined using various orbital arc lengths. Additionally, the RMS fit values were obtained for some gravity models truncated at given degree and order of spherical harmonic coefficients. The advantage of using the kinematic orbit is its independence from any a priori dynamical models. For the research such GOCE-independent gravity models as HUST-Grace2016s, ITU_GRACE16, ITSG-Grace2014s, ITSG-Grace2014k, GGM05S, Tongji-GRACE01, ULUX_CHAMP2013S, ITG-GRACE2010S, EIGEN-51C, EIGEN5S, EGM2008 and EGM96 were adopted.

  3. Comparative assessment of bone pose estimation using Point Cluster Technique and OpenSim.

    PubMed

    Lathrop, Rebecca L; Chaudhari, Ajit M W; Siston, Robert A

    2011-11-01

    Estimating the position of the bones from optical motion capture data is a challenge associated with human movement analysis. Bone pose estimation techniques such as the Point Cluster Technique (PCT) and simulations of movement through software packages such as OpenSim are used to minimize soft tissue artifact and estimate skeletal position; however, using different methods for analysis may produce differing kinematic results which could lead to differences in clinical interpretation such as a misclassification of normal or pathological gait. This study evaluated the differences present in knee joint kinematics as a result of calculating joint angles using various techniques. We calculated knee joint kinematics from experimental gait data using the standard PCT, the least squares approach in OpenSim applied to experimental marker data, and the least squares approach in OpenSim applied to the results of the PCT algorithm. Maximum and resultant RMS differences in knee angles were calculated between all techniques. We observed differences in flexion/extension, varus/valgus, and internal/external rotation angles between all approaches. The largest differences were between the PCT results and all results calculated using OpenSim. The RMS differences averaged nearly 5° for flexion/extension angles with maximum differences exceeding 15°. Average RMS differences were relatively small (< 1.08°) between results calculated within OpenSim, suggesting that the choice of marker weighting is not critical to the results of the least squares inverse kinematics calculations. The largest difference between techniques appeared to be a constant offset between the PCT and all OpenSim results, which may be due to differences in the definition of anatomical reference frames, scaling of musculoskeletal models, and/or placement of virtual markers within OpenSim. Different methods for data analysis can produce largely different kinematic results, which could lead to the misclassification of normal or pathological gait. Improved techniques to allow non-uniform scaling of generic models to more accurately reflect subject-specific bone geometries and anatomical reference frames may reduce differences between bone pose estimation techniques and allow for comparison across gait analysis platforms.

  4. Contributions to reference systems from Lunar Laser Ranging using the IfE analysis model

    NASA Astrophysics Data System (ADS)

    Hofmann, Franz; Biskupek, Liliane; Müller, Jürgen

    2018-01-01

    Lunar Laser Ranging (LLR) provides various quantities related to reference frames like Earth orientation parameters, coordinates and velocities of ground stations in the Earth-fixed frame and selenocentric coordinates of the lunar retro-reflectors. This paper presents the recent results from LLR data analysis at the Institut für Erdmessung, Leibniz Universität Hannover, based on all LLR data up to the end of 2016. The estimates of long-periodic nutation coefficients with periods between 13.6 days and 18.6 years are obtained with an accuracy in the order of 0.05-0.7 milliarcseconds (mas). Estimations of the Earth rotation phase Δ UT are accurate at the level of 0.032 ms if more than 14 normal points per night are included. The tie between the dynamical ephemeris frame to the kinematic celestial frame is estimated from pure LLR observations by two angles and their rates with an accuracy of 0.25 and 0.02 mas per year. The estimated station coordinates and velocities are compared to the ITRF2014 solution and the geometry of the retro-reflector network with the DE430 solution. The given accuracies represent 3 times formal errors of the parameter fit. The accuracy for Δ UT is based on the standard deviation of the estimates with respect to the reference C04 solution.

  5. Prisms to Shift Pain Away: Pathophysiological and Therapeutic Exploration of CRPS with Prism Adaptation

    PubMed Central

    Volckmann, Pierre; Jacquin-Courtois, Sophie

    2016-01-01

    Complex Regional Pain Syndrome (CRPS) is an invalidating chronic condition subsequent to peripheral lesions. There is growing consensus for a central contribution to CRPS. However, the nature of this central body representation disorder is increasingly debated. Although it has been repeatedly argued that CRPS results in motor neglect of the affected side, visual egocentric reference frame was found to be deviated toward the pain, that is, neglect of the healthy side. Accordingly, prism adaptation has been successfully used to normalize this deviation. This study aimed at clarifying whether 7 CRPS patients exhibited neglect as well as exploring the pathophysiological mechanisms of this manifestation and of the therapeutic effects of prism adaptation. Pain and quality of life, egocentric reference frames (visual and proprioceptive straight-ahead), and neglect tests (line bisection, kinematic analyses of motor neglect and motor extinction) were repeatedly assessed prior to, during, and following a one-week intense prism adaptation intervention. First, our results provide no support for visual and motor neglect in CRPS. Second, reference frames for body representations were not systematically deviated. Third, intensive prism adaptation intervention durably ameliorated pain and quality of life. As for spatial neglect, understanding the therapeutic effects of prism adaptation deserves further investigations. PMID:27668094

  6. Present-Day Kinematics of the Central Mediterranean Plate Boundary Region from Large GPS Network Analysis Using the Ambizap Algorithm

    NASA Astrophysics Data System (ADS)

    D'Anastasio, E.; D'Agostino, N.; Avallone, A.; Blewitt, G.

    2008-12-01

    The large, recent increase of continuous GPS (CGPS) stations in the Central Mediterranean plate boundary zone offers the opportunity to study in detail the present-day kinematics of this actively deforming region. CGPS data from scientific and commercial networks in the Italian region is now available from more than 350 stations, including more than 130 from the RING network deployed by the Istituto Nazionale di Geofisica e Vulcanologia. The RING stations all have high quality GPS monuments and are co- located with broadband or very broadband seismometers and strong motion sensors. The analysis presented here also uses far-field data to provide reference frame control, bringing the total to over 580 CGPS stations. GPS ambiguity resolution of such a large amount of data presents a serious challenge in terms of processing time. Many scientific GPS data processing software packages address this problem by dividing the network into several clusters. In contrast, this analysis uses the new Ambizap GPS processing algorithm (Blewitt, 2008) to obtain unique, self-consistent daily ambiguity-fixed solutions for the entire network. Ambizap allows for a rapid and multiple reanalysis of large regional networks such the one presented in this work. Tests show that Ambizap reproduces solutions from time-prohibitive full-network ambiguity resolution to much less than 1 mm. Single station GPS data are first processed with the GIPSY-OASIS II software by the precise point positioning (PPP) strategy (Zumberge et al., 1997) using JPL products from ftp://sideshow.jpl.nasa.gov. Integer ambiguity resolution is then applied using Ambizap. The resulting daily solutions are aligned to the ITRF2005 reference frame. Then, using the CATS software (Williams, 2007), time series are cleaned to remove outliers and are analyzed for their noise properties, linear velocities, periodic signals and antenna jumps. Stable plate reference frames are realized by minimizing the horizontal velocities at more than 70 and 20 sites on the Eurasia and Nubia plates, respectively. The daily RMS scatter for the east coordinates (derived from PPP) in this frame is typically in the range 2-4 mm before applying Ambizap, and 1-2 mm after applying Ambizap. The solutions are then evaluated with regard to the numerous scientific motivations behind this project, ranging from the definition of strain distribution and microplate kinematics within the plate boundary, to the evaluation of tectonic strain accumulation on active faults. References: Blewitt, G. (2008), Fixed-point theorems of GPS carrier phase ambiguity resolution and their application to massive network processing: 'Ambizap', J. Geophys. Res., doi:10.1029/2008JB005736, in press. Williams, S.D.P. (2007), CATS: GPS coordinate time series analysis software, GPS solut., doi:10.1007/s10291-007-0086-4 Zumberge, J. F., M. B. Heflin, D. C. Jefferson, M. M. Watkins, and F. H. Webb (1997), Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res., 102, 5005-501

  7. Building and using a statistical 3D motion atlas for analyzing myocardial contraction in MRI

    NASA Astrophysics Data System (ADS)

    Rougon, Nicolas F.; Petitjean, Caroline; Preteux, Francoise J.

    2004-05-01

    We address the issue of modeling and quantifying myocardial contraction from 4D MR sequences, and present an unsupervised approach for building and using a statistical 3D motion atlas for the normal heart. This approach relies on a state-of-the-art variational non rigid registration (NRR) technique using generalized information measures, which allows for robust intra-subject motion estimation and inter-subject anatomical alignment. The atlas is built from a collection of jointly acquired tagged and cine MR exams in short- and long-axis views. Subject-specific non parametric motion estimates are first obtained by incremental NRR of tagged images onto the end-diastolic (ED) frame. Individual motion data are then transformed into the coordinate system of a reference subject using subject-to-reference mappings derived by NRR of cine ED images. Finally, principal component analysis of aligned motion data is performed for each cardiac phase, yielding a mean model and a set of eigenfields encoding kinematic ariability. The latter define an organ-dedicated hierarchical motion basis which enables parametric motion measurement from arbitrary tagged MR exams. To this end, the atlas is transformed into subject coordinates by reference-to-subject NRR of ED cine frames. Atlas-based motion estimation is then achieved by parametric NRR of tagged images onto the ED frame, yielding a compact description of myocardial contraction during diastole.

  8. Kinematic modeling of a 7-degree of freedom spatial hybrid manipulator for medical surgery.

    PubMed

    Singh, Amanpreet; Singla, Ekta; Soni, Sanjeev; Singla, Ashish

    2018-01-01

    The prime objective of this work is to deal with the kinematics of spatial hybrid manipulators. In this direction, in 1955, Denavit and Hartenberg proposed a consistent and concise method, known as D-H parameters method, to deal with kinematics of open serial chains. From literature review, it is found that D-H parameter method is widely used to model manipulators consisting of lower pairs. However, the method leads to ambiguities when applied to closed-loop, tree-like and hybrid manipulators. Furthermore, in the dearth of any direct method to model closed-loop, tree-like and hybrid manipulators, revisions of this method have been proposed from time-to-time by different researchers. One such kind of revision using the concept of dummy frames has successfully been proposed and implemented by the authors on spatial hybrid manipulators. In that work, authors have addressed the orientational inconsistency of the D-H parameter method, restricted to body-attached frames only. In the current work, the condition of body-attached frames is relaxed and spatial frame attachment is considered to derive the kinematic model of a 7-degree of freedom spatial hybrid robotic arm, along with the development of closed-loop constraints. The validation of the new kinematic model has been performed with the help of a prototype of this 7-degree of freedom arm, which is being developed at Council of Scientific & Industrial Research-Central Scientific Instruments Organisation Chandigarh to aid the surgeon during a medical surgical task. Furthermore, the developed kinematic model is used to develop the first column of the Jacobian matrix, which helps in providing the estimate of the tip velocity of the 7-degree of freedom manipulator when the first joint velocity is known.

  9. Diffeomorphism Group Representations in Relativistic Quantum Field Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldin, Gerald A.; Sharp, David H.

    We explore the role played by the di eomorphism group and its unitary representations in relativistic quantum eld theory. From the quantum kinematics of particles described by representations of the di eomorphism group of a space-like surface in an inertial reference frame, we reconstruct the local relativistic neutral scalar eld in the Fock representation. An explicit expression for the free Hamiltonian is obtained in terms of the Lie algebra generators (mass and momentum densities). We suggest that this approach can be generalized to elds whose quanta are spatially extended objects.

  10. OpenSim Versus Human Body Model: A Comparison Study for the Lower Limbs During Gait.

    PubMed

    Falisse, Antoine; Van Rossom, Sam; Gijsbers, Johannes; Steenbrink, Frans; van Basten, Ben J H; Jonkers, Ilse; van den Bogert, Antonie J; De Groote, Friedl

    2018-05-29

    Musculoskeletal modeling and simulations have become popular tools for analyzing human movements. However, end-users are often not aware of underlying modeling and computational assumptions. This study investigates how these assumptions affect biomechanical gait analysis outcomes performed with Human Body Model and the OpenSim gait2392 model. We compared joint kinematics, kinetics, and muscle forces resulting from processing data from seven healthy adults with both models. Although outcome variables had similar patterns, there were statistically significant differences in joint kinematics (maximal difference: 9.8 ± 1.5 degrees in sagittal plane hip rotation), kinetics (maximal difference: 0.36 ± 0.10 N·m/kg in sagittal plane hip moment), and muscle forces (maximal difference: 8.51 ± 1.80 N/kg for psoas). These differences might be explained by differences in hip and knee joint center locations up to 2.4 ± 0.5 and 1.9 ± 0.2 cm in the postero-anterior and infero-superior directions, respectively, and by the offset in pelvic reference frames of about 10 degrees around the medio-lateral axis. Model choice may not influence the conclusions in clinical settings where the focus is on interpreting deviations from reference data but will affect the conclusions of mechanical analyses where the goal is to obtain accurate estimates of kinematics and loading.

  11. Real-time synchronization of kinematic and video data for the comprehensive assessment of surgical skills.

    PubMed

    Dosis, Aristotelis; Bello, Fernando; Moorthy, Krishna; Munz, Yaron; Gillies, Duncan; Darzi, Ara

    2004-01-01

    Surgical dexterity in operating theatres has traditionally been assessed subjectively. Electromagnetic (EM) motion tracking systems such as the Imperial College Surgical Assessment Device (ICSAD) have been shown to produce valid and accurate objective measures of surgical skill. To allow for video integration we have modified the data acquisition and built it within the ROVIMAS analysis software. We then used ActiveX 9.0 DirectShow video capturing and the system clock as a time stamp for the synchronized concurrent acquisition of kinematic data and video frames. Interactive video/motion data browsing was implemented to allow the user to concentrate on frames exhibiting certain kinematic properties that could result in operative errors. We exploited video-data synchronization to calculate the camera visual hull by identifying all 3D vertices using the ICSAD electromagnetic sensors. We also concentrated on high velocity peaks as a means of identifying potential erroneous movements to be confirmed by studying the corresponding video frames. The outcome of the study clearly shows that the kinematic data are precisely synchronized with the video frames and that the velocity peaks correspond to large and sudden excursions of the instrument tip. We validated the camera visual hull by both video and geometrical kinematic analysis and we observed that graphs containing fewer sudden velocity peaks are less likely to have erroneous movements. This work presented further developments to the well-established ICSAD dexterity analysis system. Synchronized real-time motion and video acquisition provides a comprehensive assessment solution by combining quantitative motion analysis tools and qualitative targeted video scoring.

  12. Comparison of CME/Shock Propagation Models with Heliospheric Imaging and In Situ Observations

    NASA Astrophysics Data System (ADS)

    Zhao, Xinhua; Liu, Ying D.; Inhester, Bernd; Feng, Xueshang; Wiegelmann, Thomas; Lu, Lei

    2016-10-01

    The prediction of the arrival time for fast coronal mass ejections (CMEs) and their associated shocks is highly desirable in space weather studies. In this paper, we use two shock propagation models, I.e., Data Guided Shock Time Of Arrival (DGSTOA) and Data Guided Shock Propagation Model (DGSPM), to predict the kinematical evolution of interplanetary shocks associated with fast CMEs. DGSTOA is based on the similarity theory of shock waves in the solar wind reference frame, and DGSPM is based on the non-similarity theory in the stationary reference frame. The inputs are the kinematics of the CME front at the maximum speed moment obtained from the geometric triangulation method applied to STEREO imaging observations together with the Harmonic Mean approximation. The outputs provide the subsequent propagation of the associated shock. We apply these models to the CMEs on 2012 January 19, January 23, and March 7. We find that the shock models predict reasonably well the shock’s propagation after the impulsive acceleration. The shock’s arrival time and local propagation speed at Earth predicted by these models are consistent with in situ measurements of WIND. We also employ the Drag-Based Model (DBM) as a comparison, and find that it predicts a steeper deceleration than the shock models after the rapid deceleration phase. The predictions of DBM at 1 au agree with the following ICME or sheath structure, not the preceding shock. These results demonstrate the applicability of the shock models used here for future arrival time prediction of interplanetary shocks associated with fast CMEs.

  13. Fundamental Principles of Proper Space Kinematics

    NASA Astrophysics Data System (ADS)

    Wade, Sean

    It is desirable to understand the movement of both matter and energy in the universe based upon fundamental principles of space and time. Time dilation and length contraction are features of Special Relativity derived from the observed constancy of the speed of light. Quantum Mechanics asserts that motion in the universe is probabilistic and not deterministic. While the practicality of these dissimilar theories is well established through widespread application inconsistencies in their marriage persist, marring their utility, and preventing their full expression. After identifying an error in perspective the current theories are tested by modifying logical assumptions to eliminate paradoxical contradictions. Analysis of simultaneous frames of reference leads to a new formulation of space and time that predicts the motion of both kinds of particles. Proper Space is a real, three-dimensional space clocked by proper time that is undergoing a densification at the rate of c. Coordinate transformations to a familiar object space and a mathematical stationary space clarify the counterintuitive aspects of Special Relativity. These symmetries demonstrate that within the local universe stationary observers are a forbidden frame of reference; all is in motion. In lieu of Quantum Mechanics and Uncertainty the use of the imaginary number i is restricted for application to the labeling of mass as either material or immaterial. This material phase difference accounts for both the perceived constant velocity of light and its apparent statistical nature. The application of Proper Space Kinematics will advance more accurate representations of microscopic, oscopic, and cosmological processes and serve as a foundation for further study and reflection thereafter leading to greater insight.

  14. A study of the fragmentation of quarks in et- p collisions at HERA

    NASA Astrophysics Data System (ADS)

    Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Bürke, S.; Burton, M.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlach, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Hudgson, V. L.; Huet, Ph.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönson, L.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krdmerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lohmander, H.; Lomas, J.; Lopez, G. C.; Lubimov, V.; Luke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Migliori, A.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Radel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rütter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Spiekermann, J.; Spielman, S.; Spitzerx, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stosslein, U.; Stolze, K.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration

    1995-02-01

    Deep inelastic scattering (DIS) events, selected from 1993 data taken by the H1 experiment at HERA, are studied in the Breit frame of reference. The fragmentation function of the quark is compared with those of e+e- data. It is shown that certain aspects of the quarks emerging from within the proton in e-p interactions are essentially the same as those of quarks pair-created from the vacuum in e+e- annihilation. The measured area, peak position and width of the fragmentation function show that the kinematic evolution variable, equivalent to the e+e- squared centre of mass energy, is in the Breit frame the invariant square of the four-momentum transfer. We comment on the extent to which we have evidence for coherence effects in pArton showers.

  15. Relativistic analysis of stochastic kinematics

    NASA Astrophysics Data System (ADS)

    Giona, Massimiliano

    2017-10-01

    The relativistic analysis of stochastic kinematics is developed in order to determine the transformation of the effective diffusivity tensor in inertial frames. Poisson-Kac stochastic processes are initially considered. For one-dimensional spatial models, the effective diffusion coefficient measured in a frame Σ moving with velocity w with respect to the rest frame of the stochastic process is inversely proportional to the third power of the Lorentz factor γ (w ) =(1-w2/c2) -1 /2 . Subsequently, higher-dimensional processes are analyzed and it is shown that the diffusivity tensor in a moving frame becomes nonisotropic: The diffusivities parallel and orthogonal to the velocity of the moving frame scale differently with respect to γ (w ) . The analysis of discrete space-time diffusion processes permits one to obtain a general transformation theory of the tensor diffusivity, confirmed by several different simulation experiments. Several implications of the theory are also addressed and discussed.

  16. Kinematic reconstruction of the Caribbean region since the Early Jurassic

    NASA Astrophysics Data System (ADS)

    Bochman, Lydian; van Hinsbergen, Douwe; Torsvik, Trond; Spakman, Wim; Pindell, James

    2014-05-01

    The Caribbean region results from a complex tectonic history governed by the interplay of the North American, South American and (Paleo-)Pacific plates, between which the Caribbean plate evolved since the early Cretaceous. During its entire tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, which hampers a quantitative integration into the global circuit of plate motions. In addition, reconstructions of the region have so far not resulted in a first order kinematic description of the main tectonic units in terms of Euler poles and finite rotation angles. Here, we present an updated, quantitatively described kinematic reconstruction of the Caribbean region back to 200 Ma integrated into the global plate circuit, and implemented with GPlates free software. Our analysis of Caribbean tectonic evolution incorporates an extensive literature review. To constrain the Caribbean plate motion between the American continents, we use a novel approach that takes structural geological observations rather than marine magnetic anomalies as prime input, and uses regionally extensive metamorphic and magmatic phenomena such as the Great Arc of the Caribbean, the Caribbean Large Igneous Province (CLIP) and the Caribbean high-pressure belt as correlation markers. The resulting model restores the Caribbean plate back along the Cayman Trough and major strike-slip faults in Guatemala, offshore Nicaragua, offshore Belize and along the Northern Andes towards its position of origin, west of the North and South American continents in early Cretaceous time. We provide the paleomagnetic reference frame for the Caribbean region by rotating the Global Apparent Polar Wander Path into coordinates of the Caribbean plate interior, Cuba, and the Chortis Block. We conclude that a plate kinematic scenario for a Panthalassa/Pacific origin of Caribbean lithosphere leads to a much simpler explanation than a Proto-Caribbean/Atlantic origin. Placing our reconstruction in the most recent mantle reference frames shows that the CLIP erupted 2000-3000 km east of the modern Galápagos hotspot, and may not have been derived from the corresponding mantle plume. Finally, our reconstruction suggests that most if not all modern subduction zones surrounding the Caribbean plate initiated at transform faults, two of these (along the southern Mexican and NW South American margins) evolved diachronously as a result of migrating trench-trench-transform triple junctions.

  17. First steps of processing VLBI data of space probes with VieVS

    NASA Astrophysics Data System (ADS)

    Plank, L.; Böhm, J.; Schuh, H.

    2011-07-01

    Since 2008 the VLBI group at the Institute of Geodesy and Geophysics (IGG) of the Vienna University of Technology has developed the Vienna VLBI Software VieVS which is capable to process geodetic VLBI data in NGS format. Constantly we are working on upgrading the new software, e.g. by developing a scheduling tool or extending the software from single session solution to a so-called global solution, allowing the joint analysis of many sessions covering several years. In this presentation we report on first steps to enable the processing of space VLBI data with the software. Driven by the recently increasing number of space VLBI applications, our goal is the geodetic usage of such data, primarily concerning frame ties between various reference frames, e. g. by connecting the dynamic reference frame of a space probe with the kinematically defined International Celestial Reference Frame (ICRF). Main parts of the software extension w.r.t. the existing VieVS are the treatment of fast moving targets, the implementation of a delay model for radio emitters at finite distances, and the adequate mathematical model and adjustment of the particular unknowns. Actual work has been done for two mission scenarios so far: On the one hand differential VLBI (D-VLBI) data from the two sub-satellites of the Japanese lunar mission Selene were processed, on the other hand VLBI observations of GNSS satellites were modelled in VieVS. Besides some general aspects, we give details on the calculation of the theoretical delay (delay model for moving sources at finite distances) and its realization in VieVS. First results with real data and comparisons with best fit mission orbit data are also presented.'

  18. Contribution to defining a geodetic reference frame for Africa (AFREF): Geodynamics implications

    NASA Astrophysics Data System (ADS)

    Saria, Elifuraha E.

    African Reference Frame (AFREF) is the proposed regional three-dimensional standard frame, which will be used to reference positions and velocities for geodetic sites in Africa and surrounding. This frame will play a crucial role in scientific application for example plate motion and crustal deformation studies, and also in mapping when it involves for example national boundary surveying, remote sensing, GIS, engineering projects and other development programs in Africa. To contribute to the definition of geodetic reference frame for Africa and provide the first continent-wide position/velocity solution for Africa, we processed and analyzed 16 years of GPS and 17 years of DORIS data at 133 GPS sites and 9 DORIS sites continuously operating geodetic sites in Africa and surroundings to describe the present-day kinematics of the Nubian and Somalian plates and constrain relative motions across the East African Rift. We use the resulting horizontal velocities to determine the level of rigidity of Nubia and updated a plate motion model for the East African Rift and revise the counter clockwise rotation of the Victoria plate and clockwise rotation of the Rovuma plate with respect to Nubia. The vertical velocity ranges from -2 to +2 mm/yr, close to their uncertainties with no clear geographical pattern. This study provides the first continent-wide position/velocity solution for Africa, expressed in International Terrestrial Reference Frame (ITRF2008), a contribution to the upcoming African Reference Frame (AFREF). In the next step we used the substantial increase in the geologic, geophysical and geodetic data in Africa to improve our understanding of the rift geometry and the block kinematics of the EAR. We determined the best-fit fault structure of the rift in terms of the locking depth and dip angle and use a block modeling approach where observed velocities are described as the contribution of rigid block rotation and strain accumulation on locked faults. Our results show a better fit with three sub-plates (Victoria, Rovuma and Lwandle) between the major plates Nubia and Somalia. We show that the earthquake slip vectors provide information that is consistent with the GPS velocities and significantly help reduce the uncertainties in plate angular velocity estimates. However, we find that 3.16 My average spreading rates along the Southwest Indian Ridge (SWIR) from MORVEL model are systematically faster than GPS-derived motions across that ridge, possibly reflecting the need to revise the MORVEL outward displacement correction. In the final step, we attempt to understand the hydrological loading in Africa, which may affect our geodetic estimates, particularly the uplift rates. In this work, we analyze 10 years (2002 - 2012) of continuous GPS measurements operating in Africa, and compare with the modeled hydrological loading deformation inferred from the Gravity Recovery and Climate Experiment (GRACE) at the same GPS location and for the same time period. We estimated hydrological loading deformation based on the Equivalent Water Height (EWH) derived from the 10-days interval reprocessed GRACE solution second release (RL02). We took in to account in both GPS and GRACE the systematic errors from atmospheric pressure and non-tidal ocean loading effects and model the Earth as perfect elastic and compute the deformation using appropriate Greens function. We analyze the strength of association between the observation (GPS) and the model (GRACE) in terms of annual amplitude and phase as well as the original data (time-series). We find a good correlation mainly in regions associated with strong seasonal hydrological variations. To improve the correlation between the two solutions, we subtract the GRACE-derived vertical displacement from GPS-observed time series and determine the variance reduction. Our solution shows average variance between the model and the observation reduced to ~40%. (Abstract shortened by UMI.)

  19. Kinematic evaluation of the finger's interphalangeal joints coupling mechanism--variability, flexion-extension differences, triggers, locking swanneck deformities, anthropometric correlations.

    PubMed

    Leijnse, J N A L; Quesada, P M; Spoor, C W

    2010-08-26

    The human finger contains tendon/ligament mechanisms essential for proper control. One mechanism couples the movements of the interphalangeal joints when the (unloaded) finger is flexed with active deep flexor. This study's aim was to accurately determine in a large finger sample the kinematics and variability of the coupled interphalangeal joint motions, for potential clinical and finger model validation applications. The data could also be applied to humanoid robotic hands. Sixty-eight fingers were measured in seventeen hands in nine subjects. Fingers exhibited great joint mobility variability, with passive proximal interphalangeal hyperextension ranging from zero to almost fifty degrees. Increased measurement accuracy was obtained by using marker frames to amplify finger segment motions. Gravitational forces on the marker frames were not found to invalidate measurements. The recorded interphalangeal joint trajectories were highly consistent, demonstrating the underlying coupling mechanism. The increased accuracy and large sample size allowed for evaluation of detailed trajectory variability, systematic differences between flexion and extension trajectories, and three trigger types, distinct from flexor tendon triggers, involving initial flexion deficits in either proximal or distal interphalangeal joint. The experimental methods, data and analysis should advance insight into normal and pathological finger biomechanics (e.g., swanneck deformities), and could help improve clinical differential diagnostics of trigger finger causes. The marker frame measuring method may be useful to quantify interphalangeal joints trajectories in surgical/rehabilitative outcome studies. The data as a whole provide the most comprehensive collection of interphalangeal joint trajectories for clinical reference and model validation known to us to date. 2010 Elsevier Ltd. All rights reserved.

  20. A Vision-Based Self-Calibration Method for Robotic Visual Inspection Systems

    PubMed Central

    Yin, Shibin; Ren, Yongjie; Zhu, Jigui; Yang, Shourui; Ye, Shenghua

    2013-01-01

    A vision-based robot self-calibration method is proposed in this paper to evaluate the kinematic parameter errors of a robot using a visual sensor mounted on its end-effector. This approach could be performed in the industrial field without external, expensive apparatus or an elaborate setup. A robot Tool Center Point (TCP) is defined in the structural model of a line-structured laser sensor, and aligned to a reference point fixed in the robot workspace. A mathematical model is established to formulate the misalignment errors with kinematic parameter errors and TCP position errors. Based on the fixed point constraints, the kinematic parameter errors and TCP position errors are identified with an iterative algorithm. Compared to the conventional methods, this proposed method eliminates the need for a robot-based-frame and hand-to-eye calibrations, shortens the error propagation chain, and makes the calibration process more accurate and convenient. A validation experiment is performed on an ABB IRB2400 robot. An optimal configuration on the number and distribution of fixed points in the robot workspace is obtained based on the experimental results. Comparative experiments reveal that there is a significant improvement of the measuring accuracy of the robotic visual inspection system. PMID:24300597

  1. Model-based framework for multi-axial real-time hybrid simulation testing

    NASA Astrophysics Data System (ADS)

    Fermandois, Gaston A.; Spencer, Billie F.

    2017-10-01

    Real-time hybrid simulation is an efficient and cost-effective dynamic testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-dependent behavior. A loading assembly with multiple actuators is required to impose realistic boundary conditions on physical specimens. However, such a testing system is expected to exhibit significant dynamic coupling of the actuators and suffer from time lags that are associated with the dynamics of the servo-hydraulic system, as well as control-structure interaction (CSI). One approach to reducing experimental errors considers a multi-input, multi-output (MIMO) controller design, yielding accurate reference tracking and noise rejection. In this paper, a framework for multi-axial real-time hybrid simulation (maRTHS) testing is presented. The methodology employs a real-time feedback-feedforward controller for multiple actuators commanded in Cartesian coordinates. Kinematic transformations between actuator space and Cartesian space are derived for all six-degrees-offreedom of the moving platform. Then, a frequency domain identification technique is used to develop an accurate MIMO transfer function of the system. Further, a Cartesian-domain model-based feedforward-feedback controller is implemented for time lag compensation and to increase the robustness of the reference tracking for given model uncertainty. The framework is implemented using the 1/5th-scale Load and Boundary Condition Box (LBCB) located at the University of Illinois at Urbana- Champaign. To demonstrate the efficacy of the proposed methodology, a single-story frame subjected to earthquake loading is tested. One of the columns in the frame is represented physically in the laboratory as a cantilevered steel column. For realtime execution, the numerical substructure, kinematic transformations, and controllers are implemented on a digital signal processor. Results show excellent performance of the maRTHS framework when six-degrees-of-freedom are controlled at the interface between substructures.

  2. Calibration of the ARID robot

    NASA Technical Reports Server (NTRS)

    Doty, Keith L

    1992-01-01

    The author has formulated a new, general model for specifying the kinematic properties of serial manipulators. The new model kinematic parameters do not suffer discontinuities when nominally parallel adjacent axes deviate from exact parallelism. From this new theory the author develops a first-order, lumped-parameter, calibration-model for the ARID manipulator. Next, the author develops a calibration methodology for the ARID based on visual and acoustic sensing. A sensor platform, consisting of a camera and four sonars attached to the ARID end frame, performs calibration measurements. A calibration measurement consists of processing one visual frame of an accurately placed calibration image and recording four acoustic range measurements. A minimum of two measurement protocols determine the kinematics calibration-model of the ARID for a particular region: assuming the joint displacements are accurately measured, the calibration surface is planar, and the kinematic parameters do not vary rapidly in the region. No theoretical or practical limitations appear to contra-indicate the feasibility of the calibration method developed here.

  3. CASA-Mot technology: how results are affected by the frame rate and counting chamber.

    PubMed

    Bompart, Daznia; García-Molina, Almudena; Valverde, Anthony; Caldeira, Carina; Yániz, Jesús; Núñez de Murga, Manuel; Soler, Carles

    2018-04-04

    For over 30 years, CASA-Mot technology has been used for kinematic analysis of sperm motility in different mammalian species, but insufficient attention has been paid to the technical limitations of commercial computer-aided sperm analysis (CASA) systems. Counting chamber type and frame rate are two of the most important aspects to be taken into account. Counting chambers can be disposable or reusable, with different depths. In human semen analysis, reusable chambers with a depth of 10µm are the most frequently used, whereas for most farm animal species it is more common to use disposable chambers with a depth of 20µm . The frame rate was previously limited by the hardware, although changes in the number of images collected could lead to significant variations in some kinematic parameters, mainly in curvilinear velocity (VCL). A frame rate of 60 frames s-1 is widely considered to be the minimum necessary for satisfactory results. However, the frame rate is species specific and must be defined in each experimental condition. In conclusion, we show that the optimal combination of frame rate and counting chamber type and depth should be defined for each species and experimental condition in order to obtain reliable results.

  4. Relativistic effects in ab initio electron-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Rocco, Noemi; Leidemann, Winfried; Lovato, Alessandro; Orlandini, Giuseppina

    2018-05-01

    The electromagnetic responses obtained from Green's function Monte Carlo (GFMC) calculations are based on realistic treatments of nuclear interactions and currents. The main limitations of this method comes from its nonrelativistic nature and its computational cost, the latter hampering the direct evaluation of the inclusive cross sections as measured by experiments. We extend the applicability of GFMC in the quasielastic region to intermediate momentum transfers by performing the calculations in a reference frame that minimizes nucleon momenta. Additional relativistic effects in the kinematics are accounted for employing the two-fragment model. In addition, we developed a novel algorithm, based on the concept of first-kind scaling, to compute the inclusive electromagnetic cross section of 4He through an accurate and reliable interpolation of the response functions. A very good agreement is obtained between theoretical and experimental cross sections for a variety of kinematical setups. This offers a promising prospect for the data analysis of neutrino-oscillation experiments that requires an accurate description of nuclear dynamics in which relativistic effects are fully accounted for.

  5. The effect of inertial coupling in the dynamics and control of flexible robotic manipulators

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert; Curran, Carol Cockrell; Graves, Philip Lee

    1988-01-01

    A general model of the dynamics of flexible robotic manipulators is presented, including the gross motion of the links, the vibrations of the links and joints, and the dynamic coupling between the gross motions and vibrations. The vibrations in the links may be modeled using lumped parameters, truncated modal summation, a component mode synthesis method, or a mixture of these methods. The local link inertia matrix is derived to obtain the coupling terms between the gross motion of the link and the vibrations of the link. Coupling between the motions of the links results from the kinematic model, which utilizes the method of kinematic influence. The model is used to simulate the dynamics of a flexible space-based robotic manipulator which is attached to a spacecraft, and is free to move with respect to the inertial reference frame. This model may be used to study the dynamic response of the manipulator to the motions of its joints, or to externally applied disturbances.

  6. Investigation of kinematic features for dismount detection and tracking

    NASA Astrophysics Data System (ADS)

    Narayanaswami, Ranga; Tyurina, Anastasia; Diel, David; Mehra, Raman K.; Chinn, Janice M.

    2012-05-01

    With recent changes in threats and methods of warfighting and the use of unmanned aircrafts, ISR (Intelligence, Surveillance and Reconnaissance) activities have become critical to the military's efforts to maintain situational awareness and neutralize the enemy's activities. The identification and tracking of dismounts from surveillance video is an important step in this direction. Our approach combines advanced ultra fast registration techniques to identify moving objects with a classification algorithm based on both static and kinematic features of the objects. Our objective was to push the acceptable resolution beyond the capability of industry standard feature extraction methods such as SIFT (Scale Invariant Feature Transform) based features and inspired by it, SURF (Speeded-Up Robust Feature). Both of these methods utilize single frame images. We exploited the temporal component of the video signal to develop kinematic features. Of particular interest were the easily distinguishable frequencies characteristic of bipedal human versus quadrupedal animal motion. We examine limits of performance, frame rates and resolution required for human, animal and vehicles discrimination. A few seconds of video signal with the acceptable frame rate allow us to lower resolution requirements for individual frames as much as by a factor of five, which translates into the corresponding increase of the acceptable standoff distance between the sensor and the object of interest.

  7. Full-Scale Direct Numerical Simulation of Two- and Three-Dimensional Instabilities and Rivulet Formulation in Heated Falling Films

    NASA Technical Reports Server (NTRS)

    Krishnamoorthy, S.; Ramaswamy, B.; Joo, S. W.

    1995-01-01

    A thin film draining on an inclined plate has been studied numerically using finite element method. Three-dimensional governing equations of continuity, momentum and energy with a moving boundary are integrated in an arbitrary Lagrangian Eulerian frame of reference. Kinematic equation is solved to precisely update interface location. Rivulet formation based on instability mechanism has been simulated using full-scale computation. Comparisons with long-wave theory are made to validate the numerical scheme. Detailed analysis of two- and three-dimensional nonlinear wave formation and spontaneous rupture forming rivulets under the influence of combined thermocapillary and surface-wave instabilities is performed.

  8. Reliability of a Qualitative Video Analysis for Running.

    PubMed

    Pipkin, Andrew; Kotecki, Kristy; Hetzel, Scott; Heiderscheit, Bryan

    2016-07-01

    Study Design Reliability study. Background Video analysis of running gait is frequently performed in orthopaedic and sports medicine practices to assess biomechanical factors that may contribute to injury. However, the reliability of a whole-body assessment has not been determined. Objective To determine the intrarater and interrater reliability of the qualitative assessment of specific running kinematics from a 2-dimensional video. Methods Running-gait analysis was performed on videos recorded from 15 individuals (8 male, 7 female) running at a self-selected pace (3.17 ± 0.40 m/s, 8:28 ± 1:04 min/mi) using a high-speed camera (120 frames per second). These videos were independently rated on 2 occasions by 3 experienced physical therapists using a standardized qualitative assessment. Fifteen sagittal and frontal plane kinematic variables were rated on a 3- or 5-point categorical scale at specific events of the gait cycle, including initial contact (n = 3) and midstance (n = 9), or across the full gait cycle (n = 3). The video frame number corresponding to each gait event was also recorded. Intrarater and interrater reliability values were calculated for gait-event detection (intraclass correlation coefficient [ICC] and standard error of measurement [SEM]) and the individual kinematic variables (weighted kappa [κw]). Results Gait-event detection was highly reproducible within raters (ICC = 0.94-1.00; SEM, 0.3-1.0 frames) and between raters (ICC = 0.77-1.00; SEM, 0.4-1.9 frames). Eleven of the 15 kinematic variables demonstrated substantial (κw = 0.60-0.799) or excellent (κw>0.80) intrarater agreement, with the exception of foot-to-center-of-mass position (κw = 0.59), forefoot position (κw = 0.58), ankle dorsiflexion at midstance (κw = 0.49), and center-of-mass vertical excursion (κw = 0.36). Interrater agreement for the kinematic measures varied more widely (κw = 0.00-0.85), with 5 variables showing substantial or excellent reliability. Conclusion The qualitative assessment of specific kinematic measures during running can be reliably performed with the use of a high-speed video camera. Detection of specific gait events was highly reproducible, as were common kinematic variables such as rearfoot position, foot-strike pattern, tibial inclination angle, knee flexion angle, and forward trunk lean. Other variables should be used with caution. J Orthop Sports Phys Ther 2016;46(7):556-561. Epub 6 Jun 2016. doi:10.2519/jospt.2016.6280.

  9. Effective Inertial Frame in an Atom Interferometric Test of the Equivalence Principle

    NASA Astrophysics Data System (ADS)

    Overstreet, Chris; Asenbaum, Peter; Kovachy, Tim; Notermans, Remy; Hogan, Jason M.; Kasevich, Mark A.

    2018-05-01

    In an ideal test of the equivalence principle, the test masses fall in a common inertial frame. A real experiment is affected by gravity gradients, which introduce systematic errors by coupling to initial kinematic differences between the test masses. Here we demonstrate a method that reduces the sensitivity of a dual-species atom interferometer to initial kinematics by using a frequency shift of the mirror pulse to create an effective inertial frame for both atomic species. Using this method, we suppress the gravity-gradient-induced dependence of the differential phase on initial kinematic differences by 2 orders of magnitude and precisely measure these differences. We realize a relative precision of Δ g /g ≈6 ×10-11 per shot, which improves on the best previous result for a dual-species atom interferometer by more than 3 orders of magnitude. By reducing gravity gradient systematic errors to one part in 1 013 , these results pave the way for an atomic test of the equivalence principle at an accuracy comparable with state-of-the-art classical tests.

  10. Differential Cross Section Kinematics for 3-dimensional Transport Codes

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Dick, Frank

    2008-01-01

    In support of the development of 3-dimensional transport codes, this paper derives the relevant relativistic particle kinematic theory. Formulas are given for invariant, spectral and angular distributions in both the lab (spacecraft) and center of momentum frames, for collisions involving 2, 3 and n - body final states.

  11. Analysis of a kinetic multi-segment foot model. Part I: Model repeatability and kinematic validity.

    PubMed

    Bruening, Dustin A; Cooney, Kevin M; Buczek, Frank L

    2012-04-01

    Kinematic multi-segment foot models are still evolving, but have seen increased use in clinical and research settings. The addition of kinetics may increase knowledge of foot and ankle function as well as influence multi-segment foot model evolution; however, previous kinetic models are too complex for clinical use. In this study we present a three-segment kinetic foot model and thorough evaluation of model performance during normal gait. In this first of two companion papers, model reference frames and joint centers are analyzed for repeatability, joint translations are measured, segment rigidity characterized, and sample joint angles presented. Within-tester and between-tester repeatability were first assessed using 10 healthy pediatric participants, while kinematic parameters were subsequently measured on 17 additional healthy pediatric participants. Repeatability errors were generally low for all sagittal plane measures as well as transverse plane Hindfoot and Forefoot segments (median<3°), while the least repeatable orientations were the Hindfoot coronal plane and Hallux transverse plane. Joint translations were generally less than 2mm in any one direction, while segment rigidity analysis suggested rigid body behavior for the Shank and Hindfoot, with the Forefoot violating the rigid body assumptions in terminal stance/pre-swing. Joint excursions were consistent with previously published studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Design and simulation of an articulated surgical arm for guiding stereotactic neurosurgery

    NASA Astrophysics Data System (ADS)

    Kadi, A. Majeed; Zamorano, Lucia J.; Frazer, Matthew P.; Lu, Yi

    1992-03-01

    In stereotactic surgery, the need exists for means of relating intraoperatively the position and orientation of the surgical instrument used by the neurosurgeon to a known frame of reference. An articulated arm is proposed which would provide the neurosurgeon with on-line information for position, and orientation of the surgical tools being moved by the neurosurgeon. The articulated arm has six degrees of freedom, with five revolute and one prismatic joints. The design features include no obstruction to the field of view, lightweight, good balance against gravity, an accuracy of 1 mm spherical error probability (SEP), and a solvable kinematic structure making it capable of fitting the operating room environment. The arm can be mounted on either the surgical table or the stereotactic frame. A graphical simulation of the arm was created using the IGRIP simulation package created by Deneb Robotics. The simulation demonstrates the use of the arm, mounted on several positions of the ring reaching various target points within the cranium.

  13. Dynamic Shape Reconstruction of Three-Dimensional Frame Structures Using the Inverse Finite Element Method

    NASA Technical Reports Server (NTRS)

    Gherlone, Marco; Cerracchio, Priscilla; Mattone, Massimiliano; Di Sciuva, Marco; Tessler, Alexander

    2011-01-01

    A robust and efficient computational method for reconstructing the three-dimensional displacement field of truss, beam, and frame structures, using measured surface-strain data, is presented. Known as shape sensing , this inverse problem has important implications for real-time actuation and control of smart structures, and for monitoring of structural integrity. The present formulation, based on the inverse Finite Element Method (iFEM), uses a least-squares variational principle involving strain measures of Timoshenko theory for stretching, torsion, bending, and transverse shear. Two inverse-frame finite elements are derived using interdependent interpolations whose interior degrees-of-freedom are condensed out at the element level. In addition, relationships between the order of kinematic-element interpolations and the number of required strain gauges are established. As an example problem, a thin-walled, circular cross-section cantilevered beam subjected to harmonic excitations in the presence of structural damping is modeled using iFEM; where, to simulate strain-gauge values and to provide reference displacements, a high-fidelity MSC/NASTRAN shell finite element model is used. Examples of low and high-frequency dynamic motion are analyzed and the solution accuracy examined with respect to various levels of discretization and the number of strain gauges.

  14. Robot geometry calibration

    NASA Technical Reports Server (NTRS)

    Hayati, Samad; Tso, Kam; Roston, Gerald

    1988-01-01

    Autonomous robot task execution requires that the end effector of the robot be positioned accurately relative to a reference world-coordinate frame. The authors present a complete formulation to identify the actual robot geometric parameters. The method applies to any serial link manipulator with arbitrary order and combination of revolute and prismatic joints. A method is also presented to solve the inverse kinematic of the actual robot model which usually is not a so-called simple robot. Experimental results performed by utilizing a PUMA 560 with simple measurement hardware are presented. As a result of this calibration a precision move command is designed and integrated into a robot language, RCCL, and used in the NASA Telerobot Testbed.

  15. Reference Frames and Relativity.

    ERIC Educational Resources Information Center

    Swartz, Clifford

    1989-01-01

    Stresses the importance of a reference frame in mechanics. Shows the Galilean transformation in terms of relativity theory. Discusses accelerated reference frames and noninertial reference frames. Provides examples of reference frames with diagrams. (YP)

  16. Geodynamic models assist in determining the South Loyalty Basin's slab location and its implications for regional topography

    NASA Astrophysics Data System (ADS)

    Clark, Stuart R.

    2010-05-01

    In the Western Pacific, two competing kinematic reconstructions exist: one with wholly westward subduction of the Pacific plate at what is now the Tonga-Kermadec trench and one combining a degree of eastward subduction under what has been termed the New Caledonia trench. New seismological observations indicate that eastward subduction could explain the existence of a fast anomaly, the hyothesised South Loyalty Basin slab, below the 660km transition zone distinct from the fast anomaly aligned with the Tonga-Kermadec slab. A plate reconstruction dated from the suggested initiation of New Caledonia subduction in the Eocene has been developed. This reconstruction is then used to predict the thermal history of the region and together provide kinematic and thermal boundary conditions for a regional mantle convection model. The model-predicted location of the South Loyalty Basin slab's location will be presented along with the location's dependence on the mantle rheological parameters and the hotspot reference frame. The implications for the topography of the region will also be discussed.

  17. Biofluid Mechanics Education at U Michigan

    NASA Astrophysics Data System (ADS)

    Grotberg, James

    2007-11-01

    At the University of Michigan, biofluid mechanics is taught in the Department of Biomedical Engineering with cross-listing in Mechanical Engineering. The course has evolved over 25 years and serves advanced undergraduates and graduate students. The course description is as follows: BiomedE/MechE 476 Biofluid Mechanics. CATALOG DESCRIPTION: This is an intermediate level fluid mechanics course which uses examples from biotechnology processes and physiologic applications including cellular, cardiovascular, respiratory, ocular, renal, orthopedic, and gastrointestinal systems. COURSE TOPICS: 1. Dimensional analysis (gastrointestinal, renal) 2. Approximation methods, numerical methods (biotechnology, respiratory) 3. Particle kinematics in Eulerian and Lagrangian references frames (biotechnology, respiratory) 4. Conservation of mass and momentum 5. Constitutive equations (blood, mucus) 6. Kinematic and stress boundary conditions: rigid, flexible, porous (cardio-pulmonary, cellular) 7. Surface tension phenomena (pulmonary, ocular) 8. Flow and wave propagation in flexible tubes (cardio-pulmonary) 9. Oscillatory and pulsatile flows (cardio-pulmonary, orthopedic) 10. High Reynolds number flows (cardio-pulmonary) 11. Low Reynolds number flows (biotechnology, cellular, vascular) 12. Lubrication theory (vascular, orthopedic) 13. Flow in poroelastic media (orthopedic, pulmonary, ocular) 14. Video presentations of laboratory experiments.

  18. Astrophysics of Reference Frame Tie Objects

    NASA Technical Reports Server (NTRS)

    Johnston, Kenneth J.; Boboltz, David; Fey, Alan Lee; Gaume, Ralph A.; Zacharias, Norbert

    2004-01-01

    The Astrophysics of Reference Frame Tie Objects Key Science program will investigate the underlying physics of SIM grid objects. Extragalactic objects in the SIM grid will be used to tie the SIM reference frame to the quasi-inertial reference frame defined by extragalactic objects and to remove any residual frame rotation with respect to the extragalactic frame. The current realization of the extragalactic frame is the International Celestial Reference Frame (ICRF). The ICRF is defined by the radio positions of 212 extragalactic objects and is the IAU sanctioned fundamental astronomical reference frame. This key project will advance our knowledge of the physics of the objects which will make up the SIM grid, such as quasars and chromospherically active stars, and relates directly to the stability of the SIM reference frame. The following questions concerning the physics of reference frame tie objects will be investigated.

  19. Off Shore Geodetic Measurements Simulations in the Context of Seismic and Tsunami Hazard Evaluation in the Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Sakic, P.; Ballu, V.; Piete, H.; Royer, J. Y.; de Chabalier, J. B.

    2015-12-01

    Based on the current state of knowledge, the megathrust/tsunami hazard estimation in the Lesser Antilles forearc remains uncertain. Some major events have been reported (e.g. the 1843 earthquake estimated with a IX intensity), however no associated mega-tsunami has been recorded, maybe because of the nature of the event (slab locked up to the trench or not) or the too short observation period. GNSS monitoring networks are deployed on all Caribbean Islands (Guadeloupe and Martinique in particular). However, land areas are far from the trench, and their configuration is not optimal for the strain measurement related to a possible locking between the two plates up to the seafloor.The GPS/Acoustics (GPS/A) technique aims to overcome this limitation. It consists of a surface platform used as a relay between aerial and underwater media. The position is obtained in a global reference frame by GNSS kinematic processing and is transferred to the seafloor by acoustic ranging to a set of transponders permanently installed on the seabed. Repeated measurements over the years will allow to compute the velocity of the study area in a global reference frame. We present a case study for a future deployment of this kind of submarine network off the French Caribbean Islands. Numerical simulations of GPS/A are performed in order to evaluate the accuracy achievable in the Antilles context, using water variability information from past oceanographic campaigns and MOVE buoys. The kinematic GNSS treatments are carried out on test cruises data by different methods (real-time differential, differential post treatment and Precise Point Positioning) to assess the performances in different conditions. In order to characterize the geophysical context, we also present a reprocessing of the GNSS stations of the Guadeloupe and Martinique Islands using a PPP approach with the CNES GINS software, along with a finite element model of the subduction zone.

  20. Comparing the Impact of Dynamic and Static Media on Students' Learning of One-Dimensional Kinematics

    ERIC Educational Resources Information Center

    Mešic, Vanes; Dervic, Dževdeta; Gazibegovic-Busuladžic, Azra; Salibašic, Džana; Erceg, Nataša

    2015-01-01

    In our study, we aimed to compare the impact of simulations, sequences of printed simulation frames and conventional static diagrams on the understanding of students with regard to the one-dimensional kinematics. Our student sample consisted of three classes of middle years students (N = 63; mostly 15 year-olds). These three classes served as…

  1. Anatomical frame identification and reconstruction for repeatable lower limb joint kinematics estimates.

    PubMed

    Donati, Marco; Camomilla, Valentina; Vannozzi, Giuseppe; Cappozzo, Aurelio

    2008-07-19

    The quantitative description of joint mechanics during movement requires the reconstruction of the position and orientation of selected anatomical axes with respect to a laboratory reference frame. These anatomical axes are identified through an ad hoc anatomical calibration procedure and their position and orientation are reconstructed relative to bone-embedded frames normally derived from photogrammetric marker positions and used to describe movement. The repeatability of anatomical calibration, both within and between subjects, is crucial for kinematic and kinetic end results. This paper illustrates an anatomical calibration approach, which does not require anatomical landmark manual palpation, described in the literature to be prone to great indeterminacy. This approach allows for the estimate of subject-specific bone morphology and automatic anatomical frame identification. The experimental procedure consists of digitization through photogrammetry of superficial points selected over the areas of the bone covered with a thin layer of soft tissue. Information concerning the location of internal anatomical landmarks, such as a joint center obtained using a functional approach, may also be added. The data thus acquired are matched with the digital model of a deformable template bone. Consequently, the repeatability of pelvis, knee and hip joint angles is determined. Five volunteers, each of whom performed five walking trials, and six operators, with no specific knowledge of anatomy, participated in the study. Descriptive statistics analysis was performed during upright posture, showing a limited dispersion of all angles (less than 3 deg) except for hip and knee internal-external rotation (6 deg and 9 deg, respectively). During level walking, the ratio of inter-operator and inter-trial error and an absolute subject-specific repeatability were assessed. For pelvic and hip angles, and knee flexion-extension the inter-operator error was equal to the inter-trial error-the absolute error ranging from 0.1 deg to 0.9 deg. Knee internal-external rotation and ab-adduction showed, on average, inter-operator errors, which were 8% and 28% greater than the relevant inter-trial errors, respectively. The absolute error was in the range 0.9-2.9 deg.

  2. Superconductor rotor cooling system

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2004-11-02

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  3. Superconductor rotor cooling system

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  4. ISS Squat and Deadlift Kinematics on the Advanced Resistive Exercise Device

    NASA Technical Reports Server (NTRS)

    Newby, N.; Caldwell, E.; Sibonga, J.; Ploutz-Snyder, L.

    2014-01-01

    Visual assessment of exercise form on the Advanced Resistive Exercise Device (ARED) on orbit is difficult due to the motion of the entire device on its Vibration Isolation System (VIS). The VIS allows for two degrees of device translational motion, and one degree of rotational motion. In order to minimize the forces that the VIS must damp in these planes of motion, the floor of the ARED moves as well during exercise to reduce changes in the center of mass of the system. To help trainers and other exercise personnel better assess squat and deadlift form a tool was developed that removes the VIS motion and creates a stick figure video of the exerciser. Another goal of the study was to determine whether any useful kinematic information could be obtained from just a single camera. Finally, the use of these data may aid in the interpretation of QCT hip structure data in response to ARED exercises performed in-flight. After obtaining informed consent, four International Space Station (ISS) crewmembers participated in this investigation. Exercise was videotaped using a single camera positioned to view the side of the crewmember during exercise on the ARED. One crewmember wore reflective tape on the toe, heel, ankle, knee, hip, and shoulder joints. This technique was not available for the other three crewmembers, so joint locations were assessed and digitized frame-by-frame by lab personnel. A custom Matlab program was used to assign two-dimensional coordinates to the joint locations throughout exercise. A second custom Matlab program was used to scale the data, calculate joint angles, estimate the foot center of pressure (COP), approximate normal and shear loads, and to create the VIS motion-corrected stick figure videos. Kinematics for the squat and deadlift vary considerably for the four crewmembers in this investigation. Some have very shallow knee and hip angles, and others have quite large ranges of motion at these joints. Joint angle analysis showed that crewmembers do not return to a normal upright stance during squat, but remain somewhat bent at the hips. COP excursions were quite large during these exercises covering the entire length of the base of support in most cases. Anterior-posterior shear was very pronounced at the bottom of the squat and deadlift correlating with a COP shift to the toes at this part of the exercise. The stick figure videos showing a feet fixed reference frame have made it visually much easier for exercise personnel and trainers to assess exercise kinematics. Not returning to fully upright, hips extended position during squat exercises could have implications for the amount of load that is transmitted axially along the skeleton. The estimated shear loads observed in these crewmembers, along with a concomitant reduction in normal force, may also affect bone loading. The increased shear is likely due to the surprisingly large deviations in COP. Since the footplate on ARED moves along an arced path, much of the squat and deadlift movement is occurring on a tilted foot surface. This leads to COP movements away from the heel. The combination of observed kinematics and estimated kinetics make squat and deadlift exercises on the ARED distinctly different from their ground-based counterparts. CONCLUSION This investigation showed that some useful exercise information can be obtained at low cost, using a single video camera that is readily available on ISS. Squat and deadlift kinematics on the ISS ARED differ from ground-based ARED exercise. The amount of COP shift during these exercises sometimes approaches the limit of stability leading to modifications in the kinematics. The COP movement and altered kinematics likely reduce the bone loading experienced during these exercises. Further, the stick figure videos may prove to be a useful tool in assisting trainers to identify exercise form and make suggestions for improvements

  5. Femoral anatomical frame: assessment of various definitions.

    PubMed

    Della Croce, U; Camomilla, V; Leardini, A; Cappozzo, A

    2003-06-01

    The reliability of the estimate of joint kinematic variables and the relevant functional interpretation are affected by the uncertainty with which bony anatomical landmarks and underlying bony segment anatomical frames are determined. When a stereo-photogrammetric system is used for in vivo studies, minimising and compensating for this uncertainty is crucial. This paper deals with the propagation of the errors associated with the location of both internal and palpable femoral anatomical landmarks to the estimation of the orientation of the femoral anatomical frame and to the knee joint angles during movement. Given eight anatomical landmarks, and the precision with which they can be identified experimentally, 12 different rules were defined for the construction of the anatomical frame and submitted to comparative assessment. Results showed that using more than three landmarks allows for more repeatable anatomical frame orientation and knee joint kinematics estimation. Novel rules are proposed that use optimization algorithms. On the average, the femoral frame orientation dispersion had a standard deviation of 2, 2.5 and 1.5 degrees for the frontal, transverse, and sagittal plane, respectively. However, a proper choice of the relevant construction rule allowed for a reduction of these inaccuracies in selected planes to 1 degrees rms. The dispersion of the knee adduction-abduction and internal-external rotation angles could also be limited to 1 degrees rms irrespective of the flexion angle value.

  6. Singularity in the Laboratory Frame Angular Distribution Derived in Two-Body Scattering Theory

    ERIC Educational Resources Information Center

    Dick, Frank; Norbury, John W.

    2009-01-01

    The laboratory (lab) frame angular distribution derived in two-body scattering theory exhibits a singularity at the maximum lab scattering angle. The singularity appears in the kinematic factor that transforms the centre of momentum (cm) angular distribution to the lab angular distribution. We show that it is caused in the transformation by the…

  7. Geometric Cues, Reference Frames, and the Equivalence of Experienced-Aligned and Novel-Aligned Views in Human Spatial Memory

    ERIC Educational Resources Information Center

    Kelly, Jonathan W.; Sjolund, Lori A.; Sturz, Bradley R.

    2013-01-01

    Spatial memories are often organized around reference frames, and environmental shape provides a salient cue to reference frame selection. To date, however, the environmental cues responsible for influencing reference frame selection remain relatively unknown. To connect research on reference frame selection with that on orientation via…

  8. Kinematic sensitivity of robot manipulators

    NASA Technical Reports Server (NTRS)

    Vuskovic, Marko I.

    1989-01-01

    Kinematic sensitivity vectors and matrices for open-loop, n degrees-of-freedom manipulators are derived. First-order sensitivity vectors are defined as partial derivatives of the manipulator's position and orientation with respect to its geometrical parameters. The four-parameter kinematic model is considered, as well as the five-parameter model in case of nominally parallel joint axes. Sensitivity vectors are expressed in terms of coordinate axes of manipulator frames. Second-order sensitivity vectors, the partial derivatives of first-order sensitivity vectors, are also considered. It is shown that second-order sensitivity vectors can be expressed as vector products of the first-order sensitivity vectors.

  9. Pythagoras Theorem and Relativistic Kinematics

    NASA Astrophysics Data System (ADS)

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  10. Rate determination from vector observations

    NASA Technical Reports Server (NTRS)

    Weiss, Jerold L.

    1993-01-01

    Vector observations are a common class of attitude data provided by a wide variety of attitude sensors. Attitude determination from vector observations is a well-understood process and numerous algorithms such as the TRIAD algorithm exist. These algorithms require measurement of the line of site (LOS) vector to reference objects and knowledge of the LOS directions in some predetermined reference frame. Once attitude is determined, it is a simple matter to synthesize vehicle rate using some form of lead-lag filter, and then, use it for vehicle stabilization. Many situations arise, however, in which rate knowledge is required but knowledge of the nominal LOS directions are not available. This paper presents two methods for determining spacecraft angular rates from vector observations without a priori knowledge of the vector directions. The first approach uses an extended Kalman filter with a spacecraft dynamic model and a kinematic model representing the motion of the observed LOS vectors. The second approach uses a 'differential' TRIAD algorithm to compute the incremental direction cosine matrix, from which vehicle rate is then derived.

  11. Comparative shoulder kinematics during free standing, standing depression lifts and daily functional activities in persons with paraplegia: considerations for shoulder health.

    PubMed

    Riek, L M; Ludewig, P M; Nawoczenski, D A

    2008-05-01

    Case series; nonparametric repeated-measures analysis of variance. To compare and contrast three-dimensional shoulder kinematics during frequently utilized upper extremity weight-bearing activities (standing depression lifts used in brace walking, weight-relief raises, transfers) and postures (sitting rest, standing in a frame) in spinal cord injury (SCI). Movement Analysis Laboratory, Department of Physical Therapy, Ithaca College, Rochester, NY, USA. Three female and two male subjects (39.2+/-6.1 years old) at least 12 months post-SCI (14.6+/-6.7 years old), SCI distal to T2 and with an ASIA score of A. The Flock of Birds magnetic tracking device was used to measure three-dimensional positions of the scapula, humerus and thorax during various activities. Standing in a frame resulted in significantly less scapular anterior tilt (AT) and greater glenohumeral external rotation (GHER) than standing depression lifts and weight-relief raises. Standing frame posture offers the most favorable shoulder joint positions (less scapular AT and greater GHER) when compared to sitting rest posture, weight-relief raises, transfers and standing depression lifts. Knowledge of kinematic patterns associated with each activity is an essential first step to understanding the potential impact on shoulder health. Choosing specific activities or modifying techniques within functional activities that promote favorable shoulder positions may preserve long-term shoulder health.

  12. Deep mantle structure as a reference frame for movements in and on the Earth

    PubMed Central

    Torsvik, Trond H.; van der Voo, Rob; Doubrovine, Pavel V.; Burke, Kevin; Steinberger, Bernhard; Ashwal, Lewis D.; Trønnes, Reidar G.; Webb, Susan J.; Bull, Abigail L.

    2014-01-01

    Earth’s residual geoid is dominated by a degree-2 mode, with elevated regions above large low shear-wave velocity provinces on the core–mantle boundary beneath Africa and the Pacific. The edges of these deep mantle bodies, when projected radially to the Earth’s surface, correlate with the reconstructed positions of large igneous provinces and kimberlites since Pangea formed about 320 million years ago. Using this surface-to-core–mantle boundary correlation to locate continents in longitude and a novel iterative approach for defining a paleomagnetic reference frame corrected for true polar wander, we have developed a model for absolute plate motion back to earliest Paleozoic time (540 Ma). For the Paleozoic, we have identified six phases of slow, oscillatory true polar wander during which the Earth’s axis of minimum moment of inertia was similar to that of Mesozoic times. The rates of Paleozoic true polar wander (<1°/My) are compatible with those in the Mesozoic, but absolute plate velocities are, on average, twice as high. Our reconstructions generate geologically plausible scenarios, with large igneous provinces and kimberlites sourced from the margins of the large low shear-wave velocity provinces, as in Mesozoic and Cenozoic times. This absolute kinematic model suggests that a degree-2 convection mode within the Earth’s mantle may have operated throughout the entire Phanerozoic. PMID:24889632

  13. Deep mantle structure as a reference frame for movements in and on the Earth.

    PubMed

    Torsvik, Trond H; van der Voo, Rob; Doubrovine, Pavel V; Burke, Kevin; Steinberger, Bernhard; Ashwal, Lewis D; Trønnes, Reidar G; Webb, Susan J; Bull, Abigail L

    2014-06-17

    Earth's residual geoid is dominated by a degree-2 mode, with elevated regions above large low shear-wave velocity provinces on the core-mantle boundary beneath Africa and the Pacific. The edges of these deep mantle bodies, when projected radially to the Earth's surface, correlate with the reconstructed positions of large igneous provinces and kimberlites since Pangea formed about 320 million years ago. Using this surface-to-core-mantle boundary correlation to locate continents in longitude and a novel iterative approach for defining a paleomagnetic reference frame corrected for true polar wander, we have developed a model for absolute plate motion back to earliest Paleozoic time (540 Ma). For the Paleozoic, we have identified six phases of slow, oscillatory true polar wander during which the Earth's axis of minimum moment of inertia was similar to that of Mesozoic times. The rates of Paleozoic true polar wander (<1°/My) are compatible with those in the Mesozoic, but absolute plate velocities are, on average, twice as high. Our reconstructions generate geologically plausible scenarios, with large igneous provinces and kimberlites sourced from the margins of the large low shear-wave velocity provinces, as in Mesozoic and Cenozoic times. This absolute kinematic model suggests that a degree-2 convection mode within the Earth's mantle may have operated throughout the entire Phanerozoic.

  14. Motion representation of the long fingers: a proposal for the definitions of new anatomical frames.

    PubMed

    Coupier, Jérôme; Moiseev, Fédor; Feipel, Véronique; Rooze, Marcel; Van Sint Jan, Serge

    2014-04-11

    Despite the availability of the International Society of Biomechanics (ISB) recommendations for the orientation of anatomical frames, no consensus exists about motion representations related to finger kinematics. This paper proposes novel anatomical frames for motion representation of the phalangeal segments of the long fingers. A three-dimensional model of a human forefinger was acquired from a non-pathological fresh-frozen hand. Medical imaging was used to collect phalangeal discrete positions. Data processing was performed using a customized software interface ("lhpFusionBox") to create a specimen-specific model and to reconstruct the discrete motion path. Five examiners virtually palpated two sets of landmarks. These markers were then used to build anatomical frames following two methods: a reference method following ISB recommendations and a newly-developed method based on the mean helical axis (HA). Motion representations were obtained and compared between examiners. Virtual palpation precision was around 1mm, which is comparable to results from the literature. The comparison of the two methods showed that the helical axis method seemed more reproducible between examiners especially for secondary, or accessory, motions. Computed Root Mean Square distances comparing methods showed that the ISB method displayed a variability 10 times higher than the HA method. The HA method seems to be suitable for finger motion representation using discrete positions from medical imaging. Further investigations are required before being able to use the methodology with continuous tracking of markers set on the subject's hand. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Kinematic evidence for the effect of changing plate boundary conditions on the tectonics of the northern U.S. Rockies

    NASA Astrophysics Data System (ADS)

    Schmeelk, Dylan; Bendick, Rebecca; Stickney, Michael; Bomberger, Cody

    2017-06-01

    We derive surface velocities from GPS sites in the interior Northwest U.S. relative to a fixed North American reference frame to investigate surface tectonic kinematics from the Snake River Plain (SRP) to the Canadian border. The Centennial Tectonic Belt (CTB) on the northern margin of the SRP exhibits west directed extensional velocity gradients and strain distributions similar to the main Basin and Range Province (BRP) suggesting that the CTB is part of the BRP. North of the CTB, however, the vergence of velocities relative to North America switches from westward to eastward along with a concomitant rotation of the principal stress axes based on available seismic focal mechanisms, revealing paired extension in the northern Rockies and shortening across the Rocky Mountain Front. This change in orientation of surface velocities suggests that the change in the boundary conditions on the western margin of North America influences the direction of gravitational collapse of Laramide thickened crust. Throughout the study region, fault slip rate estimates calculated from the new geodetic velocity field are consistently larger than previously reported fault slip rates determined from limited geomorphic and paleoseismic studies.

  16. Cosmologies with varying speed of light: kinematic tests

    NASA Astrophysics Data System (ADS)

    Câmara, C. S.; Carvalho, J. C.; de Garcia Maia, M. R.

    2003-08-01

    In the last few years, there have appeared in the literature several models with variation of the fundamental constants of Nature, such as the speed of light (c), the elementary electric charge (e) and the Planck constant (h). The two main motivations for such interest are: (i) observations related to quasars that seem to indicate the fine structure constant is changing with time and (ii) the possibility that these models may solve some long standing problems of the standard cosmological model, without the need for inflation. In the present work, we obtain the expressions for lookback time, age of the universe, luminosity distance, angular diameter, and galaxy number counts versus redshift for the cosmological models with a power law dependence of the speed of light on the scale factor and the Hubble parameter. The Lorentz invariance and the principle of the general covariance are violated and the gravitational field equations have the same form as Einstein field equations with cosmological constant in a preferred reference frame postulated by the theory. We analyse the closed, open and flat Friedmann-Robertson-Walker (FRW) geometries. We have also obtained the limits imposed by the kinematic tests for the exponents m and n of the power laws of these models.

  17. Human action recognition based on kinematic similarity in real time

    PubMed Central

    Chen, Longting; Luo, Ailing; Zhang, Sicong

    2017-01-01

    Human action recognition using 3D pose data has gained a growing interest in the field of computer robotic interfaces and pattern recognition since the availability of hardware to capture human pose. In this paper, we propose a fast, simple, and powerful method of human action recognition based on human kinematic similarity. The key to this method is that the action descriptor consists of joints position, angular velocity and angular acceleration, which can meet the different individual sizes and eliminate the complex normalization. The angular parameters of joints within a short sliding time window (approximately 5 frames) around the current frame are used to express each pose frame of human action sequence. Moreover, three modified KNN (k-nearest-neighbors algorithm) classifiers are employed in our method: one for achieving the confidence of every frame in the training step, one for estimating the frame label of each descriptor, and one for classifying actions. Additional estimating of the frame’s time label makes it possible to address single input frames. This approach can be used on difficult, unsegmented sequences. The proposed method is efficient and can be run in real time. The research shows that many public datasets are irregularly segmented, and a simple method is provided to regularize the datasets. The approach is tested on some challenging datasets such as MSR-Action3D, MSRDailyActivity3D, and UTD-MHAD. The results indicate our method achieves a higher accuracy. PMID:29073131

  18. Surgical gesture segmentation and recognition.

    PubMed

    Tao, Lingling; Zappella, Luca; Hager, Gregory D; Vidal, René

    2013-01-01

    Automatic surgical gesture segmentation and recognition can provide useful feedback for surgical training in robotic surgery. Most prior work in this field relies on the robot's kinematic data. Although recent work [1,2] shows that the robot's video data can be equally effective for surgical gesture recognition, the segmentation of the video into gestures is assumed to be known. In this paper, we propose a framework for joint segmentation and recognition of surgical gestures from kinematic and video data. Unlike prior work that relies on either frame-level kinematic cues, or segment-level kinematic or video cues, our approach exploits both cues by using a combined Markov/semi-Markov conditional random field (MsM-CRF) model. Our experiments show that the proposed model improves over a Markov or semi-Markov CRF when using video data alone, gives results that are comparable to state-of-the-art methods on kinematic data alone, and improves over state-of-the-art methods when combining kinematic and video data.

  19. Rare Λb→Λ l+l- and Λb→Λ γ decays in the relativistic quark model

    NASA Astrophysics Data System (ADS)

    Faustov, R. N.; Galkin, V. O.

    2017-09-01

    Rare Λb→Λ l+l- and Λb→Λ γ decays are investigated in the relativistic quark model based on the quark-diquark picture of baryons. The decay form factors are calculated accounting for all relativistic effects, including relativistic transformations of baryon wave functions from rest to a moving reference frame and the contribution of the intermediate negative-energy states. The momentum-transfer-squared dependence of the form factors is explicitly determined in the whole accessible kinematical range. The calculated decay branching fractions, various forward-backward asymmetries for the rare decay Λb→Λ μ+μ-, are found to be consistent with recent detailed measurements by the LHCb Collaboration. Predictions for the Λb→Λ τ+τ- decay observables are given.

  20. Semileptonic decays of Λ _c baryons in the relativistic quark model

    NASA Astrophysics Data System (ADS)

    Faustov, R. N.; Galkin, V. O.

    2016-11-01

    Motivated by recent experimental progress in studying weak decays of the Λ _c baryon we investigate its semileptonic decays in the framework of the relativistic quark model based on the quasipotential approach with the QCD-motivated potential. The form factors of the Λ _c→ Λ lν _l and Λ _c→ nlν _l decays are calculated in the whole accessible kinematical region without extrapolations and additional model assumptions. Relativistic effects are systematically taken into account including transformations of baryon wave functions from the rest to moving reference frame and contributions of the intermediate negative-energy states. Baryon wave functions found in the previous mass spectrum calculations are used for the numerical evaluation. Comprehensive predictions for decay rates, asymmetries and polarization parameters are given. They agree well with available experimental data.

  1. Effect of Laterally Wedged Insoles on the External Knee Adduction Moment across Different Reference Frames.

    PubMed

    Yamaguchi, Satoshi; Kitamura, Masako; Ushikubo, Tomohiro; Murata, Atsushi; Akagi, Ryuichiro; Sasho, Takahisa

    2015-01-01

    Biomechanical effects of laterally wedged insoles are assessed by reduction in the knee adduction moment. However, the degree of reduction may vary depending on the reference frame with which it is calculated. The purpose of this study was to clarify the effect of reference frame on the reduction in the knee adduction moment by laterally wedged insoles. Twenty-nine healthy participants performed gait trials with a laterally wedged insole and with a flat insole as a control. The knee adduction moment, including the first and second peaks and the angular impulse, were calculated using four different reference frames: the femoral frame, tibial frame, laboratory frame and the Joint Coordinate System. There were significant effects of reference frame on the knee adduction moment first and second peaks (P < 0.001 for both variables), while the effect was not significant for the angular impulse (P = 0.84). No significant interaction between the gait condition and reference frame was found in either of the knee adduction moment variables (P = 0.99 for all variables), indicating that the effects of laterally wedged insole on the knee adduction moments were similar across the four reference frames. On the other hand, the average percent changes ranged from 9% to 16% for the first peak, from 16% to 18% for the second peak and from 17% to 21% for the angular impulse when using the different reference frames. The effects of laterally wedged insole on the reduction in the knee adduction moment were similar across the reference frames. On the other hand, Researchers need to recognize that when the percent change was used as the parameter of the efficacy of laterally wedged insole, the choice of reference frame may influence the interpretation of how laterally wedged insoles affect the knee adduction moment.

  2. The reference frame for encoding and retention of motion depends on stimulus set size.

    PubMed

    Huynh, Duong; Tripathy, Srimant P; Bedell, Harold E; Öğmen, Haluk

    2017-04-01

    The goal of this study was to investigate the reference frames used in perceptual encoding and storage of visual motion information. In our experiments, observers viewed multiple moving objects and reported the direction of motion of a randomly selected item. Using a vector-decomposition technique, we computed performance during smooth pursuit with respect to a spatiotopic (nonretinotopic) and to a retinotopic component and compared them with performance during fixation, which served as the baseline. For the stimulus encoding stage, which precedes memory, we found that the reference frame depends on the stimulus set size. For a single moving target, the spatiotopic reference frame had the most significant contribution with some additional contribution from the retinotopic reference frame. When the number of items increased (Set Sizes 3 to 7), the spatiotopic reference frame was able to account for the performance. Finally, when the number of items became larger than 7, the distinction between reference frames vanished. We interpret this finding as a switch to a more abstract nonmetric encoding of motion direction. We found that the retinotopic reference frame was not used in memory. Taken together with other studies, our results suggest that, whereas a retinotopic reference frame may be employed for controlling eye movements, perception and memory use primarily nonretinotopic reference frames. Furthermore, the use of nonretinotopic reference frames appears to be capacity limited. In the case of complex stimuli, the visual system may use perceptual grouping in order to simplify the complexity of stimuli or resort to a nonmetric abstract coding of motion information.

  3. How Flexible is the Use of Egocentric Versus Allocentric Frame of Reference in the Williams Syndrome Population?

    PubMed

    Heiz, J; Majerus, S; Barisnikov, K

    2017-09-28

    This study examined the spontaneous use of allocentric and egocentric frames of reference and their flexible use as a function of instructions. The computerized spatial reference task created by Heiz and Barisnikov (2015) was used. Participants had to choose a frame of reference according to three types of instructions: spontaneous, allocentric and egocentric. The performances of 16 Williams Syndrome participants between 10 and 41 years were compared to those of two control groups (chronological age and non-verbal intellectual ability). The majority of Williams Syndrome participants did not show a preference for a particular frame of reference. When explicitly inviting participants to use an allocentric frame of reference, all three groups showed an increased use of the allocentric frame of reference. At the same time, an important heterogeneity of type of frame of reference used by Williams Syndrome participants was observed. Results demonstrate that despite difficulties in the spontaneous use of allocentric and egocentric frames of reference, some Williams Syndrome participants show flexibility in the use of an allocentric frame of reference when an explicit instruction is provided. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Frames of Reference in the Classroom

    ERIC Educational Resources Information Center

    Grossman, Joshua

    2012-01-01

    The classic film "Frames of Reference" effectively illustrates concepts involved with inertial and non-inertial reference frames. In it, Donald G. Ivey and Patterson Hume use the cameras perspective to allow the viewer to see motion in reference frames translating with a constant velocity, translating while accelerating, and rotating--all with…

  5. The reference frame of figure-ground assignment.

    PubMed

    Vecera, Shaun P

    2004-10-01

    Figure-ground assignment involves determining which visual regions are foreground figures and which are backgrounds. Although figure-ground processes provide important inputs to high-level vision, little is known about the reference frame in which the figure's features and parts are defined. Computational approaches have suggested a retinally based, viewer-centered reference frame for figure-ground assignment, but figural assignment could also be computed on the basis of environmental regularities in an environmental reference frame. The present research used a newly discovered cue, lower region, to examine the reference frame of figure-ground assignment. Possible reference frames were misaligned by changing the orientation of viewers by having them tilt their heads (Experiments 1 and 2) or turn them upside down (Experiment 3). The results of these experiments indicated that figure-ground perception followed the orientation of the viewer, suggesting a viewer-centered reference frame for figure-ground assignment.

  6. ETHOWATCHER: validation of a tool for behavioral and video-tracking analysis in laboratory animals.

    PubMed

    Crispim Junior, Carlos Fernando; Pederiva, Cesar Nonato; Bose, Ricardo Chessini; Garcia, Vitor Augusto; Lino-de-Oliveira, Cilene; Marino-Neto, José

    2012-02-01

    We present a software (ETHOWATCHER(®)) developed to support ethography, object tracking and extraction of kinematic variables from digital video files of laboratory animals. The tracking module allows controlled segmentation of the target from the background, extracting image attributes used to calculate the distance traveled, orientation, length, area and a path graph of the experimental animal. The ethography module allows recording of catalog-based behaviors from environment or from video files continuously or frame-by-frame. The output reports duration, frequency and latency of each behavior and the sequence of events in a time-segmented format, set by the user. Validation tests were conducted on kinematic measurements and on the detection of known behavioral effects of drugs. This software is freely available at www.ethowatcher.ufsc.br. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. LCSs in tropical cyclone genesis

    NASA Astrophysics Data System (ADS)

    Rutherford, B.; Montgomery, M. T.

    2011-12-01

    The formation of tropical cyclones in the Atlantic most often occurs at the intersection of the wave trough axis of a westward propagating African easterly wave and the wave critical latitude. Viewed in a moving reference frame with the wave, a cat's eye region of cyclonic recirculation can be seen in streamlines prior to genesis. The cat's eye recirculation region has little strain deformation and its center serves as the focal point for aggregation of convectively generated vertical vorticity. Air inside the cat's eye is repeatedly moistened by convection and is protected from the lateral intrusion of dry air. Since the flow is inherently time-dependent, we contrast the time-dependent structures with Eulerian structures of the wave-relative frame. Time-dependence complicates the kinematic structure of the recirculation region as air masses from the outer environment are allowed to interact with the interior of the cat's eye. LCSs show different boundaries of the cat's eye than the streamlines in the wave-relative frame. These LCSs are particularly important for showing the pathways of air masses that interact with the developing vortex, as moist air promotes development by supporting deep convection, while interaction with dry air impedes development. We primarily use FTLEs to locate the LCSs, and show the role of LCSs in both developing and non-developing storms. In addition, we discuss how the vertical coherence of LCSs is important for resisting the effects of vertical wind shear.

  8. Analytical Solution for Low-Thrust Minimum Time Control of a Satellite Formation

    DTIC Science & Technology

    2004-09-01

    The Classical Clohessy - Wiltshire Equations . . . . . . . . . A-1 A.1 Hill’s Rotating Coordinate Frame . . . . . . . . . . . . . . . A-1 A.2 Kinematics...9 A.1. The Clohessy and Wiltshire coordinate frame with x in the radial direction and y in the velocity direction. . . . . . . . . . . . . . . . A-1 B...coordinate system and approx- imations made by Clohessy and Wiltshire , combined with body-fixed thruster control, result in a linearized dynamic system. The

  9. Reframing Student Affairs Leadership: An Analysis of Organizational Frames of Reference and Locus of Control

    ERIC Educational Resources Information Center

    Tull, Ashley; Freeman, Jerrid P.

    2011-01-01

    Examined in this study were the identified frames of reference and locus of control used by 478 student affairs administrators. Administrator responses were examined to identify frames of reference most commonly used and their preference order. Locus of control most commonly used and the relationship between frames of reference and locus of…

  10. Realization of ETRF2000 as a New Terrestrial Reference Frame in Republic of Serbia

    NASA Astrophysics Data System (ADS)

    Blagojevic, D.; Vasilic, V.

    2012-12-01

    The International Earth Rotation and Reference Systems Service (IERS) is a joint service of the International Association of Geodesy (IAG) and the International Astronomical Union (IAU), which provides the scientific community with the means for computing the transformation from the International Celestial Reference System (ICRS) to the International Terrestrial Reference System (ITRS). It further maintains the realizations of these systems by appropriate coordinate sets called "frames". The densification of terrestrial frame usually serves as official frame for positioning and navigation tasks within the territory of particular country. One of these densifications was recently performed in order to establish new reference frame for Republic of Serbia. The paper describes related activities resulting in ETRF2000 as a new Serbian terrestrial reference frame.

  11. Embodied Interaction Priority: Other's Body Part Affects Numeral-Space Mappings.

    PubMed

    You, Xuqun; Zhang, Yu; Zhu, Rongjuan; Guo, Yu

    2018-01-01

    Traditionally, the spatial-numerical association of response codes (SNARC) effect was presented in two-choice condition, in which only one individual reacted to both even (small) and odd (large) numbers. Few studies explored SNARC effect in a social situation. Moreover, there are many reference frames involved in SNARC effect, and it has not yet been investigated which reference frame is dominated when two participants perform the go-nogo task together. In the present study, we investigated which reference frame plays a primary role in SNARC effect when allocentric and egocentric reference frames were consistent or inconsistent in social settings. Furthermore, we explored how two actors corepresent number-space mapping interactively. Results of the two experiments demonstrated that egocentric reference frame was at work primarily when two reference frames were consistent and inconsistent. This shows that body-centered coordinate frames influence number-space mapping in social settings, and one actor may represent another actor's action and tasks.

  12. Mission Capability Gains from Multi-Mode Propulsion Thrust Variations on a Variety Spacecraft Orbital Maneuvers

    DTIC Science & Technology

    2011-03-01

    Geocentric -Equatorial Reference Frame2 ....................................................................... 31  Figure 8: Perifocal and Geocentric ...67  Figure 25: Mission 3 Geocentric Equatorial Reference Frame ...................................................... 69  Figure 26: Mission 3...Coordinate system, the Geocentric -Equatorial Reference frame and the reference frame depicted on one another is shown below. The following figures are from

  13. Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim

    PubMed Central

    Modenese, L.; Lloyd, D.G.

    2017-01-01

    Real-time estimation of joint angles and moments can be used for rapid evaluation in clinical, sport, and rehabilitation contexts. However, real-time calculation of kinematics and kinetics is currently based on approximate solutions or generic anatomical models. We present a real-time system based on OpenSim solving inverse kinematics and dynamics without simplifications at 2000 frame per seconds with less than 31.5ms of delay. We describe the software architecture, sensitivity analyses to minimise delays and errors, and compare offline and real-time results. This system has the potential to strongly impact current rehabilitation practices enabling the use of personalised musculoskeletal models in real-time. PMID:27723992

  14. Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim.

    PubMed

    Pizzolato, C; Reggiani, M; Modenese, L; Lloyd, D G

    2017-03-01

    Real-time estimation of joint angles and moments can be used for rapid evaluation in clinical, sport, and rehabilitation contexts. However, real-time calculation of kinematics and kinetics is currently based on approximate solutions or generic anatomical models. We present a real-time system based on OpenSim solving inverse kinematics and dynamics without simplifications at 2000 frame per seconds with less than 31.5 ms of delay. We describe the software architecture, sensitivity analyses to minimise delays and errors, and compare offline and real-time results. This system has the potential to strongly impact current rehabilitation practices enabling the use of personalised musculoskeletal models in real-time.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Aaron P.; Carlson, Charles T.

    A multi-part mask has a pattern plate, which includes a planar portion that has the desired aperture pattern to be used during workpiece processing. The multi-part mask also has a mounting frame, which is used to hold the pattern plate. Prior to assembly, the pattern plate has an aligning portion, which has one or more holes through which reusable alignment pins are inserted. These alignment pins enter kinematic joints disposed on the mounting frame, which serve to precisely align the pattern plate to the mounting frame. After the pattern plate has been secured to the mounting frame, the aligning portionmore » can be detached from the pattern plate. The alignment pins can be reused at a later time. In some embodiments, the pattern plate can later be removed from the mounting frame, so that the mounting frame may be reused.« less

  16. Comparative multibody dynamics analysis of falls from playground climbing frames.

    PubMed

    Forero Rueda, M A; Gilchrist, M D

    2009-10-30

    This paper shows the utility of multibody dynamics in evaluating changes in injury related parameters of the head and lower limbs of children following falls from playground climbing frames. A particular fall case was used as a starting point to analyze the influence of surface properties, posture of the body at impact, and intermediate collisions against the climbing frame before impacting the ground. Simulations were made using the 6-year-old pedestrian MADYMO rigid body model and scaled head contact characteristics. Energy absorbing surfaces were shown to reduce injury severity parameters by up to 30-80% of those of rigid surfaces, depending on impact posture and surface. Collisions against components of a climbing frame during a fall can increase injury severity of the final impact of the head with the ground by more than 90%. Negligible changes are associated with lower limb injury risks when different surfacing materials are used. Computer reconstructions of actual falls that are intended to quantify the severity of physical injuries rely on accurate knowledge of initial conditions prior to falling, intermediate kinematics of the fall and the orientation of the body when it impacts against the ground. Multibody modelling proved to be a valuable tool to analyze the quality of eyewitness information and analyze the relative injury risk associated with changes in components influencing fall injuries from playground climbing frames. Such simulations can also support forensic investigations by evaluating alternative hypotheses for the sequence of kinematic motion of falls which result in known injuries.

  17. Global and regional kinematics with VLBI

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    1994-01-01

    Since a VLBI station cannot operate in isolation and since simultaneous operation of the entire VLBI network is impractical, it is necessary to design observing programs with periodic observing sessions using networks of 3-7 stations that, when treated together, will have the necessary interstation data and network overlaps to determine the desired rates of change. Thus, there has been a mix of global, intercontinental, transcontinental, and regional networks to make measurements ranging from plate motions to deformation over a few hundred km. Over time, even networks focusing on regional deformation using mobile VLBI included large stations removed by several thousand km to increase sensitivity, determine EOP more accurately, and provide better ties to the terrestrial reference frame (TRF). Analysis products have also evolved, beginning with baseline components, and then to full three-dimensional site velocities in a global TRF.

  18. Error Propagation in the four terrestrial reference frames of the 2022 Modernized National Spatial Reference System

    NASA Astrophysics Data System (ADS)

    Roman, D. R.; Smith, D. A.

    2017-12-01

    In 2022, the National Geodetic Survey will replace all three NAD 83 reference frames with four new terrestrial reference frames. Each frame will be named after a tectonic plate (North American, Pacific, Caribbean and Mariana) and each will be related to the IGS frame through three Euler Pole parameters (EPPs). This talk will focus on three main areas of error propagation when defining coordinates in these four frames. Those areas are (1) use of the small angle approximation to relate true rotation about an Euler Pole to small rotations about three Cartesian axes (2) The current state of the art in determining the Euler Poles of these four plates and (3) the combination of both IGS Cartesian coordinate uncertainties and EPP uncertainties into coordinate uncertainties in the four new frames. Discussion will also include recent efforts at improving the Euler Poles for these frames and expected dates when errors in the EPPs will cause an unacceptable level of uncertainty in the four new terrestrial reference frames.

  19. Environmental Inversion Effects in Face Perception

    ERIC Educational Resources Information Center

    Davidenko, Nicolas; Flusberg, Stephen J.

    2012-01-01

    Visual processing is highly sensitive to stimulus orientation; for example, face perception is drastically worse when faces are oriented inverted vs. upright. However, stimulus orientation must be established in relation to a particular reference frame, and in most studies, several reference frames are conflated. Which reference frame(s) matter in…

  20. In vitro quantification of the performance of model-based mono-planar and bi-planar fluoroscopy for 3D joint kinematics estimation.

    PubMed

    Tersi, Luca; Barré, Arnaud; Fantozzi, Silvia; Stagni, Rita

    2013-03-01

    Model-based mono-planar and bi-planar 3D fluoroscopy methods can quantify intact joints kinematics with performance/cost trade-off. The aim of this study was to compare the performances of mono- and bi-planar setups to a marker-based gold-standard, during dynamic phantom knee acquisitions. Absolute pose errors for in-plane parameters were lower than 0.6 mm or 0.6° for both mono- and bi-planar setups. Mono-planar setups resulted critical in quantifying the out-of-plane translation (error < 6.5 mm), and bi-planar in quantifying the rotation along bone longitudinal axis (error < 1.3°). These errors propagated to joint angles and translations differently depending on the alignment of the anatomical axes and the fluoroscopic reference frames. Internal-external rotation was the least accurate angle both with mono- (error < 4.4°) and bi-planar (error < 1.7°) setups, due to bone longitudinal symmetries. Results highlighted that accuracy for mono-planar in-plane pose parameters is comparable to bi-planar, but with halved computational costs, halved segmentation time and halved ionizing radiation dose. Bi-planar analysis better compensated for the out-of-plane uncertainty that is differently propagated to relative kinematics depending on the setup. To take its full benefits, the motion task to be investigated should be designed to maintain the joint inside the visible volume introducing constraints with respect to mono-planar analysis.

  1. Classical and quantum communication without a shared reference frame.

    PubMed

    Bartlett, Stephen D; Rudolph, Terry; Spekkens, Robert W

    2003-07-11

    We show that communication without a shared reference frame is possible using entangled states. Both classical and quantum information can be communicated with perfect fidelity without a shared reference frame at a rate that asymptotically approaches one classical bit or one encoded qubit per transmitted qubit. We present an optical scheme to communicate classical bits without a shared reference frame using entangled photon pairs and linear optical Bell state measurements.

  2. VizieR Online Data Catalog: Carlsberg Meridian Catalog, Vol. 6 (CMC6, 1992)

    NASA Astrophysics Data System (ADS)

    Copenhagen University Observatory; Royal Greenwich, Observatory

    1995-11-01

    The Carlsberg Meridian Catalogues give accurate positions, proper motions and magnitudes of stars north of declination -45deg and down to 15th magnitude. They also contain observations of the solar system objects: Mars, Callisto, Saturn, Titan, Iapetus, Uranus, Neptune, Pluto, and many minor planets. Typical mean errors for an entry are 0.1arcsec in position, 3mas/yr in proper motion, and 0.05mag in magnitude. The stars observed belong to a large number of observing programmes typically dealing with the reference frame or with galactic kinematics. The Carlsberg Automatic Meridian Circle on La Palma is operated by Copenhagen University Observatory, Royal Greenwich Observatory, and Real Instituto y Observatorio de la Armada at the Observatory del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. For a detailed introduction, please refer to the printed catalogue. A description of the programme may also be found in the 1993 paper by Fabricius (=1993BICDS..42....5F), from which the present description is derived. This 6th volume corresponds to observations made during the year 1990. (4 data files).

  3. VizieR Online Data Catalog: Carlsberg Meridian Catalog, Vol. 8 (CMC8, 1994)

    NASA Astrophysics Data System (ADS)

    Copenhagen University Observatory; Royal Greenwich, Observatory

    1995-11-01

    The Carlsberg Meridian Catalogues give accurate positions, proper motions and magnitudes of stars north of declination -45deg and down to 15th magnitude. They also contain observations of the solar system objects: Mars, Callisto, Saturn, Titan, Iapetus, Uranus, Neptune, Pluto, and many minor planets. Typical mean errors for an entry are 0.1arcsec in position, 3mas/yr in proper motion, and 0.05mag in magnitude. The stars observed belong to a large number of observing programmes typically dealing with the reference frame or with galactic kinematics. The Carlsberg Automatic Meridian Circle on La Palma is operated by Copenhagen University Observatory, Royal Greenwich Observatory, and Real Instituto y Observatorio de la Armada at the Observatory del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. For a detailed introduction, please refer to the printed catalogue. A description of the programme may also be found in the 1993 paper by Fabricius (=1993BICDS..42....5F), from which the present description is derived. This 8th volume corresponds to observations made between August 1992 and December 1993. (5 data files).

  4. VizieR Online Data Catalog: Carlsberg Meridian Catalog, Vol. 5 (CMC5, 1991)

    NASA Astrophysics Data System (ADS)

    Copenhagen University Observatory; Royal Greenwich Observatory

    1995-11-01

    The Carlsberg Meridian Catalogues give accurate positions, proper motions and magnitudes of stars north of declination -45deg and down to 15th magnitude. They also contain observations of the solar system objects: Mars, Callisto, Saturn, Titan, Iapetus, Uranus, Neptune, Pluto, and many minor planets. Typical mean errors for an entry are 0.1arcsec in position, 3mas/yr in proper motion, and 0.05mag in magnitude. The stars observed belong to a large number of observing programmes typically dealing with the reference frame or with galactic kinematics. The Carlsberg Automatic Meridian Circle on La Palma is operated by Copenhagen University Observatory, Royal Greenwich Observatory, and Real Instituto y Observatorio de la Armada at the Observatory del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. For a detailed introduction, please refer to the printed catalogue. A description of the programme may also be found in the 1993 paper by Fabricius (=1993BICDS..42....5F), from which the present description is derived. This 5th volume corresponds to observations made between May 1988 and January 1990 (4 data files).

  5. Frames of Reference: A Metaphor for Analyzing and Interpreting Attitudes of Environmental Policy Makers and Policy Influencers

    PubMed

    Swaffield

    1998-07-01

    / The concept of frame of reference offers a potentially useful analytical metaphor in environmental management. This is illustrated by a case study in which attitudes of individuals involved in the management of trees in the New Zealand high country are classified into seven distinctive frames of reference. Some practical and theoretical implications of the use of the frame metaphor are explored, including its potential contribution to the emerg- ing field of communicative planning. KEY WORDS: Frames of reference; Environmental policy analysis; Metaphor; New Zealand high country

  6. Deformation of angle profiles in forward kinematics for nullifying end-point offset while preserving movement properties.

    PubMed

    Zhang, Xudong

    2002-10-01

    This work describes a new approach that allows an angle-domain human movement model to generate, via forward kinematics, Cartesian-space human movement representation with otherwise inevitable end-point offset nullified but much of the kinematic authenticity retained. The approach incorporates a rectification procedure that determines the minimum postural angle change at the final frame to correct the end-point offset, and a deformation procedure that deforms the angle profile accordingly to preserve maximum original kinematic authenticity. Two alternative deformation schemes, named amplitude-proportional (AP) and time-proportional (TP) schemes, are proposed and formulated. As an illustration and empirical evaluation, the proposed approach, along with two deformation schemes, was applied to a set of target-directed right-hand reaching movements that had been previously measured and modeled. The evaluation showed that both deformation schemes nullified the final frame end-point offset and significantly reduced time-averaged position errors for the end-point as well as the most distal intermediate joint while causing essentially no change in the remaining joints. A comparison between the two schemes based on time-averaged joint and end-point position errors indicated that overall the TP scheme outperformed the AP scheme. In addition, no statistically significant difference in time-averaged angle error was identified between the raw prediction and either of the deformation schemes, nor between the two schemes themselves, suggesting minimal angle-domain distortion incurred by the deformation.

  7. GNSS RTK-networks: The significance and issues to realize a recent reference coordinate system

    NASA Astrophysics Data System (ADS)

    Umnig, Elke; Möller, Gregor; Weber, Robert

    2014-05-01

    The upcoming release of the new global reference frame ITRF2013 will provide high accurate reference station positions and station velocities at the mm- and mm/year level, respectively. ITRF users benefit from this development in various ways. For example, this new frame allows for embedding high accurate GNSS baseline observations to an underlying reference of at least the same accuracy. Another advantage is that the IGS products are fully consistent with this frame and therefore all GNSS based zero-difference positioning results (Precise Point Positioning (PPP)) will be aligned to the ITRF2013. Unfortunately the transistion to a new frame (or just to a new epoch) implies also issues in particular for providers and users of real time positioning services. Thus providers have to perform arrangements, such as the readjustment of the reference station coordinates and the update of the transformation parameters from the homogenous GNSS coordinate frame into the national datum. Finally providers have to inform their clients appropriately about these changes and significant adjustments. Furthermore the aspect of the continental reference frame has to be considered: In Europe the use of the continental reference system/reference frame ETRS89/ETRF2000 is, due to cross-national guidelines, recommend by most national mapping authorities. Subsequently GNSS post-processing applications are degraded by the concurrent use of the reference systems and reference frames, to which terrestrial site coordinates and satellite coordinates are aligned. In this presentation we highlight all significant steps and hurdles which have to be jumped over when introducing a new reference frame from point of view of a typical regional RTK-reference station network provider. This network is located in Austria and parts of the neighbouring countries and consists of about 40 reference stations. Moreover, we discuss the significance of permanently monitoring the stability of the reference network sites and the determination of station velocities/rates for geodynamical investigations.

  8. Connection Between the ICRF and the Dynamical Reference Frame for the Outer Planets

    NASA Astrophysics Data System (ADS)

    da Silva Neto, D. N.; Assafin, M.; Andrei, A. H.; Vieira Martins, R.

    2005-01-01

    This work brings an approach intending to improve the connection between the Dynamical Reference Frame and the Extragalactic Reference Frame. For that, close encounters of outer Solar System objects and quasars are used. With this goal, Uranus, Neptune and two quasars were observed at Laborat´orio Nacional de Astrof´ısica (LNA), Brazil. The optical reference frame is the HCRF, as given by the UCAC2 catalogue. The first results show an accuracy of 45 mas - 50 mas in the optical positions. The optical minus radio offsets give the local orientation between the catalogue and radio frame. From this, it is possible to place the optical planet coordinates on the extragalactic frame. A comparison between the new corrected optical coordinates and the respective DE ephemeris to these planets can give the instant orientations of the Dynamical Reference Frame with regard to the ICRS, for this zone of outer Solar System.

  9. Estimating pixel variances in the scenes of staring sensors

    DOEpatents

    Simonson, Katherine M [Cedar Crest, NM; Ma, Tian J [Albuquerque, NM

    2012-01-24

    A technique for detecting changes in a scene perceived by a staring sensor is disclosed. The technique includes acquiring a reference image frame and a current image frame of a scene with the staring sensor. A raw difference frame is generated based upon differences between the reference image frame and the current image frame. Pixel error estimates are generated for each pixel in the raw difference frame based at least in part upon spatial error estimates related to spatial intensity gradients in the scene. The pixel error estimates are used to mitigate effects of camera jitter in the scene between the current image frame and the reference image frame.

  10. Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models.

    PubMed

    Kainz, H; Modenese, L; Lloyd, D G; Maine, S; Walsh, H P J; Carty, C P

    2016-06-14

    Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Spatial vision within egocentric and exocentric frames of reference

    NASA Technical Reports Server (NTRS)

    Howard, Ian P.

    1991-01-01

    It is remarkable that we are able to perceive a stable visual world and judge the directions, orientations, and movements of visual objects given that images move on the retina, the eyes move in the head, the head moves on the body, and the body moves in space. An understanding of the mechanisms underlying perceptual stability and spatial judgements requires precise definitions of relevant coordinate systems. An egocentric frame of reference is defined with respect to some part of the observer. There are four principal egocentric frames of reference, a station-point frame associated with the nodal point of the eye, an retinocentric frame associated with the retina, a headcentric frame associated with the head, and a bodycentric frame (torsocentric) associated with the torso. Additional egocentric frames can be identified with respect to any segment of the body. An egocentric task is one in which the position, orientation, or motion of an object is judged with respect to an egocentric frame of reference. A proprioceptive is a special kind of egocentric task in which the object being judged is also part of the body. An example of a proprioceptive task is that of directing the gaze toward the seen or unseen toe. An exocentric frame of reference is external to the observer. Geographical coordinates and the direction of gravity are examples of exocentric frames of reference. These various frames are listed in tabular form, together with examples of judgements of each type.

  12. The Acceleration of the Barycenter of Solar System Obtained from VLBI Observations and Its Impact on the ICRS

    NASA Astrophysics Data System (ADS)

    Xu, M. H.

    2016-03-01

    Since 1998 January 1, instead of the traditional stellar reference system, the International Celestial Reference System (ICRS) has been realized by an ensemble of extragalactic radio sources that are located at hundreds of millions of light years away (if we accept their cosmological distances), so that the reference frame realized by extragalactic radio sources is assumed to be space-fixed. The acceleration of the barycenter of solar system (SSB), which is the origin of the ICRS, gives rise to a systematical variation in the directions of the observed radio sources. This phenomenon is called the secular aberration drift. As a result, the extragalactic reference frame fixed to the space provides a reference standard for detecting the secular aberration drift, and the acceleration of the barycenter with respect to the space can be determined from the observations of extragalactic radio sources. In this thesis, we aim to determine the acceleration of the SSB from astrometric and geodetic observations obtained by Very Long Baseline Interferometry (VLBI), which is a technique using the telescopes globally distributed on the Earth to observe a radio source simultaneously, and with the capacity of angular positioning for compact radio sources at 10-milliarcsecond level. The method of the global solution, which allows the acceleration vector to be estimated as a global parameter in the data analysis, is developed. Through the formal error given by the solution, this method shows directly the VLBI observations' capability to constrain the acceleration of the SSB, and demonstrates the significance level of the result. In the next step, the impact of the acceleration on the ICRS is studied in order to obtain the correction of the celestial reference frame (CRF) orientation. This thesis begins with the basic background and the general frame of this work. A brief review of the realization of the CRF based on the kinematical and the dynamical methods is presented in Chapter 2, along with the definition of the CRF and its relationship with the inertial reference frame. Chapter 3 is divided into two parts. The first part describes various effects that modify the geometric direction of an object, especially the parallax, the aberration, and the proper motion. Then the derivative model and the principle of determination of the acceleration are introduced in the second part. The VLBI data analysis method, including VLBI data reduction (solving the ambiguity, identifying the clock break, and determining the ionospheric effect), theoretical delay model, parameterization, and datum definition, is discussed in detail in Chapter 4. The estimation of the acceleration by more than 30-year VLBI observations and the results are then described in Chapter 5. The evaluation and the robust check of our results by different solutions and the comparison to that from another research group are performed. The error sources for the estimation of the acceleration, such as the secular parallax caused by the velocity of the barycenter in space, are quantitatively studied by simulation and data analysis in Chapter 6. The two main impacts of the acceleration on the CRF, the apparent proper motion with the magnitude of the μ as\\cdot yr^{-1} level and the global rotation in the CRF due to the un-uniformed distribution of radio sources on the sky, are discussed in Chapter 7. The definition and the realization of the epoch CRF are presented as well. The future work concerning the explanation of the estimated acceleration and potential research on several main problems in modern astrometry are discussed in the last chapter.

  13. A micro-kinematic framework for vorticity analysis in polyphase shear zones using integrated field, microstructural and crystallographic orientation-dispersion methods

    NASA Astrophysics Data System (ADS)

    Kruckenberg, S. C.; Michels, Z. D.; Parsons, M. M.

    2017-12-01

    We present results from integrated field, microstructural and textural analysis in the Burlington mylonite zone (BMZ) of eastern Massachusetts to establish a unified micro-kinematic framework for vorticity analysis in polyphase shear zones. Specifically, we define the vorticity-normal surface based on lattice-scale rotation axes calculated from electron backscatter diffraction data using orientation statistics. In doing so, we objectively identify a suitable reference frame for rigid grain methods of vorticity analysis that can be used in concert with textural studies to constrain field- to plate-scale deformation geometries without assumptions that may bias tectonic interpretations, such as relationships between kinematic axes and fabric forming elements or the nature of the deforming zone (e.g., monoclinic vs. triclinic shear zones). Rocks within the BMZ comprise a heterogeneous mix of quartzofeldspathic ± hornblende-bearing mylonitic gneisses and quartzites. Vorticity axes inferred from lattice rotations lie within the plane of mylonitic foliation perpendicular to lineation - a pattern consistent with monoclinic deformation geometries involving simple shear and/or wrench-dominated transpression. The kinematic vorticity number (Wk) is calculated using Rigid Grain Net analysis and ranges from 0.25-0.55, indicating dominant general shear. Using the calculated Wk values and the dominant geographic fabric orientation, we constrain the angle of paleotectonic convergence between the Nashoba and Avalon terranes to 56-75º with the convergence vector trending 142-160° and plunging 3-10°. Application of the quartz recrystallized grain size piezometer suggests differential stresses in the BMZ mylonites ranging from 44 to 92 MPa; quartz CPO patterns are consistent with deformation at greenschist- to amphibolite-facies conditions. We conclude that crustal strain localization in the BMZ involved a combination of pure and simple shear in a sinistral reverse transpressional shear zone formed at or near the brittle-ductile transition under relatively high stress conditions. Moreover, we demonstrate the utility of combined crystallographic and rigid grain methods of vorticity analysis for deducing deformation geometries, kinematics, and tectonic histories in polyphase shear zones.

  14. Contextual cueing of tactile search is coded in an anatomical reference frame.

    PubMed

    Assumpção, Leonardo; Shi, Zhuanghua; Zang, Xuelian; Müller, Hermann J; Geyer, Thomas

    2018-04-01

    This work investigates the reference frame(s) underlying tactile context memory, a form of statistical learning in a tactile (finger) search task. In this task, if a searched-for target object is repeatedly encountered within a stable spatial arrangement of task-irrelevant distractors, detecting the target becomes more efficient over time (relative to nonrepeated arrangements), as learned target-distractor spatial associations come to guide tactile search, thus cueing attention to the target location. Since tactile search displays can be represented in several reference frames, including multiple external and an anatomical frame, in Experiment 1 we asked whether repeated search displays are represented in tactile memory with reference to an environment-centered or anatomical reference frame. In Experiment 2, we went on examining a hand-centered versus anatomical reference frame of tactile context memory. Observers performed a tactile search task, divided into a learning and test session. At the transition between the two sessions, we introduced postural manipulations of the hands (crossed ↔ uncrossed in Expt. 1; palm-up ↔ palm-down in Expt. 2) to determine the reference frame of tactile contextual cueing. In both experiments, target-distractor associations acquired during learning transferred to the test session when the placement of the target and distractors was held constant in anatomical, but not external, coordinates. In the latter, RTs were even slower for repeated displays. We conclude that tactile contextual learning is coded in an anatomical reference frame. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Aaron P.; Carlson, Charles T.; Honan, Michael

    A plurality of masks is attached to the underside of a mask frame. This attachment is made such that each mask can independently move relative to the mask frame in three directions. This relative movement allows each mask to adjust its position to align with respective alignment pins disposed on a working surface. In one embodiment, each mask is attached to the mask frame using fasteners, where the fasteners have a shaft with a diameter smaller than the diameter of the mounting hole disposed on the mask. A bias element may be used to allow relative movement between the maskmore » and the mask frame in the vertical direction. Each mask may also have kinematic features to mate with the respective alignment pins on the working surface.« less

  16. The role of perspective taking in how children connect reference frames when explaining astronomical phenomena

    NASA Astrophysics Data System (ADS)

    Plummer, Julia D.; Bower, Corinne A.; Liben, Lynn S.

    2016-02-01

    This study investigates the role of perspective-taking skills in how children explain spatially complex astronomical phenomena. Explaining many astronomical phenomena, especially those studied in elementary and middle school, requires shifting between an Earth-based description of the phenomena and a space-based reference frame. We studied 7- to 9-year-old children (N = 15) to (a) develop a method for capturing how children make connections between reference frames and to (b) explore connections between perspective-taking skill and the nature of children's explanations. Children's explanations for the apparent motion of the Sun and stars and for seasonal changes in constellations were coded for accuracy of explanation, connection between frames of reference, and use of gesture. Children with higher spatial perspective-taking skills made more explicit connections between reference frames and used certain gesture-types more frequently, although this pattern was evident for only some phenomena. Findings suggest that children - particularly those with lower perspective-taking skills - may need additional support in learning to explicitly connect reference frames in astronomy. Understanding spatial thinking among children who successfully made explicit connections between reference frames in their explanations could be a starting point for future instruction in this domain.

  17. Theory of equilibria of elastic 2-braids with interstrand interaction

    NASA Astrophysics Data System (ADS)

    Starostin, E. L.; van der Heijden, G. H. M.

    2014-03-01

    Motivated by continuum models for DNA supercoiling we formulate a theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. No assumption is made on the shape of the contact curve. The theory is developed in terms of a moving frame of directors attached to one of the strands. The other strand is tracked by including in this frame the normalised closest-approach chord connecting the two strands. The kinematic constant-distance constraint is formulated at strain level through the introduction of what we call braid strains. As a result the total potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Hard contact models are used to obtain the normal contact pressure between strands that has to be non-negative for a physically realisable solution without the need for external devices such as clamps or glue to keep the strands together. The theory is first illustrated by a number of problems that can be solved analytically and then applied to several new problems that have not hitherto been treated.

  18. Biomechanics Analysis of Combat Sport (Silat) By Using Motion Capture System

    NASA Astrophysics Data System (ADS)

    Zulhilmi Kaharuddin, Muhammad; Badriah Khairu Razak, Siti; Ikram Kushairi, Muhammad; Syawal Abd. Rahman, Mohamed; An, Wee Chang; Ngali, Z.; Siswanto, W. A.; Salleh, S. M.; Yusup, E. M.

    2017-01-01

    ‘Silat’ is a Malay traditional martial art that is practiced in both amateur and in professional levels. The intensity of the motion spurs the scientific research in biomechanics. The main purpose of this abstract is to present the biomechanics method used in the study of ‘silat’. By using the 3D Depth Camera motion capture system, two subjects are to perform ‘Jurus Satu’ in three repetitions each. One subject is set as the benchmark for the research. The videos are captured and its data is processed using the 3D Depth Camera server system in the form of 16 3D body joint coordinates which then will be transformed into displacement, velocity and acceleration components by using Microsoft excel for data calculation and Matlab software for simulation of the body. The translated data obtained serves as an input to differentiate both subjects’ execution of the ‘Jurus Satu’. Nine primary movements with the addition of five secondary movements are observed visually frame by frame from the simulation obtained to get the exact frame that the movement takes place. Further analysis involves the differentiation of both subjects’ execution by referring to the average mean and standard deviation of joints for each parameter stated. The findings provide useful data for joints kinematic parameters as well as to improve the execution of ‘Jurus Satu’ and to exhibit the process of learning a movement that is relatively unknown by the use of a motion capture system.

  19. Spatial Updating Strategy Affects the Reference Frame in Path Integration.

    PubMed

    He, Qiliang; McNamara, Timothy P

    2018-06-01

    This study investigated how spatial updating strategies affected the selection of reference frames in path integration. Participants walked an outbound path consisting of three successive waypoints in a featureless environment and then pointed to the first waypoint. We manipulated the alignment of participants' final heading at the end of the outbound path with their initial heading to examine the adopted reference frame. We assumed that the initial heading defined the principal reference direction in an allocentric reference frame. In Experiment 1, participants were instructed to use a configural updating strategy and to monitor the shape of the outbound path while they walked it. Pointing performance was best when the final heading was aligned with the initial heading, indicating the use of an allocentric reference frame. In Experiment 2, participants were instructed to use a continuous updating strategy and to keep track of the location of the first waypoint while walking the outbound path. Pointing performance was equivalent regardless of the alignment between the final and the initial headings, indicating the use of an egocentric reference frame. These results confirmed that people could employ different spatial updating strategies in path integration (Wiener, Berthoz, & Wolbers Experimental Brain Research 208(1) 61-71, 2011), and suggested that these strategies could affect the selection of the reference frame for path integration.

  20. Instantaneous progression reference frame for calculating pelvis rotations: Reliable and anatomically-meaningful results independent of the direction of movement.

    PubMed

    Kainz, Hans; Lloyd, David G; Walsh, Henry P J; Carty, Christopher P

    2016-05-01

    In motion analysis, pelvis angles are conventionally calculated as the rotations between the pelvis and laboratory reference frame. This approach assumes that the participant's motion is along the anterior-posterior laboratory reference frame axis. When this assumption is violated interpretation of pelvis angels become problematic. In this paper a new approach for calculating pelvis angles based on the rotations between the pelvis and an instantaneous progression reference frame was introduced. At every time-point, the tangent to the trajectory of the midpoint of the pelvis projected into the horizontal plane of the laboratory reference frame was used to define the anterior-posterior axis of the instantaneous progression reference frame. This new approach combined with the rotation-obliquity-tilt rotation sequence was compared to the conventional approach using the rotation-obliquity-tilt and tilt-obliquity-rotation sequences. Four different movement tasks performed by eight healthy adults were analysed. The instantaneous progression reference frame approach was the only approach that showed reliable and anatomically meaningful results for all analysed movement tasks (mean root-mean-square-differences below 5°, differences in pelvis angles at pre-defined gait events below 10°). Both rotation sequences combined with the conventional approach led to unreliable results as soon as the participant's motion was not along the anterior-posterior laboratory axis (mean root-mean-square-differences up to 30°, differences in pelvis angles at pre-defined gait events up to 45°). The instantaneous progression reference frame approach enables the gait analysis community to analysis pelvis angles for movements that do not follow the anterior-posterior axis of the laboratory reference frame. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Four-Year-Olds Use a Mixture of Spatial Reference Frames

    PubMed Central

    Negen, James; Nardini, Marko

    2015-01-01

    Keeping track of unseen objects is an important spatial skill. In order to do this, people must situate the object in terms of different frames of reference, including body position (egocentric frame of reference), landmarks in the surrounding environment (extrinsic frame reference), or other attached features (intrinsic frame of reference). Nardini et al. hid a toy in one of 12 cups in front of children, turned the array when they were not looking, and then asked them to point to the cup with the toy. This forced children to use the intrinsic frame (information about the array of cups) to locate the hidden toy. Three-year-olds made systematic errors by using the wrong frame of reference, 4-year-olds were at chance, and only 5- and 6-year-olds were successful. Can we better understand the developmental change that takes place at four years? This paper uses a modelling approach to re-examine the data and distinguish three possible strategies that could lead to the previous results at four years: (1) Children were choosing cups randomly, (2) Children were pointing between the egocentric/extrinsic-cued location and the correct target, and (3) Children were pointing near the egocentric/extrinsic-cued location on some trials and near the target on the rest. Results heavily favor the last possibility: 4-year-olds were not just guessing or trying to combine the available frames of reference. They were using the intrinsic frame on some trials, but not doing so consistently. These insights suggest that accounts of improving spatial performance at 4 years need to explain why there is a mixture of responses. Further application of the selected model also suggests that children become both more reliant on the correct frame and more accurate with any chosen frame as they mature. PMID:26133990

  2. Recursive thoughts on the simulation of the flexible multibody dynamics of slender offshore structures

    NASA Astrophysics Data System (ADS)

    Schilder, J.; Ellenbroek, M.; de Boer, A.

    2017-12-01

    In this work, the floating frame of reference formulation is used to create a flexible multibody model of slender offshore structures such as pipelines and risers. It is shown that due to the chain-like topology of the considered structures, the equation of motion can be expressed in terms of absolute interface coordinates. In the presented form, kinematic constraint equations are satisfied explicitly and the Lagrange multipliers are eliminated from the equations. Hence, the structures can be conveniently coupled to finite element or multibody models of for example seabed and vessel. The chain-like topology enables the efficient use of recursive solution procedures for both transient dynamic analysis and equilibrium analysis. For this, the transfer matrix method is used. In order to improve the convergence of the equilibrium analysis, the analytical solution of an ideal catenary is used as an initial configuration, reducing the number of required iterations.

  3. A finite element solution algorithm for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1974-01-01

    A finite element solution algorithm is established for the two-dimensional Navier-Stokes equations governing the steady-state kinematics and thermodynamics of a variable viscosity, compressible multiple-species fluid. For an incompressible fluid, the motion may be transient as well. The primitive dependent variables are replaced by a vorticity-streamfunction description valid in domains spanned by rectangular, cylindrical and spherical coordinate systems. Use of derived variables provides a uniformly elliptic partial differential equation description for the Navier-Stokes system, and for which the finite element algorithm is established. Explicit non-linearity is accepted by the theory, since no psuedo-variational principles are employed, and there is no requirement for either computational mesh or solution domain closure regularity. Boundary condition constraints on the normal flux and tangential distribution of all computational variables, as well as velocity, are routinely piecewise enforceable on domain closure segments arbitrarily oriented with respect to a global reference frame.

  4. Spatial cognition and navigation

    NASA Technical Reports Server (NTRS)

    Aretz, Anthony J.

    1989-01-01

    An experiment that provides data for the development of a cognitive model of pilot flight navigation is described. The experiment characterizes navigational awareness as the mental alignment of two frames of reference: (1) the ego centered reference frame that is established by the forward view out of the cockpit and (2) the world centered reference frame that is established by the aircraft's location on a map. The data support a model involving at least two components: (1) the perceptual encoding of the navigational landmarks and (2) the mental rotation of the map's world reference frame into alignment with the ego centered reference frame. The quantitative relationships of these two factors are provided as possible inputs for a computational model of spatial cognition during flight navigation.

  5. Force illusions and drifts observed during muscle vibration.

    PubMed

    Reschechtko, Sasha; Cuadra, Cristian; Latash, Mark L

    2018-01-01

    We explored predictions of a scheme that views position and force perception as a result of measuring proprioceptive signals within a reference frame set by ongoing efferent process. In particular, this hypothesis predicts force illusions caused by muscle vibration and mediated via changes in both afferent and efferent components of kinesthesia. Healthy subjects performed accurate steady force production tasks by pressing with the four fingers of one hand (the task hand) on individual force sensors with and without visual feedback. At various times during the trials, subjects matched the perceived force using the other hand. High-frequency vibration was applied to one or both of the forearms (over the hand and finger extensors). Without visual feedback, subjects showed a drop in the task hand force, which was significantly smaller under the vibration of that forearm. Force production by the matching hand was consistently higher than that of the task hand. Vibrating one of the forearms affected the matching hand in a manner consistent with the perception of higher magnitude of force produced by the vibrated hand. The findings were consistent between the dominant and nondominant hands. The effects of vibration on both force drift and force mismatching suggest that vibration led to shifts in both signals from proprioceptors and the efferent component of perception, the referent coordinate and/or coactivation command. The observations fit the hypothesis on combined perception of kinematic-kinetic variables with little specificity of different groups of peripheral receptors that all contribute to perception of forces and coordinates. NEW & NOTEWORTHY We show that vibration of hand/finger extensors produces consistent errors in finger force perception. Without visual feedback, finger force drifted to lower values without a drift in the matching force produced by the other hand; hand extensor vibration led to smaller finger force drift. The findings fit the scheme with combined perception of kinematic-kinetic variables and suggest that vibration leads to consistent shifts of the referent coordinate and, possibly, of coactivation command to the effector.

  6. The assessment of the transformation of global tectonic plate models and the global terrestrial reference frames using the Velocity Decomposition Analysis

    NASA Astrophysics Data System (ADS)

    Ampatzidis, Dimitrios; König, Rolf; Glaser, Susanne; Heinkelmann, Robert; Schuh, Harald; Flechtner, Frank; Nilsson, Tobias

    2016-04-01

    The aim of our study is to assess the classical Helmert similarity transformation using the Velocity Decomposition Analysis (VEDA). The VEDA is a new methodology, developed by GFZ for the assessment of the reference frames' temporal variation and it is based on the separation of the velocities into two specified parts: The first is related to the reference system choice (the so called datum effect) and the latter one which refers to the real deformation of the terrestrial points. The advantage of the VEDA is its ability to detect the relative biases and reference system effects between two different frames or two different realizations of the same frame, respectively. We apply the VEDA for the assessment between several modern tectonic plate models and the recent global terrestrial reference frames.

  7. Why the Greenwich Meridian Moved

    DTIC Science & Technology

    2015-08-01

    that are related to the geocentric reference frame introduced by the Bureau International de l’Heure (BIH) in 1984. This BIHTerrestrial System provided...the basis for orientation of subsequent geocentric reference frames, including all realizations of theWorld Geodetic Sys- tem 1984 and the...astronomical time. The coordinates of satellite-navigation receivers are provided in reference frames that are related to the geocentric reference

  8. In vitro validation and reliability study of electromagnetic skin sensors for evaluation of end range of motion positions of the hip.

    PubMed

    Audenaert, E A; Vigneron, L; Van Hoof, T; D'Herde, K; van Maele, G; Oosterlinck, D; Pattyn, C

    2011-12-01

    There is growing evidence that femoroacetabular impingement (FAI) is a probable risk factor for the development of early osteoarthritis in the nondysplastic hip. As FAI arises with end range of motion activities, measurement errors related to skin movement might be higher than anticipated when using previously reported methods for kinematic evaluation of the hip. We performed an in vitro validation and reliability study of a noninvasive method to define pelvic and femur positions in end range of motion activities of the hip using an electromagnetic tracking device. Motion data, collected from sensors attached to the bone and skin of 11 cadaver hips, were simultaneously obtained and compared in a global reference frame. Motion data were then transposed in the hip joint local coordinate systems. Observer-related variability in locating the anatomical landmarks required to define the local coordinate system and variability of determining the hip joint center was evaluated. Angular root mean square (RMS) differences between the bony and skin sensors averaged 3.2° (SD 3.5°) and 1.8° (SD 2.3°) in the global reference frame for the femur and pelvic sensors, respectively. Angular RMS differences between the bony and skin sensors in the hip joint local coordinate systems ranged at end range of motion and dependent on the motion under investigation from 1.91 to 5.81°. The presented protocol for evaluation of hip motion seems to be suited for the 3-D description of motion relevant to the experimental and clinical evaluation of femoroacetabular impingement.

  9. Residual sweeping errors in turbulent particle pair diffusion in a Lagrangian diffusion model.

    PubMed

    Malik, Nadeem A

    2017-01-01

    Thomson, D. J. & Devenish, B. J. [J. Fluid Mech. 526, 277 (2005)] and others have suggested that sweeping effects make Lagrangian properties in Kinematic Simulations (KS), Fung et al [Fung J. C. H., Hunt J. C. R., Malik N. A. & Perkins R. J. J. Fluid Mech. 236, 281 (1992)], unreliable. However, such a conclusion can only be drawn under the assumption of locality. The major aim here is to quantify the sweeping errors in KS without assuming locality. Through a novel analysis based upon analysing pairs of particle trajectories in a frame of reference moving with the large energy containing scales of motion it is shown that the normalized integrated error [Formula: see text] in the turbulent pair diffusivity (K) due to the sweeping effect decreases with increasing pair separation (σl), such that [Formula: see text] as σl/η → ∞; and [Formula: see text] as σl/η → 0. η is the Kolmogorov turbulence microscale. There is an intermediate range of separations 1 < σl/η < ∞ in which the error [Formula: see text] remains negligible. Simulations using KS shows that in the swept frame of reference, this intermediate range is large covering almost the entire inertial subrange simulated, 1 < σl/η < 105, implying that the deviation from locality observed in KS cannot be atributed to sweeping errors. This is important for pair diffusion theory and modeling. PACS numbers: 47.27.E?, 47.27.Gs, 47.27.jv, 47.27.Ak, 47.27.tb, 47.27.eb, 47.11.-j.

  10. Newton-Cartan Gravity in Noninertial Reference Frames

    NASA Astrophysics Data System (ADS)

    Rodriguez, Leo; St. Germaine-Fuller, James; Wickramasekara, Sujeev

    2015-03-01

    We study Newton-Cartan gravity under transformations into all noninertial, nonrelativistic reference frames. These transformations form an infinite dimensional Lie group, called the Galilean line group, which contains as a subgroup the Galilei group. The fictitious forces of noninertial reference frames are encoded in the Cartan connection transformed under the Galilean line group. These fictitious forces, which are coordinate effects, do not contribute to the Ricci tensor. Only the 00-component of the Ricci tensor is non-zero and equals (4 π times) the matter density in all reference frames. While the Ricci field equation and Gauss' law are fulfilled by the physical matter density in inertial and linearly accelerating reference frames, in rotating reference frames Gauss' law holds for an effective mass density that differs from the physical matter density. This effective density has its origin in the simulated magnetic field of rotating frames, highlighting a striking difference between linearly and rotationally accelerating frames. The equations governing the simulated fields have the same form as Maxwell's equations, a surprising result given that these equations obey special relativity (and U (1) -gauge symmetry), rather than Galilean symmetry. This work was supported in part by the HHMI Undergraduate Science Education Award 52006298 and the Grinnell College Academic Affairs' CSFS and MAP programs.

  11. Report of the panel on earth rotation and reference frames, section 7

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.; Dickman, Steven R.; Eubanks, Marshall T.; Feissel, Martine; Herring, Thomas A.; Mueller, Ivan I.; Rosen, Richard D.; Schutz, Robert E.; Wahr, John M.; Wilson, Charles R.

    1991-01-01

    Objectives and requirements for Earth rotation and reference frame studies in the 1990s are discussed. The objectives are to observe and understand interactions of air and water with the rotational dynamics of the Earth, the effects of the Earth's crust and mantle on the dynamics and excitation of Earth rotation variations over time scales of hours to centuries, and the effects of the Earth's core on the rotational dynamics and the excitation of Earth rotation variations over time scales of a year or longer. Another objective is to establish, refine and maintain terrestrial and celestrial reference frames. Requirements include improvements in observations and analysis, improvements in celestial and terrestrial reference frames and reference frame connections, and improved observations of crustal motion and mass redistribution on the Earth.

  12. TIGO: a geodetic observatory for the improvement of the global reference frame

    NASA Astrophysics Data System (ADS)

    Schlueter, Wolfgang; Hase, Hayo; Boeer, Armin

    1999-12-01

    The Bundesamt fuer Kartographie und Geodaesie (BKG) will provide a major contribution to the improvement and maintenance of the global reference frames: ICRF (International Celestial Reference Frame), ITRF (International Terrestrial Reference Frame) with the operation of TIGO (Transportable Integrated Geodetic Observatory). TIGO is designed as a transportable geodetic observatory which consists of all relevant geodetic space techniques for a fundamental station (including VLBI, SLR, GPS). The transportability of the observatory enables to fill up gaps in the International Space Geodetic Network and to optimize the contribution to the global reference frames. TIGO should operate for a period of 2 to 3 years (at minimum) at one location. BKG is looking for a cooperation with countries willing to contribute to the ITRF and to support the operation of TIGO.

  13. Cretaceous subduction in the Pyrenees: Iberian plate-kinematics in a mantle reference frame

    NASA Astrophysics Data System (ADS)

    Vissers, Reinoud; van Hinsbergen, Douwe; van der Meer, Douwe; Spakman, Wim

    2016-04-01

    During the Cretaceous, Iberia was a microplate separated from Laurasia and Gondwana by ridges and transforms, and by a convergent margin to its northeast along which the Pyrenean fold-thrust belt developed. As a microplate, Iberia underwent a well-defined but ill-understood Albian-Aptian ~ 35° counterclockwise rotation relative to Eurasia. Three competing kinematic scenarios for Iberian motion in the late Mesozoic are all compatible with the Pyrenean geological record and comprise (1) transtensional eastward motion of Iberia versus Eurasia, (2) strike-slip motion followed by orthogonal extension and (3) scissor-style opening of the Bay of Biscay coupled with subduction in the Pyrenean realm. The last scenario is the only one consistent with paleomagnetic and ocean floor anomaly constraints showing Iberia's rotation, but is criticized because the upper mantle below the Pyrenees contains no evidence for a subducted slab. Here we show that when taking absolute plate motions into account, Aptian oceanic subduction in the Pyrenees followed by Albian slab break-off should leave a slab remnant in the present-day mid-mantle below NW Africa instead of below the Pyrenees. Mantle tomography shows a positive seismic velocity anomaly that matches the predicted position and dimension of such a slab remnant between 1900 and 1500 km depth below Reggane in Southern Algeria. Seismic tomographic imaging of the mantle structure therefore does not falsify the Pyrenean subduction hypothesis, and provides no basis to discard marine magnetic and paleomagnetic constraints on Iberia's kinematic history. Slab break-off explains the well-dated Albian-Cenomanian high-temperature metamorphism in the Pyrenees that hitherto has been interpreted as an expression of continental break-up and hyperextension. We suspect that subduction in the Pyrenees may have played a key role in driving the rapid Aptian rotation of the Iberian microplate.

  14. Paleomagnetic constraints on the Cenozoic kinematic evolution of the Pamir plateau from the Western Kunlun Shan foreland

    NASA Astrophysics Data System (ADS)

    Li, Zhenyu; Ding, Lin; Lippert, Peter C.; Wei, Honghong

    2013-09-01

    Thick Cenozoic marine and terrestrial sediments are widely distributed along the perimeter of the Pamir plateau and provide valuable information on the kinematic evolution of the region. Here, we report new biostratigraphic and paleomagnetic results from the piedmont of the Western Kunlun Shan to constrain the magnitude and timing of vertical-axis rotations along the eastern margin of the Pamir. Sampling sites were selected by rock formations and ages, which are based on previous field mapping and on litholostratigraphic and biostratigraphic work presented here. Thermomagnetic analysis, step-wise thermal demagnetization behavior, and positive field tests all suggest that the characteristic remanent magnetization (ChRM) directions most probably have a primary detrital and chemical origin. Our results indicate variable, minor, but in some intervals significant vertical axis rotations with respect to a stable Asian reference frame. This pattern of rotations is similar to paleomagnetic data reported in previously published studies from the Eastern Pamir foreland. In contrast, published paleomagnetic data from the Western Pamir foreland consistently indicate significant CCW rotations within that region. Collectively, these results challenge simple oroclinal bending models for the origin of the Pamir salient, and instead are more consistent with an asymmetric "half-orocline" kinematic model in which the curvature of the Western Pamir is the product of a combination of lithospheric bending of an originally quasi-linear mountain belt and radial thrusting, and the subdued curvature of the eastern edge of the plateau is the result of lateral translation of the Pamir plateau northward past Tibet and Tarim along the Kashgar-Yecheng transfer system. Our results are consistent with activity on the Kashgar-Yecheng transfer system in the Early Miocene.

  15. Reliability of frames of reference used for tibial component rotation in total knee arthroplasty.

    PubMed

    Page, Stephen R; Deakin, Angela H; Payne, Anthony P; Picard, Frederic

    2011-01-01

    This study evaluated seven different frames of reference used for tibial component rotation in total knee arthroplasty (TKA) to determine which ones showed good reliability between bone specimens. An optoelectronic system based around a computer-assisted surgical navigation system was used to measure and locate 34 individual anatomical landmarks on 40 tibias. Each particular frame of reference was reconstructed from a group of data points taken from the surface of each bone. The transverse axis was used as the baseline to which the other axes were compared, and the differences in angular rotation between the other six reference frames and the transverse axis were calculated. There was high variability in the tibial rotational alignment associated with all frames of reference. Of the references widely used in current TKA procedures, the tibial tuberosity axis and the anterior condylar axis had lower standard deviations (6.1° and 7.3°, respectively) than the transmalleolar axis and the posterior condylar axis (9.3° for both). In conclusion, we found high variability in the frames of reference used for tibial rotation alignment. However, the anterior condylar axis and transverse axis may warrant further tests with the use of navigation. Combining different frames of reference such as the tibial tuberosity axis, anterior condylar axis and transverse axis may reduce the range of errors found in all of these measurements.

  16. NChina16: A stable geodetic reference frame for geological hazard studies in North China

    NASA Astrophysics Data System (ADS)

    Wang, Guoquan; Bao, Yan; Gan, Weijun; Geng, Jianghui; Xiao, Gengru; Shen, Jack S.

    2018-04-01

    We have developed a stable North China Reference Frame 2016 (NChina16) using five years of continuous GPS observations (2011.8-2016.8) from 12 continuously operating reference stations (CORS) fixed to the North China Craton. Applications of NChina16 in landslide and subsidence studies are illustrated in this article. A method for realizing a regional geodetic reference frame is introduced. The primary result of this study is the seven parameters for transforming Cartesian ECEF (Earth-Centered, Earth-Fixed) coordinates X, Y, and Z from the International GNSS Service Reference Frame 2008 (IGS08) to NChina16. The seven parameters include the epoch that is used to align the regional reference frame to IGS08 and the time derivatives of three translations and three rotations. The GIPSY-OASIS (V6.4) software package was used to obtain the precise point positioning (PPP) daily solutions with respect to IGS08. The frame stability of NChina16 is approximately 0.5 mm/year in both horizontal and vertical directions. This study also developed a regional model for correcting seasonal motions superimposed into the vertical component of the GPS-derived displacement time series. Long-term GPS observations (1999-2016) from five CORS in North China were used to develop the seasonal model. According to this study, the PPP daily solutions with respect to NChina16 could achieve 2-3 mm horizontal accuracy and 4-5 mm vertical accuracy after being modified by the regional model. NChina16 will be critical to study geodynamic problems in North China, such as earthquakes, faulting, subsidence, and landslides. The regional reference frame will be periodically updated every few years to mitigate degradation of the frame with time and be synchronized with the update of IGS reference frame.

  17. An Exposition on the Nonlinear Kinematics of Shells, Including Transverse Shearing Deformations

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2013-01-01

    An in-depth exposition on the nonlinear deformations of shells with "small" initial geometric imperfections, is presented without the use of tensors. First, the mathematical descriptions of an undeformed-shell reference surface, and its deformed image, are given in general nonorthogonal coordinates. The two-dimensional Green-Lagrange strains of the reference surface derived and simplified for the case of "small" strains. Linearized reference-surface strains, rotations, curvatures, and torsions are then derived and used to obtain the "small" Green-Lagrange strains in terms of linear deformation measures. Next, the geometry of the deformed shell is described mathematically and the "small" three-dimensional Green-Lagrange strains are given. The deformations of the shell and its reference surface are related by introducing a kinematic hypothesis that includes transverse shearing deformations and contains the classical Love-Kirchhoff kinematic hypothesis as a proper, explicit subset. Lastly, summaries of the essential equations are given for general nonorthogonal and orthogonal coordinates, and the basis for further simplification of the equations is discussed.

  18. Estimation of precipitable water vapour using kinematic GNSS precise point positioning over an altitude range of 1 km

    NASA Astrophysics Data System (ADS)

    Webb, S. R.; Penna, N. T.; Clarke, P. J.; Webster, S.; Martin, I.

    2013-12-01

    The estimation of total precipitable water vapour (PWV) using kinematic GNSS has been investigated since around 2001, aiming to extend the use of static ground-based GNSS, from which PWV estimates are now operationally assimilated into numerical weather prediction models. To date, kinematic GNSS PWV studies suggest a PWV measurement agreement with radiosondes of 2-3 mm, almost commensurate with static GNSS measurement accuracy, but only shipborne experiments have so far been carried out. As a first step towards extending such sea level-based studies to platforms that operate at a range of altitudes, such as airplanes or land based vehicles, the kinematic GNSS estimation of PWV over an exactly repeated trajectory is considered. A data set was collected from a GNSS receiver and antenna mounted on a carriage of the Snowdon Mountain Railway, UK, which continually ascends and descends through 950 m of vertical relief. Static GNSS reference receivers were installed at the top and bottom of the altitude profile, and derived zenith wet delay (ZWD) was interpolated to the altitude of the train to provide reference values together with profile estimates from the 100 m resolution runs of the Met Office's Unified Model. We demonstrate similar GNSS accuracies as obtained from previous shipborne studies, namely a double difference relative kinematic GNSS ZWD accuracy within 14 mm, and a kinematic GNSS precise point positioning ZWD accuracy within 15 mm. The latter is a more typical airborne PWV estimation scenario i.e. without the reliance on ground-based GNSS reference stations. We show that the kinematic GPS-only precise point positioning ZWD estimation is enhanced by also incorporating GLONASS observations.

  19. Local sensory control of a dexterous end effector

    NASA Technical Reports Server (NTRS)

    Pinto, Victor H.; Everett, Louis J.; Driels, Morris

    1990-01-01

    A numerical scheme was developed to solve the inverse kinematics for a user-defined manipulator. The scheme was based on a nonlinear least-squares technique which determines the joint variables by minimizing the difference between the target end effector pose and the actual end effector pose. The scheme was adapted to a dexterous hand in which the joints are either prismatic or revolute and the fingers are considered open kinematic chains. Feasible solutions were obtained using a three-fingered dexterous hand. An algorithm to estimate the position and orientation of a pre-grasped object was also developed. The algorithm was based on triangulation using an ideal sensor and a spherical object model. By choosing the object to be a sphere, only the position of the object frame was important. Based on these simplifications, a minimum of three sensors are needed to find the position of a sphere. A two dimensional example to determine the position of a circle coordinate frame using a two-fingered dexterous hand was presented.

  20. Transport equations of electrodiffusion processes in the laboratory reference frame.

    PubMed

    Garrido, Javier

    2006-02-23

    The transport equations of electrodiffusion processes use three reference frames for defining the fluxes: Fick's reference in diffusion, solvent-fixed reference in transference numbers, and laboratory fluxes in electric conductivity. The convenience of using only one reference frame is analyzed here from the point of view of the thermodynamics of irreversible processes. A relation between the fluxes of ions and solvent and the electric current density is deduced first from a mass and volume balance. This is then used to show that (i) the laboratory and Fick's diffusion coefficients are identical and (ii) the transference numbers of both the solvent and the ion in the laboratory reference frame are related. Finally, four experimental methods for the measurement of ion transference numbers are analyzed critically. New expressions for evaluating transference numbers for the moving boundary method and the chronopotentiometry technique are deduced. It is concluded that the ion transport equation in the laboratory reference frame plays a key role in the description of electrodiffusion processes.

  1. Definition and Proposed Realization of the International Height Reference System (IHRS)

    NASA Astrophysics Data System (ADS)

    Ihde, Johannes; Sánchez, Laura; Barzaghi, Riccardo; Drewes, Hermann; Foerste, Christoph; Gruber, Thomas; Liebsch, Gunter; Marti, Urs; Pail, Roland; Sideris, Michael

    2017-05-01

    Studying, understanding and modelling global change require geodetic reference frames with an order of accuracy higher than the magnitude of the effects to be actually studied and with high consistency and reliability worldwide. The International Association of Geodesy, taking care of providing a precise geodetic infrastructure for monitoring the Earth system, promotes the implementation of an integrated global geodetic reference frame that provides a reliable frame for consistent analysis and modelling of global phenomena and processes affecting the Earth's gravity field, the Earth's surface geometry and the Earth's rotation. The definition, realization, maintenance and wide utilization of the International Terrestrial Reference System guarantee a globally unified geometric reference frame with an accuracy at the millimetre level. An equivalent high-precision global physical reference frame that supports the reliable description of changes in the Earth's gravity field (such as sea level variations, mass displacements, processes associated with geophysical fluids) is missing. This paper addresses the theoretical foundations supporting the implementation of such a physical reference surface in terms of an International Height Reference System and provides guidance for the coming activities required for the practical and sustainable realization of this system. Based on conceptual approaches of physical geodesy, the requirements for a unified global height reference system are derived. In accordance with the practice, its realization as the International Height Reference Frame is designed. Further steps for the implementation are also proposed.

  2. Spatial reference frames of visual, vestibular, and multimodal heading signals in the dorsal subdivision of the medial superior temporal area.

    PubMed

    Fetsch, Christopher R; Wang, Sentao; Gu, Yong; Deangelis, Gregory C; Angelaki, Dora E

    2007-01-17

    Heading perception is a complex task that generally requires the integration of visual and vestibular cues. This sensory integration is complicated by the fact that these two modalities encode motion in distinct spatial reference frames (visual, eye-centered; vestibular, head-centered). Visual and vestibular heading signals converge in the primate dorsal subdivision of the medial superior temporal area (MSTd), a region thought to contribute to heading perception, but the reference frames of these signals remain unknown. We measured the heading tuning of MSTd neurons by presenting optic flow (visual condition), inertial motion (vestibular condition), or a congruent combination of both cues (combined condition). Static eye position was varied from trial to trial to determine the reference frame of tuning (eye-centered, head-centered, or intermediate). We found that tuning for optic flow was predominantly eye-centered, whereas tuning for inertial motion was intermediate but closer to head-centered. Reference frames in the two unimodal conditions were rarely matched in single neurons and uncorrelated across the population. Notably, reference frames in the combined condition varied as a function of the relative strength and spatial congruency of visual and vestibular tuning. This represents the first investigation of spatial reference frames in a naturalistic, multimodal condition in which cues may be integrated to improve perceptual performance. Our results compare favorably with the predictions of a recent neural network model that uses a recurrent architecture to perform optimal cue integration, suggesting that the brain could use a similar computational strategy to integrate sensory signals expressed in distinct frames of reference.

  3. The kinematic dipole in galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Maartens, Roy; Clarkson, Chris; Chen, Song

    2018-01-01

    In the concordance model of the Universe, the matter distribution—as observed in galaxy number counts or the intensity of line emission (such as the 21cm line of neutral hydrogen) —should have a kinematic dipole due to the Sun's motion relative to the CMB rest-frame. This dipole should be aligned with the kinematic dipole in the CMB temperature. Accurate measurement of the direction of the matter dipole will become possible with future galaxy surveys, and this will be a critical test of the foundations of the concordance model. The amplitude of the matter dipole is also a potential cosmological probe. We derive formulas for the amplitude of the kinematic dipole in galaxy redshift and intensity mapping surveys, taking into account the Doppler, aberration and other relativistic effects. The amplitude of the matter dipole can be significantly larger than that of the CMB dipole. Its redshift dependence encodes information on the evolution of the Universe and on the tracers, and we discuss possible ways to determine the amplitude.

  4. Extension of D-H parameter method to hybrid manipulators used in robot-assisted surgery.

    PubMed

    Singh, Amanpreet; Singla, Ashish; Soni, Sanjeev

    2015-10-01

    The main focus of this work is to extend the applicability of D-H parameter method to develop a kinematic model of a hybrid manipulator. A hybrid manipulator is a combination of open- and closed-loop chains and contains planar and spatial links. It has been found in the literature that D-H parameter method leads to ambiguities, when dealing with closed-loop chains. In this work, it has been observed that the D-H parameter method, when applied to a hybrid manipulator, results in an orientational inconsistency, because of which the method cannot be used to develop the kinematic model. In this article, the concept of dummy frames is proposed to resolve the orientational inconsistency and to develop the kinematic model of a hybrid manipulator. Moreover, the prototype of 7-degree-of-freedom hybrid manipulator, known as a surgeon-side manipulator to assist the surgeon during a medical surgery, is also developed to validate the kinematic model derived in this work. © IMechE 2015.

  5. Asynchronous reference frame agreement in a quantum network

    NASA Astrophysics Data System (ADS)

    Islam, Tanvirul; Wehner, Stephanie

    2016-03-01

    An efficient implementation of many multiparty protocols for quantum networks requires that all the nodes in the network share a common reference frame. Establishing such a reference frame from scratch is especially challenging in an asynchronous network where network links might have arbitrary delays and the nodes do not share synchronised clocks. In this work, we study the problem of establishing a common reference frame in an asynchronous network of n nodes of which at most t are affected by arbitrary unknown error, and the identities of the faulty nodes are not known. We present a protocol that allows all the correctly functioning nodes to agree on a common reference frame as long as the network graph is complete and not more than t\\lt n/4 nodes are faulty. As the protocol is asynchronous, it can be used with some assumptions to synchronise clocks over a network. Also, the protocol has the appealing property that it allows any existing two-node asynchronous protocol for reference frame agreement to be lifted to a robust protocol for an asynchronous quantum network.

  6. Mercury's Reference Frames After the MESSENGER Mission

    NASA Astrophysics Data System (ADS)

    Stark, A.; Oberst, J.; Preusker, F.; Burmeister, S.; Steinbrügge, G.; Hussmann, H.

    2018-05-01

    We provide an overview of Mercury's reference frames based on MESSENGER observations. We discuss the dynamical, the principal-axes, the ellipsoid, as well as the cartographic frame, which was adopted for MESSENGER data products.

  7. Polarization effects in the N-bar+N{yields}{pi}+l{sup +}+l{sup -} reaction: General analysis and numerical estimations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gakh, G. I.; Rekalo, A. P.; Tomasi-Gustafsson, E.

    2011-02-15

    A general formalism is developed to calculate the cross section and the polarization observables for the reaction N-bar+N{yields}{pi}+l{sup +}+l{sup -}. The matrix element and the observables are expressed in terms of six scalar amplitudes (complex functions of three kinematical variables) that determine the reaction dynamics. The numerical predictions are given in the frame of a particular model in the kinematical range accessible in the antiproton annihilation at Darmstadt (PANDA) experiment at the Facility for Antiproton and Ion Research (FAIR).

  8. Automated quantification of lumbar vertebral kinematics from dynamic fluoroscopic sequences

    NASA Astrophysics Data System (ADS)

    Camp, Jon; Zhao, Kristin; Morel, Etienne; White, Dan; Magnuson, Dixon; Gay, Ralph; An, Kai-Nan; Robb, Richard

    2009-02-01

    We hypothesize that the vertebra-to-vertebra patterns of spinal flexion and extension motion of persons with lower back pain will differ from those of persons who are pain-free. Thus, it is our goal to measure the motion of individual lumbar vertebrae noninvasively from dynamic fluoroscopic sequences. Two-dimensional normalized mutual information-based image registration was used to track frame-to-frame motion. Software was developed that required the operator to identify each vertebra on the first frame of the sequence using a four-point "caliper" placed at the posterior and anterior edges of the inferior and superior end plates of the target vertebrae. The program then resolved the individual motions of each vertebra independently throughout the entire sequence. To validate the technique, 6 cadaveric lumbar spine specimens were potted in polymethylmethacrylate and instrumented with optoelectric sensors. The specimens were then placed in a custom dynamic spine simulator and moved through flexion-extension cycles while kinematic data and fluoroscopic sequences were simultaneously acquired. We found strong correlation between the absolute flexionextension range of motion of each vertebra as recorded by the optoelectric system and as determined from the fluoroscopic sequence via registration. We conclude that this method is a viable way of noninvasively assessing twodimensional vertebral motion.

  9. A general-purpose approach to computer-aided dynamic analysis of a flexible helicopter

    NASA Technical Reports Server (NTRS)

    Agrawal, Om P.

    1988-01-01

    A general purpose mathematical formulation is described for dynamic analysis of a helicopter consisting of flexible and/or rigid bodies that undergo large translations and rotations. Rigid body and elastic sets of generalized coordinates are used. The rigid body coordinates define the location and the orientation of a body coordinate frame (global frame) with respect to an inertial frame. The elastic coordinates are introduced using a finite element approach in order to model flexible components. The compatibility conditions between two adjacent elements in a flexible body are imposed using a Boolean matrix, whereas the compatibility conditions between two adjacent bodies are imposed using the Lagrange multiplier approach. Since the form of the constraint equations depends upon the type of kinematic joint and involves only the generalized coordinates of the two participating elements, then a library of constraint elements can be developed to impose the kinematic constraint in an automated fashion. For the body constraints, the Lagrange multipliers yield the reaction forces and torques of the bodies at the joints. The virtual work approach is used to derive the equations of motion, which are a system of differential and algebraic equations that are highly nonlinear. The formulation presented is general and is compared with hard-wired formulations commonly used in helicopter analysis.

  10. Determination of Galactic Aberration from VLBI Measurements and Its Effect on VLBI Reference Frames and Earth Orientation Parameters.

    NASA Astrophysics Data System (ADS)

    MacMillan, D. S.

    2014-12-01

    Galactic aberration is due to the motion of the solar system barycenter around the galactic center. It results in a systematic pattern of apparent proper motion of radio sources observed by VLBI. This effect is not currently included in VLBI analysis. Estimates of the size of this effect indicate that it is important that this secular aberration drift be accounted for in order to maintain an accurate celestial reference frame and allow astrometry at the several microarcsecond level. Future geodetic observing systems are being designed to be capable of producing a future terrestrial reference frame with an accuracy of 1 mm and stability of 0.1 mm/year. We evaluate the effect galactic aberration on attaining these reference frame goals. This presentation will discuss 1) the estimation of galactic aberration from VLBI data and 2) the effect of aberration on the Terrestrial and Celestial Reference Frames and the Earth Orientation Parameters that connect these frames.

  11. Present day crustal deformation of the Italian peninsula observed by permanent GPS stations

    NASA Astrophysics Data System (ADS)

    Devoti, Roberto; Esposito, Alessandra; Galvani, Alessandro; Pietrantonio, Grazia; Pisani, Anna Rita; Riguzzi, Federica; Sepe, Vincenzo

    2010-05-01

    Italian penisula is a crucial area in the Mediterranean region to understand the active deformation processes along Nubia-Eurasia plate boundary. We present the velocity and strain rate fields of the Italian area derived from continuous GPS observations of more than 300 sites in the time span 1998-2009. The GPS networks were installed and managed by different institutions and for different purposes; altogether they cover the whole country with a mean inter-site distance of about 50 km and provide a valuable source of data to map the present day kinematics of the region. The data processing is performed by BERNESE software ver. 5.0, adopting a distributed session approach, with more than 10 clusters, sharing common stations, each of them consisting of about 40 stations. Daily loosely constrained solutions are routinely produced for each cluster and then combined into a network daily loose solution. Subsequently daily solutions are transformed on the chosen reference frame and the constrained time series are fitted using the complete covariance matrix, simultaneously estimating site velocities together with annual signals and sporadic offsets at epochs of instrumental changes. In this work we provide an updated detailed picture of the horizontal and vertical kinematics (velocity maps) and deformation pattern (strain rate maps) of the Italian area. The results show several crustal domains characterized by different velocity rates and styles of deformation.

  12. Multiple reference frames in haptic spatial processing

    NASA Astrophysics Data System (ADS)

    Volčič, R.

    2008-08-01

    The present thesis focused on haptic spatial processing. In particular, our interest was directed to the perception of spatial relations with the main focus on the perception of orientation. To this end, we studied haptic perception in different tasks, either in isolation or in combination with vision. The parallelity task, where participants have to match the orientations of two spatially separated bars, was used in its two-dimensional and three-dimensional versions in Chapter 2 and Chapter 3, respectively. The influence of non-informative vision and visual interference on performance in the parallelity task was studied in Chapter 4. A different task, the mental rotation task, was introduced in a purely haptic study in Chapter 5 and in a visuo-haptic cross-modal study in Chapter 6. The interaction of multiple reference frames and their influence on haptic spatial processing were the common denominators of these studies. In this thesis we approached the problems of which reference frames play the major role in haptic spatial processing and how the relative roles of distinct reference frames change depending on the available information and the constraints imposed by different tasks. We found that the influence of a reference frame centered on the hand was the major cause of the deviations from veridicality observed in both the two-dimensional and three-dimensional studies. The results were described by a weighted average model, in which the hand-centered egocentric reference frame is supposed to have a biasing influence on the allocentric reference frame. Performance in haptic spatial processing has been shown to depend also on sources of information or processing that are not strictly connected to the task at hand. When non-informative vision was provided, a beneficial effect was observed in the haptic performance. This improvement was interpreted as a shift from the egocentric to the allocentric reference frame. Moreover, interfering visual information presented in the vicinity of the haptic stimuli parametrically modulated the magnitude of the deviations. The influence of the hand-centered reference frame was shown also in the haptic mental rotation task where participants were quicker in judging the parity of objects when these were aligned with respect to the hands than when they were physically aligned. Similarly, in the visuo-haptic cross-modal mental rotation task the parity judgments were influenced by the orientation of the exploring hand with respect to the viewing direction. This effect was shown to be modulated also by an intervening temporal delay that supposedly counteracts the influence of the hand-centered reference frame. We suggest that the hand-centered reference frame is embedded in a hierarchical structure of reference frames where some of these emerge depending on the demands and the circumstances of the surrounding environment and the needs of an active perceiver.

  13. A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging.

    PubMed

    Zhu, Xinhui; Wang, Ren; Sun, Fuping; Wang, Jinling

    2016-02-08

    Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people's daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement,as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging) is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station's geocentric coordinates and velocities relative to the centre of the Earth's mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF). The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System) and VLBI (very long baseline interferometry) velocity observations, and the unity of other velocity fields and SVRF was realized,as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement.

  14. A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging

    PubMed Central

    Zhu, Xinhui; Wang, Ren; Sun, Fuping; Wang, Jinling

    2016-01-01

    Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people’s daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement, as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging) is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station’s geocentric coordinates and velocities relative to the centre of the Earth’s mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF). The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System) and VLBI (very long baseline interferometry) velocity observations, and the unity of other velocity fields and SVRF was realized, as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement. PMID:26867197

  15. Reference Frames in Relativistic Space-Time

    NASA Astrophysics Data System (ADS)

    Soffel, M.; Herold, H.; Ruder, H.; Schneider, M.

    Three fundamental concepts of reference frames in relativistic space-time are confronted: 1. the gravitation compass, 2. the stellar compass and 3. the inertial compass. It is argued that under certain conditions asymptotically fixed (stellar) reference frames can be introduced with the same rigour as local Fermi frames, thereby eliminating one possible psychological reason why the importance of Fermi frames frequently has been overestimated in the past. As applications of these three concepts the authors discuss: 1. a relativistic definition of the geoid, 2. a relativistic astrometric problem and 3. the post-Newtonian theory of a laser gyroscope fixed to the Earth's surface.

  16. Different reference frames can lead to different hand transplantation decisions by patients and physicians.

    PubMed

    Edgell, S E; McCabe, S J; Breidenbach, W C; Neace, W P; LaJoie, A S; Abell, T D

    2001-03-01

    Different frames of reference can affect one's assessment of the value of hand transplantation. This can result in different yet rational decisions by different groups of individuals, especially patients and physicians. In addition, factors other than frames of reference can affect one's evaluation of hand transplantation, which can result in different decisions.

  17. Optimization of Actuating Origami Networks

    NASA Astrophysics Data System (ADS)

    Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Joo, James; Gregory, Reich; Vaia, Richard

    2015-03-01

    Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. By leveraging design concepts from action origami, a subset of origami art focused on kinematic mechanisms, reversible folding patterns for applications such as solar array packaging, tunable antennae, and deployable sensing platforms may be designed. However, the enormity of the design space and the need to identify the requisite actuation forces within the structure places a severe limitation on design strategies based on intuition and geometry alone. The present work proposes a topology optimization method, using truss and frame element analysis, to distribute foldline mechanical properties within a reference crease pattern. Known actuating patterns are placed within a reference grid and the optimizer adjusts the fold stiffness of the network to optimally connect them. Design objectives may include a target motion, stress level, or mechanical energy distribution. Results include the validation of known action origami structures and their optimal connectivity within a larger network. This design suite offers an important step toward systematic incorporation of origami design concepts into new, novel and reconfigurable engineering devices. This research is supported under the Air Force Office of Scientific Research (AFOSR) funding, LRIR 13RQ02COR.

  18. The Kinematics Parameters of the Galaxy Using Data of Modern Astrometric Catalogues

    NASA Astrophysics Data System (ADS)

    Akhmetov, V. S.; Fedorov, P. N.; Velichko, A. B.; Shulga, V. M.

    Based on the Ogorodnikov-Milne model, we analyze the proper motions of XPM2, UCAC4 and PPMXL stars. To estimate distances to the stars we used the method of statistical parallaxes herewith the random errors of the distance estimations do not exceed 10%. The method of statistical parallaxes was used to estimate the distances to stars with random errors no larger than 14%. The linear solar velocity relative to the local standard of rest, which is well determined for the local entroid (d 150 p), was used as a reference. We have established that the model component that describes the rotation of all stars under consideration about the Galactic Y axis differs from zero. For the distant (d < 1000 pc) PPMXL and UCAC4 stars, the mean rotation about the Galactic Y axis has been found to be M-13 = -0.75± 0.04 mas yr-1. As for distances greater than 1 kpc M-13>derived from the data of only XPM2 catalogue becomes positive and exceeds 0.5 mas yr-1. We interpret this rotation found using the distant stars as a residual rotation of the ICRS/Tycho-2 system relative to the inertial reference frame.

  19. VizieR Online Data Catalog: Carlsberg Meridian Catalog, Vol. 4 (CMC4, 1989)

    NASA Astrophysics Data System (ADS)

    Copenhagen University, Obs.; Royal Greenwich, Obs.

    1995-11-01

    The Carlsberg Meridian Catalogues give accurate positions, proper motions and magnitudes of stars north of declination -45deg and down to 15th magnitude. They also contain observations of the solar system objects: Mars, Callisto, Saturn, Titan, Iapetus, Uranus, Neptune, Pluto, and many minor planets. Typical mean errors for an entry are 0.1arcsec in position, 3mas/yr in proper motion, and 0.05mag in magnitude. The stars observed belong to a large number of observing programmes typically dealing with the reference frame or with galactic kinematics. The Carlsberg Automatic Meridian Circle on La Palma is operated by Copenhagen University Observatory, Royal Greenwich Observatory, and Real Instituto y Observatorio de la Armada at the Observatory del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. For a detailed introduction, please refer to the printed catalogue. A description of the programme may also be found in the 1993 paper by Fabricius (=1993BICDS..42....5F), from which the present description is derived. This 4th volume corresponds to observations made from May 1984 to February 1988. It supersedes the first three volumes. (4 data files).

  20. Quantum reference frames and their applications to thermodynamics.

    PubMed

    Popescu, Sandu; Sainz, Ana Belén; Short, Anthony J; Winter, Andreas

    2018-07-13

    We construct a quantum reference frame, which can be used to approximately implement arbitrary unitary transformations on a system in the presence of any number of extensive conserved quantities, by absorbing any back action provided by the conservation laws. Thus, the reference frame at the same time acts as a battery for the conserved quantities. Our construction features a physically intuitive, clear and implementation-friendly realization. Indeed, the reference system is composed of the same types of subsystems as the original system and is finite for any desired accuracy. In addition, the interaction with the reference frame can be broken down into two-body terms coupling the system to one of the reference frame subsystems at a time. We apply this construction to quantum thermodynamic set-ups with multiple, possibly non-commuting conserved quantities, which allows for the definition of explicit batteries in such cases.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  1. TH-EF-BRB-08: Robotic Motion Compensation for Radiation Therapy: A 6DOF Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belcher, AH; Liu, X; Wiersma, R

    Purpose: The high accuracy of frame-based stereotactic radiosurgery (SRS), which uses a rigid frame fixed to the patient’s skull, is offset by potential drawbacks of poor patient compliance and clinical workflow restrictions. Recent research into frameless SRS has so far resulted in reduced accuracy. In this study, we investigate the use of a novel 6 degree-of-freedom (6DOF) robotic head motion cancellation system that continuously detects and compensates for patient head motions during a SRS delivery. This approach has the potential to reduce invasiveness while still achieving accuracies better or equal to traditional frame-based SRS. Methods: A 6DOF parallel kinematics roboticsmore » stage was constructed, and controlled using an inverse kinematics-based motion compensation algorithm. A 6DOF stereoscopic infrared (IR) marker tracking system was used to monitor real-time motions at sub-millimeter and sub-degree levels. A novel 6DOF calibration technique was first applied to properly orient the camera coordinate frame to match that of the LINAC and robotic control frames. Simulated head motions were measured by the system, and the robotic stage responded to these 6DOF motions automatically, returning the reflective marker coordinate frame to its original position. Results: After the motions were introduced to the system in the phantom-based study, the robotic stage automatically and rapidly returned the phantom to LINAC isocenter. When errors exceeded the compensation lower threshold of 0.25 mm or 0.25 degrees, the system registered the 6DOF error and generated a cancellation trajectory. The system responded in less than 0.5 seconds and returned all axes to less than 0.1 mm and 0.1 degree after the 6DOF compensation was performed. Conclusion: The 6DOF real-time motion cancellation system was found to be effective at compensating for translational and rotational motions to current SRS requirements. This system can improve frameless SRS by automatically returning patients to isocenter with high 6DOF accuracy.« less

  2. The Reciprocal Internal/External Frame of Reference Model: An Integration of Models of Relations between Academic Achievement and Self-Concept

    ERIC Educational Resources Information Center

    Moller, Jens; Retelsdorf, Jan; Koller, Olaf; Marsh, Herb W.

    2011-01-01

    The reciprocal internal/external frame of reference model (RI/EM) combines the internal/external frame of reference model and the reciprocal effects model. The RI/EM predicts positive effects of mathematics and verbal achievement and academic self-concepts (ASC) on subsequent mathematics and verbal achievements and ASCs within domains and negative…

  3. Implementing system simulation of C3 systems using autonomous objects

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1987-01-01

    The basis of all conflict recognition in simulation is a common frame of reference. Synchronous discrete-event simulation relies on the fixed points in time as the basic frame of reference. Asynchronous discrete-event simulation relies on fixed-points in the model space as the basic frame of reference. Neither approach provides sufficient support for autonomous objects. The use of a spatial template as a frame of reference is proposed to address these insufficiencies. The concept of a spatial template is defined and an implementation approach offered. Discussed are the uses of this approach to analyze the integration of sensor data associated with Command, Control, and Communication systems.

  4. Current control of PMSM based on maximum torque control reference frame

    NASA Astrophysics Data System (ADS)

    Ohnuma, Takumi

    2017-07-01

    This study presents a new method of current controls of PMSMs (Permanent Magnet Synchronous Motors) based on a maximum torque control reference frame, which is suitable for high-performance controls of the PMSMs. As the issues of environment and energy increase seriously, PMSMs, one of the AC motors, are becoming popular because of their high-efficiency and high-torque density in various applications, such as electric vehicles, trains, industrial machines, and home appliances. To use the PMSMs efficiently, a proper current control of the PMSMs is necessary. In general, a rotational coordinate system synchronizing with the rotor is used for the current control of PMSMs. In the rotating reference frame, the current control is easier because the currents on the rotating reference frame can be expressed as a direct current in the controller. On the other hand, the torque characteristics of PMSMs are non-linear and complex; the PMSMs are efficient and high-density though. Therefore, a complicated control system is required to involve the relation between the torque and the current, even though the rotating reference frame is adopted. The maximum torque control reference frame provides a simpler way to control efficiently the currents taking the torque characteristics of the PMSMs into consideration.

  5. Mechanical Energy Change in Inertial Reference Frames

    ERIC Educational Resources Information Center

    Ghanbari, Saeed

    2016-01-01

    The mechanical energy change of a system in an inertial frame of reference equals work done by the total nonconservative force in the same frame. This relation is covariant under the Galilean transformations from inertial frame S to S', where S' moves with constant velocity relative to S. In the presence of nonconservative forces, such as normal…

  6. Automatic frame-centered object representation and integration revealed by iconic memory, visual priming, and backward masking.

    PubMed

    Lin, Zhicheng; He, Sheng

    2012-10-25

    Object identities ("what") and their spatial locations ("where") are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects ("files") within the reference frame ("cabinet") are orderly coded relative to the frame.

  7. Support time-dependent transformations for surveying and GIS : current status and upcoming challenges

    NASA Astrophysics Data System (ADS)

    Mahmoudabadi, H.; Lercier, D.; Vielliard, S.; Mein, N.; Briggs, G.

    2016-12-01

    The support of time-dependent transformations for surveying and GIS is becoming a critical issue. We need to convert positions from the realizations of the International Terrestrial Reference Frame to any national reference frame. This problem is easy to solve when all of the required information is available. But it becomes really complicated in a worldwide context. We propose an overview of the current ITRF-aligned reference frames and we describe a global solution to support time-dependent transformations between them and the International Terrestrial Reference Frame. We focus on the uncertainties of station velocities used. In a first approximation, we use a global tectonic plate model to calculate point velocities. We show the impact of the velocity model on the coordinate accuracies. Several countries, particularly in active regions, are developing semi-dynamic reference frames. These frames include local displacement models updated regularly and/or after major events (such as earthquakes). Their integration into surveying or GIS applications is an upcoming challenge. We want to encourage the geodetic community to develop and use standard formats.

  8. Dynamic of charged planar geometry in tilted and non-tilted frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharif, M., E-mail: msharif.math@pu.edu.pk; Zaeem Ul Haq Bhatti, M., E-mail: mzaeem.math@pu.edu.pk

    2015-05-15

    We investigate the dynamics of charged planar symmetry with an anisotropic matter field subject to a radially moving observer called a tilted observer. The Einstein-Maxwell field equations are used to obtain a relation between non-tilted and tilted frames and between kinematical and dynamical quantities. Using the Taub mass formalism and conservation laws, two evolution equations are developed to analyze the inhomogeneities in the tilted congruence. It is found that the radial velocity (due to the tilted observer) and the electric charge have a crucial effect on the inhomogeneity factor. Finally, we discuss the stability in the non-tilted frame in themore » pure diffusion case and examine the effects of the electromagnetic field.« less

  9. Differential School Contextual Effects for Math and English: Integrating the Big-Fish-Little-Pond Effect and the Internal/External Frame of Reference

    ERIC Educational Resources Information Center

    Parker, Philip D.; Marsh, Herbert W.; Ludtke, Oliver; Trautwein, Ulrich

    2013-01-01

    The internal/external frame of reference and the big-fish-little-pond effect are two major models of academic self-concept formation which have considerable theoretical and empirical support. Integrating the domain specific and compensatory processes of the internal/external frame of reference model with the big-fish-little-pond effect suggests a…

  10. The International Celestial Reference Frame (ICRF) and the Relationship Between Frames

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2000-01-01

    The International Celestial Reference Frame (ICRF), a catalog of VLBI source positions, is now the basis for astrometry and geodesy. Its construction and extension/maintenance will be discussed as well as the relationship of the ICRF, ITRF, and EOP/nutation.

  11. Networked Mediated Influence 2.0

    DTIC Science & Technology

    2014-12-12

    but they communicate the information through different frames of reference. . . . Frames work by accessing a particular perspective on an issue...nature yet attention grabbers.214 Framing. A form of communications where information is presented in a unique slant, focal point, or frame of reference...mental frameworks differ in their implications for decision making, the results can be dramatic.215 Information Communication Technologies (ICTs). A term

  12. What a speaker's choice of frame reveals: reference points, frame selection, and framing effects.

    PubMed

    McKenzie, Craig R M; Nelson, Jonathan D

    2003-09-01

    Framing effects are well established: Listeners' preferences depend on how outcomes are described to them, or framed. Less well understood is what determines how speakers choose frames. Two experiments revealed that reference points systematically influenced speakers' choices between logically equivalent frames. For example, speakers tended to describe a 4-ounce cup filled to the 2-ounce line as half full if it was previously empty but described it as half empty if it was previously full. Similar results were found when speakers could describe the outcome of a medical treatment in terms of either mortality or survival (e.g., 25% die vs. 75% survive). Two additional experiments showed that listeners made accurate inferences about speakers' reference points on the basis of the selected frame (e.g., if a speaker described a cup as half empty, listeners inferred that the cup used to be full). Taken together, the data suggest that frames reliably convey implicit information in addition to their explicit content, which helps explain why framing effects are so robust.

  13. Updating of visual orientation in a gravity-based reference frame.

    PubMed

    Niehof, Nynke; Tramper, Julian J; Doeller, Christian F; Medendorp, W Pieter

    2017-10-01

    The brain can use multiple reference frames to code line orientation, including head-, object-, and gravity-centered references. If these frames change orientation, their representations must be updated to keep register with actual line orientation. We tested this internal updating during head rotation in roll, exploiting the rod-and-frame effect: The illusory tilt of a vertical line surrounded by a tilted visual frame. If line orientation is stored relative to gravity, these distortions should also affect the updating process. Alternatively, if coding is head- or frame-centered, updating errors should be related to the changes in their orientation. Ten subjects were instructed to memorize the orientation of a briefly flashed line, surrounded by a tilted visual frame, then rotate their head, and subsequently judge the orientation of a second line relative to the memorized first while the frame was upright. Results showed that updating errors were mostly related to the amount of subjective distortion of gravity at both the initial and final head orientation, rather than to the amount of intervening head rotation. In some subjects, a smaller part of the updating error was also related to the change of visual frame orientation. We conclude that the brain relies primarily on a gravity-based reference to remember line orientation during head roll.

  14. Can generic knee joint models improve the measurement of osteoarthritic knee kinematics during squatting activity?

    PubMed

    Clément, Julien; Dumas, Raphaël; Hagemeister, Nicola; de Guise, Jaques A

    2017-01-01

    Knee joint kinematics derived from multi-body optimisation (MBO) still requires evaluation. The objective of this study was to corroborate model-derived kinematics of osteoarthritic knees obtained using four generic knee joint models used in musculoskeletal modelling - spherical, hinge, degree-of-freedom coupling curves and parallel mechanism - against reference knee kinematics measured by stereo-radiography. Root mean square errors ranged from 0.7° to 23.4° for knee rotations and from 0.6 to 9.0 mm for knee displacements. Model-derived knee kinematics computed from generic knee joint models was inaccurate. Future developments and experiments should improve the reliability of osteoarthritic knee models in MBO and musculoskeletal modelling.

  15. Current Trends in Satellite Laser Ranging

    NASA Technical Reports Server (NTRS)

    Pearlman, M. R.; Appleby, G. M.; Kirchner, G.; McGarry, J.; Murphy, T.; Noll, C. E.; Pavlis, E. C.; Pierron, F.

    2010-01-01

    Satellite Laser Ranging (SLR) techniques are used to accurately measure the distance from ground stations to retroreflectors on satellites and the moon. SLR is one of the fundamental techniques that define the international Terrestrial Reference Frame (iTRF), which is the basis upon which we measure many aspects of global change over space, time, and evolving technology. It is one of the fundamental techniques that define at a level of precision of a few mm the origin and scale of the ITRF. Laser Ranging provides precision orbit determination and instrument calibration/validation for satellite-borne altimeters for the better understanding of sea level change, ocean dynamics, ice budget, and terrestrial topography. Laser ranging is also a tool to study the dynamics of the Moon and fundamental constants. Many of the GNSS satellites now carry retro-reflectors for improved orbit determination, harmonization of reference frames, and in-orbit co-location and system performance validation. The GNSS Constellations will be the means of making the reference frame available to worldwide users. Data and products from these measurements support key aspects of the GEOSS 10-Year implementation Plan adopted on February 16, 2005, The ITRF has been identified as a key contribution of the JAG to GEOSS and the ILRS makes a major contribution for its development since its foundation. The ILRS delivers weekly additional realizations that are accumulated sequentially to extend the ITRF and the Earth Orientation Parameter (EOP) series with a daily resolution. Additional products are currently under development such as precise orbits of satellites, EOP with daily availability, low-degree gravitational harmonics for studies of Earth dynamics and kinematics, etc. SLR technology continues to evolve toward the next generation laser ranging systems as programmatic requirements become more stringent. Ranging accuracy is improving as higher repetition rate, narrower pulse lasers and faster detectors are implemented. Automation and pass interleaving at some stations is already expanding temporal coverage. Web-based safety keys are allowing the SLR network stations to range to optically vulnerable satellites. Some stations are experimenting with two-wavelength operation as a means of better understanding the atmospheric refraction and with very low power laser to improve eye-safety conditions. New retroreflector designs are improving the signal link and enable daylight ranging. Dramatic improvements have also been made with lunar ranging with the new APOLLO Site in New ?Mexico, USA and the upgraded lunar station "MEO" in Grasse,

  16. Comparative assessment of knee joint models used in multi-body kinematics optimisation for soft tissue artefact compensation.

    PubMed

    Richard, Vincent; Cappozzo, Aurelio; Dumas, Raphaël

    2017-09-06

    Estimating joint kinematics from skin-marker trajectories recorded using stereophotogrammetry is complicated by soft tissue artefact (STA), an inexorable source of error. One solution is to use a bone pose estimator based on multi-body kinematics optimisation (MKO) embedding joint constraints to compensate for STA. However, there is some debate over the effectiveness of this method. The present study aimed to quantitatively assess the degree of agreement between reference (i.e., artefact-free) knee joint kinematics and the same kinematics estimated using MKO embedding six different knee joint models. The following motor tasks were assessed: level walking, hopping, cutting, running, sit-to-stand, and step-up. Reference knee kinematics was taken from pin-marker or biplane fluoroscopic data acquired concurrently with skin-marker data, made available by the respective authors. For each motor task, Bland-Altman analysis revealed that the performance of MKO varied according to the joint model used, with a wide discrepancy in results across degrees of freedom (DoFs), models and motor tasks (with a bias between -10.2° and 13.2° and between -10.2mm and 7.2mm, and with a confidence interval up to ±14.8° and ±11.1mm, for rotation and displacement, respectively). It can be concluded that, while MKO might occasionally improve kinematics estimation, as implemented to date it does not represent a reliable solution to the STA issue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Thinking inside the box: Spatial frames of reference for drawing in Williams syndrome and typical development.

    PubMed

    Hudson, Kerry D; Farran, Emily K

    2017-09-01

    Successfully completing a drawing relies on the ability to accurately impose and manipulate spatial frames of reference for the object that is being drawn and for the drawing space. Typically developing (TD) children use cues such as the page boundary as a frame of reference to guide the orientation of drawn lines. Individuals with Williams syndrome (WS) typically produce incohesive drawings; this is proposed to reflect a local processing bias. Across two studies, we provide the first investigation of the effect of using a frame of reference when drawing simple lines and shapes in WS and TD groups (matched for non-verbal ability). Individuals with WS (N=17 Experiment 1; N=18 Experiment 2) and TD children matched by non-verbal ability drew single lines (Experiment One) and whole shapes (Experiment Two) within a neutral, incongruent or congruent frame. The angular deviation of the drawn line/shape, relative to the model line/shape, was measured. Both groups were sensitive to spatial frames of reference when drawing single lines and whole shapes, imposed by a frame around the drawing space. A local processing bias in WS cannot explain poor drawing performance in WS. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. Post-Newtonian Reference Frames for Advanced Theory of the Lunar Motion and a New Generation of Lunar Laser Ranging

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Kopeikin, Sergei Affiliaiton: AB(Department of Physics and Astronomy, University of Missouri, USA kopeikins@missouri.edu)

    2010-08-01

    We overview a set of post-Newtonian reference frames for a comprehensive study of the orbital dynamics and rotational motion of Moon and Earth by means of lunar laser ranging (LLR). We employ a scalar-tensor theory of gravity depending on two post-Newtonian parameters, and , and utilize the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. We assume that the solar system is isolated and space-time is asymptotically flat at infinity. The primary reference frame covers the entire space-time, has its origin at the solar-system barycenter (SSB) and spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are forming the International Celestial Reference Frame (ICRF). The secondary reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally-inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames geocentric (GRF) and selenocentric (SRF) have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description. Each local frame can be aligned with the axes of ICRF after applying the matrix of the relativistic precession. The set of one global and three local frames is introduced in order to fully decouple the relative motion of Moon with respect to Earth from the orbital motion of the Earth-Moon barycenter as well as to connect the coordinate description of the lunar motion, an observer on Earth, and a retro-reflector on Moon to directly measurable quantities such as the proper time and the round-trip laser-light distance. We solve the gravity field equations and find out the metric tensor and the scalar field in all frames which description includes the post-Newtonian multipole moments of the gravitational field of Earth and Moon. We also derive the post-Newtonian coordinate transformations between the frames and analyze the residual gauge freedom.

  19. The influence of visual and vestibular orientation cues in a clock reading task.

    PubMed

    Davidenko, Nicolas; Cheong, Yeram; Waterman, Amanda; Smith, Jacob; Anderson, Barrett; Harmon, Sarah

    2018-05-23

    We investigated how performance in the real-life perceptual task of analog clock reading is influenced by the clock's orientation with respect to egocentric, gravitational, and visual-environmental reference frames. In Experiment 1, we designed a simple clock-reading task and found that observers' reaction time to correctly tell the time depends systematically on the clock's orientation. In Experiment 2, we dissociated egocentric from environmental reference frames by having participants sit upright or lie sideways while performing the task. We found that both reference frames substantially contribute to response times in this task. In Experiment 3, we placed upright or rotated participants in an upright or rotated immersive virtual environment, which allowed us to further dissociate vestibular from visual cues to the environmental reference frame. We found evidence of environmental reference frame effects only when visual and vestibular cues were aligned. We discuss the implications for the design of remote and head-mounted displays. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry

    NASA Astrophysics Data System (ADS)

    Fey, A. L.; Gordon, D.; Jacobs, C. S.; Ma, C.; Gaume, R. A.; Arias, E. F.; Bianco, G.; Boboltz, D. A.; Böckmann, S.; Bolotin, S.; Charlot, P.; Collioud, A.; Engelhardt, G.; Gipson, J.; Gontier, A.-M.; Heinkelmann, R.; Kurdubov, S.; Lambert, S.; Lytvyn, S.; MacMillan, D. S.; Malkin, Z.; Nothnagel, A.; Ojha, R.; Skurikhina, E.; Sokolova, J.; Souchay, J.; Sovers, O. J.; Tesmer, V.; Titov, O.; Wang, G.; Zharov, V.

    2015-08-01

    We present the second realization of the International Celestial Reference Frame (ICRF2) at radio wavelengths using nearly 30 years of Very Long Baseline Interferometry observations. ICRF2 contains precise positions of 3414 compact radio astronomical objects and has a positional noise floor of ∼40 μas and a directional stability of the frame axes of ∼10 μas. A set of 295 new “defining” sources was selected on the basis of positional stability and the lack of extensive intrinsic source structure. The positional stability of these 295 defining sources and their more uniform sky distribution eliminates the two greatest weaknesses of the first realization of the International Celestial Reference Frame (ICRF1). Alignment of ICRF2 with the International Celestial Reference System was made using 138 positionally stable sources common to both ICRF2 and ICRF1. The resulting ICRF2 was adopted by the International Astronomical Union as the new fundamental celestial reference frame, replacing ICRF1 as of 2010 January 1.

  1. Development and Sizing of the JWST Integrated Science Instrument Module (ISIM) Metering Structure

    NASA Technical Reports Server (NTRS)

    Johnston, John; Kunt, Cengiz; Bartoszyk, Andrew; Hendricks, Steve; Cofie, Emmanuel

    2006-01-01

    The JWST Integrated Science Instrument Module (ISIM) includes a large metering structure (approx. 2m x 2m x 1.5m) that houses the science instruments and guider. Stringent dimensional stability and repeatability requirements combined with mass limitations led to the selection of a composite bonded frame design comprised of biased laminate tubes. Even with the superb material specific stiffness, achieving the required frequency for the given mass allocations in conjunction with severe spatial limitations imposed by the instrument complement has proven challenging. In response to the challenge, the ISIM structure team considered literally over 100 primary structure topology and kinematic mount configurations, and settled on a concept comprised of over 70 m of tubes, over 50 bonded joint assemblies, and a "split bi-pod" kinematic mount configuration. In this paper, we review the evolution of the ISIM primary structure topology and kinematic mount configuration to the current baseline concept.

  2. High-speed photogrammetry system for measuring the kinematics of insect wings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Iain D.; Lawson, Nicholas J.; Harvey, Andrew R.

    2006-06-10

    We describe and characterize an experimental system to perform shape measurements on deformable objects using high-speed close-range photogrammetry. The eventual application is to extract the kinematics of several marked points on an insect wing during tethered and hovering flight. We investigate the performance of the system with a small number of views and determine an empirical relation between the mean pixel error of the optimization routine and the position error. Velocity and acceleration are calculated by numerical differencing, and their relation to the position errors is verified. For a field of view of {approx}40mmx40 mm, a rms accuracy of 30more » {mu}m in position, 150 mm/s in velocity, and 750 m/s2 in acceleration at 5000 frames/s is achieved. This accuracy is sufficient to measure the kinematics of hoverfly flight.« less

  3. Automatic frame-centered object representation and integration revealed by iconic memory, visual priming, and backward masking

    PubMed Central

    Lin, Zhicheng; He, Sheng

    2012-01-01

    Object identities (“what”) and their spatial locations (“where”) are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects (“files”) within the reference frame (“cabinet”) are orderly coded relative to the frame. PMID:23104817

  4. Inverse kinematic-based robot control

    NASA Technical Reports Server (NTRS)

    Wolovich, W. A.; Flueckiger, K. F.

    1987-01-01

    A fundamental problem which must be resolved in virtually all non-trivial robotic operations is the well-known inverse kinematic question. More specifically, most of the tasks which robots are called upon to perform are specified in Cartesian (x,y,z) space, such as simple tracking along one or more straight line paths or following a specified surfacer with compliant force sensors and/or visual feedback. In all cases, control is actually implemented through coordinated motion of the various links which comprise the manipulator; i.e., in link space. As a consequence, the control computer of every sophisticated anthropomorphic robot must contain provisions for solving the inverse kinematic problem which, in the case of simple, non-redundant position control, involves the determination of the first three link angles, theta sub 1, theta sub 2, and theta sub 3, which produce a desired wrist origin position P sub xw, P sub yw, and P sub zw at the end of link 3 relative to some fixed base frame. Researchers outline a new inverse kinematic solution and demonstrate its potential via some recent computer simulations. They also compare it to current inverse kinematic methods and outline some of the remaining problems which will be addressed in order to render it fully operational. Also discussed are a number of practical consequences of this technique beyond its obvious use in solving the inverse kinematic question.

  5. Automatic detection of lift-off and touch-down of a pick-up walker using 3D kinematics.

    PubMed

    Grootveld, L; Thies, S B; Ogden, D; Howard, D; Kenney, L P J

    2014-02-01

    Walking aids have been associated with falls and it is believed that incorrect use limits their usefulness. Measures are therefore needed that characterize their stable use and the classification of key events in walking aid movement is the first step in their development. This study presents an automated algorithm for detection of lift-off (LO) and touch-down (TD) events of a pick-up walker. For algorithm design and initial testing, a single user performed trials for which the four individual walker feet lifted off the ground and touched down again in various sequences, and for different amounts of frame loading (Dataset_1). For further validation, ten healthy young subjects walked with the pick-up walker on flat ground (Dataset_2a) and on a narrow beam (Dataset_2b), to challenge balance. One 88-year-old walking frame user was also assessed. Kinematic data were collected with a 3D optoelectronic camera system. The algorithm detected over 93% of events (Dataset_1), and 95% and 92% in Dataset_2a and b, respectively. Of the various LO/TD sequences, those associated with natural progression resulted in up to 100% correctly identified events. For the 88-year-old walking frame user, 96% of LO events and 93% of TD events were detected, demonstrating the potential of the approach. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. An adaptive inverse kinematics algorithm for robot manipulators

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Glass, K.; Seraji, H.

    1990-01-01

    An adaptive algorithm for solving the inverse kinematics problem for robot manipulators is presented. The algorithm is derived using model reference adaptive control (MRAC) theory and is computationally efficient for online applications. The scheme requires no a priori knowledge of the kinematics of the robot if Cartesian end-effector sensing is available, and it requires knowledge of only the forward kinematics if joint position sensing is used. Computer simulation results are given for the redundant seven-DOF robotics research arm, demonstrating that the proposed algorithm yields accurate joint angle trajectories for a given end-effector position/orientation trajectory.

  7. Design and Principles Enabling the Space Reference FOM

    NASA Technical Reports Server (NTRS)

    Moeller, Bjoern; Dexter, Dan; Madden, Michael; Crues, Edwin Z.; Garro, Alfredo; Skuratovskiy, Anton

    2017-01-01

    A first complete draft of the Simulation Interoperability Standards Organization (SISO) Space Reference Federation Object Model (FOM) has now been produced. This paper provides some insights into its capabilities and discusses the opportunity for reuse in other domains. The focus of this first version of the standard is execution control, time management and coordinate systems, well-known reference frames, as well as some basic support for physical entities. The biggest part of the execution control is the coordinated start-up process. This process contains a number of steps, including checking of required federates, handling of early versus late joiners, sharing of federation wide configuration data and multi-phase initialization. An additional part of Execution Control is the coordinated and synchronized transition between Run mode, Freeze mode and Shutdown. For time management, several time lines are defined, including real-time, scenario time, High Level Architecture (HLA) logical time and physical time. A strategy for mixing simulations that use different time steps is introduced, as well as an approach for finding common boundaries for fully synchronized freeze. For describing spatial information, a mechanism with a set of reference frames is specified. Each reference frame has a position and orientation related to a parent reference frame. This makes it possible for federates to perform calculations in reference frames that are convenient to them. An operation on the Moon can be performed using lunar coordinates whereas an operation on Earth can be performed using Earth coordinates. At the same time, coordinates in one reference frame have an unambiguous relationship to a coordinate in another reference frame. While the Space Reference FOM is originally being developed for Space operations, the authors believe that many parts of it can be reused for any simulation that has a focus on physical processes with one or more coordinate systems, and require high fidelity and repeatability.

  8. GPS-Only Terrestrial Reference Frame Based on a Global Reprocessing

    NASA Astrophysics Data System (ADS)

    Dietrich, R.; Rothacher, M.; Ruelke, A.; Fritsche, M.; Steigenberger, P.

    2007-12-01

    The realization of the International Terrestrial Reference System (ITRS) with highest accuracy and stability is fundamental and crucial for applications in geodesy, geodynamics, geophysics and global change. In a joint effort TU Dresden and TU Munich/GFZ Potsdam reprocessed a global GPS network of more than 200 stations. As a contribution to an ITRS realization daily normal equations from 1994 to 2005 were rigorously combined in order to determine a global GPS-only reference frame (PDR05/Potsdam-Dresden-Reprocessing Reference Frame). We present a realization of the global terrestrial reference system which follows the center of mass approach in consideration of the load-induced deformation of the Earth's crust due to the redistribution of surface masses. The stability of our reference frame will be evaluated based on the obtained long-term trends of station coordinates, the load-induced deformation estimates and the homogeneous time series of station positions. We will compare our solution with other recent terrestrial reference system realizations and give some conclusions for future realizations of the ITRS.

  9. Reference frames, gauge transformations and gravitomagnetism in the post-Newtonian theory of the lunar motion

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Kopeikin, Sergei

    2010-01-01

    We construct a set of reference frames for description of the orbital and rotational motion of the Moon. We use a scalar-tensor theory of gravity depending on two parameters of the parametrized post-Newtonian (PPN) formalism and utilize the concepts of the relativistic resolutions on reference frames adopted by the International Astronomical Union in 2000. We assume that the solar system is isolated and space-time is asymptotically flat. The primary reference frame has the origin at the solar-system barycenter (SSB) and spatial axes are going to infinity. The SSB frame is not rotating with respect to distant quasars. The secondary reference frame has the origin at the Earth-Moon barycenter (EMB). The EMB frame is local with its spatial axes spreading out to the orbits of Venus and Mars and not rotating dynamically in the sense that both the Coriolis and centripetal forces acting on a free-falling test particle, moving with respect to the EMB frame, are excluded. Two other local frames, the geocentric (GRF) and the selenocentric (SRF) frames, have the origin at the center of mass of the Earth and Moon respectively. They are both introduced in order to connect the coordinate description of the lunar motion, observer on the Earth, and a retro-reflector on the Moon to the observable quantities which are the proper time and the laser-ranging distance. We solve the gravity field equations and find the metric tensor and the scalar field in all frames. We also derive the post-Newtonian coordinate transformations between the frames and analyze the residual gauge freedom of the solutions of the field equations. We discuss the gravitomagnetic effects in the barycentric equations of the motion of the Moon and argue that they are beyond the current accuracy of lunar laser ranging (LLR) observations.

  10. Determination of the extragalactic-planetary frame tie from joint analysis of radio interferometric and lunar laser ranging measurements

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Charlot, P.; Finger, M. H.; Williams, J. G.; Sovers, O. J.; Newhall, XX; Standish, E. M., Jr.

    1994-01-01

    Very Long Baseline Interferometry (VLBI) observations of extragalactic radio sources provide the basis for defining an accurate non-rotating reference frame in terms of angular positions of the sources. Measurements of the distance from the Earth to the Moon and to the inner planets provide the basis for defining an inertial planetary ephemeris reference frame. The relative orientation, or frame tie, between these two reference frames is of interest for combining Earth orientation measurements, for comparing Earth orientation results with theories referred to the mean equator and equinox, and for determining the positions of the planets with respect to the extragalactic reference frame. This work presents an indirect determination of the extragalactic-planetary frame tie from a combined reduction of VLBI and Lunar Laser Ranging (LLR) observations. For this determination, data acquired by LLR tracking stations since 1969 have been analyzed and combined with 14 years of VLBI data acquired by NASA's Deep Space Network since 1978. The frame tie derived from this joint analysis, with an accuracy of 0.003 sec, is the most accurate determination obtained so far. This result, combined with a determination of the mean ecliptic (defined in the rotating sense), shows that the mean equinox of epoch J2000 is offset from the x-axis of the extragalactic frame adopted by the International Earth Rotation Service for astrometric and geodetic applications by 0.078 sec +/- 0.010 sec along the y-direction and y 0.019 sec +/- 0.001 sec. along the z-direction.

  11. Numerical algorithm for rigid body position estimation using the quaternion approach

    NASA Astrophysics Data System (ADS)

    Zigic, Miodrag; Grahovac, Nenad

    2017-11-01

    This paper deals with rigid body attitude estimation on the basis of the data obtained from an inertial measurement unit mounted on the body. The aim of this work is to present the numerical algorithm, which can be easily applied to the wide class of problems concerning rigid body positioning, arising in aerospace and marine engineering, or in increasingly popular robotic systems and unmanned aerial vehicles. Following the considerations of kinematics of rigid bodies, the relations between accelerations of different points of the body are given. A rotation matrix is formed using the quaternion approach to avoid singularities. We present numerical procedures for determination of the absolute accelerations of the center of mass and of an arbitrary point of the body expressed in the inertial reference frame, as well as its attitude. An application of the algorithm to the example of a heavy symmetrical gyroscope is presented, where input data for the numerical procedure are obtained from the solution of differential equations of motion, instead of using sensor measurements.

  12. A discrete geometric approach for simulating the dynamics of thin viscous threads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audoly, B., E-mail: audoly@lmm.jussieu.fr; Clauvelin, N.; Brun, P.-T.

    We present a numerical model for the dynamics of thin viscous threads based on a discrete, Lagrangian formulation of the smooth equations. The model makes use of a condensed set of coordinates, called the centerline/spin representation: the kinematic constraints linking the centerline's tangent to the orientation of the material frame is used to eliminate two out of three degrees of freedom associated with rotations. Based on a description of twist inspired from discrete differential geometry and from variational principles, we build a full-fledged discrete viscous thread model, which includes in particular a discrete representation of the internal viscous stress. Consistencymore » of the discrete model with the classical, smooth equations for thin threads is established formally. Our numerical method is validated against reference solutions for steady coiling. The method makes it possible to simulate the unsteady behavior of thin viscous threads in a robust and efficient way, including the combined effects of inertia, stretching, bending, twisting, large rotations and surface tension.« less

  13. Measurement of inclusive jet production and nuclear modifications in pPb collisions at √{s_{_NN}} =5.02 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fang, W.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Delaere, C.; Delcourt, M.; Favart, D.; Forthomme, L.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Leggat, D.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Abdelalim, A. A.; Awad, A.; Mahrous, A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Filipovic, N.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Borras, K.; Burgmeier, A.; Campbell, A.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Scharf, C.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Jain, Sa.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Da Cruz E Silva, C. Beirão; Di Francesco, A.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, l.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Chadeeva, M.; Chistov, R.; Danilov, M.; Rusinov, V.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Ramos, J. P. Fernández; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Yzquierdo, A. Pérez-Calero; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; De Castro Manzano, P.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Hall, G.; Iles, G.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Alimena, J.; Benelli, G.; Berry, E.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; De La Barca Sanchez, M. Calderon; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Negrete, M. Olmedo; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lewis, J.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, l. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Bruner, C.; Kenny, R. P.; Majumder, D.; Malek, M.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Kumar, A.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Ferencek, D.; Gershtein, Y.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Woods, N.; CMS Collaboration

    2016-07-01

    Inclusive jet production in pPb collisions at a nucleon-nucleon (NN) center-of-mass energy of √{s_{_NN}} =5.02 TeV is studied with the CMS detector at the LHC. A data sample corresponding to an integrated luminosity of 30.1 nb^{-1} is analyzed. The jet transverse momentum spectra are studied in seven pseudorapidity intervals covering the range -2.0<η _{CM}< 1.5 in the NN center-of-mass frame. The jet production yields at forward and backward pseudorapidity are compared and no significant asymmetry about η _{CM} = 0 is observed in the measured kinematic range. The measurements in the pPb system are compared to reference jet spectra obtained by extrapolation from previous measurements in pp collisions at √{s}=7 TeV . In all pseudorapidity ranges, nuclear modifications in inclusive jet production are found to be small, as predicted by next-to-leading order perturbative QCD calculations that incorporate nuclear effects in the parton distribution functions.

  14. Quasars in the Galactic Anti-Center Area from LAMOST DR3

    NASA Astrophysics Data System (ADS)

    Huo, Zhi-Ying; Liu, Xiao-Wei; Shi, Jian-Rong; Xiang, Mao-Sheng; Huang, Yang; Yuan, Hai-Bo; Zhang, Jian-Nan; Zhang, Wei; Wang, Jian-Ling; Wu, Yu-Zhong; Cao, Zi-Huang; Zhang, Yong; Hou, Yong-Hui; Wang, Yue-Fei

    2017-03-01

    We present a sample of quasars discovered in an area near the Galactic Anti-Center covering 150^\\circ ≤ l≤ 210^\\circ and | b| ≤ 30^\\circ , based on LAMOST Data Release 3 (DR3). This sample contains 151 spectroscopically confirmed quasars. Among them 80 are newly discovered with LAMOST. All these quasars are very bright, with i magnitudes peaking around 17.5 mag. All the new quasars were discovered serendipitously from objects that were originally targeted with LAMOST as stars having bluer colors, except for a few candidates targeted as variable, young stellar objects. This bright quasar sample at low Galactic latitudes will help fill the gap in the spatial distribution of known quasars near the Galactic disk that are used to construct an astrometric reference frame for the purpose of accurate proper motion measurements that can be applied to, for example, Gaia. They are also excellent tracers to probe the kinematics and chemistry of the interstellar medium in the Milky Way disk and halo via absorption line spectroscopy.

  15. Satellite Ephemeris Correction via Remote Site Observation for Star Tracker Navigation Performance Improvement

    DTIC Science & Technology

    2016-03-01

    squared RMS root mean squared GCRF Geocentric Celestial Reference Frame xi List of Figures Figure Page 1 Geometry of single observation...RA and DEC in the celestial sphere. The Geocentric Celestial Reference Frame (GCRF) is the standard geocentric frame that measures the RA east in the...Figure 2. Right ascension (α) and declination (δ) in the celestial sphere[6] 7 made between geocentric and topocentric angles. Geocentric is referred to

  16. Establishing a celestial VLBI reference frame. 1: Searching for VLBI sources

    NASA Technical Reports Server (NTRS)

    Preston, R. A.; Morabito, D. D.; Williams, J. G.; Slade, M. A.; Harris, A. W.; Finley, S. G.; Skjerve, L. J.; Tanida, L.; Spitzmesser, D. J.; Johnson, B.

    1978-01-01

    The Deep Space Network is currently engaged in establishing a new high-accuracy VLBI celestial reference frame. The present status of the task of finding suitable celestial radio sources for constructing this reference frame is discussed. To date, 564 VLBI sources were detected, with 166 of these lying within 10 deg of the ecliptic plane. The variation of the sky distribution of these sources with source strength is examined.

  17. Sampling factors influencing accuracy of sperm kinematic analysis.

    PubMed

    Owen, D H; Katz, D F

    1993-01-01

    Sampling conditions that influence the accuracy of experimental measurement of sperm head kinematics were studied by computer simulation methods. Several archetypal sperm trajectories were studied. First, mathematical models of typical flagellar beats were input to hydrodynamic equations of sperm motion. The instantaneous swimming velocities of such sperm were computed over sequences of flagellar beat cycles, from which the resulting trajectories were determined. In a second, idealized approach, direct mathematical models of trajectories were utilized, based upon similarities to the previous hydrodynamic constructs. In general, it was found that analyses of sampling factors produced similar results for the hydrodynamic and idealized trajectories. A number of experimental sampling factors were studied, including the number of sperm head positions measured per flagellar beat, and the time interval over which these measurements are taken. It was found that when one flagellar beat is sampled, values of amplitude of lateral head displacement (ALH) and linearity (LIN) approached their actual values when five or more sample points per beat were taken. Mean angular displacement (MAD) values, however, remained sensitive to sampling rate even when large sampling rates were used. Values of MAD were also much more sensitive to the initial starting point of the sampling procedure than were ALH or LIN. On the basis of these analyses of measurement accuracy for individual sperm, simulations were then performed of cumulative effects when studying entire populations of motile cells. It was found that substantial (double digit) errors occurred in the mean values of curvilinear velocity (VCL), LIN, and MAD under the conditions of 30 video frames per second and 0.5 seconds of analysis time. Increasing the analysis interval to 1 second did not appreciably improve the results. However, increasing the analysis rate to 60 frames per second significantly reduced the errors. These findings thus suggest that computer-aided sperm analysis (CASA) application at 60 frames per second will significantly improve the accuracy of kinematic analysis in most applications to human and other mammalian sperm.

  18. A new GPS velocity field in the south-western Balkans: insights for continental dynamics

    NASA Astrophysics Data System (ADS)

    D'Agostino, N.; Avallone, A.; Duni, L.; Ganas, A.; Georgiev, I.; Jouanne, F.; Koci, R.; Kuka, N.; Metois, M.

    2017-12-01

    The Balkans peninsula is an area of active distributed deformation located at the southern boundary of the Eurasian plate. Relatively low strain rates and logistical reasons have so far limited the characterization and definition of the active tectonics and crustal kinematics. The increasing number of GNSS stations belonging to national networks deployed for scientific and cadastral purposes, now provides the opportunity to improve the knowledge of the crustal kinematics in this area and to define a cross-national velocity field that illuminates the active tectonic deformation. In this work we homogeneously processed the data from the south western Balkans and neighbouring regions using available rinex files from scientific and cadastral networks (ALBPOS, EUREF, HemusNET, ITALPOS, KOPOS, MAKPOS, METRICA, NETGEO, RING, TGREF). In order to analyze and interpret station velocities relative to the Eurasia plate and to reduce the common mode signal, we updated the Eurasian terrestrial reference frame described in Métois et al. 2015. Starting from this dataset we present a new GPS velocity field covering the south western part of the Balkan Peninsula. Using this new velocity field, we derive the strain rate tensor to analyze the regional style of the deformation. Our results (1) improve the picture of the general southward flow of the crust characterizing the south western Balkans behind the contractional belt at the boundary with Adriatic and (2) provide new key elements for the understanding of continental dynamics in this part of the Eurasian plate boundary.

  19. New constraints on the active tectonic deformation of the Aegean

    USGS Publications Warehouse

    Nyst, M.; Thatcher, W.

    2004-01-01

    Site velocities from six separate Global Positioning System (GPS) networks comprising 374 stations have been referred to a single common Eurasia-fixed reference frame to map the velocity distribution over the entire Aegean. We use the GPS velocity field to identify deforming regions, rigid elements, and potential microplate boundaries, and build upon previous work by others to initially specify rigid elements in central Greece, the South Aegean, Anatolia, and the Sea of Marmara. We apply an iterative approach, tentatively defining microplate boundaries, determining best fit rigid rotations, examining misfit patterns, and revising the boundaries to achieve a better match between model and data. Short-term seismic cycle effects are minor contaminants of the data that we remove when necessary to isolate the long-term kinematics. We find that present day Aegean deformation is due to the relative motions of four microplates and straining in several isolated zones internal to them. The RMS misfit of model to data is about 2-sigma, very good when compared to the typical match between coseismic fault models and GPS data. The simplicity of the microplate description of the deformation and its good fit to the GPS data are surprising and were not anticipated by previous work, which had suggested either many rigid elements or broad deforming zones that comprise much of the Aegean region. The isolated deforming zones are also unexpected and cannot be explained by the kinematics of the microplate motions. Strain rates within internally deforming zones are extensional and range from 30 to 50 nanostrain/year (nstrain/year, 10-9/year), 1 to 2 orders of magnitude lower than rates observed across the major microplate boundaries. Lower strain rates may exist elsewhere withi the microplates but are only resolved in Anatolia, where extension of 13 ?? 4 nstrain/ year is required by the data. Our results suggest that despite the detailed complexity of active continental deformation revealed by seismicity, active faulting, fault geomorphology, and earthquake fault plane solutions, continental tectonics, at least in the Aegean, is to first order very similar to global plate tectonics and obeys the same simple kinematic rules. Although the widespread distribution of Aegean seismicity and active faulting might suggest a rather spatially homogeneous seismic hazard, the focusing of deformation near microplate boundaries implies the highest hazard is comparably localized.

  20. Spatial vision within egocentric and exocentric frames of reference

    NASA Technical Reports Server (NTRS)

    Howard, Ian P.

    1989-01-01

    The extent to which perceptual judgements within egocentric and exocentric frames of reference are subject to illusory disturbances and long term modifications is discussed. It is argued that well known spatial illusions, such as the oculogyral illusion and induced visual motion have usually been discussed without proper attention being paid to the frame of reference within which they occur, and that this has led to the construction of inadequate theories and inappropriate procedures for testing them.

  1. Reference frames in virtual spatial navigation are viewpoint dependent

    PubMed Central

    Török, Ágoston; Nguyen, T. Peter; Kolozsvári, Orsolya; Buchanan, Robert J.; Nadasdy, Zoltan

    2014-01-01

    Spatial navigation in the mammalian brain relies on a cognitive map of the environment. Such cognitive maps enable us, for example, to take the optimal route from a given location to a known target. The formation of these maps is naturally influenced by our perception of the environment, meaning it is dependent on factors such as our viewpoint and choice of reference frame. Yet, it is unknown how these factors influence the construction of cognitive maps. Here, we evaluated how various combinations of viewpoints and reference frames affect subjects' performance when they navigated in a bounded virtual environment without landmarks. We measured both their path length and time efficiency and found that (1) ground perspective was associated with egocentric frame of reference, (2) aerial perspective was associated with allocentric frame of reference, (3) there was no appreciable performance difference between first and third person egocentric viewing positions and (4) while none of these effects were dependent on gender, males tended to perform better in general. Our study provides evidence that there are inherent associations between visual perspectives and cognitive reference frames. This result has implications about the mechanisms of path integration in the human brain and may also inspire designs of virtual reality applications. Lastly, we demonstrated the effective use of a tablet PC and spatial navigation tasks for studying spatial and cognitive aspects of human memory. PMID:25249956

  2. Reference frames in virtual spatial navigation are viewpoint dependent.

    PubMed

    Török, Agoston; Nguyen, T Peter; Kolozsvári, Orsolya; Buchanan, Robert J; Nadasdy, Zoltan

    2014-01-01

    Spatial navigation in the mammalian brain relies on a cognitive map of the environment. Such cognitive maps enable us, for example, to take the optimal route from a given location to a known target. The formation of these maps is naturally influenced by our perception of the environment, meaning it is dependent on factors such as our viewpoint and choice of reference frame. Yet, it is unknown how these factors influence the construction of cognitive maps. Here, we evaluated how various combinations of viewpoints and reference frames affect subjects' performance when they navigated in a bounded virtual environment without landmarks. We measured both their path length and time efficiency and found that (1) ground perspective was associated with egocentric frame of reference, (2) aerial perspective was associated with allocentric frame of reference, (3) there was no appreciable performance difference between first and third person egocentric viewing positions and (4) while none of these effects were dependent on gender, males tended to perform better in general. Our study provides evidence that there are inherent associations between visual perspectives and cognitive reference frames. This result has implications about the mechanisms of path integration in the human brain and may also inspire designs of virtual reality applications. Lastly, we demonstrated the effective use of a tablet PC and spatial navigation tasks for studying spatial and cognitive aspects of human memory.

  3. Radio-planetary from tie from Phobos-2 VLBI data

    NASA Technical Reports Server (NTRS)

    Hildebrand, C. E.; Iijima, B. A.; Kroger, P. M.; Folkner, W. M.; Edwards, C. D.

    1994-01-01

    In an ongoing effort to improve the knowledge of the relative orientation (the 'frame tie') of the planetary ephemeris reference frame used in deep navigation and a second reference frame that is defined by the coordinates of a set of extragalactic radio sources, VLBI observations of the Soviet Phobos-2 spacecraft and nearby (in angle) radio sources were obtained at two epochs in 1989, shortly after the spacecraft entered orbit about Mars. The frame tie is an important systematic error source affecting both interplanetary navigation and the process of improving the theory of the Earth's orientation. The data from a single Phobos-2 VLBI session measure one component of the direction vector from Earth to Mars in the frame of the extragalactic radio sources (the 'radio frame'). The radio frame has been shown to be stable and internally consistent with an accuracy of 5 nrad. The planetary ephemeris reference frame has an internal consistency of approximately 15 nrad. The planetary and radio source reference frames were aligned prior to 1989 and measurements of occulations of the radio source 3C273 by the Moon. The Phobos-2 VLBI measurements provide improvement in the accuracy of two of the three angles describing a general rotation between the planetary and radio reference frames. A complete set of measurements is not available because data acquisition was terminated prematurely by loss of spacecraft. The analysis of the two Phobos-2 VLBI data sets indicates that, in the directions of the two rotation components determined by these data, the JPL planetary ephemeris DE200 is aligned with the radio frame as adopted by the International Earth Rotation Service within an accuracy of 20-40 nrad, depending on direction. The limiting errors in the solutions for these offsets are spacecraft trajectory (20 nrad), instrumental biases (19 nrad), and dependence of quasar coordinates on observing frequency (24 nrad).

  4. Light escape cones in local reference frames of Kerr-de Sitter black hole spacetimes and related black hole shadows

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdeněk; Charbulák, Daniel; Schee, Jan

    2018-03-01

    We construct the light escape cones of isotropic spot sources of radiation residing in special classes of reference frames in the Kerr-de Sitter (KdS) black hole spacetimes, namely in the fundamental class of `non-geodesic' locally non-rotating reference frames (LNRFs), and two classes of `geodesic' frames, the radial geodesic frames (RGFs), both falling and escaping, and the frames related to the circular geodesic orbits (CGFs). We compare the cones constructed in a given position for the LNRFs, RGFs, and CGFs. We have shown that the photons locally counter-rotating relative to LNRFs with positive impact parameter and negative covariant energy are confined to the ergosphere region. Finally, we demonstrate that the light escaping cones govern the shadows of black holes located in front of a radiating screen, as seen by the observers in the considered frames. For shadows related to distant static observers the LNRFs are relevant.

  5. Celestial Reference Frames at Multiple Radio Wavelengths

    NASA Technical Reports Server (NTRS)

    Jacobs, Christopher S.

    2012-01-01

    In 1997 the IAU adopted the International Celestial Reference Frame (ICRF) built from S/X VLBI data. In response to IAU resolutions encouraging the extension of the ICRF to additional frequency bands, VLBI frames have been made at 24, 32, and 43 gigahertz. Meanwhile, the 8.4 gigahertz work has been greatly improved with the 2009 release of the ICRF-2. This paper discusses the motivations for extending the ICRF to these higher radio bands. Results to date will be summarized including evidence that the high frequency frames are rapidly approaching the accuracy of the 8.4 gigahertz ICRF-2. We discuss current limiting errors and prospects for the future accuracy of radio reference frames. We note that comparison of multiple radio frames is characterizing the frequency dependent systematic noise floor from extended source morphology and core shift. Finally, given Gaia's potential for high accuracy optical astrometry, we have simulated the precision of a radio-optical frame tie to be approximately10-15 microarcseconds ((1-sigma) (1-standard deviation), per component).

  6. Location memory biases reveal the challenges of coordinating visual and kinesthetic reference frames

    PubMed Central

    Simmering, Vanessa R.; Peterson, Clayton; Darling, Warren; Spencer, John P.

    2008-01-01

    Five experiments explored the influence of visual and kinesthetic/proprioceptive reference frames on location memory. Experiments 1 and 2 compared visual and kinesthetic reference frames in a memory task using visually-specified locations and a visually-guided response. When the environment was visible, results replicated previous findings of biases away from the midline symmetry axis of the task space, with stability for targets aligned with this axis. When the environment was not visible, results showed some evidence of bias away from a kinesthetically-specified midline (trunk anterior–posterior [a–p] axis), but there was little evidence of stability when targets were aligned with body midline. This lack of stability may reflect the challenges of coordinating visual and kinesthetic information in the absence of an environmental reference frame. Thus, Experiments 3–5 examined kinesthetic guidance of hand movement to kinesthetically-defined targets. Performance in these experiments was generally accurate with no evidence of consistent biases away from the trunk a–p axis. We discuss these results in the context of the challenges of coordinating reference frames within versus between multiple sensori-motor systems. PMID:17703284

  7. Linking HIPPARCOS to the Extragalactic Reference Frame Part 5 OF 6, Newc, Cycle 2,CONTINUATION of 2565-HIGH

    NASA Astrophysics Data System (ADS)

    Hemenway, Paul

    1991-07-01

    Determination of a non-rotating Reference Frame is crucial to progress in many areas, including: Galactic motions, local (Oort's A and B) and global (R0) parameters derived from them, solar system motion discrepancies (Planet X); and in conjunction with the VLBI radio reference frame, the registration of radio and optical images at an accuracy well below the resolution limit of HST images (0.06 arcsec). The goal of the Program is to tie the HIPPARCOS and Extra- galactic Reference Frames together at the 0.0005 arcsec and 0.0005 arcsec/year level. The HST data will allow a deter- mination of the brightness distribution in the stellar and extragalactic objects observed and time dependent changes therein at the 0.001 arcsec/year level. The Program requires targets distributed over the whole sky to define a rigid Reference Frame. GTO observations will provide initial first epoch data and preliminary proper motions. The observations will consist of relative positions of Extra- galactic objects (EGOs) and HIPPARCOS stars, measured with the FGSs.

  8. Tropical cyclogenesis in a tropical wave critical layer: easterly waves

    NASA Astrophysics Data System (ADS)

    Dunkerton, T. J.; Montgomery, M. T.; Wang, Z.

    2009-08-01

    The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, is identified herein as the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The recirculating Kelvin cat's eye within the critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development is given by the intersection of the wave's critical latitude and trough axis at the center of the cat's eye, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally the associated Lagrangian motions, one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. In this co-moving frame, streamlines are approximately equivalent to particle trajectories. The closed circulation is quasi-stationary, and a dividing streamline separates air within the cat's eye from air outside. The critical layer equatorward of the easterly jet axis is important to tropical cyclogenesis because its cat's eye provides (i) a region of cyclonic vorticity and weak deformation by the resolved flow, (ii) containment of moisture entrained by the developing gyre and/or lofted by deep convection therein, (iii) confinement of mesoscale vortex aggregation, (iv) a predominantly convective type of heating profile, and (v) maintenance or enhancement of the parent wave until the vortex becomes a self-sustaining entity and emerges from the wave as a tropical depression. The entire sequence is likened to the development of a marsupial infant in its mother's pouch. These ideas are formulated in three new hypotheses describing the flow kinematics and dynamics, moist thermodynamics and wave/vortex interactions comprising the "marsupial paradigm". A survey of 55 named tropical storms in 1998-2001 reveals that actual critical layers sometimes resemble the ideal east-west train of cat's eyes, but are usually less regular, with one or more recirculation regions in the co-moving frame. It is shown that the kinematics of isolated proto-vortices carried by the wave also can be visualized in a frame of reference translating at or near the phase speed of the parent wave. The proper translation speeds for wave and vortex may vary with height owing to vertical shear and wave-vortex interaction. Some implications for entrainment/containment of vorticity and moisture in the cat's eye are discussed from this perspective, based on the observational survey.

  9. Separability and Entanglement in the Hilbert Space Reference Frames Related Through the Generic Unitary Transform for Four Level System

    NASA Astrophysics Data System (ADS)

    Man'ko, V. I.; Markovich, L. A.

    2018-02-01

    Quantum correlations in the state of four-level atom are investigated by using generic unitary transforms of the classical (diagonal) density matrix. Partial cases of pure state, X-state, Werner state are studied in details. The geometrical meaning of unitary Hilbert reference-frame rotations generating entanglement in the initially separable state is discussed. Characteristics of the entanglement in terms of concurrence, entropy and negativity are obtained as functions of the unitary matrix rotating the reference frame.

  10. Superenergy flux of Einstein-Rosen waves

    NASA Astrophysics Data System (ADS)

    Domínguez, P. J.; Gallegos, A.; Macías-Díaz, J. E.; Vargas-Rodríguez, H.

    In this work, we consider the propagation speed of the superenergy flux associated to the Einstein-Rosen cylindrical waves propagating in vacuum and over the background of the gravitational field of an infinitely long mass line distribution. The velocity of the flux is determined considering the reference frame in which the super-Poynting vector vanishes. This reference frame is then considered as comoving with the flux. The explicit expressions for the velocities are given with respect to a reference frame at rest with the symmetry axis.

  11. GENERAL RELATIVITY DERIVATION OF BEAM REST-FRAME HAMILTONIAN.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WEI,J.

    2001-06-18

    Analysis of particle interaction in the laboratory frame of storage rings is often complicated by the fact that particle motion is relativistic, and that reference particle trajectory is curved. Rest frame of the reference particle is a convenient coordinate system to work with, within which particle motion is non-relativistic. We have derived the equations of motion in the beam rest frame from the general relativity formalism, and have successfully applied them to the analysis of crystalline beams [1].

  12. Assessment of second- and third-order ionospheric effects on regional networks: case study in China with longer CMONOC GPS coordinate time series

    NASA Astrophysics Data System (ADS)

    Deng, Liansheng; Jiang, Weiping; Li, Zhao; Chen, Hua; Wang, Kaihua; Ma, Yifang

    2017-02-01

    Higher-order ionospheric (HOI) delays are one of the principal technique-specific error sources in precise global positioning system analysis and have been proposed to become a standard part of precise GPS data processing. In this research, we apply HOI delay corrections to the Crustal Movement Observation Network of China's (CMONOC) data processing (from January 2000 to December 2013) and furnish quantitative results for the effects of HOI on CMONOC coordinate time series. The results for both a regional reference frame and global reference frame are analyzed and compared to clarify the HOI effects on the CMONOC network. We find that HOI corrections can effectively reduce the semi-annual signals in the northern and vertical components. For sites with lower semi-annual amplitudes, the average decrease in magnitude can reach 30 and 10 % for the northern and vertical components, respectively. The noise amplitudes with HOI corrections and those without HOI corrections are not significantly different. Generally, the HOI effects on CMONOC networks in a global reference frame are less obvious than the results in the regional reference frame, probably because the HOI-induced errors are smaller in comparison to the higher noise levels seen when using a global reference frame. Furthermore, we investigate the combined contributions of environmental loading and HOI effects on the CMONOC stations. The largest loading effects on the vertical displacement are found in the mid- to high-latitude areas. The weighted root mean square differences between the corrected and original weekly GPS height time series of the loading model indicate that the mass loading adequately reduced the scatter on the CMONOC height time series, whereas the results in the global reference frame showed better agreements between the GPS coordinate time series and the environmental loading. When combining the effects of environmental loading and HOI corrections, the results with the HOI corrections reduced the scatter on the observed GPS height coordinates better than the height when estimated without HOI corrections, and the combined solutions in the regional reference frame indicate more preferred improvements. Therefore, regional reference frames are recommended to investigate the HOI effects on regional networks.

  13. Kinematic design considerations for minimally invasive surgical robots: an overview.

    PubMed

    Kuo, Chin-Hsing; Dai, Jian S; Dasgupta, Prokar

    2012-06-01

    Kinematic design is a predominant phase in the design of robotic manipulators for minimally invasive surgery (MIS). However, an extensive overview of the kinematic design issues for MIS robots is not yet available to both mechanisms and robotics communities. Hundreds of archival reports and articles on robotic systems for MIS are reviewed and studied. In particular, the kinematic design considerations and mechanism development described in the literature for existing robots are focused on. The general kinematic design goals, design requirements, and design preferences for MIS robots are defined. An MIS-specialized mechanism, namely the remote center-of-motion (RCM) mechanism, is revisited and studied. Accordingly, based on the RCM mechanism types, a classification for MIS robots is provided. A comparison between eight different RCM types is given. Finally, several open challenges for the kinematic design of MIS robotic manipulators are discussed. This work provides a detailed survey of the kinematic design of MIS robots, addresses the research opportunity in MIS robots for kinematicians, and clarifies the kinematic point of view to MIS robots as a reference for the medical community. Copyright © 2012 John Wiley & Sons, Ltd.

  14. 3D/2D image registration method for joint motion analysis using low-quality images from mini C-arm machines

    NASA Astrophysics Data System (ADS)

    Ghafurian, Soheil; Hacihaliloglu, Ilker; Metaxas, Dimitris N.; Tan, Virak; Li, Kang

    2017-03-01

    A 3D kinematic measurement of joint movement is crucial for orthopedic surgery assessment and diagnosis. This is usually obtained through a frame-by-frame registration of the 3D bone volume to a fluoroscopy video of the joint movement. The high cost of a high-quality fluoroscopy imaging system has hindered the access of many labs to this application. This is while the more affordable and low-dosage version, the mini C-arm, is not commonly used for this application due to low image quality. In this paper, we introduce a novel method for kinematic analysis of joint movement using the mini C-arm. In this method the bone of interest is recovered and isolated from the rest of the image using a non-rigid registration of an atlas to each frame. The 3D/2D registration is then performed using the weighted histogram of image gradients as an image feature. In our experiments, the registration error was 0.89 mm and 2.36° for human C2 vertebra. While the precision is still lacking behind a high quality fluoroscopy machine, it is a good starting point facilitating the use of mini C-arms for motion analysis making this application available to lower-budget environments. Moreover, the registration was highly resistant to the initial distance from the true registration, converging to the answer from anywhere within +/-90° of it.

  15. Hierarchical motion organization in random dot configurations

    NASA Technical Reports Server (NTRS)

    Bertamini, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    2000-01-01

    Motion organization has 2 aspects: the extraction of a (moving) frame of reference and the hierarchical organization of moving elements within the reference frame. Using a discrimination of relative motions task, the authors found large differences between different types of motion (translation, divergence, and rotation) in the degree to which each can serve as a moving frame of reference. Translation and divergence are superior to rotation. There are, however, situations in which rotation can serve as a reference frame. This is due to the presence of a second factor, structural invariants (SIs). SIs are spatial relationships persisting among the elements within a configuration such as a collinearity among points or one point coinciding with the center of rotation for another (invariant radius). The combined effect of these 2 factors--motion type and SIs-influences perceptual motion organization.

  16. A spatial reference frame model of Beijing based on spatial cognitive experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Zhang, Jing; Liu, Yu

    2006-10-01

    Orientation relation in the spatial relation is very important in GIS. People can obtain orientation information by making use of map reading and the cognition of the surrounding environment, and then create the spatial reference frame. City is a kind of special spatial environment, a person with life experiences has some spatial knowledge about the city where he or she lives in. Based on the spatial knowledge of the city environment, people can position, navigate and understand the meaning embodied in the environment correctly. Beijing as a real geographic space, its layout is very special and can form a kind of new spatial reference frame. Based on the characteristics of the layout of Beijing city, this paper will introduce a new spatial reference frame of Beijing and use two psychological experiments to validate its cognitive plausibility.

  17. Description and User Instructions for the Quaternion_to_Orbit_v3 Software

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Kruizinga, Gerhard L.; Paik, Meegyeong; Yuan, Dah-Ning; Asmar, Sami W.

    2012-01-01

    For a given inertial frame of reference, the software combines the spacecraft orbits with the spacecraft attitude quaternions, and rotates the body-fixed reference frame of a particular spacecraft to the inertial reference frame. The conversion assumes that the two spacecraft are aligned with respect to the mutual line of sight, with a parameterized time tag. The software is implemented in Python and is completely open source. It is very versatile, and may be applied under various circumstances and for other related purposes. Based on the solid linear algebra analysis, it has an extra option for compensating the linear pitch. This software has been designed for simulation of the calibration maneuvers performed by the two spacecraft comprising the GRAIL mission to the Moon, but has potential use for other applications. In simulations of formation flights, one needs to coordinate the spacecraft orbits represented in an appropriate inertial reference frame and the spacecraft attitudes. The latter are usually given as the time series of quaternions rotating the body-fixed reference frame of a particular spacecraft to the inertial reference frame. It is often desirable to simulate the same maneuver for different segments of the orbit. It is also useful to study various maneuvers that could be performed at the same orbit segment. These two lines of study are more timeand labor-efficient if the attitude and orbit data are generated independently, so that the part of the data that has not been changed can be recycled in the course of multiple simulations.

  18. ``Frames of Reference'' revisited

    NASA Astrophysics Data System (ADS)

    Steyn-Ross, Alistair; Ivey, Donald G.

    1992-12-01

    The PSSC teaching film, ``Frames of Reference,'' was made in 1960, and was one of the first audio-visual attempts at showing how your physical ``point of view,'' or frame of reference, necessarily alters both your perceptions and your observations of motion. The gentle humor and original demonstrations made a lasting impact on many audiences, and with its recent re-release as part of the AAPT Cinema Classics videodisc it is timely that we should review both the message and the methods of the film. An annotated script and photographs from the film are presented, followed by extension material on rotating frames which teachers may find appropriate for use in their classrooms: constructions, demonstrations, an example, and theory.

  19. Kinematic analysis of the golf swing in men and women experienced golfers.

    PubMed

    Egret, C I; Nicolle, B; Dujardin, F H; Weber, J; Chollet, D

    2006-06-01

    Golf has become an increasingly popular sport, which is enjoyed by both men and women. This paper addresses the question what differences may exist between men and women golfers. The purpose of this study is to analyze the kinematic pattern of the golf swing in both men and women experienced golfers. Seven male and five female golfers participated in the study. The measurements of kinematic data during swing were obtained with the optoelectronic system VICON (Oxford's Metric, Oxford, UK) with five cameras operating at 50 frames per second. Clubhead speed was measured using a radar system (Bell-Tronics, Ltd, Covington, USA). A Mann-Whitney test (p = 0.05) showed that the women seem to produce a wide swing with larger hip and shoulder joint rotation angles at the top of the backswing. Men flexed their left knee more during the backswing, this may promote a greater weight transfer to the right side. Nevertheless, these two kinematic patterns showed no significant differences in the clubhead speed. Men probably used their increased knee flexion to compensate for their muscular and articular suppleness which is less than that of the women. The results of this study show that there is a specific swing for women.

  20. Use of Reference Frames for Interplanetary Navigation at JPL

    NASA Technical Reports Server (NTRS)

    Heflin, Michael; Jacobs, Chris; Sovers, Ojars; Moore, Angelyn; Owen, Sue

    2010-01-01

    Navigation of interplanetary spacecraft is typically based on range, Doppler, and differential interferometric measurements made by ground-based telescopes. Acquisition and interpretation of these observations requires accurate knowledge of the terrestrial reference frame and its orientation with respect to the celestial frame. Work is underway at JPL to reprocess historical VLBI and GPS data to improve realizations of the terrestrial and celestial frames. Improvements include minimal constraint alignment, improved tropospheric modeling, better orbit determination, and corrections for antenna phase center patterns.

  1. To frame is to explain: a deductive frame-analysis of Dutch and French climate change coverage during the annual UN Conferences of the Parties.

    PubMed

    Dirikx, Astrid; Gelders, Dave

    2010-11-01

    This study examines the way Dutch and French newspapers frame climate change during the annual United Nations Conferences of the Parties. The methods used in previous studies on the framing of climate change do not allow for general cross-national comparisons. We conduct a quantitative deductive framing analysis on 257 quality Dutch and French newspaper articles between 2001 and 2007. Both countries' newspapers seem to frame climate change through mainly the same lens. The majority of the articles make reference to the consequences of the (non-)pursuit of a certain course of action and of possible losses and gains (consequences frame). Additionally, many articles mention the need for urgent actions, refer to possible solutions and suggest that governments are responsible for and/or capable of alleviating climate change problems (responsibility frame). Finally, the conflict frame was found to be used less often than the aforementioned frames, but more regularly than the human interest frame.

  2. Geometrically constrained kinematic global navigation satellite systems positioning: Implementation and performance

    NASA Astrophysics Data System (ADS)

    Asgari, Jamal; Mohammadloo, Tannaz H.; Amiri-Simkooei, Ali Reza

    2015-09-01

    GNSS kinematic techniques are capable of providing precise coordinates in extremely short observation time-span. These methods usually determine the coordinates of an unknown station with respect to a reference one. To enhance the precision, accuracy, reliability and integrity of the estimated unknown parameters, GNSS kinematic equations are to be augmented by possible constraints. Such constraints could be derived from the geometric relation of the receiver positions in motion. This contribution presents the formulation of the constrained kinematic global navigation satellite systems positioning. Constraints effectively restrict the definition domain of the unknown parameters from the three-dimensional space to a subspace defined by the equation of motion. To test the concept of the constrained kinematic positioning method, the equation of a circle is employed as a constraint. A device capable of moving on a circle was made and the observations from 11 positions on the circle were analyzed. Relative positioning was conducted by considering the center of the circle as the reference station. The equation of the receiver's motion was rewritten in the ECEF coordinates system. A special attention is drawn onto how a constraint is applied to kinematic positioning. Implementing the constraint in the positioning process provides much more precise results compared to the unconstrained case. This has been verified based on the results obtained from the covariance matrix of the estimated parameters and the empirical results using kinematic positioning samples as well. The theoretical standard deviations of the horizontal components are reduced by a factor ranging from 1.24 to 2.64. The improvement on the empirical standard deviation of the horizontal components ranges from 1.08 to 2.2.

  3. Cultural background shapes spatial reference frame proclivity

    PubMed Central

    Goeke, Caspar; Kornpetpanee, Suchada; Köster, Moritz; Fernández-Revelles, Andrés B.; Gramann, Klaus; König, Peter

    2015-01-01

    Spatial navigation is an essential human skill that is influenced by several factors. The present study investigates how gender, age, and cultural background account for differences in reference frame proclivity and performance in a virtual navigation task. Using an online navigation study, we recorded reaction times, error rates (confusion of turning axis), and reference frame proclivity (egocentric vs. allocentric reference frame) of 1823 participants. Reaction times significantly varied with gender and age, but were only marginally influenced by the cultural background of participants. Error rates were in line with these results and exhibited a significant influence of gender and culture, but not age. Participants’ cultural background significantly influenced reference frame selection; the majority of North-Americans preferred an allocentric strategy, while Latin-Americans preferred an egocentric navigation strategy. European and Asian groups were in between these two extremes. Neither the factor of age nor the factor of gender had a direct impact on participants’ navigation strategies. The strong effects of cultural background on navigation strategies without the influence of gender or age underlines the importance of socialized spatial cognitive processes and argues for socio-economic analysis in studies investigating human navigation. PMID:26073656

  4. Language and spatial frames of reference in mind and brain.

    PubMed

    Gallistel, C R.

    2002-08-01

    Some language communities routinely use allocentric reference directions (e.g. 'uphill-downhill') where speakers of European languages would use egocentric references ('left-right'). Previous experiments have suggested that the different language groups use different reference frames in non-linguistic tasks involving the recreation of oriented arrays. However, a recent paper argues that manipulating test conditions produces similar effects in monolingual English speakers, and in animals.

  5. Human movement analysis using stereophotogrammetry. Part 1: theoretical background.

    PubMed

    Cappozzo, Aurelio; Della Croce, Ugo; Leardini, Alberto; Chiari, Lorenzo

    2005-02-01

    This paper sets the stage for a series of reviews dealing with the problems associated with the reconstruction and analysis of in vivo skeletal system kinematics using optoelectronic stereophotogrammetric data. Instantaneous bone position and orientation and joint kinematic variable estimations are addressed in the framework of rigid body mechanics. The conceptual background to these exercises is discussed. Focus is placed on the experimental and analytical problem of merging the information relative to movement and that relative to the morphology of the anatomical body parts of interest. The various global and local frames that may be used in this context are defined. Common anatomical and mathematical conventions that can be used to describe joint kinematics are illustrated in a comparative fashion. The authors believe that an effort to systematize the different theoretical and experimental approaches to the problems involved and related nomenclatures, as currently reported in the literature, is needed to facilitate data and knowledge sharing, and to provide renewed momentum for the advancement of human movement analysis.

  6. The kinematics of the California sea lion foreflipper during forward swimming.

    PubMed

    Friedman, C; Leftwich, M C

    2014-11-07

    To determine the two-dimensional kinematics of the California sea lion foreflipper during thrust generation, a digital, high-definition video is obtained using a non-research female sea lion at the Smithsonian National Zoological Park in Washington, DC. The observational videos are used to extract maneuvers of interest--forward acceleration from rest using the foreflippers and banked turns. Single camera videos are analyzed to digitize the flipper during the motions using 10 points spanning root to tip in each frame. Digitized shapes were then fitted with an empirical function that quantitatively allows for both comparison between different claps, and for extracting kinematic data. The resulting function shows a high degree of curvature (with a camber of up to 32%). Analysis of sea lion acceleration from rest shows thrust production in the range of 150-680 N and maximum flipper angular velocity (for rotation about the shoulder joint) as high as 20 rad s⁻¹. Analysis of turning maneuvers indicate extreme agility and precision of movement driven by the foreflipper surfaces.

  7. A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait.

    PubMed

    Torricelli, Diego; Cortés, Camilo; Lete, Nerea; Bertelsen, Álvaro; Gonzalez-Vargas, Jose E; Del-Ama, Antonio J; Dimbwadyo, Iris; Moreno, Juan C; Florez, Julian; Pons, Jose L

    2018-01-01

    The relative motion between human and exoskeleton is a crucial factor that has remarkable consequences on the efficiency, reliability and safety of human-robot interaction. Unfortunately, its quantitative assessment has been largely overlooked in the literature. Here, we present a methodology that allows predicting the motion of the human joints from the knowledge of the angular motion of the exoskeleton frame. Our method combines a subject-specific skeletal model with a kinematic model of a lower limb exoskeleton (H2, Technaid), imposing specific kinematic constraints between them. To calibrate the model and validate its ability to predict the relative motion in a subject-specific way, we performed experiments on seven healthy subjects during treadmill walking tasks. We demonstrate a prediction accuracy lower than 3.5° globally, and around 1.5° at the hip level, which represent an improvement up to 66% compared to the traditional approach assuming no relative motion between the user and the exoskeleton.

  8. A Subject-Specific Kinematic Model to Predict Human Motion in Exoskeleton-Assisted Gait

    PubMed Central

    Torricelli, Diego; Cortés, Camilo; Lete, Nerea; Bertelsen, Álvaro; Gonzalez-Vargas, Jose E.; del-Ama, Antonio J.; Dimbwadyo, Iris; Moreno, Juan C.; Florez, Julian; Pons, Jose L.

    2018-01-01

    The relative motion between human and exoskeleton is a crucial factor that has remarkable consequences on the efficiency, reliability and safety of human-robot interaction. Unfortunately, its quantitative assessment has been largely overlooked in the literature. Here, we present a methodology that allows predicting the motion of the human joints from the knowledge of the angular motion of the exoskeleton frame. Our method combines a subject-specific skeletal model with a kinematic model of a lower limb exoskeleton (H2, Technaid), imposing specific kinematic constraints between them. To calibrate the model and validate its ability to predict the relative motion in a subject-specific way, we performed experiments on seven healthy subjects during treadmill walking tasks. We demonstrate a prediction accuracy lower than 3.5° globally, and around 1.5° at the hip level, which represent an improvement up to 66% compared to the traditional approach assuming no relative motion between the user and the exoskeleton. PMID:29755336

  9. Joint Transform Correlation for face tracking: elderly fall detection application

    NASA Astrophysics Data System (ADS)

    Katz, Philippe; Aron, Michael; Alfalou, Ayman

    2013-03-01

    In this paper, an iterative tracking algorithm based on a non-linear JTC (Joint Transform Correlator) architecture and enhanced by a digital image processing method is proposed and validated. This algorithm is based on the computation of a correlation plane where the reference image is updated at each frame. For that purpose, we use the JTC technique in real time to track a patient (target image) in a room fitted with a video camera. The correlation plane is used to localize the target image in the current video frame (frame i). Then, the reference image to be exploited in the next frame (frame i+1) is updated according to the previous one (frame i). In an effort to validate our algorithm, our work is divided into two parts: (i) a large study based on different sequences with several situations and different JTC parameters is achieved in order to quantify their effects on the tracking performances (decimation, non-linearity coefficient, size of the correlation plane, size of the region of interest...). (ii) the tracking algorithm is integrated into an application of elderly fall detection. The first reference image is a face detected by means of Haar descriptors, and then localized into the new video image thanks to our tracking method. In order to avoid a bad update of the reference frame, a method based on a comparison of image intensity histograms is proposed and integrated in our algorithm. This step ensures a robust tracking of the reference frame. This article focuses on face tracking step optimisation and evalutation. A supplementary step of fall detection, based on vertical acceleration and position, will be added and studied in further work.

  10. Three-dimensional ocular kinematics during eccentric rotations: evidence for functional rather than mechanical constraints

    NASA Technical Reports Server (NTRS)

    Angelaki, Dora E.

    2003-01-01

    Previous studies have reported that the translational vestibuloocular reflex (TVOR) follows a three-dimensional (3D) kinematic behavior that is more similar to visually guided eye movements, like pursuit, rather than the rotational VOR (RVOR). Accordingly, TVOR rotation axes tilted with eye position toward an eye-fixed reference frame rather than staying relatively fixed in the head like in the RVOR. This difference arises because, contrary to the RVOR where peripheral image stability is functionally important, the TVOR like pursuit and saccades cares to stabilize images on the fovea. During most natural head and body movements, both VORs are simultaneously activated. In the present study, we have investigated in rhesus monkeys the 3D kinematics of the combined VOR during yaw rotation about eccentric axes. The experiments were motivated by and quantitatively compared with the predictions of two distinct hypotheses. According to the first (fixed-rule) hypothesis, an eye-position-dependent torsion is computed downstream of a site for RVOR/TVOR convergence, and the combined VOR axis would tilt through an angle that is proportional to gaze angle and independent of the relative RVOR/TVOR contributions to the total eye movement. This hypothesis would be consistent with the recently postulated mechanical constraints imposed by extraocular muscle pulleys. According to the second (image-stabilization) hypothesis, an eye-position-dependent torsion is computed separately for the RVOR and the TVOR components, implying a processing that takes place upstream of a site for RVOR/TVOR convergence. The latter hypothesis is based on the functional requirement that the 3D kinematics of the combined VOR should be governed by the need to keep images stable on the fovea with slip on the peripheral retina being dependent on the different functional goals of the two VORs. In contrast to the fixed-rule hypothesis, the data demonstrated a variable eye-position-dependent torsion for the combined VOR that was different for synergistic versus antagonistic RVOR/TVOR interactions. Furthermore, not only were the eye-velocity tilt slopes of the combined VOR as much as 10 times larger than what would be expected based on extraocular muscle pulley location, but also eye velocity during antagonistic RVOR/TVOR combinations often tilted opposite to gaze. These results are qualitatively and quantitatively consistent with the image-stabilization hypothesis, suggesting that the eye-position-dependent torsion is computed separately for the RVOR and the TVOR and that the 3D kinematics of the combined VOR are dependent on functional rather than mechanical constraints.

  11. Meshless analysis of shear deformable shells: the linear model

    NASA Astrophysics Data System (ADS)

    Costa, Jorge C.; Tiago, Carlos M.; Pimenta, Paulo M.

    2013-10-01

    This work develops a kinematically linear shell model departing from a consistent nonlinear theory. The initial geometry is mapped from a flat reference configuration by a stress-free finite deformation, after which, the actual shell motion takes place. The model maintains the features of a complete stress-resultant theory with Reissner-Mindlin kinematics based on an inextensible director. A hybrid displacement variational formulation is presented, where the domain displacements and kinematic boundary reactions are independently approximated. The resort to a flat reference configuration allows the discretization using 2-D Multiple Fixed Least-Squares (MFLS) on the domain. The consistent definition of stress resultants and consequent plane stress assumption led to a neat formulation for the analysis of shells. The consistent linear approximation, combined with MFLS, made possible efficient computations with a desired continuity degree, leading to smooth results for the displacement, strain and stress fields, as shown by several numerical examples.

  12. Characterizing Vibratory Kinematics in Children and Adults with High-Speed Digital Imaging

    ERIC Educational Resources Information Center

    Patel, Rita; Dubrovskiy, Denis; Döllinger, Michael

    2014-01-01

    Purpose: The aim of this study is to quantify and identify characteristic vibratory motion in typically developing prepubertal children and young adults using high-speed digital imaging. Method: The vibrations of the vocal folds were recorded from 27 children (ages 5-9 years) and 35 adults (ages 21-45 years), with high speed at 4,000 frames per…

  13. Examining reference frame interaction in spatial memory using a distribution analysis.

    PubMed

    Street, Whitney N; Wang, Ranxiao Frances

    2016-02-01

    Previous research showed competition among reference frames in spatial attention and language. The present studies developed a new distribution analysis to examine reference frame interactions in spatial memory. Participants viewed virtual arrays of colored pegs and were instructed to remember them either from their own perspective or from the perspective aligned with the rectangular floor. Then they made judgments of relative directions from their respective encoding orientation. Those taking the floor-axis perspective showed systematic bias in the signed errors toward their egocentric perspective, while those taking their own perspective showed no systematic bias, both for random and symmetrical object arrays. The bias toward the egocentric perspective was observed when learning a real symmetric regular object array with strong environmental cues for the aligned axis. These results indicate automatic processing of the self reference while taking the floor-axis perspective but not vice versa, and suggest that research on spatial memory needs to consider the implications of competition effects in reference frame use.

  14. Technical Note: Modification of the standard gain correction algorithm to compensate for the number of used reference flat frames in detector performance studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantinidis, Anastasios C.; Olivo, Alessandro; Speller, Robert D.

    2011-12-15

    Purpose: The x-ray performance evaluation of digital x-ray detectors is based on the calculation of the modulation transfer function (MTF), the noise power spectrum (NPS), and the resultant detective quantum efficiency (DQE). The flat images used for the extraction of the NPS should not contain any fixed pattern noise (FPN) to avoid contamination from nonstochastic processes. The ''gold standard'' method used for the reduction of the FPN (i.e., the different gain between pixels) in linear x-ray detectors is based on normalization with an average reference flat-field. However, the noise in the corrected image depends on the number of flat framesmore » used for the average flat image. The aim of this study is to modify the standard gain correction algorithm to make it independent on the used reference flat frames. Methods: Many publications suggest the use of 10-16 reference flat frames, while other studies use higher numbers (e.g., 48 frames) to reduce the propagated noise from the average flat image. This study quantifies experimentally the effect of the number of used reference flat frames on the NPS and DQE values and appropriately modifies the gain correction algorithm to compensate for this effect. Results: It is shown that using the suggested gain correction algorithm a minimum number of reference flat frames (i.e., down to one frame) can be used to eliminate the FPN from the raw flat image. This saves computer memory and time during the x-ray performance evaluation. Conclusions: The authors show that the method presented in the study (a) leads to the maximum DQE value that one would have by using the conventional method and very large number of frames and (b) has been compared to an independent gain correction method based on the subtraction of flat-field images, leading to identical DQE values. They believe this provides robust validation of the proposed method.« less

  15. Ray Effect Mitigation Through Reference Frame Rotation

    DOE PAGES

    Tencer, John

    2016-05-01

    The discrete ordinates method is a popular and versatile technique for solving the radiative transport equation, a major drawback of which is the presence of ray effects. Mitigation of ray effects can yield significantly more accurate results and enhanced numerical stability for combined mode codes. Moreover, when ray effects are present, the solution is seen to be highly dependent upon the relative orientation of the geometry and the global reference frame. It is an undesirable property. A novel ray effect mitigation technique of averaging the computed solution for various reference frame orientations is proposed.

  16. Spatial and physical frames of reference in positioning a limb.

    PubMed

    Garrett, S R; Pagano, C; Austin, G; Turvey, M T

    1998-10-01

    Splints attached to the right forearm were used to rotate the forearm's physical reference frame, as defined by the eigenvectors of its inertia tensor, relative to its spatial reference frame. In two experiments, when subjects were required to orient the forearm parallel to, or at 45 degrees to, the environmental horizontal, they produced limb orientations that were systematically deflected from the forearm's longitudinal spatial axis in the direction of the forearm's physical axes. The position sense seems to be based on inertial eigenvectors rather than on joint angles or gravitational torques.

  17. Coordinate references for the indoor/outdoor seamless positioning

    NASA Astrophysics Data System (ADS)

    Ruan, Ling; Zhang, Ling; Long, Yi; Cheng, Fei

    2018-05-01

    Indoor positioning technologies are being developed rapidly, and seamless positioning which connected indoor and outdoor space is a new trend. The indoor and outdoor positioning are not applying the same coordinate system and different indoor positioning scenes uses different indoor local coordinate reference systems. A specific and unified coordinate reference frame is needed as the space basis and premise in seamless positioning application. Trajectory analysis of indoor and outdoor integration also requires a uniform coordinate reference. However, the coordinate reference frame in seamless positioning which can applied to various complex scenarios is lacking of research for a long time. In this paper, we proposed a universal coordinate reference frame in indoor/outdoor seamless positioning. The research focus on analysis and classify the indoor positioning scenes and put forward the coordinate reference system establishment and coordinate transformation methods in each scene. And, through some experiments, the calibration method feasibility was verified.

  18. A Paleolatitude Calculator for Paleoclimate Studies

    PubMed Central

    van Hinsbergen, Douwe J. J.; de Groot, Lennart V.; van Schaik, Sebastiaan J.; Spakman, Wim; Bijl, Peter K.; Sluijs, Appy; Langereis, Cor G.; Brinkhuis, Henk

    2015-01-01

    Realistic appraisal of paleoclimatic information obtained from a particular location requires accurate knowledge of its paleolatitude defined relative to the Earth’s spin-axis. This is crucial to, among others, correctly assess the amount of solar energy received at a location at the moment of sediment deposition. The paleolatitude of an arbitrary location can in principle be reconstructed from tectonic plate reconstructions that (1) restore the relative motions between plates based on (marine) magnetic anomalies, and (2) reconstruct all plates relative to the spin axis using a paleomagnetic reference frame based on a global apparent polar wander path. Whereas many studies do employ high-quality relative plate reconstructions, the necessity of using a paleomagnetic reference frame for climate studies rather than a mantle reference frame appears under-appreciated. In this paper, we briefly summarize the theory of plate tectonic reconstructions and their reference frames tailored towards applications of paleoclimate reconstruction, and show that using a mantle reference frame, which defines plate positions relative to the mantle, instead of a paleomagnetic reference frame may introduce errors in paleolatitude of more than 15° (>1500 km). This is because mantle reference frames cannot constrain, or are specifically corrected for the effects of true polar wander. We used the latest, state-of-the-art plate reconstructions to build a global plate circuit, and developed an online, user-friendly paleolatitude calculator for the last 200 million years by placing this plate circuit in three widely used global apparent polar wander paths. As a novelty, this calculator adds error bars to paleolatitude estimates that can be incorporated in climate modeling. The calculator is available at www.paleolatitude.org. We illustrate the use of the paleolatitude calculator by showing how an apparent wide spread in Eocene sea surface temperatures of southern high latitudes may be in part explained by a much wider paleolatitudinal distribution of sites than previously assumed. PMID:26061262

  19. A Paleolatitude Calculator for Paleoclimate Studies.

    PubMed

    van Hinsbergen, Douwe J J; de Groot, Lennart V; van Schaik, Sebastiaan J; Spakman, Wim; Bijl, Peter K; Sluijs, Appy; Langereis, Cor G; Brinkhuis, Henk

    2015-01-01

    Realistic appraisal of paleoclimatic information obtained from a particular location requires accurate knowledge of its paleolatitude defined relative to the Earth's spin-axis. This is crucial to, among others, correctly assess the amount of solar energy received at a location at the moment of sediment deposition. The paleolatitude of an arbitrary location can in principle be reconstructed from tectonic plate reconstructions that (1) restore the relative motions between plates based on (marine) magnetic anomalies, and (2) reconstruct all plates relative to the spin axis using a paleomagnetic reference frame based on a global apparent polar wander path. Whereas many studies do employ high-quality relative plate reconstructions, the necessity of using a paleomagnetic reference frame for climate studies rather than a mantle reference frame appears under-appreciated. In this paper, we briefly summarize the theory of plate tectonic reconstructions and their reference frames tailored towards applications of paleoclimate reconstruction, and show that using a mantle reference frame, which defines plate positions relative to the mantle, instead of a paleomagnetic reference frame may introduce errors in paleolatitude of more than 15° (>1500 km). This is because mantle reference frames cannot constrain, or are specifically corrected for the effects of true polar wander. We used the latest, state-of-the-art plate reconstructions to build a global plate circuit, and developed an online, user-friendly paleolatitude calculator for the last 200 million years by placing this plate circuit in three widely used global apparent polar wander paths. As a novelty, this calculator adds error bars to paleolatitude estimates that can be incorporated in climate modeling. The calculator is available at www.paleolatitude.org. We illustrate the use of the paleolatitude calculator by showing how an apparent wide spread in Eocene sea surface temperatures of southern high latitudes may be in part explained by a much wider paleolatitudinal distribution of sites than previously assumed.

  20. NChina16: A stable geodetic reference frame for geological hazard studies in north China

    NASA Astrophysics Data System (ADS)

    Wang, G.; Yan, B.; Gan, W.; Geng, J.

    2017-12-01

    This study established a stable North China Reference Frame 2016 (NChina16) using five years of continuous GPS observations (2011.8 to 2016.8) from 12 continuously operating reference stations (CORS) fixed to the stable interior of the North China Craton. Applications of NChina16 in landslide, subsidence, and post-seismic displacement studies are illustrated. The primary result of this study is the seven parameters for transforming Cartesian ECEF (Earth-Centered, Earth-Fixed) coordinates X, Y, and Z from the International GNSS Service Reference Frame 2008 (IGS08) to NChina16. The seven parameters include the epoch that is used to tie the regional reference frame to IGS08 and the time derivatives of three translations and three rotations. A method for developing a regional geodetic reference frame is introduced in detail. The GIPSY-OASIS (V6.4) software package was used to obtain the precise point positioning (PPP) time series with respect to IGS08. The stability (accuracy) of NChina16 is about 0.5 mm/year in both vertical and horizontal directions. This study also developed a regional seasonal model for correcting vertical displacement time series data derived from the PPP solutions. Long-term GPS observations (1999-2016) from five CORS in north China were used to develop the seasonal model. According to this study, the PPP daily solutions with respect to NChina16 could achieve 2-3 mm horizontal accuracy and 4-5 mm vertical accuracy after being modified by the regional model. NChina16 will be critical to the long-term landslide, subsidence, fault, and structural monitoring in north China and for ongoing post-seismic crustal deformation studies in Japan. NChina16 will be incrementally improved and synchronized with the IGS reference frame update.

  1. The Extended HANDS Characterization and Analysis of Metric Biases

    NASA Astrophysics Data System (ADS)

    Kelecy, T.; Knox, R.; Cognion, R.

    The Extended High Accuracy Network Determination System (Extended HANDS) consists of a network of low cost, high accuracy optical telescopes designed to support space surveillance and development of space object characterization technologies. Comprising off-the-shelf components, the telescopes are designed to provide sub arc-second astrometric accuracy. The design and analysis team are in the process of characterizing the system through development of an error allocation tree whose assessment is supported by simulation, data analysis, and calibration tests. The metric calibration process has revealed 1-2 arc-second biases in the right ascension and declination measurements of reference satellite position, and these have been observed to have fairly distinct characteristics that appear to have some dependence on orbit geometry and tracking rates. The work presented here outlines error models developed to aid in development of the system error budget, and examines characteristic errors (biases, time dependence, etc.) that might be present in each of the relevant system elements used in the data collection and processing, including the metric calibration processing. The relevant reference frames are identified, and include the sensor (CCD camera) reference frame, Earth-fixed topocentric frame, topocentric inertial reference frame, and the geocentric inertial reference frame. The errors modeled in each of these reference frames, when mapped into the topocentric inertial measurement frame, reveal how errors might manifest themselves through the calibration process. The error analysis results that are presented use satellite-sensor geometries taken from periods where actual measurements were collected, and reveal how modeled errors manifest themselves over those specific time periods. These results are compared to the real calibration metric data (right ascension and declination residuals), and sources of the bias are hypothesized. In turn, the actual right ascension and declination calibration residuals are also mapped to other relevant reference frames in an attempt to validate the source of the bias errors. These results will serve as the basis for more focused investigation into specific components embedded in the system and system processes that might contain the source of the observed biases.

  2. Influences of indigenous language on spatial frames of reference in Aboriginal English

    NASA Astrophysics Data System (ADS)

    Edmonds-Wathen, Cris

    2014-06-01

    The Aboriginal English spoken by Indigenous children in remote communities in the Northern Territory of Australia is influenced by the home languages spoken by themselves and their families. This affects uses of spatial terms used in mathematics such as `in front' and `behind.' Speakers of the endangered Indigenous Australian language Iwaidja use the intrinsic frame of reference in contexts where speakers of Standard Australian English use the relative frame of reference. Children speaking Aboriginal English show patterns of use that parallel the Iwaidja contexts. This paper presents detailed examples of spatial descriptions in Iwaidja and Aboriginal English that demonstrate the parallel patterns of use. The data comes from a study that investigated how an understanding of spatial frame of reference in Iwaidja could assist teaching mathematics to Indigenous language-speaking students. Implications for teaching mathematics are explored for teachers without previous experience in a remote Indigenous community.

  3. Change of reference frame for tactile localization during child development.

    PubMed

    Pagel, Birthe; Heed, Tobias; Röder, Brigitte

    2009-11-01

    Temporal order judgements (TOJ) for two tactile stimuli, one presented to the left and one to the right hand, are less precise when the hands are crossed over the midline than when the hands are uncrossed. This 'crossed hand' effect has been considered as evidence for a remapping of tactile input into an external reference frame. Since late, but not early, blind individuals show such remapping, it has been hypothesized that the use of an external reference frame develops during childhood. Five- to 10-year-old children were therefore tested with the tactile TOJ task, both with uncrossed and crossed hands. Overall performance in the TOJ task improved with age. While children older than 5 1/2 years displayed a crossed hand effect, younger children did not. Therefore the use of an external reference frame for tactile, and possibly multisensory, localization seems to be acquired at age 5.

  4. Spatial Reorientation of Sensorimotor Balance Control in Altered Gravity

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.; Black, F. L.; Kaufman, G. D.; Reschke, M. F.; Wood, S. J.

    2007-01-01

    Sensorimotor coordination of body segments following space flight are more pronounced after landing when the head is actively tilted with respect to the trunk. This suggests that central vestibular processing shifts from a gravitational frame of reference to a head frame of reference in microgravity. A major effect of such changes is a significant postural instability documented by standard head-erect Sensory Organization Tests. Decrements in functional performance may still be underestimated when head and gravity reference frames remained aligned. The purpose of this study was to examine adaptive changes in spatial processing for balance control following space flight by incorporating static and dynamic tilts that dissociate head and gravity reference frames. A second aim of this study was to examine the feasibility of altering the re-adaptation process following space flight by providing discordant visual-vestibular-somatosensory stimuli using short-radius pitch centrifugation.

  5. Kinematic cooling of molecules in a magneto-optical trap

    NASA Astrophysics Data System (ADS)

    Takase, Ken; Chandler, David W.; Strecker, Kevin E.

    2008-05-01

    We will present our current progress on a new experimental technique aimed at slowing and cooling hot molecules using a single collision with magneto-optically trapped atoms. Kinematic cooling, unlike buffer gas and sympathetic cooling, relies only on a single collision between the molecule and atom to stop the molecule in the laboratory frame. This technique has recently been demonstrated in a crossed atomic and molecular beam machine to produce 35mK samples of nitric oxide via a single collision with argon [1]. In this technique we replace the atomic beam with a sample magneto-optically trapped atoms. We are currently designing and building a new apparatus to attempt these experiments. [1] Kevin E. Strecker and David W. Chandler (to be published)

  6. Mechanisms for the elevation structure of a giant telescope

    NASA Astrophysics Data System (ADS)

    Hu, Shouwei; Song, Xiaoli; Zhang, Hui

    2018-06-01

    This paper describes an innovative mechanism based on hydrostatic pads and linear motors for the elevation structure of next-generation extremely large telescopes. Both hydrostatic pads and linear motors are integrated on the frame that includes a kinematical joint, such that the upper part is properly positioned with respect to the elevation runner tracks, while the lower part is connected to the azimuth structure. Potential deflections of the elevation runner bearings at the radial pad locations are absorbed by this flexible kinematic connection and not transmitted to the linear motors and hydrostatic pads. Extensive simulations using finite-element analysis are carried out to verify that the auxiliary whiffletree hydraulic design of the mechanism is sufficient to satisfy the assigned optical length variation errors.

  7. Mechanisms for the elevation structure of a giant telescope

    NASA Astrophysics Data System (ADS)

    Hu, Shouwei; Song, Xiaoli; Zhang, Hui

    2018-05-01

    This paper describes an innovative mechanism based on hydrostatic pads and linear motors for the elevation structure of next-generation extremely large telescopes. Both hydrostatic pads and linear motors are integrated on the frame that includes a kinematical joint, such that the upper part is properly positioned with respect to the elevation runner tracks, while the lower part is connected to the azimuth structure. Potential deflections of the elevation runner bearings at the radial pad locations are absorbed by this flexible kinematic connection and not transmitted to the linear motors and hydrostatic pads. Extensive simulations using finite-element analysis are carried out to verify that the auxiliary whiffletree hydraulic design of the mechanism is sufficient to satisfy the assigned optical length variation errors.

  8. The KMOS Cluster Survey - KCS: Timing the Formation of Passive Galaxies in Clusters at 1.4

    NASA Astrophysics Data System (ADS)

    Beifiori, Alessandra

    2017-07-01

    In this talk I will discuss recent progress studying the rest-frame optical properties of quiescent galaxies at this critical epoch using KMOS, the K-band Multi-Object Spectrograph on the ESO/VLT. I will highlight recent results form the KMOS Custer Survey (KCS), whose aim is to provide a census of quiescent galaxy kinematics at 1.4 ≤ z ≤ 1.8 in know overdensities. The combination of kinematic measurements from KMOS and structural parameters measured from deep HST imaging allowed us to place constraints on the formation ages of passive galaxies at 1.4

  9. Tracing the Evolution of Passive Galaxies in Clusters at 1.4

    NASA Astrophysics Data System (ADS)

    Beifiori, Alessandra

    2017-08-01

    In this talk I will discuss recent progress studying the rest-frame optical properties of quiescent galaxies at this critical epoch using KMOS, the K-band Multi-Object Spectrograph on the ESO/VLT. I will highlight recent results form the KMOS Custer Survey (KCS), whose aim is to provide a census of quiescent galaxy kinematics at 1.4 ≤ z ≤ 1.8 in know overdensities. The combination of kinematic measurements from KMOS and structural parameters measured from deep HST imaging allowed us to place constraints on the formation ages of passive galaxies at 1.4

  10. Frames of Reference in the Classroom

    NASA Astrophysics Data System (ADS)

    Grossman, Joshua

    2012-12-01

    The classic film "Frames of Reference"1,2 effectively illustrates concepts involved with inertial and non-inertial reference frames. In it, Donald G. Ivey and Patterson Hume use the cameras perspective to allow the viewer to see motion in reference frames translating with a constant velocity, translating while accelerating, and rotating—all with respect to the Earth frame. The film is a classic for good reason, but today it does have a couple of drawbacks: 1) The film by nature only accommodates passive learning. It does not give students the opportunity to try any of the experiments themselves. 2) The dated style of the 50-year-old film can distract students from the physics content. I present here a simple setup that can recreate many of the movies demonstrations in the classroom. The demonstrations can be used to supplement the movie or in its place, if desired. All of the materials except perhaps the inexpensive web camera should likely be available already in most teaching laboratories. Unlike previously described activities, these experiments do not require travel to another location3 or an involved setup.4,5

  11. Effect of gravito-inertial cues on the coding of orientation in pre-attentive vision.

    PubMed

    Stivalet, P; Marendaz, C; Barraclough, L; Mourareau, C

    1995-01-01

    To see if the spatial reference frame used by pre-attentive vision is specified in a retino-centered frame or in a reference frame integrating visual and nonvisual information (vestibular and somatosensory), subjects were centrifuged in a non-pendular cabin and were asked to search for a target distinguishable from distractors by difference in orientation (Treisman's "pop-out" paradigm [1]). In a control condition, in which subjects were sitting immobilized but not centrifuged, this task gave an asymmetric search pattern: Search was rapid and pre-attentional except when the target was aligned with the horizontal retinal/head axis, in which case search was slow and attentional (2). Results using a centrifuge showed that slow/serial search patterns were obtained when the target was aligned with the subjective horizontal axis (and not with the horizontal retinal/head axis). These data suggest that a multisensory reference frame is used in pre-attentive vision. The results are interpreted in terms of Riccio and Stoffregen's "ecological theory" of orientation in which the vertical and horizontal axes constitute independent reference frames (3).

  12. Measurement of joint kinematics using a conventional clinical single-perspective flat-panel radiography system.

    PubMed

    Seslija, Petar; Teeter, Matthew G; Yuan, Xunhua; Naudie, Douglas D R; Bourne, Robert B; Macdonald, Steven J; Peters, Terry M; Holdsworth, David W

    2012-10-01

    The ability to accurately measure joint kinematics is an important tool in studying both normal joint function and pathologies associated with injury and disease. The purpose of this study is to evaluate the efficacy, accuracy, precision, and clinical safety of measuring 3D joint motion using a conventional flat-panel radiography system prior to its application in an in vivo study. An automated, image-based tracking algorithm was implemented to measure the three-dimensional pose of a sparse object from a two-dimensional radiographic projection. The algorithm was tested to determine its efficiency and failure rate, defined as the number of image frames where automated tracking failed, or required user intervention. The accuracy and precision of measuring three-dimensional motion were assessed using a robotic controlled, tibiofemoral knee phantom programmed to mimic a subject with a total knee replacement performing a stair ascent activity. Accuracy was assessed by comparing the measurements of the single-plane radiographic tracking technique to those of an optical tracking system, and quantified by the measurement discrepancy between the two systems using the Bland-Altman technique. Precision was assessed through a series of repeated measurements of the tibiofemoral kinematics, and was quantified using the across-trial deviations of the repeated kinematic measurements. The safety of the imaging procedure was assessed by measuring the effective dose of ionizing radiation associated with the x-ray exposures, and analyzing its relative risk to a human subject. The automated tracking algorithm displayed a failure rate of 2% and achieved an average computational throughput of 8 image frames/s. Mean differences between the radiographic and optical measurements for translations and rotations were less than 0.08 mm and 0.07° in-plane, and 0.24 mm and 0.6° out-of-plane. The repeatability of kinematics measurements performed using the radiographic tracking technique was better than ±0.09 mm and 0.12° in-plane, and ±0.70 mm and ±0.07° out-of-plane. The effective dose associated with the imaging protocol used was 15 μSv for 10 s of radiographic cine acquisition. This study demonstrates the ability to accurately measure knee-joint kinematics using a single-plane radiographic measurement technique. The measurement technique can be easily implemented at most clinical centers equipped with a modern-day radiographic x-ray system. The dose of ionizing radiation associated with the image acquisition represents a minimal risk to any subjects undergoing the examination.

  13. Reference-Frame-Independent and Measurement-Device-Independent Quantum Key Distribution Using One Single Source

    NASA Astrophysics Data System (ADS)

    Li, Qian; Zhu, Changhua; Ma, Shuquan; Wei, Kejin; Pei, Changxing

    2018-04-01

    Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all detector side-channel attacks. However, practical implementations of MDI-QKD, which require two-photon interferences from separated independent single-photon sources and a nontrivial reference alignment procedure, are still challenging with current technologies. Here, we propose a scheme that significantly reduces the experimental complexity of two-photon interferences and eliminates reference frame alignment by the combination of plug-and-play and reference frame independent MDI-QKD. Simulation results show that the secure communication distance can be up to 219 km in the finite-data case and the scheme has good potential for practical MDI-QKD systems.

  14. Some aspects of the analysis of geodetic strain observations in kinematic models

    NASA Astrophysics Data System (ADS)

    Welsch, W. M.

    1986-11-01

    Frequently, deformation processes are analyzed in static models. In many cases, this procedure is justified, in particular if the deformation occurring is a singular event. If. however, the deformation is a continuous process, as is the case, for instance, with recent crustal movements, the analysis in kinematic models is more commensurate with the problem because the factor "time" is considered an essential part of the model. Some specialities have to be considered when analyzing geodetic strain observations in kinematic models. They are dealt with in this paper. After a brief derivation of the basic kinematic model and the kinematic strain model, the following subjects are treated: the adjustment of the pointwise velocity field and the derivation of strain-rate parameters; the fixing of the kinematic reference system as part of the geodetic datum; statistical tests of models by testing linear hypotheses; the invariance of kinematic strain-rate parameters with respect to transformations of the coordinate-system and the geodetic datum; the interpolation of strain rates by finite-element methods. After the representation of some advanced models for the description of secular and episodic kinematic processes, the data analysis in dynamic models is regarded as a further generalization of deformation analysis.

  15. 2001 GPS and Classical Survey at Medicina Observatory: Local Tie and VLBI Antenna's Reference Point Determination

    NASA Astrophysics Data System (ADS)

    Vittuari, Luca; Sarti, Pierguido; Tomasi, Paolo

    2001-12-01

    During a 6 days campaign in June 2001, we have performed a local survey at Medicina Observatory using classical geodesy and GPS techniques in order to determine the effects of an undergone track repair. We have determined the position of the reference point P within a local and ITRF2000 (epoch 1997.0) reference frames using trilateration and triangulation: Pclas_{loc}^{2001}=(21.580pm0.001,45.536pm0.001,17.699pm0.001) Pclas_{loc}^{2001}=(21.580pm0.001,45.536pm0.001,17.699pm0.001) Pclas_{ITRF2000}^{1997.0}=(4461369.982pm0.001,919596.818pm0.001,4449559.207pm0.001) Kinematic GPS has also given interesting results:

  16. Adaptive Gaze Strategies for Locomotion with Constricted Visual Field

    PubMed Central

    Authié, Colas N.; Berthoz, Alain; Sahel, José-Alain; Safran, Avinoam B.

    2017-01-01

    In retinitis pigmentosa (RP), loss of peripheral visual field accounts for most difficulties encountered in visuo-motor coordination during locomotion. The purpose of this study was to accurately assess the impact of peripheral visual field loss on gaze strategies during locomotion, and identify compensatory mechanisms. Nine RP subjects presenting a central visual field limited to 10–25° in diameter, and nine healthy subjects were asked to walk in one of three directions—straight ahead to a visual target, leftward and rightward through a door frame, with or without obstacle on the way. Whole body kinematics were recorded by motion capture, and gaze direction in space was reconstructed using an eye-tracker. Changes in gaze strategies were identified in RP subjects, including extensive exploration prior to walking, frequent fixations of the ground (even knowing no obstacle was present), of door edges, essentially of the proximal one, of obstacle edge/corner, and alternating door edges fixations when approaching the door. This was associated with more frequent, sometimes larger rapid-eye-movements, larger movements, and forward tilting of the head. Despite the visual handicap, the trajectory geometry was identical between groups, with a small decrease in walking speed in RPs. These findings identify the adaptive changes in sensory-motor coordination, in order to ensure visual awareness of the surrounding, detect changes in spatial configuration, collect information for self-motion, update the postural reference frame, and update egocentric distances to environmental objects. They are of crucial importance for the design of optimized rehabilitation procedures. PMID:28798674

  17. Emotional valence and contextual affordances flexibly shape approach-avoidance movements

    PubMed Central

    Saraiva, Ana Carolina; Schüür, Friederike; Bestmann, Sven

    2013-01-01

    Behavior is influenced by the emotional content—or valence—of stimuli in our environment. Positive stimuli facilitate approach, whereas negative stimuli facilitate defensive actions such as avoidance (flight) and attack (fight). Facilitation of approach or avoidance movements may also be influenced by whether it is the self that moves relative to a stimulus (self-reference) or the stimulus that moves relative to the self (object-reference), adding flexibility and context-dependence to behavior. Alternatively, facilitation of approach avoidance movements may happen in a pre-defined and muscle-specific way, whereby arm flexion is faster to approach positive (e.g., flexing the arm brings a stimulus closer) and arm extension faster to avoid negative stimuli (e.g., extending the arm moves the stimulus away). While this allows for relatively fast responses, it may compromise the flexibility offered by contextual influences. Here we asked under which conditions approach-avoidance actions are influenced by contextual factors (i.e., reference-frame). We manipulated the reference-frame in which actions occurred by asking participants to move a symbolic manikin (representing the self) toward or away from a positive or negative stimulus, and move a stimulus toward or away from the manikin. We also controlled for the type of movements used to approach or avoid in each reference. We show that the reference-frame influences approach-avoidance actions to emotional stimuli, but additionally we find muscle-specificity for negative stimuli in self-reference contexts. We speculate this muscle-specificity may be a fast and adaptive response to threatening stimuli. Our results confirm that approach-avoidance behavior is flexible and reference-frame dependent, but can be muscle-specific depending on the context and valence of the stimulus. Reference-frame and stimulus-evaluation are key factors in guiding approach-avoidance behavior toward emotional stimuli in our environment. PMID:24379794

  18. Jet Precession Driven by a Supermassive Black Hole Binary System in the BL Lac Object PG 1553+113

    NASA Astrophysics Data System (ADS)

    Caproni, Anderson; Abraham, Zulema; Motter, Juliana Cristina; Monteiro, Hektor

    2017-12-01

    The recent discovery of a roughly simultaneous periodic variability in the light curves of the BL Lac object PG 1553+113 at several electromagnetic bands represents the first case of such odd behavior reported in the literature. Motivated by this, we analyzed 15 GHz interferometric maps of the parsec-scale radio jet of PG 1553+113 to verify the presence of a possible counterpart of this periodic variability. We used the Cross-entropy statistical technique to obtain the structural parameters of the Gaussian components present in the radio maps of this source. We kinematically identified seven jet components formed coincidentally with flare-like features seen in the γ-ray light curve. From the derived jet component positions in the sky plane and their kinematics (ejection epochs, proper motions, and sky position angles), we modeled their temporal changes in terms of a relativistic jet that is steadily precessing in time. Our results indicate a precession period in the observer’s reference frame of 2.24 ± 0.03 years, compatible with the periodicity detected in the light curves of PG 1553+113. However, the maxima of the jet Doppler boosting factor are systematically delayed relative to the peaks of the main γ-ray flares. We propose two scenarios that could explain this delay, both based on the existence of a supermassive black hole binary system in PG 1553+113. We estimated the characteristics of this putative binary system that also would be responsible for driving the inferred jet precession.

  19. A kinematic model for 3-D head-free gaze-shifts

    PubMed Central

    Daemi, Mehdi; Crawford, J. Douglas

    2015-01-01

    Rotations of the line of sight are mainly implemented by coordinated motion of the eyes and head. Here, we propose a model for the kinematics of three-dimensional (3-D) head-unrestrained gaze-shifts. The model was designed to account for major principles in the known behavior, such as gaze accuracy, spatiotemporal coordination of saccades with vestibulo-ocular reflex (VOR), relative eye and head contributions, the non-commutativity of rotations, and Listing's and Fick constraints for the eyes and head, respectively. The internal design of the model was inspired by known and hypothesized elements of gaze control physiology. Inputs included retinocentric location of the visual target and internal representations of initial 3-D eye and head orientation, whereas outputs were 3-D displacements of eye relative to the head and head relative to shoulder. Internal transformations decomposed the 2-D gaze command into 3-D eye and head commands with the use of three coordinated circuits: (1) a saccade generator, (2) a head rotation generator, (3) a VOR predictor. Simulations illustrate that the model can implement: (1) the correct 3-D reference frame transformations to generate accurate gaze shifts (despite variability in other parameters), (2) the experimentally verified constraints on static eye and head orientations during fixation, and (3) the experimentally observed 3-D trajectories of eye and head motion during gaze-shifts. We then use this model to simulate how 2-D eye-head coordination strategies interact with 3-D constraints to influence 3-D orientations of the eye-in-space, and the implications of this for spatial vision. PMID:26113816

  20. Plate Motions, Regional Deformation, and Time-Variation of Plate Motions

    NASA Technical Reports Server (NTRS)

    Gordon, R. G.

    1998-01-01

    The significant results obtained with support of this grant include the following: (1) Using VLBI data in combination with other geodetical, geophysical, and geological data to bound the present rotation of the Colorado Plateau, and to evaluate to its implications for the kinematics and seismogenic potential of the western half of the conterminous U.S. (2) Determining realistic estimates of uncertainties for VLBI data and then applying the data and uncertainties to obtain an upper bound on the integral of deformation within the "stable interior" of the North American and other plates and thus to place an upper bound on the seismogenic potential within these regions. (3) Combining VLBI data with other geodetic, geophysical, and geologic data to estimate the motion of coastal California in a frame of reference attached to the Sierra Nevada-Great Valley microplate. This analysis has provided new insights into the kinematic boundary conditions that may control or at least strongly influence the locations of asperities that rupture in great earthquakes along the San Andreas transform system. (4) Determining a global tectonic model from VLBI geodetic data that combines the estimation of plate angular velocities with individual site linear velocities where tectonically appropriate. and (5) Investigation of the some of the outstanding problems defined by the work leading to global plate motion model NUVEL-1. These problems, such as the motion between the Pacific and North American plates and between west Africa and east Africa, are focused on regions where the seismogenic potential may be greater than implied by published plate tectonic models.

  1. Parallel updating and weighting of multiple spatial maps for visual stability during whole body motion

    PubMed Central

    Medendorp, W. P.

    2015-01-01

    It is known that the brain uses multiple reference frames to code spatial information, including eye-centered and body-centered frames. When we move our body in space, these internal representations are no longer in register with external space, unless they are actively updated. Whether the brain updates multiple spatial representations in parallel, or whether it restricts its updating mechanisms to a single reference frame from which other representations are constructed, remains an open question. We developed an optimal integration model to simulate the updating of visual space across body motion in multiple or single reference frames. To test this model, we designed an experiment in which participants had to remember the location of a briefly presented target while being translated sideways. The behavioral responses were in agreement with a model that uses a combination of eye- and body-centered representations, weighted according to the reliability in which the target location is stored and updated in each reference frame. Our findings suggest that the brain simultaneously updates multiple spatial representations across body motion. Because both representations are kept in sync, they can be optimally combined to provide a more precise estimate of visual locations in space than based on single-frame updating mechanisms. PMID:26490289

  2. Frame by Frame II: A Filmography of the African American Image, 1978-1994.

    ERIC Educational Resources Information Center

    Klotman, Phyllis R.; Gibson, Gloria J.

    A reference guide on African American film professionals, this book is a companion volume to the earlier "Frame by Frame I." It focuses on giving credit to African Americans who have contributed their talents to a film industry that has scarcely recognized their contributions, building on the aforementioned "Frame by Frame I,"…

  3. Radio stars - A possible link between the Hipparcos optical reference frame and an extra-galactic very long baseline interferometry reference frame

    NASA Technical Reports Server (NTRS)

    Lestrade, J.-F.; Preston, R. A.; Slade, M. A.

    1983-01-01

    The concept of typing the Hipparcos optical and the JPL VLBI frames of reference by means of VLBI measurements of the positions and proper motions of the radio components of some bright stars is considered. The properties of the thermal and non-thermal radio-stars are discussed and 22 candidate stars are selected to achieve this tie. A description is given of the first VLBI attempt to detect these stars on the intercontinental baselines of the Deep Space Network with the Mark II recording system.

  4. Analog Landau-He-McKellar-Wilkens quantization due to noninertial effects of the Fermi-Walker reference frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakke, Knut

    2010-05-15

    We will show that when a neutral particle with permanent electric dipole moment interacts with a specific field configuration when the local reference frames of the observers are Fermi-Walker transported, the Landau quantization analog to the He-McKellar-Wilkens setup arises in the nonrelativistic quantum dynamics of the neutral particle due the noninertial effects of the Fermi-Walker reference frame. We show that the noninertial effects do not break the infinity degeneracy of the energy levels, but in this case, the cyclotron frequency depends on the angular velocity.

  5. A Celestial Reference Frame at X/ka-Band (8.4/32 Ghz) for Deep Space Navigation

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Clark, J. E.; Garcia-Miro, C.; Horiuchi, S.; Romero-Wolf, A.; Snedeker, L.; Sotuela, I.

    2012-01-01

    Deep space tracking and navigation are done in a quasi-inertial reference frame based upon the angular positions of distant active galactic nuclei (AGN). These objects, which are found at extreme distances characterized by median redshifts of z = 1, are ideal for reference frame definition because they exhibit no measurable parallax or proper motion. They are thought to be powered by super massive black holes whose gravitational energy drives galactic sized relativistic jets. These jets produce synchrotron emissions which are detectable by modern radio techniques such as Very Long baseline Interferometry (VLBI).

  6. Quantum mechanics in noninertial reference frames: Violations of the nonrelativistic equivalence principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klink, W.H.; Wickramasekara, S., E-mail: wickrama@grinnell.edu; Department of Physics, Grinnell College, Grinnell, IA 50112

    2014-01-15

    In previous work we have developed a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group that includes transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as is the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. A special feature of these previously constructed representations is that they all respect the non-relativistic equivalence principle, wherein the fictitious forces associated with linear acceleration canmore » equivalently be described by gravitational forces. In this paper we exhibit a large class of cocycle representations of the Galilean line group that violate the equivalence principle. Nevertheless the classical mechanics analogue of these cocycle representations all respect the equivalence principle. -- Highlights: •A formulation of Galilean quantum mechanics in non-inertial reference frames is given. •The key concept is the Galilean line group, an infinite dimensional group. •A large class of general cocycle representations of the Galilean line group is constructed. •These representations show violations of the equivalence principle at the quantum level. •At the classical limit, no violations of the equivalence principle are detected.« less

  7. Language supports young children’s use of spatial relations to remember locations

    PubMed Central

    Miller, Hilary E.; Patterson, Rebecca; Simmering, Vanessa R.

    2016-01-01

    Two experiments investigated the role of language in children’s spatial recall performance. In particular, we assessed whether selecting an intrinsic reference frame could be improved through verbal encoding. Selecting an intrinsic reference frame requires remembering locations relative to nearby objects independent of one’s body (egocentric) or distal environmental (allocentric) cues, and does not reliably occur in children under 5 years of age (Nardini, Burgess, Breckenridge, & Atkinson, 2006). The current studies tested the relation between spatial language and 4-year-olds’ selection of an intrinsic reference frame in spatial recall. Experiment 1 showed that providing 4-year-olds with location-descriptive cues during (Exp. 1a) or before (Exp. 1b) the recall task improved performance both overall and specifically on trials relying most on an intrinsic reference frame. Additionally, children’s recall performance was predicted by their verbal descriptions of the task space (Exp. 1a control condition). Non-verbally highlighting relations among objects during the recall task (Exp. 2) supported children’s performance relative to the control condition, but significantly less than the location-descriptive cues. These results suggest that the ability to verbally represent relations is a potential mechanism that could account for developmental changes in the selection of an intrinsic reference frame during spatial recall. PMID:26896902

  8. Language supports young children's use of spatial relations to remember locations.

    PubMed

    Miller, Hilary E; Patterson, Rebecca; Simmering, Vanessa R

    2016-05-01

    Two experiments investigated the role of language in children's spatial recall performance. In particular, we assessed whether selecting an intrinsic reference frame could be improved through verbal encoding. Selecting an intrinsic reference frame requires remembering locations relative to nearby objects independent of one's body (egocentric) or distal environmental (allocentric) cues, and does not reliably occur in children under 5 years of age (Nardini, Burgess, Breckenridge, & Atkinson, 2006). The current studies tested the relation between spatial language and 4-year-olds' selection of an intrinsic reference frame in spatial recall. Experiment 1 showed that providing 4-year-olds with location-descriptive cues during (Exp. 1a) or before (Exp. 1b) the recall task improved performance both overall and specifically on trials relying most on an intrinsic reference frame. Additionally, children's recall performance was predicted by their verbal descriptions of the task space (Exp. 1a control condition). Non-verbally highlighting relations among objects during the recall task (Exp. 2) supported children's performance relative to the control condition, but significantly less than the location-descriptive cues. These results suggest that the ability to verbally represent relations is a potential mechanism that could account for developmental changes in the selection of an intrinsic reference frame during spatial recall. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Thomas precession, Wigner rotations and gauge transformations

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.; Son, D.

    1987-01-01

    The exact Lorentz kinematics of the Thomas precession is discussed in terms of Wigner's O(3)-like little group which describes rotations in the Lorentz frame in which the particle is at rest. A Lorentz-covariant form for the Thomas factor is derived. It is shown that this factor is a Lorentz-boosted rotation matrix, which becomes a gauge transformation in the infinite-momentum or zero-mass limit.

  10. A Modernized National Spatial Reference System in 2022: Focus on the Caribbean Terrestrial Reference Frame

    NASA Astrophysics Data System (ADS)

    Roman, D. R.

    2017-12-01

    In 2022, the National Geodetic Survey will replace all three NAD 83 reference frames the four new terrestrial reference frames. Each frame will be named after a tectonic plate (North American, Pacific, Caribbean and Mariana) and each will be related to the IGS frame through three Euler Pole parameters (EPPs). This talk will focus on practical application in the Caribbean region. A working group is being re-established for development of the North American region and will likely also result in analysis of the Pacific region as well. Both of these regions are adequately covered with existing CORS sites to model the EPPs. The Mariana region currently lacks sufficient coverage, but a separate project is underway to collect additional information to help in defining EPPs for that region at a later date. The Caribbean region has existing robust coverage through UNAVCO's COCONet and other data sets, but these require further analysis. This discussion will focus on practical examination of Caribbean sites to establish candidates for determining the Caribbean frame EPPs as well as an examination of any remaining velocities that might inform a model of the remaining velocities within that frame (Intra-Frame Velocity Model). NGS has a vested interest in defining such a model to meet obligations to U.S. citizens in Puerto Rico and the U.S. Virgin Islands. Beyond this, NGS aims to collaborate with other countries in the region through efforts with SIRGAS and UN-GGIM-Americas for a more acceptable regional model to serve everyone's needs.

  11. Second-order Compton-Getting effect on arbitrary intensity distribution

    NASA Technical Reports Server (NTRS)

    Ng, C. K.

    1985-01-01

    Theoretical studies of energetic particles in space are often referred to a special frame of reference. To compare theory with experiment, one has to transform the particle distribution from the special frame to the observer's frame, or vice versa. Various methods have been derived to obtain the directional distribution in the comoving frame from the directional fluxes measured on a spacecraft. These methods have become progressively complicated as increasingly detailed directional particle data become available. A set of 2nd order correct formulae for the transformation of an arbitrary differential intensity distribution, expressed as a series of spherical harmonics, between any two frames in constant relative motion is presented. These formulae greatly simplify the complicated procedures currently in use for the determination of the differential intensity distribution in a comoving frame.

  12. Measurement of inclusive jet production and nuclear modifications in pPb collisions at $$\\sqrt{s_{_\\mathrm {NN}}} =5.02\\,\\mathrm{TeV} $$

    DOE PAGES

    Khachatryan, Vardan

    2016-07-04

    In this study, inclusive jet production in pPb collisions at a nucleon–nucleon (NN) center-of-mass energy of √ sNN = 5.02 TeV is studied with the CMS detector at the LHC. A data sample corresponding to an integrated luminosity of 30.1 nb -1 is analyzed. The jet transverse momentum spectra are studied in seven pseudorapidity intervals covering the range -2.0 < η CM < 1.5 in the NN center-of-mass frame. The jet production yields at forward and backward pseudorapidity are compared and no significant asymmetry about ηCM=0 is observed in the measured kinematic range. The measurements in the pPb system aremore » compared to reference jet spectra obtained by extrapolation from previous measurements in pp collisions at √s = 7 TeV. In all pseudorapidity ranges, nuclear modifications in inclusive jet production are found to be small, as predicted by next-to-leading order perturbative QCD calculations that incorporate nuclear effects in the parton distribution functions.« less

  13. Misalignment Effect Function Measurement for Oblique Rotation Axes: Counterintuitive Predictions and Theoretical Extensions

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Adelstein, Bernard D.; Yeom, Kiwon

    2013-01-01

    The Misalignment Effect Function (MEF) describes the decrement in manual performance associated with a rotation between operators' visual display frame of reference and that of their manual control. It now has been empirically determined for rotation axes oblique to canonical body axes and is compared with the MEF previously measured for rotations about canonical axes. A targeting rule, called the Secant Rule, based on these earlier measurements is derived from a hypothetical process and shown to describe some of the data from three previous experiments. It explains the motion trajectories determined for rotations less than 65deg in purely kinematic terms without the need to appeal to a mental rotation process. Further analysis of this rule in three dimensions applied to oblique rotation axes leads to a somewhat surprising expectation that the difficulty posed by rotational misalignment should get harder as the required movement is shorter. This prediction is confirmed. Geometry underlying this rule also suggests analytic extensions for predicting more generally the difficulty of making movements in arbitrary directions subject to arbitrary misalignments.

  14. Different strategies for spatial updating in yaw and pitch path integration

    PubMed Central

    Goeke, Caspar M.; König, Peter; Gramann, Klaus

    2013-01-01

    Research in spatial navigation revealed the existence of discrete strategies defined by the use of distinct reference frames during virtual path integration. The present study investigated the distribution of these navigation strategies as a function of gender, video gaming experience, and self-estimates of spatial navigation abilities in a population of 300 subjects. Participants watched videos of virtual passages through a star-field with one turn in either the horizontal (yaw) or the vertical (pitch) axis. At the end of a passage they selected one out of four homing arrows to indicate the initial starting location. To solve the task, participants could employ two discrete strategies, navigating within either an egocentric or an allocentric reference frame. The majority of valid subjects (232/260) consistently used the same strategy in more than 75% of all trials. With that approach 33.1% of all participants were classified as Turners (using an egocentric reference frame on both axes) and 46.5% as Non-turners (using an allocentric reference frame on both axes). 9.2% of all participants consistently used an egocentric reference frame in the yaw plane but an allocentric reference frame in the pitch plane (Switcher). Investigating the influence of gender on navigation strategies revealed that females predominantly used the Non-turner strategy while males used both the Turner and the Non-turner strategy with comparable probabilities. Other than expected, video gaming experience did not influence strategy use. Based on a strong quantitative basis with the sample size about an order of magnitude larger than in typical psychophysical studies these results demonstrate that most people reliably use one out of three possible navigation strategies (Turners, Non-turners, Switchers) for spatial updating and provides a sound estimate of how those strategies are distributed within the general population. PMID:23412683

  15. Importance of baseline specification in evaluating conservation interventions and achieving no net loss of biodiversity.

    PubMed

    Bull, J W; Gordon, A; Law, E A; Suttle, K B; Milner-Gulland, E J

    2014-06-01

    There is an urgent need to improve the evaluation of conservation interventions. This requires specifying an objective and a frame of reference from which to measure performance. Reference frames can be baselines (i.e., known biodiversity at a fixed point in history) or counterfactuals (i.e., a scenario that would have occurred without the intervention). Biodiversity offsets are interventions with the objective of no net loss of biodiversity (NNL). We used biodiversity offsets to analyze the effects of the choice of reference frame on whether interventions met stated objectives. We developed 2 models to investigate the implications of setting different frames of reference in regions subject to various biodiversity trends and anthropogenic impacts. First, a general analytic model evaluated offsets against a range of baseline and counterfactual specifications. Second, a simulation model then replicated these results with a complex real world case study: native grassland offsets in Melbourne, Australia. Both models showed that achieving NNL depended upon the interaction between reference frame and background biodiversity trends. With a baseline, offsets were less likely to achieve NNL where biodiversity was decreasing than where biodiversity was stable or increasing. With a no-development counterfactual, however, NNL was achievable only where biodiversity was declining. Otherwise, preventing development was better for biodiversity. Uncertainty about compliance was a stronger determinant of success than uncertainty in underlying biodiversity trends. When only development and offset locations were considered, offsets sometimes resulted in NNL, but not across an entire region. Choice of reference frame determined feasibility and effort required to attain objectives when designing and evaluating biodiversity offset schemes. We argue the choice is thus of fundamental importance for conservation policy. Our results shed light on situations in which biodiversity offsets may be an inappropriate policy instrument.

  16. Quantum mechanics in non-inertial reference frames: Time-dependent rotations and loop prolongations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klink, W.H., E-mail: william-klink@uiowa.edu; Wickramasekara, S., E-mail: wickrama@grinnell.edu; Department of Physics, Grinnell College, Grinnell, IA 50112

    2013-09-15

    This is the fourth in a series of papers on developing a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group to include transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. In previous work, we have shown that there exist representations of the Galilean line group that uphold the non-relativistic equivalence principle asmore » well as representations that violate the equivalence principle. In these previous studies, the focus was on linear accelerations. In this paper, we undertake an extension of the formulation to include rotational accelerations. We show that the incorporation of rotational accelerations requires a class of loop prolongations of the Galilean line group and their unitary cocycle representations. We recover the centrifugal and Coriolis force effects from these loop representations. Loops are more general than groups in that their multiplication law need not be associative. Hence, our broad theoretical claim is that a Galilean quantum theory that holds in arbitrary non-inertial reference frames requires going beyond groups and group representations, the well-established framework for implementing symmetry transformations in quantum mechanics. -- Highlights: •A formulation of Galilean quantum mechanics in non-inertial reference frames is presented. •The Galilei group is generalized to infinite dimensional Galilean line group. •Loop prolongations of Galilean line group contain central extensions of Galilei group. •Unitary representations of the loops are constructed. •These representations lead to terms in the Hamiltonian corresponding to fictitious forces, including centrifugal and Coriolis forces.« less

  17. Motion-based nearest vector metric for reference frame selection in the perception of motion.

    PubMed

    Agaoglu, Mehmet N; Clarke, Aaron M; Herzog, Michael H; Ögmen, Haluk

    2016-05-01

    We investigated how the visual system selects a reference frame for the perception of motion. Two concentric arcs underwent circular motion around the center of the display, where observers fixated. The outer (target) arc's angular velocity profile was modulated by a sine wave midflight whereas the inner (reference) arc moved at a constant angular speed. The task was to report whether the target reversed its direction of motion at any point during its motion. We investigated the effects of spatial and figural factors by systematically varying the radial and angular distances between the arcs, and their relative sizes. We found that the effectiveness of the reference frame decreases with increasing radial- and angular-distance measures. Drastic changes in the relative sizes of the arcs did not influence motion reversal thresholds, suggesting no influence of stimulus form on perceived motion. We also investigated the effect of common velocity by introducing velocity fluctuations to the reference arc as well. We found no effect of whether or not a reference frame has a constant motion. We examined several form- and motion-based metrics, which could potentially unify our findings. We found that a motion-based nearest vector metric can fully account for all the data reported here. These findings suggest that the selection of reference frames for motion processing does not result from a winner-take-all process, but instead, can be explained by a field whose strength decreases with the distance between the nearest motion vectors regardless of the form of the moving objects.

  18. SLR in the framework of the EGSIEM project

    NASA Astrophysics Data System (ADS)

    Maier, Andrea; Sušnik, Andreja; Meyer, Ulrich; Arnold, Daniel; Dach, Rolf; Jäggi, Adrian; Sośnica, Krzysztof; Thaller, Daniela

    2016-04-01

    This contribution describes the three roles Satellite Laser Ranging (SLR) is playing within the European Gravity Service for the Improved Emergency Management (EGSIEM). The purpose of this Horizon 2020 project is to combine monthly gravity field solutions from the Gravity Recovery and Climate Experiment (GRACE) mission that are derived by different institutions. The combined gravity field product will provide complementary information to traditional products for flood and drought monitoring and forecasting. First, SLR is used to validate Global Navigational Satellite System (GNSS) orbits, which are computed at the Astronomical Institute of the University of Bern. To ensure a consistent set of GNSS products (orbits, Earth rotation parameters, and clocks) a reprocessing campaign was initiated. The reprocessed products are based on the new Empirical CODE Orbit Model, which is used for all orbit products generated at the Center for Orbit Determination in Europe (CODE) from January 4, 2015 onwards. Since the kinematic orbits of GRACE will be based on these orbits, we present an in-depth validation of the GNSS orbits using SLR. Second, SLR to geodetic satellites is crucial for the estimation of the dynamical Earth's flattening term (C20) since this coefficient is degraded by aliasing when derived from GRACE data. We will compare the temporal variation of C20 with external solutions and demonstrate the benefit of involving a larger number of geodetic satellites. The third aspect is based on the fact that the gravity field product delivered by EGSIEM will include GRACE and SLR data. It is thus desirable to establish a reference frame based on both GNSS data and SLR observations. For this purpose it is planned to analyze SLR measurements to GNSS satellites equipped with a retroreflector array and to estimate common parameters such as station coordinates and geocenter coordinates from a combined set of SLR and GNSS data. We will present a workflow how to derive a common reference frame.

  19. UROKIN: A Software to Enhance Our Understanding of Urogenital Motion.

    PubMed

    Czyrnyj, Catriona S; Labrosse, Michel R; Graham, Ryan B; McLean, Linda

    2018-05-01

    Transperineal ultrasound (TPUS) allows for objective quantification of mid-sagittal urogenital mechanics, yet current practice omits dynamic motion information in favor of analyzing only a rest and a peak motion frame. This work details the development of UROKIN, a semi-automated software which calculates kinematic curves of urogenital landmark motion. A proof of concept analysis, performed using UROKIN on TPUS video recorded from 20 women with and 10 women without stress urinary incontinence (SUI) performing maximum voluntary contraction of the pelvic floor muscles. The anorectal angle and bladder neck were tracked while the motion of the pubic symphysis was used to compensate for the error incurred by TPUS probe motion during imaging. Kinematic curves of landmark motion were generated for each video and curves were smoothed, time normalized, and averaged within groups. Kinematic data yielded by the UROKIN software showed statistically significant differences between women with and without SUI in terms of magnitude and timing characteristics of the kinematic curves depicting landmark motion. Results provide insight into the ways in which UROKIN may be useful to study differences in pelvic floor muscle contraction mechanics between women with and without SUI and other pelvic floor disorders. The UROKIN software improves on methods described in the literature and provides unique capacity to further our understanding of urogenital biomechanics.

  20. Cross-Sensory Transfer of Reference Frames in Spatial Memory

    ERIC Educational Resources Information Center

    Kelly, Jonathan W.; Avraamides, Marios N.

    2011-01-01

    Two experiments investigated whether visual cues influence spatial reference frame selection for locations learned through touch. Participants experienced visual cues emphasizing specific environmental axes and later learned objects through touch. Visual cues were manipulated and haptic learning conditions were held constant. Imagined perspective…

  1. Dynamical Reference Frame: Current Relevance and Future Prospects

    NASA Technical Reports Server (NTRS)

    Standish, E. M., Jr

    2000-01-01

    Planetary and lunar ephemerides are no longer used for the determination of inertial space. Instead, the new fundamental reference frame, the International Celestial Reference Frame (ICRF), is inherently less susceptible to extraneous, non-inertial rotations than a dynamical reference frame determined by the ephemerides would be. Consequently, the ephemerides are now adjusted onto the ICRF, and they are fit to two modern, accurate observational data types: ranging (radar, lunar laser, spacecraft) and Very Long Baseline Interferometry (VLBI) (of spacecraft near planets). The uncertainties remaining in the inner planet ephemerides are on the order of 1 kilometer, both in relative positions between the bodies and in the orientation of the inner system as a whole. The predictive capabilities of the inner planet ephemerides are limited by the uncertainties in the masses of many asteroids. For this reason, future improvements to the ephemerides must await determinations of many asteroid masses. Until then, it will be necessary to constantly update the ephemerides with a continuous supply of observational data.

  2. Effects of adopting new precession, nutation and equinox corrections on the terrestrial reference frame

    NASA Technical Reports Server (NTRS)

    Zhu, S. Y.; Mueller, I. I.

    1982-01-01

    The effect of adopting definitive precession and equinox corrections on the terrestrial reference frame was investigated. It is noted that the effect on polar motion is a diurnal periodic term with an amplitude increasing linearly in time whole on UT1 it is a linear term: general principles are given to determine the effects of small rotations of the frame of a conventional inertial reference system (CIS) on the frame of the conventional terrestrial reference system (CTS); seven CTS options are presented, one of which is necessary to accommodate such rotation. Accommodating possible future changes in the astronomical nutation is discussed. The effects of differences which may exist between the various CTS's and CIS's on Earth rotation parameters (ERP) and how these differences can be determined are examined. It is shown that the CTS differences can be determined from observations made at the same site. The CIS differences by comparing the ERP's are determined by the different techniques during the same time period.

  3. Effects of adopting new precession, nutation and equinox corrections on the terrestrial reference frame

    NASA Technical Reports Server (NTRS)

    Zhu, S. Y.; Mueller, I. I.

    1982-01-01

    The effects of adopting new definitive precession and equinox corrections on the terrestrial reference frame was investigated. It is noted that: (1) the effect on polar motion is a diurnal periodic term with an amplitude increasing linearly in time whole on UT1 it is a linear term; (2) general principles are given to determine the effects of small rotations of the frame of a conventional inertial reference system (CIS) on the frame of the conventional terrestrial reference system (CTS); (3) seven CTS options are presented, one of which is necessary to accommodate such rotation. Accommodating possible future changes in the astronomical nutation is discussed. The effects of differences which may exist between the various CTS's and CIS's on Earth rotation parameters (ERP) and how these differences can be determined are examined. It is shown that the CTS differences can be determined from observations made at the same site, while the CIS differences by comparing the ERP's determined by the different techniques during the same time period.

  4. Time evolution of an SLR reference frame

    NASA Astrophysics Data System (ADS)

    Angermann, D.; Gerstl, M.; Kelm, R.; Müller, H.; Seemüller, W.; Vei, M.

    2002-07-01

    On the basis of LAGEOS-1 and LAGEOS-2 data we computed a 10-years (1990-2000) solution for SLR station positions and velocities. The paper describes the data processing with the DGFI software package DOGS. We present results for station coordinates and their time variation for 41 stations of the global SLR network, and discuss the stability and time evolution of the SLR reference frame established in the same way. We applied different methods to assess the quality and consistency of the SLR results. The results presented in this paper include: (1) a time series of weekly estimated station coordinates; (2) a comparison of a 10-year LAGEOS-1 and LAGEOS-2 solution; (3) a comparison of 2.5-year solutions with the combined 10-year solution to assess the internal stability and the time evolution of the SLR reference frame; (4) a comparison of the SLR reference frame with ITRF97; and (5) a comparison of SLR station velocities with those of ITRF97 and NNR NUVEL-1A.

  5. The Current Status and Tendency of China Millimeter Coordinate Frame Implementation and Maintenance

    NASA Astrophysics Data System (ADS)

    Cheng, P.; Cheng, Y.; Bei, J.

    2017-12-01

    China Geodetic Coordinate System 2000 (CGCS2000) was first officially declared as the national standard coordinate system on July 1, 2008. This reference frame was defined in the ITRF97 frame at epoch 2000.0 and included 2600 GPS geodetic control points. The paper discusses differences between China Geodetic Coordinate System 2000 (CGCS2000) and later updated ITRF versions, such as ITRF2014,in terms of technical implementation and maintenance. With the development of the Beidou navigation satellite system, especially third generation of BDS with signal global coverage in the future, and with progress of space geodetic technology, it is possible for us to establish a global millimeter-level reference frame based on space geodetic technology including BDS. The millimeter reference frame implementation concerns two factors: 1) The variation of geocenter motion estimation, and 2) the site nonlinear motion modeling. In this paper, the geocentric inversion methods are discussed and compared among results derived from various technical methods. Our nonlinear site movement modeling focuses on singular spectrum analysis method, which is of apparent advantages over earth physical effect modeling. All presented in the paper expected to provide reference to our future CGCS2000 maintenance.

  6. State-of-the-art satellite laser range modeling for geodetic and oceanographic applications

    NASA Technical Reports Server (NTRS)

    Klosko, Steve M.; Smith, David E.

    1993-01-01

    Significant improvements have been made in the modeling and accuracy of Satellite Laser Range (SLR) data since the launch of LAGEOS in 1976. Some of these include: improved models of the static geopotential, solid-Earth and ocean tides, more advanced atmospheric drag models, and the adoption of the J2000 reference system with improved nutation and precession. Site positioning using SLR systems currently yield approximately 2 cm static and 5 mm/y kinematic descriptions of the geocentric location of these sites. Incorporation of a large set of observations from advanced Satellite Laser Ranging (SLR) tracking systems have directly made major contributions to the gravitational fields and in advancing the state-of-the-art in precision orbit determination. SLR is the baseline tracking system for the altimeter bearing TOPEX/Poseidon and ERS-1 satellites and thus, will play an important role in providing the Conventional Terrestrial Reference Frame for instantaneously locating the geocentric position of the ocean surface over time, in providing an unchanging range standard for altimeter range calibration, and for improving the geoid models to separate gravitational from ocean circulation signals seen in the sea surface. Nevertheless, despite the unprecedented improvements in the accuracy of the models used to support orbit reduction of laser observations, there still remain systematic unmodeled effects which limit the full exploitation of modern SLR data.

  7. 3D artifact for calibrating kinematic parameters of articulated arm coordinate measuring machines

    NASA Astrophysics Data System (ADS)

    Zhao, Huining; Yu, Liandong; Xia, Haojie; Li, Weishi; Jiang, Yizhou; Jia, Huakun

    2018-06-01

    In this paper, a 3D artifact is proposed to calibrate the kinematic parameters of articulated arm coordinate measuring machines (AACMMs). The artifact is composed of 14 reference points with three different heights, which provides 91 different reference lengths, and a method is proposed to calibrate the artifact with laser tracker multi-stations. Therefore, the kinematic parameters of an AACMM can be calibrated in one setup of the proposed artifact, instead of having to adjust the 1D or 2D artifacts to different positions and orientations in the existing methods. As a result, it saves time to calibrate the AACMM with the proposed artifact in comparison with the traditional 1D or 2D artifacts. The performance of the AACMM calibrated with the proposed artifact is verified with a 600.003 mm gauge block. The result shows that the measurement accuracy of the AACMM is improved effectively through calibration with the proposed artifact.

  8. VLBI astrometry and the Hipparcos link to the extragalactic reference frame

    NASA Technical Reports Server (NTRS)

    Lestrade, J.-F.; Preston, R. A.; Gabuzda, D. C.; Phillips, R. B.

    1991-01-01

    Intermediate results are reported from a program of VLBI radio observations designed to establish a link between the rotating reference frame of the ESA Hipparcos astrometric satellite and the extragalactic VLBI frame being developed by the International Earth Rotation Service. A group of 12 link stars have been observed at various epochs since 1982, and more observations are being undertaken during the 3-yr Hipparcos mission (1989-1992). Analysis of data on Algol indicates that phase-reference VLBI can determine an expected sky displacement of 4 marcsec with an uncertainty of 0.5 marcsec, even when the activity is only a few mJy.

  9. The right frame of reference makes it simple: an example of introductory mechanics supported by video analysis of motion

    NASA Astrophysics Data System (ADS)

    Klein, P.; Gröber, S.; Kuhn, J.; Fleischhauer, A.; Müller, A.

    2015-01-01

    The selection and application of coordinate systems is an important issue in physics. However, considering different frames of references in a given problem sometimes seems un-intuitive and is difficult for students. We present a concrete problem of projectile motion which vividly demonstrates the value of considering different frames of references. We use this example to explore the effectiveness of video-based motion analysis (VBMA) as an instructional technique at university level in enhancing students’ understanding of the abstract concept of coordinate systems. A pilot study with 47 undergraduate students indicates that VBMA instruction improves conceptual understanding of this issue.

  10. Quantum mechanics in noninertial reference frames: Relativistic accelerations and fictitious forces

    NASA Astrophysics Data System (ADS)

    Klink, W. H.; Wickramasekara, S.

    2016-06-01

    One-particle systems in relativistically accelerating reference frames can be associated with a class of unitary representations of the group of arbitrary coordinate transformations, an extension of the Wigner-Bargmann definition of particles as the physical realization of unitary irreducible representations of the Poincaré group. Representations of the group of arbitrary coordinate transformations become necessary to define unitary operators implementing relativistic acceleration transformations in quantum theory because, unlike in the Galilean case, the relativistic acceleration transformations do not themselves form a group. The momentum operators that follow from these representations show how the fictitious forces in noninertial reference frames are generated in quantum theory.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doug Blankenship

    Natural fracture data from wells 33-7, 33A-7,52A-7, 52B-7 and 83-11 at West Flank. Fracture orientations were determined from image logs of these wells (see accompanying submissions). Data files contain depth, apparent (in wellbore reference frame) and true (in geographic reference frame) azimuth and dip, respectively.

  12. On Translators' Cultural Frame of Functionist Reference

    ERIC Educational Resources Information Center

    Fu, Zhiyi

    2009-01-01

    A deep cognition with translators' cultural frame of functionist reference can help instructors and teachers adjust and extend patterns and schemes of translation and generate the optimal classroom conditions for acquisition of the target language. The author of the paper, in the perspectives of motivational, cognitive and communicative…

  13. Contribution of TIGA reprocessing to the ITRF densification

    NASA Astrophysics Data System (ADS)

    Rudenko, S.; Dähnn, M.; Gendt, G.; Brandt, A.; Nischan, T.

    2009-04-01

    Analysis of tide gauge measurements with the purpose of sea level change investigations requires a well defined reference frame. Such reference frame can be realized through precise positions of GPS stations located at or near tide gauges (TIGA stations) and analyzed within the IGS GPS Tide Gauge Benchmark Monitoring Pilot Project (TIGA). To tie this reference frame to the International Terrestrial Reference Frame (ITRF), one should process simultaneously GPS data from TIGA and IGS stations included in the ITRF. A time series of GPS station positions has been recently derived by reprocessing GPS data from about 400 GPS stations globally distributed covering totally time span from 1998 till 2008 using EPOS-Potsdam software developed at GFZ and improved in the recent years. The analysis is based on the use of IERS Conventions 2003, ITRF2005 as a priori reference frame, FES2004 ocean tide loading model, absolute phase centre variations for GPS satellite transmit and ground receive antennae and other models. About 220 stations of the solution are IGS ones and about 180 are TIGA GPS stations that are not IGS ones. The solution includes weekly coordinates of GPS stations, daily values of the Earth rotation parameters and their rates, as well as satellite antenna offsets. On the other hand, our new solution can contribute to the ITRF densification by providing positions of about 200 stations being not present in ITRF2005. The solution can be also used for the integration of regional frames. The paper presents the results of the analysis and the comparison of our solution with ITRF2005 and the solutions of other TIGA and IGS Analysis Centres.

  14. Reference Frames and 3-D Shape Perception of Pictured Objects: On Verticality and Viewpoint-From-Above

    PubMed Central

    van Doorn, Andrea J.; Wagemans, Johan

    2016-01-01

    Research on the influence of reference frames has generally focused on visual phenomena such as the oblique effect, the subjective visual vertical, the perceptual upright, and ambiguous figures. Another line of research concerns mental rotation studies in which participants had to discriminate between familiar or previously seen 2-D figures or pictures of 3-D objects and their rotated versions. In the present study, we disentangled the influence of the environmental and the viewer-centered reference frame, as classically done, by comparing the performances obtained in various picture and participant orientations. However, this time, the performance is the pictorial relief: the probed 3-D shape percept of the depicted object reconstructed from the local attitude settings of the participant. Comparisons between the pictorial reliefs based on different picture and participant orientations led to two major findings. First, in general, the pictorial reliefs were highly similar if the orientation of the depicted object was vertical with regard to the environmental or the viewer-centered reference frame. Second, a viewpoint-from-above interpretation could almost completely account for the shears occurring between the pictorial reliefs. More specifically, the shears could largely be considered as combinations of slants generated from the viewpoint-from-above, which was determined by the environmental as well as by the viewer-centered reference frame. PMID:27433329

  15. Ipsilateral wrist-ankle movements in the sagittal plane encoded in extrinsic reference frame.

    PubMed

    Muraoka, Tetsuro; Ishida, Yuki; Obu, Takashi; Crawshaw, Larry; Kanosue, Kazuyuki

    2013-04-01

    When performing oscillatory movements of two joints in the sagittal plane, there is a directional constraint for performing such movements. Previous studies could not distinguish whether the directional constraint reflected movement direction encoded in the extrinsic (outside the body) reference frame or in the intrinsic (the participants' torso/head) reference frame since participants performed coordinated movements in a sitting position where the torso/head was stationary relative to the external world. In order to discern the reference frame in the present study, participants performed paced oscillatory movements of the ipsilateral wrist and ankle in the sagittal plane in a standing position so that the torso/head moved relative to the external world. The coordinated movements were performed in one of two modes of coordination, moving the hand upward concomitant with either ankle plantarflexion or ankle dorsiflexion. The same directional mode relative to extrinsic space was more stable and accurate as compared with the opposite directional mode. When forearm position was changed from the pronated position to the supinated position, similar results were obtained, indicating that the results were independent of a particular coupling of muscles. These findings suggest that the directional constraint on ipsilateral joints movements in the sagittal plane reflects movement direction encoded in the extrinsic reference frame. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  16. Flying over uneven moving terrain based on optic-flow cues without any need for reference frames or accelerometers.

    PubMed

    Expert, Fabien; Ruffier, Franck

    2015-02-26

    Two bio-inspired guidance principles involving no reference frame are presented here and were implemented in a rotorcraft, which was equipped with panoramic optic flow (OF) sensors but (as in flying insects) no accelerometer. To test these two guidance principles, we built a tethered tandem rotorcraft called BeeRotor (80 grams), which was tested flying along a high-roofed tunnel. The aerial robot adjusts its pitch and hence its speed, hugs the ground and lands safely without any need for an inertial reference frame. The rotorcraft's altitude and forward speed are adjusted via two OF regulators piloting the lift and the pitch angle on the basis of the common-mode and differential rotor speeds, respectively. The robot equipped with two wide-field OF sensors was tested in order to assess the performances of the following two systems of guidance involving no inertial reference frame: (i) a system with a fixed eye orientation based on the curved artificial compound eye (CurvACE) sensor, and (ii) an active system of reorientation based on a quasi-panoramic eye which constantly realigns its gaze, keeping it parallel to the nearest surface followed. Safe automatic terrain following and landing were obtained with CurvACE under dim light to daylight conditions and the active eye-reorientation system over rugged, changing terrain, without any need for an inertial reference frame.

  17. FRAME, animal experimentation and the Three Rs: past, present and future.

    PubMed

    Balls, Michael

    2009-12-01

    At the opening of a meeting to celebrate the 50th anniversary of the publication of The Principles of Humane Experimental Technique, by W.M.S. Russell and R.L. Burch, and the 40th anniversary of the establishment of FRAME, some comments on the early days of the Charity are made, with particular reference to the special contributions made by its founder-Chairman, Dorothy Hegarty, and the author's own appointment as a Trustee, and later as Chairman. Reference is made to some key events and successes, and especially to the importance of FRAME's move from London to Nottingham, and the establishment of an ongoing collaboration with the University of Nottingham, including the setting-up of the FRAME Alternatives Laboratory. 2009 FRAME.

  18. Combined influence of visual scene and body tilt on arm pointing movements: gravity matters!

    PubMed

    Scotto Di Cesare, Cécile; Sarlegna, Fabrice R; Bourdin, Christophe; Mestre, Daniel R; Bringoux, Lionel

    2014-01-01

    Performing accurate actions such as goal-directed arm movements requires taking into account visual and body orientation cues to localize the target in space and produce appropriate reaching motor commands. We experimentally tilted the body and/or the visual scene to investigate how visual and body orientation cues are combined for the control of unseen arm movements. Subjects were asked to point toward a visual target using an upward movement during slow body and/or visual scene tilts. When the scene was tilted, final pointing errors varied as a function of the direction of the scene tilt (forward or backward). Actual forward body tilt resulted in systematic target undershoots, suggesting that the brain may have overcompensated for the biomechanical movement facilitation arising from body tilt. Combined body and visual scene tilts also affected final pointing errors according to the orientation of the visual scene. The data were further analysed using either a body-centered or a gravity-centered reference frame to encode visual scene orientation with simple additive models (i.e., 'combined' tilts equal to the sum of 'single' tilts). We found that the body-centered model could account only for some of the data regarding kinematic parameters and final errors. In contrast, the gravity-centered modeling in which the body and visual scene orientations were referred to vertical could explain all of these data. Therefore, our findings suggest that the brain uses gravity, thanks to its invariant properties, as a reference for the combination of visual and non-visual cues.

  19. Camera pose estimation to improve accuracy and reliability of joint angles assessed with attitude and heading reference systems.

    PubMed

    Lebel, Karina; Hamel, Mathieu; Duval, Christian; Nguyen, Hung; Boissy, Patrick

    2018-01-01

    Joint kinematics can be assessed using orientation estimates from Attitude and Heading Reference Systems (AHRS). However, magnetically-perturbed environments affect the accuracy of the estimated orientations. This study investigates, both in controlled and human mobility conditions, a trial calibration technic based on a 2D photograph with a pose estimation algorithm to correct initial difference in AHRS Inertial reference frames and improve joint angle accuracy. In controlled conditions, two AHRS were solidly affixed onto a wooden stick and a series of static and dynamic trials were performed in varying environments. Mean accuracy of relative orientation between the two AHRS was improved from 24.4° to 2.9° using the proposed correction method. In human conditions, AHRS were placed on the shank and the foot of a participant who performed repeated trials of straight walking and walking while turning, varying the level of magnetic perturbation in the starting environment and the walking speed. Mean joint orientation accuracy went from 6.7° to 2.8° using the correction algorithm. The impact of starting environment was also greatly reduced, up to a point where one could consider it as non-significant from a clinical point of view (maximum mean difference went from 8° to 0.6°). The results obtained demonstrate that the proposed method improves significantly the mean accuracy of AHRS joint orientation estimations in magnetically-perturbed environments and can be implemented in post processing of AHRS data collected during biomechanical evaluation of motion. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Combined Influence of Visual Scene and Body Tilt on Arm Pointing Movements: Gravity Matters!

    PubMed Central

    Scotto Di Cesare, Cécile; Sarlegna, Fabrice R.; Bourdin, Christophe; Mestre, Daniel R.; Bringoux, Lionel

    2014-01-01

    Performing accurate actions such as goal-directed arm movements requires taking into account visual and body orientation cues to localize the target in space and produce appropriate reaching motor commands. We experimentally tilted the body and/or the visual scene to investigate how visual and body orientation cues are combined for the control of unseen arm movements. Subjects were asked to point toward a visual target using an upward movement during slow body and/or visual scene tilts. When the scene was tilted, final pointing errors varied as a function of the direction of the scene tilt (forward or backward). Actual forward body tilt resulted in systematic target undershoots, suggesting that the brain may have overcompensated for the biomechanical movement facilitation arising from body tilt. Combined body and visual scene tilts also affected final pointing errors according to the orientation of the visual scene. The data were further analysed using either a body-centered or a gravity-centered reference frame to encode visual scene orientation with simple additive models (i.e., ‘combined’ tilts equal to the sum of ‘single’ tilts). We found that the body-centered model could account only for some of the data regarding kinematic parameters and final errors. In contrast, the gravity-centered modeling in which the body and visual scene orientations were referred to vertical could explain all of these data. Therefore, our findings suggest that the brain uses gravity, thanks to its invariant properties, as a reference for the combination of visual and non-visual cues. PMID:24925371

  1. Three-dimensional optical reconstruction of vocal fold kinematics using high-speed video with a laser projection system

    PubMed Central

    Luegmair, Georg; Mehta, Daryush D.; Kobler, James B.; Döllinger, Michael

    2015-01-01

    Vocal fold kinematics and its interaction with aerodynamic characteristics play a primary role in acoustic sound production of the human voice. Investigating the temporal details of these kinematics using high-speed videoendoscopic imaging techniques has proven challenging in part due to the limitations of quantifying complex vocal fold vibratory behavior using only two spatial dimensions. Thus, we propose an optical method of reconstructing the superior vocal fold surface in three spatial dimensions using a high-speed video camera and laser projection system. Using stereo-triangulation principles, we extend the camera-laser projector method and present an efficient image processing workflow to generate the three-dimensional vocal fold surfaces during phonation captured at 4000 frames per second. Initial results are provided for airflow-driven vibration of an ex vivo vocal fold model in which at least 75% of visible laser points contributed to the reconstructed surface. The method captures the vertical motion of the vocal folds at a high accuracy to allow for the computation of three-dimensional mucosal wave features such as vibratory amplitude, velocity, and asymmetry. PMID:26087485

  2. VLBI-based Products - Naval Oceanography Portal

    Science.gov Websites

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You terrestrial reference frames and to predict the variable orientation of the Earth in three-dimensional space antennas that define a VLBI-based Terrestrial Reference Frame (TRF) and the Earth Orientation Parameters

  3. Limited Aspects of Reality: Frames of Reference in Language Assessment

    ERIC Educational Resources Information Center

    Fulcher, Glenn; Svalberg, Agneta

    2013-01-01

    Language testers operate within two frames of reference: norm-referenced (NRT) and criterion-referenced testing (CRT). The former underpins the world of large-scale standardized testing that prioritizes variability and comparison. The latter supports substantive score meaning in formative and domain specific assessment. Some claim that the…

  4. Frames of Reference in African Proverbs on Disability.

    ERIC Educational Resources Information Center

    Devlieger, Patrick J.

    1999-01-01

    Fifty-five proverbs relating to disability were collected from sub-Saharan African countries and analyzed for larger frames of reference of personhood and cosmogony. Themes include warnings against laughing at a disabled person, personhood, existential insecurity, acceptance of what is, and the function and nature of disability. (DB)

  5. Equity and Satisfaction among the Elderly.

    ERIC Educational Resources Information Center

    Carp, Frances M.; And Others

    1982-01-01

    Compared the contribution of equity to that of aspiration, friends, and typical American as frames-of-reference for current status in predicting domain satisfactions and overall well-being. Results confirmed the relevance of an equity frame-of-reference in accounting for the satisfaction of older people with specific conditions of their lives.…

  6. Understanding Frame-of-Reference Training Success: A Social Learning Theory Perspective

    ERIC Educational Resources Information Center

    Sulsky, Lorne M.; Kline, Theresa J. B.

    2007-01-01

    Employing the social learning theory (SLT) perspective on training, we analysed the effects of alternative frame-of-reference (FOR) training protocols on various criteria of training effectiveness. Undergraduate participants (N = 65) were randomly assigned to one of four FOR training conditions and a control condition. Training effectiveness was…

  7. SU-G-BRA-02: Development of a Learning Based Block Matching Algorithm for Ultrasound Tracking in Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepard, A; Bednarz, B

    Purpose: To develop an ultrasound learning-based tracking algorithm with the potential to provide real-time motion traces of anatomy-based fiducials that may aid in the effective delivery of external beam radiation. Methods: The algorithm was developed in Matlab R2015a and consists of two main stages: reference frame selection, and localized block matching. Immediately following frame acquisition, a normalized cross-correlation (NCC) similarity metric is used to determine a reference frame most similar to the current frame from a series of training set images that were acquired during a pretreatment scan. Segmented features in the reference frame provide the basis for the localizedmore » block matching to determine the feature locations in the current frame. The boundary points of the reference frame segmentation are used as the initial locations for the block matching and NCC is used to find the most similar block in the current frame. The best matched block locations in the current frame comprise the updated feature boundary. The algorithm was tested using five features from two sets of ultrasound patient data obtained from MICCAI 2014 CLUST. Due to the lack of a training set associated with the image sequences, the first 200 frames of the image sets were considered a valid training set for preliminary testing, and tracking was performed over the remaining frames. Results: Tracking of the five vessel features resulted in an average tracking error of 1.21 mm relative to predefined annotations. The average analysis rate was 15.7 FPS with analysis for one of the two patients reaching real-time speeds. Computations were performed on an i5-3230M at 2.60 GHz. Conclusion: Preliminary tests show tracking errors comparable with similar algorithms at close to real-time speeds. Extension of the work onto a GPU platform has the potential to achieve real-time performance, making tracking for therapy applications a feasible option. This work is partially funded by NIH grant R01CA190298.« less

  8. Integrated GNSS Attitude Determination and Positioning for Direct Geo-Referencing

    PubMed Central

    Nadarajah, Nandakumaran; Paffenholz, Jens-André; Teunissen, Peter J. G.

    2014-01-01

    Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS navigation system to provide estimates of the position and attitude (orientation) of a 3D laser scanner. The proposed multi-sensor system (MSS) consists of multiple GNSS antennas rigidly mounted on the frame of a rotating laser scanner and a reference GNSS station with known coordinates. Precise GNSS navigation requires the resolution of the carrier phase ambiguities. The proposed method uses the multivariate constrained integer least-squares (MC-LAMBDA) method for the estimation of rotating frame ambiguities and attitude angles. MC-LAMBDA makes use of the known antenna geometry to strengthen the underlying attitude model and, hence, to enhance the reliability of rotating frame ambiguity resolution and attitude determination. The reliable estimation of rotating frame ambiguities is consequently utilized to enhance the relative positioning of the rotating frame with respect to the reference station. This integrated (array-aided) method improves ambiguity resolution, as well as positioning accuracy between the rotating frame and the reference station. Numerical analyses of GNSS data from a real-data campaign confirm the improved performance of the proposed method over the existing method. In particular, the integrated method yields reliable ambiguity resolution and reduces position standard deviation by a factor of about 0.8, matching the theoretical gain of 3/4 for two antennas on the rotating frame and a single antenna at the reference station. PMID:25036330

  9. Integrated GNSS attitude determination and positioning for direct geo-referencing.

    PubMed

    Nadarajah, Nandakumaran; Paffenholz, Jens-André; Teunissen, Peter J G

    2014-07-17

    Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS navigation system to provide estimates of the position and attitude (orientation) of a 3D laser scanner. The proposed multi-sensor system (MSS) consists of multiple GNSS antennas rigidly mounted on the frame of a rotating laser scanner and a reference GNSS station with known coordinates. Precise GNSS navigation requires the resolution of the carrier phase ambiguities. The proposed method uses the multivariate constrained integer least-squares (MC-LAMBDA) method for the estimation of rotating frame ambiguities and attitude angles. MC-LAMBDA makes use of the known antenna geometry to strengthen the underlying attitude model and, hence, to enhance the reliability of rotating frame ambiguity resolution and attitude determination. The reliable estimation of rotating frame ambiguities is consequently utilized to enhance the relative positioning of the rotating frame with respect to the reference station. This integrated (array-aided) method improves ambiguity resolution, as well as positioning accuracy between the rotating frame and the reference station. Numerical analyses of GNSS data from a real-data campaign confirm the improved performance of the proposed method over the existing method. In particular, the integrated method yields reliable ambiguity resolution and reduces position standard deviation by a factor of about 0:8, matching the theoretical gain of √ 3/4 for two antennas on the rotating frame and a single antenna at the reference station.

  10. Automatic Calibration of an Airborne Imaging System to an Inertial Navigation Unit

    NASA Technical Reports Server (NTRS)

    Ansar, Adnan I.; Clouse, Daniel S.; McHenry, Michael C.; Zarzhitsky, Dimitri V.; Pagdett, Curtis W.

    2013-01-01

    This software automatically calibrates a camera or an imaging array to an inertial navigation system (INS) that is rigidly mounted to the array or imager. In effect, it recovers the coordinate frame transformation between the reference frame of the imager and the reference frame of the INS. This innovation can automatically derive the camera-to-INS alignment using image data only. The assumption is that the camera fixates on an area while the aircraft flies on orbit. The system then, fully automatically, solves for the camera orientation in the INS frame. No manual intervention or ground tie point data is required.

  11. Varieties of virtualization

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.

    1991-01-01

    Natural environments have a content, i.e., the objects in them; a geometry, i.e., a pattern of rules for positioning and displacing the objects; and a dynamics, i.e., a system of rules describing the effects of forces acting on the objects. Human interaction with most common natural environments has been optimized by centuries of evolution. Virtual environments created through the human-computer interface similarly have a content, geometry, and dynamics, but the arbitrary character of the computer simulation creating them does not insure that human interaction with these virtual environments will be natural. The interaction, indeed, could be supernatural but it also could be impossible. An important determinant of the comprehensibility of a virtual environment is the correspondence between the environmental frames of reference and those associated with the control of environmental objects. The effects of rotation and displacement of control frames of reference with respect to corresponding environmental references differ depending upon whether perceptual judgement or manual tracking performance is measured. The perceptual effects of frame of reference displacement may be analyzed in terms of distortions in the process of virtualizing the synthetic environment space. The effects of frame of reference displacement and rotation have been studied by asking subjects to estimate exocentric direction in a virtual space.

  12. Tensor polarization of the ϕ meson photoproduced at high t

    NASA Astrophysics Data System (ADS)

    McCormick, K.; Audit, G.; Laget, J. M.; Adams, G.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Auger, T.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bonner, B. E.; Bouchigny, S.; Bradford, R.; Brooks, W. K.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Cetina, C.; Chen, S.; Cole, P. L.; Coleman, A.; Connelly, J.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; de Sanctis, E.; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Eckhause, M.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Eugenio, P.; Farhi, L.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Frolov, V.; Funsten, H.; Gaff, S. J.; Gai, M.; Garçon, M.; Gavalian, G.; Gilad, S.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Gordon, C. I.; Griffioen, K.; Guidal, M.; Guillo, M.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hancock, D.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Holtrop, M.; Hyde-Wright, C. E.; Ito, M. M.; Jenkins, D.; Joo, K.; Juengst, H. G.; Kelley, J. H.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuang, Y.; Kuhn, S. E.; Kuhn, J.; Lachniet, J.; Langheinrich, J.; Lawrence, D.; Li, Ji; Lukashin, K.; Major, W.; Manak, J. J.; Marchand, C.; McAleer, S.; McNabb, J. W.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Minehart, R.; Mirazita, M.; Miskimen, R.; Morand, L.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; Osipenko, M.; Park, K.; Pasyuk, E.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Sabourov, K.; Salgado, C.; Santoro, J. P.; Sanzone-Arenhovel, M.; Sapunenko, V.; Sargsyan, M.; Schumacher, R. A.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Skabelin, A. V.; Smith, E. S.; Smith, T.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stepanyan, S.; Stoler, P.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Witkowski, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zhao, J.; Zhou, Z.

    2004-03-01

    As part of a measurement [

    E. Anciant et al., Phys. Rev. Lett. 85, 4682 (2000)
    ] of the cross section of ϕ meson photoproduction to high momentum transfer, we measured the polar angular decay distribution of the outgoing K+ in the channel ϕ→ K+ K- in the ϕ center-of-mass frame (the helicity frame). We find that s -channel helicity conservation (SCHC) holds in the kinematical range where t -channel exchange dominates (up to -t˜2.5 GeV2 for Eγ =3.6 GeV ). Above this momentum, u -channel production of a ϕ meson dominates and induces a violation of SCHC. The deduced value of the ϕNN coupling constant lies in the upper range of previously reported values.

  13. Verification of the Polish Geodetic Reference Frame by Means of a New Solution Based on Permanent GNSS Data from the Years 2011-2014

    NASA Astrophysics Data System (ADS)

    Liwosz, T.; Ryczywolski, M.

    2016-12-01

    The new solution for the Polish geodetic primary GNSS network was created to verify the currently used reference frame (PL-ETRF2000). The new solution is based on more GNSS data (more daily observation sessions included, a longer data timespan, GLONASS observations added) which were processed in a newer reference frame (IGb08) according to up-to-date methodology and using the latest version of Bernese GNSS Software. The new long-term solution (spanning 3.7 years) was aligned to the IGb08 reference frame using a minimum constraints approach. We categorized Polish reference stations into two categories according to their data length. We obtained good agreement of the new solution with the PL-ETRF2000: for most stations position differences did not exceed 5 mm in horizontal, and 10 mm in vertical components. However, for 30 stations we observed discontinuities in position time series, mostly due to GNSS equipment changes, which occured after the introduction of PL-ETRF2000. Position changes due to the discontinuities reached 9.1 mm in horizontal components, and 26.9 mm in vertical components. The new solution takes into account position discontinuities, and in addition also includes six new stations which were installed after the introduction of the PL-ETRF2000. Therefore, we propose to update the currently-used reference frame for the Polish geodetic primary network (PL-ETRF2000) with the new solution. The new solution was also accepted by the EUREF Technical Working Group as a class A solution (highest accuracy) according to EUREF standards.

  14. [Effects of frame of reference on the judgments of whole-body vibration intensity].

    PubMed

    Suzuki, H

    1997-02-01

    Although the concept of the term 'riding comfort' is ambiguous, in the present paper it means a perceptual experience derived from the vibrational factors of a running railway vehicle. When we regard riding comfort evaluation as a perceptual judgment process, we must consider that what is perceived is dependent not only on the physical properties of the stimuli, but also on the frame of reference. The purpose of the present study is to examine the effect of the frame on the judgments of vibration intensity in the anchoring effect paradigm. Using the four-axis vibration apparatus, we conducted experiments for eighty subjects, in which frequencies and lateral accelerations of vibrations were changed. As the result, we found a clear anchoring effect. This suggests that we must take into consideration effects of frame of reference in terms of riding comfort criterion of railway vehicles.

  15. Formulation of blade-flutter spectral analyses in stationary reference frame

    NASA Technical Reports Server (NTRS)

    Kurkov, A. P.

    1984-01-01

    Analytic representations are developed for the discrete blade deflection and the continuous tip static pressure fields in a stationary reference frame. Considered are the sampling rates equal to the rotational frequency, equal to blade passing frequency, and for the pressure, equal to a multiple of the blade passing frequency. For the last two rates the expressions for determining the nodal diameters from the spectra are included. A procedure is presented for transforming the complete unsteady pressure field into a rotating frame of reference. The determination of the true flutter frequency by using two sensors is described. To illustrate their use, the developed procedures are used to interpret selected experimental results.

  16. Noninertial Multirelativity

    NASA Astrophysics Data System (ADS)

    Smarandache, Florentin

    2012-10-01

    We firstly propose an extension of Einstein's thought experiment with atomic clocks of the Special Theory of Relativity: considering non-constant accelerations and arbitrary 3D-curves for both a particle's speed and trajectory inside the rocket and respectively the rocket's speed and trajectory. And secondly we propose as research multiple reference frames F1, F2, , Fn moving on respectively arbitrary 3D-curves C1, C2, , Cn with respectively arbitrary non-constant accelerations a1, a2, , an and respectively initial velocities v1, v2, , vn. The reference frame Fi is moving with a nonconstant acceleration ai and initial velocity vi on a 3D-curve Ci with respect to another reference frame Fi+1 (where 1 <= i <= n-1).

  17. System and method for calibrating inter-star-tracker misalignments in a stellar inertial attitude determination system

    NASA Technical Reports Server (NTRS)

    Li, Rongsheng (Inventor); Wu, Yeong-Wei Andy (Inventor); Hein, Douglas H. (Inventor)

    2004-01-01

    A method and apparatus for determining star tracker misalignments is disclosed. The method comprises the steps of defining a defining a reference frame for the star tracker assembly according to a boresight of the primary star tracker and a boresight of a second star tracker wherein the boresight of the primary star tracker and a plane spanned by the boresight of the primary star tracker and the boresight of the second star tracker at least partially define a datum for the reference frame for the star tracker assembly; and determining the misalignment of the at least one star tracker as a rotation of the defined reference frame.

  18. Quantum mechanics in noninertial reference frames: Relativistic accelerations and fictitious forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klink, W.H., E-mail: william-klink@uiowa.edu; Wickramasekara, S., E-mail: wickrama@grinnell.edu

    2016-06-15

    One-particle systems in relativistically accelerating reference frames can be associated with a class of unitary representations of the group of arbitrary coordinate transformations, an extension of the Wigner–Bargmann definition of particles as the physical realization of unitary irreducible representations of the Poincaré group. Representations of the group of arbitrary coordinate transformations become necessary to define unitary operators implementing relativistic acceleration transformations in quantum theory because, unlike in the Galilean case, the relativistic acceleration transformations do not themselves form a group. The momentum operators that follow from these representations show how the fictitious forces in noninertial reference frames are generated inmore » quantum theory.« less

  19. Multiple Strategies for Spatial Integration of 2D Layouts within Working Memory

    PubMed Central

    Meilinger, Tobias; Watanabe, Katsumi

    2016-01-01

    Prior results on the spatial integration of layouts within a room differed regarding the reference frame that participants used for integration. We asked whether these differences also occur when integrating 2D screen views and, if so, what the reasons for this might be. In four experiments we showed that integrating reference frames varied as a function of task familiarity combined with processing time, cues for spatial transformation, and information about action requirements paralleling results in the 3D case. Participants saw part of an object layout in screen 1, another part in screen 2, and reacted on the integrated layout in screen 3. Layout presentations between two screens coincided or differed in orientation. Aligning misaligned screens for integration is known to increase errors/latencies. The error/latency pattern was thus indicative of the reference frame used for integration. We showed that task familiarity combined with self-paced learning, visual updating, and knowing from where to act prioritized the integration within the reference frame of the initial presentation, which was updated later, and from where participants acted respectively. Participants also heavily relied on layout intrinsic frames. The results show how humans flexibly adjust their integration strategy to a wide variety of conditions. PMID:27101011

  20. A Ka-Band Celestial Reference Frame with Applications to Deep Space Navigation

    NASA Technical Reports Server (NTRS)

    Jacobs, Christopher S.; Clark, J. Eric; Garcia-Miro, Cristina; Horiuchi, Shinji; Sotuela, Ioana

    2011-01-01

    The Ka-band radio spectrum is now being used for a wide variety of applications. This paper highlights the use of Ka-band as a frequency for precise deep space navigation based on a set of reference beacons provided by extragalactic quasars which emit broadband noise at Ka-band. This quasar-based celestial reference frame is constructed using X/Ka-band (8.4/32 GHz) from fifty-five 24-hour sessions with the Deep Space Network antennas in California, Australia, and Spain. We report on observations which have detected 464 sources covering the full 24 hours of Right Ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the international standard S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of approximately 200 micro-arcsec in alpha cos(delta) and approximately 300 micro-arcsec in delta. There is evidence for systematic errors at the 100 micro-arcsec level. Known errors include limited SNR, lack of instrumental phase calibration, tropospheric refraction mis-modeling, and limited southern geometry. The motivation for extending the celestial reference frame to frequencies above 8 GHz is to access more compact source morphology for improved frame stability and to support spacecraft navigation for Ka-band based NASA missions.

  1. Mission Capability Gains from Multi-Mode Propulsion Thrust Profile Variations for a Plane Change Maneuver

    DTIC Science & Technology

    2010-12-29

    propellant mass [kg] msc = mass of the spacecraft [kg] MMP = multi-mode propulsion   = position in the Geocentric Equatorial Reference...thrust burn time [s] Tsc = thrust of the spacecraft [N] = vector between current and final velocity vector   = velocity vector in the Geocentric ...Equatorial Reference Frame of spacecraft in intended orbit [km/s]   = velocity vector in the Geocentric Equatorial Reference Frame of spacecraft in

  2. Three questions you need to ask about your brand.

    PubMed

    Keller, Kevin Lane; Sternthal, Brian; Tybout, Alice

    2002-09-01

    Traditionally, the people responsible for positioning brands have concentrated on the differences that set each brand apart from the competition. But emphasizing differences isn't enough to sustain a brand against competitors. Managers should also consider the frame of reference within which the brand works and the features the brand shares with other products. Asking three questions about your brand can help: HAVE WE ESTABLISHED A FRAME?: A frame of reference--for Coke, it might be as narrow as other colas or as broad as all thirst-quenching drinks--signals to consumers the goal they can expect to achieve by using a brand. Brand managers need to pay close attention to this issue, in some cases expanding their focus in order to preempt the competition. ARE WE LEVERAGING OUR POINTS OF PARITY?: Certain points of parity must be met if consumers are to perceive your product as a legitimate player within its frame of reference. For instance, consumers might not consider a bank truly a bank unless it offers checking and savings plans. ARE THE POINTS OF DIFFERENCE COMPELLING?: A distinguishing characteristic that consumers find both relevant and believable can become a strong, favorable, unique brand association, capable of distinguishing the brand from others in the same frame of reference. Frames of reference, points of parity, and points of difference are moving targets. Maytag isn't the only dependable brand of appliance, Tide isn't the only detergent with whitening power, and BMWs aren't the only cars on the road with superior handling. The key questions you need to ask about your brand may not change, but their context certainly will. The saviest brand positioners are also the most vigilant.

  3. Motion of a Point Mass in a Rotating Disc: A Quantitative Analysis of the Coriolis and Centrifugal Force

    NASA Astrophysics Data System (ADS)

    Haddout, Soufiane

    2016-06-01

    In Newtonian mechanics, the non-inertial reference frames is a generalization of Newton's laws to any reference frames. While this approach simplifies some problems, there is often little physical insight into the motion, in particular into the effects of the Coriolis force. The fictitious Coriolis force can be used by anyone in that frame of reference to explain why objects follow curved paths. In this paper, a mathematical solution based on differential equations in non-inertial reference is used to study different types of motion in rotating system. In addition, the experimental data measured on a turntable device, using a video camera in a mechanics laboratory was conducted to compare with mathematical solution in case of parabolically curved, solving non-linear least-squares problems, based on Levenberg-Marquardt's and Gauss-Newton algorithms.

  4. Reference Frames during the Acquisition and Development of Spatial Memories

    ERIC Educational Resources Information Center

    Kelly, Jonathan W.; McNamara, Timothy P.

    2010-01-01

    Four experiments investigated the role of reference frames during the acquisition and development of spatial knowledge, when learning occurs incrementally across views. In two experiments, participants learned overlapping spatial layouts. Layout 1 was first studied in isolation, and Layout 2 was later studied in the presence of Layout 1. The…

  5. The Bernoulli Equation in a Moving Reference Frame

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2011-01-01

    Unlike other standard equations in introductory classical mechanics, the Bernoulli equation is not Galilean invariant. The explanation is that, in a reference frame moving with respect to constrictions or obstacles, those surfaces do work on the fluid, constituting an extra term that needs to be included in the work-energy calculation. A…

  6. Speech and gesture in spatial language and cognition among the Yucatec Mayas.

    PubMed

    Le Guen, Olivier

    2011-07-01

    In previous analyses of the influence of language on cognition, speech has been the main channel examined. In studies conducted among Yucatec Mayas, efforts to determine the preferred frame of reference in use in this community have failed to reach an agreement (Bohnemeyer & Stolz, 2006; Levinson, 2003 vs. Le Guen, 2006, 2009). This paper argues for a multimodal analysis of language that encompasses gesture as well as speech, and shows that the preferred frame of reference in Yucatec Maya is only detectable through the analysis of co-speech gesture and not through speech alone. A series of experiments compares knowledge of the semantics of spatial terms, performance on nonlinguistic tasks and gestures produced by men and women. The results show a striking gender difference in the knowledge of the semantics of spatial terms, but an equal preference for a geocentric frame of reference in nonverbal tasks. In a localization task, participants used a variety of strategies in their speech, but they all exhibited a systematic preference for a geocentric frame of reference in their gestures. Copyright © 2011 Cognitive Science Society, Inc.

  7. The consistency of the current conventional celestial and terrestrial reference frames and the conventional EOP series

    NASA Astrophysics Data System (ADS)

    Heinkelmann, R.; Belda-Palazon, S.; Ferrándiz, J.; Schuh, H.

    2015-08-01

    For applications in Earth sciences, navigation, and astronomy the celestial (ICRF) and terrestrial (ITRF) reference frames as well as the orientation among them, the Earth orientation parameters (EOP), have to be consistent at the level of 1 mm and 0.1 mm/yr (GGOS recommendations). We assess the effect of unmodelled geophysical signals in the regularized coordinates and the sensitivity with respect to different a priori EOP and celestial reference frames. The EOP are determined using the same VLBI data but with station coordinates fixed on different TRFs. The conclusion is that within the time span of data incorporated into ITRF2008 (Altamimi, et al., 2011) the ITRF2008 and the IERS 08 C04 are consistent. This consistency involves that non-linear station motion such as unmodelled geophysical signals partly affect the IERS 08 C04 EOP. There are small but not negligible inconsistencies between the conventional celestial reference frame, ICRF2 (Fey, et al., 2009), the ITRF2008 and the conventional EOP that are quantified by comparing VTRF2008 (Böckmann, et al., 2010) and ITRF2008.

  8. Disentangling the Contribution of Spatial Reference Frames to Executive Functioning in Healthy and Pathological Aging: An Experimental Study with Virtual Reality.

    PubMed

    Serino, Silvia; Morganti, Francesca; Colombo, Desirée; Pedroli, Elisa; Cipresso, Pietro; Riva, Giuseppe

    2018-06-01

    A growing body of evidence pointed out that a decline in effectively using spatial reference frames for categorizing information occurs both in normal and pathological aging. Moreover, it is also known that executive deficits primarily characterize the cognitive profile of older individuals. Acknowledging this literature, the current study was aimed to specifically disentangle the contribution of the cognitive abilities related to the use of spatial reference frames to executive functioning in both healthy and pathological aging. 48 healthy elderly individuals and 52 elderly suffering from probable Alzheimer's Disease (AD) took part in the study. We exploited the potentiality of Virtual Reality to specifically measure the abilities in retrieving and syncing between different spatial reference frames, and then we administrated different neuropsychological tests for evaluating executive functions. Our results indicated that allocentric functions contributed significantly to the planning abilities, while syncing abilities influenced the attentional ones. The findings were discussed in terms of previous literature exploring relationships between cognitive deficits in the first phase of AD.

  9. Using global, quantitative models of the coupled plates/mantle system to understand Late Miocene dynamics of the Pacific plate

    NASA Astrophysics Data System (ADS)

    Stotz, Ingo; Iaffaldano, Giampiero; Rhodri Davies, D.

    2017-04-01

    Knowledge of the evolution of continents, inferred from a variety of geological data, as well as observations of the ocean-floor magnetization pattern provide an increasingly-detailed picture of past and present-day plate motions. These are key to study the evolving balance of shallow- and deep-rooted forces acting upon plates and to unravel the dynamics of the coupled plates/mantle system. Here we focus on the clockwise rotation of the Pacific plate motion relative to the hotspots reference frame between 10 and 5 Ma, which is evidenced by a bend in the Hawaiian sea mount chain (Cox & Engebretson, 1985) as well as by marine magnetic and bathymetric data along the Pacific/Antarctica Ridge (Croon et al., 2008). It has been suggested that such a kinematic change owes to the arrival of the Ontong-Java plateau, the biggest oceanic plateau on the Pacific plate, at the Australia/Pacific subducting margin between 10 and 5 Ma, and to its collision with the Melanesian arc. This could have changed the local buoyancy forces and/or sparked a redistribution of the forces already acting within the Pacific realm, causing the Pacific plate to rotate clockwise. Such hypotheses have never been tested explicitly against the available kinematic reconstructions. We do so by using global numerical models of the coupled plates/mantle system. Our models build on the available codes Terra and Shells. Terra is a global, spherical finite-element code for mantle convection, developed by Baumgardner (1985) and Bunge et al. (1996), and further advanced by Yang (1997; 2000) and Davies et al. (2013), among others. Shells is a thin-sheet, finite-element code for lithosphere dynamics (e.g., Bird, 1998). By merging these two independent models we are able to simulate the rheological behavior of the brittle lithosphere and viscous mantle. We compare the plate velocities output by our models with the available kinematic reconstructions to test the above-mentioned hypotheses, and simulate the impact of the evolving mantle buoyancy-field and plate-boundary forces on the Pacific plate motion. Our approach allows linking geodynamical models and observations on the recent dynamics of the Pacific plate.

  10. The role of language in suicide reporting: Investigating the influence of problematic suicide referents.

    PubMed

    Arendt, Florian; Scherr, Sebastian; Niederkrotenthaler, Thomas; Till, Benedikt

    2018-02-14

    Although suicide experts recommend using neutral suicide referents in news media reporting, this recommendation has not yet been tested empirically. This recommendation, based on the empirically yet untested assumption that problematic suicide referents carry meaning that is inappropriate from a prevention perspective, may lead to a different perspective on suicide, termed "framing effects." For example, in German-speaking countries, the neutral term Suizid (suicide) is recommended. Conversely, Freitod ("free death") and Selbstmord ("self-murder") convey associative meanings related to problematic concepts such as free will (Freitod) and crime/murder (Selbstmord), and are therefore not recommended. Using a web-based randomized controlled trial focused on German speakers (N = 451), we tested whether the news media's use of Suizid, Selbstmord, and Freitod elicits framing effects. Participants read identical news reports about suicide. Only the specific suicide referents varied depending on the experimental condition. Post-reading, participants wrote short summaries of the news reports, completed a word-fragment completion test and a questionnaire targeting suicide-related attitudes. We found that the news frame primed some frame-related concepts in the memory and also increased frame-related word choice. Importantly, we found that participants reading the free will-related Freitod frame showed greater attitudinal support for suicide among individuals suffering from incurable diseases. This study highlights the importance of how the news media write about suicide and supports the language recommendations put forward by suicide experts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A device for synchronizing biomechanical data with cine film.

    PubMed

    Rome, L C

    1995-03-01

    Biomechanists are faced with two problems in synchronizing continuous physiological data to discrete, frame-based kinematic data from films. First, the accuracy of most synchronization techniques is good only to one frame and hence depends on framing rate. Second, even if perfectly correlated at the beginning of a 'take', the film and physiological data may become progressively desynchronized as the 'take' proceeds. A system is described, which provides synchronization between cine film and continuous physiological data with an accuracy of +/- 0.2 ms, independent of framing rate and the duration of the film 'take'. Shutter pulses from the camera were output to a computer recording system where they were recorded and counted, and to a digital device which counted the pulses and illuminated the count on the bank of LEDs which was filmed with the subject. Synchronization was performed by using the rising edge of the shutter pulse and by comparing the frame number imprinted on the film to the frame number recorded by the computer system. In addition to providing highly accurate synchronization over long film 'takes', this system provides several other advantages. First, having frame numbers imprinted both on the film and computer record greatly facilitates analysis. Second, the LEDs were designed to show the 'take number' while the camera is coming up to speed, thereby avoiding the use of cue cards which disturb the animal. Finally, use of this device results in considerable savings in film.

  12. Digital Filtering of Three-Dimensional Lower Extremity Kinematics: an Assessment

    PubMed Central

    Sinclair, Jonathan; Taylor, Paul John; Hobbs, Sarah Jane

    2013-01-01

    Errors in kinematic data are referred to as noise and are an undesirable portion of any waveform. Noise is typically removed using a low-pass filter which removes the high frequency components of the signal. The selection of an optimal frequency cut-off is very important when processing kinematic information and a number of techniques exists for the determination of an optimal frequency cut-off. Despite the importance of cut-off frequency to the efficacy of kinematic analyses there is currently a paucity of research examining the influence of different cut-off frequencies on the resultant 3-D kinematic waveforms and discrete parameters. Twenty participants ran at 4.0 m•s−1 as lower extremity kinematics in the sagittal, coronal and transverse planes were measured using an eight camera motion analysis system. The data were filtered at a range of cut-off frequencies and the discrete kinematic parameters were examined using repeated measures ANOVA’s. The similarity between the raw and filtered waveforms were examined using intra-class correlations. The results show that the cut-off frequency has a significant influence on the discrete kinematic measure across displacement and derivative information in all three planes of rotation. Furthermore, it was also revealed that as the cut-off frequency decreased the attenuation of the kinematic waveforms became more pronounced, particularly in the coronal and transverse planes at the second derivative. In conclusion, this investigation provides new information regarding the influence of digital filtering on lower extremity kinematics and re-emphasizes the importance of selecting the correct cut-off frequency. PMID:24511338

  13. Limited interlimb transfer of locomotor adaptations to a velocity-dependent force field during unipedal walking.

    PubMed

    Houldin, Adina; Chua, Romeo; Carpenter, Mark G; Lam, Tania

    2012-08-01

    Several studies have demonstrated that motor adaptations to a novel task environment can be transferred between limbs. Such interlimb transfer of motor commands is consistent with the notion of centrally driven strategies that can be generalized across different frames of reference. So far, studies of interlimb transfer of locomotor adaptations have yielded disparate results. Here we sought to determine whether locomotor adaptations in one (trained) leg show transfer to the other (test) leg during a unipedal walking task. We hypothesized that adaptation in the test leg to a velocity-dependent force field previously experienced by the trained leg will be faster, as revealed by faster recovery of kinematic errors and earlier onset of aftereffects. Twenty able-bodied adults walked unipedally in the Lokomat robotic gait orthosis, which applied velocity-dependent resistance to the legs. The amount of resistance was scaled to 10% of each individual's maximum voluntary contraction of the hip flexors. Electromyography and kinematics of the lower limb were recorded. All subjects were right-leg dominant and were tested for transfer of motor adaptations from the right leg to the left leg. Catch trials, consisting of unexpected removal of resistance, were presented after the first step with resistance and after a period of adaptation to test for aftereffects. We found no significant differences in the sizes of the aftereffects between the two legs, except for peak hip flexion during swing, or in the rate at which peak hip flexion adapted during steps against resistance between the two legs. Our results indicate that interlimb transfer of these types of locomotor adaptation is not a robust phenomenon. These findings add to our current understanding of motor adaptations and provide further evidence that generalization of adaptations may be dependent on the movement task.

  14. Development of anticipatory orienting strategies and trajectory formation in goal-oriented locomotion.

    PubMed

    Belmonti, Vittorio; Cioni, Giovanni; Berthoz, Alain

    2013-05-01

    In goal-oriented locomotion, healthy adults generate highly stereotyped trajectories and a consistent anticipatory head orienting behaviour, both evidence of top-down, open-loop control. The aim of this study is to describe the typical development of anticipatory orienting strategies and trajectory formation. Our hypothesis is that full-blown anticipatory control requires advanced navigational skills. Twenty-six healthy subjects (14 children: 4-11 years; 6 adolescents: 13-17 years; 6 adults) were asked to walk freely towards one of the three visual targets, in a randomised order. Movement was captured via an optoelectronic system, with 15 body markers. The whole-body displacement, yaw orientation of head, trunk and pelvis, heading direction and foot placements were extracted. Head-heading anticipation, trajectory curvature, indexes of variability of trajectories, foot placements and kinematic profiles were studied. The mean head-heading anticipation time and trajectory curvature did not significantly differ among age groups. In children, however, head anticipation was more often lacking (χ2 = 9.55, p < 0.01), and there were significant intra- and inter-subject variations. Trajectory curvature was often very high in children, while it became consistently lower in adolescence (χ2 = 78.59, p < 10(-17)). The indexes of spatial and kinematic variability all followed a decreasing developmental trend (R (2) > 0.5, p < 0.0001). In conclusion, children under 11 do not perform curvilinear locomotor trajectories as adolescents and adults do. Anticipatory head orientation and trajectory formation develop in late childhood, well after gait maturation. Navigational skills, such as path planning and shifting from ego- to allocentric spatial reference frames, are proposed as necessary requisites for mature locomotor control.

  15. Present-day Galactic Evolution: Low-metallicity, Warm, Ionized Gas Inflow Associated with High-velocity Cloud Complex A

    NASA Astrophysics Data System (ADS)

    Barger, K. A.; Haffner, L. M.; Wakker, B. P.; Hill, Alex. S.; Madsen, G. J.; Duncan, A. K.

    2012-12-01

    The high-velocity cloud Complex A is a probe of the physical conditions in the Galactic halo. The kinematics, morphology, distance, and metallicity of Complex A indicate that it represents new material that is accreting onto the Galaxy. We present Wisconsin Hα Mapper kinematically resolved observations of Complex A over the velocity range of -250 to -50 km s-1 in the local standard of rest reference frame. These observations include the first full Hα intensity map of Complex A across (\\mathit {l, b}) = (124{^\\circ }, 18{^\\circ }) to (171°, 53°) and deep targeted observations in Hα, [S II] λ6716, [N II] λ6584, and [O I] λ6300 toward regions with high H I column densities, background quasars, and stars. The Hα data imply that the masses of neutral and ionized material in the cloud are similar, both being greater than 106 M ⊙. We find that the Bland-Hawthorn & Maloney model for the intensity of the ionizing radiation near the Milky Way is consistent with the known distance of the high-latitude part of Complex A and an assumed cloud geometry that puts the lower-latitude parts of the cloud at a distance of 7-8 kpc. This compatibility implies a 5% ionizing photon escape fraction from the Galactic disk. We also provide the nitrogen and sulfur upper abundance solutions for a series of temperatures, metallicities, and cloud configurations for purely photoionized gas; these solutions are consistent with the sub-solar abundances found by previous studies, especially for temperatures above 104 K or for gas with a high fraction of singly ionized nitrogen and sulfur.

  16. PRESENT-DAY GALACTIC EVOLUTION: LOW-METALLICITY, WARM, IONIZED GAS INFLOW ASSOCIATED WITH HIGH-VELOCITY CLOUD COMPLEX A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barger, K. A.; Haffner, L. M.; Wakker, B. P.

    2012-12-20

    The high-velocity cloud Complex A is a probe of the physical conditions in the Galactic halo. The kinematics, morphology, distance, and metallicity of Complex A indicate that it represents new material that is accreting onto the Galaxy. We present Wisconsin H{alpha} Mapper kinematically resolved observations of Complex A over the velocity range of -250 to -50 km s{sup -1} in the local standard of rest reference frame. These observations include the first full H{alpha} intensity map of Complex A across (l, b) = (124 Degree-Sign , 18 Degree-Sign ) to (171 Degree-Sign , 53 Degree-Sign ) and deep targeted observationsmore » in H{alpha}, [S II] {lambda}6716, [N II] {lambda}6584, and [O I] {lambda}6300 toward regions with high H I column densities, background quasars, and stars. The H{alpha} data imply that the masses of neutral and ionized material in the cloud are similar, both being greater than 10{sup 6} M{sub Sun }. We find that the Bland-Hawthorn and Maloney model for the intensity of the ionizing radiation near the Milky Way is consistent with the known distance of the high-latitude part of Complex A and an assumed cloud geometry that puts the lower-latitude parts of the cloud at a distance of 7-8 kpc. This compatibility implies a 5% ionizing photon escape fraction from the Galactic disk. We also provide the nitrogen and sulfur upper abundance solutions for a series of temperatures, metallicities, and cloud configurations for purely photoionized gas; these solutions are consistent with the sub-solar abundances found by previous studies, especially for temperatures above 10{sup 4} K or for gas with a high fraction of singly ionized nitrogen and sulfur.« less

  17. Perceptual attraction in tool use: evidence for a reliability-based weighting mechanism.

    PubMed

    Debats, Nienke B; Ernst, Marc O; Heuer, Herbert

    2017-04-01

    Humans are well able to operate tools whereby their hand movement is linked, via a kinematic transformation, to a spatially distant object moving in a separate plane of motion. An everyday example is controlling a cursor on a computer monitor. Despite these separate reference frames, the perceived positions of the hand and the object were found to be biased toward each other. We propose that this perceptual attraction is based on the principles by which the brain integrates redundant sensory information of single objects or events, known as optimal multisensory integration. That is, 1 ) sensory information about the hand and the tool are weighted according to their relative reliability (i.e., inverse variances), and 2 ) the unisensory reliabilities sum up in the integrated estimate. We assessed whether perceptual attraction is consistent with optimal multisensory integration model predictions. We used a cursor-control tool-use task in which we manipulated the relative reliability of the unisensory hand and cursor position estimates. The perceptual biases shifted according to these relative reliabilities, with an additional bias due to contextual factors that were present in experiment 1 but not in experiment 2 The biased position judgments' variances were, however, systematically larger than the predicted optimal variances. Our findings suggest that the perceptual attraction in tool use results from a reliability-based weighting mechanism similar to optimal multisensory integration, but that certain boundary conditions for optimality might not be satisfied. NEW & NOTEWORTHY Kinematic tool use is associated with a perceptual attraction between the spatially separated hand and the effective part of the tool. We provide a formal account for this phenomenon, thereby showing that the process behind it is similar to optimal integration of sensory information relating to single objects. Copyright © 2017 the American Physiological Society.

  18. Not all memories are the same: Situational context influences spatial recall within one's city of residency.

    PubMed

    Meilinger, Tobias; Frankenstein, Julia; Simon, Nadine; Bülthoff, Heinrich H; Bresciani, Jean-Pierre

    2016-02-01

    Reference frames in spatial memory encoding have been examined intensively in recent years. However, their importance for recall has received considerably less attention. In the present study, passersby used tags to arrange a configuration map of prominent city center landmarks. It has been shown that such configurational knowledge is memorized within a north-up reference frame. However, participants adjusted their maps according to their body orientations. For example, when participants faced south, the maps were likely to face south-up. Participants also constructed maps along their location perspective-that is, the self-target direction. If, for instance, they were east of the represented area, their maps were oriented west-up. If the location perspective and body orientation were in opposite directions (i.e., if participants faced away from the city center), participants relied on location perspective. The results indicate that reference frames in spatial recall depend on the current situation rather than on the organization in long-term memory. These results cannot be explained by activation spread within a view graph, which had been used to explain similar results in the recall of city plazas. However, the results are consistent with forming and transforming a spatial image of nonvisible city locations from the current location. Furthermore, prior research has almost exclusively focused on body- and environment-based reference frames. The strong influence of location perspective in an everyday navigational context indicates that such a reference frame should be considered more often when examining human spatial cognition.

  19. Plasma electron hole kinematics. II. Hole tracking Particle-In-Cell simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, C.; Hutchinson, I. H.

    The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. Themore » behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and the effects of “jetting.”.« less

  20. Lagrangian coherent structures in low Reynolds number swimming.

    PubMed

    Wilson, Megan M; Peng, Jifeng; Dabiri, John O; Eldredge, Jeff D

    2009-05-20

    This work explores the utility of the finite-time Lyapunov exponent (FTLE) field for revealing flow structures in low Reynolds number biological locomotion. Previous studies of high Reynolds number unsteady flows have demonstrated that ridges of the FTLE field coincide with transport barriers within the flow, which are not shown by a more classical quantity such as vorticity. In low Reynolds number locomotion (O(1)-O(100)), in which viscous diffusion rapidly smears the vorticity in the wake, the FTLE field has the potential to add new insight to locomotion mechanics. The target of study is an articulated two-dimensional model for jellyfish-like locomotion, with swimming Reynolds number of order 1. The self-propulsion of the model is numerically simulated with a viscous vortex particle method, using kinematics adapted from previous experimental measurements on a live medusan swimmer. The roles of the ridges of the computed forward- and backward-time FTLE fields are clarified by tracking clusters of particles both backward and forward in time. It is shown that a series of ridges in front of the jellyfish in the forward-time FTLE field transport slender fingers of fluid toward the lip of the bell orifice, which are pulled once per contraction cycle into the wake of the jellyfish, where the fluid remains partitioned. A strong ridge in the backward-time FTLE field reveals a persistent barrier between fluid inside and outside the subumbrellar cavity. The system is also analyzed in a body-fixed frame subject to a steady free stream, and the FTLE field is used to highlight differences in these frames of reference.

  1. Importance of Baseline Specification in Evaluating Conservation Interventions and Achieving No Net Loss of Biodiversity

    PubMed Central

    Bull, J W; Gordon, A; Law, E A; Suttle, K B; Milner-Gulland, E J

    2014-01-01

    There is an urgent need to improve the evaluation of conservation interventions. This requires specifying an objective and a frame of reference from which to measure performance. Reference frames can be baselines (i.e., known biodiversity at a fixed point in history) or counterfactuals (i.e., a scenario that would have occurred without the intervention). Biodiversity offsets are interventions with the objective of no net loss of biodiversity (NNL). We used biodiversity offsets to analyze the effects of the choice of reference frame on whether interventions met stated objectives. We developed 2 models to investigate the implications of setting different frames of reference in regions subject to various biodiversity trends and anthropogenic impacts. First, a general analytic model evaluated offsets against a range of baseline and counterfactual specifications. Second, a simulation model then replicated these results with a complex real world case study: native grassland offsets in Melbourne, Australia. Both models showed that achieving NNL depended upon the interaction between reference frame and background biodiversity trends. With a baseline, offsets were less likely to achieve NNL where biodiversity was decreasing than where biodiversity was stable or increasing. With a no-development counterfactual, however, NNL was achievable only where biodiversity was declining. Otherwise, preventing development was better for biodiversity. Uncertainty about compliance was a stronger determinant of success than uncertainty in underlying biodiversity trends. When only development and offset locations were considered, offsets sometimes resulted in NNL, but not across an entire region. Choice of reference frame determined feasibility and effort required to attain objectives when designing and evaluating biodiversity offset schemes. We argue the choice is thus of fundamental importance for conservation policy. Our results shed light on situations in which biodiversity offsets may be an inappropriate policy instrument Importancia de la Especificación de Línea de Base en la Evaluación de Intervenciones de Conservación y la Obtención de Ninguna Pérdida Neta de la Biodiversidad PMID:24945031

  2. Distortions in memory for visual displays

    NASA Technical Reports Server (NTRS)

    Tversky, Barbara

    1989-01-01

    Systematic errors in perception and memory present a challenge to theories of perception and memory and to applied psychologists interested in overcoming them as well. A number of systematic errors in memory for maps and graphs are reviewed, and they are accounted for by an analysis of the perceptual processing presumed to occur in comprehension of maps and graphs. Visual stimuli, like verbal stimuli, are organized in comprehension and memory. For visual stimuli, the organization is a consequence of perceptual processing, which is bottom-up or data-driven in its earlier stages, but top-down and affected by conceptual knowledge later on. Segregation of figure from ground is an early process, and figure recognition later; for both, symmetry is a rapidly detected and ecologically valid cue. Once isolated, figures are organized relative to one another and relative to a frame of reference. Both perceptual (e.g., salience) and conceptual factors (e.g., significance) seem likely to affect selection of a reference frame. Consistent with the analysis, subjects perceived and remembered curves in graphs and rivers in maps as more symmetric than they actually were. Symmetry, useful for detecting and recognizing figures, distorts map and graph figures alike. Top-down processes also seem to operate in that calling attention to the symmetry vs. asymmetry of a slightly asymmetric curve yielded memory errors in the direction of the description. Conceptual frame of reference effects were demonstrated in memory for lines embedded in graphs. In earlier work, the orientation of map figures was distorted in memory toward horizontal or vertical. In recent work, graph lines, but not map lines, were remembered as closer to an imaginary 45 deg line than they had been. Reference frames are determined by both perceptual and conceptual factors, leading to selection of the canonical axes as a reference frame in maps, but selection of the imaginary 45 deg as a reference frame in graphs.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, Harsh

    This dissertation presents research on addressing some of the contemporary challenges in the analysis of vector fields—an important type of scientific data useful for representing a multitude of physical phenomena, such as wind flow and ocean currents. In particular, new theories and computational frameworks to enable consistent feature extraction from vector fields are presented. One of the most fundamental challenges in the analysis of vector fields is that their features are defined with respect to reference frames. Unfortunately, there is no single “correct” reference frame for analysis, and an unsuitable frame may cause features of interest to remain undetected, thusmore » creating serious physical consequences. This work develops new reference frames that enable extraction of localized features that other techniques and frames fail to detect. As a result, these reference frames objectify the notion of “correctness” of features for certain goals by revealing the phenomena of importance from the underlying data. An important consequence of using these local frames is that the analysis of unsteady (time-varying) vector fields can be reduced to the analysis of sequences of steady (timeindependent) vector fields, which can be performed using simpler and scalable techniques that allow better data management by accessing the data on a per-time-step basis. Nevertheless, the state-of-the-art analysis of steady vector fields is not robust, as most techniques are numerical in nature. The residing numerical errors can violate consistency with the underlying theory by breaching important fundamental laws, which may lead to serious physical consequences. This dissertation considers consistency as the most fundamental characteristic of computational analysis that must always be preserved, and presents a new discrete theory that uses combinatorial representations and algorithms to provide consistency guarantees during vector field analysis along with the uncertainty visualization of unavoidable discretization errors. Together, the two main contributions of this dissertation address two important concerns regarding feature extraction from scientific data: correctness and precision. The work presented here also opens new avenues for further research by exploring more-general reference frames and more-sophisticated domain discretizations.« less

  4. Construction Theory and Noise Analysis Method of Global CGCS2000 Coordinate Frame

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Wang, F.; Bai, J.; Li, Z.

    2018-04-01

    The definition, renewal and maintenance of geodetic datum has been international hot issue. In recent years, many countries have been studying and implementing modernization and renewal of local geodetic reference coordinate frame. Based on the precise result of continuous observation for recent 15 years from state CORS (continuously operating reference system) network and the mainland GNSS (Global Navigation Satellite System) network between 1999 and 2007, this paper studies the construction of mathematical model of the Global CGCS2000 frame, mainly analyzes the theory and algorithm of two-step method for Global CGCS2000 Coordinate Frame formulation. Finally, the noise characteristic of the coordinate time series are estimated quantitatively with the criterion of maximum likelihood estimation.

  5. Modernizing the National Spatial Reference System

    NASA Astrophysics Data System (ADS)

    Smith, D. A.

    2016-12-01

    The National Spatial Reference System (NSRS) is that system of datums, reference frames, shorelines, software and standards which serve the entire federal civilian geospatial community. It is the mission of the National Geodetic Survey (NGS) to define, maintain and provide access to the NSRS. Currently the NSRS contains three geometric reference frames (NAD 83(2011), NAD 83(PA11) and NAD 83(MA11)), one dynamic height datum (IGLD 85) and 6 vertical datums (NAVD 88, PRVD02, ASVD02, NMVD03, GUVD04, VIVD09). All of these datums are built on aging technology and contain systematic errors that grow more noticeable as access to accurate positioning becomes more widespread. It was determined by NGS in 2007 that this was not sustainable and as such, all datums and reference frames are scheduled to be replaced in 2022. [At the time of this abstract, the exact names of the replacements are being finalized and are expected to be announced by the AGU fall meeting.] Replacing the official datums and reference frames requires a carefully coordinated effort of dozens of interrelated technical projects spanning years (over a decade in some cases) and involving a majority of NGS employees. This talk will cover the plans thus far, projects completed, projects underway and will summarize the NSRS as it is expected to look and be accessed in 2022 and beyond.

  6. Global reference frame: Intercomparison of results (SLR, VLBI and GPS)

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Watkins, Michael M.; Heflin, M.

    1994-01-01

    The terrestrial reference frame (TRF) is realized by a set of positions and velocities derived from a combination of the three space geodetic techniques, SLR, VLBI and GPS. The standard International TRF is constructed by the International Earth Rotation Service in such a way that it is stable with time and the addition of new data. An adopted model for overall plate motion, NUVEL-1 NNR, defines the conceptual reference frame in which all the plates are moving. In addition to the measurements made between reference points within the space geodetic instruments, it is essential to have accurate, documented eccentricity measurements from the instrument reference points to ground monuments. Proper local surveys between the set of ground monuments at a site are also critical for the use of the space geodetic results. Eccentricities and local surveys are, in fact, the most common and vexing sources of error in the use of the TRF for such activities as collocation and intercomparison.

  7. Kinematic alignment technique for total hip and knee arthroplasty

    PubMed Central

    Rivière, Charles; Lazic, Stefan; Villet, Loïc; Wiart, Yann; Allwood, Sarah Muirhead; Cobb, Justin

    2018-01-01

    Conventional techniques for hip and knee arthroplasty have led to good long-term clinical outcomes, but complications remain despite better surgical precision and improvements in implant design and quality. Technological improvements and a better understanding of joint kinematics have facilitated the progression to ‘personalized’ implant positioning (kinematic alignment) for total hip (THA) and knee (TKA) arthroplasty, the true value of which remains to be determined. By achieving a true knee resurfacing, the kinematic alignment (KA) technique for TKA aims at aligning the components with the physiological kinematic axes of the knee and restoring the constitutional tibio-femoral joint line frontal and axial orientation and soft-tissue laxity. The KA technique for THA aims at restoring the native ‘combined femoro-acetabular anteversion’ and the hip’s centre of rotation, and occasionally adjusting the cup position and design based on the assessment of the individual spine-hip relation. The key element for optimal prosthetic joint kinematics (hip or knee) is to reproduce the femoral anatomy. The transverse acetabular ligament (TAL) is the reference landmark to adjust the cup position. Cite this article: EFORT Open Rev 2018;3:98-105. DOI: 10.1302/2058-5241.3.170022 PMID:29657851

  8. Does Changing the Reference Frame Affect Infant Categorization of the Spatial Relation BETWEEN?

    ERIC Educational Resources Information Center

    Quinn, Paul C.; Doran, Matthew M.; Papafragou, Anna

    2011-01-01

    Past research has shown that variation in the target objects depicting a given spatial relation disrupts the formation of a category representation for that relation. In the current research, we asked whether changing the orientation of the referent frame depicting the spatial relation would also disrupt the formation of a category representation…

  9. The Generalized Internal/External Frame of Reference Model: An Extension to Dimensional Comparison Theory

    ERIC Educational Resources Information Center

    Möller, Jens; Müller-Kalthoff, Hanno; Helm, Friederike; Nagy, Nicole; Marsh, Herb W.

    2016-01-01

    The dimensional comparison theory (DCT) focuses on the effects of internal, dimensional comparisons (e.g., "How good am I in math compared to English?") on academic self-concepts with widespread consequences for students' self-evaluation, motivation, and behavioral choices. DCT is based on the internal/external frame of reference model…

  10. Cognitive Ability, Academic Achievement and Academic Self-Concept: Extending the Internal/External Frame of Reference Model

    ERIC Educational Resources Information Center

    Chen, Ssu-Kuang; Hwang, Fang-Ming; Yeh, Yu-Chen; Lin, Sunny S. J.

    2012-01-01

    Background: Marsh's internal/external (I/E) frame of reference model depicts the relationship between achievement and self-concept in specific academic domains. Few efforts have been made to examine concurrent relationships among cognitive ability, achievement, and academic self-concept (ASC) within an I/E model framework. Aim: To simultaneously…

  11. The Role of Perspective Taking in How Children Connect Reference Frames When Explaining Astronomical Phenomena

    ERIC Educational Resources Information Center

    Plummer, Julia D.; Bower, Corinne A.; Liben, Lynn S.

    2016-01-01

    This study investigates the role of perspective-taking skills in how children explain spatially complex astronomical phenomena. Explaining many astronomical phenomena, especially those studied in elementary and middle school, requires shifting between an Earth-based description of the phenomena and a space-based reference frame. We studied 7- to…

  12. Operationalization of a Frame of Reference for Studying Organizational Culture in Middle Schools.

    ERIC Educational Resources Information Center

    Daniel, Larry G.

    A frame of reference for studying culture in middle schools was developed. Items for the Middle School Description Survey (MSDS), which was designed to test elements of the ideal middle school culture, were created based on middle school advocacy literature. The items were conceptually categorized according to E. H. Schein's (1985) cultural…

  13. Facing the Sunrise: Cultural Worldview Underlying Intrinsic-Based Encoding of Absolute Frames of Reference in Aymara

    ERIC Educational Resources Information Center

    Nunez, Rafael E.; Cornejo, Carlos

    2012-01-01

    The Aymara of the Andes use absolute (cardinal) frames of reference for describing the relative position of ordinary objects. However, rather than encoding them in available absolute lexemes, they do it in lexemes that are intrinsic to the body: "nayra" ("front") and "qhipa" ("back"), denoting east and west,…

  14. Mechanisms of Reference Frame Selection in Spatial Term Use: Computational and Empirical Studies

    ERIC Educational Resources Information Center

    Schultheis, Holger; Carlson, Laura A.

    2017-01-01

    Previous studies have shown that multiple reference frames are available and compete for selection during the use of spatial terms such as "above." However, the mechanisms that underlie the selection process are poorly understood. In the current paper we present two experiments and a comparison of three computational models of selection…

  15. Frame of Reference Rater Training Issues: Recall, Time and Behavior Observation Training.

    ERIC Educational Resources Information Center

    Roch, Sylvia G.; O'Sullivan, Brian J.

    2003-01-01

    Graduate students were trained as raters either using frame of reference (FOR, n=220, behavior observation training (BOT, n=21), or performance appraisal (controls, n=21). They rated videotaped lecturers twice. FOR increased number of behaviors recalled; FOR and BOT improved recall quality. FOR improved rating accuracy even after 2 weeks.…

  16. Myths, Misconceptions, and Misunderstandings: A Different Spin on Coriolis--Applying Frame of Reference

    ERIC Educational Resources Information Center

    DiSpezio, Michael A.

    2011-01-01

    This article addresses misconceptions surrounding the Coriolis force and describes how it should be presented as a function within inertial and noninertial frames of reference. Not only does this demonstrate the nature of science as it strives to best interpret the natural world (and presents alternative explanations), but it offers a rich…

  17. Velocity Estimate Following Air Data System Failure

    DTIC Science & Technology

    2008-03-01

    39 Figure 3.3. Sampled Two Vector Approach .................................................................... 40 Figure 3.4...algorithm design in terms of reference frames, equations of motion, and velocity triangles describing the vector relationship between airspeed, wind speed...2.2.1 Reference Frames The flight of an aircraft through the air mass can be described in specific coordinate systems [ Nelson 1998]. To determine how

  18. iGRaND: an invariant frame for RGBD sensor feature detection and descriptor extraction with applications

    NASA Astrophysics Data System (ADS)

    Willis, Andrew R.; Brink, Kevin M.

    2016-06-01

    This article describes a new 3D RGBD image feature, referred to as iGRaND, for use in real-time systems that use these sensors for tracking, motion capture, or robotic vision applications. iGRaND features use a novel local reference frame derived from the image gradient and depth normal (hence iGRaND) that is invariant to scale and viewpoint for Lambertian surfaces. Using this reference frame, Euclidean invariant feature components are computed at keypoints which fuse local geometric shape information with surface appearance information. The performance of the feature for real-time odometry is analyzed and its computational complexity and accuracy is compared with leading alternative 3D features.

  19. Integrating Analysis Goals for EOP, CRF and TRF

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; MacMillan, Daniel; Petrov, Leonid

    2002-01-01

    In a simplified, idealized way the TRF (Terrestrial Reference Frame) can be considered a set of positions at epoch and corresponding linear rates of change while the CRF (Celestial Reference Frame) is a set of fixed directions in space. VLBI analysis can be optimized for CRF and TRF separately while handling some of the complexity of geodetic and astrometric reality. For EOP (Earth Orientation Parameter) time series both CRF and TRF should be accurate at the epoch of interest and well defined over time. The optimal integration of EOP, TRF and CRF in a single VLBI solution configuration requires a detailed consideration of the data set and the possibly conflicting nature of the reference frames. A possible approach for an integrated analysis is described.

  20. Laser-Camera Vision Sensing for Spacecraft Mobile Robot Navigation

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Khalil, Ahmad S.; Dorais, Gregory A.; Gawdiak, Yuri

    2002-01-01

    The advent of spacecraft mobile robots-free-flyng sensor platforms and communications devices intended to accompany astronauts or remotely operate on space missions both inside and outside of a spacecraft-has demanded the development of a simple and effective navigation schema. One such system under exploration involves the use of a laser-camera arrangement to predict relative positioning of the mobile robot. By projecting laser beams from the robot, a 3D reference frame can be introduced. Thus, as the robot shifts in position, the position reference frame produced by the laser images is correspondingly altered. Using normalization and camera registration techniques presented in this paper, the relative translation and rotation of the robot in 3D are determined from these reference frame transformations.

  1. Optical monitoring of QSO in the framework of the Gaia space mission

    NASA Astrophysics Data System (ADS)

    Taris, F.; Damljanovic, G.; Andrei, A.; Klotz, A.; Vachier, F.

    2015-08-01

    The Gaia astrometric mission of the European Space Agency has been launched the 19th December 2013. It will provide an astrometric catalogue of 500 000 extragalactic sources that could be the basis of a new optical reference frame. On the other hand, the current International Celestial Reference Frame (ICRF) is based on the observations of extragalactic sources at radio wavelength. The astrometric coordinates of sources in these two reference systems will have roughly the same uncertainty. It is then mandatory to observe a set of common targets at both optical and radio wavelength to link the ICRF with what could be called the GCRF (Gaia Celestial Reference Frame). We will show in this paper some results obtained with the TJO, Telescopi Juan Oro, from Observatori Astronomic del Montsec in Spain. It also presents some results obtained with the Lomb-Scargle and CLEAN algorithm methods applied to optical magnitude obtained with the TAROT telescopes.

  2. Reference Frames in Earth Rotation Theories

    NASA Astrophysics Data System (ADS)

    Ferrándiz, José M.; Belda, Santiago; Heinkelmann, Robert; Getino, Juan; Schuh, Harald; Escapa, Alberto

    2015-04-01

    Nowadays the determination of the Earth Orientation Parameters (EOP) and the different Terrestrial Reference Frames (TRF) are not independent. The available theories of Earth rotation aims at providing the orientation of a certain reference system linked somehow to the Earth with respect to a given celestial system, considered as inertial. In the past years a considerable effort has been dedicated to the improvement of the TRF realizations, following the lines set up in the 1980's. However, the reference systems used in the derivation of the theories have been rather considered as something fully established, not deserving a special attention. In this contribution we review the definitions of the frames used in the main theoretical approaches, focusing on those used in the construction of IAU2000, and the extent to which their underlying hypotheses hold. The results are useful to determine the level of consistency of the predicted and determined EOP.

  3. A Newton-Euler Description for Sediment Movement.

    NASA Astrophysics Data System (ADS)

    Maniatis, G.; Hoey, T.; Drysdale, T.; Hodge, R. A.; Valyrakis, M.

    2015-12-01

    We present progress from the development of a purpose specific sensing system for sediment transport (Maniatis et al. 2013). This system utilises the capabilities of contemporary inertial micro-sensors (strap-down accelerometers and gyroscopes) to record fluvial transport from the moving body-frame of artificial pebbles modelled precisely to represent the motion of real, coarse sediment grains (D90=100 mm class). This type of measurements can be useful in the context of sediment transport only if the existing mathematical understanding of the process is updated. We test a new mathematical model which defines specifically how the data recorded in the body frame of the sensor (Lagrangian frame of reference) can be generalised to the reference frame of the flow (channel, Eulerian frame of reference). Given the association of the two most widely used models for sediment transport with those frames of reference (Shields' to Eulerian frame and HA. Einstein's to Lagrangian frame), this description builds the basis for the definition of explicit incipient motion criteria (Maniatis et al. 2015) and for the upscaling from point-grain scale measurements to averaged, cross-sectional, stream related metrics. Flume experiments where conducted in the Hydraulics laboratory of the University of Glasgow where a spherical sensor of 800 mm diameter and capable of recoding inertial dynamics at 80Hz frequency was tested under fluvial transport conditions. We managed to measure the dynamical response of the unit during pre-entrainment/entrainment transitions, on scaled and non-scaled to the sensor's diameter bed and for a range of hydrodynamic conditions (slope up to 0.02 and flow increase rate up to 0.05m3.s-1. Preliminary results from field deployment on a mixed bedrock-alluvial channel are also presented. Maniatis et. al 2013 J. Sens. Actuator Netw. 2013, 2(4), 761-779; Maniatis et. al 2015: "CALCULATION OF EXPLICIT PROBABILITY OF ENTRAINMENT BASED ON INERTIAL ACCELERATION MEASUREMENTS" J. Hydraulic Engineering, Under review.

  4. Determination of the centre of mass kinematics in alpine skiing using differential global navigation satellite systems.

    PubMed

    Gilgien, Matthias; Spörri, Jörg; Chardonnens, Julien; Kröll, Josef; Limpach, Philippe; Müller, Erich

    2015-01-01

    In the sport of alpine skiing, knowledge about the centre of mass (CoM) kinematics (i.e. position, velocity and acceleration) is essential to better understand both performance and injury. This study proposes a global navigation satellite system (GNSS)-based method to measure CoM kinematics without restriction of capture volume and with reasonable set-up and processing requirements. It combines the GNSS antenna position, terrain data and the accelerations acting on the skier in order to approximate the CoM location, velocity and acceleration. The validity of the method was assessed against a reference system (video-based 3D kinematics) over 12 turn cycles on a giant slalom skiing course. The mean (± s) position, velocity and acceleration differences between the CoM obtained from the GNSS and the reference system were 9 ± 12 cm, 0.08 ± 0.19 m · s(-1) and 0.22 ± 1.28 m · s(-2), respectively. The velocity and acceleration differences obtained were smaller than typical differences between the measures of several skiers on the same course observed in the literature, while the position differences were slightly larger than its discriminative meaningful change. The proposed method can therefore be interpreted to be technically valid and adequate for a variety of biomechanical research questions in the field of alpine skiing with certain limitations regarding position.

  5. Influence of the Pixel Sizes of Reference Computed Tomography on Single-photon Emission Computed Tomography Image Reconstruction Using Conjugate-gradient Algorithm.

    PubMed

    Okuda, Kyohei; Sakimoto, Shota; Fujii, Susumu; Ida, Tomonobu; Moriyama, Shigeru

    The frame-of-reference using computed-tomography (CT) coordinate system on single-photon emission computed tomography (SPECT) reconstruction is one of the advanced characteristics of the xSPECT reconstruction system. The aim of this study was to reveal the influence of the high-resolution frame-of-reference on the xSPECT reconstruction. 99m Tc line-source phantom and National Electrical Manufacturers Association (NEMA) image quality phantom were scanned using the SPECT/CT system. xSPECT reconstructions were performed with the reference CT images in different sizes of the display field-of-view (DFOV) and pixel. The pixel sizes of the reconstructed xSPECT images were close to 2.4 mm, which is acquired as originally projection data, even if the reference CT resolution was varied. The full width at half maximum (FWHM) of the line-source, absolute recovery coefficient, and background variability of image quality phantom were independent on the sizes of DFOV in the reference CT images. The results of this study revealed that the image quality of the reconstructed xSPECT images is not influenced by the resolution of frame-of-reference on SPECT reconstruction.

  6. Possible microplate generation at RRR triple junctions due to the non-circular finite motion of plates relative to each other

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.

    2012-12-01

    First generation ideas of the kinematic stability of triple junctions lead to the common belief that the geometry of ridge-ridge-ridge (RRR) triple junctions remains constant over time under conditions of symmetric spreading. Given constant relative motion between each plate pair -- that is, the pole of plate relative motion is fixed to both plates in each pair during finite motion, as assumed in many accounts of plate kinematics -- there would be no boundary mismatch at the triple junction and no apparent kinematic reason why a microplate might develop there. But if, in a given RRR triple junction, the finite motion of one plate as observed from the other plate is not circular (as is generally the case, given the three-plate problem of plate kinematics), the geometry of the ridges and the triple junction will vary with time (Cronin, 1992, Tectonophys 207, 287-301). To explore the possible consequences of non-circular finite motion between plates at an RRR triple junction, a simple model was coded based on the cycloid finite-motion model (e.g., Cronin, 1987, Geology 15, 1006-1009) using NNR-MORVEL56 velocities for individual plates (Argus et al., 2011, G3 12, doi: 10.1029/2011GC003751). Initial assumptions include a spherical Earth, symmetric spreading, and constant angular velocities during the modeled finite time interval. The assumed-constant angular velocity vectors constitute a reference frame for observing finite plate motion. Typical results are [1] that the triple junction migrates relative to a coordinate system fixed to the angular-velocity vectors, [2] ridge axes rotates relative to each other, and [3] a boundary mismatch develops at the synthetic triple junction that might result in microplate nucleation. In a model simulating the Galapagos triple junction between the Cocos, Nazca and Pacific plates whose initial state did not include the Galapagos microplate, the mismatch gap was as much as ~3.4 km during 3 Myr of model displacement (see figure). The centroid of the synthetic triple junction translates ~81 km toward azimuth ~352° in 3 Myr. Of course, the details will vary as different angular velocity vectors are used; however, modeling indicates that non-circular finite relative motion between adjacent plates generally results in boundary mismatches and rotation of ridge segments relative to each other at RRR triple junctions. Left: synthetic Galapagos triple junction at initial model time, without a microplate. Right: synthetic triple junction after 3 Myr displacement, illustrating the resulting boundary mismatch (gap) and rotated ridge axes.

  7. Evaluation of colonoscopy technical skill levels by use of an objective kinematic-based system.

    PubMed

    Obstein, Keith L; Patil, Vaibhav D; Jayender, Jagadeesan; San José Estépar, Raúl; Spofford, Inbar S; Lengyel, Balazs I; Vosburgh, Kirby G; Thompson, Christopher C

    2011-02-01

    Colonoscopy requires training and experience to ensure accuracy and safety. Currently, no objective, validated process exists to determine when an endoscopist has attained technical competence. Kinematics data describing movements of laparoscopic instruments have been used in surgical skill assessment to define expert surgical technique. We have developed a novel system to record kinematics data during colonoscopy and quantitatively assess colonoscopist performance. To use kinematic analysis of colonoscopy to quantitatively assess endoscopic technical performance. Prospective cohort study. Tertiary-care academic medical center. This study involved physicians who perform colonoscopy. Application of a kinematics data collection system to colonoscopy evaluation. Kinematics data, validated task load assessment instrument, and technical difficulty visual analog scale. All 13 participants completed the colonoscopy to the terminal ileum on the standard colon model. Attending physicians reached the terminal ileum quicker than fellows (median time, 150.19 seconds vs 299.86 seconds; p<.01) with reduced path lengths for all 4 sensors, decreased flex (1.75 m vs 3.14 m; P=.03), smaller tip angulation, reduced absolute roll, and lower curvature of the endoscope. With performance of attending physicians serving as the expert reference standard, the mean kinematic score increased by 19.89 for each decrease in postgraduate year (P<.01). Overall, fellows experienced greater mental, physical, and temporal demand than did attending physicians. Small cohort size. Kinematic data and score calculation appear useful in the evaluation of colonoscopy technical skill levels. The kinematic score appears to consistently vary by year of training. Because this assessment is nonsubjective, it may be an improvement over current methods for determination of competence. Ongoing studies are establishing benchmarks and characteristic profiles of skill groups based on kinematics data. Copyright © 2011 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  8. Probabilistic structural analysis by extremum methods

    NASA Technical Reports Server (NTRS)

    Nafday, Avinash M.

    1990-01-01

    The objective is to demonstrate discrete extremum methods of structural analysis as a tool for structural system reliability evaluation. Specifically, linear and multiobjective linear programming models for analysis of rigid plastic frames under proportional and multiparametric loadings, respectively, are considered. Kinematic and static approaches for analysis form a primal-dual pair in each of these models and have a polyhedral format. Duality relations link extreme points and hyperplanes of these polyhedra and lead naturally to dual methods for system reliability evaluation.

  9. Robot Control Based On Spatial-Operator Algebra

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz, Kenneth K.; Jain, Abhinandan

    1992-01-01

    Method for mathematical modeling and control of robotic manipulators based on spatial-operator algebra providing concise representation and simple, high-level theoretical frame-work for solution of kinematical and dynamical problems involving complicated temporal and spatial relationships. Recursive algorithms derived immediately from abstract spatial-operator expressions by inspection. Transition from abstract formulation through abstract solution to detailed implementation of specific algorithms to compute solution greatly simplified. Complicated dynamical problems like two cooperating robot arms solved more easily.

  10. Making Meaning Out of Text.

    ERIC Educational Resources Information Center

    Kathpalia, Sujata S.

    2001-01-01

    Investigates textual coherence of popular psychology articles mediated through the theory of frames and identifies the linguistic evidence of factual frames. Inferencing is also discussed as a supplementary means to comprehension, with particular reference to the notion of bridging assumptions. Evidence for textual frames is discussed in relation…

  11. FOOT PLACEMENT IN A BODY REFERENCE FRAME DURING WALKING AND ITS RELATIONSHIP TO HEMIPARETIC WALKING PERFORMANCE

    PubMed Central

    Balasubramanian, Chitralakshmi K.; Neptune, Richard R.; Kautz, Steven A.

    2010-01-01

    Background Foot placement during walking is closely linked to the body position, yet it is typically quantified relative to the other foot. The purpose of this study was to quantify foot placement patterns relative to body post-stroke and investigate its relationship to hemiparetic walking performance. Methods Thirty-nine participants with hemiparesis walked on a split-belt treadmill at their self-selected speeds and twenty healthy participants walked at matched slow speeds. Anterior-posterior and medial-lateral foot placements (foot center-of-mass) relative to body (pelvis center-of-mass) quantified stepping in body reference frame. Walking performance was quantified using step length asymmetry ratio, percent of paretic propulsion and paretic weight support. Findings Participants with hemiparesis placed their paretic foot further anterior than posterior during walking compared to controls walking at matched slow speeds (p < .05). Participants also placed their paretic foot further lateral relative to pelvis than non-paretic (p < .05). Anterior-posterior asymmetry correlated with step length asymmetry and percent paretic propulsion but some persons revealed differing asymmetry patterns in the translating reference frame. Lateral foot placement asymmetry correlated with paretic weight support (r = .596; p < .001), whereas step widths showed no relation to paretic weight support. Interpretation Post-stroke gait is asymmetric when quantifying foot placement in a body reference frame and this asymmetry related to the hemiparetic walking performance and explained motor control mechanisms beyond those explained by step lengths and step widths alone. We suggest that biomechanical analyses quantifying stepping performance in impaired populations should investigate foot placement in a body reference frame. PMID:20193972

  12. Foot placement in a body reference frame during walking and its relationship to hemiparetic walking performance.

    PubMed

    Balasubramanian, Chitralakshmi K; Neptune, Richard R; Kautz, Steven A

    2010-06-01

    Foot placement during walking is closely linked to the body position, yet it is typically quantified relative to the other foot. The purpose of this study was to quantify foot placement patterns relative to body post-stroke and investigate its relationship to hemiparetic walking performance. Thirty-nine participants with hemiparesis walked on a split-belt treadmill at their self-selected speeds and 20 healthy participants walked at matched slow speeds. Anterior-posterior and medial-lateral foot placements (foot center-of-mass) relative to body (pelvis center-of-mass) quantified stepping in body reference frame. Walking performance was quantified using step length asymmetry ratio, percent of paretic propulsion and paretic weight support. Participants with hemiparesis placed their paretic foot further anterior than posterior during walking compared to controls walking at matched slow speeds (P<.05). Participants also placed their paretic foot further lateral relative to pelvis than non-paretic (P<.05). Anterior-posterior asymmetry correlated with step length asymmetry and percent paretic propulsion but some persons revealed differing asymmetry patterns in the translating reference frame. Lateral foot placement asymmetry correlated with paretic weight support (r=.596; P<.001), whereas step widths showed no relation to paretic weight support. Post-stroke gait is asymmetric when quantifying foot placement in a body reference frame and this asymmetry related to the hemiparetic walking performance and explained motor control mechanisms beyond those explained by step lengths and step widths alone. We suggest that biomechanical analyses quantifying stepping performance in impaired populations should investigate foot placement in a body reference frame. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Unitary cocycle representations of the Galilean line group: Quantum mechanical principle of equivalence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGregor, B.R.; McCoy, A.E.; Wickramasekara, S., E-mail: wickrama@grinnell.edu

    2012-09-15

    We present a formalism of Galilean quantum mechanics in non-inertial reference frames and discuss its implications for the equivalence principle. This extension of quantum mechanics rests on the Galilean line group, the semidirect product of the real line and the group of analytic functions from the real line to the Euclidean group in three dimensions. This group provides transformations between all inertial and non-inertial reference frames and contains the Galilei group as a subgroup. We construct a certain class of unitary representations of the Galilean line group and show that these representations determine the structure of quantum mechanics in non-inertialmore » reference frames. Our representations of the Galilean line group contain the usual unitary projective representations of the Galilei group, but have a more intricate cocycle structure. The transformation formula for the Hamiltonian under the Galilean line group shows that in a non-inertial reference frame it acquires a fictitious potential energy term that is proportional to the inertial mass, suggesting the equivalence of inertial mass and gravitational mass in quantum mechanics. - Highlights: Black-Right-Pointing-Pointer A formulation of Galilean quantum mechanics in non-inertial reference frames is given. Black-Right-Pointing-Pointer The key concept is the Galilean line group, an infinite dimensional group. Black-Right-Pointing-Pointer Unitary, cocycle representations of the Galilean line group are constructed. Black-Right-Pointing-Pointer A non-central extension of the group underlies these representations. Black-Right-Pointing-Pointer Quantum equivalence principle and gravity emerge from these representations.« less

  14. Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study.

    PubMed

    Richard, Vincent; Lamberto, Giuliano; Lu, Tung-Wu; Cappozzo, Aurelio; Dumas, Raphaël

    2016-01-01

    The use of multi-body optimisation (MBO) to estimate joint kinematics from stereophotogrammetric data while compensating for soft tissue artefact is still open to debate. Presently used joint models embedded in MBO, such as mechanical linkages, constitute a considerable simplification of joint function, preventing a detailed understanding of it. The present study proposes a knee joint model where femur and tibia are represented as rigid bodies connected through an elastic element the behaviour of which is described by a single stiffness matrix. The deformation energy, computed from the stiffness matrix and joint angles and displacements, is minimised within the MBO. Implemented as a "soft" constraint using a penalty-based method, this elastic joint description challenges the strictness of "hard" constraints. In this study, estimates of knee kinematics obtained using MBO embedding four different knee joint models (i.e., no constraints, spherical joint, parallel mechanism, and elastic joint) were compared against reference kinematics measured using bi-planar fluoroscopy on two healthy subjects ascending stairs. Bland-Altman analysis and sensitivity analysis investigating the influence of variations in the stiffness matrix terms on the estimated kinematics substantiate the conclusions. The difference between the reference knee joint angles and displacements and the corresponding estimates obtained using MBO embedding the stiffness matrix showed an average bias and standard deviation for kinematics of 0.9±3.2° and 1.6±2.3 mm. These values were lower than when no joint constraints (1.1±3.8°, 2.4±4.1 mm) or a parallel mechanism (7.7±3.6°, 1.6±1.7 mm) were used and were comparable to the values obtained with a spherical joint (1.0±3.2°, 1.3±1.9 mm). The study demonstrated the feasibility of substituting an elastic joint for more classic joint constraints in MBO.

  15. Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study

    PubMed Central

    Richard, Vincent; Lamberto, Giuliano; Lu, Tung-Wu; Cappozzo, Aurelio; Dumas, Raphaël

    2016-01-01

    The use of multi-body optimisation (MBO) to estimate joint kinematics from stereophotogrammetric data while compensating for soft tissue artefact is still open to debate. Presently used joint models embedded in MBO, such as mechanical linkages, constitute a considerable simplification of joint function, preventing a detailed understanding of it. The present study proposes a knee joint model where femur and tibia are represented as rigid bodies connected through an elastic element the behaviour of which is described by a single stiffness matrix. The deformation energy, computed from the stiffness matrix and joint angles and displacements, is minimised within the MBO. Implemented as a “soft” constraint using a penalty-based method, this elastic joint description challenges the strictness of “hard” constraints. In this study, estimates of knee kinematics obtained using MBO embedding four different knee joint models (i.e., no constraints, spherical joint, parallel mechanism, and elastic joint) were compared against reference kinematics measured using bi-planar fluoroscopy on two healthy subjects ascending stairs. Bland-Altman analysis and sensitivity analysis investigating the influence of variations in the stiffness matrix terms on the estimated kinematics substantiate the conclusions. The difference between the reference knee joint angles and displacements and the corresponding estimates obtained using MBO embedding the stiffness matrix showed an average bias and standard deviation for kinematics of 0.9±3.2° and 1.6±2.3 mm. These values were lower than when no joint constraints (1.1±3.8°, 2.4±4.1 mm) or a parallel mechanism (7.7±3.6°, 1.6±1.7 mm) were used and were comparable to the values obtained with a spherical joint (1.0±3.2°, 1.3±1.9 mm). The study demonstrated the feasibility of substituting an elastic joint for more classic joint constraints in MBO. PMID:27314586

  16. Simultaneous tracking and regulation visual servoing of wheeled mobile robots with uncalibrated extrinsic parameters

    NASA Astrophysics Data System (ADS)

    Lu, Qun; Yu, Li; Zhang, Dan; Zhang, Xuebo

    2018-01-01

    This paper presentsa global adaptive controller that simultaneously solves tracking and regulation for wheeled mobile robots with unknown depth and uncalibrated camera-to-robot extrinsic parameters. The rotational angle and the scaled translation between the current camera frame and the reference camera frame, as well as the ones between the desired camera frame and the reference camera frame can be calculated in real time by using the pose estimation techniques. A transformed system is first obtained, for which an adaptive controller is then designed to accomplish both tracking and regulation tasks, and the controller synthesis is based on Lyapunov's direct method. Finally, the effectiveness of the proposed method is illustrated by a simulation study.

  17. When Students Doubt Their Teachers' Diagnostic Competence: Moderation in the Internal/External Frame of Reference Model

    ERIC Educational Resources Information Center

    Zimmermann, Friederike; Möller, Jens; Köller, Olaf

    2018-01-01

    The internal/external frame of reference model (I/E model) posits that individuals' achievement-related self-concepts are formed through social comparisons (e.g., self vs. peers) within academic domains and dimensional comparisons (e.g., math vs. verbal) between distinct domains. A large body of research has supported the theorized pattern of…

  18. Antecedents of Academic Emotions: Testing the Internal/External Frame of Reference Model for Academic Enjoyment

    ERIC Educational Resources Information Center

    Goetz, Thomas; Frenzel, Anne C.; Hall, Nathan C.; Pekrun, Reinhard

    2008-01-01

    The present study focused on students' academic enjoyment as predicted by achievement in multiple academic domains. Assumptions were based on Marsh's internal/external (I/E) frame of reference model and Pekrun's control-value theory of achievement emotions, and were tested in a sample of 1380 German students from grades 5 to 10. Students' academic…

  19. Learning to Explain Astronomy across Moving Frames of Reference: Exploring the Role of Classroom and Planetarium-Based Instructional Contexts

    ERIC Educational Resources Information Center

    Plummer, Julia Diane; Kocareli, Alicia; Slagle, Cynthia

    2014-01-01

    Learning astronomy involves significant spatial reasoning, such as learning to describe Earth-based phenomena and understanding space-based explanations for those phenomena as well as using the relevant size and scale information to interpret these frames of reference. This study examines daily celestial motion (DCM) as one case of how children…

  20. Layout Geometry in the Selection of Intrinsic Frames of Reference from Multiple Viewpoints

    ERIC Educational Resources Information Center

    Mou, Weimin; Zhao, Mintao; McNamara, Timothy P.

    2007-01-01

    Four experiments investigated the roles of layout geometry in the selection of intrinsic frames of reference in spatial memory. Participants learned the locations of objects in a room from 2 or 3 viewing perspectives. One view corresponded to the axis of bilateral symmetry of the layout, and the other view(s) was (were) nonorthogonal to the axis…

  1. Teachers' Interpretations of the Internet. An Applied Case Study for the Evaluation of Technological Frames of Reference

    ERIC Educational Resources Information Center

    Camilleri, Patrick

    2012-01-01

    In 1994 Orlikowski and Gash articulated Technological Frames of Reference as a systematic theoretical lens to examine technological developments in organisations. A decade later, in 2004, Davidson and Pai expressed concern that while the lens was widely cited in academic discourse, the incidence and adoption of the model as an analytical framework…

  2. Does Environmental Experience Shape Spatial Cognition? Frames of Reference among Ancash Quechua Speakers (Peru)

    ERIC Educational Resources Information Center

    Shapero, Joshua A.

    2017-01-01

    Previous studies have shown that language contributes to humans' ability to orient using landmarks and shapes their use of frames of reference (FoRs) for memory. However, the role of environmental experience in shaping spatial cognition has not been investigated. This study addresses such a possibility by examining the use of FoRs in a nonverbal…

  3. Justifying Alternative Models in Learning Astronomy: A Study of K-8 Science Teachers' Understanding of Frames of Reference

    ERIC Educational Resources Information Center

    Shen, Ji; Confrey, Jere

    2010-01-01

    Understanding frames of reference is critical in describing planetary motion and learning astronomy. Historically, the geocentric and heliocentric models were defended and advocated against each other. Today, there are still many people who do not understand the relationship between the two models. This topic is not adequately treated in astronomy…

  4. The Reciprocal Internal/External Frame of Reference Model Using Grades and Test Scores

    ERIC Educational Resources Information Center

    Möller, Jens; Zimmermann, Friederike; Köller, Olaf

    2014-01-01

    Background: The reciprocal I/E model (RI/EM) combines the internal/external frame of reference model (I/EM) with the reciprocal effects model (REM). The RI/EM extends the I/EM longitudinally and the REM across domains. The model predicts that, within domains, mathematics and verbal achievement (VACH) and academic self-concept have positive effects…

  5. New architecture for dynamic frame-skipping transcoder.

    PubMed

    Fung, Kai-Tat; Chan, Yui-Lam; Siu, Wan-Chi

    2002-01-01

    Transcoding is a key technique for reducing the bit rate of a previously compressed video signal. A high transcoding ratio may result in an unacceptable picture quality when the full frame rate of the incoming video bitstream is used. Frame skipping is often used as an efficient scheme to allocate more bits to the representative frames, so that an acceptable quality for each frame can be maintained. However, the skipped frame must be decompressed completely, which might act as a reference frame to nonskipped frames for reconstruction. The newly quantized discrete cosine transform (DCT) coefficients of the prediction errors need to be re-computed for the nonskipped frame with reference to the previous nonskipped frame; this can create undesirable complexity as well as introduce re-encoding errors. In this paper, we propose new algorithms and a novel architecture for frame-rate reduction to improve picture quality and to reduce complexity. The proposed architecture is mainly performed on the DCT domain to achieve a transcoder with low complexity. With the direct addition of DCT coefficients and an error compensation feedback loop, re-encoding errors are reduced significantly. Furthermore, we propose a frame-rate control scheme which can dynamically adjust the number of skipped frames according to the incoming motion vectors and re-encoding errors due to transcoding such that the decoded sequence can have a smooth motion as well as better transcoded pictures. Experimental results show that, as compared to the conventional transcoder, the new architecture for frame-skipping transcoder is more robust, produces fewer requantization errors, and has reduced computational complexity.

  6. VizieR Online Data Catalog: Carlsberg Meridian Catalog, Vol. 7 (CMC7, 1993)

    NASA Astrophysics Data System (ADS)

    Copenhagen University Observatory; Royal Greenwich Observatory

    1995-11-01

    The Carlsberg Meridian Catalogues give accurate positions, proper motions and magnitudes of stars north of declination -45deg and down to 15th magnitude. They also contain observations of the solar system objects: Mars, Callisto, Saturn, Titan, Iapetus, Uranus, Neptune, Pluto, and many minor planets. Typical mean errors for an entry are 0.1arcsec in position, 3mas/yr in proper motion, and 0.05mag in magnitude. The stars observed belong to a large number of observing programmes typically dealing with the reference frame or with galactic kinematics. The Carlsberg Automatic Meridian Circle on La Palma is operated by Copenhagen University Observatory, Royal Greenwich Observatory, and Real Instituto y Observatorio de la Armada at the Observatory del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. For a detailed introduction, please refer to the printed catalogue. A description of the programme may also be found in the 1993 paper by Fabricius (=1993BICDS..42....5F), from which the present description is derived. Originally the CMC7 was planned to contain only observations from 1991. The actual CMC7 comprises nearly 20 month (January 1991 to August 1992) and is thus more extensive than foreseen when a description was published in Bull. CDS (=1993BICDS..42....5F) Published by Copenhagen University Observatory, Royal Greenwich Observatory and Real Instituto y Observatorio de la Armada en San Fernando. 1993. (5 data files).

  7. Premature infant swallowing: patterns of tongue-soft palate coordination based upon videofluoroscopy.

    PubMed

    Goldfield, Eugene C; Buonomo, Carlo; Fletcher, Kara; Perez, Jennifer; Margetts, Stacey; Hansen, Anne; Smith, Vincent; Ringer, Steven; Richardson, Michael J; Wolff, Peter H

    2010-04-01

    Coordination between movements of individual tongue points, and between soft palate elevation and tongue movements, were examined in 12 prematurely born infants referred from hospital NICUs for videofluoroscopic swallow study (VFSS) due to poor oral feeding and suspicion of aspiration. Detailed post-evaluation kinematic analysis was conducted by digitizing images of a lateral view of digitally superimposed points on the tongue and soft palate. The primary measure of coordination was continuous relative phase of the time series created by movements of points on the tongue and soft palate over successive frames. Three points on the tongue (anterior, medial, and posterior) were organized around a stable in-phase pattern, with a phase lag that implied an anterior to posterior direction of motion. Coordination between a tongue point and a point on the soft palate during lowering and elevation was close to anti-phase at initiation of the pharyngeal swallow. These findings suggest that anti-phase coordination between tongue and soft palate may reflect the process by which the tongue is timed to pump liquid by moving it into an enclosed space, compressing it, and allowing it to leave by a specific route through the pharynx. Copyright 2009 Elsevier Inc. All rights reserved.

  8. Hertz's special relativity and physical reality.

    NASA Astrophysics Data System (ADS)

    Mocanu, C. I.

    Maxwell-Hertz electrodynamics (MHE), valid for nonuniform motions as they occur in physical reality and which holds for the noninertial reference frame of our laboratory at small velocities only, is extended to relativistic velocities. The new theory, called Hertz's relativistic electrodynamics (HRE), is completely independent and built-up in a completely different way than Einstein's special relativity (ESR). HRE, a coordinate-free formulation, does not need postulates, but confirms the constancy principle of the speed of light in a vacuum. All experiments of first and second order in v2/c2 are correctly interpreted. To this theory a Hertzian kinematics and dynamics are associated. HRE with its corresponding mechanics form Hertz's special relativity (HSR) as a theory complementary to ESR. According to the principle of complementarity and neglecting gravitational effects, extended special relativity (ExSR) is a double-faced theory which becomes either ESR when the motion is inertial or HSR when the motion is noninertial. The complementarity of both theories assumes that the two descriptions cannot be employed for the same motion, being mutually exclusive. Consequently, to every statement of ExSR, a complementary statement of the other ExSR corresponds. The completeness of ESR with HSR ensures an extended view over relativity in our physical world.

  9. The medial frontal cortex contributes to but does not organize rat exploratory behavior.

    PubMed

    Blankenship, Philip A; Stuebing, Sarah L; Winter, Shawn S; Cheatwood, Joseph L; Benson, James D; Whishaw, Ian Q; Wallace, Douglas G

    2016-11-12

    Animals use multiple strategies to maintain spatial orientation. Dead reckoning is a form of spatial navigation that depends on self-movement cue processing. During dead reckoning, the generation of self-movement cues from a starting position to an animal's current position allow for the estimation of direction and distance to the position movement originated. A network of brain structures has been implicated in dead reckoning. Recent work has provided evidence that the medial frontal cortex may contribute to dead reckoning in this network of brain structures. The current study investigated the organization of rat exploratory behavior subsequent to medial frontal cortex aspiration lesions under light and dark conditions. Disruptions in exploratory behavior associated with medial frontal lesions were consistent with impaired motor coordination, response inhibition, or egocentric reference frame. These processes are necessary for spatial orientation; however, they are not sufficient for self-movement cue processing. Therefore it is possible that the medial frontal cortex provides processing resources that support dead reckoning in other brain structures but does not of itself compute the kinematic details of dead reckoning. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Observing human movements helps decoding environmental forces.

    PubMed

    Zago, Myrka; La Scaleia, Barbara; Miller, William L; Lacquaniti, Francesco

    2011-11-01

    Vision of human actions can affect several features of visual motion processing, as well as the motor responses of the observer. Here, we tested the hypothesis that action observation helps decoding environmental forces during the interception of a decelerating target within a brief time window, a task intrinsically very difficult. We employed a factorial design to evaluate the effects of scene orientation (normal or inverted) and target gravity (normal or inverted). Button-press triggered the motion of a bullet, a piston, or a human arm. We found that the timing errors were smaller for upright scenes irrespective of gravity direction in the Bullet group, while the errors were smaller for the standard condition of normal scene and gravity in the Piston group. In the Arm group, instead, performance was better when the directions of scene and target gravity were concordant, irrespective of whether both were upright or inverted. These results suggest that the default viewer-centered reference frame is used with inanimate scenes, such as those of the Bullet and Piston protocols. Instead, the presence of biological movements in animate scenes (as in the Arm protocol) may help processing target kinematics under the ecological conditions of coherence between scene and target gravity directions.

  11. On the electron vortex beam wavefunction within a crystal.

    PubMed

    Mendis, B G

    2015-10-01

    Electron vortex beams are distorted by scattering within a crystal, so that the wavefunction can effectively be decomposed into many vortex components. Using a Bloch wave approach equations are derived for vortex beam decomposition at any given depth and with respect to any frame of reference. In the kinematic limit (small specimen thickness) scattering largely takes place at the neighbouring atom columns with a local phase change of π/2rad. When viewed along the beam propagation direction only one vortex component is present at the specimen entrance surface (i.e. the 'free space' vortex in vacuum), but at larger depths the probe is in a mixed state due to Bragg scattering. Simulations show that there is no direct correlation between vortex components and the 〈Lz〉 pendellösung, i.e. at a given depth probes with relatively constant 〈Lz〉 can be in a more mixed state compared to those with more rapidly varying 〈Lz〉. This suggests that minimising oscillations in the 〈Lz〉 pendellösung by probe channelling is not the only criterion for generating a strong electron energy loss magnetic circular dichroism (EMCD) signal. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Text-Frame Relationships and ESL.

    ERIC Educational Resources Information Center

    Burquest, Donald A.; Henry, Floreen Barger

    The relationship of contextual background to comprehension of written texts is discussed with reference to instruction in English as a second language (ESL). A theory advanced by Kerry Stewart Robichaux proposes six possible relationships between a text and its cultural "frame." Applications of the six text-frame relationships to foreign…

  13. Probing C P Violation in h →τ-τ+ at the LHC

    NASA Astrophysics Data System (ADS)

    Hagiwara, Kaoru; Ma, Kai; Mori, Shingo

    2017-04-01

    We propose a novel method to reconstruct event by event the full kinematics of the cascade decay process, h →τ+τ-→(π+ν ¯ )(π-ν ) , which allows us to measure the τ+τ- spin correlation, a measure of the C P property of the Higgs boson. By noting that the τ± momenta lie on the plane spanned by the accurately measured impact parameter and momentum vectors of charged pions, we can obtain the most likely momenta of the two missing neutrinos by using the probability distribution functions of the p →T vector and the location of the primary vertex. A simple detector level simulation shows an excellent agreement between the reconstructed and the true kinematics, both in the τ+τ- and the π+π- rest frames. The method can be tested in Z →τ+τ- events, which should exhibit no correlation.

  14. A Continuum Damage Mechanics Model to Predict Kink-Band Propagation Using Deformation Gradient Tensor Decomposition

    NASA Technical Reports Server (NTRS)

    Bergan, Andrew C.; Leone, Frank A., Jr.

    2016-01-01

    A new model is proposed that represents the kinematics of kink-band formation and propagation within the framework of a mesoscale continuum damage mechanics (CDM) model. The model uses the recently proposed deformation gradient decomposition approach to represent a kink band as a displacement jump via a cohesive interface that is embedded in an elastic bulk material. The model is capable of representing the combination of matrix failure in the frame of a misaligned fiber and instability due to shear nonlinearity. In contrast to conventional linear or bilinear strain softening laws used in most mesoscale CDM models for longitudinal compression, the constitutive response of the proposed model includes features predicted by detailed micromechanical models. These features include: 1) the rotational kinematics of the kink band, 2) an instability when the peak load is reached, and 3) a nonzero plateau stress under large strains.

  15. Dynamical effects in Bragg coherent x-ray diffraction imaging of finite crystals

    NASA Astrophysics Data System (ADS)

    Shabalin, A. G.; Yefanov, O. M.; Nosik, V. L.; Bushuev, V. A.; Vartanyants, I. A.

    2017-08-01

    We present simulations of Bragg coherent x-ray diffractive imaging (CXDI) data from finite crystals in the frame of the dynamical theory of x-ray diffraction. The developed approach is based on a numerical solution of modified Takagi-Taupin equations and can be applied for modeling of a broad range of x-ray diffraction experiments with finite three-dimensional crystals of arbitrary shape also in the presence of strain. We performed simulations for nanocrystals of a cubic and hemispherical shape of different sizes and provided a detailed analysis of artifacts in the Bragg CXDI reconstructions introduced by the dynamical diffraction. Based on our theoretical analysis we developed an analytical procedure to treat effects of refraction and absorption in the reconstruction. Our results elucidate limitations for the kinematical approach in the Bragg CXDI and suggest a natural criterion to distinguish between kinematical and dynamical cases in coherent x-ray diffraction on a finite crystal.

  16. Realizing a terrestrial reference frame using the Global Positioning System

    NASA Astrophysics Data System (ADS)

    Haines, Bruce J.; Bar-Sever, Yoaz E.; Bertiger, Willy I.; Desai, Shailen D.; Harvey, Nate; Sibois, Aurore E.; Weiss, Jan P.

    2015-08-01

    We describe a terrestrial reference frame (TRF) realization based on Global Positioning System (GPS) data alone. Our approach rests on a highly dynamic, long-arc (9 day) estimation strategy and on GPS satellite antenna calibrations derived from Gravity Recovery and Climate Experiment and TOPEX/Poseidon low Earth orbit receiver GPS data. Based on nearly 17 years of data (1997-2013), our solution for scale rate agrees with International Terrestrial Reference Frame (ITRF)2008 to 0.03 ppb yr-1, and our solution for 3-D origin rate agrees with ITRF2008 to 0.4 mm yr-1. Absolute scale differs by 1.1 ppb (7 mm at the Earth's surface) and 3-D origin by 8 mm. These differences lie within estimated error levels for the contemporary TRF.

  17. Proof-of-principle experiment of reference-frame-independent quantum key distribution with phase coding

    PubMed Central

    Liang, Wen-Ye; Wang, Shuang; Li, Hong-Wei; Yin, Zhen-Qiang; Chen, Wei; Yao, Yao; Huang, Jing-Zheng; Guo, Guang-Can; Han, Zheng-Fu

    2014-01-01

    We have demonstrated a proof-of-principle experiment of reference-frame-independent phase coding quantum key distribution (RFI-QKD) over an 80-km optical fiber. After considering the finite-key bound, we still achieve a distance of 50 km. In this scenario, the phases of the basis states are related by a slowly time-varying transformation. Furthermore, we developed and realized a new decoy state method for RFI-QKD systems with weak coherent sources to counteract the photon-number-splitting attack. With the help of a reference-frame-independent protocol and a Michelson interferometer with Faraday rotator mirrors, our system is rendered immune to the slow phase changes of the interferometer and the polarization disturbances of the channel, making the procedure very robust. PMID:24402550

  18. Method and apparatus for configuration control of redundant robots

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1991-01-01

    A method and apparatus to control a robot or manipulator configuration over the entire motion based on augmentation of the manipulator forward kinematics is disclosed. A set of kinematic functions is defined in Cartesian or joint space to reflect the desirable configuration that will be achieved in addition to the specified end-effector motion. The user-defined kinematic functions and the end-effector Cartesian coordinates are combined to form a set of task-related configuration variables as generalized coordinates for the manipulator. A task-based adaptive scheme is then utilized to directly control the configuration variables so as to achieve tracking of some desired reference trajectories throughout the robot motion. This accomplishes the basic task of desired end-effector motion, while utilizing the redundancy to achieve any additional task through the desired time variation of the kinematic functions. The present invention can also be used for optimization of any kinematic objective function, or for satisfaction of a set of kinematic inequality constraints, as in an obstacle avoidance problem. In contrast to pseudoinverse-based methods, the configuration control scheme ensures cyclic motion of the manipulator, which is an essential requirement for repetitive operations. The control law is simple and computationally very fast, and does not require either the complex manipulator dynamic model or the complicated inverse kinematic transformation. The configuration control scheme can alternatively be implemented in joint space.

  19. SIRGAS: the core geodetic infrastructure in Latin America and the Caribbean

    NASA Astrophysics Data System (ADS)

    Sanchez, L.; Brunini, C.; Drewes, H.; Mackern, V.; da Silva, A.

    2013-05-01

    Studying, understanding, and modelling geophysical phenomena, such as global change and geodynamics, require geodetic reference frames with (1) an order of accuracy higher than the magnitude of the effects we want to study, (2) consistency and reliability worldwide (the same accuracy everywhere), and (3) a long-term stability (the same order of accuracy at any time). The definition, realisation, maintenance, and wide-utilisation of the International Terrestrial Reference System (ITRS) are oriented to guarantee a globally unified geometric reference frame with reliability at the mm-level, i.e. the International Terrestrial Reference Frame (ITRF). The densification of the global ITRF in Latin America and The Caribbean is given by SIRGAS (Sistema de Referencia Geocéntrico para Las Américas), primary objective of which is to provide the most precise coordinates in the region. Therefore, SIRGAS is the backbone for all regional projects based on the generation, use, and analysis of geo-referenced data at national as well as at international level. Besides providing the reference for a wide range of scientific applications such as the monitoring of Earth's crust deformations, vertical movements, sea level variations, atmospheric studies, etc., SIRGAS is also the platform for practical applications such as engineering projects, digital administration of geographical data, geospatial data infrastructures, etc. According to this, the present contribution describes the main features of SIRGAS, giving special care to those challenges faced to continue providing the best possible, long-term stable and high-precise reference frame for Latin America and the Caribbean.

  20. Kinematical Relativistic Corrections for Earth’s Rotation Parameters

    DTIC Science & Technology

    2000-03-01

    the same notation as in Brumberg et al.(1996) and Brumberg (1997a), i.e. B { barycentric, G { geocentric, V { VLBI, C { ecliptical , Q { equatorial, D...Very approximately PQ = E; PC = 0 @ 1 0 00 cos " sin " 0 sin " cos " 1 A ; (2:2) where E stands for the unit matrix and " is the mean obliquity . This...the Euler angles and their TCG derivatives relating the ITRS and the geocentric ecliptical reference system GRSC in dynamical and kinematical versions

  1. Promotional Frames' Influence on Price Perceptions of Two Apparel Products.

    ERIC Educational Resources Information Center

    Stanforth, Nancy; Lennon, Sharron; Shin, Jung Im

    2001-01-01

    A study explored the differences in price perceptions of two apparel products when promotions were framed as either a price discount or a gift-with-purchase. The majority preferred the discount. Results illustrate the importance of promotional framing in forming consumer price perceptions. (Contains 30 references.) (Author/JOW)

  2. Frame of Reference Model of Self-Concept and Locus of Control: A Cross Gender Study in the United Arab Emirates.

    ERIC Educational Resources Information Center

    Abu-Hilal, Maher M.

    A study tested predictions for I/E (internal external) frame of reference model and extended this model to include locus of control. A sample of upper elementary (n=181) and junior high (n=191) students in the United Arab Emirates participated in the study. Structural equation modeling (SEM) analyses provided support to the external comparison…

  3. The Internal/External Frame of Reference Model of Self-Concept and Achievement Relations: Age-Cohort and Cross-Cultural Differences

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Abduljabbar, Adel Salah; Parker, Philip D.; Morin, Alexandre J. S.; Abdelfattah, Faisal; Nagengast, Benjamin; Möller, Jens; Abu-Hilal, Maher M.

    2015-01-01

    The internal/external frame of reference (I/E) model and dimensional comparison theory posit paradoxical relations between achievement (ACH) and self-concept (SC) in mathematics (M) and verbal (V) domains; ACH in each domain positively affects SC in the matching domain (e.g., MACH to MSC) but negatively in the nonmatching domain (e.g., MACH to…

  4. Verbal and Math Self-Concepts: An Extension of the Internal/External Frame of Reference Model.

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Byrne, Barbara M.

    The internal/external (I/E) frame of reference model describes relations among Verbal self-concept (VSC), Math self-concept (MSC), and corresponding achievement scores (VACH, MACH). In support of the model Marsh (1986) found that: (1) VSC and MSC were nearly uncorrelated; (2) the effect of VACH on VSC, and of MACH on MSC, were positive; but (3)…

  5. The Effect of Motion Analysis Activities in a Video-Based Laboratory in Students' Understanding of Position, Velocity and Frames of Reference

    ERIC Educational Resources Information Center

    Koleza, Eugenia; Pappas, John

    2008-01-01

    In this article, we present the results of a qualitative research project on the effect of motion analysis activities in a Video-Based Laboratory (VBL) on students' understanding of position, velocity and frames of reference. The participants in our research were 48 pre-service teachers enrolled in Education Departments with no previous strong…

  6. Frame-of-Reference Training Effectiveness: Effects of Goal Orientation and Self-Efficacy on Affective, Cognitive, Skill-Based, and Transfer Outcomes

    ERIC Educational Resources Information Center

    Dierdorff, Erich C.; Surface, Eric A.; Brown, Kenneth G.

    2010-01-01

    Empirical evidence supporting frame-of-reference (FOR) training as an effective intervention for calibrating raters is convincing. Yet very little is known about who does better or worse in FOR training. We conducted a field study of how motivational factors influence affective, cognitive, and behavioral learning outcomes, as well as near transfer…

  7. The effect of toe marker placement error on joint kinematics and muscle forces using OpenSim gait simulation.

    PubMed

    Xu, Hang; Merryweather, Andrew; Bloswick, Donald; Mao, Qi; Wang, Tong

    2015-01-01

    Marker placement can be a significant source of error in biomechanical studies of human movement. The toe marker placement error is amplified by footwear since the toe marker placement on the shoe only relies on an approximation of underlying anatomical landmarks. Three total knee replacement subjects were recruited and three self-speed gait trials per subject were collected. The height variation between toe and heel markers of four types of footwear was evaluated from the results of joint kinematics and muscle forces using OpenSim. The reference condition was considered as the same vertical height of toe and heel markers. The results showed that the residual variances for joint kinematics had an approximately linear relationship with toe marker placement error for lower limb joints. Ankle dorsiflexion/plantarflexion is most sensitive to toe marker placement error. The influence of toe marker placement error is generally larger for hip flexion/extension and rotation than hip abduction/adduction and knee flexion/extension. The muscle forces responded to the residual variance of joint kinematics to various degrees based on the muscle function for specific joint kinematics. This study demonstrates the importance of evaluating marker error for joint kinematics and muscle forces when explaining relative clinical gait analysis and treatment intervention.

  8. Theory and Realization of Global Terrestrial Reference Systems

    NASA Technical Reports Server (NTRS)

    Ma, C.; Bolotin, S.; Gipson, J.; Gordon, D.; Le Bail, K.; MacMillan, D.

    2010-01-01

    Comparison of realizations of the terrestrial reference frame. IGN and DGFI both generated realizations of the terrestrial reference frame under the auspices of the IERS from combination of the same space geodetic data. We examined both results for VLBI sites using the full geodetic VLBI data set with respect to site positions and velocities and time series of station positions, baselines and Earth orientation parameters. One of the difficulties encountered was matching episodic breaks and periods of non-linear motion of the two realizations with the VLBI models. Our analysis and conclusions will be discussed.

  9. A Kinematic Calibration Process for Flight Robotic Arms

    NASA Technical Reports Server (NTRS)

    Collins, Curtis L.; Robinson, Matthew L.

    2013-01-01

    The Mars Science Laboratory (MSL) robotic arm is ten times more massive than any Mars robotic arm before it, yet with similar accuracy and repeatability positioning requirements. In order to assess and validate these requirements, a higher-fidelity model and calibration processes were needed. Kinematic calibration of robotic arms is a common and necessary process to ensure good positioning performance. Most methodologies assume a rigid arm, high-accuracy data collection, and some kind of optimization of kinematic parameters. A new detailed kinematic and deflection model of the MSL robotic arm was formulated in the design phase and used to update the initial positioning and orientation accuracy and repeatability requirements. This model included a higher-fidelity link stiffness matrix representation, as well as a link level thermal expansion model. In addition, it included an actuator backlash model. Analytical results highlighted the sensitivity of the arm accuracy to its joint initialization methodology. Because of this, a new technique for initializing the arm joint encoders through hardstop calibration was developed. This involved selecting arm configurations to use in Earth-based hardstop calibration that had corresponding configurations on Mars with the same joint torque to ensure repeatability in the different gravity environment. The process used to collect calibration data for the arm included the use of multiple weight stand-in turrets with enough metrology targets to reconstruct the full six-degree-of-freedom location of the rover and tool frames. The follow-on data processing of the metrology data utilized a standard differential formulation and linear parameter optimization technique.

  10. Deriving a geocentric reference frame for satellite positioning and navigation

    NASA Technical Reports Server (NTRS)

    Malla, R. P.; Wu, S.-C.

    1988-01-01

    With the advent of Earth-orbiting geodetic satellites, nongeocentric datums or reference frames have become things of the past. Accurate geocentric three-dimensional positioning is now possible and is of great importance for various geodetic and oceanographic applications. While relative positioning accuracy of a few centimeters has become a reality using very long baseline interferometry (VLBI), the uncertainty in the offset of the adopted coordinate system origin from the geocenter is still believed to be on the order of 1 meter. Satellite laser ranging (SLR), however, is capable of determining this offset to better than 10 cm, but this is possible only after years of measurements. Global Positioning System (GPS) measurements provide a powerful tool for an accurate determination of this origin offset. Two strategies are discussed. The first strategy utilizes the precise relative positions that were predetermined by VLBI to fix the frame orientation and the absolute scaling, while the offset from the geocenter is determined from GPS measurements. Three different cases are presented under this strategy. The reference frame thus adopted will be consistent with the VLBI coordinate system. The second strategy establishes a reference frame by holding only the longitude of one of the tracking sites fixed. The absolute scaling is determined by the adopted gravitational constant (GM) of the Earth; and the latitude is inferred from the time signature of the Earth rotation in the GPS measurements. The coordinate system thus defined will be a geocentric Earth-fixed coordinate system.

  11. The African Reference Frame (AFREF) project: a fundamental geodetic tool for Africa

    NASA Astrophysics Data System (ADS)

    Farah, H.

    2009-04-01

    AFREF has as objective the establishment and maintenance of a unified geodetic reference frame for Africa, which will support and facilitate fundamental scientific and technical projects. The installation of observation systems all over Africa will provide important data that can be used in many different scientific fields (e.g., geodynamics, meteorological). Furthermore, AFREF will create an uniform frame that will support development projects, uniform environmental and mapping programmes as well as aid in resolving current and future international boundary disputes. This reference frame will be based on the International Terrestrial Reference Frame (ITRF) and will be realised through the establishment of a network of permanent Global Navigation Satellite System (GNSS) receivers. In close collaboration with several institutional role players, AFREF is an initiative of the United Nations Economic Commission for Africa (UNECA) Committee on Development Information (CODI). A steering committee is currently responsible for the over-all management and coordination of the implementation of AFREF. Implementation of AFREF is envisaged to be at national level in collaboration with National Mapping Organizations. Furthermore, many scientific Institutions are contributing for the densification of the network. The current status of the AFREF network will be discussed in detail. Several CORS systems have been installed to support AFREF specifically. In addition, most or all of the IGS stations located in Africa will automatically qualify as AFREF core stations. Furthermore, we will show examples of interaction between specific projects and AFREF that are contributing for the development of science in Africa.

  12. Frames of reference in spatial language acquisition.

    PubMed

    Shusterman, Anna; Li, Peggy

    2016-08-01

    Languages differ in how they encode spatial frames of reference. It is unknown how children acquire the particular frame-of-reference terms in their language (e.g., left/right, north/south). The present paper uses a word-learning paradigm to investigate 4-year-old English-speaking children's acquisition of such terms. In Part I, with five experiments, we contrasted children's acquisition of novel word pairs meaning left-right and north-south to examine their initial hypotheses and the relative ease of learning the meanings of these terms. Children interpreted ambiguous spatial terms as having environment-based meanings akin to north and south, and they readily learned and generalized north-south meanings. These studies provide the first direct evidence that children invoke geocentric representations in spatial language acquisition. However, the studies leave unanswered how children ultimately acquire "left" and "right." In Part II, with three more experiments, we investigated why children struggle to master body-based frame-of-reference words. Children successfully learned "left" and "right" when the novel words were systematically introduced on their own bodies and extended these words to novel (intrinsic and relative) uses; however, they had difficulty learning to talk about the left and right sides of a doll. This difficulty was paralleled in identifying the left and right sides of the doll in a non-linguistic memory task. In contrast, children had no difficulties learning to label the front and back sides of a doll. These studies begin to paint a detailed account of the acquisition of spatial terms in English, and provide insights into the origins of diverse spatial reference frames in the world's languages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Impact of quasar proper motions on the alignment between the International Celestial Reference Frame and the Gaia reference frame

    NASA Astrophysics Data System (ADS)

    Liu, J.-C.; Malkin, Z.; Zhu, Z.

    2018-03-01

    The International Celestial Reference Frame (ICRF) is currently realized by the very long baseline interferometry (VLBI) observations of extragalactic sources with the zero proper motion assumption, while Gaia will observe proper motions of these distant and faint objects to an accuracy of tens of microarcseconds per year. This paper investigates the difference between VLBI and Gaia quasar proper motions and it aims to understand the impact of quasar proper motions on the alignment of the ICRF and Gaia reference frame. We use the latest time series data of source coordinates from the International VLBI Service analysis centres operated at Goddard Space Flight Center (GSF2017) and Paris observatory (OPA2017), as well as the Gaia auxiliary quasar solution containing 2191 high-probability optical counterparts of the ICRF2 sources. The linear proper motions in right ascension and declination of VLBI sources are derived by least-squares fits while the proper motions for Gaia sources are simulated taking into account the acceleration of the Solar system barycentre and realistic uncertainties depending on the source brightness. The individual and global features of source proper motions in GSF2017 and OPA2017 VLBI data are found to be inconsistent, which may result from differences in VLBI observations, data reduction and analysis. A comparison of the VLBI and Gaia proper motions shows that the accuracies of the components of rotation and glide between the two systems are 2-4 μas yr- 1 based on about 600 common sources. For the future alignment of the ICRF and Gaia reference frames at different wavelengths, the proper motions of quasars must necessarily be considered.

  14. U.S. Geological Survey National Computer Technology Meeting: Program and Abstracts, Norfolk, Virginia, May 17-22, 1992

    DTIC Science & Technology

    1992-05-01

    formats, and character formats that can easily integrate graphics and text into one document. FrameMaker is one of few ERP software programs that has...easier and faster using ERP software. The DIS-II ERP software program is FrameMaker by Frame Technology, Incorporated. FrameMaker uses the X window...functions, calculus, relations, and other complicated math applications. FrameMaker permits the user to define formats for master pages, reference pages

  15. A computational model for reference-frame synthesis with applications to motion perception.

    PubMed

    Clarke, Aaron M; Öğmen, Haluk; Herzog, Michael H

    2016-09-01

    As discovered by the Gestaltists, in particular by Duncker, we often perceive motion to be within a non-retinotopic reference frame. For example, the motion of a reflector on a bicycle appears to be circular, whereas, it traces out a cycloidal path with respect to external world coordinates. The reflector motion appears to be circular because the human brain subtracts the horizontal motion of the bicycle from the reflector motion. The bicycle serves as a reference frame for the reflector motion. Here, we present a general mathematical framework, based on vector fields, to explain non-retinotopic motion processing. Using four types of non-retinotopic motion paradigms, we show how the theory works in detail. For example, we show how non-retinotopic motion in the Ternus-Pikler display can be computed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Orbital motions of astronomical bodies and their centre of mass from different reference frames: a conceptual step between the geocentric and heliocentric models

    NASA Astrophysics Data System (ADS)

    Guerra, André G. C.; Simeão Carvalho, Paulo

    2016-09-01

    The motion of astronomical bodies and the centre of mass of the system is not always well perceived by students. One of the struggles is the conceptual change of reference frame, which is the same that held back the acceptance of the Heliocentric model over the Geocentric one. To address the question, the notion of centre of mass, motion equations (and their numerical solution for a system of multiple bodies), and change of frame of reference is introduced. The discussion is done based on conceptual and real world examples, using the solar system. Consequently, through the use of simple ‘do it yourself’ methods and basic equations, students can debate complex motions, and have a wider and potentially effective understanding of physics.

  17. STAMPS: development and verification of swallowing kinematic analysis software.

    PubMed

    Lee, Woo Hyung; Chun, Changmook; Seo, Han Gil; Lee, Seung Hak; Oh, Byung-Mo

    2017-10-17

    Swallowing impairment is a common complication in various geriatric and neurodegenerative diseases. Swallowing kinematic analysis is essential to quantitatively evaluate the swallowing motion of the oropharyngeal structures. This study aims to develop a novel swallowing kinematic analysis software, called spatio-temporal analyzer for motion and physiologic study (STAMPS), and verify its validity and reliability. STAMPS was developed in MATLAB, which is one of the most popular platforms for biomedical analysis. This software was constructed to acquire, process, and analyze the data of swallowing motion. The target of swallowing structures includes bony structures (hyoid bone, mandible, maxilla, and cervical vertebral bodies), cartilages (epiglottis and arytenoid), soft tissues (larynx and upper esophageal sphincter), and food bolus. Numerous functions are available for the spatiotemporal parameters of the swallowing structures. Testing for validity and reliability was performed in 10 dysphagia patients with diverse etiologies and using the instrumental swallowing model which was designed to mimic the motion of the hyoid bone and the epiglottis. The intra- and inter-rater reliability tests showed excellent agreement for displacement and moderate to excellent agreement for velocity. The Pearson correlation coefficients between the measured and instrumental reference values were nearly 1.00 (P < 0.001) for displacement and velocity. The Bland-Altman plots showed good agreement between the measurements and the reference values. STAMPS provides precise and reliable kinematic measurements and multiple practical functionalities for spatiotemporal analysis. The software is expected to be useful for researchers who are interested in the swallowing motion analysis.

  18. Performance of ionospheric maps in support of long baseline GNSS kinematic positioning at low latitudes

    NASA Astrophysics Data System (ADS)

    Park, J.; Sreeja, V.; Aquino, M.; Cesaroni, C.; Spogli, L.; Dodson, A.; De Franceschi, G.

    2016-05-01

    Ionospheric scintillation occurs mainly at high and low latitude regions of the Earth and may impose serious degradation on GNSS (Global Navigation Satellite System) functionality. The Brazilian territory sits on one of the most affected areas of the globe, where the ionosphere behaves very unpredictably, with strong scintillation frequently occurring in the local postsunset hours. The correlation between scintillation occurrence and sharp variations in the ionospheric total electron content (TEC) in Brazil is demonstrated in Spogli et al. (2013). The compounded effect of these associated ionospheric disturbances on long baseline GNSS kinematic positioning is studied in this paper, in particular when ionospheric maps are used to aid the positioning solution. The experiments have been conducted using data from GNSS reference stations in Brazil. The use of a regional TEC map generated under the CALIBRA (Countering GNSS high-Accuracy applications Limitations due to Ionospheric disturbances in BRAzil) project, referred to as CALIBRA TEC map (CTM), was compared to the use of the Global Ionosphere Map (GIM), provided by the International GNSS Service (IGS). Results show that the use of the CTM greatly improves the kinematic positioning solution as compared with that using the GIM, especially under disturbed ionospheric conditions. Additionally, different hypotheses were tested regarding the precision of the TEC values obtained from ionospheric maps, and its effect on the long baseline kinematic solution evaluated. Finally, this study compares two interpolation methods for ionospheric maps, namely, the Inverse Distance Weight and the Natural Neighbor.

  19. Leg kinematics and kinetics in landing from a single-leg hop for distance. A comparison between dominant and non-dominant leg.

    PubMed

    van der Harst, J J; Gokeler, A; Hof, A L

    2007-07-01

    Anterior cruciate ligament (ACL) deficiency can be a major problem for athletes and subsequent reconstruction of the ACL may be indicated if a conservative regimen has failed. After ACL reconstruction signs of abnormality in the use of the leg remain for a long time. It is expected that the landing after a single-leg hop for distance (horizontal hop) might give insight in the differences in kinematics and kinetics between uninjured legs and ACL-reconstructed legs. Before the ACL-reconstructed leg can be compared with the contralateral leg, knowledge of differences between legs of uninjured subjects is needed. Kinematic and kinetic variables of both legs were measured with an optoelectronic system and a force plate and calculated by inverse dynamics. The dominant leg (the leg with biggest horizontal hop distance) and the contralateral leg of nine uninjured subjects were compared. No significant differences were found in most of the kinematic and kinetic variables between dominant leg and contralateral leg of uninjured subjects. Only hop distance and hip extension angles differed significantly. This study suggests that there are no important differences between dominant leg and contralateral leg in healthy subjects. As a consequence, the uninvolved leg of ACL-reconstructed patients can be used as a reference. The observed variables of this study can be used as a reference of normal values and normal differences between legs in healthy subjects.

  20. Supplementary comparisons of COOMET in the field of measurements of liquids kinematical viscosity COOMET.M.V-S1

    NASA Astrophysics Data System (ADS)

    Demyanov, A. A.; Tsurko, A. A.

    2017-01-01

    In the comparisons three Newtonian liquid samples were used with nominal values of 20 mm2/s 100 mm2/s and 1000 mm2/s ('20', '100' and '1000' respectively) at 20 °C. Each NMI presented results of measurements values kinematic viscosity samples, uncertainty and uncertainty budget. The purpose of these comparisons was confirmation of measurement and calibration capabilities (CMC) of the relevant NMI. As a reference the values of kinematic viscosity reference samples were taken as average values of measurement results obtained in the research laboratory of the national standards and research in the field of measurements of viscosity and density of the D I Mendeleev Institute for Metrology (VNIIM, RF), as a participant in international comparisons CCM.V-K1, BIPM. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  1. Supplementary comparisons of COOMET in the field of measurements of liquids kinematical viscosity COOMET.M.V-S2

    NASA Astrophysics Data System (ADS)

    Demyanov, A. A.; Tsurko, A. A.

    2017-01-01

    In the comparisons three Newtonian liquid samples were used with nominal values of 20 mm2/s 100 mm2/s and 1000 mm2/s ('20', '100' and '1000', respectively) at 20 °C. Each NMI presented results of measurements values kinematic viscosity samples, uncertainty and uncertainty budget. The purpose of these comparisons was confirmation of measurement and calibration capabilities (CMC) of the relevant NMI. As a reference the values of kinematic viscosity reference samples were taken as average values of measurement results obtained in the research laboratory of the national standards and research in the field of measurements of viscosity and density of the D I Mendeleev Institute for Metrology (VNIIM, RF), as a participant in international comparisons CCM.V-K1, BIPM. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  2. The derivation of the general form of kinematics with the universal reference system

    NASA Astrophysics Data System (ADS)

    Szostek, Karol; Szostek, Roman

    2018-03-01

    In the article, the whole class of time and position transformations was derived. These transformations were derived based on the analysis of the Michelson-Morley experiment and its improved version, that is the Kennedy-Thorndike experiment. It is possible to derive a different kinematics of bodies based on each of these transformations. In this way, we demonstrated that the Special Theory of Relativity is not the only theory explaining the results of experiments with light. There is the whole continuum of the theories of kinematics of bodies which correctly explain the Michelson-Morley experiment and other experiments in which the velocity of light is measured. Based on the derived transformations, we derive the general formula for the velocity of light in vacuum measured in any inertial reference system. We explain why the Michelson-Morley and Kennedy-Thorndike experiments could not detect the ether. We present and discuss three examples of specific transformations. Finally, we explain the phenomenon of anisotropy of the cosmic microwave background radiation by means of the presented theory. The theory derived in this work is called the Special Theory of Ether - with any transverse contraction. The entire article contains only original research conducted by its authors.

  3. Effects of visual information regarding allocentric processing in haptic parallelity matching.

    PubMed

    Van Mier, Hanneke I

    2013-10-01

    Research has revealed that haptic perception of parallelity deviates from physical reality. Large and systematic deviations have been found in haptic parallelity matching most likely due to the influence of the hand-centered egocentric reference frame. Providing information that increases the influence of allocentric processing has been shown to improve performance on haptic matching. In this study allocentric processing was stimulated by providing informative vision in haptic matching tasks that were performed using hand- and arm-centered reference frames. Twenty blindfolded participants (ten men, ten women) explored the orientation of a reference bar with the non-dominant hand and subsequently matched (task HP) or mirrored (task HM) its orientation on a test bar with the dominant hand. Visual information was provided by means of informative vision with participants having full view of the test bar, while the reference bar was blocked from their view (task VHP). To decrease the egocentric bias of the hands, participants also performed a visual haptic parallelity drawing task (task VHPD) using an arm-centered reference frame, by drawing the orientation of the reference bar. In all tasks, the distance between and orientation of the bars were manipulated. A significant effect of task was found; performance improved from task HP, to VHP to VHPD, and HM. Significant effects of distance were found in the first three tasks, whereas orientation and gender effects were only significant in tasks HP and VHP. The results showed that stimulating allocentric processing by means of informative vision and reducing the egocentric bias by using an arm-centered reference frame led to most accurate performance on parallelity matching. © 2013 Elsevier B.V. All rights reserved.

  4. 78 FR 46528 - Surety Bond Guarantee Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... proposing to reduce the time frame allowed for a Surety to reimburse or credit SBA for salvage and recovery... the time frame reference required by the Recovery Act, which has expired, and by inserting the...)(1). SBA is proposing to reduce the time frame allowed for a Prior Approval Surety to submit a claim...

  5. On the global geodetic observing system: Africa's preparedness and challenges

    NASA Astrophysics Data System (ADS)

    Botai, O. J.; Combrinck, Ludwig; Rautenbach, C. J. Hannes

    2013-02-01

    Space geodetic techniques and satellite missions play a crucial role in the determination and monitoring of geo-kinematics, Earth's rotation and gravity fields. These three pillars of geodesy provide the basis for determining the geodetic reference frames with high accuracy, spatial resolution and temporal stability. Space geodetic techniques have been used for the assessment of geo-hazards, anthropogenic hazards and in the design of early warning systems for hazard and disasters. In general, space geodesy provides products for Earth observation, science and influences many activities (e.g., building and management) in a modern society. In order to further promote the application of space geodetic methods to solving Earth science problems, the Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) was commissioned as an important geodetic infrastructure that integrates different geodetic techniques (such as Global Navigation Satellite Systems, Very Long Baseline Interferometry, Satellite Laser Ranging, Interferometric Synthetic Aperture Radar and Doppler Orbitography and Radio-positioning Integrated by Satellite), models and analysis techniques for the purpose of ensuring long-term, precise monitoring of geodetic observables vital for monitoring Earth system processes. Since its inception, there has been considerable progress made towards setting up the infrastructure necessary for the establishment of the GGOS database. While the challenges that beleaguer the GGOS are acknowledged (at least at global level), the assessment of an attuned GGOS infrastructure in the African context is necessary, yet lacking. In the present contribution, (a) the African preparedness and response to the observing system is assessed, and (b) the specific scientific and technological challenges of establishing a regional GGOS hub for Africa are reviewed. Currently only South Africa has a fundamental geodetic observatory located at Hartebeesthoek, Pretoria. Other countries in Africa have shown interest to participate in global geodetic activities, in particular through interest in the development of a unified African geodetic reference frame (AFREF). In particular interest has been shown in the proposed African VLBI Network (AVN), which will be partially based on existing ex-telecommunication radio antennas. Several countries are investigating their participation in the AVN, including Kenya, Nigeria and Ghana.

  6. Spherical Coordinate Systems for Streamlining Suited Mobility Analysis

    NASA Technical Reports Server (NTRS)

    Benson, Elizabeth; Cowley, Matthew; Harvill, Lauren; Rajulu. Sudhakar

    2015-01-01

    Introduction: When describing human motion, biomechanists generally report joint angles in terms of Euler angle rotation sequences. However, there are known limitations in using this method to describe complex motions such as the shoulder joint during a baseball pitch. Euler angle notation uses a series of three rotations about an axis where each rotation is dependent upon the preceding rotation. As such, the Euler angles need to be regarded as a set to get accurate angle information. Unfortunately, it is often difficult to visualize and understand these complex motion representations. It has been shown that using a spherical coordinate system allows Anthropometry and Biomechanics Facility (ABF) personnel to increase their ability to transmit important human mobility data to engineers, in a format that is readily understandable and directly translatable to their design efforts. Objectives: The goal of this project was to use innovative analysis and visualization techniques to aid in the examination and comprehension of complex motions. Methods: This project consisted of a series of small sub-projects, meant to validate and verify a new method before it was implemented in the ABF's data analysis practices. A mechanical test rig was built and tracked in 3D using an optical motion capture system. Its position and orientation were reported in both Euler and spherical reference systems. In the second phase of the project, the ABF estimated the error inherent in a spherical coordinate system, and evaluated how this error would vary within the reference frame. This stage also involved expanding a kinematic model of the shoulder to include the rest of the joints of the body. The third stage of the project involved creating visualization methods to assist in interpreting motion in a spherical frame. These visualization methods will be incorporated in a tool to evaluate a database of suited mobility data, which is currently in development. Results: Initial results demonstrated that a spherical coordinate system is helpful in describing and visualizing the motion of a space suit. The system is particularly useful in describing the motion of the shoulder, where multiple degrees of freedom can lead to very complex motion paths.

  7. Some aspects of an induced electric dipole moment in rotating and non-rotating frames.

    PubMed

    Oliveira, Abinael B; Bakke, Knut

    2017-06-01

    Quantum effects on a neutral particle (atom or molecule) with an induced electric dipole moment are investigated when it is subject to the Kratzer potential and a scalar potential proportional to the radial distance. In addition, this neutral is placed in a region with electric and magnetic fields. This system is analysed in both non-rotating and rotating reference frames. Then, it is shown that bound state solutions to the Schrödinger equation can be achieved and, in the search for polynomial solutions to the radial wave function, a restriction on the values of the cyclotron frequency is analysed in both reference frames.

  8. The Internal/External Frame of Reference of Academic Self-Concept: Extension to a Foreign Language and the Role of Language of Instruction

    ERIC Educational Resources Information Center

    Xu, Man K.; Marsh, Herbert W.; Hau, Kit-Tai; Ho, Irene T.; Morin, Alexandre J. S.; Abduljabbar, Adel S.

    2013-01-01

    The internal/external frame of reference (I/E) model (Marsh, 1986) posits that the effects of contrasting math and verbal domains of achievement are positive for matching academic self-concepts (ASCs) but negative for nonmatching ASCs (i.e., math achievement on verbal ASC; verbal achievement on math ASC). We extend the classic I/E model by…

  9. The Longitudinal Interplay of Students' Academic Self-Concepts and Achievements within and across Domains: Replicating and Extending the Reciprocal Internal/External Frame of Reference Model

    ERIC Educational Resources Information Center

    Niepel, Christoph; Brunner, Martin; Preckel, Franzis

    2014-01-01

    Students' cognitive and motivational profiles have a large impact on their academic careers. The development of such profiles can partly be explained by the reciprocal internal/external frame of reference model (RI/E model). The RI/E model predicts positive and negative longitudinal effects between academic self-concepts and achievements within…

  10. An Analysis of the Accessibility of Earth-Approaching Asteroids.

    DTIC Science & Technology

    1985-12-01

    coordinate system. Outputs are the X,Y,Z coordinates of the sun in the geocentric-equatorial coordinate system. The obliquity of the ecliptic is a variable...All positions and velocities are calculated in heliocentric- ecliptic coordinates thus requiring no transformations into unusual frames of reference...tion vectors of the departure and arrival planets in the heliocentric- ecliptic reference frame. ,\\. , V I(W() - / n (16) %: ~22% .b The angle between

  11. Explaining as Mediated Action: An Analysis of Pre-Service Teachers' Account of Forces of Inertia in Non-Inertial Frames of Reference

    ERIC Educational Resources Information Center

    de Pereira, Alexsandro Pereira; Lima Junior, Paulo; Rodrigues, Renato Felix

    2016-01-01

    Explaining is one of the most important everyday practices in science education. In this article, we examine how scientific explanations could serve as cultural tools for members of a group of pre-service physics teachers. Specifically, we aim at their use of explanations about forces of inertia in non-inertial frames of reference. A basic…

  12. The principle of relativity, superluminality and EPR experiments. "Riserratevi sotto coverta ..."

    NASA Astrophysics Data System (ADS)

    Cocciaro, B.

    2015-07-01

    The principle of relativity claims the invariance of the results for experiments carried out in inertial reference frames if the system under examination is not in interaction with the outside world. In this paper it is analysed a model suggested by J. S. Bell, and later developed by P. H. Eberhard, D. Bohm and B. Hiley on the basis of which the EPR correlations would be due to superluminal exchanges between the various parts of the entangled system under examination. In the model the existence of a privileged reference frame (PF) for the propagation of superluminal signals is hypothesized so that these superluminal signals may not give rise to causal paradoxes. According to this model, in an EPR experiment, the entangled system interacts with the outer world since the result of the experiment depends on an entity (the reference frame PF) that is not prepared by the experimenter. The existence of this privileged reference frame makes the model non invariant for Lorentz transformations. In this paper, in opposition to what claimed by the authors mentioned above, the perfect compatibility of the model with the theory of relativity is strongly maintained since, as already said, the principle of relativity does not require that the results of experiments carried out on systems interacting with the outside world should be invariant.

  13. Reduction of photographic observations of asteroids to the reference frame of a single catalog

    NASA Astrophysics Data System (ADS)

    Chernetenko, Yu. A.

    2008-04-01

    In 2000, the last international program of photographic observations of selected asteroids aimed at the determination of the mutual orientation of the dynamic and stellar coordinate systems came to an end. The Institute of Applied Astronomy of the Russian Academy of Sciences collected more than 25 000 observations for 15 asteroids spanning from 1949 through 1995. These observations were reduced to the reference frame of the Hipparcos catalog using dependencies published along with observations. The accuracy of observations of selected asteroids was 0.30 arcsec, which is comparable to that of modern CCD observations of minor planets. The observations are available at ftp://quasar.ipa.nw.ru/pub/SMP . An important advantage of these observations is that they are already reduced to the reference frame of a single catalog. Our criteria for the quality of the reduction methods and the accuracy of the observations are based on estimating the parameters of the orientation of the reference frames of the PPM and Hipparcos catalogs with respect to DE200/LE200. The most reliable results are those obtained when reducing old optical observations along with modern ground-based and space-borne observations.

  14. Effects of non-tidal atmospheric loading on a Kalman filter-based terrestrial reference frame

    NASA Astrophysics Data System (ADS)

    Abbondanza, C.; Altamimi, Z.; Chin, T. M.; Collilieux, X.; Dach, R.; Heflin, M. B.; Gross, R. S.; König, R.; Lemoine, F. G.; MacMillan, D. S.; Parker, J. W.; van Dam, T. M.; Wu, X.

    2013-12-01

    The International Terrestrial Reference Frame (ITRF) adopts a piece-wise linear model to parameterize regularized station positions and velocities. The space-geodetic (SG) solutions from VLBI, SLR, GPS and DORIS global networks used as input in the ITRF combination process account for tidal loading deformations, but ignore the non-tidal part. As a result, the non-linear signal observed in the time series of SG-derived station positions in part reflects non-tidal loading displacements not introduced in the SG data reduction. In this analysis, the effect of non-tidal atmospheric loading (NTAL) corrections on the TRF is assessed adopting a Remove/Restore approach: (i) Focusing on the a-posteriori approach, the NTAL model derived from the National Center for Environmental Prediction (NCEP) surface pressure is removed from the SINEX files of the SG solutions used as inputs to the TRF determinations. (ii) Adopting a Kalman-filter based approach, a linear TRF is estimated combining the 4 SG solutions free from NTAL displacements. (iii) Linear fits to the NTAL displacements removed at step (i) are restored to the linear reference frame estimated at (ii). The velocity fields of the (standard) linear reference frame in which the NTAL model has not been removed and the one in which the model has been removed/restored are compared and discussed.

  15. Learning to Explain Astronomy Across Moving Frames of Reference: Exploring the role of classroom and planetarium-based instructional contexts

    NASA Astrophysics Data System (ADS)

    Plummer, Julia Diane; Kocareli, Alicia; Slagle, Cynthia

    2014-05-01

    Learning astronomy involves significant spatial reasoning, such as learning to describe Earth-based phenomena and understanding space-based explanations for those phenomena as well as using the relevant size and scale information to interpret these frames of reference. This study examines daily celestial motion (DCM) as one case of how children learn to move between frames of reference in astronomy wherein one explains Earth-based descriptions of the Sun's, Moon's, and stars' apparent motion using the Earth's daily rotation. We analysed interviews with 8-9-year-old students (N = 99) who participated in one of four instructional conditions emphasizing: the space-based perspective; the Earth-based perspective in the planetarium; constructing explanations for the Earth-based observations; and a combination of the planetarium plus constructing explanations in the classroom. We used an embodied cognition framework to analyse outcomes while also considering challenges learners face due to the high cognitive demands of spatial reasoning. Results support the hypothesis that instruction should engage students in learning both the Earth-based observations and space-based explanations, as focusing on a single frame of reference resulted in less sophisticated explanations; however, few students were able to construct a fully scientific explanation after instruction.

  16. Towards Extending Forward Kinematic Models on Hyper-Redundant Manipulator to Cooperative Bionic Arms

    NASA Astrophysics Data System (ADS)

    Singh, Inderjeet; Lakhal, Othman; Merzouki, Rochdi

    2017-01-01

    Forward Kinematics is a stepping stone towards finding an inverse solution and subsequently a dynamic model of a robot. Hence a study and comparison of various Forward Kinematic Models (FKMs) is necessary for robot design. This paper deals with comparison of three FKMs on the same hyper-redundant Compact Bionic Handling Assistant (CBHA) manipulator under same conditions. The aim of this study is to project on modeling cooperative bionic manipulators. Two of these methods are quantitative methods, Arc Geometry HTM (Homogeneous Transformation Matrix) Method and Dual Quaternion Method, while the other one is Hybrid Method which uses both quantitative as well as qualitative approach. The methods are compared theoretically and experimental results are discussed to add further insight to the comparison. HTM is the widely used and accepted technique, is taken as reference and trajectory deviation in other techniques are compared with respect to HTM. Which method allows obtaining an accurate kinematic behavior of the CBHA, controlled in the real-time.

  17. Sensorimotor Learning during a Marksmanship Task in Immersive Virtual Reality

    PubMed Central

    Rao, Hrishikesh M.; Khanna, Rajan; Zielinski, David J.; Lu, Yvonne; Clements, Jillian M.; Potter, Nicholas D.; Sommer, Marc A.; Kopper, Regis; Appelbaum, Lawrence G.

    2018-01-01

    Sensorimotor learning refers to improvements that occur through practice in the performance of sensory-guided motor behaviors. Leveraging novel technical capabilities of an immersive virtual environment, we probed the component kinematic processes that mediate sensorimotor learning. Twenty naïve subjects performed a simulated marksmanship task modeled after Olympic Trap Shooting standards. We measured movement kinematics and shooting performance as participants practiced 350 trials while receiving trial-by-trial feedback about shooting success. Spatiotemporal analysis of motion tracking elucidated the ballistic and refinement phases of hand movements. We found systematic changes in movement kinematics that accompanied improvements in shot accuracy during training, though reaction and response times did not change over blocks. In particular, we observed longer, slower, and more precise ballistic movements that replaced effort spent on corrections and refinement. Collectively, these results leverage developments in immersive virtual reality technology to quantify and compare the kinematics of movement during early learning of full-body sensorimotor orienting. PMID:29467693

  18. Relativistic Dynamos in Magnetospheres of Rotating Compact Objects

    NASA Astrophysics Data System (ADS)

    Tomimatsu, Akira

    2000-01-01

    The kinematic evolution of axisymmetric magnetic fields in rotating magnetospheres of relativistic compact objects is analytically studied, based on relativistic Ohm's law in stationary axisymmetric geometry. By neglecting the poloidal flows of plasma in simplified magnetospheric models, we discuss a self-excited dynamo due to the frame-dragging effect (originally pointed out by Khanna & Camenzind) and propose alternative processes to generate axisymmetric magnetic fields against ohmic dissipation. The first process (which may be called ``induced excitation'') is caused by the help of a background uniform magnetic field in addition to the dragging of inertial frames. It is shown that excited multipolar components of poloidal and azimuthal fields are sustained as stationary modes, and outgoing Poynting flux converges toward the rotation axis. The second process is a self-excited dynamo through azimuthal convection current, which is found to be effective if plasma rotation becomes highly relativistic with a sharp gradient in the angular velocity. In this case, no frame-dragging effect is needed, and the coupling between charge separation and plasma rotation becomes important. We discuss briefly the results in relation to active phenomena in the relativistic magnetospheres.

  19. 40 CFR 89.6 - Reference materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... July 1, 2009), Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (the Calculation of Dynamic Viscosity), IBR approved for appendix A to subpart D. (6) ASTM D613-95, Standard Test...

  20. 40 CFR 89.6 - Reference materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... July 1, 2009), Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (the Calculation of Dynamic Viscosity), IBR approved for appendix A to subpart D. (6) ASTM D613-95, Standard Test...

  1. 40 CFR 89.6 - Reference materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... July 1, 2009), Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (the Calculation of Dynamic Viscosity), IBR approved for appendix A to subpart D. (6) ASTM D613-95, Standard Test...

  2. Quantum frames

    NASA Astrophysics Data System (ADS)

    Brown, Matthew J.

    2014-02-01

    The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.

  3. The Kinematics of Multiple-peaked Lyα Emission in Star-forming Galaxies at z ~ 2-3

    NASA Astrophysics Data System (ADS)

    Kulas, Kristin R.; Shapley, Alice E.; Kollmeier, Juna A.; Zheng, Zheng; Steidel, Charles C.; Hainline, Kevin N.

    2012-01-01

    We present new results on the Lyα emission-line kinematics of 18 z ~ 2-3 star-forming galaxies with multiple-peaked Lyα profiles. With our large spectroscopic database of UV-selected star-forming galaxies at these redshifts, we have determined that ~30% of such objects with detectable Lyα emission display multiple-peaked emission profiles. These profiles provide additional constraints on the escape of Lyα photons due to the rich velocity structure in the emergent line. Despite recent advances in modeling the escape of Lyα from star-forming galaxies at high redshifts, comparisons between models and data are often missing crucial observational information. Using Keck II NIRSPEC spectra of Hα (z ~ 2) and [O III]λ5007 (z ~ 3), we have measured accurate systemic redshifts, rest-frame optical nebular velocity dispersions, and emission-line fluxes for the objects in the sample. In addition, rest-frame UV luminosities and colors provide estimates of star formation rates and the degree of dust extinction. In concert with the profile sub-structure, these measurements provide critical constraints on the geometry and kinematics of interstellar gas in high-redshift galaxies. Accurate systemic redshifts allow us to translate the multiple-peaked Lyα profiles into velocity space, revealing that the majority (11/18) display double-peaked emission straddling the velocity-field zero point with stronger red-side emission. Interstellar absorption-line kinematics suggest the presence of large-scale outflows for the majority of objects in our sample, with an average measured interstellar absorption velocity offset of langΔv absrang = -230 km s-1. A comparison of the interstellar absorption kinematics for objects with multiple- and single-peaked Lyα profiles indicate that the multiple-peaked objects are characterized by significantly narrower absorption line widths. We compare our data with the predictions of simple models for outflowing and infalling gas distributions around high-redshift galaxies. While popular "shell" models provide a qualitative match with many of the observations of Lyα emission, we find that in detail there are important discrepancies between the models and data, as well as problems with applying the framework of an expanding thin shell of gas to explain high-redshift galaxy spectra. Our data highlight these inconsistencies, as well as illuminating critical elements for success in future models of outflow and infall in high-redshift galaxies. Based, in part, on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  4. Compilation of Published Estimates of Annual Geocenter Motions Using Space Geodesy

    NASA Technical Reports Server (NTRS)

    Elosegui, P.

    2005-01-01

    The definition of the term "geocenter motion" depends on the adopted origin of the reference frame. Common reference frames used in Space Geodesy include: the center of mass of the whole Earth (CM), the center of mass of the Solid Earth without mass load (CE), and the center of figure of the outer surface of the Solid Earth (CF). There are two established definitions of the term geocenter: one, the vector offset of CF relative to CM and, two, the reverse, the vector offset of CM relative to CF. Obviously, their amplitude is the same and their phase differs by 180 deg. Following Dong et al. [2003], we label the first X(sub CF, sup CM) and the second X(sup CF, sup CM) (i.e., the superscript represents the frame, the subscript represents any point in the frame).

  5. JPL VLBI Analysis Center IVS Annual Report for 2004

    NASA Technical Reports Server (NTRS)

    Jacobs, Chris

    2005-01-01

    This report describes the activities of the JPL VLBI analysis center for the year 2004. We continue to be celestial reference frame, terrestrial reference frame, earth orientation, and spacecraft navigation work using the VLBI technique. There are several areas of our work that are undergoing active development. In 2004 we demonstrated 1 mm level troposphere calibration on an intercontinental baseline. We detected our first X/Ka (8.4/32 GHz) VLBI fringes. We began to deploy Mark 5 recorders and to interface the Mark 5 units to our software correlator. We also have actively participated in the international VLBI community through our involvement in six papers at the February IVS meeting and by collaborating on a number of projects such as densifying the S/X celestial frame creating celestial frames at K (24 GHz) and Q-bands ($# GHz)>

  6. Assessment of the possible contribution of space ties on-board GNSS satellites to the terrestrial reference frame

    NASA Astrophysics Data System (ADS)

    Bruni, Sara; Rebischung, Paul; Zerbini, Susanna; Altamimi, Zuheir; Errico, Maddalena; Santi, Efisio

    2018-04-01

    The realization of the international terrestrial reference frame (ITRF) is currently based on the data provided by four space geodetic techniques. The accuracy of the different technique-dependent materializations of the frame physical parameters (origin and scale) varies according to the nature of the relevant observables and to the impact of technique-specific errors. A reliable computation of the ITRF requires combining the different inputs, so that the strengths of each technique can compensate for the weaknesses of the others. This combination, however, can only be performed providing some additional information which allows tying together the independent technique networks. At present, the links used for that purpose are topometric surveys (local/terrestrial ties) available at ITRF sites hosting instruments of different techniques. In principle, a possible alternative could be offered by spacecrafts accommodating the positioning payloads of multiple geodetic techniques realizing their co-location in orbit (space ties). In this paper, the GNSS-SLR space ties on-board GPS and GLONASS satellites are thoroughly examined in the framework of global reference frame computations. The investigation focuses on the quality of the realized physical frame parameters. According to the achieved results, the space ties on-board GNSS satellites cannot, at present, substitute terrestrial ties in the computation of the ITRF. The study is completed by a series of synthetic simulations investigating the impact that substantial improvements in the volume and quality of SLR observations to GNSS satellites would have on the precision of the GNSS frame parameters.

  7. Motion compensation and noise tolerance in phase-shifting digital in-line holography.

    PubMed

    Stenner, Michael D; Neifeld, Mark A

    2006-05-15

    We present a technique for phase-shifting digital in-line holography which compensates for lateral object motion. By collecting two frames of interference between object and reference fields with identical reference phase, one can estimate the lateral motion that occurred between frames using the cross-correlation. We also describe a very general linear framework for phase-shifting holographic reconstruction which minimizes additive white Gaussian noise (AWGN) for an arbitrary set of reference field amplitudes and phases. We analyze the technique's sensitivity to noise (AWGN, quantization, and shot), errors in the reference fields, errors in motion estimation, resolution, and depth of field. We also present experimental motion-compensated images achieving the expected resolution.

  8. Framing Vision: An Examination of Framing, Sensegiving, and Sensemaking during a Change Initiative

    ERIC Educational Resources Information Center

    Hamilton, William

    2016-01-01

    The purpose of this short article is to review the findings from an instrumental case study that examines how a college president used what this article refers to as "frame alignment processes" to mobilize internal and external support for a college initiative--one that achieved success under the current president. Specifically, I…

  9. Extending F10.7’s Time Resolution to Capture Solar Flare Phenomena

    DTIC Science & Technology

    2008-07-01

    Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 REFERENCES ...accelera- tion, (iii) maximum power is emitted in a direction perpendicular to the acceleration, and (iv) the radiation from protons is insignificant...then is P = 2 3 e2 c3 v2⊥e 2B2γ2 m2ec 2 . (2.19) In the electron reference frame, the power emitted is dipolar and in the rest frame, the power is

  10. How and Why to Do VLBI on GPS

    NASA Technical Reports Server (NTRS)

    Dickey, J. M.

    2010-01-01

    In order to establish the position of the center of mass of the Earth in the International Celestial Reference Frame, observations of the Global Positioning Satellite (GPS) constellation using the IVS network are important. With a good frame-tie between the coordinates of the IVS telescopes and nearby GPS receivers, plus a common local oscillator reference signal, it should be possible to observe and record simultaneously signals from the astrometric calibration sources and the GPS satellites. The standard IVS solution would give the atmospheric delay and clock offsets to use in analysis of the GPS data. Correlation of the GPS signals would then give accurate orbital parameters of the satellites in the ICRF reference frame, i.e., relative to the positions of the astrometric sources. This is particularly needed to determine motion of the center of mass of the earth along the rotation axis.

  11. Users manual for a one-dimensional Lagrangian transport model

    USGS Publications Warehouse

    Schoellhamer, D.H.; Jobson, H.E.

    1986-01-01

    A Users Manual for the Lagrangian Transport Model (LTM) is presented. The LTM uses Lagrangian calculations that are based on a reference frame moving with the river flow. The Lagrangian reference frame eliminates the need to numerically solve the convective term of the convection-diffusion equation and provides significant numerical advantages over the more commonly used Eulerian reference frame. When properly applied, the LTM can simulate riverine transport and decay processes within the accuracy required by most water quality studies. The LTM is applicable to steady or unsteady one-dimensional unidirectional flows in fixed channels with tributary and lateral inflows. Application of the LTM is relatively simple and optional capabilities improve the model 's convenience. Appendices give file formats and three example LTM applications that include the incorporation of the QUAL II water quality model 's reaction kinetics into the LTM. (Author 's abstract)

  12. Nursing home staff members' subjective frames of reference on residents' achievement of ego integrity: A Q-methodology study.

    PubMed

    Lim, Sun-Young; Chang, Sung-Ok

    2018-01-01

    To discover the structure of the frames of reference for nursing home staff members' subjective judgment of residents' achievement of ego integrity. Q-methodology was applied. Twenty-eight staff members who were working in a nursing home sorted 34 Q-statements into the shape of a normal distribution. A centroid factor analysis and varimax rotation, using the PQ-method program, revealed four factors: identifying clues to residents' positive acceptance of their whole life span, identifying residents' ways of enjoying their current life, referencing residents' attitudes and competencies toward harmonious relationships, and identifying residents' integrated efforts to establish self-esteem. These subjective frames of reference need to be investigated in order to improve the relationships with nursing home residents and their quality of life. Consequently, the fundamental monitoring tools to help staff members make subjective judgments can be formed. © 2017 Japan Academy of Nursing Science.

  13. What constitutes an efficient reference frame for vision?

    PubMed Central

    Tadin, Duje; Lappin, Joseph S.; Blake, Randolph; Grossman, Emily D.

    2015-01-01

    Vision requires a reference frame. To what extent does this reference frame depend on the structure of the visual input, rather than just on retinal landmarks? This question is particularly relevant to the perception of dynamic scenes, when keeping track of external motion relative to the retina is difficult. We tested human subjects’ ability to discriminate the motion and temporal coherence of changing elements that were embedded in global patterns and whose perceptual organization was manipulated in a way that caused only minor changes to the retinal image. Coherence discriminations were always better when local elements were perceived to be organized as a global moving form than when they were perceived to be unorganized, individually moving entities. Our results indicate that perceived form influences the neural representation of its component features, and from this, we propose a new method for studying perceptual organization. PMID:12219092

  14. Research Activities for the DORIS Contribution to the Next International Terrestrial Reference Frame

    NASA Technical Reports Server (NTRS)

    Soudarin, L.; Moreaux, G.; Lemoine, F.; Willis, P.; Stepanek, P.; Otten, M.; Govind, R.; Kuzin, S.; Ferrage, P.

    2012-01-01

    For the preparation of ITRF2008, the IDS processed data from 1993 to 2008, including data from TOPEX/Poseidon, the SPOT satellites and Envisat in the weekly solutions. Since the development of ITRF2008, the IDS has been engaged in a number of efforts to try and improve the reference frame solutions. These efforts include (i) assessing the contribution of the new DORIS satellites, Jason-2 and Cryosat2 (2008-2011), (ii) individually analyzing the DORIS satellite contributions to geocenter and scale, and (iii) improving orbit dynamics (atmospheric loading effects, satellite surface force modeling. . . ). We report on the preliminary results from these research activities, review the status of the IDS combination which is now routinely generated from the contributions of the IDS analysis centers, and discuss the prospects for continued improvement in the DORIS contribution to the next international reference frame.

  15. Seasonal station variations in the Vienna VLBI terrestrial reference frame VieTRF16a

    NASA Astrophysics Data System (ADS)

    Krásná, Hana; Böhm, Johannes; Madzak, Matthias

    2017-04-01

    The special analysis center of the International Very Long Baseline Interferometry (VLBI) Service for Geodesy and Astrometry (IVS) at TU Wien (VIE) routinely analyses the VLBI measurements and estimates its own Terrestrial Reference Frame (TRF) solutions. We present our latest solution VieTRF16a (1979.0 - 2016.5) computed with the software VieVS version 3.0. Several recent updates of the software have been applied, e.g., the estimation of annual and semi-annual station variations as global parameters. The VieTRF16a is determined in the form of the conventional model (station position and its linear velocity) simultaneously with the celestial reference frame and Earth orientation parameters. In this work, we concentrate on the seasonal station variations in the residual time series and compare our TRF with the three combined TRF solutions ITRF2014, DTRF2014 and JTRF2014.

  16. KALREF—A Kalman filter and time series approach to the International Terrestrial Reference Frame realization

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoping; Abbondanza, Claudio; Altamimi, Zuheir; Chin, T. Mike; Collilieux, Xavier; Gross, Richard S.; Heflin, Michael B.; Jiang, Yan; Parker, Jay W.

    2015-05-01

    The current International Terrestrial Reference Frame is based on a piecewise linear site motion model and realized by reference epoch coordinates and velocities for a global set of stations. Although linear motions due to tectonic plates and glacial isostatic adjustment dominate geodetic signals, at today's millimeter precisions, nonlinear motions due to earthquakes, volcanic activities, ice mass losses, sea level rise, hydrological changes, and other processes become significant. Monitoring these (sometimes rapid) changes desires consistent and precise realization of the terrestrial reference frame (TRF) quasi-instantaneously. Here, we use a Kalman filter and smoother approach to combine time series from four space geodetic techniques to realize an experimental TRF through weekly time series of geocentric coordinates. In addition to secular, periodic, and stochastic components for station coordinates, the Kalman filter state variables also include daily Earth orientation parameters and transformation parameters from input data frames to the combined TRF. Local tie measurements among colocated stations are used at their known or nominal epochs of observation, with comotion constraints applied to almost all colocated stations. The filter/smoother approach unifies different geodetic time series in a single geocentric frame. Fragmented and multitechnique tracking records at colocation sites are bridged together to form longer and coherent motion time series. While the time series approach to TRF reflects the reality of a changing Earth more closely than the linear approximation model, the filter/smoother is computationally powerful and flexible to facilitate incorporation of other data types and more advanced characterization of stochastic behavior of geodetic time series.

  17. Calibration of a flexible measurement system based on industrial articulated robot and structured light sensor

    NASA Astrophysics Data System (ADS)

    Mu, Nan; Wang, Kun; Xie, Zexiao; Ren, Ping

    2017-05-01

    To realize online rapid measurement for complex workpieces, a flexible measurement system based on an articulated industrial robot with a structured light sensor mounted on the end-effector is developed. A method for calibrating the system parameters is proposed in which the hand-eye transformation parameters and the robot kinematic parameters are synthesized in the calibration process. An initial hand-eye calibration is first performed using a standard sphere as the calibration target. By applying the modified complete and parametrically continuous method, we establish a synthesized kinematic model that combines the initial hand-eye transformation and distal link parameters as a whole with the sensor coordinate system as the tool frame. According to the synthesized kinematic model, an error model is constructed based on spheres' center-to-center distance errors. Consequently, the error model parameters can be identified in a calibration experiment using a three-standard-sphere target. Furthermore, the redundancy of error model parameters is eliminated to ensure the accuracy and robustness of the parameter identification. Calibration and measurement experiments are carried out based on an ER3A-C60 robot. The experimental results show that the proposed calibration method enjoys high measurement accuracy, and this efficient and flexible system is suitable for online measurement in industrial scenes.

  18. Kinematic stratification in the hinterland of the central Scandinavian Caledonides

    USGS Publications Warehouse

    Gilotti, J.A.; Hull, J.M.

    1993-01-01

    A transect through west-central Norway illustrates the changing geometry and kinematics of collision in the hinterland of the central Scandinavian Caledonides. A depth section through the crust is exposed on Fosen Peninsula, comprising three tectonic units separated by two shear zones. The lowest unit, exposed in the Roan window, is a modestly deformed, Caledonian granulite complex framed by a subhorizontal de??collement, with NW-SE oriented lineations and kinematic indicators showing top-to-the-northwest transport. The middle unit, the Vestranden gneiss complex, contains relict granulites, but was penetratively deformed at amphibolite facies to produce an orogen-parallel family of structures during translation on the de??collement. Shallow plunging lineations on steep schistosities are subparallel to fold axes of the dominant, upright, non-cylindrical folds. A small component of sinistral strike slip is also recorded. In contrast, southernmost Fosen Peninsula contains an abundance of cover rocks infolded with Proterozoic basement in a fold nappe, with shallow, E-dipping schistosities, down-dip lineations, and orogen-oblique, top-to-the-west shear sense indicators. A NE-striking, sinistral shear zone separates the gneisses from southern Fosen. Deformation in the Scandian hinterland was partitioned both in space and time, with orogen-parallel extension and shear at middle structural levels and orogen-oblique transport at shallower levels. ?? 1993.

  19. Fetlock joint kinematics differ with age in Thoroughbred [was thoroughbred] racehorses.

    PubMed

    Butcher, Michael T; Ashley-Ross, M A

    2002-05-01

    Fetlock joint kinematics during galloping in 2-, 3-, 4-, and 5-year-old Thoroughbreds in race training were quantified to determine if differences due to age could account for the observation that 2-year old Thoroughbred racehorses incur a high number of injuries to the bones and soft tissues in the distal forelimbs during training and at the outset of racing. Twelve Thoroughbred racehorses were videotaped in the sagittal plane at 250 frames/s during their daily galloping workout on a 7/8 mile sand-surface training track. Four galloping strides were recorded for each horse and subsequently digitized to determine fetlock joint angles of the leading forelimb during the limb support period of a stride. Four kinematic variables were measured from each stride's angular profile: angle of fetlock joint dorsi-flexion at mid-stance, negative angular velocity, positive angular velocity and time from hoof impact to mid-stance phase of limb support. The 2-year old Thoroughbreds had significantly quicker rates of dorsi-flexion of their fetlock joints than 3- (p=0.01), 4- (p=0.01), and 5-year old (p<0.01) Thoroughbreds following impact of the leading forelimb during moderate galloping (avg. 14 m/s). Higher rates of dorsi-flexion in young Thoroughbreds may reflect immaturity (lack of stiffness) of the suspensory apparatus tissues.

  20. Examination of global correlations in ground deformation for terrestrial reference frame estimation

    NASA Astrophysics Data System (ADS)

    Chin, T. M.; Abbondanza, C.; Argus, D. F.; Gross, R. S.; Heflin, M. B.; Parker, J. W.; Wu, X.

    2016-12-01

    The KALman filter for REFerence frames (KALREF, Wu et al. 2015) has been developed to produce terrestrial reference frame (TRF) solutions. TRFs consist of precise position coordinates and velocity vectors of terrestrial reference sites (with the geocenter as the origin) along with the Earth orientation parameters, and they are produced by combining decades worth of space geodetic data using site tie data. To perform the combination, KALREF relies on stochastic models of the geophysical processes that are causing the Earth's surface to deform and reference sites to be displaced. We are investigating application of the GRACE data to improve the KALREF stochastic models by determining spatial statistics of the deformation of the Earth's surface caused by mass loading. A potential target of improvement is the non-uniform distribution of the geodetic observation sites, which can introduce bias in TRF estimates of the geocenter. The global and relatively uniform coverage of the GRACE measurements is expected to be free of such bias and allow us to improve physical realism of the stochastic model. For such a goal, we examine the spatial correlations in ground deformation derived from several GRACE data sets.[Wu et al. 2015: Journal of Geophysical Research (Solid Earth) 120:3775-3802

  1. Determining the locations of the various CIRC recording format information blocks (user data blocks, C2 and C1 words and EFM frames) on a recorded compact disc

    NASA Technical Reports Server (NTRS)

    Howe, Dennis G.

    1993-01-01

    Just prior to its being EFM modulated (i.e., converted to eight-to-fourteen channel data by the EFM encoder) and written to a Compact Disc (CD), information that passes through the CIRC Block Encoder is grouped into 33-byte blocks referred to as EFM frames. Twenty four of the bytes that make up a given EFM frame are user data that was input into the CIRC encoder at various (different) times, 4 of the bytes of this same EFM frame were created by the C2 ECC encoder (each at a different time), and another 4 were created by the C1 ECC encoder (again, each at a different time). The one remaining byte of the given EFM frame, which is known as the EFM frame C&D (for Control & Display) byte, carries information that identifies which portion of the current disc program track the given EFM frame belongs to and also specifies the location of the given EFM frame on the disc (in terms of a time stamp that has a resolution of l/75th second, or 98 EFM frames). (Note: since the program track and time information is stored as a 98-byte word, a logical group consisting of 98 consecutive EFM frames must be read, and their respective C&D bytes must be catenated and decoded, before the program track identification and time position information that pertains to the entire block of 98 EFM frames can be obtained.) The C&D byte is put at the start (0th byte) of an EFM frame in real time; its placement completes the construction of the EFM frame - it is assigned just before the EFM frame enters the EFM encoder. Four distinct blocks of data are referred to: 24-byte User Input Data Blocks; 28-byte C2 words; 32-byte C1 words; and 33-byte EFM frames.

  2. The Lyman alpha reference sample. VII. Spatially resolved Hα kinematics

    NASA Astrophysics Data System (ADS)

    Herenz, Edmund Christian; Gruyters, Pieter; Orlitova, Ivana; Hayes, Matthew; Östlin, Göran; Cannon, John M.; Roth, Martin M.; Bik, Arjan; Pardy, Stephen; Otí-Floranes, Héctor; Mas-Hesse, J. Miguel; Adamo, Angela; Atek, Hakim; Duval, Florent; Guaita, Lucia; Kunth, Daniel; Laursen, Peter; Melinder, Jens; Puschnig, Johannes; Rivera-Thorsen, Thøger E.; Schaerer, Daniel; Verhamme, Anne

    2016-03-01

    We present integral field spectroscopic observations with the Potsdam Multi-Aperture Spectrophotometer of all 14 galaxies in the z ~ 0.1 Lyman Alpha Reference Sample (LARS). We produce 2D line-of-sight velocity maps and velocity dispersion maps from the Balmer α (Hα) emission in our data cubes. These maps trace the spectral and spatial properties of the LARS galaxies' intrinsic Lyα radiation field. We show our kinematic maps that are spatially registered onto the Hubble Space Telescope Hα and Lyman α (Lyα) images. We can conjecture a causal connection between spatially resolved Hα kinematics and Lyα photometry for individual galaxies, however, no general trend can be established for the whole sample. Furthermore, we compute the intrinsic velocity dispersion σ0, the shearing velocity vshear, and the vshear/σ0 ratio from our kinematic maps. In general LARS galaxies are characterised by high intrinsic velocity dispersions (54 km s-1 median) and low shearing velocities (65 km s-1 median). The vshear/σ0 values range from 0.5 to 3.2 with an average of 1.5. It is noteworthy that five galaxies of the sample are dispersion-dominated systems with vshear/σ0< 1, and are thus kinematically similar to turbulent star-forming galaxies seen at high redshift. When linking our kinematical statistics to the global LARS Lyα properties, we find that dispersion-dominated systems show higher Lyα equivalent widths and higher Lyα escape fractions than systems with vshear/σ0> 1. Our result indicates that turbulence in actively star-forming systems is causally connected to interstellar medium conditions that favour an escape of Lyα radiation. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).The reduced data cubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A78

  3. A-frame model for metaphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilpatrick, W.

    1982-01-01

    While literal language is successfully being subjected to automatic analysis, metaphors remain intractable. Using Minsky's frame theory the metaphoric process is viewed as a copying of stereotypic terminal clusters from the frames of the 1 degrees and 2 degrees terms of the metaphor. Stereotypic values from the two original frames share equal status in this new frame, while non-stereotypic values from the two will be kept separate for possible use in metaphoric extension. The a-frame analysis is illustrated by application to non-literary novel metaphors. Frames provide the quantity of information needed for interpretation. Certain frame values are marked as stereotypic.more » Creativity is realized by the construction of a new a-frame, and the tension is realized by the presence in a single a-frame of both shared stereotypic and discrete non-stereotypic values. 10 references.« less

  4. Using Global, Quantitative Models of the Coupled Plates/Mantle System to Understand Late Neogene Dynamics of the Pacific Plate

    NASA Astrophysics Data System (ADS)

    Stotz, I.; Davies, R.; Iaffaldano, G.

    2016-12-01

    Knowledge of the evolution of continents, inferred from a variety of geological data, as well as observations of the ocean-floor magnetization pattern provide an increasingly-detailed picture of past and present-day plate motions. These are key to study the evolving balance of shallow- and deep-rooted forces acting upon plates and to unravel the dynamics of the coupled plates/mantle system. Here we focus on the clockwise rotation of the Pacific plate motion relative to the hotspots reference frame between 10 and 5 Ma, which is evidenced by a bend in the Hawaiian sea mount chain (Cox & Engebretson, 1985) as well as by marine magnetic and bathymetric data along the Pacific/Antarctica Ridge (Croon et al., 2008). It has been suggested that such a kinematic change owes to the arrival of the Ontong-Java plateau, the biggest oceanic plateau on the Pacific plate, at the Australia/Pacific subducting margin between 10 and 5 Ma, and to its collision with the Melanesian arc. This could have changed the local buoyancy forces and/or sparked a redistribution of the forces already acting within the Pacific realm, causing the Pacific plate to rotate clockwise. Such hypotheses have never been tested explicitly against the available kinematic reconstructions. We do so by using global numerical models of the coupled plates/mantle system. Our models build on the available codes Terra and Shells. Terra is a global, spherical finite-element code for mantle convection, developed by Baumgardner (1985) and Bunge et al. (1996), and further advanced by Yang (1997; 2000) and Davies et al. (2013), among others. Shells is a thin-sheet, finite-element code for lithosphere dynamics (e.g., Bird, 1998). By merging these two independent models we are able to simulate the rheological behavior of the brittle lithosphere and viscous mantle. We compare the plate velocities output by our models with the available kinematic reconstructions to test the above-mentioned hypotheses, and simulate the impact of the evolving mantle buoyancy-field and plate-boundary forces on the Pacific plate motion. Our approach allows distinguishing between the top-down and bottom-up controls on the recent dynamics of the Pacific plate.

  5. Optical seismic sensor systems and methods

    DOEpatents

    Beal, A. Craig; Cummings, Malcolm E.; Zavriyev, Anton; Christensen, Caleb A.; Lee, Keun

    2015-12-08

    Disclosed is an optical seismic sensor system for measuring seismic events in a geological formation, including a surface unit for generating and processing an optical signal, and a sensor device optically connected to the surface unit for receiving the optical signal over an optical conduit. The sensor device includes at least one sensor head for sensing a seismic disturbance from at least one direction during a deployment of the sensor device within a borehole of the geological formation. The sensor head includes a frame and a reference mass attached to the frame via at least one flexure, such that movement of the reference mass relative to the frame is constrained to a single predetermined path.

  6. Plate and Plume Flux: Constraints for paleomagnetic reference frames and interpretation of deep mantle seismic heterogeneity. (Invited)

    NASA Astrophysics Data System (ADS)

    Bunge, H.; Schuberth, B. S.; Shephard, G. E.; Müller, D.

    2010-12-01

    Plate and plume flow are dominant modes of mantle convection, as pointed out by Geoff Davies early on. Driven, respectively, from a cold upper and a hot lower thermal boundary layer these modes are now sufficiently well imaged by seismic tomographers to exploit the thermal boundary layer concept as an effective tool in exploring two long standing geodynamic problems. One relates to the choice of an absolute reference frame in plate tectonic reconstructions. Several absolute reference frames have been proposed over the last decade, including those based on hotspot tracks displaying age progression and assuming either fixity or motion, as well as palaeomagnetically-based reference frames, a subduction reference frame and hybrid versions. Each reference frame implies a particular history of the location of subduction zones through time and thus the evolution of mantle heterogeneity via mixing of subducted slab material in the mantle. Here we compare five alternative absolute plate motion models in terms of their consequences for deep mantle structure. Taking global paleo-plate boundaries and plate velocities back to 140 Ma derived from the new plate tectonic reconstruction software GPlates and assimilating them into vigorous 3-D spherical mantle circulation models, we infer geodynamic mantle heterogeneity and compare it to seismic tomography for each absolute rotation model. We also focus on the challenging problem of interpreting deep mantle seismic heterogeneity in terms of thermal and compositional variations. Using published thermodynamically self-consistent mantle mineralogy models in the pyrolite composition, we find strong plume flux from the CMB, with a high temperature contrast (on the order of 1000 K) across the lower thermal boundary layer is entirely sufficient to explain elastic heterogeneity in the deep mantle for a number of quantitative measures. A high excess temperatures of +1000--1500 K for plumes in the lowermost mantle is particularly important in understanding the strong seismic velocity reduction mapped by tomography in low-velocity bodies of the deep mantle, as this produces significant negative anomalies of shear wave velocity of up to -4%. We note, however, that our results do not account for the curious observation of seismic anti-correlation, which appears difficult to explain in any case. Our results provide important constraints for the integration of plate tectonics and mantle dynamics and their use in forward and inverse geodynamic mantle models.

  7. Datum maintenance of the main Egyptian geodetic control networks by utilizing Precise Point Positioning "PPP" technique

    NASA Astrophysics Data System (ADS)

    Rabah, Mostafa; Elmewafey, Mahmoud; Farahan, Magda H.

    2016-06-01

    A geodetic control network is the wire-frame or the skeleton on which continuous and consistent mapping, Geographic Information Systems (GIS), and surveys are based. Traditionally, geodetic control points are established as permanent physical monuments placed in the ground and precisely marked, located, and documented. With the development of satellite surveying methods and their availability and high degree of accuracy, a geodetic control network could be established by using GNSS and referred to an international terrestrial reference frame used as a three-dimensional geocentric reference system for a country. Based on this concept, in 1992, the Egypt Survey Authority (ESA) established two networks, namely High Accuracy Reference Network (HARN) and the National Agricultural Cadastral Network (NACN). To transfer the International Terrestrial Reference Frame to the HARN, the HARN was connected with four IGS stations. The processing results were 1:10,000,000 (Order A) for HARN and 1:1,000,000 (Order B) for NACN relative network accuracy standard between stations defined in ITRF1994 Epoch1996. Since 1996, ESA did not perform any updating or maintaining works for these networks. To see how non-performing maintenance degrading the values of the HARN and NACN, the available HARN and NACN stations in the Nile Delta were observed. The Processing of the tested part was done by CSRS-PPP Service based on utilizing Precise Point Positioning "PPP" and Trimble Business Center "TBC". The study shows the feasibility of Precise Point Positioning in updating the absolute positioning of the HARN network and its role in updating the reference frame (ITRF). The study also confirmed the necessity of the absent role of datum maintenance of Egypt networks.

  8. The Influence of Framing on Risky Decisions: A Meta-analysis.

    PubMed

    Kühberger

    1998-07-01

    In framing studies, logically equivalent choice situations are differently described and the resulting preferences are studied. A meta-analysis of framing effects is presented for risky choice problems which are framed either as gains or as losses. This evaluates the finding that highlighting the positive aspects of formally identical problems does lead to risk aversion and that highlighting their equivalent negative aspects does lead to risk seeking. Based on a data pool of 136 empirical papers that reported framing experiments with nearly 30,000 participants, we calculated 230 effect sizes. Results show that the overall framing effect between conditions is of small to moderate size and that profound differences exist between research designs. Potentially relevant characteristics were coded for each study. The most important characteristics were whether framing is manipulated by changing reference points or by manipulating outcome salience, and response mode (choice vs. rating/judgment). Further important characteristics were whether options differ qualitatively or quantitatively in risk, whether there is one or multiple risky events, whether framing is manipulated by gain/loss or by task-responsive wording, whether dependent variables are measured between- or within- subjects, and problem domains. Sample (students vs. target populations) and unit of analysis (individual vs. group) was not influential. It is concluded that framing is a reliable phenomenon, but that outcome salience manipulations, which constitute a considerable amount of work, have to be distinguished from reference point manipulations and that procedural features of experimental settings have a considerable effect on effect sizes in framing experiments. Copyright 1998 Academic Press.

  9. IMU: inertial sensing of vertical CoM movement.

    PubMed

    Esser, Patrick; Dawes, Helen; Collett, Johnny; Howells, Ken

    2009-07-22

    The purpose of this study was to use a quaternion rotation matrix in combination with an integration approach to transform translatory accelerations of the centre of mass (CoM) from an inertial measurement unit (IMU) during walking, from the object system onto the global frame. Second, this paper utilises double integration to determine the relative change in position of the CoM from the vertical acceleration data. Five participants were tested in which an IMU, consisting of accelerometers, gyroscopes and magnetometers was attached on the lower spine estimated centre of mass. Participants were asked to walk three times through a calibrated volume at their self-selected walking speed. Synchronized data were collected by an IMU and an optical motion capture system (OMCS); both measured at 100 Hz. Accelerations of the IMU were transposed onto the global frame using a quaternion rotation matrix. Translatory acceleration, speed and relative change in position from the IMU were compared with the derived data from the OMCS. Peak acceleration in vertical axis showed no significant difference (p> or =0.05). Difference between peak and trough speed showed significant difference (p<0.05) but relative peak-trough position between the IMU and OMCS did not show any significant difference (p> or =0.05). These results indicate that quaternions, in combination with Simpsons rule integration, can be used in transforming translatory acceleration from the object frame to the global frame and therefore obtain relative change in position, thus offering a solution for using accelerometers in accurate global frame kinematic gait analyses.

  10. The Celestial Reference Frame at X/Ka-band (8.4/32 GHz)

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Clark, J. E.; Heflin, M. B.; Skjerve, L. J.; Sovers, O. J.; Garcia-Miro, C.; Moll, V. E.; Horiuchi, S.

    2011-01-01

    A celestial reference frame at X/Ka-band (8.4/32 GHz) has been constructed using fifty-one 24-hour sessions with the Deep Space Network. We report on observations which have detected 436 sources covering the full 24 hours of right ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of 200 micro-arcsec in a cos delta and 290 micro-arcsec in delta. There is evidence for zonal errors at the 100 micro-arcsec level. Known errors include limited SNR, lack of phase calibration, troposphere mismodelling, and limited southern geometry. The motivations for extending the ICRF to frequencies above 8 GHz are to access more compact source morphology for improved frame stability, to provide calibrators for phase referencing, and to support spacecraft navigation at Ka-band.

  11. The Celestial Reference Frame at X/Ka-band (8.4/32 GHz)

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Clark, J. E.; Heflin, M. B.; Skjerve, L. J.; Sovers, O. J.; Garcia-Miro, C.; Moll, V. E.; Horiuchi, S.

    2010-01-01

    A celestial reference frame at X/Kaband (8.4/32 GHz) has been constructed using fiftyone 24-hour sessions with the Deep Space Network. We report on observations which have detected 436 sources covering the full 24 hours of right ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of 200 micro-arcsec ( mu as) in alpha cos delta and 290 mu as in delta. There is evidence for zonal errors at the 100 mu as level. Known errors include limited SNR, lack of phase calibration, troposphere mismodelling, and limited southern geometry. The motivations for extending the ICRF to frequencies above 8 GHz are to access more compact source morphology for improved frame stability, to provide calibrators for phase referencing, and to support spacecraft navigation at Ka-band.

  12. Postglacial Rebound from VLBI Geodesy: On Establishing Vertical Reference

    NASA Technical Reports Server (NTRS)

    Argus, Donald F.

    1996-01-01

    Difficulty in establishing a reference frame fixed to the earth's interior complicates the measurement of the vertical (radial) motions of the surface. I propose that a useful reference frame for vertical motions is that found by minimizing differences between vertical motions observed with VLBI [Ma and Ryan] and predictions from postglacial rebound predictions [Peltier]. The optimal translation of the geocenter is 1.7mm/year toward 36degN, 111degE when determined from the motions of 10 VLBI sites. This translation gives a better fit of observations to predictions than does the VLBI reference frame used by Ma and Ryan, but the improvement is statistically insignificant. The root mean square of differences decreases 20% to 0.73 mm/yr and the correlation coefficient increases from 0.76 to 0.87. Postglacial rebound is evident in the uplift of points in Sweden and Ontario that were beneath the ancient ice sheets of Fennoscandia and Canada, and in the subsidence of points in the northeastern U.S., Germany, and Alaska that were around the periphery of the ancient ice sheets.

  13. Effects of tectonic plate deformation on the geodetic reference frame of Mexico

    NASA Astrophysics Data System (ADS)

    Gonzalez Franco, G. A.; Avalos, D.; Esquivel, R.

    2013-05-01

    Positioning for geodetic applications is commonly determined at one observation epoch, but tectonic drift and tectonic deformation cause the coordinates to be different for any other epoch. Finding the right coordinates at a different epoch from that of the observation time is necessary in Mexico in order to comply the official reference frame, which requires all coordinates to be referred to the standard epoch 2010.0. Available models of horizontal movement in rigid tectonic plates are used to calculate the displacement of coordinates; however for a portion of Mexico these models fail because of miss-modeled regional deformation, decreasing the quality of users' data transformed to the standard epoch. In this work we present the progress achieved in measuring actual horizontal motion towards an improved modeling of horizontal displacements for some regions. Miss-modeled velocities found are as big as 23mm/a, affecting significantly applications like cadastral and geodetic control. Data from a large set of GNSS permanent stations in Mexico is being analyzed to produce the preliminary model of horizontal crustal movement that will be used to minimize distortions of the reference frame.

  14. Dynamic stress changes during earthquake rupture

    USGS Publications Warehouse

    Day, S.M.; Yu, G.; Wald, D.J.

    1998-01-01

    We assess two competing dynamic interpretations that have been proposed for the short slip durations characteristic of kinematic earthquake models derived by inversion of earthquake waveform and geodetic data. The first interpretation would require a fault constitutive relationship in which rapid dynamic restrengthening of the fault surface occurs after passage of the rupture front, a hypothesized mechanical behavior that has been referred to as "self-healing." The second interpretation would require sufficient spatial heterogeneity of stress drop to permit rapid equilibration of elastic stresses with the residual dynamic friction level, a condition we refer to as "geometrical constraint." These interpretations imply contrasting predictions for the time dependence of the fault-plane shear stresses. We compare these predictions with dynamic shear stress changes for the 1992 Landers (M 7.3), 1994 Northridge (M 6.7), and 1995 Kobe (M 6.9) earthquakes. Stress changes are computed from kinematic slip models of these earthquakes, using a finite-difference method. For each event, static stress drop is highly variable spatially, with high stress-drop patches embedded in a background of low, and largely negative, stress drop. The time histories of stress change show predominantly monotonic stress change after passage of the rupture front, settling to a residual level, without significant evidence for dynamic restrengthening. The stress change at the rupture front is usually gradual rather than abrupt, probably reflecting the limited resolution inherent in the underlying kinematic inversions. On the basis of this analysis, as well as recent similar results obtained independently for the Kobe and Morgan Hill earthquakes, we conclude that, at the present time, the self-healing hypothesis is unnecessary to explain earthquake kinematics.

  15. Osculating Relative Orbit Elements Resulting from Chief Eccentricity and J2 Perturbing Forces

    DTIC Science & Technology

    2011-03-01

    significant importance to the analytical investigation in this study and is described in depth in Section 3.1.1. There do exist approaches to mapping the...necessary to introduce the environment which the majority of models describe. 2.2.1 Inertial Reference Frame. A geocentric reference frame will be used for...closest approach , modifying the period and minima locations of the radial and in-track components. This change impacts the periodicity of the radial

  16. Covariance Analysis of Vision Aided Navigation by Bootstrapping

    DTIC Science & Technology

    2012-03-22

    vision aided navigation. The aircraft uses its INS estimate to geolocate ground features, track those features to aid the INS, and using that aided...development of the 2-D case, including the dynamics and measurement model development, the state space representation and the use of the Kalman filter ...reference frame. This reference frame has its origin located somewhere on an A/C. Normally the origin is set at the A/C center of gravity to allow the use

  17. Magnetic Braking: A Video Analysis

    NASA Astrophysics Data System (ADS)

    Molina-Bolívar, J. A.; Abella-Palacios, A. J.

    2012-10-01

    This paper presents a laboratory exercise that introduces students to the use of video analysis software and the Lenz's law demonstration. Digital techniques have proved to be very useful for the understanding of physical concepts. In particular, the availability of affordable digital video offers students the opportunity to actively engage in kinematics in introductory-level physics.1,2 By using digital videos frame advance features and "marking" the position of a moving object in each frame, students are able to more precisely determine the position of an object at much smaller time increments than would be possible with common time devices. Once the student collects data consisting of positions and times, these values may be manipulated to determine velocity and acceleration. There are a variety of commercial and free applications that can be used for video analysis. Because the relevant technology has become inexpensive, video analysis has become a prevalent tool in introductory physics courses.

  18. Laws of reflection and Snell's law revisited by video modeling

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-07-01

    Video modelling is being used, nowadays, as a tool for teaching and learning several topics in Physics. Most of these topics are related to kinematics. In this work we show how video modelling can be used for demonstrations and experimental teaching in optics, namely the laws of reflection and the well-known Snell's Law of light. Videos were recorded with a photo camera at 30 frames/s, and analysed with the open source software Tracker. Data collected from several frames was treated with the Data Tool module, and graphs were built to obtain relations between incident, reflected and refraction angles, as well as to determine the refractive index of Perspex. These videos can be freely distributed in the web and explored with students within the classroom, or as a homework assignment to improve student's understanding on specific contents. They present a large didactic potential for teaching basic optics in high school with an interactive methodology.

  19. Large perceptual distortions of locomotor action space occur in ground-based coordinates: Angular expansion and the large-scale horizontal-vertical illusion.

    PubMed

    Klein, Brennan J; Li, Zhi; Durgin, Frank H

    2016-04-01

    What is the natural reference frame for seeing large-scale spatial scenes in locomotor action space? Prior studies indicate an asymmetric angular expansion in perceived direction in large-scale environments: Angular elevation relative to the horizon is perceptually exaggerated by a factor of 1.5, whereas azimuthal direction is exaggerated by a factor of about 1.25. Here participants made angular and spatial judgments when upright or on their sides to dissociate egocentric from allocentric reference frames. In Experiment 1, it was found that body orientation did not affect the magnitude of the up-down exaggeration of direction, suggesting that the relevant orientation reference frame for this directional bias is allocentric rather than egocentric. In Experiment 2, the comparison of large-scale horizontal and vertical extents was somewhat affected by viewer orientation, but only to the extent necessitated by the classic (5%) horizontal-vertical illusion (HVI) that is known to be retinotopic. Large-scale vertical extents continued to appear much larger than horizontal ground extents when observers lay sideways. When the visual world was reoriented in Experiment 3, the bias remained tied to the ground-based allocentric reference frame. The allocentric HVI is quantitatively consistent with differential angular exaggerations previously measured for elevation and azimuth in locomotor space. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Large perceptual distortions of locomotor action space occur in ground-based coordinates: Angular expansion and the large-scale horizontal-vertical illusion

    PubMed Central

    Klein, Brennan J.; Li, Zhi; Durgin, Frank H.

    2015-01-01

    What is the natural reference frame for seeing large-scale spatial scenes in locomotor action space? Prior studies indicate an asymmetric angular expansion in perceived direction in large-scale environments: Angular elevation relative to the horizon is perceptually exaggerated by a factor of 1.5, whereas azimuthal direction is exaggerated by a factor of about 1.25. Here participants made angular and spatial judgments when upright or on their sides in order to dissociate egocentric from allocentric reference frames. In Experiment 1 it was found that body orientation did not affect the magnitude of the up-down exaggeration of direction, suggesting that the relevant orientation reference frame for this directional bias is allocentric rather than egocentric. In Experiment 2, the comparison of large-scale horizontal and vertical extents was somewhat affected by viewer orientation, but only to the extent necessitated by the classic (5%) horizontal-vertical illusion (HVI) that is known to be retinotopic. Large-scale vertical extents continued to appear much larger than horizontal ground extents when observers lay sideways. When the visual world was reoriented in Experiment 3, the bias remained tied to the ground-based allocentric reference frame. The allocentric HVI is quantitatively consistent with differential angular exaggerations previously measured for elevation and azimuth in locomotor space. PMID:26594884

Top