Kinesthesis can make an invisible hand visible
Dieter, Kevin C.; Hu, Bo; Knill, David C.; Blake, Randolph; Tadin, Duje
2014-01-01
Self-generated body movements have reliable visual consequences. This predictive association between vision and action likely underlies modulatory effects of action on visual processing. However, it is unknown if our own actions can have generative effects on visual perception. We asked whether, in total darkness, self-generated body movements are sufficient to evoke normally concomitant visual perceptions. Using a deceptive experimental design, we discovered that waving one’s own hand in front of one’s covered eyes can cause visual sensations of motion. Conjecturing that these visual sensations arise from multisensory connectivity, we showed that individuals with synesthesia experience substantially stronger kinesthesis-induced visual sensations. Finally, we found that the perceived vividness of kinesthesis-induced visual sensations predicted participants’ ability to smoothly eye-track self-generated hand movements in darkness, indicating that these sensations function like typical retinally-driven visual sensations. Evidently, even in the complete absence of external visual input, our brains predict visual consequences of our actions. PMID:24171930
Training Dismounted Soldiers in Virtual Environments: Task and Research Requirements
1994-10-01
Experimental Psychology, 90, 287-299. Craske, B., & Crawshaw , M. (1974). Differential errors of kinesthesis produced by previous limb position. Journal of...Motor Behavior, 6, 273. 278. Craske, B., & Crawshaw , M. (1975). Shifts in kinethesis through time and after active and passive movements. Perceptual and
The stuff that dreams aren't made of: why wake-state and dream-state sensory experiences differ.
Symons, D
1993-06-01
It is adaptive for individuals to be continuously alert and responsive to external stimuli (such as the sound and odor of an approaching predator or the cry of an infant), even during sleep. Natural selection thus has disfavored the occurrence during sleep of hallucinations that compromise external vigilance. In the great majority of mammalian species, including Homo sapiens, closed eyes and immobility are basic aspects of sleep. Therefore, (a) visual and movement sensory modalities (except kinesthesis) do not provide the sleeper with accurate information about the external environment or the sleeper's relationship to that environment; (b) the sleeper's forebrain "vigilance mechanism" does not monitor these modalities; hence (c) visual and movement hallucinations--similar or identical to percepts--can occur during sleep without compromising vigilance. In contrast, the other sensory modalities do provide the sleeper with a continuous flow of information about the external environment or the sleeper's relationship to that environment, and these modalities are monitored by the vigilance mechanism. Hallucinations of kinesthesis, pain, touch, warmth, cold, odor, and sound thus would compromise vigilance, and their occurrence during sleep has been disfavored by natural selection. This vigilance hypothesis generates novel predictions about dream phenomenology and REM-state neurophysiology and has implications for the general study of imagery.
When kinesthetic information is neglected in learning a Novel bimanual rhythmic coordination.
Zhu, Qin; Mirich, Todd; Huang, Shaochen; Snapp-Childs, Winona; Bingham, Geoffrey P
2017-08-01
Many studies have shown that rhythmic interlimb coordination involves perception of the coupled limb movements, and different sensory modalities can be used. Using visual displays to inform the coupled bimanual movement, novel bimanual coordination patterns can be learned with practice. A recent study showed that similar learning occurred without vision when a coach provided manual guidance during practice. The information provided via the two different modalities may be same (amodal) or different (modality specific). If it is different, then learning with both is a dual task, and one source of information might be used in preference to the other in performing the task when both are available. In the current study, participants learned a novel 90° bimanual coordination pattern without or with visual information in addition to kinesthesis. In posttest, all participants were tested without and with visual information in addition to kinesthesis. When tested with visual information, all participants exhibited performance that was significantly improved by practice. When tested without visual information, participants who practiced using only kinesthetic information showed improvement, but those who practiced with visual information in addition showed remarkably less improvement. The results indicate that (1) the information is not amodal, (2) use of a single type of information was preferred, and (3) the preferred information was visual. We also hypothesized that older participants might be more likely to acquire dual task performance given their greater experience of the two sensory modes in combination, but results were replicated with both 20- and 50-year-olds.
A new paradigm for human stick balancing: a suspended not an inverted pendulum.
Lee, Kwee-Yum; O'Dwyer, Nicholas; Halaki, Mark; Smith, Richard
2012-09-01
We studied 14 skilled subjects balancing a stick (a television antenna, 52 cm, 34 g) on their middle fingertip. Comprehensive three-dimensional analyses revealed that the movement of the finger was 1.75 times that of the stick tip, such that the balanced stick behaved more like a normal noninverted pendulum than the inverted pendulum common to engineering models for stick balancing using motors. The average relation between the torque applied to the stick and its angle of deviation from the vertical was highly linear, consistent with simple harmonic motion. We observed clearly greater rotational movement of the stick in the anteroposterior plane than the mediolateral plane. Despite this magnitude difference, the duration of stick oscillatory cycles was very similar in both planes, again consistent with simple harmonic motion. The control parameter in balancing was the ratio of active torque applied to the stick relative to gravitational torque. It determined both the pivot point and oscillatory cycle period of the pendulum. The pivot point was located at the radius of gyration (about the centre of mass) of the stick from its centre of mass, showing that the subjects attuned to the gravitational dynamics and mass distribution of the stick. Hence, the key to controlling instability here was mastery of the physics of the unstable object. The radius of gyration may--similar to centre of mass--contribute to the kinesthesis of rotating limb segments and control of their gravitational dynamics.
Colomer, Carolina; NOé, Enrique; Llorens, Roberto
2016-06-01
Mirror therapy (MT) has been proposed to improve the motor function of chronic individuals with stroke with mild to moderate impairment. With regards to severe upper limb paresis, MT has shown to provide limited motor improvement in the acute or sub-acute phase. However, no previous research has described the effects of MT in chronic individuals with stroke with severely impaired upper limb function. The aim of this study was to determine the effectiveness of MT on chronic stroke survivors with severe upper-limb impairment in comparison with passive mobilization. A randomized controlled trial. Rehabilitative outpatient unit. A total of 31 chronic subjects poststroke with severely impaired upper limb function were randomly assigned to either an experimental group (N.=15), or a control group (N.=16). Twenty-four intervention sessions were performed for both groups. Each session included 45-minute period of MT (experimental group) or passive mobilization (control group), administered three days a week. Participants were assessed before and after the intervention with the Wolf Motor Function Test, the Fugl-Meyer Assessment, and the Nottingham Sensory Assessment. Improvement in motor function was observed in both groups on the time (P=0.002) and ability (P=0.001) subscales of the Wolf Motor Function Test. No differences were detected in kinesthesis or stereognosis. However, the experimental group showed a significant improvement in tactile sensation that was mainly observed as an increased sensitivity to light touches. In comparison with passive mobilization, MT in chronic stroke survivors with severely impaired upper-limb function may provide a limited but positive effect on light touch sensitivity while providing similar motor improvement. MT is a therapeutic approach that can be used in the rehabilitation of severely impaired upper limb in chronic stroke survivors, specifically to address light touch sensitivity deficits.
Investigations into haptic space and haptic perception of shape for active touch
NASA Astrophysics Data System (ADS)
Sanders, A. F. J.
2008-12-01
This thesis presents a number of psychophysical investigations into haptic space and haptic perception of shape. Haptic perception is understood to include the two subsystems of the cutaneous sense and kinesthesis. Chapter 2 provides an extensive quantitative study into haptic perception of curvature. I investigated bimanual curvature discrimination of cylindrically curved, hand-sized surfaces. I found that discrimination thresholds were in the same range as unimanual thresholds reported in previous studies. Moreover, the distance between the surfaces or the position of the setup with respect to the observer had no effect on thresholds. Finally, I found idiosyncratic biases: A number of observers judged two surfaces that had different radii as equally curved. Biases were of the same order of magnitude as thresholds. In Chapter 3, I investigated haptic space. Here, haptic space is understood to be (1) the set of observer’s judgments of spatial relations in physical space, and (2) a set of constraints by which these judgments are internally consistent. I asked blindfolded observers to construct straight lines in a number of different tasks. I show that the shape of the haptically straight line depends on the task used to produce it. I therefore conclude that there is no unique definition of the haptically straight line and that doubts are cast on the usefulness of the concept of haptic space. In Chapter 4, I present a new experiment into haptic length perception. I show that when observers trace curved pathways with their index finger and judge distance traversed, their distance estimates depend on the geometry of the paths: Lengths of convex, cylindrically curved pathways were overestimated and lengths of concave pathways were underestimated. In addition, I show that a kinematic mechanism must underlie this interaction: (1) the geometry of the path traced by the finger affects movement speed and consequently movement time, and (2) movement time is taken as a measure of traversed length. The study presented in Chapter 5 addresses the question of how kinematic properties of exploratory movements affect perceived shape. I identify a kinematic invariant for the case of a single finger moving across cylindrically curved strips under conditions of slip. I found that the rotation angle of the finger increased linearly with the curvature of the stimulus. In addition, I show that observers took rotation angle as their primary measure of perceived curvature: Observers rotated their finger less on a concave curvature by a constant amount, and consequently, they overestimated the radius of the concave strips compared to the convex ones. Finally, in Chapter 6, I investigated the haptic filled-space illusion for dynamic touch: Observers move their fingertip across an unfilled extent or an extent filled with intermediate stimulations. Previous researchers have reported lengths of filled extents to be overestimated, but the parameters affecting the strength of the illusion are still largely unknown. Factors investigated in this chapter include end point effects, filler density and overall average movement speed.